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ABSTRACT

Pan, Chao PhD, Purdue University, December 2016. Group Transformation and
Identification with Kernel Methods and Big Data Mixed Logistic Regression. Major
Professor: Michael Yu Zhu.

Exploratory Data Analysis (EDA) is a crucial step in the life cycle of data analysis.

Exploring data with e↵ective methods would reveal main characteristics of data and

provides guidance for model building. The goal of this thesis is to develop e↵ective

and e�cient methods for data exploration in the regression setting.

First, we propose to use optimal group transformations as a general approach for

exploring the relationship between predictor variables X and the response Y . This

approach can be considered an automatic procedure to identify the best characteristic

of P (Y |X) under which the relationship between Y andX can be fully explored. The

emphasis on using group transformations allows the approach to recover true group

structures among the predictors. We also develop kernel methods for estimating the

optimal group transformations based on cross-covariance and conditional covariance

operators. The statistical consistency of the estimates has been established. We refer

to the proposed framework and approach as the Optimal Kernel Group Transforma-

tion (OKGT) method.

Secondly, we define the true additive group structure for OKGT when the response

transformation is known, and further develop an e↵ective penalized kernel regression

method for its identification. The procedure uses a novel penalty we propose to

control the complexity of additive group structures. This method is referred to as

the Additive Group Structure Identification (AGSI). We also establish the selection

consistency for AGSI.
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Finally, we construct the Hierarchical Mixed Logistic Regression Model (HMLRM)

and propose to use it for exploring heterogeneity in big data. By explicitly modeling

the hidden layer, we individualize the calculation of the probability that a sample be-

longs to a subpopulation. While estimating the model parameters by EM algorithm,

the separability of the parameter space is exploited. In order to apply HMLRM on big

data, we design a distributed algorithm for model estimation which is implemented

in Apache Spark.
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1. INTRODUCTION

Exploratory Data Analysis (EDA) is a statistical approach to analyze data sets from

di↵erent perspectives and summarize their main characteristics. In the life cycle

of statistical analysis, EDA is usually performed after data collection and before

statistical modelling. The goal of performing EDA is to form a first impression of

data and to get an idea what can be done to data. It is stated in John Tukey’s

Exploratory Data Analysis [1] that “It is important to understand what you CAN

DO before you learn to measure how WELL you seem to have DONE it”.

In order to perform e↵ective EDA, we need to rely on proper techniques and tools.

One topic of this thesis is to show that the combination of additive model and kernel

methods can be e↵ectively used for data exploration.

Additive model and its generalized version (see [2], [3], [4]) are often used in non-

parametric regression analysis. They are more general than linear models to explore

nonlinearity in datasets when there is no or limited knowledge about data. With

a simplified additive structure, (generalized) additive model is less a↵ected by curse

of dimensionality and hence its model estimation is more e�cient. Because additive

model applies one dimensional smoothers, it is more interpretable than the results

obtained from more general non-parametric regression models. This is especially

important for EDA since its purpose it to make sense of data for model building and

statistical inference. However, it has to be admitted that by disregarding any possible

interaction between variables, additive model may not be su�cient to fully explore

data. In this thesis, we will extend (generalized) additive model by proposing the

notion of group structure to accommodate low dimensional interactions.

Kernel methods have been popular over the last two decades and witnessed great

achievement in both theory and applications (see [5], [6], [7], [8]). The fundamental

idea of kernel methods is that instead of reducing data dimensionality, samples are
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mapped to a higher dimensional space (sometimes even an infinite dimensional space)

in the hope that some nonlinear features of data will emerge. In machine learning,

this is called feature mapping and the space that data is mapped to is called feature

space.

In kernel methods, a feature space is usually a Reproducing Kernel Hilbert Space

(RKHS). The theory of RKHSs has been well developed (see [9]). One of the most

important properties of RKHSs is the reproducing property, which is helpful to refor-

mulate a statistical problem to facilitate its theoretical analysis. RKHSs are especially

useful for empirical risk minimization because of the celebrated representer theorem,

which shows that a function that minimize a regularized empirical risk over an RKHS

can be represented as a linear combination of the kernel functions evaluated at the

samples (see [10], [11], [12] for details). Thus by using kernel methods, model es-

timation in an infinite dimensional space can be formulated as a equivalent finite

dimensional problem.

Kernel methods are flexible tools for data exploration. Many traditional statisti-

cal methods have their kernalized versions, for example, kenrel PCA (see [13]), kernel

CCA (see [14]), kernel dimension reduction (see [15], [16]), and kernel test of inde-

pendence (see [17]). So kernels can be combined with classical statistical methods

to expand the horizon of data exploration. Since di↵erent RKHSs include functions

possessing di↵erent properties, such as degree of smoothness and integrability, choos-

ing an RKHS can be considered as leveraging some prior knowledge for analyzing

data. Kernel methods can also unify heterogeneous types of data so that the same

statistical method can be applied. This is because we have the freedom to design

di↵erent kernels for di↵erent data types, such as string kernels for text classification

(see [18], [19]), match kernels over image patches (see [20], [21]), and kernel function

for clinical data (see [22]).

In Chapter 2, we propose the Optimal Kernel Group Transformation (OKGT)

framework for e↵ective data exploration when regression is used. OKGT combines

the idea of additive structure with groups and kernel methods in a unified framework.
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This overcomes the restriction of additive model and takes advantage of the flexibility

of RKHSs. In Chapter 3, we answer the question of how to identify the additive group

structure for OKGT when the response transformation is known. This is achieved by

proposing a novel penalty which controls the group structure complexity in solving

OKGT. Solving OKGT by using this novel penalty is called Additive Group Structure

Identification (AGSI).

The second topic of this thesis is to develop and implement methods for exploring

big data. The information and communication technology evolution has been driven

by Moore’s Law for the past half a century. We are now marching towards the era

of the Internet of Things (IoT). Along with the wide adoption of mobile devices that

are connected through communication networks are the huge amount of data. They

are generated from the communication among devices, for example the browsing

information your cell phone sent to Google’s servers, and the interaction between

human and the devices, for example the shopping records you left behind in Target’s

server. More importantly, the speed of data generation and the complexity of data

structure is unparalleled in human history. How can we use this humongous amount

of complex data that is growing at an accelerating speed?

When the size of data increases, we would expect data’s structure becomes com-

plex. So a “big” model is necessary for revealing complex structural information from

data. As heterogeneity and anomaly are common in big data, being able to identify

hierarchical and clustering structures and detect anomalies is fundamental for explor-

ing big data. A model for big data exploration should be “big” enough to accomplish

these tasks.

In Chapter 4, we propose using Hierarchical Mixed Logistic Regression Model

(HMLRM) for exploring large data sets with categorical response. We also imple-

mented this model on Apache Spark which is one of the most popular big data

computing platforms these days.
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2. OPTIMAL KERNEL GROUP TRANSFORMATION

Regression analysis is a statistical technique for studying the relationship between a

response variable Y and a predictor vector X based on a sample of Y and X. The re-

lationship between Y andX can be fully characterized by the conditional distribution

of Y given X, which is denoted as P (Y |X). Therefore, the general goal of regression

analysis is to infer about P (Y |X) as much as possible with the given sample, which

we refer to as the exploratory regression analysis. However, many commonly used

regression methods only focus on some features of P (Y |X) instead of the full con-

ditional distribution. For example, ordinary least squares regression analysis focuses

on the conditional expectation E[Y |X], and quantile regression analysis targets the

conditional median or other quantiles of the response.

Regression methods that focus on particular features of P (Y |X) su↵er from some

limitations. Firstly, the majority of those methods such as linear regression relies on

strong model assumptions, and departure from the model assumptions may render

those methods ine↵ective. Secondly, focusing only on the feature of interest while

neglecting other aspects of P (Y |X) may make the regression analysis ine�cient.

Thirdly, those methods cannot be used to fully explore and capture the dependence

of Y on X in the conditional distribution P (Y |X). For example, suppose Y =

2X
1

+X
2

✏, where (X
1

, X
2

) and ✏ are independent and ✏ has mean zero and variance

one. Under this model, ordinary least squares regression analysis can only capture

X
1

, and the estimate of the coe�cient of X
1

is not e�cient.

There exists some e↵ort to directly estimate the conditional distribution P (Y |X)

using nonparametric methods, which is commonly referred to as conditional density

estimation in the literature. Rosenblatt [23] introduced conditional density estima-

tion in 1969. For conditional density estimation, Fan et al. [24] proposed to use local

polynomial regression in 1996, and recently Sujiyama et al. (2010) [25] proposed to
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use least-squares density ratio estimation. Conditional density estimation may be

useful for some specific application, but generally it is not practical or feasible espe-

cially when X is multidimensional. It is known that density estimation is challenging

when the dimensionality of X is higher than five, and conditional density estimation

can be even more di�cult. To ensure su�cient accuracy of the density estimator, an

extremely large number of data points is required (see [26]). Even when the condi-

tional density can be accurately estimated as a function of Y and X, the dependence

of Y on X cannot be easily interpreted. Another approach that can potentially over-

come the limitations of the two types of approaches discussed above is to first apply

transformation to Y and X and then study the relationship between the transformed

Y and X. Box and Cox (1964) proposed a family of power transformations (called

Box-Cox transformations now) and used them to transform the response Y so that

after transformation, the assumptions of linear model, normality and homoscedasc-

ity become appropriate. Later on, Box-Cox transformations were applied to both Y

and X, and then regression analysis was conducted for the transformed response and

predictor variables (see [27]). This extension can accommodate nonliear relationship

between the transformed Y and X. Although Box-Cox transformations work well in

many applications, the power transformations can become too restrictive.

Breiman and Friedman (1985) [3] considered applying general non-parametric

transformations to Y and X and further developed the Alternate Conditional Ex-

pectation (ACE) algorithm to compute the optimal transformations. Let Y be the

response and X = (X
1

, . . . , Xp) be the predictors. Let g(Y ), f
1

(X
1

), . . . , fp(Xp) be

the transformations of Y and X
1

, . . . , Xp, respectively. The optimal transformations

are the solutions to the following minimization problem.

min
g2L2

(P
Y

),
f
j

2L2
(P

X

j

)

ee2 = E[{g(Y )�
p
X

j=1

fj(Xj)}2],

s.t. E[g(Y )] = E[fj(Xj)] = 0;

E[g2(Y )] = 1,E[f 2

j (Xj)] <1.

(2.1)
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Here, PY and PX
j

denote the marginal distributions of Y and Xj, respectively,

and L2(P ) denotes the class of square integrable functions under the measure P. The

target function ee2 can be interpreted as the mean square error of regressing g(Y )

against fj(Xj)’s. Notice that in the regression, the transformations are applied to

the predictors individually, and then the transformed response is regressed against

the sum of the transformed predictors. We refer to such a framework as the optimal

univariate transformation framework. Under some regularity conditions, Breiman

and Friedman showed that the optimal transformations exist, and their estimates are

asymptotically consistent. Burman [28] proposed to estimate the optimal transfor-

mations using B-splines and showed that the resulting estimates are consistent.

The reason we believe optimal transformation can be an e↵ective and e�cient

approach to investigating the relationship between Y and X is two-fold. Firstly,

compared to regression methods based on pre-specified features of P (Y |X), the op-

timal transformation approach does not need to pre-specify a particular feature of

P (Y |X). As a result, finding the optimal transformations can be considered an auto-

matic procedure to find the best feature under which the relationship between Y and

X can be best explored. Secondly, compared with the conditional density estimation

approach, finding optimal transformations essentially solves a regression problem,

which is numerically less challenging and can lead to more interpretable results.

The optimal univariate transformation framework discussed above has one limita-

tion, that is, it only applies transformation to individual variable. Optimal univariate

transformations may be computationally easy to calculate, but from the view point

of exploring the relationship between Y and X, it can become a disadvantage. When

predictors interact with each other, optimal univariate transformations are not able

to capture the interactions, and much information about Y and X will be lost. In

many applications, predictors are naturally divided into di↵erent categories or groups,

and they a↵ect the response in groups. In such an application, optimal univariate

transformations ignore the group information. In practice, sometimes, the group

information is hidden. The optimal univariate transformation framework does not
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provide the capacity to recover the group structure of the predictors. The recovery

of such group structures not only helps understand the dependence of Y on X but

also leads to models with higher prediction power as will be shown later.

To overcome the limitation of the optimal univariate transformation framework,

in this chapter, we propose a new framework called the optimal group transformation

framework as a general approach for exploring the relationship between Y and X.

The framework is described as follows. First, the predictors X
1

, . . . , Xp are parti-

tioned into d groups denoted as X
1

, . . . ,Xd. Then, let g(Y ), f
1

(X
1

), . . . , fd(Xd) be

the transformations of Y and X
1

, . . . ,Xd, respectively. The optimal group transfor-

mations are the solutions to the following minimization problem.

min
g2L2

(P
Y

),
f
`

2L2
(PX

`

)

ee2 = E[{g(Y )�
d
X

`=1

f`(X`)}2],

s.t. E{g(Y )} = E{f`(X`)} = 0;

E{g2(Y )} = 1,E{f 2

` (X`)} <1.

(2.2)

Here, PY denotes the marginal distribution of Y and P
X

`

denotes the joint dis-

tribution of all variables in X`. It is clear that the original problem (2.1) is a special

case of the group version (2.2) with d = p. The other extreme case is when d = 1

in which the optimization problem (2.2) is equivalent to the maximum correlation

problem in [3].

To solve Problem (2.2) and calculate the optimal group transformations, we pro-

pose to use Reproducing Kernel Hilbert Space (RKHS)-based methods (or kernel

methods) and use cross-covariance and conditional covariance operators developed

for kernel methods (see [29], [30], and [16]). The reason of choosing kernel methods

over B-splines is due to a number of advantages kernel methods provide for fitting

multivariate nonparametric functions, which are discussed in details by [5]. In addi-

tion, cross-covariance operators and conditional covariance operators between RKHSs

defined via the expectation and covariance of random variables characterize the dis-

tributions and conditional distributions of the involved random variables. By using



8

conditional covariance operator, we can transform the original functional optimiza-

tion problem to be a functional eigen problem, which can allow simple theoretical

analysis and numerical solution.

Given a sample of Y and X, the functional eigen problem can further be reduced

to a finite rank eigen problem, and the empirical cross-covariance and conditional

covariance operators can be estimated by Gram matrices calculated from the kernel

functions and the data. Applying matrix eigen value and vector decomposition, we

obtain the estimates of the optimal group transformations. Because our proposed

approach uses kernel methods, we refer to it as the Optimal Kernel Group Transfor-

mation (OKGT) method.

In this chapter, we further show that the OKGT estimates are statistically con-

sistent, that is, they converges to their population counterparts. When the group

structure of the predictors are not given a priori, we further propose to apply the

OKGT method to randomly generated partitions of the predictors, and then select

the partitions that achieve top performance in model fitting after transformation. The

optimal kernel group transformations can also be used to generate graphics visualiz-

ing the dependence of Y on X. Through simulation study and real data applications,

we show that the OKGT method is flexible and powerful for exploring the relation-

ship between Y and X. We believe the proposed framework, particularly the OKGT

method, is a significant contribution to high dimensional regression and useful for

data exploration.

The rest of the chapter is organized as follows. In Section 2.1, we introduce various

RKHSs, define cross-covariance and conditional covariance operators, and convert the

optimal group optimization problem to a functional eigen problem; and we further

derive the estimates of the optimal kernel group transformations. The theoretical

properties of the estimates are given in Section 2.2. The proofs of the theoretical

properties are also included. We report the experimental results based on simulation

study and real data applications in Section 2.3 and 2.4. Section 2.5 summarizes this

chapter.
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2.1 Methods

In this section, we present the development of OKGT. First, we introduce RKHS

and direct sum RKHS, and rewrite Problem (2.2) based on those RKHSs. Then, we

use covariance and conditional covariance operators on RKHSs to convert the optimal

transformation problem to an eigen problem and obtain the optimal transformations

at the population level. Lastly, we give an algorithm to obtain the estimates of the

optimal transformations under a given sample.

2.1.1 Optimal Kernel Group Transformation

Let Y be the compact support of Y , and X` the compact support of the `-th group

of predictors X` for ` = 1, . . . , d. Let HY and HX
`

denote the RKHSs with domains

Y and X` and kernels kY and kX
`

, respectively. It is always assumed that the kernels

are positive and satisfy

EY [kY(Y, Y )] <1 and E
X

`

[kX
`

(X`,X`)] <1. (2.3)

As pointed out in [30], the assumptions in (2.3) guarantee that HY and HX
`

are

continuously included in L2(PY ) and L2(PX
`

), respectively.

We search for the optimal transformations of Y and X` in HY and HX
`

instead

of the function space L2(P ). Therefore, the original optimal group transformation

problem (2.2) needs to be rewritten as follows.

min
g2HY ,
f
`

2HX
`

e2 = E[{g(Y )�
d
X

`=1

f`(X`)}2],

s.t. E[g(Y )] = E[f`(X`)] = 0;

E[g2(Y )] = 1,E[f 2

` (X`)] <1.

(2.4)

Similar to [3], to ensure the existence of the optimal transformations, the following

assumption needs to be imposed.

Assumption 2.1.1 The only set of functions satisfying the constraints in (2.4) such

that g(Y ) +
Pd

`=1

f`(X`) = 0 a.s. are individually zero a.s.
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The optimization problem (2.4) appears to search separately for the transforma-

tion g and the individual transformations f` for ` = 1, · · · , d. Due to the fact that

the target function e2 only involves
Pd

`=1

f`(X`), which is an additive sum of f`’s,

(2.4) can indeed be solved equivalently in HY and the direct sum space consisting of

HX
`

’s, which is defined as

H+

X = �d
`=1

HX
`

:=

(

f =
d
X

`=1

f` | f` 2 HX
`

, ` = 1, · · · , d
)

.

It can be proved1 that H+

X is also a RKHS with the corresponding kernel
Pd

`=1

kX
`

.

Therefore, Problem (2.4), which minimizes the target function w.r.t. each indi-

vidual function, can be considered as a minimization problem over just HY and H+

X

subject to the same constraints. To solve Problem (2.4) at the population level, one

approach is to apply kernel basis expansion methods. In order to simplify and fa-

cilitate the theoretical analysis, we resort to covariance and conditional covariance

operators and use them to convert the original problem (2.4) to an equivalent eigen

problem.

Suppose U and W are two random variables or vectors. Let HU and HW be

two RKHSs associated with U and W , respectively. The cross-covariance operators

RWU : HU ! HW is a mapping from HU to HW such that

hg, RWUfiHW

= EWU [(f(U)� EU [f(U)])(g(W )� EW [g(W )])]

= Cov (f(U), g(W ))

(2.5)

holds for all f 2 HU and g 2 HW (also see [29], [30]). Riesz’s representation theo-

rem guarantees the existence and uniqueness of RWU and it is bounded. The cross-

covariance operator RWU contains all the information regarding the dependence of U

and W that can be characterized by the functions in the RKHSs. If W is the same as

U , HW becomes RWW (or RUU), which is a positive self-adjoint operator and called

the covariance operator.

1See Section 1.4.1 in [31].
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In the optimal transformation problem (2.4), HY and H+

X play the roles of HW

and HU respectively. And the cross-covariance operator RYX

: H+

X ! HY can be

defined through

hg,RYX

fiHY
=

EYX

" 

d
X

`=1

f`(X`)� E
X

"

d
X

`=1

f`(X`)

#!

(g(Y )� EY [g(Y )])

#

.

Following the definition of (2.5), the operators RYX

`

, R
X

`

X

j

and R
XX

can be

similarly defined. Because H+

X is a direct sum space of HX
`

’s, RYX

and R
XX

can be

decomposed in terms of RYX

`

and R
X

`

X

j

with `, j = 1, 2, . . . , d. In particular, for f

and f 0 2 HX and g 2 HY ,

hg,RYX

fiHY
=

d
X

`=1

hg,RYX

`

f`iHY
, (2.6)

hf 0,R
XX

fiHX
=

d
X

`=1

d
X

j=1

⌦

f 0
`, RX

`

X

j

fj
↵

HX
`

. (2.7)

Due to the above decompositions, we can define the matrix representations for

the additive cross-covariance and covariance operators RYX

and R
XX

as follows.

RYX

=
h

RYX1 RYX2 · · · RYX

d

i

, (2.8)

and

R
XX

=

2

6

6

6

6

6

6

4

R
X1X1 R

X1X2 · · · R
X1X

d

R
X2X1 R

X2X2 · · · R
X2X

d

...
...

. . .
...

R
X

d

X1 R
X

d

X2 · · · R
X

d

X

d

3

7

7

7

7

7

7

5

. (2.9)

These matrix representations admit the usual matrix operations (see [32]), which will

facilitate the estimation procedure for the operators in Section 2.1.2.

To convert the optimal group transformation problem (2.4) to an eigen problem,

we need to introduce and use another type of operators called the conditional co-

variance operator. Following [16], the conditional covariance operator for W given
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U , which are equipped with the corresponding RKHSs as discussed earlier, is defined

through the cross-covariance and covariance operators as

RWW |U := RWW �RWUR
�1

UURUW .

Proposition 2 in [16] shows that for any g 2 HW ,

hg, RWW |UgiHW =

inf
f2HU

EWU |(g(W )� EW [g(W )])� (f(U)� EU [f(U)])|2 . (2.10)

Again by replacing W and U with HY and HX
+, the conditional covariance oper-

ator RY Y |X is defined as

RY Y |X := RY Y �RYX

R�1

XX

R
XY . (2.11)

Similar to Proposition 2 in [16], we have the following proposition.

Proposition 2.1.1 For any g 2 HY ,

hg,RY Y |XgiHY =

inf
f2H+

X

EY X | (g(Y )� EY [g(Y )])� (f(X)� EX [f(X)]) |2,
(2.12)

where H+

X is the direct sum RKHS defined in (2.1.1).

Proposition 2.1.1 contributes a key step towards converting the optimization prob-

lem (2.4) to an equivalent eigen problem. To solve Problem (2.4), a two-step approach

can be taken. In the first step, the target function is minimized with respect to f .

Then in the second step, the resulting target function is further minimized with re-

spect to g. With the help of Proposition 2.1.1, the second step becomes an eigen

problem involving the conditional covariance operator RY Y |X . We state this result

as another proposition.

Proposition 2.1.2 The optimization problem (2.4) is equivalent to

min
g2HY

hg,RY Y |XgiHY ,

s.t. hg, RY Y giHY = 1.

(2.13)
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Plugging the expression of RY Y |X in (2.11), the minimization problem (2.13)

becomes the following generalized eigen problem,

max
g2HY

hg,RY XR
�1

XX

R
XY giHY ,

s.t. hg,RY Y giHY = 1.

(2.14)

Further defining ' := R1/2
Y Y g, the generalized eigen problem (2.14) can be rewritten

as

max
'2HY

h', R�1/2
Y Y RYX

R�1

XX

R
XYR

�1/2
Y Y 'iHY ,

s.t. ||'||2HY
= 1.

(2.15)

It is not di�cult to see that the solution of Problem (2.15), denoted as '⇤, is a unit

eigenfunction of R�1/2
Y Y RYX

R�1

XX

R
XYR

�1/2
Y Y corresponding to its largest eigen value.

By denoting the largest eigen value as �
1

and the minimum of the target function in

(2.13) as e2⇤, we have �
1

= 1� e2⇤.

After having obtained '⇤, the optimal transformations of Y and X`’s are given

by the inverse mappings g⇤ = R�1/2
Y Y '⇤ and f ⇤ = R�1

XX

R
XY g⇤. Note that f ⇤ =

f ⇤
1

+ f ⇤
2

+ · · · + f ⇤
d is a function in H+

X . Using the matrix representations (2.8) and

(2.9) of RYX

and R
XX

, we can obtain the individual optimal transforms f ⇤
` for

` = 1, . . . , d.

Remark It is proved in [29] that in general, a cross-covariance operator RWU : HU !
HW admits the decomposition RWU = R1/2

WV VWUR
1/2
UU , where VWU : HU ! HW is a

unique bounded operator such that kVWUk  1 and VWU = QWVWUQU
2. Based

on the above decomposition, the conditional covariance operator can be rewritten as

RWW |U := RWW � R1/2
WWVWUVUWR1/2

WW . In our case, we denote the counterpart of

VY X by VYX

: H+

X ! HY Then, we have

VYX

V
XY = R�1/2

Y Y RYX

R�1

XX

R
XYR

�1/2
Y Y

Clearly, VYX

V
XY is self-adjoint. Assuming it is compact, the existence of optimal

transformations g⇤ and f ⇤ in RKHSs is guaranteed by the spectral theorem. We will

2
QU : HU ! R (RUU ) and QW : HW ! R (RWW ) are two orthogonal projections.
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show later in Section 2.2 that VYX

plays an important role in deriving the theoretical

results.

2.1.2 Estimation Method

In Section 2.1.1, we have shown that the optimal group transformations can be

obtained by solving an equivalent eigen problem involving covariance and conditional

covariance operators. In this section, we focus on estimating the optimal transfor-

mations for a finite sample. We first derive the empirical covariance and conditional

covariance operators, and further use them to define the empirical version of the eigen

problem. With proper regularization, the empirical eigen problem can be solved to

produce estimates of the optimal group transformations.

Let {yi,xi1, . . . ,xid}ni=1

be i.i.d. samples3. We use the cross covariance operator

RY X
`

as an example to show how to derive the empirical operators.

Let k̃Y(·, yi) = kY(·, yi)�n�1

Pn
s=1

kY(·, ys) and k̃X
`

= kX (·,xi)�n�1

Pn
s=1

kX (·,xs)

be the centered feature mappings of the observed data. We define eHY and eHX
`

to be

the spaces spanned by {k̃Y(·, yi)}ni=1

and {k̃X (·,xi)}ni=1

, respectively. For any g 2 HY

and f 2 HX
`

, we can write g =
Pn

i=1

�ik̃Y(·, yi)+ g? and f` =
Pn

i=1

↵`
i k̃X

`

(·,xi)+ f?
` ,

where g? and f?
` are the functions that belong to the orthogonal complements of

eHY and eHX
`

in HY and HX
`

, respectively. This construction ensures the zero mean

constrains in (2.4). By using the reproducing property of RKHSs and Riesz repre-

sentation theorem, the empirical version of the operator RYX

`

, denoted as bR(n)
YX

`

, is

given by
D

g, bR(n)
YX

`

f`
E

HY
= dCov(g(Y ), f`(X`))

=
1

n

n
X

i=1

D

g, k̃Y(·, yi)
E

HY

D

f`, k̃X (·,xi)
E

HX
`

=
n
X

k=1

n
X

i=1

n
X

j=1

�ik̃Y(yi, yk)k̃X
`

(xj`,xk`)↵
`
j,

(2.16)

3Here we use the group representation. Each xi` denotes the i

th observation for the `

th group of
predictor variables. So it can be a scalar value or a vector depending on the pre-specified group
structure.
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where dCov(g(Y ), f`(X`)) is the sample covariance of g(Y ) and f`(X`). Therefore,

the sample covariance is of finite rank and can be represented by Gram matrices.

We define GY to be the Gram matrix of the kernel kY for Y as (GY)ij = kY(yi, yj).

Let 1n = (1, . . . , 1)T , then the centered Gram matrix is given by

KY =

✓

In �
1

n
1n1

T
n

◆

GY

✓

In �
1

n
1n1

T
n

◆

.

Similarly, we can derive the centered Gram matrix KX
`

for X`’s. By applying

the representer theorem, the empirical operator in (2.16) admits the following matrix

representation,

D

g, bR(n)
YX

`

f`
E

HY
= �

TKYKX
`

↵

`.

Therefore, the finite rank operator bR(n)
YX

`

can be estimated by KYKX
`

. Similarly,

we estimate bR(n)
Y Y and bR

X

`

X

k

by KYKY and KX
`

KX
j

respectively. Using the operator

matrix representation gives the following estimates of the additive operators as block

matrices,

bR(n)
XX

=

2

6

6

6

6

6

6

6

4

KX1KX1 KX1KX2 · · · KX1KX
d

KX2KX1 KX2KX2 · · · KX2KX
d

...
...

. . .
...

KX
d

KX1 KX
d

KX2 · · · KX
d

KX
d

3

7

7

7

7

7

7

7

5

and

bR(n)
YX

= (KYKX1 , KYKX2 , . . . , KYKX
d

) .

By using the estimates of the operators defined above, the empirical version of

the equivalent eigen problem of OKGT in (2.15) can now be written as

max
'2HY

⌧

',
⇣

bR(n)
Y Y + ✏nI

⌘�1/2
bR(n)

YX

⇣

bR(n)
XX

+ ✏nI
⌘�1

bR(n)
XY

bR(n)
XY

⇣

bR(n)
Y Y + ✏nI

⌘�1/2

'

�

HY

s.t. k'kHY
= 1. (2.17)
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Note that the regularization term ✏nI is needed above, which would enable matrix

inversion and avoid trivial solution. A detailed discussion can be found in [33].

In the spirit of the decomposition of a cross-covariance operator mentioned in the

remark at the end of Section 2.1.1, we simplify the notations by defining

bV(n)
YX

=
⇣

bR(n)
Y Y + ✏nI

⌘�1/2
bR(n)

YX

⇣

bR(n)
XX

+ ✏nI
⌘�1/2

.

So the product of the matrices in (2.17) becomes bV(n)
YX

bV(n)
XY in the following discussion.

Let b'⇤ be the unit eigen vector of bV(n)
YX

bV(n)
XY corresponding to its largest eigen

value. Then the empirical estimates of the optimal transformations are given by

ĝ⇤ =
⇣

bR(n)
Y Y + ✏nI

⌘�1/2

'̂⇤, (2.18)

f̂ ⇤ =
⇣

bR(n)
XX

+ ✏nI
⌘�1

bR(n)
XY ĝ

⇤. (2.19)

Thanks to the additive structure, the numerical estimate of f̂ ⇤ is in the form of a

column stack of f̂ ⇤
` , ` = 1, . . . , d, which are the estimates of the optimal transforma-

tions for individual groups.

2.1.3 Speeding Up Estimation for Large Sample

One limitation of using kernel methods is that it does not scale well when the

sample size is large. However, there are methods developed to overcome this di�-

culty. Sparse greedy matrix approximation [34] uses a variant of matching pursuit

algorithm with probabilistic speedup. Low-rank kernel representations [35] uses a

known factorization technique to approximate a given kernel matrix by a low rank

matrix, which will be used in training instead of the original kernel matrix. Nyström

method for low rank matrix approximation [36] uses random samples of a kernel ma-

trix’s rows and columns to construct the low rank matrix. All of these techniques can

be incorporated in OKGT to speed up its estimation for large sample size.
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2.1.4 Additive Group Structure Identification and Graphics

We call the method developed in Sections 2.1.1 and 2.1.2 the Optimal Kernel

Group Transformation (OKGT). Note that di↵erent group partitions may yield dif-

ferent fitting results, which further lead to di↵erent model interpretation. Ideally, the

underlying group structure is given before the OKGT method is applied. However,

the underlying structure may be unknown in practice. Therefore, it is essential to

have a procedure to detect a suitable group structure which can well approximate the

underlying true structure and yield meaningful interpretations. An optimal procedure

to find the true underlying group structure should take a number of factors into con-

sideration, such as a proper definition of the discrepancy measure between two group

structures and the selection of group size and group numbers. The development of

such an optimal procedure will be discussed in Chapter 3.

In this chapter, we use an intuitive approach, which is the random partition

method, for group structure detection and use R2 = �
1

, the largest eigen value of

bV(n)
YX

bV(n)
XY , as the criterion to identify a suitable group structure. We prefer a struc-

ture that maximizes R2 among all partitions and at the same time has small group

sizes. A model with relatively small group sizes can alleviate the curse of dimension-

ality and enhance the interpretability of the fitting results. Due to this reason, we

suggest that each group contains no more than four variables. Though we will develop

an additive group structure identification method in Chapter 3, random partition can

still be used to quickly explore data and serve as a benchmark for comparing with a

principled method.

Once a proper group structure is detected and optimal transformations are found

by applying the OKGT method, graphical tools can be used to explore the relation-

ship between the variables. Two examples include the plot of transformed response

against the original response, and the marginal plots of transformed response against

each transformed group of predictors. When a certain group contains two variables,

3-D plots can be employed to visualize the relationship between the response, the
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transformed group of variables, and each of the variables in the group. We believe all

these plots will provide more insights in revealing the relationships between the pre-

dictors and the response, resulting in meaningful interpretations. More illustrations

on the afore-mentioned plots and graphs are given in the synthetic data and real data

examples in Section 2.3 and 2.4.

2.2 Theoretical Properties of OKGT

In this section, we show that the estimates of the optimal kernel group transforma-

tions produced by the OKGT method are consistent in L2 norm. The regularization

parameter ✏n is assumed to decay to zero and the main idea of the proof follows [30].

First, we will show that the empirical eigen function obtained by solving Prob-

lem (2.17) converges to its population counterpart in (2.15) under the RKHS norm.

This section is divided into two subsections. The first subsection includes the

main theorems. The supporting lemmas are collected and presented in the second

subsection if readers are interested in the details of the proof.

2.2.1 Main Results

The proof of the theorems relies on the assumption that VYX

is compact, which

may not hold in general (see [30]). If VYX

is not compact, the solution of the popula-

tion version of optimal transformation problem may not exist in RKHSs. A su�cient

condition for VYX

being compact is given in [30], which is restated here.

Assumption 2.2.1 Let (X ,BX , µX ) and (Y ,BY , µY) be two probability spaces. Let

p
XY , pX, and pY be the density functions. If

Z Z

p
XY (x, y)2

p
X

(x)pY (y)
dµXdµY <1,

then the operator VYX

: HX ! HY is Hilbert-Schmidt, which implies the compactness

of VYX

.
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Then, the following theorem shows that the largest eigen function converges in

probability.

Theorem 2.2.1 Assume VYX

is compact. Let '̂⇤ be an eigen function corresponding

to the largest eigen value of bV(n)
YX

bV(n)
XY . Then, as n ! 1, there exists a sequence

✏n ! 0 such that,

�

�

�

h'̂⇤,'⇤iHY

�

�

�

P��! 1,

where '⇤ is an eigen function corresponding to the largest eigen value of VYX

V
XY .

Proof Denote A = VYX

V
XY . Because A is positive and compact, the spectrum

theorem gives the following decomposition:

A =
1
X

i=1

�i'i h'i, ·iHY
,

where �
1

> �
2

� · · · � 0 are the eigen-values and {'i}i are the corresponding eigen-

vectors. Note here we assume that the eigen-vector corresponding to the largest

eigen-value is unique. Though the dimension of the eigen-space corresponding to the

largest eigen-value may be higher than one, OKGT only requires the existence of one

such eigen-vector as the optimal transformation.

Let '̂⇤ be the eigen-vector corresponding to the largest eigen-value of An =

bV(n)
YX

bV(n)
XY , then

h'̂⇤, A'̂⇤iHY
= �

1

h'̂⇤,'
1

i2HY
+

1
X

i=2

�
2

h'̂⇤,'ii2HY

= �
1

h'̂⇤,'
1

i2HY
+ �

2

⇣

1� h'̂⇤,'
1

i2HY

⌘

.

On the other hand,

�

�

�

h'̂⇤, A'̂⇤iHY
� h'

1

, A'
1

iHY

�

�

�


�

�

�

h'̂⇤, A'̂⇤iHY
� h'̂⇤, An'̂

⇤iHY

�

�

�

+
�

�

�

h'̂⇤, An'̂
⇤iHY

� h'
1

, A'
1

iHY

�

�

�

 kA� Ank+ |kAnk � kAk|! 0.

This implies that h'̂⇤, A'̂⇤iHY
! h'

1

, A'
1

iHY
. So h'̂⇤,'

1

iHY
! 1, equivalently

k'̂⇤ � '
1

kHY
! 1.
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The next theorem further establishes the consistency of the estimated optimal

transformations in L2 norm.

Theorem 2.2.2 Assume that '⇤ is in the range of RY Y , and VYX

is compact. Then,

as n!1, there exists a sequence ✏n ! 0 such that

kĝ⇤ � g⇤kL2
P

Y

P��! 0 and
�

�

�

f̂ ⇤ � f ⇤
�

�

�

L2
PX

P��! 0.

where g⇤ and f ⇤ are obtained by solving Problem (2.4) and ĝ⇤ and f̂ ⇤ are given by

(2.18) and (2.19).

Proof Without loss of generality, we assume '̂⇤(n) ! '⇤
k inHY . As ĝ⇤ =

⇣

bR(n)
Y Y + ✏nI

⌘� 1
2
'̂⇤

and g⇤ = R�1/2
Y Y '⇤, we have

kĝ⇤ � g⇤k2L2
P

Y

=
�

�

�

R1/2
Y Y (ĝ⇤ � g⇤)

�

�

�

2

HY
=
�

�

�

R1/2
Y Y ĝ

⇤ � '⇤
�

�

�

2

HY
.

The fact that
�

�

�

R1/2
Y Y ĝ

⇤ � '⇤
�

�

�

2

HY

P�! 0 follows the proof of Theorem 2 in [30].

Similarly, as f̂ ⇤ =
⇣

bR(n)
XX

+ ✏nI
⌘�1

bR(n)
XY ĝ

⇤ and f ⇤ = (R
XX

)�1 R
XY g⇤, the same

result holds for
�

�

�

f̂ ⇤ � f ⇤
�

�

�

L2
PX

.

2.2.2 Supporting Lemmas

This subsection collects the lemmas that are needed to prove Theorem 2.2.1 and

2.2.2 in the previous subsection.

Lemma 2.2.1 As n!1,
�

�

�

bR(n)
YX

�RYX

�

�

�

HS
= Op

�

dn�1/2
�

,
�

�

�

bR(n)
Y Y �RY Y

�

�

�

HS
= Op

�

n�1/2
�

,
�

�

�

bR(n)
XX

�R
XX

�

�

�

HS
= O

�

d2n�1/2
�

.

Proof Throughout the proof, we use the following definition of the norm of the

product of two functions in a product space:

kfgkH
f

⌦H
g

:= kf ⌦ gkH
f

⌦H
g

= kfkH
f

kgkH
g

.
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We prove the first one, and the rest can be proved similarly.

Write F =
Pd

`=1

F (`) where F (`) = kX
`

(·,X`) � E [kX
`

(·,X`)], G = kY(·, Y ) �
E [kY(·, Y )], Fi =

Pd
`=1

F (`)
i where F (`)

i = kX
`

(·,X`i)� E [kX
`

(·,X`)], Gi = kY(·, Yi)�
E [kY(·, Y )] for i = 1, 2, . . . , n, and F = H+

X ⌦ HY . Then, F, F
1

, . . . , Fn are i.i.d.

random elements in H+

X , and a similar fact holds for G,G
1

, . . . , Gn.

Then,

�

�

�

bR(n)
YX

�RYX

�

�

�

2

HS
=

�

�

�

�

�

1

n

n
X

i=1

 

Fi �
1

n

n
X

j=1

Fj

! 

Gi �
1

n

n
X

j=1

Gj

!

� E[FG]

�

�

�

�

�

2

F

=

�

�

�

�

�

1

n

n
X

i=1

FiGi � E[FG]�
✓

2� 1

n

◆

 

1

n

n
X

i=1

Fi

! 

1

n

n
X

i=1

Gi

!

�

�

�

�

�

2

F

,

which provides the following bound

�

�

�

bR(n)
YX

�RYX

�

�

�

HS

�

�

�

�

�

1

n

n
X

i=1

FiGi � E[FG]

�

�

�

�

�

F

+ 2

�

�

�

�

�

 

1

n

n
X

i=1

Fi

! 

1

n

n
X

i=1

Gi

!

�

�

�

�

�

F

.

(2.20)

Let Z(`)
i =

⇣

F (`)
i Gi � E[F (`)G]

⌘

and Zi =
Pd

`=1

Z(`)
i = FiGi � E[FG], we have,

E

�

�

�

�

�

1

n

n
X

i=1

Zi

�

�

�

�

�

2

F

=
1

n
E kZ

1

k2F =
1

n
E

�

�

�

�

�

d
X

`=1

Z(`)
1

�

�

�

�

�

2

F

 d2

n
max

`
E
�

�

�

Z(j)
1

�

�

�

2

F
= O(d2/n),

(2.21)

where the last equality is due to max` E
�

�

�

Z(j)
1

�

�

�

2

F
<1.

E

�

�

�

�

�

 

1

n

n
X

i=1

Fi

! 

1

n

n
X

i=1

Gi

!

�

�

�

�

�

F

= E

�

�

�

�

�

1

n

n
X

i=1

Fi

�

�

�

�

�

H+
X

�

�

�

�

�

1

n

n
X

i=1

Gi

�

�

�

�

�

HY



0

@E

�

�

�

�

�

1

n

n
X

i=1

Fi

�

�

�

�

�

2

H+
X

1

A

1/20

@E

�

�

�

�

�

1

n

n
X

i=1

Gi

�

�

�

�

�

2

HY

1

A

1/2
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In the similar way to (2.21), we have

E

�

�

�

�

�

1

n

n
X

i=1

Fi

�

�

�

�

�

2

H+
X

= O(d2/n),

E

�

�

�

�

�

1

n

n
X

i=1

Gi

�

�

�

�

�

2

HY

= O(1/n),

which give us

E

�

�

�

�

�

 

1

n

n
X

i=1

Fi

! 

1

n

n
X

i=1

Gi

!

�

�

�

�

�

F

= O
�

d/
p
n
�

.

From (2.20), we have E
�

�

�

bR(n)
YX

�RYX

�

�

�

HS
= O (d/

p
n) and using Chebyshev’s

inequality completes the proof.

With Lemma 2.2.1 and the fact that

�

�

�

bR(n)
YX

�

�

�

� kRYX

k 
�

�

�

bR(n)
YX

�RYX

�

�

�


�

�

�

bR(n)
YX

�RYX

�

�

�

HS
,

we have that

�

�

�

bR(n)
YX

�

�

�

= kRYX

k+Op

�

dn�1/2
�

.

Similarly, we can obtain the following results.

�

�

�

bR(n)
Y Y

�

�

�

= kRY Y k+Op

�

n�1/2
�

,
�

�

�

bR(n)
XX

�

�

�

= kR
XX

k+Op

�

d2n�1/2
�

.

Lemma 2.2.2

�

�

�

�

⇣

bR(n)
Y Y + ✏nI

⌘�1/2

� (RY Y + ✏nI)
�1/2

�

�

�

�

= Op

�

✏�2

n n�1/2
�

.
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Proof Due to the equality A�1/2�B�1/2 = A�1/2(B3/2�A3/2)B�3/2+(A�B)B�3/2,
we have

����
⇣
b
R

(n)
Y Y

+ ✏
n

I
⌘�1/2

� (R

Y Y

+ ✏
n

I)�1/2

����

=

����

⇢⇣
b
R

(n)
Y Y

+ ✏
n

I
⌘�1/2


(R

Y Y

+ ✏
n

I)3/2 �
⇣
b
R

(n)
Y Y

+ ✏
n

I
⌘3/2

�
+

⇣
b
R

(n)
Y Y

�R

Y Y

⌘�
(R

Y Y

+ ✏
n

I)�3/2

����


����
⇣
b
R

(n)
Y Y

+ ✏
n

I
⌘�1/2


(R

Y Y

+ ✏
n

I)3/2 �
⇣
b
R

(n)
Y Y

+ ✏
n

I
⌘3/2

�
+

⇣
b
R

(n)
Y Y

�R

Y Y

⌘����
���(R

Y Y

+ ✏
n

I)�3/2
���


✓����

⇣
b
R

(n)
Y Y

+ ✏
n

I
⌘�1/2


(R

Y Y

+ ✏
n

I)3/2 �
⇣
b
R

(n)
Y Y

+ ✏
n

I
⌘3/2

�����+

���b
R

(n)
Y Y

�R

Y Y

���
◆���(R

Y Y

+ ✏
n

I)�3/2
���


✓����

⇣
b
R

(n)
Y Y

+ ✏
n

I
⌘�1/2

����

����


(R

Y Y

+ ✏
n

I)3/2 �
⇣
b
R

(n)
Y Y

+ ✏
n

I
⌘3/2

�����+

���b
R

(n)
Y Y

�R

Y Y

���
◆���(R

Y Y

+ ✏
n

I)�3/2
���


✓����

⇣
b
R

(n)
Y Y

+ ✏
n

I
⌘�1/2

���� 3max

⇢
kR

Y Y

+ ✏
n

Ik3/2 ,
���b
R

(n)
Y Y

+ ✏
n

I
���
3/2

����b
R

(n)
Y Y

�R

Y Y

���+

���b
R

(n)
Y Y

�R

Y Y

���
◆���(R

Y Y

+ ✏
n

I)�3/2
���


✓

3

p
✏
n

max

⇢
kR

Y Y

+ ✏
n

Ik3/2 ,
���b
R

(n)
Y Y

+ ✏
n

I
���
3/2

����b
R

(n)
Y Y

�R

Y Y

���+

���b
R

(n)
Y Y

�R

Y Y

���
◆���(R

Y Y

+ ✏
n

I)�3/2
���

=

✓
3

p
✏
n

max

⇢
kR

Y Y

+ ✏
n

Ik3/2 ,
���b
R

(n)
Y Y

+ ✏
n

I
���
3/2

�
+ 1

◆���b
R

(n)
Y Y

�R

Y Y

��� ✏
�3/2
n

=O
⇣
✏�2
n

n�1/2
⌘
.

The fourth inequality holds due to Lemma 8 in [30].

Lemma 2.2.3

�

�

�

�

⇣

bR(n)
XX

+ ✏nI
⌘�1

�
�

(R
XX

+ ✏nI)
�1

�

�

�

�

�

= Op

�

d2✏�2

n n�1/2
�

.

Before we state and prove the following Lemmas, we first define the following two

operators:

V(✏)
YX

:= (RY Y + ✏nI)
�1/2 RYX

(R
XX

+ ✏nI)
�1/2 ,

V(✏)
XY := (R

XX

+ ✏nI)
�1/2R

XY (RY Y + ✏nI)
�1/2 .

Then, we have

V(✏)
YX

V(✏)
XY = (RY Y + ✏nI)

�1/2 RYX

(R
XX

+ ✏nI)
�1 R

XY (RY Y + ✏nI)
�1/2 .

Lemma 2.2.4 When d = O
�

n1/4
�

, we have that for a sequence ✏n ! 0 as n!1,

�

�

�

bV(n)
YX

bV(n)
XY �V(✏)

YX

V(✏)
XY

�

�

�

= Op

�

d2✏�7/2
n n�1/2

�

.



24

Proof Let a = (RY Y + ✏nI)�1/2, b = RYX

, H = (R
XX

+ ✏nI)�1, an = ( bR(n)
Y Y +

✏nI)�1/2, bn = bR(n)
Y X , Hn = (bR(n)

XX

+ ✏nI)�1 and A⇤ represents the adjoint operator of

A.

kanbnHnb
⇤
nank � kabHb⇤ak

k(an � a)bnHnb
⇤
n(an � a)k+ 2 k(an � a)bnHnb

⇤
nak+ ka(bnHnb

⇤
n � bHb⇤)ak

,S
1

+ S
2

+ S
3

From Lemma 2.2.1 to Lemma 2.2.3, we have the following inequalities for S
1

, S
2

and S
3

.

S
1

 kan � ak2 kbnk2 kHnk

= Op

⇣

�

✏�2

n n�1/2
�

2 · ✏�1

n

⌘

= Op

�

✏�5

n n�1

�

.

(2.22)

S
2

 kan � ak kbnk2 kHnk kak

= Op

�

✏�2

n n�1/2 · ✏�1

n · ✏�1/2
n

�

= Op

�

✏�7/2
n n�1/2

�

.

(2.23)

S
3

 kak2 kbnHnb
⇤
n � bHb⇤k

 kak2 (k(bn � b)Hn(bn � b)⇤k+ 2 kbnHnb
⇤k+ kb(Hn �H)b⇤k)

 kak2
�

k(bn � b)k2 kHnk+ 2 kbnk kHnk kbk+ kbk2 kHn �Hk
�

 Op

�

d2✏�3

n n�1/2
�

(2.24)

Then Lemma 2.2.4 follows by combining (2.22) - (2.24).

Lemma 2.2.5 Assume VYX

is compact. Then, as n!1, for a sequence ✏n ! 0,
�

�

�

V(✏)
YX

V(✏)
XY �VYX

V
XY

�

�

�

P��! 0.

Proof From Lemma 7 in [30], we have
�

�

�

V(✏)
YX

�VYX

�

�

�

op

P��! 0 as n �!1. Similarly,

we have
�

�

�

V(✏)
XY �V

XY

�

�

�

op

P��! 0. Then,

�

�

�

V(✏)
YX

V(✏)
XY �VYX

V
XY

�

�

�

=
�

�

�

⇣

V(✏)
YX

�VYX

⌘

V(✏)
XY +VYX

⇣

V(✏)
XY �V

XY

⌘

�

�

�


�

�

�

V(✏)
YX

�VYX

�

�

�

�

�

�

V(✏)
XY

�

�

�

+ kVYX

k
�

�

�

V(✏)
XY �V

XY

�

�

�
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The result follows as
�

�

�

V(✏)
XY

�

�

�

 1 and (VYX

)  1.

2.3 Simulation Study

In this section, we evaluate the e↵ectiveness of the proposed OKGT method using

synthetic data sets. We use R2 as the performance measure for OKGT. In our first

simulation example, we show the e↵ectiveness of OKGT in recovering the true func-

tion structure from the data generated from a given model. In our second experiment,

we demonstrate the gain by using a proper group structure for OKGT.

2.3.1 E↵ectiveness on Synthetic Data

In this experiment, we apply OKGT on synthetic data simulated from a model

with known group structure. In particular, we assume the following function as the

true model

Y = ln
⇣

4 + sin(2⇡X
1

) + |X
2

|+X2

3

+X3

4

+X
5

+X
6

⇤X
7

+ 0.1✏
⌘

(2.25)

where the variables X
1

to X
5

each forms an univariate group and X
6

and X
7

form a

bivariate group through their product. The predictor variables Xj, j = 1, . . . , 7, are

independent and identically distributed as Unif(�1, 1). The error term ✏ is standard

normal. We assume the true structure is known, that is X
1

to X
5

each forms a

univariate group and (X
6

, X
7

) is a bivariate group, and expect our algorithm to

recover the functional forms for those groups, especially for the interaction between

X
6

and X
7

.

We use Laplace kernel k(x, y) = exp{�� kx� yk} with a fixed bandwidth � =

0.5 for all the groups. The regularization parameter ✏n for estimating the optimal

transformations is set at 0.01. We generate one set of data with sample size 500 from

model (2.25) and apply OKGT, which results in an R2 value equal to 0.909. Figure 2.1

shows the univariate transformations for the variables X
1

to X
5

. Figure 2.2 shows

the bivariate transformation for the variables X
6

and X
7

as a group.
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Fig. 2.1. Optimal transformations of the variables from X
1

to X
5

in model
(2.25) by applying OKGT.

From Figures 2.1 and 2.2, we can see that OKGT successfully recovers all the

function forms of the univariate variables from X
1

to X
5

. It also clearly reveals the

interaction between X
6

and X
7

as f
6

(X
6

, X
7

) = X
6

⇤X
7

.

We also apply the additive univariate transformation where each predictor forms

its own group. The resulting R2 equals to 0.8368, which is lower than that from the

group structure mentioned above. Furthermore, the univariate transformations of X
6

and X
7

fail to capture their interaction.

2.3.2 Impact of Group Structure

In this experiment, we investigate the e↵ect of di↵erent group structures on the

model fitting for OKGT. It can be conjectured that a fully nonparametric model, i.e.

d = 1 in OKGT, would not give a good fit in terms of R2 because of the limited

sample size and complex function space where the algorithm searches a solution.

Besides, applying a fully nonparametric model usually produces a result that is hard
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Fig. 2.2. Optimal transformation of the grouped variables X
6

and X
7

in model (2.25) by applying OKGT. Top-left: 3-D scatter plot. Top-
right: Smoothed contour plot with data points. Bottom-left: 2-D projec-
tion of X

6

versus f
6

(X
6

, X
7

). Bottom-right: 2-D projection of X
7

versus
f
6

(X
6

, X
7

).

to interpret. On the other hand, imposing a fully additive structure, i.e. d = p, may

be too restrictive to eliminate any possible interaction between predictor variables

and would cause excessive information loss. Thus, a compromise is needed to balance

fitting e�ciency and interpretability of the result.

The setting of the experiment is given as follows. We generate 500 i.i.d. obser-

vations from the model:

Y =

✓

5 + sin (X
1

X
2

)+|X
3

X
4

|+XX6
5

+ (X
7

�X
8

)
+

+
X

9

X
10

+ 0.1
+ 0.1✏

◆

2

. (2.26)



28

where the values ofX
1

throughX
10

are sampled from Unif(0, 2), the error ✏ is standard

normal, and (a)
+

denotes the maximum of 0 and a. In each simulation, we apply

OKGT under each of the following six group structures:

1) g(Y ) f(X
1

, X
2

, · · · , X
10

);

2) g(Y ) f
1

(X
1

, · · · , X
5

) + f
2

(X
6

, · · · , X
10

));

3) g(Y ) f
1

(X
1

, · · · , X
4

) + f
2

(X
5

, . . . , X
8

) + f
3

(X
9

, X
10

);

4) g(Y ) f
1

(X
1

, X
2

, X
3

) + f
2

(X
4

, X
5

, X
6

) + · · ·+ f
4

(X
10

);

5) g(Y ) f
1

(X
1

, X
2

) + f
2

(X
3

, X
4

) + · · ·+ f
5

(X
9

, X
10

);

6) g(Y ) f
1

(X
1

) + f
2

(X
2

) + · · ·+ f
10

(X
10

).

If a group structure is able to include interacting variables in the same group, we

call it a correct group structure, otherwise it is called an incorrect group structure.

If any further partition renders an existing group structure incorrect, we call the

structure as the intrinsic group structure. Note that any combinations of groups

from a correct group structure A will yield another correct group structure B, we call

B as an inherited group structure from A. According to the definitions, the group

structures 2, 4, 6 are incorrect and the group structures 1, 3 and 5 are correct ones.

Group structure 5 is the intrinsic group structure and group structures 1 and 3 are

inherited from group structure 5.

In simulation, the Laplace kernel is used with bandwidth being 0.5, and the reg-

ularization parameter ✏n is set to 0.01. By repeating this procedure 100 times, we

obtain Figure 2.3 which shows the side-by-side boxplots of the R2 from the six group

structures after applying OKGT.

From Figure 2.3, we noticed that for OKGT with the correct group structures

(except for group structure 1), the average R2 is larger than those with the incorrect

group structures. Group structures 3 and 5 achieve the maximum average of R2 ⇡
0.94, with correct structure specifications. While group 1 represents the most flexible

structure which in theory can accommodate any model, its fitting result (R2 ⇡ 0.90) is

not as good as that of other correct group structures. With incorrect group structure

6, which assumes a fully additive structure, the fitting result of OKGT is the worst
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Fig. 2.3. Boxplots of R2 for di↵erent number of groups when applying
OKGT on the sample from model (2.26) under six di↵erent group struc-
tures.

(R2 ⇡ 0.88). It is interesting to observe that though group structures 2 and 4 are

incorrect, their average R2’s are even higher the that from group structure 1.

This phenomenon demonstrates that, with limited observations, the grouping ef-

fect (di↵erent R2) is the result of the interplay of three factors: 1) group structure

specification; 2) group size; and 3) the number of groups. For group structure specifi-

cation, it is expected that the fitting result from a correct group structure is generally

better than that from an incorrect group structure; For group size, estimating a sin-

gle function which contains many variables su↵ers from the curse of dimensionality,

thus the fitting e�ciency is generally lower than estimating a single function with less

variables. The number of groups determines the number of functions to be estimated.

Estimating more functions will accumulate the losses on fitting e�ciency.

Assume that all di↵erent group structures are correct, then there will be a trade-

o↵ between group size and the number of groups on fitting e�ciency. For example,

when d = 1, though function size is small, we need to estimate a function contain-

ing all variables and the estimation e�ciency is low for large p due to the curse of

dimensionality. It could be even worse than the case where the group structure is
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incorrect. For the fully additive structure d = p, though group size is small, we need

to estimate p functions in total and fitting e�ciency will decrease with the increase

of the number of functions to be estimated. Therefore, a balance between the group

size and the number of groups is preferable.

It can also been seen in Figure 2.3 that the result from group structure 3 is almost

as good as that of the intrinsic structure (group structure 5). This indicates that under

finite sample, a more flexible group structure can approximate the intrinsic structure

without too much information loss measured by R2. This justifies the generalization

of optimal transformation by using a group structure.

2.4 Real Data Applications

In this section, We compare the performance of OKGT with di↵erent group struc-

tures on two real datasets, the SkillCraft1 Master data from UCI Machine Learning

Repository4 and the glioblastoma multiforme data from the TCGA Data Coordinat-

ing Center5.

2.4.1 SkillCraft1 Master data

In this experiment, we apply OKGT on the SkillCraft1 Master data set. This is

a video game telemetry data from real-time strategy (RTS) games and was originally

used in [37] to explore the development of expertise. The study of the development

of RTS expertise is of interest because the knowledge learned can be applied in other

domains. The data was collected from 3395 Star Craft 2 players ranging over 7 lev-

els of expertise from novices to full-time professionals. The levels are coded by the

leagues in which they compete, and are coded from 1 to 8 as ordinal data. For each

player, a replay file recorded all the commands issued in the game and the data of

game related variables are calculated from the replay file. Some game related vari-

4http://archive.ics.uci.edu/ml/
5https://tcga-data.nci.nih.gov/tcga/
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ables include action per minute, number of unique hotkeys used per timestamp, and

number right-clicks on minimap per timestamp. Our goal is to find some interesting

relationships between game related predictor variables and the league index as the

response variable.

Before applying our method, we randomly select a subsample of size 500. There

are 19 predictor variables and we only use the 15 game related variables in this

experiment. By using all of the 15 predictors and imposing a fully additive structure

(d = p), the resulting R2 is 0.8454. A single group structure (d = 1) results in an

R2 of 0.6666. The first eight plots in Figure 2.4 show the transformations of the

response and the seven predictors with the large variance Var(f`(X`)). The last plot

in the figure shows a scatter plot of ĝ⇤(yi) and
P

15

`=1

f̂ ⇤
` (xi`). The red lines are the

loess smoothing curves. The last plot shows a fairly linear relationship between the

transformed response and the sum of all transformed predictors, indicating an overall

good fit using OKGT with the additive structure.

From Figure 2.4, the transformations are highly nonlinear for both the response

and the seven predictors. This graphics can provide some meaningful interpreta-

tions. For example, the transformation of the response variable LeagueIndex shows

a S-shaped pattern, indicating that the acquittance of skill is not linear. The im-

provement of skill from level 1 to 2 and from 7 to 8 are more significant than at the

other levels. The transformation of APM shows a similar pattern as that of the re-

sponse. Between 100 to 150, APM is roughly independent of the skill levels, whereas

in the lower and higher range some linear pattern is shown. The transformation of

GapBetweenPACs shows an overall decreasing pattern. However, the curve drops

dramatically before 30 milliseconds but decreases slowly after that. The overall de-

creasing pattern indicates that players with higher LeagueIndex generally have lower

GapBetweenPACs. This transformation can be interpreted as follows. For di↵erent

players with large GapBetweenPACs, their skills will not change so rapidly. Once

they reach the level with GapBetweenPACs as small as 30 milliseconds, it will require
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Fig. 2.4. Application of OKGT on SkillCraft1 data. First eight figures are
transformation of the response and seven variables presenting large fitted
norm. The last figure is scatter plot of ĝ⇤(yi) and

P

15

j=1

f̂ ⇤
` (xi`) by OKGT

with all variables. The red curves are the loess smoothing applied on the
transformations.

a huge improvement in skills to achieve a small saving in time between PACs. Thus,

LeagueIndex drops dramatically within that range.

The predictor variables can be partitioned into di↵erent groups according to dif-

ferent types of skill in gaming. Based on this observation, we partition the predictors

into the following seven groups.

• APM

• SelectByHotkeys AssignToHotkeys UniqueHotkeys

• MinimapAttacks MinimapRightClicks

• NumberOfPACs GapBetweenPACs ActionLatency ActionsInPAC

• TotalMapExplored

• WorkersMade UniqueUnitsMade ComplexUnitsMade

• ComplexAbilitiesUsed
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Applying OKGT with the group structure defined above, we can achieve an R2

of 0.8675, which is higher than the R2 from fitting the fully additive structure. This

improvement clearly supports the advantages provided by useful grouping.

2.4.2 TCGA glioblastoma multiforme data

In this example, we consider modeling the survival time of patients with glioblas-

toma, which is the first cancer studied by The Cancer Genome Atlas (TCGA). The

dataset we use contains the expression levels of 12042 genes and the survival time

(length) of 400 Glioblastoma patients. A smaller sample (206 patients) was consid-

ered in [38]. We are interested in identifying important genes associated with patients’

survival time and in investigating their relationship, to improve our understanding of

the underlying biology of gliomas.

Fig. 2.5. Application of OKGT on TCGA glioblastoma data. Transfor-
mations of the response and the first eight variables after fitting 30 top
ranked variables.
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We first apply OKGT to the response and each gene as a predictor marginally and

then rank all the genes according to their R2 values in descending order. We keep

the top 30 genes with the largest R2 values. By imposing a fully additive structure

(d = 30) on the 30 retained predictors and preforming OKGT, the resulting R2 is

0.8510. If a single group structure (d = 1) is used, the R2 is 0.7142.

To compare the e↵ect of di↵erent group structures, we conduct the following

experiment. The 30 retained gene predictors are randomly partitioned into a fixed

number of groups of equal size. The number of groups (d) in this experiment is set at

15, 10, 5, 3, and 2, which is corresponding to having 2, 3, 6, 10, and 15 predictors in

each group. The variables in each group are randomly assigned. By applying OKGT

under a random group structure using the original data, we can obtain an estimate

of R2. The boxplots in Figure 2.6 are based on 100 simulations at each fixed number

of groups.

Fig. 2.6. Boxplots of R2 for di↵erent number of groups when applying
OKGT on the TCGA glioblastoma data with top ranked 30 genes.

From Figure 2.6, we notice that even with random grouping, OKGT can easily

achieve a higher R2 compared with that with the fully additive structure d = p. This

experiment further supports that grouping can be advantageous, due to the trade-o↵

on fitting e�ciency between function complexity and group size.
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2.5 Summary

In this chapter, we have developed an e↵ective kernel method called OKGT for

achieving the general goal of multivariate regression analysis, which is to explore the

relationship of a response variable Y and a predictor vector X. In simulation study

and real data applications, the OKGT method outperforms the optimal univariate

transformation method (i.e. ACE) as well as multivariate nonparametric regression.

The reason for OKGT’s excellent performance is because it can either take advantage

of existing group structures of the predictor variables or it can be used to recover

the hidden group structure. The use of cross-covariance and conditional covariance

operators and their empirical counterparts much simplifies both the theoretical and

numerical analysis of the OKGT method, demonstrating their power for high dimen-

sional data exploration.

There are three immediate directions to further improve the OKGTmethod. First,

a more e↵ective and e�cient procedure is needed for the OKGT method to detect

intrinsic group structure among the predictor variables. We have developed an proce-

dure for additive group structure identification, which will be reported in Chapter 3.

Second, after the optimal kernel group transformations are estimated, how to use

graphics to reliably infer the relationship between Y and X needs to be further stud-

ied. Third, when the dimension of X is high or extremely high, penalization will

probably be needed to make the OKGT method stable and e↵ective in exploring Y

and X.
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3. ADDITIVE GROUP STRUCTURE IDENTIFICATION

In the previous chapter, we proposed the Optimal Kernel Group Transformation

(OKGT) method for exploring the relationship between Y and X. The method

considers an additive structure of groups of predictor variables instead of an addi-

tive structure of individual predictor variables. It was observed from the numerical

studies that changing the additive group structure resulted in di↵erent estimation per-

formance of OKGT. So using a proper additive group structure for OKGT is crucial

for e↵ective data exploration.

In this chapter, we develop a general framework to simultaneously identify the

optimal additive group structure and fit the nonparametric regression functions for

each group of predictor variables, using kernel methods. The main idea is to add an

additional penalty that controls the complexity of additive group structures to the

usual penalized risk function (see Equation (3.21)). This new penalty function is mo-

tivated by the complexity measures of Reproducing Kernel Hilbert Spaces (RKHSs),

and it penalizes more complex structures and favors the true structures. We further

develop two algorithms, one of which uses exhaustive search and the other employs

a backward stepwise search, for identifying true additive group structures under the

small p and large p scenarios, respectively. Extensive simulation study and real data

applications show that our proposed method can successfully recover the true additive

group structures in a variety of models.

The most similar work to ours is [39] which introduced a novel set of constraints

on the weight vectors for Projection Pursuit Regression (PPR) so that partitioning

of X is enforced while the linearity is retained. Since there is no linear constraint

imposed on each group of predictor variables, our method is more general than that

in [39]. In order to divide the predictor variables into groups, [39] also relies on

some prior knowledge. By introducing the novel penalty for the complexity of group
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structure, our method provides a more principled way for additive group structure

identification.

The rest of the chapter is organized as follows. In Section 3.1, we formalize the

problem of Additive Group Structure Identification (AGSI) for nonparametric regres-

sion. A brief review of covering number will be given, which provides the motivation

for our proposed penalty. Section 3.2 provides the implementation details and al-

gorithms. We provide the theory of selection consistency for AGSI in Section 3.3.

The experimental results based on simulation studies and real data applications are

reported in Section 3.4 and 3.5. Section 3.6 summarizes this chapter with some dis-

cussion.

3.1 Methodology

In this section, we formally define the problem of Additive Group Structure Iden-

tification. This will require the definitions of some basic but important concepts.

First, the concept of additive group structure is rigorously defined and its implication

in L2 space and Reproducing Kernel Hilbert Spaces (RKHSs) are formalized. Second,

the idea of controlling the complexity of an additive group structure is concretized

through the discussion of various function space capacity measures. Finally, the finite

sample version of AGSI is formulated along with the discussion on its estimation.

3.1.1 Additive Group Structures

Throughout this chapter, we assume that the transformation function for the

response is known and given as h(Y ). That is the optimal response transformation g⇤

in OKGT is assumed to be known. Currently, we rely on this assumption to establish

the selection consistency. Without loss of generality, we will simply use Y instead of

h(Y ) in the following discussion.
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We consider an additive model with a group structure G. A group structure for

non-parametric regression is defined as a particular partition of the indices of the

predictor variables X = {X
1

, . . . , Xp}.

Definition 3.1.1 Let I = {1, . . . , p} be the set of indices of the predictor variables

in X and G := {ui}di=1

be a particular partition of I, that is, ui \ uj = ; if i 6= j

and
Sd

i=1

ui = I. We refer G as a group structure and each u as a group. The

collection of all possible group structures, that is all possible partitions of I, is denoted

as G.

If there exists a group structure G such that

E[Y |X = x] = f
1

(xi; i 2 u

1

) + . . .+ fd(xi; i 2 ud),

we say that E[Y |X = x] admits the additive group structure G. Obviously, the

usual additive model is a special case with the additive group structure consisting of

only univariate groups, i.e. G = {(1) , . . . , (p)}.
Consider the following model Y = 2+3X

1

+1/(1+X2

2

+X2

3

)+arcsin ((X
4

+X
5

)/2)+

✏, where ✏ is the error independent of X and has 0 mean. According to Defini-

tion 3.1.1, this model admits the additive group structure G
0

= {(1) , (2, 3) , (4, 5)}.
Let G

1

= {(1, 2, 3) , (4, 5)} and G
2

= {(1, 4, 5) , (2, 3)}. The model can also be said

to admit the additive group structures G
1

and G
2

. However, there exists a major

di↵erence between G
0

, G
1

and G
2

. While the groups in G
0

cannot be further divided

into subgroups, both G
1

and G
2

contain groups that can be further split. We charac-

terize this di↵erence by defining the following partial order between di↵erent group

structures.

Definition 3.1.2 Let G and G0 be two additive group structures for the predictor

variables in X. If for every group u 2 G there is a group v 2 G0 such that u ✓ v,

then G is called a sub group structure of G0. This relation is denoted as G  G0.

Definition 3.1.3 If G is a sub group structure of G0, then G0 is called a super group

structure of G, which is denoted as G0 � G.
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In the previous example, G
0

is a sub group structure of either G
1

or G
2

(equiva-

lently, both G
1

and G
2

are super group structures of G). However, the order between

G
1

and G
2

is not defined.

The partial order defined for group structures in G also carries over to the functions

spaces used in additive non-parametric regression. To facilitate our discussion, we

need to formalize the following technical setup.

Let L2

PXu

�

[0, 1]|u|
�

:= {f 2 L2(X ) |
R

Xu
|f(x)|2 dP

Xu < 1} be a space of square

integrable (w.r.t. distribution P
Xu) functions defined on a |u|-dimensional unit cube,

where |u| is the number of indices in group u. If f
u

2 L2

PXu
([0, 1]|u|) for every u 2 G,

then the additive function f =
P

u2G f
u

(x
u

) (as a model for E[Y |X = x]) is a member

of the direct sum function space defined as L2

PX
([0, 1]G) := �

u2GL2

PXu
([0, 1]|u|). If

|u| = p, then L2

PXu
([0, 1]|u|) = L2

PX
([0, 1]p) and f is a fully non-parametric function.

For notational convenience, L2

PXu
([0, 1]|u|) and L2

PX
([0, 1]G) will be simplified as L2

u

and L2

G respectively whenever no confusion is raised.

With the function spaces defined above, we have the following two theorems which

describes the relationship between group structures and their induced function spaces.

Theorem 3.1.1 Let G
1

and G
2

be two additive group structures. If G
1

 G
2

, then

L2

G1
✓ L2

G2
.

Proof Since f 2 L2

G1
, we have f =

P

u2G1
f
u

(x
u

).

If G
1

\G
2

6= ;, then for each u 2 G
1

\G
2

, it is true that f
u

2 L2

G2
.

If u /2 G
1

\G
2

and u 2 G
1

\G
2

, because G
1

 G
2

, there exists u
1

, . . . ,uk 2 G
2

\G
1

for some k < |G
2

| such that v := u [ u

1

[ · · · [ uk 2 G
2

. Since

L2([0, 1]|u|)� L2([0, 1]|u1|)� · · ·� L2([0, 1]|uk

|) ✓ L2([0, 1]|v|), (3.1)

by induction, we have the desired result.
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The sub-additivity in (3.1) is true because for two groups u and v in a group

structure G, we have

Z

(f
u

(x
u

) + f
v

(x
v

))2p(x
u

,x
v

)dx
u

dx
v

=

Z

f 2

u

(x
u

)p(x
u

,x
v

)dx
u

dx
v

+

Z

f 2

v

(x
v

)p(x
u

,x
v

)dx
u

dx
v

+ 2

Z

f
u

(x
u

)f
v

(x
v

)p(x
u

,x
v

)dx
u

dx
v


Z

f 2

u

(x
u

)p(x
u

,x
v

)dx
u

dx
v

+

Z

f 2

v

(x
v

)p(x
u

,x
v

)dx
u

dx
v

+ 2

✓

Z

f 2

u

(x
u

)p(x
u

,x
v

)dx
u

dx
v

◆

1/2

·
✓

Z

f 2

v

(x
v

)p(x
u

,x
v

)dx
u

dx
v

◆

1/2

<1

The second to the last inequality is due to Holder’s inequality with p = q = 2.

Theorem 3.1.2 Let {X
1

, . . . , Xp} be a set of independent covariates and G
1

and G
2

are two group structures. If G
1

 G
2

and G
1

6= G
2

, then L2

G1
⇢ L2

G2
.

Proof The subsetting part is already shown in Theorem 3.1.1, we further need to

show the proper part (i.e. strict subset).

For u,v 2 G
1

, u,v /2 G
2

, u [ v 2 G
2

, we need to show that there is a function

h(x
u

,x
v

) 2 L2([0, 1]|u[v|) which does not belong to L2

u

� L2

v

. That is

inf
f2L2

u
g2L2

v

Z

(h(x
u

,x
v

)� f(x
u

)� g(x
v

))2 p(x
u

,x
v

)dx
u

dx
v

> 0 (3.2)

Define the following functional of f and g as

F (f, g) :=

Z

(h(x
u

,x
v

)� f(x
u

)� g(x
v

))2 p(x
u

,x
v

)dx
u

dx
v

(3.3)

Let �(x
u

) be the Gâteaux’s derivative at x
u

, then

F (f
u

+ t�
u

, g
v

)� F (f
u

, g
v

) =

Z

�

2tf� + t2�2 � 2th� + 2tg�
�

p
uv

dx
u

dx
v
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At minimum, we have

lim
t!0

F (f
u

+ t�
u

, g
v

)� F (f
u

, g
v

)

t

= lim
t!0

Z

�

2f� + t�2 � 2h� + 2g�
�

p
uv

dx
u

dx
v

=

Z

(2f� � 2h� + 2g�) p
uv

dx
u

dx
v

= 0 (3.4)

Since (3.4) holds for all � 2 L2

u

, then we have
Z

(f + g � h) p
uv

dx
v

= 0 (3.5)

By symmetry, we also have the following identity.
Z

(f + g � h) p
uv

dx
u

= 0 (3.6)

Since h is given, we set C
1

=
R

hp
uv

dv and C
2

=
R

hp
uv

du.

Solving (3.5) for f we have,

f =

R

hp
uv

dx
v

�
R

gp
uv

dxv
R

p
uv

dx
v

(3.7)

Plug (3.7) into (3.6), we have
Z

R

hp
uv

dx
v

�
R

gp
uv

dx
v

R

p
uv

dx
v

p
uv

dx
u

+ g

Z

p
uv

dx
u

�
Z

hp
uv

dx
u

= 0

, g

Z

p
uv

dx
u

�
Z

R

gp
uv

dx
v

R

p
uv

dx
v

p
uv

dx
u

=

Z

hp
uv

dx
u

�
Z

R

hp
uv

dx
v

R

p
uv

dx
v

p
uv

dx
u

(3.8)

Since X

u

?X

v

, we have p
uv

= p
u

p
v

. Then, identity (3.8) is equivalent to

g �
Z

gp
v

dx
v

=

Z

hp
u

dx
u

�
Z Z

hp
v

dx
v

p
u

dx
u

.

This is a Fredholm integral equation, with solution
8

>

<

>

:

f =
R

hp
v

dx
v

� C

g =
R

hp
u

dx
u

+ C
(3.9)



42

where C is any constant.

To this end, the minimum approximation error in (3.2) achieves 0 when the fol-

lowing identity is true almost surely.

h =

Z

hp
v

dx
v

+

Z

hp
u

dx
u

A counter example is given by h(x
u

,x
v

) = sin(x
u

+x

v

) which does not assume the

above decomposition. So L2

u

� L2

v

is a proper subspace of h(x
u

,x
v

) 2 L2([0, 1]|u[v|).

Thus the theorem is proved.

From Theorem 3.1.1 and Theorem 3.1.2, we know that di↵erent group structures

could induce function spaces of di↵erent sizes. For non-parametric regression, the size

of the function spaces in which the estimated regression function is searched is critical.

Usually, an unbiased estimate is desired which requires the function space to be large

enough so that the true model is included. Thus, the group structure, from which

the function space is induced, plays an important role for additive non-parametric

regression. To emphasize the importance, we formally define a specific type of group

structures which is desirable for non-parametric estimation.

Definition 3.1.4 Let f(x) = E[Y |X = x] be a non-parametric regression model.

Given a group structure G for the predictor variables in X, if there is a function

fG 2 L2

G such that fG = f almost surely, then G is called an amiable group

structure for the model f .

In the example we discussed previously, G
0

, G
1

and G
2

are all amiable group

structures. So we know that an amiable group structure for a given model may not

be unique. This non-uniqueness property is formalized in the following theorem.

Theorem 3.1.3 Suppose G is an amiable group structure for f(x) = E[Y |X = x].

If there is a second group structure G0 such that G  G0, then G0 is also amiable for

f .

Proof Combine Definition 3.1.3 and Theorem 3.1.1.
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The set of all amiable group structure for a given model is denoted as Ga. As

a consequence of Theorem 3.1.3 and the partial order of group structures defined in

Definition 3.1.2 and Definition 3.1.3, Ga is a fully ordered subset of G. This leads to
the following theorem which shows that there is the best group structure for a given

model.

Theorem 3.1.4 For any two group structures in Ga with the order defined according

to Definition 3.1.2 and Definition 3.1.3, there is a unique minimal group structure

G⇤ 2 Ga such that G⇤  G for all G 2 Ga.

Proof Since the partial order is defined any subset of group structures in Ga, the

existence of G⇤ is the result of Zorn’s Lemma. The uniqueness is due to the fact that

Ga is a finite set.

Definition 3.1.5 Let X = {X
1

, . . . , Xp} and the model f(x) = E[Y |X = x] 2 L2

X .

Then the minimal group structure G⇤ of X is called the true group structure for

f .

From the perspective of statistical modelling, the true group structure G⇤ repre-

sents an achievement in the greatest dimension reduction for the relationship between

Y and X. In the previous example, we have G
0

being the true group structure. If

G⇤ = G
0

is known, one only needs to estimate one univariate and two bivariate non-

parametric regression functions. While G
1

and G
2

are both amiable, they both require

fitting a three-dimensional non-parametric regression functions. This is both compu-

tationally and statistically ine�cient. In general, the true additive group structure

can help much mitigate the curse of dimensionality while improving both e�ciency

and interpretability of high dimensional nonparametric regression analysis.
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3.1.2 Kernel Methods for Non-parametric Regression

From the above discussion, we can see that a group structure plays an important

role in additive non-parametric regression. Our desire for estimation e�ciency and

unbiasedness is fulfilled by choosing the true group structure G⇤.

When the true group structure is known, another consideration for non-parametric

regression is how to choose the class of functions for estimation. There have been many

methods proposed for non-parametric regression such as Nadaraya-Watson kernel

smoothing estimator named after [40] and [41], regression spline and smoothing spline

estimators detailed in [42]. In this chapter, we focus on using kernel methods for

solving non-parametric regression.

The general formulation1 of kernel based methods for non-parametric regression

is given by

f̂� = argmin
f2H

⇣

bR(f) + �P(f)
⌘

. (3.10)

Here, H is an RKHS, P is some penalty functional (a popular choice is P(f) = kfk2H
in SVMs), � > 0 is a regularization parameter controlling the trade-o↵ between the

model fitting and the RKHS-norm penalty, and bR(f) is the empirical risk of f defined

as

bR(f) =
1

n

n
X

i=1

L (yi, f(xi)) ,

where L is a loss function measuring the goodness of fit using f as the model on the

data. This is the sample version of the following population risk

R(f) =

Z

Y,X
L (y, f(x)) dPYX

(y,x). (3.11)

One of the most common loss functions in regression setting is the quadratic

loss L(y, t) = (y � t)2. It has been well established (see [7], [11]) that the solution

1In fact, there is a more general formulation where the observations of the response variable Y is
also transformed by some monotone function as g(y). One example of this more general formulation
is given in [43]. However, in this chapter it is assumed that the response is not transformed or the
response transformation is known.
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of Problem (3.10) exists and is unique. More importantly, due to the celebrated

representer theorem, the solution assumes the following general form

f̂� =
n
X

i=1

↵iK(xi, ·),

where ↵
1

, . . . ,↵n 2 R are the estimated coe�cients.

It is well known that when L is the quadratic loss the minimizer of Equation (3.11)

is given by the conditional expectation

fY |X(x) =

Z

Y
ydPY |X(y).

which is the target that we want to recover for non-parametric regression.

While using an RKHS, denoted asH, as our model space in a kernel based method,

it is possible that our target function fY |X 62 H. That is, we may have the following

population optimal solution in H,

fH = argmin
f2H

Z

Y⇥X
L (y, f(x)) dPYX

(y,x),

and fH 6= fY |X .

In this case, the population risk R(f̂�) of a empirical solution f̂� in RKHS can be

decomposed as follows when the quadratic loss is used.

R(f̂�) =

Z

Y⇥X
(y � fY |X)

2dPYX

(y,x) +

Z

X
(fY |X � f̂�)

2dP
X

(x)

=

Z

Y⇥X
(y � fY |X)

2dPYX

(y,x)+
Z

X
(fY |X � fH)

2dP
X

(x) +

Z

X
(fH � f̂�)

2dP
X

(x),

where the second term in the first identity is the source of error contributed by

using the functions in H to approximate our target fY |X . Whenever fY |X 62 H, it is

strictly positive. In Chapter 2, we have shown that
R

X (fH � f̂�)2dPX

(x) converges

to zero for OKGT. This is also true when the response transformation is known.

In this chapter, we assume that our target fY |X 2 H. As a consequence, we have
R

X (fY |X � fH)2dPX

(x) also vanishes.
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Assuming fY |X 2 H may seem to over-simplify our problem. However, we can

choose a kernel K which is universal so that the corresponding RKHS is dense in L2

space. The following definition of a universal kernel is the same as that in [44].

Definition 3.1.6 A kernel K is universal for C([0, 1]) if its induced RKHS HK is

dense in C([0, 1]) in uniform norm, that is, for all f 2 C([0, 1]) and ✏ > 0 there is

g 2 HK such that kf � gk1 < ✏.

Then, the following Lemma shows that a universal kernel for the space of contin-

uous functions is also universal for L2 space (see Theorem 3 in [45]).

Lemma 3.1.1 Let K be a kernel. If K is universal for C([0, 1]) in uniform norm,

then K is also universal for L2([0, 1]) in L
2

norm.

If a kernel K is chosen to be universal, the induced RKHS HK is rich enough

such that using HK as an approximation of L2 space incurs no loss. Two examples

of universal kernel are Gaussian and Laplace.

3.1.3 RKHS for Additive Non-parametric Regression

Given an additive group structure G, the non-parametric regression tries to find

a regression function for each group of predictor variables. By using kernel methods,

each regression function is estimated from a RKHS. Let (Kj,Hj) be the kernel and

the corresponding RKHS for the j-th group uj, then we are essentially finding the

solution for the additive non-parametric regression problem from the following direct

sum RKHS

HG :=

(

f =
X

u2G
f
u

�

�

�

�

�

f
u

2 H
u

induced by some kernel K
u

)

. (3.12)

By considering HG as the model space for our non-parametric regression problem,

Problem (3.10) can be re-written as

f̂�,G = arg min
f2H

G

⇣

bR(f) + �P (f)
⌘

, (3.13)
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where we explicitly add the group structure G as an subscript of the minimizer f̂ .

If the direct sum RKHS HG is dense in L2

G, then it is guaranteed that there is no

loss incurred by using a f 2 HG to approximate our target function. The following

two Lemmas show that universality is preserved under direct sum and direct product

operations between two kernels.

Lemma 3.1.2 If K
1

and K
2

are two universal kernels for L2([0, 1]p1) and L2([0, 1]p2)

respectively, then K
1

�K
2

is universal for L2([0, 1]p1)� L2([0, 1]p2).

This leads to the following Lemma which shows that HG for a given group struc-

ture G is dense in L2

G with the individual kernels are universal.

Lemma 3.1.3 Let G be a group structure where each group u 2 G is equipped with

a kernel K
u

. If K
u

is universal for all u 2 G, then KG :=
P

u2G K
u

is universal for

L2

G.

In this chapter, we use Gaussian kernel for all K
u

’s. That is, K
u

(x
u

,x0
u

) =

exp{�� kx
u

� x

0
u

k2} for all u 2 G with common value for the parameter �.

3.1.4 Complexity of Group Structure

As we discussed in the previous sections, the true additive group structure G⇤

represents the finest additive structure for the relationship between Y and X. This

parsimonious representation would lead to the highest possible e�ciency in both

statistical estimation and numerical computation. However, in practice the true group

structure G⇤ is not known and needs to be learned from data.

The idea of searching for G⇤ from data is based on the intuition that the hypothesis

space HG⇤ induced by the true group structure is smaller than any other function

space induced by an amiable group structure. Using HG⇤ for kernel non-parametric

regression achieves the fastest2 rate of the risk vanishing to zeros. So with large

enough sample size, the true group structure G⇤ as the minimizer of the risk (with

2This is in probability.
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other things fixed) will stands out. The reason for this intuition to be true is in two-

fold. First, when the hypothesis space induced by a non-amiable group structure is

used for non-parametric regression, there is always positive approximation error due

to the usage of a function space which does not include the true target function. So

non-parametric regression with a non-amiable group structure will eventually be out-

performed (in terms of total risk) by that with an amiable group structure. Second,

though the approximation error disappears when amiable group structures are used,

their estimation errors (since estimation is a finite sample problem) have di↵erent

convergence rate. This is because di↵erent amiable group structure induce hypothesis

spaces with di↵erent complexity. While the most general additive group structure

{(1, . . . , p)} induces the largest function space for non-parametric estimation, it is the

most complex hence its estimation is the least e�cient due to its slow convergence

rate. On the other hand, the true group structure G⇤ induces a function space which

is the least complex which enjoys the fastest convergence rate while being used for

non-parametric regression. Therefore, when the sample size is large enough, G⇤ will

most likely stand out as a more optimal solution for non-parametric regression if we

compare its estimation risk with that of the other amiable group structure. Actually,

this is the idea we follow in proving the model selection consistency for our method

later in this chapter.

Based on the above reasoning, the concept of complexity of an additive group

structure plays a critical role in learning the true group structure G⇤ for additive

non-parametric regression. Since a group structure G a↵ects the performance of non-

parametric through the hypothesis space HG it induces, we can use the complexity

of the function space as a proxy to measure the complexity of a group structure.

By considering this general notation of complexity of additive group structures, our

kernel non-parametric regression problem is represented as

⇣

f̂�,µ, bG
⌘

= arg min
G2G
f2H

G

⇣

bR(f) + �P(f) + µC(G)
⌘

. (3.14)
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By comparing with Problem (3.13), here we added one more additive term µC(G)

in our minimization target. This is our main contribution to non-parametric regres-

sion. There are two components in this newly added term. The first component is

the complexity measure C(G) which quantifies the complexity of the additive group

structure G. We require P to be defined for all group structures G 2 G but monoton-

ically increasing in the domain of all amiable group structure G 2 Ga with respect to

the partial order defined in Definition 3.1.2 and 3.1.3. That is, if we only consider the

group structures in Ga, the complexity measure of the true group structure C(G⇤) is

the smallest, and the most general group structure {(1, . . . , p)} has the largest com-

plexity measure. The second component of our novel term is the tuning parameter

µ, which controls the trade-o↵ between the usual regularized loss and the complexity

measure of the group structure. By introducing this third term, the regularized risk

of non-parametric regression depends on the underlying group structure.

While we have considered the impact of group structure on non-parametric re-

gression by using a general complexity regularization term, it is still not clear how

the complexity looks like. We can neither perform analysis nor solve a finite sample

problem by using the formulation of (3.14).

A number of di↵erent types of complexity (or capacity) measures have been pro-

posed and studied for RKHSs. Some examples include entropy (see [46]), VC dimen-

sions (see [47]), Rademacher complexity (see [48]), and covering numbers (see [7], [46]).

We will use the results on covering number to design a practically convenient penalty

for AGSI and nonparametric regression.

First we define ✏-cover for a set.

Definition 3.1.7 An ✏-cover of a set S ⇢ F is a set of elements in F such that the

union of the ✏-balls around these elements contains S.

Then, we formally define the covering number for a general function space as

follows, which is similar to the definition in [7].
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Definition 3.1.8 Let X be a Banach space. For ✏ > 0, the ✏-covering number of X
with respect to some metric d, denoted as N (✏,X , d), is the smallest number of an

✏-cover of X using the metric d.

It is also useful to define the covering number for an operator.

Definition 3.1.9 Let X and Y be two Banach spaces and BX be the unit ball in X .

For ✏ > 0, the ✏-covering number of an operator T : X ! Y is defined as

N (✏, T ) := N (✏, T (BX ), dY) ,

where dY is the metric of Banach space Y.

It is well known (see [49], [50]) that an RKHS HK can be embedded into the space

of continuous functions C(X ), and we denoted the inclusion as IK : HK ! C(X ). So

for an r-ball in HK defined as HK,r :=
�

f 2 HK | kfkH
K

 r
 

, its inclusion I (HK,r)

is a subset of C(X ). One way to describe the complexity of an RKHS HK is through

the complexity of I (HK,r), the closure of I (HK,r), for a given value of r.

In [50], an upper bound for N
⇣

✏, I (HK,r), d1
⌘

is given which depends on the

regularity of the kernel function K. Here the metric d1 denotes the usual sup-norm.

This result is stated in the following theorem.

Theorem 3.1.5 Let K be be a convolution kernel, i.e. K(x, t) = k(x� t), on [0, 1]p

and HK be the associated RKHS. If the Fourier transform of k decays exponentially,

then the covering number of the r-ball, N
⇣

✏, I(HK,r), d1
⌘

, satisfies

lnN
⇣

✏, I(HK,r), d1
⌘

 Ck,p

⇣

ln
r

✏

⌘p+1

(3.15)

where Ck,p is a constant depending on the kernel function k and dimension p.

In particular, when K is a Gaussian kernel, it is shown in [46] that the following

upper bound holds for the covering number.
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Proposition 3.1.1 Let K(x, y) = exp
n

�kx�yk2
�2

o

be a Gaussian kernel with � > 0

and x, y 2 Rp. Then for 0 < ✏ < r/2, there holds

lnN
⇣

✏, I(HK,r), d1
⌘


✓

3 ln
r

✏
+

54p

�2

+ 6

◆p

⇥
✓

(6p+ 1) ln
r

✏
+

90p2

�2

+ 11p+ 3

◆

.

(3.16)

In particular, when 0 < ✏ < r exp{�90p2

�2 � 11p� 3}, we have

lnN
⇣

✏, I(HK,r), d1
⌘

 4p(6p+ 2)
⇣

ln
r

✏

⌘p+1

.

Both upper bounds given by (3.15) and (3.16) have the dimension p of the input

space as a power term. The upper bounds also depends on the radius r of the

RKHS ball and the radius ✏ of the covering balls. The value of r restrict the size

of RKHS under consideration. When we choose the popular penalty P(f) = kfk2H
in Problem (3.14), the parameter � also controls (indirectly) the size of RKHS for

model fitting. In this case, r and � could be related. The value of ✏ represents

the measuring granularity for characterizing the complexity for RKHSs. According

to [51], the growth rate of N (✏, IK) or its logarithmic version can be viewed as a

measure of the complexity of RKHS. Note that r is the length determined by the

RKHS norm while ✏ is the length determined by the norm of the embedding space

(in our case, it is the space of continuous function C(X )).

The upper bounds depend on r and ✏ through ln(r/✏). When ✏! 0 with r either

fixed or determined by the value of the other parameter �, (ln(r/✏))p+1 becomes the

dominating factor in the upper bounds and the other terms are negligible. So we

parameterized the upper bound by ↵p+1 where ↵ is a tuning parameter taking the

place of ln(r/✏). In theory, the choice of ↵ depends on the usual tuning parameter �

and the embedding space. In practice, we choose its value via cross-validation.

In our additive kernel non-parametric regression problem (3.14), the hypothesis

space HG is an direct sum RKHS given in (3.12). In order to take the advantage of

the additive structure in constructing the complexity measure for RKHSs, we rely on

the following result.
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Lemma 3.1.4 Let S, T : F
1

! F
2

be operators in Banach spaces and ✏
1

, ✏
2

> 0.

Then we have

N (✏
1

+ ✏
2

, T + S)  N (✏
1

, S) · N (✏
2

, T ) .

In order to apply Lemma 3.1.4, we need some technical preparation. For each H
u

used in the construction of the direct sum RKHS (3.12), we define its extension in

HG as

eH
u

:= {f : [0, 1]p ! R,x! f
u

(x
u

)}, (3.17)

so we have eH
u

⇢ HG. In other words, each function in eH
u

is the sum of a function

in H
u

and the zero function. We denote the extension operator as J
u

: H
u

! eH
u

.

Then, the inclusion operator I can be naturally applied on eH
u

. Since the extension

J
u

is a bijection, they have the same complexity in terms of covering numbers. That

is

N
⇣

✏, IK(Hu

), d1
⌘

= N
⇣

✏, IK( eHu

), d1
⌘

. (3.18)

Proof Since f̃ is equivalent to (f
u

,0) for each f̃ 2 H̃
u

, the 0 component does not

contribute additional complexity. Besides, d1 is the sup-norm, then the metric does

not change. So the covering numbers are the same.

Then, we have the following upper bound for the covering number of direct sum

RKHS, which is the result of the application of Lemma 3.1.4.

Lemma 3.1.5 Let G be an additive group structure and HG be the induced direct sum

RKHS defined in (3.12). Then, we have the following inequality relating the covering

number of HG and the covering numbers of H
u

lnN (✏, IG, d1) 
X

u2G
lnN

✓

✏

|G| , Iu, d1
◆

, (3.19)

where |G| denotes the number of groups in G.
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Proof Due to Lemma 3.1.4, we have N (✏, IG, d1)  ⇧
u2GN

⇣

✏
|G| , I(

eH
u

), d1
⌘

=

⇧
u2GN

⇣

✏
|G| , Iu, d1

⌘

. Then, taking log on both sides gives the desired result.

By applying Theorem 3.1.5, Lemma 3.1.5 and the argument on using ↵ as a tuning

parameter, we have

lnN (✏, IG, d1) = O
 

X

u2G
↵(✏)|u|+1

!

, (3.20)

where we explicitly indicate the dependency of ↵ on ✏ and use the same ↵ for all

groups. Now we could use the rate in (3.20) as the explicit expression of the complex-

ity measure C(G) in Problem (3.14). Recall that there is another tuning parameter µ

in Problem (3.14) which controls the e↵ect of the complexity of group structure has

on the penalized risk. By factoring out the common 1 in the exponent for all groups

and combining it with µ, we could further simplify the penalty’s expression. Thus,

we have the following explicit formulation for Additive Group Structure Identification

which simultaneously solves the non-parametric regression problem.

⇣

f̂�,µ, bG
⌘

= arg min
G2G
f2H

G

 

n
X

i=1

(yi � f(xi))
2 + � kfk2H

G

+ µ
X

u2G
↵(✏)|u|

!

. (3.21)

3.1.5 Estimation

In this chapter, we assume that the value of � is pre-specified. In practice, this

parameter can be tuned separately. If the values of µ and ↵ are also given, Prob-

lem (3.21) can be solved by following a two-step procedure.

First, for a given group structure G, the functions f
u

in the problem

min
fu2Hu
u2G

bR�
G =

1

n

n
X

i=1

 

yi �
X

u2G
f
u

(x
u,i)

!

2

+ �

�

�

�

�

�

X

u2G
f
u

�

�

�

�

�

2

H
G

(3.22)

can be estimated by applying OKGT with g being identity transformation or kernel

ridge regression (KRR) [52] where a Gaussian kernel is used for each group u 2 G.

We use eR�
G to denote the minimum value of the target function in (3.22).
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Second, together with the new penalty, eR�
G is minimized over the space of additive

group structures G to find the optimal group structure bG. That is,

bG = argmin
G2G

(

eR�
G + µ

X

u2G
↵|u|

)

. (3.23)

The two-step procedure above is expected to identify the true structure, that is,

bG = G
0

. Recall that all possible group structures are classified into three categories,

the true structure (G
0

), amiable structures, and non-amiable structures. If G is non-

amiable structure, then eR�
G is expected to be large, because G is a wrong structure

and will result in bias in model fitting. If G is amiable, though eR�
G is expected to

be small, the complexity penalty of G is larger than that for G
0

. As a consequence,

only G
0

can simultaneously achieve a small eR�
G0

and a relatively small complexity

penalty. Therefore, when the sample size is large enough, we expect bG = G
0

with

high probability.

If the values of the turning parameters µ and ↵ are not given, cross-validation

can be used to select proper values for them. The discussion on this account will be

deferred to Section 3.2.

3.2 Algorithm

In this section, an exhaustive search algorithm is introduced for group structure

selection. This algorithm works when the number of predictor variables is relatively

small or the set of candidate group structures is restricted. In addition, we will also

propose a stepwise algorithm for the case when the number of predictor variables is

relatively large.

3.2.1 Exhaustive Search

When the number of predictor variables in a nonparametric model is small and the

values of the tuning parameters are given, we can a↵ord to select the optimal group
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structure by solving Problem (3.21) for each possible group structure. For example,

for six predictor variables there are 203 possible group structures3.

Though the brute force employed by the exhaustive algorithm looks intimidating,

it will be used to e↵ectively show that adding the complexity penalty is necessary to

consistently select the true group structure. Besides, the exhaustive search algorithm

is an easy and e↵ective approach for small models. The detailed implementation is

shown in Algorithm 1.

Algorithm 1 Exhaustive Search Algorithm for AGSI
1: Input: {yi,xi}ni=1

, µ, ↵.

2: fix K
u

to be Gaussian for for each group;

3: for G in G do

4: eRG  fit OKGT with fixed response or KRR;

5: eRpen

G  eRG + µ
P

u2G ↵|u|;

6: end for

7: bG argminG2G eRpen

G ;

In Algorithm 1, we assume that µ and ↵ are given. However in practice, µ and

↵ need to be estimated from data. Algorithm 2 is created for this purpose, where a

validation step is added to learn the optimal tuning parameters.

Algorithm 2 assumes that a data set is large enough to be split into training and

testing sets. For each (µ,↵) value pair, a group structure is selected by running the

same procedure as Algorithm 1. The estimated nonparametric functions are also

returned from the training phase. Then, the estimated functions are used on the

test data to calculate the prediction error. The optimal tuning parameter values are

chosen to be the ones with the lowest prediction error. In general, cross-validation

(e.g. 10-fold) can be used to select the tuning parameters.

3The number of group structures for a fixed number of predictor variables is given by the Bell
number.
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Algorithm 2 Exhaustive Search with Validation Algorithm for AGSI
1: Input: {yi,xi}ni=1

, (µ,↵) value grid.

2: fix K
u

to be Gaussian for each group;

3: split data into train set T and validation set V ;
4: for (µ,↵) in the value grid do

5: for G 2 G do

6: eRG, f̂G  fit KRR on T ;

7: eRpen,µ,↵
G  eRG + µ

P

u2G ↵|u|;

8: end for

9: bGµ,↵  argminG2G eRpen,µ,↵
G ;

10: ŷV  f̂ bGµ,↵

(xV);

11: e2bGµ,↵

 
�

�yV � ŷV
�

�

2

;

12: end for

13: µ⇤,↵⇤  argminµ,↵ e2bGµ,↵

;

14: G⇤  bGµ⇤,↵⇤
;

3.2.2 Stepwise Approach

The exhaustive search algorithms are suitable for small models. When a model

contains large number of predictor variables, the computation cost can be prohibitively

high. In order to address the question of estimation and parameter selection for a

large model, we propose a backward stepwise algorithm. The base procedure for

estimation is illustrated in Algorithm 3.

At the beginning of the algorithm, a fully non-parametric regression with complex-

ity penalty is estimated. During each while loop, one predictor variable is separated,

which either forms a new univariate group or joins one of the other groups. Each

newly created group structure is used to fit a non-parametric regression. The group

structure is updated whenever a better fit is achieved. The iteration continues until

all predictor variables are tested. When the tuning parameters are not given, cross

validation can be used to learn the optimal values from data.
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Algorithm 3 Basic Backward Stepwise Algorithm for AGSI
1: Input: {yi,xi}ni=1

, µ, ↵.

2: fix kernel K to be Gaussian with parameter �;

3: J  {1, . . . , p};
4: u (1, . . . , p); G {u};
5: eRpen

G  fit KRR under G with complexity penalty;

6: while J 6= ; do
7: for j in J do

8: u

0  u \ {j};
9: G0  G \ {u} [ {u0, (j)};
10: eRpen

G0  fit KRR under G0 with complexity penalty;

11: if eRpen

G0 < eRpen

G then

12: eRpen

G  eRpen

G0 ; G⇤  G0;

13: end if

14: for u` in G \ {u} do

15: u

0
`  u` [ {j};

16: G0  G \ {u,u`} [ {u0,u0
`};

17: eRpen

G0  fit KRR under G0 with complexity penalty;

18: if eRpen

G0 < eRpen

G then

19: eRpen

G  eRpen

G0 ; G⇤  G0;

20: end if

21: end for

22: J  J \ {j}; u u \ {j};
23: end for

24: end while

25: return G⇤;

3.3 Theoretical Properties of AGSI

In this section, we will show that by adding the penalty µ
P

u2G ↵|u| in (3.21)

ensures group structure selection consistency for a group additive model. The mean-
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ing of the selection consistency is that the probability that solving Problem (3.21)

does not results in the true group structure approaches zero when the sample size

increases.

3.3.1 Main Results

As we discussed before, when a non-amiable group structure is used, the solution

of a usual kernel non-parametric regression problem has a non-zero bias. While all

amiable group structures give unbiased estimates, using the true group structure will

enjoy the fastest rate of convergence. Thus, the new complexity penalty is used to

filter out all amiable group structures with slow convergence rate. We provide the

selection consistency theory in this section and the proof follows this idea.

In order to facilitate the proof, we adopt the following notations:

• Rg(fG) := E
h

�

g(Y )�
P

u2G f
u

(X
u

)
�

2

i

denotes the population risk for some

function fG 2 HG. The subscript G in fG indicates the associated group struc-

ture.

• bRg(fG) :=
1

n

Pn
i=1

�

g(yi)�
P

u2G f
u

(x
u,i)

�

2

denotes the empirical risk for some

function fG 2 HG.

First, we need to show that for all amiable group structures G 2 GA, the optimized

empirical risk bRg(f̂G) converges in probability to the optimal population risk Rg(f ⇤
G⇤)

which is achieved by the true group structure. Here f̂G denotes the minimizer of the

empirical risk when group structure G is used and f ⇤
G⇤ denotes the minimizer of

the population risk when the true group structure is used. The result is given by

Theorem 3.3.1 with an upper bound for the convergence rate.

Theorem 3.3.1 Let G⇤ be the true group structure and G 2 Ga be an amiable group

structure. The associated direct sum RKHS are denoted as HG⇤ and HG, respectively.
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Assume the optimal transformation for the response is known and given by g. If

f̂�
G 2 HG is the optimal solution of Problem (3.22), then for any ✏ > 0, we have

P
⇣

�

�

�

bRg(f̂G)�Rg(f
⇤
G⇤)

�

�

�

> ✏
⌘

12n · exp
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X

u2G
lnN

✓

✏

12|G| ,Hu

, `1

◆

� ✏2n

144

)

+

12n · exp

8

<
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X

u2G
lnN

✓

✏

12|G| ,Hu

, `1

◆

� n

 

✏

24
� �n kf ⇤

G⇤k2
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!

2

9

=

;

. (3.24)

Proof Since the following inequality holds,

�

�

�

bRg(f̂G)�Rg(f
⇤
G⇤)

�

�

�


�

�

�

bRg(f̂G)�Rg(f̂G)
�

�

�

+
�

�

�

Rg(f̂G)�Rg(f
⇤
G⇤)

�

�

�

, (3.25)

the upper bound for the desired deviation can be derived from the upper bounds of

the two terms on RHS in the inequality.

The upper bound for the first term can be derived by using the uniform con-

vergence bound in [53] (also see Lemma 12.38 in [12]). So we have the following

probabilistic upper bound for the first term. For all n > 8

✏2
,

P
⇣

�

�

�

bRg(f̂G)�Rg(f̂G)
�

�

�

>
✏

2

⌘

12n · E
h

N
⇣ ✏

12
,HG, `

X0

1

⌘i

· exp
⇢

� ✏2n

144

�

12n · exp
⇢

lnN (n)
⇣ ✏

12
,HG, `1

⌘

� ✏2n

144

�

12n · exp
⇢

lnN
⇣ ✏

12
,HG, `1

⌘

� ✏2n

144

�

, (3.26)

where `X
0

1 denotes the sup-norm of function f 2 F restricted to the sample X 0 =

{x0
1

, . . . , x0
n} which is independent of the sample X = {x

1

, . . . , xn} used for estimation

and N (n) (✏,H, `1) is called the ✏-growth function of the space H which is defined as

N (n) (✏,H, `1) := sup
x1,...,xn

2X
N
�

✏,H, `X1
�

.

The second inequality is due to the fact that E
⇥

N
�

✏,H, `X
0

1
�⇤

 N (n) (✏,H).
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The upper bound for the second term in 3.25 can be derived by repeatedly applying

the same uniform convergence bound. Due to Lemma 3.3.1 in Section 3.3.2, we have

for all ✏ > 0 and all n > 2/✏2,

P
⇣

�

�

�

Rg(f̂G)�Rg(f
⇤
G⇤)

�

�

�

>
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;
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12
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24
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=

;

. (3.27)

By plugging the upper bounds (3.26) and (3.27) in (3.25), we have

P
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G⇤)

�

�

�

> ✏
⌘

12n · exp
⇢

lnN
⇣ ✏

12
,HG, `1

⌘

� ✏2n

144

�

+

12n · exp

8

<

:

lnN
⇣ ✏

12
,HG, `1

⌘

� n

 

✏

24
� �n kf ⇤

G⇤k2

12

!

2

9

=

;

(3.28)

By using Lemma 3.3.2, we can bound the covering number for HG from above

and obtain the following inequality.

P
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bRg(f̂G)�Rg(f
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G⇤)
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> ✏
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24
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2

9

=

;

.

As a result of Theorem 3.3.1, we can construct a Bonferroni type union upper

bound for all amiable group structures in Ga. This is stated in the following proposi-

tion.
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Proposition 3.3.1 Let Ga be the set of all amiable group structures and g is the true

transformation of the response. For any ✏ > 0 and n > 2/✏2, we have

P
⇣

�

�

�

bRg(f̂
�
G)�Rg(f

⇤
G⇤)
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> ✏
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#

(3.29)

Proof Denote D(n)
G,✏ =

n

(xi, yi)ni=1

2 X ⇥ Y
�

�

�

�

�

�

bR(f̂G, g)�R(f ⇤
G⇤ , g)

�

�

�

> ✏
o

, then we

have
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
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=
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where the second inequality is due to the proof of Theorem 3.3.1.

Theorem 3.3.1 and Proposition 3.3.1 show that the solution of Problem (3.22) is

asymptotically consistent for an amiable group structure. This is true even without

considering the capacity of the function spaces.

The second step towards proving AGSI’s selection consistency is to show that

for a non-amiable group structure G0 2 G \ Ga, its minimum empirical risk (3.22)

is not consistent to the true population risk. The idea of the proof is based on the

bias-variance decomposition of the population risk.

Theorem 3.3.2 For an non-amiable group structure G0 2 G \ Ga, the empirical risk

does not converge in probability to the true optimal risk. In particular, there is a

constant C > 0 such that

�

�

�

bRg(f̂
�
G0)�Rg(f

⇤
G⇤)

�

�

�

! C,
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with rate Op

✓

12n exp
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48|G0|
⇣

R|G0|
✏

⌘

2

ln2
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4|G0|eRn
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�◆

.

Proof We start with the following triangle inequality
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
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�

+
�

�

�

Rg(f̂G0)�Rg(f
⇤
G⇤)

�

�

�

. (3.30)

The first term on the RHS can be bounded by using the same uniform convergence

bound (12.135) in [12]. For any ✏ > 0 and all n > 2/✏2,

P
⇣

�

�

�
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 12n · exp
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6
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� ✏2n

36

�

. (3.31)

In order to derive an upper bound for the second term, we first decompose each

risk into bias and variance. According to [54], the risk of the empirical estimate of

f̂G0 can be decomposed as

Rg(fG0) =

Z

X⇥Y

⇣

g(y)� f̂G0(x)
⌘

2

dPXY

=

Z

X⇥Y

�

g(y)� fY |X(x)
�

2

dPXY +

Z

X⇥Y

⇣

fX|Y (x)� f̂G0(x)
⌘

2

dPXY , (3.32)

where fX|Y (x) :=
R

Y g(y)dPY |X is the optimal regression function.

By assuming fX|Y (x) = f ⇤
G⇤ (this is the assumption we use throughout this chap-

ter), we have

�

�

�

Rg(f̂G0)�Rg(f
⇤
G⇤)

�

�

�

=

Z

X⇥Y

⇣

f ⇤
G⇤(x)� f̂G0(x)

⌘

2

dPXY (3.33)

According to Theorem 2.1 in [55], we have the following decompositions for the

two function on the RHS of (3.33):

f ⇤
G⇤ =

X

u✓{1,...,p}
f ⇤
G⇤,u with f ⇤

G⇤,u :=
X

v✓u

(�1)|u|�|v| P{1,...,p}\v(f
⇤
G⇤),

f̂G0 =
X

u✓{1,...,p}

bfG0,u with bfG0,u :=
X

v✓u

(�1)|u|�|v| P{1,...,p}\v( bfG0).
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Since G0 is an non-amiable group structure, there is at least one subset4 of u ✓
{1, . . . , p} such that f ⇤

G⇤,u 6= f̂G0,u. Let C = min
u✓{1,...,p}
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where the first equality is due to the orthogonality possessed by a direct sum Hilbert

space.

By using (3.30), (3.31), (3.33) and (3.34), we can obtain
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By combining Theorem 3.3.2 and Proposition 3.3.1, we eventually achieve the

following selection consistency result for AGSI.

Theorem 3.3.3 Let �n ! 0. By choosing a proper tuning parameter µ > 0 for the

capacity penalty , the group structure bG that minimizes (3.23) is consistent.

Proof According to Theorem 3.3.2, by choosing ✏ < C, an agreeable group structure

will be chosen with high probability.

For an amiable group structure, let ✏
1

=
�

�

�

bRg(f̂�
G)�Rg(f ⇤

G⇤)
�

�

�

and ✏
2

= µC(G) �
µC(G⇤). Since C(G) > C(G⇤) when G is not the true group structure, we have ✏

2

> 0.

Because ✏
1

converges to 0 in probability. Thus the true group structure G⇤ will be

picked with high probability if Problem (3.21) is solved.
4If G0 is amiable, then a subset u of G0 always assumes an additive structure. So there is no error
between f

⇤
G⇤ and f̂G0 after such a decomposition.
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3.3.2 Supporting Lemmas

This section includes the lemmas (with proof) that are used to prove the Theorems

and Proposition in the previous section.

Lemma 3.3.1 For all ✏ > 0 and all n > 2/✏2,
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Proof Due to the uniform convergence bound (12.135) in [12], given bfG,, we have

for all ✏ > 0 and all n � 2/✏2,

P
⇣

�

�

�

bRg

⇣

f̂G
⌘

�Rg

⇣

f̂G
⌘

�

�

�

> ✏
⌘

 12n · E



N
✓

✏2

12
,HG, `

X0

1

◆�

exp

⇢

�✏2n

36

�

.

By setting � = 12n · E
h

N
⇣

✏2

12

,HG, `X
0

1

⌘i

exp
n

� ✏2n
36

o

and solve for ✏, we have

✏ = 6n�1/2

✓

ln 12n+ lnE



N
✓

✏2

12
,HG, `

X0

1

◆�

� ln �

◆

1/2

.
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Due to the symmetry of the above bound, we have with probability at least 1� �,
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where the third inequality is due to the definition of f̂G as the minimizer of the

empirical problem. We applied the uniform convergence bound twice, one for the

first inequality and the other for the last inequality.
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Since it is always true that Rg (f ⇤
G⇤)  Rg

⇣

f̂G
⌘

, we have the symmetric upper

bound with probability 1� �,
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Thus the bound for the second term is for all ✏ > 0 and all n > 2/✏2,
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The following Lemma is taken from Lemma 1 in [56], which shows the relationship

between the covering number of the direct sum of two operators and the covering

numbers of the individual operators.

Lemma 3.3.2 Let S, T : B
1

! B
2

be operators in real Banach spaces and ✏, � > 0.

Then,

N (✏+ �, T + S)  N (✏, T ) · N (�, S) .

3.4 Simulation Study

In this section, we evaluate the performance of AGSI for nonparametric regression

using synthetic data. In the first simulation experiment, we show that our method can

indeed identify the true group structure with properly chosen tuning parameters. In
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the second experiment, we demonstrate the procedure of tuning parameter selection

by augmenting a validation step in exhaustive search. In the third experiment, we

show the performance of the backward stepwise procedure.

3.4.1 E↵ectiveness of Exhaustive Search

In this study, we apply AGSI for nonparametric regression on several selected

models to show that the exhaustive search method has the ability to identify the true

group structure if the tuning parameters are chosen properly. The size of each model

is restricted to be small so that the exhaustive algorithms can be applied. Specifically,

the five models listed in Table 3.1 along with their true group structure are used.

Table 3.1.
Selected models for the simulation study using the exhaustive search
method and the corresponding additive group structures.

ID Model True Group Structure

M1 y = 2x
1

+ x2

2

+ x3

3

+ sin(⇡x
4

) + log(x
5

+ 5) + |x
6

|+ ✏ {(1) , (2) , (3) , (4) , (5) , (6)}
M2 y = 1

1+x2
1
+ arcsin

�

x2+x3
2

�

+ arctan ((x
4

+ x
5

+ x
6

)3) + ✏ {(1) , (2, 3) , (4, 5, 6)}

M3 y = arcsin
�

x1+x3
2

�

+ 1

1+x2
2
+ arctan ((x

4

+ x
5

+ x
6

)3) + ✏ {(1, 3) , (2) , (4, 5, 6)}

M4 y = x
1

· x
2

+ sin((x
3

+ x
4

) · ⇡) + log(x
5

· x
6

+ 10) + ✏ {(1, 2) , (3, 4) , (5, 6)}
M5 y = exp

n

p

x2

1

+ x2

2

+ x2

3

+ x2

4

+ x2

5

+ x2

6

o

+ ✏ {(1, 2, 3, 4, 5, 6)}

The observations of X are independently stimulated. The distributions of X are

standard normal in M1, Uniform(�1, 1) in M2 and M3, and Uniform(0, 2) in M4 and

M5. The noise ✏ is i.i.d. normal with mean 0 and standard deviation 0.01. During

each simulation, a data set of size 500 is generated which is used to estimate bG as

a solution in Problem (3.23) for each (µ,↵) pair in a provided grid. In constructing
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the grid, the values of µ are chosen to be equally spaced from 1e�10 to 1/64 on the

log-scale and the values of ↵ are the integers from 1 to 10 inclusive. So there are

50 di↵erent (µ,↵) pairs in the grid. The simulation is performed 100 times for each

model.

We are interested in knowing if the true group structure can be identified fre-

quently in each model setting. If there are (µ,↵) pairs for each model that its true

group structure can be often identified, this means that our novel penalty has the

potential to identify true group structures. The frequencies that the true group

structures are identified are calculated for each (µ,↵) pair under each model setting.

In Table 3.2, we report the maximum frequency that the true group structure is iden-

tified and the corresponding pair of tuning parameters under each model setting5. It

can be seen in Table 3.2 that the true group structures can be successfully identified

when the tuning parameters are properly chosen.

Table 3.2.
Maximum frequencies that the true group structures are identified for
the five selected models using exhaustive search algorithm without tuning
parameter selection.

Model Max freq. µ ↵

M1 100 1.2500e-06 10

M2 97 1.2500e-06 8

M3 97 1.2500e-06 9

M4 100 1.2500e-06 7

M5 100 1.2500e-06 1

5There are ties for a model that di↵erent pairs of (µ,↵) result in the same maximum frequency.
In such a case, the pair of parameter values corresponding to the maximum frequency is randomly
chosen and reported in Table 3.2.
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The complete results are reported in Table 3.3 which are also visualized using the

3D surface plots in Figure 3.1. While considering all selected values for the tuning

parameters, we can see that Model 1 performs the best. Within a wide range of

parameter values (µ � 1.25e�6 and ↵ � 3), there are records of correct selection of

the true group structure. When the values of the parameters become larger, the true

group structure can be identified 100 percentage of time. This is mostly due to the

fact that large values of the capacity penalty prefers a simple model, and the fully

additive structure is the simplest among all group structures. Model 2 and 3 perform

comparably well. Within the middle range of µ (between 1.2500e-06 and 1.3975e-04),

the true group structures are identified with high frequencies. Model 4 performs well

in the similar range as that for Model 2 and 3. It also shows good performance at

some higher value of µ and ↵. In Model 5, the true group structure is most often

identified when ↵ is towards the lower end of the range. This is due to the fact that

small penalty favors larger model, and Model 5 has the “largest” group structure.

3.4.2 Tuning Parameters for Exhaustive Search

In this simulation study, we assume that the tuning parameters are not known

and need to be learned from data. We simulate data by using the same five models

in Table 3.1 and then apply Algorithm 2 to estimate the group structure and the

transformation functions.

During each simulation, two independent data sets of size 500 are generated, one

for training and the other for validation. For each (µ,↵) pair, Problem (3.21) is solved

by applying the exhaustive search algorithm to obtain the best estimate of the group

structure bG and the corresponding transformations f̂
u

’s. Then, the estimated model

is applied on the validation set to calculate the goodness of fit measure R2. The

model with the largest value of R2 is retained as the best and its bG is considered as

the estimated true group structure. The simulation is repeated 100 times for each

model in Table 3.1.
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Table 3.3.
Frequencies that the true group structures are selected under di↵erent
parameter pairs for the six models.

µ ↵ M1 M2 M3 M4 M5
1.0000e-10 1.00 0 0 0 0 100
1.0000e-10 2.00 0 0 0 0 100
1.0000e-10 3.00 0 0 0 0 100
1.0000e-10 4.00 0 0 0 0 99
1.0000e-10 5.00 0 0 0 0 10
1.0000e-10 6.00 0 0 0 0 0
1.0000e-10 7.00 0 0 0 0 0
1.0000e-10 8.00 0 0 0 0 0
1.0000e-10 9.00 0 0 0 0 0
1.0000e-10 10.00 0 0 0 0 0
1.1180e-08 1.00 0 0 0 0 100
1.1180e-08 2.00 0 0 0 0 98
1.1180e-08 3.00 0 0 0 0 0
1.1180e-08 4.00 0 0 0 0 0
1.1180e-08 5.00 0 0 0 0 0
1.1180e-08 6.00 0 0 0 0 0
1.1180e-08 7.00 0 0 0 0 0
1.1180e-08 8.00 0 0 0 1 0
1.1180e-08 9.00 0 0 0 77 0
1.1180e-08 10.00 0 0 0 92 0
1.2500e-06 1.00 0 0 0 0 100
1.2500e-06 2.00 0 0 0 0 0
1.2500e-06 3.00 14 0 0 84 0
1.2500e-06 4.00 81 3 4 99 0
1.2500e-06 5.00 90 77 77 99 0
1.2500e-06 6.00 94 92 90 99 0
1.2500e-06 7.00 96 96 95 100 0
1.2500e-06 8.00 98 97 96 100 0
1.2500e-06 9.00 98 97 97 100 0
1.2500e-06 10.00 100 97 97 100 0
1.3975e-04 1.00 0 0 0 0 100
1.3975e-04 2.00 0 95 93 100 0
1.3975e-04 3.00 100 95 92 90 0
1.3975e-04 4.00 100 28 23 9 0
1.3975e-04 5.00 100 13 12 3 0
1.3975e-04 6.00 100 5 7 3 0
1.3975e-04 7.00 100 0 0 2 0
1.3975e-04 8.00 100 0 0 0 0
1.3975e-04 9.00 100 0 0 0 0
1.3975e-04 10.00 100 0 0 0 0
1.5625e-02 1.00 0 0 0 0 100
1.5625e-02 2.00 0 0 0 100 0
1.5625e-02 3.00 100 0 0 0 0
1.5625e-02 4.00 100 0 0 0 0
1.5625e-02 5.00 100 0 0 0 0
1.5625e-02 6.00 100 0 0 0 0
1.5625e-02 7.00 100 0 0 0 0
1.5625e-02 8.00 100 0 0 0 0
1.5625e-02 9.00 100 0 0 0 0
1.5625e-02 10.00 100 0 0 0 0
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Fig. 3.1. The 3D surface of the frequencies (out of 100) that the true
group structures are identified for the five chosen models in Table 3.1 over
the entire parameters grid. Given a (µ,↵) pair, the penalized goodness
of fit is calculated for all group structures. We recorded each time the
true group structure is identified. The values of µ are reported in log-
scale. Each surface plot is accompanied with three contour plots as the
2D projections of the surface to enhance the e↵ect of the visualization.

The maximum frequency that the true group structure is identified is reported

for each model in Table 3.46. We can see from Table 3.4 that the optimal tuning

parameters are quite close to those in Table 3.2. Except for Model 1, the frequen-

cies of identifying true group structure are very close to 100. This indicates that

simply adding a validation step can help to select the optimal values for the tuning

parameter. In practice, a more general cross validation (CV) procedure can be used.

The deteriorated performance of Model 1 might be caused by the estimation method

(Kernel Ridge Regression to solve Problem (3.22)) used in the algorithm. It is also

a↵ected by the choice for the value of the third turning parameter �.

6There are ties for a model that multiple pairs of (µ,↵) result in the same maximum frequency.
In such a case, the pair of parameter values corresponding to the maximum frequency is randomly
chosen and reported in Table 3.4.
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Table 3.4.
Maximum frequencies that the true group structures are identified for the
five chosen models using exhaustive search algorithm with tuning param-
eter selection.

Model Max freq. µ ↵

M1 59 1.2500e-06 4

M2 89 1.2500e-06 7

M3 89 1.2500e-06 7

M4 99 1.2500e-06 4

M5 100 1.2500e-06 1

The complete results are visualized by 3D surface plots in Figure 3.2. Again, we

can see that except Model 1, the performance of the other models is quite similar to

that in the previous simulation study.

3.4.3 Stepwise Approach

When the number of predictor variables is large, using the exhaustive search al-

gorithms is not practical. Instead, a stepwise algorithm would be a more reasonable

choice in terms of computational cost. In this simulation study, we show the perfor-

mance of our backward algorithm. We apply Algorithm 3 on the data simulated from

the same models listed in Table 3.1.

In order to select the values for the tuning parameters, we use a training data set

to estimated the OKGT model which is then used to calculate the prediction error

on an independent validation set. We use the same grid values for µ and ↵.

During each simulation, the backward algorithm is applied on the training data

to estimate the group structure and the corresponding transformation functions for

each (µ,↵) pair. Then, the estimated model is used to calculated the fitting error
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Fig. 3.2. The 3D surfaces of the frequencies (out of 100) that the true
group structures are identified for the five chosen models in Table 3.1
over the entire parameter grids. The training procedure uses a separate
validation data set to select the optimal tuning parameters (µ,↵). The
values of µ are reported in log-scale. Each surface plot is accompanied
with three contour plots as the 2D projections of the surface to enhance
the e↵ect of the visualization.

on the validation data. The model which results in the smallest validation error is

retained as the best model. This simulation procedure is repeated 100 time for each

model and we record the frequencies that the true group structures are recovered.

The complete results are visualized by the 3D surface plots in Figure 3.3. Model

1 and 5 can be successfully identified almost all the time within some range of the

tuning parameters. Though the frequencies for Model 2 and 3 are not as high as

those obtained from applying the exhaustive search algorithms, the true models can

still be selected most of time. The performance of the backward algorithm on Model

4 was not satisfying. Since the backward algorithm search in a greedy fashion for

the best direction to update during each iteration, it is possible that the true group
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structures were never visited. Nevertheless, further research is needed to have a deep

understanding of the role played by the complexity penalty in stepwise algorithms.

Fig. 3.3. The 3D surfaces of the frequencies (out of 100) that the true
group structures are identified for the five chosen models in Table 3.1
over the entire parameter grids. The training uses the backward stepwise
algorithm and the procedure uses a separate validation data set to select
the optimal tuning parameters (µ,↵). The values of µ are reported in
log-scale. Each surface plot is accompanied with three contour plots as
the 2D projections of the surface to enhance the e↵ect of the visualization.

3.5 Real Data Applications

In this section, two real data sets will be used to show how AGSI for nonparametric

regression can be used in data analysis. They are both available from the UCI machine

learning repository.
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3.5.1 Boston Housing Data

In this study, we apply AGSI for nonparametric regression on the famous housing

data concerning housing values in suburbs of Boston. The data set includes thirteen

predictor variables about community and property related attributes and median

value of owner-occupied homes as the response. The sample size is 506. Our goal

is to identify a possible group structure for the predictor variables in terms of their

e↵ect on the housing values.

Since the number of possible group structures for thirteen variables is large, we

use the backward algorithm for identifying the true group structure. In order to

select the proper tuning parameters µ and ↵ for the capacity penalty, a 10-fold CV

is implemented. The data set is (almost) equally divided into 10 subsets. Each time,

Algorithm 3 is applied on 9 subsets, then the estimated functions are used to calculate

the prediction error on the left-out piece. The values of the tuning parameters are

chosen to be the pair corresponding to the smallest average prediction error.

The average prediction errors are plotted for each value pairs of the tuning pa-

rameters (where µ and ↵ are arranged in increasing order) in Figure 3.4. The values

of the average prediction error on the y-axis are log-scaled. The minimum value of

the prediction error is 3.75203, which is corresponding to the four parameter pairs

(1.0e-10, 2), (1.12e-8, 2), (1.25e-6, 2), and (1.3975e-4, 2).

In this study, a small set of eight group structures were identified. They all

achieved relatively low prediction errors. Among the eight group structures, the group

structure {(1, 6) , (2, 11) , (3) , (4, 9) , (5, 8) , (7, 13) , (10, 12)} achieved lowest average

prediction error. So we use it for a detailed investigation.The nonparametric functions

for each group based on the whole data set. Because the groups contains no more

than two variables, the estimated functions can be visualized. Selected estimation

results are shown in Figure 3.5.

It is interesting to see some patterns emerging in the plots. The first plot show

the function of the average number of rooms per dwelling and per capita crime rate
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Fig. 3.4. The results of applying the backward step-wise algorithm on
Boston Housing data with 10-fold CV. The 3D surfaces shows the average
validation error over the entire grid of (µ,↵) pairs. The surface plot is
accompanied with three contour plots as the 2D projections of the surface
to enhance the e↵ect of the visualization.

by town. It shows the value of houses increase as there are more rooms and decreases

as the crime rate increases. However, at the low end of the crime rate, smaller sized

houses (4 or 5 rooms) seem to be preferred than a house with around 6 rooms. The

second plot (top-right) shows that there is a changing point in terms of how house

value is related to the size of non-retail business in the area. The value initially

drops when the percentage of non-retail business is small, then increases at around

8%. The increase in the value might be due to the high demand of housing from the

employees of those business. The third plot (bottom-left) reveals an interesting pat-

tern of nitric oxides concentration and weighted distances to five Boston employment

centers. There are two changing points regarding how people value a house in terms

of its distance from working. The value reaches the minimum at around 1.5 and the

maximum at around 3.5. This might because houses next to the working places are
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Fig. 3.5. Estimated transformation functions for selected groups in the
chosen group structure {(1, 6) , (2, 11) , (3) , (4, 9) , (5, 8) , (7, 13) , (10, 12)}.
Top-left: group (1, 6), top-right: group (3), bottom-left: group (5, 8),
bottom-right: group (10, 12).

appealing to those who do not have cars. The houses in the moderate distance are

preferred by those who have more mobility but do not want to live too far from work.

The concentration of nitric oxides a↵ects a house value negatively when it is close to

the employment centers but not much when the houses are remote.

3.5.2 Communities and Crime Data

In the second application, we choose to apply our method on the communities and

crime data also available on UCI repository. There are two versions of the data set,

normalized and unnormalized. We use the unnormalized version for our study. The
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data set combines socio-economic data from the ’90 Census, law enforcement data

from the 1990 Law Enforcement Management and Admin Stats survey, and crime

data from the 1995 FBI UCR.

There are 2215 samples and 147 variables in the data set with missing values.

Besides four variables for identification purpose, there are 122 predictor variables and

18 crime attributes that could be treated as response. We choose Number of Murders

in 1995 to be our response in this study and investigate its relationship between the

predictor variables. While missing values are encountered, they are simply removed.

Because of the large number of predictor variables in the data set. A preliminary

screening procedure is applied to reduce the number of variables and select the most

related predictors for our goal. Since OKGT can be used to determine the dependency

between two variables, we fit OKGT for each of the 122 predictor against the response

to obtain the estimate of the dependence measure R2. Then, the predictor variables

are kept if its corresponding R2 > 0.99. This indicates that the marginal dependence

between the selected predictor and the response are very high.

After screening, the number of predictor variables is reduced to 23. Some of them

include Total Requests for Police Per 100K Population, Number of People in Homeless

Shelters, Per Capita Income for People with Asian Heritage, and Land Area. Then

the backward algorithm was ran on the reduced data set. Because of the missing

value issue, the sample size of the reduced data set is reduced to 343. The optimal

group structure is determined by a simple one-fold validation.

The procedure selected the fully additive group structure as the optimal one.

We reported the estimated results for the four selected groups in Figure 3.6. They

show highly nonlinear relationship between each predictor variable and the number

of murders. The first plot shows that the e↵ect of Median Family Income is almost

zero until it reaches the high end where murders drop dramatically. The second plot

shows an interesting pattern for Total Requests for Police per Police O�cer. As the

number of requests increases, the number of murders initially decreases slowly. One

reason for this is that increasing requests cause more presence of police in the area
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which is helpful to control crimes. However, murders increase quickly as the number

of requests enters the high range. An explanation for this is that the surging number

of requests for police is due to the low security and high murder rate in the area.

Fig. 3.6. Selected results for the communities and crime data where the
number of murders is the response. The blue dots are the transformed
observation of the predictor variable. The red line is the estimated func-
tion.

3.6 Summary

In this chapter, we have developed an e↵ective method for general nonparametric

regression analysis. By imposing an additive group structure, we achieve the goal of

both preserving important interactions between the predictor variables and reducing

the dimensionality of the problem for e�cient estimation. In order to identify the

true additive group structure, we proposed a novel complexity penalty on additive

group structures and incorporated it into the penalized kernel regression method.
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Simulation studies and real data applications demonstrate the e↵ectiveness of our

proposed method.

There are three main directions for future research. First, the theoretical prop-

erties of the proposed method, including selection consistency, need to be rigorously

established. Second, our penalty is based on the covering number of RKHSs. It is of

interest to know if there exist other more e↵ective penalty. Third, it is noticed that

the current backward stepwise algorithm may become unstable and fail to achieve the

potential in identifying the true additive group structure as shown by the exhaustive

algorithm. It is of great interest to further improve upon the current algorithm so

that the proposed method can be applied in general high dimensional nonparametric

regression.
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4. HIERARCHICAL MIXED LOGISTIC REGRESSION

MODEL AND ITS SPARK IMPLEMENTATION

In Chapter 2 and 3, we developed a new general framework for data exploration in

regression setting. Our contribution includes proposing the concept of group struc-

ture which greatly generalizes the usual additive model and developing a method for

identifying the optimal group structure for data. Though this framework has been

shown useful for EDA, the methods were suitable for exploring data on a single ma-

chine. Since kernel methods usually have di�culty in handling large scale problems,

especially when sample size is large, new methods are needed for exploring large

datasets.

In this chapter, we are going to build and implement a model for exploring big

data. When the sample size of data increases, we would expect the structure of

data becomes more complex. So a big model that can accommodate these complex

structures is needed. As heterogeneity is common in big data (see [57]), being able to

identify hierarchical and clustering structures is fundamental in exploring big data.

Hodas & Lerman (2013) [58] gives an example that aggregated exposure response

obscures heterogeneous behavior in a study of social epidemics. A model for big

data exploration should be helpful for detecting heterogeneity. After that, a more

fine-grained data exploration or model building can be carried out targeting each

subpopulation.

We choose to use Hierarchical Mixed Logistic Regression Model (HMLRM) for

exploring data with categorical response. The reason that HMLRM is useful for

EDA is in two-fold. First, logistic regression model is a simple yet e↵ective statistical

model. Its statistical property is well studied and results are easy to interpret. Second,

a hidden variable is introduced in the model to accommodate possible heterogeneity.
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By using this hidden layer, we can explicitly model the probabilities that a sample

belongs to di↵erent subpopulations.

When sample size increases, estimating the model becomes more di�cult. In

order to apply HMLRM on a large dataset, we will implement the model in Apache

Spark, one of the most popular distributed computing platform. Spark uses Resilient

Distributed Dataset (RDD) as data abstraction and an in-memory computing model.

Spark allows data to be persisted in memory, hence it enables faster computation.

These features make Spark more e�cient than Hadoop in data analysis.

The rest of the chapter is organized as follows. Section 4.1 discusses the construc-

tion of HMLRM and the details of its estimation using EM algorithm. Section 4.2

discusses the consideration of implementing HMLRM in Spark. We report the results

of some simulation studies in Section 4.3. Section 4.4 concludes this chapter.

4.1 Hierarchical Mixed Logistic Regression Model

In this section, we introduce the construction of the Hierarchical Mixed Logistic

Regression Model (HMLRM) and discuss the details of using EM algorithm for model

estimation.

4.1.1 Notations

In order to facilitate the discussion, we first fix some notations.

We denote each observed response1 as a K-vector, where K 2 N is the number of

category that an observation belongs to. So we have K = 2 for binary and binomial

response variables and K > 2 for multi-class and multinomial response variables.

Furthermore, if the response is a binary or multi-class Bernoulli2 random variable,

each observation is coded as a binary vector of size K with all but one zeros. For

1In machine learning literature, especially supervised learning, an observed response is called a label.
2A multi-class Bernoulli variables is a generalization of a Bernoulli (or binary) random variable
which indicates the membership to one of more than two categories.
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example, in the famous MNIST handwriting digit dataset3 each observation of the

response is a digit from 0 to 9. If yi = 1, the corresponding coding is given by the 10-

vector (0 1 0 0 0 0 0 0 0 0)>. If the response is a binomial or multinomial

random variable, each observation is coded as a K-vector where each element being

the number of occurrence in the corresponding category and the sum of the elements

equals the total number of trials.

Since we are dealing with a mixture model, one of our model assumptions is

that an observation belongs to one of several hidden subpopulations. For example,

people who provided the handwriting digits in the MNIST dataset maybe divided into

multiple categories according to their writing habits. This is a reasonable structural

assumption for a medium to large sized dataset. Since such kind of information

cannot usually be obtained from observational study, they have to be imputed from

the data itself. Though one can build up such a hierarchical model with more than

one hidden layers of this kind, we restrict our attention to the mixed model with only

one hidden layer. Further extension can be straightforward.

We introduce the hidden variable Zi ⇠ MBern (⇡
1,i, . . . , ⇡C,i) to denote the hid-

den membership of the i-th sample, where MBern denotes a multi-class Bernoulli

distribution, C 2 N denotes the fixed number of groups in the hidden layer and each

⇡c,i for c = 1, . . . , C is the probability that the sample belongs to the c-th hidden

subpopulation. All Zi’s for i = 1, . . . , n are assumed to be i.i.d. .

When C = 2, MBern becomes a Bernoulli distribution. For notational simplicity,

we will often use the vector ⇡i = (⇡
1,i . . . ⇡C,i)

> to represent the collection of

the probabilities for one sample. The value of C is either given based on the prior

knowledge or tuned as a hyper-parameter. Note that the current parameterization

⇡i is redundant because of the implicit constraint
PC

c=1

⇡c,i = 1. This will cause

3The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set
of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-
normalized and centered in a fixed-size image. The dataset is available for download at http:

//yann.lecun.com/exdb/mnist/.
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identifiability issue and we will solve this problem by choosing one hidden group as a

base group.

For each sample, conditional on that it belongs to the c-th hidden group, the

distribution of its response {Yi|Zi = c} ⇠ MBern
�

p
1,i|c, . . . , pK,i|c

�

. Here, each pk,i|c

for k = 1, . . . , K denotes the probability that the i-th sample fall into the k-th

response category if it is a member of the c-th subpopulation. In the MNIST example,

pk=1,i|c could be interpreted as the probability of being digit 1 if the person belongs

to the writing habit group c. Being in a di↵erent hidden group would results in a

di↵erent conditional probability for being in the same response category.

Note that there is also over-parameterization in the above notation due to the

same type of constraint
PK

k=1

pk,i|c = 1. While there is only one such constraint in

the hidden layer, there are in total C constraints in the observed layer, one for each

hidden group. For convenience, we will often denote the vector of the conditional

probabilities as pc,i = (p
1,i|c . . . pK,i|c)

>.

We use ✓ to denote the collection of all parameters in the model. More notation

will be introduced in the following discussion if needed.

4.1.2 Model Construction

In this section, we formally introduce the Hierarchical Mixed Logistic Regression

Model (HMLRM) with a detailed description of its construction. There are two layers

in our model. The first layer determines the subpopulation that a sample belongs to,

and the second layer determines the response category for the sample. We refer to

the first layer as the hidden layer, and the second layer as the observed layer.

The key step in constructing HMLRM is to impose a model for the hidden member-

ship probabilities ⇡c,i for all4 c = 1, . . . , C and the conditional observing probabilities

pk,i|c for all5 k = 1, . . . , K and c = 1, . . . , C. This modelling step is necessary to allow

4Though one of them will be redundant and treated as a base group.
5Though one pk|c for a given c is redundant and will be treated as a base group.



84

those probabilities to depend on some predictor variables. We impose the simple

models6 for those probabilities, which are based on sigmoid7 and softmax8 functions.

When there are exactly two response categories (which is the case for Bernoulli

and Binomial response variables), the following sigmoid function is used to model the

probability of being in one category,

p = sigmoid(z) =
1

1 + e�z
. (4.1)

So the probability of being in the other category is given by 1� p = e�z

1+e�z

. Thus the

probabilities add up to one.

When a response has K > 2 categories, the following softmax9 function is used

for modeling the probability of being in one of the first K � 1 categories,

pk =
ezk

1 +
PK�1

k=1

ezk
. (4.2)

So we have pK = 1

1+

P
K�1
k=1 ezk

if the sum-one constraint has to be satisfied.

The exponent z (4.1) (or zk in (4.2)) is a linear combination of the predictor vari-

ables. If we denote the predictor variables as X = (X
1

, . . . , Xp) and its observation

as x = (x
1

. . . xp)
>, then we have z = �

>x where � = (�
1

. . . �p)
> is the vector

of the regression coe�cients. Usually, we add a constant one at the beginning of

each observation to accommodate the intercept10. This would give use the observa-

tion vector x = (1 x
1

. . . xp)
>. Correspondingly, the coe�cient vector becomes

� = (�
0

�
1

. . . �p)
> where �

0

denotes the intercept.

Thus, the full model specification with the sigmoid function is given by

p =
1

1 + e��

>
x

and 1� p =
e��

>
x

1 + e��

>
x

. (4.3)

6There are other options such as probit.
7The sigmoid function is also called “logistic” function.
8The multi-class generalization of the sigmoid function.
9The softmax function used here is slightly modified. The standard softmax function is given by
�(z)j = ezjP

K

k=1 ezk
for j = 1, . . . ,K. In this chapter, we impose the restriction zK ⌘ 0 for the K-th

group.
10An intercept is sometimes called a “bias” term in the machine learning language.
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Similarly, the full model with the softmax function is written as

pk =
e�

>
k

x

1 +
PK�1

k=1

e�
>
k

x

and pK =
1

1 +
PK�1

k=1

e�
>
k

x

. (4.4)

Now, we can see clearly how the sum-one constraints are accounted. By using the sig-

moid function, there is only one set of coe�cients � which parameterizes the Bernoulli

probability. Equivalently, � can be considered as the coe�cients for the choosing

probability p and � ⌘ 0 for 1 � p. Thus, the group with probability 1 � p is the

base group. This is more obvious when the softmax function is used, where the K-th

group serves as the base group and its “coe�cient vector” � is always zero. This

model specification allows us to get around the identifiability issue in estimation for

HMLRM. The base group is also called the reference or baseline level.

The sigmoid function in (4.1) is closely related to the logit function

logit(p) = ln

✓

p

1� p

◆

, p 2 (0, 1),

which is often used as a link function in a generalized linear model with binary

response, i.e. logit(p) = z = �

>
k x. The sigmoid function and the logit function are

inverse to each other, that is

logit�1(z) = sigmoid(z).

In addition, sigmoid function itself is a valid cumulative distribution function

(CDF)11. It is used to describe binary logit models for discrete choice modelling

in [59], where the utility of choosing one alternative can be modeled as a linear

function of predictor variables (the systemic component) plus an error term following

Gumbel distribution. The di↵erence of two independent Gambel errors from two

alternatives follows logistic distribution the sigmoid function as the CDF. So discrete

choice modelling sees a logistic regression model from a di↵erent angle, where the

randomness is from the di↵erence of utilities by choosing di↵erent alternatives.

By using the sigmoid (or softmax) function, we are allowed to model the hidden

layer explicitly, which gives raise “hierarchical” in the name of the model.

11Sometimes, a PDF is also called probability distribution function.
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The probabilities ⇡c,i and pk,i|c in the hidden and observed layers depend on two

sets of predictor variables. This is especially helpful when there are di↵erent factors

that influence the hidden layer and observed layer respectively. For example, for

a cancer patient, the hidden layer can be used to model the probability that which

stage the patient is at. This probability could depend on his/her medical examination

results. Conditional on the hidden layer, the observed layer can be used to model

the e↵ect of di↵erent medical treatments on the patient. In particular, pk,i|c could be

the probability of remission which depends on di↵erent treatment levels and his/her

genetic attributes. Another example is given in [60] where the model is used to handle

over-dispersion problem in the data from a study in evolutionary biology reported

in [61]. The study was interested in knowing if the three species of adult Tribolium

beetles have developed the ability to avoid eating eggs of their own species.

When there are multiple categories in both hidden and observed layers, the com-

plete construction of HMLRM is formally given by

P (Yi = yi|x(h)
i ,x(o)

i ,A,B
1

, . . . ,BC) =
C
X

c=1

⇡c,i · py
i

|c, (4.5)

where

⇡c,i =

8

>

<

>

:

exp{↵>
c

x

(h)
i

}
1+

P
C�1
c=1 exp{↵>

c

x

(h)
i

}
if c 6= C

1

1+

P
C�1
c=1 exp{↵>

c

x

(h)
i

}
if c = C

(4.6)

pk|c =

8

>

>

<

>

>

:

exp{�>
k|cx

(o)
i

}
1+

P
K�1
k=1 exp{�>

k|cx
(o)
i

}
if k 6= K

1

1+

P
K�1
k=1 exp{�>

k|cx
(o)
i

}
if k = K

(4.7)

where we use the new notation py
i

|c := P (Yi = yi|pc,i). We also introduced some new

notations to denote various subsets of observations and parameters. The predictor

variable vectors for the hidden and observed layers are denoted as X

(h) and X

(o).

Their dimensions are denoted as d(h) and d(o) respectively. Their observations are

denoted as x(h) and x(o) respectively. Each of the C hidden groups (except the C-th
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group) possess a vector of regression coe�cients, denoted as ↵c. They are collectively

represented by the matrix A := (↵c . . . ↵C�1

). In the c-th subpopulation, each of

the K response categories (except the K-th category) possesses a vector of regression

coe�cients, denoted as �k|c. They are collectively represented by the matrix Bc :=

(�
1|c . . . �K�1|c).

In HMLRM, the observed layer coe�cient matrix B is a random variable following

a discrete distribution taking one of the C possible values in its support {B
1

, . . . ,BC}.
This distribution is determined by the hidden layer probabilities ⇡c,i’s.

The value of ⇡c,i depends on the predictor vector X(h). This extension allows us to

individualize the hidden group membership for each observation. Note that possible

overlapping between the predictor vectors X(h) and X

(o) is allowed in HMLRM. In

the extreme case, they can be identical. We will use X(h) = (x(h)
1

. . . x

(h)
n )> and

X(o) = (x(o)
1

. . . x

(o)
n )> to denote the data matrices for the hidden and observed

layers’ predictor variables respectively12.

Intuitively speaking, HMLRM (4.5) says that the probability of observing a pos-

itive response is according to one of the C logit curves. Which logit curve is the

right one depends on the vector of the hidden covariates x(h) through the hidden

probabilities in ⇡(A,x(h)).

We can also make a sense of HMLRM from the perspective of data generation.

Let xi’s be i.i.d. observations. For the i-th observation, its hidden group membership

is decided according to the distribution MBern(⇡). Subsequently, the corresponding

observed response yi is generated from a Binomial distribution with parameters mc

and pc. This is the exact scheme we will be following to sample data in our simulation

study.

12As a convention in this chapter, a capital letter in italic (e.g. X or X) denotes a random variable
or a random vector. A capital letter in roman (not italic, e.g. X) denotes a matrix.
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4.1.3 Estimation using EM Algorithm

When the number of hidden groups C is known, we can use the EM algorithm [62]

to obtain maximum likelihood estimates for the parameters in HMLRM (4.5). If the

value of C is unknown, we need to pick a value by either relying on some prior

knowledge (e.g. domain specific knowledge) or a data driven approach (such as cross

validation). In this section, we assume C is known and discuss the details of the

estimation method.

If the values of the hidden variables {Zi}i were observable, we have the following

joint probability

P (Yi = yi, Zi = zi|✓) = P (Zi = zi|⇡)P (Yi = yi|pz
i

).

Let z be the “observed” vector of hidden memberships andY be the observed response

matrix. Then the log-likelihood of the dataset consisting of Y and z is written as

` (✓|Y, z) = ln {⇧n
i=1

P (Yi = yi, Zi = zi|✓)}

= ln
�

⇧n
i=1

P (Zi = zi|⇡) · P (Yi = yi|pz
i

)
 

=
n
X

i=1

lnP (Zi = zi|⇡) +
n
X

i=1

lnP (Yi = yi|pz
i

)

=
n
X

i=1

ln ⇡z
i

+
n
X

i=1

ln py
i

|z
i

. (4.8)
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By using the model specified by (4.5) - (4.7) and the observations for the predictor

variables X(h) and X(o), the complete data log-likelihood can be written as

`

�

✓|X(h),X(o),Y, z
�

=
n
X

i=1

ln ⇡z
i

+
n
X

i=1

ln py
i

|z
i

where

⇡z
i

=

8

>

<

>

:

exp{�>
z

i

x

(h)
i

}
1+

P
C�1
c=1 exp{�>

c

x

(h)
i

}
if zi 6= C

1

1+

P
C�1
c=1 exp{�>

c

x

(h)
i

}
if zi = C

,

py
i

|z
i

=

8

>

>

<

>

>

:

exp{�>
y

i

|z
i

x

(o)
i

}

1+

P
K�1
k=1 exp{�>

k|cx
(o)
i

}
if yi 6= K

1

1+

P
K�1
k=1 exp{�>

k|cx
(o)
i

}
if yi = K

.

(4.9)

In practice the values of zi’s are never observed. In order to evaluate the complete

likelihood function (4.9) from observed data, we take the expectation w.r.t. the

conditional distribution of the hidden membership variable, i.e. P (Z|Y,✓(t)), where

✓

(t) denotes the some parameter estimates. In EM algorithm, it is the parameter

estimates from the iteration t. We denote the resulting expected complete data log-

likelihood as Q whose expression is given below.

Q(✓;✓(t)) = E
Z|Y,✓(t) [` (✓|Y,X,Z)]

=
C
X

c=1

n
X

i=1

n

P (Zi = c|yi,✓
(t)) ·

⇥

ln ⇡c,i + ln py
i

|c
⇤

o

=
C
X

c=1

n
X

i=1

n

P (Zi = c|yi,✓
(t)) · ln ⇡c,i

o

+
C
X

c=1

n
X

i=1

n

P (Zi = c|yi,✓
(t)) · ln py

i

|c

o

=
C
X

c=1

n
X

i=1

⇣

q (t)
c,i · ln ⇡c,i

⌘

+
C
X

c=1

n
X

i=1

⇣

q (t)
c,i · ln pyi|c

⌘

(4.10)

where we define the true notation for the weights q (t)
c,i := P (Zi = c|yi,✓(t)) which

is the posterior probability that an observation i belongs to the c-th hidden group

given its observed category yi. Note that its value depends on the existing parameter
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estimates and thus is a constant. To evaluate q (t)
c,i , we apply the Bayes rule for each

observation as

q (t)
c,i =

⇡(t)
c,i · p

(t)
y
i

|c
PC

c=1

⇣

⇡(t)
c,i · p

(t)
y
i

|c

⌘ , (4.11)

which also guarantees
PC

c=1

q (t)
c,i = 1. Now we can evaluate q (t)

c,i for i = 1, . . . , n

immediately after each EM update.

After the Q-function (4.10) is constructed, it is maximized w.r.t. ✓ to update

the parameter estimates. It is worth pointing out that the probabilities, ⇡c,i’s and

py
i

|c’s, in Equation (4.10) belong to two separate additive components. We will take

advantage of this structure to improve the estimation e�ciency by optimizing each

component separately.

To this end, we can summarize the EM algorithm for estimating HMLRM as

follows. Given the values of the parameter estimates from the previous iteration,

denote as ↵

(t)
c for c = 1, . . . , C � 1 and �

(t)
k|c for k = 1, . . . , K � 1 and c = 1, . . . , C,

solve the following two steps iteratively:

• E-step Evaluate the posterior probabilities q (t)
c,i in Equation (4.11) for all ob-

servations i 2 {1, . . . , n}. Then, construct the Q-function (4.10).

• M-step Update the parameter estimates by solving the following maximization

problem:

n

A(t+1),B(t+1)

1

, . . . ,B(t+1)

C

o

= argmax
A,B1,...,B

C

Q(✓;✓(t)) (4.12)

Remark The hidden layer parameter matrix A and the observed parameter ma-

trices Bc for c = 1, . . . , C belong to two di↵erent additive terms. So the optimization

problem (4.12) can be simplified. This fact will be exploited in the following derivation

of its implementation.
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4.1.4 Implementation

In this section, we discuss the implementation of the EM algorithm to estimate

HMLRM. The algorithm will be presented after the discussion. The algorithm dis-

cussed in this section is suitable for small to medium sized data set. When the sample

size is large, a parallelized version of the algorithm is more e�cient. The discussion

of parallelizing the estimation for HMLRM is deferred to the next section.

Separability of Parameters

In Equation (4.10), we noticed that the hidden layer probabilities ⇡c,i’s and ob-

served layer probabilities pk,i|c’s belong to two di↵erent additive components. Con-

sequently, the estimation of hidden layer parameter matrix A and observed layer

parameter matrices Bc’s can be separated. This fact can be utilized to simplify the

optimization problem (4.12) in the M-step. To simplify the notations, we rewrite

Equation (4.10) in the following form

Q(✓;✓(t)) = Q(h)(⇡;✓(t)) +Q(o)(p
1

, . . . ,pC ;✓
(t)),

where

Q(h)(⇡;✓(t)) =
n
X

i=1

C
X

c=1

q (t)
c,i ln ⇡c, (4.13)

Q(o)(p
1

, . . . ,pC ;✓
(t)) =

n
X

i=1

C
X

c=1

q (t)
c,i ln pyi|c (4.14)

Now instead of optimizing (4.12), we can optimize (4.13) and (4.14) separately,

which should be easier since each problem searches solution in a lower dimensional

space.

In order to proceed, we use the following assumption HMLRM to simplify the

subsequent analysis.

Assumption 4.1.1 In our hierarchical mixed logistic regression models, the response

variable Y follows MBern(p
1

, . . . , pK) distribution. That means that an observation of
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Y is the result of a single trial which indicates its membership in one of the K allowed

categories. The probability that it belongs to category k equals pk for k = 1, . . . , K.

From now on, each observation of the response variable Y is denoted as a binary

vector yi which is of size K and has zeros for all but one of the numbers. For example,

if there are 10 possible categories and one of Y ’s observation results in the second

category, then we use the notation yi = (0 1 0 . . . 0)> as a vector of length 10

where all of the numbers are zeros except the second one.

Because of Assumption 4.1.1, the probabilities in the second additive component

(4.14) can be written by explicitly incorporating the logistic models for ⇡c and pk|c as

py
i

|c = p>
c yi =

e(Bc

y

i

)

>
x

i

PK
k=1

e�
>
k|cxi

. (4.15)

It is constructed as the column bind of the multi-class logistic regression coe�cients

conditioned on the c-th hidden group. Recall that we have chosen to use �K|c ⌘ 0

for all c = 1, . . . , C to ensure identifiability of the model. Consequently, the second

additive component (4.14) can be further written in the following nicer form

Q(o)(p
1

, . . . ,pC ;✓
(t)) =

C
X

c=1

n
X

i=1

q (t)
c,i ln(p

>
c yi). (4.16)

If we look at (4.15) and (4.16) closely, we can find that each parameter matrix Bc

belongs to a di↵erent summand where is summation is over c = 1, . . . , C. So we can

further decompose Q(o) as

Q(o)(p
1

, . . . ,pC ;✓
(t)) =

C
X

c=1

Q(o)
c

⇣

Bc;✓
(t)
⌘

(4.17)

where

Q(o)
c

⇣

Bc;✓
(t)
⌘

=
n
X

i=1

q (t)
c,i ln(p

>
c yi) =

n
X

i=1

q (t)
c,i

e(Bc

y

i

)

>
x

i

PK
k=1

e�
>
k|cxi

. (4.18)

Thus maximizing Q(o) is equivalent to maximizing each component Q(o)
c individually.

That is,

bBc = argmax
B

c

Q(o)
c

⇣

Bc;✓
(t)
⌘

.
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Note that this maximization problem is almost the same as that for a multi-class

logistic regression model described in [63], which can be solved using Newton-Raphson

method. The only di↵erence is that for a regular multi-class logistic regression, the

place of q (t)
c,i is occupied by either 0 or 1 indicating the membership of the observed

response.

By taking advantage of the separability of the parameter space, we can update

the original EM algorithm as follows.

• E-step Evaluate the posterior probabilities q (t)
c,i in Equation (4.11) for all ob-

servations i 2 {1, . . . , n}.

• M-step Update the estimates of the parameters by solving the following max-

imization problems separately:

bA(t+1) = argmax
A

Q(h)(A;✓(t)), (4.19)

bB(t+1)

c = argmax
B

c

Q(o)
c

⇣

Bc;✓
(t)
⌘

, for c = 1, . . . , C. (4.20)

Newton Method for Optimization

Each maximization subproblems in (4.19) and (4.20) can be solved by using New-

ton’s method (see [64]). In order to improve the computation e�ciency, we derive the

explicit formulae for the gradient and Hessian of each target function. The general

update rule in the Newton’s method is as follows13

x(⌧+1) = x(⌧) �H�1(x(⌧))g(x(⌧)).

We would like to obtain the explicit form of g and H for each optimization subprob-

lem.
13We intentionally use ⌧ to denote the index of an iteration in the application of Newton’s method
for solving a logistic regression subproblem. Each logistic regression subproblem is a component of
the t-th iteration of the EM algorithm.
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In the hidden layer, each hidden membership probability ⇡c,i depends on the

parameter vector ↵c through the softmax function. The gradient and Hessian of

Q(h)(A;✓(t)) w.r.t. ↵c are given below

g(h)
c = r

↵

c

Q(h) =
n
X

i=1

⇣

q (t)
c,i � ⇡c,i

⌘

x(h)
i ) g(h) =

2

6

6

6

6

6

6

4

g(h)
1

g(h)
2

...

g(h)
C�1

3

7

7

7

7

7

7

5

, (4.21)

H(h)
cc0 = r�

c

0g
(h)
c = �

n
X

i=1

⇡c,i

�

1{c0=c} � ⇡c0,i

�

x(h)
i x(h)>

i

) H(h) =
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6

6

6

6

6

4

H(h)
11

H(h)
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· · · H(h)
1(C�1)

H(h)
21

H(h)
22

· · · H(h)
2(C�1)

...
...

. . .
...

H(h)
(C�1)1

H(h)
(C�1)2

· · · H(h)
(C�1)(C�1)

3

7

7

7

7

7

7

5

. (4.22)

In order to arrange the values of the gradient in a meaningful way, we choose to

vertically stack together all components (one for each hidden group) to create the

gradient vector, denoted as g(h). The length of the gradient vector is (C�1)·(d(h)+1).

Proof We first derive the gradient for the following function

Q⇡(⇡;✓
(t)) =

n
X

i=1

C
X

c=1

q (t)
c,i ln ⇡c,i,

where

⇡c,i =

8

>

<

>

:

exp{�>
c

x

(h)
i

}
1+

P
C�1
c=1 exp{�>

c

x

(h)
i

}
if c 6= 1

1

1+

P
C�1
c=1 exp{�>

c

x

(h)
i

}
if c = C

.

Since we have

@Q⇡

@⇡c,i

=
q (t)
c,i

⇡c,i

,

@⇡c,i

@↵c0
=

8

>

<

>

:

⇡c,i(1� ⇡c,i)x
(h)
i if c0 = c

�⇡c,i⇡c0,ix
(h)
i if c0 6= c

,
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then by chain rule we have

@Q⇡

@↵c0
=

n
X

i=1

 

q (t)
c0,i
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X
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x(h)
i ,

and the Hessian

@

@↵c0

✓
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=
@
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n
X

i=1

⇣

q (t)
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✓
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x(h)>
i

= �
n
X

i=1
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(h)
i x(h)>

i .

In the observed layer, there are C maximization subproblems (one for each hidden

group) in each M-step. Each subproblem requires the gradient and the Hessian for

carrying out Newton update. They can be derived in a similar way as those for the
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hidden layer. Conditional on a given hidden group c 2 {1, . . . , C}, the gradient and

the Hessian of Q(o)
c

⇣

Bc;✓
(t)
⌘

w.r.t. the parameters in Bc are

g(o)
k|c =

n
X

i=1

q (t)
c,i

�

(yi)k � pk,i|c
�

x(o)
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g(h)
1|c
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5

, (4.23)
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Proof Now, we derive the gradients and Hessian for the observed layer optimization

target.

Q
B

c

⇣

Bc;✓
(t)
⌘

=
n
X

i=1

q (t)
c,i ln(p

>
c,iyi),

where

p>
c,iyi =

e(Bc

y

i

)

>
x

i

PK
k=0

e�
>
k|cxi

.

Let Q(i)
B

c
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Then by chain rule, we have
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@�k0,i|c

!

x(o)>
i

= �
n
X

i=1

q (t)
c,i pk,i|c

�

1{k0=k} � pk,i|c
�

x(o)
i x(o)>

i

In the above gradient, (yi)k is the k-th number in the observed response vector

yi. Since yi is a binary vector, the value of (yi)k is either 1 or 0 depending on if the

observed response belongs to the k-th category. We also follow the practice in the

hidden layer to stack the components together to build the gradient vector g(o)
c and

the Hessian matrix H(o)
c for the subproblem.

So for each subproblem component (in both hidden and observed layers) in the

M-step, the update rules used in Newton’s method for solving (4.19) and (4.20) are

given by

↵(⌧+1)

c = ↵(⌧) �
⇥

H(h)
⇤�1

g(h), (4.25)

�(⌧+1)

c = �(⌧)
c �

⇥

H(o)
c

⇤�1

g(o)
c , for c = 1, . . . , C. (4.26)

Usual optimization packages minimize a target function by default. So in order

to use those packages to solve our problem, we have to transform the maximization

problems into minimization by negate the target functions. Correspondingly, the

gradients and Hessians will also be negated.



98

Matrix Representation

In this section we will describe the estimation for HMLRM with Newton’s method

in pure matrix notations. In particular, we will arrange the data in matrices which

will be suitable to evaluate the gradients and Hessians. This approach is suitable for

small to medium sized data sets14. With the estimation implemented using matrix,

vectorization will be used for e�cient computation. This is especially useful when

interpreted languages, such as Python and R, are used for data analysis.

Recall that under Assumption 4.1.1 an observed response yi is coded as a binary

vector of length K where all but one numbers are zeros. Using this coding scheme, all

of the response observations can be combined in a n-by-K matrix, which is denoted

as Y. This matrix is shown on the LHS in (4.27)15. Each row of Y is an observed

response vector. Each column of Y is corresponding to one category and each number

in the column indicates if the observation falls into this category. The construction

of the matrix Y is redundant because using K � 1 columns is enough to preserve

all the information. In this regard, we can choose to drop the first column. By

14The definition of data size varies under di↵erent considerations. It depends on the factors such as
the measurement of size (e.g. bytes, number of records), the stage of data analysis (e.g. raw data for
ETL, post-processed data for model fitting), and area of study (this a↵ects the structure of data).
Here, we use the number of records as the measure of size, and consider a data set with number of
records in the order of hundreds of thousands as being medium sized.
15The numbers in the matrix Y are made up solely for the illustration purpose.
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vertically stacking all the remaining columns, we obtain a long column vector y of

length (K � 1)n, which is shown on the RHS in (4.27).

Y =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

0 1 0 · · · 0 · · · A0

1 0 0 · · · 0 · · · A0

0 0 0 · · · 1 · · · A0

0 0 1 · · · 0 · · · A0
...

...
...

...
...

...
...

...
...

...

3

7

7

7

7

7

7

7

7

7

7

7

7

5

) y =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0

1

0

0

...
1

0

0

0

...
0

0

0

1

...

...
0

0

1

0

...

...

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

. (4.27)

The original matrices of the predictor variables (for both hidden and observed layers)

are shown on the LHS in (4.28) and (4.29), where each row is an observed vector

of the predictor variables. We added ones as the first column in both matrices to

accommodate the intercepts. Then, we make C � 1 copies of X(h) and K � 1 copies



100

of X(o) which are stacked diagonally to construct the block matrix shown on the RHS

in (4.28) and (4.29).

X(h) =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 x(h)
11

x(h)
12

· · · x(h)

1d(h)

1 x(h)
21

x(h)
22

· · · x(h)

2d(h)

...
...

...
...

1 x(h)
i1 x(h)

i2 · · · x(h)

id(h)

...
...

...
...

1 x(h)
n1 x(h)

n2 · · · x(h)

nd(h)

3

7

7

7

7

7

7

7

7

7

7

7

7

5

) X(h) =

2

6

6

6

6

6

6

4

X(h)

X(h)

. . .

X(h)

3

7

7

7

7

7

7

5

| {z }

C�1 copies

(4.28)

X(o) =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

1 x(o)
11

x(o)
12

· · · x(o)

1d(o)

1 x(o)
21

x(o)
22

· · · x(o)

2d(o)

...
...

...
...

1 x(o)
i1 x(o)

i2 · · · x(o)

id(o)

...
...

...
...

1 x(o)
n1 x(o)

n2 · · · x(o)

nd(o)

3

7

7

7

7

7

7

7

7

7

7

7

7

5

) X(o) =

2

6

6

6

6

6

6

4

X(o)

X(o)

. . .

X(o)

3

7

7

7

7

7

7

5

| {z }

K�1 copies

(4.29)

So far we have heavily relied on the usage of the hidden layer probabilities ⇡c and ob-

served layer probabilities pk|c. Though they are not the true parameters for HMLRM,

using them could greatly relieve the pressure to introduce more notations. In this

section, we will keep using them to construct related matrices.

There is a vector of C hidden layer probabilities {⇡c,i}Cc=1

corresponding to each

observation, one for belonging to each hidden group. So for a dataset with n obser-

vations, there are nC such probabilities, which can be arranged into a matrix. This

matrix, denoted as ⇧, is shown on the LHS in (4.30). Because of the constraint
PC

c=1

⇡c,i = 1 for all i 2 {1, . . . , n}, we can safely remove the first column of ⇧. The
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remaining columns can be stacked vertically which results in a long vector ⇡ shown

on the RHS in (4.30).

⇧ =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

⇡
1,1 · · · ⇡C�1,1 HHH⇡C,1

⇡
1,2 · · · ⇡C�1,2 HHH⇡C,2

...
...

...

⇡
1,i · · · ⇡C�1,i HHH⇡C,i

...
...

...

⇡
1,n · · · ⇡C�1,n HHH⇡C,n

3

7

7

7

7

7

7

7

7

7

7

7

7

5

) ⇡ =

2

6

6

6

6

6

6

6

6

6

6

6

4

⇡1,1
⇡1,2

...
⇡1,n

...

...
⇡
C�1,1

⇡
C�1,2

...
⇡
C�1,n

3

7

7

7

7

7

7

7

7

7

7

7

5

. (4.30)

If all the observations belong to the c-th hidden group, the observed layer prob-

abilities can be summarized by the matrix Pc shown in (4.31). Each row in Pc is

corresponding to one observation, which contains the probabilities that it belongs to

the respective categories indexed by the columns. Since the probabilities on each row

are constrained such that they must add up to one, we could eliminate the first col-

umn without any information loss. By vertically stacking all the remaining columns,

we obtain the long vector pc of length (K�1)n, which is shown on the RHS in (4.31).

Pc =

2

6

6

6

6

6

6

6

6

6

4

p
1,1|c · · · pK�1,1|c XXXpK,1|c

p
1,2|c · · · pK�1,2|c XXXpK,2|c
...

...
...

...
...

...

p
1,n|c · · · pK�1,n|c XXXpK,n|c

3

7

7

7

7

7

7

7

7

7

5

) pc =

2

6

6

6

6

6

6

6

6

6

6

6

6

4

p2,1|c
p2,2|c
...

p2,n|c

...

...
p
K�1,1|c

p
K�1,2|c
...

p
K�1,n|c

3

7

7

7

7

7

7

7

7

7

7

7

7

5

. (4.31)

Applying Newton’s method to solve a logistic regression is equivalent to solving

an Iteratively Re-weighted Least Square (IRLS) problem [65]. The weight matrix

used in a IRLS iteration is part of the Hessian used in Newton’s iteration. For both

hidden and observed layers’ subproblems, the weight matrices can be constructed by

using ⇧ and Pc’s.

For the subproblem in the hidden layer, its weight matrix is constructed by using

the estimated hidden membership probabilities {⇡c,i}c,i. The weight matrix, denoted
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by W(h), is a (C � 1)-by-(C � 1) block matrix, where each block matrix itself is a

diagonal matrix. Each block on the diagonal of W(h) contains the current estimate

of the variance ⇡c,i(1 � ⇡c,i) for the i-th observation in the c-th (c 2 {1, . . . , C � 1})
hidden group. The o↵-diagonal block located at row c and column c0 of W(h) contains

the negative cross product �⇡c,i⇡c0,i . The construction is demonstrated in (4.32).

W(h)
cc =

2

4

⇡
c,1(1�⇡

c,1)

⇡
c,2(1�⇡

c,2)

...
⇡
c,n

(1�⇡
c,n

)

3

5

W(h)
cc0 =

2

4

�⇡
c,1⇡

c

0
,1

�⇡
c,2⇡

c

0
,2

...
�⇡

c,n

⇡
c

0
,n

3

5

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

) W(h) =

2

6

6

4

W

(h)
11 W

(h)
12 ··· W

(h)
1(C�1)

W

(h)
21 W

(h)
22 ··· W

(h)
2(C�1)

...
...

...
...

W

(h)
(C�1)1 W

(h)
(C�1)2 ··· W

(h)
(C�1)(C�1)

3

7

7

5

(4.32)

The construction of the weight matrices for the observed layer is similar to that

for the hidden layer. Conditional on being in a particular hidden group, there is one

pseudo logistic regression subproblem. So in each M-step, there are C di↵erent IRLSs

(one for each subproblem) to be performed. Because each subproblem maintains its

own set of parameters, their respective weight matrices are also di↵erent. For the c-th

IRLS problem, its weight matrix, denoted as W(o)
c (where the subscript c indicates the

index of the hidden group it conditions on), is a (K � 1)-by-(K � 1) block matrix.

Each blockW(o)
kk|c on the diagonal of W(o)

c is a diagonal matrix with {pk,i|c(1�pk,i|c)}ni=1

as the diagonal elements. An o↵-diagonal block W(o)
kk0|c is also a diagonal matrix, but
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with {�pk,i|cpk0,i|c)}ni=1

as its diagonal values. The construction details are illustrated

in (4.33).

W(o)
kk|c =

2

4

p
k,1|c(1�p

k,1|c)

p
k,2|c(1�p

k,2|c)

...
p
k,n|c(1�p

k,n|c)

3

5

W(o)
kk0|c =

2

4

�p
k,1|cp

k

0
,1|c

�p
k,2|cp

k

0
,2|c

...
�p

k,n

p
k

0
,n|c

3

5

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

) W(o)
c =

2

6

6

4

W

(o)
11|c W

(o)
12|c ··· W

(o)
1(K�1)|c

W

(o)
21|c W

(o)
22|c ··· W

(o)
2(K�1)|c

...
...

...
...

W

(o)
(K�1)1|c W

(o)
(K�1)2|c ··· W

(o)
(K�1)(K�1)|c

3

7

7

5

(4.33)

We have defined the response vector y, the block matrices X(h) and X(o)
c ’s for the

hidden and observed layer predictor variables, and the weight matrices W(h) and W(o)
c

for the ILRS-type computation in the component subproblems. The last piece that

is needed is the vector consisting of the conditional membership probabilities qc,i’s.

This is the major di↵erence between a usual multi-class logistic regression and a

logistic-regression-like subproblem in HMLRM.

The values of {qc,i}c,i are involved in both the hidden layer and the observed layer

of HMLRM. In the hidden layer, they act as the response for the pseudo logistic

regression. Each qc,i indicates the probability that the i-th observation belongs to the

c-th hidden group based on the information at the current stage of EM iterations. So

the di↵erence between qc,i and the response of a real logistic regression is that qc,i is

a continuous real number in (0, 1) while a usual logistic response is either 0 or 1. In

the observed layer, the value of qc,i quantifies the contribution of the i-th observation

to the c-th subproblem. This can be seen from the formula of (4.23). For a given

observation with index i, the values of (y)k and x(o)
i are the same regardless which

hidden group it belongs to. If we further assume {pk,i|c}Cc=1

are also the same across
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all the C hidden groups16, then the higher the value of qc,i the larger the i-th piece of

gradient is. This would results in faster update for the c-th subproblem than others.

In order to be able to use {qc,i}c,i for updating hidden-layer parameters, we first

arrange qc,i’s in a n-by-C matrix, which is denoted as Q . In the matrix, each row

is corresponding to one observation and each column is corresponding to one hidden

group. Since the conditional probabilities on each row must add up to one, we can

remove the first column without losing any information. The remaining columns are

stacked vertically to produce a long vector q of length n(C � 1). This construction

is illustrated in (4.34). The column vector q will be used as the “response” for the

logistic regression subproblem in the hidden layer.

Q =

2
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6

6

6

6

6

6

6

6

6

6

6

4

q
1,1 · · · qC�1,1 HHHqC,1

q
1,2 · · · qC�1,2 HHHqC,2

...
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...

q
1,i · · · qC�1,i HHqC,i

...
...

...

q
1,n · · · qC�1,n HHHqC,n
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n⇥C
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q1,1
q1,2
...

q1,n

...

...
q
C�1,1

q
C�1,2

...
q
C�1,n
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7

7

7
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7
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7

7

7

5

(4.34)

We also create a diagonal matrix for each column in Q . Each diagonal matrix is

denoted as Qc for c 2 {1, . . . , C}, which is copied K�1 times to be stacked diagonally

to create the diagonal block matrix Qc. The construction is illustrated in (4.35). This

block matrix Qc together with the matrix W(o)
c will be used to construct the weight

matrix for a subproblem in the observed layer.

Qc =

2

4

q
c,1

q
c,2

...
q
c,n

3

5

copy K�1 times

=========) Qc =

2

6

6

6

6

6

6

4

Qc

Qc

. . .

Qc

3

7

7

7

7

7

7

5

n(K�1)⇥n(K�1)

(4.35)

16This assumption is only used to simplify our analysis. It would not hold in reality, otherwise all
of those C subproblems can be reduced to one problem.
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After all necessary matrices being well defined, we can rewrite the update rules

(4.25) and (4.26) for the Newton’s method in the form of weight least square regres-

sions. They are given by

↵(t+1) = ↵(t) �
�

X(h)>W(h)X(h)
��1

X(o)> (q� ⇡) , (4.36)

�(t+1)

c = �(t)
c �

�

X(o)>QcW
(o)
c X(h)

��1

X(h)>Qc (y� pc) . (4.37)

By using the above formulation, we can write out the matrix version of our EM

algorithm, which is given below.17

E-step Use the parameter estimates ↵̂(t) and �̂(t)
c from the previous step to

construct the vectors q(t), ⇡(t) and p(t)
c and the matrices W(h)(t), Q(t)

c and W(o)(t)
c ,

where c = 1, . . . , C.

M-step Update the estimates of the parameters for each logistic regression

subproblems. Each subproblem is solved by using Newton’s method. In the

hidden layer, using the following update rules.

↵̂(⌧+1|t) = ↵̂(⌧ |t) �
�

X(h)>W(h)(⌧+1|t)X(h)
��1

X> �q(t) � ⇡(t)
�

.

In the observed layer, using the following update rules for solving each subprob-

lem by using Newton’s method.

�̂(⌧+1|t)
c = �̂(⌧ |t)

c �
�

X(o)>Q(t)
c W(o)(⌧ |t)

c X(h)
��1

X> �y� p(⌧ |t)
c

�

, for c = 1, . . . , C.

Algorithm

Algorithm 4 shows the procedure for estimating the parameters for a HMLRM

using EM algorithm. The algorithm is a usual single-threaded implementation.

17We use t and ⌧ as superscripts to indicate two levels of iterations. The letter t is used as the index
for each EM iteration, while the letter ⌧ is used as the index for each Newton’s update for solving
a maximization problem in the M-step of the t-th EM iteration. So ⌧ -iterations are nested in each
t-iteration. The quantities with the superscript t are obtained directly as the result of each M-step.
The quantities with the superscript ⌧ are kept as the intermediate updates in the Newton’s iterative
procedure.
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Algorithm 4 Non-parallel EM for HMLRM

1: function TrainHMLRM( data, A(0), B(0)

c ’s, ✏
1

, ✏
2

, maxIter )

2: param(0)  {A(0),B(0)

c ’s}
3: nollk(0)  calculate negative log-likelihood for observed data using param(0)

4: relAbsDi↵Nollk 1
5: relDi↵Params 1
6: t = 0

7: while relAbsDi↵Nollk >= ✏ and relDi↵Params >= ✏ do

8: ⇡(t)  compute sigmoid or softmax for a chunk of X(h) using A(t)

9: p(t)  compute sigmoid or softamx for a chunk of X(o) using B(t)
c ’s

10: q (t)  P (Z|Y )’s calculated from ⇡(t) and p(t)

11: Define target function Q(h)(A, q = q (t)) (E-step for hidden layer)

12: Define gradient g(h)(A, q = q (t)) and Hessian H(h)(A, q = q (t))

13: A(t+1)  argmin
A

(�Q(h)) (M-step for the hidden layer)

14: for each hidden group c do

15: Define function Q(o)
c (Bc, q = q (t)) (E-step for the observed layer)

16: Define gradient g(o)c (A, q = q (t)) and Hessian H(o)
c (A, q = q (t))

17: B(t+1)  argmin
B

c

(�Q(o)
c ) (M-step for the observed layer)

18: end for

19: param(t+1)  {A(t+1)

c ,B(t+1)

c ’s}
20: relDi↵Params kparam

(t+1)�param

(t)k
kparam(t)k

21: nollk(t+1)  calculate negative log-likelihood for observed data using

param(t+1)

22: relAbsDi↵Nollk |nollk(t+1)�nollk

(t)|
nollk

(t)

23: t = t+ 1

24: if t � maxIter then

25: break

26: end if

27: end while

return (param(t), nollk(t))

28: end function
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4.1.5 HMLRM as a None-linear Model

We can show that using HMLRM results in a non-linear decision boundary. This

property of HMLRM greatly improves the classification performance of the model.

The nonlinearity of the decision boundary is the result of using the hidden layer which

explicitly models subpopulations.

When the response Y is binary and the hidden layer has two groups, the classifi-

cation rule for HMLRM is given by

P (Y = 1|X = x)
0

7
1

P (Y = 0|X = x). (4.38)

The expression of P (Y = 1|X = x) are given by

P (Y = 1|X,✓) = P (Y = 1, Z = 1|X = x,✓) + P (Y = 1, Z = 2|X = x,✓)

= P (Y = 1|Z = 1, X = x,✓) · P (Z = 1|✓)+

P (Y = 1|Z = 2, X = x,✓) · P (Z = 2|✓)

=
ex

T �1

1 + exT �1
· ⇡ +

ex
T �2

1 + exT �2
· (1� ⇡).

The expression of P (Y = 0|X = x) is given by

P (Y = 0|X = x,✓) =
1

1 + exT �1
· ⇡ +

1

1 + exT �2
· (1� ⇡).

So the classification rule (4.38) for HMLRM can be further written as18

⇡

 

ex
T �1 � 1

1 + exT �1

!

0

7
1

(1� ⇡)

 

1� ex
T �2

1 + exT �2

!

) ⇡ · tanh
✓

xT�
1

2

◆

0

7
1

(⇡ � 1) · tanh
✓

xT�
2

2

◆

,

which gives the the following classification boundary:

⇢

x 2 Rd|f(x) = ⇡ · tanh
✓

xT�
1

2

◆

+ (1� ⇡) · tanh
✓

xT�
2

2

◆

= 0

�

. (4.39)

18Here, we use the hyperbolic tangent function tanh(x) = e2x�1
e2x+1 to simplify the expression.
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Let sigmoid(x) = 1

1+e�x

be a sigmoid function. Since the hyperbolic tangent

function tanh is a rescaled logistic sigmoid function, i.e. tanh(x) = 2sigmoid(2x)� 1,

the classification boundary can be further written as

f(x) = 2⇡sigmoid(xT�
1

) + 2(1� ⇡)sigmoid(xT�
2

)� 1 = 0

) ⇡ · sigmoid(xT�
1

) + (1� ⇡) · sigmoid(xT�
2

) =
1

2
. (4.40)

So the decision is constructed as a weighted sigmoid functions where the weights

are the probabilities that an observation belongs to each hidden group.

Example 4.1.1 (HMLRM with two hidden groups) In this example, we use

C = 2, K = 2, d(h) = 0, d(o) = 2. This means that the HMLRM has two groups in the

hidden layer and two categories for the response variable. We are not modelling the

the membership probabilities ⇡
1

and ⇡
2

in the hidden layer and they are constants for

all observations. The dimension for the observed layer is fixed to two (that is there

are two predictor variables for modeling the Bernoulli probabilities for the response

variable).

In the current setting of HMLRM, the decision boundary, adapted from (4.39), is

given by

f(x
1

, x
2

) = ⇡ · tanh
✓

�
11

x
1

+ �
12

x
2

2

◆

+ (1� ⇡) · tanh
✓

�
21

x
1

+ �
22

x
2

2

◆

= 0,

where �ij denotes the regression coe�cient for the j-th predictor variable if the obser-

vation belongs to the i-th hidden group. We are not using intercepts in the model.

The 3D surface plots of the function f(x
1

, x
2

) are provided for di↵erent values of ⇡.

We set the values of the linear coe�cients to be relative small so that the probabilities

change slowly. This is helpful to investigate the surfaces visually. The plots are shown

in Figure 4.1.

When ⇡ = 0, only the first component in f(x
1

, x
2

) takes e↵ect. So the surface is

nothing but a two-dimensional sigmoid function where �
11

= 3 and �
12

= 1 are the

coe�cients in the linear exponent. Similarly, when ⇡ = 1, the f(x
1

, x
2

) reduces to

the second sigmoid function with �
21

= 1 and �
22

= 3 being the linear coe�cients.
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Fig. 4.1. 3D surface plots for the weight tanh function. The coe�cients
for the first component are �

11

= 0.8 and �
12

= �0.5. The coe�cients
for the second components are �

21

= �0.5 and �
22

= 0.8. Each plot is
corresponding to one value of ⇡ 2 {0, 0.2, 0.4, 0.6, 0.8, 1}.

However, things are becoming more interesting when the value of ⇡ is somewhere

between 0 and 1. The surface of the function becomes twisted and departs further

away from either extremes as ⇡ approaches 0.5.
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We further project the 3D surfaces onto a 2D plane to visualize the decision bound-

aries. In order to show the non-linearity of the decision boundaries, we choose to focus

on the range of ⇡ between 0.4 and 0.6. In Figure 4.1, the surfaces are mostly twisted

within this range. The projected contour plots with decision boundaries are shown in

Figure 4.2. Indeed, we can see from Figure 4.2 that with a proper value of ⇡ HMLRM

with two hidden groups has the ability to model a nonlinear decision boundary.

Fig. 4.2. 2D contour plots for the weight tanh function. The coe�cients
for the first component are �

11

= 0.8 and �
12

= �0.5. The coe�cients
for the second components are �

21

= �0.5 and �
22

= 0.8. Each plot is
corresponding to one value of ⇡ 2 {0.4, 0.45, 0.48, 0.52, 0.55, 0.6}. The
decision boundaries are indicated by the blue curves.

In Example 4.1.1, we use only two hidden groups and it is enough to demonstrate

the nonlinearity of HMLRM. In practice, using just two hidden groups may not be
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enough for a complex dataset, adding more hidden groups would help to reveal more

information about the structure. In the extreme case, the surface is given by

f(x|�) =
Z

logit(xT
�)f(�)d�,

where f(�) is a density function of the parameter vector �. This can be used when

we believe that there infinitely many groups.

4.2 HMLRM for Big Data

When the sample size is large, the previously presented algorithm will be inef-

ficient. As the size of the matrices grows, the cost of computation involving those

matrices will become the bottleneck of the algorithm. In addition, the size of a ex-

tremely large data set can easily reaches scale of Terabyte or even Petabyte. With

the current technology, a data set of this scale does not fit the storage on a single

computer and distributed file systems are needed to save large amount of data.

In order to apply HMLRM on big data, a parallel version of our algorithm is

needed. There has been e↵ort to develop new technologies in the past decade to

facilitate data analysis on big data. Currently, there are two major solutions for big

data computation, Hadoop and Spark.

Hadoop consists of an implementation of distributed file system (HDFS, read-

ers can refer to [66] for the description) which decentralizes data storage and the

MapReduce computing model (see [67]) which is designed for performing computa-

tion on data in HDFS. For a large data set, it is di�cult or impossible to fit in a

single computer’s storage (of which an hard disk is the most common device). Using

HDFS allows us to break a large data file into smaller blocks which are then stored

distributively across a cluster of computer nodes in the format of key-value pairs.

Hadoop’s MapReduce computing model describes a computation job (e.g. estimating

a statistical model) in terms of one or multiple map and reduce steps which takes

advantage of the data format in HDFS. For example, counting the word frequencies
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in a document can be carried out by mapping each word to a tuple of (word, 1) and

then adding up the value 1’s for the same word.

By using HDFS and MapReduce, many data analysis tasks can be scaled up in

terms of the size of data sets they can handle. There exist several statistical data

analysis solutions based on Hadoop, such as RHadoop19 and Tessera20.

Though Hadoop has been quite popular for big data analysis, one of its ma-

jor drawbacks is that it requires heavy disk I/O. The intermediate results need to be

written to and read from disk between two tasks. In exploratory data analysis (EDR),

a data set usually needs to be processed repeatedly where each time a di↵erent al-

gorithm is applied to investigate one or more aspects of the data. Moreover, many

statistical or machine learning methods rely on iterative algorithms where interme-

diate results need to be fed into subsequent iterations. The fact that using Hadoop

requires heavy disk I/O in between each map and reduce steps makes data analysis,

especially EDR, ine�cient.

Apache Spark [69] is an alternative approach for big data analysis. It is an im-

plementation of an in-memory computing model and can access HDFS to use it as

a storage backend. Spark’s in-memory computing model is suitable for low-latency

applications and iterative computations. At the core of Spark is the data abstraction

called Resilient Distributed Dataset (RDD) [70] which enables applications to persist

data in memory (instead of disk). Along with wide variety of supported operators,

such as mappers, reducers, joins, group-bys, and filters, computation on big data can

be performed more e�ciently at memory speed21.

19RHadoop, developed by Revolution Analytics, is a collection of five R packages that allow users to
manage and analyze data with Hadoop. Details about RHadoop can be found at https://github.
com/RevolutionAnalytics/RHadoop/wiki.
20The Tessera is a collection of three R packages that provide a computational environment for
Divide and Recombine approach of data analysis. Details about Tessera can be found at http:

//tessera.io/ and in the related paper [68].
21According to http://spark.apache.org, Spark can run programs up to 100x faster than Hadoop
MapReduce in memory, or 10x faster on disk.
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Though Spark includes several tool boxes, such as MLlib22 for machine learning

and GraphX23 for graph computation, many statistical models are still missing. In

this section, we will show an implementation of HMLRM in Apache Spark, which is

an attempt to apply statistical modelling on a big data platform. In the simulation

study, we will test its speed performance.

4.2.1 Data Partition

In order to parallelize the estimation algorithm for HMLRM, we first need to

consider data partition. After we can break a large data set into smaller chunks so

that each chunk is of reasonable size for being computed on an individual core, we

can carry out computation for each chunk. Then, the results from all chunks can be

combined to achieve the global result as if the whole data set were analyzed at once.

Our approach seems similar to Divide-and-Recombine (D&R) described in [68].

However D&R does not relay on communication between computing processes on dif-

ferent data chunks. Thus the result of D&R is not guaranteed to be globally optimal.

This is true when the data analysis procedure requires iterations and the calculation

of the intermediate quantities relies on the whole data set, for example estimating a

logistic regression requires iterative optimization. By using Spark, data chunks are

allowed to be stored in memory which provides faster access during computation and

inter-node communication through network. So we can achieve global solutions more

e�ciently than Hadoop based approaches in many situations.

We assume the data for estimating a HMLRM is arranged in a matrix with each

row corresponding to one sample. The matrix is divided into smaller chunks with

each chunk as a subset of the data containing multiple rows. This is illustrated in the

following picture.

22http://spark.apache.org/mllib/.
23http://spark.apache.org/graphx/.
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Fig. 4.3. Illustration of data partition for parallelizing HMLRM estima-
tion.

We use ` as the index for the data chunks and the total number of the chunks is

denoted as L. In the extreme case, each row can be a chunk by itself.

4.2.2 Parallel Computation

For each chunk of data, we will calculate its own pieces of Q(h)
` , Q(o)

c,` , g(h)
` , g(o)

c,` ’s,

H(h)
` , and Ho

c,`. They can be calculated by using the same formulae in (4.13), (4.18),

(4.21), (4.22), (4.23), and (4.24), except that the chunked data is used this time.

Calculating those quantities for each chunk instead the whole data set reduces

the computational cost. Since the calculation for one chunk does not involve other

chunks, the calculation for all chunks can be carried out in parallel.

Under the assumption that the samples being independent, the results from all

chunks can be combined to produce their global counterparts as follows.

Q(h) =
L
X

`=1

Q(h)
` , g(h) =

L
X

`=1

g(h)
` , H(h) =

L
X

`=1

H(h)
` .

Q(o)
c =

L
X

`=1

Q(o)
c,` , g(o)

c =
L
X

`=1

g(o)
c,` , Ho

c =
L
X

`=1

Ho
c,`.

It is the combining step that requires communication between di↵erent chunks.
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4.2.3 Implementation in Spark

In order to implement HMLRM in Spark, we rely on RDD to store the chunked

data and its transformation and action methods for computation. As we mentioned

before, RDD is Spark’s data abstraction which is implemented to represent a large

data set distributedly in memory. The representation of data in RDD facilitate various

operations which belong to two types: transformations and actions24.

A transformation operation passes each dataset element through a function and

produces a new RDD of the transformed data. For example, a softmax function can

be applied to each sample to calculate the hidden membership probabilities, which

is carried out by Spark’s map function as dataRdd.map(softmax). Other Spark’s

transformation operations include filter, flatMap, mapPartitions and so on.

An action operation aggregate all the dataset elements in an RDD through some

function and returns a single value. For example, taking the sum of data chunk’s

likelihood to calculate the likelihood for the whole dataset is an action, which can be

carried out in Spark as chunkLikelihoodRdd.sum(). Other Spark’s action operations

include reduce, collect, count and so on.

In our implementation, we use RDD to represent chunked data in the memory of a

cluster. Given the current estimate of the parameters, transformations with properly

created functions are applied to compute the RDDs of hidden membership probabil-

ities, hidden layer conditional probabilities, observing layer probabilities, complete

likelihoods, gradients and hessians. Then, reduce actions are applied on the resulting

RDDs to sum up the RDD elements to obtain the global value of complete likelihood,

gradients and hessians. Those global quantities will be fed into an optimizer to per-

form optimization to find the next update of the parameters. This is illustrated in

the following picture.

24http://spark.apache.org/docs/latest/programming-guide.html
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Fig. 4.4. Illustration of model estimation of HMLRM with data partition
and parallel computation.

The modified algorithm for HMLRM estimation in Spark is shown in Algorithm 5.

4.3 Simulation Study

In this section, we demonstrate some empirical properties of HMLRM using sim-

ulation study. In particular, we how the fitting performance and generalization per-

formance of the model. In addition, we will also show the performance of the Spark

version of HMLRM and discuss some practical concerns regarding its implementation

in Python Spark and application in data analysis.

4.3.1 Model Fitting and Prediction

In the first simulation study, we evaluate the performance of parameter estima-

tion, model fitting and prediction on unseen data using HMLRM. We use Algorithm 4

and implement it in Python. The optimization in M-steps is realized by calling

Scipy’s minimizer function with L-BFGS-B method. L-BFGS-B is one of the quasi-
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Algorithm 5 Parallel EM for HMLRM in Spark

1: function TrainHMLRM( distData, A(0), B(0)

c ’s, ✏
1

, ✏
2

, maxIter )

2: param(0)  {A(0),B(0)

c ’s}
3: nollk(0)  calculate negative log-likelihood for observed data using param(0)

4: relAbsDi↵Nollk 1
5: relDi↵Params 1
6: t = 0

7: while relAbsDi↵Nollk >= ✏
1

and relDi↵Params >= ✏
2

do

8: ⇡(t)  distData.map(compute sigmoid or softmax for a chunk of X(h)
` using A(t))

9: p(t)  distData.map(compute sigmoid or softamx for a chunk of X(o)
` using B(t)

c ’s)

10: q (t)  RDD of P (Z|Y ) calculated from ⇡(t) and p(t)

11: Define Q(h)(A, q = q (t)) (E-step for hidden layer)

12: A(t+1)  argmin
A

(�Q(h)) (M-step for the hidden layer)

13: for each hidden group c do

14: Define function Q(o)
c (Bc, q = q (t)) (E-step for the observed layer)

15: B(t+1)  argmin
B

c

(�Q(o)
c ) (M-step for the observed layer)

16: end for

17: param(t+1)  {A(t+1)

c ,B(t+1)

c ’s}
18: relDi↵Params kparam

(t+1)�param

(t)k
kparam(t)k

19: nollk(t+1)  calculate negative log-likelihood for observed data using

param(t+1)

20: relAbsDi↵Nollk |nollk(t+1)�nollk

(t)|
nollk

(t)

21: t = t+ 1

22: if t � maxIter then

23: break

24: end if

25: end while

return (param(t), nollk(t))

26: end function
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Newton optimization methods that approximates the original BroydenFletcherGold-

farbShanno (BFGS) algorithm with reduced amount of computer memory. Instead of

storing the whole dense matrix that approximate the inverse of Hessian, the limited

version only stores the vectors that represent the approximation implicitly.

The true model we use here has three predictor variables in the hidden layer, four

predictor variables in the observed layer, and three hidden groups. Including the

intercepts, there are 23 parameters to estimate, 8 from the hidden layer and 15 from

the observed layer. In each round of simulation, we generate 50,000 independent

random samples where each predictor variable is Unif(�1, 1). The parameters are

estimated by applying the non-distributed algorithm on the dataset with the initial

estimate of the parameters randomly generated from Unif(�1, 1). This is repeated

100 times.

The estimates of the parameters are reported using boxplots which are shown in

Figure 4.5. The mean and the standard deviation are also calculated and reported in

Table 4.1. It can be seen that the estimated parameters with random initials perform

quite well, which are close to the true parameters with small standard deviation. We

can see that some plots show a few outliers, for example plot 2 and plot 7. During

the simulation study, we found that there are cases that the parameters that are

not estimated well. But the corresponding log-likelihood is smaller than that of the

true parameters. This is an indication that a local minimum instead of the global

minimum is found during optimization.
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Fig. 4.5. Boxplots of estimated parameters for HMLRM using the non-
distributed version. The star in each plot represents the true parameter
value.
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Table 4.1.
Numerical summary of the estimated parameters for HMLRM using the
non-distributed version. The mean and standard deviations of the esti-
mated parameters are reported in the table along with the true values of
the parameters.

Parameter Id True Parameters Mean Estimates Std. Dev.

1 -0.2909 -0.4612 0.1280

2 -3.1259 -3.0247 0.1202

3 -4.1954 -4.2725 0.1649

4 5.4946 5.5222 0.1540

5 2.4255 2.2714 0.1065

6 -2.7146 -2.6027 0.1159

7 2.1139 2.0720 0.1024

8 0.1981 0.1752 0.1033

9 -4.4183 -4.4307 0.1421

10 9.2092 9.2494 0.2957

11 -2.2667 -2.2665 0.1140

12 3.6660 3.6829 0.1348

13 -0.1229 -0.1356 0.0685

14 -2.8451 -2.8718 0.0425

15 -1.0431 -1.0628 0.0429

16 3.6378 3.6922 0.0607

17 1.3063 1.3460 0.0495

18 -4.0053 -4.0676 0.0778

19 -2.9242 -2.9090 0.1542

20 -0.1689 -0.1594 0.1180

21 -0.2010 -0.1528 0.1117

22 -3.1942 -3.0979 0.2383

23 0.8968 0.8011 0.1424
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Besides parameter estimation, we are also interested in how well the estimated

model fit the observed dataset and generalize to unseen data. We keep the same

model setting and sample size as above. In each round of simulation, we generate a

random dataset as the training set and estimate the parameters. Then we predict

the response for the dataset and calculate the percentage that the predicted response

agrees with the observed response. In order to evaluate the generalization perfor-

mance, we generate an independent data set of size 10,000 as the test set. After

the parameters are estimated, they are used on the test set to predict the response

and calculate the percentage that the predicted response agrees with the observed

response. We run this simulation 100 times. The results are reported in Figure 4.6.

The average percentages for fitting training set and predicting test set are 0.7783 and

0.7779 respectively. They are quite close. The standard deviations are 0.0394 and

0.0401 respectively. The fact that the two percentages are so close is an indication

that over-fitting might not be a big concern for HMLRM. this is di↵erent from a

machine learning model where regularization is usually needed to avoid over-fitting.

Fig. 4.6. Boxplots showing fitting and generalization performance. Left:
percentage of the predicted responses that agree with the observed re-
sponses using the training set. Right: percentage of the predicted re-
sponses that agree with the observed responses using the test data.
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4.3.2 Implementation in PySpark

In order to implement the parallel version of HMLRM estimation in Spark, we

choose to use PySpark. This is Spark’s Python API which allows Spark’s core func-

tionality to be used by Python programmers. Python is a very popular high level

programming language among data scientists. Compared to R, Python has limited

number of packages for statistical analysis. But it is much more powerful in data

processing, integration with operating systems, and module development.

PySpark bridges Spark’s JVMs and Python interpreter processes together so that

Spark’s JVM manages jobs and data RDDs and Python processes are responsible

for processing data. On the driver side, we create a SparkContext object in Python

which is mapped to the SparkContext in JVM by using Python’s Py4J package. The

JVM SparkContext spawns Spark’s executors on worker nodes and each executor is

a JVM which manages its local portion of data RDD. When computation is needed,

each executor will launch a Python interpreter and send serialized data to it. The

results will be serialized and sent back from Python to JVM after the computation

finishes. Because of the bridging needed between Spark JMVs and Python processes,

the e�ciency of PySpark is suboptimal compared to its Scala counterpart.

While we can follow Algorithm 5 to implement the parallel model estimation,

there are a few concerns we should bear in mind in practice.

First, when we divide a data set according to Section 4.2.1, we need to decide the

number of chunks or equivalently the size of each chunk. In an extreme case, each

sample can be a chunk by itself. However, this is not e�cient especially in a high

level programming language like Python. Since the computation on each partition is

executed as a single task in Spark, samples in a dataset will be processed one by one

and hence we will not be able to use vectorized matrix computation in Python.

Table 4.2 shows the elapsed time for estimating a HMLRM for the same dataset

but with di↵erent number of partitions. The model we use has 5 predictors in the

hidden layer, 10 predictors in the observed and 3 subpopulations. The sample size is
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fixed to 50,000. The dataset is divided into 10, 20, 30, 40, 50, and 60 partitions. For

each number of partitions, we recorded the time used for estimating the parameters.

It can be seen in Table 4.2 that the elapsed time increase when we divide the dataset

into more partitions.

Table 4.2.
Elapsed time of estimating HMLRM in Spark with di↵erent number of
partitions. The sample size is fixed to 50,000.

Number of Partitions Elapsed Time (sec)

10 1192.96941

20 1893.25854

30 2723.59362

40 3600.55789

50 4728.81499

60 4928.81704

Second, though spark applications can be deployed on computer clusters, the

overhead of network communication is not negligible. This cost can become a bottle

when Spark actions involving data shu✏e are called. If a job can be fit on a multi-

core workstation, using Spark’s local mode will be able to reduce the cost of network

communication.

In order to have an impression of the overhead of network communication, we

compare the speed of our parallel algorithm in two di↵erent Spark deploy modes,

local mode and yarn-client mode. When local mode is used, Spark will run the job

in a single executor JVM and the parallelization is realized by the fact it could use

multiple cores and each core run a thread to execute a task. In yarn-client mode,

Spark delegate resource management to Hadoop’s Yarn resource manager. In order

to run the job, it will launch multiple executor JVMs across the cluster and each
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is responsible for executing tasks. Since the executors in yarn-client mode reside in

di↵erent nodes, their communication is vis the cluster’s network and data and codes

need to be serialized and unsecularized between di↵erent nodes. We simulate 50,000

observations from a simple HMRLM with 3 predictor variables in the hidden layer,

4 predictor variables in the observed layer, and 3 subpopulations. The data set is

divided into di↵erent number of partitions. For each partition number, we estimate

the parameters using the parallel algorithm in both local and yarn-client mode and

record the time it uses for the estimation. We use 5 cores in the local mode and 5

executors with 1 core per executor in the yarn-client mode. The results are reported

in Table 4.3.

Table 4.3.
Time used to estimate HMLRM in Spark using two di↵erent modes, local
and yarn-client. In the algorithm, my naive gradient descent is used for
optimization in M-step. The tolerance for EM convergence is set to 1e-3.

Number of Partitions Local[5] Yarn-client (5 executors, 1 core)

10 418.20794 343.69576

20 594.34379 340.89911

30 728.73377 676.55508

40 906.67940 845.82275

50 558.75216 1339.92693

60 1410.18719 3670.39308

70 1630.23311 3235.92743

80 2182.04236 5210.86841

90 2438.11216 3062.45193

100 2692.75372 4270.10367

We can see from Table 4.3 that when the number of partitions increases, the

elapsed time for model estimation also increases. As we discussed above, one reason
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is that smaller than necessary chunk size cause the job to fail to use the full potential of

each core. Another reason is that, dividing dataset into more chunks will require more

time to send back to the driver the computation results from the chunks. In addition,

we can also see that when the number of partition becomes large, the performance of

using yarn-client mode gets worse. This is because network communication between

di↵erent executor JVMs across the cluster contributes a significant portion to the

elapsed time.

Third, though the likelihood, gradient and Hessian are computed for each data

chunk, they will be aggregated in Spark’s driver process. In theory, those aggregated

quantities can be passed to any optimization routine that takes them as inputs. For

example, we first started the simulation study by simply calling Scipy’s minimize

routine in each M-step. However, when the sample size increases, Spark job starts to

crash. One cause of this issue is that the intermediate steps in a usual optimization

routine may result in memory footprints that are not suitable for parallelized applica-

tions. The optimization algorithms need to be overhauled to take into account data

and computation parallelization. In the latest version of Spark (1.6.2 at the time of

writing this thesis), there are only limited optimization algorithms provided by the

MLlib toolbox, including gradient descent, stochastic gradient descent, and L-BFGS.

Since they are only available in Scala and Java, we couldn’t use them. In our sim-

ulation, we implemented a naive gradient descent routine to update the parameters

in M-steps. In the future, more sophisticated implementation of the optimization

algorithms is needed.

Finally, the performance of our algorithm depends on Spark’s configuration, such

as memory allocated to each executor, number of cores for each executor, and choice

of resource manager. Allocating less than enough memory to executors would raise

out of memory exceptions and crashes a Spark job. Since an executor JVM can utilize

multiple cores to run tasks simultaneously, allocating more cores to an executor would

improve Spark’s performance. A resource manager a↵ects the performance of Spark in
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the way of how it allocates cluster resources, such as CPUs and memory, to executors.

Tuning Spark is specific to a given application and is beyond the scope of this thesis.

4.4 Summary

In this chapter, we propose to use Hierarchical Mixed Logistic Regression Model

(HMLRM) for exploring big data. Its hidden layer explicitly models the possible

subpopulation structure, which is one way to handle heterogeneity in data and results

in a non-linear classification boundary. The model construction and its estimation

using EM algorithm are fully discussed. The separability of the parameter space is

helpful to reduce the dimensionality during estimation. In order to apply HMLRM

on big data with large sample size, we design a parallel algorithm in which a dataset

is divided into smaller chunks and the computation of likelihoods and gradients are

carried out in a map-reduce fashion during each EM iteration. The parallel algorithm

is implemented in Apache Spark. We choose Spark because its in-memory computing

model and data abstraction RDD provides better performance in terms of speed and

disk I/O. The simulation study with the non-parallel algorithm shows that using EM

is able to estimate the model parameters reasonably well and the model seems to be

quite robust in terms of its prediction performance. The simulation with the parallel

algorithm proves that our idea that we can build a big model for exploring big data

is viable.

However, there are a few concerns that need to be addressed before Spark can

be used for exploratory data analysis. First, since EDA requires interactive data

analysis and the results need to be delivered in a timely manner, the low e�ciency,

mainly caused by network communication, could easily break the smoothness of this

workflow and results in an unpleasant user experience. Second, the eco-system for

Spark is not available yet. This is especially true for data exploration. Besides

developing statistical models suitable for big data, many low level numerical routines
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such as matrix operations and optimization algorithms need to be reimplemented for

Spark.
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5. CONCLUSION AND FUTURE WORK

In this thesis, we focus on developing e↵ective methods for data exploration in regres-

sion. We proposed to use Optimal Kernel Group Transformation (OKGT) method

to explore the relationship between Y and X. By introducing the concept of group

structure to additive model, we are allowed to consider interactions between predictor

variables. Using kernel methods for non-parametric estimation in OKGT circumvents

the curse of dimensionality so that the method scales well in number of predictor vari-

ables. The e↵ectiveness of OKGT also relies on using a proper group structure. So

we further developed Additive Group Structure Identification (AGSI) method and

algorithms for finding the true additive group structure from data. By introducing

a novel penalty to control the complexity of group structures, we could prove the

selection consistency of AGSI. We believe that OKGT and AGSI together could be

combined as a general framework for data exploration in regression.

We also developed the Hierarchical Mixed Logistic Regression Model (HMLRM)

as an attempt to explore big data. The model explicitly models the subpopulation

structure by introducing a hidden layer of regression. This is one way to attack

heterogeneity which is common in big data. Further, we parallelized the EM algorithm

for parameter estimation and implemented it in Spark. We evaluate the performance

of HMLRM in Spark in terms of speed and discussed some practical concerns. We feel

that more e�cient statistical methods and computation tools needs to be developed

for exploring big data.

The research in this thesis suggests several directions for future work. First, the

current algorithms for AGSI is not e�cient when the number of predictor variables

is large. Exhaustively searching over all possible group structures is not feasible and

the backward stepwise algorithm also does not scale well and is based on heuristics.

A more e�cient algorithm which is theoretically justified is needed. Second, in a high
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dimensional setting, sparsity is usually expected among the predictor variables. So

we need a procedure to recover sparsity to be combined in AGSI. Third, the proof of

selection consistency for AGSI relies on the assumption that predictor variables are

independent. We wonder if the same result holds if there is dependency. Fourth, there

are lot to be done to bring statistics to the big data domain. Our mixed logistic model

needs to be further polished, for example using more e�cient optimization algorithms

suitable for Spark, to be suitable for big data exploration. We also need to compare

mixed logistic with other machine learning methods such as neural networks and

machines in terms of their prediction performance. It is also interesting to know if

there is any connection between mixed logistic and neural networks.
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