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A person who never made a mistake never tried anything new.   

–Albert Einstein 

 

Science is a way of thinking much more than it is a body of knowledge.   

–Carl Sagan 

 

Man strives to provide himself with food clothing and housing for the sake of the body. 

He must also provide himself with something to keep the mind healthy and happy. It is 

the mind that conditions even the body. The mind is the instrument, the flywheel, and the 

thickest comrade of man. Through it, one can ruin oneself or save oneself. Regulated and 

controlled, channeled properly it can liberate; wayward and let loose, it can entangle and 

bind fast. 

–Sri Sathya Sai Baba 
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ABSTRACT 

Edelman, Peter J. Ph.D., Purdue University, December 2016. Interplanetary Mission 
Design with Applications to Guidance and Optimal Control of Aero-Assisted Trajectories. 
Major Professor: James M. Longuski. 
 

A method for finding optimal aerogravity-assist tours of the solar system is 

developed using indirect methods. Two cost functionals are used in the optimization; 

finding the minimum required maximum lift-to-drag ratio, with and without a convective 

heating-rate path constraint, and the path which provides the minimum total stagnation 

point convective heat load. It is found that using present or near-future thermal protection 

system materials will suffice for certain aerogravity-assist trajectories at Mars. Minimum 

heat load optimal trajectories are found for aerocapture maneuvers at Uranus and 

Neptune. With a large radius, and short rotational periods, atmospheric rotation must be 

taken into account to accurately model the system dynamics. 

Investigation of the 2018 Inspiration Mars free-return opportunity is conducted. A 

broad search over 100 years of Mars free-return trajectories is catalogued, and a Pareto 

front analysis is employed to find the overall best trajectories in the timespan. The 

geometry is explored further with the use of a time-free ephemeris to see where minimal 

energy transfer arcs between Earth and Mars occur, and see if the 2018 opportunity is one 

such transfer. It turned out that both the 2017 and 2064 candidates found from the 100-

year search were the closest to minimum energy, highlighting the rarity of the Inspiration 

Mars opportunity, and gives a motivating push to fly this mission. 
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CHAPTER 1. INTRODUCTION 

Aero-assisted maneuvers come in four forms: aero-assisted orbital transfer (AOT), 

aerobraking, aerogravity assist (AGA), and aerocapture. The current work addresses the 

latter two. An aerogravity-assist maneuver is an augmented form of gravity-assist where 

a spacecraft uses generated lift to increase the amount of turning around a celestial body. 

More turning affects the heliocentric delta-V, leading to considerable propellant mass 

savings. A method for finding interplanetary tours with optimal aerogravity-assist 

trajectories is formulated. One type of optimal trajectory yields the lowest maximum lift-

to-drag ratio (L/D) needed to complete the maneuver. Another optimal trajectory has 

constraints imposed on the maximum allowable stagnation point convective heating rate 

the spacecraft undergoes in the form of a state-variable inequality constraint. A third type 

of optimal trajectory finds the path that produces the minimum heat load the spacecraft 

accrues for the flythrough. All trajectory optimization is done using a classical indirect 

optimal control approach. Additionally a guidance scheme is developed to robustly guide 

the spacecraft during an aerogravity-assist maneuver, subject to dispersions in 

atmospheric density and initial conditions. 

Aerocapture is a maneuver where a vehicle arriving at a celestial body at 

hyperbolic speeds enters the body’s atmosphere and uses the aerodynamic drag to reduce 

its orbital energy. The vehicle remains in the atmosphere until it is captured in the body’s 
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gravity-well, where it exits the atmosphere with a desired orbit period. Recent interest at 

NASA’s JPL and AMES in the Ice Giants (Uranus and Neptune) has prompted studies 

regarding the usefulness of aerocapture to get into orbit. These large bodies rotate at high 

speeds requiring the rotating atmosphere to be modeled in the dynamics of the vehicle 

during the flythrough. Using optimal control theory, the minimum heat load aerocapture 

trajectory with rotating atmospheric effects is found. 

Inspiration Mars was a human fly-by mission of Mars proposed to launch in early 

2018, perform a free-return around Mars and arrive back at earth 500 days later. Research 

was conducted to see why the 2018 opportunity was so desirable, and to see if any back-

up trajectories were available. Large sweeps of Earth-Mars-Earth free-return trajectories 

were catalogued using a patched-conic approach and evaluated in terms of Earth launch 

and Earth arrival energies. The Earth-Mars heliocentric geometry was analyzed using a 

time-free ephemeris model and the most desirable relative positions of the two planets 

were found. A back-up trajectory was found with a flyby of Venus having a launch date 

in 2021. 
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CHAPTER 2. OPTIMAL CONTROL METHODS AND NUMERICAL 

SOLVERS 

Optimal control theory applied to trajectory optimization decomposes into two 

categories: direct and indirect optimization. Direct optimization has the trajectory states 

and control parameterized into distinct points (or nodes) and a desired cost functional is 

minimized (or maximized) using nonlinear programming (NLP) algorithms, gradient-

based methods, or genetic algorithms. This method is often referred to as direct 

transcription [1]. The state equations are integrated either implicitly using a collocation 

scheme or a pseudo-spectral method, or explicitly using a shooting technique. The 

advantage of direct methods allows for easier implementation of constraints, particularly 

inequality constraints on the states, path, or control variables, and usually allows for a 

wider radius of convergence when poor initial estimates are used. The disadvantage of 

direct optimization is the often large computational effort required to solve a problem, 

particularly if it spans a large length of time. Indirect trajectory optimization is a 

functional optimization method that employs the calculus of variations to minimize (or 

maximize) the cost functional. Dynamic, path, state, control, and (sometimes) terminal 

constraints are adjoined to the cost functional using Lagrange multipliers, and necessary 

conditions are derived which guarantees a local extrema if they are satisfied. These 

necessary conditions convert the optimization problem into a boundary-value problem 

(BVP). A BVP can be solved by implicit integration using collocation or pseudo-spectral 
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methods, or explicitly using shooting techniques. The advantage of indirect methods is 

low computational cost and robust setup, but the disadvantage is the often small radius of 

convergence, and lack of physical meaning of the costate variables. In the current work, 

only indirect optimization is used, however detailed descriptions of the theory and 

implementation of direct optimization to trajectories can be found in [2]. All techniques 

presented in this chapter are used in different sections of the current work. 

2.1 Indirect Optimization 

In many problems, the calculus of variations approach to optimal control 

problems provides a robust setup to the minimization of a certain cost functional. Where 

it becomes more difficult is when more than one inequality constraint on the states or 

controls is present, or when there is no idea of what initial guess to use, as the radius of 

convergence is often small. When there is more than one inequality constraint, the 

prediction of ‘switching times,’ or times when the solution will come into contact or 

leave the boundaries of the inequalities becomes increasingly difficult. The switching 

structure of getting on and off the boundaries must be assumed a-priori, thus when there 

are multiple inequality constraints with multiple boundary contacts, it can be numerically 

cumbersome, especially when the numerical solver has the switching times cross each 

other. A summary of the necessary conditions for a local extrema with state-variable 

inequality constraints (SVICs), and an unknown final time is presented in the current 

work. For detailed proofs, see [3–5] 

2.1.1 Euler-Lagrange Theorem 

The Problem of Bolza [3] is setup the following way: 
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0

, , ,
ft

f f t
Min J g t L t dt  x x u  (2.1) 

subject to: 

  , ,t  0x f x u  (2.2) 

  0 0t x x
 (2.3) 

  f ft x x
 (2.4) 

  0 0, , ,f ft t  0 x x
 (2.5) 

  t,  0S x
 

(2.6) 

 

where equation (2.1) contains the terminal cost g, and the path cost represented by the 

integral term. Equation (2.2) is an n-vector of process equations, equations (2.3) and (2.4) 

are the initial and final boundary conditions respectively, equation (2.5) is a p-vector of 

terminal constraints, and equation (2.6) represents an s-vector of SVICs.  

First the SVICs are treated by looking at the time interval on [tenter, texit] where the 

constraints are active (equal to zero, or on the boundary): 

     00 , , 1, ,si enter exit fS t,x t t t t t t i            (2.7) 

For simplicity and without loss of generality let i = s = 1. Next, successive total time 

derivatives of the SVICs are taken until the first control variable appears. Mathematically 

this is represented as: 

          1 10, 0, , 0qS S
S t, S t, S t,

t t
  

    
  

x
x x x

x
 (2.8) 
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   ,

, 0, 0

q

q
S t,

S t,
    



x u
x u

u   
(2.9)  

where S(j) represents the j-th total time derivative, and q is the order of the SVIC. In many 

dynamical systems, the order is rarely greater than 2 [6]. It has been proven that if q = 1, 

only boundary arcs occur (no touch points), if q = 2, boundary arcs and touch points may 

occur, and if q > 2, then the SVIC only touches the border at single points ttouch, and does 

not remain active over an interval [7]. Figure 2.1 gives a graphical representation of a 

switching structure including a constrained subarc and a touch point on the boundary. 

With the order of the SVIC found, equations (2.2), (2.5), and the first of (2.9) are 

adjoined to equation (2.1) with vectors of Lagrange multipliers with the same lengths to 

get a single scalar equation: 

           
0

, , , , , , ,
ft qT T

f f t
J g t L t t S t dt        x x u x f x u x u    (2.10) 

where λ and μ vary with time, and ν is constant. Let the Hamiltonian, H, be defined as: 

 

S(t, x(t)) 

t t
enter

 t
exit

 t
touch

 

Figure 2.1 Illustration of a SVIC switching curve along a constrained subarc on [tentry, texit], 
and at a touch point ttouch. 
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          , , , , , , , , ,qTH t L t t S t    x u x u f x u x u   (2.11) 

Then the cost functional can be written: 

     
0

, , , , ,
ft T T

f f t
J g t H t dt    x x u x     (2.12) 

By taking the variation of equation (2.12), it is shown that the necessary 

conditions for a local extrema with unknown final time are [3]: 

 TH
 


0

x
 (2.13) 

 
H




0
u   

(2.14) 

 

 0
0

T T 
 


0  

x   
(2.15) 

 

 0T
f

f f

g
H

t t

 
  
 

 
  

(2.16) 

 

 
T T
f

f f

g 
   

 
0  

x x   
(2.17) 

 

 
0, if 0

0, if 0

S

S


 
    

(2.18) 

 

                 1 1, , , , , , ,
T

q
e e e e e e e et t S t t S t t S t t  0 x x x x

  
(2.19) 

 

 

   

    0

T T T
e e

e

T
e e

e

t t

H t H t
t

 

 


  




  



0  







x

  
(2.20) 

 



8 

 

Equations (2.13) – (2.17) are the necessary conditions for local extrema, even if SVICs 

are not present. The extra boundary conditions on the costates and Hamiltonian essential 

for a well-posed BVP come from what is called the transversality conditions in equations 

(2.15), (2.16), and (2.17). Until a SVIC becomes active, the corresponding Lagrange 

multiplier μ is zero, and then becomes positive or equal to zero after activation, as shown 

in equation (2.18). Equations (2.19) and (2.20) are additional interior boundary 

conditions that must be satisfied, where te is one of the switching times, and can be 

specified at either tentry or texit if along a constrained subarc, or ttouch at a touch point. An 

additional vector of Lagrange multipliers πT (of length q) is required to satisfy the jump 

conditions in equation (2.20). The jump conditions necessitate that the costates associated 

with the SVIC may be discontinuous at te, but are continuous along the other endpoint of 

the constrained subarc [6]. For example, if te was chosen to be at tentry, then the costates 

may be discontinuous at tentry, but continuous at texit. The control law switches along the 

boundary subarc from equation (2.14) to satisfy: 

   ( , , ) 0qS t x u
 
 (2.21) 

and the associated Lagrange multiplier becomes: 

   1

( , , )q H
S t

      
x u

u  
 (2.22) 

 When state-variable inequality constraints are introduced to a problem using 

indirect methods the complexity of the necessary conditions greatly increases. For one 

SVIC, an additional a·q Lagrange multipliers, and 2·a boundary interaction times 

(corresponding to tentry, texit, or ttouch) with an associated a·(q+2) interior boundary 

conditions are necessary, where a is the number of constrained subarcs. Once a second 
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SVIC is introduced, even more variables and boundary conditions are introduced with 

additional difficulty of predicting the switching structure between constrained subarcs 

among the two SVICs. Thus for optimal control problems involving more than one SVIC, 

the indirect method is usually not ideal, and direct methods become more robust in 

solving for feasible local extrema. 

2.1.1.1 Adjoined versus Unadjoined Methods 

Section 2.1.1 outlined the necessary conditions for local extrema of the cost 

function in equation (2.1) by adjoining the terminal constraint vector Ψ in equation (2.5) 

with a vector of Lagrange multipliers νT to J. This method, referred to as the “adjoined 

method,” has become the standard form of the necessary conditions from leading authors 

in the field of optimal control including Bryson and Ho [3]. A second way to treat the 

terminal constraints is to set the total differential of Ψ equal to zero: 

 d  0
 
 (2.23) 

and substitute the relationships between the individual differentials from dΨ back into the 

transversality condition: 

 
0

0
ft

T

t
H d dg    x

 
 (2.24) 

Derivations of this method are found in Citron [4] and Longuski et al. [5].  

The main difference between the adjoined and unadjoined methods comes in the 

ease of implementation. Adjoining the terminal constraint vector to the cost functional 

will increase the dimensionality of the optimal control problem by p, where p is the 

length of Ψ. Sometimes it’s more advantageous to avoid the extra dimensions by using 

the unadjoined method, particularly if the terminal constraints are simple (e.g. involve 
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only one or two state variables). However, when the terms become more complicated, it 

may be better to use the adjoined method to avoid large expressions in the transversality 

conditions. Large expressions can lead to numerical complications such as singularity, or 

near-singularity which can cause the numerical solver to become unstable. 

2.2 Root-Solvers 

One of the numerical cruxes the current research uses is root-solving techniques. 

Root-solvers attempt to find the arguments of an equation or systems of equations when 

they equal zero. They are useful in corrections for solving BVPs and finding unknown 

system parameters for linear and nonlinear static or dynamic systems. Root-solving is an 

iterative process, and a common problem with some linear and most nonlinear systems is 

that a poor initial estimate can end up in non-convergence of the algorithm. Depending 

on the algorithm, it may require one derivative of the system of equations, such as 

Newton’s or Broyden’s method (a quasi-Newtonian method), two or more derivatives, 

such as Halley’s Method, or no derivatives, such as the secant method. One method may 

be better suited for a particular system than another, so there is no “best” algorithm. The 

two root-solvers used in this work are Newton’s method and Broyden’s method and are 

discussed below. 

2.2.1 Newton’s Method 

Newton’s method is based on a Taylor series expansion of a system of equations, 

and requires one derivative of the system to work. Consider an n-vector X of independent 

free variables: 

  1 2

T

nX X X X
 
 (2.25) 
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Subject to a system of m equations that must satisfy: 

 

 
 

 

1

2( )

m

F

F

F

 
 
   
 
  

0


X

X
F X

X
 
 (2.26) 

Taking a first-order Taylor series expansion about the solution X gives: 

  ( )
d

d
      0

F
F X X F X X

X  
 (2.27) 

where ΔX is a small perturbation from X and the m by n Jacobian matrix is defined by: 

 

1 1 1

1 2

2 2 2

1 2

1 2

( )

n

n

m m m

n

dF dF dF

dX dX dX

dF dF dF
d

dX dX dXD
d

dF dF dF

dX dX dX

 
 
 
 
    
 
 
 
  





   



F
F X

X  
 (2.28) 

Solving for ΔX, equation (2.27) predicts the required update to X to satisfy equation (2.26) 

in a linear sense. If there are any nonlinear terms involving X in F, then the solution 

process will require iterations since the solver is linear. For the i-th iteration, a new 

update to Xi for iteration i+1 is given by: 

 1i i i   X X X
 
 (2.29) 

The process is repeated until a tolerance criteria on F is met. The tolerance criteria used 

in the current work is the l2 norm of F is below a tolerance ε on the order of 10-12. A 

tolerance this small can be used since all problems are scaled to be around a value of one. 

If a solution to equation (2.26) exists, and provided a close enough initial estimate 

of X, Newton’s method will converge to a solution. However there are three cases of the 
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system to consider. The first case is when m = n, and there are the same number of free 

variables as there are equations in the system. This is the most direct solution, as the 

update comes from the inversion of the square Jacobian Matrix: 

    1

i i ik D


     X F X F X
 
 (2.30) 

where k is an attenuation parameter with admissive values in the set (0, 1]. For sensitive 

or highly nonlinear systems it is sometimes advantageous to scale the update in ΔXi to 

prevent instability in convergence, as the update is only a linearized correction. The 

update in equation (2.30) is unique and when k = 1, the solution converges quadratically 

for nonlinear systems. 

 The second case to consider is when m < n, and the number of free variables 

exceeds the number of equations in the system. If a solution exists, there are usually 

infinitely many combinations satisfying equation (2.26). A popular option to address this 

kind of system is to use the right Moore-Penrose pseudoinverse, also known as the least 

squares solution [8]. If DF(Xi) has linearly independent rows, then the multiplication of 

DF(Xi) · DF(Xi)
T is square, and invertible. The right pseudoinverse update gives the 

“best fit” solution and is given by: 

        
1T T

i i i i ikD D D


     X F X F X F X F X
 
 (2.31) 

Given a sufficient initial estimate of X, the update of equation (2.27) using equation (2.31) 

converges quadratically when k = 1. 

 The final case is when m > n, or the number of system equations exceeds the 

number of free variables. This is known as an overdetermined (or overconstrained) 

system, and has solutions only if the system of equations is not independent. 
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2.2.2 Broyden’s Method 

Another root-solver that employs knowledge of one derivative of the system is 

Broyden’s method. This is a quasi-Newtonian method where instead of directly 

computing the Jacobian matrix in equation (2.28) at every iteration, an approximate value 

is used and is updated via an iterative process. The advantage of addressing the Jacobian 

in this way is that computational effort is decreased. If a Jacobian is non-sparse or has 

many nonzero entries, the computational cost of the Jacobian can be high. With 

Broyden’s method, only one sample of the Jacobian is required, and it is updated with: 

          1 1
1 2

i i i i T
i i i

i

D
D D  



  
  



F X F X F X X
F X F X X

X  
 (2.32) 

With the Jacobian updated, either equation (2.30) or (2.31) is used to get the next update 

of X. 

2.3 Collocation 

The two types of numerical integration methods are explicit and implicit integration. 

Explicit integration is a method where the numerical approximation of the state of a 

system of differential equations at a later time depends only on the knowledge of the state 

at the current and/or previous times. If xi is the state at the current time ti, then at later 

time ti + Δti = ti + hi, the next state xi+1 can be mathematically represented by: 

   1 , , , ,i i i i i ix F t h x f t x 
 
 (2.33) 

where f are the derivatives of the state variables and F is a numerical integrator function 

such as the Euler method, the Runge-Kutta method or the Prince-Dormand method. 

Depending on what system is being integrated, one numerical integration method may be 
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better suited than another. Each method has its own respective local truncation errors, 

total accumulated errors, and integration stabilities associated with them. 

 Implicit integration methods require knowledge of the state at the current time in 

order to compute the state at the current time. A mathematical representation of this is: 

     1 1 1 1, , , , , , ,i i i i i i i i ix F t h x x f t x f t x   
 
 (2.34) 

where xi+1 appears on both sides of the equation. Unless xi+1 can be isolated to one side, 

the solution to equation (2.34) generally requires at least a root-solving technique where 

the equations 

     1 1 1 1, , , , , , , 0, 1, ,i i i i i i i i iF t h x x f t x f t x x i N      
 
 (2.35) 

are solved simultaneously. In equation (2.35), N is the discrete number of points (often 

called nodes) in the integration scheme, thus there are n·(N – 1) equations (usually 

nonlinear) to solve simultaneously, where n is the number of states. 

 Collocation is an implicit integration technique where the independent variable is 

discretized into nodes (also called collocation points) and the state equations (and control 

variables, if a direct optimization method is employed) are approximated by candidate 

functions, usually polynomials at the collocation points. In the current work, a Runge-

Kutta method based on Lobatto quadrature formulas is used, namely the Lobatto IIIA 

family [9]. 

2.3.1 Mesh Construction 

Collocation distributes errors and sensitivities over all the nodes. In the current 

work, both 3rd and 7th order polynomials are used in a collocation scheme. In this way, 
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the differential equations are transcribed into a finite set of equality constraints of the 

form of equation (2.35), and solved using a root-solving technique.  

  The piece-wise polynomial representation can be constructed by first defining a 

mesh of N discrete time points, creating N – 1 discrete segments between each point: 

 1 2 Nt t t  
 
 (2.36) 

with a step-size hi = ti+1 – ti that should be chosen small enough to satisfy an error 

tolerance for numerical integration. The smaller the step-size, the more accurate the 

solution, however the dimensionality of the problem increases by n for each additional 

segment. Next the time segments are normalized typically to be between [-1, 1] or [0, 1]. 

The collocation scheme presented here is a Lobatto method [9] and uses a normalization 

of [0, 1]. Thus the time segments are normalized via: 

 1, [ , ]i
i i

i

t t
t t t

h
 


 

 
 (2.37) 

The state in the ith segment is approximated by a pth degree Hermite interpolating 

polynomial of the form: 

   2
0 1 2 , [0,1]p

p         x a a a a
 
 (2.38) 

where the coefficients a0, …, ap of each polynomial (one polynomial for each segment) 

are determined by using the values of the states and the dynamical system vector field 

 , ,tx = f x u
 
at distinct points along [0,1]  . Choosing the location of the points in [0, 

1] is nontrivial and the number of points (called nodes) depends upon the degree of the 

polynomial. 
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One selection process for the location of the nodes is to use the roots of a shifted 

Legendre polynomial taking on the form: 

  
2

11
2

1 0
p

pp
p

d
t t

dt





     

 (2.39) 

The node coefficients that come out of equation (2.39) are monotonically increasing such 

that c1 = 0 < c2 < … < cp = 1. The shifted Legendre polynomial roots are symmetric, so 

their nodes satisfy: 

 1 1 1, ,p j jc c j p     
 
 (2.40) 

Node locations of polynomials of orders 2 through 5 are given in Table 2.1. 

The node locations at the endpoints of the segment, denoted xi and xi+1 are the 

solution to the quadrature of the implicit integration method. States at the points in 

between, denoted x2,…, xp-1 (i.e. x1 = xi and xp = xi+1) are subdivided into two  

Table 2.1 Location of nodes along each segment for various orders of polynomials 

Polynomial Order Location 
2 0 1 
3 0 ½ 1 

4 0 51
2 10   51

2 10  1 

5 0 211
2 14   ½ 211

2 14  1 

 

categories called variable nodes and defect points. The variable nodes and defect points 

represent the polynomial approximation of the state in  0,1  . An important distinction 

is that while the variable nodes and endpoints of the segment are free variables and serve 

the same purpose in the implicit integration scheme, the endpoints are the actual 

quadrature solutions to the differential equations while the variable nodes are only an 
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approximation. However for convenience in how the collocation scheme is set up, the 

endpoints will also be called variable nodes, as they all are design variables in the method. 

The defect points are then transcribed into equality constraints in terms of the coefficients 

in equation (2.38), the dynamics in  , ,tf x u , and the free variables of the variable nodes.  

It turns out that odd ordered polynomials produce the same number of defect 

points as the preceding even ordered ones, leading to greater accuracy for the same 

computational cost [10]. Thus the construction of polynomial coefficients in equation 

(2.38) will be outlined for odd-ordered polynomials. This means that in each segment 

there are (p + 1)/2 variable nodes and (p – 1)/2 defect points, and the variable nodes and 

defect points are placed at odd and even j respectively for j = 1,…, p. The defect points 

are transcribed into equality constraints that match the dynamics of the vector field via: 

   , , , 2,4, , 1i jM jM i jM jM jMh j p    0  x f x u
 
 (2.41) 

where a subscript M has been placed next to j to enforce that the defect points are in 
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Figure 2.2 Collocation scheme using a fifth degree polynomial. 
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between the endpoints at i and i+1 (a mnemonic “M” for, “in the Middle of…”). An 

example diagram for a fifth order collocation polynomial with variable nodes and defect 

points is illustrated in Figure 2.2. The process for constructing the states at the defect 

points as well as the corresponding defect constraint is now outlined. 

2.3.2 Higher Odd Order Polynomial Collocation 

For arbitrary high orders of odd value p, the polynomial and its first derivative 

with respect to normalized time in equation (2.38) can be represented in matrix form as: 
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 (2.42) 

or similarly, Ta = b. All the times and states τj and xj are odd and represent the variable 

nodes. Solving for the polynomial coefficients in equation (2.42) we get a = T-1b. The 

values of the states at the defect points are found via: 

 

       

2
2 2 2 2

2
4 4 4 4 1

2
1 1 1 1

1

1
=

1

p
M M M M

p
M M M M

p
p M p M p M p M

  
  

  



   

  
  
      
  
     

T b




     


x

x

x

b
 
 (2.43) 

The defect constraints in equation (2.41) are constructed by taking the normalized time-

derivative of equation (2.43) to yield: 
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 (2.44) 

With the interpolated states and derivatives at the defect points found, equations (2.41) 

and (2.44) are related via: 

  , , , 2,4, , 1i jM i i jM jM jM

d
h j p

d



    b 0 

 f x u
 
 (2.45) 

for every segment i = 1, …, N – 1. The collocation defects are solved using a root-solving 

method simultaneously and the integrated solution is represented by the endpoints of each 

segment, xi for i = 1, …, N. 

2.3.3 Collocation Applied to Solving Optimal Control Problems 

Applying the collocation method described above to problems in optimal control 

can be used for both direct and indirect methods. In direct methods, the defect constraints 

in equation (2.45) are applied as equality constraints for a nonlinear programming (NLP) 

package to solve. Collocation can easily adapt to add multiple path and control inequality 

constraints by specifying the bounding values at each variable node in the NLP scheme. 

Since a control law is not specified in a direct optimization approach, the control 

variables at the endpoints of each segment are included as design variables. The control 

values at each of the variable nodes and defect points between the endpoints are usually 

handled via linear interpolation. 

With indirect methods, the optimization problem is transformed into a BVP with 

the collocation defects included in the constraint vector in equation (2.26) along with the 

initial conditions, final boundary conditions, terminal constraints and transversality 
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conditions of equations (2.3), (2.4), (2.5), and (2.24) respectively. The Jacobian matrix 

has a regular structure so it is straightforward to implement in a numerical algorithm. An 

example Jacobian structure for a 3rd order polynomial is: 

  

1,2 1,2 1,2

1 2
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(2.46) 

For a third order polynomial, there are two variable nodes and one defect point between 

each node, thus for each defect constraint Δi,j, the subscript j equals 2 for i = 1, …, N – 1. 

The terms BC0, BCf, and tf correspond to the initial and final boundary conditions vectors, 

and unknown final time. If there are state-variable inequality constraints, then there will 

be the tangency and jump conditions from equations (2.19) and (2.20) included in the 

Jacobian. With the indirect method, a well-defined BVP will produce the same number of 

design variables as constraints, so from an initial estimate of the design variables, the 

update for all associated BVPs uses equation (2.30). 
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 The derivatives of the defect constraints are straightforwardly computed 

analytically allowing for faster computational time in evaluating the Jacobian. The 

analytical derivative for the defects can be expressed as: 

 

 ,
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2,4, , 1,
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f x
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 (2.47) 

An example evaluation of equation (2.47) for a fifth-order polynomial (p = 5, j = 2, 4, k = 

1, 3M, 2) for i = 1 is: 
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  (2.48) 

where I is the identity matrix of size n by n (recall n is the number of states in f). 

Although the analytical derivatives look tedious to evaluate, the number coefficients in 

equation (2.48) are computed a-priori and stored, meaning a programming or scripting 

language that allows easy manipulations of matrices can quickly implement the analytical 

derivatives in an algorithmic fashion. 
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2.3.4 Mesh Refinement 

In order to make the integration error smaller, often a mesh refinement strategy is 

employed, especially if the integration time is large. A constant step size hi = h is often 

not the best choice when integrating over large intervals, so the mesh in equation (2.36) is 

changed. For the problems in the current work, the integration times are no longer than 

10 minutes, so mesh refinement is deemed unnecessary as long as a sufficient number of 

endpoint nodes are specified in the initial mesh. However for detailed description of mesh 

refinement strategies, see [11] for one that refines the mesh internally while solving the 

collocation equations, and [12] for ones that refine the mesh after the collocation 

equations are solved, to approximately distribute the error equally along each segment. 

2.4 Shooting Methods 

Another method to solve optimal control problems is a shooting method. A 

shooting method uses explicit integration techniques to propagate forward (or backward) 

from a set of initial conditions and corrects the initial conditions based on how far off the 

final integrated values are from the desired boundary conditions. There are various ways 

to address the corrections process, but the one described here is based off derivatives of 

the vector field in equation (2.2) with respect to the initial conditions. 

Consider a nonlinear system of the form: 

    0 0 0, , , ,t t t   x f x x p p x x
 
 (2.49) 

where p is a vector of parameters that may need to be solved and x0 is the vector of initial 

conditions. The elements in vector p could be parameterized controls in a direct shooting 

method, unknown points in time where certain events occur such as touch points on 
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boundary subarcs, unknown final integration times, or unknown constants in the 

differential equations. From the fundamental theorem of calculus, the solution to equation 

(2.49) is given by: 

      
0

0 0, , , ,
t

t
t t t t dt    x x f x x p p

 
 (2.50) 

Taking a derivative of equation (2.50) with respect to the initial conditions using 

Leibniz’s rule yields: 

 
0

0 0

t

t
dt

  
 

  I
x f x

x x x  
 (2.51) 

Taking a derivative of equation (2.51) with respect to time yields a new set of differential 

equations: 

 
0 0

d

dt

   
    

x f x

x x x  
 (2.52) 

or, 

 





 f

x
 

 
 (2.53) 

where Φ is known as the state-transition matrix, which relates how variations in x at time 

t is related to variations in the initial conditions x0 to first order. The initial condition for 

the state transition matrix is: 

 
 0

0

t



I

x

x  
 (2.54) 

as all the initial conditions are independent of each other. To get relationships of the 

variations in in x at time t to variations of the parameters in p, take a derivative of 

equation (2.50) with respect to p: 
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 (2.55) 

then a derivative with respect to time of the resulting equation gives: 
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p x p p  
 (2.56) 

or, 
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 (2.57) 

In equation (2.57), Θ gives the relationship of the variations in x at time t to variations of 

the parameters in p to first-order. The initial condition for Θ is: 

 
 0t




0
x

p  
 (2.58) 

as the parameters are independent from the initial conditions. 

Upon numerical integration of equations (2.53) and (2.57), the state-transition 

matrix and Θ can be implemented in a Jacobian for a root-solving process. If the solver 

converges, the solution is a proper set of initial conditions that satisfy all boundary 

conditions. However, for a system of n states and par parameters, the number of 

differential equations requiring numerical integration increases by n2 + n·par, meaning 

more computational effort. Higher order Taylor-series expansions of equation (2.51) are 

sometimes employed to get better relationships in the variations, but this increases the 

dimensionality of the problem even further. 

2.4.1 Single Shooting 

Using the state-transition matrix in a root-solving process subdivides into two 

categories: single and multiple shooting. Single shooting propagates the differential 
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equations forwards over the entire interval 0 , ft t t     and then a corrections process is 

performed via a root-solver. Using the state-transition matrix, the single shooter can be 

highly sensitive to variations in the initial conditions for nonlinear systems, as the 

solution to equation (2.53) is only a linear estimate.  A way to overcome the sensitivity of 

single shooting is to break up the integration over many segments and distribute the 

sensitivity over the integration interval. This results in a larger number of free variables 

and constraints, but gives a larger radius of convergence. 

2.4.2 Multiple Shooting 

Multiple shooting is a more robust method of obtaining convergence and 

exploring the phase-space of a system, especially near sources of high nonlinearity where 

the corrections process becomes sensitive. First the integration interval is divided into N 

nodes with N – 1 segments between the nodes. Each segment has their own set of initial 

conditions xi and are propagated forward in time from ti to ti+1. Thus the initial estimate 

of each set of initial conditions must be given to the root-solver for corrections. An 

illustration of the multiple shooting method is in Figure 2.3. 

After propagation of each segment, the ith initial conditions vector in general does 

not match the propagated state of from segment i – 1, or xi-1
f ≠ xi , for i = 2, …, N. This 

means that integrated states and initial conditions of the next segment must be enforced to 

be equal through equality constraints, which are often called continuity conditions. The 

free variables in equation (2.25) include every initial conditions vector, the final values at 

t = tf, and any parameters: 

  1 2

T

N X x x x p
 
 (2.59) 
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The constraints include the continuity conditions, and initial and final boundary 

conditions: 
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The Jacobian matrix is readily computed as: 
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(2.61) 

Figure 2.3 Visualization of multiple shooting before corrections. 
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where dxi
f / dxi and dxi

f / p are the state-transition matrices Φi and Θi for each segment 

respectively. With equations (2.60) and (2.61), the free-variable vector X is updated 

iteratively with either equation (2.30) or (2.31) depending if there are more free-variables 

than constraint equations.  
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CHAPTER 3. AGA TRAJECTORY OPTIMIZATION 

The concept of performing aerogravity-assist (AGA) missions has been around 

since the early 1980s [13–16].  In addition to using the gravitational force of the flyby 

planet to change a vehicle’s interplanetary trajectory, the aerodynamic forces of the 

planet’s atmosphere can be harnessed as well, giving further control to this change.  In a 

pure gravity-assist maneuver, the minimum flyby radius is limited by the planet’s 

sensible atmosphere or the surface of the body, if no atmosphere exists.  This altitude 

constraint limits the hyperbolic turn angle, defined as the angle between the incoming and 

outgoing V∞ vectors.  By taking advantage of the aerodynamic forces in an AGA 

maneuver, a larger turn angle can be achieved than that possible by a pure gravity assist, 

thus increasing the number of potential targets in the Solar System.  To perform an AGA 

maneuver, a vehicle with a high lift-to-drag ratio (L/D) is desirable so that the energy lost 

to drag is minimized for an arbitrary turn angle. It was found that waveriders may be 

among the best candidate vehicles to perform or test AGA missions due to their potential 

for high L/D ratios [17–20]. 

Interplanetary trajectories to multiple bodies have been designed assuming 

patched conics between the planetary bodies and analytical (closed-form) approximations 

for the AGA maneuvers [21–25]. Indirect optimization techniques have also been applied 

to the AGA fly-through problem assuming a fixed vehicle maximum L/D (for example, 

E* = 5) while maximizing or minimizing certain cost functionals [25–30]. For example, 
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Lohar et al. [29] show how to maximize the heliocentric velocity of a vehicle as it exits 

the atmosphere, while subject to a convective heating constraint, and Lyons et al. [30] 

explore present a preliminary guidance algorithm based on drag-tracking. 

The necessary conditions and formulation of boundary-value problems (BVPs) 

for AGA flight inside an atmosphere are discussed for different cost functionals and 

constraints. First, the equations of motion are presented and discussed with the 

assumptions for the model.  Second, the two-point boundary-value problem (TPBVP) is 

setup and solved for the AGA trajectory with the minimum required E* = (L/D)Max to 

complete the maneuver. This gives a lower bound that the aerodynamic characteristics of 

the vehicle need to meet. Third, the multi-point boundary-value problem (MPBVP) is 

setup and solved for the AGA trajectory with the minimum required E* with a stagnation 

point convective heating-rate constraint the vehicle cannot exceed. The heating-rate 

constraint necessitates the inclusion of a state-variable inequality constraint (SVIC) 

which transforms the TPBVP into a MPBVP. Lastly, the TPBVP for the AGA trajectory 

that minimizes the total integrated convective heat-load is setup and solved. This cost 

functional and setup is different than the previous two solutions, as E* is now a user-

defined quantity and allows for more variability in the design of the vehicle model. 

3.1 Equations of Motion 

The equations of motion inside an atmosphere around a spherical rotating central 

body with inverse-square gravity are adopted from Vinh et al. [26]: 
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where the states r, θ, ϕ, V, γ, ψ are the radial distance, longitude, latitude, planet-fixed 

velocity, planet-fixed flight-path angle, and planet-fixed heading respectively. L and D 

are the aerodynamic lift and drag respectively, Ω is the rotational rate of the body (with 

the atmosphere assumed to be rotating with the body at the same rate), σ is the bank angle, 

and μ is the standard gravitational parameter. It is important to note that V, γ, and ψ are 

derived with respect to the rotating body, and are not inertial values. Thus these equations 

are not valid outside the atmosphere, as the terms involving Ω would unrealistically 

dominate the motion far away from the central body. If the rotational effects from Ω are 

neglected, then V, γ, and ψ would become inertial values and the motion is valid 

everywhere. In this chapter (chapter 4) the inner planets are used as AGA bodies, and the 

rotation rate of the planets are neglected due to the slow rotations and short atmospheric 
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flight durations. In chapter 5 however, an aerocapture model is applied at the outer 

planets, where the large size and fast turning rates cannot be left out to get an accurate 

model of the dynamics. 

The Lift and Drag terms are defined as: 

 2 21 1
2 2,L DL V SC D V SC  

 
 (3.7) 

where ρ is the atmospheric density, S is the aerodynamic reference area, and CL and CD 

are the lift and drag coefficients respectively. The atmospheric density is modeled as 

exponential with the relationship: 

  0 0exp r R      
 
 (3.8) 

where ρ0 and R0 is the reference density and radius respectively, and β is the inverse 

scale-height of the atmosphere. Any model of the atmospheric density can be used, as 

long as the relationship between density and radius is C1 continuous, or has one 

continuous derivative. 

In sections 3.2 and 3.3, it is assumed the vehicle is controlled by pitching to 

increase or decrease the lift coefficient.  In order to model the pitching, the lift coefficient 

is varied, making it possible to follow some specified path through the atmosphere. This 

control scheme is chosen to simplify the model as in Lohar et al. [29]. In section 3.4, the 

above control scheme is employed with the additional bank angle as a control. When the 

research was being conducted, numerical problems arose when bank angle was attempted 

to be added, however these issues were later overcome and bank angle was able to be 

included in the analysis. 
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The drag coefficient is modeled as a function of the lift coefficient according to 

Vinh et al. [26]:  
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n

D D LC C K C   (3.9) 

It is possible to eliminate CD from the equations of motion by applying the following 

analytic expressions for |CL
*| and CD
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where equation (3.10) is derived from the stationary value of L/D evaluated at CL
*. 

Combining equations (3.9) and (3.10) allows the definition of a normalized drag 

coefficient, DC , to be a function of a normalized lift coefficient, LC : 

 1
n

L

D

Cn
C

n n


   (3.11) 

Values of n between 1.5 and 2.0 in equation (3.11) have been used in literature to model 

the lift and drag coefficients at hypersonic speeds. Both Lohar et al. [29] and Henning et 

al. [31] compared the limiting values of n at 1.5 and 2.0 in their analysis, while Casoliva 

et al. [32] used an average value of 1.75. Section 3.2 compares solutions with n = 1.5 and 

2, and sections 3.3 and  3.4 use n = 1.75. 

3.2 Interplanetary AGA Tours with  the Minimum (L/D)Max Solution 

Current peer-reviewed papers have treated the interplanetary and atmospheric 

flythrough phases separately and do not seek the minimum E*. In the present work, the 

interplanetary trajectory and the local atmospheric fly-through are unified in a procedure 

to minimize a vehicle’s maximum E*needed to complete a given mission. As an example, 
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a mission from Earth to Mars, then to Venus and back to Earth using AGA at Mars and 

Venus is considered. 

Following Lohar et al. [29], it is assumed that the sole control mechanism used 

during the AGA maneuver is lift modulation by varying the angle of attack. The control 

parameter implemented in the equations of motion is the lift coefficient, CL, 

corresponding to pitch modulation as the physical means to shape the trajectory. 

Normally, CL is positively valued with the bank angle determining the orientation of the 

lift vector. In the present work the bank angle is excluded (as in Lohar et al. [29]), thus 

eliminating out-of-plane motion, and CL is allowed to take on both positive and negative 

values. A negative CL value indicates that the vehicle is flying upside-down, equivalently 

corresponding to a bank angle of 180 deg about the velocity vector. 

The effects of heating and heat loading are not included in the present analysis. In 

practice, the heating brought on by hypersonic flight through an atmosphere can cause 

material to ablate from the structure of the vehicle, slightly changing the shape, and thus, 

also lowering the E* the vehicle can produce. Possible remedies are to include a thermal 

protection system or to increase E*, both of which add mass to the vehicle. 

3.2.1 STOUR-AGA 

The Satellite Tour Design Program (STOUR), capable of designing interplanetary 

missions using patched conics, was designed by engineers at JPL [34]. STOUR was then 

made fully automated by Williams [35], finding every interplanetary trajectory with only 

a few user inputs written on a scripted file. The inputs include a time-window of launch 

dates, the sequence of bodies used as gravity assists, maximum time-of-flight (TOF), and 

bounds on the incoming/outgoing V∞
 vectors. An algorithm to include aerogravity-assist 
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maneuvers was designed by Bonfiglio and Longuski at Purdue University called 

STOUR-AGA [23]. This addition to STOUR takes the maximum vehicle L/D (which will 

from now on be designated E*) as an additional input. STOUR computes all the possible 

patched-conic trajectories for the sequence over a range of designated dates, complete 

with the output of arrival and departure conditions at each planet. Trajectories are then 

chosen from the STOUR data that exhibit combined desirable traits such as low launch 

energy, short TOF, and low arrival V∞’s. 

To compute AGA trajectories, STOUR-AGA uses an E* matching algorithm 

similar to the C3 matching algorithm STOUR uses for traditional gravity assists. For a 

user-input E*, STOUR-AGA implements a root-solving technique to match all possible 

trajectories that possess the same E* [23], according to the equation: 
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 (3.12) 

where ϕ is the total turn angle around the planet and Rs is the altitude that the vehicle is 

assumed to be travelling for the trajectory. This analytical relationship assumes the AGA 

occurs at a constant altitude and relates the total hyperbolic turn angle of the AGA (inside 

and outside of the atmosphere) to common Keplerian orbital elements of interest. 

Consequently, an optimal path through the atmosphere can be found, resulting in the 

minimum E* needed to match the V∞
+ that propels the vehicle to the next body. 

Formulation of the optimization for the atmospheric portion of the trajectory uses 

planar equations of motion for a lifting body around a non-rotating planet.  An 

atmospheric model with density varying exponentially with altitude is assumed, with the 

reference altitude at the surface. The functional optimization problem is solved by 
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forming a two-point boundary-value problem (TPBVP) in which the vehicle’s lift 

coefficient, CL, is the control.  It is assumed that the vehicle can pitch or roll in such a 

fashion that the CL is allowed to vary freely from zero to its maximum.  The problem is 

restricted to planar motion and assumes an analytical normalized drag polar, where the 

drag coefficient, CD, is dependent on CL.  The incoming and outgoing V∞ vectors at the 

Mars and Venus flybys, which are designed via STOUR-AGA, specify the boundary 

conditions of the TPBVPs. 

Finding the overall minimum E* is achieved in two steps. Initially, the 

optimization problem is posed such that the velocity upon exiting the atmosphere is the 

cost functional to be maximized.  The exit velocity is translated to the departure V∞
+ 

speed using two-body energy conservation. The second step is to match the V∞
+ vector to 

what STOUR-AGA has prescribed, characterized by the magnitude, V∞
+, and the total 

turning angle, ϕ. This matching is done via an iterative process, in which both E* and the 

total atmospheric turning angle θatm are gradually adjusted and the TPBVP is solved 

again at each iteration.  In the final iteration, the minimum E* is obtained which matches 

the exit V∞
+ found in STOUR-AGA. The iteration process terminates when the desired 

exit conditions are met, guaranteeing that the spacecraft reaches its next destination. 

The optimization problem is set up to maximize the velocity at atmospheric exit. 

It turns out that directly minimizing the L/D during the atmospheric fly-through while 

maintaining the constraint on the exit V∞
+ leads to significant numerical complications. 

To get around the numerical problems the two-step method of first maximizing the 

atmospheric exit velocity and then correcting E* and θatm to match the exit conditions 

dictated by STOUR-AGA is implemented. The method presented here gives the 
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minimum E* required to complete a given mission by performing the two-step 

optimization at every AGA fly-by body, and determining which AGA maneuver gives 

the limiting (highest) E*. 

3.2.2 Interplanetary Trajectory Selection Using STOUR 

The examples chosen are EMVE trajectories in which both Mars and Venus are 

used as AGA bodies.  Such missions could be of scientific interest since they would 

permit atmospheric sample returns, as well as demonstrating the technology required of 

AGA. 

To produce candidate trajectories, a broad search in STOUR was performed.  The 

launch dates that were searched span 25 years, ranging from March 2012 to March 2037 

with a maximum TOF of 500 days.  The launch V∞ from Earth was chosen between 4 

km/s to 7 km/s. A Delta IV or Atlas V launch vehicle is more than capable of delivering 

such launch energies assuming the vehicle has a reasonably small mass [36]. The values 

of the vehicle’s maximum E* considered were 3, 5, 7, and 10 [18].  The lower values are 

considered feasible for the near future, and the higher values may be achievable in the 

long term.  The higher values are included to illustrate the flexibility and potential of 

AGA maneuvers in trajectory design. 

An example of an EMVE broad search done in STOUR with E* = 3 is shown in 

Figure 3.1. The figure is restricted to show launch dates between January 2016 and early 

March 2016 for visual clarity, as well as possessing Earth arrival V∞’s of less than 10 

km/s to allow for current entry technology to be used.  Each point represents one 

trajectory with the launch date and TOF as the coordinates.  The launch V∞ is indicated 

by the number of the data point. The number 1 indicates a launch V∞ between 4 and 4.75 
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km/s, the number 2, between 4.75 and 5.5 km/s, the number 3, between 5.5 and 6.25 km/s, 

and the number 4, between 6.25 and 7 km/s. Based on Figure 3.1, a good launch 

opportunity used in this analysis occurs on March 17, 2016, as it possesses a relatively 

low TOF of 375 days, and a launch V∞ of 4.5 km/s. The trajectory corresponds to the data 

point at the tip of the arrow with a corresponding number 1. Figure 3.2 shows a 

heliocentric view of this trajectory. 

Other launch windows were found in the search but were not considered in this 

analysis. Two windows of opportunity with relatively low launch V∞s occur between 

2028 and 2029 as well as between 2034 and 2036. 

Figure 3.1: EMVE broad search for launch years 2015-2017 (E* = 3, V∞ = 4-7 
km/s). 
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3.2.3 Approximate Calculation For AGA Boundary Conditions 

For simplicity, an exponential atmospheric density model is assumed at the flyby 

planets of interest. The density, ρ, at a given altitude, r, is computed using equation (3.8) 

where R0 and ρ0 are the altitude and density on the surface, and β is the inverse of the 

density scale height.  From Vinh et al. [26], scale heights of 10.6 km and 6 km for Mars 

and Venus, are used respectively. 

STOUR-AGA provides the necessary incoming (V∞
-) and outgoing (V∞

+) vectors 

to get to the next target in a given tour, however specific vehicle parameters are necessary 

Figure 3.2: EMVE trajectory with E* = 3 and launch V∞ = 4.5 km/s for launch on March 
22, 2016. 
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to describe the aerodynamics during flight. Finding appropriate vehicle parameters is 

found by analyzing where the vehicle maintains approximate level flight, denoted here as 

Rref, as this altitude is where it receives the most lift.  

To maintain level flight the applied and inertial accelerations must balance 

according the following equation: 

 grav aero centg g g   (3.13) 

where ggrav, gaero, and gcent are the gravitational, aerodynamic, and centripetal 

accelerations, respectively.  The accelerations are modeled using the following equations 

 
  2 * 2

0 0

2

exp
, ,

2
L

grav aero cent

r R V SC V
g g g

r m r

         (3.14) 

where the coefficient of lift is evaluated at maximum L/D in the gaero term as the vehicle 

will produce the most efficient lift during the level flight. The two-body conservation of 

orbital energy equation is used to find the corresponding velocity at entry and departure 

of the atmosphere: 

 22V r V    (3.15) 

where we take r at the sensible edge of the planets’ atmosphere. The atmosphere’s edge is 

chosen to be 500 km altitude, but this can be any altitude where the density becomes 

negligible in the equations of motion. Since the entry and exit velocities at the 

atmosphere are known, the velocity the vehicle will have at Rref is estimated by taking the 

average of the two. 

The reference altitude, although only an approximation, is useful in characterizing 

a suitable vehicle in terms of its size-to-weight ratio and lift capability. By substituting 
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equation (3.15) into equation (3.16), multiplying through by 2r/V2, rearranging, and 

evaluating r at Rref, the following useful parameter is constructed: 

 
  *
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 (3.16) 

where Vest is the estimated velocity at the reference altitude, taken as the average of the 

speeds at the entrance and exit of the atmosphere. 

The parameter η lends insight into the physics of the problem with respect to the 

vehicle’s characteristics.  For a given Rref, there is a set of vehicle parameters that 

balances the vertical accelerations in equation (3.14). The desired reference altitude is 

targeted by appropriately adjusting η, or equivalently, by changing the ballistic 

characteristics of the vehicle. Being able to choose a reference altitude is useful for 

avoiding terrestrial objects that would otherwise hinder the vehicle’s progress. As in 

Smith and Longuski [37], Table 3.1 contains the data that describes an example of an 

AGA vehicle.  The mass, lifting area, maximum lift coefficient, along with the flyby 

speed determines the reference altitude at a given planet, and the efficiency of the optimal 

flythrough depends on E*.  

Smith and Longuski [37] show that the vehicle described in Table 3.1 would fly at 

reasonable altitudes (i.e. high enough above the surfaces) within the atmospheres of Mars 

Parameter Value 

Mass [kg] 1336 

Area [m2] 5.574 

CL
* 0.0571 

E* 3.6603 

Table 3.1 Initial vehicle parameters 
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and Venus.  However, according to Anderson et al. [18], if the vehicles are designed 

specifically to fly at Mars or Venus, the aerodynamic characteristics would be different. 

For optimally shaped vehicles at Venus and Mars, lift coefficients of approximately 0.015 

and 0.034, respectively are to be expected.  If the vehicle design has slightly different lift 

coefficients than these at either planet, the result would be a higher or lower reference 

altitude. 

At Mars for example, the atmosphere is very thin compared to Earth or Venus.  A 

given vehicle will have a much lower reference altitude at Mars than at either Earth or 

Venus.  In addition, Mars has some of the tallest mountains in the Solar System, with 

Olympus Mons reaching nearly 22 km above the mean radius of Mars.  Assuming the lift 

coefficients given by Anderson et al. [18], a vehicle mass-to-area ratio of approximately 

100 kg/m2 would keep the vehicle around 25 to 30 km during cruise at the reference 

altitude, which clears the Martian mountains.  At Venus, the same vehicle would cruise in 

a range of about 85 to 90 km, depending on the velocity.  Venus’ maximum elevation is 

approximately 11 km, meaning there is no terrestrial threat to the vehicle at Venus. The 

vehicle parameters used in the simulation are listed in Table 3.2, where Rref is chosen to 

be 28 km at Mars to avoid terrestrial collisions. The same vehicle gives an Rref of 63 km 

Parameter Mars Venus 
m [kg] 1500 1500 
S [m2] 15 15 
CL

* 0.034 0.015 
E* 3 3 
η 23 5.9 x 104 

ρ0 [kg/m3] 0.02 65 
β [km-1] 0.094 0.17 

Table 3.2    Vehicle parameters and constants used in EMVE simulation 
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at Venus which is above any terrestrial threat there. 

Once the V∞ vectors and the vehicle parameters are specified, there exists enough 

information to transform the data into boundary conditions for the TPBVP.  The height of 

the sensible atmosphere of 500 km altitude is used for both the arrival and departure 

boundary conditions for the position, r. The velocities at atmospheric entry and exit are 

found via equation (3.15).  The reference altitude gives the approximate atmospheric 

turning angle, θatm. The true atmospheric turn angle is found via an iterative process, to 

match the V∞
 vectors given from STOUR-AGA, discussed in a later section.  The 

problem is not strictly two-body due to the fact that the AGA maneuver rotates the line of 

apsides. 

In order to obtain the approximate θatm, the true anomalies at entry and departure 

of the atmosphere are calculated.  With Rref, the true anomaly is found by rearranging the 

classic conic equation and isolating the true anomaly 

   1 2cos / 1 /f h r e      (3.17) 

The expressions for the specific angular momentum, h, and the eccentricity, e, are 

 ref refh R V  r V  (3.18) 

  2 1ref refe V R    (3.19)
 

where the reference altitude is used as an approximation for the periapsis radius of the 

AGA maneuver. The assumption that Rref is the periapsis value is valid since the vehicle 

will be traveling at about that altitude for most of the time. Equation (3.15) is used again 

to get Vref at both entry and exit of the atmosphere, which is substituted into equations 

(3.18) and (3.19).  It is important to note that Vref is different at atmospheric entry and 
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departure, and is in fact a velocity the vehicle will never achieve due to the energy 

dissipation from atmospheric drag. With the approximate values for h at atmospheric 

entry and departure, it is possible to find the corresponding true anomalies using equation 

(3.17). The boundary condition for θatm is then calculated using the angle geometry of the 

AGA maneuver. Figure 3.3 highlights the relationship between the angles involved in the 

AGA maneuver. The shaded area on Figure 3.3 represents the atmospheric portion of 

flight, which is spanned by θatm. The schematic in Figure 3.3 is presented again in a more 

convenient form in Figure 3.4. 

Equation (3.20) gives the expression for the approximate θatm, using the geometry 

of AGA. 

    atm dep arrf f f f    
        (3.20) 
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Figure 3.3  Planar view of an AGA maneuver. 
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The angle  is the total turning angle between the incoming and outgoing V∞ vectors.  

This angle is found using equation (3.21), which comes from the definition of the inner 

product of two vectors. 

 1cos
 

  
 
 

 
 
 
 

V V

V V
 (3.21) 

With all the available boundary conditions, an optimization problem is now posed with 

the objective of maximizing the velocity upon exiting the atmosphere. 

3.2.4 Nondimensional Equations of Motion 

A further simplification is made to equations (3.1) – (3.6), assuming only planar 

motion which reduces the number of dependent variables from six to four. 
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Figure 3.4: AGA angle relationships between incoming and outgoing hyperbolic 
trajectories. 

 



45 

 

 

2

2

2

sin

cos

sin

cos
cos

dr
V

dt
d V

dt r
dV D

dt m r

d L V
V

dt m r r



 

 

  






 

  

 (3.22) 

where the bank angle term that would appear in the first term of the right-hand side of the 

last in equation (3.22) (i.e. cosL m  , where σ is the bank angle) has been excluded in 

favor of the control scheme described earlier, involving angle of attack, enforcing the 

trajectory to remain planar. 

The four state variables are r, θ, V, and γ, which correspond to the radius, 

atmospheric turning angle, velocity, and flight path angle, respectively. The four 

equations of motion are given as first-order derivatives with respect to time, however 

time is not a variable of interest in this problem, nor do any available boundary 

conditions exist.  Instead, the independent variable is transformed from time to θ and its 

boundary conditions are known with zero being the initial condition and θatm being the 

final condition. Changing independent variables in equation (3.22), gives with the 

following reduced equations of motion. 
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where the lift and drag variables have been replaced with the relationships in equation 

(3.7). For numerical simplicity the equations of motion are nondimensionalized with the 

following substitutions for the radius and velocity respectively: 

 
2 *
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     (3.24) 

It is important to note that ξ in equation (3.24), although similar to η in equation (3.16), 

does not possess the same value. The parameter ξ is merely used for making the 

equations of motion more compact, whereas η is used to determine the characteristics of 

the vehicle. Furthermore, the density is nondimensionalized by the reference density ρ0 

for compactness. 
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        (3.25) 

Finally, the normalized lift and drag coefficients are introduced: 
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where CL
* and CD

* correspond to the lift and drag coefficients when the L/D is at its 

maximum value, E*.  Combining equations (3.15) and (3.24) – (3.26), and substituting 

into equation (3.23), results in the following nondimensionalized equations of motion 

used in this analysis: 
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3.2.5 Optimization of Atmospheric Flight 

The optimization problem is solved in two steps.  First, the optimal trajectory is 

defined as a TPBVP that maximizes the velocity as the vehicle exits the atmosphere, 

using the approximate boundary conditions derived from Equations (3.14) – (3.21).  This 

is equivalent to minimizing the amount of velocity lost to drag over the course of the 

trajectory.  Second, depending on whether the departure V∞
+ vector possesses the same 

magnitude and direction as determined by STOUR-AGA, both E* and θatm are reduced 

(or increased) and the TPBVP is re-solved iteratively until the departure V∞
+ vector is 

matched to within a specified tolerance.   

3.2.5.1 Two-Point Boundary Value Problem 

The cost functional for the problem is 

    Max J f f= V t = V θ  (3.28) 

where the independent variable of time has been replaced by the longitude θ; this 

substitution does not change the physical meaning of equation (3.28).  The cost 

functional is subject to the equations of motion given in equation (3.27). The Hamiltonian 

is given by: 
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The costate equations are obtained by applying the Euler-Lagrange theorem: 
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For brevity, these equations are omitted.  The optimal control law is found by computing 

/ 0LH C    and yields: 
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when n = 2, and 
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 (3.32) 

when n = 1.5, and sgn is the signum function. 

Because only five boundary conditions are known, a set of transversality 

conditions is necessary for a well-defined TPBVP. The transversality conditions used to 

obtain a full set of eight boundary conditions is found with: 

 
0
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fTHd d d




      x  (3.33) 

where  fu     is the Mayer form of the cost functional. Expanding equation (3.33) 

gives: 

  0 0 1 0
f ff u fd d du          (3.34) 

The λ costates in equation (3.34) correspond to the states that are, thus far, unconstrained.  

Because the states and costates are independent and the differentials of the final values of 

the states are nonzero, the coefficients are chosen such that equation (3.34) is satisfied: 

      0 0, 0, 1f u f          (3.35) 

Eight boundary conditions have now been acquired, which is needed for a well-defined 

TPBVP.   
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Note that in equations (3.31) and (3.32) the control law is expressed as a ratio of 

two costates.  Upon defining another new costate as the ratio of two costates: 

 5
r

u

C



  (3.36) 

The number of overall costates required in the optimization problem can be reduced from 

three to two. This reduction is convenient from a numerical perspective, as only five 

differential equations need to be integrated instead of six. Taking the differentials of 

equations (3.31) and (3.36) with n = 2, and substituting the necessary equations of motion 

from equation (3.27), gives the new costate differential equations: 
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 (3.37) 

When n = 1.5, the new costate differential equations become: 
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Now that a well-defined TPBVP has been posed, the optimal open-loop control history 

can be obtained numerically. 

3.2.5.2 V∞ Matching 

After finding the maximum atmospheric departure velocity obtained from the 

optimization scheme, which has a corresponding departure hyperbolic excess velocity, 

V∞opt, it must be matched to the prescribed V∞
+ that came out of STOUR-AGA. The V∞

+ 

matching is done iteratively by adjusting both E* and θatm and re-solving the TPBVP, to 

find the overall mission minimum E*. After an AGA trajectory is computed, the outgoing 

V∞opt vector will differ slightly from the desired V∞
+ from STOUR-AGA, as illustrated in 

Fig. 4. The error between V∞
+ and V∞opt, ΔV, is a vector with both direction and 

magnitude. The error in direction is characterized by the angle Δ, found via the 

difference between equation (3.21) and the desired turn angle, while the magnitude error 

is found using equation (3.39): 

  2 2 2 2 cosopt optV V V V V  
         (3.39) 

In the computations Δ turns out to be small, equation (3.39) becomes a perfect square, 

Figure 3.5: V∞
+ Matching Schematic 
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and the difference between the velocity magnitudes is approximated by: 

 optV V V
     (3.40) 

A line search is performed that adjusts both E* and θatm iteratively until the error 

between the V∞ vectors is eliminated.  The velocity magnitude at atmospheric departure is 

most directly influenced by E* since it determines the amount of velocity lost to drag.  E* 

is updated using the following formula: 

  * *
0 1E E V    (3.41) 

where E0
* is the initial E* used when solving the TPBVP the first time. θatm is adjusted in 

a similar fashion to correct the direction error Δ, with: 

  ,0 1atm atm       (3.42) 

where θatm,0 is the initial θatm used when solving the TPBVP the first time. The variables 

ω and κ are arbitrary parameters that were picked by trial and error. The parameters can 

be made larger or smaller to hasten the calculations or to avoid overshooting the desired 

values and should be updated simultaneously to speed up convergence. Each time these 

variables are updated, the TPBVP is re-solved and the errors are recalculated.  This 

process continues until the desired departure conditions are met. 

3.2.5.3 Results 

Figure 3.6 – Figure 3.8 contain the optimal altitude, velocity, and L/D profiles for 

the Mars atmospheric flythrough for the trajectory presented in Figure 3.3 with a launch 

date of March 22, 2016. Venus trajectory profiles look similar, so they are omitted for 

brevity. The vehicle enters the atmosphere and steadily plunges deeper until it reaches the 

reference altitude of approximately 28 km above the surface as illustrated in Figure 3.6. 
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As expected, the vehicle spends much of its time around this altitude. The 

velocity of the vehicle with respect to Mars is given in Figure 3.7. First the vehicle gains 

velocity by trading potential energy for kinetic energy as it quickly plunges into the 

atmosphere, but then abruptly loses the kinetic energy accumulation as the aerodynamic 

forces build when reaching the reference altitude. During this period, the vehicle steadily 

loses speed due to drag. Upon the ascent to exit the atmosphere, the vehicle loses 

additional speed, but at a slower rate, as aerodynamic forces become less pronounced at 

higher altitudes. 
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Figure 3.6: Altitude vs θatm above Mars. 
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 The question arises as to why the velocity history in Figure 3.7 would be the 

optimal solution, as the vehicle seems to lose the majority of its speed during the cruising 

period. The answer is more apparent when looking at the L/D history of the vehicle in 

Figure 3.8. During the cruising period at the reference altitude, the 

 vehicle’s prescribed E*, is achieved and held constant, meaning that the vehicle 

was receiving the most efficient aerodynamic lift possible. As described earlier, the lift 

coefficient is allowed to take on positive and negative values due to the exclusion of a 
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Figure 3.7: Velocity vs θatm above Mars. 
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bank angle. In Figure 3.8, the L/D scale is negative in the figure to indicate that the lift 

vector is pointed down towards the planet. 

Note that in Figure 3.6 and Figure 3.7, only the position and velocity histories 

with a drag polar using n = 2 is shown. With the hypersonic model of n = 1.5, the figures 

are very similar making them difficult to distinguish. However the control history shown 

in Figure 3.8 makes the differences in the two models more apparent. The main 

difference in the optimal control for each case occurs during the descending and 

ascending phases of the atmospheric flythrough. The subsonic model (n = 2) calls for a 

steeper L/D at first with a more gradual shift into the maximum L/D region, while the 

hypersonic model (n = 1.5) dictates the opposite behavior. Figure 3.8 suggests that there 

is an interesting, but insignificant difference in using one aerodynamic model over the 

Figure 3.8: L/D vs. θatm above Mars. 
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other, since the vehicle spends most of the trajectory at the reference altitude where the 

L/D is closest to E*. Additionally, the L/D values are negative corresponding to the 

vehicle flying upside-down in the model. 

Overall, STOUR’s approximations for E* are fairly accurate. After matching the 

outgoing V∞
+ vectors with equations (3.41) and (3.42), the optimal (minimum) E* needed 

for the atmospheric flythroughs at Mars and Venus are computed as 2.994 and 3.015 

respectively. Thus an overall mission minimum E* for a vehicle performing such 

atmospheric sample return at Mars and Venus is 3.015. With the process outlined in this 

paper, a minimum E* can be calculated for any interplanetary mission employing AGA. 

A method for identifying and optimizing AGA trajectories for exploration of the 

Solar System has been developed. In previous work in the literature, the design of AGA 

missions has been treated as two separate problems. In the first case the interplanetary 

trajectories are represented by conics that are patched together via a closed-form 

approximation for the AGA. In the second case, research has centered on the details of 

the atmospheric fly-through phase for a given (but not minimum) E* while often 

satisfying, for example, a heating constraint.  

In the present work the interplanetary trajectory and atmospheric fly-through 

trajectory are unified in a process to determine an overall mission minimum E*. Starting 

with an automated patched-conic approach, interplanetary trajectories were found which 

employed AGA maneuvers. The characteristics of these AGA maneuvers (e.g. initial 

E*and assumed fly-by altitude, Rs) were determined for the interplanetary trajectories 

using a simplified model. For the atmospheric fly-through portion of the trajectory, a 

more sophisticated model was used to find the minimum lift-to-drag ratio, E*. In order to 
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avoid certain numerical difficulties, the minimization of E* was obtained in a two-step 

process. First, based on the interplanetary trajectories found using the patched-conic 

approach, two-point boundary value problems were set up to maximize the velocity at 

departure of the atmosphere at each AGA body. Second, E* and θatm are corrected using a 

line search approach to match the V∞
+ vectors from STOUR-AGA. The overall minimum 

E* required of the vehicle needed to complete a given mission is found by taking the 

limiting case of the AGA maneuvers in the mission (the one with the largest E*).  

An example of an Earth-Mars-Venus-Earth atmospheric sample return mission 

using AGA is calculated with a total flight time of just over a year with an E* of 2.994 for 

Mars and 3.015 for Venus (i.e. Venus is the limiting case). The aerodynamic models 

based on the parabolic (n = 2) and hypersonic (n = 1.5) drag polars produced very similar 

results with the exception in the upper atmosphere where the aerodynamic effects are 

insignificant. This short-duration trajectory suggests the possibility of a mission that can 

serve as both a technology demonstrator and as an atmospheric science sample return 

mission. 

3.3 Minimum AGA (L/D)Max Solution with Convective Heating-Rate 

Constraint 

Section 3.2 detailed a method to obtain the optimal E* for interplanetary tours 

using AGA, but neglected to consider a key element to make AGA realizable in the near 

future: heating. This section uses the necessary conditions for a local optimum using 

optimal control theory employing state-variable inequality constraints (SVIC). The 

method of obtaining interplanetary AGA tours is the same as in section 3.2, but now a 
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convective heating-rate constraint is imposed on the atmospheric portions of the 

trajectory. 

In atmospheres of considerable density, AGA maneuvers produce a considerable 

amount of heating that can lead to ablation. Ablation can warp the outside structure of the 

vehicle, causing the aerodynamic properties of the vehicle to change or the structure to 

break apart causing mission failure. In order to mitigate vehicle warping due to excessive 

heating, the trajectory of the vehicle through the atmosphere can be flown such that the 

heating rate is kept within tolerable levels. For the current investigation, the heating rate 

measured at the stagnation point is maintained under a prescribed maximum value. 

The two main types of heating involved during atmospheric flight are convective 

heating and radiative heating. Lohar et al. has shown that at low altitudes, the effects of 

radiative heating dominate the convective heating, and the reverse is true at high altitudes 

[29]. Since AGA maneuvers are performed at higher altitudes, to minimize energy loss 

due to drag as well as avoid terrestrial obstacles, the convective heating rate is 

constrained in this investigation. 

The stagnation point convective heating rate, cq , is computed via Sutton and 

Graves [39]: 

 3
c

n

q k V
r


  (3.43) 

where k is a constant dictated by the atmospheric composition, rn is the radius of the 

stagnation region (commonly located at the tip, or nose of the vehicle), V is the velocity, 

and the density ρ is given by equation (3.8). During the atmospheric fly-through, cq  is 
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kept below a prescribed maximum value, ,maxcq , introducing the following SVIC to the 

optimal control problem: 

 ,maxc cS q q    (3.44) 

Equation (3.44) is used to mitigate the effects of vehicle degradation due to aerodynamic 

heating during an AGA maneuver. 

 An additional change to the formulation of optimal AGA tours from section 3.2 is 

the full three degree-of-freedom model and six differential equations of motion are now 

used, for an inverse-square gravitational potential with nonrotating atmosphere: 
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 (3.45) 

The equations of motion in equation (3.45) now have a nondimensionalized time as the 

independent variable with: 

 0

0

(.)
, (.) '

V d
t

R d



   (3.46) 

and have the following additional nondimensional variables: 

 2
0 0 0/ , / ( )v V V R V    (3.47) 
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The exponential atmospheric density model in equation (3.8) is used along with the 

analytic drag polar in equation (3.11) with n = 2. Also, the bank angle σ is included as a 

second control variable in the optimal control formulation. 

3.3.1 Optimal Control Problem with Heat Constraint 

The AGA optimal control problem is solved using an indirect method with 

Pontryagin’s Maximum Principle. The cost functional is the maximization of the final 

velocity upon exiting the atmosphere: 

 Max ( , ) ( ) ( )f f f fJ t V t v    x  (3.48) 

subject to the equations of motion in equation (3.45), the SVIC in equation (3.44), and a 

number of boundary conditions specified for an AGA maneuver (described later). First 

the order of the SVIC must be determined by taking total derivatives of equation (3.44) 

with respect to nondimensional time until a control appears explicitly. The 

nondimensional form of equation (3.44) is: 

   31
0 ,max2exp 1 cS R r v q        (3.49) 

where the limiting value of the stagnation point convective heating rate on the right-hand 

side of equation (3.49) in nondimensional form is: 
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Taking the first total derivative of equation (3.49) with respect to τ yields: 
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The control LC  appears explicitly in equation (3.51), indicating the state-variable 

inequality constraint is of first order. Equation (3.51) is adjoined to the Hamiltonian with 

a time-varying Lagrange multiplier, κ. The new Hamiltonian takes the form: 
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 (3.52) 

The necessary conditions for local optimality come from applying the Euler-Lagrange 

theorem along with Pontryagin’s Maximum Principle to set up a multi-point boundary-

value problem (MPBVP). The necessary conditions are: 
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 (3.53) 

where u = [CL, σ]T is the vector of control parameters. The evaluation of the first of 

equation (3.53) is omitted for brevity. Evaluating the second of equation (3.53), the 

control law on arcs not on the SVIC boundary is 
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 (3.54) 

with κ = 0. Since the cost functional is being maximized, the Hessian matrix resulting 

from the third of equation (3.53) must be negative semi-definite. On boundary arcs of the 

SVIC, the control law for LC is found by setting equation (3.51) equal to zero: 
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Since the bank angle control σ did not appear in equation (3.51), it obeys the first of 

equation (3.54) over the entire trajectory. The equation for κ changes when the trajectory 

hits a boundary subarc: 
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where [tentry, texit] is the time interval on the boundary subarc. 

The necessary conditions also dictate a set of transversality conditions to obtain a 

well-defined boundary-value problem. These transversality conditions are found by 

finding the initial and final conditions such that 
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      x  (3.57) 

Or upon evaluation: 

 0 0( ) 0, ( ) 0, ( ) 0, ( ) 1, ( ) 0, ( ) 0f v f f fH                     (3.58) 

Finally, the MPBVP has tangency and jump conditions to maintain at the entrance 

of a boundary arc [6]. The tangency conditions require equation (3.49) set to its 

maximum value at the entry interface (τ = τentry): 

   31
0 1 1 ,max2exp ( ) 1 ( ) cR r v q         (3.59) 

A set of jump conditions exist that must satisfy: 
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where π is an additional constant Lagrange multiplier accounting for the discontinuity in 

both r  and v . Since the Hamiltonian is regular [6], the condition that the Hamiltonian 

is constant across τentry and τexit can be replaced with the control LC  being continuous 

instead: 

 ( ) ( ), ( ) ( )L entry L entry L exit L exitC C C C         (3.61) 

The advantage using equation (3.61) is that it is more numerically tractable than using the 

Hamiltonian, as the Hamiltonian is a function of more variables. 

All other physical boundary conditions to construct a well-formulated MPBVP 

are known. Integrating equations (3.45) with the control laws in equations (3.54) and 

(3.55), adhering to the interior and jump conditions of equations (3.60) and (3.61), while 

satisfying all boundary and transversality conditions in equation (3.58) gives a locally 

optimal solution. 

3.3.2  Numerical Results 

 All numerical results are found by solving the MPBVP using the multiple-

shooting technique. Due to sensitivities, the results were iteratively found via a homotopy 

method by first solving the problem without a convective stagnation point heating rate  

constraint, then increasing ,maxcq  to the desired maximum using the solution to the 

previous iteration as the guess for the for the next one. 
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  An example case for AGA with a convective heating-rate constraint is computed 

at Venus for the interplanetary trajectory depicted in Figure 3.2. The relevant vehicle 

parameters and arrival and departure conditions are listed in Table 3.3. The physical 

boundary conditions are computed via the method outlined in section 3.2.3. 

The solutions of the unconstrained (no heat-rate limitation) and constrained 

trajectories are in Figure 3.9 – Figure 3.12. When no heating-rate limit is imposed on the 

trajectory, E* must be at least 3.06 in order to satisfy the boundary conditions on the V∞
+ 

vector and get to the next interplanetary target (Mars). However, when the SVIC for the 

convective heating-rate is involved, E* must be equal to 5.23, a 2.17 increase from the 

unconstrained case. The need for the increase in E* becomes apparent when looking at 

Figure 3.9, as the altitude profile for the constrained case is about 40 km higher than the 

unconstrained case at the lowest point. In order to generate enough lift to be able to fly 

higher, E* must be increased accordingly. Since the convective heating-rate relationship 

Parameter Symbol Value Units 
Vehicle mass m 1500 kg 
Aerodynamic reference area S 15 m2 

Analytic drag polar exponent n 2 — 
Lift coefficient at maximum L/D CL

* 0.0868 — 
Inverse scale-height β 1/15.9 km 
Reference density ρ0 65 kg/m3 

Reference radius R0 6052 km 
Height of atmosphere hatm 500 km 
Nose radius rn 0.3 m 
Sutton-Graves constant k 1.9027e-8 kg1/2/m 
Total hyperbolic turn angle δ 64.6 deg 
Arrival hyperbolic excess speed V∞

– 8.842 km/s 
Departure hyperbolic excess speed V∞

+ 6.488 km/s 
Maximum convective heating rate allowed ,  800 W/cm2 

Table 3.3 Parameters and constants used in Venus AGA with heating-rate constraint 
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in equation (3.43) is function of both atmospheric density (hence radius) and velocity, it 

makes sense to fly higher and hit the less dense air at when at high speeds. 

The velocity profile in Figure 3.10 shows the constrained case losing its speed 

faster than the unconstrained case when flying at the bottom of the “trough” shaped out 

by the altitude profile. Since the convective heating-rate is a function of the speed cubed, 

there is a need to bleed off the high speeds to maintain the heating-rate constraint. 

However since the heating-rate is a function of both speed and altitude, the optimal 

control history reduces them in a way that the cost functional is minimized as well. 

Figure 3.9: Altitude versus time for constrained and unconstrained trajectories. 
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Figure 3.11 shows the convective heating-rate, and the reason behind the drastic 

increase required in E*. The constrained case plateaus at the maximum allowable heating-

rate between approximately 130 – 240 seconds, while the unconstrained case shoots up to 

a maximum value of 2178 W/cm2. For many thermal protection system materials, a high 

heating-rate will cause heavy ablation. In AGA one of the goals is to fly a trajectory with 

only a minimal amount of ablation, as the aerodynamic characteristics would change, 

compromising the mission. 

Figure 3.10: Velocity versus time for constrained and unconstrained trajectories. 
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The control history of L/D displayed in Figure 3.12 shows a clear distinction 

between the maximum E* required for the constrained and unconstrained trajectories. 

When unconstrained, the L/D smoothly climbs to the maximum E* of 3.06 during descent, 

then reverts back to zero during ascent. With the heating-rate constraint, the control 

shows three separate phases in the trajectory. The first phase during descent has the 

control quickly rise to the maximum E* of 5.23, then decrease to a value of ~2.5 when the 

SVIC for the heating-rate constraint becomes active at ~150 seconds. Then the control 

effort increases fairly linearly until ~230 seconds when the vehicle departs the SVIC 

Figure 3.11: Convective heat-rate versus time for constrained and unconstrained 
trajectories. 
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boundary and increases the E* back to the maximum. Finally when the vehicle ascends 

out of the atmosphere, the control effort goes back to zero. 

3.4 Minimum AGA Heat Load Solution 

The heating rate and subsequent total heat load may be one of the most mission 

critical aspects of an AGA maneuver [27]. In section 3.3, a method for obtaining the 

minimum E* solution for AGA subject to a convective heating-rate constraint in the form 

of a SVIC was developed. If the AGA vehicle has a high enough E*, it can fly high up 

enough in an atmosphere to reduce the convective heating-rate in equation (3.43), as it is 

a function of atmospheric density (which is a function of altitude). However, the vehicle 

Figure 3.12: L/D versus time for constrained and unconstrained trajectories. 
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must remain in the atmosphere over a long duration of time at hypersonic speeds meaning 

it accrues a high total heat load. The current section formulates an optimal control 

problem to minimize the total convective heat-load. Numerical problems in directly 

targeting the outgoing V∞
+ vector in the boundary conditions are overcome via the 

implementation of a collocation scheme. In sections 3.2 and 3.3 the V∞
+ vector direction 

and magnitude were solved in an iterative way, by matching E* and θf via the method 

outlined in section 3.2.5.2. Now both the V∞
+ magnitude and direction are satisfied in the 

boundary conditions of the optimal control problem itself. 

Using equation (3.15) along with equations (3.20) and (3.21), the physical 

boundary conditions are rewritten in terms of the state variables, and an optimal control 

problem is solved using indirect methods. In order to numerically solve the resulting two-

point boundary value problem, a 3rd-order Gauss-Lobatto collocation scheme is used to 

get an accurate initial guess, and the solution is refined using a multiple shooting 

technique with an eighth-order Runge-Kutta Prince-Dormand explicit integrator. The 

absolute and relative integration error tolerances are both set to 10-16.  

The properties of the vehicle modeled in this analysis are defined in terms of E*, 

CL
*, S, and m. A previous paper by the authors found the minimum required E* for a 

given mission by solving an optimal control problem based on maximizing atmospheric 

exit velocity [31]. However the solution to the previous paper was found by targeting the 

outgoing V∞ (boundary conditions) by adjusting E*, limiting the choice of vehicle 

parameters to a restricted set. The solution in this paper is an improvement in two ways. 

First, the characteristics defining the vehicle have more room for design, as E* can now 

be chosen, and the optimal control history can be adjusted to meet the design requirement 
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(assuming the vehicle can generate the required lift to complete the AGA maneuver). 

Second, the optimal trajectory is a local minimum for the total heat load the vehicle will 

accumulate, as stated by the necessary conditions derived from Pontryagin’s Minimum 

Principle [3–5]. 

The equations of motion are for a spherical, non-rotating planet, given by 

equations (3.1) – (3.6) with Ω set to zero. The aerodynamics is modeled by the analytic 

drag polar given by equation (3.11) with n = 1.75, and the atmospheric density is 

modeled exponentially via equation (3.8). The equations of motion are 

nondimensionalized with the same parameters in section 3.3, yielding the form of 

equation (3.45).  

As the vehicle traverses the atmosphere, some of the kinetic energy is dissipated 

into heat, affecting the structure of the vehicle. In flythroughs deep in the atmosphere, 

major heating can lead to ablation problems that can warp the outside structure of the 

vehicle. If the outside structure were to change during flight, the aerodynamic properties 

of the vehicle could degrade. In order to mitigate vehicle degradation due to excessive 

heating, the trajectory of the vehicle through the atmosphere should be flown such that 

the heating rate, and thus the integrated heat load, is kept within the capabilities of the 

thermal protection system. For this investigation, the heat load at the stagnation point is 

minimized. 

The two main types of heating involved during atmospheric flight are convective 

heating and radiative heating. Lohar et al. has shown that at low altitudes the effects of 

radiative heating dominate the convective heating and the reverse is true at high altitudes 
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[29]. Since AGA maneuvers are performed at high altitudes the convective heating rate is 

the more important metric in this investigation. 

The stagnation point convective heating rate is computed via Sutton and Graves 

[39] in equation (3.43). The radiative heating rate is calculated via 

 ( )a b
r nq Cr f V  (3.62) 

where C, a, b, and f(V) depend on a body’s atmosphere. Different models for the 

constants in equation (3.62) for Earth and Mars have been given by Tauber and Sutton 

[40], and Brandis and Johnston [41]. Although this study only focuses on minimizing the 

convective heat load the radiative heating is still calculated to show that it is small in 

comparison to convective heating for AGA maneuvers. 

3.4.1 Optimal Control Problem FormulationmI 

The AGA optimal control problem is solved using an indirect method with 

Pontryagin’s Minimum Principle. The cost functional is chosen to minimize the total heat 

load found by integrating equation (3.43): 

 3 3

0 0

Min J
f ft

n

k V dt v d
r


      (3.63) 

where the far right-hand side of the equation is in nondimensional form. Equation (3.63) 

is subject to the equations of motion in equation (3.45), as well as appropriate boundary 

conditions for a specific AGA flythrough.  

Using an indirect method, the optimization problem is posed as a two-point 

boundary-value problem (TPBVP). The Hamiltonian takes the form 
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The necessary conditions for local optimality come from applying the Euler-Lagrange 

theorem along with Pontryagin’s Minimum Principle. They are: 

 
2

2
' , , 0
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x u u
 (3.65) 

where u is the vector of control parameters, in this case u = [ LC , σ]T. The evaluation of 

the first and third of equation (3.65) is omitted for brevity. Evaluating the second of 

equation (3.65) while ensuring the resulting Hessian matrix from the third of equation 

(3.65) is positive semi-definite, the control laws are: 
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(3.67) 

Conditions for local optimality require a set of transversality conditions to ensure 

a well-defined TPBVP. The transversality conditions are found by finding the terms of 

the nonzero differentials on the boundaries such that 

  
0

0
fTHd d




   x  (3.68) 

subject to: 
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 0d   (3.69) 

where Ψ is the vector of boundary conditions. For this study, the entry radius, longitude, 

latitude, and speed, as well as the final radius, latitude, and speed are known. 

Additionally the total turn angle δ is known so that the vehicle leaves on its departing V∞
+ 

vector. Knowing these values, the boundary conditions vector is: 

 
 0 0 0 0 0 0 0 0( ) , ( ) , ( ) , ( ) ,

( ) , ( ) , ( ) ,

T

f f f f f f d

r r v v

r r v v

       

      

    

     0


 (3.70) 

where δd is the desired turning angle. Taking the total differential of equation (3.70), the 

only boundary condition with a non-trivial evaluation is δ.  

Switching notation for the hyperbolic turn angle in equation (3.20) from ϕ to δ 

and solving for δ yields: 

 ( ) ( )atm dep arrf f f f    
        (3.71) 

where θatm = θ(tf). From the geometry of an AGA around a planet, the right-hand side of 

equation (3.71) can be expressed as a function of the initial and final radii, velocities and 

flight path angles when entering and exiting the atmosphere respectively. The true 

anomalies are 

 / 1 2 2 2 2
0, 0, 0, 0, 0,cos 1 1 ( 2 / ) cos ( )f f f f ff v r r v t  


    
 

  (3.72) 
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Evaluating equations (3.68) and (3.69), the following set of transversality conditions is 

obtained: 
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where the partial derivatives in equation (3.74) are omitted for brevity. 

In summary, a well-defined two-point boundary value problem has been posed. 

Equation (3.45) and the first of equation (3.65) give the state and costate differential 

equations, equations (3.66) and (3.67) give the control law, and equations (3.70) and 

(3.74) give the necessary number of boundary conditions for a local minimum. 

3.4.2 Results 

An example atmospheric sample return mission using AGA at Mars with a flyby 

of Venus is presented and compared with a very similar trajectory without using 

traditional gravity assists. The vehicle is launched from Earth orbit on November 22, 



2022/08/21

2021/11/19

2022/04/02

2023/02/19

Figure 3.13: EVME trajectory using AGA at Mars, with encounter dates. 
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2021, makes a flyby of Venus on April 2, 2022, performs an AGA at Mars on August 21, 

2022, and then returns to Earth on February 19, 2023 (referred to as an EVME trajectory). 

The relevant mission characteristics are displayed in Table 3.4, and the interplanetary 

trajectory is presented in Figure 3.13. EVME trajectories with E* = L/Dmax = 3.0, and 

possessing low Earth launch and arrival V∞s were searched for over a 20-year time period 

in STOUR-AGA (2020–2040), and the trajectory was selected from a Pareto front 

analysis. The trajectory presented in Figure 3.13 is very similar to an EVME trajectory 

(with launch date November 22, 2021) found as an alternative to the Inspiration Mars 

mission proposed for early 2018 [42]. Although a mission using AGA would not have 

humans on board until after the technology is proven, the comparison of the AGA 

trajectory to a similar trajectory using only gravity assists gives insight to its benefits. At 

Mars, the total turn angle is augmented by 40 degrees, and the resulting Earth arrival V∞ 

is reduced by 2.9 km/s. 

Next the atmospheric flythrough is optimized using a vehicle with planetary 

constants, selected aerodynamic properties, and boundary values, given in Table 3.5 (all 

other physical boundary values not given in Table 3.5 are set to zero). The vehicle values 

including rn, m, S, and CL
* are from Casoliva et al. [32], while E* was set to a value more 

representative of the one used in STOUR-AGA. The initial and final radii (r0, rf) are is   

Parameter AGA GA 
Launch Date November 19, 2021 November 22, 2021 

Earth Launch V∞ [km/s] 4.5 4.5 
Earth Arrival V∞ [km/s] 3.63 6.53 

TOF [days] 458 582 
δ [degrees] 72.6 32.5 

Table 3.4 Interplanetary Trajectory Characteristics 
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 the sum of the Mars radius and height of the sensible atmosphere. The entry and exit 

speeds (V0, Vf) are found using equation (3.15), and their respective V∞s at Mars arrival 

and departure. The desired hyperbolic turn angle, δd, is found with equation (3.21) with 

the V∞ vectors given by STOUR-AGA. 

  Solving the TPBVP with the parameters given above yields a minimal 

convective heat load of 27.7 kJ/cm2, and a peak stagnation point convective heating rate 

of 88.8 W/cm2. The corresponding radiative heat load, not necessarily minimal, is 1.67 

kJ/cm2 with a peak radiative heating rate of 7.00 W/cm2. In terms of maximums, the peak 

total heat flux is 95.9 W/cm2 and the total heat load is approximately 29.4 kJ/cm2. Figure 

3.14 – Figure 3.18 contain the optimal altitude, velocity, flight-path angle, L/D, and 

heating rate, both convective and radiative, profiles of the Mars atmospheric flythrough. 

Name Symbol Value Units 
Reference density ρ0 0.02 kg/m3 
Reference radius (Mars radius) R0 3397 km 
Inverse scale height β 1/7.1 km-1 

Sensible height of atmosphere hatm 163 km 
Mars gravitational constant μ 42828 km3/s2 
Sutton-Graves constant k 1.9027 x 10-5 kg1/2·km/cm2 

Nose radius rn 1 m 
Vehicle mass m 800 kg 
Aerodynamic reference area S 19 m2 

Drag polar parameter n 1.75 — 
Maximum L/D E* 3.5 — 
Lift coefficient at maximum L/D CL

* 0.08 — 
Initial, final radius r0, rf 3560 km 
Mars arrival hyperbolic excess velocity, and 
entry speed 

[V∞
–, V0] [6.204, 7.909] km/s 

Mars departure hyperbolic excess velocity, 
and exit speed 

[V∞
+, Vf] [4.565, 6.701] km/s 

Hyperbolic turn angle δd 72.6 deg 

Table 3.5: Constants, vehicle properties, and boundary values  
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The vehicle enters the atmosphere with an entry flight-path angle of -13.3 degrees, and  

increases until approximately two minutes in when the vehicle appears to level off. The 

vehicle does not truly become level, but rather the flight-path angle steadily increases 

slowly, keeping a negative value, meaning a slow decrease in altitude. As a result, the 

vehicle progressively loses speed and the L/D increases until about six minutes into the 

maneuver when the vehicle starts its ascent out of the atmosphere. Interestingly, the L/D 

of the vehicle never reaches its maximum value of E* meaning that in a practical sense 

the vehicle has room to correct for unknown variations in the atmosphere or aerodynamic 

coefficients.  

Comparing the peak heating rates and total heat load for this particular AGA 

Figure 3.14: Altitude versus time plot showing a nearly symmetrical descent 
and ascent, with holding a fairly constant altitude of ~35 km between minutes 

3 and 7. 
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mission, the type of TPS material and the amount needed is within current or near-future 

material technologies. In the NASA report on technologies for extreme environments 

[43], a peak heat flux of 95.9 W/cm2 is under the maximum allowed heat flux created for 

the TPS materials on the Mars Pathfinder, and Mars Science Laboratory missions. 

The material used was SLA 561 V, with peak heat fluxes of 106 and 155 W/cm2 

respectively for the two missions. The total heat load, which determines the mass fraction 

of TPS material required on a vehicle, requires about 1.5 times more material than what 

was used on Apollo capsules upon reentry. Using a fitted curve from historical data 

relating heat load to the TPS mass fraction, the approximate amount of TPS required for 

the AGA mission, excluding Earth reentry, is 18.3% [43].  

Figure 3.15: Velocity versus time plot showing a steady loss of speed during 
the period where the vehicle is deepest in the atmosphere. 
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One way to quantitatively measure the TPS mass fraction is to compare it to the 

amount of propellant required to get the same effect  from a powered flyby at Mars. In 

order to increase the hyperbolic turn angle and reduce the outgoing V∞ at Mars from a 

powered flyby, a burn is made at the distance of closest approach assumed to be at the 

edge of the atmosphere at 163 km. The ΔV required is found from the vis viva equation, 

and the propellant mass fraction is calculated from the well-known Tsiolkovsky rocket 

equation giving a mass fraction of 29.7%. The 11.4% difference in mass fraction can be 

used for additional science instruments, probes, or payload, while also highlighting the 

amounts in mass savings from using AGA over traditional GA and additional burn 

maneuvers. 

 

Figure 3.16: Flight-path angle versus time plot depicting the descent, then 
leveling out between minutes 3 and 7, before starting the ascent. 
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A method for optimizing AGA trajectories based on minimizing the total 

convective heat load has been developed. Desired interplanetary trajectories are found 

with STOUR-AGA, approximating the AGA maneuver with an analytical solution. The 

incoming and outgoing V∞ vectors at the AGA body are used to get the physical boundary 

conditions for the optimal control problem. The AGA maneuver is optimized with a 

given vehicle characterized by its mass and aerodynamic properties. 

With a carefully chosen interplanetary mission it may be possible to fly an AGA 

trajectory with already proven technology. It is shown that TPS materials exist that can 

withstand the peak heat flux, one of the two mission critical technologies required for 

AGA. The other critical technology is the high L/D capability which is still in the early 

stages of development. 

L
/D

Figure 3.17: L/D versus time showing a steady increase in control authority until 
the vehicle begins ascending out of the atmosphere, where the L/D is kept at a 

high value, but never reaches the maximum of 3.5. 
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Figure 3.18: Convective and radiative heating rates versus time, with the peak heating 
rates occurring when the flight-path angle begins to level out at ~3 minutes. 
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CHAPTER 4. AGA GUIDANCE ALGORITHM 

Apart from the hard technology requirements of a high L/D vehicle at hypersonic 

speeds and the thermal protection system to withstand high heat-loads, AGA can only 

become realizable with a robust guidance scheme able to guide the vehicle from 

atmospheric entry to exit, subject to model dispersions. The guidance algorithm outlined 

here uses angle-of-attack guidance through directly controlling the lift coefficient by 

means of pitching. A predictor-corrector provides continual new updates for a reference 

trajectory that the vehicle will attempt to follow by means of radius (or altitude) tracking.  

The algorithm is divided into three phases: an entry phase where it follows an on-

board pre-computed reference path to an altitude where the vehicle is able to perform 

steady-level flight. The second phase is the cruise phase where the vehicle maintains a 

constant altitude until a calculated exit time, continuously updated by the predictor-

corrector. Once the exit time is reached the vehicle enters the last phase, the exit phase, 

and tracks the last radius profile the predictor-corrector produced to atmospheric exit. 

The final metric the guidance algorithm attempts to minimize is the corrective 

ΔV∞ to get back on the nominal interplanetary trajectory to the next target in the AGA 

tour. Since corrective maneuvers are often made days after a planetary encounter, the 

metric ΔV∞ is used instead of the usual ΔV in the heliocentric frame, and they have 

relatively the same meaning. The model is subject to dispersions in both atmospheric 

density as well as variations in the initial conditions at atmospheric entrance. The 
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aerodynamic uncertainties (e.g. CL, CD, S) are not modeled in this investigation and the 

measured states from the IMU are assumed to be known perfectly. 

One of the major issues being addressed in the AGA guidance algorithm is that 

AGA requires precise targeting of a final vector with both direction and magnitude. A 

similar guidance problem to AGA is one tailored to aerocapture, however the end-goals 

of aerocapture are different. In the aerocapture problem, the final orbit size (captured 

orbit period) is targeted; however orientation characteristics are usually not as much of a 

concern. If orientation is taken into account as in AGA, the distance traveled through the 

atmosphere is limited to some angle between the incoming and outgoing V∞ vectors. 

Exiting the atmosphere too soon or too late leads to large, typically infeasible corrective 

burns. In addition, large dispersions in atmospheric density can necessitate design 

changes in the nominal entry flight-path angle from aerocapture missions. Entering at a 

nominal flight-path angle with a 50% thinner atmosphere than predicted may prevent the 

vehicle from attaining the required lift to reach the exit conditions, as the centripetal 

acceleration would be too overpowering. To address this issue, the entry flight-path angle 

is biased such that the guidance algorithm can handle ±3σ variations in atmospheric 

density. 

A literature search revealed that only one conference paper has addressed the 

AGA guidance problem subject to model dispersions. Casoliva et al. [32] uses bank angle 

modulation to control the vehicle with an additional terminal phase to offset unwanted 

out-of-plane effects. Lyons et al. [30] uses angle-of-attack to guide the AGA vehicle and 

was able to specify an entry corridor in terms of flight-path angle, but no model 

dispersions were incorporated. One peer-reviewed article [44] provided a flight-path 
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angle guidance law to guide the vehicle from atmospheric entrance to exit for a variety of 

boundary conditions, but model dispersions were also not taken into account. The lack of 

published work in AGA guidance indicates there is much room for fundemental analysis 

of this problem. 

4.1 Radius Tracking 

The equations of motion used in the AGA guidance scheme are from Vinh [26] 

for a spherical planet with non-rotational atmosphere: 
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where planar motion is assumed. The algorithm revolves around tracking a reference 

radius profile from atmospheric entry to exit. A numerical predictor-corrector, described 

in section 4.3.1.1, updates the reference radius profile every user-input guidance cycle tG.  

Using the same notation for the variables and constants as section 3.4, the radius tracking 

law is designed with feedback linearization to achieve second-order linear radius error 

dynamics of the form: 

      22 0ref n ref n refr r r r r r           (4.2) 

where ζ and ωn are damping and natural frequency gains tuned for the specific guided 

trajectory, and the subscript ref denotes the radius and its derivatives of the reference 

radius profile. Due to the sensitive nature of AGA, trajectories with varying incoming 
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and outgoing V∞ vectors will need to have ζ and ωn tuned manually to achieve good 

performance.  

The radius tracking law needs at a minimum of two time-derivatives in order to 

work due to the fact that an explicit control parameter to satisfy equation (4.2) only 

appears in r: 

    , , , , , Lr r V r r r V C       (4.3) 

Attempting to solve equation (4.2) explicitly for LC , after substituting in equation (4.3), 

leads to a transcendental equation: 
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 (4.4) 

It has been experimentally discovered that a solution always exists when solving equation 

(4.4) using Newton’s method, as long as the vehicle is “nearby” the reference trajectory. 

It is difficult to quantify how “nearby” the vehicle must be since the tracking equation 

has three dimensions in r , v , and  , however the root-solver has not diverged for any 

guided cases in the present work. Every second throughout the guided flythrough, IMU 

measurements are taken and a new control is solved and fed back into the system model. 

4.2 Vehicle Characteristics 

A vehicle loosely based on Casoliva et al. [32] with E* = 5 is used for the guided 

trajectories in the current work, but with a more realistic value of E* = 3.5. The vehicle is 

a waverider with pertinent characteristics listed in Table 4.1. 
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Table 4.1 Waverider vechicle characteristics 

Parameter Value 
Mass m [kg] 800 

Aerodynamic Reference Area S [m2] 19 
CL

* 0.08 
E* 3.5 
n 1.75 

 

The lift and drag coefficients are described by the same equations in [32] with: 
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where α is the angle-of-attack. Equation (4.5) differs from [32] in the drag coefficient 

numbers for CD0 and kD. They have been modified to fit the CL
*, n, and E* in the table 

above so that CD0 = 0.00980 and kD = 1.085. The angle-of-attack when (L/D)max occurs is 

approximately α = 1.5°. The bounds on α are –10° ≤ α ≤ 25°, corresponding to bounds on 

the control in the guidance algorithm, CL to be –0.057 ≤ CL ≤ 0.54. Furthermore, rates of 

change on angle-of-attack are limited to 20 20   deg/s and 6.8 6.8   deg/s2 

Figure 4.1: Aerodynamic coefficients and L/D for waverider vehicle. 
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giving rate limits on CL of 0.45 0.45LC   s-1 and 0.15 0.15LC   s-2. The limits on 

the rates are found by taking time-derivatives of the first of equations (4.5) and using 

parameter optimization software to find the global maximum and minimum, as the 

resulting equations are nonlinear with bounds on the variables. The rate limiting is 

enforced on CL using backwards differencing during every control update. 

4.3 Guidance Algorithm Phases 

The guidance algorithm is divided up into three stages: entry, cruise, and exit (see 

Figure 4.2). During the entry phase, the vehicle tracks a radius profile given by the 

solution to the optimal control problem in section 0 to a specified altitude such that 

steady-level flight can be achieved. This specific radius profile is chosen to minimize the 

heat-rate the vehicle acquires during descent, as that is when heat-rate is highest. The 

entry flight-path angle is biased so that the guidance algorithm can handle atmospheric 

dispersions that could be 50% thinner than expected. 

Entry Phase Cruise Phase 

0 

Exit Phase 

CL,E1, …, CL,EN  

t
E
 

r(t) 

t t
C
 

Figure 4.2: Three phases of AGA guidance Algorithm 
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Once an altitude where steady-level flight is possible, the vehicle enters the cruise 

phase at tC and the predictor-corrector starts to update the reference radius profile every 

guidance cycle tG. The predictor corrector solves a parameterized control problem getting 

an exit time tE when the vehicle should end steady-level flight and the N parameterized 

controls at evenly spaced times between tE and tf, CL,E1, …, CL,EN, during the exit phase 

that drive the vehicle to the desired exit state. Once tE is reached, the vehicle tracks the 

last reference profile calculated from the predictor-corrector to atmospheric exit. 

4.3.1 Entry/Cruise Phase 

The entry phase tracks a nominal reference radius profile that is found by solving 

the optimal control problem that gives the minimum accrued total heat load. However the 

nominal profile must have an entry flight-path angle that is steep enough to be able to 

handle up to a 50% thinner atmosphere than predicted. If the entry flight-path angle is too 

shallow with a thin atmosphere, a suitable altitude for steady-level flight will not be 

achievable, as the lift will not be able to overcome the centripetal acceleration. See Figure 

4.3 for visualization of accelerations. Without being able to reach an altitude where 

a
cent

 

a
grav

 a
aero

 

AGA Vehicle 

R
ref

 

Figure 4.3: Acting accelerations during steady-level flight. 
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steady-level flight occurs, the vehicle will skip out of the atmosphere early, and recovery 

of the mission is likely not possible. Figure 4.4 illustrates the entry flight-path angle 

problem during an example Mars entry.  

In the Figure 4.4, altitude profiles with the same entry flight-path angle for a –3σ, 

+3σ, and nominal atmospheric density conditions where 1σ is ≈15% dispersion from the 

nominal are given. The lift vector of the vehicle in this case is constant and always 

pointing downwards towards the ground. The nominal case steadily approaches the 

reference altitude where steady-level flight can occur. The case with a +3σ thicker 

atmospheric density approaches the reference altitude steeper, as the vehicle is taking 

advantage of more lift. With the thicker atmosphere, the vehicle has no problem reaching 

the reference altitude. When the atmosphere is thinner than expected, the vehicle cannot 

reach the reference altitude, as it is not able to generate enough lift to balance the 

gravitational and centripetal accelerations. Where the –3σ line ends is the lowest the 

vehicle can go under these conditions. 

To address the entry-flight path angle problem, the reference entry radius profile 

used is the solution to the minimum heat-load problem with the –3σ density model 

assumed to be the nominal. In this way, the entry flight-path angle is steep enough to 

handle the entire range of assumed dispersions in atmospheric density.  

Steady-level flight is achieved at an altitude where the gravitational, aerodynamic, 

and centripetal accelerations balance each other out. A depiction of the accelerations is in 

Figure 4.3, where the centripetal acceleration, acent, acts radially upward, and the 

aerodynamic lift acceleration, aaero, and gravitational acceleration, agrav, balance it in the 

opposite direction. The reference altitude is calculated by the acceleration balance via: 
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where dimensional variables are being used. Once the vehicle reaches an altitude where 

steady-level flight can begin, the predictor-corrector starts updating the reference radius 

profile every guidance cycle. 

The altitude where steady-level flight is possible (cruise altitude) depends on the 

central body’s atmosphere and gravity, and the aerodynamic capabilities of the vehicle. A 

range of acceptable cruise altitudes are calculated by solving equation (4.6) for the radius 

using the chosen vehicle for the AGA maneuver. The reference radius profile is updated 

Reference Altitude 

Figure 4.4: Altitude profiles for thinner, thicker, and nominal atmospheric 
density dispersions. 

  

 

+3σ 

–3σ 

Nominal 
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by the predictor-corrector at an altitude slightly above the maximum allowable predicted 

cruise altitude, denoted RS. Starting the predictor-corrector above the range of predicted 

cruise altitudes ensures that the vehicle can approach the actual cruise altitude from above. 

The reason for approaching from above is to prevent too much energy dissipation upon 

entry, preventing the exit conditions from being reached. Approaching the cruise altitude 

from below by means of overshooting may cause too much drag, making it impossible to 

achieve the exit conditions. A visualization of the two different approaches to the cruise 

altitude is in Figure 4.5. For example, at Mars, for the vehicle described above, the 

altitude where the predictor-corrector starts is approximately 40 km above the surface. As 

indicated by equation (4.2), an approach from above has a higher chance of occuring for 

values of ζ ≥ 1 making the system critically damped or over-damped. From trial and error, 

the results of this guidance algorithm were better for the over-damped case than critically 

damped, thus values used for ζ are kept strictly greater than one. 

 
 

r(t) 

t 

Desired cruise altitude 

Approaching from above 

Overshoot 

RS 

Figure 4.5: Visualization of approaching the desired cruise altitude. 
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4.3.1.1 Predictor-Corrector 

The numerical predictor-corrector used in the guidance scheme updates the 

reference radius profile that guides the vehicle to the desired exit state. The algorithm 

starts at the beginning of the cruise phase at tC and updates the reference profile every 

guidance cycle tG until the predicted exit time tE is reached. At tE the vehicle ends steady-

level flight and begins its ascent until atmospheric exit. 

The reference radius profile is constructed by solving a parameterized targeting 

problem to get to the desired outgoing V∞ vector. The targeting problem is summarized as 

follows: 
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 (4.7) 

In equation (4.7), tf, θf, and γf are the unknown final time and end states that are solved at 

every guidance cycle. The final velocity Vf and final hyperbolic turn angle δf are 

functions of the beginning and end states given by: 
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(4.8) 

Additionally there are a pre-specified N number of parameterized control values CL,E1, …, 

CL,EN that are also determined by the predictor-corrector. The control values are spaced at 

N equally distant points between tE and tf. Often one parameterized control does not give 

enough control authority to achieve the desired exit conditions. With the higher value for 

N comes the issue of dimensionality along with convergence issues; however for all 

guided cases in the current work, a value of N = 2 has been sufficient. During the cruise 

phase, the control law is specified by setting   in equation (4.1) to zero and solving for 

CL: 
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C t t t
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 (4.9) 

The predictor-corrector is performed by setting up a multiple shooting algorithm 

between different boundaries with N = 2. The first boundary is the cruise phase between 

tC and tE, the second boundary is halfway between tE and tf (denoted t1), and the final 
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boundary is at tf. Additionally, in order to minimize the number of constraints, the 

predictor-corrector is solved using both forward and backwards propagation. At every 

guidance cycle, the predictor-corrector starts by propagating forward from the current 

time,  ,C Et t t to tE, then again propagates forward again to t1. Lastly, propagation is 

performed from the desired end-states backwards from tf to t1. A corrections process then 

takes place, updating the initial estimate of the design variables and matching the states at 

the boundaries until the l2 norm of the constraint vector is less than 10-12.  

The design variable vector for the predictor-corrector is: 

 , 1 , 2

T

E E E E E L E f f f L Et r V C t C      X
 
 (4.10) 

While the constraint vector takes the form: 
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The superscripts f, 0 in equation (4.11) indicate the corresponding state evaluated at the 

final forwards propagated time and final backwards propagated time respectively. The 

subscript E refers to the exit time tE, and the subscript 2 refers to the backwards 

propagated leg. The Jacobian matrix for the above system is: 
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The size of the Jacobian given in equation (4.12) is 9 by 10. Since the number of 

design variables in greater than the number of constraints, the update on the design 

variable vector X is done using equation (2.31), meaning the update is not unique and the 

converged solution is a “best fit” to the initial estimate. The initial estimate for X when 

the guidance algorithm begins the cruise phase is based on the reference profile used in 

the cruise phase. At every guidance cycle thereafter, the initial estimate is the converged 

solution from the previous iteration. 

4.3.2 Exit Phase 

The exit phase of the guidance algorithm follows the last reference radius profile 

found from the predictor-corrector to atmospheric exit when the vehicle reaches the 

predicted exit time tE. At this point the vehicle is ascending out of the atmosphere where 

atmospheric density is low, limiting the amount of control authority the lift vector has on 
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Figure 4.6: Required clean-up in V∞
+ after AGA guidance. 
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 the system dynamics. Upon atmospheric exit, the vehicle will leave the gravitational 

influence of the central body and perform any necessary clean-up burns required to get 

back on the nominal interplanetary trajectory. The clean-up burn metric is measured as 

the change in the desired V∞
+ (denoted ΔV∞

+) to get back on the nominal interplanetary 

trajectory. A diagram of the clean-up maneuver is depicted in Figure 4.6 where the 

superscript a stand for the actual value attained post-guidance and the difference in the 

hyperbolic turn angle is Δδ = δd – δa. The value for the clean-up ΔV∞
+ is derived from the 

law of cosines with: 

       2 2
2 cosa aV V V V V   

        
 
 (4.13) 

4.4 Modeled Dispersions and Assumptions 

The guidance algorithm simulates a Mars AGA that is subject to model 

dispersions in atmospheric density and initial conditions. Aerodynamic or IMU 

dispersions are not modeled in the current analysis. The interplanetary trajectory is the 

same found in section 0 with a Mars encounter date of August 21, 2022 and arrival V∞ of 

6.2 km/s. The target outgoing V∞ is 4.6 km/s with a total hyperbolic turn angle of 72.6°. 

All pertinent vehicle characteristics, physical parameters, initial conditions, dispersions, 

and control gains are available in Table 4.2.  

A ±3σ dispersion in an exponentially modeled atmospheric density is assumed with a 

nominal reference density of 0.02 kg/m3 at the planet’s surface. The dispersions in initial 

height, entry velocity, and initial flight-path angle are uniform with bounds set to ±800 m, 

±6 m/s, and ±0.45° respectively. These bounds are the limits of convergence for the 
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predictor-corrector. One limitation to how this guidance scheme is set up is that if 

convergence fails, most likely due to the fact too much energy has been lost from drag to  

reach the desired exit conditions, then the vehicle is considered “lost” and the algorithm 

fails. Possible methods to overcome this issue and open up the solution space are 

addressed in the Future Work section. 

Computed from an accelerometer on the vehicle measuring the drag force, the air 

density is assumed to be measurable with the following accuracy: 

 
 
 

N , 0.5 65km

N , 0.15 65km
a a

m
a a

h

h

 


 
    

 (4.14) 

where ρm is the measured density, and N(a, σ) is a Gaussian distribution of mean a, and 

standard deviation σ. Above an altitude of 65 km, the drag force is assumed to have a 

Parameter Symbol Value Units 
Vehicle mass m 800 kg 
Reference area S 19 m2 

Drag polar exponent n 1.75 — 
Reference density ρ0 0.02 kg/m3 

Inverse scale-height β 1/7.1 km-1 

Height of atmosphere hatm 163 km 
Planet radius R0 3397 km 
Arrival hyperbolic excess speed V∞

– 6.2  km/s 
Departure hyperbolic excess speed V∞

+ 4.6 km/s 
Hyperbolic turn angle δ 72.6 deg 
Initial nominal radius r0 3560 km 
Initial nominal entry speed V0 7.9 km/s 
Initial nominal flight-path angle γ0 -13.85 deg 
Dispersion in initial radius from nominal Δr0 ±800 m 
Dispersion in initial entry speed from nominal ΔV0 ±6 m/s 
Dispersion in initial flight-path angle from nominal Δγ0 ±0.45 deg 
Dispersion in atmospheric density Δρ0 ±3σ kg/m3 

Natural frequency gain ωn 0.1 s-1 

Damping gain ζ 2 — 

Table 4.2  Constants, initial conditions, vehicle parameters, and gains 



97 

 

higher degree of error, as the atmosphere is much thinner. Due to the error in the air 

density measurements a low-fidelity first-order fading-memory filter is used for better 

accuracy. The reason for using a low-fidelity filter is to emphasize that this algorithm is 

robust enough to work without sophisticated statistical techniques.  

Let the ratio between the measured and nominal air density be κ = ρm / ρn where ρn 

is the nominal density. The fading-memory filter is updated with every measurement via: 

 
   1

0

1

1, 0 1
n n n    

 
    

    
 (4.15) 

with filter coefficient ξ = 0.95. An example output for the nominal, actual, measured, and 

filtered air densities for a 50% thinner atmosphere than predicted (nominal) is in Figure 

4.7. The nominal (blue) line represents an exponential atmospheric density model with 

reference density 0.02 kg/m3. The measured air density (red) from drag deceleration 

Figure 4.7: Nominal, measured, actual, and filtered air densities for a guided 
case with 50% thinner atmosphere. 
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samples is erratic and noisy. Actual air density (yellow) and filtered (purple) are close to 

each other, representing what is actually being fed into the system model, and what the 

algorithm predicts is being fed, respectively. 

4.5 Monte Carlo Results and Analysis 

A Monte-Carlo simulation of guided AGA around Mars for 2000 dispersed cases 

is performed with the parameters and assumptions discussed above. Figure 4.8 gives the 

clean-up ΔV∞
+ metric required (color bar) with the corresponding errors in hyperbolic 

turn-angle δ (horizontal axis), and V∞
+ magnitude (vertical axis). A histogram of how 

many cases lie within ~4 m/s between each other is in Figure 4.9. 

 Approximately 50% (1000) of the cases have less than a 4 m/s clean-up 

maneuver. The rest of the results display a nearly uniform distribution of clean-up ΔV∞s 

with an overall average of 11.51 m/s and a maximum of 39.33 m/s. This distribution is 

most likely the result of the random variables used for the initial conditions being 

uniform.  

There is no correlation between the clean-up ΔV∞ and the dispersions in either 

entry radius r0, or entry speed V0. From Figure 4.8, the statistics appear to be one-sided 

which is due to the fact that the vehicle is always approaching the reference trajectory 

from above, and not from below. The algorithm is designed this way to ensure 

convergence of the predictor-corrector. 
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Looking into the dispersions and trajectories of the outliers in Figure 4.8, which 

are the few dots below the main streak, there is no reoccuring trend among them 

indicating that they truly are phenomena of the different parameters used and 

uncertainties inherant in the algorithm. Figure 4.10 plots the off-nominal entry flight-path 

angle versus the errors in final velocity, and shows a correlation with positive Δγ0; a 

steeper flight-path angle entry is preferred when using this algorithm, as there is a smaller 

clean-up V∞
+ magnitude. It is conjectured that the correlation is due to the bias in flight-

path angle from assuming a –3σ atmosphere in the radius reference profile. Figure 4.11 

shows the altitude profiles for all 2000 cases. The colors are mapped to gray-scale to 

Figure 4.8: Monte Carlo results for Mars AGA guidance. 
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depict the darker the trajectory, the higher the clean-up ΔV∞. There is a clear region of 

darker trajectories at the 2 minute mark, and these are trajectories that have both higher 

cruise altitudes and shallower entry flight-path angles. Higher cruise altitudes indicate 

that the atmosphere is thicker for these trajectories, thus for shallow entry flight-path 

angles, the guidance algorithm performs more poorly with thicker atmospheres. 

The guidance algorithm presented here uses the lift coefficient as the control, 

changed by a means of pitching, and is subject to dispersions in atmospheric density and 

initial conditions. A predictor-corrector updates a reference radius profile every guidance 

cycle that the vehicle tracks until exiting the atmosphere. Through a Monte Carlo analysis, 

the algorithm robustly guides the vehicle to the desired exit V∞
+ vector with a maximum 

Figure 4.9: Histogram of clean-up ΔV∞ for 2000 cases. 
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correction maneuver of 39.33 m/s. In reality the vehicle will be subject to aerodynamic 

and IMU uncertainties which are not modeled here, but are an issue requiring 

investigation in future work. 

 

 

 

 

 

 

 

 

 

Figure 4.10: Correlation of change in initial FPA with final 
velocity error. 
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Figure 4.11: Altitude plots from Monte Carlo simulation. 
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CHAPTER 5. AEROCAPTURE TRAJECTORY OPTIMIZATION 

WITH ROTATING ATMOSPHERE 

Aerocapture is another aeroassisted maneuver where a spacecraft approaching a 

central body on a hyperbolic trajectory uses the atmosphere to deplete the orbital energy 

to get into a captured elliptic orbit upon atmospheric exit. Recently JPL has developed 

interest in missions to the Ice Giants (Uranus and Neptune) and wants to investigate the 

potential advantages that aerocapture might offer at these planets [45].  

The Ice Giants (as well as the Gas Giants, Jupiter and Saturn), are large and 

rotating at high rates with sidereal rotation periods of less than a 24 hours. Upon entering 

the atmosphere the rotational rate of the planets cannot be ignored when considering the 

velocity vector of the aerocapture flythrough. For example, around the equator of Uranus 

at an altitude of 1 bar atmospheric pressure the tangential speed of the atmosphere’s 

rotation, assuming the entire atmosphere rotates at the same rate as the planet, is 

approximately 2.6 km/s. Thus the entirety of equations (3.1) – (3.6) must be taken into 

account to model aerocapture at these large planets. 

One of the critical technologies to be able to realize aerocapture is the thermal 

protection system required to withstand the high heat-rates and heat-loads when 

travelling at hypersonic speeds through an atmosphere. The current work finds the 

optimal bank angle profile to guide an aerocapture vehicle to a desired capture orbit 

period using optimal control theory, while including the rotational rate of the atmosphere 
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in the dynamic equations of motion. It turns out that due to the fast speeds of approach 

and the limited aerodynamic capabilities of an aerocapture vehicle, a suboptimal control 

of bank equal to zero, a full lift-up configuration, gives roughly the same result in total 

heat-load as the more complex optimal control with a much simpler implementation. The 

work presented here verifies that result. 

5.1 Aerocapture Vehicle and Model Assumptions 

The aerocapture vehicle is modeled at Uranus using the bank angle as the sole 

control variable and is flying at a trimmed angle of attack, corresponding to a constant 

(maximum) L/D. The atmospheric density is modeled exponentially via equation (3.8), 

but any model will suffice that is at least C1 continuous for indirect methods. Table 5.1 

includes all the constants and vehicle parameters used in the simulation. The 

aerodynamics are defined by the ballistic coefficient B, and the maximum lift-to-drag 

ratio E*. The ballistic coefficient is defined by: 

 
D

m
B

SC


 
 (5.1) 

Parameter Symbol Value Units 
Vehicle mass m 1000 kg 
Ballistic coefficient B 250 kg/m2 
Nose radius rn 2 m 
Lift-to-drag ratio E* 0.8 — 
Sidereal rotation rate Ω 1.0124e-4 rad/s 
Inverse scale-height of atmosphere β 1/27.7 km-1 

Reference density ρ0 0.42 kg/m3 
Radius of Uranus R0 25500 km 
Height of atmosphere above 1 bar hatm 1500 km 
Incoming hyperbolic excess velocity V∞

– 18 km/s 
Target capture orbit period P 20 days 

Table 5.1: Vehicle parameters and constants in aerocapture simulation 
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where S and CD are the aerodynamic reference area and drag coefficient respectively. The 

two types of heating affecting the vehicle during entry are convective and radiative 

heating. The relationship modeled in the current work uses an empirical form of the 

heating-rates with: 

 a b c d
c r c rq q q k V k V      

 
 (5.2) 

where cq  and rq  are the convective and radiative heating rates respectively. kc, a, b, kr, c, 

and d are empirical constants given by: 
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 (5.3) 

5.2 The Rotating Atmosphere 

Certain considerations must be taken into account when including atmospheric 

rotation in the equations of motion. In deriving the equations of motion from Vinh [26], 

the velocity vector is derived with respect to the planet. This means the velocity, flight-

path angle, and heading (V, γ, ψ) in equations (3.1) – (3.6) are all formulated with respect 

to the rotating planet. When approaching the atmosphere, V, γ, and ψ are all inertial until 

atmospheric entry. Upon entry, they must be transformed to be with respect to the planet 

with the following relationships: 
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 (5.4) 

The subscript PL indicates that the variable is taken with respect to the planet; the others 

are inertial variables.  

In the formulation of the TPBVP, equation (5.4) must be included in the boundary 

conditions as terminal constraints, as some initial and final conditions are given in the 

inertial frame, but the dynamics are modeled with respect to the planet. The variables can 

be uniquely determined with three equations. First the entry or exit speed with respect to 

the planet is evaluated with the first in equation (5.4). Since the flight-path-angle is 

defined as being between –π/2 ≤ γ ≤ π/2 and is found directly with the second equation: 

 1sin sinPL
PL

V

V
   

  
   

 (5.5) 

The heading angle is defined between –π ≤ ψ ≤ π, meaning a quadrant check is necessary 

to get the correct value. However, unless the vehicle is approaching the planet with an 

inclination close to ±π/2 (polar orbit), the initial and final orbits pre and post-aerocapture 

will in general, both be prograde or retrograde. This means either the last or second-to 

last equation in (5.4) can be used to find the appropriate ψ with a careful consideration of 

signs. Trying to include both equations in the terminal constraints gives a problem of 

scale invariance, making the Jacobian matrix singular upon getting close to the solution. 
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The known initial boundary conditions of the aerocapture problem are

0 0 0 0, 0,, , , , andi ir V   , where the subscript i indicates the variable is taken with respect to 

an inertial reference frame. The final boundary conditions are ,andf f ir V . The final 

inertial velocity Vf,i is found by the vis viva equation using the desired captured orbital 

period P. Since the boundary conditions have inertial values and the dynamics are 

derived with respect to the planet, a terminal constraint vector is used to relate them. 

After substituting equation (5.5) into equation (5.4), the terminal constraints are: 
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 (5.6) 

where the last of equation (5.4) is used to relate the inertial heading.  

5.3 Optimal Control Formulation 

The optimal control problem is set up by adjoining the terminal constraint vector 

in equation (5.6) to the cost functional: 

  
0

Min
ft a b c d T

c rt
J k V k V dt    

 
 (5.7) 

with constant Lagrange multipliers νT. Nondimensionalizing the problem yields better 

computational performance when solving the problem numerically. The nondimensional 

variables are: 

 3 3
0 0 0 0/ , , ,r r r v V r r t r        

 
 (5.8) 

giving the following set of differential equations: 
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where the derivatives are taken with respect to the nondimensional time τ. The lift and 

drag variables are given in terms of the lift-to-drag ratio and the ballistic coefficient: 
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The Hamiltonian is formed with: 
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 (5.11) 

and the necessary conditions for local optimality are applied: 
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The costate differential equations are omitted for brevity. The algebraic equations for the 

control variable are found from satisfying the second and third equation in (5.12): 
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 (5.13) 

where the negative sign is required to ensure the Hessian is positive semi-definite. Lastly, 

the transversality conditions must be satisfied to obtain the necessary number of 

boundary conditions for a well-defined TPBVP. These boundary conditions are: 
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5.4 Simulation and Analysis 

Initial and final conditions for a Uranus aerocapture simulation are given in Table 

5.2. The optimal control problem was first numerically solved using a collocation method 

with a third-order polynomial to fit the dynamics to get an accurate initial estimate. Then  

Parameter Value Units 
r0 27000 km 
θ0 0 deg 
ϕ0 –74 deg 
V0,i 27.444 km/s 
ψ0,i 12 deg 
rf 27000 km 

Vf,i 20.532 km/s 
 

a multiple shooting method using an eighth-order Runge-Kutta Prince Dormand explicit 

numerical integrator was employed to refine the solution. 

Table 5.2 Boundary conditions for aerocapture simulation 

Figure 5.1: Altitude and inertial flight-path angle profiles for Uranus aerocapture. 
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Figure 5.2 — Figure 5.3 give the altitude, inertial flight-path angle, inertial 

velocity, inertial heading, bank angle, and heating-rate profiles. The vehicle enters with 

an inertial flight-path angle of –16.44 degrees and descends steadily until approximately 

200 km above the 1 bar atmospheric pressure radius. The velocity bleeds off heavily 

when the vehicle is at its lowest, while the heat-rate spikes to approximately 1400 W/cm2. 
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Figure 5.2: Inertial velocity and heading profiles for Uranus aerocapture. 

Figure 5.3: Bank angle and heating-rate profiles for Uranus aerocapture. 
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The inertial heading starts at 12 degrees, approximately due east, and approaches the 

north ending at ~65 degrees. The bank angle starts out with the lift vector almost upside-

down at an angle of –160 degrees. The vehicle then rolls over to a lift-upward position of 

approximately zero degrees when the vehicle is around the lowest point in the trajectory. 

Upon ascension out of the atmosphere, the vehicle rolls back over to an angle of –96 

degrees where it stays until it exits. The total heat load accrued over the trajectory is 

74.05 kJ/cm2 with a peak heat-rate of 1361 W/cm2. The majority of the control effort 

occurs during the descent and ascent of the vehicle. During these times the atmospheric 

density is almost negligible, meaning most of the aerodynamic effects occur at the lowest 

point, between the interval of 200 and 300 seconds into the atmosphere. 

5.5 Suboptimal Aerocapture Result 

Since the lift vector is pointing mostly upwards at this time, it makes sense that a 

suboptimal solution to the minimal heat load case would be a trajectory with the bank 

angle equal to zero the whole time. In fact, when the atmosphere’s rotation is not 

modeled in the dynamics, the zero bank angle solution is the minimum heat load solution, 

which was verified by setting Ω = 0 in the equations of motion and solving the associated 

TPBVP. The plots of the states with no rotation look very similar to the figures above, 

and would look almost identical when plotted against each other. A main difference 

however is that the total heat load with no atmospheric rotation is 83.75 kJ/cm2 with a 

peak heating-rate of 1564 W/cm2. Thus when entering the atmosphere in a prograde orbit, 

the atmospheric rotation helps to decrease the total heat load, whereas a retrograde orbit 

would increase it. 
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The suboptimal solution with a bank angle of zero, including atmospheric rotation, 

is solved via a targeting problem. The free-variables associated with the targeting 

problem are: 

 0 0 0

T

f f f f f= V V t      X  (5.15) 

with the following constraint vector on the states: 
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where Q is the variable for the heat load, and the inertial initial velocity and heading, and 

inertial final velocity (V0,i, ψ0,i, and Vf,i) are known. The Jacobian matrix is: 
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The targeting problem is solved via multiple shooting using the solution of the 

optimal control problem as the initial guess for the states. When comparing the optimal 

and suboptimal solutions, the only state that is noticeably different is the inertial heading 

angle in Figure 5.4. The optimal (blue) and suboptimal (red) are not noticeably different 

during the descent into the atmosphere, but diverge slightly upon ascent. The total heat 

load for the suboptimal solution is 74.06 kJ/cm2 with a peak heat-rate of 1360 W/cm2; 

there is only 0.01 kJ/cm2 and 1 W/cm2 difference between the two solutions. The reason 

for such close proximity of the solutions is that the majority of the heating occurs when 

the altitude is at its lowest and the bank angle for the two solutions are both zero (or close 
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Figure 5.4: Inertial heading angles for optimal and suboptimal aerocapture solutions. 
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to zero); where the bank angle widely varies in the optimal solution is where the density, 

and therefore the influence of the control on the dynamics, is almost negligible. 

The two solutions presented yielded practically the same results in terms of total 

heat load and peak heating rates. In a practical sense, the suboptimal solution would most 

likely be the one to be implemented on an actual mission due to the added complexity of 

satisfying the necessary conditions of optimality. A bank of zero degrees would be the 

easiest situation around which to construct a guidance scheme, as the model will 

invariably be subjected to dispersions in atmospheric density, aerodynamics, and initial 

conditions. 
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CHAPTER 6. INSPIRATION MARS 2018 OPPORTUNITY 

Mars has been a destination of interest for human space-flight for over half a 

century [46–60]. Due to the orbital positions of Earth and Mars, it is found that a launch 

date set in early 2018 is the best opportunity for a human free-return mission to Mars this 

century. The 2018 trajectory, found by Patel et al. [55], became a main source of 

motivation for Inspiration Mars, a proposed human free-return mission to Mars made by 

Dennis Tito et al. [58]. Tito and his colleagues selected one of the trajectories on January 

5, 2018, and performed a successful high-fidelity numerical integration to confirm its 

existence. This trajectory was selected due to its ‘fast’ time of flight (TOF), low Earth 

launch energy and low Earth re-entry speed. 

The question then arises as to how often these types of trajectories exist, and 

whether or not another desirable opportunity like the 2018 trajectory exists sometime 

nearby in case the 2018 one cannot be launched. The metrics used in evaluating a 

desirable opportunity is the Earth launch energy and re-entry speed such that the mission 

can be flow using current technology. It turns out that the TOF, which is usually of 

concern to human missions, remains around 500 days for all the candidates of this type of 

mission, so it is not given any weight in the decision process. Opportunities similar to 

2018 occurs approximately every 15 or 17 years, however the 2018 trajectory 

demonstrates to be superior overall. 
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The Satellite Tour Design Program (STOUR), capable of designing interplanetary 

missions using patched conics, was designed by engineers at JPL [34]. STOUR was then 

made fully automated by Williams [35], finding every interplanetary trajectory with only 

a few user inputs written on a scripted file. The STOUR program can find rapid Mars 

free-return trajectories using by stepping through the user-specified launch dates and 

launch energies. The results are then consolidated, and the desirable trajectories are 

selected with low launch energies and low re-entry speeds. 

 After compiling all of the trajectories found using STOUR, the results are filtered 

based on the launch energy (C3) and arrival speed (VArr). Using the 2018 opportunity as 

the baseline, the desirable trajectories are ones that possess a similar C3 and VArr. 

Radial distance plots of Earth, Mars, and the spacecraft’s positions exhibit trends 

to provide low Earth launch and re-entry energies. The good trajectories tend to depart 

Earth at its perihelion, and intercept Mars at its perihelion. The departure from Earth and 

swing-by of Mars at their closest approaches to the Sun makes sense, as the most energy 

is transferred to a spacecraft with respect to the Sun when the body is travelling its fastest. 

Each synodic period of Earth and Mars is approximately two and one-seventh years; the 

synodic period varies due to the relative inclinations and nonzero eccentricities of the two 

planets. When these variations are small compared to the 2018 opportunity, a similar 

desirable trajectory exists. 

To gain further insight to when a desirable Mars free-return trajectory exists, a time-free 

ephemeris model is constructed to see exactly which relative Earth-Mars positions are 

ideal. The time-free ephemeris model is an ephemeris built under the pretense that the 

positions of Earth and Mars can be at any position at any given time along their 
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heliocentric paths. A further assumption imposed, is that the heliocentric paths of Earth 

and Mars remained fixed, and their orbital elements do not change due to perturbations 

from other planets. The aforementioned radial distance plots give insight where to search 

for desirable trajectories along Earth’s and Mars’s orbital paths.  

The trajectories found using the TFE have C3 and VArr that are as good, or are 

better than the 2018 opportunity. It is then possible to see the necessary relative geometry 

that Earth and Mars must have for these “best-case” free-return trajectories. 

6.1.1 Best Case Mars Free-Returns Found this Century 

The STOUR program was used to find launch dates for Mars free-return 

trajectories over this century, logging all candidates that had launch energies below 43 

km2/s2, Mars fly-by altitudes greater than 200 km, and Earth re-entry speeds less than 

14.5 km/s, based at 100 km altitude (these numbers are denoted as Inspiration Mars, or 

IM constraints from now on). Figure 6.1 shows the output from STOUR with a search 

ranging from January 1, 2000 to December 31, 2099. The step size in Earth launch V∞ 

ranged from 6 km/s to 7 km/s with a step size of 0.1 km/s, however only results set by the 

above constraints are shown on the plot.  

It turns out that the types of trajectories satisfying the IM constraints appear every 

15, and sometimes 17 years, with the best appearing in late 2017/early 2018. Since the 

synodic period of Earth and Mars is roughly two and one-seventh years, the inertial 

geometry repeats every seven synodic periods, or 15 years. Due to the nonzero 

inclinations of Mars and nonzero eccentricities of both Earth and Mars, the “best-case” 

missions can appear one synodic period later, creating the occasional 17-year time 

increment. 
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Out of the 100-year search, the seven trajectories listed in Table 6.1 are the 

trajectories found this century that closely match the 2018 opportunity, with the second 

entry representing IM mission. The trajectory closest to the IM mission is the last entry 

corresponding to a launch in 2097—a date far off, where hopefully humans will not just 

be performing free-return flybys of Mars. The first entry, the most recent free-return 

trajectory closest to the IM mission in 2000 portrayed a high C3 which violated the upper 

bound of 43 km2/s2 set by the IM constraint, as well as a high VArr. The next best Mars 
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free-return occurs about 15 years later from 2018, in late 2032, with a lower C3
 of 38.4 

km2/s2, but higher entry speed of 14.4 km/s. It is clear from Table 1 that the IM trajectory 

in 2018 (represented by the second entry) is the best found this century in terms of its VArr. 

In terms of metrics, VArr is weighted a bit more over C3 due to limitations in current 

technology. According to SpaceX, the Falcon Heavy, advertised to be launched sometime 

in 2014, will be able to propel 13.2 tons to Mars which is sufficient for the estimated 

payload mass for the Inspiration Mars mission. The entry speed limitation is more of a 

critical design factor since current technologies can handle entry speeds of about 14.5 

km/s or less; thus the lower the entry speed, the more desirable the trajectory. 

Table 6.1 Mars free-return trajectories this century that display Earth launch energies and 
Earth entry speeds comparable to the Inspiration Mars 2018 opportunity1 

Earth Launch Date (mm/dd/yyyy) C3 (km2/s2) VArr (km/s) 
11/11/2000 43.6 14.5 
12/25/2017 40.2 14.0 
12/08/2032 38.4 14.4 
01/23/2050 41.0 14.1 
12/20/2064 39.1 14.1 
11/17/2079 42.3 14.4 
12/22/2096 41.0 14.0 

 

6.1.2 Radial Distance Plots 

Radial distance plots are constructed to identify trends in the planets’ positions 

that make the trajectories desirable. Over a specified time period, the radial distance of 

Earth, Mars and the spacecraft’s trajectory with respect to the Sun are plotted allowing a 

visualization of the where on the planets’ orbits the spacecraft is performing the flybys.  

                                                 
1 The entry occurring on 01/01/2018 is the trajectory closest to the trajectory announced by Tito et al. [13]. 
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Figure 6.2 shows the three best free-return opportunities this century. The first 

plot is an opportunity in late 2017 (within the same launch window as the nominal IM 

mission) with the lowest launch energy (C3) and entry speed. The second plot is about 47 

years later in late 2064, and the third plot, at the end of the century, in late 2096, are 

comparable to the nominal IM mission, but all have higher entry speeds. 

All of the trajectories in Figure 6.2 possess similar characteristics in regards to 

where they leave Earth and intercept the orbit of Mars. They all seem to leave Earth at or 

around Earth’s perihelion, and arrive close to, but not directly at Mars’s perihelion. The 

case in late 2064 has the spacecraft arrive a bit before Mars is at its perihelion; while the 

trajectories in late 2017 and 2096 have the spacecraft arrive closer to Mars’s perihelion. 

Figure 6.2: Similar desirable free-return opportunities to Mars. The first graph is the 2018 
trajectory, and the other two are trajectories with similar characteristics, one occurring in 2064, 

and the other in 2096. 
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Due to the relative inclinations and eccentricities of Earth and Mars, it is expected that 

the spacecraft would not intersect the planets’ orbits exactly at their respective perihelia, 

but rather have other geometries that produce desirable free-return trajectories. 

6.1.3 Time-Free Ephemeris (TFE) 

Due to the relative nonzero inclinations and eccentricities of Earth and Mars, it is 

difficult to predict when an optimal alignment will occur for a desirable Mars free-return 

trajectory. However the use of a time-free ephemeris tells where the planets would need 

to be for these trajectories. The trends of an Earth departure around its perihelion and a 

Mars fly-by around its perihelion appear to be common in the radial distance plots of the 

desirable trajectories, so they are used as the general search regions in the time-free 

ephemeris model. 

 The TFE works much the same way that STOUR does, except that the ephemeris 

used to describe the positions of Earth and Mars is user-defined. The planets’ orbital 

elements are assumed to be constant and frozen on the date that the 2018 trajectory 

occurs. Lambert arcs are computed between the planets using a V∞-matching algorithm to 

compute free-return trajectories. In this way, if the two Lambert arcs computed from 

Earth to Mars and from Mars to Earth possess the same V∞ at Mars’s arrival and 

departure, then a free-return trajectory exists. Then, if the trajectory has desirable C3 and 

VArr characteristics, it is logged while others are discarded. 

 Mars’s and Earth’s positions around the Sun are user-specified by adjusting the 

constant found by integration resulting in Kepler’s Equation, tp, or time past periapsis 

   sinpn t t E e E  
 
 (6.1) 
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where n is the planet’s mean motion, t is the current time, E is the eccentric anomaly, and 

e is the eccentricity. By adjusting tp, the planet’s position can be computed by iteratively 

solving equation (6.1) for E. With both the planets’ positions and a user-input TOF, 

Lambert arcs between the planets are computed. 

The first solution space searched in the TFE included hard constraints on the 

positions of Earth and Mars where they are both set to lie at their respective perihelia. A 

constraint was also imposed on the Mars arrival arc where the trajectory ended at the 

Lambert arc’s aphelion, as suggested by the radial distance plots. Since there are three 

inputs to the Lambert arc algorithm (assuming zero revolutions about the Sun), and three 
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arrival when Earth and Mars are located at their respective perihelia. If the solid 

and dashed lines intersect, then the V∞ of arrival and V∞ of departure match, and a 
free-return trajectory exists. 
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imposed constraints, only one unique solution for the outbound arc is available. Since 

Earth was assumed to start at its perihelion, we propagate its trajectory forward in time, 

computing lambert arcs with corresponding V∞ of departure from Mars. Unfortunately, no 

free-return trajectories exist for any TOF input to the lambert algorithm, as illustrated in 

Figure 6.3. 

Figure 6.3 illustrates how the V∞ (or C3) matching algorithm works, which is 

incorporated into STOUR and the TFE. For each V∞ of arrival at Mars computed from the 

first Lambert arc from Earth to Mars, the second leg of Lambert arcs are computed with 

varying TOFs, with their associated V∞ of departure at Mars. If the dashed line and the 

solid line intersect at one or more points, then the V∞ of arrival and V∞ of departure match, 

and a free-return trajectory exists, and the corresponding TOF is computed using a root-

solving technique. In the TFE, a secant method is used to solve for the roots, since the 

two guesses required for such a method are each less than a day from the actual solution. 

The second solution space searched in the TFE kept the constraints that Earth and 

Mars remain at their respective perihelia, but no requirements on the Lambert arcs. In this 

way, the total TOF for the free return trajectory was split between the Earth departure leg 

and the Earth arrival leg. Since the 2018 opportunity is approximately 500 days, the first 

Lambert arc was allotted a flight time around half that, that stepped from 200 to 300 days 

in one-day increments. The second leg’s flight-time was varied from the first leg’s flight-

time, subtracted from a maximum allowed total TOF, set to 530 days. This was the range 

that all feasible IM-like free-return trajectories would be located. With the one-day steps 

between flight-times of the first leg, seven free-return trajectories were found and are 



125 

 

listed in Table 2, while the Heliocentric plot of the trajectories are presented in Fig. 4, 

centered in the J2000 reference frame.  

Table 6.2 Mars free-return trajectory characteristics from the TFE with Earth and Mars 
set at their respective perihelia 

C
3
 (km

2
/s

2
) Entry Speed (km/s) TOF (days) 

55.3 14.0 525.1 
54.2 14.0 523.5 
53.0 13.9 521.8 
51.9 14.0 519.9 
50.8 13.8 517.5 
49.7 13.8 514.5 
48.7 13.7 509.8 

 

The trajectories found in the second solution space exhibit the low arrival speeds 

congruent with the 2018 opportunity, however possess higher launch energies which are 

not within the bounds of the IM-constraints. These cases are not ideal for human missions 

due to the need for higher payload masses, meaning more propellant required during 

launch. 

 Since no other information could be gathered by leaving Earth and Mars at their 

respective perihelia, the next step is to move Earth and Mars around their perihelia to find 

the relative geometry that produces desirable trajectories.   

The final solution space of the TFE for desirable Mars free-return trajectories are 

constructed by moving Earth’s and Mars’s relative positions. This is done mathematically 

by adjusting their respective times past perihelion, tp. Earth at departure is moved around 

its perihelion by tp,E = ±40 days while Mars at its arrival is moved around its perihelion 

by tp,M = ±50 days, and all free-return trajectories are found using the aforementioned V∞-

matching technique, with one-day increments in the transfer time between Earth launch 
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and Mars arrival. Those free-return trajectories possessing IM-like characteristics or 

better are retained, while all others are discarded. 

Figure 6.5 shows all Mars free-return trajectories found using the TFE. The blue 

stars, red stars and green stars correspond to Earth launch, Mars fly-by and Earth arrival 

respectively. The yellow trajectory shows where the IM trajectory lies within the solution 

space of the TFE. These trajectories illustrate what kind of geometry Earth and Mars 

must have in order for an IM-like mission to exist. Of course, in reality, Earth and Mars 

cannot be moved around arbitrarily, and one must wait until the planets are in the proper 

Figure 6.4: Mars free-return trajectories where Earth and Mars are fixed at their 
respective perihelia, and no constraints are imposed on the transfer arcs. The blue star 
indicates Earth launch, the red star indicates the Mars fly-by and the green stars are the 

possible Earth arrivals. 
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alignment. 

6.1.4 Launch Window for 2018 Opportunity 

The STOUR search results, radial distance plots, and TFE analysis all clearly 

show that the best-case opportunities are highly sensitive to planetary geometry (and 

therefore launch date). In fact, simulations in STOUR about the 2018 opportunity (with 

launch date steps of 1 day and launch V∞ of 0.1 km/s) show that the 2018 launch 

opportunity is only available from about 12/19/2017 to 1/3/2018. The results of the 

STOUR simulation are shown in Figure 6.6 with TOF, launch date, and launch V∞ shown 

on the vertical axis, horizontal axis, and color bar, respectively. All results in the plot 

Figure 6.5: Mars free-return trajectories where Earth departure and Mars arrival are 
allowed to move in an arcs around their respective perihelia. The blue star indicates 

Earth launch, the red star indicates the Mars fly-by and the green stars are the 
possible Earth arrivals. The yellow trajectory corresponds to the 2018 IM 

opportunity. 
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have Earth arrival V∞ no larger than 9 km/s (entry speed of 12.29 km/s). The plot shows 

that to achieve this launch window, the launch V∞ ranges from 6.3 km/s and 6.5 km/s (C3 

from 39.7 km2/s2 to 42.3 km2/s2), and TOF from 502 days to 510 days. To restrict the 

launch V∞ to 6.3 km/s and maintain a TOF near 503 days, the launch window is restricted 

to the lower group of opportunities (shown with index of 1 in the figure), which lasts 

about one week, from 12/28/2017 to 1/3/2018. 

6.1.5 Deterministic Maneuvers 

Part of the desirability of the 2018 opportunity for Inspiration Mars is that it is a 

free return, and therefore does not require any deterministic maneuvers to return the crew 

to Earth. Nevertheless, maneuvers are briefly investigated to determine if significant 

reductions in TOF, launch C3, and/or entry speed can be achieved, for a moderately sized 

impulsive ΔV. Only powered flybys at Mars are considered for this investigation, and are 

implemented in STOUR using a subroutine that places the maneuver 3 days after the 

Mars encounter—effectively increasing the energy change obtained from the Mars 

gravity assist. A full discussion of how this maneuver is implemented in STOUR is given 

in detail by Patel [61]. All maneuvers in this investigation are assumed impulsive and 

allowed a maximum ΔV size of 1 km/s. 

Only near-term opportunities around the 2018 launch date are considered in the 

STOUR trajectory search using steps of 1 launch day and 0.25 km/s launch V∞. The 

results show that the maneuver has little to no effect on TOF, as the trajectories found 

have TOF ranging from 497 days to 510 days—about the same as those found for the 

ballistic case (with no maneuver implemented). Specifically, to achieve a TOF of 497 
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days (only a few days shorter than the ballistic case) requires a maneuver size of 0.40 

km/s ΔV, and launch V∞ of 6 km/s. 

The launch window was found to expand to as early as 12/14/2017 to as late as 

2/5/2018, however many of these opportunities (near the extremes of these dates) require 

larger maneuver sizes of about 1 km/s. For more moderately sized maneuvers below 0.5 

km/s, the launch window was found to be 12/18/2017 to 1/14/2018— still a few weeks 

longer than the available launch dates for the ballistic case. 

Figure 6.6: STOUR results showing available launch window for the 2018 
opportunity, with TOF, launch date, and launch V∞ shown on the vertical axis, 

horizontal axis, and color bar, respectively. Within the resolution of the STOUR 
search (one-day step in launch date and 0.1 km/s-step in launch V∞), the earliest 

launch date occurs on 12/19/2017 with launch V∞ of 6.5 km/s and the latest launch 
date occurs on 1/3/2018 with launch V∞ of 6.3. 
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The impact of a maneuver on available launch and arrival V∞ (or launch C3 and 

arrival entry speed) is shown in Figure 6.7. The figure shows the STOUR results with 

maneuver ΔV, arrival V∞, and launch V∞, shown on the vertical axis, horizontal axis, and 

color bar, respectively. For more moderately sized maneuvers with ΔV  below 0.5 km/s, 

the figure shows that an arrival V∞ of 8.29 km/s (entry speed of 13.8 km/s) is achievable 

for a small 65 m/s maneuver, with launch V∞ of 6.5 km/s (C3 of 42.3 km2/s2). Overall, 

this is not much of a decrease from the ballistic trajectory with 14.0 km/s entry speed 

Figure 6.7: STOUR results showing available opportunities in late 2017/early 2018 with 
a powered flyby implemented at Mars. The Maneuver ΔV, arrival V∞, and launch V∞ are 
shown on the vertical axis, horizontal axis, and color bar, respectively. The maximum 
allowed maneuver size for the STOUR search is 1 km/s, with steps in launch date of 1 

day, and steps in launch V∞ of 0.25 km/s. 
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(shown in Table 6.1 with launch date on 12/25/2017), which only requires a C3 of 40.2 

km2/s2. 

With regard to reducing launch V∞, Figure 6.7 shows that maneuvers of at least 

0.69 km/s are required to obtain a launch V∞ of 5.75 km/s (C3 of 33.1 km2/s2). Although 

this is a significant reduction in C3, it comes at the cost of a relatively large maneuver 

size, and may not provide any reduction in propellant cost. Additionally, the arrival V∞ 

that results from such opportunities approach 9 km/s (entry speeds of 14.3 km/s), which 

(of the trajectories considered in this study) is relatively large. To achieve a launch V∞ of 

6 km/s (C3 of 36 km2/s2), maneuvers that are at least 0.21 km/s are required, and result in 

entry speeds near 14.2 km/s, providing very little to no benefit over the purely ballistic 

best cases. 

Overall, this preliminary investigation of impulsive maneuvers suggests that the 

use of a powered flyby does not provide any significant benefit (if any at all) over the 

purely ballistic 2018 Mars free-return opportunity. 
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CHAPTER 7.  CONCLUSION 

The background required to set up and solve optimal control problems via optimal 

control theory is presented with a focus on applications to aero-assisted trajectories. The 

necessary conditions for local optimality with state-variable inequality constraints (SVIC) 

are outlined, and two methods for solving the associated boundary value problems are 

explained. The first method is Lobatto collocation, which uses p-th order polynomials in 

an implicit Runge-Kutta integration scheme to integrate a set of differential equations and 

satisfy the boundary conditions. In doing so, the differential equations are transcribed into 

a system of nonlinear equations to be solved simultaneously using a root-solving 

algorithm. The second method is a multiple shooting method which breaks up the 

sensitivity of explicit integration of N nodes and the initial conditions for each segment 

are found such that the flow is continuous, and the boundary conditions are satisfied.  

Necessary conditions for local optimality for aerogravity assist trajectories are 

posed and solved with various cost functionals and constraints. The first cost functional is 

to maximize the velocity at atmospheric exit which minimizes the total energy lost due to 

drag. The boundary conditions are then adjusted so the vehicle departs the central body 

on a desired final V∞
+ vector. This minimization of energy loss coupled with targeting the 

exit conditions produces the minimum required E* to complete the AGA maneuver. An 

example trajectory at Mars is solved and the minimum E* was 2.994.  
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The goal of the second AGA optimal control problem is the same as the first, but 

now a stagnation-point convective heating-rate constraint is imposed on the trajectory via 

a SVIC. The process calculates the minimum E* required to complete the AGA maneuver 

with the convective heating-rate below a certain prescribed maximum value. An example 

trajectory is computed at Venus, with a minimum E* of 3.06 when no heat constraint is 

enforced, but increases to 5.23 in the presence of the constraint. 

The last optimal control problem minimized the total integrated heat load the 

vehicle accrues during the flythrough while simultaneously targeting the outbound V∞
+ 

vector directly in the boundary conditions. Numerical difficulties prevented the direct 

targeting of the V∞
+ vector in the first two methods, but was overcome by the time the last 

optimal control problem was formulated and solved. This last method allows for more 

flexibility in choosing vehicle parameters, as E* can now be chosen to see if it can satisfy 

the mission requirements. An example trajectory at Mars is solved with an E* of 3.5 and 

nose radius of 1 m, giving a heat load of 29.4 kJ/cm2 with associated maximum heat-rate 

of 95.9 W/cm2. It is shown that current thermal protection system (TPS) materials are 

capable of handling these heating characteristics with only 18.3% of the vehicle mass 

required to be dedicated to the TPS. 

Optimal aerocapture trajectories at the Ice Giants including rotational atmospheric 

effects are formulated and solved with optimal control theory to minimize the total heat 

load. Using bank angle as the sole control mechanism, it was found that a sub-optimal 

control of using purely lift-up (bank of zero) while targeting a desired capture orbit gives 

roughly the same result in terms of total heat load. The reason for the similarity in the 

results is due to the high speeds of approach and the limited control authority present 
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during the trajectory. The lift influences the motion of the trajectory in the limited time 

the vehicle is deepest in the atmosphere, where the density is highest. At these lower 

altitudes, the optimal result is to point the lift vector to be nearly lift-up, mitigating the 

higher heating that comes from flying at lower altitudes.  

A study was conducted to find all the desirable candidate trajectories this century 

for a Mars free-return mission that are possible using current technology. It was 

discovered that the one proposed for Inspiration Mars in early 2018 is the best chance we 

have in this century. Since the next opportunity does not occur for another 15 years in 

2032, it emphasizes the urgency for a human mission to Mars in 2018. The time-free 

ephemeris (TFE) shows the relative geometries that Earth and Mars need to possess for 

an Inspiration Mars-like mission to occur, and similar geometries only occur every 15 or 

17 years – a considerable waiting period. Unless a back-up trajectory is found using other 

gravity-assist sequences, or new propulsive technology is developed to open up other 

trajectory design spaces, it would mean another long waiting period until another human 

mission to Mars could be flown.  
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CHAPTER 8. FUTURE WORK 

8.1 Optimal AGA Trajectories 

An additional idea for AGA trajectory optimization is including a heliocentric 

plane-change during the AGA to minimize the potential cost for a required deep-space 

maneuver to get into a target heliocentric inclination. For example, to get to Ceres with 

an inclination of 16°, an AGA could be performed at Mars to get the required V∞
+ vector 

that includes the large plane-change maneuver. 

8.2 AGA Guidance 

There is much room for improvement to the presented AGA guidance algorithm. 

Thus far there has only been one conference paper on AGA guidance subject to 

dispersions [32], and only the bank angle was used as the control mechanism. The 

aerodynamic and IMU uncertainties were not included in the analysis in chapter 4, and 

the effects these dispersions have on the clean-up maneuver need to be investigated. 

Chapter 4 indirectly uses angle-of-attack as the control, however there may be benefits to 

using a combination of both angle-of-attack and bank angle. Since the lift and drag 

coefficients are directly affected by angle-of-attack there are uncertainties associated with 

them that may be avoided by using bank angle. 

The predictor-corrector has a problem with convergence if the AGA vehicle loses 

too much energy during the entry phase. For example, if during the entry phase, the 
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vehicle overshoots the reference radius as depicted in Figure 4.5, it is that there is not 

enough energy to reach the desired exit conditions. If this is the case, the built-in 

targeting algorithm will fail to converge and the algorithm breaks down. A possible 

solution to resolve the failed overshoot cases is to employ optimization techniques that 

attempt to minimize both the magnitude and direction of the V∞
+ vector upon atmospheric 

exit. The best way to set up the optimization method is with nonlinear programming 

(NLP) software using a multi-objective optimization method, since both direction and 

magnitude are under consideration. Including these cases would increase the radius of 

convergence of the predictor-corrector. 

Another issue that could be addressed for AGA guidance during the cruise phase 

could be to have the vehicle track an updated radius reference profile that has a constant 

nonzero, negative flight-path angle. It has been shown in Lohar et al. [27] that flying at 

such an angle for a majority of the AGA maneuver restricts the maximum heat-rate. 

8.3 STOUR-AGA 

While using STOUR-AGA for finding possible tours employing AGA, it was 

noticed that perhaps not all of the solutions using the E* matching algorithm were being 

logged. The potential problem was noticed when running STOUR-AGA with a small 

difference in user-defined E* of 0.05 – the results were drastically different. Since the 

algorithm finding the solutions uses a root-solving technique and the equations solved are 

nonlinear there could be possible solutions that are not being logged. An investigation 

into the algorithm using the root-solver could be performed to see if all of the possible 

solutions are being found. 
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APPENDIX 

QUESTIONS, NOTES, AND FEEDBACK DURING DEFENSE 

1. Why minimize the heat-load for AGA compared to other cost functionals? 

One of the main technology requirements to make AGA realizable is to have a TPS 

material able to withstand the heating rates and heat loads associated with the 

atmospheric flythrough. One way to address the heating issue is to fly the trajectory 

which minimizes the heat load in an attempt to make it feasible for current or near-future 

TPS technologies. Formulating the problem to minimize the heat load also allows for a 

straightforward implementation in classical optimal control theory. 

2. Could the radiative heat rate be curve-fit and added to the cost functional? 

The radiative heating can be curve fit to the tabulated data in the equation, and added to 

the cost functional. Since the tabulated data is only a function of velocity, it should be 

straightforward to apply the necessary conditions for local optimality. 

3. Has a sensitivity analysis or analysis of variance been performed for AGA? 

A sensitivity analysis has not been done, but it is important to see what varying the 

arrival conditions to the flyby planet does to the optimal path. There is an admissible set 

of initial conditions that will allow for convergence of the optimal trajectory, but seeing 

how sensitive the edges of this admissible set is an interesting issue that should be 

investigated in future work. 

4. What are the most important factors for heating? 
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According to the models used for convective and radiative heating, they are functions of 

nose radius, atmospheric density, and velocity. Flying higher may lead to reduced heating 

as the atmospheric density is lower, however the vehicle may not dissipate enough energy 

to depart on the desired V∞ vector. Arriving to the flyby body slower would also lower 

the heating, but this could prevent a substantial amount of turning around the planet, 

meaning the benefits of using AGA would not be as apparent compared with a traditional 

propulsive burn. 

5. How does the spacecraft know where it is located? 

An issue that hasn’t been addressed in the AGA problem is navigation. There will have to 

be an autonomous observer to get estimates of the states, as there will likely be no 

measurements that could be made from Earth. Navigation is a problem that will need to 

be investigated in future work to make the AGA concept more achievable. 

6. Where did the uniform distribution for the initial conditions come from? 

The uniform distribution for the initial conditions was used to simulate random 

dispersions in the initial conditions without known statistics on the mean or variance. The 

ranges used in the uniform distribution are the current ranges that the predictor-corrector 

can handle and still converge. One way to possibly widen the range of acceptable values 

is to reformulate the predictor-corrector as a multi-objective direct optimal control 

problem to minimize the error (taking into account both direction and magnitude) 

between the actual and desired V∞ vectors. 

7. Where did bounds on , ,    come from? 

The bounds on the angle-of-attack and its rates were taken from Casoliva et al. [32], that 

used these same rates for their bank angle guidance formulation. The rates were claimed 
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to be similar to that of the space shuttle. Since the angle-of-attack is changed in a 

different manner than the bank angle, future work should investigate whether the bounds 

on angle-of-attack used are realistic. 

8. Are control surfaces used to change the angle-of-attack? 

The angle-of-attack, and thus the lift coefficient, is adjusted by control surfaces on the 

vehicle. The bounds for the angle-of-attack for the waverider in the present work are 

bounded between 10 25   and for all trajectories presented the vehicle stays within 

the bounds. However investigations into whether or not control surfaces can achieve 

these values without a significant drag penalty is required in future work. 

9. What is the inclination for the Uranus aerocapture maneuver? 

The inclination has a value of 74.4 degrees. 

10. Do you want to maximize L/D, or Drag during aerocapture? 

Since the goal of aerocapture is to deplete the orbital energy to a desired capture orbit, the 

drag should be considered the parameter of interest. Flying at maximum L/D the whole 

maneuver may not necessarily give the best results. An study should be conducted to see 

if the L/D should vary to give higher or lower values of drag, giving a better minimum for 

the total heat load. Adding the L/D as an additional control and solving the optimization 

problem would be one way to investigate this issue. 

11. Is heating maximum at the stagnation point? 

The heating is not necessarily a maximum at the stagnation point. If there are points 

where turbulent flow can impact the vehicle, especially when there are long running 

lengths in any direction, the peak heating can increase. A rule-of-thumb to approximate 

this value is multiplying the peak heating rate at the stagnation point by three. 
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12. For the guidance, what if atmospheric density fluctuates heavily over terrestrial 

surface? 

If the atmospheric density varies with latitude and longitude, there would need to be 

something in the guidance algorithm to address this. One way would be to re-compute the 

reference density at every guidance cycle. However the problem with this approach is 

that too much or not enough energy may be dissipated to reach the exit conditions. If the 

vehicle can’t reach the exit conditions (according to the predictor-corrector), then the 

predictor-corrector would need to be modified to minimize the error in the exit conditions 

using a direct optimization scheme, as described in the future work section. 
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