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ABSTRACT

Ochoa, M. Ph.D., Purdue University, December 2016. Laser-Processed Parchment Paper
for Fabrication of Chronic Wound Dressings with Selective Oxygenation. Major Professor:
Babak Ziaie.

Chronic non-healing wounds (e.g., diabetic foot ulcers and bed sores) impact over 6.5

million Americans per year, costs in excess of $25 billion to treat on an annual basis, and

are on the rise due to increasing levels of obesity and diabetes compounded by an aging

population. A major inhibitor of healing is suboptimal oxygenation of the wound bed.

Unlike acute injuries that receive sufficient oxygen via a functional blood vessel network,

chronic wounds often suffer from the lack of a proper vascular network; thus being

incapable of providing sufficient oxygen for tissue growth. Typical medical treatment of

hypoxic chronic wounds typically employs hyperbaric oxygen therapy, which requires

bulky equipment and often exposes large areas of the body to unnecessarily elevated

oxygen concentrations that can damage healthy tissue. A more recent and convenient

approach is topical oxygen therapy (TOT), in which the dressing itself can generate and

deliver the required oxygen; various such systems exist commercially, but they are not

economical, they do not provide selective delivery to only hypoxic regions, and their

design does not permit further expansion for other wound-healing therapies on the

same platform. A more practical implementation of such dressings would comprise an

inexpensive dressing platform for adaptive oxygen therapy which is capable of delivering

appropriate oxygen gas where and when it is needed. This work presents a low-cost

alternative for continuous oxygen delivery comprising of an inexpensive, paper-based,

biocompatible, flexible platform for locally generating and delivering oxygen to selected

hypoxic regions. The platform takes advantage of recent developments in the fabrication

of flexible microsystems including the incorporation of paper as a substrate and the use
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of inexpensive laser machining. The use of paper simultaneously provides structural

strength and flexibility as well as selective filtering functionality, i.e., it allows for oxygen to

pass through while preventing aqueous solutions to reach the tissue. The laser machining

enables the precise definition of oxygen generating regions that match the hypoxic

wound profile. Together these two technologies enable the development of a low-cost

patch/wound-dressing with customized, wound-specific oxygen generating regions.
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1. INTRODUCTION

1.1 Problem definition

Cutaneous wounds pose major health and financial burdens for millions of people

throughout the world. In the US alone, chronic non-healing wounds, in particular, (e.g.,

diabetic foot and bed sores) impact over 6.5 million Americans per year, costs in excess

of $25 billion to treat on an annual basis, and are on the rise due to increasing levels of

obesity and diabetes compounded by an aging population [1, 2]. Chronic wounds are

those which do not follow the standard cascade of biological processes (i.e., inflammation,

proliferation, and maturation) by which common acute wounds heal [3]. Instead, their

healing is impaired by conditions such as local hypoxia, irregular vascular structure,

external mechanical pressure, and bacterial infections [3–9]. Current treatments are

expensive and labor-intensive, relying on regular cleaning, debridement, oxygen therapy,

surgery, and topical or systemic administration of antibiotics [10–12]. Commercially-

available dressings (e.g., alginate, hydrogels, hydro-colloids, foams, etc.) have not proven

to be significantly effective in reducing the burden. An ideal dressing integrates sensors

(pH, oxygen, and inflammatory mediators), drug/cell delivery (antibiotics, growth factors,

stem cells, and oxygen), and electronic intelligence to drastically improve wound care by

measuring individual responses and enabling appropriate adjustments to therapy (i.e.,

precision/personalized wound care) [13, 14]. In order to do so, it is important to address

one component at a time.

Among the many issues hampering chronic wound healing, suboptimal oxygenation

of the wound bed is one of the most critical and treatable. Unlike acute injuries that

receive sufficient oxygen via a functional blood vessel network, chronic wounds often

suffer from the lack of a proper vascular network, thus, being incapable of providing

sufficient oxygen for tissue growth [7, 8, 15]. While the lack of oxygen may trigger vascular
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regeneration, the severity and depth of wounds can prevent adequate regeneration,

causing wound ischemia. Modern medical treatment of hypoxic chronic wounds typically

employs hyperbaric oxygen therapy, which requires bulky equipment and often exposes

large areas of the body to unnecessarily elevated oxygen concentrations that can damage

healthy tissue [16–18]. A more practical approach is topical oxygen therapy (TOT) in

which the dressing itself can generate and deliver the required oxygen. Moreover, an

ideal strategy would be to develop a dressing for adaptive oxygen therapy capable of

delivering appropriate O2 where and when it is needed. Various commercial systems exist

which provide or generate oxygen to be delivered topically; however, they suffer from

one or more of the following shortcomings: high cost ($2000 per two weeks), inability

to selectively deliver oxygen to specific wound regions, and a lack of modularity for

incorporation with other wound sensing components.

1.2 A low-cost solution

As a first step towards the development of a multi-functional smart wound healing

bandage, this dissertation presents a low-cost alternative for continuous O2 delivery

comprising of an inexpensive, paper-based, biocompatible, flexible platform for locally

generating and delivering oxygen to selected hypoxic regions. The platform takes ad-

vantage of recent developments in the fabrication of flexible microsystems including

the incorporation of paper as a substrate [19–22] and the use of inexpensive laser ma-

chining [23–25]. The use of paper simultaneously provides structural flexibility as well as

selective filtering functionality, i.e., it allows for oxygen to pass through while preventing

aqueous solutions to reach the tissue. The laser machining enables the precise definition

of oxygen generating regions that match the hypoxic wound profile.The silicone-based

composition of the paper ’s binder enables seamless integration with other flexible (e.g.,

PDMS) microfluidic and therapeutic components. Together these two technologies

enable the development of a low-cost patch/wound-dressing with customized, wound-

specific oxygen generating regions.
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1.3 Organization of this dissertation

This dissertation is organized as follows. Chapter 2 presents a brief overview of cuta-

neous wounds, an overview of modern treatment practices for chronic wounds, a case for

the need for advanced wound dressings, and a description of modern rapid prototyping

technology that is ideal for the development of such new dressings. Chapter 3 introduces

parchment paper as an ideal substrate for wound dressing applications, specifically

laser-treated parchment paper as an oxygen generation platform; it discusses the various

merits of such paper in light of the requirements for a wound dressing. Chapter 4 presents

a practical catalysis-based approach to generating oxygen on the wound dressing. Chap-

ter 5 demonstrates an oxygen generation platform for wound dressings, including various

practical embodiments of the platform. Chapter 6 summarizes the work and remarks on

the contributions of this research to the existing technologies. Finally, Chapter 7 discusses

the remaining challenges for manufacturing integrated, smart dressings for the treatment

of chronic wounds.



4

2. CHRONIC WOUNDS AND APPROPRIATE THERAPIES

2.1 Chronic dermal wounds

This chapter provides background about chronic wounds and their treatment ap-

proaches. Portions of this text are taken from publications by the author [14, 26].

2.1.1 Dermal composition and wound classification

Skin is composed of various layers of cells which can be classified as two distinct

tissue layers, the epidermis (outer) and the dermis (inner), Figure 2.1. The epidermis

(about 40–400µm thick, depending on the body location) [27] serves as a protective

barrier which shields the underlying tissue from external threats such as bacteria in

the environment. It consists primarily of keratinocytes (95 %) but also contains some

melanocytes, Langerhans cells, and Merkel cells.

Beneath the epidermis lies the dermis, a layer containing connective tissue composed

of protein fibers, primarily collagen (and to a lesser extent elastin), as well as various types

of cells, including fibroblasts, mast cells and histiocytes [28]. This layer also contains

a network of capillaries (5–10µm diameter) with a cross-sectional density in the range

of 36–81 capillaries per mm2 [29]; they are the primary source of nutrition/oxygen for

dermal tissue.

When the epidermis or dermis are damaged (e.g., by scraping the epidermis or by

a burn incident), the surrounding tissue responds immediately by releasing enzymes

which trigger inflammation as well as signal proteins such as vascular endothelial growth

factor (VEGF). In acute wounds, wounded tissue typically remains properly interspersed

with (capillary) oxygen/nutrient sources such that the entire wound bed receives suffi-

cient oxygen and nutrients (as is the case with un-injured tissue). Thus, as long a the
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Figure 2.1. A cross-section of the skin, showing the two primary layers, the
epidermis and the dermis. Reproduced from Ref. [28] with permission from
John Wiley and Sons.
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wound is maintained moist (e.g., with a traditional bandage), wound healing progresses

through distinct inflammatory, proliferative, and maturation phases in an orderly fashion,

Figure 2.2. The surrounding tissue provides adequate signal proteins to the wounded

region to regenerate the tissue and recreate vascular structure to adequately nurture the

new skin. In such acute wounds, the entire healing process lasts no more than about

three months.

Figure 2.2. Sequence of molecular and cellular events in skin wound healing.
Reproduced from Ref. [3] with permission from Elsevier.

If, however, a wound is incapable of receiving proper nutrition (e.g., oxygen) from

the surrounding tissue, it may become chronic. A chronic wound is a type of wound that

does not heal in an orderly or timely (i.e., within three months) manner. These wounds,

unlike (healing) acute wounds, either remain in an non-healing state or worsen rather

than improving. One major reason is inadequate oxygenation. Such wounds often occur
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Figure 2.3. Example of chronic wounds (pressure ulcers) on the foot. (a)
Recurring foot ulcer; (b) cellulitis from ischemia; (c) probe-to-bone test to
check for osteomyelitis. Reproduced from Ref. [31], used under CC BY-NC
4.0.

in patients that are bedridden due to other unrelated health problems. Their inactivity

causes prolonged constant pressure on specific areas of the body, resulting in pressure

ulcers with a disturbed vascular structure and an ideal ground for bacterial infection

growth [15, 30]. A graphic example of a (chronic) foot ulcer is shown in Figure 2.3. In

order for this wound to heal, the dermal tissue must be regenerated. To ameliorate this

situation, it is possible to supplement the hypoxic regions of the wound bed with oxygen

from an external source.

2.1.2 Standard treatment protocols for chronic wounds

Modern protocols for the treatment of chronic wounds call for attentive care and

regular application and replacement of wound dressings. Their primary purpose is to

physically protect the wound and maintain adequate moisture levels while allowing air

exchange [3, 10, 11, 32]. Since the exact optimal healing environment for a particular

wound varies depending on its severity and healing state, various types of dressings are
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available for treating a wide range of wounds, Figure 2.4 [3, 12, 33, 34]. Each of these

addresses a unique condition in the wound and each follows a different replacement

schedule (from twice per day to twice per week). The most common and least expensive

is the standard gauze, Figure 2.4(a), which is indicated for shallow wounds or as a base

component in multi-layer dressings. For increased moisture retention, a porous transpar-

ent film dressing, Figure 2.4(b), may be used instead or in addition to the gauze. Such

dressings permit gas exchange but prevent wound-bed dry-out. If, on the other hand, the

wound-bed is excessively wet, one may opt for a more absorbent dressing such as a gel or

a hydrocolloid, Figure 2.4(c). These materials absorb excess exudate but maintain the

wound sufficiently moist to promote tissue regeneration. In more extreme cases of deeper

or more exudate-prone wounds, a sponge-based dressing is the preferred alternative,

Figure 2.4(d); such dressings can more effectively fill a deep wound and absorb significant

exudate. In addition to moisture management, many chronic wounds also require infec-

tion control. These cases would benefit from the application of antiseptic-loaded carriers

such as silver-ion alginate dressings, Figure 2.4(e) [35]. This broad variety of modern

dressings may seem sufficient for targeting many wound conditions; however, the high

complexity of chronic wounds often results in the simultaneous expression of multiple

symptoms that can be more efficiently addressed with improved wound monitoring

systems.

To specifically address hypoxia, treatment of hypoxic chronic wounds typically em-

ploys hyperbaric oxygen therapy [17, 36–39], which requires bulky equipment and often

exposes large areas of the body to unnecessarily elevated oxygen concentrations that can

damage healthy tissue. For example, hyperbaric oxygen therapies (e.g., Figure 2.5) for

foot ulcers are expensive, cumbersome, can result in systemic toxicity, and have shown

marginal benefits. Hence, such methods require very careful and periodic oxygen ad-

ministration to avoid hyper-oxygenation of tissue surrounding the wound. In a more

practical approach, recent research has endorsed transdermal oxygen therapy (TOT) as a

viable and effective method for oxygenating a hypoxic wound [8, 18, 40–42]. A variety of

wound dressings can be used to create an enclosure around a wound which can entrap
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Figure 2.4. Various types of commercially available wound dressings. (a)
Common gauze pads/rolls, (b) transparent film, (c) hydrocolloid dressing, (d)
foam dressing, (e) silver-loaded alginate dressing, and (f) soft silicone-coated
dressing. Reproduced from Ref. [14] with permission from IEEE © 2014.
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Figure 2.5. Example of a typical hyperbaric foot therapy system for ex-
tremities by Therapeutic Surface Solutions Inc. [43]. Figure taken from
www.tsswoundcare.com. © Therapeutic Surface Solutions Inc.

oxygen generated from an external source (e.g., oxygen tank), restricting oxygen exposure

only to the wound region while reducing the amount of healthy tissue that is exposed to

hyper-oxygenation.

Commercial TOT systems

One of the commercial TOT technologies is a hand-held system (EPIFLO, Ogenix,

Ft. Lauderdale, FL, Figure 2.6(a)) that concentrates oxygen from the environment and

pumps it through a piece of tubing that it feeds into the wound dressing [44,45], shown in

Figure 2.6(a). The system is capable of producing oxygen continuously at a rate of 3 mL/h

for up to 15 days, which has been shown to be sufficient for an expedited healing process.

Average cots per day for a patient is approximately $ 47. This product is definitely an

improvement over previous systems, as it allows for patient mobility and limits oxygen

exposure to the wound bed. However, the system is still bulky, expensive, and does not

provide a means to selectively deliver oxygen to the hypoxic regions within the wound.

A similar device is the Natrox (Inotec AMD) system (Figure 2.6(b)), consisting of a

portable oxygen generator which generates oxygen via electrolysis and directs it through
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flexible tubing into an oxygen delivery wound dressing. The generator module runs on a

battery which is replaced daily. The dressing is replaced every 2–3 days. The average cost

for a 7-day therapy is about $ 750. Like the EPIFLO systems, this is a two-part system.

Another example is the OXYGENESYS O2 patch (Halyard Health, Inc., formerly

Kimberly-Clark Health Care), Figure 2.6(c). This devices contains embedded oxygen

created during the fabrication process via a chemical reaction. Oxygen is not limited to

only certain areas of the patch; instead, it is available everywhere, allowing the patch to be

cut to the desired size. Once cut, the patch is applied to the wound, where, upon contact

with moisture, it begins to release oxygen into the wound bed. The dissolved oxygen in

the patch travels into the wound at a rate which is controlled by the dissolved oxygen

gradient in the wound bed. For a 10 cm × 10 cm patch, this corresponds to 221–369 mL/h.

Each patch costs approximately $ 93.

The OxyBand (OxyBand Technologies, Figure 2.6(d)) Wound Dressing is another TOT

dressing which is pre-filled with oxygen. It consists of an oxygen reservoir capped on

one end (non-wound end) by a gas-impermeable cover, and on the wound side by a

gas-permeable membrane. When placed on the wound, it exposes the wound bed to pure

oxygen for continuous diffusion for the duration of the therapy. The patch can operate

continuously for up to 5 days and has a cost of $ 55 per patch.

These four commercial systems represent the current state of the art in the generation

and delivery of oxygen to dermal wounds. Their key parameters are summarized in

Table 2.1; here, cost comparison is based on a typical 7 day therapy to allow comparisons

among single-unit and multi-unit systems (e.g., those where only one unit is replaced).

None of these offer selective oxygenation within a wound (e.g., to prevent oxygenation of

normoxic cells), nor do they permit integration with flexible medical sensors in a seamless

fabrication technique. The treatment of such wounds would greatly benefit from the use

of a localized method for oxygen delivery with improved spatial and temporal precision.
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(a) Ogenix EPIFLOTM O2 pump [45]. Photo-

graph taken from www.ogenix.com. Ogenix

and EPIFLO are registered trademarks of

Neogenix, LLC dba Ogenix.

(b) NATROXTM oxygenation system [46].

NATROX is a trademark of Inotec AMD Lim-

ited.

(c) OXYGENESYSTM O2 patch [47]. OXYGE-

NESYS is a registered trademark or trade-

mark of Halyard Health, Inc.

(d) OxyBandTM wound dressing [48]. © Oxy-

Band Technologies.

Figure 2.6. Commercially available systems for topical O2 delivery; all supply
O2 to the entire wound, without allowing selectivity towards hypoxic regions.
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2.2 Smart wound dressings

To place the need and viability of advanced precision wound oxygenation dress-

ings in proper context, it is important to first review the advantages of smart wound

dressings, their material requirements, and current and emerging technologies for their

development. These concepts are covered in this section.

2.2.1 Rationale for developing more complex dressings

The future of wound dressings lies in ‘smart’ dressings, comprised of arrays of sensors

and drug/oxygen delivery modules (e.g., TOT modules) that can address the therapeutic

requirements of the wound in a localized, responsive manner. This can be accomplished

by the incorporation of bio/chemical sensors (e.g., pH, oxygen, inflammatory signals)

and drug delivery capabilities (e.g. via nanomedicine [49] or microfluidics [50]) into

the dressings [51, 52] by either (i) developing new wound dressing platforms or (ii) em-

bedding flexible sensors into existing commercial ones. These smart systems can help

optimize the healing process, decrease the healing time, and prevent infections. They

can evaluate the local wound environment, release wound healing agents as needed,

detect the optimal replacement time, and alert the patient/caregiver of any unusual

phenomena (preferably through a wireless link). The fabrication of such systems requires

a deviation from traditional MEMS and transducer fabrication methods in order to create

devices with mechanical and electrical properties which are optimized for the unique

environment of wounds (i.e., soft, deformable, wet, and warm). Although the unit cost

of such systems may surpass that of current dressings, their ultimate efficacy can result

in an overall reduced expenditure. As reported by Kerstein et al., while a pressure ul-

cer that is properly treated shows satisfactory healing progress with either inexpensive

gauze dressings or more expensive hydrocolloid ones, the total cost of the treatment

is lower for the latter due to their less frequent replacement schedule and a reduced

need for professional medical attention [53]. Additionally, the techniques should be

economical, adaptable for moderate-volume production, and preferably customizable
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(i.e., for a precision medicine approach). As a result, researchers have embraced the use

of commercially-available materials and rapid prototyping equipment for the develop-

ment of low-cost, conformable, disposable devices for wound healing and other wearable

applications. Processes such as inkjet printing, screen printing, micro-gravure coating,

and laser machining are particularly suited for these applications due to their scalability

and ease of implementation [54, 55].

2.2.2 Material requirements for wound dressings

Cutaneous wounds present a unique environment in which dermal monitoring de-

vices must operate, Figure 2.7. They consist of an exposed subcutaneous tissue (dermis;

and in deep wounds hypodermis, fat tissue, and possibly muscle) that is wet/moist,

warm, and loaded with cellular and bio/chemical components (red and white blood cells,

plasma, bacteria in case of infection, and inflammatory/regenerative biomolecules) [3,32].

Furthermore, the wound bed contains delicate regenerating tissue which may be sensitive

to chemical, thermal, or mechanical stimuli. As a result, any device designed for such

cutaneous interfaces must conform to a set of requirements, mimicking the properties of

typical wound dressings. Despite the large variation in structural and physical properties,

current wound dressings have certain core requirements for their functional efficacy.

First is flexibility, i.e., such dressings must be sufficiently flexible to conform to the wound

and not limit the patient’s mobility [56]. Second is gas permeability, which is essential for

maintaining an adequate oxygen supply; alternatively, some dressings may supply oxygen

at required levels [57]. Third is moisture control [58]; the dressing should keep the wound

bed moist but absorb excess exudate. Finally, the material in contact with the wound bed

should be sufficiently soft to avoid causing mechanical insults and interfering with the

epithelization process (a minimal adhesion is often preferred to reduce the mechanical

load).
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Figure 2.7. Wound dressing requirements for proper healing. The dress-
ing should conform to the wound bed, prevent bacterial infections, retain
adequate moisture, remove excess exudate, and promote oxygenation. Re-
produced from Ref. [26] with permission from Springer.
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Figure 2.8. Flexible devices for medical applications. These include (a) PDMS,
(b) Parylene-C, (c) polyimide, (d) paper, (e) silk, and (f) Parylene-C/PDMS
bilayer. Reproduced from Ref. [14] with permission from IEEE © 2014.

2.2.3 Materials and processes for smart wound dressings

Flexible substrates and materials are particularly attractive for wound applications

since they can conformally cover the wound and do not apply excessive force/stress to the

healing area (most commercially available wound dressing are flexible and conformal).

Recent efforts in this area have leveraged large scale integration of ultra-thin inorganic

semiconductors with flexible and biodegradable substrates to fabricate several multi-

functional systems for biological applications [59, 60], e.g., Figure 2.8. Other materials

which have been used for fabrication of such medical devices are summarized in Table 2.2.



18

M
at

er
ia

l

Young’s
M

odulu
s(M

Pa)

Bio
-c

om
patib

le

Spin
-c

oata
ble

Stre
tc

hable Flexib
le

Hydro
phili

c Glass
tra

nsit
io

n
te

m
pera

tu
re

(◦C
)

W
VP×

1010
*

Refe
re

nces

P
D

M
S

0.
36

0–
1.

24
Ye

s
Ye

s
Ye

s
Ye

s
Ye

s
−1

25
72

00
0

[6
1,

62
]

P
o

ly
(v

in
yl

al
co

h
o

l)
(P

V
A

)
49

.5
±3

.2
Ye

s
Ye

s
N

o
Ye

s
N

o
85

9.
03

–4
19

0
[6

3,
64

]

W
h

at
m

an
fi

lt
er

p
ap

er
46

0–
17

00
Ye

s
N

o
N

o
Ye

s
Ye

s
–

98
9–

81
40

[6
5–

67
]

P
T

F
E

50
0

Ye
s

Ye
s

N
o

Ye
s

Ye
s

13
0

8.
45

[6
2]

p
o

ly
la

ct
id

e
(P

L
A

)
10

30
–4

00
0

Ye
s

Ye
s

N
o

Ye
s

N
o

55
–6

0
20

0*
*

[6
8–

70
]

P
E

T
25

00
Ye

s
N

o
N

o
Ye

s
Ye

s
85

15
1

[7
1]

P
o

ly
im

id
e

32
00

Ye
s

Ye
s

N
o

Ye
s

Ye
s

>4
00

41
7–

50
40

[6
2,

72
]

P
ar

yl
en

e
40

00
Ye

s
N

o
N

o
Ye

s
Ye

s
80

–1
00

9.
25

**
[7

3–
75

]

*
W

at
er

V
ap

o
r

Pe
rm

ea
b

il
it

y
m

u
lt

ip
li

ed
b

y
10

10
:(

cm
3
·c

m
)/

(c
m

2
·s

·c
m

H
g)

**
W

at
er

V
ap

o
r

Tr
as

fe
r

R
at

e:
(g

)/
(c

m
2
·s)

Ta
b

le
2.

2.
F

le
xi

b
le

m
at

er
ia

ls
w

h
ic

h
h

av
e

b
ee

n
u

se
d

as
su

b
st

ra
te

s
fo

r
fa

b
ri

ca
ti

n
g

m
ed

ic
al

d
ev

ic
es

,
su

ch
as

w
o

u
n

d
d

re
ss

in
gs

.
R

ep
ro

d
u

ce
d

fr
o

m
R

ef
.[

14
]w

it
h

p
er

m
is

si
o

n
fr

o
m

IE
E

E
©

20
14

.



19

2.2.4 Laser machining as a viable tool for wound dressing fabrication

Processing such unique materials for wound dressing manufacturing requires the

use of emerging rapid prototyping technologies. Among these, laser-machining offers a

unique set of capabilities directly beneficial for the development of flexible/stretchable

low-cost systems for cutaneous wound interfaces. They consist of a laser module con-

nected to a machining enclosure that contains a working stage and a software-controlled

lens. The substrate is placed on the stage and the lens module guides the laser beam on

the surface of the substrate to cut or ablate regions as defined in a CAD drawing. Most

commercial systems use either a 10.6µm CO2 laser (typical powers of up to 150 W) suit-

able for cutting polymers and wood or a 1.06µm fiber laser (typical powers of up to 40 W)

that can mark metals and cut thin foils [76–78]. These systems have a linear scanning

speed of a few meters per second and the output power and laser spot size/focus can be

adjusted by software.

Laser machining provides the ability to cut materials, etch (ablate) them, alter their

surface morphology, and induce surface chemical changes, all of which increase the

functionality of the material. For example, laser can be used to tune the hydrophilicity

of materials such as paper, or (using different parameters) it can be used to pyrolize

polymers to create active carbon materials. Furthermore, the availability of commercial,

reliable, and precise laser systems allows them to become part of large-scale (e.g., roll-to-

roll) production lines. Such systems are particularly useful for processing various types of

paper, such as parchment paper, as is discussed in the following chapter.
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3. LASER PROCESSED PAPER AS A SUBSTRATE FOR WOUND

DRESSINGS

3.1 Paper for wound healing

3.1.1 Merit of paper for medical devices and wound dressings

Among the many materials available as substrates for future wound dressings, paper

stands out as a competent and appropriate solution due to its low cost, adaptability

to mass production, and mechanical flexibility (for conforming to wounds). Paper is a

classic material whose invention dates back to ancient China. Aside from its traditional

application as a writing medium, paper can be repurposed using modern technologies

to create novel devices with complex functionality for use as flexible sensors for wound

monitoring. Paper offers many unique properties including biocompatibility, low cost,

and ubiquity [79]. Moreover, its cellulose mesh composition invites customization of

many physical parameters, including thickness, fiber size, porosity, and hydrophilicity.

Cellulose is a natural, hydrophilic fiber with strong hydrogen bonding between polymer

chains which render it insoluble in water and most organic solvents. These properties

have enabled the manufacturing of many different types of commercial paper, including

filter paper [21], wax paper [80], and parchment paper [81], among others. These three,

in particular have found niche applications in the field of disposable sensor development

due to their favorable, tunable physical properties. The first of these is known to have

excellent wicking properties. The latter two are naturally hydrophobic, but their surface

properties can be altered by plasma treatment or by laser ablation [25]. Parchment

consists of a compressed cellulose fiber sheet encapsulated in a thin coating of silicone to

achieve a hydrophobic, heat-resistant surface. Wax and palette paper use wax and plastic,

respectively, as the coating material. Many researchers have used these properties for
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the fabrication of paper-based systems for various biomedical applications, including

controlled drug delivery, tissue engineering, sutures, biodegradable vascular grafts [82,83],

low-cost microfluidics [84], and various flexible sensors [19, 21, 85–89].

Of all papers types available commercially, parchment paper offers unique advantages

of mechanical strength when dry and wet, selective gas permeability over aqueous solu-

tions at low pressures, laser-patterning ability, compatibility with multiple bio-medical

device materials, and bio-compatibility. This chapter describes these key features to

demonstrate the suitability of parchment paper for wound dressing applications. Portions

of this chapter were adapted from [90, 91].

3.1.2 Mechanical flexibility and strength of parchment paper

Mechanical flexibility and strength are two essential parameters of wound dressing

substrates. The substrate must be sufficiently flexible to conform to the human body,

specifically to wounds (and in some cases to the wound bed itself). For this reason,

most commercial bandages or dressings are composed of stretchable fabric, non-woven

fabrics, polymeric sponges, or thin polymer-backed hydrocolloids; similarly, medical

adhesive tapes are flexible and are composed of either polymers, fabrics, or paper. At

the same time, wound dressings require mechanical robustness to prevent them from

tearing under the strain from regular wear and to keep them from disintegrating in the

presence of (often heavy) moisture (e.g., sweat, wound exudate, applied therapeutics in

the wound bed). This subsection compares the mechanical properties of various types of

paper in dry and wet conditions, and places them in context of typical values for wound

applications.

The mechanical properties of the paper were investigated using a standard tensile

stress-strain test. Paper samples (parchment, wax, filter, and a paper-PDMS composite)

were laser-cut into strips (5 mm × 20 mm) and separated into two groups. One group

was maintained at room temperature while the other were submerged in buffer saline

solution (PBS) for several durations (0-7 days). Subsequently, and the ultimate tensile
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Figure 3.1. Stress-strain curves various types of dry and wet paper: (a)
parchment paper, (b) wax paper, (c) filter paper, and (d) paper/PDMS com-
posite. Reproduced from Ref. [90] with permission from The Royal Society of
Chemistry.

strength (UTS) and Young’s modulus of all samples in both groups were subsequently

measured using a universal testing machine (Admet, model eXpert 1000). The tensile

strength measurements were performed by fixing the two ends of the film and stretching

from 0 % to 12 % strain at a constant extension velocity of 10 mm/min.

Figure 3.1 shows the stress-strain curves of the various papers when dry and after

24 hours in PBS solution. The dry samples exhibit a linear stress-strain profile with

limited (2.5 %) elongation before rupture. The sharp drop in the stress indicates the
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strain at which the paper tears. The Young’s modulus of the various papers is extracted

from the stress-strain curves and is graphed in Figure 3.2. The data reveal an high elastic

modulus (> 100 kPa) for all dry samples, except for filter paper. Once wet, however, the

elastic modulus of each sample drops below 50 kPa. In particular, the elastic modulus

of parchment paper changes from over 300 kPa to about 45 kPa, whereas the others

drop to significantly lower levels. These values for parchment paper make parchment

paper sufficiently rigid for handling (e.g., when using it as a substrate for fabrication) but

becomes sufficiently soft for skin application when wet (e.g., in the wound environment).

Skin is known to have an elastic modulus of 24.910–101.180 kPa, depending on the skin

location [92]. Thus, wet parchment paper matches the elastic properties of skin. As

such, it can be compared to other commercial products, such as a commercial wound

regeneration matrix (e.g., Integra Dermal Regeneration Matrix, Integra Life Sciences)

which is used routinely in burn-related surgeries; this product has a Young’s modulus of

25–45 kPa, in the lower range of that for parchmet paper.

Despite being very flexible, parchment paper also exhibits significant strength. Fig-

ure 3.3 shows the change in the ultimate tensile strength for the papers/films before and

after submersion in phosphate buffered saline (PBS). Figure 3.3 shows the change in UTS

for filter paper and various hydrophobic papers before and after various durations of

submerging in PBS. All the dry samples exhibit a linear stress-strain profile with a small

strain (2.5 %) before rupture. The commercial parchment paper and wax paper have the

highest mechanical properties in dry state with the UTS of 69.4 MPa and 73 MPa. Filter

paper impregnated with PDMS has a dry UTS of 21.4 MPa, which is three time higher

than the pristine filter paper (7.6 MPa). This increase in mechanical strength is explained

by the presence of the PDMS filler in the network fiber of the paper forming a stronger

composite film. Wet tensile strength results, for all the specimens, show an increase in

elasticity but decrease in mechanical strength.

Unlike the dry state, the wet papers show an average 6 % strain followed by necking

before rupture. This is understood to be due to the diffusion and plasticizing effect of

water molecules in the paper film. The results show that the hydrophobic papers retain
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Figure 3.2. Young’s modulus of various papers in dry and wet condition. Re-
produced from Ref. [90] with permission from The Royal Society of Chemistry.
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Figure 3.3. Ultimate tensile strength for different papers as a function of
wetting duration. Reproduced from Ref. [90] with permission from The Royal
Society of Chemistry.

some of their mechanical strength after 24 h submerging in PBS, whereas the filter paper

wet UTS drastically decreases to 1.1 MPa and starts to disintegrate in the solution. Among

the investigated hydrophobic papers, parchment paper retains more than 40 % of its

original dry UTS strength followed by PDMS/paper and wax paper with retentions of 31 %

and 14 %, respectively. The parchment paper and wax paper show a stable retention of

mechanical strength (UTS) of 29 MPa and 8.9 MPa for 7 days. However, for filter paper

and PDMS/paper, a longer wetting duration reduces the mechanical strength (UTS) down

to 0.4 MPa and 5.4 MPa, respectively.
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3.1.3 Compatibility with other BioMEMS materials/processes

A key requirement for compatibility of parchment paper with other medical devices

is the ability to bond securely between common materials. One of the most common

materials for medical device prototyping is polydimethylsiloxane (PDMS); this material

can be used for microfluidics as is discussed in Chapter 5. Given the superiority of

parchment paper with respect to strength, flexibility, and diffusion of oxygen the following

tests focused only on parchment paper itself.

To test the bond strength between parchment paper and PDMS, we used a paper-

capped PDMS chamber as the test structure. The structure consisted of a 14 mm ×
14 mm × 4 mm piece of PDMS with a circular chamber of 8 mm diameter and 2 mm

height. The surfaces were treated with air plasma (75 W, 1 min), then brought into

contact, and finally allowed to completely cure on a hotplate at 65 ◦C. For the bond

strength tests, the PDMS chamber was bonded to a piece of parchment paper either (1)

directly, (2) with a binding layer of partially cured PDMS, or (3) with a binding layer of

uncured PDMS. In all cases, both surfaces were treated with air plasma (75 W, 1 min),

then brought into contact, and finally allowed to completely cure on a hotplate at 65 ◦C.

The best bonding technique (using partially cured PDMS) was then used to fabricate a

test device with the same design for characterizing the gas permeability of the parchment

paper (described in the subsection below).

The bond strength of the PDMS-paper interface was measured using the modified test

devices, Figure 3.4(a). A stainless steel needle was used for the fluid connection and its

perimeter was sealed with silicone adhesive. A syringe pump was used to pump water into

the device at a rate of 250µL/h while the pressure was measured using a digital pressure

gauge (DPG4000, OMEGA Engineering Inc.). The pressure immediately before device

failure was recorded. A similar setup was used to assess the permeability of parchment

paper to air. A syringe pump was used to pump air into a test PDMS-parchment paper

device bonded using partially cured PDMS and plasma. The pressure in the chamber
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(a) Experimental setup

(b) Measured bond strength

Figure 3.4. Strength of bond between parchment paper and PDMS. Repro-
duced from Ref. [91] with permission from Elsevier.

was measured at various gas flow rates and was used to calculate the permeability of the

paper.
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The characterization data for the PDMS-parchment paper bond strength is shown in

Figure 3.4(b). This test compared the bond strength of parchment paper bonded to PDMS

as described in the fabrication section using (1) fully cured PDMS, (2) partially cured

PDMS, and (3) uncured PDMS. The results show that a maximum pressure was achieved

when bonding the two materials using partially cured PDMS. This method created a bond

capable of withstanding up to 323 Torr. During these tests, the parchment paper was also

observed to be impermeable to aqueous solutions for pressures below 110 Torr. Hence,

the flow of H2O2 in the channels was not expected to affect cell cultures on the opposite

side of the parchment paper as long as the liquid pressure remained below this level.

3.1.4 Selective permeability of parchment paper to gases over water

In addition to strength, flexibility, and material inter-compatibility, wound dressings

should also be permeable to air, in particular oxygen, to allow proper oxygenation of

the wound bed during healing. One way to assess the oxygen transport across the paper

is to investigate the diffusion of oxygen from the air, into a chamber of water capped

with paper. For this, we designed a custom setup to compare the various papers. The

setup consists of a cylindrical chamber filled with 20 mL of deoxygenated deionized

water and covered by 20 mm-diameter circular sample of the paper. For all tests, the

dissolved oxygen is first removed by purging the water for 8 h with nitrogen gas. The

oxygen permeability is evaluated with real-time measurements of the dissolved oxygen

using an optical oxygen sensor (NeoFox, OceanOptics, Dunedin, FL) positioned in the DI

water chamber. All measurements are performed at room temperature and atmospheric

pressure. We evaluated the oxygen permeability of different membranes via the rate of

dissolved oxygen increase in the water.

Figure 3.5 shows the permeability of dissolved oxygen in a wet environment (setup

shown in inset). For all measurements the initial dissolved oxygen of the DI water was

close to zero ( 0.5 ppm) and increased with time up to the oxygen saturation level in the

water (8 ppm). The increase was due to the diffusion of the oxygen gas in ambient condi-
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Figure 3.5. Oxygen diffusion of different hydrophobic papers. Reproduced
from Ref. [90] with permission from The Royal Society of Chemistry.

tion through the membrane and its dissolution in the water. Without any membrane, the

water equilibrates to its steady-state saturation level of about 8 ppm in less than 140 min.

However, when the chamber was covered, the time required for oxygen saturation in-

creases. The results showed the longest oxygen equilibration time occurred for a pristine

100µm membrane of PDMS (720 min). Parchment paper had a larger oxygen permeabil-

ity (time to saturation of 210 min, with an average rate of 2.4 ppm/h). No signs of water

leakage were observed with the hydrophobic films during any of the measurements. The

mechanical strength and gas permeability results showed the superior performance of

the parchment paper.
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The paper was also tested for oxygen generation and permeation. Given the supe-

riority of parchment paper with respect to strength, flexibility, and diffusion of oxygen

this test focused only on parchment paper itself. The test structure used for the bonding

tests (described above) was used for these experiments. Here, air was pumped into the

chamber at various flowrates while the pressure was monitored. Figure 3.6 shows the gas

permeability data for parchment paper measured using the test device. The pressure (P)

versus gas flow rate (Q) data reveals a slope of 0.014 Torr/µL/min. Since the test devices

have a parchment paper area (A) of 50.24 mm2, the gas permeability (κ) of the paper can

be computed to be

κ= ∆Q

∆P
· 1

A
≈ 1.42µL/(Torr ·mm2 ·min) (3.1)

For a maximum pressure of 110 Torr (after which aqueous solutions may permeate

through the paper), the paper is suitable for oxygen generation rates of up to 3 mL/h with

only eleven 200µm-diameter oxygenation regions. Such regions will be described in the

subsequent two chapters and will be used as oxygen generation regions. The results here

show that oxygen can penetrate the paper at rates that compare to the oxygen transfer

rate of commercial oxygenation (TOT) systems.

3.2 Laser-patterned parchment paper as a dressing substrate

3.2.1 Paper patterning for hydrophilicity or hydrophobicity

Patterning paper to create hydrophilic-hydrophobic structures for microfluidic plat-

forms used in medical diagnostic tests was first demonstrated by Müller and Clegg in

1949 [93]. They created a narrow channel in paper using paraffin which led to faster

diffusion with smaller amount of samples. This device consisted of a single channel

patterned on filter paper using hot-stamping of paraffin. In 2007, the Whitesides group

reinvented the idea of using hydrophobic barriers to create a network of microchannels

in paper. In their original work [21], they used SU8-soaked chromatography paper which

was subsequently patterned by lithography to create microfluidic channels. Since then,
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Figure 3.6. The gas permeability of parchment paper was determined
from the pressure vs. air flow rate profile. Parchment paper dimensions:
A =50.24 mm2, t =30µm. Reproduced from Ref. [91] with permission from
Elsevier.
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many researchers have used SU-8 based lithography, wax-printing, screen-printing, ink-

jet printing of chemical, and xerography for paper surface patterning. However, these

methods suffer from one or more of the following shortcomings: 1) limited resolution

(millimeter scale in wax printing), 2) multi-step processing sequence (wax re-melting is

done after printing in order to ensure its complete penetration across the paper thick-

ness), and 3) low mechanical strength of the substrate when submerged in aqueous

media for long periods of time. An alternative technique, developed by our group, is

laser surface-treatment of commercially available hydrophobic papers (e.g., parchment

paper, wax paper, and palette paper) [81]. In contrast with the methods described by

the Whitesides group which start with a hydrophilic plain paper and are predominantly

additive, our approach is subtractive and can selectively convert hydrophobic areas to

hydrophilic ones in a single step process. Since the hydrophobic agent is already present

throughout the thickness of the paper, our method does not require heat treatment after

patterning to create islands of hydrophilic patterns, as is the case in the wax printing

technique. This approach brings several major improvements and allows for the fabri-

cation of more complicated platforms not feasible with other methods. These include:

1) higher resolution, 2) single-step patterning, 3) simultaneous surface processing and

micromachining, and 4) greater robustness.

3.2.2 Laser processing of parchment paper

Patterning of paper can be achieved via commercial laser engravers; these systems can

rapidly process a broad variety of paper substrates, including parchment paper (Reynolds

Parchment Paper, 50µm thick), wax paper (Reynolds Cut-Rite Wax Paper, 30µm thick),

and palette paper (Canson Palette Paper, 70µm thick). Among these, parchment paper is

particularly well-suited for creating biomedical microdevices due to its robustness and

its silicone coating which allows seamless integration with other silicone (e.g., PDMS)

devices. To pattern hydrophilic designs onto parchment paper, the paper is placed flat

on the cutting surface of a laser engraver while a computer is used to control the laser
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parameters to transfer the pattern from a CAD design. The two primary parameters

are laser power and beam scanning speed. Increasing the power or lowering the speed

imparts higher energy onto the material, resulting in deeper ablation (useful for creat-

ing though-paper defects). To avoid completely cutting through the paper (instead of

selective surface modification), the laser power and scanning speed must be carefully

selected. Commercial laser engraving systems offer satisfactory resolution, control, and

processing speed. For the parchment paper selected in our experiments (50µm-thick

silicone coated), the laser source was controlled at 10 % of its maximum power and was

operated at a a scanning speed of 35 mm/s. Even for other types of paper, namely wax

and palette paper, successful surface treatment is achieved with these parameters.

When parchment paper is laser-machined, its morphology changes, as can be seen

in Figure 3.7. This SEM images shows the top view of the paper before and after laser

treatment. The image show a clear change in morphology with exposed micro/nano

fibers on the surface of the paper after laser treatment. To more clearly observe the

morphological changes, one can look at the cross-section of the parchment paper, Fig-

ure 3.8. As evident in these images, the thickness of the paper changes as a result of laser

treatment. While the initial thickness of the paper is 60µm, the laser-ablated region was

protruded out of the plane by 15µm over the original surface. This can be attributed to

the decomposition/re-deposition of the silicone coating in the paper upon laser exposure,

leading to the generation of higher-volume porous micro/nano roughness. Together,

the roughness and increased volume of the laser-machined parchment paper produce a

sponge-like material into which microparticles can be loaded; this is useful for loading

oxygen-generation catalysts, as is described in the following two chapters.

In addition to added roughness, laser treatment of parchment paper also results in

increased water contact angle. The surface wettability of parchment paper and other

paper types was evaluated by measuring the static contact angle of a 10µL droplet of DI

water before and after laser treatment using an optical contact angle measuring device

(Rame-Hart goniometer, model 590). All experiments were conducted five times and the

mean contact angle was calculated. Figure 3.9 shows that the contact angle of parchment
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Figure 3.7. Top view of parchment paper before and after laser treatment.
Reproduced from Ref. [90] with permission from The Royal Society of Chem-
istry.
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(a) Pristine parchment paper

(b) Laser-machined parchment paper

Figure 3.8. Cross-section of parchment paper before and after laser treat-
ment. Reproduced from Ref. [90] with permission from The Royal Society of
Chemistry.
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paper changes from 121° to 21° as a result of laser treatment. This increase in surface

wettability is due to the creation of exposed micro/nano cellulose fibers and addition

of hydrophilic −OH, =O groups on the laser-ablated areas. The figure also shows other

paper types for comparison. As evident in the figure, parchment paper exhibits the largest

change in contact angle, allowing for more clear patterning of the paper.

Figure 3.9. Laser treatment of parchment paper results in a decreased water
contact angle, from 121° to 21°. The effect of laser on the contact angle
of other papers is shown for comparison. Reproduced from Ref. [90] with
permission from The Royal Society of Chemistry.

3.2.3 Laser patterning for loading with microparticles

For wound dressing applications, patterning parchment paper allows the rapid cre-

ation of hydrophilic traces or regions onto which other materials can be deposited or

which can be used for microfluidics. In particular, parchment paper can be loaded with

microparticles (e.g., chemical catalysts) for generating oxygen, as is described in the

subsequent section. The paper is patterned as described above, and microparticles are
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subsequently deposited (e.g., via precipitation) on the hydrophilic regions. Figure 3.10

displays the pattern definition capabilities of the process; the laser-ablated spots are

clearly defined and their hydrophilicity allows for precise patterning of the catalyst. The

spots have a diameter of 800µm, but smaller (or larger) custom sizes are possible up to

the resolution limit of the laser system (125µm in our case).

Figure 3.10. Photographs of (a) a catalyst-loaded, laser-patterned disk on
parchment paper, and (b) a magnified view of the disk. Reproduced from
Ref. [91] with permission from Elsevier.

Magnified views of the catalyst is shown in the SEM images of Figure 3.11. In Fig-

ure 3.11a, an aqueous solution of powder MnO2 was cast on the spot whereas in Fig-

ure 3.11b, the same catalyst material was deposited via a chemical reaction of two aqueous

reactants (KI, KMnO4). The images show the increased uniformity and smaller particle

size achievable with the reaction-deposition approach as opposed to the powder casting

method. With the reaction approach, the wicking action of the paper in the catalyst spots

absorbs each of the reactants, allowing the catalyst precipitate to be generated within the

paper mesh for improved particle entrapment and reduced catalyst washout rate during

operation. These images are representative examples of laser-machined parchment

paper samples; future work will characterize the repeatability and uniformity of such

materials to enable repeatable, reliable production of paper-based wound dressings.
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Figure 3.11. SEM images of MnO2 particles in a laser-ablated spot on parch-
ment paper. (a) Catalyst deposited as an aqueous suspension of MnO2 par-
ticles result in large material clumps on the paper surface. (b) Catalyst de-
posited by on-spot precipitation via the chemical reaction of two aqueous
solutions of KI and KMnO4 results in smaller, more uniformly distributed
and entrapped particles. Reproduced from Ref. [91] with permission from
Elsevier.
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3.2.4 Compatibility with cells

Previous studies have shown that the change in surface wettability with plasma and

laser treatment often affects cell growth on different substrates. This method has been

widely studied with different cells on various materials such as silk and polymers [94–96].

Here, we investigate the effect on parchment paper since, effective compatibility between

parchment paper and mammalian cells is needed if paper is to be used as a medical

wound dressing substrate.

For these tests, a pattern of hydrophilic spots was created on parchment paper by

laser machining as described above. The laser-treated paper (1.5-cm diameter discs) was

placed in 24-well plates and sterilized overnight by exposure to a UV-C lamp. Sterile Teflon

rubber rings (od=1.5cm; id=1.2cm) were used to anchor the paper to the well bottom.

Adipose stem cells (ASCs) in tissue culture were trypsinized, resuspended and counted

with trypan blue. Cells were seeded on each disc at a concentration of 1 × 105 cells/mL

and cultured in EGM-2MV for up to 14 days. The medium was replaced every 24 h and the

discs were collected over time and stained with eosin phloxine for histological assessment.

On day 14, some samples were assessed for the cells differentiation potential. The

medium was changed to adipogenic or osteogenic induction medium and after additional

culture time discs were processed using Oil Red O or von Kossa stain, respectively.

The results are shown in Figure 3.12. Cells attached preferentially to hydrophilic

regions and proliferated over time. The cells remained viable and were induced to

differentiate into adipocytes or osteocytes. Thus, laser-treated parchment paper is a

suitable matrix for the attachment of ASCs and therefore is suitable for use as a substrate

for wound dressings.

3.3 Summary of parchment paper merits

The investigations with parchment paper presented in this chapter reveal that laser-

treated parchment paper is ideal as a substrate for advanced wound dressings. In par-

ticular, the paper possesses high mechanical strength (> 70 MPa) to withstand human
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Figure 3.12. Laser-treated parchment paper is shown to be compatible with
adipose stem cells. Left: Pristine parchment paper leads to minimal cell
adhesion. Left: Laser-rastered parchment paper creates hydrophilic spots
onto which cells can attach, allowing patterning of paper with cells. Scale bar:
2 mm. Reproduced from Ref. [90] with permission from The Royal Society of
Chemistry.
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motion, high elastic modulus when dry (> 300 kPa) for easy handling during fabrication,

low elastic modulus (< 50 kPa) when wet for interfacing with similarly soft tissue, perme-

ability to gas and not water at low pressures, and permeable to oxygen diffusion. When

laser-rastered, it offers the additional advantages of a roughened surface for deposition of

particles (e.g., catalyst for oxygen generation) and a low contact angle (21°) for adsorbing

aqueous solutions as well as for promoting attachment of mammalian cells. The laser ma-

chining capabilities allow the creation of hydrophilic patterns which can be used as micro

oxygen generators for localized oxygenation in wounds, as is described in the following

two chapters. It is important to note that laser rastering may change the mechanical

properties of the paper (i.e., compared to those shown in Figure 3.3 and Figure 3.2; these

variations will be investigated in future work, as described in Chapter 7.
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4. PEROXIDE DECOMPOSITION FOR PORTABLE OXYGEN

GENERATION

A convenient way to oxygenate wounds is to generate oxygen within the wound dress-

ing. Unlike systems which require a separate (bulky) tank of compressed oxygen gas,

on-demand generation allows for smaller, more portable supply of oxygen. Further-

more, generating the oxygen within the wound dressings is particularly attractive, as it

eliminates the need for multi-unit wound dressing systems, simplifying the use of the

dressings. Using laser-patterned parchment paper as a substrate (as described Chapter 3),

appropriate oxygen-producing chemicals can be deposited on the paper selectively to

generate oxygen in specific regions of the wound. This chapter presents a practical tech-

nique for depositing such chemicals, and discusses the merits of a particular combination

for wound healing applications.

4.1 Materials for oxygen generation

Oxygen generation can be achieved by various methods, including via electrolysis

and by a a myriad of chemical reactions. Electrolysis is advantageous in settings where

electronics and abundant electrical power are readily available; such is the case in many

large-scale applications, but for (non-electronic) wound dressings, an alternative method

is more favorable. As a result, chemical reactions are a more practical approach when

generating oxygen in a wound dressing. These reactions rely on the catalytic decomposi-

tion of an oxygen-containing substance. The advantage of such catalytic reactions is that

they allow extended operation with only a small amount of the catalyst loaded onto it (as

long as the consumable material is abundant or replaced).

Catalytic reactions for oxygen production typically involve the decomposition of per-

oxides or superoxides, whose general chemical formulas can be expressed as M2O2 and
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MO2, respectively (M is a variable representing a metal). An economical and broadly

available option is the use of hydrogen peroxide, since it is readily available in the medical

environment at safe-to-use concentrations (3 %; 1 mL of this produces 11.4 mL of O2

at 37 ◦C). Hydrogen peroxide is a commonly used consumable due to its clean decom-

position into oxygen and water by well-known materials. This feature allows it to be

safely injected into aqueous systems without risk of producing unwanted contaminants.

Hydrogen peroxide can be catalyzed by many transition metals and their compounds to

produce oxygen via the following below.

2H2O2 → 2H2O+O2 (4.1)

Of the various catalyst materials available, manganese dioxide stands out as a con-

venient option. Manganese dioxide micro-particles are biocompatible and catalyzes

hydrogen peroxide cleanly while possessing the additional advantages of being econom-

ical, simple to synthesize, and commercially available. Additionally, the catalyst can

be synthesized via a precipitation reaction (KI+KMnO4 reacted as aqueous solutions)

without requiring complex fabrication techniques. This process also allows facile de-

position of the catalyst on various substrates via standard commercial manufacturing

techniques (e.g., gravure, printing, inkjet printing, dip coating) by processing each of the

two reactants sequentially. In the context of wound dressings, the ability to precipitate

the catalyst in place allows for deposition of the catalyst within the fibers of the wound

dressing; in particular, the catalyst can be easily printed on laser-machined parchment

paper, (as is described in Chapter 5) to create paper-based oxygenation wound dressings.

Furthermore, it is possible to pre-treat the catalyst particles to achieve nano-scale surface

features for enhanced catalytic activity while retaining its overall micro-scale (i.e., safe)

size. The following experiments examine the production of oxygen by hydrogen peroxide

decomposition using two sizes of particles which can be used for oxygenation wound

dressing applications.
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4.2 Characterization of manganese dioxide and hydrogen peroxide for cutaneous

oxygenation

4.2.1 Experimental approach

MnO2 microparticles ( 150µm diameter) were obtained from Sigma-Aldrich and used

as received. Smaller MnO2 particles ( 20µm diameter) were synthesized by reacting 5 mL

0.1 N KMnO4 with 5 mL of 0.1 N KI. Precipitates were collected by centrifugation and

rinsed with deionized (DI) water three times to remove impurities. The particles were

then dried in a nitrogen gas environment and maintained in an inert environment until

just prior to usage.

The catalytic activity of the catalyst particles was investigated in bulk. For this, 20 mg

of the large-size catalyst powder was mixed in a flask with 10 mL of 30 % H2O2 and im-

mediately connected to a standard trough setup for collection of generated gas. The

volume of generated gas was measured over time by time-lapse photography; the gen-

eration rate of oxygen generation was subsequently calculated from the photographs.

This experiment was repeated for the small-size particles (same mass of catalyst and

peroxide concentration). The particle morphology of the catalyst was also investigated

by imaging via scanning electron microscopy (SEM) before and after the catalytic activity

experiments. The particle size of both catalyst samples was also analyzed from the SEM

images using optical granulometry software (ImageJ plugin).

4.2.2 Results and discussion

The electron microscopy investigations on particle size are presented in Figure 4.1,

with the large particles shown in Figure 4.1(a) and the smaller ones in Figure 4.1(b). The

particle size distribution (Figure 4.1(c-d)) reveal a median diameter of 158µm for the

larger particles and 19µm for the smaller ones. Both types of particles are well in the

micrometer regime and should not pose any nano-scale-related threats to biocompati-

bility. A close-up inspection (insets) reveals more details about the surface morphology
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Figure 4.1. SEM of (a) large and (b) small micro-particles of MnO2. Particle
size distribution for (c) large and (d) small particles.

of each group; in particular, the larger particles comprise smooth plates, whereas the

smaller ones exhibit fewer macro-structures but increase surface roughness. The higher

roughness in the smaller ones can be expected to contribute significantly to the catalytic

activity.

The characterization experiments for the catalyst reveal a drastic change in catalytic

activity between the two particle sizes. The catalytic activity can be interpreted as the

rate of oxygen generation in a given solution of H2O2. Figure 4.2a shows the normalized

gas generation (µL O2 per minute per µg of MnO2) for both particles during 20 minutes

of immersion in the 30 % H2O2 solution. The data show up to an eight-fold increase in

rate for the smaller ones, compared to the larger ones. Such large difference for the same



46

Figure 4.2. Oxygen generation rate increases over time when immersed in
H2O2. The rate is up to 8 times higher for the smaller particles compared to
the larger ones.

mass is expected, since the smaller particles have a much higher surface area available for

catalyzing the H2O2. Additionally, by the 6 minutes mark, the rate of oxygen generation

for the small particles reaches at peak value which is 2.3 times its initial rate, whereas the

rate of large particles continues to increase monotonically, reaching nearly 6 times its

original rate by the 20 minute mark, Figure 4.3. Thus, in this sense, the smaller particles

offer a more stable rate of generation of oxygen, compared to the larger ones.

It is interesting to note that the larger particles experience a larger net percent change

in rate than the smaller one. These two effects (the absolute increase in rate for both

and the difference in change for each) can be understood by examining the particles
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Figure 4.3. Normalized oxygen generation rate of the two particle sizes with
respect to the initial rate of each. The smaller particles show less fluctuation
in rate (i.e., more stable oxygen generation).
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by scanning electron microscopy (SEM). Figure 4.4(a-b) are SEM images of the larger

particles (a) before and (b) after exposure to H2O2 for 20 minutes. Figure 4.4(c-d) are

SEM images of the smaller particles (c) before and (d) after the same exposure. In both

cases, the particles achieve a remarkably rough surface (i.e., higher overall surface area)

as a result of H2O2 exposure. This increase in surface area explains the higher catalytic

activity for both [97]. The images also show that the final degree of roughness in both of

the exposed particles is approximately equal; as a result, the change in surface is much

more drastic for the large particles (which were originally smoother) than for the smaller

ones (which started off with a large surface area), leading to a larger change in catalytic

activity for the large ones, compared to the small ones. These effects and catalytic rates

provide a means for tuning the oxygenation activity during the design phase of wound

dressings.

4.3 Summary of wound oxygenation via catalysis of hydrogen peroxide

From the point of view of oxygenation in wound dressings, the use of manganese

dioxide and hydrogen peroxide provides a low-cost catalyst-peroxide combination with

fast, tunable oxygenation rate. For the 19µm particles of manganese dioxide investigated

here, the maximum generation rate can be converted to 0.27 mL/h/µg MnO2, assuming

30 % H2O2, or 0.027 mL/h/µg MnO2, assuming 3 % H2O2. This generation rate is relevant

to wound healing when compared to the oxygen rate which has been shown to improve

healing in a rabbit ear wound (0.3µL O2/min/mm2, or equivalently 3 mL O2/min for a

10 cm × 10 cm area) and to the similar oxygen generation rate of a commercial product

(EPIFLO, 3 mL O2/min, Chapter 2). Based on the results from this chapter, such oxygen

generation rates are possible by using no more than 111µg of the catalyst on a 10 cm ×
10 cm area. The rate, of course, can be increased with higher amount of catalyst and

can be tuned by the concentration of the hydrogen peroxide. Nevertheless, the rate

characteristics measured here identify MnO2 as a suitable catalyst from the point of view

of deposition (via diluted solutions of the reactants) and wound healing requirements.
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Figure 4.4. Large micro-particles (158µm) of MnO2 (a) before and (b) after
exposure to H2O2. Small micro-particles (19µm) of MnO2 (c) before and (d)
after exposure to H2O2. Both cases reveal increased surface roughness.
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5. A PAPER PLATFORM FOR WOUND DRESSINGS WITH SELECTIVE

OXYGENATION

This chapter combines the parchment paper from Chapter 3 and the oxygenation reaction

from Chapter 4 into a low-cost wound dressing platform for continuous O2 delivery.

Portions of this chapter are taken from [91].

The paper-based oxygenation platform consists of an inexpensive, paper-based, bio-

compatible, flexible platform for locally generating and delivering oxygen to selected

hypoxic regions. It takes advantage of recent developments in the fabrication of flexible

microsystems including the incorporation of paper as a substrate [19–22] and the use of

inexpensive laser machining [23–25]. As described in Chapter 3, the use of parchment

paper simultaneously provides structural flexibility as well as selective filtering func-

tionality, i.e., it allows for oxygen to pass through while preventing aqueous solutions to

reach the tissue. The laser machining enables the precise definition of oxygen generating

regions that match the hypoxic wound profile. Together these two technologies enable

the development of a low-cost patch/wound-dressing with customized, wound-specific

oxygen generating regions, ideal for the treatment of chronic wounds with heterogeneous

oxygenation.

5.1 Platform design

The platform consists of a flexible microfluidic network bonded to a parchment paper

substrate, as illustrated in Figure 5.1. A key feature is the use of laser-patterned parchment

paper as the primary structural/functional material. Parchment paper is a hydrophobic

material by design; however, it can be ablated using a CO2 laser to create hydrophilic

regions [81]. This technique is applied to define an array of hydrophilic spots. The natural

mesh structure of paper allows the spots to be embedded with chemicals suspended in
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Figure 5.1. Cross-sectional illustration of platform at a single catalyst-loaded
pad. Reproduced from Ref. [91] with permission from Elsevier.

an aqueous solution. For the present application, the spots are loaded with a chemical

catalyst, MnO2. When H2O2 is injected through the microchannel network, it reaches the

spot array, and is decomposed by the catalyst, resulting in oxygen generation [98–100] as

described by Equation 5.1.

2H2O2 → 2H2O+O2 (5.1)

The generated O2 diffuses through the paper and oxygenates the wound bed below for

as long as H2O2 flows in the microchannel. The use of biocompatible structural material

allows the platform to be integrated into commercial wound dressings that are in contact

with the wound bed.



52

5.2 Experimental

5.2.1 Platform fabrication

The fabrication process of the oxygen generating platform is shown in Figure 5.2.

It consists of laser-defined patterns on parchment paper, creating microchannels on a

PDMS substrate, and bonding the layers together. The entire procedure is straightforward

and requires no complex cleanroom processing. First, the catalyst pattern is laser-ablated

onto a parchment paper substrate (30µm thick). The paper is then dipped (1 s) into a

0.1 N KMnO4 aqueous solution followed by a dip (1 s) in a 0.1 N KI aqueous solution.

This results in the deposition of KMnO4 and KI only onto the ablated pattern. The two

reactants yield MnO2 via the following reaction

KI(aq)+2KMnO4(aq)+H2O(l) → KIO3(aq)+2KOH(aq)+MnO2(s) (5.2)

Next a 200µm layer of PDMS (polydimethyl siloxane, Dow Corning Sylgard 184) is

spin coated on a silanized silicon wafer and cured on a hotplate (100 ◦C, 20 min). The

PDMS is transferred onto an acrylic substrate and laser-machined to create through-hole

regions with the same pattern as the catalyst. The patterned PDMS is exposed to air

plasma (75 W, 1 min) in a plasma etcher (PLASMOD, Tegal Corporation, Richmond, CA),

stamped onto uncured PDMS, and partially cured on a hotplate (65 ◦C, 5 min). Next, the

PDMS is bonded to the patterned parchment paper by plasma-treating both materials

and bringing them in contact. Finally, 150µm-deep microchannels are fabricated in

PDMS by casting onto a laser-machined acrylic mold and bonding it to the parchment

paper structure using plasma surface treatment.

5.2.2 Characterization setups

A syringe pump was used to drive H2O2 through the device to induce oxygen gen-

eration at the catalyst-loaded spots. A fiber-optic oxygen measurement system (Neo-

Fox, OceanOptics, Dunedin, FL) was used to measure the oxygen concentration on the
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Figure 5.2. Fabrication procedure (a) laser-pattern parchment paper, (b)
deposit catalyst, (c-d) laser-pattern 200µm-thick PDMS, (e) bond paper to
PDMS by stamping partially-cured PDMS, (f-h) mold PDMS microchannels,
(i) bond with plasma to paper structure. Reproduced from Ref. [91] with
permission from Elsevier.
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opposite side of the parchment paper, recording the oxygen level at catalyst-free and

catalyst-loaded regions. The oxygen level at a single spot was also monitored for 30 h to

determine the long-term generation rate. The transport kinetics of the generated oxygen

was explored to determine the maximum peroxide flow rate that would permit accurate

delivery of oxygen at its generation location. Oxygen generated at a spot must remain at

the spot for sufficient time to allow its permeation across the parchment paper; thus, if

the peroxide flow rate is too high, the generated oxygen will be transported downstream

and may permeate the parchment paper at an unintended location. The effect of the

liquid flow rate was determined by measuring the oxygen level (using the same fiber-optic

system mentioned above) across the parchment paper at various distances from the point

of generation under different flow rates.

To evaluate the ability to increase the oxygen concentration in the wound bed, the

oxygenation platform was tested on a surrogate wound bed, a sample of 0.3 % agarose

gel was used. An acrylic chamber with open top was assembled to hold the agarose gel

sample, Figure 5.3(a). The chamber includes an array of 2 mm holes on one side wall

to allow insertion of an oxygen probe. Prior to testing, 0.3 % agarose gel is prepared

prepared and stored in a hypoxic environment until ready for use. During testing, the

agarose gel is placed in the chamber. An oxygenation platform with a single 800µm-

diameter catalyst spot (deposited as described above) is loaded with 50µL of H2O2 in

the PDMS microfluidics. The platform is placed on top (in contact with) of the gel. The

test chamber is then sealed with Parafilm barrier to prevent significant oxygenation form

the atmosphere. The same oxygen probe described above is then inserted into a hole

of the test chamber, penetrating the gel until the tip is positioned 3 mm directly below

the catalyst spot of the paper, Figure 5.3(b). For this test, however, the probe is covered

with a protector needle to prevent mechanical damages to the probe during insertion.

The remaining holes in the chamber are sealed with adhesive tape to prevent oxygen

diffusion from the atmosphere. The oxygen concentration in the gel is monitored over

time.
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(a) Illustration of test setup

(b) Photograph during tests

Figure 5.3. Test setup for measuring oxygen diffusion into agarose gel.
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In clinical applications, the oxygenation platform is expected to have an interfacial

material between the parchment paper and the wound to create intimate contact with

the wound bed. To simulate this, we repeated the above experiment with a commercial

dermal regeneration matrix (Integra, Integra Life Sciences Corp.) as the interface. Integra

wound matrix is 900µm thick and is composed of cross-linked bovine tendon collagen

and glycosaminoglycan that is indicated for the treatment of acute and chronic wounds,

including diabetic skin ulcers. A 1 cm × 1 cm sample of Integra was cut with a razor blade

and sandwiched between the oxygenation platform and the agarose gel. The rest of the

experiment This experiment proceeded as above. As a control experiment, this test was

repeated with empty microfluidics (i.e., no H2O2).

To determine the cytotoxicity of parchment paper, 3T3 fibroblast cells with a cell

density of 10×104 cells/sample were seeded on the surface of the parchment paper. Since

the surface of the parchment paper is hydrophobic, a short (1 min) plasma treatment was

applied before the cell seeding process. Cells with the same density were seeded onto

the parchment paper with catalyst, parchment paper without catalyst, and a standard

well plate (as a control). After 6 hours, alamar blue assays were carried out to determine

the cytotoxicity of the samples. High concentrations of H2O2 are known to be toxic

to cells [101]; hence, separation of H2O2 flow from the cell-seeded region needed to

be verified. Assembled PDMS-parchment paper devices were modified to include an

additional 200µm layer of PDMS bonded to the exposed parchment paper. This layer

contained through-holes to form wells around the catalyst-loaded parchment paper

regions. The wells were used both to contain and culture the cells, as well as to insure

that the cells remained aligned on top of the oxygen-releasing spots throughout the

experiment. In this experiment, the devices were first treated with plasma. Then 3T3

fibroblast cells with a density of 5×104 cells/sample were seeded on the surface of the

devices. Next, a 3 % of H2O2 solution at a flow rate of 250µL/h was introduced through the

channels for 15 hours. After 15 hours of culture time, alamar blue assays were performed

to measure cell proliferation. As a control group, we used some devices without any H2O2

flow.



57

5.3 Results and discussion of the platform performance

The photograph in Figure 5.4 show a fabricated oxygen generation device with four

spots loaded with MnO2, even though the accompanying microfluidic network can

support eight spots. Hence, different wound-customized oxygen generating patches

can be easily created by simply altering the spot pattern on the paper without requiring

modifications of the microfluidics.

Figure 5.4. Top view of a completed device with only four patterned disks
(channels are 150µm thick; overall device thickness is 1.5 mm). Reproduced
from Ref. [91] with permission from Elsevier.

The ability to increase the oxygen level across parchment paper was confirmed with

direct oxygen measurements using an optical oxygen sensor positioned 1 mm above

the paper surface. An increase of oxygen concentration from 20.9 % to 25.6 % was ob-

served on the exposed side of the paper for regions with catalyst (Figure 5.5). Long-
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Figure 5.5. Oxygen level across parchment paper as a function of the distance
from the generation location using various hydrogen peroxide flow rates.
Oxygen delivery accuracy is optimum for H2O2 flow rates of 360µL/h or
lower. Reproduced from Ref. [91] with permission from Elsevier.

term (30 h) measurements of continuous oxygen generation revealed a constant oxygen

generation rate of 0.1µL O2/min/mm2 (Figure 5.6). A comparable level of oxygenation

(0.3µL O2/min/mm2) has been previously shown to effectively promote epithelial heal-

ing in a rabbit ear wound model [40]. Thus, our platform can generate oxygen at a

sufficiently high rate to alter the oxygen level in the microenvironment of a wound and

improve wound healing. Although the platform may require regular replacement (with an

optionally updated catalyst pattern) throughout the duration of therapy, its replacement

schedule (no more than once per day) is no more burdensome than common wound

dressings. The rate of oxygenation can be further controlled by varying the amount of

catalyst deposited on the spots and/or the flow rate and concentration of H2O2.

The results from the diffusion experiments into agarose gel are presented in Figure 5.7.

For the case without Integra, the blue curve shows a monotonically-increasing oxygen
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Figure 5.6. Long-term (30 h) oxygen generation profile. Oxygen is generated
at a rate of 0.1µL O2/min/mm2 when flowing 3 % H2O2 at 250µL/h. The
peroxide concentration and flowrate can be increased to achieve generation
rates that have been clinically proven effectively promote epithelial healing.
Reproduced from Ref. [91] with permission from Elsevier.
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level (from a partially hypoxic level of 15 % to 40 % 3 hours later) in the agarose gel 3 mm

below an oxygenation spot. The curves show saturation in the oxygen level since for these

experiments, a fixed amount of H2O2 was used (rather than a continuous flow). Although

the level shown here is not 100 % saturation, one can still conclude that the platform is

able to successfully raise the oxygen concentration 3 mm within the gel to levels which

are far from hypoxic. Therefore, if the gel were a wound, it would be reasonable to expect

improved healing as deep as 3 mm as a result of the oxygenation platform.

The two remaining curves represent the tests with Integra and show a different trend.

In particular, the orange curve, corresponding to the setup with Integra and peroxide-

filled microfluidics contains an initial shallow slope; this lag in the increase of oxygenation

can be attributed to the extra time required for oxygen to diffuse through the Integra

layer. After 2.5 hours, however, the orange curve exhibits its highest rate of change in

oxygen concentration (slope of 18.9 % per hour); this rate is similar to the largest rate of

the sample without Integra (17.1 % per hour), suggesting that although the Integra causes

an initial lag in oxygen diffusion, the eventual diffusion rate of oxygen approaches that

of the oxygen generation platform. For comparison, the oxygen level does not increase

during this time for the sample that does not contain peroxide in the microfluidics.

One feature of the curves that should be clarified is the initial drop in oxygen for

the two Integra samples. For both of these cases, the data shows an initially normoxic

oxygen level; this corresponds to the reading of the oxygen probe in atmosphere, prior to

insertion into the gel (at time 0). Following insertion, the oxygen concentration drops

steadily; although one would expect a quick drop in oxygen concentration (to hypoxic

levels in the gel), the curves show a 20–30 minute steady decay which can be attributed to

atmospheric oxygen trapped in the probe protector needle (described in the experimental

setup above) which needs time to diffuse into the gel. After 30 minutes, however, the

curves reach their minimum values (the oxygen level in the hypoxic gel, ≤15 %O2). These

data are representative examples of oxygen diffusion into agarose gels; future work will

characterize the repeatability of the process to enable repeatable, reliable production of

paper-based wound dressings.
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Figure 5.7. Oxygen generation and diffusion into agarose gel. The orange
curve exhibits its highest rate of change in oxygen concentration (slope of
18.9 % per hour); this rate is similar to the largest rate of the sample without
Integra (blue curve, slope of 17.1 % per hour). The sample with no oxygena-
tion (green curve) does not exhibit increases in oxygen concentration in the
gel.
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The oxygen transport kinetics of the platform for various flow rates are shown in

Figure 5.8. The plot depicts the level of oxygen as a function of the downstream distance

from the point of oxygen generation for various flow rates of H2O2. The data show that for

the channels used (rectangular cross-section of 500µm × 200µm), a flow rate of 300µL/h

is slow enough to provide generated oxygen with sufficient time to permeate the channel

and paper at the generation spot. At higher flow rates, however, cross-paper oxygen

levels peak at a location downstream from the generation spot, suggesting that flow rates

higher than 300µL/h would result in excessive lateral transport of oxygen that would

prevent accurate localized delivery. Therefore, the oxygen platform exhibits satisfactory

performance as long as the H2O2 flow rate over a spot is maintained at or below 300µL/h.

These data are representative examples of the effects of H2O2 flowrate on the location of

oxygen permeation across parchment paper; future work will characterize its repeatability

to enable repeatable, reliable production of paper-based wound dressings.

The biocompatibility results for the materials and finished devices are shown in Fig-

ure 5.9. The alamar blue assay performed for 3T3 cells on parchment paper (Figure 5.9a)

showed no significant difference between the metabolic activities of cells seeded on

the culture dish as a control and that of the cells seeded on the two parchment paper

samples, with and without catalyst. These results imply the biocompatibility of both the

parchment paper and the catalyst. Similarly, the analyses on the assembled structures

with flowing H2O2 showed no significant difference in the metabolic activities of the

cells, compared to the control (Figure 5.9b). This suggests that H2O2 does not come into

contact with the seeded cells during device operation and implies the biocompatibility of

the fabricated oxygen generators.

The overall performance of the oxygen generation platform is adequate for its in-

tended application as a component of a disposable oxygen therapy wound dressings.

Future development will focus on practical packaging measures necessary for clinical use.

These include its incorporation into a commercial wound dressing as well as the imple-

mentation of an on-board hydrogen peroxide source. The microfluidic structure provides

a convenient location for encapsulating H2O2 in a small (1–10 mL) pre-pressurized cham-
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Figure 5.8. Oxygen level across parchment paper as a function of the distance
from the generation location using various hydrogen peroxide flow rates.
Oxygen delivery accuracy is optimum for H2O2 flow rates of 300µL/h or
lower. Reproduced from Ref. [91] with permission from Elsevier.



64

Figure 5.9. The results of alamar blue assays of (a) a control sample (standard
well plate), parchment paper with catalyst, and patterned parchment paper
without catalyst and (b) devices without H2O2, and with 3 % H2O2 at a flow
rate of 250µL/h. For both experiments, 3T3 fibroblast cells were seeded on
the surface of the parchment paper or the channel devices. (n = 3, stan-
dard deviation). Error bars, SD±. One-way ANOVA followed by Bonferroni
test were performed where appropriate to measure statistical significance.
Reproduced from Ref. [91] with permission from Elsevier.
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ber that delivers a continuous flow through the microchannels. For example, a reservoir

of dimensions 100 mm × 100 mm × 1 mm would contain enough 3 % H2O2 solution to

generate about 100 mL O2, hence enabling a production rate of 100 mL O2/h for up to

33 h. The peroxide concentration and/or reservoir dimensions can be adjusted to opti-

mize for platform size or oxygenation capacity. The oxygen release profile for completely

packaged devices will be subsequently evaluated with in vitro and/or in vivo experiments.

5.4 A practical implementation using a finger-actuated pump

The oxygenation platform can be implemented with hydrogen peroxide provided in

various ways, either continuously (e.g., via an external micropump) or discretely (e.g., via

on-board reservoirs). The latter design offers the simplicity required for accelerating its

design to production. As such, this section describes one implementation of the system

which relies on a PDMS reservoir that doubles as a finger-actuated pump.

The pump design is similar to others presented in the literature (e.g., Mosadegh et

al. [102]). It consists of a reservoir connected to an output channel which contains a

one-way check (flap) valve. All components are molded in PDMS; the process can be

accomplished with two layers of PDMS by designing appropriate molds. As a proof-of-

concept demonstration, we created mold prototypes via a stereo-lithography 3D printing

process. This process provides sufficient resolution for all the pump features (which

are larger than 100µm). A photograph of the two-part mold is shown in Figure 5.10(a).

The pump is created by casting PDMS in the molds, curing it, and subsequently bond-

ing together the two PDMS components via plasma. A photograph of one such pump

is shown in Figure 5.10(b), with the outlet connected directly to a glass capillary for

characterization.

The pump is operated by depressing the membrane in the reservoir. Each pressing

actuation outputs a specific volume via the output channel, which can be directly con-

nected to the oxygenation platform (via tubing or as a physical extension of the platform

itself). Thus, to characterize the pump performance, it was evaluated in terms of its
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(a) 3D printed molds for pump fabrication (b) Completed pump with capillary on the

outlet

Figure 5.10. Implementations of the oxygenation platform with finger pumps.
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volume output as a function of the number of actuations. The reservoir was first loaded

with dyed water (representing hydrogen peroxide). Subsequently, the reservoir was mo-

mentarily pressed with a finger up to 7 times. The volume output after each actuation

was recorded by observing the liquid output in a capillary tube connected to the output.

Figure 5.11 shows the results of the finger actuation tests, representing the average

of 7 devices. Since the liquid remaining in the reservoir decreases with each actuation,

the amount expelled (a fraction of the remaining liquid) is similarly decreasing with the

number of actuations. The first actuation produces about 25µL, whereas the seventh

actuation produces only about 7µL. Nevertheless, if one assumes that a patch contains

5 channels, each with dimensions 20 mm × 1 mm × 100µm, then the amount of liquid

contained in the channels is 10µL. This value can clearly be produced by the first 5

actuations of the pump, allowing the pump to be actuated five times.

The performance of the pump is seen to be sufficient for practical applications when

one considers a patch for a small wound (e.g., foot pressure ulcer of 2 cm diameter).

Assuming the hydrogen peroxide is 30 % H2O2, 10µL of it can produce about 3.18 mL of

O2 gas, sufficient for at least one hour of therapy. Thus, in this case, the pump can be used

for 5 hours, after which a different attached pump can be used (or the entire patch can

be replaced if needed). For longer usage time (and convenience), the pump dimensions

can be increased, or one can create an array of pumps to attach to the platform. The

device presented here serves as a proof of concept demonstration to show the practicality

of a finger-actuated pump (i.e., the actuation numbers are reasonable, and the output

volumes are in the range of the required values for proper oxygenation).

To evaluate the robustness of the pump, each pump was tested 10 times. Figure 5.12

graphs a comparison of the output volume as a function of actuation number for the first

and tenth trial of each pump. The data reveal insignificant differences between the first

and last trial for each actuation. Thus, the pump is sufficiently robust for many actuations

without loss of performance due to material or structural defects.

Using this pump, we implemented various possible embodiment for integrating the

pump with the oxygenation platform. Figure 5.13(a) demonstrates one approach with a
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Figure 5.11. Volume output of the finger pumps as a function of actuation
number.
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Figure 5.12. Comparison of the output volume of a finger pump as a function
of actuation number for the first and tenth trial of the pump. The data
represents the average of 7 pumps.
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(a) Oxygenation platform with one pump. Reproduced from Ref. [26] with permission

from Springer.

(b) Oxygenation platform with multiple pumps

Figure 5.13. Implementations of the oxygenation platform with finger pumps.

single pump; the channels are being filled with dyed water as the pump is depressed. An

alternative approach with multiple pumps (for increased operation time) is demonstrated

in Figure 5.13(b). Here, the pump can last as long as 20 hours using the design described

above.
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Overall, the finger-pump approach is a practical and effective method of supplying

hydrogen peroxide to the channels for generating oxygen in the PDMS-parchment paper

oxygenation platform.

5.5 Conclusions for the paper-based platform

We have developed an inexpensive, flexible, paper-based oxygen generation platform

for locally generating and delivering oxygen to the microenvironment of chronic wounds.

The platform consists of a PDMS microfluidic network bonded to an array of laser-defined

(and hence, customizable) MnO2-loaded hydrophilic spots on an otherwise hydrophobic

parchment paper substrate. H2O2 is introduced into the PDMS microchannels for the

generation of oxygen via catalytic decomposition at the MnO2 spots. The generated

oxygen then permeates through the parchment paper to reach the wound bed. Oxygen

generation in the catalyst spots raised the oxygen level on the opposite side of the parch-

ment paper to clinically acceptable levels. The platform generates oxygen effectively to

allow its diffusion into an agarose gel (wound bed surrogate); here, oxygen concentration

increases to up to 25 % within three hours when Integra (dermal regeneration matrix)

is used as a wound interface, and to as much as 45 % without Integra. Both of these

levels can successfully be used to treat wound hypoxia. An alamar blue assay using 3T3

cells revealed that the parchment paper with and without MnO2 is not cytotoxic and that

the fabricated structures do not expose seeded cells to H2O2 while in operation. Finally,

finger pump-driven prototypes were presented and validated for medical practicality.
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6. CONCLUSION

This work presented the development of a low-cost alternative for continuous oxygen

delivery comprising of an inexpensive, paper-based, biocompatible, flexible platform for

locally generating and delivering oxygen to selected hypoxic regions. The platform takes

advantage of recent developments in the fabrication of flexible microsystems including

the incorporation of paper as a substrate and the use of inexpensive laser machining. The

use of paper simultaneously provides structural strength and flexibility as well as selective

filtering functionality. In particular, the paper possesses high mechanical strength (>

70 MPa) to withstand human motion, high elastic modulus when dry (> 300 kPa) for easy

handling during fabrication, low elastic modulus (< 50 kPa) when wet for interfacing with

similarly soft tissue, permeability to gas and not water at low pressures, and permeable to

oxygen diffusion. When laser-rastered, it offers the additional advantages of a roughened

surface for deposition of particles (e.g., catalyst for oxygen generation) and a low contact

angle (21 ◦) for adsorbing aqueous solutions as well as for promoting attachment of

mammalian cells. With these characteristics, laser-treated parchment paper reveals itself

to be an ideal substrate for advanced wound dressings.

Laser machining parchment paper enables the precise definition of oxygen generating

regions that match the hypoxic wound profile. With this process, we have developed

paper-based oxygen generation platform for locally generating and delivering oxygen to

the microenvironment of chronic wounds. The platform consists of a PDMS microfluidic

network bonded to an array of laser-defined (and hence, customizable) MnO2-loaded

hydrophilic spots on an otherwise hydrophobic parchment paper substrate.H2O2 is

introduced into the PDMS microchannels for the generation of oxygen via catalytic de-

composition at the MnO2 spots. The use of manganese dioxide and hydrogen peroxide

provides a low-cost catalyst-peroxide combination with fast, tunable oxygenation rate.

A sample of 111µg of the 19µm particles of manganese dioxide investigated here, are
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sufficient for achieving oxygenation rates of 3 mL/h (a typical requirement, as mentioned

in Chapter 2) using 3 % H2O2. The generated oxygen then permeates through the parch-

ment paper to reach the wound bed. Oxygen generation in the catalyst spots raised the

oxygen level on the opposite side of the parchment paper to clinically acceptable levels.

The platform was confirmed to be biocompatible via experiments with 3T3 cells. Finally,

various prototypes The exact configuration of the final wound healing dressing depends

on the

Together these two technologies enable the development of a low-cost patch/wound-

dressing with customized, wound-specific oxygen generating regions. Table table:patches

compares the present platform with existing commercial wound oxygenation platforms.

The present platform is able to match the oxygenation characteristics of the other systems

with a tunable, and economical approach while simultaneously providing the additional

benefits of being refillable, offering selective oxygenation to specific regions of wounds

via laser patterning, and allowing integration with other emerging wound healing compo-

nents (due to its integrability with PDMS and pumps, as well as to its salable fabrication

approach).

Healing of chronic wounds is a challenging task. Many challenges remain in creating

futuristic smart wound dressings; this dissertation offers a first step towards this goal in

the form of fundamental research and prototype development.
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7. FUTURE WORK

The oxygenation platform presented in this dissertation is only a single module of a more

ambitious endeavor towards significantly improving health care for patients with chronic

wounds while simultaneously reducing financial burdens. A key way to achieve this is

thought he development of smart, personalized wound dressings. Currently available

dressings are generic (one-size-fit-all), operate in an open loop fashion, and do not deliver

therapy based on an individual’s response to treatment. Furthermore, existing bandages

rely on a single mode of treatment, whereas a combination of therapies (e.g., oxygen deliv-

ery, ion sensing, and drug delivery in a single bandage) can accelerate the healing process

and improve the health outcome. Moreover, closing the loop around the wound by mon-

itoring individualized response to treatment using integrated sensors that objectively

capture the wound progression in real-time and tailoring the combination treatment

appropriately is also expected to improve the health outcome. Figure 7.1 illustrates a

vision of a smart wound dressing integrated with various sensing and delivery modules

for precision wound care. In order to achieve this goal, the work in this dissertation

requires further research and development on various fronts. The following subsections

describe future work for the continued development of the oxygen generation platform

as well as avenues for integration with other modules to enable a true, smart wound

dressing.

7.1 Material characterization

The materials for the wound dressing must be completely characterized with respect

to functionality, biocompatibility, and stability. This work presented material charac-

terizations for the laser-treated parchment paper substrate and the oxygen generation

kinetics of hydrogen peroxide and manganese dioxide. Further work is necessary to
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assess variability and repeatability of the various processes, in particular the repeatability

of laser-rastering parchment paper. This includes conducting further experiments that,

for example, compare the surface morphology across many samples of laser-treated

an un-treated parchment paper (e.g., by measuring average surface roughness using a

surface profilometer) while additionally comparing the material density of the samples

before and after laser treatment. The mechanical properties of the paper should also

be evaluated after laser machining. Since the percentage of laser-treated area can affect

such properties as ultimate tensile strength and elastic modulus, paper can be treated

with various area percentages and evaluated as described in Chapter 3.

Anther remaining task in the material area includes the characterization of the ma-

terials after exposure to standard sterilization techniques. This comprises exposing

the materials to e-beam, gamma ray, or hydrogen peroxide vapor and subsequently

evaluating their functionality.

Another task is the complete characterization of the deposition techniques for the

materials (e.g., uniformity and repeatability). This includes identifying and developing a

commercially-viable process for laser processing paper and depositing all the chemicals

on it at a large scale. Remaining characterizations include evaluation of printing methods

for the materials and print quality using various techniques (e.g., gravure, inkjet). Efforts

in this area are currently underway in the Purdue-WMU collaboration as part of the

NextFlex P.C. 1.0 project.

Another investigation should study the oxygenation reaction more in detail to evalu-

ate any thermal effects occurring from the reaction. Since the oxygenation reaction is

an exothermic one, any heat generated by the oxygenation platform could potentially

(positively or negatively) influence the wound healing process. Temperature increases

will depend on the concentration and mass of the peroxide and the catalyst used as well

as the dimensions of the platform. This heat transfer problem can be best addressed by

creating platform prototypes and measuring the rise in temperature on the paper using a

thermal probe. This can be repeated for various concentrations of catalyst and peroxide,
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as well as channel dimensions. Temperature rises should be investigates as to their effect

on wounds (via literature, and eventually by in vivo studies.

The materials must also be characterized in terms of their long-term stability. This can

be achieved by evaluating the performance of the materials after accelerate thermal aging

in various environments to determine special requirements for storage and handling of

the smart wound dressing.

Longer-term investigations can consider alternative materials for oxygen generation.

Although not as easily available as those described in this dissertation, some chemicals,

such as superoxides, may be suitable for oxygen generation in wound dressings. Superox-

ides are used in chemical oxygen generators which are used, for example, in airplanes.

They produce oxygen rapidly but generate significant heat. Studies in this area should

first evaluate the oxygen storage capabilities of such materials and then focus on precise

control (triggering on and off, as well as tuning the rate) of oxygen generation, as well as

maintaining proper temperature for wound dressings.

Another investigation can look into alternatives for PDMS to allow fabrication of thin

(< 500µm) microfluidics in a more commercially-viable manner.

7.2 Device-level characterization

In addition to material characterization, the developed devices must be evaluated at

the device level. This dissertation presented an oxygen platform for which the oxygen

generation rate was characterized by various methods, as seen in Figures 5.5, 5.7, and 5.8.

The data in these figures was collected from representative samples but do not offer a

view of the variability across samples. Thus, the experiments used to create these graphs

must be repeated with multiple samples to assess process/sample variability (e.g., via

error bars).

Further characterization is also necessary in terms of platform biocompatibility. The

platform presented in this dissertation was tested at this level using 3T3 cells. Experiments

in this area must continue characterizing the platform in other clinically relevant ways.
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Characterization of the devices must be performed using a simulated wound testing setup

which has the potential to sense and create heterogeneous hypoxic/normoxic/hyperoxic

regions to mimic the real wound micro-environment. The working performance of the

oxygen sensors should be evaluated on a hydrogel wound model as a single-sensor as

well as an array configuration.

The platform must also be characterized with any additional interfaces that will be

used in practice. This dissertation describes one example, i.e., Integra dermal regenera-

tion matrix. However, this is not the only interface layer which may be used commercially.

Thus, future investigations should evaluate the efficacy of the platform when delivering

oxygen to the wound bed via an intermediate interface materials such as alginate gel

or collagen-based films. Investigations in this area should include multi-directional

diffusion of the oxygen that is generated by the platform. Additionally, the mechanical

properties of these interfaces must be characterized (e.g., adhesion strength to the paper).

It is also imperative to identify alternative methods for transporting hydrogen perox-

ide withing the microchannels of the oxygenating platform. The current platform offers

one design for a finger-actuated pump; Figure 7.2 illustrates another (single-push) design.

This approach is adequate as a first-generation product. However, in later generations,

electronics can be integrated into the platform, and on-board micropumps can be in-

corporated. Thus, the pumping requirements for the system must be calculated and

investigated experimentally to determine appropriate hardware.

7.3 Integration with other modules

As a step towards the vision of the smart dressing, subsequent research directions

must include the integration of the wound oxygenation platform with other modules,

preferably created on the same substrate for true integration. The next logical step is to

integrate oxygen sensing into the platform to enable closing the loop between sensing

and delivery. Efforts in this area are currently underway in the Ziaie group as part of

the NextFlex P.C. 1.0 project. The successful integration of these two platforms requires
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Figure 7.2. Oxygenation platform with single-actuation finger pump.
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first characterizing them independently, and then combining them via a congruous

fabrication process. Once combined, the two platforms (oxygen sensing and delivery)

must be tested together in an array arrangement configuration prior to testing the two-

module integrated system. Examples of other modules which can be subsequently

integrated with this platform include electrochemical sensors, such as those developed

in the Ziaie group and illustrated in Figure 7.3.

7.4 Design for scalability

Ultimately, the successful commercial adoption of the oxygen generation platform

depends on its practical implementation. For this reason, it is important to develop

a practical manufacturing process (with detailed diagrams) from the beginning of the

design work.

One such approach that integrates two modules is as follows. First, parchment paper

will be laser treat on one side to render it hydrophilic (to allow subsequent deposition

of materials). Next, a chemical catalyst (MnO2) will be deposited on the paper via in

situ precipitation of two inkjet-printed solutions (aqueous KI and KMnO4). Separately, a

microfluidic network (for guiding H2O2) will be created out of PDMS by casting two films

of PDMS onto a carrier substrate (PET); one will be (through-hole) patterned with laser

to create microfluidic designs. The two PDMS films will then be laminated together onto

the parchment paper (on the sensor side) to create closed microfluidic network. Finally, a

layer of Integra/Primatrix will be laminated (and bonded) to the rest of the system using

techniques similar to the ones done for the sensor platform (above). The approach is

conceptualized in Figure 7.4.

7.5 In-vitro and in-vivo tests and evaluations

All fabricated devices and platform should eventually be evaluated in vitro and in vivo.

These include: 1) in-vitro biocompatibility tests, 2) in-vivo biocompatibility and func-

tionality tests, and 3) preliminary in-vivo efficacy tests. Biocompatibility can be assessed
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(a) Electrochemcial oxygen sensor on paper. Reproduced from Ref. [84] with permis-

sion from The Royal Society of Chemistry.

(b) Electrochemcial silver ion sensor on paper. Reproduced from Ref. [103] with

permission from IEEE ®2013.

Figure 7.3. Paper-based sensors which can be integrated with the oxygenation
platform for wound management.
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Figure 7.4. Prototype of a wound dressing with a gel interface.
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in vitro by seeding a piece of Integra matrix with freshly isolated human keratinocytes

or adipose stem cells, affixing the dressing to the matrix using fibrin glue and culturing

the construct for 7–10 days under the appropriate conditions. The proliferation rate

of cells within the construct can be assessed using the WST-1 cell proliferation reagent

and significant differences in rates obtained with the complete dressing, dressings that

lack catalyst, and Integra with cells but without the dressing will be used to identify

cytotoxicity. Following the quantitative assessments, the constructs are formalin-fixed

and processed for histological study.

In vivo biocompatibility, functionality and preliminary efficacy tests of the device can

be performed using the excisional wound splinting mouse model. One approach is to

use a biopsy tool to create bilateral full-thickness dermal wounds (7 mm-diameter) on

the back of the SKH-1 mouse, which is a hairless mouse that is commonly used in wound

healing studies. The wounds are splinted with a sterile donut shaped splint to ensure that

the wound heals by the growth and migration of skin cells rather than by contraction of

skin from the edges of the wound, which is how wounds heal in rodents. Once splinted,

an appropriately sized disc of Integra with the affixed paper dressing is placed onto the

wound and then wrapped with a self-adhering elastic bandage. To test for functionality,

the device is used to deliver oxygen for 30 min. Independent oxygen measurements will

be made using a fiber optic sensor. This process will be repeated every 24 h to measure

the degradation of the dressing over time. Once the dressing is functionally degraded,

a biopsy of the wound and surrounding tissue is collected for routine histological pro-

cessing and analysis of wound healing and inflammation by a board certified pathologist.

Some animals receive replacement dressings to prolong the measurement process up to

two weeks before subsequent biopsy collection and histological assessment. Samples are

scored for the number of inflammatory cells, evidence of angiogenesis, the number of

granuloma and giant cells and the degree of infiltration of surrounding tissues.
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7.6 Conclusions

The sections above outline various research directions to further develop this work,

with the ultimate goal being the development of a commercially-viable product which

can improve the lives of patients around the would.
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