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ABSTRACT

Ness, Robert D. O. PhD, Purdue University, December 2016. Bayesian Causal In-
ference of Cell Signal Transduction from Proteomics Experiments . Major Profes-
sor: Hyonho Chun.

Cell signal transduction describes how a cell senses and processes signals from the

environment using networks of interacting proteins. In computational systems bi-

ology, investigators apply machine learning methods for causal inference to de-

velop causal Bayesian network models of signal transduction from experimental

data. Directed edges in the network represent causal regulatory relationships, and

the model can be used to predict the e↵ects of interventions to signal transduc-

tion. Causal inference approaches applied to proteomics experiments use statisti-

cal associations between observed signaling protein concentrations to infer a causal

Bayesian network model, but there is no experimental and analysis framework for

applying these methods to this experimental context.

The goal of this dissertation is to provide a Bayesian experimental design and mod-

eling framework for causal inference of signal transduction. We evaluate how dif-

ferent high-throughput experimental settings a↵ect the performance of algorithms

that detect conditional dependence relationships between proteins. We present a

Bayesian active learning approach for designing intervention experiments that re-

veal the direction of causal influence between proteins. Finally, we present a Bayesian

model for inferring the parameters of the conditional probability density functions

in a causal Bayesian network. The parameters are directly interpretable as a func-

tion of the rate constants in the biochemical reactions between interacting proteins.

The work pays special attention to analysis of single-cell “snapshot” data such as

mass cytometry, where each cell is a multivariate cell-level replicate of signal trans-



xiv

duction at a single time point. We also address the role of large-scale bulk exper-

iments such as mass-spectrometry-based proteomics, and small-scale time-course

experiments in causal inference.
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1. INTRODUCTION

Cell signal transduction describes how a cell senses and processes signals from the

environment using networks of interacting proteins [1]. Many disease phenotypes

stem from errors in signal transduction, including some cancers and autoimmune

diseases. This dissertation addresses the problem of building a causal Bayesian net-

work model of a signal transduction network from proteomics data. The benefits of

this modeling framework are that its directed acyclic graph (DAG) structure rep-

resents the causal (regulatory) relationships between signaling proteins. Further,

investigators can use the model to predict the e↵ects of interventions in signaling

(e.g. drug interventions), facilitating the development of new treatments.

1.1 Statement of biological problem

Causal inference in the context of signal transduction means determining the reg-

ulatory relationships between proteins. High-throughput proteomics experiments

quantify the activity of signaling proteins. There are 3 tasks in causal inference

from these experiments: (1) determine the presence of regulatory relationships; (2)

determine the direction of a regulatory relationship given its presence; and (3) de-

termine the magnitude of a regulatory e↵ect given the relationship’s presence and

direction. Each task has di↵erent informational requirements from the experimental

design. We describe each task and related experimental considerations as follows.

Task 1: Determine the presence of regulatory relationships. High-throughput

proteomics platforms vary in the number of biomolecular analytes they can simulta-

neously quantify. For example, targeted mass spectrometry can quantify thousands

of proteins in a sample, while the number of proteins quantified by capture sand-

wich immunoassays is lower by at least one order of magnitude. However, capture
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immunoassay experiments have much higher sampling-throughput than targeted

mass spectrometry [2]. Other dimensions in which the platforms di↵er include the

precision of the quantifications, the ability to incorporate prior knowledge, and the

ability to quantify proteins at single cell-level resolution. Experimentalists lack a

design framework for matching the capabilities of di↵erent platforms to the data

needs of statistical approaches for detecting regulatory relationships. This disserta-

tion provides guidelines for selecting the right platform and experimental settings

for this task.

Task 2: Determine the direction of a regulatory relationship given its

presence. Given knowledge of a regulatory relationship between two signaling pro-

teins, there are several sources of information on direction, i.e., which protein is the

regulator and which is the target. Pathway databases such as KEGG [20] contain

canonical signaling pathways, constructed from curation of peer-reviewed litera-

ture. However, canonical pathways may not address signaling in the specific envi-

ronmental conditions of interest to the investigator. Investigators may also have

internal information from experiments conducted in the past on the signaling sys-

tem of interest. However, these historic datasets also may have been collected un-

der di↵erent experimental conditions. It is not clear how to make use of informa-

tion from these sources in light of these incongruities. This dissertation provides

a Bayesian approach to structuring prior knowledge from pathway databases and

historic datasets.

In cell signaling studies, various perturbations are applied to samples across experi-

mental conditions. Perturbations introduce variation in the signaling response [2, 3],

providing more information to the statistical analysis. Targeted interventions, such

as small molecule inhibitors, are a specific type of perturbation whose primary

function is to determine the direction of a regulatory relationship [4–6]. However,

targeted interventions add to the cost and complexity of an experiment. This dis-
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sertation provides a cost-conscious experimental design framework for selecting tar-

geted interventions.

Task 3: Determine the magnitude of regulatory e↵ect given the relation-

ship’s presence and direction. To say that one signaling protein “regulates”

another, means that these two proteins interact in one or more biochemical reac-

tions. The magnitude of the regulatory e↵ect depends on the rates at which these

biochemical reactions occur. Reaction rates are determined by the abundance of

the interacting signaling proteins, and a set of rate parameters [7]. Rate parame-

ters describe the change in abundance of proteins in a signaling pathway in time.

A quantification of the regulatory e↵ect of one protein on another in terms of any-

thing but rate parameters lacks biological interpretation. However, the technologies

discussed so far do “snapshot” proteomics; they only quantify signaling at one sin-

gle time point from the entire time course of the system’s evolution. In the case of

single cell proteomics technologies, this can be hundreds of thousands or even mil-

lions of cell-level snapshots. But even in this case, it is not clear what snapshots

can reveal about rate parameters, a dynamic attribute of the system.

1.2 Statement of statistical problem

This dissertation addresses the objective of inferring a causal Bayesian network

from proteomic studies of cell signaling. We rephrase the above three tasks as sta-

tistical inference tasks, each providing deeper insight into the signaling mechanism

than the previous task: (1) infer the presence of causal edges; (2) infer the direction

of the causal edge conditional on its presence; and (3) infer the magnitude of causal

influence conditional on the presence and direction of the edge. We detail each of

these inference tasks below.

Task 1: Infer the presence of causal edges. The first step of causal inference

is to identify undirected edges. The structure of an undirected graphical model, or

Markov network, represents conditional independence in the joint distribution over
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all variables in the network [5]. Conditional independence algorithms search for sta-

tistical evidence of conditional independence in multivariate data [5, 27, 30], produc-

ing putative undirected edges. In some cases, and under key assumptions (such as

no hidden confounders, see [10]) the undirected edges are causal relationships where

the direction of causality is unknown. In protein signaling studies, these causal

edges represent regulatory relationships between proteins. Applying conditional

independence algorithms to proteomics experimental data is therefore a means of

generating hypotheses of regulatory relationships [8–11]. This undirected edge hy-

pothesis can be tested in a validation experiment targeting the two proteins that

share the edge.

In high-throughput proteomics investigations, the relationship between the varying

attributes of proteomics experimental platforms (e.g. protein-coverage and feasible

sample size) and the results provided by conditional independence algorithms, has

not been examined. Experimentalists know generally that increasing sample size

improves the results of statistical analysis, and that false positives are a challenge

in high-throughput experiments. However, the relationship between their choice of

proteomics platform and the performance in edge detection is unclear. For exam-

ple, if quantifying thousands of proteins in a targeted mass spectrometry experi-

ment, it is not clear if using a sample size deemed larger than average for that plat-

form would improve detection results by a meaningful degree. Nor is it clear if even

better performance would be achieved with an assay that only targets hundreds of

proteins (meaning lost opportunities for discovery) but with far greater sampling

throughput. Further, experimentalists have the option of targeting proteins they

know are more likely to regulate one another. It is unclear to experimentalists if

this prior knowledge can alleviate problems with algorithm performance in their

platform of choice. This dissertation uses a simulation analysis to demonstrate, in

terms of sensitivity and specificity, how the dimension of the data and amount of
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true interactions in the data a↵ect the detection of undirected edges with condi-

tional independence algorithms.

Task 2: Infer the direction of the causal edge conditional on its presence.

In causal inference, targeted interventions fix the state of a random variable, reveal-

ing edge direction (causality) between it and other variables with whom it shares

an edge [4–6]. Statistical association can be used to infer the presence of an undi-

rected edge, but generally it is not su�cient for inference of edge direction. Tar-

geted interventions are necessary to fully resolve the direction of causality [4, 5, 10].

In cell signaling studies, the experimental design for causal inference includes sev-

eral elements: (1) an assay targeting the signaling proteins with causal interac-

tions; (2) perturbation conditions that activate and vary the signaling response;

(3) sample size su�cient for inference of DAG structure; and (4) targeted inter-

ventions. Due to the costs of proteomics experiments, an experiment typically in-

cludes a batch of targeted interventions (as opposed to one intervention per exper-

iment). In theory for an undirected graph with p nodes, a batch of at most p � 1

targeted interventions is needed to fully resolve causality [12]. In practice, many of

the p � 1 interventions would be redundant, and therefore would add to the cost

and complexity of a causal inference experiment without contributing to causal in-

ference. Active learning describes the machine learning task of optimal selection of

targeted interventions [12–18]. In the context of causal inference in proteomics, ex-

isting methods typically assume one intervention is applied per experiment. This

dissertation proposes an active learning method for selection of a batch of between

0 and p � 1 targeted interventions; enough to maximize causal information, while

few enough that experimental cost and complexity are manageable.

The presence of an edge is inferred as well as the edge’s direction, so an active learn-

ing approach must allow for uncertainty in as yet undirected edges; it is wasteful to

use a targeted intervention to orient a false positive edge. Bayesian approaches to

inferring DAG structure can address this uncertainty. However, these require con-

structing a prior distribution on the space of DAG structures. Current methods for
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doing so require building a prior based on the ordering of nodes in the DAG [54].

The prior knowledge biologists have about signaling networks are not easily trans-

lated into DAG orderings.

Bayesian approaches address uncertainty in edge direction with equivalence classes

of DAGs. An equivalence class is a set of DAGs with the same conditional inde-

pendence structure (i.e., same edge skeleton) and same posterior probability, but

with di↵erent edge directions. Given a DAG structure inferred by causal inference,

a di↵erent DAG from the same equivalence class is an equally probable causal ex-

planation of the data. In graphical modeling, DAG-to-PDAG algorithms convert a

DAG to a partially-directed acyclic graph (PDAG) [17, 55]. The PDAG represents

the input DAG’s equivalence class. The PDAG contains directed and undirected

edges, the undirected edges correspond to edges with conflicting direction amongst

members of the class. However, existing DAG-to-PDAG algorithms are not compat-

ible with Bayesian causal inference. They will not produce the correct equivalence

class if the DAG prior encodes causal information.

This dissertation proposes a method of incorporating prior causal information into

a prior distribution on DAG structures that works with the tools biologists are fa-

miliar with. It also provides a DAG-to-PDAG algorithm that works with this prior

distribution.

Task 3: Estimating causal influence and rate parameters. Given the pres-

ence and direction of an edge in the DAG, the causal Bayesian network model quan-

tifies the strength of causal influence with a conditional probability distribution

(CPD) [10]. The conditional probability of the activity of the protein (the e↵ect)

given the activity a direct regulator protein (the cause) quantifies both the mag-

nitude and certainty of the cause-e↵ect relationship. However, in prior work inves-

tigators’ choice of the type of conditional probability distribution, such as Gaus-

sian or multinomial, is governed primarily by practical convenience [11, 19]. These

choices either fail to capture nonlinearity in signaling relationships (as with the
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Gaussian) or are parameterized in a way that has no connection to the biology (as

with the multinomial).

If we view conditional probability as a stochastic function that relates cause to

e↵ect, then it must have some relation to biochemical reaction rate parameters;

causal influence is logically greater in the case where a regulator reacts with its tar-

get very often, than in the case where the reaction occurs rarely. Estimation of the

magnitude of causal influence, and of the rate parameters themselves, remains an

open problem in the causal inference of cell signaling with proteomics experiments.

Further, when feedback loops are present in the set of biochemical reactions, it is

not clear how to model the system with a causal Bayesian network at all, due to

the acyclicity constraint in the DAG. This dissertation provides a conditional prob-

ability model parameterized in terms of rate parameters, and addresses the problem

of feedback loops.

1.3 Contributions

• Simulation study of edge detection supports task 1. This dissertation

presents simulations that interrogated the e↵ectiveness of conditional inde-

pendence detection algorithms in the high dimension, low sample-size settings

common in high-throughput proteomics experiments. The analysis examines

dimensions and sample-sizes that align with the coverage capabilities and

sampling-throughput of proteomics platforms used in cell signaling studies.

In addition, the analysis also considers the ability for the experimentalist to

target proteins that are known to have a higher amount of interactions. The

analysis evaluates sensitivity and specificity in edge detection, and provides

guidance for a sequential experimental design in terms of these performance

measures.

• Causal prior DAG distribution supports task 2. This dissertation pro-

poses a method for building a prior distribution on the space of DAGs using
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canonical pathway databases and historic data. The approach allows the ex-

perimentalist to encode canonical causal knowledge, in the form of the pres-

ence and orientation of an edge in a canonical database, into the prior. This

provides a simpler interface than other Bayesian methods for DAG inference

because biologists are already familiar with pathway representations of sig-

naling. Historic data is taken from the investigator’s own past experiments

or from public repositories, and is not required to have come from an exper-

imental design specifically targeting causal inference. This prior distribution

encodes all available public and internal causal information about the signal-

ing system under study prior to conducting a causal inference experiment.

• DAG-to-PDAG algorithm that accounts for causal prior supports

task 2. The proposed prior is not compatible with causal inference meth-

ods that work with DAGs and equivalence classes. DAG-to-PDAG algorithms

do not produce a PDAG representing posterior-equivalent DAGs if the prior

contains causal information. This dissertation proposes an algorithm that cor-

rects this, i.e., it takes DAG and information about the prior as arguments

and produces a PDAG representing a posterior-equivalence class. Beyond

systems biology, this algorithm can be applied in causal inference problems

where there is prior knowledge on causality.

• Bayesian active learning algorithm supports task 2. This dissertation

provides a Bayesian active learning method for selecting targeted interven-

tions. The approach quantifies the amount of causal uncertainty present in

a probability distribution of DAGs, and derives a metric that quantifies how

much and a given intervention would reduce uncertainty in the distribution.

The metric is derived such that its calculation is easily parallelized for faster

computing times.

• Stopping criteria for selecting interventions supports task 2. The

work proposes a Bayesian stopping criteria for adding to the batch of inter-
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ventions in an experiment. The active learning approach iteratively adds

to the batch the intervention that has the highest expected contribution to

causal inference from all candidate interventions. The stopping rule is trig-

gered when that expected contribution falls below a certain threshold. This

prevents the wasteful application of interventions in a causal inference experi-

ment.

• Probability model of steady-state signaling supports task 3. We in-

troduce an experimental constraint for single cell proteomics experiments,

wherein protein abundance is quantified after the signaling system has reached

a stable steady state. We show if the stable steady state assumption can be

applied, we can model signaling regulation with the stationary distribution of

a Markov process describing the statistical mechanics of biochemical reactions

underlying signaling. We use the stationary distribution for each protein as

the conditional probability distribution for the corresponding node in a DAG.

This produces a causal Bayesian network with two attractive features: (1) the

conditional probability distributions are parameterized in terms of rate pa-

rameters, and (2) we explicitly model biological stochasticity and connect it

to cell-to-cell variation in single cell data. Further, the constraint allows us

to model biochemical feedback loops with a causal Bayesian network model,

without violating the acyclicity constraint. We provide a Bayesian modeling

framework for inferring the parameters, and provide an algorithm that gener-

alizes the code to any DAG structure, avoiding the need to code a new model

for each new experiment.
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2. STATISTICAL APPROACHES TO LEARNING

REGULATORY RELATIONSHIPS IN LARGE-SCALE

BIOMOLECULAR INVESTIGATIONS

2.1 Introduction

Modern high-throughput technologies such as mass spectrometry simultaneously

quantify hundreds or even thousands of biomolecular analytes. Statistical associ-

ations (e.g. Pearson correlation, Spearman correlation, and mutual information)

between observed protein concentrations suggest an enticing number of hypotheses

regarding the underlying causal biomolecular mechanisms. However, associations

do not imply causation. Formal methods of causal inference [9, 10] are required to

probe these statistical associations for causality, and infer the underlying regulatory

mechanisms.

Causal inference is increasingly of interest in proteome research. It has previously

been used to learn the directed structure of signal transduction networks, e.g. in

reconstruction of the T-cell signaling network from flow cytometry investigations

in Sachs et al. 2005 [21], and the human liver carcinoma cell signaling network

from Luminex antibody/bead-based XMAP technology in Saez-Rodriguez et al.

2009 [22] and participants in the DREAM4 Predictive Signaling Network Chal-

lenge [23]. However, the successful examples of causal inference in proteomics are

very few [24]. In this perspective we argue that this is not an accident. The di�-

culty stems from the fact that large numbers of quantified analytes, combined with

small sample size, lead to more spurious pairwise associations, obfuscate the true

signal, and increase the false discoveries of putative causal events. Below we de-

scribe in non-technical terms the process of elucidating causal associations from

high-throughput data, and suggest practical approaches for causal inference in large
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scale proteomic datasets. Specifically, we suggest that the task of causal inference

can be facilitated by refining the biological question, and by improving experimen-

tal design in terms of selection of (1) the subset of analytes, (2) the number of bio-

logical replicates, and (3) the type of biological conditions and stresses.

2.2 Background

2.2.1 Small-scale statistical inference of causal relationships: condi-

tional independence and interventions

Consider, e.g. the MAPK signaling cascade in Figure 2.1, which is part of several

signaling pathways such as the EGFR MAPK pathway [25]. In this cascade Raf

causally a↵ects the level of active (i.e., phosphorylated) Mek, while Mek causally

a↵ects Erk. Imagine these causal relationships were unknown: could they be de-

tected from quantitative measurements on these phosphoproteins?

To illustrate the process of causal inference we simulated artificial data using the

computational Huang-Ferrell model [26] of this cascade. The model represents the

key binding, phosphorylation, and dephosphorylation reactions of the cascade with

mass action kinetics, and replicates the MAPK key signaling behavior observed in

nature. We used the model to simulate an experiment with 50 replicate biological

samples, and measurements of concentration (µmol) of phosphorylated Raf, and

doubly phosphorylated Mek and Erk in each sample.

Figure 2.2 (a) demonstrates the causal inference workflow starting with analysis

of statistical associations in the data. In step 1, a correlation graph between cas-

cade components Raf, Mek, and Erk is assembled from the measurements of protein

concentration. Step 2 reduces the correlation graph to a sparse graph of inferred

underlying conditional dependencies (Raf–Mek, and Mek–Erk). Step 3 interrogates

this graph to find putative directions of causal relationships (Raf ! Mek, and Mek

! Erk). While step 1 has little requirements, step 2 requires that the number of
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Fig. 2.1. EGFR MAPK signaling pathway, an example of a pathway con-
taining the phosphorylation cascade from Raf to Mek to Erk. The binding
of ligand EGF to EGFR initiates a signal that leads to the cascade, which in
turn regulates transcription. This cascade implies two direct causal relation-
ships, namely Raf ! MEK, and Mek ! Erk. Raf and Erk have an indirect
causal relationship, through Mek. Figure republished with permission from
original source [46]



13

E
rk

Raf

(a) (b)

(d)(c)

Correlation Conditional 
Dependence

Causal 
Direction

Mek

Raf

Erk

Mek

Raf

Erk

Mek

Raf

Erk

Step 1 Step 2 Step 3

.0010 .0015 .0020 .0025 .0018 .0020 .0022 .0025 .0026

.00

.25

.50

.75

1.00

.87

.90

.93

1.00

Raf

Fig. 2.2. (a) Overview of the 3 steps of causal inference, illustrated for the
MAPK signaling cascade. (b), (c) and (d) feature an experiment simulated
from the Huang-Ferrell computational model of the phosphorylation cascade.
(b) Pairwise plots of concentration values of phosphorylated (doubly phos-
phorylated for Mek and Erk) forms of each protein, and observed Pearson
correlations. The Raf – Erk correlation is high, despite the fact that Raf does
not directly regulate Erk. (c) Concentrations of Raf versus Erk, where sam-
ples corresponding to high Mek (here, set to the top quartile) are highlighted
with filled circles. The right panel of C shows the subset of samples with high
Mek (i.e. conditional on Mek being high). In these samples the association
between Raf and Erk disappears, and we infer that Raf and Erk are condi-

tionally independent given Mek. (d) After Mek is inhibited, the observed as-
sociation between Raf and Mek remains, while the association between Mek
and Erk disappears. This reveals the causal flow from Raf to Mek. Figure
republished with permission from original source [46].
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proteins is comparable to the number of biological replicates, and step 3 requires

systematic interventions (e.g. with protein inhibitors).

Figure 2.2 (b) illustrates Step 1 of the causal inference, and shows 2-way plots of

the protein concentrations across the biological samples, and Pearson correlations

to quantify the extent of the associations. The correlation values are high, and

would meet most reasonable cut-o↵ thresholds for constructing the correlation net-

work in the left part of panel (a). The Raf–Mek and the Mek–Erk correlation edges

match the Raf!Mek, Mek!Erk known causal edges. What about the non-causal

Raf–Erk edge? Despite the high Raf–Erk correlation, there is no direct causal mech-

anism between them (aside from the one via Mek, which is already accounted for

via the Raf!Mek and Mek!Erk edges). In causal inference, our goal is to elimi-

nate this “nuisance” edge. How is this done?

To describe Step 2 of causal inference, we introduce some terminology. If concen-

trations of two proteins vary between the biological samples in a coordinated man-

ner, such that knowing the concentration of one protein provides information on the

concentration of the other, the two proteins are called dependent. Otherwise they

are called independent. Conditional independence is a special case that is important

to causal inference. Two dependent proteins are conditionally independent if, after

knowing (in probability language, conditioning on) the concentration of third-party

biomolecules, the two proteins become independent. In other words, after consid-

ering the information from the third party, the behavior of one protein provides no

additional information on the behavior of the other.

While statistical associations and correlations are properties of the observed data,

dependence and conditional independence are properties of the underlying processes

that generate the data. Step 2 relies on statistical inference [9, 10] to infer from the

observed data pairs of proteins that are conditionally independent. The condition-

ally independent pairs are ignored, and the remaining pairs are kept as hypothe-

sized causal relations. The sparsity of the inferred conditional independence graph
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is desirable, as it reduces the many pairwise associations to a smaller number of hy-

pothesized causal relations.

Let’s see how this applies to the MAPK signaling cascade. Since Raf regulates the

concentration of Erk by way of regulating Mek, Raf and Erk are dependent. How-

ever, if we know the concentration of Mek, then the concentration of Raf provides

no additional information about the concentration of Erk. Therefore, even though

Raf and Erk are dependent, they are also conditionally independent given Mek.

Figure 2.2 (c) illustrates the process of statistical inference by comparing the con-

centrations of Raf and Erk. When we subset the measurements to only the samples

with high Mek, we can no longer see the association between Raf and Erk. For-

mally, the algorithm tests the null hypothesis of conditional independence between

Raf and Erk given the full range of values of Mek (and not just high values of Mek,

as was shown for the purposes of illustration), and evaluates evidence against the

null hypothesis [27]. In this example the test did not reject the null hypothesis, and

resulted in removing the edge between Raf and Erk as in the middle graph of Fig-

ure 2.1 (a).

At Step 2 the direction of the regulation remains unknown. Inference of the direc-

tion of the chain of events requires the experimental design, which involves external

interventions or stresses. Figure 2.2 (d) illustrates the results of Step 3, in the case

where an intervention targeted Mek with an inhibitor. The intervention does not

a↵ect the concentration of Mek, however it blocks its ability to phosphorylate other

proteins. After this intervention the Raf–Mek relationship is unchanged, while Erk

drops to a low level. From this we can infer that Mek has causal influence on Erk.

Since Raf was una↵ected by the intervention, Mek does not have a causal influence

on Raf, and therefore the direction of causal influence in this edge goes from Raf to

Mek. This intervention is required to transform the undirected graph in panel (a) -

Step 2 to the causal graph in panel (a) - Step 3.

In the general case, computational methods for causal inference follow the work-

flow in Figure 2.2 (a), while scaling it to characterize multiple inter-related pro-
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teins. Step 1 creates a dense network of pairwise associations. Step 2 identifies

cases of conditional independence, and removes edges between conditionally inde-

pendent proteins to create a much sparser network. Finally, Step 3 uses the exper-

imental design, specifically the information regarding the interventions, to evaluate

these edges as evidence for potential causal events. See Koller and Friedman [5] for

a detailed description of these methods and their theoretical underpinnings. Nu-

merous implementations are available in statistical software, e.g. in the R package

bnlearn [28]. Depending on the biological system and on the experimental setting,

the strength of causal evidence may vary. For example, Sachs, Itani et al. 2013 [21]

highlight conditions in phoshoproteomic experiments where it may be infeasible to

disentangle causality using perturbations.

2.3 Simulations

2.3.1 Large-scale statistical inference of causal relationships: challenges

of scaling up

High-throughput proteomic experiments quantify a relatively large number of pro-

teins (typically hundreds or thousands) as compared to the number of biological

replicates (typically tens or hundreds). The large number of analytes creates chal-

lenges to the causal inference workflow.

In Step 1, the challenge is in accurately detecting statistical associations between

pairs of the observed protein concentrations. A large number of quantified proteins

produces a large number of spurious associations, which arise without any biological

justification as an artifact of random chance. They obscure the systematic associa-

tions such as between Raf, Mek and Erk. Similarly, the spurious associations under-

mine Step 2, which starts from the correlation graph in Step 1, and eliminates the

edges between conditionally independent proteins. More spurious associations lead

to more undue rejections of conditional independence, and therefore to more false

hypotheses of causal events.
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Fig. 2.3. Highest pairwise Pearson correlations among conditionally inde-
pendent protein pairs, in 500 repetitions of the simulated experiments. (a)
“Uninformative” increase in quantified proteins, smaller sample size. (b) “Un-
informative” increase in quantified proteins, larger sample size. (c) “Informa-
tive” increase in quantified proteins, smaller sample size. (d) “Informative”
increase in quantified proteins, larger sample size. Figure republished with
permmission from original source [46]

To illustrate these challenges, we conducted a computer simulation inspired by Fan

et. al [29], but translated to our context. The simulated experiments were pur-

posely designed to be simple, in order to gain insight. We simulated two types of

proteins. First, biologically “informative” proteins were represented by disjoint

triplets such as Raf, Mek and Erk, where proteins within each triplet were statis-

tically associated, but two proteins were conditionally independent given the third.

Second, biologically “uninformative” proteins were simulated as independent (and

therefore, conditionally independent) from every other protein. We studied the im-
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pact of (1) the total number of quantified proteins, (2) the number of “informative”

proteins, and (3) the number of biological replicates on the discovery of true pair-

wise associations in Step 1, and on the discovery of true conditional independence

in Step 2. The details of the simulation are in Supplementary materials.

Figure 2.3 illustrates the challenges of Step 1 when working with high-throughput

experiments. Figure 2.3 (a) presents a simulation that mimicked a targeted experi-

ment, with 60 biological replicates and 60 proteins, all of which were “informative”

and formed 20 triplets. It also presents a second simulation, which mimicked the

worst-case scenario for a high-throughput experiment. It quantified 6,000 proteins,

however all the newly quantified proteins were “uninformative”. The simulations

were repeated 500 times. Figure 2.3 (a) shows the probability distribution of the

highest Pearson pairwise correlations among the conditionally independent pro-

teins in each of the 500 repetitions. As can be seen, high-throughput experiments

produce higher values of pairwise correlations, and therefore lead to more reported

spurious associations.

Figure 2.3 (b) repeats the simulations in Figure 2.3 (a), while increasing the sample

size to 100 biological replicates. It shows that increasing the sample size reduces

the highest pairwise correlations among the conditionally independent proteins, and

therefore helps minimize spurious associations.

Of course our expectation is that high-throughput experiments quantify more bio-

logically informative proteins, and not just noise. We therefore repeating the sim-

ulations above, with the best-case scenario for a high-throughput experiment. It

quantified 6,000 “informative” proteins that formed 2,000 triplets. Figures 2.3 (c)

and (d) show the probability distribution of the highest Pearson pairwise correla-

tions among the conditionally independent protein pairs in this scenario. As can be

seen, the top and the bottom panels of Figure 2.3 are very similar. In other words,

if the number of conditionally independent proteins in an experiment is relatively

large, the number of true causal events has little impact on the extent of spurious

associations.
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Fig. 2.4. Number of falsely discovered edges in a conditional independence
graph, in 500 repetitions of the simulated experiments. (a) “Uninformative”
increase in quantified proteins, smaller sample size. (b) “Uninformative” in-
crease in quantified proteins, larger sample size. (c) “Informative” increase in
quantified proteins, smaller sample size. (d) “Informative” increase in quan-
tified proteins, larger sample size. Figure republished with permission from
original source [46]
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Figures 2.4 and 2.5 analyze the performance of Step 2 for the simulated experi-

ments above. Since Step 2 is only applicable to experiments where the number

of proteins is comparable to the number of biological replicates, we reduced the

high-throughput experiment to 99 proteins. Despite the reduction, this step re-

mains computationally intensive as it requires us to evaluate complex dependen-

cies among 1,770 pairs of the 60 proteins, and 4,851 pairs among the 99 proteins.

The simulation used the Grow-Shrink algorithm [30], which implements a greedy lo-

cal constraint-based search [27] that iteratively revisits subsets of protein pairs and

tests them for conditional independence.

Figure 2.4 (a) shows the probability distribution of falsely discovered edges in the

conditional independence graph over the 500 repetitions. Since the high-throughput

experiment starts with higher pairwise correlations in Step 1 and performs more

tests, it produces more false edges, and therefore leads to more false hypotheses of

causal events.

Figure 2.4 (b) shows the e↵ect of increasing the sample size, and highlights the arti-

fact of greedy local exploration of a complex high-dimensional space. A larger sam-

ple size increases the power of the individual tests for conditional independence,

and allows the algorithm to explore larger subsets of protein pairs. More tests lead

again to increasing the number of falsely discovered edges. Our additional simula-

tions (not shown) illustrate that the number of falsely discovered edges stabilizes

when the sample size is extremely large (tens of thousands). Figure 2.4 (c) and (d)

show that including more “informative” proteins reduces the opportunity for false

positives, but produces qualitatively similar results.

Figure 2.5 is the counterpart of Figure 2.4 that shows the main outcome of our in-

terest, i.e. the ability to uncover edges that arise from true causal events. Figure

2.5 (a) shows that quantifying more “uninformative” proteins leads to fewer cor-

rect edges, and reduces the detection of correct edges as compared to the lower-

throughput experiment. Figure 2.5 (b) shows that increasing the sample size im-

proves the statistical power and leads to more correctly discovered edges, however
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Fig. 2.5. Number of correctly discovered edges in a conditional independence
graph, in 500 repetitions of the simulated experiments. Vertical lines indicate
the true number of edges in each experiment. (a) “Uninformative” increase
in quantified proteins, smaller sample size. (b) “Uninformative” increase in
quantified proteins, larger sample size. (c) “Informative” increase in quan-
tified proteins, smaller sample size. (d) “Informative” increase in quantified
proteins, larger sample size. Figure republished with permission from original
source [46]

the high-throughput experiment still performs worse. Figures 2.5 (c) and (d) show

that the high-throughput experiment has the advantage in terms of discovering the

correct edges when all the newly quantified proteins are “informative”.

To verify the generality of these results, we repeated the analyses in Figures 2.3, 2.4

and 2.5 using the Incremental Association Markov Blanket algorithm [31, 32] (not

shown), and obtained similar results.
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Step 3 in the overall workflow is also challenged by an increased number of pro-

teins. The first challenge is the large number of interventions required to infer the

causal flow between protein pairs. Although only one intervention was su�cient in

the Raf-Mek-Erk pathway, it is generally not enough. For example, if an experi-

ment with k proteins can only perturb one protein at a time, k� 1 interventions are

required to infer causality. If an experiment can simultaneously perturb multiple

proteins the number of interventions can be reduced [12], however success of these

interventions depends on multiple complex factors [33, 34]. The second challenge is

the presence of false putative causal relations inherited from Steps 1 and 2, which

will adversely a↵ect Step 3 regardless of the size of the dataset.

2.4 Discussion

2.5 Approaches for inferring causality from high-throughput experi-

ments

The problems outlined above paint a grim picture for causal inference in large datasets.

Fortunately, these can be overcome, and e↵ective causal inference can be a reality

for high-throughput experiments. We provide suggestions for the best practices be-

low.

1. Limit the number of analytes. Reducing the number of proteins minimizes

false hypotheses, and improves our ability to correctly hypothesize causal

events. As the technologies improve the lists of quantified proteins grow larger,

however only a subset of the measurements is both biologically relevant and

technologically precise. The length of the list is not an important indication

of the performance of the experiment. If the broader biological system is well

understood, it is possible to design a targeted experiment that focuses on a

specific network or pathway, and ask more specific questions of the data, such

as the presence of a particular regulatory event. The more specific the ques-

tion, the less data are needed to make solid causal conclusions.
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2. Profile more biological replicates. Increasing the number of replicates is an

e↵ective strategy for both reducing spurious pairwise correlations, and im-

prove our ability to correctly hypothesize causal events. Therefore, the high-

throughput experiments should include more samples from distinct biologi-

cal sources, i.e. from distinct biological individuals representing the under-

lying population. Most current technologies requires a trade-o↵ between the

number of quantified proteins and the number of replicates [35]. Recent mass

spectrometric technologies such as Data Independent Acquisition or SWATH

[36] have a high promise of expanding the limits of this trade-o↵. At the same

time, single cell mass cytometry quantifies thousands of cells per biological

sample and provide rich input to causal inference [37]. However these data

should be used with caution, as multiple cells represent a single biological in-

dividual. Data from multiple individuals are required to make broader infer-

ence regarding the underlying population.

3. Use prior knowledge. Prior knowledge improves the search for conditional

independence and helps to determine causality. The prior knowledge can

be used in form of known canonical networks, extracted, e.g. from pathway

databases such as KEGG. One example of such prior information is the MAPK

pathway. The prior information reduces the search space of unknown associ-

ations that need to be considered, enables a more e↵ective use of the data,

and increases the confidence in newly discovered statistical associations. Saez-

Rodriguez, Lau↵enburger, and Sorger [38], as well as Terfve and Saez-Rodriguez

[39] use prior network knowledge to build logic models that reflect causal rela-

tionships between signaling proteins from protein concentrations. Another ex-

ample of prior knowledge is contextual information, such as spatial or tempo-

ral annotations of the quantitative measurements in the cell. The contextual

information can be extracted from the literature or from other complementary

(and potentially noisy) datasets. The causal inference algorithms can be ex-
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tended to weigh evidence of conditional independence, depending on whether

the proteins share the same spatial or temporal context.

4. Select targeted interventions wisely. Targeted interventions perturb individual

components of the biological system. An example is siRNA knockdowns, as

well as small molecule inhibitors, which block the causal influence of a specific

protein on its downstream components. Although e↵ective, such targeted in-

terventions are limited in number. Therefore, a strategic experimental design

would use prior information, prioritize the interventions and the targets, and

apply them to parts of the biological system that have most potential for new

discovery of regulatory events. For example, a graph with undirected edges

can be inspected, to reveal which nodes have potential to reveal the most

causality if perturbed. Such targeted perturbations can be applied iteratively,

after an initial statistical analysis revealed areas of the network where causal

inference would benefit from extra measurements and data.

5. Consider broad-scale interventions. Broad-scale interventions sacrifice speci-

ficity of targeted interventions to simultaneously perturb many proteins in

a biological system. One example of broad-scale interventions is varying ex-

perimental conditions, in order to activate multiple pathways. Signals from

endocrine, paracrine, and autocrine ligands elicit various signaling responses

in hepatocytes, thus interventions that cover this range of signals gives the

best picture of the broader causal network of hepatocyte signaling [40]. Sim-

ilarly, interventions that go beyond receptor-level and perturb multiple com-

ponents of the system bring cascading causal direct orientation deeper into

the network. Although they do not provide specific information about the

downstream e↵ects of stimulation, broad-scale interventions can provide more

causal insight. Therefore, the advantage of this approach is that it may en-

able elucidation of causality across the entire system.
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This list suggests impactful approaches that can drastically improve causal infer-

ence from high-throughput experiments. They provide various constrains on the

inference task, thereby improving the accuracy of the conclusions. For example, the

task of assessing which of all the possible KEGG pathways is present in the dataset

is far less error-prone than the task of assessing which of all possible combinations

of the quantified proteins might form a biological pathway. These approaches are

most powerful when used in combination, and in fact the lines between them are

somewhat arbitrary and frequently blurred. For example, using items 1 and 2 in

concert can be thought of as reducing the breadth and increasing the depth of the

investigation. Items 4 and 5 call for use of interventions, but this task itself is com-

plicated by measuring many proteins. Item 3, prior biological knowledge, can be

used to prioritize what to target with that limited set of interventions. Causal in-

ference becomes possible when combining these tools within a sound experimental

design.
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3. A BAYESIAN ACTIVE LEARNING EXPERIMENTAL

DESIGN TO INFER SIGNALING NETWORKS

3.1 Introduction

Signaling networks describe chains of protein interactions that determine how cells

process signals from their environment. The deregulation of signaling networks oc-

curs under many conditions, e.g. in diseases such as cancer [41], gene knockouts,

or introduction of a drug. The patterns of such deregulation can be inferred from

quantitative proteomic experiments conducted under the conditions of interest, us-

ing causal inference and Bayesian networks [8, 11].

In these investigations, signaling is induced with a stimulus perturbation, and a

measurement technology acquires information on the activity of signaling proteins

[2]. Bulk experiments quantify aggregate signaling activity across a sample. In

contrast, single cell technologies provide cell-level resolution of signaling activity.

For example, in flow cytometry cells are chemically fixed, and intracellular signal-

ing proteins are tagged with fluorescently-labeled antibodies. The cytometer then

records the antibodies’ fluorescence in individual cells, each reflecting the relative

abundance of signaling proteins in di↵erent states of enzymatic activity [42]. Simi-

larly, in mass cytometry (CyTOF) experiments, intracellular signaling proteins are

tagged with heavy-metal isotopes, and the mass spectrometer records the mass-to-

charge ratio of the charged isotope tags [43].

Causal Bayesian networks represent signaling proteins as nodes, and regulatory re-

lationships as directed edges. It interprets a network as a topological map of the

underlying signaling network. By comparing the structure inferred under a condi-

tion to canonical pathways in sources such as KEGG and Reactome, we can learn

the patterns of network deregulation. Data repositories, such as Cytobank [44], pro-
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vide historic data, which can be incorporated in the analysis and interpretation of

experimental results [8,45]. This prior information is especially important for higher

throughput experiments because it helps eliminate spurious correlations and false

discoveries of relationships between proteins [46].

To distinguish causal relationships from statistical associations, causal network in-

ference requires targeted interventions on some proteins [4, 46], e.g, using small-

molecule inhibitors that block a protein’s enzymatic activity. An insu�cient set of

interventions results in only a partially causally oriented network [6]. At the same

time, increasing the number of interventions increases the complexity of the exper-

iment and the cost. This cost is wasted when targeted interventions redundantly

orient the same edges.

In this paper, we propose a strategy for optimal design of bulk or single-cell pro-

teomic experiments aiming at causal inference. The design prioritizes targeted in-

terventions, and provides a criterion to stop adding interventions. It combines prior

knowledge in the form of canonical pathways imported from sources such as KEGG

[20] with historic data. The strategy outputs a sequence of interventions that we

call a “batch”, i.e. a minimal subset of candidate interventions that contributes

maximal causal information given the available data. We then describe an active

learning framework, that iterates between selecting interventions and acquiring data

to obtain a fully inferred causal network. To the best of our knowledge, this is the

first active learning approach to experimental design for inference of signaling net-

works.

3.2 Background

3.2.1 Directed graphs as causal models of signaling

A causal Bayesian network denotes a set of p signaling proteins with p nodes V =

{v1, ..., vp}. The nodes are variables representing levels of signaling activity of the

proteins. For example, v1 can take discrete signaling states “active” or “inactive”,
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or continuous values quantifying the abundance of a protein form. The model ex-

presses causal relations between nodes with a directed acyclic graph structure (DAG)

G. The edge direction in the DAG represents the causal e↵ect of a change in the

signaling state of a parent node on the state of the child. The DAG is best inter-

preted as a snapshot of a dynamic system [3]. This interpretation is strongest when

the signaling response has reached some quasi-steady-state.

Each node in the DAG has a conditional probability distribution given its parents.

It is a probabilistic representation of the regulatory influences of the parents on the

child [10]. A key advantage of the probabilistic interpretation is that it encodes

conditional independence, i.e. the probability that the state of a protein is inde-

pendent of the state of all its upstream proteins, if we know (i.e. condition on) the

states of its direct parents. This allows us to ignore the correlation between a pro-

tein and proteins more than one step upstream.

From the statistical perspective, the goal of causal inference is to infer the DAG

structure representing the signaling network, using associations between proteins

as input. However, statistical associations are not su�cient to orient the edges in

the DAG [46]. We illustrate this with the simple 3-protein canonical MAPK sig-

naling pathway Raf ! Mek ! Erk. Imagine that the structure of the pathway is

unknown, and needs to be inferred. A causal inference algorithm would (1) detect

pairwise statistical correlations between abundances of each pair of the three pro-

teins, pointing to the three candidate edges, (2) test Raf and Erk for conditional

independence, given the state of Mek, and (3) in presence of conditional indepen-

dence, eliminate the edge between Raf and Erk. After that, additional interventions

are required to orient the edges between Raf and Mek, and between Mek and Erk.

The left box in Figure 4.4 illustrates that, in absence of interventions, the ground

truth is statistically indistinguishable from the other two causally incorrect DAGs.

A set of statistically indistinguishable DAGs form a Markov equivalence class P ,

comprised of DAGs with same edges but varying orientations, which have equal

statistical likelihood for the dataset [5, 6]. A Markov equivalence class is repre-
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Fig. 3.1. Illustration of DAG equivalence classes. The DAG Raf !
Mek ! Erk is the “ground truth” canonical MAPK signaling path-
way, which we seek to learn by causal inference. The left box shows the
equivalence class P , represented by the PDAG Raf � Mek � Erk. The
PDAG contains three DAGS, all statistically indistinguishable in ab-
sence of interventions. The cardinality of P is 3. The middle box shows
the PDAG P

Erk

, obtained after an intervention or Erk. P
Erk

is a sub-
class of P that has eliminated Raf  Mek  Erk. The cardinality of
P
Erk

is 2. The right box shows the single ground truth DAG obtained
after an additional intervention on Raf. An alternative single interven-
tion on Mek simultaneously compels the direction of both edges, and is
more e↵ective at discovering the ground truth.
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sented with a partially directed acyclic graph (PDAG). The directed edges in a

PDAG have the same orientation in all the DAGs in P . The undirected edges in

the PDAG have varying directions in the DAGs, and therefore represent edges with

uncertain causality. Figure 4.4 illustrates PDAGs and DAGs in the MAPK pathway

example. The cardinality of a PDAG is defined as the number of its DAGs.

Targeted interventions proceed by fixing the state of a node, such that it does not

vary with that of its parents [4, 5], [6]. Fixing the node introduces an additional

constraint, and eliminates members of the equivalence class that fail to satisfy this

constraint. For example, in Figure 4.4 a small inhibitor fixes Erk’s enzymatic activ-

ity state to “o↵”, such that the activity of Erk becomes independent of the state of

Mek. The intervention fails to regulate the activity of Mek, and therefore eliminates

the DAG with an edge Erk! Mek.

The reduced equivalence class is formally defined as a transition-sequence Markov

equivalence class, i.e. the equivalence class after a sequence of “transitions” (inter-

ventions) [17]. Each additional intervention orients more edges in a PDAG, and

a su�ciently large set of interventions compels all the edges. In Figure 4.4, inter-

ventions on Erk and Raf eliminated all but the ground truth from the equivalence

class.

As the example illustrates, a batch of interventions targeting Erk and Raf would

reveal the ground truth DAG. However, so would a batch containing a single inter-

vention on Mek. The goal of this work is to identify batches of interventions, which

reveal the most causality while minimizing the number of interventions they con-

tain, and by extension the experimental complexity and cost.

3.2.2 Bayesian inference of causal networks

This work focuses on a Bayesian approach to learning causal PDAG representations

of signaling, where experimentalists (1) start with background knowledge about the

signaling network, such as likely pathways or motifs, (2) use the background knowl-
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edge to construct a prior distribution on graph structures, (3) collect experimen-

tal measurements of the signaling states of proteins, and (4) estimate a posterior

distribution on structures based on the prior and the experimental measurements.

The Bayesian approach is advantageous, as it reveals the “rewiring” of signaling

between conditions by examining di↵erences between the prior and the posterior

distributions.

More formally, the approach uses the background knowledge � to construct a prior

probability distribution of possible DAG structures ⇡(G|�) in the space of possible

structures G. The experimentalist collects a data set D of measurements on the

proteins V 2 G, acquired under a batch of targeted interventions S. A statistical

likelihood function p(D|S,G) quantifies the likelihood that the observations were

generated from a graph G. Finally, inference of the DAG structure relies on a pos-

terior probability distribution ⇡(G|D,S, �)

⇡(G|D,S, �) / p(D|S,G)⇡(G|�) (3.1)

In many biological applications, inferring a single DAG with high posterior proba-

bility is not of the main interest. Instead, we are interested in local features of the

graph, such as the presence of particular edges or network motifs. This is expressed

through a function f on a graph that quantifies the feature of interest, and through

its posterior expectation E{f |D,S, �} across all graphs.

E{f |D,S, �} =
X

G

f(G)⇡(G|D,S, �) (3.2)

For example, if f is an indicator of the presence of an edge in the network, then

E{f |D,S, �} is the posterior probability of the presence of that edge. In this work,

our feature of interest quantifies the causal insight provided by an intervention.

Bayesian inference of DAG structures relies on a Bayesian scoring function Score(G,D, S, �)

that takes as arguments a DAG, a dataset quantifying protein activity, a set of in-

terventions, and the structured prior knowledge. It returns values proportional to

the posterior distribution ⇡(G|D,S, �). Algorithms searching for DAGs with high
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Score(G,D, S, �) must explore the combinatorially large search space of possible

DAGs [30, 47, 48]. For computational tractability, some algorithms approximate the

posterior probabilities ⇡(G|D,S, �) (see [5, 49] for background, and [50, 51] for an

example). Since the full search space over all possible DAGs G is combinatorially

large, the common practice is to sample a set of DAGs from their posterior distri-

bution through a random process such as bootstrap ( [52, 53]) or MCMC [54], and

keep a sample of high scoring networks. E{f |D,S, �} is then approximated as

E{f |D,S, �} ⇡
X

G2⌦

f(G)
Score(G,D, S, �)P

G;G2⌦ Score(G,D, S, �)
(3.3)

where ⌦ denotes a sample of high scoring DAGs.

3.2.3 PDAG representation of uncertainty in causal e↵ects

Experiments with incomplete sets of interventions lack information to fully infer the

causal orientation of the edges in a DAG. In order to characterize this uncertainty,

algorithms take a single DAG and determine the space of DAGs having the same

conditional independence structure, topology and likelihood p(D|S,G), but di↵erent

edge orientations as the input DAG [17, 55]. These DAGs form a Markov equiva-

lence class. The algorithms return a PDAG, which represents the class by preserv-

ing the shared edge structure, while presenting edges with conflicting orientations

as undirected.

In Bayesian inference of causal networks, we are interested in Markov equivalent

graphs with not only the same likelihood, but also the same posterior probabil-

ity and the same score Score(G,D, S, �) [55]. As seen from Equation 3.1, Markov

equivalent graphs have the same posterior only if they have the same prior proba-

bility ⇡(G|�). This last condition does not hold when the prior probabilities encode

available causal information, such that for some edges orientation in one direction

is more probable than the other. A contribution of this manuscript is an implemen-

tation of a DAG-to-PDAG conversion algorithm that accounts for informative prior
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probabilities of causal direction of edges, and outputs a PDAG representing a class

of DAGs that are Markov equivalent and have the same posterior and score.

3.2.4 Active learning for the optimal design of causal network inference

experiments

In the context of causal inference from experiments, active learning is the task of

including targeted interventions in the design, to optimize the inference of edge ori-

entation. For example, in Figure 4.4 an intervention on Mek compels both edges in

the graph, and is thus more valuable than an intervention on Erk, which only ori-

ents one edge.

Previous work used active learning to distinguish members of statistically equiva-

lent graphs [12–14], [16, 17]. However, these approaches work with either a single

PDAG, or a selection of highly-likely PDAGs. The approach in this manuscript dif-

fers by working with the entire probability distribution of PDAGs, characterizing

each PDAG by its posterior probability of containing the causal truth.

Alternative Bayesian approaches to active learning of causal networks also exist

[15, 18]. However, they require the experimentalists to represent their background

knowledge in terms of topological orderings, i.e. an ordering of nodes such that the

“from” node for every edge occurs earlier in the ordering of the “to” node. In con-

trast, this manuscript represents background knowledge in terms of probabilities of

edge presence and orientation. This more intuitive approach simplifies the experi-

mentalists’ work with pathways.

Finally, the proposed approach is similar in spirit to other methods in the bioinfor-

matics literature that use historic data to inform experimental design. E.g., Rossel

and Muller [56] used a sequential Bayesian method to plan sample size. Guan et al.

[57] used available data to find optimal orderings of high-throughput experiments.

King et al. [58] constructed a “robot scientist” that applied an active-learning strat-
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egy to functional genomics. To our knowledge, this manuscript is the first to apply

active learning to inferring the structure of cell signaling pathways.

3.3 Methods

3.3.1 Prior knowledge for causal graph structure learning

Quantifying causal knowledge with edge probabilities. We propose to use

probabilities of edge presence and edge orientation as a means of modeling signaling

events. A set of signaling proteins, represented by nodes in V , has up to |V |(|V |�1)
2

possible edges. Presence probability of an edge between nodes {u, v}, denoted P (u�

v) or ⇡
uv

as a shorthand, quantifies the confidence that the edge is present in G.

Orientation probability for the edge from u to v, denoted P (u! v|u� v) or �!⇡
uv

as

a shorthand, is the conditional probability of this orientation, given that the edge is

present. Since only two orientations are possible, P (u ! v|u � v) = 1 � P (u  

v|u � v). The goal of targeted interventions is to resolve the orientations of the

edges, i.e. coerce orientation probabilities towards 0 or 1.

Let � be a set of edge probabilities �
u,v

, where

�
u,v

def
={⇡

uv

,�!⇡
uv

} (3.4)

In Bayesian setting, we wish to use the edge probabilities to quantify prior causal

knowledge. Let I
uv

(G) be an indicator function for the presence an an edge be-

tween u and v in G, and
�!
I

uv

(G) be an indicator function for the orientation of

the edge from u to v. We map edge probabilities � to a probability distribution on

DAG structures using using an edge-wise prior

⇡(G|�) = c
Y

uv2G;u 6=v

�
1� ⇡

uv

�1�Iuv(G)
(⇡

uv

�!⇡
uv

)Iuv(G)
�!
I uv(G) (3.5)

where c is a normalizing function on the space of graphs that corrects for the acyclic-

ity constraint [59].
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When nothing is known about the presence or orientation of the edges, we specify

the uninformative edge probabilities [49], where

⇡
uv

⇡ 1

2
+

1

2(|V |� 1)
, and �!⇡

uv

=
1

2
(3.6)

The intuition behind Equation 3.6 is that two nodes are more likely to be linked

in a small network than in a large network. Therefore, the uninformative presence

probability approaches .5 as network size increases. The uninformative orientation

probability is .5 for either direction. These uninformative edge-wise priors corre-

spond to the marginal probabilities of an edge in the case when there is a uniform

probability distribution on the space of graphs [49].

Upon conducting an experiment with interventions S and collecting a dataset D,

the next step is to update the DAG probability distribution with condition-specific

information in the data using Bayes rule

⇡(G|D,S, �) / p(D|S,G)⇡(G|�) (3.7)

Note that the Bayes rule is agnostic of the process that selected the interventions in

S. S can be selected by any approach, such as applying the available inhibitors, or

using the proposed active learning approach below.

The updated probability distribution ⇡(G|D,S, �) maps back to edge probabilities

using the approach in Equation 3.2. Let f(.) in Equation 3.2 be the indicator func-

tions I
uv

(G) and
�!
I

uv

(G). Then, the updated presence and orientation probabilities

of an edge after observing data D is defined as

⇡
uv|D,S

=
X

G

I
uv

(G)⇡(G|D,S, �) (3.8)

�!⇡
uv|D,S

=
1

⇡
uv

X

G

�!
I

uv

(G)⇡(G|D,S, �)

In other words, these are average frequencies of edge presence and orientation over

all the DAGs, weighted by the posterior probabilities of the DAGs.

Incorporating pathway knowledge and historic data. When prior informa-

tion is available, we propose to construct informative edge probabilities �
u,v

. In the
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simplest case, a directed edge between u and v in the canonical pathway is viewed

as a hypothesis that an edge linking these nodes is also present under the condition

of interest, and is oriented from u to v. Denoting the set of edges in the canonical

pathway as K, the background knowledge �
u,v

is defined as in Equation 3.4 where

⇡
uv

=

8
><

>:

⇠ 1 if u� v 2 K

⇠ 0 otherwise
(3.9)

�!⇡
uv

=

8
><

>:

⇠ 1 if u� v is oriented u! v 2 K|u� v 2 K

⇠ 0 if u� v is oriented u v 2 K|u� v 2 K

The notation ⇠ 1 (probability near 1) and ⇠ 0 (probability near 0) emphasizes that

the Bayesian approach avoids the boundary probabilities of 0 and 1.

In some cases, experimentalists may wish to use alternative specifications. For ex-

ample, in absence of canonical pathway information it may be inappropriate to as-

sign ⇡
uv

⇠ 0 to each edge, and subjective edge probabilities may be a better choice.

For edges where no assessments can be made, we use the uninformative edge proba-

bilities in Equation 3.6.

In addition to incorporating prior knowledge from canonical pathways, we also

seek to make use of information in historic datasets. We define historic data D0

as previous experiments, which quantified the activity of the proteins in the same

network, under the same signaling conditions as the pending causal inference ex-

periment, but lacking targeted interventions. We update the canonical knowledge

⇡(G|�) with the condition-specific information in the historic data

⇡(G|D0, �) / p(D0|G)⇡(G|�) (3.10)

Here p(D0|G) is the likelihood that the historic data came from the graph G, and

⇡(G|D0, �) is the updated distribution on graph structures, which now captures the

full state of our prior information before the interventions.

Sampling DAGS from a DAG distribution Similarly to Equations 3.2 and

3.3, the proposed Bayesian inference on causal networks relies on sampling a set of
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DAGs ⌦ from a distribution ⇡(G|D,S, �). Our implementation uses Bayesian boot-

strap sampling from a distribution of DAGs [52] and [53] with random graph starts

[60] and greedy search, and the posterior distributions are derived using Bayesian

Dirichlet approximation [51]. When the signal-to-noise ratio in the historic data

is high and/or the edge-wise prior is informative, the sampling concentrates on a

smaller set of most probable DAGs. When the signal-to-noise ratio is low, weight is

distributed more evenly among graphs, and the sampling must cover a larger num-

ber of graphs with similar ⇡(G|D,S, �).

Representing uncertainty in causal e↵ects with PDAGs. We incorporate

the informative edge orientation probabilities in � to express the uncertainty in

edge orientation using PDAGs. We view the conversion of a DAG to a PDAG as

a the function f in Equations 3.2 and 3.3. Applying these equations requires that

DAG members of the same equivalence class have the same posterior probability,

otherwise di↵erent instances of the same PDAG would have di↵erent probabilities,

i.e. the same f would have di↵erent probabilities in Equation 3.2 and scores in 3.3.

Current conversion algorithms are not compatible with edge-wise prior probabili-

ties.

Algorithm 1 is a DAG-to-PDAG conversion algorithm that incorporates informative

edge-wise prior probabilities. It starts with a DAG from ⌦. Next, every directed

edge is converted to an undirected edge if it meets three conditions. The first two

conditions are the same as in the prior literature [17, 55]. First (lines 4 and 10 in

Algorithm 1), reversing edge direction should not change the number of immoral v-

structures (i.e., 3-node motifs with one child and two parents, with no edge between

parents). Second (line 6 of Algorithm 1), the child node of the edge should not be

targeted by an intervention in S. In this manuscript we introduce a third condition

(lines 8 in Algorithm 1), stating that the edge should have an uninformative prior

orientation probability of .5. These conditions create an equivalence class P and its

PDAG, where all the members have the same value for ⇡(G|D0, �). If the algorithm
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is applied to two Markov equivalent DAGs with di↵erent causal information in their

informative edge-wise priors, two di↵erent PDAGs are returned.

Algorithm 1 DAG to PDAG Algorithm

Inputs: A DAG G, an (optional) set of selected intervention targets S, a set of edge

probabilities �.
1: procedure PDAG(G, S, �)

2: for edge e in G do

3: if e is in an immoral v-structure then

4: Fix direction of e

5: if e’s child is targeted by S then

6: Fix direction of e

7: if e’s orientation probability in � 6= .5 then

8: Fix direction of e

9: for edge e in G do

10: if e is not fixed then

11: if reversing e’s direction

will not add a new v-structure

or introduce a cycle then

12: Make e undirected

13: P  G

14: return (P )

3.3.2 Bayesian active learning with causal information gain

Overview. The strategy for selecting optimal interventions is overviewed in Fig-

ure 3.2. The active learning algorithm takes as input a sample of DAGs from a

DAG distribution, and a set of candidate interventions. The algorithm sequentially

evaluates the expected causal information gain of the interventions, and outputs
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Fig. 3.2. Overview of the proposed method. A probability distribution
of possible graph structures is constructed from canonical pathways and
historic data. Interventions are iteratively added to the design until the
expect causal information gain we can expect from an additional inter-
vention becomes small. We then stop adding interventions to the design
and use the newly acquired data to infer the causal network.

a minimally-sized batch of interventions that maximizes the expected information

gain. We detail the components of the algorithm below.

Defining the causal information gain of an intervention. Suppose that the

true causal DAG G were known. Let S ✓ V denote a batch of candidate inter-

ventions. As discussed in Section 3.2.3, a PDAG is derived directly from a DAG’s

topology and a set of interventions, and can be determined before collecting data.

Therefore, we could devise an algorithm H(G,S) that first determines a PDAG,

then counts the number of oriented edges in the PDAG, i.e. the number of oriented

edges in G that could be inferred from data with interventions S.

Suppose that we consider an additional intervention on node v, which leads to H(G, {S, v})

edges correctly oriented edges. We define the causal information gain IG(G,S, v) of

the intervention on v as the increase in correctly oriented edges, i.e. IG(G,S, v) =

H(G, {S, v}) � H(G,S). IG(G,S, v) is non-negative, and can be zero if v fails to
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orient any edges beyond those oriented by S. Note that an equivalent definition

of information gain is the reduction in the number or unoriented edges. This defi-

nition parallels the information theory notation of entropy, where the information

gain is viewed as entropy reduction.

Selecting interventions that maximize the expected information gain

Of course in practice the true causal DAG G is unknown. Therefore, similarly to

Equation 3.2 we consider the expected information gain, which averages the infor-

mation gain over all possible graphs, weighted by their prior distribution ⇡(G|D0, �)

EIG
S,v

=
X

G

IG(G,S, v)⇡(G|D0, �) (3.11)

Moreover, similarly to Equation 3.3, we approximate the expected information gain

as

EIG
S,v

⇡
X

G2⌦

IG(G,S, v)
Score(G,D0, S, v, �)P

G;G2⌦ Score(G,D0, S, v, �)
(3.12)

where ⌦ denotes a sample of of high scoring DAGs, and Score is a Bayesian scoring

function returning a value proportional to ⇡(G|D0, �). We then select the candidate

v that maximizes the approximated expected information gain. Algorithm 2 details

these steps. Note that in Bayesian decision theory, �IG is a loss function, and we

select the candidate v that minimizes the expected loss [61].

Starting point, iterations and stopping criteria The proposed active learning

strategy is summarized in Algorithm 3. It starts with the empty set of selected in-

terventions S = ;, a set of candidate interventions U , and a set of DAGs ⌦. For

each intervention v 2 U and each DAG G in ⌦, the EIG(⌦, Score, S, v) algorithm

calculates P
S

, P
S,v

and IG(G,S, v), and returns the expected information gain. The

candidate with the maximum expected information gain is added to the batch S.

In the next iteration, the expected information gain for the remaining candidates

is evaluated, while accounting for the e↵ect of the interventions that are already in

the batch.
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Algorithm 2 Expected Information Gain

Inputs: A set of DAGs ⌦, Bayesian scoring function Score, a set of pre-selected

intervention targets S, a candidate for next intervention v, and a set of edge proba-

bilities �.
1: procedure EIG(⌦, Score, S, v, �)

2: Initialize array IG of size |⌦|

3: for i in 1:|⌦| do

4: P
S

 PDAG(G
i

, S, �)

5: P
S,v

 PDAG(G
i

, {S, v}, �)

6: H
S

 num. of directed edges in P
S

7: H
S,v

 num. of directed edges in P
S,v

8: IG
i

 H
S,v

�H
S

9: return WeightedMean(IG, Score)
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Algorithm 3 Active Learning

Inputs: A set of DAGs ⌦, Bayesian scoring function Score, a set U of candidates

for next intervention, and a set of edge probabilities �.

Parameter: ↵, stopping criterion for the information gain.
1: procedure ActiveLearning(⌦, Score, U,↵, �)

2: S  null

3: while length(U) > 0 do

4: TopCandidate  null

5: MaxEIG  0

6: for node v 2 U do

7: EIG
S,v

 EIG(⌦, Score, S, v, �)

8: if EIG
S,v

> MaxEIG then

9: TopCandidate  v

10: MaxEIG  EIG
S,v

11: if ¬ Stop(TopCandidate, ⌦, ↵) then

12: S  cat(S, TopCandidate)

13: U  U[-TopCandidate]

14: else

15: return (S)
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After a certain point, additional interventions to the batch become counterproduc-

tive. For example, in Figure 4.4 an intervention on Mek would orient the Mek �

Erk edge. Including an additional intervention on Erk would provide no additional

information. In the case of Figure 4.4 the true graph is known, and we stop adding

interventions when the information gain is 0. Since in real-life situations the struc-

ture of the true DAG is unknown, we stop adding interventions when the probabil-

ity that at least some information gain occurs is below a parameter ↵. Similarly to

Equations 3.3 and 3.12, the probability that at least some information gain occurs

is

q
S,v

=
X

G2⌦

I{IG(G,S,v)>0}
Score(G,D0, S, v, �)P

G2⌦ Score(G,D0, S, v, �)
(3.13)

where v is the candidate that maximizes EIG, and I{} is the indicator function. We

add v to the set of interventions if q
S,v

> ↵, and stop if q
S,v

 ↵. Higher values of

↵ will result in a smaller intervention batch. Setting probability threshold ↵ to ⇠ 0

(i.e., stopping when the probability of at least some information gain is near 0) is

equivalent to stopping when expected information gain is near 0.

When the signal-to-noise ratio in the historic data is low, there is greater weight on

graphs where the most optimal intervention candidates have no information gain.

This leads to the triggering of the stopping criteria with a smaller batch of inter-

ventions. Thus when there is more uncertainty in the data, the procedure avoids

the risk of wasteful use of interventions, instead favoring running the experiment

with a smaller batch and then relying on the new experimental data to evaluate un-

used interventions.

3.3.3 Inference of causal network from data acquired post-intervention

The next step in the investigation is to apply the selected interventions, and collect

a new dataset D. The new dataset updates Equation 3.7 as

⇡(G|S,D0, D, �) / p(D|S,G)⇡(G|D0, �) (3.14)
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The updated edge probabilities are obtained as in Equations 3.8 and 3.9. They bal-

ance the canonical representation of the signaling with the condition-specific signal-

ing behavior quantified under the condition of interest, after the interventions. A

large deviation of the posterior edge probability from the prior in � indicates net-

work rewiring or deregulation.

The active learning procedure is iterative in nature, in that the results of the in-

tervention experiment can be viewed as a new instance of historic data. They can

inform the selection of new interventions by substituting ⇡(G|S,D0, D, �) in Equa-

tions 3.11 and 3.12, and repeating the overall procedure.

3.3.4 Implementation and computational complexity

The proposed strategy is implemented in an open-source R package bninfo, avail-

able on Github. The edge-wise prior is constructed as a data frame in R, either

manually or through an interface to the API of KEGG provided by bninfo. Historic

data is represented as a data frame and pre-selected interventions S as an array.

The package bninfo implements the algorithms for converting a DAG and a edge-

wise to PDAG, calculating the expected gain, and selecting the optimal batch of

interventions. The Bayesian network structure learning is performed with the exist-

ing R package bnlearn [28].

The main scalability bottleneck in the proposed strategy is the selection of inter-

ventions in the while loop in Algorithm 3. The complexity of calculating the ex-

pected information gain for a single intervention (Algorithm 2 and line 7 in Algo-

rithm 3) is in the order of the number of edges in the input DAG. However, the

interventions in a batch are selected sequentially (i.e., the selection of the jth mem-

ber of the batch depends on the j � 1 previously selected interventions). Therefore,

the selection of j candidate interventions requires up to j! calculations of the ex-

pected gain. The running time can be reduced by parallelization of Algorithm 2,

or by limiting the number of candidate interventions. Moreover, sampling ⌦ from
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a distribution of DAGs has well-known scalability challenges in Bayesian literature.

In the worst case, the computational time scales exponentially with the number of

proteins. Bayesian bootstrap sampling can be split among nodes on a cluster, and

sped up by parallelization. For the datasets described below, the generation of in-

tervention batches took 70 minutes (17 protein DREAM4 network with 14 candi-

date interventions and 500 sampled graphs) and 20 minutes (11 protein T-cell net-

work with 5 candidate interventions and 500 sampled graphs) on a 16 node cluster.

3.3.5 Metrics used for performance evaluation

We evaluated the proposed strategy using datasets containing some notion of “ground

truth”, i.e. situations where the true structure of the causal graph is known. We

used the proposed active learning strategy to determine an optimal intervention

batch S. To evaluate the performance of S, we considered the data D that would

be experimentally acquired with the selected interventions. We then inferred causal

networks from D, and derived posterior edge probabilities as described in Section

3.3.3. Finally, we evaluated whether S can lead to network inference that correctly

detects edges in the “ground truth” graph.

We evaluated the performance of edge detection using two metrics. The first is the

true positive rate of edge detection, i.e. the proportion of correctly detected edges

among the edges in the ground truth network [52]. Our cuto↵ for edge’s detection

is presence and orientation probabilities greater than uninformative prior proba-

bilities described in Equation 3.6. The second metric is the L1 edge error, which

quantifies the overall probability of prediction error, i.e. the probability of either
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discovering a false edge or missing a true edge [15, 18]. Given the set of interven-

tions S and the ground truth network, the L1 edge detection error is defined as

L1(G,S) =
X

u,v

�!
I

uv

(G)(1��!⇡
uv|D,S

) (3.15)

+ (1��!I
uv

(G))(�!⇡
uv|D,S

)

+ (1� I
uv

(G))(⇡
uv|D,S

)

where
�!
I

uv

(G) and I
uv

(G) are as in Equation 3.9.

3.4 Data

There are currently no publicly available datasets that implement active learn-

ing approach to causal network inference. We therefore use two publicly available

datasets, adapted to provide a measure of “ground truth”.

3.4.1 DREAM4 Network

“Ground truth” network The 17-node network in Figure 3.3A was used in the

DREAM4 Predictive Signaling Network Challenge [23]. The network contains canon-

ical pathways downstream of four receptors (dark grey nodes in Figure 3.3A): two

inflammatory (TNFa, IL1a), one insulin (IGF-I), and one growth factor receptor

(TGFa). We use this network to evaluate the relative advantages of active learning,

and the importance of the use of prior information.

Prior information regarding the network structure We used as the back-

ground information the fact that TNFa, IL1a, IGF-I and TGFa are receptors, i.e.

proteins that receive signals from the environment, and activate downstream pro-

teins. This presents causal information, in that the remaining proteins in the path-

way are downstream of the receptors.

Historic data We use the DREAM4 challenge as a historic dataset. The challenge

provided antibody-based measurements (sandwich immunoassays with the Luminex
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xMAP platform) from hepatocellular carcinoma cell lines (HepG2), which quanti-

fied the activity levels of the signaling proteins at bulk (i.e., non-single-cell) reso-

lution. The dataset is comprised of samples with 5 stimulus conditions, namely no

stimulus, stimulus on TNFa, on IL1a, on IGF1, and on TGFa. The dataset also in-

cludes 5 intervention conditions, namely no inhibition, inhibition on ikk, on mek12,

on pi3k, and on p38. In total there were 25 samples, one for each stimulus and in-

tervention pair.

We processed the historic dataset as follows. We imputed missing values using

a neural network model that predicted missing values of a protein given the val-

ues of the protein’s neighbors in the ground truth network. Several proteins from

the pathway (map3k7, ras, map3k1, and mkk4) were not quantified in the historic

dataset. Approaches exist for learning Bayesian network structure with hidden vari-

ables [62, 63], but these are beyond the scope of this manuscript. So to eliminate

this artifact we applied a model that predicts a protein’s values given the values

of its parents in the model and common biochemical assumptions on signaling dy-

namics [64], and used the model to predict the values for the hidden nodes. The

publicly available challenge data is normalized to the 0-1 range, we then discretized

the quantification values to binary on/o↵ variables using .5 as a cuto↵.

Candidate interventions All the non-receptor nodes in the network were con-

sidered as candidates for interventions. Due to the small number of samples and

inhibitions, it was not possible to set aside a portion of this dataset for perfor-

mance evaluation. Therefore, we fit a causal network model to the challenge data

and the ground truth network, and used the model fit to generate synthetic post-

intervention datasets. The simulation mimicked the design of the challenge data, in

that it contained one biological sample for each intervention. We then evaluated the

performance of the selected interventions on these synthetic datasets.
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Fig. 3.3. The “ground truth” networks in the experimental datasets. A:
The DREAM4 Predictive Signaling Network Challenge network. Dark
nodes indicate receptors. B: Native T-cell signaling network in response
to antigen. The edges in the PKC ! Raf ! Mek ! Erk cascade, and
the edge PKA ! Raf belong to the canonical MAPK pathway. Dark
nodes indicate targets of experimental interventions.
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3.4.2 Flow Cytometry Measurements of T-cell Signaling

“Ground truth” network The network in Figure 3.3B contains 11 phosphopro-

teins and phospholipids involved in the native CD4+ T-cell signaling response to

antigen, and their canonical edges. The network was used to validate causal infer-

ence from an experimental dataset [11], and has been subsequently used as a bench-

mark in multiple causal inference studies [4, 19].

Prior information regarding the network structure We used as the back-

ground knowledge the edges in the canonical MAPK pathway. Although CD4+

T-cell signaling has been extensively studied, we assumed that no prior informa-

tion is available regarding the remaining edges. This assumption allowed us to com-

pare the case of a minimally informative prior to the case of a uninformative prior,

and focus performance evaluation on detection edges that were not addressed in the

background knowledge.

Historic data The experimental dataset in [11] contains single cell fluorescence-

based quantifications of 11 phosphoproteins and phospholipids in human primary

naive CD4+ T-cells. These analytes are downstream of the receptors CD3 and

CD28 that provide co-stimulatory signals required for T-cell activation. We used as

the “historic data” a portion of this dataset that was acquired without any targeted

interventions. This portion of the dataset contained 11672 cells.

Candidate interventions The dataset in [11] also contained single cell quantifi-

cations, acquired after activating or inhibiting five signaling proteins (dark nodes in

Figure 3.3B). These five proteins were considered as candidates for interventions in

this manuscript. The post-intervention experimental datasets were used to compare

the information gain projected in our approach with the actual information gain

after the interventions.
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3.5 Results

3.5.1 Informative prior edge probabilities reduced the required number

of interventions in the DREAM4 dataset

In the DREAM4 dataset, we compared (1) random ordering of interventions, and

(2) proposed active learning strategy with uninformative prior probabilities of edge

presence (Equation 3.6), and (3) the same active learning strategy, but with in-

formative priors. The informative priors encoded the fact that the receptor nodes

have upstream positions in the network. All the receptor-originating edges were as-

signed the prior orientation probability of ⇠ 1, all receptor-terminating edges were

assigned the presence probability of ⇠ 0, and the remaining edges were assigned the

uniformed prior presence probability in Equation 3.6. All the non-receptor nodes in

the network were candidate targets for interventions. In order to exhaust the infor-

mation in the prior and historic data, the active learning approach with both priors

used the most liberal stopping criteria for growing a batch. It only stopped adding

interventions when all the additional candidates has expected information gain of

⇠ 0.

Figure 3.4 summarizes the results. With uninformative edge-wise priors, random se-

lection of interventions performed similarly to the proposed active learning in both

True Positive Rate of edge detection and L1 loss. Both metrics depend on correct

detection of edge presence as well as edge orientation. The contribution to edge

detection of the added samples provided by each intervention experiment overshad-

owed the selection strategies prioritization of interventions that better resolve edge

orientation.

At the same time, the results demonstrate the e�ciency gain in selecting the inter-

ventions, brought by encoding the knowledge of receptor identities into the prior.

For example, while with the uninformative prior the true positive rate of more than

.35 could be achieved with on average 9 interventions, the informative prior only

required on average 6 interventions. Table 3.1 shows the specific interventions that
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Prior Intervention targets selected by active learning

Informative (1) hsp27, (2) mek12, (3) map3k1, (4) jnk12, (5) pi3k,

(6) mkk4, (7) ikk, (8) akt, (9) p38, (10) erk12, (11) ikb

Uninformative (1) jnk12, (2) hsp27, (3) mkk4, (4) mek12, (5) pi3k,

(6) map3k1, (7) map3k7, (8) ras, (9) ikk, (10) akt,

(11) ikb, (12) p38, (13) erk12

Table 3.1.
Intervention targets selected by active learning in the DREAM4 dataset.
The informative prior edge probabilities required a smaller intervention
batch.

were selected at a conservative cuto↵ (q
S,v

 0.01). The results indicate that in-

formative edge-wise priors are important for such bulk experiments with a small

number of replicate samples. The prior knowledge removed uncertainty in edge

presence, increasing the contribution of improved detection of edge orientation to

overall performance.

3.5.2 The ordering of T-cell interventions by active learning matched

their contribution to causal inference

As above, for the T-cell dataset we compared (1) random ordering of interventions,

(2) proposed active learning strategy with uninformative prior probabilities of edge

presence (Equation 3.6), and (3) the same active learning strategy, but with infor-

mative priors. In the latter case we assumed the prior knowledge of the canonical

MAPK pathway, and assigned a high prior probability (⇠ 1) to the edges in the

PKC ! Raf ! Mek ! Erk cascade, and to the edge PKA ! Raf. The remaining

potential edges were assigned the uninformative prior probability of both presence

and orientation. We then considered the five interventions in [11] as the set of can-

didate interventions.
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Figure 3.5 summarizes the results. Selection with an uninformative edge-wise prior

did not outperform random selection of interventions in terms of True Positive Rate

of detecting edges. However, it had a smaller L1 error for the first three selected

interventions. With this experiment, the intervention datasets served not just to

resolve causality, but to improve edge detection by adding variation in signaling

activity not present is preceding datasets. As with the DREAM4 data, this lead to

performance gains due to improved edge detection overshadowed gains owed to the

selection strategy.

In contrast, active learning with the edge-wise prior encoding the MAPK edges

outperformed random selection both in terms of greater True Positive Rate, and

smaller L1 error. Table 3.2 shows the specific interventions that were selected at a

conservative cuto↵ (q
S,v

 0.01). For example, while with the uninformative prior

the true positive rate of .75 could be achieved with on average 5 interventions, the

informative prior only required on average 3 interventions.

The network structure provides some insight into the role of informative edge-wise

priors in improving the performance. Since the orientation probability of an edge

depends on the orientation probability of its neighbors, the edge-wise prior reduced

error by reducing uncertainty in the orientation of edges neighboring the MAPK

edges. In addition, the edge-wise prior enabled the causal inference procedure to

down-weight graphs where the MAPK edges were not present or had the wrong ori-

entation, increasing sensitivity. Finally, additional causal information encoded in

the prior made interventions on Mek and Akt interventions less useful, enabling the

stopping criteria to eliminate them from the batch.

3.6 Discussion

Our results showed that an active learning strategy, combined with informative pri-

ors, is the most e↵ective at suggesting the smallest batch of target interventions for
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Prior Intervention targets selected by active learning

Informative (1) PKA, (2) PKC, (3) PIP2

Uninformative (1) PKA, (2) PIP2, (3) PKC, (4) Akt, (5) Mek

Table 3.2.
Intervention targets selected by active learning in the T-cell dataset.
The use of an informative edge-wise prior eliminates two interventions
from the batch.
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Fig. 3.5. Performance of the proposed strategy on the T-cell signaling
dataset. Lines and panels are as in Figure 3.4.

inference of causal networks. It optimizes the causal information in the intervention

experiments, while controlling the experiment time and cost.

The background information comes in the form of prior knowledge on the presence

and orientation of edges in the system available, e.g., in pathway databases such

as KEGG, as well as from historic datasets available, e.g. from repositories such as

Cytobank. The proposed strategy can be used with any level of prior information

or uncertainty. When prior information and historic data indicate an intervention is

potentially wasteful, it will tend to omit it from the batch, electing rather to reserv-

ing it for potential use in future experiments.

The active learning strategy in this manuscript suggests interventions based on the

prior information and on the topology of the network. In practice, however, other

factors can a↵ect the utility of an intervention. For example, small molecule in-

hibitors vary both in cost and e�cacy. Their inhibitory e↵ects may only occur with

some probability, and may also have o↵-target e↵ects. The proposed framework can

be easily extended to incorporate this type of “soft intervention” [4], as well as cost
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considerations into the expected information gain. Alternatively, it can produce a

batch of interventions with a fixed pre-specified number of targets, while selecting

the targets with the most expected causal information gain.

The proposed methodology relies on signaling network modeling by means of direct

acyclic graphs. In practice, however, cell signaling often displays feedback loops.

This can be addressed by refining the biological interpretation of the graph struc-

tures. In particular, cycles in signaling often involve regulatory feedback loops that

involve transcription. In this case, an activation of the signaling pathways causes

transcription, which then results in the translation of new signaling proteins which

then change the initial signaling pathway. Since the time scale of signaling is in

seconds and minutes, and the time scale of transcription is in minutes and hours,

collecting the data at an appropriate time point can help resolve the confounding

between the initial causal e↵ect of the signaling, and the feedback.

This work addressed both the inference of causal networks from bulk experiments

and single cell experiments. Inferring an edges orientation depends of first detecting

its presence, and since many edges between the proteins can potentially exist, bulk

experiments often lack replicates to confidently detect the edges. Therefore, in bulk

experiments it is often useful to add interventions not only to improve the detec-

tion of edge orientation, but also to improve the detection of edge presence through

increased sample size.

In contrast, single cell experiments characterize protein signaling activity in thou-

sands to millions of individual cells, and increase our confidence in the inferred

edge. If the historic data was collected under a minimal number of conditions, in-

tervention data may resolve both edge orientation and presence by virtue of adding

variation in signaling activity. Moreover, single-cell experiments do not eliminate

the need for true biological replication. The proposed approach can be extended

to population level inference by modeling subjects as additional nodes in the net-

work [65].
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Overall, we believe that the proposed strategy is an important step towards an in-

formed experimental design for inference of causal networks, and advocate its prac-

tical use.
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4. BAYESIAN INFERENCE OF KINETIC PARAMETERS

FROM SINGLE-CELL DATA

4.1 Introduction

Cell signal transduction describes intracellular protein regulatory networks that de-

termine how a cell reacts to its environment [1]. Understanding the structure and

dynamics of the biochemical interactions that comprise cell signaling pathways is an

important task, leading to improved insight into disease states and increased ability

to intervene towards therapeutic ends, for instance, in diseases such as cancer.

The computational systems biology approach to the study of cell signaling is to

build a kinetic model, comprised of a set of biochemical reactions that capture the

behavior of a signal transduction response of interest [7]. The utility of such a model

is that it can predict the outcomes of interventions to the system that are not seen

under normal signaling conditions, eg. a drug intervention. Such predictions can

be used to design follow up experiments that validate those predictions. Comput-

ing standards, such as systems biology markup language (SBML) [66], and public

databases of published models such as Biomodels.org [67] enable the digital sharing

of kinetic models so that investigators can reproduce, validate, and build from the

work of others.

Kinetic models have rate parameters (constants) that determine the rates of reac-

tion. We use experiments to estimate rate parameters. Traditionally, kinetic models

are built using the “bottom-up” approach, where rate parameters are inferred us-

ing information from multiple purified in vitro enzyme kinetics experiments. The

advent of high-throughput omics technologies motivates the “top-down” approach,

which seeks to do system-wide inference of model parameters using a single experi-
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mental design [68]. The attractiveness of the top-down approach lies in that it is a

data-driven approach to elucidating the mechanics underlying whole systems.

In the context of cell signaling, proteomics technologies provide information on the

activity of signaling proteins. Targeted proteomics platforms such as mass cytom-

etry (CyTOF) that collect single cell level quantifications have proven a valuable

tool in system-wide inference of causal Bayesian network models of signaling [37].

These experiments involve many thousands of single cell level quantifications of

the enzymatic activity, there is adequate statistical power to infer the presence and

orientation of causal regulatory relationships between proteins. However, each cell

measurement is only a single time point “snapshot” of signaling taken from the full

time course of the cell’s signaling behavior. So it remains unclear how to use this

single cell snapshot data to learn about the biochemical kinetics underlying these

relationships.

This manuscript demonstrates how to quantify causal influence in causal Bayesian

network model of signal transduction from single cell snapshot data. Our approach

uses classical chemical kinetic modeling (eg. mass action or Michaelis-Menton ki-

netics) to quantify the relationships in a causal Bayesian network in terms of ki-

netic model rate parameters. We then estimate those rate parameters from data.

In the Background section we introduce key concepts in quantitative modeling of

signal transduction, the state-of-the-art in inferring those models from snapshot

data, and the challenge of connecting the results of inference to reaction kinetics.

The Methods section follows with details of how to construct a causal Bayesian

network model that solves this problem. In the Evaluation section we validate our

methods using synthetic data to reproduce kinetic parameters from a highly-cited

mathematical model. We also replicate the results of a published machine learn-

ing approach to fitting a curve between two signaling proteins quantified in CyTOF

data, and show that the proposed approach produces additional insights into the

kinetics of the system.
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4.2 Background

4.2.1 Kinetic models of cell signal transduction

Kinetic models of cell signaling model specify a set of species (signaling protein iso-

forms), biochemical reactions involving those species, rate parameters that describe

those reactions, and rate laws that determine the rate of each reaction’s occurrence

in terms of the rate parameters. The species in kinetic models are signaling pro-

teins in various states of enzymatic activity, the simplest case being the states “ac-

tive” and “inactive”. Rate laws vary in complexity, generally less complexity means

fewer parameters. Typically, the modeler assumes a rate law that is as simple as

possible while still being faithful to observed signaling behavior. With these compo-

nents, the kinetic model describes the evolution of the abundance of each species.

An example is the canonical signaling model of the phosphorylation cascade, where

a protein is in an “active” state if it has been phosphorylated, and a phosphory-

lated protein acts as an enzyme catalyzing the phosphorylation of another protein.

Each phosphorylation reaction might be modeled with a Michaelis–Menten rate

law, which assumes the rate of phosphorylation of a protein depends on abundance

of the enzyme, abundance of the unphosphorylated substrate, and rate parameters

corresponding to the binding and unbinding of the enzyme to the substrate and the

rate the bound compound picks up a phosphate group. Signal flows through this

cascade of phosphorylations. A kinetic model of such a cascade would model each

phosphorylation with a separate reaction and reaction rate.

Analysis of signal transduction is often focused on steady state signaling, meaning

the state of the system after an initial period of transience as the external signal is

processed. Generally, the signaling response occurs after the system reaches steady-

state, eg. transcription of a gene [69]. In practice steady states are not permanent,

because extrinsic factora, including the signaling response itself, alter the environ-

ment of the cell. For example, a signaling response can involve transcription of a

gene that is translated into a new signaling protein that in turn a↵ects the signal-
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ing pathway [70]. In such cases it is more appropriate to say the analysis targets a

quasi -steady state. In this work, we focus on signaling systems with quasi-steady

states that are stable, meaning after steady state is reached the abundance of pro-

tein species doesn’t change in time. Part of the contribution of this work is moti-

vating the analysis of a signaling mechanism’s steady state behavior when prepar-

ing to model it with single cell snapshot data.

A central goal of computational systems biology is to estimate rate parameters.

Typically this is done with low throughput time course data, because rate param-

eters themselves are not identifiable from “snapshots” taken at a single time point

( [71, 72]). The contribution of this work is a method for inferring identifiable func-

tions of rate parameters from high throughput single cell snapshot data, and using

the results of this inference to inform direct inference of rate parameters from low

throughput time course data.

4.2.2 Single cell data, cell variability, and stochastic modeling

This work focuses on single time point cell-level “snapshots” of signal transduc-

tion produced by single cell proteomic experiments. In these experiments cells are

exposed to a signaling stimulus, then measurement platforms collect cell-level snap-

shots of intracellular signaling activity. In single cell flow cytometry, cells are chem-

ically fixed, intracellular signaling proteins are tagged with fluorescently-labeled

antibodies, and the cytometer records the antibodies’ fluorescent signals in individ-

ual cells, each recording reflecting the relative abundance of signaling proteins in

di↵erent states of enzymatic activity within an individual cell [42]. Mass cytome-

try (CyTOF) is an alternative to flow cytometry with higher throughput and more

precise quantifications. In CyTOF experiments, intracellular signaling proteins are

tagged with heavy-metal isotopes, and the cytometer collects and records the mass-

to-charge ratio of the charged isotope tags [43].
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One way of building a kinetic model from single cell snapshot data is to use a de-

terministic approach [73]. This approach assumes the species are well mixed in

a fluid volume with reactions occurring uniformly through time. Based on this

assumption, the abundance of a certain species at a specific time point is mod-

eled with a deterministic formalism such as di↵erential equations. Such approaches

model deviations in data from deterministic predictions with statistical error [71,74,

75].

However, there is a large amount of variability in signaling states between cells,

even among populations of genetically identical cells in uniform environmental con-

ditions [72, 76]. Single cell experiments will demonstrate this cell-to-cell variabil-

ity, in contrast to bulk experiments where quantifications are essentially averages

across all the cells in the sample. This variability can be traced to the observation

that the biochemical reactions underlying signaling occur with very low numbers of

molecules. Such reactions result in unpredictably fluctuating numbers of molecules

in individual cells or their compartments within the cell, and thus in di↵erent pro-

tein abundance across cellular populations. Indeed, attempts to build larger models

have suggested that noise can accumulate within signaling pathways [77], such that

two cells of the same type same signaling conditions may exhibit entirely di↵erent

downstream signaling responses. Deterministic methods that try to account of cell

variation with statistical error terms may be insu�cient.

In contrast, the stochastic approach builds a kinetic model that explicitly incor-

porates cell-to-cell variation in its formulation. It assumes that the event protein

substrates in a reaction come in contact is a matter of chance, due to the low abun-

dance of signaling proteins. With this assumption, cell-to-cell variation is a natural

result of the inherent physical stochasticity of the system [73,78].

Our approach models signal transduction as a continuous time discrete state Markov

process [73, 79]), a stochastic approach where the probability a reaction occurs in

the next instant depends only on the state of the system at the current instant. We

then use Markov process theory [73, 80] to derive the steady state probability distri-
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bution of possible protein abundances and use this model the cell-to-cell variation

in single cell data.

4.2.3 Absolute abundance in single cells

Building systems biology models from proteomics data relies on information about

absolute abundance of protein levels in a sample [81, 82]. To date, studies involving

single cell snapshot experiments have limited interpretation of the data to relative

abundance of protein levels between samples. Statistical methods exist for calibrat-

ing quantifications to absolute abundance the domains of both mass spectometry

(bulk experiments, not single cell) [83], and flow cytometry [84], suggesting possi-

ble extensions to CyTOF. The method proposed here works even if the relationship

between quantification values and absolute abundance is ambiguous, and results of

the analysis can inform experiments that elucidate that relationship.

4.2.4 Learning causal network models of signaling

Two proteins have a causal relationship if one regulates the other, e.g. two proteins

have an enzyme-substrate relationship. The goals of causal modeling in the context

of cell signaling are (1) determine whether there is a causal relationship between

two proteins, (2) determine the direction of causal influence, and (3) quantify the

strength of causal influence [46]. Causal Bayesian network structure inference from

protein quantifications have emerged as an ideal machine learning approach for

achieving the first and second goal [8, 85], particularly from single cell data [21, 37].

In a causal Bayesian network, nodes are variables representing levels of signaling ac-

tivity of the proteins. For example, a node can take discrete signaling states such as

“active” or “inactive”, or a continuous value representing the abundance of the pro-

tein in its active state. The model expresses causal relations between nodes with a

directed acyclic graph structure (DAG) G. The edge direction in the DAG reflects

the causal e↵ects of a change in the signaling state of a parent node on the state of
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the child. The challenge of learning a causal DAG representation of a dynamic set-

ting is not a small one, requiring stringent experimental settings [3, 21, 46] that help

meet the strong assumptions of causal inference [10].

Each node (protein) in the causal Bayesian network has a conditional probability

distribution (CPD) given its parents (regulator proteins). The CPD and its param-

eters are a probabilistic representation of the regulatory influences of the parents

on the child [6]. The joint probability distribution of all the nodes in the network

factorize into a product of the CPDs;

P (G) =
KY

j

P (Y
j

| Pa(Y
j

)) (4.1)

where P(G) is the joint probability of the K nodes Y1...YK

, and P (Y
j

| Pa(Y
j

)) is

CPD the jth node Y
j

conditional on its parents Pa(Y
j

). Further, each node is con-

ditionally independent of its non-descendent nodes (non-downstream proteins) in

the network including its indirect predecessors (upstream proteins, exluding direct

regulators).

In this work we focus on the case when causal network structure is known, and the

goal is quantifying the causal influence between proteins in network. Information

theoretic approaches have provided powerful techniques for cope with this cell vari-

ability in single cell data [76, 77, 86, 87]. In this work, we quantify causal influence

in terms of a causal Bayesian network CPD. We use a Bayesian approach to infer

CPD parameters, using probability to model cellular noise much like information

theoretic approaches. However, our proposed model goes a step further by defin-

ing model parameters in terms of rate parameters, such that inference on these pa-

rameters provides deeper insight into the systems dynamics. Secondly, we specify

one sparse multivariate model for an entire system, avoiding the challenges that in-

formation theoretic methods face in extending to multivariate settings, as well as

enabling us to model noise throughout the system.

Alternative modeling frameworks do explicitly combine network structure with ki-

netic modeling and rate parameter estimation. For example, Alon et al. [70] mod-
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eled signaling with a multilayer perceptron with an activation function based on

Michaelis-Menton kinetics, and Terfve et al. [64] built a Boolean network of sig-

naling that assumes Hill kinetics (a generalization of the Michaelis-Menton kinet-

ics). These models validate that causal Bayesian networks can accomplish the same

task because the CPDs in Bayesian networks can theoretically represent any set of

deterministic functions [10, 88], i.e. these are special deterministic cases of causal

Bayesian networks. Our approach combines kinetic modeling with a probabilistic

accounting for cell-to-cell variation.

4.2.5 Bayesian inference of kinetic models of signaling

In this work, we propose a Bayesian approach to inferring the parameters of causal

Bayesian network CPDs. Here the term Bayesian refers to use of Bayesian statis-

tical methods for parameter inference. This meaning is distinct from the term’s

meaning in “causal Bayesian network”, where it refers to the factorizability in Equa-

tion 4.1. Methods for Bayesian parameter inference in systems biology contrast to

optimization methods such as maximum likelihood (see [73, 89] for introductions to

Bayesian inference in systems biology, and [74], [71] to compare with optimization

approaches). This work focuses on inference with Bayesian Markov chain Monte

Carlo (MCMC).

Bayesian MCMC refers to algorithms that take as an input data, a specification of

conditional probability of the data given parameters, and prior probability distri-

butions on the parameters. These then generate samples from the posterior prob-

ability of the parameters [90]. Probabilistic programming software that implement

MCMC (eg. [91, 92]) allow users to enter data and a set of probability distributions,

compile the inputs into a custom MCMC algorithm, then output results in the pro-

gramming environment.

Prior work has applied biological interpretation only to DAG structure, and has not

extended it to the CPD. Rather, investigators have chosen CPD families that fit
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software constraints but lacks biological interpretation (eg. Gaussian or multino-

mial, [8, 85]. To our knowledge, no publicly available Bayesian network software al-

lows for custom CPDs. In contrast, we use the stochastic approach to kinetic mod-

eling to specify CPDs that explicitly model cell-to-cell variability and rate parame-

ters. We then infer the parameters of the CPD’s using probabilistic programming.

This closes the gap between saving time and avoiding human error by implementing

parameter inference with publicly available software tools, and having a probability

model that is specific to the problem domain.

4.3 Methods

4.3.1 Defining kinetic rate laws

We model a molecule of signaling protein such that its physical configurations map

to two states; enzymatically “active”, and enzymatically “inactive”. When there

are more than two physical configurations, one configuration is labeled “active”, the

others are collectively labeled “inactive”.

Notation. The decomposability (Equation 4.1) of a causal Bayesian network model

of signaling enables its breakdown into individual sets comprised of an individual

protein node and its parents in the network. We make use of this parsimony to

model each node separately. In each node-parents set, y refers to a node, x1, ...,

xp to its p parents in the DAG. Y denotes the absolute abundance of active y , Y o

denotes the absolute abundance of inactive y . N
y

denotes the total abundance of

y . N
y

is a conservation rule for y , meaning its value is “conserved” even as Y and

Y o = N
y

�Y vary in time [70,73]. X
j

denotes the abundance of active xj. Y and N
y

take positive-real values. For now assume the units of absolute abundance reflect

molar concentration, the standard for most SBML models [66], though we general-

ize the units in a later section.

By adopting common assumptions of the dynamics of signaling, we can quantify

the causal influence of xj on y in terms of kinetic rate parameters. In this manuscript,
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we focus on the two most common kinetic assumptions used in signaling models;

mass action kinetics and Michaelis-Menton kinetics.

Mass action rate law. Suppose y only has one regulator (i.e. parent in the DAG)

x . In a mass action kinetic model, the activation of y by x is represented with the

chemical reactions

X + Y o

v! X + Y (4.2)

Y
↵! Y o (4.3)

This system has two reactions, each with a rate parameter; v is the rate parame-

ter for the activation reaction (reaction 4.2), and ↵ is the rate parameter for the

deactivation reaction (reaction 4.3). When reactions occur continuously in time (de-

terministic model of the system) the overall rate of change of Y is:

dY

dt
= vXY o � ↵Y (4.4)

The rate of activation from inactive to active state is the function:

rate of activation = vXY o (4.5)

Michaelis-Menten first order rate lawl. Activation by X in the Michaelis-

Menton model expands the mass action model with a binding reaction;

X + Y o

k

bind⌦
k

diss

[XY o]
v! X + Y (4.6)

Y
↵! Y o (4.7)

The reaction equation 4.6 is shorthand combining 3 reactions; a binding reaction

with rate parameter kbind, a reaction for the disassociation of the bound compound

with rate parameter kdiss, and an activation reaction with rate parameter v This

adds two additional rate parameters (kbind and kdiss) compared to mass action ki-

netics. By adding binding into the model, the rate of activation changes from the

vXY o in the mass action model to

rate of activation =
vXY o

K + Y o

(4.8)
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K is the Michaelis-Menton constant and is a function of the rate parameters;

K =
v + kdiss
kbind

(4.9)

and is interpreted as the concentration of Y
o

at which the rate of activation is half

of the maximum rate possible.

In this work we employ the first-order kinetic assumption, a common simplifying

assumption for Michaelis-Menton kinetic models. This assumption simplifies Equa-

tion 4.8 to:

rate of activation =
vXY o

K
= ṽXY o (4.10)

where ṽ = v

K

. This assumption is appropriate when Y o remains very low (i.e.

Y o << K), which is typically the case in context of cell signaling [70]. The rate

of change of Y is therefore:

dY

dt
= ṽXY o � ↵Y (4.11)

In both the mass action and Michaelis-Menton models, we model deactivation of y

with a single rate parameter ↵. Note that deactivation can be modeled more explic-

itly with a deactivating enzyme, such as a phosphotase. In this case, the deactivat-

ing enzyme is a separate parent node (i.e. regulator).

4.3.2 Modeling the regulation of signaling for each node

Steady state assumption. A fundamental assumption of our overall approach

is that we model the system at a stable steady state. Single cell snapshot data can

only quantify signaling activity in a cell at a single time-point. Theoretically it is

possible to apply a signaling stimulus, and label each cell with the elapsed post-

stimulus time when the cell is quantified. But in practice there is no way to assure

the recorded time point is the “true” post stimulus time point during the transient

signaling response. By choosing a time point past the time the system achieves
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steady state, we comfortably assume variation between cells is due to cell-to-cell

heterogeneity, and not to transient cell response.

We define a regulatory function g that maps the states x1, ..., xp to the state of y . g

is e↵ectively a nonlinear regression of Y on X1...Xp

and is defined in terms of a set

of nonlinear regression parameters. While the rate parameters are not identifiable

from steady-state snapshot data, the regression parameters are functions of the rate

parameters that are identifiable at steady state. The choice of the g depends on a

priori knowledge on how y is regulated by its parents. We describe three types of

regulatory functions below.

2-state activation. The steady state solutions of Equations 4.4 and 4.11 are;

Y

N
y

=
�X

1 + �X
(4.12)

The regression parameter � is a function of the rate parameters given by the kinetic

assumption. Under the mass action kinetic assumption in Equation 4.4:

� =
v

↵
(4.13)

Under the Michaelis-Menton assumption in Equation 4.11:

� =
ṽ

↵
(4.14)

The regression parameter � has the straight-forward interpretation as a quantifica-

tion of the strength of influence of x on y .

Regardless of whether using the mass action or Michaelis-Menton assumption, the

regulatory function generalizes to the case of multiple parents;

Y

N
y

= g1(
X

j

�
j

X
j

) (4.15)

g1(u) =
u

1 + u
(4.16)

The sign of �
j

is positive if the jth parent is an activator, negative if it is an in-

hibitor.

3-state activation. A common signaling mechanism is double-phosphorylation,

where a protein reacts with an enzyme twice before it becomes active. In this case,
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N
y

is the sum of concentrations of 3 states; Y o, Y p, and Y , where Y p is concentra-

tion of y in an intermediate state, such as having only one single phosphate group

when two are required to be active. In the case of mass action kinetics

X + Y o

v! X + Y p

X + Y p

v! X + Y

Y
↵! Y p

Y p

↵! Y o (4.17)

Under the assumption that the kinetic rate parameters (including the binding rates

in the case of the Michaelis-Menton assumption) are the same for both the Y o $

Y p and Y p $ Y state transitions, the regression parameter � retains the same

definition as before, and the steady-sate solution in Equation 4.16 becomes:

Y

N
y

= g2(
X

j

�
j

X
i

) (4.18)

g2(u) =
u2

1 + u+ u2
(4.19)

Feedback Loops. Feedback loops are typically modeled with cycles in directed

network visualizations of signaling, a graphical representation that seemingly vio-

lates the acyclicity assumption of the causal Bayesian network. However, under the

stable steady-state assumption, the Markov condition still holds. We demonstrate

this with the example in Figure 4.1. In Figure 4.1 signal is passed from x to y1 to

y2 to z , but y2 also inhibits y1 creating a negative feedback loop. Let Y o↵
1 and Y on

1

represent respectively the inactive and active concentrations for y1, likewise let Y o↵
2

and Y on
2 be defined the same way for y2. Let N1 = Y o↵

1 + Y on
1 and N2 = Y o↵

2 + Y on
2 .

Assume the following kinetic model

Y on
1

dt
= vXY o↵

1 � �Y on
1 Y on

2 � ↵Y on
1 (4.20)

Y on
2

dt
= vY on

1 Y o↵
2 � ↵Y on

2 (4.21)
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347

Y1 Y2X Z
Y

Fig. 4.1. Example of a negative feedback loop. Feedback loop diagrams
seem to violate the no-cycle constraint of a causal network. However,
if there is stable steady state the causal network model can still be ap-
plied.

The term �Y on
1 Y on

2 in Equation 4.20 corresponds to y2’s inhibition of y1. The steady

state of y2 is as in previous cases

Y on
2

N2
= g1(�Y

on
1 ) (4.22)

Solving for the steady state of Y1 involves setting Equation 4.20 equal to 0, plug-

ging in the value for Y on
2 from Equation 4.22, then solving for Y

on

1

N

1

Y on
1

N1
=

�X

�X + �

↵

Y on
2 + 1

=
�X

�X + �

↵

N2g1(�Y on
1 ) + 1

(4.23)

 g1(�X) (4.24)

Solving Equation 4.23 for Y

on

1

N

1

yields a regulatory function that depends on X, N2,

� and �, and not on any concentration values for the downstream node y2. The

acyclicity assumption still applies because y1’s regulatory function depends not on

the concentration values of downstream nodes, but rather on rate parameters in-

volved in downstream reactions.

Explicitly finding the regulatory function for y1, the node directly regulated by the

loop, is non-trivial in the case of most loops. This requires solving Equation 4.23

for Y on
1 , i.e. solving a polynomial expression that becomes increasingly complex

with the size of the loop. Moreover the regulatory function depends on the size of
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the loop and the number of associated rate parameters, preventing a generalized

outcome for g as in Equations 4.16 and 4.19.

We address this by working establishing with bounds the regulatory function. In

the case of the negative feedback loop in Figure 4.1, g1(�X) forms a lower bound

on Y on
1 ’s regulatory function, as shown in Equation 4.24. Note that if the rate pa-

rameter for inhibition � were small, then g1 would be a good approximation.

We also propose an alternative approach of simplifying the problem by collapsing

the loop into a single super-node. For example Figure 4.1 demonstrates the collapse

of y1 and y2 into a super-node y . Let the concentration Y = Y on
1 + Y o↵

2 + Y on
2 . Then

the change in Y concentration over time is given by

dY

dt
= vXY o↵

1 � ↵Y on
1 (4.25)

Substituting N1 and N2 into Equation 4.25 and finding the steady state solution

yields

Y

N1 +N2
=

�X + N

2

N

1

+N

2

�X + 1
(4.26)

This approach of collapsing feedback-loops into super-nodes and plugging in values

for the conservation rules generalizes well to other types of feedback loops.

Generalized regulatory functions. In this subsection we described a regulatory

function g that determines how a protein’s state is regulated by the states of its

parents in the network. The regulatory function is identified by solving for the ra-

tio of active concentration to total concentration at steady state. We outlined two

cases g1 and g2 that are derived directly from common signaling kinetics rate laws.

We addressed how a bespoke g can be derived for a specific case of a feedback loop,

a common functional motif in biochemical networks. An in-depth examination of

how to derive g for all possible motifs, loops, parameter sets, and signaling interac-

tions is beyond the scope of this manuscript. Below, for a given protein we refer to

the protein’s regulatory function simply as g, and assume the appropriate form of g

has been established.
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4.3.3 Deriving the conditional probability distribution for a node

We now use the generalized regulatory function to define the CPD for each node in

the network.

Experimental setting. Experimental data is acquired by applying signaling stim-

ulus to prepared samples, waiting through a period of transient dynamics as the

cell initially reacts to the signal, chemically fixing the cells when it is believed the

signaling response has reached a steady state, then finally permeabilizing and stain-

ing the cells before submitting them to the CyTOF for quantification. We infer

the coe�cient parameters from experimental data. Each cell level quantification is

treated as a replicate measurement of protein abundance for each targeted protein.

Constructing the data model. Let Y
i

and N
y,i

denote active state abundance

and the total abundance of y in the ith cell. We continue to assume units of molar

concentration. Due to the stochastic nature of biochemical interactions between low

concentration substrates, we expect biological variation between a sample of cell

level observations Y1, ..., Yn

. We model that variation with a Markov process-based

description of the signaling kinetics.

To do so, we need to describe the system in terms of particles. Let c denote a con-

stant factor that converts from units of concentration to particle counts (i.e. Avo-

gadro’s constant ⇡ 6.022 ⇤ 1023mol�1 times an appropriate cell volume such as 4e-12

liters). We define the function

⇢(u) = bcuc

that converts a value from continuously-valued concentrations to particle counts

(integers). Then ⇢(N
y,i

) and ⇢(Y
i

) are respectively the total number of particles and

active particles of y in the ith cell. Suppose that due to biological stochasticity, the

particle count ⇢(N
y,i

) varies between cells around a mean cµ
y

, and that in the ith
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cell each of ⇢(N
y,i

) particles of y is enzymatically active with some probability ✓
y,i

.

This suggests the following data model.

⇢(N
y,i

) | µ
y

⇠ Poisson(cµ)

⇢(Y
i

) | ⇢(N
y,i

), ✓
y,i

⇠ Binomial(⇢(N
y,i

), ✓
y,i

) (4.27)

However, most experimentalists do not quantify N
y

in single cell snapshot experi-

ments, preferring to devote coverage to more proteins. Thus we assume ⇢(N
y,i

) is a

latent variable. Marginalizing over ⇢(N
y,i

) in Equation 4.27, the marginal probabil-

ity distribution of ⇢(Y
i

) becomes a Poisson with mean cµ
y

✓
y,i

.

⇢(Y
i

) | µ
y

, ✓
y,i

⇠ Poisson(cµ
y

✓
y,i

) (4.28)

Finally, we adjust from working with particles to back to working with units of con-

centration. Dividing out c, we have

E(Y
i

) = µ
y

✓
y,i

(4.29)

var(Y
i

) =
µ
y

✓
y,i

c
(4.30)

The resulting distribution is a continuous analog to a scaled-Poisson distribution

with this mean and variance. The normal distribution a possible candidate distri-

bution for modeling Y
i

, since and the normal distribution is often used to approx-

imate the Poisson. However, one problem with using a normal distribution is that

the mean µ
y

✓
y,i

is often close to 0 while Y
i

cannot take negative values. Therefore

we model Y
i

with a gamma distribution.

Y
i

| µ
y

✓
y,i

⇠ �(cµ
y

✓
y,i

, c) (4.31)

This shape cµ
y

✓
y,i

and rate c produce the mean and variance in Equations 4.29 and

4.30.

Modeling the distribution of y based on its parents in the DAG. We de-

fined the probability a y particle in the ith cell is active as ✓
y,i

. The causal network

modeling assumption is that the protein’s activity is determined by the activity of
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the parents in the graph. Therefore we know that ✓
y,i

should depend on the the ab-

solute abundances of y ’s p parents X1,i ... Xp,i

.

We model the system as a continuous time discrete state Markov process, then de-

rive the value of ✓
y

. Assume that y has 2-state or 3-state activation as described

in 4.3.2. Let E
⇡

(.) represent the expectation function over the distribution of ⇢(Y )

conditional on X and ⇢(N). Then by Kolmogorov’s forward equation (not shown,

see [93]), the change in the expectation of ⇢(Y ) in time is

d

dt
E

⇡

(⇢(Y )) = E
⇡

(vX⇢(Y o))� E
⇡

(↵⇢(Y ))

= vX⇢(N)� (vX + ↵)E
⇡

⇢(Y )

= vX⇢(N)� (vX + ↵)⇢(N
y

)✓
y

(4.32)

Setting d

dt

E
⇡

(⇢(Y )) to 0 provides the steady state expectation.

0 = vX⇢(N
y

)� (vX + ↵)⇢(N
y

)✓
y

✓
y

=
vX

vX + ↵
(4.33)

=
�X

1 + �X
= g(�X) (4.34)

This identity is not true in the case of feedback loops, because of the nonlinearity

introduced by the loop. However, it is true in the case of the super-node regulatory

function in Equation 4.26.

4.3.4 Considerations for modeling absolute abundance

Until this point, we have assumed raw data was identical to concentration values,

a quantification of absolute abundance. We derived our model by converting these

values to particle counts, then multiplying by a factor c equal to Avogadro’s con-

stant times cell volume. In fact, single cell snapshot quantifications are spectra

values, at best assumed to be proportional to absolute abundance, and more com-

monly interpreted in terms of relative abundance between samples. We also note
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that there is uncertainty and variability in cell volume, though CyTOF does cap-

ture data on cell size.

We assume the quantification values are proportional to absolute abundance. We

model c as a random variable. In the context of our formulation gamma distribu-

tion on Y
i

, it behaves as a free parameter that can model dispersion in the data.

The prior distribution on c can be informative when the experimentalists has prior

knowledge on the relationship between quantifications and absolute abundance. For

an uninformative prior, we use the half-Cauchy prior as suggested in [94].

Changing c results in changing the relation between the coe�cients and the rate

parameters. Under the mass action kinetic rate law, Equation 4.13 becomes

� =
v

c↵
(4.35)

Under the Michaelis-Mention kinetic rate law, Equation 4.14 becomes

� =
ṽ

c↵
(4.36)

4.3.5 MCMC procedure

We propose an Bayesian MCMC sampling scheme for a given node y

c ⇠ halfCauchy(0, 5)

µ
y

⇠ ⇡(µ
y

)

�
y,1, ..., �y,p

⇠ Cauchy(0, 5)

✓
y,i

= g(
X

j

�
y,j

X
j,i

)

Y
i

| µ
y

✓
y,i

⇠ �(cµ
y

✓
y,i

, c) (4.37)

⇡(µ
y

) denotes the prior on µ
y

. When the experimentalist has prior knowledge of µ
y

,

the expected concentration of y in a cell, we set ⇡(µ
y

) = �(a, b) where hyperparam-

eters a and b are specified to reflect that knowledge.

Otherwise, µ
y

, along with c are simulated from the half-Cauchy distribution with

hyperparameters (0, 5), the default uninformative prior for scale parameters in Stan
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(see [94] for discussion). Similarly, each �
j

is sampled independently from an uni-

formative Cauchy prior with hyperparameters (0, 5), a weakly informative prior

suitable for linear coe�cients [95]. Often, prior information is available in terms of

the sign of �
j

, i.e. positive for activation, negative for inhibition. In these cases we

constrain the domain of the parameter to positive or negative real numbers in the

MCMC program.

For each node y in the DAG ordering, we specify the same sampling scheme. This

enables us to apply an object-oriented programing approach to building a causal

Bayesian network model (as first defined in [96]). Each node is an instance from

a class where attributes include a given target node, its parent nodes in the net-

work, a regulatory function, and optionally, an informative prior distribution on

each prior. The overall sampler is compiled by iterating through nodes according to

the topological ordering for the DAG.

4.4 Data

4.4.1 ODE Model of MAPK signaling

We demonstrate the Bayesian network modeling approach using the Huang-Ferrell

model of the MAPK signaling cascade [26]. In the model E1 represents is a fixed

value representing signal in the system. E1 is an enzyme that catalyzes the phos-

phorylation of Raf, phosphorylated Raf catalyzes the double-phosphorylation of

Mek, and doubly-phosphorylated Mek catalyzes the double phosphorylation of Erk.

Doubly-phosphorylated Erk is a key signaling kinase that regulates transcription re-

sponses such as proliferation. The model illustrates the “ultrasensitive” behavior of

the pathway, i.e. that Erk activation is strong even at low E1 signals.

The model represents the phosphorylation and dephosphorylation reactions of each

species in the cascade with Michaelis-Menton kinetics. Each phosphorylation and

dephosphorylation reaction has the same basic set of parameters, shown in Table

4.1. For simplicity, the parameter values are the same for each reaction.
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Table 4.1.
Reaction parameters in MAPK model

Reaction Type Parameters Values

Binding kbind 1000

Unbinding kunbind 150

Transformation v 150

MM-Constant K = v+k

unbind

k

bind

0.3
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We used the model to simulate an experiment with 5 samples of 100,000 single

cell observations, each with di↵erent levels of initial E1 concentration. We used

a stochastic simulation algorithm to simulate cell trajectories [97]. Each snapshot

measurement is a steady-state measurement of the system (after 100 seconds).

4.4.2 Mass cytometry data from study of T-cell signaling

We worked with the dataset using single cell level quantifications of intracellular

signaling proteins in CD4+ naive T-cells. The signaling mechanism within immune

cells is a finely-tuned classifier of environmental signal. It must be sensitive enough

to detect rare signals from foreign antigens, yet specific enough not to misclassify as

threats the vast majority of incoming signals comes from “self”-related species (as

in autoimmune diseases). Upon processing the signal they must decide between one

of several possible downstream signaling responses, from proliferation, di↵erentia-

tion, to senescence.

Several of the signaling proteins involved in this signal processing mechanism were

quantified in a mass cytometry study of T-lymphocyte populations in B6 mice [86].

In the study TCR is stimulated with two di↵erent types of stimuli (CD3/CD28 and

CD3/CD4/CD28), and samples are collected at 13 time points after TCR activa-

tion ranging from 30 s to 80 min. 10,000 cells were quantified within each sample.

Surface markers were used to distinguish cells into six T cell subsets.

We focus on näıve CD4+ cells, and examine the functional relationship between

CD3z, and SLP76. CD3z together with TCR activates downstream pathways upon

antigen activation. When phosphorylated CD3z (upon recruitment of ZAP-70)

SLP76 (src homology 2 domain-containing leukocyte phosphoprotein). Loss of SLP-

76 results in a near total loss of TCR signal transduction [98]. We examine cells

measured at the 30 second time point, a point at which the decision mechanism

reaches a quasi-steady state. We fit our model and compare our model fit to signal-

response curve fitting approaches that, unlike our model, do not provide insight
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Table 4.2.
Coe�cient parameters in MAPK model

Relation Phosphotase Activation Deactivation coe�cient

E1 ! Raf CRaf = 722 v1 =
v

K

↵1 =
vC

Raf

K

�1 =
v

1

↵

1

Raf ! Mek CMek = 722 v2 =
v

K

↵2 =
vC

Mek

K

�2 =
v

2

↵

2

Mek ! Erk CErk = 289062 v3 =
v

K

↵3 =
vC

Erk

K

�3 =
v

3

↵

3

into underlying kinetic rates or quantify uncertainty on the estimates of the curve

function’s parameters.

4.4.3 Code and materials

The analysis and workflows described in this work were implemented in R. We

conducted the Bayesian modeling and inference using the Stan probabilistic pro-

gramming language [99]. All workflows and analysis code described in this work are

available as an R package available online at github.com/robertness/signalnet.

The Huang-Ferrell model used in this package was sourced from the online BioModel’s

database [100], then modified to reflect first order Michaelis-Menton kinetics. Syn-

thetic datasets were simulated from the modified model using the COPASI pathway

simulation tool [101]. The modified model files and synthetic datasets are included

in the R package. The CyTOF data from the T cell study was sourced from the

investigators’ website. R workflows for loading, processing, and conducting the sta-

tistical analysis on the data are included in the R package.
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4.5 Results

4.5.1 The inference procedure recovered stable posterior densities cen-

tered around the true values of the Huang-Ferrell MAPK model

We applied our inference procedure to the synthetic single cell snapshot data simu-

lated from the Huang-Ferrell model. We target the coe�cients parameters �1 (E1

regulation of Raf), �2 (Raf regulation of Mek), and �3 (Mek regulation of Erk).

Each coe�cient is a ratio of an activation rate parameter v
i

and a deactivation rate

parameter ↵
i

, which themselves are functions of the reaction parameters in Table

4.1. The model maintains simplicity by assigning the same values to the underlying

parameters for each reaction, such that the coe�cients simplify in this case to the

inverse of phosphotase abundance. Table 4.2 shows the relationship between reac-

tion parameters and coe�cients.

We implement the MCMC scheme in the probabilistic programming language Stan

[92] We use the conditional expectation function for single phosphorylation (Equa-

tion 4.16) for E1 activation of Raf and double phosphorylation (Equation 4.19) for

Raf activation of Mek and Mek activation of Erk. We assume the conservation rules

are not known, but are constant across cells. The full model was as follows

µ
Raf

, µ
Mek

, µ
Erk

⇠ halfCauchy(0, 5)

�1, �2, �3 ⇠ Cauchy(0, 5)

c = n
a

⇤ V

Raf
i

⇠ �(cµ
Raf

g1(�1E1i), c)

Mek
i

⇠ �(cµ
Mek

g2(�2Raf), c)

Erk
i

⇠ �(cµ
Erk

g2(�3Mek), c) (4.38)

where n
a

is Avogadro’s constant and V is the cell volume specified in the model.

Figure 4.2 illustrates the posterior densities of the coe�cient parameters, which

centered symmetrically around the true values of the parameter (solid line). In each
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Fig. 4.2. Density of simulated values from posterior of the coe�cient
densities. Dashed lines show the mean and the .05, .95 percentiles. Solid
lines show the true value of the coe�cient parameter. The posterior
densities of the coe�cient are stable and centered around the true val-
ues.



83

case the densities are stable and enabled basic inference; the dashed lines illustrate

the 10% credible interval for the model estimates.

4.5.2 Coe�cients can inform time course experiments

We demonstrate the use of single cell snap shot data as a means of improving direct

inference of rate parameters from time course experiments. In the Huang-Ferrell

MAPK model, the phosphorylation of kinase Raf is catalyzed by an input stimulus

E1. The regulation of Raf depends on the rate parameters for activation (v1) and

deactivation (↵1), listed in Table 4.2. Under first-order Michaelis-Menton kinetics

v1 =
v

K
=

v
v+k

unbind

k

bind

= 500 (4.39)

↵1 = [Raf-tase] ⇤ v = 0.15 (4.40)

where K is the Michaelis-Menton constant and [Raf-tase] is concentration of Raf

phosphatase, which in this model is assumed constant at 0.0003 µmol/L.

Inference of v1 and ↵1 from data requires temporal quantifications of phosphory-

lated Raf (p-Raf) concentrations after the introduction of stimulus, such as from a

fluorescence microscopy study. These parameters are not identifiable from snapshot

data, such as with CyTOF. However, �1 =
v

1

v

2

is identifiable with snapshot data.

We demonstrate with experiments simulated from this model how inference of �1

from snapshot data can inform the inference of v1 and ↵1 in a follow up experiment

that collects time course measurements. Supposed that in a time course experi-

ment, we assign log-normal priors to v1, ↵1, and use the following sampling scheme

in MCMC;

µ
↵

, µ
v

⇠ Cauchy(0, 5)

�
↵

, �
v

⇠ half-Cauchy(0, 5)

↵1 ⇠ lnN(µ
↵

, �2
↵

)

v1 ⇠ lnN(µ
v

, �2
v

) (4.41)
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where µ
v

, �
v

, µ
↵

, and �
↵

are hyperparameters that capture prior knowledge on the

location and spread of the rates. We further assume that �1 is also lognormal and

independent of ↵1 (true if v1 is unknown). By the properties of the lognormal dis-

tribution, we have the following;

µ
↵

⇠ Cauchy(0, 5)

�
↵

⇠ half-Cauchy(0, 5)

↵1 ⇠ lnN(µ
↵

, �2
↵

)

v1 | ↵1, �1 ⇠ lnN(µ
↵

+ µ
�

, �2
↵

+ �2
�

) (4.42)

where µ
�

, and �
�

are hyperparameters for the prior on �. Sampling statement 4.42

replaces 4.41, eliminating hyperparameters µ
v

, �
v

, since the location and scale of v1

are now determined by µ
↵

, �
↵

, µ
�

, and �
�

. We infer µ
�

, �
�

from the steady state

data, i.e. using information in the steady-state data to construct an informative

prior on v1.

We simulated a experiment with 1000 snapshots for each of 10 input stimulus con-

centrations ranging across measurements, for 10000 snapshots of steady state sig-

naling, which is a conservative number of cells in a single cell proteomics experi-

ment. Figure 4.3 A illustrates phosphorylated Raf (p-Raf) concentrations for each

level of input signal such that variation increases in as p-Raf concentration increases.

We simulated a second experiment capturing 3 time courses (Figure 4.3 B), one for

each of the same initial stimulus. Each time course lasts 60 seconds, time points

collected every 5 seconds.

Figure 4.3 C and D illustrate two cases of posterior inference of v1 and v2. The

light grey posterior densities illustrate stand-alone inference of the parameters from

the time course data. The dark grey posterior distributions illustrate posterior in-

ference when we first do inference on w from the snapshot data, and use those re-

sults to constrain the inference of v1 and v2 with the time course data. The latter

case produces posterior densities with less variation.
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Fig. 4.3. Inference of rate parameters for Raf kinase activation (v1) and
deactivation (↵1) from simulated experiments from the Huang Ferrell
model of MAPK signaling. A: Raf concentration given increasing levels
of input signal. B: 3 sample time courses of Raf given increasing input
signal. C and D: Comparison of parameter posterior distributions with
and without priors informed by inference on the snapshot data. The
informative prior improves precision in the posterior.
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This preliminary result motivates the use of the proposed approach as a tool for ex-

perimental design. Single cell experiments have the throughput to quantify multiple

nodes simultaneously, enabling simultaneous inference of multiple coe�cient pa-

rameters. This produces a causal Bayesian network model capable of predicting the

steady state of any set of proteins given the states of others in the network. Time

course experiments have lower throughput, enabling only a small subset of the �s

to be parsed into rate parameters. The posteriors of the coe�cient parameters

given single cell experiments can motivate various design strategies for a follow up

time course experiments depending on the utility criterion the investigator seeks to

optimize. For example, if inference on specific set of rate parameters is of interest,

the results of the inference with the single cell experiment can be used to increase

precision in the results of the parameter inference with the time course experiment.

Alternatively, suppose one intends to use the causal network for a specific predic-

tion task, and the results inference of the coe�cient parameters on single cell data

reveal that he prediction are highly sensitive to the values of a certain coe�cient

parameters. One could design a follow up time course experiment that improves the

precision of the important rates distribution by inferring the rate parameters that

comprise them.

4.5.3 The inference procedure performs as well as nonparametric re-

sponse curve modeling on CyTOF data

We fit the proposed Bayesian model. Figure 4.4 shows the results of the the pro-

posed model fit on the single cell measurements in the T-cell signaling data. The

figure shows a conditional density heat map of SLP76 quantifications given CD3z

quantifications, generated using conditional kernel density estimation similar to the

approach described in Krishnaswamy et al. [86]. Across the range of CD3z quantifi-

cations, we calculated the posterior mode of SLP76, and superimposed the resulting

curve over the heat map. The curve coincides with the dense regions of the map,
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Fig. 4.5. Posterior densiity of the coe�cient estimate. The posterior
mean is 4.72. The 95% credible interval (highest posterior density in-
terval) is {3.25, 6.22}. Assuming the mass action rate law, on average
the rate parameter for activation is 4.72 times that of c * the rate pa-
rameter for deactivation. With more information on c, we could make
more direct assessments on the ratio of rate parameters.

and is comparable to a sigmoid function fit to the modes of the conditional kernel

density estimate. The results illustrate the Bayesian approach attains a comparable

signal-response fit.

Figure 4.5 illustrates the posterior density of the coe�cient estimate. The posterior

mean is 4.72, and the 95% credible interval (highest posterior density interval) is

{3.25, 6.22}. I we were to assume the mass action rate law and that c were known,

the average the rate parameter for activation is 4.72 times that of the rate param-

eter for deactivation. Otherwise it is 4.72/c times more. With more information

on c, we could make more direct assessments on the ratio of rate parameters. The
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posterior probability of any hypotheses concerning the coe�cient parameter can be

evaluated against the posterior, and highly probable and interesting hypotheses can

be assessed in targeted validation experiments.

4.6 Discussion

Our results showed that we can characterize the dynamics of cell signaling from

multiple single cell instantaneous proteomic “snapshots” of the system. Using this

approach we can fit a model of cell signaling that quantifies causal influence in

terms of the underlying rates of the biochemical reactions underlying signaling,

as well as perform traditional graphical modeling functions such as prediction and

probabilistic inference.

Our proposed approach assumes mass action or Michaelis-Menton kinetics, though

we see no reason why more complex kinetic assumptions could not be used. The

key assumption is that the signaling system has reached a steady-state, or at least

a stable quasi-steady state that is preserved for a duration of time relevant to the

biological question. Though this makes the approach inappropriate for some signal-

ing mechanisms (eg. oscillators), our results demonstrate the approach works with

signaling pathways relevant to important therapeutic domains such as immunology

and oncology.

Our approach lays the groundwork for biological interpretation from coe�cient pa-

rameters. A key assumption of our model is that the quantification measurements

in single cell proteomic technologies such as CyTOF are proportional to the abso-

lute abundance of a given protein in the cell, and that the mapping from quantifi-

cations values to absolute abundance is known. In standard practice for both flow

cytometry and CyTOF, raw single cell data is normalized (eg based on a bead stan-

dard for CyTOF [102]) then subjected to a scale transformation such as the inverse

hyperbolic function [103, 104]. Transformation methods facilitate visualization and

analysis of the data, as well as reduce noise in measurements close to the limits of
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detection [103, 105]. To our knowledge, there has been little examination of the re-

lationship between these procedures and the information about absolute abundance

in the transformed data, for example if it makes it di�cult to detect key nonlinear

relationships between proteins. We believe the modeling approach outlined in this

work provides motivation for work in this area.

In absence of a mapping of quantifications to absolute abundance, the proposed ap-

proach still provides a causal Bayesian network where the causal influence a node

receives from its parents in the network is quantified in terms of a coe�cient pa-

rameter. This approach compares favorable to a nonparametric approaches pro-

posed in prior literature [86]. Further, it allows for simultaneous fitting of an entire

network, rather than fitting each parent-child relationship separately.

We demonstrated the potential for our approach to inform low-throughput exper-

iments where as small set of proteins are quantified from a single cell over several

time points in during the transient pre-steady state state of signaling. Another al-

ternative would be to collect single snapshot measurements at multiple time points

after stimuli. This requires selection of a set of time points for fixing cells (freezing

the state of signaling in a sample prior to submitting it to the measurement de-

vice), then fixing those cells in each replicate for each combination of conditions.

Selecting time points that are too few or not close enough enough in time would

not be su�cient to resolve transient dynamics, but the complexity of the experi-

ment increases in the number of selected time points. Our proposed approach could

provide information about the transience dynamics of the system that could be

used to inform the selection of time points.

Our results demonstrated the potential for an iterative model building workflow

for proteomics. In the first step one uses high-throughput mass spectrometry tech-

niques to identify key proteins in the signaling phenotype. In the second step, one

uses network inference techniques with targeted, high-sampling throughput experi-

ments or single cell proteomics experiments to learn directed network structure. In

the fourth step, one applies the proposed approach to inferring coe�cient param-
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eters from single cell data, where coe�cients are functions of biochemical rate pa-

rameters. Finally, the results from inference on the rates are used to inform follow

up time course experiments that target the rate parameters specifically. We note

that single-cell experiments do not eliminate the need for true biological replication.

The proposed workflow can be extended to population level inference by modeling

subjects as additional nodes in the network.

Overall, we believe that the proposed strategy is an important step towards practi-

cal inference of causal networks, and advocate its practical use.
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5. SUMMARY AND FUTURE WORK

This dissertation focuses on the problem of causal inference of cell signal transduc-

tion. The objective is to infer a causal Bayesian network model of signal transduc-

tion from proteomics data. The dissertation contributes methods that support the

three causal inference tasks in pursuit of this objective: (1) inferring the presence of

causal edges; (2) inferring the direction of the causal edge conditional on its pres-

ence; and (3) inferring the magnitude of causal influence conditional on the pres-

ence and direction of the edge.

This dissertation focused on the experimental settings needed for each of these

tasks, as well as Bayesian methods for conducting the inference. As an experimen-

tal platform, we focused on snapshot data, i.e. data where each sample quantifies

signal transduction in the system at a single time point. We payed special attention

to single cell experiments, where each quantification is a cell-level replicate of cell

signaling, and contrasted it with bulk (non-single cell) experiments.

Contributions to task 1. Machine learning algorithms for detecting the presence

of causal relationships rely on algorithms for detecting conditional independence.

This dissertation includes a simulation analysis of the relationship between the di-

mensionality of experimental data and the detection of edges when applying this

algorithm. The results demonstrated that the best setting for edge detection were

experiments that focused on a limited set of proteins where one has prior knowl-

edge of signaling relationships. The dissertation provides guidelines for designing

such discovery experiments.

Contributions to task 2. This dissertation proposes an active learning strat-

egy for selecting targeted interventions that resolve causal edge orientation. The

method takes as an input prior knowledge on edge presence and orientation from
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pathway databases such as KEGG. It combines this prior knowledge with historic

datasets to create a prior probability distribution on the space of graphs. The method

uses this distribution to prioritize targeted interventions by the expected number of

edges that will be oriented by their application in a causal inference experiment.

Contributions to task 3. This dissertation casts causal influence as a problem

of estimating the parameters of the conditional probability distribution in a causal

Bayesian network. The magnitude of the parameter quantifies the magnitude of

causal influence. Moreover, we constructed the probability distribution based on

the underlying statistical mechanics of signaling reactions, such that the entropy in

the conditional probability distribution reflects the biological stochasticity that is

evident in the variation across cells. The estimated parameters are estimable func-

tions of the rates. We show how the posterior distribution on these parameters can

improve direct inference of the rate parameters from low-throughput time course

data.

Overall, this dissertation provides a workflow for building a causal Bayesian net-

work model of signaling from high-throughput proteomics experiments. In future

work, one experimental and modeling workflow can unite these three tasks. Start-

ing from high-throughput experiments that discover components of the pathway, to

experiments that target fewer proteins, and apply more perturbations (both general

and targeted interventions) that aid in the detection of the presence, orientation,

and kinetics of causal regulatory relationships. As a sequential Bayesian method,

each step can directly incorporate the results of the previous, rather than having to

construct prior distributions from scratch at each step.
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