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ABSTRACT 

Nativi Nicolau, Juan Jose. Ph.D., Purdue University, December 2016. Impact of RFID 

Information-Sharing Coordination over Supply Chain with Reverse Logistics. Major 

Professor: Seokcheon Lee. 

Companies have adopted environmental practices such as reverse logistics over the past 

few decades. However, studies show that aligning partners inside the green supply chain 

can be a substantial problem. This lack of coordination can increase overall supply chain 

cost. Information technology such as Radio Frequency Identification (RFID) has the 

potential to enable decentralized supply chain coordinate their information. Even though 

there are research that address RFID on traditional supply chain, few researches address 

how to coordinate RFID information sharing in a green supply chain. We study, through 

simulation experiments, two types of RFID information-sharing coordination under 

different configurations related with their inventory policies: basic and advanced. 

Statistical analyses show that better results can be presented in advanced RFID 

configuration given new coordination and inventory policy decisions presented. In addition,  

these findings shows what are the RFID information-sharing coordination that can provide 

better system improvement depending on the supply chain scenarios and factors. 
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CHAPTER 1. INTRODUCTION 

This thesis proposes Radio Frequency Identification (RFID) information-sharing 

coordination over decentralized environmental supply chains. The environmental initiative 

under study is reverse logistics models. The coordination defines the inventory control 

models, technology configuration and demand shared over the system necessary to increase 

the economic value of RFID implementation.  Managerial insights details the system 

conditions in which the RFID coordination attains its maximum economic value in terms 

of lower cost. The thesis demonstrates that RFID technology can achieve better results over 

system with No RFID (base case) if systems parameters, inventory models and technology 

configurations are considered. We extended previous work on centralized inventory 

models in reverse logistics and apply parallel (manufacturing and recycling) decisions. The 

research shows that the information coordination depends on the RFID information-

coordination used. As future work, the thesis explores dynamics over the state of the system. 

Inventory policies and RFID coordination are tested over three different models to study 

their performance over dynamic rather than static parameters setting. 

 

This chapter begins with Section 1.1 which introduces the concept of reverse logistics. 

Section 1.2 introduces Radio Frequency Identification technology. The scope of the 

research is presented in Section 1.3, and the research contributions are detailed in Section 

1.4. Section 1.5 shows the outline for the rest of thesis. 

 

1.1 Reverse Logistics 

Companies are implementing different types of environmental supply chain practices.  

These practices can be divided into green manufacturing/remanufacturing, waste 

management and reverse logistics (Srivastava, 2007). 
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This thesis addresses reverse logistics operations. Reverse logistics encompasses collection, 

sort, classification, distribution and transformation of returns from an end-user market to 

traditional supply chains (Fleischmann et al., 1997; Dekker et al., 2004). 

 

We consider returns as any item that has been previously used by the customer. Examples 

of common returns are papers, tires, cans, bottles, and toners. Further, an end-user market 

can include any social, commercial, or nonprofit organization which has the returns. 

Enterprises, schools, universities, and government agencies can be part of an end-user 

market. 

 

Reverse logistics operations can be considered either centralized or decentralized. In the 

centralized scenario, one entity (e.g., manufacturer) has control of the decisions and 

operations of the reverse logistics. Whereas in the decentralized setting, multiple entities 

have their own decisions such as the amount to produce, order, or collect. For this thesis, 

we analyze the inventory control model over decentralized scenario. Figure 1.1 shows a 

forward supply chain with reverse logistics. 

 

 

  

Figure 1.1 Forward Supply Chain and Reverse Logistics 
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1.1.1 Motivations 

There are different drivers that encourage companies to implement reverse logistics such 

as government regulations, global competition, and public image. 

 

1.1.1.1 Government Regulations 

The government motivates green practices in many regions. In the United States, the 

Environmental Protection Agency (EPA) creates regulation to prevent damages to the 

environment. Companies such as Apple and Sony fulfill recycling policies and 

environmental design motivated by government regulations as well as cost savings (Chen 

and Sheu, 2009). In Europe, there are different acts to promote the collection of electric 

and electronic disposables (Aksen et al., 2009). For example, the European Parliament and 

Council imposed a 75% reuse and recycling collection rates by weight for household 

appliance (Toffel, 2004). 

 

These regulations can be implemented by incentives or penalties. Sheu et al. (2005) 

examine the involvement of the government in the green supply chain in the Taiwanese 

notebook industry. The authors found that return ratio and unit subsidy are two significant 

regulatory parameters. In the study, the Taiwanese government defined the return ratio and 

unit subsidy to 25% and $8.7, respectively.  

 

1.1.1.2 Global Competition 

Global competition and international standards are additional motivations to implement 

reverse logistics (Hsu et al., 2016). Nowadays, companies implement environmental 

standards such as ISO 14001 to comply with international regulations (Pujari et al., 2003). 

Further, different trade agreements among nations also enforce environmental regulations 

to avoid environmental damages. Many Chinese industries had to implement green supply 

chain practices to achieve international customer requirements (Zhu and Sarkis, 2004). 
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1.1.1.3 Public Image 

Green products can have additional benefits to the purchasers at the moment of buying 

(Mais, 2010). Michaud and Llerena (2011) investigate the willingness to pay for green 

remanufactured products. The authors found that consumers value more green products 

than conventional products when they are informed that the products are environmental 

friendly. Further, there are different efforts to quantitatively account for the environmental 

impact on products. Wal-Mart is developing an environmental index with the collaboration 

of other entities (e.g., suppliers, partners, universities). The goal of this index is to measure 

the environmental impact products have on the environment (Cooke, 2009).  

 

1.1.2 Benefits 

As previous research shows, there are different motivations to implement environmental 

operations. However, there are different benefits after implementing these initiatives. 

Reverse logistics provide two major sources of benefits: environmental and economic 

benefits. In terms of the environment, supply chain with reverse logistics can collect and 

use the returns from the end-user market. This action reduces the amount of materials 

deposit to landfill or incinerators which in turn protects our ecosystem. Also, the 

manufacturer can use returns instead of raw materials. The use of returns such as recycled 

materials reduces the consumption of natural resources from the environment (Wu and 

Dunn, 1995). In terms of economics benefits, the returns are assumed to cost less than raw 

materials. Therefore, the overall procurement cost of the supply chain can decrease with 

the attainment of higher amounts of returns. Also, on-hand inventory cost of the returns is 

considered to be less than traditional raw materials.  

 

1.1.3 Challenges 

Even though reverse logistics are been widely used, reverse logistics is a complex system 

which impact the inventory control in the supply chain. We study two principal factors for 

this complexity: stochastic elements and decentralization.  
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1.1.3.1 Stochastic Elements 

There are more stochastic elements in supply chain with reverse logistics than in a 

traditional supply chain. As Yu et al. (2001) defines, there are three main sources of 

uncertainty in traditional supply chain: 1) suppliers, 2) manufacturer, and 3) customer. 

However, a fourth source of uncertainty arises if we consider green supply chain initiatives 

such as reverse logistics. The amount of returns depends on the willingness of the end-user 

market to provide returns. Also, the quality of the returns can vary. In addition, the life 

time of the products is random. Further, sorting different types of returns can increase 

complexity to handle the materials. Inventory availability can be reduced due to these 

random factors translating into higher cost. Govindan et al. (2016) describe that returns 

with demands are the two most considerable stochastic paramaters in literature. However, 

we are including more stochastic elements as we will see in Chapter 3 such as rate variance 

and stochastic collection leadtimes. 

 

1.1.3.2 Decentralization 

There are several players aiming to improve their individual performance. This individual 

optimization can produce underperformance results over the entire supply chain (Yu 2011). 

Inventory policies are set independently, with the desire to minimize cost and satisfying 

demand. This lack of coordination can affect the inventory policies of the reverse logistics 

and forward supply chain.  

 

Therefore, there is a need to efficiently coordinate inventory policies in the forward and 

reverse channels. Information technology has come to be one of the prominent alternatives 

for companies to increase coordination. For this thesis, we describe how information 

technology such as Radio Frequency Identification (RFID) can help improve inventory 

policies coordination in a supply chain with reverse logistics. 
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1.2 Radio Frequency Identification 

We focus particularly on automatic identification and data capture (AIDC) technologies. 

AIDC technologies enable higher performance in resource management and warehouse 

management systems (Smith and Offodile, 2002). There are different types of AIDC such 

as barcodes, contact memory, optical recognition, card technology, biometric, and radio 

frequency identification (Wamba et al., 2008).  

 

Barcode is the technology that is most widely use across supply chain and industries.  

Barcode can reduce manual errors and enable visibility in the supply chain (Fraza, 2000). 

However, even though the barcode is widely use, there are business requirements that are 

not been addressed by barcodes. There are manual read rates problems based on the 

position of the barcode and reader increasing operational performance in the warehouse. 

This problem increases if we consider high volume industries such as Retail.  

 

For the supply chain, RFID is one of the most used AIDC technologies (Kärkkäinen and 

Holmström, 2002). RFID is consider as backbone for information sharing process in supply 

chain due to its real-time capabilities as described by Qianli et al. (2016). 

 

RFID technology is comprised of three main elements: RFID tags, RFID readers, and the 

information system. RFID tags are attached to an item, pallet, container or any physical 

object that needs to be tracked. These tags have a built-in chip with an Electronic Product 

Code (EPC) which store relevant information from the product tagged. The EPC is a series 

(binary) of numbers that identified the products with its information such as production, 

manufacturer across supply chain, and other informations. The tag has an embedded 

antenna to transmit product’s information to the RFID reader. Figure 1.2 shows examples 

of RFID tags. RFID readers are installed in companies’ warehouses. The readers can detect, 

in real-time, the tagged inventory through electromagnetic radio wave. The tag is activated 

through the interaction of the electromagnetic radio waves and then it sends the information 

to the reader. This information is captured and used in the enterprise information system 

of the company. Figure 1.3 shows examples of RFID readers. This RFID information can 
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be shared to other players in the supply chain through the EPC Global Network. Please 

refer to Roberts (2006) for a complete overview of RFID elements and technology and 

Musa and Dabo (2016) for a survey of RFID in supply chain management. 

 

 

Figure 1.2 RFID Tags 

 

 

Figure 1.3 RFID Readers 

 

Chip: store the information 

of the product. 

Antenna: send the 

information to the reader 

through radio waves 
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Table 1.1 below shows comparison of the barcode and RFID 

 

Table 1.1 RFID versus Barcode Comparison 

RFID Barcode 

Not constrained by “line-of-sight”. Hence, the location/orientation of 

the reader does not matter as long as the gats are within the range of 

the reader’s signal 

Requires line-of-sight 

Many tags can be read simultaneously Only one read at a time 

Very durable: they are resistant to heat, dirt, and solvents and hence 

are not physically damaged easily, making them useful in a large 

number of potential applications 

Low durability: easily 

damaged 

RFID tags can be self-powered (active tags). They can not only 

deliver information about location on demand, but also collect 

information (via integrated sensors), and store them locally in itself. 

This dynamically stored date can be retrieved for analysis later or 

can be transmitted by the tag to the reader on ad-hoc fashion under 

special circumstances 

Has no power source, 

and cannot serve 

beyond being a static 

label 

RFID tags can potentially be written multiple times, making them 

reusable data containers 

Not reusable as data 

source 

Expensive (relative to barcode) Less expensive than 

RFID tags 

Liquids and metals cause read problems Can be used on or 

around water and metal 

with no performance 

loss 

RFID tags must be added to current production process (such as 

embedded in the box) or added to the unit (box, pallet, etc.) before 

shipping 

Can be printed before 

production or directly 

on the items 

 

1.2.1 Motivations and Benefits 

The use of RFID can be tracked from the Second World War where military personnel 

used RFID tags to determine object’s position and speed using radio waves (Landt, 2005). 

More recently, companies are implementing RFID in their supply chain to increase 

operational performance. Wal-Mart informed to all its Top 100 suppliers to implement 

RFID technology to their products (Vijayaraman and Osyk, 2006). Also, Gillette applied 

RFID tags at the cases and pallet levels. The goal was to monitor in real-time the inventory. 

Gillette was able to have products on store 11 days faster than regular turn-around times 

during product introductions at 400 stores (O'Connor, 2006). In addition, RFID can help 

reduce inventory inaccuracy (Heese, 2007). Inventory inaccuracy is another key benefit 

(Fan et al., 2015). Inventory inaccuracy is the difference between the real inventory versus 
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the inventory register in the system. Raman et al. (2001) found through empirical studies 

that 65% of the inventory records analyzed had errors in the quantity amount. Another 

benefit of RFID is that it does not require any line of sight to detect each inventory such as 

in the bar code technology. Consequently, manual work and time are reduced. Further, 

most of the benefits have come in terms of improvements of business processes and 

operational activities. Businss cases can be seen in companies such as Target, Albertson’s 

and Best Buy (Delen et al., 2007). 

 

As Lindau and Lumsden (1999) mentioned from 10 case studies in distribution and 

manufacturing companies, the main benefits of these technologies have come in 

operational activities such as effective tracking and shipments. Also, benefits on labor cost 

are presented in literature (Shin and Eksiouglu, 2015). 

 

1.2.2 Challenges 

One of the main challenges of RFID is the high variable cost from the tags comparted to 

bar codes. In addition, the reliability of the hardware setup has provided concerns to 

achieve higher benefits (Whitaker, et. al; 2007). RFID read rate is a common challenge 

studied in RFID literature. This problem arises due to bad positioning of the RFID tags, 

content of the inventory, or RFID reader’s location (Birari and Iyer, 2005). Also, the 

integration of this new technology with the current system is a major concern due to the 

huge amount of data granularity and new hardware/software considerations (Angeles, 

2005). Further, the variable cost of RFID tags and fixed cost of the installation are other 

challenges discussed in literature (Gaukler, 2011).  Additional challenges are presented in 

decentralized system. As Lefebvre and Fosso-Wamba (2008) states, it is difficult to 

quantify the benefits for cost reduction, individual benefits and interoganizational benefits. 

These can be worsen if the players are decentralized entities. 

 

The greatest value of RFID is when its information is properly used. For this to happen, 

information has to be shared among its players. However, few cases and researches address 

how to share and coordinate RFID information through a supply chain. This challenge 
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increases if we consider decentralized system. Karkkainen and Holmstron (2002) defines 

that information sharing is one of the primary challenges in todays Supply Chain. 

Customers are demanding more differentiation and customization of their products. This 

new trends force the supply chain to manage their inventory levels more accurate and 

quicker among leadtimes. In addition, few researches define which players have to install 

RFID technology (e.g., tags and readers). In addition, few studies address who have to 

share the RFID information. Rare studies specify what type of RFID information needs to 

be shared and how these arrangements impact inventory policies. Wu et al. (2016) defines 

that information in supply chains is one of the five main stream of research for smart supply 

chains literature in the future. The authors conclude as well that it is necessary to 

understand what type of information is shared and who shares the information. 

 

This thesis aims to provide a framework to enable RFID information-sharing coordination 

in a decentralized green supply chain. Our problem statement is the following: how to 

coordinate RFID information sharing through the inventory policies among players in a 

decentralized green supply chain to reduced total cost? This research question will be 

addressed in the following chapters as the next Section1.3 describes. 

 

1.3 Scope of Research 

This thesis presents RFID information-sharing coordination which aligns RFID technology 

(e.g., technology placement and information shared) and inventory policies in a green 

supply chain. We study two scenarios of RFID information-sharing coordination: basic and 

advanced. Simulation experiments enable us to identify which RFID technology 

configuration and inventory policy drives lower cost. These studies provide managerial 

guidelines to increase economic performance in a supply chain with reverse logistics. The 

study compares five different RFID information-sharing coordination. These five RFID 

coordination are tested over different supply chain scenarios. The study aims to identify if 

RFID provides better performance than system with RFID. In addition, the analysis 

identify under what supply chain scenario is more suitable to implement the RFID 

information-sharing coordination. The simulation test different factors such as demand, 
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standard deviation of demand, leadtimes and environmental factors such as collection 

investment and collection leadtimes. Further, the thesis shows that it is not enough to 

implement RFID technology. The inventory policy will highly impact the results. 

Advanced RFID coordination provided better results than Basic RFID coordination. Also, 

the thesis shown that depending on the inventory policy, the information shared will have 

higher sensitivity in some policies than others. For example, in Basic RFID coordination 

is more impactful to share inventory levels. But for Advanced RFID coordination demand 

information provided better results. As an extension and future research, we study a 

dynamic view of the RFID coordination. We propose reinforcement learning and self-

adaptive algorithms to allow RFID adaptability over dynamic scenarios. Also, we consider 

the case of entities independently choosing their RFID coordination.  

 

Chapter 3. Supply Chain Description, Inventory Defintions and Performance Measures 

 Environmental decentralized supply chain is modeled. 

 Supply Chain Structure is presented  including decentralized settings with multiple 

players. 

 Different supply chain assumptions are defined such as demand, returns, 

manufacturing operations, leadtimes, and RFID. 

 It is presented the different stochastic models such as capacity of the end-user 

market and their returns parameters.  

 End-user market and recycled-material supplier interactions are described. 

 Inventory definitions are established which serve as the base of the Basic RFID 

information-sharing coordination. 

 Performance measure was establish to measure the entire supply chain chain 

including the cost from all players involved. 

 

Chapter 4. RFID Technology Configuration and Information-Sharing Coordination 

 RFID information-sharing coordination are studied through additional literature 

background related RFID and integration amoung multiple players and different 

RFID configuration presented in literature. 



12 

 

1
2
 

 Five RFID configuration are presented. 

 Each RFID configuration shows RFID technoly implementation in each player and 

demand shared by each player (two dimensions). 

 

Chapter 5. Basic RFID Information-Sharing Coordination 

 Relationship between RFID configuration and inventory decisions are established. 

 Simulation and design of experiment are presented. 

 Statistical analysis are conduced to test results and identified main and interactions 

effects. 

 Managerial insights are defined as to what RFID information-sharing coordination 

to use under particular supply chain settings. 

 

Chapter 6. Advanced RFID Information-Sharing Coordination 

 Parallel inventory models are developed adjusting information sharing. 

 Different RFID coordination enables higher performance is described. 

 It is shown that information relevance change depending on the inventory policy 

used. 

 Comparisons between Basic vs Advanced coordination are analyzed. 
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1.4 Principal Contributions 

Below are the main contributions from the thesis. 

1. Many companies have difficulty managing their inventory over decentralized 

environmental supply chain. We detail interactions amount partners from the 

forward and reverse supply chains. In addition, we study the stochastic behaviors 

of the reverse channels. We analyze additional interactions between the end-user 

market and the third party reverse logistic supplier to model. These studies provide 

higher insight on how to manage returns and its inventory policies. 

 

2. The real value of RFID is attained with information-sharing coordination among 

players. In literature, rare papers address how RFID technology has to be 

coordinated among players. We describe what are the different types of RFID 

coordination based on technology configurations and the types of information that 

can be shared. 

 

3. There is a lack of understanding of how RFID technology (i.e., configurations plus 

information) has to be used for decision-making processes. This thesis shows that 

underperformance results can be presented if RFID information technology is not 

properly used. We develop RFID information-sharing coordination that aligns 

RFID technology and inventory policies. Less cost is achieved due to the 

coordination. Managerial insights are provided based on the results. 

 

4. We extend the work of centralized inventory models from reverse logistics and 

developed new decentralized inventory models for the green supply chain. This 

design enables us to model the distributed players based on their respective 

decisions and allowed us to study coordination through RFID. 

 

5. We provide in detail the different factors and settings from the simulation 

experiment. Simulation codes and design of experiments guidelines are defined 

with the objective to provide as much information for replicability of our results. 
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6. The thesis shows that implementing RFID technology is not enough to attain higher 

performance. Better performance such as lower cost will also depend on the 

information-sharing coordination with the inventory decisions. Using the advanced 

parallel model, the system attained better performance. Thus, it is not just only the 

technology implemention, but it is also the decision framework and inventory 

control used. 

 

7. The analysis demonstrates that information sharing and its impact depend on the 

inventory policy used. In the case of Basic RFID coordination, inventory level had 

a higher impact. However, with Advanced RFID coordination, we see that demand 

information provides a higher impact. Information type it is an important criteria as 

part of the managerial insight and RFID implementation. 

 

8. We developed several simulation test over different supply chain scenarios. We 

provided insights in which supply chain scenarios is better to implement the best 

RFID coordination that provides the better results. For example, it is suitable to 

implement RFID Full-Integrated Coordination over system with high variability of 

collection leadtime. Other similar managerial insights are provided to give 

managers more tools on key main factors and interactions. 

 

9. Companies do not know how to change their RFID integrations under drastic 

changes in supply chain characteristics. We provide a reinforcement learning 

approach with the use of Q-learning algorithm to dynamically determine the RFID 

configuration. Also, we propose a self-adaptive algorithm based on control theory 

to enable adaptability. Results corroborate the hypothesis that higher integration 

provides better economic results. 

 

10. Players in the supply chain can undergo centralized RFID implementation. 

However, there can be scenarios that players can individually choose their own 

RFID information sharing. For this scenario, we determine RFID information 
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sharing scenarios for each player achieving economic improvement. We model this 

case with the use of multi-agent reinforcement learning. 

 

1.5 Outline of the Thesis 

The thesis is divided in 8 chapters which we describe below: 

 

Chapter 2 details the related work common to all chapters. First, we introduce the 

literature of environmental supply chain, especially in terms of reverse logistics models. 

We discuss the adoptions and barriers from environmental supply chain. We define the 

inventory models used in reverse logistics: optimal and heuristics. The limitations of 

addressing centralized inventory controls are exposed and the need of information-sharing 

coordination is presented. Then, we detail the use of RFID technology. We describe 

qualitative and quantitative studies. We explore the benefits of RFID, in which most of 

them has come from operational improvements. We present few researches about the need 

to study more RFID coordination. Particularly, we aim to extend current RFID research 

over environmental supply chain literature. 

 

Chapter 3 describes the supply chain structure utilized over thesis. Players, leadtimes, 

flow of materials, and interactions among players are defined. In addition, we define the 

inventory decisions and policies used. WE define the period and continuous review 

inventory policies. Then, cost performance measure is described. The cost performance is 

defined by ordering, setup, holding, backorder, and collection investment costs. 

 

Chapter 4 present additional background of the few papers that address RFD information 

sharing amoung trading partners and RFID configurations in literature. Then, we present 

our five RFID configurations. The Chapter details what are the players involved, who have 

RFID installed, who shares information and what type of information. This  RFID 

Configuration will serve as the base for the following Chapters.  

 



16 

 

1
6
 

Chapter 5 presents the basic RFID information-sharing coordination. This chapter defines 

five RFID information-sharing coordination: NO RFID, RFID Non-Integrated, RFID 

Partially-Integrated Dowstream, RFID Partial-Integrated Upstream, and RFID Full-

Integrated. In this chapter, simple inventory policies are used from literature. Numerical 

studies are conducted through simulation experiments to evaluate cost performance of the 

RFID information-sharing coordination. Coordination is addressed aligning RFID 

configurations and the inventory policies. However, opportunity to improve performance 

is defined. 

 

Chapter 6 studies the advanced RFID information coordination. An improvement on the 

inventory policy is presented with the parallel decision making. This new model allows 

decentralized entities to share more information and monitor separately the raw material 

and recycled material inventory decisions. From the results, RFID advanced models 

provided lower cost. Further, from the range of information that can be shared, it is shown 

that demand information seems more valuable to share than solely inventory information 

with the use of Advanced RFID coordination.   

 

Chapter 7 presents the concluding remarks from the previous Chapters. 

 

Chapter 8 provides preliminary insights of how RFID information-sharing coordination 

can adapt over dynamic supply chain scenarios. We use the concept of Q-learning and 

identify several dynamic optimal strategies. In addition, the chapter considers changes in 

the supply chain and study how self-adaptive protocols can be implemented. Further, we 

identify what set of individual RFID information-sharing coordination provide an 

improvement for all players with the use of multi-agent reinforcement learning. 
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CHAPTER 2. RELATED WORK 

This chapter presents the literature review for the thesis. Our research contribution aims to 

provide new insights over the use of RFID technology to improve green supply chain. 

Particularly, the research studies how RFID information sharing can change inventory 

decisions to enhance supply chains with reverse logistics. Therefore, the thesis is based 

over the following main stream of research:  1) inventory policies over reverse logistics 

and 2) RFID technology configuration, information sharing, and coordination.  

 

Section 2.1 presents the literature about environmental supply chain. First, we present 

studies about the motivation to adopt green supply chains. Then, we show the studies about 

inventory policies on reverse logistics. We detail optimal and heuristics policies with their 

contributions and limitations. Specially, these researches address centralized inventory 

decision making focusing over the reverse logistics. However, green supply chains deals 

with more decentralized entities if we include traditional supply chain as well as reverse 

logistics into the study. Thus, centralized models have a limitation to model closed-loop 

environmental supply chains. This thesis presents decentralized inventory models enabled 

by the use of information technology providing an extension to current research.  

 

Section 2.2 introduces the importance of information technology to address decentralized 

scenarios. A brief introduction of information sharing literature is presented. Then, RFID 

information sharing researches are described by qualitative and quantitative studies. 
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In the quantitative studies, most of the benefits have come through operational 

improvement in a single player. However, we show that few research address the real value 

of RFID in terms of RFID information sharing through the entire supply chain. We describe 

previous studies that model RFID information-sharing coordination and their limitations. 

These two stream of research creates the basis for our problem in terms of how to 

coordinate RFID information sharing to reduce cost over a green supply chains. 

 

2.1 Environmental Supply Chain 

2.1.1 Adoption and Results of Green Supply Chain Initiatives 

The section illustrates examples of the adoption of green supply chain and motivations 

towards more environmental enterprises. Zhu and Sarkis (2004) report that early adoption 

of green supply chain management in China has been motivated by globalization and 

competition. Chinese companies need to fulfill environmental requirements from its 

foreign customer in order to enter new markets. Overall, these green supply chain practices 

tended to have an improvement in economic and environmental performance. Zhu et al. 

(2007) empirically analyze 89 automobile enterprises in China and their Green Supply 

Chain adoption. From the study, globalization and external factors such as government 

regulations and customer pressures are forcing companies to implement green initiatives. 

However, the results show that there has been slightly improvement in operational and 

environmental performance. Consequently, companies are lagging in terms of economic 

outputs. This underperformance is more prominent over decentralized supply chain. Lee 

(2008) studies different drivers that stimulate small and medium-sized Korean suppliers to 

embark environmental supply chain practices. The study shows that buyers, green supply 

chain support, and suppliers own readinesses are significant factors that affect performance. 

Further, Gandhi (2016) explores the relationship between implementing green supply chain 

practices and green supply chain performances. The authros conclude that there still needs 

more research that relateds green implementation and what are the overall impact on the 

system.  
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From previous studies, environmental initiatives not always attain high economic benefits 

under decentralized supply chain. Researchers began to study in deep factors that enable 

successful green supply chain implementations. Hu and Hsu (2006) study environmental 

practices in the Taiwanese electrical and electronic industry through an extensive survey 

and statistical test. The analysis shows four critical factors that are relevant towards 

successful implementation of green supply chains: supplier’s management, product 

recycling, organization involvement, and life cycle management. Salam (2008) 

investigates four factors from the electric and electronic industry in Thailand that can lead 

to the transformation towards Green Supply Chain. The factors are product performance, 

purchase price, organizational environmental commitment, and trading partners. From the 

later, the results identified that coordination among suppliers is essential for successful 

green transformation. Further, researchers identify that companies need to integrate green 

strategies with their business strategies to increase the overall performance. Nagel (2000) 

compares two types of green initiatives: green procurement and environmental supply 

chain management. The authors conclude that green procurement is more easily to 

implement and provides environmental improvement. However, green procurement will 

not lead to a long-run business and leadership benefits. Interaction and coordination among 

trading partners has to be considered in order to guarantee changes in the planning, strategy, 

and production of the green components such as recycling and reusing. 

 

Further, the following research addresses the importance of green supply chain 

management to guarantee higher economic success in order to reduce the barriers and 

obstacles. Beullens (2004) states companies have problems to show economic justification 

in reverse logistics due to obstacles in quality, quantity, and timing of collection that can 

hinder margins. For example, the author describes that product recovery is a difficult task 

to manage due to the interactions among players and randomness. Ravi and Shankar (2005) 

study eleven barriers to implement reverse logistics in the auto industry in India. The results 

show that lack of awareness of reverse logistics practices and lack of commitment from the 

top management are the primary barriers to implement reverse logistics. Other factors such 

as quality problems, lack of strategic planning, and financial constraints are strong barriers 
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to integrate reverse logistics. Zhu et al. (2008) present different measurements in which 

companies can manage environmental practices to achieve higher results. The authors 

describe internal environmental management, green purchasing, cooperation with 

customers, eco-design, and investment in recovery are main measurements to enhance 

green initiatives. From the results, the authors explain that multidimensional engagement 

has to be considered to increase green performance. For example, green purchasing alone 

cannot fulfill maximum realization of green initiatives.  These studies demonstrate that 

successful green supply chain comes with the effective integration of the trading partners. 

In addition, more studies on the relations and interactions of the decentralized supply chain 

are needed given the continues preassures of leadership and institutions (Dubey et al., 

2015). 

 

From previous studies, we can infer that coordination and collaboration among trading 

partner is a key factor towards successful environmental initiatives (Tachizawa et al., 2015). 

As research shows, companies have not been able to achieve efficient coordination through 

the traditional and reverse logistics patterns. Therefore, this thesis aims to include 

technology such as RFID to increase efficiency over decentralized coordination. 

 

The above literature of the adoption and results of green supply chain has provided us key 

insights. Globalization and green requirements from buyers are primary pressures 

companies are facing to incorporate green practices. Achieving high economic and 

environmental performance as a win-win strategy is blurred in the results. For example, 

there is a lack of alignment between strategic business decisions and environmental 

operations. Further, more support and incentives have to be given to the green suppliers in 

order to stimulate readiness and efficiency to successful implement green practices. In 

addition, the studies detail that more research on coordination and alignment is needed 

related with the trading patterns to achieve higher economic results. 

 

This thesis addresses the problem of providing more alignment between reverse logistics 

and decentralized inventory decision-making. The thesis explores the use of RFID 



21 

 

2
1
 

technology to help coordinate suppliers and manufacturers in order to manage more 

effectively the reverse channel. Further, this stream of research identifies the need for 

higher strategic integration between business and environmental practices. Green activities 

alone, such as green purchasing, will not lead to strategic competitive advantages. In this 

endeavor, companies face different set of decisions such as partner, technology, and 

organization selection. However, the current literature does not address these issues. These 

selections can lead to positive or negative outcomes for the company. For this matter, better 

coordination among players can help achieve green and economic performance. More 

research is needed to understand how to motivate better coordination in green practices. 

Thus, the research aims to provides proactive methods to implement green as requested in 

literature (Li et al., 2016). Also, the need to provide managerial guidelines in terms of 

information technology selection is critical based on previous research results.  

 

2.1.2 Inventory Policies over Green Supply Chains 

For this research, we focus our attention over inventory policies with reverse logistics. Our 

reasons to aim over inventory policies are that a solution must be around a particular 

corporate decision. Inventory decisions have a direct impact over inventory cost, holdings 

cost, shortage cost, and set-up cost. Therefore, our improvements and solutions are from 

the inventory policy literature which is a key factor to succesfull green initiatives (Niknejad 

and Petrovic, 2014; Bazan et al., 2016, ). 

 

Green supply chain management considers green manufacturing/remanufacturing 

operations, reverse logistics, and waste management. Inside these operational activities, 

inventory policies play an important role in research and practitioners (Srivastava, 2007). 

Our research is focus on inventory policies over green supply chain. We detail the 

inventory control problem from optimal and heuristics models. The limitations of the 

inventory controls presented in literature are that they consider centralized models (e.g., 

one entity making de inventory decisions). This section forms the base for our 

decentralized inventory control model for our thesis. 

 



22 

 

2
2
 

Simpson (1978) studied a manufacturer with serviceable inventory, repairable inventory 

and disposal options. The author found that optimal decisions are based on three parameters 

with the use of backward dynamic programming. The limitations of the study are the use 

of zero leadtimes and zero setup costs.  Inderfurth (1997) investigated a similar case with 

positive and equal setup cost, and deterministic leadtimes. The author showed that an 

optimal policy can be achieved under positive but identical leadtimes and proper definition 

of inventory positions. 

 

These two papers described previously address optimal approaches. However, these are 

simple models with strong assumptions such as zero or equal deterministic leadtimes, and 

equal setup cost constraints. For these reasons, authors began to use heuristic models 

(Dyckhoff et al., 2004). van der Laan and Salomon (1997) introduced the PUSH and PULL 

heuristic models with remanufacturing operations. In the PUSH model, returns are used for 

serviceable inventory only when there are enough recycle items recovered to complete the 

entire batch. In the PULL model, if the inventory position is below than or equal to the 

reorder point to-remanufacture, and if sufficient recycle items are available, a 

remanufacturing order is produced. However, if there are not enough returns and inventory 

position is below than or equal to the reorder point to-manufacture, a manufacturing batch 

is ordered. Better performance was attained when leadtimes were relatively equal. The 

model was not suitable enough to address different leadtimes which in return impacted 

economic performances.  van der Laan et al. (1999) extended previous research and 

analyzed stochastic leadtimes in the model. Results showed that manufacturing leadtimes 

have more significant impact than remanufacturing leadtimes. The authors found that, in 

some cases, larger remanufacturing leadtimes and larger variability in the manufacturing 

leadtimes can decrease cost, which is counter-intuitive. To address this phenomenon, 

Inderfurth and van der Laan (2001) studied leadtime effects and provided a policy 

improvement taking leadtimes as a decision variable. The limitations of this article are that 

obtaining the optimal solution is quite time-consuming and the problem does not consider 

different leadtimes. Also, leadtimes are considered as one of the decision variables. In real 
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cases, leadtimes are mostly fixed or depends on the supply chain structure or geographic 

position. 

 

Kiesmüller (2003) provides a novel solution from previous inventory control models on 

reverse logistics. The author split the decisions over two inventory positions for 

manufacturing and remanufacturing instead of using one inventory position for both. Each 

inventory position will have the necessary on-hand inventory and outstanding orders 

information required to obtain better performance. The results show that the solution with 

two inventory positions has better performances than the other heuristics. The limitations 

of the paper are that in dynamic models this solution is not appropriate because it only 

takes into account local decisions of one player (i.e., the manufacturer). In addition, 

stochastic leadtimes were not considered. Teunter et al. (2004) extended the work by 

Kiesmüller (2003) specially addressing fast remanufacturing leadtimes. The model 

consisted of positive leadtimes, positive setup cost, stochastic demand and returns. The 

limitations of the research are that the authors do not consider more complex scenarios 

such as stochastic leadtimes and the authors only considered centralized decisions 

involving one entity.  

 

These previous researches on inventory control over reverse logistics focus on single entity 

with manufacturing and remanufacturing operations. In contrast, our research considers a 

decentralized two-echelon supply chain and its inventory management interactions among 

players. Therefore, this thesis aims to provide more understandings of the system behavior 

of a decentralized supply chain instead of a single entity. This is consistent with Beamon 

(1999) where defines that inventory controls and centralized vs. decentralized relations are 

part of the main issues towards green supply chain. Further, previous models consider the 

returns as a simple stochastic random variable based on a probability distribution. Our 

model accounts for more dynamic aspect of the collection behavior in reverse logistics. We 

model the reverse logistic dynamics through the notion of end-user market and collection 

investment addressing more realistic reverse logistics scenarios. 
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Our paper proposes to extend the research of inventory control over reverse logistic to 

consider: 1) more interactions among parameters (i.e., positive setup cost and stochastic 

leadtimes), and 2) decentralized decisions (i.e., multiple decision-makers). Next, we study 

the literature of information sharing. 

 

2.2 Information Sharing 

Globalization and the propagation of the supply chain have made environmental supply 

chain models more distributed. Each decentralized entities tries to maximize their 

individual benefit. This has created new research models to examine multiple decentralized 

entities in the supply chain. However, this phenomenon gives rise to coordination problems 

among players in the distributed supply chain. One alternative to coordinate this complex 

supply chain is the use of information-sharing methods. Below are some examples of 

information-sharing methods as a way to coordinate decentralized systems. 

 

Yu et al. (2002) analyze different information sharing scenarios and their impact over a 

two-level supply chain. Huang et al. (2003) conduct a survey related with production 

information sharing on the supply chain. Reddy and Rajendran (2005)  evaluate dynamic 

inventory order-up-to level and different information sharing that helped minimize total 

inventory, shortage and transportation cost in a supply chain with non-stationary demand. 

Further, Gavirneni (2006) studies how inventory information sharing between a supplier 

and a retailer can improve the price strategies in order to achieve higher supply chain 

performance. The authors developed simple linear contracts and review the Stackelberg 

games to find equilibrium between the players. 

 

Tatoglu et al. (2016) continue the research for small and medium-sized enterprises (SME). 

They shows that SME for example in the case of Emerging Markets needs to treat Supply 

Chain initiatives and Information Technology together in order to be able to compete in 

the market and globally. The authors stated the importante to achieve higher operational 

performance it is important the coordination and integration mechanisim over the system. 
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However, the authors do not provide an approach of how this coordination can be execute 

and which is part of the goals of this research. 

 

Even though there are previous researches about the use of information sharing, they 

usually addressed single-period using analytical techniques. Further, there are rare research 

papers in literature that address how information sharing can change inventory control 

policies over multiple periods’ settings. In addition, these papers do not address the 

technologies that can provide this information sharing. For this thesis, we focus on Radio 

Frequency Identification (RFID) over green supply chain to coordinate inventory controls. 

For the supply chain, RFID has come to be one of the most used AIDC technologies 

(Kärkkäinen and Holmström, 2002). The following section presents relevant studies about 

RFID. 

 

2.2.1 Radio Frequency Identification 

This section shows literature from RFID technology related with qualitative and 

quantitative studies. 

 

2.2.1.1 RFID Qualitative Studies 

Radio Frequency Identification (RFID) provides more inventory visibility through real-

time control and information. Most RFID research has been done in term of empirical 

samples or qualitative analysis in order to evaluate the benefits of the RFID implementation. 

Smith (2005) mentions the benefits, disadvantages and challenges faced by suppliers due 

to mandates from retailers (e.g., Wal-Mart) to change their companies to a Radio 

Frequency (RF) – based technology organization. Green et al. (2009) develop a survey to 

measure the RFID utilization and its impact on supply chain productivity and 

organizational performance. Visich et al. (2009) present six empirical cases in which RFID 

has provided benefits in the organization. For example, the authors discuss the benefits of 

RFID such as to control the inventory of raw material, work-in-progress, and finished 

products. Another benefit from RFID presented in the study is the automation of 

replenishment signals for new orders. 
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2.2.1.2 RFID Quantitative Studies 

Previous papers consider the impact and benefits of RFID systems. However, most of them 

do not provide quantitative methodologies that measure analytically the benefits of RFID. 

Lee and Özer (2007) echo this statement by providing a detailed review on the necessity to 

close the gap on the quantitative measurements to study RFID technologies. Also, Wamba 

et al. (2016) mention that more studies are needed on technological, organizational, 

environmental and managerial characteristics over the small and mid-sized  enterprise to 

successfully implement RFID. Gaukler et al. (2007) study item-level RFID implementation 

in a supply chain between a manufacturer and retailer with scale parameter to account for 

the lost demand without RFID (i.e., representing inefficient restocking of the shelves). 

Szmerekovsky and Zhang (2008) analyze RFID under a vendor management inventory 

system with one manufacturer and one retailer. The difference in this paper from Gaukler 

et al. (2007) is that demand is truncated by the shelf space rather than a scalar parameter. 

Bottani and Rizzi (2008) study the implementation of RFID in the fast-moving consumer 

good supply. The authors compare RFID Nonintegrated and Integrated configurations. 

 

Most of the quantitative benefits has come from operational works and automate processes. 

Wamba et al. (2008) studied how RFID technology and the EPC Network can impact the 

mobile e-commerce in a retail industry. The authors presented the use of RFID information 

over three dimensions: intra-organizational, inter-organizational, and in-transit 

information. Intra-organization integration referred to information obtained from the RFID 

tags and readers inside the warehouse which helped automate several business processes 

(e.g., automatic scan of trailers shipment with RFID tag and readers). The inter-

organizational integration described the automatic delivery of an advanced shipping notice 

from the upstream to downstream player. The in-transit information described the access 

of real-time data of the shipments transportation with the use of the Global Position System 

(GPS) for tracking purposes.  

 

Wamba and Boeck (2008) performed a similar analysis of RFID technology and EPC 

Network in the retail industry focusing on the automation of information-based activities. 
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The authors showed that RFID information automation can help the supply chain entities 

eliminate manual work and time in the warehouse such as shipping and receiving 

processes. These benefits with RFID technology were achieved by the automatic readings 

of the tags and real-time validations. For example, the validations from the tags read versus 

the advanced shipping notice.  

 

Chow et al. (2007) proposed an integrated logistics information management system 

(ILIMS) with the inclusion of RFID technology and EPC Network. ILIMS with RFID-EPC 

Network empowered the members in the supply chain to improve daily activities such as 

transactions, operations, and logistics documents. For example, fulfillment processes of the 

in-bound and out-bound logistics operations are automated with the information system 

integration. This enables the supply chain to handle higher transaction volume in their 

logistics operations. Also, measurements such as inventory, out-of-stock, leadtime, and 

total cost were improved. Particularly related with the RFID technology, the RFID helped 

to have an efficient monitoring and tracking of the cases and pallets reducing error in the 

intra-organization and inter-organizational dimensions.  

 

These previous papers show benefits of RFID information sharing over improvement of 

operational tasks and automation of business processes. Similar with Lindau and Lumsden 

(1999), major benefits are found in the RFID literature in terms of the operational 

improvements such as tracking and shipments. However, few papers in literature 

comprehensively study how RFID information coordination among decentralized players 

can enable higher economic results. Further, few papers address how RFID information-

sharing coordination can enhance decision-making processes such as in the inventory 

policies. We study the value of RFID as a way to increase coordination in a decentralized 

green supply chain. As Dutta et al. (2007) mention, the real value of RFID integration is 

on creating new business architecture through higher integration and visibility among the 

supply chain members. Below are some papers that address RFID integration that allows 

coordination. 
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Bottani and Rizzi (2008) studied the economic impact of RFID technology and the EPC 

Network in a fast-moving consumer goods supply chain. The authors defined the RFID-

supply chain configuration for non-integrated and integrated scenario. In the non-

integrated scenario, the players had installed RFID tags and readers, but no information is 

shared. In the integrated scenario, RFID tags and readers are installed. The players are able 

to share information through the EPC Global Network.  

 

Bottani et al. (2009) developed six business intelligent (BI) modules based on RFID 

information in a case study in the fast-moving consumer goods industry. These BI modules 

are: product flow, flow time management, shelf life management, inventories, track and 

trace, and case history. In the inventory module, the managers of each entity in the supply 

chain can check how many inventories are in any product selected that has the EPC code 

and standards. However, there was no a clear guideline of how this information impacted 

the inventory policies decisions. 

 

Su and Roan (2011) studied a beer game-type supply chain and how RFID technology can 

reduce inventory and cost within the supply chain as well as the impact on dynamics. The 

authors presented two information sharing approaches: with demand information sharing 

and without demand information sharing. With demand information, the retailer provided 

real-demand information to the supplier to calculate their order levels. However, the 

without demand information, the supplier just relied on their order history. These demand 

information sharing were tested over different supply chain scenarios such as demand 

patterns, leadtime, and degree of RFID application. The authors study two cases: with and 

without demand. However, there can be other types of information to be shared such as 

inventory levels. 

 

These previous papers provided insights on how information sharing from RFID can 

further improve coordination in a supply chain. However, there has not been a defined 

taxonomy on these kinds of RFID information-sharing coordination. Further, there has not 
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been a clear guideline on how coordination can change a decision-making process such as 

in the inventory policies. In addition, most of the research studies one type of information 

such as demand. For this thesis, we want to extend previous traditional supply chain work 

over supply chain with reverse logistics. Finally, few papers study RFID coordination 

impact with reverse logistics partners involved. Our goal is to delineate RFID information-

sharing coordination and provide insights on when to use each of this coordination to 

enable higher economic and environmental results. Figure 2.1 illustrates the literature 

framework that serves as a motivation for the rest of the thesis. 
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CHAPTER 3. SUPPLY CHAIN MODEL 

This chapter describes the supply chain used for the thesis. First, we describe the supply 

chain structure in terms of players involved and their interactions. Then, we define the 

assumptions considered within this supply chain such as demand, return, leadtimes, 

manufacturing operations and RFID settings. Further, we describe the inventory policies 

used in the supply chain. We present the periodic and continuous inventory policies which 

helps to develop the Basic RFID Coordination of Chapter 5. Finally, the chapter defines 

the performance measures for the thesis. Cost definitions such as ordering, setup, holding, 

and shortage cost are described. 

 

Chapter 3 helps create the base of the supply chain structure and common modeling for the 

thesis. In Chapter 4, we propose five ways to configure RFID technology in supply chains. 

This RFID technology-configuration describes which player has installed RFID 

technology and how the RFID information flows within the supply chain. Then, we study 

and compare the simple RFID coordination from Chapter 5 versus the advanced RFID 

coordination from Chapter 6.  
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3.1 Supply Chain Structure 

 

 

Figure 3.15Supply Chain with Reverse Logistics 

 

Figure 3.1 considers a two-echelon supply chain. This model is defined by the downstream 

and upstream sides of the supply chain. The downstream is represented by the manufacturer 

and the upstream by the suppliers. For the thesis, two separate and independent suppliers 

are considered. Each player in the supply chain set their inventory decisions to minimize 

their cost independently. This kind of two-echelon supply chain is a common framework 

to study supply chain and inventory policies (Cachon and Fisher, 2000; Gavirneni et al., 

1999). Academics and practitioners also address supply chains with multiple echelons. 

Research with more echelons can serve to understand, for example, networks and 

optimization design problems which are out of the scope of the thesis. Some papers that 

address multiple echelons are Clark and Scarf, 1960; Lee and Whang, 1999; Chen and Lee, 

2004; Wu and Cheng, 2008. For our research, two-echelon supply chain serves as a suitable 

model structure to study inventory models and the interactions among players. 

 

The manufacturer receives stochastic demands from customers with a probability 

distribution function. The manufacturer fulfills incoming demands through its serviceable 

inventory. This serviceable inventory is from products manufactured from purchased 

materials. The manufacturer can purchase materials either from the recycled-material 

supplier or raw-material supplier. For the thesis, join sourcing from the recycled-material 

supplier and raw-material supplier is not included in the analysis.  
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The recycled-material supplier has an inventory of returns which help fulfill 

manufacturer’s orders. These returns are collected from the end-user market. The raw-

material supplier has also inventory to fulfill manufacturer’s orders. The raw-material 

supplier sources from the environment (i.e., virgin materials). As Wu et al. (2015) state, 

recovery and recycling systems are key factors towards succesfull reverse logistics. 

 

There are three leadtimes considered in the model. The delivery leadtime is the time taken 

for the suppliers to provide the materials to the manufacturer. The collection leadtime 

considers the time taken to collect returns. This collection leadtime aggregates all the 

relevant activities for the collection process such as collection, sort, classification, 

distribution, and transformation. Finally, the production leadtime represents the time taken 

for the raw-material supplier to produce new materials from the raw materials in the 

environment. 

 

The supply chain described above can be found in several real-case scenarios. Hewlett-

Packard (H-P) work with a third party vendor Micro Metallics Corporation in order to  

make the collection, transformation of returns (i.e., monitors) to recycled material, and 

distribute to H-P for manufacturing (Pagell et al., 2007). Xerox is another company that 

includes different type of suppliers with raw materials and recycled materials (Bechtel and 

Jayaram, 1997). BMW includes recycling materials in its operations. BMW has a 

manufacturing production for recycling materials. For example, the material they use is 

plastics instead of metals to increase recycling consumption (v. Hoek, 2001). 

 

3.1.1 Assumptions 

This section provides the assumptions for the supply chain structure described above. The 

section defines the demand, return, manufacturing operations, leadtimes, and RFID 

assumptions. 
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3.1.1.1 Demand 

The manufacturer creates products to satisfy demands which are considered stochastic 

following a Poisson Process, 𝐷 ~ 𝑃𝑂𝐼𝑆(𝜇𝐷)  similar to Zanoni et al. (2006). These 

demands are served through the manufacturer’s inventory. The demands arrive every inter-

arrival time, IT. The inter-arrival time is assumed to be deterministic over the entire time-

horizon TH. These assumptions enable to model our demand as independent and identical 

distributed random variables. Figure 3.2 shows an illustration of our demand assumptions. 

 

Figure 3.26Demand Modeling 

 

3.1.1.2 Returns 

The returns 𝑅𝐶 are determined by the capacity of the end-user market 𝐸 and the return rate 

𝜏, such that 𝑅𝐶 = 𝐸 ∗ 𝜏 . Note that 𝐸 is a random variable with mean 𝜇𝑒  and standard 

deviation 𝜎𝑒  . The return rate 𝜏 (0 <  𝜏 < 1)  in the reverse channel is defined by the 

collection investment 𝐶𝐼. The collection investment 𝐶𝐼 represents the amount of efforts 

(e.g., promotion, advertising) the recycled-material supplier applies to the end-user market 
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to create the necessary incentives to receive targeted returns. The return rate helps assess 

the investment made by the recycled-material supplier to receive returns. The intuition is 

that with an adequate 𝐶𝐼, the end-user market will be motivated to provide their used 

products for recycling purposes. We model the return rate similar to the work by Savaskan 

et al. (2004) in which 𝜏 = √𝐶𝐼
𝛽⁄ , where 𝛽 is a scaling parameter. This expression is used 

in various models such as advertising response and product awareness (Lilien et al., 1992; 

Fruchter and Kalish, 1997; Zhao, 2000), sales force effort responses (Coughlan, 1993), and 

operations investing in setup cost reduction (Porteus, 1986; Fine and Porteus, 1989). 

 

The assumptions of the returns is that they are going to produce material with the same 

quality as the raw material. We are not considering two types of qualities since will be out-

of-scope of the current research. Future investigation can address the creation and 

fulfillment of secondary markets based on two qualities. 

 

There is a cost sharing strategy between the manufacturer and the recycled-material 

supplier. The collection investment will have two components: green and manufacturer 

investments (i.e., 𝐶𝐼 = 𝐶𝐼𝑔 +  𝐶𝐼𝑚). Therefore, manufacturer also contributes to the 𝐶𝐼.  

 

3.1.1.3 Manufacturing Operations 

We neglect manufacturing and recycling unit cost. These costs are neglected since they are 

linearly correlated with the returns and raw material ordered. In practical settings, the 

manufacturing cost or recycling cost can be incorporated. In addition, since our effort is to 

understand cost results based on the implementation of RFID over several technology 

configurations and inventory policies, the inclusion of manufacturing cost or recycling cost 

will not add any significant new insight. 

 

3.1.1.4 Leadtimes 

Collection leadtime represents the time taken for the recycled-material supplier to collect 

the returns from the end-user market. As stated above, this leadtime is the aggregation of 
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all the collection activities from collection to transformation. The collection leadtime 𝐿𝑇𝑔 

is considered to be stochastic, 𝐿𝑇𝑔 ∼ 𝐺𝑎𝑚𝑚𝑎 (𝜇𝐿𝑇𝑔, 𝜎𝐿𝑇𝑔)  similar to Zanoni et al. (2006). 

The production leadtime 𝐿𝑇𝑟  and delivery leadtime 𝐿𝑇𝑚  are deterministic. We set 𝐿𝑇𝑔 

stochastic and the rest leadtime deterministic to measure the randomness of the recycling 

operations that is mentioned in Section 1.1.3. 𝐿𝑇𝑟  and 𝐿𝑇𝑚  should reflect stable 

transportation leadtimes. 

 

Many authors describe the operation benefits of RFID to reduce processing time (Cachon 

and Fisher, 2000; Visich et al., 2009). For this paper, we are not considering processing 

leadtime since literature has shown that RFID can reduce operational times such as order 

processing and warehouse activities. Previous literature argue that there is a slighty 

improvement or benefits with inter-organizational RFD information usage (Cachon and 

Fisher, 2000). We will study the benefits that can be presented over inter-organizational 

RFID information sharing were supply chain have additional sources of uncertainty such 

as green initiatives. 

 

3.1.1.5 RFID 

RFID tags and readers have RFID measurement reliability. Read rate and reliability are the 

principal problems presented in RFID implementations. From previous implementations 

from mandates in Wal-Mart, RFID read rate accuracy have been recorded to be 80%.  

(Soon and Gutierrez, 2008). Every time the readers send a signal, there could be an error 

involved within the reading of the tags (e.g., due to unsuccessful implementation or 

inefficient location of the readers). The RFID measurement reliability 𝑀𝑅 is modeled as a 

random variable, 𝑀𝑅 ∼ 𝑈𝑛𝑖𝑓(𝑅𝐹𝐼𝐷𝐿 , 𝑅𝐹𝐼𝐷𝑈).  

 

Variable and Fixed cost can represent overall RFID installation (Whang, 2010). We neglect 

the variable cost of RFID such as RFID tags cost as well as the fixed cost such as the 

installation cost of the readers. We are addressing the maximum value of RFID 

coordination. Therefore, we study the benefits of implementing RFID and address its 

coordination. This study will create generalized guidelines and show the monetary value 
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of RFID in the long-run. Practitioners can run similar simulations to identify the total value 

of RFID over its supply chain and account for variable and fixed cost to determine its return 

of investment. In addition, we do not consider any cost of coordination since we are 

addressing the value of the RFID application. We assume that the RFID information is 

available instantaneously for the players without any delays. 

 

3.2 Inventory Definitions 

We use two type of inventory commonly applied on inventory literature: continuous review 

and periodic review. We will see in Chapter 5, that the later is applied for cases were no 

RFID is implemented and the former were RFID is implemented. These two inventory 

policies are used in Chapter 5 for the basic RFID coordination approach. As we will see, 

this basic inventory model, do not guarantee the highest economic performance possible 

for the entire system. Chapter 6 then will present an extention of traditional inventory 

policies that helps attain higher economic performance. 

 

Definition 3.1 Continuous Review(𝑸, 𝒓) Inventory Policy: the entity requests an order 

quantity 𝑄 whenever the inventory position 𝑋 is below or equal to the reorder point 𝑟, X < 

r . Equation 3.1 shows the inventory decisions and Figure 3.3 presents an illustration of the 

policy. 

𝑄 = {
𝑄 𝑖𝑓 𝑋 ≤ 𝑟

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  .                                      Eq. 3.1 
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Figure 3.37Continuous Review (Q,r) Inventory Policy 

The general (𝑄, 𝑟) inventory policy is calculated as follows (Nhamias, 2001; Hopp and 

Spearman, 2008). We first compute the optimal order quantity, 

𝑄∗ = √
2𝐾𝐷

ℎ
  .                                                Eq. 3.2 

The parameters to obtain the optimal order quantity 𝑄∗ are setup cost 𝐾 , demand 

information 𝐷 , and unit holding cost ℎ . Then, to obtain optimal reorder point 𝑟∗ , we 

compute the critical ratio 𝐶𝑅 such as, 

𝐶𝑅 =  
𝑈𝑛𝑖𝑡 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝐶𝑜𝑠𝑡

(𝑈𝑛𝑖𝑡 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡+𝑈𝑛𝑖𝑡 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝐶𝑜𝑠𝑡)
  ,                         Eq. 3.3 

and get the z value from 𝛷(𝑧) = 𝐶𝑅 where 𝛷(𝑧) is the standard normal distribution,  

𝑟∗ = 𝜃 + 𝑧𝜎  ,                                                     Eq. 3.4 

in which 𝜃 denotes the demand over leadtime and 𝜎 the standard deviation over leadtime. 

The demand over leadtime is the mean demand 𝜇𝐷 during a unit period times the leadtime. 

The standard deviation over leadtime is the square root of the leadtime times the standard 

deviation of the demand 𝜎𝐷. Equations 3.5 and 3.6 show the formulations for the demand 

and standard deviation over leadtime, respectively. 

𝜃 =  𝜇𝐷 ∗ 𝐿𝑇 ,                                                Eq. 3.5 

𝜎 =  √𝐿𝑇 ∗ 𝜎𝐷 .                                               Eq. 3.6 

The second inventory policy is the periodic review (𝑠, 𝑆) inventory policy described as 

follow. 
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Definition 3.2 Periodic Review(𝒔, 𝑺)  Inventory Policy: the entity requests an order 

quantity 𝑄 whenever the inventory position 𝑋 is below or equal to the reorder point 𝑠. 

Equation 3.7 shows the inventory decisions and Figure 3.4 presents an illustration of the 

policy. 

𝑄 = {
(𝑆 − 𝐼) 𝑖𝑓 𝑋 ≤ 𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  .                                    Eq. 3.7 

 

Figure 3.48Periodic Review (s,S) Inventory Policy 

 

The manager has to check the inventory every time-evaluation interval, 𝑇𝐸. Since this is 

not a continuous review policy, there can be stock-outs (i.e., demand not fulfilled) before 

requesting additional orders. For this reason, we have to include the on-hand inventory to 

request the new quantity. Therefore, at every 𝑇𝐸, the manager checks the inventory. If the 

inventory position 𝑋 is below or equal to the reorder point 𝑠, we order the difference 

between the reorder up-to level minus the current on-hand inventory 𝑄 =  𝑆 − 𝐼 . The 

reorder level 𝑠  is equal to the reorder point in the continuous review, 𝑠 = 𝑟 . Periodic 

reviews are relevant in today´s literature and practice (Bouras, et al. 2016). 

 

The reorder up-to level is calculated as follows, 

𝑆 = 𝑄∗ + 𝑠  ,                                                 Eq. 3.8 
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where 𝑄∗ can be obtain from Equation 3.2. 𝑇𝐸 is determined by the optimal order quantity 

𝑄∗ divided by the mean demand 𝜇𝐷, 

𝑇𝐸 =  
𝑄∗

𝜇𝐷
  .                                                Eq. 3.9 

The recycled-material supplier has to collect what is available in the end-user market. 

Therefore, this entity does not have an optimal order quantity such as the manufacturer or 

the raw-material supplier. We define a heuristic policy for the recycled-material supplier 

as follows. 

 

Definition 3.3 Collection Inventory Policy: the recycled-material supplier collects returns 

𝑅𝐶 whenever its inventory position 𝑋 is below or equal to the reorder point, either 𝑟 for 

continuous review or 𝑠 for periodic review. Equation 3.10 shows the collection inventory 

decisions of the policy where 𝑅𝐶 is the amount of returns described in section 3.1.1.2. 

𝑄𝑔 = {
𝑅𝐶(𝐶𝐼, 𝐸) 𝑖𝑓 𝑋 ≤ 𝑟 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑖𝑜𝑢𝑠 𝑟𝑒𝑣𝑖𝑒𝑤
𝑅𝐶(𝐶𝐼, 𝐸) 𝑖𝑓 𝑋 ≤ 𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑟𝑒𝑣𝑖𝑒𝑤

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  .             Eq. 3.10 

The reorder point 𝑟 or 𝑠 can be computed according to Equation 3.4.  

 

3.3 Performance Measures 

The performance measure is the total cost from the system. We define system as the supply 

chain under consideration as shown in Figure 3.1 The index notations used are 𝑚 for the 

manufacturer, 𝑔 for the “green” recycled-material supplier, 𝑟 for the raw-material supplier, 

and 𝑠 for the system. Table 3.1 shows in detail the measures and decision variables for each 

entity to calculate the total cost of the system.  
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Table 3.12Cost Measures and Decisions Variables 

Variables 

and 

Decisions 

Manufacturer Recycled-material supplier Raw-material supplier 

Cost measures Notations Cost measures Notations 
Cost 

measures 
Notations 

Ordering 

cost 

Procurement cost 

recycled material 
𝑂𝑚

𝑔
 

Collection 

cost 
𝑂𝑔 

Production 

 cost 
𝑂𝑟 

Procurement cost 

raw material 
𝑂𝑚

𝑟  

Setup 

cost 

Setup cost 

recycled material 
𝐾𝑚

𝑔
 

Setup 

cost 
𝐾𝑔 

Setup 

 cost 
𝐾𝑟 

Setup cost 

raw material 
𝐾𝑚

𝑟  

Holding 

cost 

Holding 

 Cost 
𝐻𝑚 

Holding 

cost 
𝐻𝑔 

Holding 

 cost 
𝐻𝑟 

Shortage 

cost 

Shortage 

 Cost 
𝐵𝑚 

Shortage 

 cost 
𝐵𝑔 

Shortage 

 Cost 
𝐵𝑟 

Collection 

investment 

Collection  

Investment 
𝐶𝐼𝑚 

Collection 

investment 
𝐶𝐼𝑔 n.a. 

Order 

quantity 

Order quantity from 

recycled material  
𝑄𝑚

𝑔
 

Order quantity 

 to collect 
𝑄𝑔 

Order 

quantity to 

produce 
𝑄𝑟 

Order quantity from 

raw material 
𝑄𝑚

𝑟  

Inventory 
On-hand inventory 

from serviceable 
𝐼𝑚 

On-hand 

inventory from 

returns 

𝐼𝑔 

On-hand 

inventory 

from raw 

materials 

𝐼𝑟 

Unit cost 

Unit cost 

recycled materials 
𝑝𝑔 

Unit collection 

cost 
𝐴 

Unit 

production 

cost 
𝑃 

Unit cost 

raw materials 
𝑝𝑟 

 

The total cost of the system 𝐶𝑠 is comprised of the total cost of the three entities over the 

time horizon, 𝐶𝑠 =  𝐶𝑚 + 𝐶𝑔 + 𝐶𝑟.  

 

The total cost of each entity is calculated by the sum of the ordering, setup, holding, and 

shortage cost. The manufacturer and recycled-material supplier incurs in collection 

investments.  

 

The ordering cost is calculated by the order quantity multiplied by unit cost. For the case 

of manufacturer, the ordering cost is then, 
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𝑂𝑖
𝑗

=  𝑄𝑖
𝑗

∗  𝛾,                                                  Eq. 3.11 

𝑖 ∈ {𝑚}, 𝑗 ∈ {𝑔, 𝑟}, 𝛾 ∈ {𝑝𝑔, 𝑝𝑟}. 

For the case of the suppliers, the ordering cost is as follows, 

𝑂𝑖 =  𝑄𝑖 ∗  𝛾,                                                  Eq. 3.12 

𝑖 ∈ {𝑔, 𝑟}, 𝛾 ∈ {𝐴, 𝑃}. 

The manufacturer incurs setup cost every time an order is requested, 

𝐾𝑖
𝑗

=  𝑘𝑖
𝑗

∗  𝛿(𝑄𝑖
𝑗
),                                             Eq. 3.13 

𝑖 ∈ {𝑚}, 𝑗 ∈ {𝑔, 𝑟}, 

𝛿(𝑄𝑖
𝑗
) = 1 𝑖𝑓 𝑄𝑖

𝑗
> 0, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

Similarly, the setup cost for the suppliers is, 

𝐾𝑖 =  𝑘𝑖 ∗  𝛿(𝑄𝑖),                                             Eq. 3.14 

𝑖 ∈ {𝑔, 𝑟}, 

𝛿(𝑄𝑖) = 1 𝑖𝑓 𝑄𝑖 > 0, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

The holding cost for a unit time is equal to the on-hand inventory 𝐼𝑖 multiplied by the unit 

holding cost ℎ𝑖,  

𝐻𝑖 =  𝐼𝑖 ∗ ℎ𝑖,                                                  Eq. 3.15 

𝑖 ∈ {𝑚, 𝑔, 𝑟}. 
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The shortage cost for a unit time is computed as the demand not fulfilled multiplied by the 

unit shortage cost 𝑏𝑖. The demand notation is 𝐷; thus, the manufacturer shortage cost is, 

𝐵𝑖 =  𝛿 (𝐷 − 𝐼𝑖) ∗ (𝐷 −  𝐼𝑖) ∗ 𝑏𝑖,                                    Eq. 3.16    

𝑖 𝜖 {𝑚}, 

𝛿(𝐷 − 𝐼𝑖) = 1 𝑖𝑓 (𝐷 − 𝐼𝑖)  > 0, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

The shortage cost for the suppliers is as follows, 

𝐵𝑗 =  𝛿 (𝑄𝑖
𝑗

− 𝐼𝑗) ∗ (𝑄𝑖
𝑗

−  𝐼𝑗) ∗ 𝑏𝑗,                                   Eq. 3.17 

𝑖 𝜖 {𝑚}, 𝑗 𝜖 {𝑔, 𝑟}, 

𝛿(𝑄𝑖
𝑗

− 𝐼𝑗) = 1 𝑖𝑓 (𝑄𝑖
𝑗

 − 𝐼𝑗)  > 0, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

Collection investment 𝐶𝐼 occurs every time the recycled-material supplier collects returns 

from the end-user market.  
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CHAPTER 4. RFID TECHNLOGY CONFIGURATION AND INFORMATION-

SHARING COORDINATION 

This Chapter presents the RFID information sharing main assumptions and descriptions. 

We propose the two C dimensions 1) Configuration and 2) Coordination.  We propose that 

in order to have a clear coordination with RFID technology it is important to understand 

the RFID technology configuration first. We begin describing several papers that address 

information-sharing coordination. However, as we will see, the main limitation is that the 

paper is not technology-oriented and thus lack of technology configuration.  For this reason, 

we present a set of literature review for information-sharing among trading partners. Then, 

we present the few literature in terms of RFID over this topic. This review shows that it is 

important to study more RFID configurations and thus RFID coordination in order to 

maximize the full benefits of the technology. 

 

4.1 Related Work 

4.1.1 Information-Sharing Coordination among Trading Partners 

Information-sharing coordination is the agreement among player of what type of 

information they share and who shares the information.  As Lee and Whang (2000) 

mentioned “a basic enabler for tight coordination is information sharing”. Coordination 

enables partnership among players in the supply chain.  

 

There can be different type of information shared such as inventory level, sales data, order 

status, sales forecast, and production/delivery schedules (Lee and Whang, 2000). Who 

share the information can be modeled with the level of information sharing. Traditional (no 

information) and full information sharing are two common levels used in literature.
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For example, Cachon and Fisher (2000) compared the use of information sharing in which 

the supplier had complete visibility of the demand; whereas, the retailer did not have any 

benefit from the full information sharing level. The author described that there are 

reduction over the processing leadtime. Therefore, benefits for full information sharing 

relies more on operational benefits (e.g., faster leadtime and cheaper order processing) 

rather than expanding information among players. The author did not describe any type of 

technology. Lee et. al (2000) study the benefits of information from a manufacturer and a 

retailer using auto correlated demand coefficient. The retailer shares demand (i.e, 

parameters of the probability distribution) and period-to-period inventory information. The 

authors tested the demand information using different probability distributions. The 

authors consider periodic review for their inventory models. The benefits rely only on the 

manufacturer such as inventory reduction and expected cost reduction. These benefits 

increase with higher demand variability. 

 

Lee and Whang (2000) described that there are three levels of information sharing: 

information transfer model, 3th party model, and information hub model. The first, a player 

(i.e., usually the downstream) share its information to the manufacturer or supplier. The 

second, a third party is assigned to collected and manage all the information. And the third 

model, described that a software automatically handles the information sharing. Yu et al. 

(2001) define three levels as well. The first is the “decentralized control” where no 

information sharing nor ordering information is taken place. The retailer uses demand 

information and the manufacturer uses order information. Each one of them utilized their 

own information to make a forecast. The second level is called the “coordinated control” 

in which the retailer share demand information and together with the order information 

from the retailer. The manufacturer then will made inventory decisions based on these two 

information. The third level is “centralized control” were with the use of EDI, both partners 

will have the same information. Further, the author assumes that a VMI can take place. 

From the results, the retailer perceive a benefit only over the centralized control since the 

manufacturer processing leadtime will be reduced due to lower variability of orders. The 

manufacture will benefit for additional information sharing lowering inventory levels and 
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expected cost. One of the limitations of the paper is that the author used EDI without any 

assumptions or limitations to be considered. 

 

Previous research shows that there are no or limited benefits for the retailer (i.e., 

downstream player) which is a limitation in order to support the use of information 

technology investment over the entire supply chain. For the scope of the thesis, we are not 

considering any type of cooperative agreements among the players. However, the objective 

is to optimize the overall performance measure (e.g,. minimize total system cost). From the 

findings, we can then search for cooperative win-win agreements among the players such 

as incentives. 

 

In addition, previous research does not clearly present any technology to implement the 

information sharing. This is a limitation since inside the coordination we need to define in 

more detail how this information can change the business decisions (e.g., inventory 

decisions). There are different technologies that enable information sharing such as client-

server architecture, TCP/IP, relational DBMS, ERP, object oriented programming, wireless 

communication, internet  and EDI (Lee and Whang, 2000). We use RFID technology for 

our research. Another assumption is that RFID can be a good enabler to eliminate imperfect 

information sharing. As Lee and Whang (2000) describes, sharing information may not be 

perfect since partners maybe tempt to convey not the true information. 

 

Morgan et al. (2016) perform a survey from an empirical evidence 267 respondents 

analysis the influence of collaboration and information technology to develop reverse 

logistics initiatives. The authors shows relationships between collaboration versus IT 

competency. The research provide three main insights. First, companies needs to become 

expert or develop strong reverse logistics compenties. Second, collaboration is needed in 

order for the reverse logistic to be successful which is aligned to our purpose of our research. 

And third, having strong competencies on IT and reverse logistics produce better logistics 

performance. However, this study do not refer to specific supply chain settings and the 

overall impact of implementing an RFID configuration in a supply chain. In addition, the 
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results indicates that with lower collaboration, lower IT implementation is needed to reach 

to results. We will show on Chapter 5 and Chapter 6 that other key dimensions are needed 

such as the RFID technology configuration, RFID coordination and what is the supply 

chain structure. Understanding these three factors will enable managers to identify the right 

IT investment based on their supply chain. 

 

The following section presents information-sharing coordination but with the use of RFID 

technology. As describe by Qianli et al. (2016), one of the main challenges nowadays is 

the implementating technology of RFID. Therefore, it is important to understand what are 

the option of these implementation, what are the RFID configurations possible and what 

are the results depending on the supply chain structure. Our research aims to help over this 

implementation of RFID. Below related work that describes RFID technology 

configurations. 

 

4.1.2 RFID Technology Configurations over Supply Chains 

Ustundag and Tanyas (2009) study the impact of RFID on Supply Chain and its cost. The 

author presented a simulation approach over a three echelon including manufacturer, 

distributor and retailer. The model included item-level RFID tags in the manufacturer and 

readers. However, it was not clear if the other players used RFID in their warehouse or 

their configurations. The authors used error rates to quantify the benefits of RFID. The 

limitation of this study is that the authors do not analyze the real effects of using RFID. 

The model lack of RFID configurations and coordination settings. Bottani et al. 2010 study 

the impact of RFID based on reducing the Bullwhip Effect. The configuration and study is 

grounded on the Bottanie et al. (2008) study. The benefits of the study is that it shows that 

RFID can reduce the Bullwhip Effect due to its real-time information sharing reducing 

imperfect demand signals. Further, the manufacturer is the entity with the highest benefits. 

Also, case-tag level was more beneficial than pallet level due to its information granularity. 

 

Boeck and Wamba (2007) study RFID and its impact on the buyer-seller relationships in a 

four echelon supply chain (i.e., bottler, distributor 1, distributor 2, Retailers). In this case, 
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the authors found that item-level decisions affect the benefits of each of the players. For 

example, item-level RFID was beneficial to the retailer. However, for the distributors, they 

use mainly case-item level. Further, shrinkage reduction was one of the must cited benefits 

from the buyer-seller relationship. Also, it was accounted that the tag placement is tended 

to be pushed to the first upstream player, in this case the bottlers. From the study, the 

installation of RFID readers is on the entire supply chain except the retailer. 

 

Soon and Gutierrez (2008) study the impact of RFID mandate on supply chains. The 

authors considered three-tiers supply chain: 1) manufacturer, 2) logistic provider, 3) retailer. 

The authors describes the first benefits presented in practice and should be attained is the 

intra-organizational performance. However, there should be as well more collaboration 

amount partners to attain inter-organizational performance. In addition, the authors state 

that it is important that management decide what information will be shared and who will 

be received these information. The authors define these set of guidelines since in practice 

most of the cost relies on the upstream player. Higher level of collaboration its needed to 

increase a cooperative scenario among players in order to reduce total system cost. 

 

Whang 2010 studies the timing to adopt RFID. The author analyses a two-tier supply chain. 

The author explains that there is a free-ride problem in which if the upstream player install 

the RFID tags, then the downstream player will beneficiate from it. However, there is no 

equilibrium. RFID technology coordination and cost-split are two mechanism that can 

eliminate the free-ride problem. 

 

Whitaker et. al (2007) perform a field study over several US firms and its implementation 

of RFID deployment. From the results, the authors find that higher benefits with RFID can 

be achieved if the firms have mature IT deployment such as ERP. Further, companies need 

to invest heavily in the early stage to fully potentiate RFID deployment. The authors also 

discover that mandates overall have positive return on the investment from companies 

following late adoption of RFID since it does have a business sponsorship. Managers 

should be versatile and knowledgeable about the RFID protocols and standards. 
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Previous research has shown different set of RFID configurations. From a stream of 

research authors identify that there is more benefits for manufacturer to install RFID rather 

than the retailer. Further, there are different configurations in terms of who share the 

information (i.e., levels). The previous research have not yet presented a cohesive study 

that address the dual-dimensions of configuration and coordination. The former determine 

who has the technology configuration installed and the later, who shares the information 

among players. Our thesis aims to provide a stronger dual-decision for configuration and 

coordination. In addition, we need to extend these study to our green supply chain system. 

 

The following section presents the RFID technology configuration proposed for the 

research. Then, the following Chapter presents the RFID coordination in order to complete 

the dual decision of RFID configuration-coordination that is lacking currently in literature. 

 

4.2 RFID Technology Configuration 

We present five different RFID configurations. No RFID (NO) configuration is the first 

case, in which no RFID tags and RFID readers are installed in the warehouse. For our thesis, 

this will be our base case. The following analyzes the RFID Non-Integrated (NI) 

configuration in which RFID is implemented over the entire supply chain; however, no 

information sharing occurs among entities. The next scenario is the RFID Partial-Integrated 

Downstream (PID) configuration in which the player have installed RFID tags and readers 

in their warehouses, but only the downstream player (i.e., manufacturer) is sharing 

information. The next scenario is the RFID Partial-Integrated Upstream (PIU) 

configuration where RFID tags and readers are installed, but only the upstream players (i.e., 

suppliers) are sharing their information. Finally, we analyze the RFID Full-Integrated (FI) 

configuration where all the players have RFID and can share their information. Figure 4.1 

to Figure 4. 5show the RFID configurations. 
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Figure 4.19No RFID Configuration 

 

 

Figure 4.210RFID Non-Integrated Configuration 
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Figure 4.311RFID Partial-Integrated Downstream Configuration 

 

 

Figure 4.412RFID Partial-Integrated Upstream Configuration 
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Figure 4.513RFID Full-Integrated Configuration 

 

The previous section defined our RFID configuration. However, still it is need to define 

the RFID coordination to complete the dual-dimesion of configuration and coordination. 

The following chapter presents the basic Radio Frequency Identification (RFID) 

information-sharing coordination. 
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CHAPTER 5. BASIC RFID INFORMATION-SHARING COORDINATION 

Previous sections illustrate that RFID technology configuration and information 

coordination as a dual dimension has not been study rigorously in research. Our previous 

section defined our RFID configuration used for the thesis which are the following: 1) No 

RFID (NO), 2) RFID Non-Integrated (NI), RFID Partial-Integrated Downstream (PID), 

RFID Partial-Integrated Upstream (PIU), and RFID Full-Integrated (FI).  

 

This section will integrate the RFID technology configurations with the information 

coordination among players. We define coordination in this thesis as the set of guidelines 

that defines what information is shared and who shares de information based on each RFID 

configuration. More importantly, how this information is embedded in the supply chain 

decision process as well as the impacts of the total system cost. In this thesis, we focus our 

decisions on inventory control models. 

 

Section 5.1 presents an introduction for the Chapter. Section 5.2 shows our proposal. We 

provide experimental results in Section 5.3, and summary in Section 5.4. 

 

5.1 Introduction 

There are few studies that analyze how companies have to align RFID configuration and 

coordination of inventory policies to obtain higher value of the technology. In addition, 

few studies provide a guideline on what RFID configuration-coordination to use based on 

your supply chain structure. 
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We aim to close this gap and study how companies can coordinate information to obtain 

higher benefits with the implementation of RFID technologies. In addition, the model 

considers green supply chain elements. Therefore, the goal is to attain lower cost to 

motivate the incorporation of green initiatives such as reverse logistics. We propose several 

basic RFID information-sharing coordination integrating inventory policies from literature 

and identify the RFID coordination that provides the lowest system cost over several supply 

chain structures. The benefits of the approach are: 1) test different RFID configurations, 2) 

propose RFID information coordination, 3) provide managerial guidelines on when to use 

each RFID coordination based on the supply chain, 4) address complex system including 

decentralized entities with reverse logistics operations. 

 

5.2 Approach 

These approaches define the inventory information coordination among each RFID 

configurations from Chapter 4.  We use three inventory policies presented on Chapter 3 

and adapt them to the RFID configuration. The objective is to measure if RFID technology 

can provide economic benefits using simple inventory policies approaches; thus, creating 

the monetary incentives to undergo environmental practices.  

 

We define the coordination between the inventory policies and the RFID configurations. 

Table 5.1 shows a summary of the coordination. 
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Table 5.13Summary of RFID Information-sharing coordination 

RFID 
Configuration 

Inventory 
Policy 

Information 
Sharing 

Entities Sharing 
Type of 

Information 
Inventory Decision 

Enhanced 
Nomenclature 

NO Periodic N.A. None None None None 

NI Continuous No None None None None 

PID Continuous Yes Downstream Demand 

Reorder point of 

recycled-material 

supplier 

�̅�𝑔 

Reorder point of 

raw-material 

supplier 
�̅�𝑟  

Order Quantity of 

raw-material 

supplier 
�̅�𝑟  

PIU Continuous Yes Upstream Inventory 

Inventory position 

of manufacturer to 

produce 
�̅�𝑚

𝑟  

Inventory position 

of raw-material 

supplier 
�̅�𝑟 

FI Continuous Yes 
Downstream 

& Upstream 

Demand 

& 

Inventory 

Reorder points, 

order quantities, and 

inventory positions 

�̅�𝑔,  

�̅�𝑟 , 
�̅�𝑟, 

�̅�𝑚
𝑟 , 

�̅�𝑟 

 

5.2.1 No RFID Coordination 

The RFID technology is not installed in any of the inventory warehouse of the players. 

Therefore, they have to use periodic review inventory policies since they are not able to 

monitor in real-time their warehouses.  
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Table 5.24Inventory Position and Decision with No RFID Coordination 

Player Inventory Position Inventory Decision 

Manufacturer 
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supplier 
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If the inventory position 𝑋𝑚 is less than or equal to the reorder point 𝑠𝑚 , and there is 

enough on-hand inventory for the green supplier 𝐼𝑔 ≥ (𝑆𝑚 − 𝐼𝑚), then the manufacturer 

orders to the green supplier 𝑄𝑚
𝑔

= (𝑆𝑚 −  𝐼𝑚). Otherwise, the manufacturer orders to the 

raw-material supplier 𝑄𝑚
𝑟 = (𝑆𝑚 −  𝐼𝑚). The recycled-material supplier collects returns 𝑅 

whenever its inventory position is less than or equal to its reorder point, 𝑋𝑔(𝑡) ≤  𝑠𝑔. The 

raw-material supplier orders 𝑄𝑟(𝑡) = 𝑆𝑟 −  𝐼𝑟(𝑡) whenever its inventory position is less 

than or equal to its reorder point, 𝑋𝑟 ≤ 𝑠𝑟.  

 

We can see that the manufacturer and recycled-material supplier do not have backorder 

options. As shown in Chapter 3, the manufacturer and the recycled-material supplier incur 

in a shortage cost. However, the raw-material includes backorders inventory 𝐵𝑟(𝑡). 
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5.2.2 RFID Non-Integrated Coordination 

The RFID technology is installed in the entire supply chain. This means, all the entities 

have the RFID tags on their products and readers in their warehouses. Therefore, all the 

players are able to use continuous review inventory policies. However, they do not share 

RFID information with each other. 

 

Table 5.35Inventory Position and Decision with RFID Non-Integrated 

Player Inventory Position Inventory Decision 

Manufacturer 
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The manufacturer request 𝑄𝑚
𝑔

 whenever the inventory position 𝑋𝑚(𝑡) is below or equal to 

its reorder point 𝑠𝑚. The recycled-material supplier has a similar inventory position and 

decisions than the No RFID scenario just in a continuous review. The raw-material supplier 

has a similar inventory position and decision than the No RFID case, but the order quantity 

is such as 𝑄𝑟 
given the continuous review policy. 
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5.2.3 RFID Partial-Integrated Downstream Coordination 

This coordination is similar to 5.2.2, but now the players are able to exchange information 

through the EPC Global Network. In this case, the manufacturer shares demand 

information to the suppliers. Thus, the suppliers instead of using historical demand 

information from past orders, they are able to use real demand information. The two 

suppliers will have an enhanced inventory policy. The demand over leadtime and standard 

deviation over leadtime will have now the real demand information, 

�̅� =  𝜇𝐷 ∗ 𝐿𝑇,                                                      Eq. 5.1 

𝜎 =  √𝐿𝑇 ∗ 𝜎𝐷.                                                    Eq. 5.2 

Thus, their reorder points are enhanced, 

�̅�∗ = �̅� + 𝑧𝜎 ,                                                    Eq. 5.3 

In addition, the raw-material supplier can use this demand information to enhance its 

optimal order quantity, 

�̅�∗ = √
2𝐾𝜇𝐷

ℎ
 .                                                      Eq. 5.4 

Table 5.46Inventory Position and Decision with RFID Partial-Integrated Downstream 

Player Inventory Position Inventory Decision 

Manufacturer 
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Since the manufacturer is the one that is providing the information, the enhancements in 

the inventory will be in the suppliers. Now, the recycled-material supplier calculates an 

enhanced reorder point �̅�𝑔 given that the reorder point depends on demand information. 

Therefore, the recycled-material supplier instead of using historic orders from the 

manufacturer, it will use real demand information. Similar, the raw-material supplier 

calculates an enhanced reorder point �̅�𝑟  and it calculates an enhanced optimal order 

quantity �̅�𝑟 given this information depends on the demand. 

 

5.2.4 RFID Partial-Integrated Upstream Coordination 

All the players have RFID installed; however, only the suppliers share information through 

the EPC Global Network. The manufacturer can have the complete visibility of the 

supplier’s warehouse. Therefore, the manufacture can include the supplier’s inventory to 

calculate an enhanced inventory position such as,  

�̅�𝑚 = 𝐼𝑚 + 𝐼𝑔 + 𝐼𝑟.                                            Eq. 5.5 

In addition, the suppliers exchange inventory information between them. In this case, the 

supplier that needs to acquire more “readiness” is the raw-material supplier to compensate 

the stochastics behaviors in the reverse logistics. Thus, the raw-material will include in its 

inventory position the recycled-material information such as, 

�̅�𝑟 = 𝐼𝑟 + 𝐼𝑔.                                                                 Eq. 5.6 
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Table 5.57 Inventory Position and Decision with RFID Partial-Integrated Upstream 

Player Inventory Position Inventory Decision 

Manufacturer 
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The manufacturer will count the on-hand inventory of the recycled-material and raw-

material supplier in its inventory position to produce �̅�𝑚 . Further, the raw-material supplier 

acts as an alternative supplier in the case there is not enough returns on the green supplier’s 

inventory. Therefore, the productions depend on the on-hand inventory of the recycled-

material supplier. The raw-material supplier will then include on-hand inventory of the 

recycled-material supplier in its inventory position �̅�𝑟. 

 

5.2.5 RFID Full-Integrated Coordination 

This case provides continuous review inventory policy for all the players. In addition, the 

manufacturer exchanges demand information enhancing the reorder points for the suppliers 

and optimal order quantity for the raw-material supplier. The suppliers will continue to 

exchange information similar to Section 5.2.4. 
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Table 5.68Inventory Position and Decision with RFID Full-Integrated 

Player Inventory Position Inventory Decision 

Manufacturer 
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In this integration, the manufacturer has an enhanced inventory position )(tXm . The 

recycled-material supplier has an enhanced reorder point �̅�𝑔. And the raw-material supplier 

has an enhanced inventory position �̅�𝑟, a reorder point �̅�𝑟, and an optimal quantity �̅�𝑟. 

 

5.3 Numerical Experiments 

5.3.1 Simulation Approach and Design of Experiment 

Simulation approach is used to study the system behavior of green supply chains over five 

types of RFID information-sharing coordination described in Section 5.2. The objective of 

the simulation study is to determine under what supply chain conditions it is better to use 

each of the five RFID Information-sharing coordination. We test several independent 

variables to assess their impact on the system cost and reach managerial insights. 

Simulation approach is a good method used for academics and practitioners to study RFID. 

Below we present two examples of simulation approaches and their simulation assumptions 

used to study RFID systems similar to our problem. 
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Fleisch and Tellkamp (2005) study the impact of inventory inaccuracy reduction with more 

visibility of physical inventory (thanks to automatic identification technologies). The 

authors assume a consumer package goods supply chain consisting on retailer, distributor 

and producer. The author used various independent factors that affects inventory 

inaccuracy such as theft, incorrect deliveries and misplaced items. End-customer demand 

is independently and identically normally distributed. Other exogenous random variables 

are measured using uniform distribution such as theft and incorrect deliveries. Each 

simulation has 200 as time-horizon were each simulation is run 20 times. 

 

Ustundag and Tanyas (2008) uses simulation model to map how RFID can reduce cost 

through more efficiency, accuracy, visibility and security level in a three-level supply chain. 

The authors model end-customer demand as independently and identically normally 

distributed random variable with mean of 1000 daily items (retail textile company in 

Turkey). The shortage cost due to lost sales is based on a 5% margin per product. The setup 

or order cost was $40 and the inventory holding cost is based on a 5% annual interest rate. 

The authors use three independent factors at three level each (i.e., product value, demand 

uncertainty, leadtime). Similar to our research, the authors use Total Cost as the dependent 

variable. The authors used 27 (33) combinations and each simulation were run 250 times 

over a time-horizon 360 days. 

 

For our research, our objective is to test several supply chain scenarios over our five RFID 

Information-sharing coordination using several independent variables and test their impact 

on the dependent variables (i.e., total system cost). Our goal is not to provide an optimal 

design of experiment or test several design. We propose the following design of experiment. 

A 1/16 design with resolution V provides 211−4 = 128 runs for the fractional factorial. 

Therefore, we test 128 different supply chains described in 11 different factors at two levels 

each. We used Minitab Software to obtain the design of experiment described above. Each 

run is replicated 100 times in Arena Simulation Software similar to the simulation model 

from Sarac et al. (2015) that study a three-level supply chain with RFID and its impact of 

shrinkage and delivery errors in Arena Software. Each replication has a Time-horizon 𝑇𝐻 
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of 200 days. We assume 24 hours per day during the simulations. As mentioned above, the 

objective is to simulate each of the five RFID Information-sharing coordination over the 

128 different supply chain. In this experiment, there are several stochastic factors such as  

mean capacity of end-user market due to its rate factor, collection leadtime, demand 

variability. These nondeterministics variables were presented in a similar study from 

Canella et al. (2016). The authors study these factors that influence reverse logistics on a 

close-loop supply chain. However, our study focus on decentralized entities, differente 

types of RFID technology and what are the supply chain system that is better for an RFID 

implementation. 

 

The factors at two levels each (i.e., Low and High) used to create the design of experiment 

are described in the Table 5.7. 

 

Table 5.79Variable Factors and Levels 

Category Factor Low High 

Demand Mean and standard deviation of demand per day 20 35 

Leadtime Leadtime delivery (days) 8 14 

Leadtime collection (days) 4 7 

Leadtime production (days) 8 14 

Std Dev Leadtime collection (days) 1 2 

Setup Cost Setup cost manufacturer ($) 10 18 

Setup cost recycled-material supplier ($) 2 4 

Setup cost raw-material supplier ($) 5 10 

Environment Mean capacity end-user market  50 80 

Investment Collection Manufacturer ($) 0 4 

Investment Collection Green ($) 5 10 
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The variables that are fixed in all the 128 scenarios are described in the following Table 

5.8. 

Table 5.810Fixed Factors and Values 

Category Variables Value 

Net inventory Initial net inventory manufacturer 100 

Initial net inventory recycled-material supplier 100 

Initial net inventory raw-material supplier 100 

Inventory position Initial inventory position manufacturer 100 

Initial inventory position recycled-material supplier 100 

Initial inventory position raw-material supplier 100 

Unit Cost Unit procurement cost green ($) 100 

Unit procurement cost raw ($) 200 

Unit collection cost green ($) 100 

Unit production cost raw-material supplier ($) 200 

Unit holding cost Unit holding cost manufacturer ($) 0.15 

Unit holding cost recycled-material supplier ($) 0.10 

Unit holding cost raw-material supplier ($) 0.20 

Unit shortage cost Unit shortage cost manufacturer ($) 10 

Unit shortage cost recycled-material supplier ($) 5 

Unit shortage cost raw-material supplier ($) 7.50 

RFID RFID Read Rate Lower Bound 

Parameter for the Stochastic Uniform Distribution 

85 

RFID Read Rate Upper Bound 

Parameter for the Stochastic Uniform Distribution 

100 
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5.3.2 Results 

This section presents the results from the simulation experiments. As stated on previous 

sections, we use average cost which is a common performance measure used in literature 

(Lee et. al, 2000). 

 

5.3.2.1 Multiple Comparison Test 

One of the objective of the thesis is to understand on what supply chain scenario it is 

beneficial to implement RFID. Further, more interesting is to understand what type of 

RFID information-sharing coordination is more suitable for a specific supply chain. We 

used Multiple Comparison Test (MCT) to statistically test our five RFID Configuration 

(NO, NI, PID, PIU and FI). MCT provided us over a 5% p-value which configurations 

were statistically significant. For our results, we were interested to identify the scenarios 

were there was only one statistically different mean compared to the rest. We choose the 

one that provided the lowest system cost. Below are the results from the MCT in Table 5.9. 

In addition, we extend the result and include outcomes were two means were statistically 

significant than the others and lowers. Table 5.10 shows the results. More than three means 

with lowest statistically system cost do not provide a specific managerial insight. Therefore, 

we limit this analysis to one and two means with statistically lower system cost. Results 

from all the MCT are shown in Table 5.11. 

 

Table 5.911Multiple Comparsion Test Results – One Statistically Different Mean 

Analysis NO NI PID PIU FI 
Total Scenarios with One Mean 

Statistically Different 

# of scenarios 

statistically lower that 

the 4 rest RFID 

Coordination 

33 0 0 4 37 74 

 

Table 5.1012Multiple Comparsion Test Results – Two Statistically Different Mean 

RFID Coordination Means with 

Lowest System Cost 

# of scenarios been the lowest 

that the rest 

NO-PIU 4 

NO-FI 6 

PID-FI 1 

PIU-FI 21 

Total 32 
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Table 5.1113Multiple Comparison Test Result – All Means 

# of Means 

Statistically Lower 
# of Scenarios % Weight 

1 74 58% 

2 32 25% 

3 15 12% 

4 7 5% 

Total 128 100% 

 

Just form these results we can make several insights. First, we see that there is no case in 

which NI was a significant mean with the lowest cost. This can serve as an intuition that 

even if operational benefits arises as previous research demonstrated over centralized 

scenarios, we need some type of information-sharing coordination among trading partners. 

Second, we see that PID have zero cases with the lowest system cost. This results that even 

though we have demand information that can be shared, the inventory control decisions are 

not efficient enough to achieve reduction on the overall cost. Third, there is almost a 

balance set of scenarios which it is better in term of cost to continue with NO RFID and 

another set to include Full-Integrated RFID Configurations.  

 

Fourth, apart from the FI Configuration, PIU Configuration appeared 23% of the scenarios 

statistically significant (4 been the lowest mean, 4 cases with NO and 21 cases shared with 

FI). This is very significant finding since our modeling is an inventory control model. 

Therefore, when we include inventory information over the Inventory Position of to the 

Manufacturer and the Raw-Material Supplier, there is a complete visibility of the inventory 

on the system, been more proactive handling shortages. 

 

For the next section, we want to investigate what type of supply chain scenarios provided 

good results over the 37 cases of FI and 33 cases NO through regression analysis. In 

addition, we will address the scenarios FI-PIU were statistically significant. These three 

analysis will provide us managerial insights over when to use each RFID Coordination. 
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5.3.2.2 Regression Analysis Test 

From the 37 FI scenarios, we reached to 86% and 73% Multiple Square and R Square, 

respectively as shown in Table 5.12. This shows that the previous MCT analysis provided 

statistically scenarios were FI provided best results. It also provided insight that it might 

be helpful to consider interactions. From the ANOVA, it shows that it is statistically 

significant with F below 0% as shown in Table 5.13. The 12 factors from Table 5.7 are 

statistically significant below than 0% as shown in Table 5.14. Based on the coefficient, 

the three highest coefficient in terms of absolute value are Standard Deviation of the 

Collection Leadtime, Investment Collection from the Manufacturer, and the Investment 

Collection from Green. These are very important insight that shows that in any of these 37 

scenarios, it is critical to control the collection leadtime to achieve lower cost. In addition, 

the incentive to the end-user market plays an important role been the manufacturer having 

more impact than the incentive from the recycled material supplier. Overall, we see that 

the main factors are the ones considered “green factors”. Therefore, this is a motivation for 

companies to undergo green initiatives with the right factors in-place and implementing FI. 

Managing these factors can enable system cost to decrease using technology such as RFID. 

Demand provided to be the most significant factor which is expected since demand drives 

the supply chain. 

Table 5.1214Regression Statistics - FI 

Statistic Value 

Multiple R 86% 

R Square 73% 

Adjusted R Square 73% 

Standard Error 1,906 

Observations 3,700 

 

Table 5.1315ANOVA Statistics - FI 

Statistic df SS MS F Significance F 

Regression 12 36,470,407,010.00 3,039,200,584.00 912.72 0 

Residual 3,688 13,396,746,780.00 3,632,523.53   

Total 3,700 49,867,153,789.00    
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Table 5.1416Regression Factors and Coefficients - FI 

Factors Coefficients Standard Error tStat P-value 

Intercept (3,642) 457 (8) 2.14969E-15 

Avg Dmd - -  65,535  -  

Std Dev Dmd 388 5 76  -  

LT Delivery 310 11 28  0.00% 

LT Collection (320) 23  (14) 0.00% 

LT Production 178 12 15  0.00% 

Setup Man 365  10  37  0.00% 

Setup Green 210  36  6  0.00% 

Setup Raw 94  14  7  0.00% 

Cap EUM (80)  3   (25) 0.00% 

Inv Collection Man (650)  18   (37) 0.00% 

Inv Collection Green (639)  15   (43) 0.00% 

Std Dev Collection Green 686  67  10  0.00% 

 

The No RFID provided good performance for the Multiple R and R Square 96% and 92% 

as shown in Table 5.15, respectively. Table 5.16 shows the ANOVA results. The results 

show good reference that our simulation has the adequate modeling and factors to study 

the supply chain. Table 5.17 presents an interesting outcome is that the Capacity of the 

end-user market and Investment Collection Manufacturer are not statistically significant. 

If we compared the Coefficients from the FI and NO, we can see that the NO coefficients 

cost are lower. Our intuition is that is not necessary to over invest when cost structures are 

lower. Leadtime delivery, Leadtime Production and Setup Cost Green are the three main 

factors affecting cost. We can infer that these supply chains configurations are based 

mostly on lower cost structure. Thus, the need for higher recycled material and higher 

investment in technology is not required. 

 

Table 5.1517Regression Statistics - NO 

Statistic Value 

Multiple R 96% 

R Square 92% 

Adjusted R Square 92% 

Standard Error 461 

Observations 3,300 
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Table 5.1618ANOVA Statistics - NO 

Statistic df SS MS F SignificanceF 

Regression 12 8,458,086,736 704,840,561 3,616 0 

Residual 3,288 699,238,075 212,664   

Total 3,300 9,157,324,811    

 

Table 5.1719Regression Factors and Coefficients - NO 

Factors Coefficients Standard Error tStat P-value 

Intercept (722) 102 (7) 0% 

Avg Dmd - - 65,535 - 

Std Dev Dmd 277 2 160 - 

LT Delivery 46 5 9 0% 

LT Collection (62) 6 (10) 0% 

LT Production 52 3 19 0% 

Setup Man (2) 2 (1) 48% 

Setup Green 52 8 6 0% 

Setup Raw 25 4 6 0% 

Cap EUM 1 1 1 31% 

Inv Collection Man 4 5 1 39% 

Inv Collection Green 17 3 5 0% 

Std Dev Collection Green (46) 17 (3) 1% 

 

5.3.2.3 Analysis of Factorial and Interactions 

We want to analyze more in depth the results. Thus, we run analysis of main and 

interactions effects to validate our regression analysis. 

 

Analysis of Factorial and Interactions with RFID Full-Integrated 

As we can see from Figure 5.1, average demand is the most important factor that increase 

the cost. This is expected since with more demand, more variable cost it is needed. The 

next main effect that impacts the system cost is the setup cost for the manufacturer. Over 

high setup cost for the manufacturer, the FI is the most suitable configuration to reduce 

cost. In this context, both investment collections are essential to reduce system cost as 

shown in Figure 5.1 and similar to results on previous section 5.3.2.2. It is important to 

have an agile supply chain to react with demand and leadtimes variations to attain higher 

return of the investment from reverse logistics.  
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If we continue the analysis, we can see that the most statistical significant factor is the 

manufacturing investment followed by the green investment as shown in Figure 5.2. This 

is a powerful insight in which confirm that RFID technology can enable enterprise system-

wide initiatives to achieve lower cost. Important to notice that there are several interactions 

but the most important is the Avg Demand x Investment Manufacturing as shown in Figure 

5.3 and Figure 5.4. This means that when the demand is higher, even if we invest in more 

expenses for investment manufacturing, the overall system cost is reduced. 

 

 

Figure 5.114Main Effects Ploft for FI 
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Figure 5.215Pareto Chart of Standardized Effects for FI 

 

 

Figure 5.316Half Normal Plof the Standardized Effects for FI 
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Figure 5.417Normal Plot of the Standardized Effects for FI 

 

Analysis of Factorial and Interactions with No RFID  

Demand is the main factor impacting the system cost. Over this condition, the major cost 

are part of the variable cost of handling the demand. When the capital and setup cost is 

low, NO configuration is suitable to attain the lowest cost over the rest of the RFID 

configuration. As we can see in Figure 5.5, other factors do not provide a major impact to 

the system cost. Nevertheless, they still are significant factors such as leadtime collection 

and leadtime delivery as Figure 5.6 shows. Thus, under these systems its is reasonable to 

expect that leadtimes will be the important factors after the demand. High leadtime delivery 

provides a significant cost. Leadtime collection reflect the phenomenom of leadtime 

paradox in which high collection leadtime, lower cost. This phenomenon has been 

presented in previous research. Please refer to the literature review on Chapter 2. 
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Figure 5.518Main Effects Ploft for NO 

 

 

Figure 5.619Pareto Chart of Standardized Effects for NO 
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Figure 5.7 Half Normal Plof the Standardized Effects for NO 

 

 

Figure 5.820Normal Plot of the Standardized Effects for FI 
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5.4 Summary 

This chapter presented the basic RFID information-sharing coordination. The chapter 

defined the five RFID coordination: No RFID (NO), RFID Non-Integrated (NI), RFID 

Partial-Integrated Downstream (PID), RFID Partial-Integrated Upstream (PIU), and RFID 

Full-Integrated (FI). A simulation analysis was performed over 128 supply chain scenarios 

testing 12 independent variables in which system cost was the depended variable. Multiple 

Comparison Test, Regression Analysis with ANOVA, and Interaction Analysis were 

conducted. From the results, we can describe the following insights: 

 From the 128 supply chain scenarios, two coordination provided the best 

performance. FI provided 37 scenarios with the lowest system cost meanwhile NO 

provided 33 scenarios with the lowest system cost from the 128 scenarios. This 

provide a good managerial insight in which using basic RFID information-sharing 

coordination there are two coordination that can achieve the best performance over 

cost. One of them is FI in which both demand and inventory information is shared 

helping to attain the best performance.  This allows the players to undergo green 

initiatives with the best results. In the other hand, there were supply chain scenarios 

were RFID was not required. 

 NI had no scenario with the lowest system cost. This is an important managerial 

insight that shows that even though there can be operational benefits inside the 

centralized warehouse of each player, system cost benefits are not achieved if there 

is no sharing of information. Many papers and research focus on the centralized 

benefits of RFID. But few papers study the impact of RFID on decentralized 

systems. These results show that considering decentralized supply chains, it is 

needed information sharing to achieve higher results. The question is then, what 

type of information. Based on our results, this will depend on the information-

sharing coordination. Below the analysis of PID and PIU. 

 PID had no scenario with the lowest system cost.  This reflects that this basic RFID 

coordination provides higher benefits for information sharing from inventory such 

as the one presented in the PIU case. Sharing only demand information from 

manufacture under this basic RFID coordination do not provide the best system 

cost performance. More models have to be explore to find the best inventory and 

production decisions to benefit from the demand information. 
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 From the PIU, we see that it achieved 4 scenarios with the lowest system cost and 

there were 21 cases with the FI coordination that PIU was the lowest. This shows 

that the basic RFID coordination provides better benefits if it is shared inventory 

information rather than demand information alone. 

 We address the results from the FI that provided the highest performance. 

Companies with high cost structure benefits from reverse logistics initiatives. The 

more the collection investment from the manufacture and recycled material, better 

the overall system cost. However, to achieve its fullest potential, RFID Full 

Integration (FI) is necessary to provide the best information-sharing coordination 

among players. Three factors are important to monitor such as standard deviation 

of collection leadtime, investment collection of the manufacturer and the recycled 

material supplier. These three factors have the highest impact on the system cost. 

 The system profile for FI based on the statistical analysis are the following. Main 

Effects are investment collection from manufacturer, investment collection from 

green supplier, setup cost manufacturer and average demand. The interaction 

effects with the highest impact on cost are average demand x investment collection 

manufacturer, average demand x cap end-user market, and leadtime collection x 

standard deviation collection. 

 The managerial insights for FI are the following. RFID FI is preferred since it 

reduces cost over green investments. Enterprises that invest in environmental 

practices will have a higher cost (consistent with literature). It is recommended to 

use RFID FI to manage higher flow of returns (due to green investment) and the 

complexity involved. In addition, RFID FI mitigates cost over high setup cost. 

Enterprises with high manufacturer cost can use RFID FI to compensate with better 

coordination and reduce other cost such as ordering cost (due to higher returns). 

Also, RFID FI is recommended over fast consumer goods. Systems with high 

demand rotation can use RFID FI to have real-time information and enhanced 

reorder points to reduce cost. 

 Finally, we address the results under NO was the best alternative. Companies does 

not need to undergo RFID implementation with system structure with lean cost 

structure in which the main variable cost is the cost associate with the demand 
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variable. Main factor to consider are delivery leadtime, leadtime production, and 

setup cost green.  

 The system profile for NO based on the statistical analysis are the following. Main 

Effects are average demand, leadtime collection, leadtime delivery and setup cost 

raw. The interaction effects with the highest impact on cost are leadtime collection 

x leadtime Production and average demand x leadtime production. 

 The managerial insights for NO are the following. NO is suitable for systems with 

low cost structure. If the enterprise is able to managed a low cost structure, then it 

is preferable to use NO. Average Demand is the primary impactor on cost. Given 

the efficient operations, average demand is the highest impactor for the overall 

system cost. In addition, leadtimes plays a key role over these systems. Given the 

low cost structure, the key factors to manage will be the different leadtimes and 

there interactions. Leadtime production join with high leadtime collection or high 

average demand can impact the overall system. Also, setup cost raw as the main 

cost impactor. The raw-material supplier needs to monitor the setup cost given the 

impact on cost. 

 

We have defined managerial insights that can improve the system performance. However, 

as the results shows, there is still opportunity for improve the coordination since not all the 

instances, the RFIDs coordination were better than the NO RFID.  In addition, over the 

basic RFID information-sharing coordination, inventory information has higher impact 

than demand information alone. The next chapter will present an improvement over the 

inventory policies and RFID coordination. 

 



78 

 

7
8
 

CHAPTER 6. ADVANCED RFID INFORMATION-SHARING COORDINATION 

This chapter develops the new RFID information-sharing coordination. The chapter begins 

with an introduction in Section 6.1. In Section 6.2, our approach is presented. Numerical 

experiments are shown in Section 6.3, and summary in Section 6.4. 

 

6.1 Introduction 

The simple RFID information-sharing coordination from previous Chapter 5, utilized basic 

inventory policies from literature. Even though improvements were achieved, it is 

necessary better modeling to increase overall system performance. In addition, we found 

that inventory information provided better performance compared to demand information 

if shared alone. We need to continue exploring models that provide better performance 

with demand information.  

 

Previous model used one inventory position to determine when to order. For this chapter, 

we are going to expand, from previous centralized reverse logistics models, the parallel 

inventory models which have two inventory positions to our decentralized green supply 

chain. From our results, splitting the inventory positions for raw and recycled material 

separately help reduced system cost as well as to increase demand and returns. This is part 

of the novelty of our research in which we propose a centralized model to be used over a 

decentralized supply chain with reverse logistics. 

 

The objective of this chapter is to provide more guidelines on the different types of RFID 

coordination possible (now with an improved model) to achieve higher value on 

information sharing. The results quantitatively corroborate the notion of improvements 
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with better coordination among the supply chain and that sharing information alone is not 

enough to attain the highest performance. 

 

6.2 Approach 

We delineate the five advanced RFID information-sharing coordination. Table 5.1 shows 

the summary of the advanced RFID information-sharing coordination. 

 

Table 6.120Summary of RFID Information-sharing coordination 

RFID 

Configuration 

Inventory 

Policy 

Information 

Sharing 
Entities Sharing 

Type of 

Information 

Inventory Decision 

Enhanced 
Nomenclature 

NO Periodic N.A. None None None None 

NI Continuous No None None None None 

PID Continuous Yes Downstream Demand 

Reorder point of 

recycled-material 

supplier 
gr

 

Reorder point of 

raw-material 

supplier 
rr
 

Order Quantity of 

raw-material 

supplier 
rQ

 

PIU Continuous Yes Upstream Inventory 

Inventory position 

of manufacturer to 

produce 

r

mX
 

Inventory position 

of raw-material 

supplier 
rX
 

FI Continuous Yes 
Dowsntream 

& Upstream 

Demand & 

Inventory 

Reorder points, 

order quantities, and 

inventory positions 

�̅�𝑔,  

�̅�𝑟 , 
�̅�𝑟, 

�̅�𝑚
𝑟 , 

�̅�𝑟 

 

6.2.1 No RFID Coordination 

There is no implementation of RFID tags and RFID readers in the warehouse of each of 

the players. Thus, the entities have to check their inventory under a periodic review 

inventory policy. This means that the players will not be able to check their on-hand 

inventory in real-time. Further, since there is no integration of the EPC Global Network, 
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the players are not able to share information such as demand or inventory levels. Table 6.2 

shows the inventory positions and inventory decision for the No RFID coordination. As a 

reference, this model is similar to Section 5.2.1 which serves as a baseline to compare the 

basic and advanced coordination. 

 

Table 6.221Inventory Position and Decision with No RFID Coordination 

Player Inventory Position Inventory Decision 
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The manufacturer has only one inventory position 𝑋𝑚. If the inventory position 𝑋𝑚 is less 

than or equal to the reorder point 𝑠𝑚 , and there is enough on-hand inventory for the green 

supplier𝐼𝑔 ≥ (𝑆𝑚 −  𝐼𝑚), then the manufacturer orders to the green supplier 𝑄𝑚
𝑔

= (𝑆𝑚 −

 𝐼𝑚). Otherwise, the manufacturer orders to the raw-material supplier 𝑄𝑚
𝑟 = (𝑆𝑚 −  𝐼𝑚). 

The recycled-material supplier collects returns 𝑅 whenever its inventory position is less 

than or equal to its reorder point, 𝑋𝑔 ≤  𝑠𝑔. The raw-material suppliers orders 𝑄𝑟 = (𝑆𝑟 −

 𝐼𝑟) whenever its inventory position is less than or equal to its reorder point, 𝑋𝑟 ≤ 𝑠𝑟. 
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6.2.2 RFID Non-Integrated Coordination 

The players in the supply chain have RFID implemented in their warehouse. Each player 

has the RFID tags in their inventories and RFID readers. This implementation enables the 

players to change from a periodic review to a continuous review. The change in policy 

signifies real-time monitoring allowing to be better prepared to satisfy demand over 

changes in the reverse channel (e.g., stochastic returns and collection leadtimes). Even 

though the players have installed RFID in their warehouses, they have not performed any 

integration to exchange information through the EPC Global Network. Therefore, no 

coordination is made to enhance inventory policies.  

 

Table 6.322Inventory Position and Decision with RFID Non-Integration 

Player Inventory Position Inventory Decision 

Manufacturer 
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From previous inventory policies on reverse logistics, authors introduced two inventory-

positions models to analyze separately the procurement decisions on when to request 

production (e.g., raw-materials) or when to request returns (e.g., recycled materials). From 

these models, the separate or parallel decisions in the inventory models of reverse logistics 

provided better performance than regular one inventory-position models (Kiesmüller, 

2003; Teunter et al., 2004). However, this parallel decision was modeled in a centralized 
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version in which the manufacturer has the complete visibility of the warehouse, thus 

visibility from the serviceable inventory as well as returns inventory. In previous Chapter 

5, we defined the inventory decisions on a decentralized supply chain with reverse logistics 

operations. Now, we extend this work and define different kind of coordination with two 

inventory positions. 

 

The manufacture has two-inventory position, one to trigger orders to the recycled-material 

supplier 𝑋𝑚
𝑔

 and one to trigger orders to the raw-material supplier 𝑋𝑚
𝑟 . The different is that 

to request green, we take outstanding raw-materials orders up-to the collection leadtime 

𝐿𝑇𝑔 . Whereas, to trigger orders to the raw-material supplier, we take outstanding raw-

materials orders up-to the delivery leadtime to the manufacturer 𝐿𝑇𝑚. Further, there are 

two reorder points. If the inventory position to produce is less than or equal to the reorder 

point to produce 𝑋𝑚
𝑟 ≤  𝑟𝑚𝑟, then order to the raw-material supplier. This 𝑟𝑚𝑟 is equal to 

the 𝑠 in the No RFID case, 𝑟𝑚𝑠 = 𝑠. Similar, if the inventory position to recycle is less than 

or equal to the reorder point to recycled 𝑋𝑚
𝑔

≤  𝑟𝑚𝑔, then order to the recycled-material 

supplier. The recycled-material supplier has a similar inventory position and policy than 

the NO RFID, just in a continuous review. The raw-material supplier has a similar 

inventory position and policy than the No RFID case, but the order quantity is optimal such 

as 𝑄𝑟 given the continuous review policy. 

 

6.2.3 RFID Partial-Integrated Downstream Coordination 

The players in the RFID Partial-Integrated Downstream (PID) coordination have installed 

the RFID components in their warehouse and are able to monitor their inventory in real-

time. In addition, the players have performed partial integration in the sense that now the 

downstream player (i.e., manufacturer) will provide value-information to the suppliers. The 

manufacturer will exchange demand information to the suppliers through the EPC Global 

Network. From this, the recycled-material supplier is able to enhance its reorder point. The 

raw-material supplier is able to enhance its reorder point as well as its order quantity. 
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Table 6.423Inventory Position and Decision with RFID Partial-Integrated Downstream 

Player Inventory Position Inventory Decision 

Manufacturer 
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Since the manufacturer is the one that is providing the information, the enhancements in 

the inventory will be in the suppliers. Now, the recycled-material supplier calculates an 

enhanced reorder point �̅�𝑔 given that the reorder point depends on demand information. 

Therefore, the recycled-material supplier instead of using historic orders from the 

manufacturer, it will use real demand information. Similar, the raw-material supplier 

calculates an enhanced reorder point �̅�𝑟  and it calculates an enhanced optimal order 

quantity �̅�𝑟 since this information depends on the demand.  

 

6.2.4 RFID Partial-Integrated Upstream Coordination 

The players are able to have a continuous review inventory policy and exchange 

information through the EPC Global Network. In this case, the suppliers are the ones who 

share information such as inventory levels. The manufacturer is able to read the on-hand 

inventory from both suppliers. In addition, the raw-material supplier is also able to count 

the recycled-material on-hand inventory to calculate an enhance inventory position. 
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Table 6.524Inventory Position and Decisio with RFID Partial-Integrated Upstream 

Player Inventory Position Inventory Decision 

Manufacturer 
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The manufacturer, in order to request production to the raw-material supplier when it is 

just strictly necessary, will count the on-hand inventory of the recycled-material supplier 

𝐼𝑔in its inventory position to produce �̅�𝑚
𝑟 . Further, the raw-material supplier acts as an 

alternative supplier in the case there is not enough returns on the green supplier’s inventory. 

Therefore, the productions depend on the on-hand inventory of the recycled-material 

supplier. The raw-material supplier will then include on-hand inventory of the recycled-

material supplier in its inventory position �̅�𝑟. 

 

6.2.5 RFID Full-Integrated Coordination 

In this case, all the entities have installed RFID elements in their warehouses and also all 

the entities are sharing information. This coordination is the highest level of integration. 

The manufacturer share demand information to the suppliers and supplier share their on-

hand inventory. 
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Table 6.625Inventory Position and Decision with RFID Full-Integrated 

Player Inventory Position Inventory Decision 

Manufacturer 

 


mLT

i

g
mm

g
m itQtIMRtX

1
)()(*:)(

 

 


gLT

i

r
m itQ

1
)(

)(*)(*:)( tIMRtIMRtX gm

r
m 

 

 


mm LT

i

r
m

LT

i

g
m itQitQ

11
)()(  





 


Otherwise

rtXiftQ
tQ mg

g
mmg

m
0

)()(
)(

 





 


Otherwise

rtXiftQ
tQ mr

r
mmr

m
0

)()(
)(

  

Recycled-material 

supplier  


gLT

iggg itRCtBtIMRtX
1

)()()(*:)(  


 


Otherwise

rtXifCIERC
tQ gg

g
0

)(),(
)(  

Raw-material 
supplier 

)(*)(*:)( tIMRtIMRtX grr 
 

 


LTr

i rr itQtB
1

)()(  

 


Otherwise

rtXiftQ
tQ

rrr
r

0

)()(
)(  

 

In this integration, the manufacturer has an enhanced inventory position to produce �̅�𝑚
𝑟 . 

The recycled-material supplier has an enhanced reorder point �̅�𝑔. And the raw-material 

supplier has an enhanced inventory position �̅�𝑟, a reorder point �̅�𝑟, and a optimal quantity 

�̅�𝑟. 

 

6.3 Numerical Experiments 

We define the simulation, design of experiments and results from the advanced RFID 

coordination study in the following sections. 

 

6.3.1 Simulation Approach and Design of Experiment 

The simulation methodology is similar as in Chapter 5. The simulation model from Chapter 

5 had one process code to simulate the manufacturing inventory positions and decisions. 

However, the model for the advanced have two separate and independent process codes to 

simulate manufacturing inventory positions and decisions for the recycled materials and 
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for the raw materials. This independent process code was built over the four RFID 

coordination NI, PID, PIU and FI. 

 

6.3.2 Results 

6.3.2.1 Multiple Comparison Test  

Table 6.7 to 6.9 shows the results from the Multiple Comparison Test (MCT) over the 

advanced RFID Information-sharing coordination. 

 

Table 6.726Multiple Comparsion Test Results – One Statistically Different Mean 

Analysis NO NI PID PIU FI 
Total Scenarios with One Mean 

Statistically Different 

# of scenarios 

statistically lower that 

the 4 rest RFID 

Coordination 

9 0 55 0 0 64 

 

Table 6.827Multiple Comparsion Test Results – Two Statistically Different Mean 

RFID Coordination Means with 

Lowest System Cost 

# of scenarios been the lowest 

that the rest 

NI-PID 8 

PID-FI 40 

Total 48 

 

Table 6.928Multiple Comparison Test Result – All Means 

# of Means 

Statistically Lower 
# of Scenarios % Weight 

1 64 50% 

2 48 38% 

3 16 13% 

4 0 0% 

Total 128 100% 

 

From the results, there are two coordination that provided the lowest mean returns. PID 

provided the best results with 55 scenarios with the lowest mean. As described in the 
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results from Chapter 5, PID did not had any scenario with the lowest system cost. Now, 

the advanced RFID coordination enable to receive higher benefits from the demand 

information. In addition, 9 scenarios from NO achieved the lowest cost.  

 

These result provides an interesting managerial insight. The companies that can 

implement the parallel inventory positions presented in Section 6.2, are able to achieve 

lower system cost if the manufacturer is capable of sharing demand information. This 

means that it is not necessary under these scenarios to implement the full integrations 

with the recycled-material and raw-material supplier. This is a good insight for 

practitioner since implementing more players is practice could be more difficult in terms 

of organizational and IT structure. 

 

We can also see from Table 6.8 that NI-PID has 8 scenarios and PID-FI has 40 scenarios 

with the lowest system cost. NI is now a better coordination with parallel inventory 

positions. Also, FI appeared as an additional alternative for 40 cases. 

 

6.3.2.2 Regression Analysis Test 

The results presented on Table 6.10 shows higher Multiple R, R Square and adjusted R 

Square above 94%. This shows that our model, in this case PID, is providing the adequate 

factors and elements to drive to our recommendations. Similar case, ANOVA shows that 

there are significant factors impacting the supply chain. From Table 6.11, we see that the 

main factors impacting the overall system cost. Two are related with demand such as the 

average demand and standard deviation of the demand; also, related with environment 

factors are the standard deviation collection leadtime and the average leadtime collection. 

It is recommendable to implement PID in these system conditions since they are highly 

sensitive to demand and in the PID configuration the main information that is shared is 

demand. In addition, this provides additional motivation to implement reverse logistics 



88 

 

8
8
 

using PID since even over high collection leadtime and high standard deviation leadtime, 

the PID configuration is able to provide the lowest system cost.  

 

We saw leadtime delivery and setup cost of manufacturer with negative coefficient. The 

R Square analysis provided a higher value of above 94%. Also, the factors with the 

highest impact are the ones below. As we saw in Chapter 2, in literature it was been 

presented the leadtime paradox which have lower results with higher leadtime. In 

addition, these results are over the total system cost, not particularly for the manufacturer 

cost that in the results should have an impact to the cost. Overall, this set of results are the 

combinations of all the dynamics that are happening in the system. 

 

Table 6.1029Regression Statistics - PID 

Statistic Value 

Multiple R 97% 

R Square 94% 

Adjusted R Square 94% 

Standard Error 420.67 

Observations 5,500 

 

Table 6.1130ANOVA Statistics - PID 

Statistic df SS MS F Significance F 

Regression 12 15,470,803,024.96 1,289,233,585.39 7,947.49 0 

Residual 5,488 971,189,580.21 176,966.03   

Total 5,500 16,441,992,605.96       

 

Table 6.1231Regression Factors and Coefficients - PID 

Factors Coefficients Standard Error tStat P-value 

Intercept (1,824) 82.94 -21.99 8.64E-103 

Avg Dmd - 0.00 65,535.00 - 

Std Dev Dmd 232 0.81 285.94 - 

LT Delivery (17) 2.02 -8.63 0.00 

LT Collection 149 4.13 35.95 0.00 

LT Production 11 1.93 5.56 0.00 

Setup Man (7) 1.42 -5.10 0.00 

Setup Green (4) 5.89 -0.67 0.50 

Setup Raw 3 2.33 1.22 0.22 

Cap EUM 2 0.38 6.34 0.00 

Inv Collection Man 8 2.90 2.69 0.01 

Inv Collection Green 1 2.28 0.66 0.51 

Std Dev Collection Green 551 24.57 22.40 0.00 
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We continue exploring the 40 scenarios were PID and FI provided the best performance 

results as noted in Table 6.7. From the Regression analysis, we obtained Multiple R, R 

Square and adjusted R Square above 96%. This suggest that the model is providing the 

factors that explain our observable variable which is the system cost. The ANOVA 

demonstrations that there are significant variables impacting the results. From the 

regression analysis, it demonstrates that the factor with highest impact is the Standard 

deviation leadtime from collection. If we compare the regression coefficient from Table 

6.11 versus Table 6.14, we see that the Coefficient in Table 6.14 are higher. We can infer 

that in system where there is more stochastic variability, it is advisable to use PID as well 

as FI. Also, the other factors with high Coefficient is standard deviation. Again, PID and 

FI are suitable RFID configurations when there is high variability on the stochastic factors 

such as standard deviation of demand and standard deviation leadtime from collection. 

 

Table 6.1332Regression Statistics – PID-FI 

Statistic Value 

Multiple R 98% 

R Square 96% 

Adjusted R Square 96% 

Standard Error 335 

Observations 4,000 

 

Table 6.1433ANOVA Statistics – PID-FI 

Statistic df SS MS F Significance F 

Regression 12 9,878,377,969 823,198,164 7,991 0 

Residual 3,988 448,185,844 112,384   

Total 4,000 10,326,563,813       
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Table 6.1534Regression Factors and Coefficients – PID-FI 

Factors Coefficients Standard Error tStat P-value 

Intercepción  (666) 82.69 -8.05 0% 

Avg Dmd  -    0 65,535.00 - 

Std Dev Dmd  211  0.86 244.97 - 

LT Delivery  (17) 2.13 -8.13 0% 

LT Collection  21  3.75 5.70 0% 

LT Production  3  1.85 1.83 7% 

Setup Man  3  1.43 1.98 5% 

Setup Green  1  5.75 0.24 81% 

Setup Raw  (5) 2.28 -2.15 3% 

Cap EUM  2  0.37 6.17 0% 

Inv Collection Man  12  2.94 4.10 0% 

Inv Collection Green  (2) 2.22 -0.80 42% 

Std Dev Collection Green  809  37.75 21.43 0% 

 

6.3.2.3 Analysis of Factorial and Interactions 

Now, we are going to validate the main and interactions effects to gain more insights from 

the results. 

 

Analysis of Factorial and Interactions with RFID Partially-Integrated Downstream 

From Figure 6.1, we can see that average of demand and standard deviation of leadtime 

collection. Also, average leadtime collection is another main effect with an impact on 

system cost. We can see that under system with high collection leadtime and high stochastic 

variability on the collection leadtime, it is suitable to implement RFID configurations with 

demand sharing such as PID. From Figure 6.3 and 6.4, we see that there are two important 

interactions effects which are Avg Demand x Leadtime Collection and Leadtime 

Production x Setup Cost Manufacturer. The later interaction provides an important insight 

in which with high leadtime production and with high setup cost manufacturer, it is 

advisable to implement PID to overcome high system cost.  
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Figure 6.121 Main Effects Ploft for PID 

 

 

Figure 6.222 Pareto Chart of Standardized Effects for PID 
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Figure 6.323 Half Normal Plof the Standardized Effects for PID 

 

 

Figure 6.424Normal Plot of the Standardized Effects for PID 
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Analysis of Factorial and Interactions with RFID Full-Integrated  

As we can see from Figure 6.5, FI configuration is better to be implemented with industries 

with high average demand and standard deviation collection leadtime. If we compare 

Figure 6.1 versus Figure 6.5, we see that the standard deviation collection leadtime is 

higher on the scenarios were FI had better performance. This is an important insight that 

reflects the power of RFID integration. Under higher stochastic variability, it is better to 

implement Full Integration to have all information such as demand and inventory. In 

addition, interaction effects analysis provides another useful contribution in which 

Leadtime Delivery x Leadtime Production are key impactors on the system cost. This 

means that FI systems are better configurations were the raw-material supplier has a higher 

leadtime production and the manufacturer has higher leadtime delivery. 

 

Figure 6.525Main Effects Ploft for PID-FI 
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Figure 6.626Pareto Chart of Standardized Effects for PID-FI 

 

 

Figure 6.727Half Normal Plof the Standardized Effects for PID-FI 
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Figure 6.828Normal Plot of the Standardized Effects for PID-FI 

 

6.3.2.4 Basic versus Advanced RFID Coordination 

Now that we have presented both results for Basic and Advanced in Chapter 5 and Chapter 

6, respectively, we will compare the overall results from each modeling. We compare each 

RFID coordination. For this, we used Hypothesis Test comparing the two samples with 

different variance with alpha levels of 0.05. Table 6.15 shows the results. As we can see 

from the results, all P-values showed lower than 5% reflecting that there is a difference 

between the means between Basic vs Advanced RFID Coordination. This is one of the 

findings that provides novelty to our work in which there are no reach papers that we are 

aware of that analyze a decentralized supply chain with reverse logistics scenarios that 

compares not only the impact of RFID technology but how the RFID coordination among 

the partners can change their performance. It is not enough to share information, but it is 

important how this data is exchange and used. As we saw, changing the inventory decisions, 

changed the overall performance on the supply chain. We can tell based on these results 

that technology alone cannot provide the highest impact. As we saw in Chapter 5, there 

were 33 scenarios with NO as the best scenario, but with Chapter 6 in Advanced, there 

were only 9 cases. 
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Table 6.1635Basic vs Advanced RFID Coordination 

RFID 

Configuration 
Mean Variance N T-Value P-Value DF 

NI Basic 10,627 12,163,038 12,800 
103.79 0% 20,151.00 

NI Advanced 6,957 3,841,949 12,800 

PID Basic 8,691 5,424,414 12,800 
94.68 0% 23,466.00 

PID Advanced 6,275 2,911,612 12,800 

PIU Basic 8,358 31,641,739 12,800 
2.13 2% 17,452.00 

PIU Advanced 8,242 5,955,859 12,800 

FI Basic 7,075 13,391,838 12,800 
11.80 0% 19,357.00 

FI Advanced 6,644 3,691,723 12,800 

 

6.4 Summary 

Chapter 6 presented an alternative RFID Coordination approach to the one presented in 

Chapter 5. Chapter 5 used traditional production and inventory decision showed in 

literature and practitioners. This provided several scenarios in which RFID Coordination 

had better performance than NO case. However, there were 33 scenarios in which NO case 

still was better than the RFID Coordination. In Chapter 6 we proposed a novel solution 

integrating from centralized reverse logistics the concept of two inventory positions. Using 

two inventory positions, one for the raw-material supplier and one for the recycled-material 

supplier, provided parallel inventory decisions that helped the system to be more reactive 

and sensitive to changes on stochastic factors and changes in the supply chain. This is part 

of the novelty of our research that uses centralized theory into our decentralized supply 

chain with reverse logistics operations. Below the major insights found in this Chapter 6. 

 From the 128 supply, PID provided the best results with 55 of the cases with the 

lowest system cost. This finding provides alternatives to the companies. If the 

companies can obtain reliable demand information and at the same time implement 

the two inventory positions, then they can implement PID just sharing demand 

information through the supply chain. This is an alternative from the Basic RFID 

in which most of the cases, the supply chain needed to implement FI which can 

mean higher implementation cost since inventory from the upstream and demand 

from the downstream needed to be shared. 
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 FI provided also best performance alongside with PID in 40 scenarios. FI similar 

to basic continue to be a relevant alternative to reach to the lowest system cost. 

 Important to notice that NO provided just 9 scenarios as the lowest compared to 33 

in the Basic RFID analysis from Chapter 5. This means that the Advanced RFID 

Configuration provided better performance that the Basic RFID Configuration. 

 PID cases provided the best alternative in 55 scenarios. We performed regression 

analysis to understand the impact of the independent factor. It is suitable to 

implement PID were we have a supply chain system with higher average of demand 

and standard deviation of demand. We can see that the industries such as fast 

consuming goods can beneficiate from this implementation. In addition, two green 

factors provided to be significant under these scenarios. The average leadtime of 

the collection investment with its standar deviation impacts dramatically the overall 

system cost. For these reasons, PID is the best RFID configuration which have high 

demand, high demand variability, high collection leadtime and high variability. 

This can be useful insights for companies with consumer product in which the 

reverse logistics is not mature enough and high variability is presented. 

 The system profile for PID based on the statistical analysis are the following. The 

main effects are average demand, leadtime collection and leadtime delivery. The 

interaction effects that have the highest impact on cost are average demand x 

leadtime collection, leadtime production x setup cost manufacturer, and leadtime 

delivery x investment collection manufacturer. 

 The managerial insights for PID are the following. RFID PID with parallel IP 

provides more sensitivity to demand. With the advanced model, RFID PID is 

capable of coordinate better the system. Parallel inventory positions with demand 

sharing enables the system to reduce overall system cost and take advantage of 

higher demand visibility. Another key insight, RFID PID is as a solution to avoid 

RFID FI investment. The use of parallel inventory position with RFID enable the 

system to use demand and achieve the best performance. Other players are not 

required to implement RFID, reducing implementation cost. Also, leadtime are key 

factors to control. Leadtimes are the factors that can impact the overall cost system. 

 We study the 40 scenarios were FI provided the best performance. System in which 

the standard deviation of the collection leadtime is very high, it is necessary to 
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implement FI. In addition, the system has higher standard deviation of the leadtime 

delivery. Under higher stochastic variability, the analysis shows that higher RFID 

coordination enables to provide the lower system cost. 

 The system profile for FI based on the statistical analysis are the following. The 

main effects are average demand, standard deviation collection leadtime, and 

leadtime delivery. The interactions effects are leadtime delivery x leadtime 

production, leadtime delivery x investment collection green, and average demand 

x leadtime production.  

 The managerial insights for FI are the following. RFID FI is suitable for high 

variability on reverse operations. Over system with high variability, it is not enough 

to share demand information. Full-Integration is necessary to reduce overall cost. 

In addition, RFID FI achieves higher demand rotation. Similar to PID, RFID FI 

enables the system to attain higher demand with the lowest system cost.  Also, 

leadtime delivery is a key factors that can impact the overall cost system. 

 We compared the Basic vs Advanced RFID coordination. We performed the 

hypothesis test to check if the overall means from Basic vs Advanced provided a 

different between NI, PID, PIU and FI. It was shown that there is enough statistical 

evidence that corroborate that Basic vs Advanced means are different. Therefore, 

we see and can infer that Advanced modeling.  

 Companies that wants to implement green supply chain system can use RFID 

technology. But as the results shows, Advanced RFID information-sharing 

coordination will provided better benefits. In addition, particular insight over 

stochastic factors such as collection leadtime and standard deviation of demand will 

motivate to integrate PID or system with higher variability FI. 
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CHAPTER 7. CONCLUSIONS 

This thesis provided new modeling to effectively manage supply chain with reverse 

logistics operations through the use of Radio Frequency Identification (RFID) information-

sharing coordination. In this chapter, we present the summary of the thesis and the future 

research direction. 

 

Chapter 1 provided the general background for the research in terms of motivations, 

benefits and challenges of environmental supply chains. Further, we introduced Radio 

Frequency Identification technologies as a prominent mechanism to improve performance 

in these supply chains. 

 

Chapter 2 defined the common literature review to develop the thesis. We presented the 

motivations and challenges of environmental supply chain adoptions. Later, the chapter 

emphasizes the importance of investigating RFID coordination methods that enable 

integration among parterns rather than just looking at the operational improvements. 

 

Chapter 3 presented the general supply chain structure. The interaction among the players, 

the leadtimes, and flow of material are defined in this chapter. In addition, we detailed the 

common environmental and economic performance measures for the thesis. Also, the 

inventory definitions were defined. A complete set of cost measures, inventories, and 

ordering decisions are described. 

 

Chapter 4 we explain that before there is a coordination, it is important to define the 

technology configurations. We presented additional references about players sharing 

information and also different RFID configuration in practice and literature. 
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We then proposed our five RFID technology configurations that considers who are the 

players, who installed the RFID technology, who shares the information and what type of 

information. This RFID configuration will help as  the base to define the RFID coordination 

with the inventory policies from Chapter 5 and 6. 

 

Chapter 5 devised the first RFID information-sharing coordination from basic RFID 

configuration and inventory policy alignments. Simulations experiment and statistical 

results helped compare the different coordination. 

 

Chapter 6 showed more alignment from the advanced (parallel) RFID information-sharing 

coordination. This new modeling provides higher performance among players. The players 

were able to have more flexibility in their inventory decisions given by the parallel 

inventory enhancement. Further, the chapter compared basic versus advanced RFID 

information-sharing coordination and results shows that the advanced coordination is much 

better than the basic RFID coordination. 

 

The future direction of the thesis is to exploring the adaptive algorithm. We desire to study 

more theoretical formulations that enable more agile and flexible supply chain. In addition, 

we want to analyze more the impact of different parameters through experimental studies. 

Preliminary experiments are presented in the following Chapter 8. 

 

In addition, we want to explore the case where the returns materials are more expensive 

than raw materials. This is an interesting topic with more barriers in order to economically 

justify the environmental initiatives. 
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CHAPTER 8. FUTURE WORK 

From previous chapter, we defined the RFID information-sharing coordination under 

specific supply chain scenarios. However, there can be changes in the supply chain where 

adaptive protocols are needed. This chapter explore for future research three adaptive 

algorithms. First, we study learning algorithms that enable identify dynamically optimal 

RFID information-sharing coordination. Second, we propose a self-adaptive protocol that 

helps the system adapt its RFID information-sharing coordination over dynamic supply 

chain environments. And third, multi-agent reinforcement learning delineates the RFID 

information-sharing coordination individually by player. 

 

This chapter initiate with an introduction of the three problems in Section 7.1 we are 

exploring. In Section 7.2, the relevant works of the problems are presented. Section 7.3 

details our proposals. Then, in Section 7.4 numerical results are presented and Section 7.5 

shows the summary. 

 

8.1 Introduction 

The players have to decide what type of RFID coordination they want to pursue depending 

on initial resources and budget constraints with the guidelines provided on Chapter 4 to 6. 

However, based on this initial decision, the players do not know what type of RFID 

information-sharing coordination is more suitable for the supply chain if it has dramatic 

change in the structure and factors. 
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To address this problem, we use the concept of reinforcement learning. The supply chain 

dynamically will learn what the best policy is. The term policy refers to the changes in the 

RFID information-sharing coordination in order to reach to the optimal RFID configuration. 

This approach will enable any supply chain in a given moment to learn and to apply the 

optimal RFID information sharing policy. 

 

In practice, it is assumed that the manager has complete information of the supply chain 

structure, cost information, and parameters to run the learning algorithm. After the learning 

algorithm is run with this available information, then the supply chain manager will have 

an optimal RFID policy which provides guidelines of the RFID implementation. 

 

The managers have already decided the RFID information-sharing coordination based on 

the managerial guidelines from Chapter 4-6, either with previous knowledge from experts 

or from the reinforcement learning approach stated above. However, the economic benefits 

from the RFID coordination can be hurt when drastic changes occur to the supply chain. 

In today’s market place, volatile business characteristics are the constant where external 

forces like competition, consumer purchase behavior, oil fluctuation, supply chain 

disruptions, and government regulations are powerful forces impacting the supply chain 

(Christopher, 2000; Yusuf et al., 2004). Therefore, our next challenge to address is what 

self-adaptive RFID information sharing protocol can be implemented to adjust to these 

dynamic business characteristics and remain economical and environmental responsible 

over volatile markets. 

 

We proposed a self-adaptive RFID information sharing protocol to manage volatile 

changes in the supply chain environment. First, the autonomic control loop from control 

theory helped us define important phases in the self-adaptive algorithm such as collect, 

analyze, decide, and act. In the collect phase, the system measures cost performance and 

supply chain characteristics.  Then, the analyze phase enables the system to assign 

performance and policy points. For example, the current RFID integration receives positive 

or negative points based on the previous cost performance. In addition, if the supply chain 
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characteristics change (e.g., higher collection leadtime) and there is a rule that triggers the 

preference for a new RFID integration, the preferred RFID integration will be assigned a 

positive point. These rules can be obtained from either experts or simulation experiments. 

We explore a heuristic algorithm in which the system will evaluate its current state and 

choose the future state based on the total points. The algorithm chooses the RFID 

coordination for the future state that has the highest total points from the performance and 

policy points assigned in the analyze phase. This will enable the supply chain system 

remain cost efficient over changes in the supply chain selecting the most efficient RFID 

coordination in the act phase. 

 

From previous adaptive algorithm, all the players choose the same RFID information-

sharing coordination. The assumption is that a central agent is coordinating all of the 

players to achieve a system wide performance. Then, cooperation mechanisim can be 

execute with the overall system savings. However, there can be cases where the players 

desire to implement RFID coordination individually. In this case, the players are 

implementing RFID technology only if there is an economic improvement for the 

individual player. The third adaptive problem will address reinforcement learning 

algorithms in a multi-agent setting. The goal will be to have proper reinforcement learning 

algorithm to learn the RFID information-sharing coordination in the supply chain that 

provide a win-win situation for all players. 

 

8.2 Related Work 

In this section we cover three different stream of research: reinforcement learning, self-

adaptive and control theory and multi-agent reinforcement learning. This reference will 

serve as a background of the exploratory and preliminary results. 

 

The first literature that we are going to investigate is on the reinforcement learning 

algorithm. There have been some works in terms of reinforcement learning applied to 

supply chains. Kaihara (2003) presented a virtual market programming with multi-agent 
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over a supply chain. This virtual market helped solve the production allocation based on 

the interaction among the players over dynamic environments.  

 

Kim (2005) investigates two-echelon supply chain composed of one manufacturer and 

multiple retailers. The authors do not rely on statistical distribution to model the demand. 

Rather, the authors used reinforcement learning algorithm called action-value method to 

adaptively change the control parameters of the inventory policies whenever there is a 

change in demand pattern. The authors assumed to have perfect information in the entire 

supply chain.  

 

Piramuthu (2005) propose an automated supply chain configuration mechanism with the 

use of machine learning. This approach helps the supply chain re-configure itself based on 

ordering policies over dynamic scenarios. The results shows that dynamic over static 

mechanisms provided higher order fulfillment and higher profit.  

 

Ivanov et al. (2010) study the scenario of multi-structural dynamics in the supply chain. 

These dynamics in such as in functional, organizational, informational, and financial 

provides complexities to the supply chain. Moreover, this structure change dynamically 

more frequently with the insertion of electronic communication such as internet. The author 

proposed an agile supply chain management that enables execution of planning and 

operational control over dynamic multi-structural framework. This is achieved with the use 

of control theory, operations research, and agent-based modeling. 

 

These previous papers are examples of the value of analyzing dynamics policies over the 

supply chain. Few researches address the notion of technology as an enabler of higher 

integration. However, none of them study how to change the information technologies 

coordination given a specific supply chain. This chapter investigates the use of 

reinforcement learning to determine the efficient policy to determine the RFID 

information-sharing coordination over green supply chains. 
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The second literature review presented is self-adaptive and control theory. As Oreizy et al. 

(1999) define, “self-adaptive software modifies its own behavior in response to changes in 

its operating environment”. This concept of self-adaptive algorithms has grown in 

popularity over the past few years in academia and industry. Due to this new venue of 

research, many fields are contributing to the topic such as control theory, artificial 

intelligence, mobile and autonomous robots, multi-agent systems, fault-tolerant 

computing, distributed systems, self-managing systems, biology, machine learning, sensor 

networks, and others Brun et al. (2009). Below are relevant papers addressing self-adaptive 

algorithms for our research. 

 

Cheng et al. (2009) presented a comprehensive research roadmap on software engineering 

for self-adaptive systems. The authors presented four main areas of research: modeling, 

requirements, engineering, and assurance. Andersson et al. (2009) described the modeling 

dimensions of self-adaptive system. The modeling dimension can be classified in goals of 

adaptation, causes of the change, mechanisms to enable self-adaptive systems, and impact 

of the adaptation. Silva-Souza et al. (2011) studied the importance of requirements of 

adaptive systems. The authors presented an awareness requirement model with the purpose 

of explicitly defining what situations the systems need to adapt. These requirements help 

the programmer or manager define in what scenario is require the adaption. For example, 

does the adaptation need to occur during a small change? Or does the system have to adapt 

in a particular and critical behavior? Whittle et al. (2009) developed a language to address 

the uncertainty in system requirements. The language called RELAX helps identify critical 

requirements but at the same time relax other non-critical requirements in a given time. 

Brun et al. (2009) study the engineering of self-adaptive systems an argued that feedback 

loops needed to be engineering as a first order level in the model.  Hebig et al. (2010) 

present as well the necessity to have control loops as a first class element in the modeling. 

As the authors mentioned, previous methods of self-adaptive system just highlight the use 

of feedback loops, but few of them provide a detail mechanisms of how a feedback loop is 

composed of and helped the system to monitor, analyze, decide, and act. IBM’s autonomic 

model MAPE-K and Shaw’s feedback control are two good examples of self-adaptive 
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systems in which feedback loops are described in a first order model (Diao et al., 2005; 

Diao et al., 2005; Brun et al., 2009; Muller et al., 2008). 

 

As the authors mentioned above, the area of self-adaptive system is increasing and new 

models require to be formulated. In addition, few models clearly define the engineering of 

the feedback loop in a self-adaptive algorithm as a first order level. This section aims to 

provide a practical example where control theory with the use of feedback loops are clearly 

modeled and defined. Further, most of the self-adaptive theory relies on the software and 

computer domain. Our goal is to use this self-adaptive concept to our green supply chain 

problem. From our knowledge, most of the supply chain flexibility relies on agile and 

adaptive supply chain concept (Choi et al., 2001; Christopher and Towill, 2001; 

Christopher and Towill, 2002). However, few papers address a formal and quantitative 

self-adaptive protocol. We aim to provide a constructive example on how self-adaptive 

models from software engineering can be implemented in the environmental supply chain 

concepts with the use of control theory. 

 

Finally, the last literature is Multi-Agent Reinforcement Learning. As Busoniu et al. (2006) 

presented, there are different type of MARL algorithms depending on their type. For 

example, there can be cooperative, competitive, and mix MARL. In this research, we 

address the cooperative algorithm since we want to achieve collaboration between the 

agents in order to attain the highest social welfare. Most of the cooperative MARL cases 

try to maximize the total discounted rewards received from the policies. However, each 

entity has to make a specific action in order to increase the discounted rewards and there 

should be some kind of coordination between the agents.  

 

Kaelbling et al. (1996) presented one of the earliest surveys on Reinforcement Learning 

(RL). The authors defined RL “the problem faced by an agent that learns behavior through 

trial-and-error interactions with a dynamic environment”. Models covered are trading off 

exploration and exploitation, Markovian decision theory, learning from delayed 

reinforcement, and others. Giannoccaro and Pontrandolfo (2002) studied the use of 



107 

 

1
0
7
 

Markovian Decision process and reinforcement learning algorithms to coordinate the 

inventory decision policies from a supply chain with different players as suppliers, 

manufacturers, and distributors. Busoniu et al. (2006) presented a new survey based on the 

different application of multi-agent system and reinforcement learning. The author’s 

objective is to integrate the theory, issues to be addressed and future research directions. 

Chaharsooghi et al. (2008) study the use of reinforcement learning algorithm in order 

coordinate ordering policies in a supply chain with multiple levels. The RL algorithm 

objective is to minimize inventory holding cost in the supply chain. 

 

For this new research question, the problem will be addressed with reinforcement learning 

algorithms in a multi-agent setting. The goal will be to have proper reinforcement learning 

algorithm to learn the RFID information-sharing coordination in the supply chain based 

that enable cost reduction for all the players. 

 

8.3 Approach 

Based on the above literature, we present three type of preliminary approaches: Dynamic 

RFID Information-sharing coordination, Self-Adaptive RFID Information-sharing 

coordionation and Multi-agent RFID Information-sharing coordination. 

 

We begin with Dynamic RFID Information-sharing coordination. The problem that we face 

is of a supply chain that at the initial time, it has to choose a specific RFID information-

sharing coordination. However, the supply chain does not know what is the optimal RFID 

information-sharing coordination that is capable to maximize its economic performance. 

For this chapter, we use the method of reinforcement learning, especially Q-learning 

algorithm proposed by Watkins (1989). The agent applies an action given a particular state. 

The agent then evaluates the results of this action based on the immediate reward. In 

addition, the agent analyzes the delayed rewards, which are the rewards from the future 

state based on the action chosen. The agent performs this action repeatedly over all the 

states possible, and learns which action provides the highest reward, based on immediate 

and delayed reward. 
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Definition 8.1 (Q-Learning algorithm): let us consider the supply chain as an agent. This 

agent is testing different discrete, finite set called state based on a set of actions. The state 

is a controlled Markov process in which the agent is the controller. For our case, the states 

are the different types of RFID information-sharing coordination available, and the action 

is the RFID information-sharing coordination chosen from a given state. This means at the 

step 𝑛 the agent identify what is the current state 𝑥𝑛(∈ 𝑋) and then an action is made 𝑎𝑛(∈

Ω). The agent receives a reward 𝑟𝑛 in which this reward depends only on the state and 

action.  

 

The goal of the agent is then to find the optimal policy in which maximizes total discounted 

expected reward. Discounted rewards, is the reward perceived in the actions of step 𝑛 + 1. 

As Watkins and Dayan (1992), the algorithm is as follow: 

 Define the current state 𝑥𝑛 

 Choose and perform an action 𝑎𝑛 

 Detect the future state 𝑦𝑛 

 Award an immediate reward 𝑟𝑛 

 Adjust the 𝑄𝑛−1 values in terms of the learning factor 𝛼𝑛 such as: 

 

𝑄𝑛(𝑥, 𝑎) = {
(1 − 𝛼𝑛)𝑄𝑛−1(𝑥, 𝑎) +  𝛼𝑛[𝑟𝑛 + 𝛾𝑉𝑛−1(𝑦𝑛)]

𝑄𝑛−1(𝑥, 𝑎)
𝑖𝑓 𝑥 =  𝑥𝑛𝑎𝑛𝑑 𝑎 =  𝑎𝑛

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,     Eq. 7.1 

where 𝑉𝑛−1(𝑦) ≡ max 𝑏 {𝑄𝑛−1(𝑦, 𝑏)}. 

 

From the algorithm, there are two parameters that we study. First, given an action 𝑎𝑛 at 

time, this action will be then the future state 𝑥𝑛. Now, the agent have to decide what is the 

next action 𝑎𝑛+1. For this, there is a probability 𝑝 such that 0 < 𝑝 < 1. Higher 𝑝 refers to 

exploration in which the agent chooses the next action randomly. This is intended to learn 

from the most possible state-actions scenarios (exploration). However, lower 𝑝 tends to 

choose based on the optimal or higher 𝑄𝑛+1(𝑥, 𝑎). This case the algorithm will tend to 

search for the Q-value with the highest rewards (exploitation). 
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The second parameter is the delayed (discounted) reward 𝛾 such that 0 < 𝛾 < 1. Higher 

delayed reward provides more weight the future reward from 𝑄𝑛+1(𝑥, 𝑎). By the contrary, 

lower delayed reward will mostly focus on the immediate reward from the action 𝑎𝑛. 

 

We continue with Self-Adaptive RFID Information-sharing coordination. We developed 

our self-adaptive algorithm with the use of control theory. For self-adaptive algorithms, it 

is important to define the dimensions of the system that we are studying. As Cheng et al. 

(2009) mentioned, the dimensions can be described as modeling, requirements, 

engineering, and assurance. 

 

Definition 8.2 (Modeling Dimension): modeling dimensions help us define precisely the 

goals of the system, the changes that occur in the system, the mechanism that the system 

uses to adapt to these changes, and the desire effect of this adaptation. 

 

Goals 

The goals are the objective that the system wants to achieve. For our research, the goal of 

the system is to remain economically and environmentally viable over changes in the 

supply chain by the adaptability of RFID coordination. The evolution of the goal is 

considered static since they will not change over time. The flexibility of the goal is rigid in 

the sense the system must always seek to have the lower cost and higher returns as possible. 

The duration of the goal is persistent, this means that the same objective is valid for every 

period 𝑡 . The goal is multiple since it considers two objectives: economic and 

environmental goals. Further, we model these goals as independent. 

 

Table 8.136Goals Dimensions 

Goal Dimension Value 

Evolution Static 

Flexibility Rigid 

Duration Persistent 

Multiplicity Multiple goals 

Dependency Independent 
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Change 

The change dimensions refer to the supply chain characteristics that varies over time due 

to internal (e.g., setup cost) or external (e.g., government regulations) forces. This will be 

the causes of adaptation. The source of the change is internal. Specially, we analyze the 

changes of production leadtime, collection leadtime, delivery leadtime, capacity of the end-

user market, and demand. The frequency of these changes can occur either rare or frequent. 

In our study, we specify that the system have a change in its characteristics at  𝑡 = 1000. 

The supply chain system cannot anticipate these changes, therefore is unforeseen.  

 

Table 8.237Change Dimensions 

Change Dimension Value 

Source 

Production leadtime, collection leadtime, 

capacity of the end-user market, and 

demand 

Frequency Change at 1000t  

Anticipation Unforeseen 
 

Mechanisms 

These dimensions define how the system is going to adapt based on the changes presented 

in the system. For our research, the mechanisms are the five RFID information-sharing 

coordination. Our type of mechanisms is structural since the RFID technology-supply 

chain integration is going to adapt. We are modeling the mechanism the most autonomous 

possible. It is desire to have an adaptive system that identifies and reacts based on some 

rules. The rules are the part of the algorithm that needs some assistant either from experts 

or by simulation experiments. Our research defines rules based on our simulation 

experiments.  The adaptation is decentralized since it is distributed across the supply chain. 

The scope of the system is localized for each entity. Based on the adaptation, each entity 

will need to adjust its RFID technology-supply chain integration. For the research, we set 

no leadtime for the adaptation. This means the adaptation occurs instantaneously. The 

timeliness is guaranteed in the sense that the self-adaptation is reached and completed. The 
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mechanism will react as an even-trigger (i.e., whenever there is a change in the supply 

chain characteristics). 

 

Table 8.338Mechanisms Dimensions 

Mechanisms Dimension Value 

Type Structure 

Autonomy 
Autonomous with knowledge-base from simulation 

experiments 

Organization Decentralized 

Scope Local 

Duration Instantaneously 

Timeliness Guaranteed 

Triggering Event-Triggering 
 

Effects 

The main impacts on the effectiveness on the self-adaptive protocol are on cost and 

environment improvements. For us, both are critical since companies objectives are to 

decrease cost and increase environment benefits. The predictability depends on the 

knowledge base from the simulation experiments, therefore is non-deterministic. 

Currently, we are not addressing any monetary or system efforts to adjust the RFID 

integrations. Therefore, the overhead is insignificant. The self-adaptive algorithm is to be 

considered semi-resilient since it depends on the severity of the changes involved in the 

supply chain (e.g., natural disaster). 

 

Table 8.439Effects Dimensions 

Effects Dimension Value 

Criticality Critical 

Predictability Non-deterministic 

Overhead Insignificant 

Resilience Semi-resilient 

 

Definition 8.3 (Requirements Dimension): Requirements dimensions refer to the 

specification of what needs to be monitor and under what conditions needs the adaptation 

to occur. We consider important factors that can impact the performance of this green 
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supply chain. They are production leadtime, collection leadtime, delivery leadtime, 

capacity of the end-user market, and demand as described in Chapter 3. We can also 

consider monitoring other factors such as setup cost, holding cost, collection investment, 

etc. However, we are going to relax these factors in the self-adaptive algorithm. Further, 

the goal of the system is to remain economically and environmentally viable over volatile 

changes in the system. Therefore, we monitor total system cost and total returns ordered.  

 

Definition 8.3 (Modeling Dimension): As part of the Engineering dimesion, as Brun et 

al. (2009) mention, control theory and specially the use of feedback loops are principal 

elements to engineer self-adaptive systems. Most of the work has been in software system. 

Our research explorer the use of feedback loops from software system to supply chain 

applications.  In addition, we introduce a Heuristic model to make the proper decision.  

 

This is one of the first proposals that we are aware of that uses Control Theory for self-

adaptive algorithms in a green supply chain setting. Below is our self-adaptive algorithm. 
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Collect 

The collect phase includes two monitoring processes. There is monitoring process of the 

performance measures which include the total system cost sC and the total returns ordered 

r
mQ . In addition, there is the monitoring process of the supply chain characteristics. The 

system monitors different critical factors for the supply chain, in our experiment production 

leadtime rLT , collection leadtime gLT , delivery leadtime mLT , end-user market EUM , 

and mean demand D . These two monitoring processes will allow the supply chain to 

check their performance measures and see if there are any drastic changes to the system.   

 

Analyze 

The analyze phase have two processes: the performance reward process and the policy 

reward process. In the former, the total system cost is evaluate every time t . After 1t , we 

compared the total system cost from time t  to 1t . If the total system cost decreased over 

a certain threshold , then a positive performance reward 


PE  is given to the current 

RFID integration. If the total system cost increased over the threshold , a negative reward 


PE  is given to the current RFID integration.  

 

The policy reward process compares the data collected from the monitoring process supply 

chain characteristics, in our research the 5-tuples ][SCC and compared it to the 

Knowledge Base (KB) from the simulation experiments. If there is a change in the supply 

chain characteristics )1]([)]([  tSCCtSCC  and there is a rule that applies to this change

KBtSCC  )]([ , then a positive policy reward 


PO  is given to the desire RFID 

integration. Otherwise, no policy reward is given. 

 

Decide 

The states  are the five possible RFID integrations, X such that 

 FIPIUPIDNINOX ,,,,  . The current state )(t is the current RFID integration that the 
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supply chain is using. Then, the heuristic process will choose the future state that has the 

highest total reward  )(a


 POPEPE .  

 

Act 

Based on the decision from the previous phase, the supply chain will act and adapt to the 

integration selected in the decide phase. 

 

Definition 8.4 (Assurance Dimension): And finally, assurance dimesions is the validation 

of the system and constant monitoring and evaluation of the performances measures.  

 

Now, we proceed the explorartion of Multi-Agent RFID Information-sharing 

coordionation. Multi-agent Reinforcement Learning can be modeled with Stochastic 

Games (SG) also known as Markov Games. We can define SG as a tuple {X, U1, …Un, f, 

p1, …, pn}. The variable 𝑛 represents the number of agents in the system. X is the discrete 

environment in the system. Ui, is the set of action that an agent i can perform. The 

combination of all the Ui from the 𝑛 agents will give us the joint set of actions U = U1 x 

U2 x … x Un. f is the transition probability given an environment X at time t, performing 

an action U, to be in a new environment X at time t+1, f: X x U x X → [0,1]. And finally 

the reward function of the agents which is defined as pi: X x U x X → , i = 1, …, n. The 

state transitions will depend in the results from joint actions of the n agents, 𝑇 , . This 

means that the rewards will depend as well from the joint actions taken from the 𝑛 agents. 

The overall objective is to maximize the long run return. This can be done through the 

optimal-action value function (Q-function). Q-function can compute the expected return 

given a state-action pair based on a given policy ℎ. A policy ℎ describes the behavior of 

the agent in order to choose an action based on the state 𝑋.  
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8.4 Numerical Experiments 

Preliminary Experiment 8-1 

We begin the experiments analyzing the reinforcement learning algorithm with the use of 

Q-learning. Below are the details of the experiment and results. 

Design of Experiments 

We performed a simulation experiment. The experiment runs 10,000 days with 10 

replications. The supply chain structure, parameters and variables are similar to the ones in 

Chapter 5 and Chapter 6. Related with the reinforcement learning algorithm, the parameters 

of the Q-Learning algorithm are 0.80 for exploration and 0.80 for delayed reward. We test 

the Q-Learning algorithm over all the RFID information sharing strategies as mentioned in 

Definition 6.1. 

 

Numerical Results and Discussions 

As we see from Table 8.5, independently from what is the initial state, the optimal policy 

is to move to the RFID information-sharing coordination with demand information shared. 

This is supported by the results obtained in the previous chapter. This proposal provides an 

opportunity to determine what is the optimal RFID policy that is better for a given supply 

chain (i.e., given each particular run from the simulation experiment). This enables supply 

chain managers to determine optimal solutions even if they do not know a priori the best 

strategy. Now, we compare the economic performance of the Q-learning policies with the 

static policies. 
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Table 8.540 Q-Learning Results 
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Table 8.641 Dynamic Policy with NO RFID as the Initial Strategy 

Run 

 

Strategy for Static: Strategy for Q-Learning: 

∆ % 

 

NO Follow Q Policy 

Total System Cost  

(Static) 

Total System Cost 

 (Dynamic) 

1       11,507,737          8,547,052  -26% 

2       17,276,250        13,399,479  -22% 

3       11,470,785          8,602,007  -25% 

4       17,100,652        13,459,810  -21% 

5       11,299,699          8,554,310  -24% 

6       17,431,901        13,537,443  -22% 

7       11,241,629          8,586,888  -24% 

8       17,242,544        13,597,188  -21% 

9       11,499,889          8,602,437  -25% 

10       17,286,601        13,311,767  -23% 

11       11,527,041          8,677,681  -25% 

12       17,192,678        13,399,295  -22% 

13       11,425,676          8,579,858  -25% 

14       17,473,216        13,369,509  -23% 

15       11,358,262          8,620,954  -24% 

16       17,360,960        13,431,119  -23% 

17       11,359,407          8,596,562  -24% 

18       17,260,791        13,491,630  -22% 

19       11,315,234          8,691,499  -23% 

20       17,061,084        13,601,108  -20% 

21       11,184,956          8,666,892  -23% 

22       17,456,964        13,661,173  -22% 

23       11,093,462          8,688,365  -22% 

24       17,282,548        13,661,009  -21% 

25       11,401,171          8,660,054  -24% 

26       17,232,705        13,407,510  -22% 

27       11,375,748          8,702,199  -24% 

28       17,123,906        13,477,167  -21% 

29       11,321,035          8,631,930  -24% 

30       17,525,615        13,559,230  -23% 

31       11,215,353          8,705,291  -22% 

32       17,425,062        13,676,120  -22% 

From the results, 100% of the runs the dynamics strategy performed better than the static 

strategy. This means that the Q-Learning algorithm successfully provide the optimal value 

in all the cases. 
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Table 8.742 Dynamic Policy with RFID NI as the Initial Strategy 

Run 

 

Strategy for Static: Strategy for Q-Learning: 

∆ % 

 

NI Follow Q Policy 

Total System Cost 

 (Static) 

Total System Cost 

 (Dynamic) 

1         9,359,118          8,547,052  -9% 

2       14,198,383        13,399,479  -6% 

3         9,475,064          8,602,007  -9% 

4       14,389,783        13,459,810  -6% 

5         9,581,044          8,554,310  -11% 

6       14,461,048        13,537,443  -6% 

7         9,614,174          8,586,888  -11% 

8       14,574,860        13,597,188  -7% 

9         8,858,950          8,602,437  -3% 

10       13,226,305        13,311,767  1% 

11         8,872,462          8,677,681  -2% 

12       13,347,353        13,399,295  0% 

13         8,903,435          8,579,858  -4% 

14       13,542,772        13,369,509  -1% 

15         8,980,932          8,620,954  -4% 

16       13,552,750        13,431,119  -1% 

17         9,459,254          8,596,562  -9% 

18       14,278,993        13,491,630  -6% 

19         9,621,931          8,691,499  -10% 

20       14,420,931        13,601,108  -6% 

21         9,567,847          8,666,892  -9% 

22       14,475,208        13,661,173  -6% 

23         9,660,949          8,688,365  -10% 

24       14,681,928        13,661,009  -7% 

25         8,845,476          8,660,054  -2% 

26       13,301,897        13,407,510  1% 

27         8,909,434          8,702,199  -2% 

28       13,319,003        13,477,167  1% 

29         8,926,418          8,631,930  -3% 

30       13,548,891        13,559,230  0% 

31         9,018,091          8,705,291  -3% 

32       13,625,524        13,676,120  0% 

In this case, with the initial state as NI, 81% of the runs the dynamic strategy performed 

better than the static strategy. 
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Table 8.843 Dynamic Policy with RFID PID as the Initial Strategy 

Run 

 

Strategy for Static: Strategy for Q-Learning: 

∆ % 

 

PID Follow Q Policy 

Total System Cost 

(Static) 

Total System Cost 

 (Dynamic) 

1         9,211,967          8,547,052  -7% 

2       13,649,314        13,399,479  -2% 

3         9,281,577          8,602,007  -7% 

4       13,698,839        13,459,810  -2% 

5         9,206,662          8,554,310  -7% 

6       13,668,747        13,537,443  -1% 

7         9,278,122          8,586,888  -7% 

8       13,750,738        13,597,188  -1% 

9         8,741,244          8,602,437  -2% 

10       12,870,546        13,311,767  3% 

11         8,747,536          8,677,681  -1% 

12       12,938,278        13,399,295  4% 

13         8,695,494          8,579,858  -1% 

14       12,890,764        13,369,509  4% 

15         8,745,398          8,620,954  -1% 

16       12,996,218        13,431,119  3% 

17         9,290,868          8,596,562  -7% 

18       13,777,118        13,491,630  -2% 

19         9,342,945          8,691,499  -7% 

20       13,817,144        13,601,108  -2% 

21         9,320,954          8,666,892  -7% 

22       13,773,264        13,661,173  -1% 

23         9,369,724          8,688,365  -7% 

24       13,899,507        13,661,009  -2% 

25         8,753,154          8,660,054  -1% 

26       12,984,809        13,407,510  3% 

27         8,786,693          8,702,199  -1% 

28       13,009,231        13,477,167  4% 

29         8,755,100          8,631,930  -1% 

30       13,048,183        13,559,230  4% 

31         8,819,332          8,705,291  -1% 

32       13,079,860        13,676,120  5% 

The table 8.9 shows that when the initial strategy is PID, there are 75% cases in which the 

dynamic strategy is better than the static strategy. We can see that PID is a good RFID 

strategy since it provides 25% of the cases better results than RFID Full-Integrated. 
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Table 8.944Dynamic Policy with RFID PIU as the Initial Strategy 

Run 

 

Strategy for Static: Strategy for Q-Learning: 

∆ % 

 

PIU Follow Q Policy 

Total System Cost 

 (Static) 

Total System Cost 

 (Dynamic) 

1       10,465,807          8,547,052  -18% 

2       15,497,314        13,399,479  -14% 

3       11,308,361          8,602,007  -24% 

4       16,445,665        13,459,810  -18% 

5       10,509,355          8,554,310  -19% 

6       15,681,596        13,537,443  -14% 

7       11,304,108          8,586,888  -24% 

8       16,562,282        13,597,188  -18% 

9       10,398,959          8,602,437  -17% 

10       15,336,229        13,311,767  -13% 

11       11,301,842          8,677,681  -23% 

12       16,194,518        13,399,295  -17% 

13       10,422,604          8,579,858  -18% 

14       15,554,859        13,369,509  -14% 

15       11,284,884          8,620,954  -24% 

16       16,399,567        13,431,119  -18% 

17       10,525,079          8,596,562  -18% 

18       15,616,118        13,491,630  -14% 

19       11,389,415          8,691,499  -24% 

20       16,510,531        13,601,108  -18% 

21       10,498,481          8,666,892  -17% 

22       15,836,099        13,661,173  -14% 

23       11,382,637          8,688,365  -24% 

24       16,707,881        13,661,009  -18% 

25       10,457,967          8,660,054  -17% 

26       15,383,685        13,407,510  -13% 

27       11,391,263          8,702,199  -24% 

28       16,280,609        13,477,167  -17% 

29       10,526,173          8,631,930  -18% 

30       15,620,794        13,559,230  -13% 

31       11,426,915          8,705,291  -24% 

32       16,502,958        13,676,120  -17% 

 

If the system initiates with PIU, then 100% of the cases the dynamic strategy performed 

better than static. The Q-Learning algorithm found the optimal strategy in all the runs. 
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Preliminary Experiment 8-2 

Design of Experiments 

Now, we explorer the impact of two important parameters in Q-Learning: exploration and 

delayed reward parameters. For this, we present the average of the 32 runs. Table 8.10 

shows the Average Q-Matrix with 𝑝 = 0.20 and 𝛾 = 0.80.  

 

Results and Discussions 

Table 8.1045 Exploration (0.20) and Delayed Reward (0.80) Experiments 

Avg. Q-Matrix NO NI PID PIU FI 

NO 1.0410 1.0161 1.0050 1.0122 7.9588 

NI 1.0770 1.1383 1.3220 1.0164 2.1615 

PID 1.0045 1.2093 1.0413 1.1672 4.3645 

PIU 1.0180 1.0372 1.1253 1.0708 9.4159 

FI 1.5136 2.0768 2.0096 1.8840 157.6164 

Total Average 1.1308 1.2955 1.3007 1.2301 36.3034 

 

Table 8.1146 Static vs Dynamic RFID Strategies (𝑝 = 0.20 and 𝛾 = 0.80) 

Analysis RFID Strategies from Best to Worst Economic Performance 

Static FI PID NI PIU NO 

Dynamic FI PID NI PIU NO 

Match 

Optimality 

Yes Yes Yes Yes Yes 

Total Average 

Q-Value 

36.3034 1.3007 1.2955 1.2301 1.1308 

 

From Table 8.10, we see that FI provides the highest average Q-value from the Q-matrix. 

These reaffirm the results that higher integration under the RFID Full-Integrated 

coordination as well as the PID provides the highest economic benefit for the system even 

in dynamic environments. In addition, the order of Q-values from high to low is congruent 

to the results obtained in the static scenarios as we see in Table 8.11. In addition, this result 

proves that the Q-Learning algorithm is an efficient method to determine the optimal RFID 

information-sharing strategy. Related with the parameters, since 𝑝 = 0.20, we are doing 

exploitation. From the results, exploitation provides congruent results to the findings from 

static scenario due to the tendency to maximize Q-values. Also, 𝛾 = 0.80 means that there 
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is a high weight on delayed rewards. High delayed reward factor provide good results since 

the tendency is to move towards the best integration possible in the long-run. 

 

Preliminary Experiment 8-3 

Design of Experiments 

For this experiment, we present the average of the 32 runs. We use 𝑝 = 0.80 and 𝛾 = 0.80.  

Table 8.12 shows the Average Q-Matrix with 𝑝 = 0.80 and 𝛾 = 0.80.  

 

Results and Discussions 

Table 8.1247 Exploration (0.80) and Delayed Reward (0.80) Experiments 

Avg. Q-Matrix NO NI PID PIU FI 

NO 1.2545 1.1669 1.1247 1.1459 2.2023 

NI 1.1039 1.5949 1.1619 1.1377 1.4989 

PID 1.1622 1.2343 1.9229 1.2102 1.4191 

PIU 1.2165 1.1422 1.2187 1.2112 1.5657 

FI 1.7481 1.6508 1.5708 1.3822 2.1149 

Total Average 1.2970 1.3578 1.3998 1.2174 1.7602 

 

Table 8.1348 Static vs Dynamic RFID Strategies (𝑝 = 0.80 and 𝛾 = 0.80) 

Analysis RFID Strategies from Best to Worst Economic Performance 

Static FI PID NI PIU NO 

Dynamic FI PID NI NO PIU 

Match 

Optimality 

Yes Yes Yes No No 

Total Average 

Q-Value 

1.7602 1.3998 1.3578 1.2970 1.2174 

 

Table 8.12 shows the results with tendency for more exploration (p = 0.80). Overall, the 

Top 3 best strategies still are the same congruent with the Static Scenario: FI, PID, NI. 

However, there are cases in which the FI does not have the highest Q-value. This can be 

confirmed in Table 8.13. Since we are exploring more the options, then there is a tendency 

to test more Q-values but in contrast bypassing the optimal value. High delayed reward (𝑝 

= 0.80) still provide good results. 

 



124 

 

1
2
4
 

Preliminary Experiment 8-4 

Design of Experiments 

For this experiment, we present the average of the 32 runs. We use 𝑝 = 0.20 and 𝛾 = 0.20.  

Table 8.14 shows the Average Q-Matrix with 𝑝 = 0.20 and 𝛾 = 0.20.  

 

Results and Discussions 

Table 8.1449Exploration (0.20) and Delayed Reward (0.20) Experiments 

Avg. Q-Matrix NO NI PID PIU FI 

NO 1.0034 1.0033 1.0013 1.0016 1.2504 

NI 1.0019 1.0149 1.0109 1.0023 1.0610 

PID 1.0008 1.0082 1.0036 1.0078 1.0629 

PIU 1.0030 1.0061 1.0035 1.0110 1.1071 

FI 1.0609 1.0802 1.0507 1.0761 2.8865 

Total Average 1.0140 1.0225 1.0140 1.0198 1.4736 

 

Table 8.1550Static vs Dynamic RFID Strategies (𝑝 = 0.20 and 𝛾 = 0.20) 

Analysis RFID Strategies from Best to Worst Economic Performance 

Static FI PID NI PIU NO 

Dynamic FI NI PIU PID NO 

Match 

Optimality 

Yes No No No No 

Total Average 

Q-Value 

1.7602 1.3998 1.3578 1.2970 1.2174 

 

In this experiment, the order of the best RFID coordination is different from the Static 

scenario. With a lower delayed reward 𝛾  = 0.20, the Q-value distance itself from the 

optimal Q-value. This result is important because it provides the notion of “preparedness”. 

Since higher 𝛾  provides delayed reward for future actions, then it means that Full-

Integrated and Partial-Integrated Downstream are more prepare to continue increasing 

performance even under dynamic changes in the system. If we consider just immediate 

reward, we might choose other coordination that are not the optimal for the long-run. 
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Preliminary Experiment 8-5 

Design of Experiments 

For this experiment, we present the average of the 32 runs. We use 𝑝 = 0.80 and 𝛾 = 0.20.  

Table 8.16 shows the Average Q-Matrix with 𝑝 = 0.80 and 𝛾 = 0.20.  

 

Results and Discussions 

Table 8.1651 Exploration (0.80) and Delayed Reward (0.20) Experiments 

Avg. Q-Matrix NO NI PID PIU FI 

NO     1.0304     1.0296     1.0199     1.0269     1.2479  

NI     1.0167     1.0612     1.0322     1.0232     1.0584  

PID     1.0256     1.0447     1.0764     1.0378     1.0502  

PIU     1.0309     1.0248     1.0391     1.0401     1.0649  

FI     1.1104     1.1107     1.0999     1.0673     1.1703  

Total Average     1.0428     1.0542     1.0535     1.0391     1.1183  

 

Table 8.1752 Static vs Dynamic RFID Strategies (𝑝 = 0.80 and 𝛾 = 0.20) 

Analysis RFID Strategies from Best to Worst Economic Performance 

Static FI PID NI PIU NO 

Dynamic FI NI PID NO PIU 

Match 

Optimality 

Yes No No No No 

Total Average 

Q-Value 

1.1183 1.0542 1.0535 1.0428    1.0391 

 

This experiment provides the worst performance. Exploration (p = 0.80) and low delayed 

reward (𝛾 = 0.20) combined, provide the worst case since it distance itself from the 

optimal values from the Static Experiment. 

 

Preliminary Experiment 8-6 

Now, we address the concept of self-adaptive protocols from control theory. In previous 

sections, we developed an algorithm that enables the system to adapt over changes in the 

supply chain characteristics. Now, in this section we provide the outcomes of the self-

adaptive algorithm. First, we have to develop our knowledge base for our self-adaptive 

algorithm, especially for the analyze decision in the policy reward process. For this, we 
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search for the minimum value in all the runs from our simulations experiments and identify 

which integrations was it. Figure 6.1 shows us the results. 

 

Figure 8.230Integrations with the Lowest Total System Cost per Run 

 

Figure 8.2 shows that 75% FI and 25% PID provided the lowest total cost from the 32 runs. 

We have defined the best strategies over the specific runs. Now, we have to define over the 

25% PID cases, what were the supply chain characteristics and find if there is a pattern or 

a rule.  

 

From data mining techniques, we used association rule and found that when mean demand 

is high and there is a slow leadtime delivery, it is preferred to use PID. Otherwise, use FI. 

Below is the definition of the rule obtained from our simulation experiment. 



 


Otherwise

highLTandhighif

FIUse

PIDUse
KBBaseeKnowledg

mD
)(  

Now that we have our knowledge base (KB) from the simulation experiment, we are going 

to perform four tests to see if the system improves its performance with the use of the self-

adaptive algorithm. We performed four test in which at 0t  there is an initial supply chain 

characteristic (i.e., ))0]([  tSCC . Then, at 365t , the system will suffer a change on the 

supply chain characteristics. In the cases without self-adaptive (SA) algorithm, the system 

will change at time 365t , but there is no algorithm to dynamically adapt to these supply 

chain changes. In the case with SA, the system will change at time 365t  and the SA 
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algorithm will be active. The performance reward process is evaluated every time 365 days, 

and the policy reward process is activated if a change in the system is made. This means 

the algorithm will collect, analyze, decide, and act in order to remain economically and 

environmental viable. Figure 8.3 and Figure 8.4 show the results in terms of the 

environmental and economic performance, respectively. 

 

 

Figure 8.331 Environmental Self-Adaptive Algorithm Assurance Tests 

 

As Figure 8.3 shows, the self-adaptive algorithm has the capability to improve 

environmental performance over systems with no self-adaptive algorithms. If drastic 

changes occur to the supply chain characteristics, the system will be able to collect, 

analyze, decide, and act appropriately to adapt to a new integration. 

 

 

Figure 8.432 Economic Self-Adaptive Algorithm Assurance Tests 
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Figure 8.4 shows us than on every test performed, the supply chain with the self-adaptive 

algorithm performed better or at least similar than the supply chain without the self-

adaptive algorithm. For example, 2.70%, 1.55%, 0.90%, and 0.00% where the changes 

from the SA than without SA case. These tests demonstrate that the SA algorithm proposed 

is capable of detecting the necessary measurements and factors. In addition, the SA 

algorithm assigned performance and policy rewards to the entire time horizon. Further, 

based on the total reward given, the algorithm adjusts its current integration state and adapt 

to the desire integration which has the highest total reward. 

 

Preliminary Experiment 8-7 

This section presents the results from the multi-agent reinforcement learning algorithm. 

For the sample space, each player can choose NO RFID (Action 1), RFID Nonintegrated 

(Action 2), and RFID Full-Integrated (Action 3). Below are the combinations that provide 

economic improvements for all players in each run. We present the combinations of actions 

such that A𝑚𝑔𝑟, where the first index refers to the action taken from the manufacturer, the 

second index refers to the action taken from the recycled-material supplier, and the third 

index refers to the action taken from the raw-material supplier. In run #1 for example, there 

are three possible combinations in which the players can achieve economic improvements. 

The combinations are A132, A332, and A221. 
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Table 8.1853Multi-Agent Reinforcement Learning Results 

Run Actions which allow cooperation (cost reduction for all players) 

1 A132 A332 A221 

2 A132 A332 A121 

3 A132 A332 A232 

4 A132 A332 A312 

5 A132 A332 A121 

6 A132 A332  

7 A132 A332 A222 

8 A132 A332 A121 

9 A132 A332 A112 

10 A132 A332 A111 

11 A132 A332 A321 

12 A132 A332 A231 

13 A132 A332 A322 

14 A132 A332 A112 

15 A132 A332 A111 

16 A132 A332 A331 

17 A132 A332 A222 

18 A132 A332 A222 

19 A132 A332 A112 

20 A132 A332 A322 

21 A132 A332 A211 

22 A132 A332 A121 

23 A132 A332 A121 

24 A132 A332 A221 

25 A132 A332 A231 

26 A132 A332 A331 

27 A132 A332 A232 

28 A132 A332 A331 

29 A132 A332 A331 

30 A132 A332 A322 

31 A132 A332 A212 

32 A132 A332 A331 

 

From Table 8.18, we can see the actions that enable collaboration in a decentralized 

scenario with multiple agents. Actions A132 and A332 are consistently providing benefits 

for the three entities. 
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8.5 Summary 

Supply chain managements nowadays is been presented with new business scenarios where 

the structure of the supply chain have to change in order to remain profitable. This is the 

case due to many changes in the economic landscape such as competition, customer 

behavior, oil price, and even natural disasters. With the inclusion of reverse logistics, this 

complexity aggravates even more. For this reason, managers has to now under their current 

state or scenario as shown in Chapter 4-6, what are the possible alternative and which one 

of them provide their highest return on the investment if there is a huge change in the 

supply chain. More importantly, how can the companies manage the performance of the 

system. We have provided an analysis of the dynamic policies that can be implemented to 

change the RFID information-sharing coordination through reinforcement learning (i.e., 

Q-learning). The results shows that RFID Full-Integrated is the primary option 

independently of what initial state the supply chain is given our design of experiment. 

Furthermore, for new settings, this learning model has proven in the experiment to attain 

the optimal value. 

 

In addition, we study in average the impact of exploration and delayed reward. From the 

results, exploitation and high delayed reward provided the closes results to the optimal 

value compared with the Static scenario. Exploration compared with exploration defined a 

higher Q-value for the optimal or preferred RFID information sharing strategies. With the 

experiment, we confirm the trade-off of exploration. Further, higher delayed reward 

provide the notion of preparedness in the sense that RFID Full-Integrated and RFID Partial-

Integrated Downstream are able to attend higher results over the long-run compared to 

other scenarios that provide high weight on immediate rewards.  

 

Apart from the reinforcement learning, we study how the supply chain can adapt its RFID 

coordination if there is a drastic change in the supply chain. Nowadays, supply chain is 

affected by various factors such as demand fluctuation, competition, and even natural 

disasters. For these reasons, we developed a self-adaptive algorithm with the use of 

feedback loops. The system is able to collect performance measures and supply chain 
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characteristics, analyze current RFID integrations and performance, decide the appropriate 

RFID integration, and adapt if it is necessary. We tested our algorithm on several scenarios 

an whenever there was a change, the system with the self-adaptive algorithm performed 

better or at least equal than the system without the algorithm. This means that the system 

is more reliable and flexible over volatile changes in the supply chain.  

 

Finally, we explore the scenario where choose individually their RFID coordination. To 

achieve this, multi-agent reinforcement learning provided us the optimal combinations that 

allow an increase in the economic performance measures for all the entities. This study 

provides an overview of the decision where each entity has its own RFID information 

sharing strategy. This experiment increases the notion of collaboration and provides new 

venues for future research. 
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APPENDIX 

Simulation Modeling 

We compare five different RFID configuration-coordination scenarios. For each 

coordination, a simulation experiment is conducted. We use Arena Software version 10. 

The figure below shows an illustration of the higher modeling of our simulation codes. 

 

33Appendix Figure 1 Simulation Codes 

 

For each simulation code, we have the following Arena Software structure in terms of 

processes and elements. First, we have a demand process. The demand process begins with 

an arrival of demand every interrarrival time. Then, the assign block from Arena enable us 

to determine if there is enough serviceable inventory to satisfy demand. If there is enough 

serviceable inventory, then demand is served and serviceable inventory is reduced. 

Otherwise, there would be a shortage cost for the manufacturer. 
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The second process is the manufacturer’s inventory evaluation. The process begins with 

entities entering the process every time evaluation interval. The assign options with Arena 

enable us to model the inventory evaluation from the manufacturer where the inventory 

position 𝑋 is compared with the reorder point. If the inventory position is below or equal 

to the reorder point, then a 𝑄 order is placed to the suppliers. Here, we check if there is 

enough inventory on the recycled-material supplier side. If there are enough returns, then 

the manufacturer orders to the recycled-material suppliers; otherwise, the manufacturer 

orders to the raw-material supplier. Leadtime delivery is modeled and manufacturer 

receives inventory. 

 

The third process is the recycled-material’s inventory evaluation. Similar to the 

manufacturer, the process begins with entities arriving at every time evaluation interval. 

The inventory position is evaluated with the reorder point. If the inventory position is below 

or equal to the reorder point, a collection order is executed based on the returns formulation 

from section 3.1.1.2. Recall that here the recycled-material will obtain its material from the 

end-user market which is stochastic. 

 

Finally, the fourth process is the raw-material supplier’s inventory evaluation. The entities 

arrive and perform an evaluation every time interval. A production order is placed if the 

inventory position is below or equals its reorder point. The raw-material supplier seeks for 

its material from the environment. The figure below shows an example of the modeling 

structure for the four processes. 
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Appendix Figure34 2 Simulation Processes – Basic 

 

Appendix Table54 1 Simulation Elements 

Element Number of Items 

Entities 7 

Attributes 11 

Variables 82 

Expression 30 

Output 26 
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In order to include the 128 scenarios from the Design of Experiment into the Arena Code, 

we programmed a Visual Basic Code capable of reading the 128 scenarios from an excel 

file and replicate the run 100 times for each of the simulation code. For the entire 

experiment, we have 12,800 observations per code x 5 simulation code = 64,000 

observations. Figure below shows a representation of the Minitab, Visual Basic Code, and 

Arena Software. 

 

 

Appendix Figure 35 3 Minitab, VBA Code, and Arena Relations 
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