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ABSTRACT

Li, Gaojin PhD, Purdue University, December 2016. Hydrodynamics of Swimming
Microorganisms in Complex Fluids. Major Professor: Arezoo M. Ardekani, School
of Mechanical Engineering.

Swimming motion of microorganisms, such as spermatozoa, plankton, algae and

bacteria, etc., ubiquitously occurs in nature. It affects many biological processes,

including reproduction, infection and the marine life ecosystem. The hydrodynamic

effects are important in microorganism swimming, their nutrient uptake, fertilization,

collective motions and formation of colonies. In nature, microorganisms have evolved

to use various fascinating ways for locomotion and transport. Different designs are

also developed for the locomotion of artificial nano- and microswimmers. In this

study, we use several different computational models to investigate the behavior of

microswimmers.

Microorganisms typically swim in the low Reynolds number regime, where in-

ertia is negligible. They interact with each other, surfaces and external flow field.

Microorganisms often swim in complex fluids, exhibiting non-Newtonian behavior,

including viscoelasticity and shear-thinning viscosity. These biological materials con-

tain network of glycoprotein fibers and gel-like polymers. Therefore on the scale of

microorganisms, their fluid environments are heterogeneous rather than homogenous.

In this study, we develop a computational platform to investigate swimming motion

of a single and multiple microorganism(s) in the bulk fluid and near surfaces in com-

plex fluids. We also investigate the role of fluid rheological properties and flow field

on the migration of inert particles in a channel flow of viscoelastic fluids.
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1. INTRODUCTION

Microorganisms are ubiquitous and vital in our life. In a milliliter of fresh water, there

are typically one million bacterial cells. The number of the bacterial cells in the human

body is approximately ten times the human cells. Bacteria are crucial in nutrients

recycling in many ecosystems, such as the nitrogen fixation and putrefaction. The

probiotic bacterial species in the normal human gut flora are beneficial in vitamins

synthesis and converting sugars to lactic acid. Many bacteria are pathogenic and

cause infectious diseases, including anthrax, cholera, syphilis, leprosy, etc. In marine

ecosystems, microorganisms, include bacteria, algae, protozoa, etc, provide a crucial

food source to large aquatic organisms. Plankton play an important role in the carbon

cycle and oxygen production: about 50 ∼ 85% of the world’s oxygen is estimated to

be produced through phytoplankton photosynthesis.

Due to the small size of microorganisms, the locomotion at the microscale is

dominated by viscous forces over the inertial forces. The physics that governs the

microscale locomotion at low Reynolds numbers is very different from the macro-

scopic organisms at high Reynolds numbers. The Reynolds number is defined as

Re = ρUL/µ, where ρ is the fluid density, µ is the dynamic viscosity of the fluid, and

U and L are the characteristic velocity and length scales of the flow, respectively. At

low Reynolds number, the locomotion strategies employed by larger organisms, such

as fish, birds or insects, are ineffective due to Purcell’s scallop theorem [1]. This

theorem states that if a low-Reynolds number swimmer in a Newtonian fluid displays

a geometrically reciprocal motion, which means the sequence of its shape deformation

is identical when viewed in a reversed time, then its net displacement must be zero

independent of its deformation rate. In nature, microorganisms have evolved various

propulsion strategies which are not invariant under time-reversal and thus they can

propel themselves. For example, spermatozoa often have a single flagellum under-
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going a nearly-planar beating motion; bacteria typically swim using rotating helical

flagella; the green algae Chlamydomonas propels by beating its two anterior flagella

in a breaststroke motion; the unicellular Paramecium and colonial algae Volvox use

thousands of cilia on their surface for locomotion. Inner organs of superior animals

widely use metachronal waves of cilia for the transport of biological fluids. In the

far-field, the leading order effects of a freely swimming microorganism in a bulk fluid

is equivalent to a force dipole. Depending on the sign of the force dipole, two differ-

ent swimming types can be modeled: pusher, which propels themselves forward by

pushing fluid behind their body such as bacteria and spermatozoa, and puller, which

generates thrust by pulling fluid in front of their body such as Chlamydomonas.

Overview of different propulsion mechanisms used by microorganisms can be found

in [2–4].

The swimming motion of a low Reynolds number swimmer in an unbounded New-

tonian fluid has been investigated. In 1951, Taylor analyzed the swimming motion

of an infinitely long waving sheet of small amplitude [5], which is analogous to the

beating flagellum of spermatozoa in two dimensions. The profile of the waving sheet

is prescribed as h = b sin(kx − ωt), where the propagation of the wave is along the

x direction, k is the wave number, ω is the frequency, and b is the amplitude which

is small compared with the wavelength 2π/k. Using a perturbation analysis, Taylor

showed that the sheet moves in the opposite direction of the traveling wave and its

swimming speed is U = −ωkb2/2. Taylor later considered a more realistic model of an

infinitely long flagellum with a cylindrical cross section. In the limit of zero flagellum

thickness, the swimming velocity is found to have the same form as the planar sheet

[6]. The model has also been extended to a flagellum with three-dimensional deforma-

tions, such as a helical wave [7] as well as finite size swimmers. In 1960s, Lighthill [8]

and Blake [9,10] developed an envelope model, where the swimmer surface is covered

by a carpet of beating cilia under propagating waves, called squirmer, to model the

swimming motion of ciliates such as Paramecium and Volvox. For a waving sheet of

large amplitude, a resistive force theory was developed by Gray and Hancock [11]
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and Lighthill [12]. This theory disregard the hydrodynamic interactions between

the filament segments, and relates the filament velocity to the local resistive force

on it via resistance coefficients. This method has been widely applied in studies of

flagellar propulsion [13–17]. However, this approach is quantitatively correct when

1/ ln(L/a) ≪ 1, where L and a are the length and thickness of the flagellum, and

may lead to large errors [18,19]. A more accurate approach, the slender body theory,

was developed by Hancock [20], Batchelor [21]and Ligthhill [12,22] and was widely

used by other researchers [18, 23–26]. This method accounts for the nonlocal effects

by replacing the filament with an appropriately determined distribution of singular-

ities and the accuracy of the results is greatly improved [27]. If inertial effects are

considered while the flow separation is disregarded, the swimming speed of a waving

sheet becomes U = −ωkb2[1 + F (Re)−1]/4, where F (Re) = [1 + (1 + Re2)1/2]1/2/2,

i.e. the speed monotonically decreases with the Reynolds number to half of its value

at Re = 0 [28,29].

Note that the Taylor’s swimming sheet and the squirmer model assume a pre-

scribed kinematics, while in nature, the deformation of the swimmer is determined

by the interplay between its internal actuation and the external forces. Many motile

bacteria swim using a boundary actuation of their flagellum, in which the relative

stiff flagellum is driven by a rotary motor. Studies on the propulsion of a rotat-

ing helix has been conducted using slender body theory [18, 30] and finite element

method simulations [31, 32]. Experiments show that the flagellar motor has a non-

linear relation between the torque and rotating speed [33]: at low rotating speeds,

the torque generated by the motor is approximately constant; at higher speeds, it

decreases almost linearly with the rotating speed until becomes zero at about 300

Hz. This property is found to play an important role for the bacterium to achieve an

enhanced swimming speed in a polymeric solution [34]. The other type of flagellum

actuation is the distributed actuation, such as eukaryotic flagella, in which almost

the entire filament is active driven by the molecular motors. The bending of the

flagellum is produced by the relative sliding motion between the neighboring micro-
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tubules inside the flagellum driven by dynein motors [35]. Camalet and Jülicher have

developed an internally-driven flagellum model driven by a sliding force distribution

to consider the interplay between the internally driven force, the elastic deforma-

tion of the flagellum and the hydrodynamic forces [36, 37]. The coordination of the

dynein motors is suggested to be related to the mechanics of the motors and their

interaction instead of chemical signaling [38]. The model of a swimming flagellum

with a load-dependent motor detachment rate is found to be consistent with the ob-

servations [39]. In this dissertation, several different theoretical models, including

squirmer model [8–10, 40], undulatory swimming sheet with prescribed kinematics

[5] and internally driven mechanism [37], and self-propelled rod model [41] are used

to describe and understand the swimming motion of microswimmers in Newtonian

and complex fluids.

Microorganisms often swim in a complex fluid and interact with different environ-

ments, including wall surfaces and interfaces, non-Newtonian fluids, small particles

suspended in the fluid media, external flow and turbulence, etc. Furthermore, many

micro-scale swimmers, such as spermatozoa, often swim in high concentrations and in-

teract with each other. Swimming motion and aggregation of bacteria near a surface

and biofilm formation have been extensively studied for many years for its impor-

tance in many health and environmental problems [42]. Biofilms may be formed

on almost all types of surface and are ubiquitous in natural and industrial environ-

ments. They cause enormous loss of life and economy around the world due to human

and animal infections, medical implants contamination, industrial equipment damage,

pipe clogging, and energy losses. Biofilms can also be beneficial in waste treatment

and remediation, waste water filtration, spilled oil clean-up, etc. Biofilm, which are

mainly made of extracellular polymeric substances of polysaccharides and proteins,

often show both elasticity and shear-thinning behavior [43, 44]. At a micro-scale,

biofilms generate a highly heterogeneous and porous fluid environment for the mi-

croorganisms [45,46]. Non-Newtonian behavior of the fluid media greatly affects the

swimming motion of the microorganisms and their interactions with surfaces, exter-
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nal flow and other microorganisms, which are the focus of this thesis. The following

sections will discuss these effects based on several different swimming models.

In chapter 2, we focus on the near-wall swimming motion of ciliates in a Newto-

nian fluid using a squirmer model. For a single squirmer near a wall, depending on

the swimming mechanism, three different modes are distinguished: (a) the squirmer

escaping from the wall, (b) the squirmer swimming along the wall at a constant dis-

tance and orientation angle, and (c) the squirmer swimming near the wall in a periodic

trajectory. For a suspension of squirmers, near-wall accumulation is observed, which

is consistent with previous experiments [47, 48]. Furthermore, we find that in the

near-wall region, pullers repel each other, while pushers are attracted to each other

and form clusters. This work has been published in Physical Review E, 2014 [49].

In chapter 3, we numerically study the effect of solid boundaries on the swimming

behavior of a squirmer in a viscoelastic fluid. A Giesekus constitutive equation is

utilized to describe both viscoelasticity and shear-thinning behavior of the background

fluid. We found that the viscoelasticity strongly affects the near-wall motion of a

squirmer by generating an opposing polymeric torque which impedes the rotation of

the swimmer away from the wall. The shear-thinning effect is found to weaken the

solvent stress and therefore, increases the swimmer-wall contact time. For a puller

swimmer, the polymer stretching mainly occurs around its lateral sides, leading to

reduced elastic resistance against its locomotion. The neutral and puller swimmers

eventually escape the wall attraction effect due to a releasing force generated by the

Newtonian viscous stress. In contrast, the pusher is found to be perpetually trapped

near the wall as a result of the formation of a highly stretched region behind its body.

This work has been published as an invited article in Rheologica Acta, 2014 special

early career issue on novel trends in rheology [50].

In chapter 4, we investigate the migration of an inert spherical particle in a

pressure-driven channel flow of viscoelastic fluids. The effects of inertia, elasticity,

shear-thinning, secondary flows, and the block ratio are considered by conducting

fully resolved direct numerical simulations in a wide range of parameters. We find
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that elastic effects drive the particle towards the channel centerline. The equilibrium

position depends on the interplay between the elastic and inertial effects. Particle

focusing at the centerline occurs in flows of strong elasticity and weak inertia. Both

shear-thinning effects and secondary flows tend to move the particle close to the wall.

The effect is more pronounced as inertia and elasticity effects increase. A scaling

analysis is used to explain these different effects. Besides the particle migration, the

particle-induced fluid transport and transient motion of the particle during the flow

start-up are also considered. The inertial effect, shear-thinning behaviour, and sec-

ondary flows, are found to enhance the effective fluid transport normal to the flow

direction. Due to the oscillation in fluid velocity and strong normal stress difference

during the flow start-up, the particle has a larger transient migration velocity. This

work has been published in Journal of Fluid Mechanics, 2015 [51].

In chapter 5, we compare the effects of viscoelasticity and shear-thinning viscosity

on an undulatory swimmer in an unbounded domain. In a pure viscoelastic fluid, the

swimming speed and power consumption always decrease with increasing viscoelas-

ticity, independent of flagellum amplitude. In an inelastic shear-thinning fluid, the

shear Carreau number Cr, related to the typical shear rate, is found to mostly af-

fect the swimming behavior. Therefore, both the beating frequency and amplitude

are important. Our simulation results recover the analytical results for small ampli-

tude flagellum [52], where speed is not affected and power is reduced. For a large

amplitude flagellum, velocity enhancement and power reduction are observed. The

swimming boost in a shear-thinning fluid occurs even for an infinitely long flagellum

because it swims in a lower-viscosity fluid layer surrounded by a high-viscosity fluid.

Two competing effects determine the speed enhancement: the viscosity and width of

the inner layer. Increasing Cr reduces the viscosity of the inner layer, but enhances its

width. Therefore, there exists a maximum swimming speed, dependent on the oscil-

lation amplitude as well as the fluid rheological properties. The power consumption,

on the other hand, follows a universal scaling law. Same mechanism is also found
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for a swimmer in a heterogeneous fluid environment with particle suspensions. This

work has been published in the Journal of Fluid Mechanics, Rapids, 2015 [53].

In chapter 6, we investigate the near-wall motion of an undulatory swimmer in

both Newtonian and non-Newtonian fluids. Our results show that the undulatory

swimmer have three types of swimming mode depending on its undulatory amplitude.

The swimmer can be strongly attracted to the wall, swimming in close proximity of

the wall, be weakly attracted to the wall with a relatively large distance away from

the wall, or escape from the wall. The scattering angle of the swimmer and its

hydrodynamic interaction with the wall are important for describing the near-wall

swimming motion. The shear-thinning viscosity is found to increase the swimming

speed and to slightly enhance the wall attraction by reducing the swimmer’s scattering

angle. The fluid elasticity, however, leads to strong attraction of swimmer’s head

towards the wall, reducing the swimming speed. The combined shear-thinning effect

and fluid elasticity results in an enhanced swimming speed along the wall. This work

has been submitted to the European Journal of Computational Mechanics.

In chapter 7, we investigate the elastohydrodynamics of a self-driven undulatory

swimmer with a sliding force distribution [37, 54]. We show that the sliding force

can capture the target curvature of the flagellum and the previous numerical results

[55] can be recovered when neglecting the tangential contribution of the sliding force.

Based on this model, we numerically investigate the swimming motion of an elastic

kicker and burrower. Different swimming performance is observed for the swimmers

with a fixed target curvature or a fixed sliding force. A stiff flagellum behaves similar

to a flagellum with a prescribed kinematics. The dynamics of a soft flagellum, which

is the case for many real microorganisms, is determined by the interplay between

the flagellum elastic deformation and viscous forces. Our results also show that

there exists an optimized distribution of sliding force that maximizes the swimming

performance of a soft swimmer.

In chapter 8, we study the collective motion of a suspension of rodlike microswim-

mers in a two-dimensional film of viscoelastic fluid. We find that the fluid elasticity
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has a small effect on a suspension of pullers, while it significantly affects the pushers.

The attraction and orientational ordering of the pushers are enhanced in viscoelastic

fluids. The induced polymer stresses break down the large-scale flow structures and

suppress velocity fluctuations. In addition, the energy spectra and induced mixing in

the suspension of pushers are greatly modified by fluid elasticity. This work has been

published in Physical Review Letters, 2016 [56]. Finally, chapter 9 summarizes the

thesis and recommends possible avenues for further research.
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2. NEAR WALL MOTION OF MODEL CILIATE IN A NEWTONIAN FLUID1

2.1 Motivation and Previous Works

Biolocomotion near surfaces or in a confined environment is very important in

many health and environmental problems [3, 57]. Such example include accumula-

tion of bacteria near the surface and the biofilm formation which is closely related

to many types of microbial infections [58], spermatozoa swimming in the female re-

productive tract is another common example [59]. H. pylori colonizing the mucus

layer covering the stomach [60], B. burgdorferi penetrating the connective tissues

in skin [61, 62], and C. elegans swimming in the water-saturated soil [63]. As the

first step to investigate these problems, microorganisms in a Newtonian fluid have

been extensively studied. The presence of nearby boundaries affects various distinct

aspects of microorganism locomotion, such as the changing in the swimming speed

and energetic properties [64–66], the modification of the swimming trajectories [67]

and the general attraction of organisms to surfaces and reorientation [47, 48, 68, 69].

The interactions between microorganisms can also be greatly affected by the presence

of the wall, for example, pairs of Volvox show “waltz” or “minuet” motions when near

a solid boundary [70].

The inertial effects are important for many of planktonic swimmers in marine en-

vironments, such as larvae and Pleurobrachia. Small organisms use inertia to change

their swimming direction, attack a prey or escape from a predator [71,72]. Wang and

Ardekani [73, 74] analytically quantified the inertial effects by deriving the funda-

mental equation of motion for small organisms swimming in an unbounded quiescent

fluid environment. Their results showed that the history force and added mass force

1This chapter has been reprinted (abstract/excerpt/figure) with permission from “Hydrodynamic
interaction of microswimmers near a wall”, by G. Li and A. M. Ardekani, in Physical Review
E, 90(1): 013012, 2014 (DOI: 10.1103/PhysRevE.90.013010). Copyright (2014) by the American
Physical Society.
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are of the same order as the steady Stokes force for an unsteady swimmer such as

Paramecium escaping from an aggression. For two nearby swimming organisms, the

inertial effects cause two puller-type swimmers to attract to each other and swim in

circular trajectories. The role of boundaries on the swimming of small organisms in

a nonzero-Reynolds-number regime is of great importance. For example, the accu-

mulation of larvae near the surface has a significant influence on the metamorphosis

and survival of larvae [75].

The swimming dynamics of a single swimmer has been investigated based on var-

ious simplified swimmer models. Zargar et al. [76] used a three-sphere swimmer

and analyzed its dynamics in the close proximity of a boundary. It is shown that the

swimmer can either be attracted to or escape from the wall, depending on the initial

angle and distance from the wall. The work of Or et al. [77] studied the dynam-

ics of swimmers of rotating spheres attached by rigid rods. In their simulation, the

interactions between the particles and the wall were approximated only considering

the far-field hydrodynamic interactions. Their results show that the swimmer may

have a marginally stable motion or a periodic motion depending on the arrangement

of the spheres. Similar swimming dynamics was reported in the work of Crowdy and

Or [78] for a two-dimensional treadmill swimmer model near a no-slip wall. The

treadmill swimmer was also utilized to study the swimming dynamics near a wall

with a gap. Stable equilibrium points for the swimmer near the gap, Hopf bifurca-

tions, and periodic attracting states were observed [79]. The work of Dunstan et

al. [80] modeled a bacterial cell by using two spheres of different radii at a constant

distance. The effect of the flagella was modeled by imposing a force on the tail sphere

as well as adding equal and opposite torques on the two spheres. Their results show

three different swimming behaviors depending on the initial condition: swimming in

circles in contact with the wall, swimming in circles at a finite distance from the wall

and swimming away from the wall. Spagnolie and Lauga [81] provided a detailed

comparison of the hydrodynamics of micro-swimmers near a boundary using far-field

approximations and numerical solutions of the Stokes equation. They showed that
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the far-field approximation is surprisingly accurate for spherical swimmers when the

distance between the center of the swimmer and the wall is larger than its diameter.

However, the fundamental singularities of the Stokes equation cannot accurately ac-

count for the near-field effects when the swimmer comes close to the boundary. Here

in this work, Navier-Stokes equations are directly solved to capture the hydrodynamic

interaction of a single swimmer and a suspension of swimmers near a wall in a small,

but nonzero, Reynolds number regime.

However, microorganisms are usually observed in high concentrations, where the

interaction between microorganisms are important and they often exhibit collective

behaviors resulting in swarms and vortices of large scales [2]. Previous experiments

show that a suspension of microorganisms results in the variation of fluid viscosity

[82], increase in the short-time mass diffusion [83], and enhanced mixing [84]. Hy-

drodynamic interaction of spherical particles near a wall or between two walls in a

zero-Reynolds-number regime has been extensively studied using multipole expansion

method and Stokesian Dynamics [85–87]. The algorithm developed by Bhattacharya

et al. accurately calculates the many-particle friction matrix by using spherical and

Cartesian representation of Stokes flow to capture the interaction of the fluid with

the particles and walls, respectively [87]. Based on the dumbbell swimmer model

of two beads connected by a rigid rod, Underhill et al. [88] studied the diffusion

and spatial correlation of swimmers as well as the correlations of stress and velocity

[89]. Using the same model, Hernández-Ortiz et al. [90, 91] studied the dynamics of

suspension of swimmers between two walls and found that the swimmers aggregate

near the wall at low concentrations, while at high concentrations, this distribution

is disrupted by large-scale coherent motions. The diffusion and spatial correlation of

swimmers are also affected by the confined geometry. Their model treated the swim-

mers as point force dipoles and the swimmer-swimmer and swimmer-wall interactions

are approximated using an excluded volume force, therefore the near-field hydrody-

namic interactions are not accurately captured. Wensink and Löwen [92] studied the

suspension of self-propelled colloidal rods in a channel using two-dimensional Brown-
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ian dynamics simulation. Their results show that the aggregated self-propelled rods

near the channel wall form “hedgehog”-shaped clusters with most of the rods pointing

towards the wall.

Here we investigate the dynamics of a single and a collection of squirmer(s) near a

no-slip wall in a low-Reynolds-number regime. By directly solving the Navier-Stokes

equation, the inertial effects are included and the motion of small swimming organisms

near a solid surface is accurately captured.

2.2 Squirmer Model

In this study, we adopt an axisymmetric model microswimmer with tangential ve-

locity on its surface to characterize the swimming strategy of ciliated microorganisms,

such as Volvox and Paramecium, near a solid wall. The so-called squirmer model,

first proposed by Lighthill [8] and Blake [9], has been widely utilized in numerical in-

vestigations of biolocomotion in various environmental conditions (e.g. see [93–95]).

The overall ciliary movement can be idealized as a continuous velocity distribution

along the exterior surface of a self-propelled spheroid [96],

us(θ) =
∞∑
n=1

BnVn(cos θ), (2.1)

where θ is the polar angle measured from the swimming direction, Bn represents the

magnitude of nth mode of squirming motion, and the function Vn is defined as,

Vn(x) =
2
√

1 − x2

n(n + 1)

d

dx
Pn(x), (2.2)

with Pn(x) denoting the nth order Legendre polynomial. In a Newtonian fluid under

Stokes flow conditions, the swimming speed of a squirmer in an unbounded domain

is U0 = 2B1/3 [9]. Conforming with previous studies employing this approach, we

assume Bn = 0 for n > 2. Hence, we can define the ratio of the second to the first

squirming mode, β = B2/B1, to distinguish three types of swimming mechanisms:

β > 0 corresponds to pullers generating thrust by pulling fluid in front of their body

such as Chlamydomonas nivalis, β < 0 corresponds to pushers propelling forward
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Figure 2.1. Flow streamlines around squirmers in the comoving frame
of reference for (a) neutral squirmer, (b) puller, and (c) pusher. The
black arrow indicates the swimming direction.

by pushing fluid behind their body such as Escherichia coli, and β = 0 corresponds

to a neutral squirmer with net ciliary motion such as Volvox. Fig. 2.1 demonstrates

the flow field arisen from the swimming motion of these three types of squirmers in

the unbounded Newtonian fluids. While a neutral squirmer gives rise to a potential

flow in the surrounding fluid, the squirming motion of a puller (pusher) results in a

formation of a positive (negative) force dipole which its magnitude decays quadrati-

cally with the distance from the swimmer’s body. Since the sedimentation velocity of

the microorganisms is commonly much smaller than their swimming speed [97], we

assume the squirmer to be neutrally buoyant.

The squirmer model has been widely used to study the dynamics of a single mi-

croswimmer, nutrient uptake [98,99], bio-mixing [100], unsteady propulsion of small

organisms [74] as well as the effects of density stratification on the self-propulsion

[101]. Recently, Zhu et al. [102] studied the locomotion of a squirmer in a capillary

tube and found that a neutral squirmer generally follows a helical trajectory; a puller

displays a stable locomotion along the tube, while a pusher crashes into the wall.

Ishikawa, Pedley, and coworkers have studied the dynamics of multiple squirmers in

an unbounded fluid in the Stokes regime, including the hydrodynamic interaction

between two squirmers [97], rheology and diffusion of a suspension of squirmers
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[103, 104], collective behavior [105], and vertical dispersion of squirmers in a shear

flow [106].

2.3 Governing Equations and Numerical Method

The governing equations of the incompressible flow in a viscoelastic fluid in di-

mensionless form are,

∇ · u = 0, (2.3a)

Re

(
∂u

∂t
+ u · ∇u

)
= −∇p + ∇ · τ , (2.3b)

where Re = ρU0a/µ is the Reynolds number, ρ is the fluid density, u is the fluid

velocity, and p is the pressure. τ = µ(∇u + ∇uT) is the deviatoric stress. Here, the

length is scaled by the radius of the spherical squirmer a, velocity by U0, time by

a/U0, and pressure and stresses by µU0/a, where µ is the dynamic viscosity of the

fluid.

The distributed Lagrange multiplier based finite volume method is used in this

study and details of the method can be found in [107, 108]. A rigid particle and a

self-propelled particle can be modeled by adding a source term to the Navier-Stokes

equation. The forcing term in each iteration is calculated as

f = f ∗ + Re
ρϕ

∆t
(UP + Ωp × r + ui − u), (2.4)

where UP is the translational velocity of the particle (inert or self-propelled), Ωp is

the particle angular velocity, ui is the imposed velocity causing the self-propulsion,

f ∗ is the force calculated in the previous iteration, ϕ is the volume fraction occupied

by the particle in each computational cell (ϕ = 1 inside, ϕ = 0 outside and 0 < ϕ < 1

for the cells at the surface of the particle). The velocity field u is obtained by solving

Eq. (2.3). To recover the tangential velocity us
θ on the surface of the squirmer (given

in Eq. (2.1)), we impose the following solenoidal velocity ui inside the squirmer

ui = (rm − rm+1)(us cot θ +
dus

dθ
)er +

[
(m + 3)rm+1 − (m + 2)rm

]
uθ
seθ,
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where er and eθ are the unit vectors along r and θ directions, m is an arbitrary

positive integer, where the simulation results are independent of its value. It should

be noted that = ui is zero for an inert particle. U p and Ωp are determined by

UP =
1

Mp

∫
VP

ρp
ρ
udV, ΩP = I−1

p

∫
VP

ρp
ρ

(x−Xp) × udV, (2.5)

where VP is the particle volume, ρp/ρ is the ratio of the particle density to the fluid

density, which is equal to unity in all our simulations since the density of microor-

ganisms is usually close to the background fluid. Mp and Ip are the dimensionless

mass and moment of inertia of the particle, respectively. Particle mass and moment

of inertia are scaled by ρH3 and ρH5, respectively. The imposed velocity leads to

a zero translational and rotational velocity for the particle (i.e
∫
Vp
uidV = 0 and∫

Vp
r × uidV = 0). Iterations are repeated until the maximum of Euclidean norm of

(f − f ∗)/f and the normalized residual falls below the specified tolerance of 10−3.

The normalized residual is defined as∫
VP

∣∣UP + Ωp × r + ui − u
∣∣ϕdV

U0Vp

. (2.6)

The velocity field inside the particle for the converged solution is u = UP +Ωp×r+ui.

It is straight forward to demonstrate that the converged solution is the equivalent of

the particle equation of motion:

Mp
d2xp

dt2
=

∫
∂Vp

(−pI + τ ) · ndS, (2.7)

where dS is the surface differential element. Combining Eqs. (2.4)-(2.5), one can

show that
∫
Vp
fdV = 0. Integrating Eq. (2.3a) over the particle volume and using

the Reynolds transport theorem lead to:

d

dt

∫
Vp

UP + Ωp × r + uidV = Re

∫
Vp

∇ · (−pI + τ )dV, (2.8)

which is equivalent to Eq. (2.7). This method has been extensively used for the

motion of inert particles in viscous fluids and verified in our previous publications.

Simulations are conducted using a finite volume method on a fixed staggered grid.

A conventional operator splitting method is applied to enforce the continuity equation.
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The second-order TVD (total variation diminishing) Runge-Kutta method is used for

time marching. The spatial derivatives in the convection term are evaluated using

the QUICK (Quadratic Upstream Interpolation for Convective Kinetics) scheme and

the diffusion terms are discretized using the central difference scheme.

When the squirmer approaches the wall or another squirmer, the high pressure in

the thin film between the squirmers and the wall prevents any unphysical overlaps.

However, a very small grid resolution is needed to properly capture this dynamic

process and consequently it is computationally expensive. As mentioned in [81],

the hydrodynamic interactions between squirmer and the wall are not sufficient to

prevent squirmer-wall or squirmer-squimrer overlaps in some cases and a short-range

repulsive force [109] is necessary. The repulsive force during the squirmer-wall or

squirmer-squirmer collision is defined as:

F r =
Cm

ε

(
d− dmin − dr

dr

)2

ec, (2.9)

where Cm = MpU
2
0/a is the characteristic force, ε = 10−4 is a small positive number, d

is the distance between the center of the squirmer and the wall or the distance between

two squirmers, dmin = a or 2a is the corresponding minimum possible distance, dr is

the force range and is usually set to be the smallest grid size ∆ in the computational

domain [109]. The direction of the repulsive force ec is normal to the wall or along

the line of center of the two squirmers. The above mentioned repulsive force has been

widely used to handle the collision between particles and walls [109,110].

2.4 Results and Discussion

2.4.1 Single Squirmer Swimming Near a Wall

Fig. 2.2 shows the trajectory as well as the time history of orientation angle α and

swimming speed U of the squirmer for different values of β. The squirmer collides

with the wall at t ≃ 0.8, then it swims along the wall for a certain period of time

referred to as the “contact time” and finally swims away from the wall. The contact
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Figure 2.2. (a) Trajectory and (b) temporal evolution of distance
away from the wall y, (c) orientation angle α and (d) swimming speed
U for squirmers of various β at Re = 1, initially located at h0 = 2
and α0 = −π/4.
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Figure 2.3. Trajectory of squirmers of (a) β = −3 and 0 (b) β = 3
and 7 at different Reynolds numbers.
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time decrease as β increases. When squirmers detached from the wall, three different

swimming modes are observed depending on the values of β: (1) Squirmers of β ≤ 1

will swim away from the wall with a positive angle. (2) Squirmers of 2 ≤ β ≤ 5

oscillate near the wall and eventually swim along the wall with a constant distance

and a negative angle. It should be noted that the damping ratio for the cases of

β = 4 and 5 is small and their oscillations is not fully damped during the simulation

time. (3) Squirmers of β ≥ 7 will swim in a cyclic motion, bouncing on the wall. The

amplitude of the cyclic motion is small compared to the wavelength. Similar steady

and periodic swimming modes along the wall have been observed in [77] using a

three-sphere swimmer model. For the squirmers swimming away form the wall, the

swimming speed is recovered to its value for a squirmer in an unbounded domain. For

β ≤ 1, the swimmers escape from the wall and their steady swimming speed decreases

as β increases, which is consistent with analytical results of inertial squirmer in an

unbounded domain [74]. On the other hand, pullers of β > 2 are trapped near the

wall and their swimming speed increases with β.

The far field solution of a swimming organism in the low Reynolds number regime

can be approximated using the superposition of fundamental singularities in the

Stokes regime. At Re = 0, the velocity field generated by a squirmer in an un-

bounded quiescent fluid can be decomposed into three singularities at the location of

the squirmer center: the Stokeslet dipole GD, the source dipole D, and the source

quadrupole Q, respectively. The velocity generated by the squirmer centered at r0

swimming along the direction e is given as

u(rp) = pGDGD + pDD + pQQ, (2.10)

where rp is the position at which the velocity is evaluated. The strength of each

singularity is given as [74]

pGD = −3β

4
, pD =

1

2
, pQ =

β

4
, (2.11)

and

GD =
1

r2
(−r

r
+

3(r · e)2r

r3
), (2.12a)
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D =
1

r3
(−e +

3(r · e)r

r2
), (2.12b)

Q =
3

r4
(−2(e · r)e + r

r
+

5(r · e)2r

r3
), (2.12c)

where r = rp − r0 and r = |r|. For more details see [81].

When the singularities are close to a plane wall, a collection of image singularities

are placed at the image point on the other side of the wall to satisfy the no-slip

boundary condition at the wall. Here, we use G∗
D,D

∗, and Q∗ to represent the image

singularity collections for GD,D and Q, respectively, and u∗ represents the velocity

field induced by the image singularities. According to the Fax́en’s law, the motion of

a spherical particle due to the presence of the wall can be exactly determined using

the velocity u∗ and its gradient at the center of the sphere. The translational and

rotational velocities of the spherical swimmer located at r0 due to u∗ can be written

as [111]

ũ = u∗|r0 +
1

6
∇2u∗|r0 , (2.13a)

Ω̃ =
1

2
∇× u∗|r0 . (2.13b)

Therefore, the translational and rotational velocities of the squirmer can be approxi-

mated as

u = e + pGDũGD + pDũD + pQũQ, (2.14a)

Ω = pGDΩ̃GD + pDΩ̃D + pQΩ̃Q. (2.14b)

It should be noted that the velocity distribution on the surface of the squirmer is

changed due to the velocity field induced by the wall and its influence increases as

the squirmer gets closer to the wall. Therefore, Eq. (2.14) performs well only when

the squirmer is far away from the wall and the numerical simulation is necessary for

the near-wall motion of the squirmer.

In the present simulation, the squirmer swims in the x-y plane, and its rotational

velocity Ω is around the z-axis. The velocity components in the x (wall-parallel) and
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y (wall-perpendicular) directions and rotational velocity in the z direction induced

by the image singularities are:

ũGD =
3 sin 2θ

8h2
(1 − 1

2h2
), ṽGD =

−3 + 9 sin2 θ

8h2
(1 − 1

2h2
), Ω̃GD =

−3 sin 2θ

16h3
,

(2.15a)

ũD =
− cos θ

4h3
(1 − 1

h2
), ṽD =

− sin θ

h3
(1 − 1

2h2
), Ω̃D =

3 cos θ

8h4
, (2.15b)

ũQ =
−3 sin 2θ

16h4
, ṽQ =

15 + 3 sin2 θ

16h4
− 5 + 5 sin2 θ

8h6
, Ω̃Q = 0. (2.15c)

The translational velocities induced by G∗
D,D

∗ and Q∗ are of order O(1/h2),

O(1/h3) and O(1/h4), respectively and the corresponding rotational velocities are

O(1/h3), O(1/h4) and 0, respectively. When the squirmer is far away from the wall,

i.e. h ≫ 1, the wall induced motion of the squirmer is dominated by the images of

Stokeslet dipole G∗
D. For the pusher, the wall-induced rotation tends to align the

squirmer parallel to the surface. When θ < 0, the pusher rotates away from the wall

and a puller rotates towards the wall [3]. However, when the squirmer is close to

the wall, the motion of the squirmer is determined by the combined effects of all the

image singularities and the rotation of the squirmer is determined by both G∗
D and

D∗. The rotational velocity of squirmer induced by D∗ is to rotate the squirmer away

from the wall and a stable angle of θ = π/2 is obtained. When θ < 0, both G∗
D

and D∗ rotate the pusher away form the wall, while for a puller, G∗
D and D∗ have

opposite and competing effects on the rotation and different swimming modes are

observed depending on the magnitude of β.

The inertia effects on the trajectories of squirmers are compared inn Fig. 2.3.

The pusher and neutral swimmer escape from the wall for both values of Reynolds

number, whereas puller of β = 3 escapes from the wall at Re = 0.1 and is entrapped

near the wall at Re = 1. At larger values of β, the puller is entrapped for both values

of Reynolds number, but the one at Re = 1 has a larger bouncing frequency. In

summary, the inertial effect decreases the initial wall contact time independent of the

squirming type, but it leads to a stronger attraction towards the wall for the puller.
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2.4.2 Multiple Squirmers between Two Walls

We examine the swimming dynamics of suspension of squirmers between two walls.

The simulation is conducted in a cubic domain of [0, 13.89]× [0, 13.89]× [0, 13.89] with

two no-slip walls at y = 0 and y = 13.89. Periodic conditions are used along x and

z directions. Without any overlap, squirmers are initially randomly placed in a fluid

otherwise at rest and their orientations are also randomly initialized. Three cases of

β = 0, 3, and −3 at volume concentration c = (4πN)/(3L3) = 0.1 are simulated. The

case of β = 0 at c = 0.4 is also studied to consider the role of concentration. N = 64

and 256 squirmers are modeled for the two concentrations, respectively. Across the

diameter of the squirmer, there are around 20 grid points for cases of c = 0.1 and 10

grids for c = 0.4, the time step is ∆t = 1 × 10−3. The Reynolds number is Re = 1

for all cases.

Fig. 2.4 shows the spatial distribution of squirmers at t = 100 at which the

system reaches a statistical steady state. White and black points show the front and

trailing ends of symmetry axes of squirmers, respectively. At concentration c = 0.1,

squirmers are accumulated near the walls for all values of β. Aggregation of pushers

and pullers near the wall is stronger compared to the neutral squirmers. At high

concentrations, squirmers are closely packed and the accumulation near the walls is

not obvious from Fig. 2.4. Another interesting phenomena is that there is a strong

tendency for squirmers to orient towards the walls in the near-wall region.

We now quantitatively characterize the hydrodynamic interaction between the

squirmers and the walls. Fig. 2.5(a) shows the probability distribution function

of the vertical position of squirmers. Thee probability distribution function f(ϕ) is

defined as

f(ϕ) =
1

N∆ϕ

N∑
n=1

⟨δ(ϕn − ϕ)⟩, (2.16)

and

δ(ϕn − ϕ) =

1, ϕ− ∆ϕ
2

≤ ϕn < ϕ + ∆ϕ
2
,

0, otherwise,

(2.17)
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Figure 2.4. Distribution of squirmers of (a) β = 0, c = 0.1, (b)
β = 0, c = 0.4, (c) β = −3, c = 0.1, and (d) β = 3, c = 0.1. Thick solid
lines on the top and bottom show the plane walls, dashed lines show
the computational domain. The front and trailing ends of symmetry
axes of squirmers are shown with white and black points, respectively.
The contourplot of v and the velocity vectors on horizontal planes are
shown on three slices at y = 1, 6.94, and 12.89. The data is shown at
every two points for cases of c = 0.1.

where ϕ is the vertical position y, orientation angle α and velocity components in

Figs. 2.5(a)∼(f), and ∆ϕ is the interval of ϕ which is set to ∆y = 1.389, ∆α = 0.05π

and ∆u = ∆v = ∆w = 0.1. The choice of ∆ϕ does not qualitatively change the

results. The symbol ⟨⟩ represents a time-averaged quantity.
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The squirmers are accumulated near the walls and the probability distribution

function rapidly falls away from the walls. When close to the wall, pushers and pullers

have stronger tendencies to accumulate near the wall compared to neutral squirmers.

This result is predictable since the stresslet (strongest far-field interaction) is absent

in the case of neutral squirmer [81]. It also agrees with the results for a single

squirmer near the wall, in which both pusher and puller stay a longer time near the

surface than the neutral squirmer (see Fig. 2.2(b)). At high concentrations, the peaks

of f(y) near the two walls are lower than the cases of c = 0.1 because the layer of the

squirmers close to the wall is nearly saturated and the concentration in the middle

of the channel grows. Similar results have been reported in [90, 91]. In Fig. 2.6, we

quantitatively compare our simulation results of pusher of β = −3 and c = 0.1 with

published experimental/analytical results. The volume concentration of the cells in

the experiments were reported in the range of c = 0.01−0.1 and the ratio between the

channel width and the cell radius is around 40 for bull spermatozoa [47], 20-80 for E.

coli [48], 66 for C. crescentus [68,69] and 6.6 for C. crescentus [69], respectively. All

the results show an increase in concentration of microorganisms near the wall, and

the wall attraction is stronger for the smaller channel width. Our results show good

agreements with the results of C. crescentus which is performed at a small channel

width [69]. The analytical results solely based on the dipole interaction with the wall

[48] overestimates the probability distribution of swimmers near the wall compared

to the results of direct numerical simulation.

Fig. 2.5(b) shows the probability distribution function of the orientation angle of

the swimmers f(α). A peak near α = −π/2 is observed for all the cases. For squirmers

of β = 0 at c = 0.1, another peak occurs near α = 0. To better visualize the results,

the probability distribution function of the orientation angle f(α) is plotted for the

squirmers near the wall and in the bulk region in Figs. 2.5(c) and 2.5(d), respectively.

The near-wall squirmers are strongly oriented normal to the wall (see Fig. 2.4).

Interestingly for squirmers away from the wall, two different types of behavior are

observed: for cases of β = 0 and 3 at c = 0.1, α is mostly between −π/4 and π/4 and



24

y/L

f(
(y

/L
)

0 0.2 0.4 0.6 0.8 10

1

2

3

4

β=0, c=0.1
β=0, c=0.4
β=-3, c=0.1
β=3, c=0.1

(a)

2α/π

f(
α)

-1 -0.5 0 0.5 10

0.5

1

1.5

2(b)

2α/π

f(
α)

-1 -0.5 0 0.5 10

1

2

3

4(c)

d≤1.1

2α/π
f(

α)
-1 -0.5 0 0.5 10

1

2

3

4(d)

d>1.1

v

f(
v)

-1 -0.5 0 0.5 10

2

4

6

8(e)

u, w

f(
u)

,f
(w

)

-1 -0.5 0 0.5 10

1

2

3(f)

symbols:w
lines:u

Figure 2.5. The probability distribution function of (a) vertical posi-
tion of squirmers, (b) orientation angle α with respect to the nearest
wall, (c) α for the near-wall squirmers, (d) α for the squirmers in
the bulk region, (e) vertical velocity component v and (f) velocity
components u and w.

there is a clear peak at α = 0; and for cases of β = −3, c = 0.1 and β = 0, c = 0.4,

f(α) is almost uniformly distributed over −π/2 to π/2. From the results of a single

squirmer in Fig. 2.2(b), after the initial wall contact, all the squirmers detach from the
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Figure 2.6. Comparison of vertical distribution of microorganisms be-
tween present simulation results and previous experimental/analytical
studies.

wall with the finial angle between −π/4 to π/4 (0.56, 0.41, and -0.24 for β = −3, 0,

and 3, respectively). We have also shown that the finial angles are independent of the

initial impact angle of the squirmer if a close contact between the squirmer and the

wall occurs. Therefore, when squirmers swim into the bulk region, their orientation

angle is mainly between −π/4 and π/4. However, for cases of β = −3, c = 0.1 and

β = 0, c = 0.4, squirmers collide with each other more frequently, which leads to

a more uniform distribution in the orientation angle. As shown in Fig. 2.5(e), the

distribution of vertical velocity component v dominates at 0, which also indicates the

high percentage of the near-wall squirmers. Similar results can be also found in Fig.

2.5(f) for u and w components of velocity.
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Hydrodynamic interaction between squirmers generates large scale flows and leads

to a collective motion [105,112]. To show this, we investigate the spacial correlation

function g(r), which is defined as

g(r) =
L3

N(N − 1)V (rm,n)

N∑
m=1

N∑
n=1
n̸=m

⟨δ(rm,n − r)⟩,

δ(rm,n − r) =

1, r − ∆r
2

≤ rm,n < r + ∆r
2
,

0, otherwise,

(2.18)

where rm,n is the distance between squirmers m and n, V (rm,n) = (4π/3)((rm,n +

∆r/2)3− (rm,n−∆r/2)3) is the volume of spherical shell of radius rm,n and thickness

∆r. Figs. 2.7 (a) and (b) show the pair distribution function for squirmers close to

the wall and in the bulk region, respectively. For the squirmers near the wall, g(r)

peaks at around r = 2 and 4, referring to the cluster formation of squirmers on the

wall. The curve of β = −3 has the highest peak at r ≃ 2, meaning that a larger

number of pushers are in close contact (see Fig. 2.4(c)). On the contrary, pullers are

distributed further away from each other. This can be explained by the side-by-side

interactions between two pushers, which is an attractive force, and two pullers, which

is a repulsive force [3]. All curves have similar distributions for the bulk squirmers,

the pair distribution function has a peak near r = 2 corresponding to the squirmers

in close contact. Similar results were reported for the suspension of passive particles

[113], bubbles [114] and two-dimensional swimming particles [112] in an unbounded

domain.

The flow field near the bottom wall (y = 0) generated by pushers (β = −3)

and pullers (β = 3) is plotted in Fig. 2.8. The contourplot of the vertical velocity

component v is shown in the plane of y = 2.5. For clarity, the squirmers above the

plane is not shown here. Near-wall pushers accumulate near each other and form large

scale coherent structures. Previous studies have shown that these coherent structures

can increase the mass transport [83,84]. On the contrary, near-wall pullers are more

scattered due to the side-by-side repelling force between them.
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Figure 2.7. Pair distribution function for the squirmers (a) close to
either walls or (b) in the bulk region.

Figure 2.8. Top view of the flow field near the bottom wall of a
suspension of (a) pushers (β = −3) and (b) pullers (β = 3). Contour-
plots show the distribution of velocity component v on the plane of
y = 2.5.

2.5 Concluding Remarks

We have studied the dynamics of a single and multiple low-Reynolds-number swim-

ming organism(s) near a wall by conducting a three-dimensional direct numerical

simulation. Each swimmer is modeled as a squirmer, which consists of a spherical

body that propels itself by a tangential velocity distribution on its surface.
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When a single squirmer is initially oriented towards the wall, three different modes

are observed for Re = 1: (a) squirmers of β ≤ 1 escapes from the wall, (b) squirmers

of 2 ≤ β ≤ 5 oscillate near the wall and eventually swim along the wall keeping

a constant distance and orientation angle and (c) squirmers of β ≥ 7 bounce on

the wall. At a smaller Reynolds number, Re = 0.1, the initial wall contact time is

increased independent of the swimming type, but a weaker attraction towards the

wall is observed for the puller. The dynamics of suspension of squirmers between two

walls is also studied. Similar to the observation of previous experiments [47,48,68,69],

we found that the squirmers are strongly attracted to the walls. At a relatively small

concentration of c = 0.1, around 60 ∼ 80% of the squirmers are accumulated near

the wall, the attraction of pushers and pullers is stronger than neutral squirmers.

At a high concentration, c = 0.4, around 40% of the squirmers are near the wall.

In the near-wall region, the squirmers mostly orient normal to the walls, while in

the bulk region, the orientation angle of squirmers are more uniformly distributed or

they orient in the direction parallel to the wall. The wall leads to the decrease of the

average swimming speed of the squirmers. The pair distribution function shows that

suspensions of pushers form large scale clusters near a wall, which is not the case for

pullers.

It is interesting to extend the results of this paper by including higher-order

squirming modes which will affect the near-wall motion of the squirmer. In our

simulations, the squirmer model is used to reduce the complexities of real microor-

ganisms. The first two squirming modes capture the most important features of

pusher- and puller-type microswimmers. Previous experiments of E. Coli near a sur-

face [48, 70] show that a stresslet and its image singularities, included to satisfy the

boundary conditions on the wall, describes the measured flow around a bacterial cell

near a wall with good accuracy. Since higher-order squirming modes will extensively

expand the parameter space, our simulation as well as most of the previous studies

[97,99,101–106] only considered the first two squirming modes.
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Figure 2.9. Comparison of the results for the steady swimming of
a squirmer in an unbounded domain at finite Re. Symbols: present
numerical results, dashed lines: Eq. (39) from [74] (first order),
dashdot lines: Eq. (40) of [115] (second order), solid lines: Eq. (41)
of [115]. The domain size for the computational results is 40×40×40.

2.6 Appendix: Validation of the Numerical Method

We first validate the motion of a single squirmer in an unbounded fluid at a finite

Reynolds number defined as Re = ρU0a/µ. The comparison between the present nu-

merical results for the steady swimming speed and the analytical results, obtained us-

ing perturbation theory, [74,115] is illustrated in Fig. 2.9. The first order solution for

the swimming speed of a squirmer in an unbounded domain is U ≈ 1−0.15βRe [74].

The swimming speed U of the neutral squirmer does not change with the Reynolds

number. The swimming speed of a pusher increases with Re and our results are in

good agreement with the analytical results at small values of Reynolds number. The

swimming speed of a puller decreases with Re. At Re > 0.2, the first-order solution of

Wang and Ardekani [74] and the second-order solution of Khair and Chisholm [115]

starts to fail. Our results agree with Eq. (41) of [115]. Additional validation tests

are included in the appendix. More detailed descriptions of the numerical method

and some other relevant validation and verification tests using this code can be found

in our previous publications [108,110,116].
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Figure 2.10. (a) Trajectory and (b) temporal evolution of orientation
angle α for squirmers of β = 0 and 7 at α0 = −π/4, h0 = 2, and
Re = 1. Gray area and the dark gray line in (a) show the area inside
which the gap between the squirmer and the wall is less than one
mesh size of ∆ = 0.1 and ∆ = 0.05.

To check the convergence of the results, simulations of the near-wall motion of

a neutral squirmer are conducted for different values of mesh size, time step and

magnitude of repulsive force . The size of computational domain is 64 × 25.6 ×

12.8. The no-slip boundary condition is used on the wall and the far field boundary

condition is used at other boundaries of the domain. The squirmer is initially located

at h0 = 2, α0 = −π/4 and Re = 1. As shown in Fig. 2.10, the computed results

are independent of the grid size, time step and magnitude of the repulsive force.

Consequently, for the calculations presented in this work, twenty grid points are used

across the squirmer diameter and the time step is set to ∆t = 1 × 10−3.
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3. NEAR WALL MOTION OF MODEL CILIATE IN A VISCOELASTIC FLUID1

3.1 Motivation and Previous Works

Bacteria primarily live within microscopic colonies embedded inside a self-secreted

matrix of polymers and proteins. These microbial biofilms form on natural and

man-made surfaces and interfaces and play important roles in various health and

environmental issues [42]. Previous experimental studies have indicated the signifi-

cance of bacterial motility mechanisms in the colonization process and the subsequent

biofilm formation [117–123]. In particular, flagellar mediated swimming is crucial in

approaching the surface and initiating the adhesion process [124] and pili-mediated

motility highly promotes the surface exploration [125]. The swimming capability

of a subpopulation of cells endures even after the establishment of the biofilm struc-

ture. For instance, the epifluorescence microscopic observations by Nielsen et al. [126]

showed that the Pseudomonas putida cells rapidly swim in circular trajectories inside

the microcolonies and some of them may swim out of the “liquefied” inner region of

the biofilm. Furthermore, Houry et al. [123] showed that during the growth of Bacil-

lus cereus biofilms, the recruited motile planktonic cells penetrate deeply inside the

biomass instead of staying at its surface. The locomotion of cells may lead to their

accumulation on the surface of the biomass as shown by Vlamakis el al. [127] for the

Bacillus subtilis aggregates where the newly born motile cells move to the edge and

the base of the biofilm.

The biofilm structure is strengthened by a protective matrix which is primarily

composed of bacteria-produced extracellular polymeric substances (EPS). Dispersion

of associated polysaccharides and proteins in the surroundings impart viscoelasticity

1The results of this chapter have been published in “Effect of solid boundaries on swimming dynamics
of microorganisms in a viscoelastic fluid” by G. Li, A. Karimi and A. M. Ardekani in Rheologica
Acta, 53: 911, 2014 (DOI: 10.1007/s00397-014-0796-9) (With permission of Springer).
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into the ambient fluid. In addition, there exist ubiquitous examples in nature where

fluid habitat of microorganisms is complex and shows non-Newtonian behavior, such

as the spermatozoa in the mammalian female reproductive tract swimming through

the cervical mucus [59], Helicobacter pylori colonizing the mucus layer covering the

stomach [60], spirobacteria such as Borrelia burgdorferi penetrating the connective

tissues in skin [61, 62], and the nematode Caenorhabditis elegans swimming in the

water-saturated soil [63]. In these instances, the elastic effects become predominant

when the Weissenberg number, Wi, defined as the ratio of polymer relaxation time

to the characteristic time scale of the swimming, is larger than unity. Based on the

rheological measurements of the biofilms, the corresponding relaxation time ranges

from 10−2 s to 102 s [43, 128], or even up to 103 s [129]. Also, the typical relaxation

time of the mucus layer varies in the 1 − 10 s range [130]. Given the oscillation

frequency of cilia f ∼ 5 − 50 Hz [131] or the actuation frequency of spermatozoa

f ∼ 20− 50 Hz [131], we can deduce that the associated Weissenberg number is O(1)

or much larger.

The study of motile microorganisms swimming in complex fluids has received sig-

nificant attention in recent years. It has been shown that in viscoelastic media, both

enhancement and inhibition of swimming speed occurs depending on the swimming

strategy and the rheological characteristics of the background fluid. For example, he-

lical bacteria such as Leptospira and B. burgdorferi swim faster in a viscoelastic fluid

compared to a Newtonian fluid of the same viscosity [132, 133], whereas C. elegans

which undulates its body in a planar wave swims with a slower pace [134]. Taylor’s

waving sheet [5] as an idealized model of an undulating swimmer has been utilized in

several theoretical studies to investigate the kinematics and energetics of swimming

in viscoelastic environments. The corresponding outcomes exhibit strong dependence

on the waving stroke and the constitutive properties of the fluid. While the ana-

lytical study of Lauga [135] indicates that the viscoelasticity hinders the locomotion

of an infinite swimming sheet oscillating with small amplitude, numerical results of

Teran et al. [136] demonstrates enhancement of swimming speed and efficiency of a
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waving sheet with finite length within a favorable range of undulation pattern and

polymer relaxation time. For an undulating swimmer, the maximum speed emerges

at Wi ∼ 1 [136] where the decaying time of elastic stresses matches the period of

swimming strokes. For self-propelled helical bodies, both experiments [137] and sim-

ulations [138] show that the swimming speed peaks at Weissenberg number of O(1),

and the speed enhancement with respect to Newtonian fluids is more pronounced for

helices with large pitch angles. Simulations conducted on axisymmetric bodies with

tangential squirming motion [94, 95] indicate that for ciliated cells, the swimming

speed in shear-thinning polymeric solutions is always smaller compared to Newtonian

fluids and the Weissenberg number associated with minimum velocity depends on the

specific swimming gait of the microorganism. The hydrodynamic efficiency, however,

is enhanced in viscoelastic fluids regardless of the squirming mode or the value of

Weissenberg number.

The viscoelasticity of the ambient fluid, not only alters the swimming behavior

of a single microorganism, but also affects the hydrodynamic interactions and collec-

tive motion of a population of motile cells. For example, Ardekani and Gore [139]

demonstrated that in a bacterial suspension subjected to a background vortical flow,

viscoelasticity results in steady rotation and aggregation of microorganisms on a limit

cycle. Also, using a mean-field kinetic model, Bozorgi and Underhill [140, 141] an-

alyzed the effect of viscoelasticity on the instability conditions of a suspension of

extensile microwimmers.

Understanding the swimming strategy of bacteria in confined geometries is shown

to be a decisive factor in identifying the adhesion rate and elucidating the subsequent

colonization process. However, a large majority of studies focused on the swimming

behavior of motile cells in complex fluids have been conducted assuming the cells’

habitat to be an unbounded domain and thus, the boundary induced effects, such

as surface trapping and wall accumulation, are poorly understood. On the contrary,

the significance of the solid boundaries is well received in the context of particulate

viscoelastic flows. Several computational [142–145] and experimental [146–148] in-
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vestigations have been carried out to shed light on the dynamical behavior of rigid

particles moving in close proximity of a solid surface in non-Newtonian fluids. In

particular, it is found [142] that in the second-order fluids, a strong attraction force

is developed which draws a solid sphere towards the corresponding wall. Also, the

shear-thinning effects are shown [148] to be determinant in raising the acceleration

of the particles moving away from the nearby surfaces. Although the physical mech-

anisms underlying the interaction of solid surfaces with rigid particles are different

than those affecting the dynamics of self-propelled cells, the experimental and com-

putational methodologies developed in the aforementioned studies are of potential

use in order to explore the impact of the walls on the swimming motion of motile

microorganisms in viscoelastic media.

In the current study, we conducted a series of three-dimensional direct numerical

simulations in order to investigate the near-wall swimming motion of a squirmer in

viscoelastic fluids. We scrutinize the effects of fluid elasticity, shear-thinning, and

polymer viscosity on the swimming speed, inclination, and trapping period of various

types of squirmers with different locomotive gaits. Utilizing a decomposition of force

and torque exerted on swimmer’s body, the dynamical behavior of a squirmer adjacent

to a solid boundary is rationalized. To the best of our knowledge, the results presented

below are the first three-dimensional simulations analyzing the effect of a rigid surface

on the self-propelled motion in complex fluids.

3.2 Governing Equations

The governing equations of the are the same as for squirmers in Newtonian fluid,

∇ · u = 0, (3.1a)

Re

(
∂u

∂t
+ u · ∇u

)
= −∇p + ∇ · τ , (3.1b)

The differences come form the deviatoric stress τ , which can be split into solvent

and polymer components as τ = τ s + τ p. The Newtonian viscous stress is defined

as τ s = βs(∇u + ∇uT) with βs = µs/µ being the ratio of the solvent viscosity to



35

the zero-shear viscosity of the polymeric solution. The dynamic viscosity of the fluid

includes contributions form both Newtonian solvent and polymers, µ = µs + µp.

To characterize the evolution of the polymer stress, we adopt the Giesekus con-

stitutive model [149] which specifies the constrained elongation of the polymers and

the shear-thinning behavior of the polymeric solution. In dimensionless form, the

associated equation can be written as,

τ p + Wi
▽
τ p +

Wiαm

1 − βs

τ p · τ p = (1 − βs)(∇u + ∇uT), (3.2)

where Wi = λU0/a is the Weissenberg number with λ being the polymer relaxation

time. The mobility factor, αm, represents the anisotropic hydrodynamic drag ex-

erted on the polymer molecules by the surrounding solute molecules. Based on the

thermodynamic analysis, the mobility factor must lay in the range of 0 to 1/2 [150].

For special case of αm = 0, the Giesekus model reduces to the Oldroyd-B model.

In this work, unless otherwise stated, we set αm = 0.2 in accordance with previous

studies regarding the squirming motion in unbounded viscoelastic media [94,95]. The

notation
▽
A represents the upper-convected derivative,

▽
A =

∂A

∂t
+ u · ∇A−∇uT ·A−A · ∇u. (3.3)

The range of parameters considered in the current study are Re = 0.1, Wi = 0 − 6,

βs = 0.1 − 0.3, αm = 0 − 0.3, and β = −3, 0, 3.

3.3 Results and Discussion

In this section, the effects of the fluid viscoelasticity on the swimming motion of

different types of squirmers near a rigid wall is investigated. In our previous study,

two types of swimming modes are distinguished for the near wall motion of a single

squirmer at Re = 0.1 in a Newtonian fluid: (a) the squirmer with β ≤ 3 escapes the

wall and (b) the squirmer with β > 3 swims in the close proximity of the wall [50].

We have also found that the long-time swimming modes are not affected by the initial

angle and the initial position of the squirmer. Thus in present study, the initial height
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Figure 3.1. Temporal evolution of (a) distance from the wall, (b)
orientation angle, (c) swimming speed, and (d) angular velocity for
the neutral squirmer with β = 0.

and the initial orientation of the squirmer are fixed at h0 = 2 and α0 = −π/4 and

we only focused on the effect of the viscoelasticity of the background fluid on the

interaction of the model swimmer and the solid surface.

3.3.1 Neutral Squirmer

The time history of the vertical position of a neutral squirmer in Newtonian and

viscoelastic fluids are shown in Fig. 3.1(a). In general, the viscoelasticity of the back-

ground fluid does not alter the near-wall swimming behavior of a neutral squirmer

qualitatively. At all Weissenberg numbers, the squirmer initially approaches the wall

in an oblique direction and then collides with the surface at time ti. Next, due to

synergetic effects of hydrodynamic interactions and collision, the squirmer reorients
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and swims parallel to the wall for a limited time interval. Whilst the squirmer is

trapped by the surface, it gradually rotates away from the wall and thus, the ori-

entation angle α increases. Finally the squirmer escapes the wall at time te where

α becomes positive. Here, we define the impact time ti and the escape time te of

the squirmer at which the distance to the surface is hc = 1.1. Based on this value

of hc, in the contact regime, the squirmer is 10% of a cell size away from the wall

which agrees with experimental observation of Drescher et al. [70]. They found that,

while trapped by the nearby surface, an Escherichia coli cell is about 1-3 µm away

from the wall. The specific choice of hc affects the residence time quantitatively, but

the qualitative trend will remain the same. As the inset in Fig. 3.1(a) demonstrates,

the impact time ti of the squirmer is postponed in the viscoelastic fluid since the

overall swimming speed of the squirmer is smaller compared to the Newtonian fluid

(see Fig. 3.1(c)) [95]. The trapping period ∆te = te − ti in which the squirmer is in

a close contact with the wall increases for Wi < 1 and reaches a peak value around

Wi = 1. The prolonged trapping time at Wi = 1 originates from the diminished

angular velocity of the squirmer in this case as delineated in Fig. 3.1(d).

In order to elucidate the hydrodynamic interaction of the squirmer with the nearby

wall, the temporal profiles of the torque and the vertical force exerted on the squirmer

are calculated and illustrated in Fig. 3.2. After collision with the wall and reorien-

tation of the squirmer, the polymer stress momentarily induces a large torque in

negative z direction which reduces the angular velocity and impedes the growth of

the inclination angle α. As demonstrated in the inset of Fig. 3.2(a), the magnitude

of this opposing torque reaches its maximum at Wi = 1 and decays for higher val-

ues of Wi. The slower rotation and longer residence time of the squirmer when its

swimming characteristic time is on the order of the polymer relaxation time can be

rationalized considering the inhibiting effect of the polymer stress which generates an

adverse torque at the early stage of swimmer-wall interaction. In order to illustrate

the elastic wake around the squirmer, we calculated the first normal stress difference,

N1 = τXX − τY Y , which is a measure of the polymer stretching. The snapshots of N1
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Figure 3.2. Temporal evolution of the torque and the vertical force
exerted on the neutral squirmer with β = 0. The panels show (a)
variation of the torque for different values of Wi, (b) variation of the
vertical force for various values of Wi, (c) decomposition of the torque
for the case of Wi = 1, and (d) decomposition of the vertical force for
the case of Wi = 1.

around the cell body immediately after the impact, as shown in Fig. 3.3, exhibit a

larger region of elongated polymers and a pronounced elastic wake in case of Wi = 1.

For higher values of polymer relaxation time corresponding to Wi > 1, the region of

largest elongation becomes thinner and thus, the squirmer encounters reduced elastic

resistance against reorientation.

During the trapping period, the region of elongated polymers shrinks and thereby,

the magnitude of the polymeric torque exerted on the squirmer diminishes. On the

other hand, a high shear region in the gap between the swimmer and the wall evolves

which strengthens the effect of the Newtonian stress. The resulting imbalance in the

distribution of the shear stress gives rise to a strong torque in z direction which coun-
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Figure 3.3. Distribution of the first normal stress difference at plane
z = 0 around the neutral squirmer with β = 0. The snapshots are
taken immediately after the impact at t = 2 and correspond to (a)
Wi = 1, and (b) Wi = 6.

teracts the impeding effect of the polymeric torque. The overall effects of Newtonian

and polymeric stresses on the surface of the squirmer result in counter-clockwise ro-

tation of the cell and facilitates propelling towards the bulk fluid. As soon as the

inclination of the squirmer becomes horizontal, a large vertical force arising from the

asymmetric distribution of the Newtonian shear stress is developed which negates the

wall attraction effect and leads to departure from the vicinity of the surface. This

driving force emerges at the time when the squirmer starts to swim parallel to the

wall. Hence, the residence time of the swimmer is contingent upon the torque balance

and angular kinetics of the ciliated cell.

The effect of the constitutive properties of the background fluid on the squirmer

dynamics near a wall is investigated. The impact of shear-thinning behavior on

the residence time of the squirmer is depicted in Fig. 3.4(a). It is evident that by

increasing the degree of shear-thinning, the trapping period of the squirmer will grow.

This is closely related to the escaping mechanism of the swimmer resulting from

the imbalance in the distribution of the Newtonian viscous stress. In fluids with a

high degree of shear-thinning, the elevated shear rate in the constriction between the

squirmer and the wall leads to a local decline in the fluid viscosity and consequently,
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Figure 3.4. Temporal evolution of the orientation angle and vertical
distance of a neutral squirmer for various values of (a) mobility factor,
and (b) viscosity ratio. The corresponding parameters are β = 0,
Wi = 1, and (a) βs = 0.1, and (b) αm = 0.2.

a lower value of the Newtonian torque. Thus, the squirmer should spend a longer

period of time near the wall to become capable of overcoming the impeding effect of

the polymeric torque and reorienting away from the surface. In particular at Wi = 1,

the residence time of a neutral squirmer swimming in a Giesekus fluid with αm = 0.2

is about 25% longer compared to an Oldroyd-B fluid.

The other important characteristic of the viscoelastic fluids is the viscosity ratio

which describes the relative importance of the Newtonian and polymeric contributions

in the fluid viscosity. By increasing the value of βs, the role of solvent viscosity in

kinetics of the swimmer gains more significance which leads to earlier release of the cell

from the wall attraction (see Fig. 3.4(b)). Since the inhibiting impact of the polymeric

torque is lessened for elevated values of βs, the squirmer reorientation accelerates and

the cell escapes the wall faster.

3.3.2 Puller

In this section, the dynamical behavior of a puller with β = 3 in the vicinity of

a solid surface is investigated. The swimming trajectory of the puller swimmer is

qualitatively akin to the neutral squirmer, i.e. it approaches the wall due to hydro-
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Figure 3.5. Temporal evolution of (a) vertical distance, (b) inclination
angle, (c) swimming speed, and (d) rotation rate for a puller swimmer
with β = 3.

Figure 3.6. Residence time of the swimmer as a function of the
Weissenberg number for puller β = 3 (squares, blue) and neutral
squirmer β = 0 (circles, red).
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Figure 3.7. Time history of the decomposition of (a) torque and (b)
vertical force exerted on the puller swimmer with β = 3 and Wi = 1.
The inset in panel (b) demonstrates the evolution of the vertical force
in short time.

Figure 3.8. (Color online). Distribution of tr(C) at plane z = 0
around the puller with β = 3. The snapshot is taken at t = 2 imme-
diately after the impact and the corresponding Weissenberg number
is Wi = 1.

dynamic interactions, spends a brief period of time in the close proximity of the wall,

and eventually escapes the wall. The temporal profiles of the vertical distance and

inclination angle, shown in Figs. 3.5(a) and 3.5(b), clearly demonstrate this swimming

strategy. However, the residence time of the puller swimmer is about one order of

magnitude smaller compared to a neutral squirmer (see Fig. 3.6). Also, viscoelasticity

of the background fluid does not alter the trapping time of a puller substantially, in
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contrast to a neutral squirmer with analogous conditions. This discrepancy stems

from the absence of polymeric negative torque after the impact of the puller with the

wall as shown in Fig. 3.7(a). Due to specific swimming gait of a puller which im-

poses inward surface deformation, the polymer stretching around the swimmer poles

is symmetric and no sizable elongated region is established behind the squirmer to

pull it backward. The trace of the polymer conformation tensor, C, defined as,

C =
Wi

1 − βs

τ p + I, (3.4)

indicates the intensity of polymer stretching. The snapshot of tr(C) shown in Fig. 3.8

shows that the locomotion of a puller, instead of rendering an elastic wake in the rear

side, engenders stretching of the polymers mainly around its lateral sides perpendicu-

lar to the swimming direction. After a brief time interval, due to the growth of shear

rate in the separating gap, the Newtonian shear stress significantly amplifies; leading

to development of a vertical force, as depicted in Fig. 3.7(b), which provides suffi-

cient thrust to escape the wall attraction. After separating from the nearby surface,

a puller recovers its free swimming characteristics considerably faster than a neutral

squirmer as illustrated in Figs. 3.5(c) and 3.5(d). The time scale of attaining steady

state swimming behavior that is unaffected by the presence of the wall depends on

the polymer relaxation time and slightly increases with Weissenberg number.

3.3.3 Pusher

The fluid viscoelasticity has a more dramatic effect on the near wall swimming

motion of a pusher with β = −3. As depicted in the time history plots of the vertical

distance and orientation angle shown in Figs.3.9(a) and 3.9(b), after approaching the

surface, the pusher swimmer is strongly trapped by the wall and continues its swim-

ming trajectory while maintaining a constant distance from the nearby boundary.

Although in steady state, the pusher holds a small orientation angle (∼ 5◦ − 10◦)

away from the wall, it is incapable of escaping the confining effect of swimmer-wall

hydrodynamic interaction. This behavior is in stark contrast with swimming strat-
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Figure 3.9. Temporal evolution of (a) separation distance, (b) ori-
entation angle, (c) swimming speed, and (d) angular velocity for the
pusher swimmer with β = −3. The inset in panel (a) illustrates the
variation of the vertical distance over the trapping period.

egy of a pusher in a Newtonian fluid wherein the swimmer eventually reorients away

and departs the nearby wall. The time scale of arriving at steady state decays with

increasing the Weissenberg number. The steady state values of the vertical distance,

inclination angle, and the velocity components for various values of Wi are depicted

in Figs. 3.10(a) and 3.10(b). The separation length scale dramatically decays with

increasing Wi, however, the angle α varies within a limited range. Fig. 3.10(b) shows

that in viscoelastic fluids, unlike the Newtonian case, the pusher swims along the

horizontal direction parallel to the attracting boundary. The viscoelasticity also hin-

ders the swimming speed compared to a Newtonian fluid. Further, by increasing the

polymer relaxation time, the swimming speed grows and reaches a peak at Wi = 4.
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Figure 3.10. Steady state values of (a) vertical distance (black circles)
and orientation angle (blue squares), and (b) velocity components in
x and y directions (blacks circles and blue squares, respectively) as
functions of the Weissenberg number for the pusher with β = −3.

In order to quantify the boundary effects on the pusher swimmer, we calculated

the temporal profiles of torque and vertical force exerted on the squirmer. The results

are shown in Figs. 3.11(a) and 3.11(b). Immediately after the impact, analogous to

the neutral squirmer, a large polymeric torque is developed in negative z direction

which impedes the reorientation of the cell towards the fluid bulk. Subsequently,

high values of shear rate arise in the constriction between the wall and the squirmer,

leading to the formation of a positive torque due to the Newtonian viscous stress. The

balance of these two torques leads to rotation of the cell away from the wall while

maintaining a close distance with the surface. Contrary to the neutral squirmer where

the viscous force becomes sufficiently strong to overcome the elastic drag, in case of

the pusher swimmer, a wide region of stretched polymers is developed behind the

squirmer’s body which results in high elongational viscosities and thus, a large elastic

drag which the Newtonian viscous force is unable to overcome. Since at steady state,

the pusher is oriented away from the wall, the force generated due to the concentration

of stretched polymers behind the squirmer draws it toward the nearby surface. On

the other hand, the viscous force tends to separate the pusher from the wall and

lessen the shear rate in the gap region. therefore, squirmer attains a kinetic balance
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Figure 3.11. Time history of the decomposition of (a) torque and (b)
vertical force exerted on the pusher with β = −3. The inset in panel
(b) shows the evolution of the vertical force around the impact time.

Figure 3.12. Distribution of tr(C) at plane z = 0 around the pusher
squirmer with β = −3. The snapshot is taken at t = 50 and the
corresponding Weissenberg number is Wi = 1.

and continues to swim in the vicinity of the surface. The distribution of the trace of

the conformation tensor at steady state as depicted in Fig. 3.12 displays the strong

elastic wake in the aft of the squirmer.

3.4 Concluding Remarks

In this work, we presented numerical results to demonstrate how the fluid vis-

coelasticity affects the swimming behavior of small organisms in the vicinity of rigid
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surfaces. Studying this phenomenon is of prime importance in order to gain fun-

damental insights regarding the hydrodynamic interplay of motile cells with nearby

substrates. Using the Giesekus constitutive model, we elucidated the near-wall dy-

namics of three types of squirmers with different swimming gaits, i.e. neutral squirmer

(potential swimmer), puller (contractile swimmer), and pusher (extensile swimmer).

These model swimmers cover a wide range of locomotion strategies typical of motile

cells. Employing direct numerical simulations, the characteristics of the polymeric

flow arising from swimmer-wall interactions are revealed and the underlying physical

mechanisms affecting the swimmer dynamics are analyzed in depth.

In case of the neutral squirmer, we showed that the swimmer is capable of es-

caping the wall attraction due to the synergetic effects of the Newtonian viscous

torque and vertical force. The former reorients the squirmer away from the surface,

and subsequently the latter counterbalances the restraining effect of the stretched

polymers. To better illustrate the spatial structure of the viscoelastic stresses and

the configuration of elongated polymers, in Fig. 3.13, we have plotted ellipsoids that

represent the geometric structure of the conformation tensor. The principal axes of

the ellipsoids are aligned with the eigenvectors of C, the axis lengths are scaled by

corresponding eigenvalues, and the coloring is based on the value of the first normal

stress difference (N1) at the center of the ellipsoids. This visualization illustrates the

distribution of polymer stretching and the associated stresses around the swimmer’s

body. All the snapshots are obtained at t = 2 immediately after the collision with

the wall. Fig. 3.13(a) shows a strong polymer stress concentration and relatively high

elongation viscosities in the aft of the neutral squirmer. The elongation field is asym-

metric in vertical direction with more stretching in the lower portion of the swimmer

near the rigid surface. The elastic drag generated by the elevated values of polymer

stress behind the squirmer results in backward pulling and relatively long residence

time of the swimmer in the proximity of the nearby wall.

Fig. 3.13(b) depicts the elongation and stress fields around a puller swimmer

after its impact with the wall. Due to inward surface deformation of the puller,
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around the swimmer’s poles little stretching arise which is mostly in the tangential

direction. In this case, polymer stretching predominantly occurs perpendicular to the

swimming plane in the neighborhood of the squirmer’s equator in Y Z plane. This

kinetic configuration of the polymers combined with excessive shear stress beneath

the squirmer lead to shorter trapping time and faster release of the puller compared

to the neutral squirmer. Thus, the contractile ciliated microorganisms are expected

to be least affected by the wall attraction and exhibit lower surface accumulation.

The geometric distribution of the eigenstructure of the conformation tensor for a

pusher, as shown in Fig. 3.13(c), reveals that due to outward tangential deformation

of an extensile swimmer, the polymers become highly stretched on the cell surface

along the swimming direction. In particular, a largely elongated localized region is

formed around the rear pole of the pusher, inducing an elastic drag which resists the

locomotion of the swimmer. This configuration remains unchanged after reorientation

of the cell and counteracts the releasing force which stems from the Newtonian viscous

contribution. Hence, unlike the Newtonian case, the pusher is unable to escape the

wall attraction in viscoelastic fluids. It is noticeable that, compared to other swim-

ming gaits, the self-propulsion of the pusher engenders the highest rate of polymer

elongation, especially around the swimmer’s poles.

While the near-wall motion of bacteria in Newtonian fluids has been experimen-

tally investigated in numerous studies [70,151,152], to the best of our knowledge, the

cell-surface interactions in complex fluids still await experimentation. The insights

gained through the present study can be corroborated by comparing the simulation

results with experimental measurements in terms of the residence time and the cell

trajectory after collision with wall. However, employing microorganisms incorpo-

rates complex biological factors in the experimental investigation and renders further

difficulty to compare the outcomes with the results stemming from the simulation

of squirmers. To remedy this problem, Thutupalli et al. [153] introduced a novel

experimental technique which utilizes self-propelling liquid droplets to mimic the sur-

face deformations of a squirmer. This methodology can be employed to further our
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Figure 3.13. Snapshots of the conformation tensor and the polymer
stress around (a) neutral squirmer with β = 0, (b) puller with β = 3,
and (c) pusher with β = −3. The principal axis of each ellipsoid is
aligned with the principal eigenvector of C and its length is scaled
based on the associated eigenvalue. The minor axes correspond to
the second and third eigenvectors of C. The coloring is based on
the value of the first normal stress difference at the centroid of each
ellipsoid. The snapshots are taken at t = 2 after the collision and the
corresponding Weisenberg number is Wi = 1.

knowledge regarding the hydrodynamic interaction solid walls with nearby squirmers

swimming in viscoelastic media.

In this study, we quantified the impact of the Weissenbrg number on the residence

time of the swimmers in proximity of solid surfaces. The associated outcomes can

be utilized to enhance our understanding regarding the adhesion rate of the bacterial

cells constituting a microbial community in viscoelastic media. In addition, this
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Figure 3.14. (Color online) Comparison of the steady angular velocity
as a function of Wi with the results of Snijkers et al. [154] and Goyal
et al. [155].

investigation sheds light on the polymeric effects opposing the locomotion of three

types of self-propelled particles near rigid walls. The insights gained through this

study pave the way to design more efficient artificial swimmers via minimizing the

unfavorable concentration of stretched polymers. The results presented in this work

can be extended in several directions. For example, instead of using an idealized

model of cell locomotion, more realistic models of microorganisms could be taken

into account. Specifically, the helical structure and the rotation of flagella should be

considered in more comprehensive simulations of motile bacteria. Further, the cell

deformation could be captured more precisely by considering cell as a soft matter and

simulating the associated fluid-structure interaction problem. Finally, hydrodynamic

interactions of a group of swimmers pose an important theoretical challenge in order

to resolve the collective behavior of microorganisms in viscoelastic media.

3.5 Appendix: Validation of the Numerical Method

In an Oldroyd-B fluid, we simulate the rotation of a single sphere in a shear

flow to validate our numerical platform. Simulation is conducted in a rectangular

domain of [−2a, 2a]× [−2a, 2a]× [−4a, 4a] where a is the radius of the sphere and the
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sphere centered at (0,0,0). The flow is driven by two parallel plates at z = −4a and

z = 4a moving opposite in x-direction with the same speed U . Periodic boundary

conditions are applied in x and y directions. The mesh size is ∆ = a/16 and the

time step is ∆t = 10−3a/U . The shear rate of the flow is γ̇ = U/4a, the Weissenberg

number Wi = λγ̇ and the viscosity ratio βs = 0.5. Fig. 3.14(a) shows the time

evolution of the angular velocity of the sphere at different Wi. It is seen that for the

Newtonian case, the sphere asymptotically reaches to its steady state of Ωy = 0.5γ̇

while for viscoelastic cases, overshoots can be observed around tγ̇ = 0.2. In Fig.

3.14(b), the steady angular velocity as a function of Wi is compared with previous

experimental [154] and numerical [155] results. It is evident that our simulation

results are in good agreement with the previous results.

The simulation is performed on a non-uniform structured grid with the smallest

mesh size of ∆ = D/40 near the squirmer, where D is the diameter of the spherical

squirmer. The computational domain is [−40a, 40a] × [−40a, 40a] × [−40a40a] and

the squirmer is initially placed at (0,0,0). The time step is ∆t = 10−5. The Reynolds

number defined as Re = U0a/ν is 0.01 in all the simulations, and U0 = 2B1/3.

According to the analysis of a squirmer at finite Reynolds number, the swimming

speed of a squirmer is determined by U/U0 ≃ 1 − 0.15βRe [74], thus the effects of

the inertia on the swimming speed can be neglected in our simulation. The viscosity

ratio is βs = 0.5 and mobility factor is αm = 0.2. The Weissenberg number is defined

as Wi = λB1/a. The swimming speed of the squirmer U is plotted in Fig. 3.15 for

squirmers with β = −5, 0, and 5. Our results show good agreement with the results

obtained by Zhu et al. [95].

Convergence studies have been performed to examine the consistency of our sim-

ulations. As two typical cases, the near-wall motion of squirmers with β = 0 and

−3 are calculated under different grid sizes and different time steps. Fig. 3.16 shows

the time history of the distance h away from the wall, orientation angle α and the

swimming speed U of the squirmer. The results from these different computations
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Figure 3.15. (Color online) Swimming speed U as a function of the
Weissenberg number Wi, for the neutral squirmer β = 0 (solid line:
Ref. [95] and circles: present results), pusher β = −5 (dashed line:
Ref. [95] and squares: present results) and puller β = 5 (dashdot line:
Ref. [95] and triangles: present results). The Reynolds number is
Re = 0.01 and the swimming speed is scaled by the squirmer’s speed
U0 in a Newtonian fluid.

Figure 3.16. (Color online) Time history of (a) vertical distance h
and orientation angle α and (b) swimming speed U of the neutral
squirmer calculated using different grid sizes, different time steps and
different values of the parameter ϵ. The corresponding parameters are
Wi = 6 and Re = 0.1 and the squirmer is initialized at h0 = 2 and
α0 = −π/4.

agree well with each other. It is confirmed that the computed results are independent

of the mesh size and the time step.
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When the squirmer lies in the close proximity of the surface, due to the lubrica-

tion effect and other non-hydrodynamic phenomena such as electrostatic charges, a

repulsive force is developed which prevents intrusion of the swimmer’s body into the

wall. To capture the associated hydrodynamic squeezing effect, exceedingly fine grid

resolutions are needed which make the corresponding simulations computationally

highly demanding. In addition, as indicated in Ref. [81], hydrodynamic interactions

are inadequate to prevent the swimmer-wall interference in some settings. Hence, in

order to avoid overlapping of the squirmer’s body and the nearby wall, we impose a

short-range repulsive force [109] defined as,

Fr =
Cm

ϵ

(
h− hmin − hr

hr

)
e, (3.5)

where hmin = a is the minimum possible distance from the wall and hr represents the

range over which the force is acting and is normally set to be the smallest grid size ∆

in the computational domain [109]. The direction of the repulsive force e is considered

to be perpendicular to the wall. The parameters Cm = MpU
2
0/a and ϵ = 10−4 denote

a scaling factor and a small positive number, respectively, with Mp being the mass of

the squirmer. As demonstrated in Fig. 3.16, changing the value of ϵ have a negligible

impact on the simulation results.
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4. PARTICLE MIGRATION IN A CHANNEL FLOW OF VISCOELASTIC

FLUIDS1

4.1 Motivation and Previous Works

Particle transport in a channel flow of Newtonian and non-Newtonian fluids has

been widely studied for its importance in many industrial and biological applications.

Depending on the flow conditions, inertial effect, proximity of the channel wall, fluid

elasticity, shear-thinning, particle deformability, and particle-particle interaction may

affect the dynamics of the particle motion and the flow field. Interplay between

these effects result in various interesting phenomena, such as cross-streamline particle

migration [156], particle focusing at the channel centerline [157, 158], wall-surface

accumulation of particles [159, 160], self-assembly of two particles [161], and the

particle-induced lateral transport of the fluid [162]. These phenomena have been

successfully used for the manipulation of cells and particles suspended in microfluidic

platforms.

The two most important dimensionless parameters of the problem are the flow

Reynolds number and the Weissenberg number, quantifying inertia and elasticity

effects, respectively. The flow Reynolds number is defined as Re = ρUcH/µ, where

Uc is the characteristic flow velocity, such as the velocity at the channel centerline,

H is the characteristic length scale in the channel cross-sectional plane, ρ is the fluid

density, and µ is the fluid zero shear viscosity. The Weissenberg number is defined

as Wi = λUc/H, where λ is the relaxation time of the fluid. The ratio between these

two parameters gives the elasticity number El = Wi/Re = λµ/ρH2, which only

depends on the channel dimension and fluid properties. Other important parameters

1This chapter has been published in “Dynamics of particle migration in channel flow of viscoelastic
fluids”, by G. Li, G. H. Mckinley and A. M. Ardekani, in Journal of Fluid Mechanics, 785: 486-505,
2015 (reproduced with permission).
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include, the geometry of the channel, the strength of the shear-thinning effect, the

initial position of the particle, and the block ratio defined as d/H, where d is the

particle diameter.

Cross-streamline migration of particles was first observed in a Newtonian fluid

(El = Wi = 0) by [156]. In a tube flow, initially randomly distributed particles

gradually pinch into a narrow annulus at around 0.6 radius, resulting in the “tubular

pinch” effect. This phenomenon was later confirmed in several experimental [163,

164], analytical [165] and numerical [166,167] studies. Similar phenomenon occurs in

square- and rectangular-shaped channels, where particles accumulate at the center of

each wall [168–172]. Inertia is necessary for this phenomenon, and the balance of two

competing effects, the shear-gradient lift force [173] and the wall repulsive force [174],

determines the equilibrium position of the particles. These two forces scale differently

in the centerline and near-wall regions and both depend on the Reynolds number [164]

and block ratio [171, 175]. By properly designing the geometry of apparatus, this

effect is used in cell and particle focusing, sorting, separation, filtration, enrichment,

and trapping. Review articles by [176] and [177] provide a comprehensive discussion

of the progress and future directions in this area.

In a channel flow of viscoelastic fluids, the particle migration shows a different

behavior depending on the fluid rheology. For example, particles move towards the

centerline in viscoelastic fluids of constant viscosity, whereas they move towards the

walls in a shear-thinning fluid [159, 160]. Particles also move towards the centerline

in solutions of moderately cross-linked polymers, whereas little or no migration is

observed in solutions of highly cross-linked polymers [178]. Under the assumption of

zero Reynolds number and small block ratio, [179] showed that a lateral force, orig-

inated from the normal stress difference, drives the particle towards the lower-shear

region in a second-order fluid. This conclusion has been verified in other experi-

ments and simulations, where particles move to the central axis of a circular tube

[157,180,181] and to both centerline and corners in a rectangular channel [182]. The

shear-thinning behavior of the fluid is found to have a large effect when the inertia or
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elasticity is large [183]. Based on simulations of Geisekus and Phan Thien-Tanner

constitutive equations, [184,185] and [180] observed a bistable dynamics of the parti-

cle in shear-thinning fluids, i.e. the particle may move towards the channel centerline

or the closest wall depending on its initial position. The same behavior is also ob-

served in experiments [186]. The second normal stress difference induces a secondary

flow in a non-circular channel, which may directly affect the particle motion [185].

A recent review article about particle dynamics in viscoelastic fluids can be found in

[187].

These studies are mostly conducted in flows with dominated elastic effects, where

the Reynolds number is small (El > 0, Re ≃ 0). The synergetic effect of elastic and

inertial forces (El > 0, Re > 0) result in a different particle migration behavior. For

example, even in a weak inertia regime in a rectangular channel of viscoelastic fluid,

the equilibrium positions at the corners become unstable and particles focus only at

the channel centerline [182]. This elasto-inertial particle focusing in the range of low

Reynolds number (Re ∼ 10−2 − 10−1) and high elasticity number (El ∼ 101 − 102) is

destabilized as the channel Reynolds number increases beyond order unity [157,182].

On the contrary, a recent study by [158] show that stable particle focusing at the

channel centerline can be achieved in weakly viscoelastic flows at a high Reynolds

number (El ∼ 0.1, Re ∼ 2000). Their experiments illustrated particle focusing at

very high flow rates. Another recent study by [188] showed that the flow rate, block

ratio and shear-thinning properties of viscoelastic fluids have complex effects on the

particle migration in a square microchannel in the presence of elastic and inertia

effects.

Despite the above mentioned numerical and experimental studies, there exist gaps

in the parameter space, where the mechanism of particle migration due to combined

effects of rheological properties of viscoelastic fluids, flow conditions, and particle-fluid

interaction is poorly understood. Experiments have some limitations in providing all

the detailed information, and most previous simulations are conducted in flows with
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either inertia (El = 0) or elastic (Re = 0) effects, and the synergetic effects of the

two forces for spherical particles have not been numerically investigated.

In the present study, we investigate the particle migration in a square channel

by means of three-dimensional direct numerical simulations. Our simulations include

the effects of the fluid elasticity, shear-thinning and normal stress coefficients in a

relatively large range of parameters by using Oldroyd-B and Geisekus constitutive

equations. Besides the migration dynamics of the particle, we also study some other

less-explored aspects of the problem such as the particle-induced fluid transport and

the transient behavior during the flow start-up.

4.2 Mathematical Model and Numerical Method

In this study, we consider the motion of a rigid particle in a straight square

channel filled with a viscoelastic fluid. A Cartesian reference frame is considered with

its origin at the center of the channel cross-section. The computational domain spans

over [−L/2, L/2] in x, [−H/2, H/2] in y and [−H/2, H/2] in z directions. Initially,

the fluid is at rest and a constant pressure gradient G is imposed along the x-direction

at time t = 0 to drive the channel flow. In what follows, the length is scaled by the

channel width H, velocity by U0 = 4kGH2/π3µ, time by H/U0, shear and angular

velocity by U0/H, density by ρ and pressure and stress by µU0/H, where k is a

constant, depending on the geometry of the channel. For a square-shaped channel,

k =
∑∞

n,odd
1
n3 (1 − sechnπ

2
) ≃ 0.571. In Newtonian and Oldroyd-B fluids, U0 is equal

to steady centerline velocity of the channel Uc [189], whereas in shear-thinning fluids

Uc > U0. The particle is neutrally buoyant and has a spherical shape with diameter

d. The block ratio is set to κ = d/H = 0.25, unless otherwise stated. The particle has

zero translational and rotational velocity and is initially located at X0
p = (0, 0.25, 0),

unless otherwise stated. The rigid-body motion of the particle is described by the

translational velocity U p = (Up, Vp,Wp) and angular velocity Ωp = (Ωx,Ωy,Ωz).
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A distributed Lagrange multiplier method is used in our simulations and details

of the method can be found in [108]. The entire domain is treated as a fluid, and a

forcing term f is added inside the particle domain to enforce the rigid body motion

of the particle. The dimensionless governing equations for an incompressible fluid are

ReG(
∂u

∂t
+ u · ∇u) = −∇p + ∇ · τ − π3

4k
H(t)ex + f , (4.1a)

∇ · u = 0, (4.1b)

u |y, z=±0.5= 0,
∂u

∂x
|x=±L/H= 0, u |t=0= 0 (4.1c)

Xp |t=0= X0
p, U p , Ωp |t=0= 0, (4.1d)

where ReG = ρU0H/µ = 4kρGH3/π3µ is the Reynolds number based on the pressure

gradient. The flow Reynolds number is equal to Re = ReG in Newtonian and Oldroyd-

B fluids, while Re > ReG in shear-thinning fluids. Here, u is the fluid velocity, p is

the pressure, τ is the total deviatoric stress tensor, H(t) is the Heaviside function,

and ex is the unit vector along the x-direction. The forcing term f is calculated in

an iterative procedure to ensure the rigid motion of the particle

f = f ∗ + ReG
ϕ

∆t
(U p + Ωp × (x−Xp) − u), (4.2)

where f ∗ is the force from the previous iteration, ϕ is the volume fraction occupied

by the particle in each computational cell (ϕ = 1 inside, ϕ = 0 outside and 0 < ϕ < 1

for the cells at the surface of the particle), U p and Ωp are determined by

UP =
1

Mp

∫
P

ρp
ρ
udV, ΩP = I−1

p

∫
P

ρp
ρ

(x−Xp) × udV, (4.3)

where P represents the particle domain, ρp/ρ is the ratio of the particle density to

the fluid density, which is equal to unity in all our simulations. Mp and Ip are the

dimensionless mass and moment of inertia of the particle, respectively. Particle mass
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and moment of inertia are scaled by ρH3 and ρH5, respectively. Eq. (4.1), (4.2) and

(4.3) recover to the Newton’s second law for the particle as shown in [49].

The total deviatoric stress tensor, τ , can be split into contributions from sol-

vent and polymer as τ = τ s + τ p. The Newtonian viscous stress is defined as

τ s = βs(∇u+∇uT), where βs is the ratio of the solvent viscosity to the zero shear vis-

cosity of the polymeric material. In all our simulations of viscoelastic fluids, βs = 0.1.

To characterize the evolution of the polymer stress, we utilize the Giesekus constitu-

tive equation [149] which captures the constrained elongation of the polymers and

the shear-thinning behavior of the polymeric material. In a dimensionless form, the

associated equation can be written as

τ p + WiG
▽
τ p +

Wiα

1 − βs
τ p · τ p = (1 − βs)(∇u + ∇uT), (4.4)

where WiG = λU0/H = 4kλGH/π3µ is the Weissenberg number and λ is the polymer

relaxation time. The mobility factor, α, represents the anisotropy of the hydrody-

namic drag exerted on the polymer molecules by the surrounding solute molecules.

Based on the thermodynamic analysis, the mobility factor must be in the range of 0

to 1/2 [150]. For special case of α = 0, the Giesekus model reduces to the Oldroyd-B

model. Similar to the Reynolds number, Wi = WiG in Newtonian and Oldroyd-B

fluids, and Wi > WiG in a Giesekus fluid. The notation
▽
A represents the upper-

convected derivative

▽
A =

∂A

∂t
+ u · ∇A−∇uT ·A−A · ∇u. (4.5)

Simulations are conducted in a non-inertial frame moving with a velocity Upex

so that the center of the particle is fixed in x-direction. The velocity of the fluid

in the non-inertial frame becomes u′ = u − Upex and the governing Eq. (4.1) can

be rewritten for variable u′. The finite volume method based on the staggered grid

is used for the computations. A conventional operator-splitting method is applied

to enforce the continuity equation. The second-order total variation diminishing

(TVD) Runge-Kutta method is used for time marching. The spatial derivatives in
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the convection term are evaluated using the quadratic upstream interpolation for

convective kinetics (QUICK) scheme and the diffusion terms are discretized using the

central difference scheme. The viscoelastic stress is solved using a commonly used

formulation denoted as elastic and viscous stresses splitting (EVSS) method [190].

The grid size ∆ = 0.0125 (20 grids across the particle diameter) is uniform in y-,

z-directions and in a domain xf ∈ [−0.2, 0.2] near the particle in the x-direction.

The grids are gradually stretched in the x-direction outside this domain moving away

from the particle. The computational domain along the x-direction is [−8, 8], and the

dimension of the channel cross section in y-z plane is [−0.5, 0.5] × [−0.5, 0.5]. The

time step is ∆t = 10−5 − 10−4 depending on the Reynolds number.

This method has been extensively used for the motion of particles in fluids and

verified in our previous publications of inert particles in Newtonian fluids of homol-

ogous density [108, 116] and density-stratified fluids [110], and active squirming

particles in Newtonian [49] and viscoelastic fluids [50]. Convergence studies have

been performed to assess the effects of grid resolution, time step, and domain size.

The computed results are independent of the mesh size, time step, and domain size

as shown in figure 4.1. The calculations in a non-inertial frame are also compared

with the same case performed in a laboratory-fixed frame. In the laboratory-fixed

simulation, the particle is able to freely move in all three directions. Uniform grid is

used in the entire computational domain and periodic boundary conditions are used

at both inlet and outlet of the channel. The migration velocity of the particle in the

laboratory-fixed simulation has some oscillations because of the relative motion of

the particle and the fixed grid that is intrinsically caused by the numerical method

[191]. By conducting the simulations in a particle-fixed coordinate system (only fixed

in the x-direction), the oscillations can be greatly reduced since the relative motion

of the particle and the grid in the streamwise direction is zero.
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Figure 4.1. Comparison of the time history of (a) migration velocity
Vp and (b) angular velocity Ωz of the particle. The corresponding
parameters are ReG = 18.9, El = 0.05, α = 0.0 and κ = 0.25. Red
solid lines: finest grid size ∆ = 0.0125 with 20 grids across the particle
diameter, time step ∆t = 10−4, the domain size in the x-direction is
x ∈ [−8, 8] and the domain size with a uniform fine grid is xf ∈
[−0.2, 0.2]. Green dashed lines: ∆ = 0.00625, ∆t = 2 × 10−5, x ∈
[−12, 12] and xf ∈ [−0.4, 0.4]. Blue dashdot lines: ∆ = 0.0125, ∆t =
10−4 and x = xf ∈ [−1.6, 1.6].

4.3 Results

In this section, the simulation results of the particle migration in a channel flow of

a viscoelastic fluid is discussed. The simulation parameters are: ReG ∼ 3− 300, El ∼

0 − 0.2,WiG ∼ 0 − 3, α = 0, 0.1 and 0.2, and κ = 0.25 and 0.125, the flow Reynolds

and Weiseenberg numbers are Re ∼ 3 − 1000 and Wi ∼ 0 − 15. We first show the

steady flow field for three different cases. We then discuss the dynamics of particle

migration in section 4.3.2. In section 4.3.3, the particle-induced fluid transport in the

channel will be investigated. Finally in section 4.3.4, we will discuss the transient

behavior of the flow field during the flow start-up as well as its effects on the particle

migration.
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Figure 4.2. Steady flow field around the particle in a channel filled
with (a) Newtonian, (b) Oldroyd-B fluid of El = 0.05 and (c) Giesekus
fluid of El = 0.05, α = 0.2. The Reynolds number in all cases is
ReG = 18.9. The far left planes show the velocity profile, first normal
stress distribution, and secondary flow at the inlet of the channel. In
the z = 0 plane, streamlines (green lines) are plotted in the frame of
reference fixed to the particle center. In the x = 0 plane, streamlines
(black lines) are plotted using the velocity field projected on the x = 0
plane.
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4.3.1 Steady Flow Field

Figure 4.2 shows the steady flow field in a channel of Newtonian, Oldroyd-B and

Geisekus fluids after the particle has reached to its equilibrium position. The Reynolds

number is the same in all cases ReG = 18.9, the elasticity number is El = 0.05 in both

Oldroyd-B and Giesekus fluids, and α = 0.2 for the Geisekus fluid. Far away from

the particle, the flow velocity (blue arrows) in the Oldroyd-B channel shows the same

distribution as in the Newtonian Poiseuille flow in a square channel [189]. While in

a Geisekus fluid, the velocity profile is more flat near the center of the channel and

a larger maximum velocity is achieved due to the shear-thinning effect. A secondary

flow consisting of eight vortices (black lines) is generated because of the second normal

stress difference. These vortices induce a fluid flow from the channel centerline to the

wall center; it then returns to the centerline from the corners. The first normal stress

difference, defined as N1 = τxx − τyy is non-zero in viscoelastic fluids and its spatial

gradient leads to the elasto-migration of the particle [179, 192]. The first stress

difference is mainly generated near the four walls of the channel, whereas it is much

weaker at the center and four corners of the channel. This particular distribution

in a rectangular channel is considered to be the main reason behind the particle

accumulation at the channel center and corners [182,188]. The shear-thinning effect

reduces the first normal stress difference. We will illustrate that, in a Geisekus fluid,

a different particle migration occurs compared to that in an Oldroyd-B fluid due to

the variation in the distribution of the first normal stress difference and secondary

flows.

The equilibrium position of the particle may be close to the wall, as in Newto-

nian and Geisekus fluids, or at the centerline, as in an Oldroyd-B fluid. In all three

cases, the streamlines in the z = 0 plane (green lines) are reversed due to the confine-

ment of the flow [162, 193], indicating a particle-induced convection along the flow

direction. In the cross-sectional plane of x = 0, the streamlines (black lines) show

particle-induced convection of different flow patterns depending on the fluid prop-
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erties. In Newtonian and Geisekus fluids, in-plane vortices are generated and the

flow has an overall net transport towards the negative y-direction. In an Oldyroyd-B

fluid, the fluid flows away from the particle. Besides the difference in flow patterns,

the contourplots of v in the z = 0 plane show that the magnitude of v is an order of

magnitude smaller in an Oldroyd-B fluid compared to Newtonian and Giesekes fluids.

In a Geisekus fluid, the flow field shows more asymmetry around the particle in the

x-direction compared to a Newtonian fluid. Since both enhanced velocity magnitude

and flow asymmetry around the particle increase the particle-induced lateral trans-

port in a channel, we expect a better fluid transport property in a Geisekus fluid.

The particle-induced transport will be quantified in more details in section 4.3.3.

4.3.2 Dynamics of Particle Migration

Figure 4.3 shows the time history of the particle lateral position Yp under different

flow conditions, where particles are released from the initial position Y 0
p = 0.25 or

Y 0
p = 0.1. In a Newtonian fluid, the particle gradually migrates to a place near the

channel wall with the equilibrium position Y e
p ≃ 0.3, which is the same as the result

of [171] at a similar Reynolds number. This equilibrium position is determined by

the balance between two opposing forces: (1) the shear-gradient lift force originating

from the curvature of velocity profile in confined flows which moves the particles away

from the centerline of the channel [173], and (2) the wall repulsion force arising from

the asymmetry of the corresponding wake vorticity distribution which pushes the

particles away from the walls [174].

In viscoelastic fluids, the particle migration is much more complex, and it depends

on the fluid rheological properties. Besides the two forces in a Newtonian fluid, the

elastic force, shear-thinning effects and secondary flow may affect the particle migra-

tion. In Oldroyd-B fluids, particle moves towards the centerline and its equilibrium

position dependents on both the Reynolds number and elasticity number. In flows

of small ReG and El, the migration stops before the particle reaches the centerline.
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Figure 4.3. Time history of lateral position of the particle Yp at
different flow conditions.

There exist multiple equilibrium positions for the particle between the wall and the

centerline, depending on the flow parameters. At higher ReG or higher El, for exam-

ple ReG = 18.9, El = 0.05 and ReG = 301.7, El = 0.01, particle eventually migrates

to the centerline of the channel, i.e. particle focusing is achieved. This elasto-focusing

phenomena has been observed in channel flows of Re ∼ 0 − 10−1, El ∼ 100 − 102 in

experiments [157,180–182,192] and simulations [180,184,194], and recently in flows

of Re ∼ 103, El ∼ 10−1 [158]. Here we show that the critical elasticity number Elc

for particle focusing is of the order O(10−2). For a given ReG and El, the particle

migrates slower in a channel with a smaller block ratio κ, as observed in previous

experiments [157, 158]. Compared to the two-dimensional cases in [195], particle

focusing in a three-dimensional channel is easier for large particles. In their simula-

tions, a particle with a block ratio of κ = 0.25 is attracted to the wall at ReG = 5

and Wi = 0.2, even if released at the centerline of the channel. This is due to a

strong elastic force generated from the compression of streamlines for a large block
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ratio, which pushes the particle towards the wall [195]. In a three-dimensional case,

however, the compression of the streamlines is weaker.

When the Reynolds number ReG increases, the equilibrium position of the particle

Y e
p moves towards the channel wall in a Newtonian fluid, whereas in an Oldroyd-B

fluid of a given elasticity number, it moves towards the centerline (see the inset of

figure 4.4(a)). The equilibrium position of the particle is independent of its initial

position in an Oldroyd-B fluid [195]. Here, we quantify the dependence of the particle

equilibrium position Y e
p on ReG, El and Wi. The critical elasticity number Elc,

beyond which particle focusing occurs, are high at small Reynolds numbers, but it

decreases dramatically at higher ReG. The critical Weissenberg number Wic increases

with Reynolds number and roughly shows a linear relationship with ReG. Another

interesting phenomenon shown in both figure 4.3 and the inset of figure 4.4(a) is that

equilibrium position for most particles in an Oldroyd-B fluid is either at Yp . 0.15 or

at the channel centerline. The reason for such a behaviour is due the peak of inertial

force at Yp ≃ 0.15, and it can be explained by the following analysis. In elasticity

dominated flows, [179] showed that the elastic force drives the particle migration

to the region of lower normal stresses, in a two-dimensional second-order fluid, the

viscoelastic force on the particle is given by

F ∗
e = −20π

3

d3

H
Yp (Ψ1 − 2Ψ2)

(
Uc

H

)2

, (4.6)

in which Yp is the dimensionless vertical position of the particle from the channel

centerline. Superscript ∗ refers to dimensional variables. Ψ1 and Ψ2 are the first and

second normal stress coefficients of the fluid, respectively. The negative sign indicate

the force drives the particle towards the center of the channel. If we further assume

Ψ1 = 2µ(1 − βs)λ and Ψ2 = 0 as in a Poiseuille channel flow of Oldroyd-B fluid, the

above equation further reduces to

F ∗
e = −40

3
πρU2

c d
2κEl (1 − βs)Yp. (4.7)

These equations and the corresponding expression for the migration velocity have

been widely used in pervious experimental studies of elasticity dominated channel
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flows [178, 180–182, 188, 192]. Particularly, [181] showed that a modification of Eq.

(4.7) can provide a very good estimate for the migration velocity in a circular channel

at very low Reynolds and high elasticity numbers.

In Newtonian fluids, the inertia effects push the particle away from both the walls

and the center. [171] showed that the inertia force follows two different scaling laws in

near-wall and center regions. The shear-gradient lift force, which causes the particle

to migrate away from the central axis, has the formula

F s∗
i = ρU2

c d
2κC2(Yp), Yp . 0.3. (4.8)

The wall repulsion force, which pushes the particle away from the walls and prevents

the wall collision, has the formula

Fw∗
i = −ρU2

c d
2κ4C1(Yp), Yp & 0.3. (4.9)

C1, C2 are two positive functions of Yp. C1 has a maximum value of around 0.05

at Yp ≃ 0.15, and it is equal to zero at both Yp = 0 and Yp ≃ 0.3; C2 increases

monotonically from 0 at Yp ≃ 0.3 to around 12 when particle reaches to the wall

[171]. Similar results can also be found in the analysis of [196] for a two-dimensional

Poiseuille flow at low Reynolds number Re ≪ κ2, in which the scaling is given as

F ∗
i = C3(Yp)ρU

2
c d

2κ2 in the entire domain and the peak of C3 occurs around 0.24 at

Yp ≃ 0.15. The particle migration is mainly determined by the competition between

the elastic force F ∗
e and the inertia force F s∗

i caused by the shear-gradient lift force.

The peak value of F s∗
i can determine whether or not the particle can be focused at

the centerline. In flows of high El, the elastic force overcomes the maximum inertia

force and the particle migrates towards the centerline. However in flows of low El,

the particle stops at a location before F s∗
i reaches its maximum. A balance between

(4.7) and (4.8) at Yp ≃ 0.15 leads to an estimate for the critical elasticity number

Elc ≃ 0.01 for an Oldroyd-B fluid. The analysis of [196], on the other hand, leads to

Elc ≃ 0.04κ, which gives the same estimate for κ = 0.25. This prediction agrees with

the present simulation results for high Re as shown in figure 4.4. The prediction fails
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Figure 4.4. Dependence of the particle equilibrium position on (a)
Re,El and (b) Re,Wi. Please note that Re = ReG and Wi = WiG
in Newtonian and Oldroyd-B fluids. The inset in (a) shows the de-
pendence of Y e

P on Re for three different elasticity numbers.

at relatively low Reynolds numbers, indicating a stronger coupling between the two

effects.

For non-zero α, the particle migration shows a more complex behavior in a vis-

coelstic fluid. At fixed ReG = 18.9 and El = 0.05, the particle migrates towards the

centerline for α = 0.1. While for α = 0.2, the particle migrates in the opposite di-

rection and gets closer to the wall. This phenomenon is due to the interplay between

the shear-thinning effects [183,185] and the secondary flow generated due to the sec-

ond normal stress difference [185]. The shear-thinning properties affect the particle

migration in two ways: (1) reduces the elastic force by decreasing the fluid viscosity,

and (2) increases the inertia force by increasing the flow velocity Uc, and therefore,

the equilibrium position of the particle moves closer to the wall in shear-thinning

fluids. The secondary flow, whose velocity magnitude is comparable to the particle

migration velocity in flows of relatively large El and α, drives the particle towards

the wall. For example, in a Geisekus fluid of El = 0.05, ReG = 18.9 and α = 0.1, the

maximum value of the far-field v-velocity component, which occurs at y ≃ 0.33, is

2.7 × 10−4. While in the flow of α = 0.2 at the same El and ReG, the corresponding

maximum is 3.4 × 10−3, the same order as the particle migration velocity. When
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increasing ReG or El, the particle moves towards the wall, illustrating that the role

of shear-thinning effect and secondary flow is stronger in flows of larger inertia and/or

elastic effects. We should also emphasize that unlike the case of Oldroyd-B fluid, the

equilibrium position of the particle in a Giesekus fluid is dependent on its initial lo-

cation [180,185]. Previous simulations of a zero-Reynolds-number channel flow show

that there exists a core region surrounding the centerline of the channel, inside which

the particle moves to the center, while outside it the particles moves towards the wall

and eventually collides with it. This core region shrinks with increasing the mobility

factor α. Our simulations follow the same trend in the presence of inertial effects,

except in all our simulations, the particle stops before hitting the wall due the wall

repulsion.

The migration velocity of the particle is the most important index of particle

focusing, and its dependence on the particle size has been used for the particle sep-

aration [157,186, 197]. In figures 4.5, we plot the particle migration velocity Vp as a

function of particle position Yp in Oldroyd-B and Geisekus fluids, respectively. Dur-

ing the start-up under a constant pressure gradient, the particle has a large transient

migration velocity. After the channel flow reaches a steady state, the migration ve-

locity monotonously decreases and eventually goes to zero when the particle reaches

its equilibrium position. In this section, we mainly focus on the particle migration

velocity after the flow has reached the steady state. The transient behavior during

the flow start-up will be discussed in section 4.3.4. The magnitude of the dimen-

sionless migration velocity O(10−3 − 10−2) is of the same order as the experimental

measurements of [158], and is one order of magnitude larger than in the Stokes

regime Re ∼ 0 [180, 181]. In a Geisekus fluid at El = 0.01, the migration velocity

decreases as α increases. At El = 0.05 and α = 0.1, the particle still moves to the

centerline but at α = 0.2, it migrates towards the wall. An approximately linear

relation between Vp and Yp exists before the particle reaches its equilibrium position.

This linear relationship holds very well in flows of small elasticity numbers and low
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Figure 4.5. Dependence of migration velocity Vp on the particle
position Yp in (a) Newtonian and Oldroyd-B fluids at different ReG
and El and (b) Geisekus fluid at ReG=18.9. Black dot shows the
initial location of the particle.

Reynolds numbers. Similar results has been obtained for the particle migration in a

circular pipe of a Giesekus fluid at Re ∼ 0 and El ∼ 102 [181].

The relative motion of the particle and surrounding fluid in the steady state

are shown in figure 4.6. The distribution of streamwise velocity u and vorticity

ωz = ∂v/∂x − ∂u/∂y in the z = 0 plane are plotted at two different locations:

x = 0 across the particle center and x = −5 far from the particle. In Newtonian

and Oldroyd-B fluids, the far-field velocity shows the same profiles. In a Geisekus

fluid, however, the flow velocity increases due to the shear-thinning effects, and more

remarkable enhancement is observed at higher elasticity numbers (see the inset in

figure 4.6(a)). The flow disturbance due to the particle is relatively restricted to a

small area close to the particle (one radius away from the particle). Particularly for

the case of El = 0.05 and α = 0, in which particle equilibrium position is at the center

of the channel and the particle does not rotate, the velocity quickly recovers to its

far-field value. The velocity distributions clearly show that the translational velocity

of the particle is smaller than the far-field velocity at the same lateral position, i.e.

the particle lags the flow. The experiments of [158] show that the centerline-focused

particles lead the viscoelastic fluid in the presence of weak or strong shear-thinning
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Figure 4.6. Steady distribution of (a) velocity u and (b) vorticity ωz

in fluids of different El and α at Re = 18.9. Symbols correspond to
the velocity profile at x = −5 far from the particle, lines correspond
to the velocity profile at x = 0 across the particle center, filled circles
mark the center of the particle.

effects. At relatively large block ratios as in our cases, the wall effect, which tends

to increase the drag force acting on the particle [198], overcomes the viscoelastic

effect [199]. Therefore, the particle is lagging the fluid. These results indicate that

the lateral migration of the particle is not directly related to the slip velocity.

The vorticity ωz, on the other hand, show a different behavior depending on the

fluid properties. In Newtonian and Oldroyd-B fluids as well as in Geisekus fluids of

low elasticity numbers, half the angular velocity of the particle 1/2Ωz is equal to the

far-field vorticity. Whereas in a Geisekus fluid of El = 0.05 and α = 0.2, it is smaller

than the far-field vorticity due to the reduction of the fluid viscosity and consequently

the viscous torque on the particle in the presence of shear-thinning effects. We also

observe that the shear-thinning effect increases the background vorticity in the near-

wall region, whereas in the centerline region, it is almost the same as in the Newtonian

and Oldroyd-B fluids. Because ∂v/∂x is very small compared to ∂u/∂y when away

from the particle, the shear rate γ̇ = ∂v/∂x + ∂u/∂y of the fluid has a similar

distribution as −ωz (results not shown here).
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Figure 4.7. Particle-induced lateral flows at different x-locations for
(a) ReG = 18.9, El = 0, (b) ReG = 301.7, El = 0 and (c) ReG =
18.9, El = 0.05 and α = 0.2. Contourplots show the distribution of
the velocity component v. Vectors show the in-plane projection of the
velocity field.

4.3.3 Particle-induced Fluid Transport

Besides the dynamics of particle migration in a channel flow, the effect of the

particle on the fluid transport is another interesting topic, but it has been much less
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explored in the literature. The fore-aft symmetry around the particle in a Stokes

flow is broken in a Newtonian fluid with finite inertia, and a net recirculating flow

perpendicular to the primary flow direction is created due to the combined effects of

the near-field flow, particle rotation and the channel confinement. This net lateral

transport of the fluid, which resembles the well-known Dean flow, occurs in a straight

channel and has been successfully applied to perform fluid switching and mixing [162].

As shown in section 4.3.1, in an Oldroyd-B fluid, the particle-induced lateral flow is

greatly inhibited due to the absence of the particle rotation. In a Geisekus fluid, the

pattern of the lateral flow shows a remarkable difference from the one in a Newtonian

fluid, and the flow has a stronger fore-aft asymmetry. In this section, we mainly focus

on the flow field after the particle has reached to its equilibrium position.

For three cases: (a) ReG = 18.9, El = 0, (b) ReG = 301.7, El = 0 and (c)

ReG = 18.9, El = 0.05 and α = 0.2, we compare the flow field in the z-y plane at

different locations at x = ±1.25,±0.125 and x = 0 in figure 4.7. The lateral flow

generally shows similar flow pattern for the two Newtonian cases. At the upstream far

from the particle, the fluid has a weak tendency to flow along the positive y-direction.

Due to the particle rotation, the flow is driven to the negative y-direction when

approaching the particle, and it is reversed downstream of the particle. Downstream

of the particle away from it, the flow starts to recover, and velocity has an opposite

sign compared to the upstream velocity. Around the particle, the magnitude of the

lateral flow is of the order of ωza ∼ 0.1, and it decays away from the particle. At

higher Reynolds numbers, the flow decays more slowly, particularly downstream of

the particle, and the flow is in the positive y-direction in the middle of the channel

(see figure 4.7(b5)). In a Geisekus fluid, the flow shows a strong fore-aft asymmetry

due to both inertia and viscoelastic wake, similar to the flow field around a settling

sphere [200–202]. The secondary flows interact with the particle-induced flow, and

further enhance the fluid mixing.

To quantitatively compare the fluid transport, we calculate the net velocity ⟨v⟩x,y
averaged in both x and y directions and compare the distribution over the channel
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Figure 4.8. The distribution of the fluid velocity over the channel
width z for (a) Newtonian fluid and (b) Geisekus fluid. The integra-
tion in y-direction is over the entire channel height [-0.5, 0.5], and in-
tegration in x-direction are performed for different regions: upstream
region [-1.25, 0] (green dotted lines), downstream region [0, 1.25] (blue
dashdot lines) and central region [-1.25, 1.25] (red solid lines).

width z. In a Newtonian fluid, the net flow velocity has a peak at the centerline both

upstream and downstream of the particle (see figure 4.8(a)). As ReG increases, two

additional peaks appear near the walls. In the upstream region, the magnitude of the

net flow decreases at the centerline with Reynolds number, while at the downstream

region, it increases. The contribution from the downstream wins, and the net fluid

transport, which mainly occurs in the middle of the channel, drives the fluid towards

the particle side. The fluid transport of a Geisekus fluid is shown in figure 4.8(b). The

net fluid transport in the domain [-1.25, 1.25] occurs mainly in two regions between

the centerline and the channel walls and the flow direction is away from the particle.

Figure 4.9 shows the net averaged velocity ⟨v⟩x,y,z over the domain [−1.25, 1.25] ×

[−0.5, 0.5] × [−0.5, 0.5] for different flow conditions. In a Newtonian fluid, the net

fluid transport increases with the flow Reynolds number. In a viscoelastic fluid, it has

a complex relationship with the Reynolds number (Re and ReG), elasticity number

El and mobility factor α. However, the net velocity shows an approximately linear

relationship with the flow Weissenberg number Wi.



75

Re

〈v
〉 x,

y,
z
/U

c

0 500 1000-2

-1

0

1

El: 0 0.02 0.04 0.06 0.08 0.1

(a) 1×10-3

ReG

0 100 200 300-2

-1

0

1

Wi

〈v
〉 x,

y,
z
/U

c

0 5 10 15 20-2

-1

0

1(b)

Newtonian

0.2

α=0
0.1

1×10-3

WiG

0 1 2 3-2

-1

0

1

Figure 4.9. Dependence of the averaged velocity ⟨v⟩x,y,z over the
domain [−1.25, 1.25] × [−0.5, 0.5] × [−0.5, 0.5] on (a) Re and ReG
(inset), and (b) Wi and WiG (inset).

4.3.4 Migration Behavior during a Flow Startup

The elasticity and shear-thinning effects have significant impact on the transient

behavior of both fluid flow and particle motion [203]. In a poiseuille flow of vis-

coelastic fluids, the velocity oscillation can be observed during the flow start-up [189]

because of the propagation of stress waves in the channel [204]. Transient velocity

oscillations also occurs for a particle settling in viscoelastic fluids, and often causes

the particle to “rebound” during the first oscillation [155, 205]. The blood circulat-

ing flow is an important example of unsteady channel flow of a non-Newtonian fluid.

However, recent studies have not reported the transient behavior. In this section, we

discuss the transient behavior of the particle migration during the flow start-up.

Figure 4.10(a) shows the time history of the particle migration velocity for different

flow conditions. At relatively large Re and El, the migration velocity oscillates during

the flow start-up. In a shear-thinning fluid, the particle initially migrates towards the

centerline, but after the growth of the secondary flow, the particle moves towards the

wall. In figure 4.10(b), we compare the channel centerline velocity Uc far from the

particle, the particle streamwise velocity Up, and the migration velocity Vp during the

flow start-up for the case of ReG = 18.9, El = 0.05 and α = 0. The fluid velocity



76

oscillates at t < 10 before it reaches to a steady state, and the peak velocity occurs

at t ≃ 2. The particle streamwise velocity Up follows this oscillation until t ∼ 10,

it then slowly increases as the particle moves towards the centerline region. The

migration velocity Vp, however, shows a more complex time dependence. At t < 1,

the migration velocity is towards the wall because the viscoelastic stresses are still

very weak and the inertia effect dominates the flow. As the viscoelastic stress grows,

Vp quickly grows and overshoots at the same time instant as Uc and Up, and then after

some oscillations, its magnitude gradually decreases. The magnitude of the overshoot

of Vp, which is about twice its steady value, is larger than the corresponding values

for Uc and Up. Figure 4.11 shows the distribution of first normal stress difference

N1 at time t = 3. The normal stress difference in the gap between the particle

and the wall is stronger than the other side. Furthermore, a strip of large normal

stress difference is generated near the upstream wall, due to the relative motion of

the particle and the wall as well as the particle rotation. This strip disappears as

the particle approaches its equilibrium position and moves away from the wall. In

summary, the larger transient migration velocity of the particle is a result of both

the flow velocity oscillation during the flow start-up and the strong normal stress

difference due to the particle-wall interaction.

4.4 Concluding Remarks

Particle migration in a pressure-driven channel flow of viscoelastic fluids is af-

fected by the interplay between several effects: inertia, elasticity, shear-thinning and

secondary flow induced by the second normal stress difference in a non-circular chan-

nel. In an Oldroyd-B fluid, the competition between the inertia force and the elastic

force determines the particle migration. The elastic force, which drives the particle

towards the channel centerline, decreases monotonically as the particle reaches the

centerline. The inertia force, which has a peak at Yp ≃ 0.15, pushes the particle

towards the wall. If the elastic force is weaker than the inertia force, the particle
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Figure 4.10. (a) Time history of particle migration velocity for dif-
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Figure 4.11. First normal stress difference around the particle at
t = 3. The flow conditions are ReG = 18.9, El = 0.05 and α = 0.

migration stops at a location where two forces are balanced. Once the elastic force

overcomes the maximum inertia force, the particle moves till it reaches the centerline.

A scaling analysis of the force balance provides a good estimate for the critical elastic-

ity and Weissenberg numbers for particle focusing in flows of relative large Reynolds

numbers. Both the shear-thinning effect and the corresponding secondary flow tend

to move the particle closer to the wall, and their effects are more pronounced with

stronger inertia and elasticity. Besides the particle migration, we have also consid-
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ered the particle-induced fluid transport and the transient behavior of the particle

motion during the flow start-up. An effective fluid transport perpendicular to the

flow direction can be achieved in flows with strong inertia and shear-thinning effects.

The particle has a larger transient migration velocity during the flow start-up due to

the streamwise velocity oscillation and the strong normal stress difference.
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5. UNDULATORY SWIMMING IN NON-NEWTONIAN FLUIDS1

5.1 Motivation and Previous Works

Microorganisms often swim in complex fluids which show non-Newtonian behavior

[3]. Such examples include bacteria forming biofilms composed of bacteria-produced

extracellular polymeric substances (EPS) [42], spermatozoa swimming through cervi-

cal mucus in the mammalian female reproductive tract [59], H. pylori colonizing the

mucus layer covering the stomach [60] and B. burgdorferi penetrating the connective

tissues in skin [62]. In marine environments, bacteria abundance and productivity

is elevated within aggregates mainly composed of transparent exopolymer particles

(TEPs) referred to as oceanic gel [206]. It contribute to fluxes of carbon into the deep

ocean and significantly affect the world’s carbon balance. Rheological measurements

show that many biological fluids exhibit both viscoelasticity and shear-dependent

viscosity [43,207].

Depending on the swimming strategies and the rheological properties of the back-

ground fluid, both swimming enhancement and reduction are possible. Helical bac-

teria swim faster in a viscoelastic fluid compared to a Newtonian fluid of the same

viscosity [132], whereas C. elegans, with a planar wave undulation, swim slower

[134]. In recent years, the effects of fluid elasticity have been widely investigated for

different types of swimmers, such as squirmers [50,95], swimming sheets undergoing

planar beating motion [135, 136, 208, 209] and rotating helical flagellum [137, 138].

The speed enhancement up to about 20 ∼ 30% occurs for helices of large pitch angle

and small filament radius [137, 138], and for soft flagella undergoing planar beating

motion [208,209].

1Part of this chapter has been published in “Undulatory swimming in non-Newtonian fluids”, by G.
Li and A. M. Ardekani, in Journal of Fluid Mechanics, 784: R4, 2015 (reproduced with permission).
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The role of shear-dependent viscosity of biological fluids, which usually behaves

as shear-thinning fluids, is less understood compared to its viscoelasticity. The non-

Newtonian viscosity has been considered as the reason behind the enhancement of

the bacteria speed in early studies [132, 210]. Based on the concept that a slender

body under longitudinal and transversal motions experiences two different apparent

viscosities, [211] used a modified resistive force theory and showed enhancement

in both the swimming speed and efficiency with an increase in viscosity in a certain

range. Using scaling arguments, a recent study by [52] suggested the shear-dependent

viscosity is likely to play a more important role than elastic effects. An experimental

study by [34] shows that the enhanced swimming of E. Coli in polymeric solutions

is not related to fluid elasticity, instead it is due to the fast-rotating flagella of E.

Coli encountering a lower viscosity than the cell body. Swimming enhancement is

also observed in simulations of a sperm cell in a shear-thinning fluid [212,213]. For a

C. elegans, the swimming speed and kinematics are only determined by the effective

fluid viscosity around it, independent of shear-thinning behavior of the fluid [214].

Surprisingly, however, the flow field is found to be affected by the fluid shear-thinning

property. A similar conclusion is derived in the analysis of an inextensible swimming

sheet of very small amplitude [52]. A reduction in swimming speed is also observed in

experiments of a cylindrical waving sheet in shear-thinning viscoelastic fluids [215].

Further studies need to be conducted to better understand the different observations

reported in the literature.

In this work, we use numerical simulations to investigate the effects of non-

Newtonian fluid properties on the swimming motion of a planer waving flagellum.

We first compare the effects of viscoelasticity and shear-thinning behavior of the

fluid on a Taylor’s swimming sheet. We then investigate the role of shear-thinning

behavior and our results bridge previous numerical [212, 213] and analytical stud-

ies [52]. A new scaling relation for the power consumption is proposed to extend

the analysis of [52] for a small amplitude flagellum to large amplitude oscillations.

We also compare the present results against previous experiments. Since many mi-
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croorganisms and biological systems, such as spermatozoa, bacteria and beating cilia

experience non-Newtonian fluids, our findings help us better understand the motion

of low-Reynolds-number swimmers in complex fluids.

5.2 Taylor’s Swimming Sheet in Non-Newtonian Fluids

We model the swimmer as an inextensible infinitely long two-dimensional flagellum

immersed in a non-Newtonian fluid. The prescribed motion of the Taylor’s swimming

sheet [5] is described by a left-moving traveling wave y = A sin(x − t), where A is

the dimensionless amplitude. In all our results, the length is scaled by 1/k, time by

1/Ω, velocity by Ω/k, shear rate by Ω, and pressure and stress by µΩ, where k is

the wavenumber, Ω the angular frequency, and µ is the fluid viscosity. At length

and velocity scales relevant to microorganisms, inertial effects are neglected. The

dimensionless equations for conservation of momentum and mass are

∇p = ∇ · τ + f , ∇ · u = 0, (5.1)

where u is the velocity vector, p is the pressure, and τ is the deviatoric stress tensor.

In a Newtonian fluid, the stress tensor is simply determined by the shear rate tensor

γ̇ = ∇u+∇uT and fluid viscosity, i.e., τ = γ̇ in dimensionless form. The forcing term

f , acting as a Lagrange multiplier [108], is calculated in an iterative way to ensure

the no-slip boundary condition on the flagellum. Simulations are conducted using a

finite volume method based on the staggered grid. A conventional operator-splitting

method is applied to enforce the continuity equation. The spatial derivatives in the

diffusion terms are discretized using the central difference scheme. The computational

domain is 2π × 40π for an infinitely long flagellum. The grid size ∆ = π/256 is

uniform along the flagellum (x-direction) and in the domain of [−2π, 2π] normal

to the flagellum (y-direction). The grids are gradually stretched in the y-direction

outside this domain moving away from the flagellum. The time step is dt = 10−4. A

second-order total variation diminishing (TVD) Runge-Kutta method is used for time

marching. Periodic boundary conditions are used at x = 0 and x = 2π boundaries of
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Figure 5.1. (a) Swimming speed U and efficiency η for an infinitely
long flagellum of different amplitudes in a Newtonian fluid. (b) Shear-
dependent viscosity of Giesekus and Carreau models in a simple shear
flow.

the computational domain. At y = −20π and y = 20π boundaries, ∂u/∂y is set to

zero.

The swimming speed U and the hydrodynamic efficiency η for an infinitely long

flagellum in a Newtonian fluid are shown in figure 5.1(a). The efficiency is defined as

η = U2/P , where P =
∫
Γ
f ·uΓdΓ is the hydrodynamic power, uΓ is the velocity along

the flagellum surface Γ. The numerical results agree well with the second and fourth

order analytical results for a small amplitude flagellum [5] up to A = 0.1π. Within

this range, the maximum difference between our simulations and the fourth-order

analytical results is less than 0.5%. Interestingly, the efficiency of the flagellum peaks

at around A = 0.4π, which lies inside the range of typical biological observations,

such as C. elagans [214] and sperms [13]. The typical beating frequency ranges from

2 to 30Hz.

To model the elasticity and shear-thinning properties of biological fluids, we use

the Giesekus constitutive relation [149], in which τ can be split into solvent and

polymer contributions as τ = τ s + τ p, where τ s = βsγ̇,

τ p + De
▽
τ p +

Deα

1 − βs

τ p · τ p = (1 − βs)(∇u + ∇uT), (5.2)
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βs is the ratio of the solvent viscosity to the zero-shear-rate viscosity of the polymeric

solution. This ratio is equal to the ratio of the infinite-shear-rate viscosity and zero-

shear-rate viscosity. The Deborah number De = λ/tc is the ratio of the polymer

relaxation time λ and the characteristic flow time scale tc = 1/Ω. Another important

dimensionless number for swimming in viscoelastic fluids is the Weissenberg number

Wi = λγ̇c, where the characteristic shear rate in this study is γ̇c = ΩA. The mobility

factor α, which is in the rage of 0 to 1/2, represents the anisotropic hydrodynamic

drag exerted on the polymer molecules by the surrounding solute molecules and affects

the viscosity of the polymeric solution. At α = 0, the Giesekus constitutive equation

recovers to the Oldroyd-B model and has a constant viscosity. At non-zero α, the fluid

has a shear-thinning viscosity. In a simple shear flow of Giesekus fluid, the effective

viscosity is [216]

βe = βs + (1 − βs)
(1 − k)2

1 + (1 − 2α)k
, (5.3)

where k = [1 − χ]/[1 + (1 − 2α)χ] and χ2 = [(1 + 16α(1 − α)De2|γ̇|2)1/2 − 1]/[8α(1 −

α)De2|γ̇|2]. The notation
▽
A represents the upper-convected derivative. The viscoelas-

tic stress is solved using a commonly used formulation denoted as elastic and viscous

stresses splitting (EVSS) method [190].

We use the Carreau constitutive model [217] to investigate the motion in a shear-

thinning inelastic fluid

τ = βeγ̇, (5.4a)

βe = βs + (1 − βs)(1 + Cu2|γ̇|2)
n−1
2 , (0 < n ≤ 1) (5.4b)

where βe is the normalized effective viscosity, γ̇ is the shear rate tensor, |γ̇| =√
γ̇ : γ̇/2 is the effective shear rate. The Carreau number Cu = λcΩ (Similar to

De) is the ratio between the characteristic time scale λc of the solution and the typ-

ical flow time scale 1/Ω, where λc is the inverse of the shear rate at which the fluid

transitions from Newtonian-like to power-law behavior. Similar to the Weissenberg

number, the shear Carreau number is related to the shear rate Cr = CuA. The

power-law index n determines how fast the viscosity decreases with increasing the



84

shear rate. The larger n is, the slower the viscosity thins. At βs = 1, Cu = 0, or

n = 1, the model recovers to the Newtonian fluid. In biological materials, such as

biofilm and mucus, λ and λc vary from O(10) to O(103) seconds, n from 0.1 to 0.9,

and βs from O(10−3) to O(10−1). Therefore, for microorganisms, De, Wi, Cu and Cr

vary in a very wide range, from O(1) to O(104). In figure 5.1(b), we compare the

shear-thinning behavior of the Giesekus and the Carreau models (5.4b) in a simple

shear flow. The shear rate corresponding to the transition from Newtonian-like to

power-law behavior in a Giesekus fluid is determined by both λ and α, whereas the

shear-thinning rate remains the same [216]. We can match the effective viscosity of

the Carreau fluid to the Giesekus fluid to unravel the effect of both elasticity and

shear-thinning behavior (see figure 1(b)).

5.3 The Role of Viscoelasticity and Shear-thinning Viscosity

We first compare the role of fluid elasticity (VE), shear-thinning behavior (ST)

and combined shear-thinning viscoelastic effects (STVE) on an undulatory swimming

flagellum (see figure 5.2). We assume βs = 0.5, except for small amplitude oscillations

in a Carreau fluid, where we set βs = 0 to directly compare the results with the

analytical results. Unless otherwise stated, we set n = 0.3 in the Carreau fluid.

Our results recover the analytical results for a small amplitude flagellum in both

viscoelastic and shear-thinning fluids. In an Oldryod-B fluid, both the swimming

speed and hydrodynamic power decreases monotonically as [135]

U/UN = P/PN =
1 + βsDe2

1 + De2
, (5.5)

where UN and PN are the speed and power in a Newtonian fluid, respectively. The

same scaling law approximately applies to a large amplitude flagellum. In a Carreau

fluid, the swimming speed of a small amplitude flagellum does not change up to O(A4)

and the power follows [52]

P/PN = 1 +
3

16
(n− 1)Cu2A2. (5.6)
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The above relations agree well with numerical results in the limit of small Cu. At

large Cu, numerical results show a small enhancement in speed. Eq. (5.6) is not

valid for CuA > 2.7 and leads to a negative power. For a large amplitude flagellum

(A = 0.4π), shear-thinning effects result in a speed enhancement, with the maximum

increase of 20% at Cu ≃ 1.2π. [212] predicted an optimum velocity enhancement

at Cr = 1.6π for a finite-length undulatory sperm-like swimmer including a head.

Shear-thinning effects lead to a significant enhancement in the swimming speed. In

a shear-thinning viscoelastic fluid, the velocity follows the same relation as in an

Oldroyd-B fluid when the oscillation amplitude or De are small. The shear-thinning

effect is more important at higher shear rates, but the speed is still hindered. The

power consumption is less affected by shear-thinning effects in a Giesekus fluid.

The mean-squared polymer distention field tr(τ p), computed as the trace of the

polymer stress tensor, in Oldryod-B and Giesekus fluids are compared in figures 5.3(a)

and (b). Previous studies of a planar finite length flagellum in a viscoelastic fluid have

shown that the swimming enhancement is related to the concentrated polymer stress

distribution at the tail [136, 208]. Here, we see that the polymer stress is mostly

stretched along the front-side of an infinitely long flagellum. In a Giesekus fluid, the

polymer stress is attenuated, but the distribution is qualitatively the same. In figures

5.3 (c) and (d), we compare the effective viscosity in Giesekus and Carreau fluids.

Effective viscosity of the Giesekus fluid is evaluated by calculating the effective shear

rate [216]. The fluid viscosity around the flagellum is reduced and gradually recovers

to the zero-shear viscosity away from the flagellum. There are some similarities

between the two cases, but near the flagellum, the Giesekus fluid is less thinned and

forms finer structures.

5.4 Scaling Law in Shear-thinning Fluids

To fully understand the shear-thinning effects on a swimming flagellum, we con-

duct a series of simulations of various oscillation amplitudes A and viscosity ratios
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Figure 5.2. The normalized (a) swimming speed and (b) hydrody-
namic power as a function of De (or Cu) for an infinitely long flagellum
of small (A = 0.01π) and large amplitudes (A = 0.4π). The dashed
and dashdot lines correspond to Eq. (5.5) and (5.6), respectively.

Figure 5.3. Distribution of trace of the polymeric stress tensor tr(τ p)
in (a) Oldryod-B and (b) Giesekus fluids. Distribution of effective
viscosity in (c) Giesekus and (d) Carreau fluids. A = 0.4π and βs =
0.5 in all cases.

βs. In figure 5.4, we plot the normalized swimming speed and power as a function

of Cr. It is clear that using Cr instead of Cu leads to a much better collapse of the

data. The swimming speed is less affected at small values of Cr (< 0.1), since the

fluid viscosity does not vary at such a low shear rate. The analysis of [52] is valid

in this range. With increasing Cr, the increase in the swimming speed becomes no-

ticeable. There is a maximum speed for cases with non-zero βs. In the limits of zero
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and infinity Cr, the swimming speed of the flagellum is the same as its Newtonian

value because the normalized viscosity is constant in both cases, equal to 1 and βs,

respectively. The maximum speed and the corresponding Cr number, Crmax, depend

on the oscillation amplitude A, as well as the viscosity ratio βs. Larger speed en-

hancement and Crmax are observed for larger A and smaller βs. The value of Crmax

ranges from order of O(1) to O(102), which corresponds to the range where the fluid

viscosity is effectively thinned but before reaching the infinite-shear-rate plateau (see

figure 5.1(b)). Interestingly, experiments show that the circulation generated by C.

elegans first increases with Cr and then decreases [214]. In the limit of zero βs,

the swimming speed monotonically increases due to the absence of infinite-shear-rate

plateau.

The power consumption of an undulating flagellum follows a universal scaling law.

As shown in figure 5.4(b), all the data collapse into solid curves defined as

1 − P/PN

1 − βs

= 1 − (1 +
3

8
Cr2)(n−1)/2, (5.7)

in which the constant 3/8 is chosen so that the first term of Taylor expansion of Eq.

(5.7) matches the power consumption calculated for small amplitude oscillations, i.e.,

Eq. (5.6). The power consumption of an undulating flagellum is equal to the energy

dissipation integral P =
∫
S
βe|γ̇|2dS, where βe = 1 in a Newtonian fluid. Using Eq.

(5.4b), we can derive (1 − P/PN)/(1 − βs) ∼ 1 − (1 + Cu2|γ̇|2)(n−1)/2, which will be

simplified to Eq. (5.7) if the shear rate scales with oscillation amplitude (γ̇ ∝ A).

Later, we will confirm this assumption.

The present numerical results extend the analytical results by [52] for small

amplitude flagellum. Our results are also consistent with the simulations of [212,213]

for a finite sperm-like swimmer, in which the velocity peaks at a certain Cr. [213]

related this velocity peak with the maximal viscosity gradient along the flagellum,

but their explanation does not hold for an infinitely long flagellum. Here, we propose

another explanation for the speed enhancement caused by shear-thinning viscosity.

The fluid viscosity around the flagellum is reduced due to the high values of shear rate

and it gradually recovers to the zero-shear viscosity away from the flagellum (figure
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Figure 5.4. Normalized (a) swimming speed and (b) hydrodynamic
power as a function of Cr.

5.5(a− c)). As a result, the flagellum swims inside a corridor of small viscosity fluid

surrounded by a higher viscosity fluid. If βs = 0, the fluid viscosity can be reduced

to the solvent viscosity, which is infinitesimal compared to the unstirred fluid. The

flagellum swims as if it is inside a confined channel and gains an enhanced speed due

to the confinement [64]. The differences in the streamlines of two cases with different

Cu are shown in figures 5.5(d) and (e). The effect of this corridor of small viscosity

fluid is weakened with increasing βs due to the increased viscosity ratio inside and

outside the channel, but the same mechanism still exists. The further decrease in the

fluid viscosity inside the channel at larger Cr strengthens the confinement effect. On

the other hand, the enlarged shear-thinning region, weakens the confinement effect

by increasing the width of the low-viscosity layer. These two competing effects lead

to a peak in the swimming speed.

In figure 5.6, we plot the distribution of |γ̇|, u, v and βe along the y-direction

at x = π/2. Independent of the fluid rheology and the oscillation amplitude, the

magnitude of shear rate roughly follows the same relation (light gray line)

|γ̇| = 2Aye−y, (5.8)

which confirms the assumption we used for the derivation of Eq. (5.7). This scaling is

the same as the small amplitude analytical results, in which the first and second order
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Figure 5.5. (a− c) Distribution of effective viscosity around a flagel-
lum at βs = 0.5. (d) and (e) The velocity field and streamlines around
a flagellum at βs = 0. In all the cases, A = 0.4π.

velocities are not affected by shear-thinning effect. In this case, the shear-dependence

of the viscosity affects the third and higher orders of shear rate [52]. The u velocity

component for the case with maximum speed changes its direction earlier than other

cases, and v component is the lowest, indicating the strongest confinement effect in

this case. The effective viscosity βe of Carreau fluid can be derived as a function of

Cr and y using Eq. (5.4b) and (5.8) (Light gray lines in figure 5.6(b)). The effective

viscosity obtained from Eq. (5.4b) and (5.8) has a minimum at y = 1, which agrees

well with our numerical results for a small amplitude flagellum. For a large amplitude

flagellum at low Cr, the viscosity near the flagellum is lower than the above mentioned

prediction and its location is shifted further away from the flagellum. At high Cr,

where the viscosity reaches its minimum value near the flagellum, the prediction holds

well.

Using this prediction, we can estimate Crmax by evaluating the strength of the

shear-thinning effect, (1 − βe
min)/d. Here, βe

min is the minimum effective viscosity, d

is the thickness of the shear-thinning layer, which is defined as the location where

the viscosity recovers to the zero-shear viscosity. Figure 5.7(a) shows (1 − βe
min)/d

as a function of Cr. The Cr corresponding to the maximum value of (1 − βe
min)/d

is close to Crmax obtained from our numerical simulations. At n = 0.3, Crmax is
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Figure 5.7. (a) The strength of shear-thinning effect, (1 − βe
min)/d

as a function of Cr for different n and βs. Symbols show maximum
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min)/d with d being the distance where the effective
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shear viscosity, respectively. (b) The normalized swimming speed as
a function of amplitude A at Cu = 200π and βs = 0. (inset) The
normalized swimming speed for various flagella as a function of Cr at
A = 0.4π and βs = 0.5.

around 10 and increases with decreasing βs and increasing n. In typical biological

fluids, where the viscosity ratio βs is usually low, we expect the microswimmers to
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benefit from the speed enhancement. In figure 5.7(b), we plot the normalized speed

as a function of amplitude at Cu = 200π and βs = 0. This is approximately the

maximum speed enhancement of microswimmers due to shear-thinning effects. For

a small amplitude flagellum, about 20% speed enhancement is achieved. For a large

amplitude flagellum, the speed is almost doubled. At last, we check whether the

thickness, finite length and the swimming stroke affect the results. The thickness

of the thick flagellum is 0.16π, similar to the measurements of C. elegans [214].

For the finite length swimmer, the flagella have one complete waving form. Linearly

increasing/decreasing amplitude toward the tail is chosen for the kicker/burrower

swimmers. As shown in the inset of figure 5.7(b), the swimming enhancement occurs

for all the cases. The flagellum thickness does not affect the speed; the finite length of

flagellum leads to larger Crmax and weaker speed enhancement. Kicker and burrower

swimmers have the same swimming speeds.

5.5 Swimming Motion in a Suspension of Particles

The mechanism of speed enhancement for a swimmer moving in a corridor of small

viscosity fluid surrounded by a higher viscosity fluid also exists when it swims inside

a heterogeneous fluid environment. Biological material, such as mucus and biofilm,

are typically heterogeneous, composed of a porous media filled with fluids inside

it. For example, cervical mucus contains a network composed of glycoprotein fibers

with diameters around 100nm, the pore size of the network ranges from hundreds of

nanometers to around 25µm [45,46]. A sperm typically has a cell body of 5µm, the

flagella is around 40µm. Therefore, the size of the microstructure in the mucus fluid

is comparable to the sperm size. For the ruminants, the size of the food particles

must be about 1 mm to escape the rumen for cattle and sheep [218]. Symbiotic gut

microflora help vertebrates to digest the cell wall and the end products, primarily

small size fatty acids, are comparable to bacteria size. Another example is nematode
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C. elegans that often swims in saturated soil in nature, where soil particles are of the

same size as the organism.

We conduct simulations of an infinitely long flagellum of amplitude A = 0.4π

swimming in a Newtonian fluid with suspended small particles of radius a = 0.04π

and particle number N = 200. As shown in figure 5.8, four cases are considered:

(a) particles are initially uniformly distributed inside a rectangular domain of −2π <

y < 2π (dashed lines), (b) particles are initially distributed inside the domains of

0.6π < y < 1.6π and −1.6π < y < −0.6π, (c) particles are located and fixed at the

same location as (b), and (d) without particles. The time history of the swimming

speed of the flagellum is shown in figure 5.9. From Einstein’s results [219], the

viscosity of a dilute suspension of small particles (in a Newtonian fluid) is calculated

as µe = µ(1+2.5ϕ), where ϕ is the volume fraction of particles, i.e. the presence of the

particles increases the fluid viscosity. A uniformly distributed particles around the

flagellum does not strongly affect the average swimming speed (figure 5.8(a)), while

the particle-free region around the flagellum enhances the swimming speed (figure

5.8(b)). When the particles are fixed (figure 5.8(c)), the effective confinement effect

is strong, therefore results in a larger swimming speed compared to the swimmer

moving thought freely suspended particles. These observations are consistent with

our previous findings in a shear-thinning fluid.

5.6 Concluding Remarks

We have numerically investigated the effects of rheological properties of the fluid

on the swimming motion of a infinitely long planar waving flagellum. In a viscoelastic

fluid, the swimming speed and power consumption always decreases with the Deborah

number, independent of flagellum amplitude. In an inelastic shear-thinning fluid, the

shear Carreau number Cr, related to the typical shear rate, is found to mostly affect

the swimming behavior. Therefore, both the beating frequency and amplitude are

important. Our simulation results recover the analytical results for small amplitude
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Figure 5.8. Distribution of the particles and the velocity field around
a flagellum of A = 0.4π in a Newtonian fluid of (a)− (c) 200 particles
initially distributed inside the regions covered by the dashed lines and
(d) without particles.
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Figure 5.9. Time history of the swimming speed of the flagellum in different fluids.

flagellum [52], where speed is not affected and power is reduced. For a large amplitude

flagellum, velocity enhancement and power reduction are observed. The swimming

boost in a shear-thinning fluid occurs even for an infinitely long flagellum because

it swims in a lower-viscosity fluid layer surrounded by a high-viscosity fluid. Two

competing effects determine the speed enhancement: the viscosity and width of the

inner layer. Increasing Cr reduces the viscosity of the inner layer, but enhances
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its width. Therefore, there exists a maximum swimming speed, dependent on the

oscillation amplitude as well as the fluid rheological properties. Same mechanisms

also exists in a heterogeneous fluid environment with particles suspensions. The

power consumption, on the other hand, follows a universal scaling law.

There are some differences between the simulation results and the experimen-

tal measurements of C. elegans by [214]. Even though experiments show that the

circulation generated by C. elegans first increases with Cr and then decreases, the

swimming speed is reported to be the same as the one in the Newtonian fluid. The

difference may come from the fact that the swimming speed of C. elegans depends on

the fluid viscosity, even in Newtonian fluids, while in the simulations, the swimming

speed is the same. If we compare the experimentally measured swimming speeds in

Newtonian and shear-thinning fluids at the same zero-shear-rate viscosity, we would

see a higher speed in shear-thinning fluids which is consistent with our study. Further

experimental results are required to investigate the existence of optimum speed for

C. elegans.
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6. NEAR WALL MOTION OF UNDULATORY SWIMMERS1

6.1 Motivation and Previous Works

Near-surface accumulation of microorganisms have been widely observed for sper-

matozoa [220,221], bacteria [67], C. elegans [222] and Chlamydomonas [223]. Many

different effects are involved in the wall-induced attraction of swimming microorgan-

isms. The far field hydrodynamic effects on a swimmer depend on the swimmer type.

A pusher, which generates thrust behind its body such as most bacteria, is attracted

to the wall by the wall induced flow velocity when it swims parallel to the surface.

A puller, on the other hand, reorients itself in the direction perpendicular to the

surface [48, 81]. The Brownian diffusion enhances the wall accumulation [68, 70]

and this effect is more important as the swimmer size decreases. More details on the

near wall motion of swimmers in the Stokes regime can be found in recent review

articles [3, 4]. Beyond the Stokes regime, small but non-negligible inertial effects has

been considered by [49,224].

When a swimmer gets close to a wall, the short-range hydrodynamic interaction

and the contact with the wall are important in accurate prediction of the near-surface

behavior. Experiments show that the contact between the cilia and the surface deter-

mines the scattering behavior of bull spermatozoa and Chlamydomonas algae from

a solid boundary [223]. Spermatozoa accumulate close to a surface [220]. Their

flagella beat in a three-dimensional waveform of conical shape or in a nearly planar

wave form [221]. Numerical simulation shows that the near-wall swimming motion

of a sperm depends on its initial location and angle [225]. The wall attraction of the

sperm is affected by the flagellar wavenumber but not the shape of the head [226].

1Part of this chapter has been submitted as a research article “Near wall motion of undulatory swim-
mers in non-Newtonian fluids”, by G. Li and A. M. Ardekani, to European Journal of Computational
Mechanics.



96

It swims at a distance of about the swimmer size away from the wall [225]. Wall

attraction of a sperm is also observed in the simulations based on the multiparticle

collision dynamics [227]. However, these results show that the sperm is in a close

contact with the wall. A sperm, whose flagellum has chiral asymmetry, swims in a

circular trajectory [227]. Similar behavior was also observed for bacteria swimming

near a wall [67]. For a hyper-activated sperm, its large undulatory amplitude and

asymmetric waveform greatly affect the near-wall motion and the binding dynamics

to the wall [228,229].

Besides confinement and boundary effects, the fluid environment of microorgan-

isms is often complex and shows both shear-thinning and viscoelastic properties

[207,230]. Such examples can be found in bacteria within biofilms which occur on al-

most all the surfaces [42], the spermatozoa in the female reproductive tract swimming

through the cervical mucus [59], H. pylori colonizing the mucus layer covering the

stomach [60] and B. burgdorferi penetrating the connective tissues in skin [62]. The

effects of fluid elasticity on the microorganisms swimming in an unbounded domain

have been widely investigated. Depending on the swimming strategy, flexibility of

the flagellum, and the rheological properties of the background fluid, both speed en-

hancement and reduction have been observed [134–136,208,231]. For a finite planer

flagellum, the speed enhancement due to the fluid elasticity occurs for a soft kicker

swimmer with an amplitude increasing from its head to the tail [208]. However, it

should be noted that the speed of a soft undulatory flagellum is much smaller than a

stiff swimmer [232].

Recent studies show that shear-thinning viscosity may have a more important

effect on the microorganism swimming behavior [52, 53]. A peak in the swimming

speed of bacteria at a certain polymer concentration was observed in a solution of high

molecular weight polymers [34]. The enhanced swimming speed of bacteria is found

to be related to the reduced viscosity encountered by its fast-rotating flagella instead

of fluid elasticity [34]. For a C. elegans in a shear-thinning fluid, its swimming speed

and kinematics are less affected by the shear-thinning behavior of the fluid, while its
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flow field and power consumption are greatly modified [214,233]. A similar behavior

is observed using the analysis of small amplitude waving sheet [52]. Numerical

simulations, on the other hand, show speed enhancement of a sperm in a shear-

thinning fluid [212, 213]. Our recent studies illustrate that the speed enhancement

occurs at large oscillation amplitudes as undulatoray flagellum creates a corridor

of low-viscosity fluid around it, leading to a similar effect as confinement. [53]. A

spherical squirmer, on the other hand, may swim faster and slower in a shear-thinning

fluid depending on the slip velocity on its surface [234].

Motion near a wall greatly affects the hydrodynamics of a microorganism in both

Newtonian and non-Newtonian fluids. Analytical results show that an infinitely long

flagellum swims faster but less efficient when close to a wall in a Newtonian fluid [64].

This speed enhancement is weakened by the fluid elasticity [235]. The boundary at-

traction effects, which are important for bacteria and spermatozoa, are not considered

in these studies. The wall effects on passive particles in viscoelastic and shear-thinning

fluids have been extensively studied [51,142,147]. However, the near-wall swimming

of a self-propelled microorganism in non-Newtonian fluids is still poorly understood.

Based on a squirmer model, the analytical results of Yazdi et al. [236] showed that the

fluid elasticity breaks down the time-reversibility of the phase portraits of a squirmer

in a Newtonian fluid. The periodic trajectories for a pusher and puller in a Newtonian

fluid change into spirals in the presence of weak elasticity in the background fluid. For

a squirmer with an oscillating tangential surface velocity, both pullers and pushers

in a viscoelastic fluid swim towards the no-slip boundary if they are initially located

within a small attraction region near the wall [237]. In a fluid with strong fluid elas-

ticity, direct numerical simulations showed that the neutral squirmer in viscoelastic

fluids stays near a wall for a longer time, while a puller is less affected. A pusher is

found to be permanently trapped near the wall because of a highly stretched region

of polymer molecules formed behind its body [50].

In this work, we investigate the near-wall motion of an undulatory swimmer in

Newtonian and non-Newtonian fluids using a two-dimensional direct numerical sim-
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ulation. We simulate the swimmer as a finite-length flagellum with a kinematically

specified waving form, and two types of swimmer, kicker and burrower are studied to

model the sperm and C. elegans, respectively. Wall attraction of the swimmer as well

as its effect on the swimming performance is analyzed. The effects of shear-thinning

fluid viscosity and fluid elasticity on the near-wall motion of a swimmer are both

considered. In particular, we find that an enhanced swimming speed can be achieved

by combination of wall effects, fluid elasticity and shear-thinning viscosity.

In this chapter, we model the swimmer as a two-dimensional stiff flagellum of

finite length immersed in a fluid. An undulatory swimmer with its waving plane

perpendicular to the wall were observed for sperm [223] and C. elegans [222]. The

prescribed motion of the waving flagellum [5] is given by a traveling wave y =

a(s) cos[2π(s/l − t/T )], where t is the time, a(s) is the dimensionless amplitude, l

is the swimmer length, and s ∈ [0, l] is the length measured from the head of the

swimmer. Two undulatory swimmer types are considered by varying the amplitude

profile. For the kicker swimmer, its amplitude linearly increases from the head to tail

as a(s) = As/l, and for the burrower, the undulation amplitude decreases toward the

tail as a(s) = A(1 − s/l). In all our results, the length is scaled by l, time by the

waving time period T , velocity by l/T , and pressure and stress by µ/T , where µ is

the fluid dynamic viscosity. At length and velocity scales relevant to microorganisms,

inertial effects are neglected.

Simulations are conducted using a finite volume method on a fixed staggered

grid implemented in the code developed by Sadegh Dabiri and coworkers [238–241].

A conventional operator-splitting method is applied to enforce the continuity equa-

tion. The spatial derivatives in the convection term are evaluated using the QUICK

(Quadratic Upstream Interpolation for Convective Kinetics) scheme and the diffu-

sion terms are discretized using the central difference scheme. The viscoelastic stress

is solved using a commonly used formulation denoted as elastic and viscous stresses

splitting (EVSS) method [190]. The computational domain is 10.24×20 with the grid

size being ∆x = 0.01 uniform in x-direction and for y < 3, where the flagellum motion
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occurs, and is gradually stretched outside this region. The time step is ∆t = 10−3

and a second-order total variation diminishing (TVD) Runge-Kutta method is used

for time marching. At the bottom boundary at y = 0, a no slip boundary condition

is imposed. Periodic boundary conditions are imposed at the left and right sides of

the computational domain and far-field boundary conditions are imposed at the top

side. The flagellum is modeled using a series of Lagrangian points immersed inside

the fluid domain. The forcing term along the flagellum is calculated iteratively to

impose the prescribed undulatory velocity and is then distributed back to the fluid

[108].

When the swimmer approaches the wall, the high pressure in the thin film between

the swimmer and the wall prevents any unphysical overlaps. However, a very small

grid resolution is needed to properly capture this dynamic process and consequently

it is computationally expensive. A short-range repulsive force [109] is added if the

distance of any point on the swimmer from the wall is smaller than a certain value

F r =
FR

ε

(
d− dr

dr

)2

ez, (6.1)

where FR is the characteristic force, ε = 10−4 is a small positive number, d is the

distance between the point on the swimmer and the wall, dr is the force range and

is usually set to the smallest grid size ∆x in the computational domain [109]. The

direction of the repulsive force ez is normal to the wall.

6.2 Near Wall Motion in a Newtonian Fluid

We first investigate the near wall swimming motion of a flagellum in a Newtonian

fluid. Initially, the flagellum is located above the wall at y0 = 0.5, with an initial

angle θ0 = −45◦. Here, θ is measured with respect to the direction parallel to the

wall, and the swimmer is heading towards the wall for θ < 0. Figure 6.1 compares

the trajectory of the center of the swimmer (s = l/2) with different amplitudes. The

high frequency oscillations in the curves show the variation of the swimmer’s center

in each undulatory cycle. Three different near-wall swimming modes are observed
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Figure 6.1. Trajectory of a near-wall (a) kicker and (b) burrower of
different amplitudes in a Newtonian fluid. The swimmer is initially
located at y0 = 0.5 and θ0 = −45◦. Time history of the orientation
angle θ̄ averaged over each undulatory cycles for a (c) kicker and (d)
burrower. Error bars show the range of temporal variation of the
angles.

for the kicker swimmer. At A ≤ 0.3, the kicker is stably attracted to the wall. The

kicker swims close to the wall and periodically collides with it. This type of near-

wall motion of an undulatory swimmer has been observed in simulations [242] and

experiments for a sperm [223]. At A = 0.35, the kicker is weakly attracted to the wall

and swims in a cyclic trajectory. The kicker stays near the wall in a few undulatory

cycles and quickly escapes, and it takes a much longer time for the swimmer to swim

back to the wall again. The average distance between the kicker and the wall is

on the order of the swimmer size which is consistent with the results of Smith et

al. [225]. Similar cyclic near-wall motion was also observed for a puller squirmer

near a wall [49]. At high enough amplitude, the kicker eventually escapes the wall.
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Therefore, the wall attraction of an undulatory flagellum is strongly affected by its

undulation amplitude. The burrower swimmer is always weakly attracted to the wall

and swims in a cyclic motion. The amplitude of its cyclic trajectory slowly decreases.

The pusher-type swimmers are more strongly attracted towards the wall than the

pullers. Wall attraction is weakened at higher amplitudes for both swimmer types.

On the other hand, the far-field hydrodynamic analysis for a swimmer parallel to the

wall shows that a force dipole pusher is attracted to the wall by its image, while the

puller moves away from its image.

The weak attraction of an undulatory swimmer towards the wall can be under-

stood in the light of the orientational angle of the swimmer. Fig. 6.1(c) and (d) show

the time history of the swimmer’s angle averaged over each undulatory cycle, and

error bars show the range of its temporal variation. As the swimmer approaches the

wall, its head first contacts with the wall and the angle of the swimmer quickly in-

creases. For the kickers of A = 0.2 and 0.3, the final average angle is negative θ̄ ≃ −6◦

and the kicker is stably attracted to the wall. In this swimming mode, both the head

and the tail of the kicker periodically collides with the wall. For a kicker with larger

amplitudes, its scattering angle is positive, meaning the swimmer initially escapes the

wall. Positive scattering angle is observed for the burrower, which is related to its

decreasing wave amplitude from the head to tail. The wall effect slowly reduces the

angel of the swimmer. Note that for the swimmer with large amplitudes, for example

kicker of A = 0.35, there is no contact between the swimmer’s tail and the wall, and

the hydrodynamic interaction is responsible for the swimmer’s attraction towards the

wall. The strength of this hydrodynamic interaction determines the near-wall swim-

ming mode of the swimmer. For a kicker of A = 0.35 and a burrower, the orientation

angle eventually becomes negative and the swimmer gets back to the wall. While for

a kicker of A = 0.4, its initial scattering angle is large and the wall effect becomes

negligible as it swims away from the wall. Therefore, the wall contact, the initial

scattering angle of the swimmer and the hydrodynamic effects are all important to

the near-wall motion of an undulatory swimmer.
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Figure 6.2. (a) The swimming speed U and (b) power consumption
P of swimmers in a Newtonian fluid as a function of the swimmer’s
amplitude A.

The wall attraction strongly affects the swimming performance of an undulatory

flagellum. In figure 6.2, the swimming speed and the power consumption of swimmer

in a bulk fluid and near a wall are compared. The power consumption is calculated

by P =
∫
s
u · fdS. In the bulk fluid, the swimming speed and the power consump-

tion monotonically increases with the swimmer’s amplitude. Due to symmetry, the

performances of kicker and burrower swimmers are exactly the same. The wall at-

traction increases the swimming speed as well as the power consumption compared

to a swimmer in a bulk fluid. The effects are stronger for a swimmer closer to the

wall. These results are consistent with an infinitely long flagellum near a wall [64].

For both swimmer types, the maximum swimming speed occurs at A = 0.3. For

the kicker, near-wall swimming speed is about 4 times its speed in a bulk fluid, and

its power consumption increases about 60%. These results indicate that the undu-

latory swimmer can optimize its swimming performance near the wall by tuning its

undulation amplitude.
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6.3 Near Wall Motion in Non-Newtonian Fluids

Figures 6.3(a) and (b) compare the trajectories of a swimmer of A = 0.2 and

0.4 in a Newtonian and inelastic shear-thinning fluids. The swimmer is initially

located at y0 = 0.5 and θ0 = −45◦. Stronger wall attraction is observed for both

kicker and burrower in an inelastic shear-thinning fluid. The kicker of A = 0.4 no

longer escapes the wall and it swims in a cyclic trajectory in a shear-thinning fluid at

Cu = 1. Further increasing the Carreau number to Cu = 3 does not affect kicker’s

trajectory. The shear-thinning effect decreases the distance of a burrower away from

the wall and a stable attraction is observed for burrower of A = 0.2. The strong

wall attraction is mainly related to the scattering angle of the swimmer. The shear-

thinning viscosity decreases the scattering angle of the swimmer from the wall (see

figure 6.3(c)). Therefore, it stays near the wall for a longer time. In figure 6.3(d), we

compare the normalized speed and power of a stably attracted swimmer of A = 0.2

for different values of Carreau numbers Cu. For both the swimmer types, the shear-

thinning effects increase the swimming speed and reduce the power consumption, no

matter whether the swimmer is in the bulk fluid or near the wall. The shear-thinning

effects are the same for a kicker and burrower in the bulk fluid. The speed has a peak

value at Cu ∼ 1 due to the optimum effect of low-viscosity fluid corridors generated by

shear-thinning viscosity near an undulatory flagellum as demonstrated in our previous

work [53]. When attracted to the wall, swimmer’s speed monotonically increases with

increasing Cu. This speed enhancement is stronger for a swimmer near a wall. The

power consumption roughly follows the same scaling law as the swimmer in the bulk

fluid [53] and asymptotically approaches P/PN = 0.5.

The fluid elasticity strongly affects the wall attraction of the swimmer. Stable

wall attraction of a kicker of A = 0.2 is observed in a viscoelastic fluid at De = 1

and α = 0 (see figure 6.4(a)). Compared to the swimmer in a Newtonian fluid, the

kicker in a viscoelastic fluid of De = 1 and α = 0 has higher distance away from

the wall. Later, we will see that this is due to the fact that the kicker swimmer has
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Figure 6.3. Trajectory of a near-wall swimming (a) kicker and (b)
burrower of A = 0.2 and 0.4 in an inelastic shear-thinning fluid at
Cu = 1. (c) Time history of the orientation angle θ̄ averaged over
each undulatory cycle for a swimmer of A = 0.4. (d) The normalized
swimming speed U/UN and power consumption P/PN of swimmers
of A = 0.2 swimming in a bulk fluid and near a wall. Here, UN and
PN are the swimming speed and power consumption in a Newtonian
fluid, respectively.

a large orientation angle towards the wall in a constant-viscosity viscoelastic fluid.

In a shear-thinning viscoelastic fluid, the near-wall behavior of the kicker is similar

to its motion in a Newtonian fluid. The fluid elasticity has the same effects on the

burrower, and a stable wall attraction is observed for a burrower in viscoelastic fluids

(see 6.4(b)). The non-Newtonian rheological behavior of the background fluid have

similar effects on the wall attraction of a kicker and a burrower, but their effects on the

swimming speed are different. In figure 6.4(c), we compare the temporal evolution of

the swimming speed of a kicker of A = 0.2 in different fluids along the wall during an

undulatory cycle. The instantaneous speed of the swimmer depends on its undulatory
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Figure 6.4. The trajectory of a near-wall swimming (a) kicker and (b)
burrower of A = 0.2 in a Newtonian and viscoelastic fluids. Compar-
ison of the swimming speed of a near-wall swimming (c) kicker and
(d) burrower in different fluids.

phase and the waveform near the wall. The non-Newtonian fluid behavior does not

affect the velocity profile but strongly affects the swimming speed. The kicker swims

much slower in a constant viscosity viscoelastic fluid. Interestingly, the combination

the fluid elasticity and the shear-thinning viscosity generates a strong speed boost,

which is larger than in an inelastic shear-thinning fluid. Such a speed enhancement

in a shear-thinning viscoelastic fluid is not observed for a burrower.

The polymer molecules are highly stretched in the region near the head of the

swimmer, which generate a strong attraction of the swimmer to the wall (see figure

6.5(a) and (b)). On the other hand, this effect reduces the wall contact force on the

swimmer’s head and prevents the swimmer to further reorient its angle away from the

wall. This result is consistent with our previous finding on the permanent attraction
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Figure 6.5. Polymer stretching around a near-wall swimming (a)
kicker and (b) burrower of A = 0.2 in a viscoelastic fluid at De = 1 and
α = 0. The fluid viscosity distribution around a near-wall swimming
kicker of A = 0.2 in (c) an inelastic shear-thinning fluid at Cu = 1 and
(d) shear-thinning viscoelastic fluid at De = 1 and α = 0.1. White
and gray curves in (c) and (d) are the contourlines of βe = 0.55 and
0.75, respectively.

Figure 6.6. Time sequence of the polymer stretching around a near-
wall swimming kicker of A = 0.2 in a shear-thinning viscoelastic fluid
at De = 1 and α = 0.1.
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of a pusher squirmer in a viscoelastic fluid [50]. The undulatory motion of the kicker

in an inelastic shear-thinning fluid reduces the effective viscosity of the fluid around

the flagellum, creating a low viscosity fluid region which translates with the swimmer

(see figure 6.5(c)). The fluid viscosity on the wall side is much more reduced due

to the strong shear rate inside the gap. Therefore, the interplay between the wall

attraction and the shear-thinning effects leads to a strong speed enhancement for an

undulatory swimmer as shown in figure 6.3(d). In figure 6.5(d), the distribution of

effective viscosity in a shear-thinning viscoelastic fluid around the kicker, calculated

using Eq. (5.3), is similar to an inelastic shear-thinning fluid. On the wall side,

the shear-thinning effect in a viscoelastic fluid is stronger than the inelastic shear-

thinning fluid. On the other side, the size of the low-fluid viscosity region around the

kicker is also smaller in a viscoelastic fluid. Based on our previous argument on the

swimming motion of an infinitely long flagellum in a shear-thinning fluid, both these

effects favors the speed enhancement of the swimmer as seen in figure 6.4(c). Another

reason for the stronger speed enhancement of kicker in a shear-thinning viscoelastic

fluid may be related to the effects of fluid elasticity. The polymer stretching around

the near-wall swimming kicker is a highly dynamical process ( see figure 7.7). The

undulatory motion of the head and the tail of the swimmer away from the wall

strongly stretches the polymer molecules. As the swimmer swims along the wall,

its entire body interacts with the strong polymer stretching region generated by its

head. This interaction can lead to an attraction of the swimmer towards the wall

which increases its swimming speed.

6.4 Summary and Discussion

We have numerically investigated the near-wall motion of an undulatory swim-

mer of finite length in Newtonian and non-Newtonian fluids. In a Newtonian fluid,

three types of near-wall swimming modes are observed for the kicker depending on

the amplitude of the undulatory flagellum. The kicker of small amplitude is stably
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attracted to the wall and glides with a fast speed along the wall. In this type of

swimming mode, both the head and the tail of the swimmer are in close contacts

with the wall and the swimmer has a small negative angle towards the wall. This re-

sult is consistent with the observations for the near-wall swimming of a sperm [227].

The swimming speed and the power consumption are greatly increased by the wall

attraction. At larger amplitudes, the kicker first escapes from the wall. The hydro-

dynamic interaction between the swimmer and the wall reorients the swimmer back

towards the wall. It may then swim in a cyclic trajectory which slowly approaches

a stable height. The swimmer is weakly attracted to the wall with its distance away

from the wall on the same order as the swimmer size. This attraction is observed in

simulation results of Smith et al. [225]. The kicker escapes the wall for large enough

initial scattering angle. Cyclic trajectories are observed for the burrowers studied in

this work. These results show that both the flagella contact with the wall and the

hydrodynamic interactions are crucial in determining the near-wall behavior of an

undulatory swimmer.

Non-Newtonian fluid rheology affects both the wall attraction of a swimmer and

the swimming performance of a swimmer near the wall. Shear-thinning viscosity of

the fluid slightly enhances the wall attraction, mainly by reducing the scattering angle

of the swimmer. It greatly increases the swimming speed by creating a low-viscosity

fluid region around the swimmer. This mechanism is the same as swimming in a bulk

environment. The effects of fluid elasticity is more complex. In a constant-viscosity

viscoelastic fluid, it enhances the wall attraction by generating a strong polymer

stretching region near the head of the swimmer and inhibits the swimmer’s reorien-

tation. As a result, the swimmer’s head is strongly attracted to the wall and swims

slowly with a high inclination angle along the wall. In a shear-thinning viscoelastic

fluid, the combination of the fluid elasticity and shear-thinning viscosity generates

the strongest speed enhancement for the kicker. In this case, both the reduced vis-

cosity near the swimmer and the interaction between the swimmer and the polymer

molecules contribute to the speed enhancement. This strong speed enhancement is
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closely related to the configuration of the near-wall swimmer and is not observed for

the burrower. Cervical mucus has been shown to have both shear-thinning viscosity

[207] and viscoelasticity [230]. Our results indicate that these properties lead to fast

swimming motion of sperms near a wall in a shear-thinning viscoelastic fluid.

In the current study, the swimmer is modeled as a finite flagellum with a prescribed

traveling wave form. The effects of non-Newtonian fluid rheology and wall contact

on the wave form are not considered. Gagnon et al. have showed that the beating

kinematics of a C. elegans in a shear-thinning fluid is the same as in a Newtonian

fluid [214]. The fluid elasticity, on the other hand, strongly influences the beating

pattern of cilia of a Chlamydomonas [243]. Interestingly, shape of the beating cilia

of Chlamydomonas is also strongly modified by the wall contact, while the beating

shape of a sperm is relatively less affected [223]. It also worth noting that the near-

wall behavior of a swimmer depends on its initial configuration, especially its angle

of incidence [70, 81]. Another important effect for the near-wall behavior in real

scenarios is the interaction between the microswimmers, especially for the sperm cells

which usually swim in high concentrations. All these details could have important

effects on the near-wall behavior of a swimmer. Further studies are required to include

these effects.
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7. ELASTOHYDRODYNAMICS OF AN INTERNALLY DRIVEN FLAGELLUM

7.1 Motivation and Previous Works

Many small organisms and cells, such as bacteria, algae and sperm swim in a fluid

using active motion of cilia and flagella. Many prokaryotic cells, such as bacteria, use

a thin helical filament which rotates relative to the cell body to propel the cells. The

eukaryotic cells usually have a thicker filament, which diameter is around 180nm [244]

compared to the 20nm [17] for a prokaryotic filament, for example E. coli flagella.

For the eukaryotic cells, almost the entire filament appendages undergoes a periodic

deformation to generate the cellular self-propulsion [245]. The filament contains

an axoneme, which consists of a ring-like arrangement of nine doublets of parallel

elastic microtubules and one pair of microtubules in the center. The nexin proteins

connects the nearby microtubule doublets and provides elastic links between them.

The dynein molecular motors which locate in between the neighbouring microtubules

generate local sliding displacements between adjacent microtubules in the presence

of ATP [131, 246]. The global sliding of the microtubules is suppressed because the

microtubules pair is rigidly connected at one end. Therefore, a bending deformation

of the filament occurs because of the local sliding motion [247].

Axonemal cilia and flagella can generate different periodic beating and waving

forms. The waveforms of the filament and the swimming motion of the organism are

determined by the interaction between the flagella internal force, the passive elastic

force generated due to the deformation of the structure, and the external effects,

such as hydrodynamic forces. For Paramecium and Volvox, a large number of cilia

on the surface deform in a coordinated manner and generate a propagating wave on

the surface [248]. Cilia are also found on the inside surface of lungs where their

coordinated deformation moves the mucus and particles up toward the nasal passage
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[249]. The bi-flagellated alga Chlamydomonas uses two cilia in front of its body to

pull itself forward. The waveform of a cilium has an asymmetric beat pattern, which

consists a power stroke and recovery stroke. In the power stroke, the cilium extends at

the base and sweeps back similar to the arms of a person in a breaststroke swimming.

In the recovery stroke, the flagellum folds and generates less drag. For a sperm, the

bending wave of its flagellum propagates from the head towards the tail with the

amplitude increasing. The flagella can either beat in a three-dimensional waveform

of conical shape or a nearly planar wave form [221]. The flagellar waveform can also

be asymmetric for hyperactivated sperm [250]. Many nematode swimmers, such as

C. elegans, have a different body structure and a much larger body size compared

to sperm and bacteria, while they also use a propagating wave along their body for

locomotion. For C. elegans, its waving amplitude decreases from the head to the tail.

The details of controlling mechanism for the flagellar and ciliary beats and their

interaction with the surrounding fluid environment are still not fully understood [131].

Fluid rheology is found to greatly affect the waving form of the flagellum and cilia and

the swimming speed of the organisms. In cervical mucus, the bending deformation

of the filament is confined to its distal portion and show a smaller amplitude and

wavelength compared to those in a Newtonian fluid [251]. Similar phenomena were

also observed for Chlamydomonas in a viscoelastic fluid, where the deformation of

the cilia at the proximal side is suppressed [243]. For C. elegans, the shear-thinning

viscosity does not affect its waving form and the swimming speed [214], while the flow

field around the swimmer and the power consumption are greatly affected [53, 233].

The filament deformation can also be affected by the contact force when collides

with a wall surface [223]. The beating pattern of the filament is suggested to be

a self-organized mechanism, where the filament spontaneously oscillates because of

the interplay of the dynein motors and the elastic microtubules [36, 252]. Camalet

and Jülicher [37, 54] proposed an internally driven filament model which assumes a

sliding force distribution along the filament. Their model showed that a spontaneous

oscillating instability occurs for the filament via a Hopf bifurcation [54]. Different
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dynein motor coordination models were developed to match with the experimental

data of the wave shape of sperms [39]. The results show that the model of load

dependent detachment rate of the motors best fits the experimental observations

[39].

Despite of the complexity of the internally driven mechanism, a simpler model

has been used to describe the sliding force distribution along the filament and study

the hydrodynamics of the bending flagellum and cilia [208,231,242,253]. This model

assumes a deterministic forcing mechanism for the filament and models a chemical

signaling that periodically regulates the activated and deactivated state of the dynein

motors [254, 255]. Theoretical works assume an internal sliding force in the form

of a traveling wave [231, 253] and use a resistive force theory to account for the

hydrodynamic force [11]. For a hinged flagellum in a fluid of high viscosity or

fluid elasticity, beating deformation is found to be concentrated at the distal end

of the flagellum similar to observations in experiments [253]. Fauci and Peskin

[55] proposed a numerical model with a preferred curvature along the flagellum to

investigate the hydrodynamics of an undulatory swimmer. This model has been

successfully applied to investigate the interaction between a flagellum and a wall

surface [66], synchronization of two flagella [235, 256], calcium signaling of the

flagellum beating [257], sperm detachment from the epithelium [229]. A recent study

shows that the swimming speed of an undulatory flagellum can either be enhanced or

hindered by fluid elasticity depending on the bending stiffness of the swimmer [208].

A stiff swimmer swims slower, while a soft swimmer can swim faster if its amplitude

increases from the head to the tail. However, the details of the interaction between

active bending motion of the flagellum and the hydrodynamic forces are still poorly

understood.

In this work, we investigate the elastohydrodynamics of a self-driven undulatory

swimmer in a viscous fluid using two-dimensional direct numerical simulations. We

simulate the swimmer as a finite-length flagellum driven by an internal sliding force,

and two types of swimmer, kicker and burrower are studied to model the motion



113

of sperm and C. elegans, respectively. The effects of the bending stiffness of the

swimmer, the internal sliding force, and the inertial effects are considered.

7.2 Elastohydrodynamics of an Internally Driven Flagellum

The flagellum of length L and radius a is internally driven by a distributed sliding

force [37] and deforms within a plane. For the fluid, the Navier-Stokes equations are

solved on an Eulerian grid

ρ
du

dt
= −∇p + µ∇2u + fh, ∇ · u = 0, (7.1)

where fh is the hydrodynamic force exerted on the fluid by the elastic flagellum. The

governing equation for the elastic flagellum is [258]

ρL
∂2X

∂t2
= −F h + F e, (7.2)

where ρL is the line density of the elastic filament which is negligible because the

thickness of the flagellum is small. The fluid and the elastic structure are coupled

together by force conservation and no-slip no-penetration boundary conditions

fh(x) =

∫
L

F h(X)δ(x−X)ds, U (X) =

∫
V

u(x)δ(x−X)dV, (7.3)

where the integrations are done over the flagellum L and entire fluid domain V ,

respectively. δ is the delta function.

On the right hand side of Eq. (7.2), two forces (per length) are the hydrodynamic

force acting on the flagellum −F h and the elastic force F e. The elastic force is

calculated by the variation of the distributed elastic energy Ee given as [37]

Ee =
kb
2
κ2 +

ks
2

(ξ − 1)2 − aκF i, (7.4)

which includes the bending energy, the stretching energy and the energy correspond-

ing to the relative sliding motion of neighboring microtubule doublets inside the flag-

ellum [37]. kb and ks are the bending and stretching stiffness, respectively. κ is the

signed curvature of the filament, ξ = |∂X/∂s| is the extension rate of the flagellum,
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a is the thickness of the flagellum. F i(s) = −
∫ L

s
f i(s′)ds′ is the integration of the

distributed internal force f i along the flagellum [37], where s = 0 is at the head of

the flagellum and s = L is at the tail. In most of previous studies [66, 235] and the

current work, ks has a large value to model an inextensible flagellum. In the current

simulation, ξ − 1 is around 0.02%. For a strictly inextensible filament, ks becomes

a Lagrange multiplier and needs to be determined from the inextensibility condition

[258]. The distributed elastic force on the flagellum is calculated to be

F e = −∂Ee

∂X
= −kb(κ− κ0)

∂κ

∂X
− ks(ξ − 1)

∂ξ

∂X
+ aκf i ∂s

∂X
, (7.5)

where κ0 = aF i/kb is the target curvature [66]. In this work, two force distributions

are imposed when changing the bending stiffness of the flagellum. In the first method,

the target curvature κ0 is imposed and the internal force density F i changes with

bending stiffness kb. In the second method, we fix the force density F i and change κ0

for different bending stiffness kb. The results are reported in dimensionless form by

scaling, length by the wavelength of the flagellum λ, and time by waving period T ,

speed by the wave speed c = λ/T , and power by µλ2/T 2. In a body-fixed coordinate

system, the target shape of the flagellum has one complete waveform expressed as

y = Ax cos[2π(x − t)] (0 ≤ x ≤ 1) for kicker and y = A(1 − x) cos[2π(x − t)] for

burrower, respectively. The target curvature is given as κ0
A=0.2 = y′′(x)/[1+y′(x)2]3/2.

For the kicker, most of its thrust is generated at the tail side and swimmer is a pusher.

On the contrary, the burrower is a puller-type swimmer. In the current work, the

nondimensional amplitude A = 0.2, and the total length of the flagellum is L = 1.12,

the corresponding curvature is written as κ0
A=0.2.

The Reynolds number of the swimmer is Re = ρλ2/µT = 0.625 and 6.25 × 10−3.

Another important dimensionless parameter for an elastic flagellum is the sperm

number. For a two-dimensional undulating sheet, it is defined as [209,259]

Sp = λ(µ/kbT )1/3, (7.6)

which is the ratio between the wavelength of the flagellum λ and the elastohydrody-

namic penetration length (kbT/µ)1/3. In a dimensionless form, the target curvature
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Figure 7.1. (a) Schematic of the immersed boundary method. Hy-
drodynamic forces (per length) F h on the Lagrangian points (circles)
are conservatively distributed to the body force fh on the Eulerian
grid (squares) inside the gray area.

and the sliding force are related to each other by κ0 = Sp3Fia, here a and Fi are

the dimensionless thickness of the flagellum and the dimensionless sliding force. The

sperm number also quantifies the ratio between the fluid stresses and bending stresses.

For Sp ≪ 1, the flagellum deformation is determined by the internally driven activity

and the elastic deformation while its waveform is less affected by fluid stresses, i.e.,

the flagellum is stiff. In the limit of Sp = 0, the flagellum has a infinitely large bend

stiffness and its shape and motion are prescribed. In contrast, for Sp ≫ 1, the flagel-

lum is soft and its deformation is strongly affected by the fluid stresses. The bending

stiffness of sea urchin sperm flagella kb = 0.9× 10−21Nm2 [260], the flagellum length

L = 30− 45µm, the wavelength λ = 24− 30µm [131], the period of the oscillation is

around T = 30ms [11], therefore its sperm number for three-dimensional undulations

in water is Sp = λ(µ/kbT )1/4 = 1.9−2.3 in a water. For C. elegans, kb = 2×10−15Nm2

[261], L = 1mm, λ = 2.5mm, U = 0.35mm/s, T = 0.5s [214], and the sperm number

Sp = 2.5.
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7.3 Numerical Method and Validation

In an immersed boundary (IB) method [262], the governing equations for the

fluid and the elastic body are solved on Eulerian and Lagrangian grids, respectively

(see figure 7.1). In our simulation, the flagellum is inside a region of uniform Eulerian

grid spacing ∆x to ensure accuracy [262]. The flagellum is resolved by a line of

uniformly distributed Lagrangian points with ∆L = L/N spacing, where N is the

number of points. The elastic energy is first discretized on each Lagrangian point Xj

of the flagellum, then the elastic force F e is calculated by taking the derivative of the

discrete energy [66],

Fe(Xj) =
kb

∆L2

[
(κj − κ0

j)(nj + nj−1) − (κj−1 − κ0
j−1)nj − (κj+1 − κ0

j+1)nj−1

]
+

ks
∆L

[
(
|∆Lj|
∆L

− 1)tj − (
|∆Lj−1|

∆L
− 1)tj−1

]
− kb

2∆L

[
κj(κ

0
j+1 − κ0

j−1)tj − κj−1(κ
0
j − κ0

j−2)tj−1

]
.

(7.7)

Note that in the last term, the sliding force is expressed in terms of target curvature.

The discrete curvature and extension rate are

κj = nj ·
(
tj − tj−1

∆L

)
, ξj = |∆Lj|/∆L, (7.8)

where ∆Lj = Xj+1 −Xj. The discrete tangent unit vector is tj = ∆Lj/|∆Lj|, the

discrete normal unit vector nj correspond to π/2 rotation of tj in a counter clockwise

direction. For the delta function, we use a second-order discretized version [262]

δ(x−X) =


1

16∆x2 (1 + cos πdx
2

)(1 + cos πdy
2

), |dx| ≤ 2, |dy| ≤ 2

0, otherwise,

(7.9)

where ∆x is the Eulerian grid spacing and (dx, dy) = (x−X)/∆x.

Simulations are conducted using a finite volume method on a fixed staggered grid.

The interpolation of the horizontal and vertical components of velocity and forces are

based on different Eulerian grids. A conventional operator splitting method is applied
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to enforce the continuity equation. The second-order TVD (total variation diminish-

ing) Runge-Kutta method is used for time marching. The spatial derivatives in the

convection term are evaluated using the QUICK (Quadratic Upstream Interpolation

for Convective Kinetics) scheme and the diffusion terms are discretized using the cen-

tral difference scheme. In the current study, we implement an explicit-time stepping

immersed boundary method to solve the equations for undulating flagellum. In this

simplest scheme of immersed boundary method, the fluid velocity and pressure are

first updated keeping the structure fixed, and then the position of the structure is

updated with the new velocity at the next time step. It is worth noting that for the

current scheme, the simulation requires very small time steps to maintain stability

when involving stiff elastic structures. An implicit-time stepping immersed boundary

method has been proposed to resolve the problem [263,264]. In the limit of Sp = 0,

i.e. the flagellum has an infinitely large bending stiffness, its kinematics is prescribed

and a distributed Lagrangian multiplier (DLM) method [108] is used to model the

flagellum.

Simulation of prescribed motion of the flagellum using a DLM method has been

validated in our previous studies [53]. In figure 7.2(a), we compare our results

of a stiff flagellum modeled using the IB and DLM methods. The results of the

swimming motion of an internally driven stiff flagellum of Sp = 0.5 agrees well with

the prescribed motion of a stiff flagellum of Sp = 0. We find the ratio of the Eulerian

and Lagrangian grid mesh size affects the simulation results. In figure 7.2(b), the

swimming speed of the flagellum reaches a plateau for ∆x/∆L 6 1. For large ∆x/∆L,

the actual curvature profile along the flagellum strongly oscillates and the swimming

speed of the flagellum deviates from the correct result.

7.4 Results and Discussion

We first investigate the swimming performance of an undulatory swimmer with

fixed target curvature and different bending stiffness. In figure 7.8, the average swim-



118

t

U
,V

,Ω

3 3.2 3.4 3.6 3.8 4

-0.2

0

0.2

(a)
Ω/4

U

V

∆x/∆L

U

0 1 2 30

0.02

0.04

0.06

(b)
Sp=0.5
Sp=1.84

Figure 7.2. (a) Comparison of the time history of velocity com-
ponents and angular velocity of a kicker of Sp = 0 using DLM
method (symbols) and a stiff kicker of Sp = 0.5 using IB method
with ∆x = ∆L = 0.01,∆t = 6.25 × 10−6 (blue dashed lines) and
∆x = ∆L = 0.005,∆t = 1.25 × 10−6 (red solid lines). (b) Ef-
fects of the ratio between Eulerian and Lagrangian grid spacing dis-
tance on the swimming speed of the flagellum swimmer, ∆x = 0.01
and ∆t = 6.25 × 10−6. The Reynolds number of the swimmer is
Re = 0.625.
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Figure 7.3. (a) Average swimming speed Ū , (b) hydrodynamic power
consumption P and swimming efficiency η of the kicker and burrower
at a fixed target curvature κ0

A=0.2 for different sperm number Sp.

ming speed Ū , the hydrodynamic power consumption P̄ =
∫ 1

0
dt

∫
L
F h · Uds, and

the efficiency η = Ū2/P̄ for kicker and burrower are compared. At a fixed target

curvature, all these variables monotonically increase with decreasing Sp. At Sp = 0,
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the kicker and burrower has the same speed and power at Re = 6.25 × 10−3 because

the kinematics of the two swimmers are exactly the same when viewed in a reversed

time. At Re = 0.625, the kicker swims faster than the burrower when Sp approaches

zero. This result is consistent with the result of a squirmer at non-zero Re, where

the inertial effects increase the speed of a pusher while decrease the speed of a puller

[74]. The Stokes solution has the lowest energy dissipation compared to all the other

incompressible flows with the same boundary conditions [111], and therefore higher

energy consumption is required for the swimmers at Re = 0.625. At Sp = 3.2, the

flagellum has a small body deformation and the swimming speed is small, which is

only 2 − 3% of the speed at Sp = 0. In the region in between, the burrower swims

faster than the kicker at the same Sp. This phenomenon is observed for both low

and high Reynolds numbers, indicating the existence of an optimal waving form for

an elastic flagellum. The power consumptions for kicker and burrower, on the other

hand, are similar for all Sp even at Re = 0.625. These results show that the inter-

action between the hydrodynamic force and elastic force is important in determining

the swimming performance of an undulatory flagellum.

In figure 7.4, we compare the time history of the swimming speed and power

consumption for kicker and burrower in one undulatory time period as well as their

trajectory of the center of mass. For the stiff swimmers at Sp = 0.5, both kicker

and burrower reach the maximum swimming speed at around T = 0 and 0.5, where

the swimmer exhibits a complete sine wave function along its body. Increasing Sp,

the peak speed for a kicker gradually shifts to a later time. At Sp = 1.84, the peak

speed occurs at around T = 0.25 and 0.75. Increasing Sp does not greatly affect

the peak-to-valley velocity difference for the kicker, while it generates a time period

of high negative speed and leads to a slower swimming motion. A burrower, on the

other hand, has a non-monotonic change in its peak speed with increasing Sp. A

large reduction of the speed oscillation is observed for the burrower at larger sperm

numbers, for example Sp = 1.84. Similar phenomena can also be observed for the

power consumption. The power of burrower with Sp = 1.08 has a much smaller
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Figure 7.4. The time history of the (a) swimming speed and (b) power
consumption for an undulatory kicker and burrower at Re = 0.625 for
different sperm numbers. The trajectories of the center of mass of a
(e) kicker and (f) burrower.

oscillation than the kicker. Therefore, a soft burrower not only swims faster than a

kicker at the same Sp, it also has a more uniform energy consumption, which can

be favorable for microorganisms. In figure 7.4(e) and (f), the center of mass of both

kicker and burrower shows a zigzag trajectory, as observed in previous studies [265].

A burrower has a larger lateral oscillation than the kicker.

Figure 7.5 compares the curvature along the flagellum at Sp = 0.5, 1.08 and 1.84.

The target curvature for kicker and burrower shows a symmetry about the middle of
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Figure 7.5. The curvature along the (a) kicker and (b) burrower of
different Sp at t = 0 and 0.25. Symbols show the target curvature,
red solid lines, green dotted lines and blue dashdot lines show the
curvature for flagellum at Sp = 0.5, 1.08 and 1.84, respectively. Inset:
shape of the flagellum at t = 0 and 0.25. The Reynolds number is
Re = 0.625.

the flagellum body at s = 0.5. The body shape of a stiff flagellum follows the target

beat pattern, while a softer flagellum deviates from it. The deviation of curvature

from the target curvature near the head (s < 0.2) is small for both swimmers. For

a soft kicker, the curvature deviation mainly occurs at the tail side (s > 0.6). Since

the tail side of the kicker has a larger amplitude and generates more thrust than the

head side, the deviation from the target beat pattern results in a smaller swimming

speed. On the contrary, a soft burrower has a large body deformation near the head,

which generates a large thrust and a large swimming speed. A burrower also has a

larger curvature deviation for s > 0.2.

The active and passive bending deformation of the flagellum strongly affects the

local flow velocity and thus the swimming performance of the flagellum. In figure

7.6, the soft flagellum has a very different velocity distribution on it body compared

with the stiff flagellum. A soft kicker generates a much weaker vorticity near the

head than the stiff kicker, where a strong negative vorticity below the body leads to

a large forward swimming speed. As a result, the local velocity for this segment of

the soft kicker is negative. Near the tail of the soft kicker, the vorticity is enhanced
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Figure 7.6. Flow field around the flagellum with a fixed target cur-
vature κ0

A=0.2 swimming from left to right at t = 0. Contour plots
show the distribution of the vorticity ωz. Arrows show the velocity on
the flagellum, where white and black colors corresponds to positive
and negative local velocities, respectively. The Reynolds number is
Re = 0.625.

and therefore the local velocity is positive. Generally, the region with local forward

velocity is smaller than the region with local backward velocity, and the center of mass

of soft kicker has a negative velocity at this time instant (see figure 7.4(a)). Similar

phenomena can be observed for the burrower. However, a strong positive vorticity

region is generated above the soft burrower at the middle of the body, which leads to

a large forward velocity for the flagellum. These results show that the details of the

interaction between hydrodynamic effects from the fluid and the active and passive

deformation of the flagellum is important for the flagellum swimming.

For the flagellum of a fixed sliding force, the target curvature κ0 scales as Sp3.

Therefore, a stiff flagellum has a small undulatory amplitude and its swimming speed

is small. A soft flagellum, on the other hand, strongly deforms, which leads to a

lower swimming speed (see figure 7.7). In figure 7.8(a), three different sliding forces

in dimensionless form are considered aF i = 0.8κ0
A=0.2, 0.32κ0

A=0.2 and 0.16κ0
A=0.2. Note

that the corresponding target curvature of the flagellum is calculated by κ0 = Sp3aF i.
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Figure 7.7. Flow fields around the flagellum with a fixed sliding force
aFi = 0.16κ0

A=0.2 swimming from left to right at t = 0. Contour plots
show the distribution of the vorticity ωz. Arrows show the velocity
on the flagellum, where white and black colors correspond to positive
and negative local velocities, respectively. The Reynolds number is
Re = 0.625.

For a given internal force distribution F i, the swimming speed Ū reaches a peak

value at a certain Sp. The maximum speed is of the same order as the speed of a

stiff flagellum. The maximum speed of the burrower is larger than the kicker for the

same sliding force. For a burrower with aF i = 0.8κ0
A=0.2, the maximum swimming

speed occurs around Sp = 1.08, the corresponding target curvature is κ0
A=0.2. At

aF i = 0.32κ0
A=0.2, the target curvature is 2κ0

A=0.2. Similar phenomenon also exists

for the kicker. This means that a soft flagellum requires a larger target curvature in

order to achieve a maximum swimming speed. The power consumption in figure 7.8(b)

monotonically increases with Sp. Note that the plot is in log scale, and the power

increases substantially compared with the stiff flagella with a fixed target curvature

(see figure 7.8(b)). The efficiency also has a peak value for each fixed sliding force

Fi. In many previous studies, the flagellum is modeled with a fixed target curvature

and has a small Sp so that the target beating pattern and swimmer kinematics are

similar. However, most organisms have large Sp, e.g., C. elegen. We should note

that the computed power consumption for a C. elegen deviates from experimental

measurements.
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7.5 Concluding Remarks

In this section, we numerically investigated the elastohydrodynamics of a self-

driven undulatory swimmer. Based on the model developed by Camalet and Jülicher

[37, 54], we show that the sliding force provides a target curvature to the flagellum,

κ0 = Sp3aFi for a two-dimensional flagellum. The numerical model of target cur-

vature developed by Fauci and Peskin [55] can be recovered when neglecting the

tangential contribution of the sliding force. Our numerical simulation of a stiff flag-

ellum agrees well with the results of a flagellum with prescribed kinematics. Based

on this model, we numerically model the swimming motion of an elastic kicker and

burrower driven by a fixed target curvature or a fixed sliding force distribution. The

sperm number Sp, which characterizes the stiffness of the flagellum, has important

effects on the swimming performance in both cases. For a flagellum with a fixed

target curvature, our results show that the swimming speed, power consumption and

swimming efficiency monotonically decreases with Sp. A soft burrower has higher

speed and efficiency than the kicker at the same Sp. The difference is related to

the interplay between the flagellum elastic deformation and the hydrodynamic forces.
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Particularly, weakened negative vorticity near the head of a soft flagellum reduces the

swimming speed. A strong positive vorticity generated at the middle of the soft bur-

rower induces a favorable flow for its swimming. For a flagellum with a fixed sliding

force, we find that there exists an optimum Sp, where swimmer speed reaches its max-

imum. The power consumption greatly increases at high Sp. Our results show that

the elastic deformation of the flagellum greatly affects the swimmer’s performance.
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8. COLLECTIVE MOTION OF MICROORGANISMS IN A VISCOELASTIC

FLUID1

8.1 Motivation and Previous Works

The suspension of swimming microorganisms and their aggregation have received

growing attention for their importance in pathology, reproduction and ecology [266].

The collective motion of microorganisms exhibits many turbulent-like behaviors, such

as large-scale flow structures [267,268], strong fluctuations in velocity field [269], and

enhanced diffusion and mixing [83]. The microorganisms exhibit locally correlated

motions [270] and aggregations [267]. In contrast to the classic turbulence at high

Reynolds numbers, which involves energy transfer across different length scales, the

active turbulence is generated by the collective motion of microorganisms. The input

energy is dissipated at the same length scale as it is produced [271,272]. Theoretical

models based on continuum equations [273] and discrete self-propelled particles [41,

274, 275] have been proposed to investigate the stability and turbulent features of

microswimmer suspensions and active nematics [276].

Microorganisms and spermatozoa often swim in non-Newtonian fluids which are

viscoelastic [207]. Examples of these phenomena include bacteria forming biofilms

by producing extracellular polymeric substances [42], spermatozoa racing through

cervical mucus in the mammalian female reproductive tract [59], and bacteria abun-

dance within oceanic gels of transparent exopolymer particles [206]. There has been

a long debate about the effects of fluid elasticity on the speed of an isolated swim-

mer. Both an increase and a decrease in speed have been observed in previous studies

depending on the propulsion mechanism and geometry of the microorganisms and

1This chapter has been reprinted (abstract/excerpt/figure) with permission from “Collective motion
of microorganisms in a viscoelastic fluid”, by G. Li and A. M. Ardekani, in Physical Review Letters,
117(11): 118001, 2016 (DOI: 10.1103/PhysRevLett.117.118001). Copyright (2016) by the American
Physical Society.
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fluid’s rheological properties [135]. In a dilute suspension of microorganisms, fluid

elasticity changes the wavelength of the most unstable disturbance [140] and leads

to microorganism aggregation in an external vortical flow [139]. More recently, a

continuum model is developed [277] to couple the internally driven active nematic

to the polymer rheology. The results show that the polymer additives may have a

calming effects on the active flow, while the full-coupling of the polymer and nematic

orientations greatly increases the complexity of spontaneous flow. At high Reynolds

numbers, polymer additives in a turbulent flow suppress the large-scale fluctuations

[278], increase flow intermittency [279] and generate a significant drag reduction

[280]. The interplay between stretching of polymer molecules and turbulent flow

structures [281] is one of the key aspects of viscoelastic turbulence.

In this work, we present the first fully resolved numerical simulation of collective

dynamics of microswimmers in viscoelastic fluids. The present work introduces fluid

elasticity as a mean to tune the effective interactions between swimmers and conse-

quently the turbulent properties. Different form the previous works [140, 277], we

consider the hydrodynamics of the discrete rod-like swimmers in a continuum vis-

coelastic fluid. We show that the fluid elasticity has a stronger effect on a suspension

of pushers than pullers. The polymer stress enhances the local aggregation and polar

alignment of pushers. At large scales, polymers suppress the velocity fluctuations,

break down the large-scale flow structures with a time period set by the polymer

relaxation. Accordingly, energy spectra and induced mixing in an active turbulence

are greatly modified by fluid elasticity.

8.2 Results and Discussion

We conduct two-dimensional simulations of N identical slender rod-like swimmers

in a viscoelastic fluid. Simulations are performed in a square box of size L with

periodic boundaries in all directions. The number density is defined as c = Nl2/L2.

By imposing a slip velocity Us = U0[± tanh(10s/l)+1] on the surface of the swimmer,
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we consider both pushers (+) and pullers (-). Here, U0 is the characteristic swimming

speed, l is the swimmer length, s ∈ [−l/2, l/2] is the length measured from the head

of the swimmer. In a Newtonian fluid, the swimming speed of an isolated pusher and

puller is U = U0; their induced velocity fields are also the same but in the opposite

direction. Hereinafter, the results are normalized as follows: the length is scaled by

l, velocity by U0, time by l/U0, and pressure and stress by ρνU0/l, where ρ and ν are

the fluid density and kinematic viscosity, respectively.

The dimensionless equations for conservation of momentum and mass are

Re
Du

Dt
= −∇p + ∇ · τ + f , ∇ · u = 0, (8.1)

where the Reynolds number Re = Ul/ν is 5 × 10−3, D/Dt is the material time

derivative, u is the velocity vector, p is the pressure and τ is the deviatoric stress

tensor. The forcing term f is calculated using a distributed Lagrange multiplier

method to accurately satisfy the boundary conditions on the swimmer [108] (see

more details in supplementary material). In a Newtonian fluid, the stress tensor is

τ = γ̇, where γ̇ = ∇u + ∇uT is the shear rate tensor. To model an elastic fluid,

the Oldroyd-B constitutive equation is used, in which τ can be split into solvent and

polymer contributions as τ = τ s + τ p, where τ s = βsγ̇ and

τ p + De
▽
τ p = (1 − βs)(∇u + ∇uT), (8.2)

where βs = 0.5 is the ratio of the solvent viscosity to the zero-shear-rate viscosity of

the polymeric solution. The Deborah number De = λ/tf is the ratio of the polymer

relaxation time λ to the characteristic flow time scale tf = l/U0. In a viscoelastic

turbulence, the flow field is strongly affected by De. At De ≪ 1, polymer molecules

are essentially not deformed and the elastic effects are negligible. In contrast, at

De ≫ 1, elastic forces dominate. The notation ▽ represents the upper-convected

derivative. The excluded volume effect is modeled by adding a linear repulsive force

whenever the distance between any two points on two swimmers is smaller than the

swimmer thickness.
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Figure 8.1. (color online). Elastic energy distribution tr(τ p)/2
around a (a) pusher and (b) puller as they swim to the left, De = 0.5.
(c) The magnitude of the velocity field away from the isolated swim-
mer. (d) Swimming speed for an isolated swimmer (triangles) and
suspension (circles) as a function of De.

The effects of fluid elasticity on a single swimmer are first investigated. For a

pusher, polymers are tangentially stretched along the entire body [Fig. 8.1a], while

for a puller, the high elastic energy is stored near the tail [Fig. 8.1b]. The flow field

induced by the swimmers are affected by fluid elasticity [Fig. 8.1c]. In a Newtonian

fluid, the magnitude of the velocity fields in front of and behind the swimmer are the

same |u| ∼ 1/r. Fluid elasticity breaks this symmetry and its effects on pushers and

pullers are different. The same 1/r scaling law holds for pullers, while for pushers,

velocity decreases much faster at the rear side of the swimmer. The polymer molecules

are strongly stretched along the pusher, once they pass the swimmer, the polymer

extension can not be supported any longer and the fluid elements contract along

the swimming direction and expand in the normal direction. Therefore, streamlines
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expand at the rear of the swimmer, and flow velocity along the swimmer direction

dramatically decreases, similar to the “die swell” phenomenon [216]. Fluid elasticity

does not affect the far-field velocity decay for either swimmers since the polymers are

mainly deformed near the swimmer. Fluid elasticity hinders the swimming speed for

both pushers and pullers for an isolated swimmer. The average swimming speed of

pushers in a suspension monotonically decreases with De, while it is less affected for a

suspension of pullers [Fig. 8.1d]. Therefore, the role of fluid elasticity on a suspension

can be very different from its effects on a single swimmer.

In suspensions, the swimmers are initially uniformly distributed and have the

same swimming direction. The nematic suspension is unstable for both swimmer

types, and they form clusters. Fig. 8.2 shows the flow field at t = 25 which has

reach a statistically steady state. In a Newtonian fluid, the flow induced by pushers

is characterized by large scale structures as large as the size of computational domain.

Pushers tend to align with their neighbors due to the lateral hydrodynamic attractions

and they exhibit a local orientational order. The suspension of pullers in a film is

very different from those in an unconfined suspension. In a bulk fluid, large scale

flows are not observed and the pullers are randomly distributed regardless of their

concentration [41]. Whereas in a film, the pullers aggregate at the front and form

clusters [Fig. 8.2(b)].

In a viscoelastic fluid [Fig. 8.2(c) and (d)], the cluster type is not qualitatively af-

fected, i.e. the aggregation of the swimmers is mainly determined by their swimming

mechanism. The typical cluster size for pushers in a viscoelastic fluid is, however,

larger and involves more swimmers compared to the Newtonian fluid. Fluid elasticity

reduces the velocity fluctuations and suppresses the fluid mixing (see more details in

supplementary material). Fluid elasticity reduces the size of large-scale flow struc-

tures in a suspension of pushers, which can be as large as the computational domain

in a Newtonian fluid. These large-scale high-speed regions occasionally form in a

viscoelastic fluid, but quickly break down into smaller patches. Fluid elasticity has

much weaker effect on a suspension of pullers.
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Figure 8.2. (color online). Flow field and distribution of swimmers
at t = 25 for (a, c) pushers and (b, d) pullers. The number density is
c = 1. De = 0 in (a, b) and 2.5 in (c, d), respectively. Contours in the
main frame and the right-bottom quarter of (c, d) show the horizontal
velocity component u and elastic energy tr(τ p)/2, respectively.

In Fig. 8.3(a), the aggregation of swimmers are quantified using pair correlation

functions g(r) and g(θ), representing the probability of finding a swimmer at center-

to-center distance r and angle θ with respect to another swimmer. For pushers, g(r)

peaks at around r = 0.2, representing the strong tendency of lateral attraction. The

peak value of g(r) increases with De, showing an increase in attraction due to fluid

elasticity. In the inset, the plot of g(θ) shows a tendency for polar alignment of

pushers, and fluid elasticity further increases this effect. In general, fluid elasticity
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enhances the aggregation of pushers, which is consistent with our results for two

hydrodynamically interacting pushers (see more details in supplementary material).

Shear flow in the gap between the two pushers generates a strong polymer stretching

which enhances the attraction. This mechanism is similar to the polymer-enhanced

wall attraction of a pusher-type squirmer [50].

The role of fluid elasticity on the flow coherent structures is characterized by the

spatial and temporal correlation functions as Cu(r) = ⟨u(x+ r) ·u(x)⟩/⟨u2(x)⟩ and

Cu(∆t) = u(t + ∆t) · u(t)/u2(t). Here, ⟨⟩ and − represent the average in space and

time, respectively. In Fig. 8.3(b), we compare the averaged correlation functions

Cu(r) and ⟨Cu(∆t)⟩ for different suspensions. The spatial velocity correlation for a

pusher suspension is weakened by fluid elasticity. The typical length of the averaged

flow structures, which is characterized by the value of r at which Cu(r) = 0 only

slightly decreases with De. Similarly, the shape of the temporal velocity correlation

function is changed by fluid elasticity, while correlation time ∆t ≃ 5 is less affected.

Fluid elasticity reduces the velocity magnitude of some regions of the large-scale flow,

while it is not strong enough to reverse the flow direction.

We now closely examine the instantaneous flow fields to better understand the in-

terplay between polymer stretching, swimmer aggregation and large-scale flow struc-

tures in a suspension of pushers. The time variation of the kinetic and elastic energies

in a suspension is written as

Re
dK

dt
+

dE

dt
= P − εK − εE, (8.3)

where K = ⟨u2/2⟩ and E = ⟨tr(τ p)/2⟩ are the spatial averaged kinetic and elastic

energies in the flow field. P =
∑

i

∫
l
f ·uds/L2 is the average power input generated

by all the swimmers. εK = ⟨βsγ̇ : γ̇⟩ and εE = E/De represent energy dissipations

caused by the Newtonian solvent and polymer molecules, respectively. To quantify the

pusher aggregation, we define a local polar order parameter S1 =
∑

i

∑
j ̸=i,r<1 cos(θ),

where r and θ are the distance and angle between pushers i and j. Parameter S1

provides information about the polar alignment of pushers, including the size and

the number of clusters. For N pushers aggregated in one cluster with perfect polar
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Figure 8.3. (color online). (a) Pair correlation functions g(r) and
g(θ) (inset) for pushers (red) and pullers (blue). Contour plots of
g(r, θ) are given in the supplementary material. (b) Averaged spatial
and temporal (inset) velocity correlations Cu(r) and ⟨Cu(∆t)⟩ of the
induced flow field. The number density is c = 1. Solid triangle:
pusher at De = 0, solid circle: pusher at De = 2.5, open triangle:
puller at De = 0 and open circle: puller at De = 2.5.

alignment, S1 = N(N + 1). Similarly, we define a local nematic parameter S2 =∑
i

∑
j ̸=i,r<1 | cos(θ)|. The size of instantaneous flow structure rc is determined by

calculating Cu(rc) = 0. At De = 0, K ≃ 1.8, S1 = 113.5, S2 = 1048.2 and rc ≃ 6.6; at

De = 2.5, K ≃ 0.4, S1 = 260.9, S2 = 1238.2, rc ≃ 5.9, and E ≃ 2.6. Fluid elasticity

inhibits velocity fluctuations, enhances polar and nematic alignment of pushers, and

slightly decreases the size of the average large-scale flow structures.

To better understand the results, we compare fluctuations for different variables,

a′ = (a−a)/a, where a is the variable of interest. In Fig. 8.4(a), K ′ and r′c are strongly

correlated in a Newtonian fluid, meaning larger flow structures generate stronger

velocity fluctuations. No obvious correlation between S ′
1 and r′c is observed, indicating

that the pusher aggregation is more related to the local hydrodynamic interaction

among the swimmers, rather than large-scale flows. Both K ′ and r′c oscillate with a

typical time period ∆t ∼ 4, which is approximately the time it takes for a pusher to
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at De = 2.5.

swim across large-scale flow structures. In Fig. 8.4(b), K ′ are E ′ are anti-correlated

with each other in a viscoelastic fluid. Note that because of the Re factor in Eq. (3),

the elastic energy strongly affects the kinetic energy, even though E ′ is an order of

magnitude smaller than K ′. The time scale of fluctuations is approximately ∆t =

1 ∼ 2, which is close to the polymer relaxation time λ = 2.5. Polymer stretching

in an active turbulence is a highly nonequilibrium process. Once the large-scale flow

emerges, it starts to more strongly stretch polymer molecules in the flow field. The

polymer stretching gradually reduces the velocity fluctuations and breaks down the

large-scale flow structures. After the polymer molecules are relaxed, the velocity

fluctuations are recovered and large-scale flow structures emerge again.

The modification of the flow coherent structures by fluid elasticity is also revealed

in energy spectra. In Fig. 8.5, we compare the energy spectrum for different sus-

pensions. For all the cases, a roughly universal k−4 power-law is observed at high

wavenumbers k > kl = 2π, due to the shape of rod-like swimmers [275]. At low
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wavenumbers, the asymptote varies with the swimmer type and the fluid environ-

ment. For a suspension of pushers in a Newtonian fluid, we derive the same scaling

K(k) ∼ k−8/3 as in a bacterial suspension [271]. In a viscoelastic fluid, the kinetic en-

ergy reduces to k−4/3 at low wavenumbers and slightly increases at high wavenumbers

k > kl, showing that polymer molecules extract energy from large scales and partially

release it at small scales. The interaction between polymer molecules and large scale

flows effectively causes a polymer-induced kinetic energy cascade. This mechanism is

the same as in a viscoelastic turbulent flow at high Re [282], except that for an active

turbulence in a viscoelastic fluid, this is the only energy cascade. The elastic energy

has a much more flat distribution over k < kl, indicating the polymer stretching by

the large scale flows. This is similar to the viscoelastic turbulence at high Reynolds

numbers [283]. The kinetic energy dissipation is εK(k) = 2k2K(k) ∼ k−2/3 for a

pusher suspension in a Newtonian fluid. The viscous dissipation is mainly caused

by the large-scale flow structures, consistent with the measurements in a bacterial

suspension [284]. In a viscoelastic fluid, polymers add an extra dissipation εE to the

fluid and εK(k) ∼ k2/3 at k < kl, i.e. the strongest viscous dissipation occurs at the

swimmer length scale.



136

t

r

0 5 10 15
0

0.5

1

1.5

(a)

De=0, pusher
De=2.5, pusher
De=0, puller
De=2.5, puller

(b) pusher, t=5

8
4
0

puller, t=2

tr(τp)/2

(c)

Figure 8.6. (color online). (a) Time history of the distance between
two pushers which are initially swimming in the same direction and
parallel to each other. Polymer stretching around the (b) pushers and
(c) pullers in a viscoelastic fluid at De = 2.5.

To conclude, based on the fully-resolved numerical simulations of suspension of

rod-like swimmers, we have shown that the effects of fluid elasticity on a suspension

can be very different from its effect on a single swimmer. Particulary, fluid elasticity

enhances the aggregation of pushers mainly due to the local hydrodynamics. Large-

scale flow structures induce stronger polymer stretching, and the polymer relaxation

breaks down the large flow structures and suppresses the velocity fluctuations. Our

work has extended the studies of collective motion in Newtonian fluids to polymeric

solutions. These results can be useful in understanding the behavior of swimming

microorganisms in a more realistic fluid environment, such as bacteria in biofilm and

oceanic exopolymer particles.

8.3 Supplemental Material

8.3.1 Effects of Fluid Elasticity on Two Swimmers

To investigate the effects of fluid elasticity on the pusher aggregation, we conduct

simulations of two swimming pushers and pullers in Newtonian and viscoelastic fluids.

The two swimmers are initially parallel to each other and swim in the same direction.
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Figure 8.7. (color online). The pair correlation function g(r, θ) of
swimmers in a suspension of (a) pushers and (b) pullers.

The initial lateral center-to-center distance is r = 0.6. As shown in Fig. 8.6(a),

the two pushers are gradually attracted to each other, swim together for a while

and eventually separate. The two pullers, on the other hand, repel each other. The

pushers contact time increases from 3.6 at De = 0 to 5.1 De = 2.5, showing the

enhancement of pusher attraction by fluid elasticity. In Fig. 8.6(b), the strong shear

in the gap between the two pushers generates a strong polymer stretching which

enhances the attraction. This mechanism is similar to the polymer-enhanced wall

attraction of a pusher-type squirmer discussed in our earlier work [50].

8.3.2 Effects of Fluid Elasticity on a Suspension of Swimmers

Effects of fluid elasticity on aggregation of swimmers in a suspension is quanti-

fied using the pair correlation function g(r, θ) at different De (Fig. 8.7). The pair

correlation function is defined as

g(r, θ) =
L2π

N(N − 1)V (ri,j)θi,j

N∑
i=1

N∑
j=1
i ̸=j

⟨δ(ri,j − r)δ(θi,j − θ)⟩, (8.4)

where

δ(ri,j − r) =

1, r − ∆r
2

≤ ri,j < r + ∆r
2
,

0, otherwise,

(8.5)
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and δ(θi,j − θ) is similarly defined. ri,j and θi,j are the center-to-center distance and

angle between swimmers i and j, respectively, and V (ri,j) = π[(ri,j + ∆r/2)2 − (ri,j −

∆r/2)2]. As we have shown in the main text, pushers show a strong tendency of

lateral attraction, and the polar alignment is stronger than the apolar alignment.

Fluid elasticity enhances the aggregation and the polar alignment of the pushers.

Pullers are attract to each other with a preferred angle smaller than π/2. The pair

correlation functions in a suspension of pullers are less affected by fluid elasticity. In

Fig. 8.8, the size of the time-averaged flow structures rc, determined by Cu(rc) = 0,

decreases with De in the suspension of pushers, while it slightly increases for the

suspension of pullers.

Based on the induced velocity field, we calculate the advection and diffusion of a

scalar field ϕ initialized as ϕ|t=0 = sin(2πx/L) to quantify mixing. The corresponding

Péclet number is Pe = Ul/D = 100, where D is the diffusivity. From Fig. 8.9, we

clearly see that the mixing in a pusher suspension at De = 0 is much faster than

the other cases. In Fig. 8.10(a), the probability distribution function of horizontal

component of velocity u in a viscoelastic fluid is narrower for suspension of pushers,

while for pullers, the effect is opposite, and it is much weaker. The time evolution

of the spatial average of the scalar norm ⟨|ϕ|⟩ is illustrated in Fig. 8.10(b). Once an
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Figure 8.9. (color online). Scalar field ϕ|t=0 = sin(2πx/L) is passively
advected by the velocity field of the suspension at t = 25. (a) pushers
at De = 0, (b) pushers at De = 2.5, (c) pullers at De = 0, and (d)
pullers at De = 2.5. The number density is c = 1.

instability from the initial nematic state develops, ⟨|ϕ|⟩ drops much faster than the

pure diffusion case due to the mixing induced by active turbulence. Fluid elasticity

reduces fluid mixing in the suspension of pushers, but has a weaker effect on the

suspension of pullers. The spatial average of scalar norm for a diffusion process follows

⟨|Φ|⟩(t) = ⟨|Φ0|⟩ exp[−(2π/L)2Dt], where L = 20 is the domain size, D = 0.01 is the

diffusivity. Similar exponential law exists in an active turbulence after turbulent flow

structures develop. The equivalent diffusivity is calculated by D =
∫∞
0
⟨u(t)2⟩dt.

For a velocity field with a Gaussian distribution, D = σ2, where σ is the standard

deviation. From Fig. 8.10(a), we derive σ = 1.3 for the suspension of pushers in a
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Figure 8.10. (color online). (a) The probability distribution function
P (u) of the horizontal velocity component u of the flow field. Here,
σ is the standard deviation of the Gaussian distribution. (b) Time
evolution of the spatial average of scalar norm, ⟨|ϕ|⟩. The number
density is c = 1.
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Figure 8.11. (color online). (a) Number-averaged energy dissipation
P/N of suspension of swimmers in a Newtonian fluid at various cell
concentrations. Inset: time history of P/N of suspensions at c = 1.
(b) Number-averaged energy dissipations P/N , εK/N and εE/N of
suspension of swimmers at c = 1 at various De. εK and εE are the en-
ergy dissipation caused by Newtonian solvent and polymer molecules,
respectively. Red solid symbols: pusher, blue open symbols: puller.

Newtonian fluid and 0.7 for other cases. These values are close to what we obtained

from Fig. 8.10(b).
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At last, we characterize the effects of fluid elasticity on the energetics of the mi-

croswimmer suspensions. In a statistically steady state, the time variations of the

kinetic and elastic energies are zero, and all of the input power eventually dissipates,

i.e. P = εK + εE, where εK and εE are the energy dissipation caused by the Newto-

nian solvent and polymer molecules, respectively. In Fig 8.11(a), the number-averaged

energy dissipation P/N in a Newtonian fluid decreases with increasing pusher concen-

tration, while it increases for pullers. This observation is opposite to the simulation

results only considering the far-field hydrodynamic interactions [275], indicating the

key role of the near-field hydrodynamics. The power consumption is initially high

when the swimmers are in a nematic phase, but it quickly drops as they start to

lose their initial order ( see inset of Fig. 8.11(a)). Therefore, collective swimming

of pushers is not only advantageous for achieving higher speed, but also reduces the

overall energy consumption.

In Fig. 8.11(b), polymers add an extra dissipation εE to the fluid, they affect the

power consumption of both pusher and puller suspensions in a similar way. At low

De, the power consumption is slightly decreased. Polymer stretching by swimmers is

weak, the fluid is still Newtonian-like and the contribution of the solvent to dissipation

is approximately the same as the contribution of polymer molecules (β = 0.5). For

De > 0.25, the total dissipation increases and, at De = 2.5, it is about 20 ∼ 30%

larger than the one in a Newtonian fluid. The trend is similar to the results of

an isolated swimmer. The viscous dissipation increases with increasing De, while the

polymer dissipation is less affected. Recall that εE = E/De. This result indicates that

larger polymer relaxation time corresponding to larger De compensates the effects

of the stronger polymer elongation. This effect is similar to the observations in a

viscoelastic turbulent flow at high Reynolds numbers [282].
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Figure 8.12. (color online). (a) The magnitude of the velocity field
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are streamlines. Contours show the magnitude of horizontal velocity
component u.
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Figure 8.13. (color online). The effects of air/liquid friction on (a)
averaged spatial velocity correlation Cu(r) and (b) the kinetic energy
spectrum of a microswimmer suspension in a Newtonian fluid. The
number density is c = 1.

8.3.3 Effects of Air-liquid Friction

The term −αu is the dissipative term which models the friction between the film

and the surrounding air [285]. This term is not necessary in models of an active

turbulence because the viscous dissipation naturally maintains a finite energy level,
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unlike a 2D turbulent flow at high Reynolds numbers. However, we find that it

has important effects on both single swimmer and suspension dynamics. The air-

liquid friction does not affect the swimming speed of a single swimmer, but the

far-field velocity profile decays much faster, following 1/r3 [see Fig. 8.12(a)], the

same as swimming in a confined thin film [286]. Near the swimmers, the friction

generates recirculation regions with closed streamlines. In a suspension, the flow

structures are greatly reduced by air-liquid friction. In Fig. 8.13(a), the typical

vortical structures are greatly reduced to around rc ≃ 2 for both pusher and puller

suspensions, indicating that the size of the large scale flow structures are strongly

affected by the far-field velocity field. For the energy spectrum, the friction term

changes the kinetic energy distribution at small wavenumbers into K(k) ∼ k5/3, the

same as a bacterial suspension in a confined chamber [271]. These results show that

the friction breaks down the large scale flow structures.
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9. SUMMARY AND PROPOSED WORK

9.1 Summary of Results

In this thesis, the swimming motion in complex fluids and complex environments

is investigated by using direct numerical simulations. We mainly use a continuum

model for the non-Newtonian fluid and a discretized description for swimmers us-

ing different swimmer models. We focus on the effects of the non-Newtonian fluid

rheological properties, such as viscoelasticity and the shear-thinning viscosity on the

hydrodynamics of microswimmers and inert particles. Our results show that the non-

Newtonian fluid rheological properties have important effects on the microswimmers,

including its swimming speed, the power consumption, the near-field and far-field

velocity decay, the near-wall swimming behavior, interaction with the external flow

field, and the collective motion of a suspension.

For a single squirmer in a Newtonian fluid, three different swimming modes are

observed in the presence of inertial effect: the pusher and the puller with a weak

pulling strength escape from the wall. As the strength of pulling effect increases,

the puller swims along the wall keeping a constant distance and orientation angle,

and at a higher strength, it bounces on the wall. Therefore, the puller swimmer can

be trapped by a surface, however, at smaller Reynolds numbers, the wall attraction

becomes weaker. For a suspension of squirmers, we found that they are all attracted

to the walls, independent of the swimmer’s type. The squirmers frequently approach

and escape from the wall surface, but have a much higher probability to stay near

the walls than swim in the bulk fluid. In the near-wall region, the squirmers mostly

orient normal to the walls, the interactions between the squirmers affect the structure

of the clusters.
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The non-Newtonian behavior is found to greatly affect the near-wall motion of a

squirmer. We find the pusher squirmer can be permanently trapped to the wall, due

to a strong polymer stretching around the rear pole of the pusher, inducing an elastic

drag which resists the locomotion of the swimmer. A neutral squirmer stays longer

time near the surface, and a puller is less affected, they both eventually escape the

wall. The fluid viscoelasticity is found to be the main reason for these affects, and

the different behavior is due to the different polymer stretching around the squirmer.

For an inert particle in an external flow field of a channel flow, cross-streamline

particle migration is observed due to various effects: inertia, elasticity, shear-thinning

and secondary flow due to the non-circular cross-section of the channel. Inertia and

viscoelastic effects compete with each other: inertial effects drive the particle away

from the channel centerline, while viscoelastic effects drive the particle towards the

centerline. Both the shear-thinning effect and the corresponding secondary flow tend

to move the particle closer to the wall, and their effects are more pronounced with

stronger inertia and elasticity.

We then compared the effects of viscoelasticity and shear-thinning visocity of the

fluid on an undulatory swimmer. For a squirmer, both effects are found to hinder the

swimming speed [95, 213]. However, for an undulatory swimmer, such as a sperm,

there is a heated debate in the literature [134–138, 208, 231]. In a viscoelastic fluid,

our simulation results are consistent with previous analytical works [135], in which

the swimming speed and power consumption decrease with fluid viscoelasticity. In an

inelastic shear-thinning fluid, we find the swimming speed to be enhanced, as long as

the fluid viscosity near the flagellum is effectively thinned. The reason for the speed

boost is similar to the case of a flagellum in a confined channel. Same results are

also confirmed for a flagellum swimming in a heterogeneous fluid environment with

particle suspensions.

The near-wall motion of an undulatory swimmer has some similarities to the near-

wall motion of a squirmer. Depending on the undulatory amplitude, the swimmer can

be strongly attracted to the wall, be weakly attracted to the wall with a relatively large
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oscillating distance away from the wall, or escape from the wall. The contact between

the swimmer and the wall and the hydrodynamic interaction are both important for

the near-wall motion of the swimmer. In a non-Newtonian fluid, the shear-thinning

viscosity is found to increase the swimming speed and to slightly enhance the wall

attraction by reducing the swimmer’s initial scattering angle. Similar as a pusher

squirmer, the fluid elasticity leads to strong attraction of flagellum towards the wall

and reduces its swimming speed. In a shear-thinning viscoelastic fluid, the combined

shear-thinning effect and fluid elasticity results in an enhanced swimming speed for

the kicker along the wall.

Fluid elasticity not only affects the swimming speed of a microswimmer and its

near-wall motion, it also greatly affects the collective motion in a suspension, espe-

cially for the pusher swimmers. It enhances the attraction and the orientational or-

dering of the pusher swimmers. We find the polymer stress is strongly anti-correlated

to the kinetic energy of the flow field, i.e., the induced polymer stresses break down

the large-scale flow structures and suppress velocity fluctuations. From the energy

spectrum, we observe that the polymer molecules extract energy from large scales

and partially release it at small scales.

9.2 Recommendations for Future Works

Collective motion of self-propelling particles are of great interest for many years

for its theoretical and practical importance [2]. At high particle concentrations, the

induced fluid flow exhibits turbulent flow properties, such as large-scale flow structures

[267,268] and enhanced diffusion and mixing [83]. The self-propelling particles show

locally correlated motions [270] and form clusters [267]. Active particles also undergo

an activity-induced phase separation which closely resembles the equilibrium of a

gas liquid coexistence [287, 288]. Recently, studies show that adding inert particles

into a suspension of active particles can substantially change the onset of the phase

separation [289, 290]. Our preliminary results show that clustering of mixture of
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active and inert particles are formed without Brownian motions. Further work can

be continued on this area to investigate the non-equilibrium phenomena of suspension

of active and inert particles.

Fluid and nutrient mixing at microscales is important for microorganisms, how-

ever, mixing is not efficient in a low-Reynolds-number regime of a Newtonian fluid.

In this thesis, we have shown that in a suspension of self-propelled particles, fluid

mixing is inhibited by fluid elasticity mainly because the swimming speed of the

swimmers are reduced. However, polymer solutions are found to destabilize the fluid

in presence of the curved streamlines [291] or large enough disturbances [292]. Us-

ing a polymethyl methacrylate solution, previous experiments also demonstrated a

rapid mixing of viscoelastic fluids in microchannels with an abrupt contraction [293].

Despite of these studies, the underlying physics are still not completely clear and nu-

merical simulations of this phenomenon are needed. The major difficulty is the severe

numerical instability at a high Weissenberg number. To overcome this difficulty, we

implement an algorithm based on matrix-logarithm of the conformation tensor [294].

This method uses a tensor-logarithmic transformation of the conformation tensor for

differential viscoelastic constitutive equations, which can be applied to a wide variety

of constitutive laws. The core feature of this transformation is the decomposition

of the velocity gradient, ∇u, into a traceless extensional component, E, and a pure

rotational component, R. In the log-conformation representation, the evolution equa-

tion of the conformation tensor C is replaced by an equivalent evolution equation for

the logarithm of the conformation tensor θ = ln∇C. When necessary, an inverse

transformation C = eθ is used to calculate C. The logarithmic conformation tensor

method has been implemented into our in-use code and future research can focus on

to exploring the elasticity-related instability and fluid mixing.

In most part of this thesis, the kinematics of the microswimmers is imposed as a

given condition. This model is the first step to learn the hydrodynamics of the low

Reynolds number swimming and is useful to investigate the effects of non-Newtonian

rheology and the hydrodynamic interactions between swimmers and surfaces. In
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chapter 7, we investigated the elastohydrodynamics of an internally driven flagellum

with a prescribed sliding force. However, experiments suggest that the dynein motor

activity is not coordinated by a chemical signal but arises spontaneously because

of the interplay of the dynein motors and the elastic microtubules [36, 252]. More

details of the microorganisms, such as the self-organized oscillating mechanism of

flagellum [36, 37], and the material properties of the swimmer, should be included

to fully understand the interaction between the swimmer and the surrounding fluid

environment. Interestingly, measurements of the C. elegans show its body behaves

as a shear-thinning viscoelastic material [261]. Previous studies have shown that

the stiffness of an undulatory flagellum has an important effect on its swimming

speed in a viscoelastic fluid [208, 209]. Future studies may consider both the elastic

and shear-thinning behavior of the swimmer’s body as well as the internally driven

mechanism. More advanced numerical codes need to be developed for the simulation

of an elastic body inside a viscous fluid. To avoid very small time step required in an

explicit-time stepping immersed boundary method, an implicit-time stepping method

[232,263,264] needs to be implemented. Generally, the implicit version of the method

needs to solve a matrix equation to update the position of the elastic body, and a

generalized minimum residual method (GMRES) can be implemented [295].

Other numerical techniques are required to expand the parameter space for mi-

croorganism swimming in complex fluids. For the non-Newtonian fluid, there are

mainly two types of models: the continuum model and the coarse-grained model. The

continuum model is based on a polymeric stress field which is the ensemble average of

polymer molecules inside an infinitely small volume of fluid. This method gives us a

closed-form governing equation for the polymeric stress with proper boundary condi-

tions. This equation is implemented in a CFD code solving Navier-Stokes equations

and has been widely used in various studies on viscoelastic fluids, including the present

thesis. However, this method suffers a major issue, called the “high-Weissenberg num-

ber problem” [296], i.e., the extensional viscosity, defined as the ratio of extensional

stress to extensional strain rate, will become infinite for a non-shear-thinning vis-
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coelastic fluid at finite strain rate and the numerical method becomes unsteady at

high Wi. Some techniques, including the log-conformation method [294], which is

the one implemented in the current thesis, the square-root method [297] and the

polymer stress diffusion method [298] have been proposed to deal with this problem.

These methods increase the upper limit of the Wi allowed in simulations up to around

10 for Oldroyd-B fluid but are still limited for the microorganisms swimming in real

viscoelastic material, for which Wi ∼ O(102) [135,299].

In the coarse-grained modeling method, each molecule is represented as a string

of beads connected by springs [216, 300]. Each bead represents a large number of

polymer segments and has a given Stokes drag coefficient and a Brownian motion.

The springs reflect the connectivity of the polymer chains and the effect of entropy

which drives the chains toward an equilibrium coiled conformation. For efficiency, the

strings in simulations usually include only two beads, i.e. the spring dumbbell model,

which captures the longest time and length scales of the polymer chain. This method

has some drawbacks, especially is limited to the dilute assumption for the polymeric

solution [300]. On the other hand, it has several advantages compared to the contin-

uum model. Firstly, this method can reach up to Weissenberg number of hundreds by

increasing the stiffness of the spring [301] and thus avoids the difficulty encountered

with a continuum model. Secondly, this method avoids any boundary conditions

at an immersed boundary in a viscoelastic fluid. Currently, a continuum model of

viscoelastic fluid with an immersed boundary method simply neglects the boundary

condition for the polymer stress at the immersed boundary. Note that in the work

of Teran et al. [136], a stress jump condition is mathematically proposed while may

not be implemented in the numerical method [208,235]. This simplification may still

be acceptable for some simulations, such as the undulatory flagellum in a viscoelastic

fluid validated in chapter 5, while it encounters issues for some other problems. For a

coarse-grained model, a collision force for the bead can be implemented to accurately

account for the effects of an immersed boundary. Lastly, the coarse-grained method
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reveals the nature of the heterogeneous fluid environment around a microorganism,

which may lead to important effects not captured using a continuum model.
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