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ABSTRACT

Lee, Woochan Ph.D., Purdue University, December 2016. Fast Time- and Frequency-
Domain Finite-Element Methods for Electromagnetic Analysis. Major Professor:
Dan Jiao.

Fast electromagnetic analysis in time and frequency domain is of critical im-

portance to the design of integrated circuits (IC) and other advanced engineering

products and systems. Many IC structures constitute a very large scale problem in

modeling and simulation, the size of which also continuously grows with the advance-

ment of the processing technology. This results in numerical problems beyond the

reach of existing most powerful computational resources. Different from many other

engineering problems, the structure of most ICs is special in the sense that its geom-

etry is of Manhattan type and its dielectrics are layered. Hence, it is important to

develop structure-aware algorithms that take advantage of the structure specialties

to speed up the computation. In addition, among existing time-domain methods,

explicit methods can avoid solving a matrix equation. However, their time step is

traditionally restricted by the space step for ensuring the stability of a time-domain

simulation. Therefore, making explicit time-domain methods unconditionally stable

is important to accelerate the computation. In addition to time-domain methods,

frequency-domain methods have suffered from an indefinite system that makes an

iterative solution difficult to converge fast.

The first contribution of this work is a fast time-domain finite-element algorithm

for the analysis and design of very large-scale on-chip circuits. The structure specialty

of on-chip circuits such as Manhattan geometry and layered permittivity is preserved

in the proposed algorithm. As a result, the large-scale matrix solution encountered in

the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D
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matrix, which can be obtained in linear (optimal) complexity with negligible cost.

Furthermore, the time step size is not sacrificed, and the total number of time steps

to be simulated is also significantly reduced, thus achieving a total cost reduction in

CPU time.

The second contribution is a new method for making an explicit time-domain

finite-element method (TDFEM) unconditionally stable for general electromagnetic

analysis. In this method, for a given time step, we find the unstable modes that

are the root cause of instability, and deduct them directly from the system matrix

resulting from a TDFEM based analysis. As a result, an explicit TDFEM simulation

is made stable for an arbitrarily large time step irrespective of the space step.

The third contribution is a new method for full-wave applications from low to

very high frequencies in a TDFEM based on matrix exponential. In this method,

we directly deduct the eigenmodes having large eigenvalues from the system matrix,

thus achieving a significantly increased time step in the matrix exponential based

TDFEM.

The fourth contribution is a new method for transforming the indefinite sys-

tem matrix of a frequency-domain FEM to a symmetric positive definite one. We

deduct non-positive definite component directly from the system matrix resulting

from a frequency-domain FEM-based analysis. The resulting new representation of

the finite-element operator ensures an iterative solution to converge in a small number

of iterations. We then add back the non-positive definite component to synthesize

the original solution with negligible cost.
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1. INTRODUCTION

1.1 Importance of Electromagnetic Analysis

The past few decades have witnessed the dramatic rise of computational electro-

magnetics. Electromagnetic simulation is becoming an increasingly important tech-

nology and numerous methods have been developed [1–4]. The reasons include higher

operating frequencies and higher complexity of the structures to be designed. A lot of

efforts have been made to scale down semiconductor structures such as adopting Fin-

FET and 3-D packaging, they make an understading of electromagetic nature much

more difficult, thus more sophisticated computational electromagnetic techniques are

required to address the issue. Even though computational electromagnetics is an ‘in-

visible hand’ buried in electronic design tool, the compuational electromagnetics is

routinely used to maximize the performance of the real world product.

The analysis of on-chip circuits across a broad range of electromagnetic spectrum

is of critical importance to the higher-performance design of integrated circuits (IC)

and systems [5–15]. Many VLSI circuit structures such as a global power grid network

constitute a very large scale problem in modeling and simulation, the size of which

also continuously grows with the advancement of the processing technology.

1.2 Challenge and Recent Progress of Electromagnetic Analysis

A straightforward solution to the very large-scale electromagnetic problem would

result in a numerical system that is beyond the capability of existing most powerful

computational resources. Therefore, fast electromagnetic solvers with high capacity

are called for to guide the very large-scale IC design in a fast turnaround time with

uncompromised accuracy.
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Different from many other engineering problems, the structure of an on-chip circuit

is special in the sense that its geometry is of Manhattan type and its dielectrics are

layered. Not taking advantage of these specialties would unnecessarily slow down the

computation; however, preserving the structure specialties and taking advantage of

them in a numerical solution is not a straightforward task either. Take the layered

dielectrics as an example. If one employs a frequency-domain solver to analyze the on-

chip circuits, the resultant system matrix is composed of permittivity, conductivity,

and permeability related terms. Since conductivity and permeability are not layered,

the layered property of the permittivity cannot be preserved and taken advantage of in

the solution of the frequency-domain system matrix. The same is true for an implicit

time-domain method. If one employs an explicit time-domain method, although only

the weighted sum of the permittivity- and conductivity-related matrices needs to be

solved, since the conductivity is not layered as the layout structure is different in

different dielectric layers, the layered structure of the permittivity is also lost in the

numerical solution of an explicit time-domain method.

There have been structure-preserving algorithms developed to exploit the struc-

ture specialty of on-chip circuits. In [5], a time-domain layered finite-element reduction-

recovery (LAFE-RR) method [5] was developed to solve large-scale IC design problems

at high frequencies. In this method, the layered property of dielectrics is employed

to perform system reduction analytically from multiple layers to a single layer which

is a 2-D numerical system. With Manhattan geometry taken into account, the 2-D

single-layer system is further reduced to a single line that is 1-D in the hierarchical

FE-RR method [12]. However, since the conductivity is not layered, in [5, 12], the

conductivity-related term is moved to the right hand side of the system matrix equa-

tion to enable the analytical system reduction. This makes the time step required for

a stable time-domain simulation much smaller than that permitted by a traditional

explicit time-domain method, and hence slowing down the overall computation. In [6],

a fast marching method is developed to address the time step issue. In this method,

the conductivity-related term is kept to the left hand side of the marching equation
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in time, and a preconditioner that permits a LAFE-RR solution is constructed to it-

eratively solve the system matrix with an expedited convergence. The preconditioner

is built by replacing some metal layers with solid metal planes, the performance of

which is problem dependent for accelerating the original matrix solution.

A time-domain FEM solution of the second-order vector-wave equation can be

transformed to a first-order system of equation, which can then be solved analyti-

cally by matrix exponential framework [16, 17]. The usefullness of this framework is

that it supports as large time step as the maximum time step soley determined by

accuracy. However, the evaluation of matrix exponential generally consumes a lot of

computation resources. A reliable algorithm for matrix exponential framework is still

an active research area [17,18].

The overall computational efficiency of a time-domain method is determined by

not only the cost at each time step, but also the total number of time steps required

to finish one simulation. Among existing time-domain methods, explicit methods can

avoid solving a matrix equation. However, their time step is traditionally restricted

by the space step for ensuring the stability of a time-domain simulation. Recently,

an explicit and unconditionally stable TDFEM method is developed to overcome this

problem [19]. In this method, for any given time step ∆t , the root cause of the

instability is analytically found to be the eigenmodes whose eigenvalues are higher

than 4/∆t2 . The method in [19] begins with a preprocessing step that finds the space

of stable eigenmodes followed by an explicit time marching stable for the given time

step no matter how large it is. To preserve the advantage of an explicit time-domain

method in avoiding solving a matrix equation, the preprocessing step is performed by

using the conventional explicit marching. Although the time window to be simulated

in the preprocessing can be much shorter than the total time window to be simulated,

the performance of the preprocessing step may become limited in certain applications.

Frequency-domain analysis is essential for many engineering problems such as RF

engineering. However, the frequency domain analysis of large-scale electromagnetic

problems is also challenging. One notable problem is a low frequency breakdown due
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to unbalanced matrix norm in the problem solving. A theoretically rigorous full-wave

method addressing this problem is proposed [20, 21]. Also, The system matrix for

frequency domain analysis is generally indefinite, which contains both negative and

positive eigenvalues. For both iterative and direct solution, the negative eigenvalue

contribution or non-positive definite modes are acting as a hindrance against the fast

solver.

As the feature size is scaled down, interconnect structure becomes a bottleneck

and a challenge of the design of VLSI circuits [22, 23]. Also, along with higher op-

erating frequencies, inductance and capacitance should be taken into consideration.

This trend has led to a series of transitions from R to RLC models [23]. With past

RLC-based interconnect extraction, significant mismatch between the experiment and

the simulation was observed at multi-GHz frequencies but full-wave electromagnetics

based modeling produces an accurate simulation [24]. The full-wave electromagnetics

based solution captures the exact behavior of the circuits [23]. Therefore, the pro-

posed methods in this dissertation can play an important role in circuit design and

analysis in addition to general electromagnetic analysis.

1.3 Contributions of This Dissertation

In this thesis, first, an efficient structure-aware method was developed to preserve

the layered permittivity and Manhattan-type geometry in an explicit time-domain

finite-element method (TDFEM) for analyzing very large scale integrated circuit

problems. Different from [6], the method is a direct solution that avoids the common

problems of an iterative solution. However, the method requires the computation of a

matrix exponential. Theoretically speaking, this matrix exponential can be computed

from the sum of a finite number of terms with guaranteed convergence irrespective

of the choice of time step. However, numerically, for the sum to converge fast with a

fewer number of terms, the time step used, though much larger than that in [5], is still
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smaller than that allowed by a traditional central-difference based explicit TDFEM

method. As a consequence, the overall computational efficiency is compromised.

The aforementioned problem is then solved by a faster structure-aware time-

domain finite-element algorithm described in Chapter 3. In this algorithm, the struc-

ture specialty of on-chip circuits such as Manhattan geometry and layered permittivity

is equally preserved. The large-scale matrix solution encountered in the 3-D circuit

analysis is turned into a simple scaling of the solution of a small 1-D matrix, which

can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the

time step size is not sacrificed, and the total number of time steps to be simulated is

also significantly reduced, thus achieving a total cost reduction in CPU time.

In addition to significantly reducing the total computational cost at each time

step, contributions are also made in this thesis to reduce the total number of time

steps required to finish one simulation. Specifically, a new method for making an

explicit time-domain finite-element method unconditionally stable is developed for

general electromagnetic analysis. In this method, for a given time step, no matter

how large it is, we upfront adapt the TDFEM numerical system to exclude the source

of instability. As a result, an explicit TDFEM simulation is made stable for an

arbitrarily large time step irrespective of the space step. This method has also been

successfully extended to analyze general lossy problems where both dielectrics and

conductors can be inhomogeneous and lossy.

Also, a new method for full-wave applications from low to very high frequencies

in a TDFEM is proposed based on matrix exponential. Combining the capability of

full-wave application of matrix exponential platform and instability modes exclusion

for making the norm of the system matrix smaller, we exclude the unstable modes

having large eigenvalues from the system matrix. Thus, we can achieve a signifi-

cantly increased time step with a small number of series expansion terms for matrix

exponential.

Our idea extends to frequency domain analysis. We deduct non-positive definite

contributions directly from the system matrix resulting from a frequency-domain
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finite-element based analysis. It has a spectral radius less than 1, and a controllable

condition number as well. Then the above deducted contributions added back to

synthesis the total solution with negligible cost. With such a new representation of

the finite-element operator, an iterative solution is ensured to converge in a small

number of iterations.
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2. STRUCTURE-AWARE TIME-DOMAIN

FINITE-ELEMENT SOLVER

2.1 Introduction

Many engineering problems have arbitrarily shaped structures and involve inhomo-

geneous materials. However, there also exist a great number of engineering problems

that have certain structure specialty. Not taking advantage of the structure specialty

would unnecessarily slow down the computation; however, preserving the structure

specialty and taking advantage of it in the numerical solution is not a straightforward

task either. For example, the very large-scale integrated (VLSI) circuit is an impor-

tant class of engineering problems. For this class of problems, the structure specialty

lies in two aspects: Manhattan-type geometry and layered permittivity. The former

can certainly be used to simplify geometrical modeling. For example, brick elements

become a natural choice for discretization. However, taking advantage of the layered

permittivity is not an easy task. If one employs a frequency-domain finite-element

method (FEM) or an implicit time-domain FEM to solve a VLSI circuit problem,

since a weighted sum of the mass, stiffness, and conductivity-related matrices need

to be solved, the layered structure in the permittivity cannot be preserved and taken

advantage of in the solution of the system matrix. If one employs an explicit time-

domain finite-element method, although only the weighted sum of the mass and the

conductivity-related matrix needs to be solved, since the layout structure is different

in different dielectric layers, the layered structure of the permittivity is also ruined

in the numerical solution. In this chapter, we present an efficient time-domain finite-

element algorithm that preserves the layered property of the permittivity and the

Manhattan-type structure in the direct solution of the underlying system matrix.

As a result, the linear proportionality of the matrix blocks can be fully exploited,
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and the matrix solution of a large-scale matrix becomes a simple scaling. The con-

tents of this chapter have been extracted and revised from the following publication:

Woochan Lee and Dan Jiao, ”Structure-aware time-domain finite-element method for

efficient simulation of VLSI circuits,” 2014 IEEE Antennas and Propagation Society

International Symposium (APSURSI). 2014.

2.2 Formulations

A time-domain FEM solution of the second-order vector-wave equation for an

integrated circuit problem results in the following linear system of equations

Tü(t) + Ru̇(t) + Su(t) = İ(t) (2.1)

in which T is a mass matrix, R is associated with conductivity, S is a stiffness

matrix, u is the field solution vector, and I is a vector of current sources. The single

dot above a letter denotes a first-order time derivative, while the double dots denote

a second-order time derivative. The T, R, and S are assembled from their elemental

contributions as the following:

Te = µ0ε 〈Ni,Nj〉 (2.2)

Re = µ0σ 〈Ni,Nj〉 (2.3)

Se = µr
−1 〈∇ ×Ni,∇×Nj〉 (2.4)

where ε is permittivity, σ is conductivity, µ0 is free-space permeability, µ0 is relative

permeability, N is the vector basis employed to represent electric field E, and 〈·, ·〉

denotes an inner product. The layered property of the permittivity manifests itself

in the mass matrix T. In view of this, in [6], the R matrix is disconnected from the

most advanced time step, i.e. moved to the right hand side to carry out an explicit

time marching of (2.1). However, the resultant time step for a stable simulation is

significantly reduced to the level of ε/σ ≈ 10−19 s. The fast marching method in [6]

mitigates the problem, but the performance is problem dependent. Here, we propose
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to first transform (2.1) to the following first-order system of equation without any

approximation R T

T 0

 d

dt

 u

u̇

+

 S 0

0 −T

 u

u̇

 =

 İ

0

 (2.5)

which can then be analytically converted to

d

dt

 u

u̇

+

 0 −I

T−1S −T−1R

 u

u̇

 =

 0

T−1İ

 . (2.6)

As can be seen, the resultant new system of equation only requires the solution

of T to obtain the solution of (2.1) instead of the weighted sum of the T and R

matrix. However, a stability analysis reveals that an explicit marching on (2.6) would

again result in a small time step. We thus propose to solve (2.6) by an analytical

formula [16]. Let (2.6) be denoted in short by

d

dt
ũ+ Mũ = b̃. (2.7)

Its solution is analytically known as

ũ(t) = e−Mt

[∫
eMtb̃ (t) dt+ C

]
, (2.8)

where C is an initial condition. Numerically, (2.8) can be evaluated as [16]

ũn+1 =
b̃n+1∆t

2
+ e−M∆t

[
b̃n∆t

2
+ ũn

]
, (2.9)

where the matrix-exponential term can be obtained from the sum of multiple

matrix-vector multiplication Mx, which can be efficiently computed as

M

 x1

x2

 =

 −x2

T−1(S · x1−R · x2)

 (2.10)

Theoretically, (2.8) allows for the use of any large time step. Numerically, we

choose a time step that only requires a small number of terms to obtain the matrix

exponential.
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2.3 Fast Structure-Aware T’s Solution Leveraging Manhattan-Type Ge-

ometry and Layered Permittivity

Since on-chip circuits are Manhattan-type structures, a brick-element based dis-

cretization is ideal for use without sacrificing accuracy in geometrical modeling. The

T matrix with a brick-element based discretization can be naturally decomposed into

Txx, Tyy, and Tzz diagonal blocks due to the orthogonality of x, y, and z directions,

as illustrated in Fig. 2.1(a).

Fig. 2.1. The structure of T matrix. (a) Overall T matrix structure.
(b) The structure of each diagonal block (layer) in Tξξ (ξ = x, y,
z), which is a block tridiagonal matrix with each tridiagonal block
linearly proportional to each other.

With proper ordering of unknowns, each of Txx, Tyy, and Tzz can further be

structured to a block diagonal matrix consisting of L1, L2, etc., shown in Fig. 2.1(a).

This is because the matrix blocks in different layers are fully decoupled, where the

layer here refers to the region where the x-, y-, and z-orientated unknowns reside. The
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x-unknown, y-unknown, and z-unknown layer is, respectively, normal to the x-, y-, and

z-direction. To see this more clearly, Fig. 2.2(a) illustrates a 3-D view of the multiple

layers of x-unknowns, with its cross-sectional view shown in Fig. 2.2(b), where each

red dot represents one x-unknown. The layers of y-unknowns can be visualized by

replacing the x, y, and z coordinates in Fig. 2.2 by y, z, and x respectively. Similarly,

the layers of z-unknowns can be visualized by replacing the x, y, and z in Fig. 2.2 by

z, x, and y respectively.

Fig. 2.2. Illustration of layers of x-unknowns. (y-unknowns and z-
unknowns can be visualized using the same figure by switching the
coordinates.) (a) 3-D view. (b) Cross-sectional view with red dots
denoting unknowns perpendicular to the cross section.

From Fig. 2.2(a), it can be seen clearly that the matrix formed for x-unknowns

in each layer is completely decoupled from that formed in another layer since the

unknowns are internal to the layer. As a result, the Txx in Fig. 2.1(a) is a block

diagonal matrix, with each block representing the Txx in one layer. The same is true

for Tyy and Tzz, as evident by treating the red arrows/dots in Fig. 2.2 as y-, and

z-unknowns respectively.

In each layer, if we order the unknowns line by line, i.e., order all the unknowns

along one vertical (or horizontal) line shown in Fig. 2.2(b), then move along the
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horizontal (or vertical) direction to the unknowns on the next line, we will obtain a

block tridiagonal matrix as shown in Fig. 2.1(b), which can be written as

A0 B0

B0 A0 + A1 B1

B1 A1 + A2 B2

B2 A2 + A3

. . .

. . .

AL−2 + AL−1 BL−1

BL−1 AL−1



(2.11)

where each Ai (i= 0, 1, 2, , L− 1 ) represents a sparse matrix formed on a single

line. Due to the layered permittivity and the Manhattan geometry leveraged by the

brick-element based discretization, the Ai for x-, y-, and z-unknowns respectively can

be written as

Ai,x =
ly,i
ly,0

A0,x, i = 0, 1, 2, ..., Ny

Ai,y ∼ lx,i
lx,0

A0,y, i = 0, 1, 2, ..., Nx

Ai,z ∼ lx,i
lx,0

A0,z, i = 0, 1, 2, ..., Nx

(2.12)

where Nx and Ny are, respectively, the number of unknowns along the x- and y-

direction; lξ,i(ξ = x,y,z) is the i -th segment length along ξ-direction; A0,ξ(ξ = x,y,z)

is the mass matrix T formed by unknowns along the first line in the cross section that

is perpendicular to the x-, y-, and z-direction respectively. For y-orientated unknowns,

the line direction for ordering unknowns is chosen as z instead of x, because in this

way each region in between two lines has the same permittivity configuration. We can

also choose x as the line direction. The only change is to incorporate a permittivity

ratio into Ai,y. Equation (2.12) gives Ai matrix components in each layer shown in

(2.11). For different layers, Ai,xand Ai,y are the same; but Ai,z needs to be scaled by

a ratio of permittivity since the permittivity in each z-layer (one dielectric stack) is

different. As for Bi , it is nothing but

Bi = 0.5Ai (2.13)
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for unknowns along any direction. As a result, all the Ai and Bi blocks in (2.11) are

linearly proportional to each other. Furthermore, each of the Ai and Bi is tridiagonal.

Hence, the solution of T becomes a simple scaling of the solution of a small tridiagonal

matrix as follows.

For the matrix shown in (2.11), we perform an analytical line reduction (the union

of the number of unknowns in each block Ai forms a line) to a single line based on

the proportionality of the blocks, from which we recover the solution anywhere else.

The reduced matrix can be expressed by the following

Ãi,ξ = Ai−1,ξ + Ai,ξ −Bi−1,ξÃ
−1
i−1,ξBi−1,ξ = sξ(i) ·A0,ξ, i = 1, 2, ..., L− 1

Ãi,ξ = Ai−1,ξ −Bi−1,ξÃ
−1
i−1,ξBi−1,ξ = sξ(i) ·A0,ξ, i = L

(2.14)

where L=Ny, Nx, and Nx respectively along the x-, y-, and z-direction. As can be

seen, no inverse and matrix-matrix products are needed for the computation of Ãi,ξ,

since the blocks involved are all linearly proportional to A0,ξ . We only need to

calculate the scaling coefficients sξ based on the edge length ratio as the following

sξ(i) =length ratio ξ[i− 1] + length ratio ξ[i]

− 0.25 · (length ratio ξ[i− 1])2 · [sξ(i− 1)]−1(i < L);

sξ(i) =length ratio ξ[i− 1]−

0.25 · (length ratio ξ[i− 1])2 · [sξ(i− 1)]−1(i = L)

(2.15)

where the length ratio length ratio ξ(ξ = x, y, z) , based on (2.12), is given by

length ratio x[i] ==
ly,i
ly,0

length ratio y[i] = length ratio z[i] =
lx,i
lx,0
.

(2.16)

The right hand side b is also analytically reduced to a single-line based right hand

side as the following

b̃i,ξ = bi,ξ −Bi−1,ξÃ
−1
i−1,ξ b̃i−1,ξ

= bi,ξ − 0.5× length ratio ξ[i− 1]× [sξ(i− 1)]−1 · b̃i−1,ξ

(2.17)

in which [i = 1, 2, ..., L, ξ = x, y, z . After the unknowns in the last line is solved from

the reduced single-line system

xi = Ã−1
i,ξ b̃i,ξ = [sξ(i)]

−1A−1
0,ξ b̃i,ξ, i = L. (2.18)
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The unknowns on other lines are obtained recursively from the following:

xi = Ã−1
i,ξ (b̃i,ξ −Bi,ξxi+1)

= [sξ(i)]
−1A−1

0,ξ b̃i,ξ − 0.5[sξ(i)]
−1length ratio ξ[i]xi+1,

(i = L− 1, ...2, 1, 0).

(2.19)

The aforementioned algorithm for recovering the ξ = x, y, z direction unknowns

is shown in Algorithm 2.1. In this algorithm, Step 1 is to generate the right hand

side vector shown in (2.17); Step 2 produces the result of A−1
0,ξ b̃i,ξ with i being the last

line index. The u ξ and v ξ are the pre-computed UV factors of tridiagonal matrix

A0,ξ, and the solution is stored in vector temp. Step 3 generates the solution of the

last line shown in (2.18). Finally, Step 4 is to compute the solutions on all the other

lines from (2.19).

The overall computation is the solution of one tridiagonal matrix, and all the

other steps are simple algebraic operations whose computational cost is negligible.

The tridiagonal matrix is the A0,ξ(ξ = x, y, z) matrix, whose size is 1-D. Its solution

can be accomplished by UV factorization for tridiagonal matrices in linear complexity

with negligible cost [25].

2.4 Numerical Results

We first compare the matrix solution cost of the proposed method with that of

the conventional brick-element based TDFEM that employs the multifrontal based

direct solver. The solution time for one right hand side is shown in Fig. 2.3(a), while

the factorization and one solution time is shown in Fig. 2.3(b). It is evident that

the proposed method costs much less in matrix solution time, and it also has linear

complexity.
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Table 2.1.
Algorithm for recovering unknowns

Algorithm 2.1: Solving ξ(ξ = x, y, z) -unknowns

1. for i = 1, 2, ..., L

1.1. b[i] = b[i]− 0.5 · length ratio ξ[i− 1] · (s ξ[i− 1])−1 · b[i− 1]

2. inv uv(u ξ, v ξ, b[L], temp)

3. x[L] = (s ξ[L])−1 · temp

4. for i = (L− 1), ...1, 0

4.1. inv uv(u ξ, v ξ,b[i], temp)

4.2. x[i] = (s ξ[i])−1 · temp

−0.5 · (s ξ[i])−1 · (length ratio ξ[i]) · x[i+ 1]
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Fig. 2.3. Comparison of the matrix solution cost.

We then validate the accuracy of the entire scheme by simulating a test-chip

interconnect structure. The length, width and height of the structure are 100 µm, 30

µm, and 3.192 µm respectively. The input source is a Gaussian derivative pulse with

τ = 3 × 10−12 s. Fig. 2.4 illustrates near/far end voltages of the proposed scheme

in comparison with reference data obtained from the traditional TDFEM solution.

Excellent agreement is observed. In the last example, we test the complexity of the

proposed method from a small number up to 25 million unknowns for simulating a

suite of interconnect structures. A clear linear complexity can be observed from Fig.

2.5.
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Fig. 2.4. Accuracy validation of the proposed algorithm.

Fig. 2.5. CPU time vs.N for simulating a suite of on-chip circuits.
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2.5 Conclusions

In this chapter, a fast structure-aware direct time-domain finite element solver is

developed. The structure specialty of on-chip circuits such as Manhattan geometry

and layered permittivity is preserved in the proposed numerical solution. As a result,

the computational challenge of solving a very large-scale matrix encountered in the

large-scale circuit analysis is removed since the matrix solution at each time step is

converted to a simple scaling regardless of the matrix size.



19

3. FASTER STRUCTURE-AWARE DIRECT TDFEM

SOLVER WITHOUT SACRIFICING TIME STEP SIZE

3.1 Introduction

In previous chapter, a structure-aware direct TDFEM solver was developed to

simulate on-chip circuits, which has successfully addressed the computational chal-

lenge of simulating a very large scale matrix resulting from the time-domain analysis

of a VLSI circuit. However, the efficiency of the solver is still limited by the small

time step size required for the fast convergence of a matrix exponential term involved

in the time marching. In this Chapter, we present an algorithm to overcome the small

time step problem, while preserving the advantage of the algorithm in previous chap-

ter in turning a 3-D large-scale system matrix solution to a simple scaling. In this

algorithm, the time step is not reduced as compared to that of an explicit TDFEM

scheme. Furthermore, the total number of time steps to be simulated is significantly

reduced. As a result, a total cost reduction in CPU time is achieved. Compar-

isons with existing TDFEM solutions have demonstrated the obvious advantages of

the proposed method in computational capacity and efficiency. The contents of this

chapter have been extracted and revised from the following publication: Woochan Lee

and Dan Jiao, ”Fast Structure-Aware Direct Time-Domain Finite-Element Solver for

the Analysis of Large-Scale On-Chip Circuits,” IEEE Transactions on Components,

Packaging and Manufacturing Technology, 2015.
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3.2 Proposed Method

3.2.1 General Idea

A time-domain FEM solution of the second-order vector-wave equation for an

integrated circuit problem results in the following linear system of equations

Tü(t) + Ru̇(t) + Su(t) = İ(t), (3.1)

in which T is a mass matrix, R is associated with conductivity, S is a stiffness matrix,

u is the field solution vector, and I is a vector of current sources. The single dot above

a letter denotes a first-order time derivative, while the double dots denote a second-

order time derivative. A central-difference based discretization of (3.1) in time results

in the following explicit updating equation(
T +

∆t

2
R

)
un+1 = 2Tun −Tun−1 −∆t2Sun +

∆t

2
Run−1 −∆t2İn, (3.2)

where the field solution at the most advanced time step, un+1, is obtained from the

field solutions at the previous two time steps, un and un−1, step by step. Obviously,

the updating of (3.2) in time requires a matrix solution of
(
T + ∆t

2
R
)
. This matrix

does not have a layered property since R is related to conductivity, and conductivity

is not layered. If one moves the R-based term from the left hand side of (3.2) to the

right hand side, i.e., let R be associated with the field value at the previous time step.

The resultant time step for a stable simulation is too small to be used for an efficient

simulation [2]. To fully exploit the layered property of the permittivity distribution,

we propose a fast algorithm that turns a matrix solution to a simple scaling without

sacrificing in the time step size as follows.

We begin by rewriting (3.2) as

Kun+1 = b̃, (3.3)

in which

K = I +
∆t

2
T−1R, (3.4)
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b̃ = 2un − un−1 − (∆t)2T−1

(
Sun − 1

2∆t
Run−1 + İn

)
. (3.5)

To take advantage of the layered property of materials, we propose to obtain the

inverse of K from the following series expansion

K−1 = (I + A)−1= I−A+A2 −A3+A4 −A5+..., (3.6)

where

A =
∆t

2
T−1R. (3.7)

However, the series (3.6) would not converge unless the following condition is

satisfied

‖A‖ < 1, (3.8)

i.e., the norm of A is less than 1. Unfortunately, this condition is generally not

satisfied in on-chip circuits, with a large time step ∆t used in a central-difference

based TDFEM scheme like (3.2). This is because the metal conductivity of on-

chip circuits is high, the typical value of which is in the order of 107 S/m, and the

‖T−1R‖ is proportional to σ/ε. With a high conductivity σ, one has to use a very

small time step ∆t to make ‖A‖ < 1, rendering the time-domain simulation of (3.1)

computationally expensive. To overcome the aforementioned difficulty, we propose to

reduce the conductivity σ and increase the permittivity ε such that ‖T−1R‖ is reduced

to such a value that (3.8) is satisfied. Apparently, this change is not feasible because

the material parameters are altered, and hence the original structure is completely

changed. However, based on the fact that the on-chip circuit response is dominated

by static modes in a fairly wide range of frequencies from zero to a few GHz [21],

and the space distribution of static fields does not change when the permittivity and

conductivity are scaled, we can modify permittivity and conductivity so that ∆t can

be enlarged to a desired value while (3.8) is still satisfied.

To explain, the solution of (3.1) is governed by the following quadratic eigenvalue

problem,

(λ2T + λR + S)V = 0, (3.9)
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in which λ is eigenvalue, and V is the eigenvector. The field solution of (3.1) at any

time is nothing but a linear superposition of the eigenvectors of (3.9). The eigenvectors

whose eigenvalues are zero are termed DC modes or static modes. They represent

one kind of fundamental space variations of the fields in the given structure, which

satisfies Maxwells equations as well as all the boundary conditions such as those at the

material interface and on the truncation boundary. As quantitatively analyzed in [21],

for relatively small electrical sizes (true for many on-chip structures), the solution of

(3.1) is dominated by DC modes, whereas the contributions from full-wave modes are

negligible. Since DC modes have eigenvalues λ = 0, they satisfy

SV = 0. (3.10)

In other words, the space distribution of the DC eigenmode V makes SV vanish,

which also agrees with physics since the curl of static E fields is zero. Since S is

only related to permeability, the field distributions of DC modes do not depend on

the specific values of permittivity and conductivity. Hence, we can utilize this fact

to change the material parameters of the original structure so that time step ∆t can

be significantly enlarged. Although a different problem is simulated, the DC mode of

the new problem is the same as that in the original problem.

It also should be noted here that letting R = 0, i.e., removing lossy part from

the entire structure cannot produce correct DC modes of the original problem that

has lossy conductors. This is because there are two kinds of DC modes [21] that

satisfy (3.10). One represents the capacitance (C) effect. This mode is the nullspace

eigenvector of the following generalized eigenvalue problem

SooV = λTooV, (3.11)

where Soo, Too respectively denotes the S, and T formed by unknowns outside conduc-

tors, with the conductor surface serving as the perfect conductor boundary condition

of the dielectric region. Clearly, by scaling permittivity, and hence T, the eigenvector
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of (3.11) stays the same. The other DC mode carries the resistance (R) effect. This

mode is the nullspace eigenvector of the other generalized eigenvalue problem,

SiiV = λRiiV, (3.12)

where Sii, and Rii respectively denotes the S, and R formed by unknowns inside and

on the surface of standalone conductors, without being superposed by the contribution

from unknowns outside conductors. Again, by scaling conductivity, R is scaled by a

single number, but the eigenvectors of (3.12) do not change. By setting R = 0, the

conductor is changed to a dielectric material, thus the DC modes of such a dielectric

problem are not governed by (3.11) and (3.12) any more. Therefore, even though a

lossless treatment has a lot of advantages in computation, to obtain a complete set

of DC modes for a general lossy problem, the R part cannot be set as zero. However,

for any conductor whose conduction current is larger than displacement current by

two orders of magnitude or above, (3.11) and (3.12) would hold true for accurately

representing DC modes. Therefore, we have a wide range of conductivity to choose

from.

Based on the above finding, we choose σ and ε in such a way so that ‖A‖ < 1

with a central-difference based time step, and hence the inverse of K can be obtained

based on (3.6). Since (3.6) and (3.5) only require the computation of T−1, we turn

the solution of K to the solution of T. Since T is only related to permittivity, the

layered property of permittivity can be fully exploited to further turn the solution of

T to a simple scaling, which is detailed in previous chapter 2.

3.2.2 Fast DC-mode Extraction from a New Problem

We perform the time marching of (3.3) but with modified T and R matrices

Tnew = atT,Rnew = arR (3.13)

, by scaling all the conductivity values down by ar, and increasing all the permittivity

values by at. By doing so, (3.3) can be performed fast with a large time step while
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(3.6) can still be converged in a few terms. Since (3.3) is based on a central-difference

time discretization, the time step needs to satisfy the stability condition for a central-

difference based time marching. Thus, we enlarge time step through (3.13) but we

do not exceed the time step allowed by the central-difference based time marching

for a stable simulation. It is worth mentioning that the time step of the central-

difference scheme in the proposed method is also larger than that in the original

problem because permittivity is increased. To explain, from the stability analysis

of a central-difference TDFEM scheme [26], it is known that the time step needs to

satisfy ∆t < 2/
√
ρ(T−1S) for a stable time marching, where ρ(T−1S)) denotes the

spectral radius of T−1S. Thus, with (3.13), the new time step can be enlarged by

a factor of
√
at. In addition, by modifying both conductivity and permittivity, the

number of terms used in (3.6) can be further reduced. The reasons are: 1) The ∆t

of A in (3.7) is proportional to
√
at and 2) ‖T−1R‖ of A is proportional to 1/at.

Hence, overall the norm of A in (3.7) is reduced by 1/
√
at, which results in a smaller

number of terms for the convergence of (3.6), and thereby more speedup.

We only need to perform the simulation of (3.3) for a small time window to reveal

the DC modes, like the preprocessing algorithm given in [19]. The detailed algorithm

is as the following. We start the solution of (3.3). Every p step, we sample the

solution of (3.3) and add it as one column vector in X, which is initialized to be zero.

The sample interval p is generally chosen as ∆taccuracy/∆tstability , where ∆taccuracy is

the time step required by sampling accuracy for the input spectrum, and ∆tstability is

the time step determined by stability condition. When adding a new solution vector

into X, we orthogonalize it with the column vectors that have already been stored in

X.

With X, whose column dimension is denoted by k, we transform the original large

quadratic eigenvalue problem of size N in (3.9) to a small eigenvalue problem of size

k

BrΦr = λArΦr (3.14)



25

where

Ar =

 Rr Tr

Tr 0

 ,Br =

 −Sr 0

0 Tr

 (3.15)

in which

Tr = XHTX,Rr = XHRX,Sr = XHSX. (3.16)

At early time, we observe eigenvalues of large magnitude from (3.14). The DC

modes appear later, which can be identified by its small values as compared to other

eigenvalues. Once DC modes are identified from (3.14), we can terminate the time

marching of (3.3). Let the DC modes extracted from (3.14) be Φ̃DC . The DC modes

of the original problem (3.9) can be obtained as

VDC = XN×kΦ̃DC,k×kDC
, (3.17)

where the subscripts denote the matrix dimensions, and kDC is the number of DC

modes. In (3.14), if we increase permittivity too much, the electrical size of the

structure will be greatly enlarged, which will enlarge the time window to be simulated

to identify DC modes. This is because for an electrically larger problem, more modes

are involved in the field solution. Especially, the first higher-order mode would appear

at a lower frequency. The frequency at which to observe the DC mode thus becomes

lower. As a result, in time domain, one has to wait for a longer time before the DC

mode becomes not negligible in the field solution. Therefore, the cannot be chosen

too large. In general, we choose it to be no greater than 10. Similarly, if we reduce

the conductivity too much, the metal would be changed to a dielectric. The physical

behavior of the DC modes, which is dominated by RC-effects, cannot be captured.

In view of this, we reduce the conductivity in such a way that the resultant material

is still a metal. In general, the conductivity is chosen to be no less than 1000 S/m.
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3.2.3 Synthesis of Solution of the Original Problem

Since the original problem and the new modified problem share the same DC

modes in common, the field solution of the original problem (3.1) can be accurately

expanded into the DC modes extracted from the modified problem as the following

u(t) = Vy(t), (3.18)

with V = VDC as shown in (3.17). We then substitute (3.18) into (3.1) and multiply

the resultant by VH on both sides, obtaining

Trÿ(t) + Rrẏ(t) + Sry(t) = Ĩ(t) (3.19)

where Tr = VHTV, Rr = VHRV, Sr = VHSV and Ĩ(t) = VH İ(t). The dimension

of (3.19) is of O(1), which is much smaller than the original size of (3.1). In addition,

the time step used for simulating (3.19) can be solely determined by accuracy, thereby

much larger than that of the conventional explicit TDFEM. This is because the modes

that cannot be stably simulated by such a large time step are not included in V, as

analyzed in [4]. As a result of small size and large time step, (3.19) can be simulated

with negligible time.

It is also worth mentioning that the input pulse used for the DC mode extraction

can be different from the real pulse used in the final simulation. For example, a

higher-frequency input pulse can be employed in the step of DC mode extraction so

that the CPU time can be further reduced.

3.3 Numerical Results

3.3.1 Two On-Chip Interconnect Structures

We first simulate an on-chip interconnect structure to validate the proposed al-

gorithms. The structure is illustrated in Fig. 3.1. The length, width, and height of

the structure are 120 µm, 30 µm, and 3.192 µm respectively. The top and bottom

planes are truncated by a PEC (perfect electric conductor) boundary condition, while



27

the front and back planes are terminated by ABC (absorbing boundary condition),

and the other two boundaries are left open. The permittivity and conductivity dis-

tribution of the structure is shown in Fig. 3(b). The input current sources have a

Gaussian derivative pulse of I(t) = 2(t− t0) exp(−(t− t0)2/τ 2), with τ = 3× 10−8 s,

and t0 = 4τ . They are launched from the bottom metal layer to the inner conductor,

and from the upper metal layer to the inner conductor as shown in Fig. 3.1(a) by the

red arrows.

Fig. 3.1. Illustration of an on-chip interconnect. (a) 3-D view of the
structure. (b) y-z plane view of the structure.

The modified problem for fast DC mode extraction has a conductivity reduced by

1× 104, and permittivity increased by 10, which results in a time step of 3.3× 1015 s

used in the time-marching for DC mode extraction. Due to the increase of permittivity

by 10, the resultant time step is
√

10 larger than that required by the original problem

for stability. In the stage of DC mode extraction, 10 solutions are sampled with

a sampling interval of p = 303,030 before the DC mode is accurately identified.

The number of terms used in the series expansion (3.6) is 9. After the DC mode

extraction from the modified problem, the transient solution of the original problem

is synthesized. The voltage obtained at the far end of the structure is plotted in

Fig. 3.2. Excellent agreement is observed between the proposed method and the

conventional TDFEM scheme. With the same computer (Intel XEON E5410 2.33
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GHz processor), the speedup of the proposed method over the conventional TDFEM

is shown to be 4.824, which includes the CPU time at every step from the time-domain

simulation of a modified problem for fast DC mode extraction to the synthesis of the

solution of the original problem. In contrast, with the method in [13], although the

challenge of matrix solution is also overcome, the total CPU time is still longer than

that of a conventional TDFEM due to a reduced time step.

Fig. 3.2. Simulation of an on-chip interconnect.

The structure simulated in the above is dominated by capacitance effects at rela-

tively low frequencies. To examine the accuracy of the proposed method in handling

R-dominant circuits, we simulate the same structure but let the far end shorted to

the bottom plane by a metal contact as shown in Fig. 3.3. Different from the set-

ting in the previous structure, the input current source is launched from the bottom

metal layer to the inner conductor only, and it has a Gaussian derivative pulse with

τ = 3× 10−9 s. The modified problem has a conductivity reduced by 1× 10−4. The

time step used in the time-marching for DC mode extraction is 1× 10−15 s, which is
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Fig. 3.3. Side view of a shorted on-chip interconnect.

the same as that permitted by a traditional TDFEM based simulation of the original

problem. The sampling interval p is 100,000 and 7 terms are used in (3.6). The CPU

time of the conventional TDFEM is 3.729×104 s, while the proposed method is 1.835

times faster. Same as that in the previous example, we can also modify permittivity to

enlarge time step as well as reduce the number of terms required for the convergence

of (3.6). The modified problem has a conductivity reduced by 1× 10−4 and permit-

tivity increased by 10. Again, due to the increase of permittivity by 10, the resultant

time step is enlarged to 3.3 × 10−15 s, and hence p = 30,303. In total, 10 solutions

are sampled before the DC mode is accurately identified. The number of terms is 5

for the convergence of series expansion, which is smaller than that in the previous

setting where permittivity is not changed. The speedup of the proposed method over

the conventional TDFEM is hence increased to 8.095. In Fig. 3.4, we plot the near

end voltage of the proposed method in comparison with the reference data obtained

from the traditional TDFEM solution. Excellent agreement is observed.

3.3.2 On-Chip Power Grid

An on-chip power grid structure as shown in Fig. 3.5 is simulated. The red lines

denote power rails; while blue ones are ground rails. There is a vertical via connecting
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Fig. 3.4. Accuracy validation of the proposed algorithm in simulating
a far-end shorted on-chip interconnect.

two metal wires wherever the two wires of same polarity cross each other in the top

view. The size of the structure is 7.0 µm 7.0 µm 7.6 µm. The top and bottom planes

are set to be PEC and the other 4 sides are left open. The number of unknowns in

this example is 1,101. The permittivity is layered as shown in Fig. 3.5(c), and the

conductivity of the metal is 5.0× 107 S/m.
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(a)

(b) (c)

Fig. 3.5. Illustration of the structure of an on-chip power grid. (a)
3-D view. (b) x-z plane view. (c) y-z plane view.

Since the proposed method allows for the use of a different pulse in the DC-mode

extraction stage as compared to the real one required in the simulation stage, we

employ a higher frequency input than the original input to achieve an even better

speedup. The original Gaussian derivative pulse is I(t) = 2(t−t0) exp(−(t− t0)2/τ 2),

where tau = 3 × 10−9 s and t0 = 4τ . The pulse we use in the stage of DC-mode

extraction has τ = 3× 10−11 s, and hence its maximum frequency is 100 times larger

than before. The time step used in the time-marching for DC mode extraction is

5 × 10−16 s. The solutions are sampled every 2,000 steps, i.e. p = 2,000. In total,

15 solutions are sampled before the DC mode is accurately identified. The modified
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problem has a conductivity reduced by 1 × 10−4. The permittivity is kept the same

as before. The number of terms is 5 for the convergence of series expansion shown in

(3.6). The current source is launched between one power rail and one ground rail in

the lower metal layer, and the voltage between the two rails is sampled and plotted

in Fig. 3.6. Again, an excellent agreement with the reference TDFEM solution

is observed. With the same computer, the CPU time of the conventional central-

difference TDFEM is 8.950 × 4 s, whereas the CPU time of the proposed method

including all steps is 3.555× 102 s, thus a speedup of 251.7.

Fig. 3.6. Accuracy validation of the proposed algorithm in power grid simulation.

3.3.3 Rectangular Spiral Inductor

We then simulate an on-chip spiral inductor to validate the proposed algorithms.

The structure along with its permittivity configuration is illustrated in Fig. 3.7. The

entire computational domain occupies a region of 1200 µm by 1000 µm by 500 µm.
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The top and bottom planes are truncated by a PEC boundary condition, while all the

other boundaries are left open. The number of unknowns in this example is 14,286.

Fig. 3.7. Illustration of a rectangular spiral inductor structure.

The permittivity is layered and the conductivity of the conducting wire is 5.0×107

S/m. The input current source has a Gaussian derivative pulse of I(t) = 2(t −

t0) exp(−(t− t0)2/τ 2), with τ = 3 × 10−8 s and t0 = 4τ . It is launched from the

bottom PEC plane to the left port of the inductor as shown in Fig. 3.7 by the red

arrow. The time step used in the time-marching for DC mode extraction is 5× 10−14

s. The solutions are sampled every 20,000 steps, i.e. p = 20,000, since the time step

required by accuracy is 1 × 10−9 s. In total, 6 solutions are sampled before the DC

mode is accurately identified. The modified problem has a conductivity reduced by

1 × 10−5. The number of terms is 7 for the convergence of series expansion shown

in (3.6). The CPU time of the conventional TDFEM is 1.734 × 105 s, whereas the

proposed method is 8.874 times faster. Furthermore, we increase the permittivity by

10. As a result, the time step is enlarged by a factor of
√

10, yielding a time step of
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1.5 × 10−13 s used in the time-marching for DC mode extraction. The solutions are

sampled every 6,666 steps. In total 6 solutions are sampled before the DC mode is

accurately identified. The speedup of the proposed method is 20.736. The voltage

simulated at the right port of the inductor is plotted in Fig. 3.8. Excellent agreement

is observed between the proposed method and the conventional central-difference

based TDFEM scheme.

Fig. 3.8. Accuracy validation of the proposed algorithm for the sim-
ulation of a rectangular spiral inductor with ∆t = 1.5× 10−13.

3.3.4 Suite of Large-Scale On-Chip Power Grids

In the last example, we simulate a suite of large-scale on-chip power grids as shown

in Fig. 3.9. The first one has a unit block size of 7.2µm × 7.2µm × 7.6µm, which is

then extended 10 times along both x and y directions. The top and bottom planes

are set to be PEC and the other 4 sides are left open. The number of unknowns in
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this example is 118,715. The permittivity is layered as shown in Fig. 3.9(c), and the

conductivity of the metal is 5.0× 107 S/m.

(a)

(b) (c)

Fig. 3.9. Illustration of a larger on-chip power grid structure. (a) x-y
plane view. (b) x-z plane view. (c) y-z plane view.

In the DC-mode extraction step, we employ a higher frequency input than the orig-

inal input. The original Gaussian derivative pulse is I(t) = 2(t−t0) exp(−(t− t0)2/τ 2),

where tau = 3 × 109 s and t0 = 4τ . The pulse we use in the step of DC-mode ex-

traction has τ = 3× 10−11 s, and hence a maximum frequency 100 times larger than

before. The time step used in the time-marching for DC mode extraction is 5×10−16

s. The solutions are sampled every 2,000 steps. In total, 11 solutions are sampled
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before the DC mode is accurately identified. The modified problem has a conductiv-

ity reduced by 1× 10−4. The permittivity is kept the same as before. The number of

terms is 5 for the convergence of series expansion shown in (3.6).The current source

is launched between one power rail and one ground rail in the upper metal layer, and

the voltage between the two rails is sampled and plotted in Fig. 3.10 in comparison

with the reference TDFEM solution. With the same computer, the CPU time of the

conventional central-difference TDFEM is 4.896×106 s, whereas the CPU time of the

proposed method including all steps is 3.248× 104 s, thus a speedup of 150.7.

Fig. 3.10. Accuracy validation of the proposed algorithm in simulating
a larger on-chip power grid.

We then increase the structure simulated in the above progressively along both

x and y directions. The chip area is increased from 72 × 72, 144 × 44, 288 × 288,

360× 360, 576× 360, 565× 576, 720× 720, 1440× 720, to 1440× 1440 µm2, resulting

in 118,715, 471,425, 1,878,845, 2,933,555, 4,691,255, 7,501,685, 11,717,105, 23,426,105

and 46,834,205 unknowns, respectively. Using this suite of power grid structures, we
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compare the performance of the matrix solution in the proposed method with that of

the conventional TDFEM which employs a multifrontal based direct solver [27]. For

large cases, conventional UV factorization of tridiagonal matrices is not satisfactory

because U, V coefficients grow exponentially with the number of unknowns. Thus,

the UV factorization is only used for cases with a small number of unknowns, and

the ratio-based DS factorization [28] is employed to solve the tridiagonal matrix with

linear complexity in negligible time for large unknown cases.

The solution time for one right hand side is shown in Fig. 3.11(a), while the sum

of the factorization and one solution time is shown in Fig. 3.11(b). As can be seen

from Fig. 3.11, the solution time of the proposed solver is much less than that of the

conventional solver. Moreover, the solution time has a clear linear scaling with the

number of unknowns N. In contrast, the conventional solver has a complexity much

higher than linear, and the number of unknowns the conventional solver can handle

on the same computer is much fewer than that solved by the proposed method. For

example, the proposed solver has no difficulty in simulating the last case in the suite of

power grid structures, which has over 46 million unknowns, on a single core, whereas

the conventional solver cannot go beyond a few million unknowns on the same CPU

core.
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(a)

(b)

Fig. 3.11. CPU time vs. N for simulating a suite of on-chip power
grids. (a) One solution time; (b) Factorization and one solution time.
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3.4 Conclusions

In this chapter, a fast structure-aware direct time-domain finite element solver is

developed for the analysis and design of very large-scale on-chip circuits. The struc-

ture specialty of on-chip circuits such as Manhattan geometry and layered permittiv-

ity is preserved in the proposed numerical solution, and the resulting disadvantage

in time step is overcome. As a result, the computational challenge of solving a very

large-scale matrix encountered in the large-scale circuit analysis is removed since the

matrix solution at each time step is converted to a simple scaling regardless of the

matrix size, and the total number of time steps to be simulated is also significantly

reduced. The proposed method can be used for not only fast transient analysis, but

also IR-drop analysis, and frequency-domain analysis of the on-chip circuits in a fairly

wide range of frequencies.
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4. A NEW EXPLICIT AND UNCONDITIONALLY

STABLE TIME-DOMAIN FINITE-ELEMENT METHOD

4.1 Introduction

The time step of a traditional explicit time-domain method is restricted by the

smallest space step in order to maintain the stability of a time-domain simulation.

When structures being simulated involve fine features relative to working wavelengths

such as on-chip VLSI circuits, multi-scaled engineering systems that encompass a few

orders of magnitude difference in geometrical scales, etc., the explicit time-domain

simulation can become highly inefficient. To overcome the dependence of the time step

on space step, recently, an explicit and unconditionally stable TDFEM is developed

[19], which has successfully removed the constraint of the space step on the time step.

This method involves a pre-processing step which identifies the stable eigenmodes

for the given time step. The time step used in this step is still the same as that of

a conventional TDFEM. Although the time interval simulated in the pre-processing

step is much shorter than the total time interval to be simulated, the performance of

the pre-processing step is still limited by the conventional time step.

In this chapter, we propose a new method for achieving unconditional stability

in an explicit time-domain finite-element method. In this new method, we directly

exclude the unstable modes from the numerical system. We then perform an explicit

time marching on the updated numerical system that is free of unstable modes. As a

result, we bypass the computational overhead of the pre-processing step, and achieve

unconditional stability regardless of space step. The contents of this chapter have

been extracted and revised from the following publication: Woochan Lee and Dan

Jiao, ”A new explicit and unconditionally stable time-domain finite-element method,”
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2015 IEEE Antennas and Propagation Society International Symposium (APSURSI),

2015.

4.2 Proposed Method

A time-domain FEM solution of the second-order vector-wave equation results in

the following linear system of equations

Tū(t) + Su(t) = İ(t) (4.1)

in which T is the mass matrix, S is the stiffness matrix, u is the field solution vector,

and I is the current source vector. The first- and second-order time derivative are,

respectively, represented by a single, and double dots above a letter. The solution of

(4.1) is governed by the following generalized eigenvalue problem

SV = TVΛ, (4.2)

in which Λ denotes a diagonal matrix whose entries are eigenvalues λ, and V is the

eigenvector matrix. Since T is symmetric positive definite and S is symmetric, the

eigenvectors of (4.2) are T− and S−orthogonal as the following

VTTV = I, VTSV = Λ (4.3)

where I denotes an identity matrix. As shown in [19], the root cause of the instability

of (4.1) for any given time step is the eigenmodes of (4.2) that have the following

eigenvalues:

λ > 4/∆t2. (4.4)

These eigenmodes are termed unstable modes (Vh) for the given time step δt. They

clearly have the largest eigenvalues of (4.2). More importantly, it is shown in [19]

that when the time step is chosen based on accuracy, the unstable modes are also

those modes that are not needed for accuracy.

Based on the aforementioned understanding, before we perform an explicit time-

domain simulation, if we upfront exclude the unstable eigenmodes from the underlying
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numerical system, we can ensure the stability of the simulation for the given time step,

and meanwhile maintain the solution accuracy. Along this line of thought, we propose

to update the original system of equations (4.1) to a new system of equations as the

following

Tü(t) + S
(
I−VhV

T
hT
)

= İ(t), (4.5)

where S is changed to S
(
I−VhV

T
hT
)
. The above is the same as changing the original

numerical system consisting of both unstable and stable modes to a system of stable

modes only. To see this point clearly, first, we realize that the solution of (4.5) is now

governed by the eigen-solution of a new matrix T−1S
(
I−VhV

T
hT
)

instead of the

original T−1S shown in (4.2). Since T satisfies (4.3), its inverse can be written as

T−1 = VVT = VsV
T
s + VhV

T
h , (4.6)

where V = [Vs Vh] , and Vs has eigenmodes that do not satisfy (4.4), and hence

called stable eigenmodes. Using (4.6), we have

T−1S
(
I−VhV

T
hT
)

= T−1S
(
T−1 −VhV

T
h

)
T = T−1S

(
VsV

T
s

)
T. (4.7)

From (4.2), we have SVs = TVsΛs. Substituting it into the above, we obtain

T−1S
(
I−VhV

T
hT
)

=
(
VsΛsV

T
s

)
T. (4.8)

Denote
(
VsΛsV

T
s

)
T by A. It is clear that AVs = VsΛs. Hence, (Λs Vs) is the

eigenvalue solution of T−1S
(
I−VhV

T
hT
)

. Since the rank of (4.8) is the number of

stable eigenmodes ks, while the matrix size of (4.8) is N, the T−1S
(
I−VhV

T
hT
)

is a

low-rank matrix with (N−ks) zero eigenvalues in addition to the k eigenvalues of the

stable eigenmodes. As a result, the explicit marching of the updated system (4.5) is

absolutely stable for the given time step, since all the eigenvalues do not satisfy (4.4).

With a central-difference based time-marching scheme, (4.5) can be discretized as

un+1 =
{

2−∆t2T−1S
[
I−VhV

T
hT
]}
un − un−1 + ∆t2T−1İn, (4.9)

where the S
(
I−VhV

T
hT
)
un term is efficiently evaluated by a sequence of matrix-

vector multiplications from right to left.
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Although (4.9) is absolutely stable for the given time step regardless of its size,

to ensure accuracy, we still need to add one important step as the following

un+1 = un+1 −VhV
T
hTun+1. (4.10)

This is because the solution of (4.5) and hence (4.9) is the superposition of the stable

eigenmodes Vs, and the nullspace eigenvectors of (4.8), whose eigenvalues are zero.

The nullspace of (4.8) is different from the nullspace of the original system (4.2).

Although these modes can be simulated stably in (4.9), they make the solution of

(4.9) wrong. This is because the solution of the original problem (4.1) only resides

in the space of Vs, but with (4.9), u = Vsys + Va0ya0, where Va0 denotes the addi-

tional nullspace of (4.8). The treatment of (4.10) will hence remove these additional

nullspace modes since Va0 must be in the Vh space if it is not in Vs.

As for the determination of Vh, since these modes have the largest eigenvalues

of (4.2), they can be found efficiently using the k -step implicitly restarted Arnoldi

algorithm, the cost of which is just k2O(N) for finding k largest eigenpair.

4.3 Numerical Results

We first demonstrate the unconditional stability of the proposed method with a

parallel-plate example that has an analytical solution. The length, width, and height

of the structure are 900 µm, 6 µm, and 1 µm respectively. The input source is a

Gaussian derivative pulse with τ = 0.2 s. Despite the low-frequency spectrum, due

to the small space step, conventional TDFEM has to use a time step as small as

∆t = 2.5 × 10−16 for a stable simulation. In contrast, the proposed method permits

the use of any large time step. The time step, hence, can be solely chosen based

on accuracy, thus being as large as 0.01 s in this example. As shown in Fig. 4.1,

the voltages simulated by the proposed method show an excellent agreement with

analytical solutions. The number of removed unstable modes is 644 in this example. It

is worth mentioning that since the solution at this low frequency is only dominated by
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the nullspace of (4.2), we analytically vanish the S-matrix related term since SV = 0

for nullspace modes, while numerically it is not due to finite machine precision [29].

Fig. 4.1. Voltages of a parallel plate with different time steps com-
pared with analytical solution.

The second example is a mm-level parallel plate waveguide filled by inhomogeneous

materials of relative permittivity of 8.1 and 4. The length, width and height of

the structure are 120 mm, 30 mm, and 3.192 mm respectively and the number of

unknowns is 668. The z directional discretization is 1 mm, 1.316 mm, 1.317 mm, 2

mm and 3.192 mm. From 1.316 mm to 1.317 mm, the relative permittivity is 8, and

4.1 elsewhere. The input source is a Gaussian derivative pulse with τ = 8 × 10−10 s

and t0 = 3τ . Conventional TDFEM requires ∆t = 1×10−13 s for a stable simulation.

In contrast, the proposed method uses a time step ∆t = 1×10−11 s solely determined

by accuracy. The number of removed unstable modes is 291. Excellent agreement

is observed between the proposed method and the reference result of a traditional
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TDFEM as can be seen in Fig. 4.2. The total CPU time of current scheme is 10.95

s whereas conventional central difference based TDFEM CPU time is 33.08 s.

Fig. 4.2. Voltages of a mm-level parallel plate.

The last example is a lossless on-chip bus structure shown in Fig. 4.3. The width

of each bus is 3 µm and so is the gap between buses. The two current sources with

opposite direction are injected with Gaussian derivative pulses having τ = 3× 10−11

s and t0 = 4τ . Conventional TDFEM requires a small time step of ∆t = 1 × 10−15

s. In contrast, the proposed method is able to use ∆t = 1 × 10−12 s determined

by accuracy. The number of removed unstable modes is 840. The speedup of the

proposed method as compared to [19] is approximately 3. In Fig. 4.4 and Fig. 4.5,

excellent accuracy of the proposed method is observed.
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Fig. 4.3. The bus structure configuration (unit: µm).

Fig. 4.4. Accuracy validation of on-chip bus structure.
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Fig. 4.5. Total solution error plot of bus structure.

4.4 Conclusions

In this chapter, we demonstrate a new explicit method for achieving uncondi-

tional stability by directly excluding unstable modes in an explicit time-domain finite-

element method. The removal of the unstable modes from the numerical system does

not require a preprocessing stage that may consume large computational resources.

We then perform an unstable-modes-free explicit time marching over the updated

system matrix. As a result, the explicit time marching is made stable for the given

time step no matter how large it is. Numerical experiments have demonstrated the

accuracy, efficiency, and unconditional stability of the proposed method.
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5. EXPLICIT AND UNCONDITIONALLY STABLE

TDFEM FOR ANALYZING GENERAL LOSSY

PROBLEMS

5.1 Introduction

In this chapter, we extend the method in previous chapter to analyze general lossy

problems where both dielectrics and conductors can be lossy and inhomogeneous.

This class of problems is important for on-chip circuit analysis because lossy conduc-

tors are dominant in on-chip circuits. One solution to the problem is to separate the

system of equations formulated inside conductors from those outside of conductors,

and handle stability separately. However, this approach cannot yield a correct set of

unstable eigenmodes for the given time step, due to the decoupled consideration of

solutions in the dielectric region and those inside lossy conductors. In this Chapter,

we present a coupled approach that finds the unstable eigenmodes for the given time

step, making the time step of the proposed method solely determined by accuracy

regardless of space step. The contents of this chapter have been extracted and re-

vised from the following publication: Woochan Lee and Dan Jiao, ”An Alternative

Explicit and Unconditionally Stable Time-Domain Finite-Element Method for Elec-

tromagnetic Analysis,” IEEE Transactions on Antennas and Propagation, submitted.

5.2 Proposed Method

First, we start with following linear system of equations which is also described

in (3.1)

Tü(t) + Ru̇(t) + Su(t) = İ(t). (5.1)
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Here, we propose to first transform (1) to the following first-order double-dimension

system of equation without any approximation R T

T 0

 d

dt

 u

u̇

+

 S 0

0 −T

 u

u̇

 =

 İ

0

 (5.2)

which can then be converted to

d
dt
ũ+ Mũ = b̃

M =A−1B, A =

 R T

T 0

 =

 S 0

0 −T

 , (5.3)

where M is the system matrix. The solution of , whose upper part is the original field

solution of (5.1), is governed by the eigenmodes of the following generalized eigenvalue

problem:

MV = VΛ (5.4)

in which Λ denotes a diagonal matrix whose entries are eigenvalues λ , and V is the

eigenvector matrix where V = [VsVh]. The stable modes (Vs) that can be stably

simulated by the time step ∆t are determined by the following criterion (proof in

Appendix A):

2real(λ)/(real(λ)2 + imag(λ)2) > ∆t. (5.5)

The rest of the eigenmodes that do not satisfy the above are denoted by Vh, and

termed unstable modes. They have the largest eigenvalues of (5.4).

Since Vh have large eigenvalues, they correspond to high-frequency modes. Since

at high frequencies, skin depth of a conductor is almost zero, the fields penetrating

into conductors are negligible. Therefore, the Vh modes found for a lossy problem

have a good correlation with Vh modes of the lossless sub-system formulated outside

conductors, i.e., with conductors acting like perfect conductors. As a result, we can

deduce the following property:

VTAV = [VsVh]
T [A] [VsVh] =

 At 0

0 Dh

 , (5.6)
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where

At = Vs
TAVs,Dh = Vh

TAVh,Vs
TAVh = Vh

TAVs = 0, (5.7)

and Dh is diagonally dominant. Also, this property can be mathematically proven as

in [30].

Based on the aforementioned understanding, before we run an explicit time-

domain simulation, if we are able to exclude the unstable eigenmodes from the under-

lying numerical system, we can ensure the stability of the simulation for the given time

step as well as solution accuracy. Thus, we update the original system of equations

(5.3) to a new system of equations as the following

d

dt
ũ+ M(I−VhD

−1
h VT

hA)ũ = b̃, (5.8)

where M is changed to new system matrix M(I−VhD
−1
h VT

hA). The above modifi-

cation is the same as changing the original system involving both unstable and stable

modes to a system of stable modes only. The solution of (5.8) is now governed by

the eigensolution of a new system matrix M(I−VhD
−1
h VT

hA) instead of the original

M. Next, we prove the eigenvalues and eigenmodes of the updated matrix are the

same as the stable eigenvalues and eigenmodes of the original M, with an additional

nullspace of size of Vh.

From (5.6), we obtain

V−1 =

 A−1
t 0

0 D−1
h

VTA. (5.9)

Hence, the original M can be rewritten as

M = VΛV−1 = [VsVh] [Λ]

 A−1
t 0

0 D−1
h

 [VsVh]
TA

= [VsVh]

 Λs 0

0 Λh

 A−1
t 0

0 D−1
h

 [VsVh]
TA

= VsΛsA
−1
t VT

s A + VhΛhD
−1
h VT

hA

(5.10)
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Therefore, the modified system matrix is nothing but

M(I−VhD
−1
h VT

hA) = VsΛsA
−1
t VT

s A. (5.11)

Denote VsΛsA
−1
t VT

s A by K, then it is clear that KVs = VsΛs and hence (Λs,Vs)

is the eigenpair of M(I−VhD
−1
h VT

hA). Therefore, the stable eigenvalues and eigen-

modes of the original M are the eigenvalues and eigenmodes of the updated matrix

M(I −VhD
−1
h VT

hA). Furthermore, since the rank of (5.11) is the number of stable

eigenmodes ks, while the matrix size of (5.11) is 2N, the is a low-rank matrix with

(2N − ks) additional zero eigenvalues. Thus, the marching of the updated system

(5.8) is absolutely stable for the given time step.

With a forward-difference based 1st-derivative double dimension time-marching

scheme, (5.8) can be discretized as

ũn+1 = ũn −∆tM(I−VhD
−1
h VT

hA)ũn + ∆tb̃, (5.12)

where the M(I −VhD
−1
h VT

hA) term is efficiently evaluated by a sequence of sparse

matrix-vector multiplications from right to left as well as the structure-aware T’s

solver.

Although (5.12) is absolutely stable for the given time step, to ensure accuracy,

we still need to add one more step as the following to remove the contribution of the

additional nullspace of M(I−VhD
−1
h VT

hA), which is not present in the original M,

ũn+1 = ũn+1 −VhD
−1
h VT

hAũn+1. (5.13)

To explain, the nullspace of (5.8) is different from the nullspace of the original

system (5.3). Although these modes can be stably simulated, they make the solution

of (5.12) not accurate. This is because the solution of the original problem (5.3) only

resides in the space of Vs, but with (5.8), ũ = Vsys + Va0ya0, where Va0 denotes the

additional unwanted nullspace of (5.8). Hence, the treatment of (5.13) will remove

these additional nullspace modes since Va0 must be in the Vh space if it is not in Vs.
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5.2.1 Explicit Time Marching Scheme based on Central Difference

For a general lossy problem discretized into a second-order system shown in (5.1),

we can directly simulate it with a central-difference-based explicit time marching.

The scheme described above transforms (5.1) to a first-order system, and simulates

the resultant with a forward-difference-based explicit marching. The two schemes,

i.e., central-difference based vs. forward difference based scheme, have a different

requirement on time step for stability. When there is a conductor loss, the time

step required by a forward-difference explicit marching can be much smaller than

that of the central-difference-based explicit marching. Although in the proposed new

method, we remove the unstable modes from the numerical system according to time

step, and hence allowing for the forward-difference scheme to use any large time step.

However, from an accuracy point of view, for simulating the same set of eigenmodes

kept in the numerical system, the time step required by a forward-difference explicit

marching for stably simulating these modes is smaller than that of a central-difference-

based explicit marching. In this subsection, we analyze this problem and present a

central-difference-based explicit marching scheme for simulating the lossy problems

with unconditional stability.

Using a central-difference based explicit marching of (5.1), the time step required

for stably simulating an eigenmode of λi eigenvalue satisfies the following condition

[31], as shown in below

∆t ≤ 2√
|λi1λi2|

. (5.14)

However, using a forward-difference scheme, as shown in (5.5), the time step needs

to satisfy

∆t ≤ 2|Re(λi)|
|λi|2

. (5.15)

For an eigenvalue pair having identical negative eigenvalues, (5.15) is the same as

(5.14). For complex-conjugate eigenvalues, from (3.9), we can find

λi =
−bi ±

√
bi

2 − 4ci
2

, (5.16)
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where bi = V H
i RVi/V

H
i TVi, ci = V H

i SVi/V
H
i TVi and both are greater than zero.

Since for complex-conjugate eigenvalues, bi
2 < 4ci, and |λi| =

√
ci, we have |Re(λi)| =

bi/2 < |λi|. Hence, the time step of (5.15) is smaller than that required in (5.14),

because ∆t ≤ 2|Re(λi)|
|λi|2

< 2
|λi| .

Given an input spectrum, once space discretization is done, the eigenmodes that

are important to the field solution in the input spectrum are known. The time step

required by accuracy is hence determined by the time step that can accurately sim-

ulate these physically important eigenmodes. Based on the aforementioned analysis,

for simulating the same complex-conjugate eigenmode in a lossy problem, the time

step required by a forward-difference scheme can be smaller than that of a central-

difference based time marching scheme. Hence, it is necessary to devise a central-

difference based explicit method for simulating lossy problems in the proposed work.

We propose to perform a leap-frog-based time marching of the first-order system of

(5.3). This will yield the same central-difference-based time marching of the original

second-order system (5.1), and hence resulting in a time step of (5.14) for stability,

which is larger than that allowed by the forward-difference-based time marching for

simulating the same eigenmode. To explain, we can write (5.3) in full as

d

dt

 u

w

−
 0 I

−T−1S −T−1R

 u

w

 =

 0

b̃2

 , (5.17)

where w = u̇, which is also an unknown to be solved together with the field solution

u, and b̃2 is the lower half of vector b̃. Using a leap-frog based time marching, the

above double-sized first-order system can be marched on in time as follows

un − un−1 = ∆twn−
1
2

wn+ 1
2 − wn− 1

2 + ∆tT−1Sun + ∆tT−1Rwn+1
2 +wn− 1

2

2
= ∆tb̃n2

, (5.18)

which can be rearranged to solve u and w at the most advanced time step as:

un = un−1 + ∆twn−
1
2 (5.19)

(I + 0.5∆tT−1R)wn+ 1
2 = (I− 0.5∆tT−1R)wn−

1
2 −∆tT−1Sun + ∆tb̃n2 . (5.20)
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The above is equivalent to a central-difference based discretization of (5.1). This

can be readily proved as follows. Writing (5.20) for the (n+ 1)-th step, we obtain

un+1 = un + ∆twn+ 1
2 . (5.21)

Multiplying both sides by (I + 0.5∆tT−1R), we have

(I + 0.5∆tT−1R)un+1 = (I + 0.5∆tT−1R)un + ∆t(I + 0.5∆tT−1R)wn+ 1
2 . (5.22)

Multiplying (5.19) by (I− 0.5∆tT−1R) on both sides, we obtain

(I− 0.5∆tT−1R)un = (I− 0.5∆tT−1R)un−1 + ∆t(I− 0.5∆tT−1R)wn−
1
2 . (5.23)

Subtracting (5.23) from (5.22), and substituting (5.20), we have

(I+0.5∆tT−1R)un+1 = 2un−(I−0.5∆tT−1R)un−1−∆t2T−1Sun+∆t2T−1İn, (5.24)

which is the same as a central-difference-based discretization of (5.1). Hence, by

performing a time marching of the first-order system (5.3) in a leap-frog-based way

shown in (5.19-5.20), the time step required for stably simulating an eigenmode is the

same as that of a central-difference based time marching of the second-order system.

With the unstable modes Vh satisfying

√
|λi1λi2| >

2

∆t
, i ∈ (1, N) (5.25)

found from (5.4), to make the above leap-frog scheme shown in (5.19-5.20) stable

for any time step, what we only need to do is as follows. After (5.19), we form

vector ũ =
[
unwn−

1
2

]T
, and deduct the unstable modes from it by updating it to be

ũ = (I − VhD
−1
h VT

hA)ũ. The un is then taken as the upper half of ũ to be free of

unstable modes, and used in (5.20) to compute wn+ 1
2 . After the computation of (5.20)

for obtaining wn+ 1
2 , we form ũ =

[
unwn+ 1

2

]T
, update it to be ũ = (I−VhD

−1
h VT

hA)ũ

so that the unstable modes are removed. The un is then updated to be the upper
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half of ũ, while the wn+ 1
2 is updated to be the lower half of ũ. We then continue to

next time step. The entire procedure is summarized as the following.

(1)un = un−1 + ∆twn−
1
2

(2)ũ =
[
unwn−

1
2

]T
ũ = (I−VhD

−1
h VT

hA)ũ

un = ũ(1 : N)

(3)(I + 0.5∆tT−1R)wn+ 1
2 = (I− 0.5∆tT−1R)wn−

1
2 −∆tT−1Sun + ∆tb̃n2

(4)ũ =
[
unwn+ 1

2

]T
ũ = (I−VhD

−1
h VT

hA)ũ

un = ũ(1 : N);wn+ 1
2 = ũ(N + 1 : 2N)

(5.26)

where steps (1) and (3) are the same as the original (5.19) and (5.20), but steps

(2) and (4) are added to ensure the unstable modes are removed from the numerical

system at each time step.

5.2.2 Scaling

During the study of this work, we found that when T, S, and R are very different in

their norm, the solution of the standard eigenvalue problem (5.4), which is equivalent

to the original quadratic eigenvalue problem (3.9), may have a poor accuracy in

numerical computation. This is especially true when the problems being simulated

involve conductor loss and/or multiple scales. We hence adopt an optimal scaling

technique introduced in [32, 33] to achieve good accuracy in the solution of (5.4) for

finding the unstable modes. Based on this optimal scaling technique, the matrix T,

S, and R in (5.3) are scaled to

T̃ = α2βT; S̃ = βS; R̃ = αβR, (5.27)
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respectively, where

α =
√
γ0/γ2

β = 2/(γ0 + γ1

√
γ0/γ2)

γ2 = ||T||2, γ1 = ||R||2, γ0 = ||S||2

(5.28)

Correspondingly, the first-order double-sized system (5.2) is updated as the fol-

lowing:

1

α

 R̃ T̃

T̃ 0

 d

dt

 u

α−1u̇

+

 S̃ 0

0 −T̃

 u

α−1u̇

 =

 βİ

0

 , (5.29)

which can be compactly written as

d

dt
ũ′ + M̃ũ′ = b̃′, (5.30)

where

ũ′ =

 u

α−1u̇

 , M̃ = Ã−1B̃,

Ã = 1
α

 R̃ T̃

T̃ 0

 , B̃ =

 S̃ 0

0 −T̃

 . (5.31)

In this paper, all the lossy examples are simulated with the above scaled numerical

system (5.30) instead of the original unscaled system (5.3). As can be seen from in

(5.31), the upper half of the solution vector obtained from (5.30) is the same as that

of (5.3). The unstable modes are hence found from the scaled system matrix M̃, the

accuracy of which is much improved.

5.3 Numerical Results

5.3.1 Shorted On-Chip Stripline

A shorted on-chip stripline as shown in Fig. 3.3 is simulated to validate the

proposed method. The input current source is launched from the bottom metal layer

to the inner conductor, and it has a Gaussian derivative pulse with τ = 3 × 10−9

s. The time step used in the proposed method is 1 × 10−10 s solely determined by
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accuracy while the time step of the central difference based conventional TDFEM is

1 × 10−15 s. Based on the required time step of 1 × 10−10 s, 1,400 over total 1,948

eigenmodes are identified as unstable modes. The CPU time of the conventional

TDFEM is 3.729× 104 s, while the time including eigenvalue analysis which identify

unstable modes and marching time of the proposed method is 2.927×102, thus speed

up is 127.3. In comparison, the speedup of algorithm shown in chapter 3 is 1.835

with the same setting. In Fig. 5.1, the near end voltage of the proposed method in

comparison with the reference data obtained from the traditional TDFEM solution

is shown. Excellent agreement is observed.

Fig. 5.1. Accuracy validation of the proposed algorithm in simulating
a shorted on-chip stripline.

5.3.2 On-Chip Power Grid

The second example is an on-chip power grid structure as shown in Fig. 3.5.

The size of the structure is 7.0µm × 7.0µm × 7.6µm. The top and bottom planes
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are set to be PEC and the other 4 sides are left open. The number of unknowns

in this example is 1,101. The permittivity is layered as shown in Fig. 3.5(c), and

the conductivity of the metal is 5.0 × 107 S/m. The time step used in the proposed

method is 1×10−10 s solely determined by accuracy. Based on the required time step

of 1 × 10−10 s, 1,628 over total 2,202 eigenmodes are identified as unstable modes.

The CPU time of the conventional TDFEM is 8.950× 104 s, while the time including

eigenvalue analysis which identify unstable modes and marching time of the proposed

method is 2.324 × 102, thus speed up is 385.1. In comparison, the speedup of the

algorithm shown in chapter 3 is 251.7 with the same setting. In Fig. 5.2, the near

end voltage of the proposed method in comparison with the reference data obtained

from the traditional TDFEM solution is shown. Excellent agreement is observed.

Fig. 5.2. Accuracy validation of the proposed algorithm in simulating
on-chip power grid.
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5.3.3 Rectangular Spiral Inductor

We then simulate an on-chip spiral inductor to validate the proposed algorithms.

The structure along with its permittivity configuration is illustrated in Fig. 3.7. The

entire computational domain occupies a region of 1200 µm by 1000 µm by 500 µm.

The top and bottom planes are truncated by a PEC boundary condition, while all the

other boundaries are left open. The number of unknowns in this example is 14,286.

The input current source has a Gaussian derivative pulse with τ = 3 × 10−8 s and

t0 = 4τ It is launched from the bottom PEC plane to the left port of the inductor as

shown in Fig. 3.7 by the red arrow. The time step used in the conventional central

difference based TDFEM is 5× 10−14 s while the time step of current time marching

scheme is 1× 10−9 solely determined by accuracy. Based on the required time step of

1× 10−9 s, 18,860 over total 28,572 eigenmodes are identified as unstable modes. In

Fig. 5.3, the far-end voltage of the proposed method in comparison with the reference

data obtained from the traditional TDFEM solution is shown. Excellent agreement

is observed again.

5.3.4 Lossy Multiscale Structure

In the previous two lossy examples, the time step from the forward-difference-

based explicit marching is the same as that of the central-difference-based one because

the stable eigenmodes kept in the numerical system turn out to be nullspace modes

only. In the last lossy example, we examine the validity of the proposed central-

difference-based explicit time marching scheme described in Section 5.2.1 in a problem

where the time step resulting from a forward-difference explicit marching and that of

a central-difference marching is very different.

The structure is illustrated in Fig. 5.4, where there are two thin wires of width

1 nm each, and the total width of the structure is the sum of 4.5 cm, 3.5 mm, and

2 nm. This problem setup resembles a multiscale integrated structure where board-

level planes co-exist with on-chip interconnects. In such a problem, regular structures
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Fig. 5.3. Accuracy validation of the proposed algorithm for the sim-
ulation of a rectangular spiral inductor.

(compared to wavelength) co-exist with fine features, which is different from previous

two on-chip examples where the entire structure is electrically small. For such a

multiscale problem, unstable modes only occupy a portion of the entire number of

modes; and the unstable mode number is proportional to the mesh elements used to

discretize the fine features. There are three layers of 0.5 mm thickness each, having

the permittivities shown in Fig. 5.4. The number of unknowns in this example is

3,628, and hence 7256 modes of (5.4). The input current sources are launched from

the bottom and the top metal plate to the inner lossy conductor of conductivity

5.8×107 S/m. The sources have a Gaussian derivative pulse with τ = 3×10−11 s and

t0 = 4τ . The time step used in the proposed method is 1× 10−12 s solely determined

by accuracy while the time step of the central-difference based conventional TDFEM

is 3 × 10−15 s. Based on the required time step of 1 × 10−12 s, 130 eigenmodes

are identified as unstable modes and removed from the numerical system based on
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(5.26). In this example, if a forward-difference explicit marching is used, the time step

would have to be as small as 3× 10−26 s for simulating the same set of stable modes

kept in the numerical system. This is because many of them are complex-conjugate

eigenvalues, which render the time step resulting from (5.15) much smaller than that

of (5.14).

Fig. 5.4. Geometry of a lossy multiscale structure.

The marching time of the conventional TDFEM is 1.9923 × 102 s. In contrast,

the marching time of the proposed leap-frog central-difference algorithm is 14.1493

s, and the CPU time spent on finding the unstable modes is only 2.1216 s. Again,

very good agreement between the proposed method and the conventional TDFEM is

observed as can be seen from the waveforms plotted in Fig. 5.5.

The structure is then further enlarged to result in a larger number of unknowns

of 180,028, and hence 360,056 total number of modes of (5.4). To be specific, the left

segment of 4.5 cm width of Fig. 5.4 is duplicated to the left to enlarge the width of

the structure as well as the number of unknowns. For this large case, the conventional

TDFEM takes more than 16 hours to finish the entire explicit time marching, whereas

the proposed explicit method only takes 125 minutes for explicit time marching, with

less than 7 minutes spent on finding the unstable modes. Out of the 360,056 total

number of modes, only 130 modes are unstable. This number is also the same as

that obtained from the original structure. This is because the fine features remain

the same when we enlarge the structure.
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Fig. 5.5. Accuracy validation of lossy multiscale structure.

5.4 Conclusions

In this chapter, an alternative explicit and unconditionally stable TDFEM is de-

veloped for analyzing general lossy problems. In this method, the source of instability

is upfront deducted from the system matrix before performing explicit time marching.

As a result, the explicit time marching is made absolutely stable for the given time

step no matter how large it is. The accuracy of the proposed method is also theo-

retically guaranteed when the time step is chosen based on accuracy. The proposed

method is convenient for implementation since it only requires a minor modification

of the traditional explicit TDFEM method to eradicate the source of instability. The

additional computation involved in the proposed method as compared with a tra-

ditional TDFEM is mainly the cost of finding unstable modes. Since the unstable

modes have the largest eigenvalues of the sparse TDFEM system matrix, they can

be found efficiently in O(k2N) complexity, where k is the number of unstable modes.
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In addition, these modes are frequency, time, and right hand side independent. Once

found, they can be reused for different simulations.

The proposed new method complements the recently developed explicit and un-

conditionally stable TDFEM in [19]. When the fine features only occupy a small

portion of the entire structure, the proposed method can be more advantageous to

use as compared to [19], since the number of unstable modes is small whereas the

number of stable modes is many. The two methods can also be combined for use to

accentuate the advantages of both methods.
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6. STRUCTURE-AWARE TIME-DOMAIN

FINITE-ELEMENT SOLVER FOR GENERAL

FULL-WAVE ANALYSIS

6.1 Introduction

The merit of the mass matrix solver preserving Manhattan-type structure and

layered permittivity is manifested in chapters 2 and 3. Also, the solver with series

expansion of matrix exponential described in Chapter 2 does not limit the frequency

range, i.e., it supports full-wave applications from low to very high frequencies. The-

oretically, the matrix exponential of this solver is able to support an arbitrarily large

time step, however, numerically, the time step used should be small to make the series

expansion converge within a reasonable number of expansion terms. The root cause of

this performance limitation is the norm or spectral radius of matrix M itself in e−M∆t.

If the norm of M is huge, we have to choose a small time step and a large number of

expansion terms to make the series expansion of matrix exponential to converge with

good accuracy. In realistic on-chip simulations, the norm of the matrix exponential

term without any treatment is large because the norm of T−1S plays a great role

to determine the norm of M, the typical value of which is at the level of 1 × 1033

for on-chip circuits. To alleviate this huge norm problem, the scaling method can be

adopted, but the whole norm of new M is still restricted by the norm of T−1R, thus

our final choice of time step is around 1×1017 level which is smaller than the conven-

tional time step. The algorithm of chapter 3 does not suffer from the aforementioned

problem, however, its application is limited to the frequency range where DC-modes

play a dominant role in the field solution. The aforementioned problem associated

with chapters 2 and 3 can be addressed based on the ideas of chapters 4 and 5. To

clarify, the deduction of unstable higher modes will lead to a significant reduction of
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the norm of the system matrix M because the norm of M is determined by the large

eigenvalues and these are already excluded by the unstable-mode removal procedure

described in chapters 4 and 5. Therefore, the algorithm in chapters 4 and 5 combined

with the matrix exponential expansion framework in chapter 2 can achieve a signifi-

cant enlargement of time step, while retaining the capability of chapter 2 algorithm in

handling general full-wave applications that are not restricted to DC-mode dominant

cases.

In this chapter, we propose a new method for full-wave applications with uncondi-

tional stability and structure-preserving capability using matrix exponential. In this

new method, we directly deduct the largest eigenvalue modes from the system ma-

trix inside the matrix exponential component. As a result, we observe much reduced

number of terms for convergence of matrix exponential, hence achieving an efficient

structure-aware algorithm for general full-wave analysis of on-chip circuits.

6.2 Proposed Method

Again, a time-domain FEM solution of the second-order vector-wave equation for

an integrated circuit problem results in the following linear system of equations as

seen in (6.1)

Tü(t) + Ru̇(t) + Su(t) = İ(t). (6.1)

Here, we propose to first transform (6.1) to the following first-order system of

equations with scaling as seen in (5.29)

1

α

 R̃ T̃

T̃ 0

 d

dt

 u

α−1u̇

+

 S̃ 0

0 −T̃

 u

α−1u̇

 =

 βİ

0

 , (6.2)

which can then be analytically converted to

d

dt

 u

α−1u̇

+ α

 0 −I

T̃−1S̃ −T̃−1R̃

 u

α−1u̇

 = α

 0

T̃−1βİ

 . (6.3)

The equation (6.3) is governed by generalized eigenvalue problem as seen in (6.4)

BnewV =AnewVD (6.4)
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where Anew = 1
α

 R̃ T̃

T̃ 0

, Bnew =

 S̃ 0

0 −T̃

 and each element of the diagonal

of matrix D is the eigenvalue (λ).

Also, the solution of the 1st order equation (6.3) can be numerically evaluated

as [16],

ũn+1 =
b̃n+1
init ∆t

2
+ e−M̃∆t

[
b̃ninit∆t

2
+ ũn

]
(6.5)

where M̃ = A−1
newBnew = α

 0 −I

T̃−1S̃ −T̃−1R̃

, ũ =

 u

α−1u̇

, and b̃init = α

 0

T̃−1βİ

.

Using a forward-difference scheme, as shown in (5.5), the time step needs to satisfy

(5.15) and the eigenmodes (Vh ) that are not necessary for the stable and accurate

simulation under give time step ∆t are determined by the following criterion:

2real(λ)/(real(λ)2 + imag(λ)2) ≤ ∆t. (6.6)

Then, we deduct above eigenmodes (Vh) from the M̃ during the evaluation of

the matrix exponential-related term e−M̃∆t
[
b̃ninit∆t

2
+ ũn

]
in (6.5). After removing

Vh, because they are associated with largest eigenvalues, the resultant matrix M̃new

has a significantly reduced norm, thus the series expansion of e−M̃∆t
[
b̃ninit∆t

2
+ ũn

]
can be evaluated much faster than that of M̃. To be specific, the evaluation of

e−M̃∆tv=v − M̃∆tv + 1
2!

(M̃∆t)2v − 1
3!

(M̃∆t)3v + ... where v =
[
b̃ninit∆t

2
+ ũn

]
can be

accelerated by the substitution of M̃ to M̃new which is

M̃new = M̃(I−VhD
−1
h VT

hAnew), (6.7)

where Dh = VT
hAnewVh.

However, the calculation of (6.7) is not explicitly used in the implementation since

the matrix of (6.7) is dense. Rather than using (6.7), the alternative implementation

is used to exploit sparse matrix-vector multiplication as well as a structure-aware

T-solver described in chapter 2. To start, we rewrite (6.5) as below

ũn+1 =
A−1
newb̃

n+1

new∆t

2
+ e−A

−1B∆t

[
A−1
newb̃

n

new∆t

2
+ ũn

]
, (6.8)
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where b̃new =

 βİ

0

. Then, the evaluation of A−1b̃new and the operation which

is A−1
newBnew multiplied by a certain vector x, i.e., A−1

newBnewx turns into simple

algebraic operations which exploit the structure-aware T-solver as seen in (6.9) and

(6.10) which are

A−1
newb̃new = α

 0 T̃−1

T̃−1 −T̃−1R̃T̃−1

 βİ

0

 = α

 0

T̃−1βİ

 , (6.9)

A−1
newBnewx = α

 0 T̃−1

T̃−1 −T̃−1R̃T̃−1

 S̃ 0

0 −T̃

 x1

x2


= α

 −x2

T̃−1(S̃x1 + R̃x2)

 .

(6.10)

The matrix-exponential term can be obtained from the recursive sum of matrix-

vector multiplication having a form of A−1
newBnew multiplied by x, which exploits

structure-aware T-solver. For example, the third expansion term of e−A
−1
newBnew∆tx=x−

(A−1
newBnew∆t)x+ 1

2!
(A−1

newBnew∆t)2x− ... can be efficiently obtained by multiplying

the second term with A−1
newBnew and scalar coefficients as seen in (6.10).

The overall procedure including efficient evaluation of series expansion of matrix

exponential term is summarized in Algorithm 6.1. Step 1 is to prepare the vector

which is later multiplied by matrix exponential component. It is noted that structure-

aware T-solver is used throughout the steps. Step 2 sets the first expansion term.

Step 3 completes the series expansion of matrix exponential multiplied by the vector

in (6.8). Finally, Step 4 is to produce the most time advanced output u2.

Higher-order mode (Vh) removal approach described in chapter 5 may be sensitive

to the choice of higher-order modes if eigenvalue distribution is quite populated. In

this case, the accuracy can be affected when Vh modes are deducted from the system

matrix even though the entire simulation is stable. In contrast, matrix exponential

framework is analytical in time stepping and it is less sensitive to the selection of

Vh modes, i.e., suppress unremoved higher-order modes effect, because the purpose



68

Table 6.1.
Algorithm for evaluating matrix exponential components

Algorithm 6.1: Overall procedure with scaling strategy

1. temp elem = 0.5α∆t

 0

T̃−1(βİ1)

+ u1

2. temp sum = temp elem

3. for i = 1, 2, ..., terms

3.1. temp elem = temp elem−Vh(D
−1
h (VT

h (Anew temp elem)))

3.2. b temp = S̃ temp elem(1 : N) + R̃ temp elem(N + 1 : 2N)

3.3. temp elem = −α∆t

 −temp elem(N + 1 : 2N)

T̃−1 b temp


3.4. temp sum = temp sum+ 1

i!
temp elem

4. u2 = 0.5α∆t

 0

T̃−1(βİ2)

+ temp sum
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of deducting of Vh is not to remove individual Vh but to reduce an overall norm of

the system matrix. Also, theoretically there is no limit of the choice of time step dt

in the matrix exponential based time marching for stability. It is worth mentioning

that the second cleaning process as seen in (5.13) for the newly introduced nullspace

is not necessary when the nullspace effect is negligible like full-wave applications.

6.3 Numerical Results

6.3.1 Stripline

We first simulate a stripline structure to validate the proposed algorithms. The

cross sectional view of the structure with its permittivity and conductivity configura-

tion is illustrated in Fig. 6.1. The length, width, and height of the structure are 120

µm, 30 µm, and 1.596 µm respectively. The top and bottom planes are PEC, while

the front and back faces are truncated by ABC, and the other two faces are PMC

(left open).

Fig. 6.1. The cross-sectional view of the stripline structure.
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The number of unknowns in this example is 974. The input current source has a

Gaussian derivative pulse of I(t) = 2(t− t0) exp(−(t− t0)2/τ 2) , with τ = 3× 10−14

s (thus, maximum frequency approximately 34 THz) and t0 = 4τ . Based on the

required time step of 1 × 10−15 s for the accuracy, 1070 over total 1948 eigenmodes

are identified as higher-order modes.

For the comparison, with higher-order modes removal under matrix exponen-

tial framwork, the estimated norm of the new system matrix (M̃new = M̃(I −

VhD
−1
h VT

hAnew) ) is 1.120 while the system matrix from original scheme (M̃) shows

the norm of 103.2. Thus, approximately 1/100 of the norm value is achieved and

it will lead to significant enlargement of time step and reduction of terms for series

expansion of matrix exponential components. For example, previous original matrix

exponential scheme requires the time step size of 1 × 10−17 s, 24000 iterations and

40 terms for the series expansion. In contrast, current scheme demonstrates the time

step of 1×10−15 s solely determined by accuracy, 240 iteration for the simulation and

3 terms for the series expansion. In addition, the time step used in the conventional

central difference based TDFEM is 5.25× 10−17 s while the time step of current time

marching scheme supports 1× 10−15 s.

In Fig. 6.2, the near-end voltage of the current method in comparison with the

reference result obtained from the traditional TDFEM solution is shown. We can

observe excellent agreement again.

6.3.2 A Suite of Striplines

We then simulate a suite of stripline structure to validate the proposed algorithms.

The dimensions of the basic block structure are 11 mm × 7 mm × 8.0000001 mm

(inside conductor height 0.1nm). Also, the number of mesh elements along each x-,

y-, z-direction is 11, 7 and 9, respectively. Domains are uniformly discretized by 1

mm except for inner conductor height 0.1 nm. A suite of 2 basic blocks of stripline

structure is illustrated in Fig. 6.3 and the cross sectional view of the structure with
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Fig. 6.2. Accuracy validation of the current algorithm for a stripline case.

its permittivity and conductivity distribution is shown in Fig. 6.4. The top and

bottom planes are PEC, while the front and back faces are ABC, and the other

two faces are PMC. The input current source has a Gaussian derivative pulse of

I(t) = 2(t−t0) exp(−(t− t0)2/τ 2), with τ = 3×10−11 s (thus, approximately 34 GHz)

and t0 = 4τ . The current algorithm supports time step of 1× 10−12 s determined by

accuracy, 4 terms for the series expansion of matrix exponential related component

and 20,000 steps are used to complete the simulation. In contrast, the time step used

in the conventional central difference based TDFEM is 2.25× 10−15 s.

First, for a basic block of stripline case (the left part only in Fig. 6.3), the

number of unknowns of the basic block is 2240. Based on the time step of 1× 10−12

s determined by accuracy, 364 over total 4480 eigenmodes are chosen as higher-order

modes. The CPU time required for identifying the higher-order modes is 32.2999 s,

and the CPU time for time marching with structure-aware T-solver is 3.7123 × 102



72

Fig. 6.3. A suite of two stripline structures.

Fig. 6.4. Cross-sectional view of the basic stripline block.

s. In contrast, for the traditional method, 65.1199 s is required for LU factorization,

and the marching time is 4.9888× 102 s.

Second, for a suite of stripline cases (parallel expansion of basic blocks, Fig. 6.3),

the number of unknowns of the basic block is 4284. Based on the time step of

1× 10−12s determined by the accuracy, 706 over total 8568 eigenmodes are chosen as

higher-order modes. A time of 2.4533 × 102 s is required for identifying the higher-

order modes, and the time for time marching is 9.6944 × 102 s. In contrast, for the

traditional method, 9.5691× 102 s is required for LU factorization, and the marching

time is 1.6297× 103 s.
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In Fig. 6.5, the near-end/far end voltage of the current method in comparison with

the reference result obtained from the conventional central-difference based scheme is

shown. Excellent agreement between two methods is observed.

Fig. 6.5. Accuracy validation of the proposed method.

6.3.3 Lossy Multiscale Structure

The lossy multiscale structure illustrated in Fig. 5.4 again simulated to validate

the proposed algorithm in chapter 6. The length and height of the structure is 2.5 mm,

and 1.5 mm, respectively. The width of the structure is a sum of 4.5 cm (dielectric

region), 3.5 mm, and 2 nm where the width of the inside conductor is 1 nm. The

number of element along x-, y- and z-direction is 5, 9 and 3, respectively. Domains

are uniformly discretized by 0.5 mm except inner conductor regions. The input is a

Gaussian derivative current source of I(t) = 2(t − t0) exp(−(t− t0)2/τ 2) , with τ =

3×10−11 s and and t0 = 4τ . The time step is chosen as 5×10−13 s determined by the
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accuracy condition and the consideration of series expansion terms for the convergence

of the matrix exponential components. The required number of the convergence of

the matrix exponential components in this case is 4. In contrast, the time step of the

central-difference based TDFEM solution is 3× 10−15 s.

Fig. 6.6 shows the accuracy of the proposed method in this example. Again, an

excellent agreement is observed.

Fig. 6.6. Accuracy validation of the proposed algorithm with the
structure of Fig. 5.4.

Then, the dielectric region is attached along y-direction to further enlarge the

unknown size of the problems. The structure result in a larger number of unknowns

up to 360,028. The simulation results and associated parameters with these extensions

are listed in table 6.2.

Fig 6.7 shows the time comparison between higher-order mode identification time

of the proposed algorithm and LU factorization time of conventional central-difference

based TDFEM which is performed before the time marching. Fig 6.8 shows the
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marching time comparison and Fig. 6.9 shows the total elapsed time that is the sum

of pre-marching time and marching time.

Fig. 6.7. Pre-marching time comparison.

Fig. 6.8. Marching time comparison.
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Fig. 6.9. Total elapsed time comparison.

6.4 Conclusions

In this chapter, a faster structure-aware TDFEM solver is developed which retains

its original merit of being valid for general full-wave applications with support of ma-

trix exponential framework. It is efficient in the sense that it turns a matrix solution

into a simple scaling, and meanwhile allows for the use of a large time step solely

determined by accuracy. The proof of the concept of this work has been completed

by the successful simulation of several examples.
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7. SYMMETRIC POSITIVE-DEFINITE

REPRESENTATION OF FREQUENCY-DOMAIN

FINITE-ELEMENT SYSTEM MATRIX FOR EFFICIENT

ELECTROMAGNETIC ANALYSIS

7.1 Introduction

Frequency-domain electromagnetic analysis has been of critical importance to in-

terpret and understand the characteristics of the electromagnetic structures. In a

frequency domain method, the analysis requires simulating multiple or many fre-

quency points to complete the analysis, thus faster and more efficient simulation

algorithms are required. However, some properties of the system matrix prevent us

from making the analysis efficient. The system matrix resulting from a frequency-

domain finite-element method (FEM) based analysis is indefinite, containing both

negative and positive eigenvalues. Its condition number is also generally large since

the magnitude of the smallest eigenvalue can be close to zero. These properties have

made an efficient solution of the FEM system of equations difficult in both iterative

and direct solutions. Although various preconditioning techniques have been devel-

oped to change the spectrum of the FEM system matrix, the indefinite nature of the

FEM operator has not been changed.

In this work, we propose to build a symmetric positive definite representation

of the FEM operator by deducting the non-positive definite component from the

system matrix. This is similar to removing the unstable mode contribution in a time

domain method like we propose in previous chapters. However, different from the

treatment in time domain, the non-positive definite contribution in frequency-domain

representation should be kept for completing the frequency domain solution. To do

so, in the second step, with negligible cost, we add the contribution from the non-
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positive definite component back to obtain the true solution. The positive-definite

representation after removing non-positive definite modes has a spectral radius less

than 1. Its condition number can also be controlled to any desired value. Also, we

transform the original eigenvalue system to obtain a reduced number of non-positive

definite modes set. As a result, the resultant iterative solution can converge in a small

number of iterations [34]. Such a representation also benefits the development of fast

direct solvers. In addition, the computational overhead of the proposed method is

shown to be modest. Numerical experiments associated with several different types

of frequency domain examples have demonstrated the accuracy and efficiency of the

proposed methods.

In this chapter, we present the proposed frequency-domain methods for analyzing

lossless problems. We also provide examples to validate the accuracy and efficiency

of the proposed methods. The contents of this chapter have been extracted and

revised from the following publication: Woochan Lee and Dan Jiao, ”Symmetric

Positive-Definite Representation of Frequency-Domain Finite-Element System Ma-

trix for Efficient Electromagnetic Analysis,” 2016 IEEE Antennas and Propagation

Society International Symposium (APSURSI), 2016.

7.2 Proposed Method

Consider a general lossless problem, a frequency-domain FEM-based analysis of a

general problem results in the following linear system of the equations

(−ω2T + S)u = b, (7.1)

where ω is an angular frequency, u is the field solution vector, T is a mass matrix, and

S is a stiffness matrix. The T and S are assembled from their elemental contributions

as the following:

Te = ε 〈Ni,Nj〉

Se = µ−1 〈∇ ×Ni,∇×Nj〉
, (7.2)
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where µ is permeability, N is the vector basis function employed to expand electric

field E in each element, and 〈·, ·〉 denotes an inner product. The solution of (7.1) is

governed by the eigenvalue problem of

Sx = λTx, (7.3)

whose eigenvalues λ are real and non-negative. The smallest one is λmin = 0, and the

largest one, λmax , is proportional to (π2c2)/smin
2, where smin denotes the smallest

space step, and c is the speed of light. In a general full-wave analysis, the space

step is chosen as no greater than half of the wavelength. This results in a relative

relationship between ω2 and the eigenvalues of (7.3) as λmin < ω2 < λmax. Therefore,

some eigenvalues are less than ω2, while the rest are greater than ω2. Since the

eigenvalues of (7.1) are (λ − ω2), (7.1) is indefinite. The condition number of (7.1)

can also be large since the smallest magnitude of (λ− ω2) can be close to 0.

More important, for example, if we take the minimum space step as 1/10 of

the wavelength, the largest eigenvalue λmax is proportional to (π2c2)/smin
2 ∼ 25ω2,

thus the region between ω2 ↔ (λmax ∼ 25ω2) has more eigenvalues than those of

the region λmin ↔ ω2. Thus, if the truncation of the region is possible to alleviate

indefinite problem, many number of truncated mode is still the problem because the

computational overhead for removal them is still high. As a result, the method for

reducing the number of truncated mode is required.

In this section, we present a transformed system that is positive definite, an itera-

tive method for eigenanalysis, and the solution for analyzing general lossless problems.

7.2.1 Transformed System

To build a positive-definite representation of (7.1), we first rewrite (7.1) as

(−ω2T + S + ω2
0T− ω2

0T)u = b (7.4)

where ω2
o is chosen to be larger than λmax . Practically, the ω2

o can be obtained from

eigenanalysis of the system in (7.3), and the cost for its acquisition is not high because
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the analysis is just associated with the largest few eigenvalues. Then, (7.4) can then

be rewritten as

(B−A)u = b (7.5)

with A = −S+ω2
oT,B = (ω2

o−ω2)T. The above now is governed by a new eigenvalue

problem of

Ax = λBx (7.6)

whose eigenvalues can be written as

λnew =
ω2
o − λ

ω2
o − ω2

, (7.7)

which is always positive as λ < ω2
0. More important, when λ > ω2, 0 < λnew < 1,

i.e., the original largest eigenvalues of (7.3) now become the smallest eigenvalues; and

vice versa as when λ < ω2, λnew > 1. Also, as stated above, the region λnew > 1 has

less number of eigenvalues than the region 0 < λnew < 1 as they are flipped. The

summary of new eigenvalue system is illustrated in Fig. 7.1.

Fig. 7.1. Transformed eigenvalue system.

If we deduct the eigenmodes whose λnew > 1 from B−1A, then the remaining

eigenvalues of B−1A would satisfy 0 < λnew < 1. Hence, the eigenvalues of (7.5),

which is 1 − λnew, will be positive and no greater than 1. Thus, (7.5) becomes a
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positive-definite system. Furthermore, its spectral radius is less than 1. Along this

line of thought, we update (7.5) to the following new system of equations, which is[
B−A

(
I−VnV

T
nB
)]
up = b, (7.8)

where Vn denotes the eigenvectors of (7.6) whose eigenvalues are greater than 1.

Notice the above is a symmetric system as AVn = BVnΛn. Let Vp and Λp be,

respectively, the eigenvector matrix, and the diagonal eigenvalue matrix of the rest

of the eigenvalues. We can analytically derive the property of the updated system

matrix of (7.8), which is

Ynew = I−Y0 =
[
I−B−1A

(
I−VnV

T
nB
)]
, (7.9)

where Y0 = B−1A
(
I −VnV

T
nB
)
. Then, we can write

B−1A = VΛV−1 = VΛVTB = VnΛnVn
TB + VpΛpVp

TB. (7.10)

Then, we have (7.11) by utilizing the property of VTBV = I,VTAV = Λ;

B−1AVnVn
TB = VnΛnVn

TB. (7.11)

By subtracting (7.11) from (7.10), we have[
B−1A

(
I−VnV

T
nB
)]

= VpΛpVp
TB. (7.12)

Then from (7.9) and (7.12), the following form is induced.

YnewVp = Vp(I−Λp). (7.13)

Hence, the eigenvalues of Ynew are the entries of diagonal matrix (I − Λp). Since it

consists of all the eigenvalues of (7.6) that are less than 1, the new system (7.8) is

clearly positive definite. Its spectral radius is less than 1 as well.

In addition, its condition number can be controlled to any desired constant by the

choice of Vn. This is because the ratio of the largest to the smallest eigenvalue or the

condition number of Ynew is as the following:

cond(Ynew) ∼ |λlargest|
|λsmallest|

∼ |λmax − ω2|
|λr − ω2|

, (7.14)
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where λr along the eigenvalue axis of the original system corresponds the largest

eigenvalue of remaining λnew = (ω2
o − λ) / (ω2

o − ω2) after deducting Vn, and λmax =

αω2 , where α is a constant determined by space discretization. To be specific, the

eigenvalues of Ynew are 1 − λnew = (λ− ω2) / (ω2
o − ω2), thus the largest eigenvalue

corresponds to λmax − ω2 while the smallest corresponds to λr − ω2. The position of

λr near ω2 in the original system is depicted in Fig. 7.2. Hence, by choosing which

Fig. 7.2. The controllability of condition number.

set of Vn to obtain from (7.6) thus λr, the condition number can be controlled.

To summarize, in the proposed algorithm, we change the original indefinite system

(7.1) to a new positive definite system (7.8) to solve, and then obtain the solution

of the original problem from (7.9). The only computational overhead is to find Vn.

Since Vn of (7.6) is the same as the eigenvectors of the original eigenvalue problem

of (7.3), whose eigenvalues are smaller than ω2, (7.8) can be efficiently solved by an

iterative solver such as GMRES in a small number of iterations, and its convergence is

guaranteed. Meanwhile, (7.8) can also be directly solved as u = (I+Y0+...+Yk
0)B−1b,

since the spectral radius of Y0 is less than 1 as well. Furthermore, B’s solution in

(7.5) is the same as T’s solution, and hence it can be efficiently computed.

Generalized minimal residual method (GMRES) is a well-known iterative method

and a natural choice for finding the solutions of non-symmetric system of equations

[35]. For a positive definite matrix A, the convergence of the GMRES solver is

guaranteed. In contrast, if the matrix is not positive definite, GMRES may stagnate

and the convergence is not guaranteed. The convergence rate is strongly affected

by the eigenvalue distribution and condition number [34, 36, 37]. The matrix A in

the proposed method is symmetric (Hermitian) positive definite thus normal. In
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this symmetric positive definite case, the convergence rate is bounded by condition

number of the matrix as seen in (7.15) [35, 38]

‖rn‖ ≤
(
cond(A)2 − 1

cond(A)2

)n/2
‖r0‖. (7.15)

And we can notice that smaller condition number leads to faster convergence. Also,

the nullspace is clustered away from the origin and share the same eigenvalue in

common, then there will also be fast convergence. Thus, regardless of the existence

of nullspace in the matrix we want to solve, the performance of the GMRES will

not be affected. Therefore, by the proposed transformed system and truncation of

non-positive contribution, the convergence of GMRES can be accelerated.

It is worth mentioning that S has a nullspace whose size can grow with N. Since the

convergence performance of GMRES is not affected by the nullspace as analyzed in the

above, the nullspace can be bypassed in the eigenvalue analysis, where we compute

a Krylov subspace that is orthogonal to the nullspace. Therefore, the number of

non-positive definite modes is further reduced, so is the overhead for deducting the

non-positive modes. First, in the eigenanalsysis of (7.6) using Implicitly Restarted

Arnoldi (IRA) algorithm, this can be done by setting shifts as undesired eigenvalues

in the standard QR step in IRA. In the QR process to approximate eigenvalues,

the shifts are suppressed thus bypassing the computation to obtain the nullspace.

Specifically, we can use a shift ξ as the largest eigenvalue of (7.6), which is also the

zero eigenvalue of (7.3). The ξ is analytically known as (ω2
0) / (ω2

0 − ω2), which is λnew

from the setting of λ = 0 in (7.7).

After solving up from the positive definite system (7.8), we can add back the

contribution of the non-positive definite part to complete the total solution as

u = up + Vn(Λn − ω2)−1Vn
T b. (7.16)

The computation cost of Vn(Λn − ω2)−1Vn
T b part in (7.16) is negligible because the

Vn set is already known and the dimension of the part is much smaller than the

original dimension N.
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7.2.2 Absorbing Boundary Condition Imposition

Again, a frequency-domain FEM-based analysis of waveguide discontinuities with

absorbing boundary conditions results in the following matrix equation A(ω)u(ω) =

b(ω) where ω is an angular frequency, u is the frequency-domain field solution vector,

and

A(ω) = −ω2T + S +
γ

µ
Q1 +

γ

µ
Q2

b(ω) =< Ni,Nj>S1uinc

(7.17)

in which T is the mass matrix, S is the stiffness matrix, Q is the matrix associated with

absorbing boundary condition. The Q is assembled from its elemental contributions

as the following:

Qe
1 = 〈n̂×Ni, n̂×Nj〉S1

Qe
2 = 〈n̂×Ni, n̂×Nj〉S2

. (7.18)

In addition, for TE10 dominant case, γ = jkz10 and kz10 =
√
k2

0 −
(
π
a

)2
where a is the

width of the structure.

The problem of the non-positive definite mode exclusion when applied to (7.1)

is that these modes involve absorbing boundary condition matrix Q which contains

angular frequency term, and thereby a need for performing a double dimensional

eigenvalue analysis.

To alleviate the aforementioned difficulty, we propose to separate the boundary

related matrix from the rest. We partition the entire set of unknowns u into ui that is

inside the computational domain, and ub that is on the boundaries. Thus, the FEM

matrices in (7.17) can be rewritten as Abb Abi

Aib Aii

 ub

ui

 =

 b

0

 (7.19)

where

Aii = −ω2Tii + Sii

Aib = −ω2Tib + Sib + γ
µ
Q1ib + γ

µ
Q2ib

Aii = −ω2Tbi + Sbi + γ
µ
Q1bi + γ

µ
Q2bi

Abb = −ω2Tbb + Sbb

. (7.20)



86

Then, eliminating the first row in (7.18) yields

(Abb −AbiA
−1
ii Aib)ub = b. (7.21)

Here, Aii is not associated with boundary matrix Q thus the non-positive definite

mode exclusion approach can be directly applied for the solution of Aiiũ = Aib in

(7.21). Thus, if we have the non-positive definite modes set Vn, Aiiũ = Aib turns

into

A′iiũp = −ω2(Tii +
1

−ω2
Sii(I−VnV

T
nTii))ũp = Aib. (7.22)

Then, the non-positive definite modes contribution ũn is added back to obtain com-

plete the solution ũ.

After getting ũ, (7.21) for ub can be solved as a small problem whose dimension

is just the number of boundary edges. Once ub is found, ui is recovered simply from

ui = −A−1
ii Aibub, which is identical to solving Aiiui = −Aibub , thus the proposed

non-positive definite mode exclusion approach can be applied again.

7.2.3 Finding Non-Positive Definite Modes Vn

In this work, we use the implicitly restarted Arnoldi algorithm to find Vn effi-

ciently since the modes being sought for have the largest eigenvalues. The implicitly

restarted Arnoldi method is a method for capturing wanted eigenvalue information

from shrinked m-step Krylov subspace method rather than full dimension eigenvalue

analysis [39, 40]. For finding k largest eigenvalues and their eigenvectors, the com-

putation of this algorithm is mainly sparse matrix-vector multiplications, and the

orthogonalization of the obtained vectors. The overall computational complexity is

O(k2N), thus it is more efficient than a traditional full eigenvalue analysis whose

complexity is O(N3). In addition, by setting the eigenvalues corresponding to the

nullspace as unwanted eigenvalues, nullspace originated eigenvalues can be filtered

out.

Overall, as we transform the original system to have a smaller number of Vn, the

computational overhead of theO(k2N) computation for finding Vn is not a bottleneck.
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Moreover, since Vn is frequency independent, after it is found, it can be reused at

different frequencies.

7.3 Numerical Results

In this section, we demonstrate the accuracy and efficiency of the proposed scheme

with lossless case examples. The conventional method is GMRES which is used as

Matlabs built-in function ‘gmres.’ The computing machine used here has an Intel i5

5300U 2.30 GHz processor, unless specified specifically.

All of these examples involve full-wave analysis in which the minimum discretiza-

tion is approximately 1/10 of the wavelength of interested frequency and the nullspace

modes effect is limited. Also, in these cases, the number of non-positive definite modes

is much smaller than the whole system size, thus the overhead for analyzing and re-

moving such modes is negligible.

The new method would also suffer from an increased iteration number when N

increases, if we do not truncate Vn and do not control the condition number. For

larger N cases, the smallest eigenvalue along eigenvalue axis (as shown in Fig. 7.1)

greater than ω2 will become closer to ω2, although the largest eigenvalues does not

change, then this will increase the condition number. However, if we remove Vn

based on the criterion of keeping the condition number to be a constant, which means

more truncated modes as the growth of N , the nearly constant iteration number for

convergence can be achieved.

7.3.1 Waveguide with Absorbing Boundary Condition

We first demonstrate the accuracy and efficiency of the proposed method with

an air-filled waveguide loaded with an internal block of relative permittivity of 6.0

as Fig. 7.3. The length, width and height of the waveguide structure are 25 mm

(x-direction), 20 mm (y-direction), and 10 mm (z-direction), respectively. Also, the

size parameters of inside dielectric block are 5 mm, 10 mm and 5 mm, respectively.
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The whole structure is discretized with a uniform mesh size 2.5 mm. The waveguide

is operating at a frequency only with the dominant mode TE10.

Fig. 7.3. Dielectric loaded rectangular waveguide.

Fig. 7.4 shows the reflection coefficient |S11| of a waveguide with a dielectric block

simulated by using the proposed algorithm. Excellent agreement with the reference

result from a traditional solver is observed.

The length (x-direction) of the waveguide structure is then extended to build large

unknown cases and structures to study the performance of the proposed method as

a function of N . Also, the computation of ui is omitted here because reflection

coefficient calculation only requires the field solution on the front surface.

When the number of unknowns N is 14,652, the number of non-positive definite

modes Vn is identified as 1,139 over total 14,548 modes, whose absolute magnitude

of the eigenvalues is over 0.95 in the transformed system. The corresponding eigen-

values and parameters along the eigenvalue axis of the original indefinite problem

are illustrated in Fig. 7.5. The yellow marked region is removed in the transformed

system and the highlighted red region is the remained eigenvalue region. The ω is

set to be 8 × 1010 rad/s and w0
2 is chosen as 4.5824 × 1023. Also, the largest eigen-
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Fig. 7.4. Reflection coefficient of dielectric loaded waveguide (b=10 mm).

value λmax is 4.4062× 1023, and the remained smallest eigenvalue λr is 2.9002× 1022.

There exist 1139 eigenvalues between λr and the first non-zero eigenvalue λmin which

is 1.6153 × 1019, and this yellow band is removed in the transformed system. The

condition number defined by (7.14) of the proposed deducting method is 19.2114. In

contrast, the condition number of original indefinite matrix is 1.2645× 105.

Fig. 7.5. Illustration of the eigenvalue distribution, λr, ω
2, λmax, and

ω0
2 of a dielectric-loaded waveguide with 14,652 unknowns.

The proposed method is shown to have a constant number of iterations of ∼26

to reach an accuracy of 1 × 10−4. In contrast, using the same GMRES solver and

with the same error tolerance, the original indefinite system is shown to have a large

iteration number. This number also increases with N , from 98 to 626 when N reaches
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14,652. Fig. 7.6 plots the total CPU time comparison at ω = 8 × 1010 rad/s for

simulating the same number of right hand sides involved in the waveguide analysis.

In 14,652 unknown case, the proposed method identifies 1,141 over 14,548 modes

as Vn, and shows an elapsed time of 1.0867 × 103 s with 26 iterations to simulate

one frequency. In contrast, the conventional GMRES based method with original

indefinite system yields an elapsed time of 1.3696×104 s with 626 iterations. Thus, a

speed-up of 12.6032 is observed. The efficiency of the proposed new method is clearly

demonstrated.

Fig. 7.6. Solution time comparison.

7.3.2 Demonstration of Accuracy and Efficiency

Millimeter-level inhomogeneous lossless waveguide

We next consider a mm-level parallel-plate with vertical inhomogeneous layer. The

length, width, and height of the structure are 70 mm, 30 mm, and 20 mm respectively
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as shown in Fig. 7.7. Along with the width direction, the thickness of each dielectric

vertical layer is 10 mm. In addition, the discretization along height is 5 mm, 2.5

mm, 2.5 mm, 2.5 mm, 2.5 mm and 5 mm (2.5 mm is the minimum space step). The

number of unknowns in this example is 1570, and the number of elements along x,

y, z-axis is 14, 6, 6 respectively. The current source is launched from bottom PEC

plane to top PEC plane.

Fig. 7.7. Structure of parallel-plate waveguide with inhomogeneous vertical layer.

The number of non-positive definite modes Vn is identified as 78 over total 1,570

modes, whose absolute magnitude of the eigenvalues is over 0.95 in the transformed

system. The corresponding eigenvalues and parameters along the eigenvalue axis

of the original indefinite problem are illustrated in Fig. 7.8. The yellow marked

region is removed in the transformed system and the highlighted red region is the

remained eigenvalue region. The ω is set to be 6 × 109 rad/s and ω0
2 is chosen as

1.0663 × 1023. Also, the largest eigenvalue λmax is 1.0253 × 1023, and the remained

smallest eigenvalue λr is 5.3975×1021. There exist 78 eigenvalues between λr and the

first non-zero eigenvalue λmin which is 2.7050×1020, and this yellow band is removed

in the transformed system. The condition number defined by (7.14) of the proposed
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deducting method is 19.1158. In contrast, the condition number of original indefinite

case matrix is 4.3410× 102.

Fig. 7.8. Illustration of the eigenvalue distribution, λr, ω
2, λmax, and

ω0
2 of a parallel-plate waveguide with vertical inhomogeneous layer.

The accuracy comparison result shown in Fig. 7.9 shows an excellent agreement.

In addition, the proposed method shows 30 iterations for the iterative solver to con-

verge with 1× 10−5 tolerance. In contrast, the conventional GMRES requires 211 to

336 iterations to converge to achieve the same tolerance as shown in Fig. 7.10.

Fig. 7.9. Input reactance versus frequency for a parallel-plate waveguide.
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Fig. 7.10. Iteration number in a parallel plate example for convergence comparison.

The total frequency sweep CPU time of the proposed method is 1.4723 × 102 s,

which includes 400 frequency points (frequency gap: 0.01 GHz) simulation while the

conventional GMRES solver takes 2.6907×102 s to simulate the same example. Thus,

the speed-up of frequency sweep time with this setting is 1.8275.

Cavity-backed patch antenna

The third example is a cavity-backed microstrip patch antenna shown in Fig.

7.11. The conductors including the patch and the ground plane are treated as perfect

conductors. The overall structure size is 15 cm × 10.2 cm × 3.08779 cm including

3 cm air regions at the top of the patch antenna structure. The size of the patch

immersed in 7.5 cm × 5.1 cm cavity (εr = 2.17) is 5 cm × 3.4cm. The number

of element along x, y, z-axis is 12, 12, 3 respectively. In addition, the minimum

discretization length is 0.08779 cm along z-direction. The number of unknowns of



94

this example is 1007. The current probe is launched from the bottom of the cavity

to the patch, and the location of the red-arrow source shown in Fig. 11 is 1.25 cm

(x-direction), 0.85 cm (y-direction) off center of the patch.

Fig. 7.11. The structure of a cavity-backed patch antenna.

The number of non-positive definite modes Vn is identified as 49 over total 1,007

modes, whose absolute magnitude of the eigenvalues is over 0.95 in the transformed

system. The corresponding eigenvalues and parameters along the eigenvalue axis

of the original indefinite problem are illustrated in Fig. 7.12. The yellow marked

region is removed in the transformed system and the highlighted red region is the

remained eigenvalue region. The ω is set to be 3 × 109 rad/s and ω2
0 is chosen as

3.6763 × 1022. Also, the largest eigenvalue λmax is 3.5349 × 1022, and the remained

smallest eigenvalue λr is 1.9129 × 1021. There exist 49 eigenvalues between λr and

the non-zero eigenvalue λmin which is 1.2294× 1020, and this yellow band is removed

in the transformed system. The condition number defined by (7.14) of the proposed

deducting method is 18.5623. In contrast, the condition number of original indefinite

matrix is 3.0796× 102.

Fig. 7.12. Illustration of the eigenvalue distribution, λr, ω
2, λmax, and

ω0
2 of a cavity-backed patch antenna.
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Fig. 7.13 shows an excellent agreement between the proposed method and the

reference solution. Also, the proposed method shows 50 iterations for the iterative

solver to converge with 1×10−5 tolerance while the conventional GMRES requires 289

to 632 iterations to converge to achieve the same tolerance. Fig. 7.14 demonstrates

the iteration number comparison between the proposed method and the conventional

GMRES. The total frequency sweep CPU time of 120 points (frequency gap = 0.05

GHz) of the proposed method is 24.8978 s, while the conventional GMRES solver

takes 1.8159×102 s. Thus, the speed-up of frequency sweep time with current setting

is 7.2934.

Fig. 7.13. Input reactance versus frequency for a cavity-backed patch antenna.
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Fig. 7.14. Iteration number in a patch antenna example for conver-
gence comparison.

Patch antenna array

We then simulated arrays of cavity-backed patch antenna of 1 by 1, 2 by 2, 3 by 3,

4 by 4, 5 by 5, and 6 by 6 elements, resulting in from 1,007 to 33,302 unknowns. The

array example is shown in Fig. 7.15 and each element is the patch antenna shown

in Fig. 7.11. The white region is PEC region including patches and PEC ground

planes and the gray region is dielectric cavity. Also, red dots in the figure illustrate

feed probes. The simulation server used here has an Intel Xeon E5-2690 3.00 GHz

processor.

For the largest unknown example, in 6 by 6 array case, the proposed method

identifies 605 over 33,302 modes as Vn whose absolute magnitude of the eigenvalues

is over 0.98 in the transformed system. The corresponding eigenvalues and parameters

along the eigenvalue axis of the original indefinite problem are illustrated in Fig. 7.16.
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Fig. 7.15. Planar view of 6 by 6 patch antenna array.

Fig. 7.16. Illustration of the eigenvalue distribution, λr, ω
2, λmax, and

ω0
2 of a 6 by 6 patch array.

The yellow marked region is removed in the transformed system and the high-

lighted red region is the remained eigenvalue region. The ω is set to be 3× 109 rad/s

and ω2
0 is chosen as 3.6763× 1022. Also, the largest eigenvalue λmax is 3.5349× 1022,

and the remained smallest eigenvalue λr is 7.4423× 1020. There exist 605 eigenvalues

between λr and the smallest non-zero eigenvalue λmin which is 1.6492×1018, and this

yellow band is removed in the transformed system. The condition number defined

by (7.14) of the proposed deducting method is 48.0663. In contrast, the condition

number of original indefinite matrix is 3.9278 × 103. With these condition numbers

which strongly affect the convergence of GMRES method, the proposed method is
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shown to have a constant number of iterations of 60 to reach an accuracy of 1× 10−5

error tolerance. In contrast, using the conventional GMRES solver and with the

same error tolerance, the original indefinite system is shown to have a large iteration

number from 279 to 748 when N reaches 33,302 as shown in Fig. 7.17.

Fig. 7.17. Iteration number comparison.

Also, for example, in 6 by 6 array (33,302 unknown case), the proposed method

shows an elapsed time of 6.5844 × 102 s with 60 iterations in 1 frequency sweep.

In contrast, the conventional GMRES based method with original indefinite system

yields an elapsed time of 3.2177 × 103 s with 770 iterations. Thus, the speed-up of

4.8869 is observed.

Fig. 7.18 plots the total CPU time versus N comparison at ω = 3×109 rad/s and

the proposed method shows excellent performance compared to conventional GMRES

based solution.
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Fig. 7.18. Solution time comparison.

7.4 Conclusions

In this chapter, we develop a symmetric positive definite representation of the

FEM operator by removing the non-positive definite component from the system

matrix. The resultant solution in frequency domain is different from that of the

original system matrix. However, in the second step, we add the contribution from the

non-positive definite component with negligible cost back to obtain the true solution.

The positive-definite representation after removing non-positive definite modes has

a spectral radius less than 1. Its condition number can also be controlled to any

desired value. Also, we transform eigenvalue system from the original to obtain

a reduced number of non-positive definite modes. Thus, the non-positive definite

modes can be obtained efficiently with O(k2N) complexity with implicitly restarted

Arnoldi method.
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As a result, the performance of the proposed method is enhanced compared to

conventional frequency-domain FEM methods. Numerical experiments have demon-

strated the accuracy and efficiency of the proposed method.
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8. CONCLUSIONS

In this dissertation, fast time- and frequency-domain finite-element methods for elec-

tromagnetic analysis are proposed. There are mainly two directions we pursue to

accelerate the time- and frequency-domain electromagnetic analysis: One is to reduce

computational complexity for one simulation. The other is to reduce the number of

simulations. The algorithms and implementations in this dissertation are proposed

based on these strategies.

In chapter 2, the structure specialty of on-chip circuits such as Manhattan geom-

etry and layered permittivity is preserved in the proposed algorithm. As a result, the

large-scale matrix solution encountered in the 3-D circuit analysis is turned into a

simple algebraic operation, which can be obtained in linear complexity with negligible

cost. In chapter 3, fast structure-aware direct time domain finite element framework

is proposed. Based on this framework under DC dominant condition, and utilizing

T’s solver in previous chapter, the time step size is not sacrificed, and the total num-

ber of time steps to be simulated is also significantly reduced, thus achieving a total

cost reduction in CPU time. In chapter 4 and 5, the proposed method is to update

the time-domain finite-element method (TDFEM) numerical system to exclude the

source of instability. As a result, an explicit TDFEM simulation is made stable for

an arbitrarily large time step.

The limitation of proposed algorithm in chapter 3 is that it is applicable to only

DC-dominant problems. Even though DC-dominant cases dominate many circuit

applications, full-wave analysis is still required. This full-wave method is proposed

in chapter 6 with the support of matrix exponential framework and structure-aware

T’s solver in chapter 2 and 3. The ideas in chapter 4 and 5 which make the norm of

the system matrix smaller by removing unstable modes accelerate the convergenc of

the series expansion of matrix exponential components.
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Then, we expand our understanding and knowledge into the frequency domain

analysis from time domain analysis. The solution cost which is associated with an

indefinite nature of the system matrix is also as high as that of time-domain cases.

To reduce this high cost, in chapter 7, we show the same unstable mode removal ap-

proach we proposed in time domain can be adopted to transform an indefinite system

matrix to a positive definite one in frequency domain. It is worth mentioning that in

frequency domain, we have to consider the contributions from non-positive definite

modes also, unlike that in time domain. In summary, the time domain algorithms

developed so far have a great potential to apply to the frequency domain analysis.

The scope of this work can be extended as following future work. First, the algo-

rithm proposed in chapter 3 requires a computation of nullspace. Fast algorithms for

extracting the nullspace can be further studied. For the proposed methods from chap-

ter 4 to 7, the number of unstable modes or non-positive definite modes is important

because the determination of these modes still consumes a large part of the computa-

tion. Thus, the methods for accelerating eigenvalue analysis are still required. Also,

the diagonalization perspectives of system matrix including changing basis function

can be effective to fully exploit the merit of unstable mode exclusion scheme as well

as to speed up the inversion process. In addition, the parallel computation of un-

knowns along each direction can be further studied. As the clock speed of CPU is

not drastically enhanced these days, the parallel computation to Exa scale attracts

many researchers’ interest. By a proper arrangement of unknowns, the decoupling of

the unknowns along each direction is possible and it can be naturally implemented

in proposed algorithms. Therefore, taking advantage of the parallel computing can

accelerate the simulation further.
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A. UNSTABLE MODE DETERMINATION CRITERION

IN FORWARD-DIFFERENCE BASED TIME

DISCRETIZATION SCHEME

The first-order double-dimension system of equation is as following

A d
dt
ũ+ Bũ = f̃

A =

[
R T
T 0

]
, B =

[
S 0
0 −T

]
.

(A.1)

The eigenvalue problem which governs the field solution is

BV = AVΛ (A.2)

where diagonals of Λ are eigenvalues and V is eigenvectors. The extended solution
vector ũ can be expanded using eigenspace from (A.2) as following

ũ = Vy. (A.3)

After substituting (A.3) into (A.1) then multiplying VT both sides, following
relationship satisfies.

VTAV

(
d

dt
y + Λy

)
= VT f̃ . (A.4)

(A.4) can be simplified further as following

d

dt
y + Λy = f̃ ′. (A.5)

(A.5) can be divided into single line of equation, per each eigenvalue where and are
the real part and the imaginary part of the eigenvalue, respectively, as following

d

dt
yi + (ai + jbi)yi = f̃ ′i . (A.6)

Then, after applying forward-difference based time discretization scheme (A.6)
turns into

yn+1
i − yni + ∆tλiy

n
i = ∆tf̃ ′i . (A.7)

By adopting z-transform for the stability analysis of (A.7),

z = 1−∆tλi. (A.8)
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To satisfy stability criterion, |z| < 1 should satisfy. Then,

|z| = |1−∆tλi| = |1−∆t(ai + jbi)| = |1−∆tai − j∆tbi| < 1. (A.9)

Also,
(1−∆tai)

2 + (∆tbi)
2 < 1. (A.10)

(A.10) can be simplified as following

(ai
2 + bi

2)∆t2 − 2ai∆t = ∆t((ai
2 + bi

2)∆t− 2ai) < 0. (A.11)

It is apparent that ∆t > 0, thus

(ai
2 + bi

2)∆t− 2ai < 0. (A.12)

Finally, we can obtain

2real(λ)/(real(λ)2 + imag(λ)2) > ∆t (A.13)

as unstable modes which violate (A.12) stability condition.
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