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3.5.2 Dataset 2: René88 . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.3 Dataset 3 and Dataset 4 . . . . . . . . . . . . . . . . . . . . 58

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 THE MARKED POINT PROCESS FOR 3D DATASETS . . . . . . . . 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 3D Clustering Method . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Superellipse and Superellipsoid . . . . . . . . . . . . . . . . 68

4.2.2 Data Potential . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.4 Clustering and 3D Object Matching . . . . . . . . . . . . . . 76

4.3 Fast 3D Fitting Method . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Center Position Map . . . . . . . . . . . . . . . . . . . . . . 78

4.3.2 Orientation Map . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.3 Semi-axis Length Map . . . . . . . . . . . . . . . . . . . . . 81

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 83



vii

Page

4.4.1 Birth in a Neighborhood(BN) . . . . . . . . . . . . . . . . . 85

4.4.2 3D clustering vs. fast 3D fitting . . . . . . . . . . . . . . . . 86

4.4.3 Fast 3D fitting vs. full 3D MPP . . . . . . . . . . . . . . . . 88

4.4.4 Brain Tissue Image Dataset . . . . . . . . . . . . . . . . . . 91

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A DERIVATION OF THE EM UPDATE . . . . . . . . . . . . . . . . . . . 98

B PARAMETRIC PATH FOR CONTINUITY POTENTIAL CALCULATION 103

C THE RATIO OF KERNELS FOR THE SWITCHING KERNEL . . . . . 104

D DERIVATION OF THE RANGE OF SEMI-AXIS LENGTH c . . . . . . 108

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



viii

LIST OF TABLES

Table Page

2.1 PMP of Test and Ni-Al-Cr superalloy images . . . . . . . . . . . . . . . 29
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cluster

sm ∈ Ĉk point on the outline of 2D object

wk,i ith 2D object in the kth cluster (after clustering)

pk,i location of the ith 2D object in k-th cluster

(after clustering)

w3D
i ith marked point (3D object)

p3Di location of the ith marked point (3D object)

a3Di , b3Di , c3Di semi-axis lengths of the ith marked point (3D object)

αi, βi, γi orientation of the ith marked point (3D object)

σ control parameter to generate center position map

lp line fitted with center positions of

2D objects
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v = (vx, vy, vz) direction vector of the line lp

ϕ tilt angle of a 3D object

To, σo control parameter to orientation map

rmp , r
M
p , zmp , zMp , czp, c

M
p , cmp notations to generate semi-axis length map

εr, σr, εc, σc control parameters to generate semi-axis length map

σn control parameter to generate noise in synthetic

dataset
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ABSTRACT

Kim, Dae Woo Ph.D. Student, Purdue University, December 2016. New Marked
Point Process Models for Microscopy Images. Major Professor: Mary L. Comer.

In developing new materials, the characterization of microstructures is one of

the key steps. To characterize the microstructure, many microscope modalities have

been devised and improved over decades. With the increase in image resolution in

the spatial and time domains, the amount of image data keeps increasing in the fields

such as materials science and biomedical engineering. As a result, image processing

plays a critical role in this era of science and technology. In materials image analysis,

image segmentation and feature detection are considered very important.

The first part of this research aims to resolve the segmentation problem caused

by blurring artifacts in scanning electron microscopy(SEM) images. This blurring

issue can lead to a bridged channel problem, which becomes an obstacle in analyzing

the microstructures. To tackle the problem, we propose a joint deconvolution and

segmentation (JDS) method. As a segmentation method, we use the expectation-

maximization/maximization of the posterior marginals (EM/MPM) method, using

the Markov random field(MRF) prior model. Experiments show the proposed method

improves the segmentation result at object boundaries.

The next phase of the image segmentation is detecting image features. In the

second part of this research, we detect channel configurations in materials images.

We propose a new approach of channel identification, based on the marked point pro-

cess(MPP) framework, to effectively detect channels in materials images. To describe

a higher level of structures in an image, the MPP framework is more effective than

the MRF prior model. The reversible-jump Markov chain Monte Carlo (RJMCMC)

algorithm embedded with simulated annealing is used as an optimization method,
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and a new switching kernel in an RJMCMC is used to reduce computational time.

The channel configuration is useful in characterizing materials images. In addition,

this information can be used to reduce the bridged channel problem more effectively.

In materials image processing, one of the most important goals of feature detection

is identifying the 3D structure of objects from 3D microscope datasets. The final part

of this research is to perform fast and accurate estimation of 3D object configurations

from a 3D dataset. We propose a fast 3D fitting method to improve the computational

complexity over a full-search 3D MPP method. Experiments show that the fast 3D

fitting method significantly decreases execution time compared to the full 3D MPP

method.
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1. INTRODUCTION

Historically, the development of new materials has had a huge impact on human

society. As a result of discoveries or developments of new materials, people have

consistently experienced significant changes in their daily life. It seems no wonder that

history is categorized and named after materials - Stone Age, Bronze Age, and Iron

Age. New materials, for example those used in military applications, have decided the

destiny of some civilizations. Recently, biomaterials used in medical applications have

not merely extended human lifespans but also improved the quality of life: titanium

alloys for prostheses, stainless steel for stent construction in tubular body parts,

ceramics for dental implants and polymeric materials for blood vessels or soft tissue.

Furthermore, great advances have been brought to modern society by materials which

are used in energy production, construction, transportation, electronic products, etc.

Therefore, many scientists and engineers are involved in developing new materials

through various kinds of research. Since the first microscopy studies of material struc-

tures were performed about 100 years ago, succeeding materials research has built a

foundation of materials science and engineering discipline [1]. In developing new ma-

terials, it is important to understand the microstructures of materials and to relate

them to their properties. From the microstructure, relationships between process and

structure can also be determined. This process-structure-property relationship is very

useful in computational material design.

The quantification of microstructures of materials is called characterization. For

many years, the use of microscopy has been essential for the characterization of ma-

terials. Now, improvement of microscopy techniques enhances the precision of instru-

mentation to the extent that we can observe materials systems at an atomic scale.

Nowadays, microscopes can capture 3D data with techniques such as automated serial

sectioning [2, 3]. Moreover, some imaging techniques such as x-ray tomography can
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take 3D data evolving over time without destroying the material specimen [4]. Ac-

cordingly, the amount of available microscopy data has been growing exponentially,

so that image processing techniques have become essential in analyzing this enormous

quantity of microscopy data.

It is a difficult task to develop image processing methods for materials analysis

and design because of the random nature of materials microstructures and noise and

distortion created by image acquisition devices. Users of image acquisition equipment

often need to develop their own unique image processing procedures [5]. However,

Duval et al. [6] summarized a relatively standard workflow for image processing in

material science: image acquisition, reconstruction, enhancement and filtering, seg-

mentation, analysis, multi-modality, and microstructure stochastic modeling.

In the early step of materials image analysis, the image segmentation is essential.

Segmentation is the process of partitioning an image into multiple regions that are

homogeneous in some sense. The next image analysis step is detecting microstructure

features. These features are useful to contruct stocastic microstructure models of

materials. They can be also used to get more precise boundaries in the segmentation

step [7, 8].

1.1 Segmentation and Detection of Microstructural Features in Micro-

scope Images of Materials

In a material characterization, various kinds of image acquisition modalities are

used, such as light microscopy, x-ray diffraction, transmission electron microscopy

(TEM), scanning electron microscopy (SEM), scanning probe microscopy [9]. Be-

fore performing image analysis, methods such as x-ray tomography require recon-

struction from raw measured data to image data. Sometimes, the acquired images

might have degradation problems such as blurring, shading(irregular illumination)

and noise(random or structural). Most of these artifacts come from the nature of

image acquisition methods.
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In the segmentation of materials images, it is important to localize exact region

boundaries. However, if the images have degradation problems such as blurring or

low contrast, a precise boundary localization becomes a complex task. For the input

materials images with blurring degradation, conventional segmentation methods give

results which show the swelling of objects. This causes some neighboring objects to

merge together and forms bridged channels. Figure 1.1 shows an example of this

segmentation problem. When we compare a segmentation result (Figure 1.1(c)) with

a ground truth (Figure 1.1(b)), we can see many bridged channels marked with red

circles. In this example, a Markov random field(MRF) is used as a prior model for

segmentation. These bridged channel defects are partly originated from the nature

of the MRF prior model and from the blurring artifact in the original image acquired

from SEM. This blurring is quite usual in image acquisition devices. In the image ac-

quisition process of the SEM, a high-energy electron beam is emitted from an electron

gun and interacts with the material specimen, and then the reflected secondary elec-

trons or back-scattered electrons are detected. This process of emission and detection

scans the whole surface of a specimen and constructs a microscope image. During the

electron interaction, electrons travel around the surface or the inside of the material

specimen. When electrons come out from the surface, they bring information from

around the initial entry position of the emitted electrons. This causes blurring in an

SEM image. To tackle the blurring problem, we model this blurring in microscopy

(a) Original image (b) Ground truth (c) EM/MPM segmentation

Fig. 1.1. Merging problem of segmentation of material image

images and propose a joint deconvolution and segmentation (JDS) method which in-
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corporates the blurring model into an existing segmentation method. In addition, we

also propose channel detection methods to reduce the smoothness effect of an MRF

prior model in the channel area which partly causes the bridged channel defect.

1.2 Detection of 3D Microstructure Features

Estimating the relationship between the 3D structure and properties of materials is

one of the most important tasks in materials development. To predict microstructure-

property relationships in computational modeling of materials, the ability to generate

digital 3D microstructures is required. Related to this requirement, Groeber describes

two microstructure representation approaches [10]: an explicit representation by ex-

periments and a statistical representation.

The former approach is a deterministic 3D representation of a microstructure.

First, features are segmented from microscope images of an observed material. Then,

the surface meshes of these features are constructed. Usually, such geometrical fea-

tures are contours of a grain boundary, simple geometric shapes or tessellations.

In the latter approach, once a microstructure is identified from a microscope image

of a material specimen, with this limited amount of information, we can estimate a 3D

stochastic and geometric model which represents the microstructure of the material.

From this stochastic model, a synthetic 3D microstructure can be generated. During

this step, structure variations might be obtained by changing model parameters.

After that, material properties of interest are estimated by simulation with this 3D

microstructure and the information about compositions of the material. To construct

a stochastic model, the representation of a microstructure should be able to specify

such statistical quantities in the material volume as [5]: the number of structural

objects, the size and shape of the object, and the form of their distribution.

Traditionally, statistical modeling has been done using first and second order

statistics and univariate distributions. However, it is more effective to use advanced

models from probability theory, such as a Markov rnadom field (MRF) or marked
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point process (MPP). In an MPP, a mark carries the parameters describing the shape

and the size of each object of interest, and a point process conveys the information

about the random number and spatial locations of the objects. Since the MPP model

was introduced in the field of signal and image processing by Baddeley and Van

Lieshout [11], it has been widely used as a methodology for the extraction of multiple

objects from images, such as simple circular objects [12], building outlines [13], tree

crowns [14, 15], road networks [16,17], people in surveillance videos [18], superellipse

objects [8] and channel features in materials image [7]. As we can see, most of these

applications are aimed at detection of 2D objects in images. However, the ultimate

goal of the material characterization is identifying 3D structure. We need to expand

this application area of MPP method to the detection of 3D objects, although this is

not an easy task due to its high computational cost.

1.3 Dissertation Organization

In Chapter 2, we propose a joint deconvolution and segmentation(JDS) method

and a minimum area increment(MAI) constraint in the EM/MPM algorithm to im-

prove the segmentation of microscope images of materials. We incorporate the new

scheme of adaping the value of the spatial interaction parameter, so that segmenta-

tion results at object boundaries are improved. Experimental results are presented

to demonstrate the proposed segmentation method and prior model.

In Chapter 3, we present a new approach for channel identification based on a MPP

framework to effectively detect channels in materials images. In a materials image, a

channel is a narrow structure between two objects. We propose two methods of the

channel modeling, where a channel object and a related Gibbs energy are defined. The

RJMCMC algorithm embedded with a simulated annealing is used as an optimization

method, and the switching kernel in an RJMCMC is newly designed to decrease

execution time. The new channel model is useful for analyzing materials images.

Moreover, we also propose a method for exploiting detected channel configurations to
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reduce bridged channel defects in the segmentation result by adaptively controlling the

interaction parameter. Experimental results demonstrate that the proposed channel

modeling methods are successful to detect channels. The results also show that the

proposed interaction parameter control method can be used to improve boundary

precision in the segmentation of microscopic images of materials.

In Chapter 4, we propose a fast 3D fitting method which improves computational

complexity over a full 3D MPP method in detecting object configurations in 3D

datasets. This method detects 2D object configurations from 2D image slices first.

Then, a clustering step clusters all the 2D objects that are expected to belong to the

same 3D object. Conventionally, 3D objects can be estimated by fitting the predefined

3D object model to these clustered 2D objects. However, the fast 3D fitting method

estimates a 3D object configuration from the original 3D dataset through a 3D MPP

method. The fast 3D fitting method employs the information of the clustered 2D

object configuration detected in the previous step to reduce computation time over

full-search 3D detection. On the other hand, one advantage of this method over the

3D clustering method is that the proposed fast 3D fitting method is more robust for

the errors in a 2D object detection and clustering step. Another advantage of the

fast 3D fitting method is that its estimated object parameters are more precise than

those of the 3D clustering method.
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2. JOINT DECONVOLUTION/SEGMENTATION OF

MICROSCOPE IMAGES OF MATERIALS

2.1 Introduction

Due to the complex electron interactions with a specimen, it is common to see

the blurring artifacts in the SEM images during the image acquisition processes. For

the input material images with this blurring degradation, the conventional EM/MPM

segmentation method [19] shows the swelling of objects in its results. This swelling

makes some objects to merge together, which forms small bridged channels in the

segmented result. To improve these problems, we propose the joint deconvolution

and segmentation(JDS) method which incorporates the obtained information about

blurring degradation into the existing EM/MPM method. Figure 2.1 helps us to

compare the results between the conventional EM/MPM segmentation and the JDS

method. Focusing on the inside regions of the circles in Figure 2.1(c) and of Figure

2.1(d), we can observe that the JDS method makes the merged objects to be shrunk

and disconnected from each other. As a result, the JDS method shows a clearer

segmentation result than the conventional EM/MPM segmentation. However, as we

see the inside of rectangles, some bridged channels still remain unresolved.

To improve these remained bridged channel defects, we propose a minimum area

increment(MAI) constraint and apply it to the existing EM/MPM algorithm. To

make this constraint more effective, the simulated annealing(SA) scheme is used

to control the interaction parameters of the MRF model. We will call this as the

MAI/SA method. Experimental results demonstrate the proposed JDS method and

the MAI/SA method are effective for removing bridged channel defects.

In Section 2.2, we will review the imaging mode of the SEM device and the innate

issue of blurring degradation occurring in the image acquisition process. In Section
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(a) Original image (b) Ground truth

(c) Original EM/MPM segmentation (d) Joint deconvolution and segmenta-
tion method

Fig. 2.1. Merging problem of segmentation of material image

2.3, we will go through the EM/MPM framework including the image model, the prior

model and the EM/MPM algorithm. In Section 2.4, the JDS EM/MPM algorithm

will be explained in detail and a new blurring image model will be proposed. And, in

Section 2.5, the MAI/SA method will be proposed to improve the JDS EM/MPM al-

gorithm. In Section 2.6, our proposed modified EM/MPM algorithm will be examined

through several experiments. The results will be shown in detail.

2.2 SEM Image Acquisition

The sequence of SEM images are acquired by the ion milling and the imaging pro-

cess alternately. The ion milling process mills the surface of the material specimen

and the imaging process captures the newly produced surface. A high-energy electron
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beam emitted from an electron gun interacts with the surface of the materials spec-

imen during the imaging process. At the same time, some electrons come out from

the surface. These reflected electrons are detected with the built-in detectors of the

SEM. Figure 2.2(a) is the cross-sectional diagram which shows the trajectory of each
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Fig. 2.2. Interaction between injected electrons with a specimen

kind of electron when they are injected into the specimen. The SEM imaging process

has several imaging modes according to the energy bend of the electrons. Among

those imaging modes, the secondary electron(SE) imaging mode and the backscat-

tered electron(BSE) imaging mode are two major modes. The energy of the SE is

low so that they travel only the surface of specimen and come out while the energy

of the BSE is big enough to go deep inside of the specimen. Therefore, in the SE

imaging mode, blurring degradation can be modeled with a 2D blurring filter. The

filter coefficients can be obtained from the distribution of the lateral number of the

generated SE on the surface which can be modeled as an exponential [21].

NSE(x) = A exp[−x/w] (2.1)
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where NSE is the number of the generated SE, x is the distance from the impact

point, and ω is the width of the exponential. For the BSE imaging mode, blurring

can be modeled with a 3D blurring filter [22].

h(x, y, z) = A exp

(
−
√

x2 + y2 + (z/δ)2

ω

)
(2.2)

where x and y are the horizontal and vertical distance from the impact point on the

surface, z is the depth from the surface, ω is the width of the distribution, and δ is

the parameter to control the information depth.

2.3 The EM/MPM Framework

The EM/MPM algorithm was proposed to address the problem of segmenting

a textured image [19]. A multidimensional field, which has the same spatial reso-

lution as the observed image, is generated during the segmentation. Its individual

pixel value at a given location reflects the texture around the corresponding location

in the observed image. This individual pixel classifications are called labels and a

multidimensional field comprised of these labels is called a label field.

The EM/MPM follows the Bayesian approach, in which the label field and the ob-

served image are modeled as random fields. And the EM/MPM segmentation becomes

a statistical estimation problem. For the label field, a Markov random field(MRF)

model is used. The MRF model imposes the spatial constraint that neighboring pixels

are likely to be of the same class. For the observed image model, a Gaussian random

field is used. As an estimation criterion, the minimization of the expected value of

the number of misclassified pixels is used. The estimate which optimizes this criterion

is known as the ”maximizer of the posterior marginals” (MPM) estimate. However,

in order to use the MPM algorithm, we need to know the values of all parameters

of the image models. To address this problem, the EM/MPM algorithm which com-
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bines the MPM algorithm for segmentation with the EM algorithm for the parameter

estimation was proposed [19].

2.3.1 Image Model

Throughout this chapter, X represents the label field and Y represents the ob-

served image. X and Y are defined on rectangular lattice S. The elements in X are

denoted as the random variables Xs and the elements in Y are denoted as the ran-

dom variables Ys at the spatial location s ∈ S. In this chapter, x = [x1, x2, · · · , xN ]
T

will represent the sample realization of X = [X1, X2, · · · , XN ]
T, where N is the total

number of pixels in S. And y = [y1, y2, · · · , yN ]T will represent the sample realization

of Y = [Y1, Y2, · · · , YN ]
T, where the pixel of the vector x and y are a raster scan order

as below.

x = [x1, x2, · · · , xr, · · · , xN ]
T

= [x(1,1), · · · , x(1,M), x(2,1), · · · , x(2,M),

· · · , x(r1,r2), · · · , x(M,1), · · · , x(M,M)]
T

(2.3)

where the set of all rectangular lattice point S be [1, · · · ,M ]2 and r = (r1, r2) is

an ordered pair with each coordinate taking on values in the range of 1 to M and

N = M2.

To impose a smoothness constraint on the segmentation result, the MRF model

is used as a prior model. In this chapter, a 8-neighborhood system N is used to

improve the smoothness of object boundary shape. A random variable X is said to

be a Gibbs random fields(GRF), which is the same as the MRF according to the

Hammersley-Clifford theorem [23], on S w.r.t. N if and only if its distribution takes

the form

pX(x) =
1

z
exp

(
− 1

T
U(x)

)
(2.4)
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where a normalizing constant Z =
∑

x∈X exp− 1
T
U(x) is called the partition function.

A constant T is called the temperature, which is assumed to be 1 usually. And a

function U(x) is called the energy function, which is the sum of clique potentials

Vc(x). This energy function can be written as

U(x) =
∑

{r}∈C1

V1(r, xr) +
∑

{r,s}∈C2

V2(r, s, xr, xs)

+
∑

{r,s,t}∈C3

V3(r, s, t, xr, xs, xt) + · · · .
(2.5)

In this chapter, we assume that this energy function has only the second-order energy

which is the special case when only the cliques of size up to two are considered. And

we want to divide the pairwise clique set C2 into CHV for horizontal and vertical cliques

and CD for diagonal cliques. Let V1(r, xr) = γxr and V2(r, s, xr, xs) = βxr,xst(xr, xs)

when r, s ∈ CHV . And let V2(r, s, xr, xs) = β′
xr,xs

t(xr, xs) when r, s ∈ CD. Then

U(x) =
∑

{r,s}∈CHV

βxr,xst(xr, xs) +
∑

{r,s}∈CD

β′
xr,xs

t(xr, xs) +
∑

{r}∈C1

γxr . (2.6)

where

t(xr, xs) =

 0, if xr = xs

1, if xr ̸= xs

(2.7)

. Let βxr,xs = β′
xr,xs

/
√
2, considering the difference between dist(r, s)|(r,s)∈CHV

and

dist(r, s)|(r,s)∈CD . And let βxr,xs depend on only xr. Then

U(x) =
∑
r∈S

βxr

( ∑
s∈NHV

t(xr, xs) +
1√
2

∑
s∈ND

t(xr, xs)
)
+
∑

{r}∈C1

γxr , (2.8)

,where NHV is a horizontal and vertical neighbor and ND is a diagonal neighbor. The

parameter {βk} is a set of spatial interaction parameters for pairwise cliques, and

{γk} is a set of model parameters for single-pixel cliques. If γk is high, a class k is

less likely to occur than classes with lower values. This parameters {γk} can be used

for the applications if the relative sizes of the various classes are known. If there is no
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such information, γk is assumed to be zero. More detail of a MRF model is discussed

in [24,25].

For the observation image model, we assume that the grayscale value of each pixel

in the observed image is the realization of a Gaussian random variable as below

fY|X(y|x,θ) =
N∏
r=1

1√
2πσ2

xr

exp

(
−(yr − µxr)

2

2σ2
xr

)
. (2.9)

2.3.2 EM/MPM Algorithm

The EM/MPM algorithm alternately performs the MPM segmentation algorithm

and the EM parameter estimation algorithm [19]. For the MPM algorithm, the seg-

mentation problem is an optimization problem in which the minimization of the

expected number of the misclassified pixels is used as an optimization criterion. This

is equivalent to maximizing P (Xs = k|Y = y) over all k ∈ {1, 2, · · · , L}, for every

s ∈ S. But the exact computation of this probability is computationally infeasible.

Marroquin et al. [26] proposed an algorithm for approximating these marginal prob-

abilities. Suppose we have an initial segmentation X̂(0) and an initial parameter

estimate θ̂(0). The generated Markov Chain from the Gibbs sampler visits all pixels

in a raster scan order to produce a set of estimates of the marginals of the posterior

pmf given as (2.10). After that, these estimates of the marginals are used to find

the parameter estimates. This alternating process continues until a certain stopping

criterion has been met.

pX|Y(x|y,θ) =
1

zfY(y|θ)

[
N∏
r=1

1√
2πσ2

xr

]
· exp

(
−

N∑
r=1

(yr − µxr)
2

2σ2
xr

− U(x)

)
(2.10)
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2.4 Joint Deconvolution/Segmentation Method

2.4.1 Observed Image Model with 2D Blurring Information

We can make the blurring matrix H with a window size (2W + 1)× (2W + 1) be

a vector h with a raster scan order, so that

h = [h−D, h−D+1, · · · , hs, · · · , hD−1, hD]
T

= [h(−W,−W ), h(−W,−W+1) · · · , h(−W,W ),

h(−W+1,−W ), h(−W+1,−W+1), · · · , h(−W+1,W ),

· · · , h(s1,s2), · · · ,

h(W,−W ), h(W,−W+1), · · · , h(W,W )]
T

(2.11)

where D = ((2W + 1)2 − 1)/2.

If we write the conditional probability mass function for the image model as

fY|X(y|x,θ) =
N∏
r=1

1√
2πσ2(r)

exp

(
−(yr − µ(r))2

2σ2(r)

)
, (2.12)

in the original EM/MPM segmentation method, we can express that

µ(r) = µxr and σ2(r) = σ2
xr
. (2.13)

However, to improve the segmentation result of the image which has blurring degra-

dation, we would like to use the information of the blurring which the input image y

has.

h
Label Reconstructed     

image yɶx
Blurring Blurred

image ŷ

JDS

Fig. 2.3. Joint deconvolution/segmentation algorithm
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Figure 2.3 shows the concept of the joint deconvolution/segmentation(JDS) method.

Where x is the result of the JDS method, ỹ is the reconstructed image from x. And

ŷ is the observed image which has blurring degradation caused by blurring filter h.

Let ŷr be the pixel of ŷ and ỹr be the pixel of ỹ at location r ∈ S. Then, ŷr can be

expressed as

ŷr =
D∑

s=−D

hsỹr−s (2.14)

where r − s means (r1 − s1, r2 − s2). In addition, we can express µ(r) and σ2(r) as

µ(r) = E[ŷr] and σ2(r) = V ar[ŷr]. (2.15)

If we reconstruct ỹ as ỹr = µxr for all r ∈ S, then

µ(r) = E

[ D∑
s=−D

hsỹr−s

]

=
D∑

s=−D

hsE[ỹr−s]

=
D∑

s=−D

hsµxr−s

(2.16)

and

σ2(r) = V ar

[ D∑
s=−D

hsỹr−s

]

=
D∑

i=−D

D∑
j=−D

hihjσ(ỹr−i, ỹr−j).

(2.17)

To make the calculation simple, we assume the covariance terms are zero. Then,

(2.17) can be rewritten as

σ2(r) =
D∑

s=−D

h2
sσ

2
xr−s

. (2.18)
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However, this multi variance form also needs much computation to get the estimates

of variances {σk}. So, if the computational cost is important for some applications,

we can use the single variance form (2.13) instead of using (2.18). Using (2.16) and

(2.18), we propose the modified observed image model as

fY|X(y|x,θ) =
N∏
r=1

1√
2π
∑D

s=−D h2
sσ

2
xr−s

· exp
(
−
(
yr −

∑D
s=−D hsµxr−s

)2
2
∑D

s=−D h2
sσ

2
xr−s

) (2.19)

Finally, we propose a new conditional probability mass function of X given Y by

using this 2D blurring observed image model. By applying (2.19) to (2.10), we can

get a new pmf as below:

pX|Y(x|y,θ) =
1

zfY(y|θ)

 N∏
r=1

1√
2π
∑D

s=−D h2
sσ

2
xr−s


· exp

(
−

N∑
r=1

((
yr −

∑D
s=−D hsµxr−s

)2
2
∑D

s=−D h2
sσ

2
xr−s

)
− U(x)

) (2.20)

2.4.2 EM Algorithm for the Proposed Conditional pmf

To find the MPM estimate of X, it is necessary to find the value of k which

maximizes P (Xs = k|Y = y) for each s ∈ S. The exact computation of this marginal

probability mass function is computationally infeasible. A Gibbs sampler is used to

approximate these probabilities. At each EM iteration, the expectation step and the

maximization step are performed. Let θ(p) be the estimate of θ at the pth iteration.

Then, in the expectation step at iteration p, the function

Q(θ,θ(p− 1)) =E[log fY|X(y|x,θ)|Y = y,θ(p− 1)]

+ E[log pX(x|θ)|Y = y,θ(p− 1)]
(2.21)
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is calculated. After that, the estimate θ(p) is obtained in the maximization step

which maximizes the value of Q(θ,θ(p− 1)).

For the means µk(p), by substituting our 2D blurring observed image model and

MRF model into (2.21), differentiating and setting to zero(refer to Appendix A), we

can get the number of the L linear equations (2.24) from which we can obtain all

parameters µk(p), where

v(l1, l2, · · · , lD+1, · · · , l2D+1) =

h2
−Dσ

2
l1
+ h2

−D+1σ
2
l2
+ · · ·+ h2

Dσ
2
l2D+1

(2.22)

For the variances σk(p), if we use (2.18) as a variance term, we cannot get the

closed form solution. We have to use the optimization method to find the optimal

estimation. Details will be discussed in Section 2.4.4. However, if we just use the

single variance form (2.13), we can get the closed form solution (2.23) of σ2
k(p).
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2.4.3 EM/MPM Algorithm for the Proposed Conditional pmf

In the EM/MPM algorithm, the MPM segmentation algorithm and the EM pa-

rameter estimation are performed at each iteration step p. During the MPM segmen-

tation, the Markov chain X(p, t) is generated by using the Gibbs sampler. Then, we

can get the approximations of pXr|Y(k|y,θ(p)) and pXr+D,··· ,Xr−D|Y(l1, · · · , l2D+1|y,θ(p))

and the MPM estimate of x. After that, these approximations of the marginal condi-

tional probability mass functions are used to calculate the estimate θ̂(p) of θ in the

EM parameter estimation. Details of our EM/MPM algorithm are specified below.

1. Initialize Θ(0) = θ̂(0) for some θ̂(0) ∈ Ωθ, where the random variable Θ(p) is

the estimate of θ at stage p. And set p = 1.

2. Markov chain X(p, t) is generated, where t = 1, 2, · · · , Tp. The state Xqt(p, t)

of pixel qt is determined by sampling from the conditional probability mass

function

pXqt |Y,Xr,r∈Gqt∪G̃qt
(k|y, xr(t− 1), r ∈ Gqt ∪ G̃qt ,θ) (2.25)

where qt = (qt,1, qt,2) ∈ S is the pixel visited at time t. And Gqt is the neighbors

of spatial location qt and G̃qt = {(q1, q2)|qt,1 − D ≤ q1 ≤ qt,1 + D, qt,2 − D ≤

q2 ≤ qt,2 +D, (q1, q2) ̸= (qt,1, qt,2)}. And pX|Y,Θ(p)(x|y, θ̂(p)) has the same form

of (2.23) except that Θ(p) is used instead of θ.

3. Θ(p) = [M1(p), S1(p), · · · ,ML(p), SL(p)] is computed by using the EM param-

eter estimation. Detailed explanation is in Section 2.4.2. But the conditional
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probability mass functions in Section 2.4.2 are very difficult to obtain. There-

fore, as an approximation of pXr|Y(k|y,θ(p− 1)), the vk,r(p, t) is used where

vk,r(p, t) =
1

t

t∑
i=1

uk,r(p, i),

uk,r(p, t) =

 1, if xr(p, t) = k

0, if xr(p, t) ̸= k,
. (2.26)

vl1l2···l2D+1,r(p, t) is used as an approximation of pXr+D,··· ,Xr−D|Y(l1, · · · , l2D+1|y,θ(p−

1)).

vl1···l2D+1,r(p, t) =
1

t

t∑
i=1

ul1···l2D+1,r(p, i),

ul1···l2D+1,r(p, t) =


1, if xr+D(p, t) = l1, · · ·

, xr−D(p, t) = l2D+1

0, else

(2.27)

4. Set p = p + 1 and repeat from step 2 through step 4 until a stopping criterion

is met.

2.4.4 Optimization Method of Finding Variances

From (A.3), using (2.27), we can get

∂Q(θ,θ(p− 1))

∂σk

=
∂

∂σk

1

t

t∑
i=1

N∑
r=1

L∑
l1=1

L∑
l2=1

· · ·
L∑

l2D+1=1(
−

(yr − (h−Dµl1 + · · ·+ hDµl2D+1
))2

2v(l1, · · · , l2D+1)

− 1

2
log v(l1, · · · , l2D+1)

)
· ul1···l2D+1,r(p− 1, t)

(2.28)
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Let

m(i, r) = h−Dµl1 + · · ·+ hDµl2D+1
(2.29)

and

v(p) = [σ2
1(p), σ

2
2(p), · · ·σ2

L(p)]
T. (2.30)

Then from (2.22),

v(l1, · · · , l2D+1) = k(i, r)T · v (2.31)

where the kth component of k(i, r) is
D∑

m=−D

h2
muk,r+m(p− 1, i). Finding estimation v̂

is the optimization problem as below:

v̂ = argmax
v

Q(θ(v, · · · ),θ(p− 1))

= argmin
v

1

t

t∑
i=1

N∑
r=1

(
(yr −m(i, r))2

2k(i, r)T · v
+

1

2
log (k(i, r)T · v)

)
= argmin

v
R(v)

(2.32)

To find this estimation, we use Conjugate Gradient Algorithm(CGA) [27] as Al-

gorithm 1.

2.4.5 3D Blurring Observed Image Model

First, we define yn as the observed n-th image vector in a stack of images and xn

as the label vector of the n-th slice. Let the set of all lattice point S be [1, · · · ,M ]2

and the order of the pixel of xn and yn be raster scan order as below.

xn = [xn,1, xn,2, · · · , xn,r, · · · , xn,N ]

= [xn,(1,1), · · · , xn,(1,M), xn,(2,1), · · · , xn,(2,M),

· · · , xn,(r1,r2), · · · , xn,(M,1), · · · , xn,(M,M)]
T (2.34)
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Algorithm 1 Algorithm for finding v̂

Initialization: Set n ⇐ 0 and select the initial point v0

1: g0 ⇐ ∇R(v0)
2: if g0 = 0 then
3: stop
4: else
5: set d0 ⇐ −g0

6: end if
7: repeat
8: Find αn = argminα≥0 R(vn + αdn) using Newton’s algorithm
9: vn+1 ⇐ vn + αndn

10: gn+1 ⇐ ∇R(vn+1)
11: if gn+1 = 0 then
12: stop
13: else
14: Use Fletcher-Reeves formula.

δn ⇐
gT
n+1gn+1

gT
ngn

(2.33)

15: end if
16: dn+1 ⇐ −gn+1 + δndn

17: n ⇐ n+ 1
18: until n ≥ nmax



23

yn = [yn,1, yn,2, · · · , yn,r, · · · , yn,N ]

= [yn,(1,1), · · · , yn,(1,M), yn,(2,1), · · · , yn,(2,M),

· · · , yn,(r1,r2), · · · , yn,(M,1), · · · , yn,(M,M)]
T (2.35)

And let h3D be the blurring 3D filter vector defined as (2.36), where h3D(s1, s2,m) is

the filter coefficients of the 3D blurring filter which can be obtained from (2.2). And

the size of the 3D blurring filter is (2W + 1)× (2W + 1)× (2W + 1)

hm = [hm,−D, hm,−D+1, . . . , hm,s, · · · , hm,D−1, hm,D]

= [h3D(−W,−W,m), h3D(−W,−W + 1,m), . . . ,

h3D(s1, s2,m), · · · , h3D(W,W − 1,m), h3D(W,W,m)]

h3D = [h−D,h−D+1, . . . ,hm, · · · ,hD−1,hD]

(2.36)

where D = ((2W + 1)2 − 1)/2. And s = (s1, s2) is an ordering index of the points

(x, y, z = m) with raster scan ordering. By using (2.34),(2.35) and (2.36), we can

expand the 2D blurring observed image model (2.19) and its pmf (2.20) to the 3D

blurring observed image model and its relevant pmf with (2.37) and (2.38) respectively

if we use the single variance form where x̃n−1, · · · , x̃n−W are the already segmented

label vectors of the previous slices.

fYn|Xn(yn|xn,θn, x̃n−1, · · · , x̃n−W ) =
N∏
r=1

1√
2πσ2

n,xn,r

exp

(
−

(yn,r −
∑D

s=−D h0,sµn,xn,r−s −
∑W

m=1

∑D
s=−D hm,sµn,x̃n−m,r−s)

2

2σ2
n,xn,r

)
(2.37)
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pXn|Yn(xn|yn,θn, x̃n−1, · · · , x̃n−W ) =
1

zfYn(yn|θn)

 N∏
r=1

1√
2πσ2

n,xn,r


· exp

(
−

N∑
r=1

(yn,r −
∑D

s=−D h0,sµn,xn,r−s −
∑W

m=1

∑D
s=−D hm,sµn,x̃n−m,r−s)

2

2σ2
n,xn,r

−
∑

{r,s}∈C

βt(xn,r, xn,s)

)
(2.38)

2.5 Minimum Area Increment(MAI) Constraint

2.5.1 Area Increment Measuring Function

To improve the bridged channel defect, we propose the MAI(minimum area in-

crement) constraint. We want the small particles to merge together according to the

MRF property but the large objects not to merge together easily.

First, we define the bridging class set as the set of classes whose objects have a

bridged channel problem. And we define the class-k connecting point as a point where

more than two disconnected class k regions exist over neighboring pixels. Figure 2.4

shows a 4 neighbor and a 12 neighbor system. The center point can be a connecting

point and the surrounding shaded points are its neighboring pixels.

4-neighbor 12-neighbor

Fig. 2.4. A connecting point and its neighbors



25

Now, we propose the area increment measuring function gws,r(xr) as the amount

of area increase on largest-area region which exists among the neighbors of pixel

location r, when the class label of that pixel is xr. (where ws is window size and

∀r, gws,r(0) = 0)
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Fig. 2.5. Examples of the area increment measuring function (searching 4 neighbors)

Figure 2.5 shows some examples of the area increment measuring function when

the class number is 3 and the window size ws = 5. In this figure, the pixels labeled

with 1 and 2 are the class 1 and the class 2 pixels respectively. And the pixels with

no label is the class 0 pixels. In this example, the class 1 and the class 2 are bridging

classes while the class 0 is a non-bridging class. In the first image, the center point

is not a connecting point because there is no more than two disconnected same class

areas over neighboring pixels. In the second image, the center point is both the class-1

connecting point and the class-2 connecting point. If the xr is the class 1, the top left

of the class 1 area and the bottom right of the class 1 area are connected. And the

top left region has larger area than the bottom. Therefore, the area increment g5,r(1)

becomes 4 which is the area of the bottom right region. Likewise, g5,r(2) becomes 1.

In the third image, the center point is only the class-2 connecting point because all

the pixels of the class 1 have already been connected. This constraint measured as

τgws,qt(xqt) at time t can be incorporated into 2.25 when generating Markov chain,

where τ is a control parameter to adjust the amount of this constraint.
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2.5.2 Modified EM/MPM Iteration

em_iter = em_num
β = b0

xinit = x0

MPM segmentation
xresult

em_iter ≤ 0 ?

Yes
No

EM esimate

End

xinit = xresult

em_iter = em_iter - 1

(a) Original EM/MPM algorithm

em_iter = em_num
β0 = b0, β1 = b1

xinit = x0

MPM segmentation
xresult

em_iter ≤ 0 ?

Yes
No

EM esimate

End

xinit = xresult

β0 =  β0 + (b1-b0)/em_num
em_iter = em_iter - 1

(b) Proposed SA scheme

Fig. 2.6. EM/MPM algorithm flowchart

To make the proposed MAI constraint more effective, we applied the SA(simulated

annealing) scheme during the iteration. But, different from the conventional SA, we

gradually change the β value only for the non-bridging classes. Figure 2.6 illustrates

flowcharts of the original EM/MPM algorithm and the proposed SA scheme for the

segmentation of two classes. The class 0 is not in the bridging class set. And the class

1 is in the bridging class set in which we are interested for its merging problem. In

these flowcharts, ‘em num’ is the EM/MPM iteration step number. x0 is the initial

class label for the whole EM/MPM algorithm. xinit is used as an initial class label
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for the MPM segmentation. And, xresult is the result of that segmentation. In the

proposed SA scheme, the spatial interaction parameter β0 for the non-bridging class

is initially set smaller than β1 of the bridging class. And then it is gradually increased

toward the same value as β1 according to the iteration step. And b0 and b1 is the

initial spatial interaction parameters of class 0 and class 1 respectively.

2.6 Experimental Results

In this section, we present the visual and numerical results obtained by using the

joint deconvolution segmentation(JDS) EM/MPM algorithm and the MAI constraint.

In our experiments, the percentage of misclassified pixels(PMP) is used to evaluate

the performance of our algorithm numerically.

(a) original image (b) ground truth (c) EM/MPM (β = 1.6)

(d) Single variance JDS
EM/MPM (β = 1.6, ω =
0.52, δ = 0)

(e) Multi variance JDS
EM/MPM (β = 1.6, ω =
0.52, δ = 0)

(f) Single variance JDS
EM/MPM with MAI/SA (b0
= 1.2, b1 = 1.6, ω = 0.52, δ
= 0, τ=1.5)

Fig. 2.7. Result images of Ni-Al-Cr superalloy images

The first test image and its results are shown in Figure 2.7. Figure 2.7(a) is

the original image and Figure 2.7(b) is the ground truth segmentation image of the
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original image. We apply the original EM/MPM algorithm to the original image,

JDS EM/MPM algorithm using the single variance form (2.13), the JDS EM/MPM

algorithm using the multi variance form (2.18) and the JDS EM/MPM algorithm

using single variance with MAI constraint and SA. Figure 2.7(c), Figure 2.7(d), Figure

2.7(e) and Figure 2.7(f) are the results of those methods respectively. We can see

that the class 1 (white area) objects in the result image of the original EM/MPM

segmentation are so expanded and have some bridged channel defects. The results of

JDS EM/MPM algorithm show that this method makes the class 1 area to be more

shrunk by reducing blurring artifacts, but it still have some bridged channels left.

Figure 2.7(f) shows that the JDS EM/MPM algorithm with MAI/SA can eliminate

these bridged channels effectively. In this experiment, we used a 12 neighbor system

and a window size ws = 7 for MAI. And the em num, the EM iteration number is 30.

Figure 2.8 shows that the MAI constraint is effective only when it is used with the

proposed SA scheme and the JDS EM/MPM algorithm. The MAI/SA method aims

for the objects to be well-disconnected and eventually fit to the object area without

bridged channels. However, in the intermediate results of the MAI/SA method with-

out the JDS EM/MPM algorithm (first row) and of the MAI constraint without the

SA (second row), many of the class 1 objects have already been merged even in the

early stage of the EM/MPM iteration. But the JDS EM/MPM algorithm with the

MAI/SA (third row) makes the MAI constraint more effective.

The second test image group and their results are shown in Figure 2.9 and Figure

2.10. In Figure 2.9(c) and Figure 2.10(c), we can see the conventional EM/MPM

algorithm produce particles with some bridged channels. However, in the Figure

2.9(f) and Figure 2.10(f), the JDS EM/MPM segmentation method with the MAI/SA

can mitigate those bridged channels.

Table 2.1 shows the PMP value of each test image result. Our JDS EM/MPM

method shows better PMP value compared to original EM/MPM method. And, JDS

EM/MPM with MAI/SA method gives the best result. In addition, single variance
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(a) em iter = 0 (b) em iter = 10 (c) em iter = 25 (d) em iter = 27 (e) em iter = 29

(f) em iter = 0 (g) em iter = 10 (h) em iter = 25 (i) em iter = 27 (j) em iter = 29

(k) em iter = 0 (l) em iter = 10 (m) em iter = 25 (n) em iter = 27 (o) em iter = 29

Fig. 2.8. The MAI constraint applied segmentation results during the EM iteration: (first
row) The MAI constraint only with SA; (second row) The MAI constraint only with JDS;
(third row) The MAI constraint with both JDS and SA

Table 2.1
PMP of Test and Ni-Al-Cr superalloy images

Fig. 2.7(a) Fig. 2.9(a) Fig. 2.10(a)
Original EM/MPM 11.60 6.18 5.27
Single variance JDS
EM/MPM

5.37 6.04 5.38

Multi variance JDS
EM/MPM

5.35 6.08 5.29

Single variance
JDS EM/MPM
with MAI/SA

4.63 4.97 4.63

form shows as much favorable result as muti variance form even reducing the compu-

tational complexity.

For the third test image dataset, we used the images of a polycrystalline nickel-

base superalloy (René 88 DT) material [28]. Images with the slice number from 013
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(a) Slice 027 (b) Ground Truth (c) EM/MPM (β = 1.5)

(d) Single variance JDS
EM/MPM (β = 1.5, ω = 0.47,
δ = 0.5)

(e) Multi variance JDS
EM/MPM (β = 1.5, ω = 0.47,
δ = 0.5)

(f) Single variance JDS
EM/MPM with MAI/SA (b0
= 1.1, b1 = 1.5, ω = 0.47, δ =
0.5, τ = 1.5)

Fig. 2.9. Result images of slice number 27 of Ni-Al-Cr superalloy image sequence

Table 2.2
PMP of René 88 DT images

Slice 017 Slice 152 Slice 170
Original EM/MPM 7.27 7.01 5.43
Single variance JDS
EM/MPM

5.62 5.23 4.42

Multi variance JDS
EM/MPM

5.62 5.17 4.36

Single variance
JDS EM/MPM
with MAI/SA

5.03 4.74 4.21

to 017, from 148 to 152 and from 165 to 170 were used (Figure 2.11). The light-

colored phase(class 1) is γ′ and the gray matrix(class 0) is γ. Figure 3.14, 3.15 and

3.16 show the results of the last images of those image sequences. The result images

demonstrate that the JDS EM/MPM with MAI/SA method makes the area of the
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(a) Slice 171 (b) Ground Truth (c) EM/MPM (β = 1.5)

(d) Single variance JDS
EM/MPM (β = 1.5, ω = 0.38,
δ = 0.5)

(e) Multi variance JDS
EM/MPM (β = 1.5, ω = 0.38,
δ = 0.5)

(f) Single variance JDS
EM/MPM with MAI/SA (b0
= 0.9, b1 = 1.5, ω = 0.38, δ =
0.5, τ = 1.7)

Fig. 2.10. Result images of slice number 171 image of Ni-Al-Cr superalloy image sequence

class 1 objects shrunk much and improves the bridged channel defect. But, there

still remain some misclassifications in the boundary, particularly on the denting area

(marked with circles in Figure 2.12(f) 2.13(f) and 2.14(f)). Table 2.2 compares the

PMP value of each method. And it shows that our proposed method gives the best

performance.

We applied our method to the 3D EM/MPM method and got the result images

in Figure 2.15 and Figure 2.16. In this experiment, we used the single variance JDS

method. The 3D EM/MPM method needs a large amount of memory. Therefore,

we apply the method for the three frames and save the result of the middle frame

first. And then we move to the next three frames which are one frame shifted from

the previous three frames and repeat the same process. For the test image sequence,

we use the slice number 1 to 59 of the Ni-Al-Cr superalloy image sequence and the

slice number 143 to 188 of the René 88 DT image sequence. In Figure 2.15 and
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(a) Slice 013 (Bot-
tom)

(b) Slice 014 (c) Slice 015 (d) Slice 016 (e) Slice 017 (Top)

(f) Slice 148 (Bot-
tom)

(g) Slice 149 (h) Slice 150 (i) Slice 151 (j) Slice 152 (Top)

(k) Slice 166 (Bot-
tom)

(l) Slice 167 (m) Slice 168 (n) Slice 169 (o) Slice 170 (Top)

Fig. 2.11. Series of René 88 DT images. The light-colored phase is γ′ and the gray matrix
is γ

Figure 2.16, the first column is the results of the original EM/MPM method, the

second column is of our proposed methods applied to the 2D EM/MPM method and

the third column is of our proposed methods applied to the 3D EM/MPM method.

When we compare the results, especially focused on the regions in the circles, our

proposed methods improve the merging problem better than the original EM/MPM

method. Especially, when it is applied with 3D EM/MPM method, it shows the best

performance in reducing the bridged channel defects. Furthermore, 3D EM/MPM

method can improve some jagged boundaries of objects appeared in the circle of

Figure 2.16(e). Table 2.3 compares the running time of each method.
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(a) Slice 017 (b) Ground Truth (c) EM/MPM (β = 1.5)

(d) Single variance JDS
EM/MPM (β = 1.5, ω = 0.52,
δ = 0.5)

(e) Multi variance JDS
EM/MPM (β = 1.5, ω = 0.52,
δ = 0.5)

(f) Single variance JDS
EM/MPM with MAI/SA (b0
= 1.1, b1 = 1.5, ω = 0.52, δ =
0.5, τ = 1.5)

Fig. 2.12. Result images of slice number 017 of René 88 DT image sequence

Table 2.3
Running Time

(sec) Ni-Al-Cr superalloy René 88 DT
2D EM/MPM 81 63
2D JDS EM/MPM
with MAI/SA

2260 1762

3D JDS EM/MPM
with MAI/SA

6638 5175

2.7 Conclusions

First, in this chapter, we proposed the JDS method to reduce the swelling of the

object boundary in the segmentation result. This method incorporates the blurring

information of the microscope image into the existing segmentation method. To be

specific, we proposed two types of the JDS method: one is a single variance method
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(a) Slice 152 (b) Ground Truth (c) EM/MPM (β = 1.5)

(d) Single variance JDS
EM/MPM (β = 1.5, ω = 0.52,
δ = 0.5)

(e) Multi variance JDS
EM/MPM (β = 1.5, ω = 0.52,
δ = 0.5)

(f) Single variance JDS
EM/MPM with MAI/SA (b0
= 1.1, b1 = 1.5, ω = 0.52, δ =
0.5, τ = 1.5)

Fig. 2.13. Result images of slice number 152 of René 88 DT image sequence

and the other is a multi variance method. The multi variance method brings better

PMP values than the single variance method. However, using the multi variance

method increased the computational complexity. Therefore, if the application pursues

the computational simplicity more than the accuracy of the segmentation result, a

single variance method would be recommended. The experimental results showed that

this JDS method significantly improved the misclassifications of the object boundary.

However, the bridged channels still remain in some areas. To tackle this issue,

secondly, we suggested the MAI/SA method as the MAI constraint is designed to

limit the excessive merging of large objects during the segmentation process. And

this constraint was much effective when it was applied together with the SA scheme.

Lastly, we combined the JDS method and the MAI/SA method with the exist-

ing EM/MPM method. The experimental result showed that this combined method

reduced the bridged channel defects very effectively. We also performed the 3D seg-
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(a) Slice 170 (b) Ground Truth (c) EM/MPM (β = 1.5)

(d) Single variance JDS
EM/MPM (β = 1.5, ω = 0.52,
δ = 0.5)

(e) Multi variance JDS
EM/MPM (β = 1.5, ω = 0.52,
δ = 0.5)

(f) Single variance JDS
EM/MPM with MAI/SA (b0
= 1.1, b1 = 1.5, ω = 0.52, δ =
0.5, τ = 1.5)

Fig. 2.14. Result images of slice number 170 image of René 88 DT image sequence

mentation in the 3D dataset with this proposed method. In this case, the correlation

between neighboring slices in the image sequence can be used to improve the bound-

ary precision of the segmentation result. To reduce the memory size in handling

the 3D dataset, we made a window of three slices of image and processed the 3D

segmentation by moving the window incrementally by one slice. We could see that

the 3D JDS EM/MPM with MAI/SA method applied to the 3D dataset cleared the

bridged channel problem better than the other methods. Also, we found it improved

the jagged boundaries of the objects.

The study on the misclassification issue of the denting areas is to be followed in

the future. Also, further study could be done to make more precise blurring image

models or to automatically estimate control parameters of the proposed model.
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(a) 2D EM/MPM (b) 2D JDS EM/MPM with
MAI/SA

(c) 3D JDS EM/MPM with
MAI/SA

(d) 2D EM/MPM (β = 1.5) (e) 2D JDS EM/MPM with
MAI/SA (β = 1.5, ω = 0.3,
δ = 0.1, τ = 1.5)

(f) 3D JDS EM/MPM with
MAI/SA (β = 1.5, ω = 0.3,
δ = 0.1, τ = 1.5)

Fig. 2.15. Result 3D images of Ni-Al-Cr superalloy image sequence

(a) 2D EM/MPM (b) 2D JDS EM/MPM with
MAI/SA

(c) 3D JDS EM/MPM with
MAI/SA

(d) 2D EM/MPM (β = 1.5) (e) 2D JDS EM/MPM with
MAI/SA (β = 1.5, ω = 0.5,
δ = 0.5, τ = 1.0)

(f) 3D JDS EM/MPM with
MAI/SA (β = 1.5, ω = 0.5,
δ = 0.5, τ = 1.0)

Fig. 2.16. Result 3D images of René 88 DT image sequence
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3. CHANNEL DETECTION IN MICROSCOPE IMAGES

OF MATERIALS USING MARKED POINT PROCESS

MODELING

3.1 Introduction

In this chapter, we propose two methods to extract channel configurations in

materials images. A channel is a narrow gap between two structures. To extract

an accurate channel configuration, we need to detect the position, width, length and

rotation angle of each channel. In order to detect those parameters, we use the Marked

Point Process (MPP) framework. Compared to the conventional Markov random field

model, the advantage of the MPP based model is that it can exploit the geometric

information of the channels, and their spatial relation.

In order to extract the channels from an image, we design a data energy that

reflects the coherence between each channel configuration and the input material

image. Then, we apply this data energy together with an interaction energy to

the MPP framework. To minimize this energy, we use the Reversible Jump Markov

Chain Monte Carlo (RJMCMC) algorithm [29] together with simulated annealing [30].

Once the channel configuration is obtained, this information can be used for fur-

ther analysis. For instance, we can use it to reduce bridged channel defects in the

conventional segmentation of material images [22, 31]. We suggest a methodology

for incorporating the channel information with an existing segmentation method to

improve boundary precision. As a segmentation method, we use the expectation-

maximization/maximization of the posterior marginals (EM/MPM) segmentation al-

gorithm [19], which has been successful in many applications. For experimental val-

idation, we use four materials datasets. The results demonstrate that the proposed
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method is effective in extracting channels from images, and in improving segmentation

results at channel boundaries.

This chapter is organized as follows: Firstly, in Section 3.2, we briefly review

the MPP. Our proposed channel modeling methods are presented in Section 3.3.

In Section 3.4, the methodology is proposed to improve the result of the existing

segmentation method with channel information. In Section 3.5, results of applying

our proposed method are shown, with detailed discussion.

3.2 Marked Point Process

A marked point process X = {X1, . . . , Xn} defined on a space S = M × K is

a point process, whose realizations are configurations of marked points of the form

x = {x1, . . . , xn} ∈ C. Each marked point consists of random spatial location and

random parameters that describe shape of object, such as ellipse, rectangle or line

segment. For example, if a microscopic image is composed of randomly located cir-

cular particles, we can model this image with the radius and location of each circle.

In this case, the ith marked point can be expressed as Xi = (Si, Ni), where Si is the

location and the mark Ni has the radius of the circle object.

The probability density function of an MPP is given by the Gibbs distribution as

p(x) =
1

zmpp

exp(−U(x)) (3.1)

where U(x) is the Gibbs energy of a configuration x and zmpp is a normalizing con-

stant. To describe a density p(x) conditioned on image data y, the Bayesian model

is widely used in image processing.

p(x|y) ∝ p
likelihood

(y|x)p
prior

(x) (3.2)
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Then a Gibbs energy can be described as:

U(x|y) ∝ UD(y|x) + UP (x) (3.3)

where UD(y|x) is a data energy and UP (x) is a prior energy. The term UD(y|x) can

be further expanded as a sum of individual potentials over objects in a configuration.

UD(y|x) =
n∑

i=1

Vd(y|xi) (3.4)

Vd(y|xi) is a data potential for an individual object. If Vd(y|xi) ≤ 0, the object xi

is a favorable candidate, since it increases the density p(x|y). For the prior energy

UP (x), we use only single-pixel and two-pixel clique. Then the prior energy can be

expressed as:

UP (x) =
n∑

i=1

Vp(xi) + λint

∑
xi∼xj

Vint(xi, xj) (3.5)

Vp(xi) is a prior potential for an individual object. And Vint(xi, xj) is an interaction

potential, where a neighborhood relation ∼ is defined between a pair of objects and

λint is a parameter to control the amount of contribution of the interaction potential

to the prior energy.

3.3 Proposed Channel Modeling Methods

Figure 3.1 shows some examples of channels. To classify these channels further,

we can categorize them as simple, necking and denting channels, as shown in Figure

3.1(b) and 3.1(c). While simple and necking channels have two open ends, denting

channels have one open and one closed end. Taking a closer look at this figure, we

can see these three types of channels have typical shapes. Figure 3.2 represents these

typical shapes and some parameters related to the formation of channels. For the

ith object, li is length, wi is width and θi is rotation angle of the object. A necking
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(a) (b) (c)

Fig. 3.1. Channels: (a) Original data (b) Simple channel (c) Necking (marked with green
box) and denting (marked with yellow box) channel

channel is different from a simple channel in that it has a special shape at both ends to

confine the length of a channel object to the length of the actual channel in the image

data. For the necking and denting channels shown in Figure 3.2, as a prior model we

i
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θ

(a) Simple channel

i
w

i
l

i
θ

0
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(b) Necking channel

i
w i

l

i
θ

1
i

c =

(c) Denting channel

Fig. 3.2. Types of channel

simply penalize overlapping of objects [32]. We also define a curved channel model

which identifies curved channels with a series of connected simple channels which

have a shape as shown in Figure 3.2(a). In this method, we use a Quality Candy

model [16] as a prior model to detect channels which have curved shapes. As a data

potential in both channel modeling methods, we modify that proposed in [16] which

uses Student’s t-test. For two datasets D1 and D2 the t-test value is calculated as:

ttest(D1, D2) =
|D̄1 − D̄2|√
σ̃2
D1

nD1
+

σ̃2
D2

nD2

(3.6)
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where D̄1 is the sample mean, σ̃D1 is the sample standard deviation and nD1 is the

number of data samples in D1.

3.3.1 Necking and Denting Channel Method

A necking channel mark ni = (li, wi, θi) is defined on a space M0 = [Lmin, Lmax]×

[Wmin,Wmax]× [0, π] and a denting channel mark ni = (li, wi, θi) is defined on a space

M1 = [Lmin, Lmax] × [Wmin,Wmax] × [0, 2π]. Finally, a necking and denting channel

mark space M can be specified as M0

∪
M1. The ith marked point can be expressed

as xi = (si, ni), where si = (ai, bi) ∈ K is the center position of the channel object.

For the necking channel, the data potential in (3.4) is given by:

Vd(y|xi) = λoVo(y|xi) (3.7)

where Vo(y|xi) is an object potential which reflects the statistical accordance between

the channel model and the image data. This object potential will be explained in de-

tail shortly. λo is a positive parameter to control the influence of the object potential.

For the denting channel, a second term is added to the data potential, giving:

Vd(y|xi) = λoVo(y|xi) + λcVc(y|xi) (3.8)

where Vc(y|xi) is a continuity potential. These will be discussed in the following

sections. λc is a positive parameter to control the influence of the continuity potential.

Object Potential Vo(·)

For each object xi, we expect the grayscale values of pixels in the region Ai
c to be

statistically different from those in the region Ai
nc in Figure 3.3. We do not consider

grayscale values in transition areas between Ai
nc and Ai

c. To measure this difference,

the t-test is used. Let Ri
c = {ỹi(u, v)|(u, v) ∈ Ai

c)} and Ri
nc = {ỹi(u, v)|(u, v) ∈ Ai

nc},
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Fig. 3.3. Pixel masks of necking and denting channels

where ỹ(u, v) defined on Ai = {(u, v)||u| ≤ li
2
, |v| ≤ wi

2
} is the image patch from the

image data y(a, b) corresponding to the parameters of the object xi. This can be

written as follows:

ỹi(u, v) = y(a, b) (3.9)


a

b

1

 = T (ai, bi)R(θi)


u

v

1

 (3.10)

where T (·) is a translation matrix and R(·) is a rotation matrix. Then, the t-test value

of a channel object xi is calculated as ttest(R
i
c, R

i
nc) from (3.6). If this value is big, this

means the channel marked point is well matched to the image data. However, this

t-test term reflects only an overall difference between a channel model and the image

data. Therefore, if we exploit more specific characteristics of the channel shape, we

can have a more accurate measure of the data fit. The shape of our channel object

is symmetric about the u axis. This means that the data should be symmetric also.

Therefore, the symmetry error is given by:

Es(xi,y) =
1

|Ai
c ∪ Ai

nc|

∫ ∫
Ai

c∪Ai
nc

|ỹi(u, v)− ỹi(u,−v)|dudv (3.11)
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Then, the statistic value reflecting the correspondence between xi and the image data

y is given by:

B(y|xi) =
ttest(R

i
c, R

i
nc)

max(Sth, Es(xi,y)/m̃i)
(3.12)

where m̃i is an average intensity of image data in Ai
c ∪ Ai

nc and Sth is a control

parameter. Finally, the object potential value is given by [12]:

Vo(y|xi) =

1− B(y|xi)
T

B(y|xi) < T

exp(−B(y|xi)−T
3B(y|xi)

)− 1 B(y|xi) ≥ T

(3.13)

Continuity Potential Vc(·)

This potential is designed to avoid misidentifying a necking channel as a denting

channel. Actually, the shape of a channel in Figure 3.4(c) does not match with

any pixel mask of this method shown in Figure 3.3 but does have two open ends.

Therefore, we prefer not to identify this channel as a denting channel based on the

definition that a denting channel has one open and one closed end. This continuity

potential confines the denting channel to be identified according to its own definition

and is used only for the denting channel. To examine if the channel in the image

data has one closed end, we evaluate the intensity change of the image data along the

path of a parametric function pair (u(t; l, w), v(t; l, w)) in the denting channel which

has length l and width w. The solid line in Figure 3.4(e) presents an example of

this path whose equation is given in Appendix B. First, the function ỹi(t) defined on

t ∈ [−li − (π−4
4
)wi, li + (π−4

4
)wi] is constructed as:

y̆i(t) = ỹi(u(t ; li, wi), v(t ; li, wi)) (3.14)
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Fig. 3.4. Continuity potential. (a) Denting channel (b) y̆i(t) and ȳi(t) of the denting
channel (c) Misidentified channel (d) y̆i(t) and ȳi(t) of the misidentified channel (e) Path of
a parametric function pair

Then, m̆i is calculated as:

m̆i =
2

(π − 4)wi

∫ li+(π−4
4

)wi

−li−(π−4
4

)wi

y̆i(t)dt (3.15)
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Then, this ỹi(t) becomes translated and normalized by m̆i and low-pass filtered as:

ŷi(t) =
y̆i(t)− m̆i

m̆i

(3.16)

ȳi(t) = hLP (t) ∗ ŷi(t)

where hLP (t) is the impulse response of low-pass filter. Finally, a continuity potential

is given as an integration of the length of regions where ȳi(t) is smaller than the

threshold ȳth.

Vc(y|xi) =

∫ li+(π−4
4

)wi

−li−(π−4
4

)wi

1(ȳi(t) ≤ ȳth)dt (3.17)

Figure 3.4(b) and 3.4(d) show the ȳi(t) and its continuity potential.

Interaction Potential Vint(·)

For the prior energy in (3.5), we use an interaction potential and it is given by [33]:

Vint(xi, xj) = exp(τintĀ(xi, xj))− 1 (3.18)

where τint is a control parameter and Ā(xi, xj) reflects the overlapping amount be-

tween xi and xj as illustrated in Figure 3.5 and calculated from:

Ā(xi, xj) =
A(xi ∩ xj)

min(A(xi), A(xj))
(3.19)

where A(·) is an area function.
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Fig. 3.5. Overlapping area of two channel objects

Optimization

Once p(x|y) is defined, we can get the most probable configuration x̂ by maxi-

mizing p(x|y), or minimizing U(x|y).

x̂ = argmin
x∈C

U(x|y) (3.20)

To simulate an MPP, a Markov Chain is constructed. Green proposed the Reversible

Jump Markov Chain Monte Carlo(RJMCMC) method [29] for simulating a Markov

chain where the dimension of the state is not fixed. In the case of a simple geometric

shape and interaction prior such as non-overlap, the Multiple Birth and Death(MBD)

algorithm proposed by Descombes et al. [12] outperforms the RJMCMC method in

its execution time. A diffusion algorithm allows the configuration to evolve according

to the energy gradient. Interested readers can see [34]. Usually, these optimization

methods are applied with simulated annealing [30]. To apply simulated annealing to

an optimization method, we can replace p(x) with pm(x) ∝ (p(x))
1

Tm in (3.1). As a

decreasing scheme of temperature, we use a geometric decrease which is given by:

Tm = T0 · αm (3.21)

where α < 1. T0 is an initial temperature and m ∈ N is time.
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Reversible Jump Markov Chain Monte Carlo

When we simulate distribution π(dx) of a configuration x using the Markov chain,

where the dimension of the configuration is not fixed but can vary, the RJMCMC is

one of the simulation methods that can deal with this problem using the Metropolis-

Hastings paradigm to build a reversible Markov chain. It is composed of several move

types m and corresponding proposition kernels Qm(x, dx
′), which are probabilities to

simulate the move m from state x to x′. Once this move is simulated, this proposal is

accepted according to its acceptance ratio αm. From the detailed balance condition,

if π(dx)Qm(x, dx
′) has a finite density with respect to a symmetric measure ξm on

C×C, this ratio is formulated with π(·) and Qm(·, ·). One transition of this algorithm

is described below:

1. Choose a move type m according to the probability pm = Qm(x, C).

2. Sample a new configuration x′ according to proposition kernel Qm(x, dx
′) from

the current configuration x.

3. Compute a Green’s ratio:

Rm(x,x
′) =

π(dx′)Qm(x
′, dx)

π(dx)Qm(x, dx′)
(3.22)

4. Accept the move (x → x′) with a probability:

αm = min(1, Rm(x,x
′)) (3.23)

For the convergence of the distribution π(dx), the choice of proposition kernels is

critical. Some different types of kernels are as below:

• Birth-and-death kernel : A birth-and-death kernel allows to add an object to or

remove it from a current configuration. Consequently, this kernel changes the

dimension of parameters. To add an object, a position is selected according to
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a point process and the parameters of the object are uniformly chosen from the

parameter space. Theoretically, this kernel is sufficient to simulate a marked

point process. However, in terms of increasing the convergence speed, it makes

the algorithm more efficient to use other types of kernels also.

• Non-jumping kernel: A non-jumping kernel allows a small perturbation such as

translation, dilation and rotation. This does not involve jumping of a dimension

but change the value of parameters.

• Switching kernel: A switching kernel allows to change the model of an object.

For example, a circle model, described by a position and a radius of objects as

a parameter, can be switched to a rectangle model which has a position, width,

length and a rotation angle of objects as its parameters. We can see that the

number of objects is not changed in this case, but the dimensional jumping is

involved. But, in other cases that both models of switching objects have the

same number of parameters, the dimension of parameters may not be changed

by this kernel.

Proposition Kernels

Birth-and-death The Green’s ratio of birth for the transition from a current con-

figuration x to a new configuration x′ is given by

R(x,x′) =
p(x′)

p(x)

pD
pB

ν(K)

n(x) + 1
. (3.24)

where n(x) is the number of channels in a configuration x. And pB = 1 − pD is the

probability of choosing a birth, and pD is the probability of choosing a death. For

the uniform Poisson process, ν(K) is λ|K| and λ is an intensity of Poisson process.

And the Green’s ratio of death is given by

R(x,x′) =
p(x′)

p(x)

pB
pD

n(x)

ν(K)
. (3.25)
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( , )a bδ δ

(a) Translation

( , )w lδ δ

(b) Dilation

δθ

(c) Rotation

Fig. 3.6. Non-jumping perturbation

Non-jumping (Translation, Dilation, Rotation) Figure 3.6 shows this type of

kernel. Each of these transformations uses parameters that are randomly chosen as

follow:

δa ∈[−∆a,∆a]

δb ∈[−∆b,∆b]

δl ∈[−∆l,∆l] (3.26)

δw ∈[−∆w,∆w]

δθ ∈[−∆θ,∆θ]

We set the values of ∆a, ∆b, ∆l and ∆w as all 1.5 and the value of ∆θ as 0.02. The

Green’s ratio of these move types is simply given by the following formula:

R(x,x′) =
p(x′)

p(x)
(3.27)

Switching Figure 3.7 shows some channels in the images and two instances of their

detected channel objects. In those instances, the left ones are more desirable than

the right ones. But the right channels still have attractive potentials even though

their potentials are higher than those of left ones. Therefore, to increase convergence

speed and improve the quality of final detection results, we need to encourage the

right channel objects to be switched to the left ones. Taking a closer look at the

figure, we can see that these switchings should accompany translation and dilation

as well. Therefore, switching kernels should be carefully designed by taking these
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(b)

Switching to denting channel with shorthening

Switching to necking channel with lengthening
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i

U x

<

Image 3

(c)

Fig. 3.7. Switching with shortening and lengthening

perturbations into account. Considering this translation and dilation, two types of

reversible switching can be constructed. The first type is depicted in Figure 3.8 which

can be divided further into three subtypes. And the second type is in Figure 3.9 which

can be also divided into three subtypes.

For example, let a denting channel xi = (ai, bi, li, wi, θi) be switched to a necking

channel x̂i according to the ‘switching type 1’ as Figure 3.8(c). The length li is
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Denting
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Fig. 3.8. Switching type 1. (a)(b) Necking to denting channel with shortening. (c) Denting
to necking channel with lengthening.

4w

Necking

Denting

(a) case 1

4w

Necking

Denting

(b) case 2

4w

Necking

Denting

(c) case 3

Fig. 3.9. Switching type 2. (a)(b) Necking to denting channel with lengthening. (c) Denting
to necking channel with shortening.

increased about wi

4
from the closing end and the center position (ai, bi) is also changed

accordingly as below:

x̂i =



ai − wi

8
cos(θn)

bi − wi

8
sin(θn)

li +
wi

4

wi

θi



T

(3.28)
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Then, the Green’s ratio is given by:

R(x,x′) =
p(x′)

p(x)

QS(x
′ → x)

QS(x → x′)

=
p(x′)

p(x)
(3.29)

The computation of the ratio QS(x
′→x)

QS(x→x′)
is detailed in Appendix D.

3.3.2 Curved Channel Method

In this method, the channel segment object ni = (li, wi, θi) is defined on a space

M = [Lmin, Lmax]× [Wmin,Wmax]× [0, π], where li is the length, wi is the width and

θi is the rotation angle of the segment xi. The channel shape follows a simple channel

in Figure 3.2(a). Then, for the area Ai
c and Ai

nc in Figure 3.10, the data potential

i

c
A

i

nc
A

u

v

/ 2
i
w

i
l

Fig. 3.10. Pixel mask of a simple channel

can be calculated with (3.7) and (3.13). For the interaction between objects, we use

a Quality Candy model which is widely used in detecting line networks [16].

Quality Candy prior model

In the Quality Candy model, a free segment, a single segment and a double line

segment are defined as Figure 3.11. If the endpoints of the two segments are close

and the distance is less than ε, then the endpoints are identified as a connected

endpoint for the each segment. The free segment does not have any connected end
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ε

Free segment

radius

Single segment Double segment

Fig. 3.11. Segment types

points. The single segment has only one connected end point. Finally, the double

segment has two connected endpoints. In the original Candy model [35], the internal

bad orientation relation and the external bad orientation relation are defined, which

penalize undesirable formations between two line segments However, in the Quality

Candy model, the potential function gRc(xi, xj) is defined for each pair of connected

segments instead of the external bad orientation relation used in the Candy model.

This potential can reflect the degree of the undesirable relationship between two

connected segments. In addition, the internal bad orientation potential function

gRio
(xi, xj) is defined to penalize the internal bad orientation relationship. Rc is the

set of connected segment pairs and Rio is the set of segment pairs which have the

internal bad orientation relation. Finally, the Gibbs energy of the Quality Candy

model is given by [16]:

U(x|y) =λo

n∑
i=1

Vo(y|xi) + ωfnf + ωsns + ωdnd + ωc

∑
<xi,xj>∈Rc

gRc(xi, xj)

+ ωeo

∑
<xi,xj>∈Rio

gRio
(xi, xj) (3.30)

where nf , ns and nd are the number of free segments, of single segments and of double

segments respectively, and λo, ωf , ωs, ωd, ωc and ωeo are control parameters. As an

optimization method and proposal kernels, we follow the proposals in [16] basically.

However, we add one more kernel which dilates the width wi of a channel object.
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3.4 Controlling the Interaction Parameter in EM/MPM Segmentation

Algorithm

In EM/MPM segmentation method, the posterior pmf is given as

pZ|Y(z|y,θ)

=
1

zsegfY(y|θ)

[
N∏
r=1

1√
2πσ2

zr

]
· exp

−
N∑
r=1

(yr − µzr)
2

2σ2
zr

−
∑

{r,s}∈C

βsegt(zr, zs)


(3.31)

where y is an input image, z is segmented labels and zr is a label at the position r.

And function t(zr, zs) is given in (2.7). Here, βseg is an interaction parameter which

controls the amount of neighboring pixel merging in the segmentation results. And

this parameter is selected uniformly for the entire image. Thus, the result shows

some bridged channel defects across channels. To reduce these defects, we propose

to control the interaction parameter βseg non-uniformly according to the channel

configuration by replacing an interaction parameter βseg with β̃(zr, a, b): βseg minn
i=0 β̃i(a, b) zr = 1 (object)

βseg, zr = 0 (background)
(3.32)

And β̃i(a, b) is constructed from ith channel object and given by:

β̃i(a, b) = β̂ (u, v ; li, wi) (3.33)


u

v

1

 = R(θi)T (−ai,−bi)


a

b

1

 (3.34)
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Fig. 3.12. Controlling the interaction parameter

And β̂(u, v ; l, w) defined on R2 is given by:



1−exp(−τsv2)

1−exp(−τs
w2

4
)
, |u| ≤ l

2
− w

2
, |v| ≤ w

2

1−exp(−τs((u−w
2
+ l

2
)2+v2))

1−exp(−τs
w2

4
)

, u < − l
2
+ w

2
, |v| ≤ w

2

1−exp(−τs((u+
w
2
− l

2
)2+(v2))

1−exp(−τs
w2

4
)

, l
2
− w

2
< u, |v| ≤ w

2

1, elsewhere

(3.35)

And the amount of separation is controlled by τs. And Figure 3.12 illustrates one

example of β̃(zr, a, b). Let the channel configuration be given as rectangles in the

figure, then the β̃(1, a, b) gradually becomes zero to the center of channel. This

setting of βs discourages merging of the pixels across these channels.

3.5 Experimental Results

In this section, we present visual and numerical results obtained by using the

proposed channel modeling methods and a method controlling interaction parame-

ter. The proposed two channel modeling methods have been tested on four sets of

microscope images of materials including a Ni-Al-Cr superalloy image which is shown

in Figure 3.13(a) and René88 DT images whose slice numbers are 17, 170 and 1 as

shown in Figure 3.14(a), Figure 3.15(a) and Figure 3.16(a). By using the final channel

configuration obtained from those methods, we segment the material images which

have bridged channel defects in original EM/MPM segmentation results. In the end,
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we can see that the new segmentation results are much better by successfully reducing

these misclassifications caused by the bridged channel defect.

3.5.1 Dataset 1: Ni-Al-Cr Superalloy

The Ni-Al-Cr superalloy material image and its results are shown in Figure 3.17.

The resolution of this test image is 194 by 149 pixel. First, we apply the necking and

denting channel method. However, there are only necking channels in this test image.

Therefore, we use only a necking channel model. In addition, all channels are aligned

to two directions in the original image. Therefore, we use this directional information

in the result in Figure 3.13(e) to fix θ with 0.2π, 0.7π without using a rotation kernel.

Secondly, we perform the curved channel method for this dataset. The results of these

two channel detection methods in Figure 3.13(d), Figure 3.13(e) and Figure 3.13(f)

show that most of channels are well detected. When we compare those two methods,

the curved channel method shows the better performance in convergence speed even

though the shape of channels is not a curve.

We use this channel configuration information to reduce the bridged channel de-

fects in the segmentation of material image. By controlling the interaction parameter

according to this channel configuration, we can get the improved segmentation results

as shown in Figure 3.13(g), Figure 3.13(h) and Figure 3.13(i). In Figure 3.13(c), class

1 (white area) objects of the original EM/MPM segmentation result are so expanded

that they have many bridged channel defects. Encouragingly, the results show that

our proposed method can eliminate these bridged channel defects effectively. Usually,

a percentage of the misclassified pixels(PMP) can be used to evaluate the performance

of a segmentation result numerically. The lower PMP value means the better result.

As shown in Figure 3.13(h), the best PMP value of the results using our methods is

2.73% while the result using the original EM/MPM segmentation algorithm is 6.59%.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3.13. Results of NiAlCr superalloy: (a) test image, (b) ground truth of segmentation,
(c) Original EM/MPM (PMP=6.59%), (d) Necking channels (running time 54sec), (e)
Necking channels (θ fixed, running time 16sec), (f) curved channels (running time 14sec), (g)
EM/MPM after detecting necking channels (PMP=2.74%), (h) EM/MPM after detecting
necking channels (θ fixed, PMP = 2.73%), (i) EM/MPM after detecting curved channels
(PMP=2.81%), Interaction parameters of all the EM/MPM results are set as 2.7

3.5.2 Dataset 2: René88

The second material image group and their results are shown in Figure 3.14,

Figure 3.15 and Figure 3.16. The resolution of all these test images is 194 by 149

pixel. First, we apply the necking and denting channel method. Compare to the Ni-

Al-Cr superalloy dataset, the channel size of these test images is much smaller. And

their formation is more complicated than the previous material image. Furthermore,
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they include both necking and denting channels. Despite those hard conditions, the

results in Figure 3.14(d) and Figure 3.15(d) are promising that most of channels are

successfully detected except some missed or over-detected channels. Especially, the

switching kernel works well even though the energy difference of a necking channel

and a denting channel is not so big at some channel positions in the image. However,

the Figure 3.16(b) shows some misdetection because the original image includes some

curved channels. In this case, the curved channel method is more apt to detect those

channels. Figure 3.14(e) is a channel detection result when we do not use continuity

potential. Compared with Figure 3.14(d) which uses continuity potential, it shows

that the continuity potential effectively reduce misidentifying necking channels as

denting channels. We also apply this channel information to improve the segmentation

result. To do this, as shown in Figure 3.14(h), we control the interaction parameter

value in the existing EM/MPM segmentation algorithm according to the channel

configuration. In this figure, β̃i(a, b) is normalized to [0,255] to visualize it. To

compare between Figure 3.14(c) and Figure 3.14(f), we can see that many bridged

channel defects are reduced. In general, it is hard to reduce the defects of denting

channel points. However, our results are encouraging as showing that the proposed

method can eliminate these defects effectively.

3.5.3 Dataset 3 and Dataset 4

The third dataset presented in Figure 3.17(a) is a Co-Al-W alloy image. And

fourth material images is presented in Figure 3.18(a). The resolution of the dataset

3 is 361 by 378 pixel. And dataset 4 has 142 by 215 pixel resolution. The dataset 3

is difficult to get the precise object boundary through the conventional segmentation

method as shown in Figure 3.17(d). However, the results in Figure 3.17(e) and Figure

3.17(f) demonstrate that our channel detection methods are very useful to improve

the bridged channel defect in the conventional segmentation results. Comparing the

Figure 3.17(e) and Figure 3.17(f), the necking and denting channel method shows
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3.14. Result images of slice number 17: (a) test image, (b) ground truth of segmen-
tation, (c) Original EM/MPM (PMP=6.21%), (d) Necking and denting channels (running
time 86sec), (e) Necking and denting channels without continuity potential (running time
87sec), (f) EM/MPM after detecting necking and denting channels (PMP=4.42%), (g)

curved channels (running time 40sec), (h) β̃(1, a, b) of curved channel, (i) EM/MPM af-
ter detecting curved channels (PMP=4.44%), Interaction parameters of all the EM/MPM
results are set as 2.9

better quality in some object boundaries. We fix θ with three values according to

P (θ = 0.31π) = 0.4, P (θ = 0.77π) = 0.4 and P (θ = 0.07π) = 0.2 in executing the

necking and denting channel method. The fourth material image has much small and
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3.15. Result images of slice number 170: (a) test image, (b) ground truth of segmen-
tation, (c) Original EM/MPM (PMP=5.52%), (d) Necking and denting channels (running
time 87sec), (e) Necking and denting channels without continuity potential (running time
81sec), (f) EM/MPM after detecting necking and denting channels (PMP=3.87%), (g)

curved channels (running time 31sec), (h) β̃(1, a, b) of curved channel, (i) EM/MPM af-
ter detecting curved channels (PMP=3.91%), Interaction parameters of all the EM/MPM
results are set as 2.9

complicated channels. However, the curved channel method successfully detects most

of channels.

When we compare overall performance between the necking and denting channel

method and the curved channel method, the curved channel method shows better
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(a) (b) (c)

(d) (e) (f)

Fig. 3.16. Result images of slice number 1: (a) test image, (b) Necking and denting channels
(running time 111sec), (c) curved channels (running time 35sec), (d) Original EM/MPM,
(e) EM/MPM after detecting necking and denting channels, (f) EM/MPM after detecting
curved channels, Interaction parameters of all the EM/MPM results are set as 2.9

performance in that it can detect curved channels as well as straight channels well

and the convergence speed is faster than its counterpart. However, to get reasonable

result, the curved channel method need a little effort to tune the many parameters of

quality candy model. In addition, the curved method can not discriminate between

a necking channel and a denting channel.

3.6 Conclusions

We have presented two channel modeling methods based on the MPP framework to

detect channels in microscopic images of materials. One is a curved channel method,

and the other is a necking and denting channel method. These methods are designed

as follows. Firstly, we defined three types of channel objects which reflect the shape

of each channel type. Next, to get a data energy, we calculated the statistical differ-
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(a) (b) (c)

(d) (e) (f)

Fig. 3.17. Results of the dataset 3: (a) test image, (b) Necking channels (θ fixed, run-
ning time 140sec), (c) curved channels (running time 113sec), (d) Original EM/MPM, (e)
EM/MPM after detecting necking channels (θ fixed), (f) EM/MPM after detecting curved
channels. Interaction parameters of all the EM/MPM results are set as 2.7

ence between the channel object and the intensity of a channel in the image. Then,

Gibbs energy is given as a sum of the data energy and the prior energy. This Gibbs

energy is minimized by the RJMCMC with a simulated annealing scheme to find the

most probable channel configuration. This channel configuration can be useful in an-

alyzing material images. By using this information, we reduced the bridged channel

defects in the segmentation results of material image. In addition, a method of how

to control the interaction parameter in the MRF model of the existing EM/MPM

segmentation algorithm has been also introduced. Finally, the experimental results

demonstrated that both channel modeling methods and the controlling method of the
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(a) Test image (b) Final configuration of channels

Fig. 3.18. Result of the dataset 4: (a) test image, (b) curved channels (running time 235sec)

EM/MPM segmentation algorithm are effective for detecting channels and reducing

the segmentation defects.

We can make some suggestions for further research based on implications and

limitations of this chapter. First of all, mainly due to the noise in the image, some

misidentified channels still remain in the result. To consider that the material images

used in our experiment are serial sectioned images of materials which have correlations

with their consecutive image slices, the accuracy of channel detection can be increased

by reducing the effect of the noise using these correlations. Secondly, in order to

increase convergence speed, it is recommendable to use an adaptive cooling schedule

in a simulated annealing [36] or a jump-diffusion process in the RJMCMC [37]. Or,

for the same purpose, we can use a non-homogeneous birth and death kernel which

generates the channels only in the relevant positions so that the computational time

can be reduced. Lastly, we can also follow up with the study on reducing the number

of tuning parameters.
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4. THE MARKED POINT PROCESS FOR 3D DATASETS

4.1 Introduction

To detect a 3D object configuration in a 3D dataset, in this chapter, we propose

two methods. We will call these methods the 3D clustering method and the fast 3D

fitting method. Both methods are composed of a two-step approach which involves the

following procedures: Detectiin a 2D object configuration and detecting 3D objects

based on the 2D object configuration. However, the difference of the two methods is

in how the 3D objects are detected. The 3D clustering method detects a 3D object

by matching 3D objects to the 2D objects as illustrated in Figure 4.1. However, in

the fast 3D fitting method, we first construct a birth map from the 2D configuration

and then apply a 3D MPP to the original 3D dataset with this birth map. Figure 4.2

represents these steps. The birth map enables us to generate 3D object candidates

that are most likely to fit the data. Therefore, we can reduce the computation time

of the full 3D MPP method.

In the MPP approach, we define an energy function that reflects prior knowledge

about the object model itself and a consistency between the object configuration and

the data. Then, this energy function is minimized with an optimization method.

As an optimization method, Multiple Birth and Death(MBD) [12] and Reversible

jump Markov chain Monte Carlo(RJMCMC) [29] methods are widely used. Recently,

Gamal Eldin et al. [38] apply graph cuts to find the optimal configuration. This

method is called multiple birth and cut(MBC). In this chapter, we use a MBC method

as an optimization method.

To evaluate the performance of this proposed method, two synthetic image se-

quences, a materials image sequence and a brain tissue image sequence are analyzed

with the proposed method. In this experiment, we use superellipsoid and a new el-
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liptical cylinder models as a mark model for the MPP. For 2D objects, a superellipse

model is used. The superellipsoid model is illustrated in Figure 4.3.

This chapter is organized as follows: Firstly, in Section 4.2, the proposed 3D

clustering and the related optimization method using multiple birth and cut (MBC)

are presented. Then the fast 3D fitting method and the related birth map is proposed.

In Section 4.4, after our proposed method is tested through a series of experiments,

the results are shown with detailed discussion.

Clustering

Matching 3D objects

to the  2D object clusters

  2D MPP Image sequence

Fig. 4.1. 3D clustering method

4.2 3D Clustering Method

In this chapter, we use a superellipse mark as a 2D object model to identify the

cross section of the 3D object. In this case, wi = (pi, ai, bi, θi) is the i-th superellipse

disk object defined on M ×K. Here, the center position pi = (pxi , p
y
i , p

z
i ) is defined on

a 3D lattice K = [0, Xmax]× [0, Ymax]× [0, Zmax]. ai ∈ [amin, amax] is the major semi-

axis length, bi ∈ [bmin, bmax] is the minor semi-axis length. These disks are parallel

to x-y plane and θi ∈ [θmin, θmax] is the orientation of this superellipse object. The

direction of rotation is counter-clockwise around z direction. Then, the mark space is

given as M = [amin, amax]×[bmin, bmax]×[θmin, θmax]. The total Gibbs energy U(w|y),
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Clustering

3D MPP with a birth map

2D MPP

ng

Generate

birth map

3D MPP Birth map

3D MPP with a birth map

Fig. 4.2. Fast 3D fitting method

Fig. 4.3. Superellipsoids

which represents the cost of configuration w = {w1, w2, · · · , wn}, can be expressed

as:

U(w|y) =
n∑

i=1

Vd(y|wi) + λ
∑

wi∼wj

Vin(wi, wj) (4.1)

where Vd is a data potential, Vin is an interaction potential and λ is a control param-

eter. wi ∼ wj is a neighboring relation which means that the area of wi intersects

with the area of wj and pzi = pzj . As the interaction potential, we use the potential

proposed in [32] to penalize the overlapping of two objects.

Vin(wi, wj) =

0 O(wi, wj) = 0

∞ O(wi, wj) > 0, pzi = pzj

(4.2)
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where

O(wi, wj) =
A(wi ∩ wj)

min(A(wi), A(wj))
(4.3)

As a 3D object model, we use a superellipsoid mark model. w3D
i = (p3Di , a3Di , b3Di , c3Di ,

αi, βi, γi) are superellipsoids located in p3Dk = (pxi , p
y
i , p

z
i ) ∈ K. (a3Di , b3Di , c3Di ) ∈

[a3Dmin, a
3D
max] × [b3Dmin, b

3D
max] × [c3Dmin, c

3D
max] = L are semi-axis lengths. (αi, βi, γi) ∈

[αmin, αmax] × [βmin, βmax] × [γmin, γmax] = O are orientation angles of w3D
i . The

mark space is given as M3D = L × O. As a rotation convention, z-y-x extrinsic

rotation is used.

Rx(α) =


1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

 (4.4)

Ry(β) =


cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)

 (4.5)

Rz(γ) =


cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1

 (4.6)

R = Rx(α)Ry(β)Rz(γ)

R−1 = Rz(−γ)Ry(−β)Rx(−α) (4.7)
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4.2.1 Superellipse and Superellipsoid

Superellipse

a

b

x

y

(a) superellipse

z

y

x
ab

c

(b) superellipsoid

Fig. 4.4. Superellipse and superellipsoid

Let a superellipse for the given marked point wi be expressed with an equation

fr(x, y;wi) = 1 (4.8)

or an equation with parametric form defined on u ∈ [0, 2π] as

sr(u;wi) = (xr(u;wi), yr(u;wi)). (4.9)

When (pxi , p
y
i ) = (0, 0) and θi = 0,

fr(x, y;wi) =

∣∣∣∣ xai
∣∣∣∣r + ∣∣∣∣ ybi

∣∣∣∣r = 1 (4.10)

xr(u;wi) = ai| cos(u)|
2
r · sgn(cos(u))

yr(u;wi) = bi| sin(u)|
2
r · sgn(sin(u)) (4.11)
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where

sgn(u) =


−1 u < 0

0 u = 0

1 u > 0

(4.12)

An outward surface normal is given as

nr(u;wi) =

(
dyr(u;wi)

du
,−dxr(u;wi)

du

)
(4.13)

And n̄r(u;wi) is the normalized outward surface normal.

Superellipsoid

Let a superellipse for the given marked point w3D
i be expressed with an equation

ft,r(x, y, z;w
3D
i ) = 1 (4.14)

or an equation with parametric form defined on u ∈ [0, 2π] and v ∈ [−π
2
, π
2
] given by

st,r(u, v;w
3D
i ) = (xt,r(u, v;w

3D
i ), yt,r(u, v;w

3D
i ), zt,r(u, v;w

3D
i )) (4.15)

When (pxi , p
y
i , p

z
i ) = (0, 0, 0) and (αi, βi, γi) = (0, 0, 0),

ft,r(x, y, z;w
3D
i ) =

(∣∣∣∣ x

a3Di

∣∣∣∣r + ∣∣∣∣ y

b3Di

∣∣∣∣r) t
r

+

∣∣∣∣ z

c3Di

∣∣∣∣t − 1 = 0 (4.16)
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xt,r(u, v;w
3D
i ) =a3Di | cos(u)|

2
r · sgn(cos(u))

· | cos(v)|
2
t · sgn(cos(v))

yt,r(u, v;w
3D
i ) =b3Di | sin(u)|

2
r · sgn(sin(u))

· | cos(v)|
2
t · sgn(cos(v)) (4.17)

zt,r(u, v;w
3D
i ) =c3Di | sin(v)|

2
t · sgn(sin(v))

An outward surface normal is given as

nt,r(u, v;w
3D
i ) =

∂st,r(u, v;w
3D
i )

∂u
× ∂st,r(u, v;w

3D
i )

∂v
(4.18)

And n̄t,r(u, v;w
3D
i ) is the normalized outward surface normal.

4.2.2 Data Potential

Data potential Vd(y|wi) reflects how much an object wi is matched to an image

y. Usually, a statistic difference in pixel values between outside and inside of object

model is used [12, 16]. As a statistic difference, the Bhattacharya distance or the

t-test are used. The other way to describe an data potential is using the average of

inner product between a surface normal vector and an image data gradient [14, 39].

Gaussian mixture model is also used in tree crown detection [40]. Error between

data and reference waveform of object are also used in some applications [7, 41]. In

all cases, the data potential should be designed in a way that an object which is

matched better should has a lower potential. And, to make an object survive in a

final configuration, it is desirable for the object to have a negative value of potential.

In this chapter. the data potential is based on the average of inner product between

a normalized surface normal and a normalized image gradient which is faster than

other methods in our application. Let function dr(u;wi) be defined on u ∈ [0, 2π] as

dr(u;wi) = n̄r(u;wi) ·
∇y(sr(u;wi))√

|∇y(sr(u;wi))|2 + ε
(4.19)
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where n̄r(u;wi) is a normalized surface normal obtained from (4.13), ∇y(p) is an

image gradient at position p, sr(u;wi) is outline of an ellipse given by (4.9) and ϵ is a

parameter to reduce the error caused by noise on the image. To detect more objects

which have regular inner product values along with their boundary, we regularize an

average value of dr(u;wi) with its variance as below:

Di =
mi

vi + 1
(4.20)

where

mi =
1

2π

∫ 2π

0

dr(u;wi)du, vi =
1

2π

∫ 2π

0

(dr(u;wi))
2du−m2

i (4.21)

Finally, the data potential Vd(y|wi) is defined as a likelihood function [39].

Vd(y|wi) = min

(
Di − Td

Td + 1
, 1

)
(4.22)

where Td is a control parameter.

4.2.3 Optimization

To minimize the Gibbs energy, if it has a simple prior term such as the object non-

overlapping, multiple birth and death(MBD) and multiple birth and cut(MBC) can

usually be considered [38]. But, in the MBD method, setting the simulated annealing

parameters is not straightforward. MBC method does not have these parameters

but the convergence speed of the MBC method is slower than the MBD method.

However, if a local perturbation(LP) kernel is added to the original MBC method,

the convergence speed becomes faster [39, 42]. In addition, to get more benefit from

the correlation between the image slices, we propose a birth in a neighborhood kernel

to the MBC with LP.
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MBC with birth in a neighborhood algorithm, which is used in minimizing a 2D

object configuration energy, is given in Algorithm 2. And 3D MBC optimization

algorithm, which is used for detecting 3D object configurations, is a direct extension

of the 2D MBC algorithm. However, the 3D MBC algorithm does not have a birth

in a neighborhood kernel.

Algorithm 2 MBC with birth in a neighborhood

Initialization: n ⇐ 0, Generate w′ and w(0) = w′

1: repeat
2: Generate random number r ∈ [0, 1]
3: if r < p1 then
4: Generate w′ with a multiple birth kernel
5: else
6: if r ≥ p1 and r < p2 then
7: Generate w′ with a local perturbation kernel
8: else
9: Generate w′ with a birth in a neighborhood kernel
10: end if
11: end if
12: w(n+1) ⇐ Cut(w(n) ∪ w′)
13: n ⇐ n+ 1
14: until converged

Local Perturbation Kernel

( , )x yδ δ

(a) Translation

aδbδ

(b) Dilation

δθ

(c) Rotation

Fig. 4.5. Non-jumping perturbation
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Figure 4.5 shows this type of kernel. Each of these transformations uses the

parameters that are randomly chosen as follow:

δx ∈[−∆x,∆x], δy ∈ [−∆y,∆y],

δa ∈[−∆a,∆a], δb ∈ [−∆b,∆b],

δθ ∈[−∆θ,∆θ]

Birth in a Neighborhood Kernel

First, we randomly choose δz ∈ {−1, 1}, then new z coordinate of center position

is given as pzi + δz. The other parameters for wi are chosen by applying a local

perturbation.

Image sequence

'
i

w

i
w

i
p

'
i

p

z = p +1
i

z

z = p 

z = p −1

i

z

i

z

Fig. 4.6. Birth in a neighborhood

Graph Cut

Many vision problems can be interpreted as a pixel-labeling problem. The goal

is to find mapping g : P → L which minimizes some energy function. Vladimir



74

Kolmogorov et al. [43] presented that a standard form of the energy function of class

F2 shown below can be minimized with graph cuts.

E(g) =
∑
p∈P

Dp(gp) +
∑
p,q∈N

Vp,q(gp, gq) (4.23)

where N is a neighborhood system on pixels. Dp(gp) is the cost of assigning the label

gp to the pixel p. Vp,q(gp, gq) is the cost of assigning the label (gp, gq) to the pixel

(p, q). Let G = (V , E) be the directed graph with non-negative edge weights that

has two special vertices, the source s and the sink t. An s-t cut is a partition (S, T )

which satisfies s ∈ S, t ∈ T, S ∪ T = V , S ∩ T = ∅. The cost of s-t cut is the sum of

cost of all edges that go from S to T . The problem finding s-t cut which minimizes

cost is equivalent to find the maximum flow from source to sink. If the problem is a

binary-valued labeling which means L = {0, 1}, there are many algorithms which can

solve this problem in polynomial time. Let us consider a mapping v : P → V −{s, t}

and a map g : V − {s, t} → L which maps g(v) = 0 when v ∈ S and g(v) = 1

when v ∈ T . And, let us construct a graph of energy function E(g) with all vertices

including v, s and t and with edges which have weight W (vp, s) = Dp(g(vp) = 0),

W (vp, t) = Dp(g(vp) = 1) or W (vp, vq) = Vp,q(g(vp), g(vq)). Then, minimum s-t cut

can give the labeling function g that minimizes the energy function. We use the graph

cut code developed by Yuri Boykov and Vladimir Kolmogorov [43]. To use the graph

cut algorithm, edge weights should be non-negative. Then, the data potential needs

to be normalized from [−1, 1] to [0, 1] with equation below [38]:

V̄d(wi) =
1 + Vd(y|wi)

2
(4.24)

Then, set all the objects wi ∈ w(n) and wi ∈ w′ as vertices and set the edges between

vertices with weights listed in Table 4.1 and 4.2.

Once an optimum label is acquired, theses labels are used to choose the objects

that construct next configuration w(n+1). For an object wi ∈ w(n), if gwi
= 0 then wi
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Fig. 4.7. Graph cut optimization

Table 4.1
Data term

gwi
= 0 gwi

= 0
wi ∈ w(n) V̄d(wi) 1− V̄d(wi)
wi ∈ w′ 1− V̄d(wi) V̄d(wi)

Table 4.2
Interaction term

(gwi
, gw′

j
)

(0, 0) 0
(0, 1) ∞
(1, 0) 0
(1, 1) 0

should be killed otherwise keep. In case of an object wi ∈ w′, label interpretations

are inverted.
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4.2.4 Clustering and 3D Object Matching

To construct 3D objects from the configuration of 2D objects, it is necessary to

cluster those 2D objects in related groups first. The 2D objects wi and wj are inter-

layer neighbors denoted as wi ∼l wj, if and only if they satify following relations:

O(wi, wj) =
A(wi ∩ wj)

min(A(wi), A(wj))
≥ Tc,

|pxyi − pxyj | ≤ Tp, (4.25)

|pzi − pzj | ≤ nz

where pxyi = (pxi , p
y
i ), A(·) is an area function and A(wi ∩ wj) is an overlapping area

function which counts only on x and y coordinates, not necessarily z. And nz ∈ N

is a small number greater than 1. We set this value as 2 in our experiment. If

wi ∼l wj, wi and wj should be in the same set Ck related with a 3D object. From

these clustered object sets, we can get 3D object w3D
k = (pk, ak, bk, ck, αk, βk, γk) by

a 3D object matching. Let sm be the data points on the outline of objects in Ck,

and Ĉk be the set of these points. Then, the 3D object matching is an optimization

problem to find optimal parameters which satisfy:

argmin
w3D

k

∑
m

(ft,r(sm;w
3D
k )− 1)2 (4.26)

where ft,r(·) is given in (4.16). To solve this optimization, we use Levenberg-Marquardt

algorithm [44]. To obtain reliable results, it is essential to set the initial values of these

parameters carefully. We set these initial vales as below:

• (pxk, p
y
k, p

z
k) : A centroid of data in Ĉk.

• (ak, bk) : āi and b̄i, averages of major and minor axis length of ∀wi ∈ Ck.

• ck : A half value of the number of objects in the cluster

• γk : An average of θi of ∀wi ∈ Ck.
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• (αk, βk) : An angle of line in K which is fitted to the pi of ∀wi ∈ Ck(Ordinary

Least Squares is used).

4.3 Fast 3D Fitting Method

Clustering errors can cause large errors in the final 3D object configuration in

the 3D clustering method. This 3D clustering method also can not guarantee non-

overlapping of 3D objects with each other. Most common errors in 2D detection,

which cause the clustering errors, are a missed object and a merged object. The

missed object brings out the separation which makes the objects classified to different

clusters while those are supposed to be classified in the same cluster. The merged

object combines the clusters which are supposed to be different clusters. There are

some examples of the misclustering in Figure 4.8(a). This figure illustrates the side

view of a 2D object detection and related clustering result on image slices. Solid

lines are 2D objects and dotted ellipses are cross-sectional outline shapes of original

3D objects we expect to detect. Dots in the middle of lines are center positions of

2D objects. A cluster 1 has merging errors originated from the merged 2D objects

which are depicted as a red line in the figure. A cluster 2 also has a merging error.

However, this error occurs because the original 3D objects are too close. For the

bottom 3D object of cluster 2, one object is missed in the 2D object detection. To

avoid a separation in a clustering step, we can set nz value bigger than 1. In this case,

this setting might cause other problems of merging as the figure illustrated. Like this,

there is a trade-off between merging and separation in the clustering step according

to the setting of nz and Tp values in Equation (4.26). Figure 4.8(b) shows related

matching errors for these clustering errors when using the 3D clustering method.

To overcome these problems, the fast 3D fitting method uses a 3D MPP method

in detecting a 3D object configuration. A 3D MPP method does not have these

problems because it uses image data itself to detect 3D objects whereas a 3D clustering

method uses detected 2D objects. However, the 3D MPP method has computational
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complexity issue. This complexity is proportional to the volume of the space for birth.

To reduce the computation time, a non-uniform birth process is used in many MPP

applications. In MBD method, the birth map is used which enables the birth step to

generate more candidates on more probable sites [12]. Lacoste et al. [16] also applied

inhomogeneous birth and death kernel. To detect line segments, they generated

segments according to the probability map which was off-line computed in advance by

fixing the length as minimum value and changing midpoint and orientation. Likewise,

to improve the computational complexity of the 3D MPP method, the fast 3D fitting

method generates 3D objects inhomogeneously in the birth step according to the birth

map calculated from the clustered 2D object configuration.

Merged

2D object

3D objects

are too close

Cluster 1 Cluster 2

Missed

2D object

(a) Misdetection and clustering
errors

Matched as one

3D object

Matched as one

3D object

Cluster 1 Cluster 2

(b) 3D clustering method

Detected as 

two 3D objects

Detected as

two 3D objects

Cluster 1 Cluster 2

(c) Fast 3D fitting

Fig. 4.8. Clustering and fitting error

4.3.1 Center Position Map

We propose more 3D object candidates at the positions where objects are supposed

to be existed in high probability. The resulting configuration from the 2D object

detection can be used to predict the existence of 3D objects. If there is no error in

2D object detection and clustering, the 3D objects are highly probable to exist near

the center position of the 2D object which is located in the middle of objects in the
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same cluster. But, if there is a merging error in clustering, this assumption is no more

valid. However, even in this case, 3D objects are still have high chance to be near

the center position of the most of 2D objects in the cluster. Figure 4.9 illustrates

this merging example. The cluster is supposed to be separated as two clusters but is

clustered as one. To get 3D objects compatible with image data, we need to generate

candidates near every center position of all the 2D objects in the cluster. There are

well fitted objects at the positions p such as the one illustrated as blue dots in Figure

4.9(a) and 4.9(c), whereas we can hardly get good candidates at the positions p in

Figure 4.9(b) and 4.9(d). In these figures, negative potentials mean that the objects

are well fitted to the image data.

Let the i -th 2D ellipse belong to a cluster Ck be wk,i = (pk,i, ak,i, bk,i, θk,i) ∈ Ck,

where k ∈ 1, · · · , Nc and i ∈ 1, · · · , Nk . For p ∈ K, (kp, ip) = argmin(k,i) dc(p, pk,i)

and d̂c(p) = dc(p, pkp,ip). Here, dc(p, pk,i) =
√
(x− pxk,i)

2 + (y − pyk,i)
2 +Wz(z − pzk,i)

2

and Wz is a control parameter. We can generate a 3D object candidate w3D
p =

(p, a3Dp , b3Dp , c3Dp , αp, βp, γp) inhomogeneously according to the probability

B(p) =
exp(−d̂c(p)/2σ

2)∑
s∈K exp(−d̂c(s)/2σ2)

(4.27)

where σ is a control parameter. Here, (p, a3Dp , b3Dp , c3Dp ) and (αp, βp, γp) are sampled

from semi-axis length map and orientation map respectively. Those maps will be

discussed in the following sections.
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Fig. 4.9. Birth map (position)
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4.3.2 Orientation Map

Let ϕ be the tilt angle of an object from z axis as in Figure 4.11(a). Then it can

be calculated from rotation angles α and β of the object as cos(ϕ) = cos(α) cos(β).

If the maximum tilt angle is as below,

ϕmax ≪ tan−1 cmin√
a2max + b2max

(4.28)

then we can sample the preferable rotation angles αp and βp from the formation of

center positions of 2D superellipses. Let lp be a line fitted with these center positions

{pkp,i| |pzkp,i − pzkp,ip | ≤ To} and v = (vx, vy, vz) be the direction vector of the line

lp when vz ≥ 0. Where To is a control parameter which will be discussed in detail

shortly. Then, αlp , βlp are the rotation angles of v from a ez = (0, 0, 1) direction

around x and y axes.

v = Rx(αlp)Ry(βlp)ez (4.29)

Then we can sample αp and βp from normal distributions and γp from a uniform

distribution.

αp ∼ N (αlp , σ
2
o), βp ∼ N (βlp , σ

2
o), γp ∼ U(γmin, γmax) (4.30)

When we choose the parameter σo, we need to consider the following trade-off. If

αlp , βlp values are predicted near the true rotation angles, we can increase a conver-

gence speed by reducing the value of this parameter. However, if the prediction is

much off the true orientation, the computation time might take rather longer for the

small value of the parameter. Figure 4.10(b) and 4.10(c) show some misdetections of

2D objects which cause poor prediction of αlp , βlp . To reduce the effect of errors to

the prediction, we can increase the number of objects which is used in the line fitting.

The parameter To can control the number of objects and restricted by the maximum
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semi-axis length c3Dmin. If c3Dmin is big, we can much reduce computation time through

the orientation prediction.
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Fig. 4.10. Birth map (orientation)

4.3.3 Semi-axis Length Map

We can predict preferable semi-axis length a3Dp and b3Dp of the proposed object w3D
p

at position p from tilt angle ϕkp and semi-axis length akp,ip and bkp,ip of a 2D object.

The possible maximum value comes when the longer 2D semi-axis length direction is

perpendicular to the tilt direction of the 3D object, and the possible minimum value

comes when the shorter one has same direction with the tilt direction as depicted in

Figure 4.12. Therefore, a3Dp and b3Dp are supposed to be between rmp and rMp .

rmp = min(akp,ip , bkp,ip) cos(ϕp), rMp = max(akp,ip , bkp,ip) (4.31)

Finally, we can sample a3Dp and b3Dp from normal distributions as below:

a3Dp , b3Dp ∼ N

rMp + rmp
2

,

(
rMp − rmp + εr

2
σr

)2
 (4.32)



82

φ

z

y

x

(a) tilt angle ϕ

φ

M

p
z

z

x y−m

p
z

p

z

p
c

M

p
c

(b) cMp

φ

M

p
z

z

x y−m

p
z

z

p
c

m

p
c

p

(c) cmp

Fig. 4.11. Birth map (semi-axis length c3Dp )

where εr is a control parameter to avoid the variance term become zero. We set this

value with 2. σr is a parameter to control the variance. In case of semi-axis length

c3Dp , we can predict preferable length from tilt angle ϕkp and the number of objects

Nkp in a cluster Ckp . First, we calculate the minimum z position and the maximum

z position in a cluster Ckp .

zmp = min
wkp,i∈Ckp

zkp,i, zMp = max
wkp,i∈Ckp

zkp,i (4.33)

If the tilt angle ϕkp is zero, the object w3D
p needs to have semi-axis length c3Dp as near

czp as below:

czp = min(z − zmp , zMp − z) (4.34)

If the tilt angle ϕkp is none-zero, it is much probable that the length is between cmp

and cMp as depicted in Figure 4.11, where cmp and cMp are given as follow (see Appendix

D):

cmp =
czp

cos(ϕp)
−
√

(a3Dp )2 + (b3Dp )2 tan(ϕp), cMp =
czp

cos(ϕp)
(4.35)
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Finally, we can sample c3Dp from normal distributions as below:

c3Dp ∼ N

cMp + cmp
2

,

(
cMp − cmp + εc

2
σc

)2
 (4.36)
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Fig. 4.12. Birth map (semi-axis length a3Dp and b3Dp )

4.4 Experimental Results
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Fig. 4.13. Synthetic dataset generation and detection
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For test datasets, we use four sets of image sequences. Two sets are synthetic image

sequences, the third one is a materials microscopic image sequence and the last one is

a microscope image sequence of a brain tissue. For the first 3D dataset, we generate an

ellipsoid object configuration using a superellipsoid MPP with parameter t = r = 2.

And an image sequence is generated using the Gaussian model with different means

and variances for inside and outside of the ellipsoids. Then, we get a sequence of 2D

image slices (194 × 149, 60 slices). To these images, we apply a blurring filter and add

the Gaussian noise with σn. For the second dataset, we generate an image sequence

(194 × 149, 60 slices) containing superellipsoids with parameter t = r = 3. This

dataset is much difficult to process with a 3D clustering method and fast 3D fitting

method. Because the object has a large tilt angle, the cross section of a superellipsoid

object does not fit well to the superellipse model. For these two data sequences, we

know the ground truth of a 3D object configuration. To evaluate the final quality of

results numerically, we calculate the percentage of misclassified pixels(PMP) between

the ground truth and the results of three methods: a 3D clustering method, a fast 3D

fitting method and a full 3D MPP method. The lower PMP value means the better

result. On the other hand, for the third test dataset, we use a Ni-Al-Cr superalloy

microscope image sequences(194 × 149, 59 slices). Mark spaces of these three test

dataset are listed in Table 4.3.

Section 4.4.1 compares the results of 2D MBC using a birth in a neighborhood(BN)

kernel with the results without using the kernel. In Section 4.4.2, the result comparing

a 3D clustering method and fast 3D fitting method is demonstrated. Section 4.4.3

shows that the fast 3D fitting method can significantly reduce the computation time

in a 3D object detection compared to the full 3D MPP method. In Section 4.4.4, we

apply our method to brain tissue 3D dataset. In our experiments, we use a machine

equipped with Intel i7 2.40GHz CPU.
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Table 4.3
Mark space

axis length (a3D, b3D, c3D) orientation (α, β, γ)
dataset 1 [5, 7]× [5, 7]× [5, 7] [−0.52, 0.52]× [−0.52, 0.52]× [0, 1.57]
dataset 2 [3, 13]× [3, 13]× [10, 15] [−0.79,−0.26]× [−0.79, 0.79]× [0.26, 1.52]
dataset 3 [2, 23]× [2, 23]× [5, 30] [−0.52, 0.52]× [−0.52, 0.52]× [0.59, 0.98]

4.4.1 Birth in a Neighborhood(BN)

Both in a 3D clustering method and in a fast 3D fitting method, a 2D MPP

method is used first to detect 2D objects which are then clustered and used to find a

3D object configuration. In the 2D MPP method, we use a MBC as an optimization

method to find the optimum configuration. To increase the optimization speed, we

propose to use an additional BN kernel to the existing MBC method. For the dataset

1 and 2, we perform the MBC method with a BN kernel and compare the result to the

one without using the kernel. Figure 4.14(a) shows the total energy change according

to a running time for the dataset 1. Figure 4.14(b) is for the dataset 2. These results

show that the BN kernel can accelerate the 2D object detection. The reason that the

improvement in convergence speed for the dataset 1 is not as big as that of dataset 2

is that the average of semi-axis length c3D of objects in dataset 1 is shorter than that

of dataset 2.
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Fig. 4.14. 2D MPP results with vs. without birth in a neighborhood(BN)
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4.4.2 3D clustering vs. fast 3D fitting

We generate several sets of the dataset 2 by changing a noise level σn from 20 to

25. Then, we apply a 3D clustering method and a fast 3D fitting method to those

datasets. Figure 4.15(a) shows changes of PMP value according to the noise level.

We observe that a fast 3D fitting method shows better results in a sense that overall

PMP values are lower and a variation is also smaller than 3D clustering method.

In the results of a 3D clustering method, this variation mainly comes from object

merging errors. When we see the graph in Figure 4.15(b), a fast 3D fitting method

is detecting all the objects in the dataset whereas a 3D clustering method is missing

some objects. In this dataset, true number of objects are 116. From the result images,

we observe that most of these misdetections are merging errors. Some areas, which

we are interested in, are displayed in Figure 4.16 and Figure 4.17. In these figures,

the first row is the 2D MPP result and the second and the third rows are displaying

cross-sectional outlines of detected 3D objects of a 3D clustering and of a fast 3D

fitting method respectively. Figure 4.16(b) and Figure 4.17(b) show some object

merging errors in a 3D clustering method. This object merging error is inevitable in

a 3D clustering method when merging errors already exist in a clustering step. Figure

4.16(a) and Figure 4.17(a) show these clustering errors. However, our proposed fast

3D fitting method can avoid this problem as displayed in Figure 4.16(c) and Figure

4.17(c) even though it takes longer time.

Figure 4.18 compares the whole cross-sectional images of the 25th result image

slice for the three methods. In the result of a 3D clustering method(Figure 4.18(c)),

we can find an object overlapping problem (marked with an arrow) beside merging

errors. This is another inevitable problem of a 3D clustering method. There is

no such problems in the results of a fast 3D fitting(Figure 4.18(d)) and a full 3D

MPP methods (Figure 4.18(b)) because they penalize an object overlapping with an

interaction term in their objective energy functions. These figures also show that the

boundary precision of the result of a fast 3D fitting method is better than those of a 3D
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Fig. 4.15. 3D clustering method vs. fast 3D fitting method (synthetic dataset 2)

Slice 25Slice 24Slice 23 Slice 28Slice 27Slice 26

(a) 2D MPP (Running time : 275sec)

(b) 3D clustering (Running time : 5.7sec, PMP : 2.2%)

(c) Fast 3D fitting (Running time : 2121sec, PMP : 1.1%)

Fig. 4.16. The effect of error in 2D MPP and clustering : Synthetic dataset 2 with noise σn
= 10 (Only area of interest are displayed from the whole test images)

clustering method and a full 3D MPP method. Figure 4.19 shows 3D reconstructed

object configurations of the three methods. We can observe the merged object in

the result of a 3D clustering method (marked with red, green and blue circles). The

total execution times and PMP values are mentioned in Table 4.4. Here, ‘Birth map’

means a running time for generating the birth map from the clustered 2D objects.
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Slice 27Slice 26Slice 25 Slice 30Slice 29Slice 28

(a) 2D MPP (Running time : 205sec)

(b) 3D clustering (Running time : 4sec, PMP : 2.8%)

(c) Fast 3D fitting (Running time : 6126sec, PMP : 1.0%)

Fig. 4.17. The effect of error in 2D MPP and clustering : Synthetic dataset 2 with noise σn
= 20 (Only area of interest are displayed from the whole test images)

Table 4.4
Running time and PMP for dataset 2 (σn = 20)

(sec) 3D clustering Fast 3D fitting Full 3D MPP
2D MPP 212 212 not used
Clustering 0.1 0.1 not used

3D obj. matching 4 not used not used
Birth map not used 26 not used
3D MPP not used 6100 447122

Total 216 6338 447122
PMP 2.8% 1.0% 4.1%

4.4.3 Fast 3D fitting vs. full 3D MPP

In this section, we compare the performance of a fast 3D fitting method and a

full 3D MPP method. First, to evaluate the improvement in convergence speed when

using a birth map described in section 4.3, we apply three versions of the birth map:

position map only, position and semi-axis length map and all three maps together(fast
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(a) Ground Truth (b) Full 3D MPP (Running time : 124hr
12min 2sec, PMP : 4.1%)

(c) 3D clustering (Running time : 3min
36sec , PMP : 2.8%)

(d) Fast 3D fitting (Running time : 1hr
45min 38sec, PMP 1.0%)

Fig. 4.18. Results of Synthetic dataset 2 (noise σn = 20): The 25th cross sectional images
of a ground truth of the dataset and final configurations of the three methods.

3D fitting). Also, we apply a 3D MPP method which does not use any birth map.

Graphs in the first column in Figure 4.20 compare the three versions of the birth map.

Graphs in the second column display the convergence of a fast 3D fitting method and

a full 3D MPP method. The first row is for dataset 1. The second row is for dataset 2.

And, the third row is for the Ni-Al-Cr superalloy dataset. These graphs demonstrate

that the fast 3D fitting method can significantly reduce the computation time compare

to the full 3D MPP method. In detail, for all the three datasets, the position map

contributes most improvement. The semi-axis length map contributes for a dataset

2 and a Ni-Al-Cr superalloy dataset because those datasets have a wide range of

semi-axis length (see Table 4.3). An orientation map does not contribute much for a
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(a) Ground truth (b) Full 3D MPP

(c) 3D clustering (d) Fast 3D fitting

Fig. 4.19. Results of Synthetic dataset 2 (noise σn = 20): 3D reconstructed images of a
ground truth and results of the three methods

dataset 1 because the minimum semi-axis length is short as 5. An Ni-Al-Cr superalloy

dataset also can not get much benefit from the orientation map. The reason is that

there are some mispredictions of an orientation for the border touching objects.

Figure 4.21 compares the whole cross sectional images of the 16th result image

slice for the three methods. Figure 4.22 shows 3D reconstructed object configurations

of the three methods. The total execution times and PMP values are listed in Table

4.5.

Figure 4.23 compares the whole cross sectional images of the 38th result image

slice for the three methods. The result image of 3D clustering method shows an

objects overlapping (marked with an arrow). Figure 4.24 displays 3D reconstructed

object configurations of the three methods. The total execution times are listed in

Table 4.6.
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Fig. 4.20. Fast 3D fitting vs. full 3D MPP : The first row(synthetic dataset 1), the second
row(synthetic dataset 2) and the third row(Ni-Al-Cr superalloy)

4.4.4 Brain Tissue Image Dataset

Figure 4.25(a) shows a microscope image of the mouse brain tissue which is a

small portion of a full 3D dataset. We selected the slice number from 962 to 1031
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(a) Ground Truth (b) Full 3D MPP (Running time : 21hr
12min 13sec, PMP :1.1%)

(c) 3D clustering (Running time : 38sec,
PMP : 1%)

(d) Fast 3D fitting (Running time :
11min 25sec, PMP 0.5%)

Fig. 4.21. Results of Synthetic dataset 1 (noise σn = 10): The 16th cross sectional image
of a ground truth of the dataset and final configurations of the three methods.

Table 4.5
Running time and PMP for dataset 1 (σn = 10)

(sec) 3D clustering Fast 3D fitting Full 3D MPP
2D MPP 32 32 not used
Clustering 0.1 0.1 not used

3D obj. matching 6 not used not used
Birth map not used 29 not used
3D MPP not used 624 76333

Total 38 685 76333
PMP 1.0% 0.5% 1.1%

in this dataset and cropped each image with a resolution of 168 X 208. From this

3D dataset, we need to detect blood vessels and neurons as illustrated in Figure
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(a) Ground truth (b) Full 3D MPP

(c) 3D clustering (d) Fast 3D fitting

Fig. 4.22. Results of Synthetic dataset 1 (noise σn = 10): 3D reconstructed images of a
ground truth and results of the three methods

Table 4.6
Running time of Ni-Al-Cr dataset

(sec) 3D clustering Fast 3D fitting Full 3D MPP
2D MPP 162 162 not used
Clustering 0.1 0.1 not used

3D obj. matching 3 not used not used
Birth map not used 14 not used
3D MPP not used 7160 256495

Total 165 7336 256495

4.25(a). First, for the blood vessel detection, we apply the full 3D MPP method for

the elliptical cylinder model. During this step, we fixed the length of the cylinder as 3

to reduce computation time. From this elliptical cylinder configuration, we clustered

the cylinders into some groups according to a clustering rule. The rule is, if the

center position of two objects is close enough, they belong to the same group. After
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(a) Original image (b) Full 3D MPP (Running time : 71hr
15min 55sec)

(c) 3D clustering (Running time : 2min
45sec)

(d) Fast 3D fitting (Running time : 2hr
2min 16sec)

Fig. 4.23. Results of Ni-Al-Cr superalloy: The first row and the second row are the 38th
cross sectional image of a original dataset of the dataset and final configurations of the three
methods.

clustering, we identified blood vessel clusters. If the number of the elements in a

cluster is big enough, it is estimated as a blood vessel cluster. To detect the neurons,

we try the three ellipsoid detection methods(3D clustering, fast 3D fitting and full 3D

MPP). As we intend to detect only the neurons, we avoid generating the ellipsoids

near the center position of each elliptical cylinder in the blood vessel cluster. Figure

4.25 shows the results of this work. In this application, we focus on detecting neurons.

If we need to detect the formation of the blood vessels more precisely, developing a

3D Candy model would be helpful.
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(a) Original image sequence (b) Full 3D MPP

(c) 3D clustering (d) Fast 3D fitting

Fig. 4.24. Results of Ni-Al-Cr superalloy: 3D reconstructed images of a original dataset
and results of the three methods

Table 4.7
Running time of detecting neuron in brain tissue

(sec) 3D clustering Fast 3D fitting Full 3D MPP
Blood vessel Detec. 4998 4998 4998

2D MPP 20 20 not used
Clustering 0.03 0.03 not used

3D obj. matching 1.4 not used not used
Birth map not used 11 not used
3D MPP not used 4648 27635

Total 5020 9678 32633

4.5 Conclusions

In this chapter, we propose two alternative 3D object detection approaches. One

is a 3D clustering method and the other is a fast 3D fitting method. Both methods

consist of two steps: performing a 2D MPP first and constructing 3D objects from
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Blood vessel

Neuron

(a) Image slice 977 (b) All test image sequence (c) Blood vessel detection

(d) Full 3D MPP (Obj num :
35)

(e) 3D clustering (Obj num :
29)

(f) Fast 3D fitting (Obj num :
35)

Fig. 4.25. Results of brain tissue images: 3D reconstructed images of a original dataset and
results of the three methods

the clustered data of the 2D MPP result. But the difference between two methods

is how to construct 3D objects from the clustered 2D objects. The former applies a

3D object matching to the clustered 2D objects while the latter applies a 3D MPP

method with inhomogeneous birth in order to reduce computation time. And this

inhomogeneous birth can be implemented with a birth map which is extracted from

the 2D object configuration. Among these two methods and an existing full 3D

MPP method, a 3D clustering method is the fastest. However, an intrinsic problem

of the 3D clustering method is in that even small misdetection in a 2D MPP and
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clustering process can have a significant influence on the final result. A fast 3D fitting

can partly overcome this problem and is quite faster than a full 3D MPP method.

To evaluate the performance of our proposed methods, two synthetic datasets, one

material dataset and one biomedical image dataset are used. In this experiment,

we used a superellipsoid model as a mark model for MPP. Especially, three cases

of superellipsoid are used. Experimental results show that these new methods can

significantly reduce the computational complexity of detecting 3D objects in a 3D

image dataset. But proposed two methods has the same limitation that tilt angles

of 3D objects should be small enough. This limitation can be a good future research

topic. And, because we used only three types of an object model in this chapter,

more object models can also be further studied.



APPENDICES
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A. DERIVATION OF THE EM UPDATE

The EM algorithm is an iterative procedure. At each iteration, the expectation step

and the maximization step are performed. In the expectation step the following

function is computed.

Q(θ,θ(p− 1)) =E[log fY|X(y|x,θ)|Y = y,θ(p− 1)]

+ E[log pX(x|θ)|Y = y,θ(p− 1)]
(A.1)

In the maximization step, we can estimate θ(p) which maximize (A.1). In (A.1),

the second term does not depend on θ(p) because X does not depend on θ(p). There-

fore, by substituting (2.19) into (A.1) and differentiating with parameter µk we can

get

∂Q(θ,θ(p− 1))

∂µk

=
∂

∂µk

E[log fY|X(y|x,θ)|Y = y,θ(p− 1)]

=
∂

∂µk

N∑
r=1

E

[
−

(yr −
∑D

s=−D hsµxr−s)
2

2σ2(r)

∣∣∣∣∣Y = y,θ(p− 1)

]
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=
∂

∂µk

N∑
r=1

E

[
−

L∑
l1=1

L∑
l2=1

· · ·
L∑

l2D+1=1

δ(xr+D = l1)

δ(xr+D−1 = l2) · · · δ(xr−D = l2D+1)

·

(
(yr − (h−Dµl1 + h−D+1µl2 + · · ·+ hDµl2D+1

))2

2v(l1, l2, · · · , lD+1, · · · , l2D+1)

)
∣∣∣∣∣Y = y,θ(p− 1)

]
,

= − ∂

∂µk

N∑
r=1

L∑
l1=1

L∑
l2=1

· · ·
L∑

l2D+1=1(
(yr − (h−Dµl1 + h−D+1µl2 + · · ·+ hDµl2D+1

))2

2v(l1, l2, · · · , lD+1, · · · , l2D+1)

· E[δ(xr+D = l1)δ(xr+D−1 = l2) · · · δ(xr−D = l2D+1)

|Y = y,θ(p− 1)]

)

= − ∂

∂µk

N∑
r=1

L∑
l1=1

L∑
l2=1

· · ·
L∑

l2D+1=1(
(yr − (h−Dµl1 + h−D+1µl2 + · · ·+ hDµl2D+1

))2

2v(l1, l2, · · · , lD+1, · · · , l2D+1)

· pXr+D,Xr+D−1,··· ,Xr−D|Y(xr+D = l1, xr+D−1 = l2,

· · · , xr−D = l2D+1|y,θ(p− 1))

)

= ak,1µ1 + ak,2µ2 + · · ·+ ak,LµL − bk = 0 (A.2)

Similarly, by differentiating with parameter σk we can get

∂Q(θ,θ(p− 1))

∂σk

=
∂

∂σk

E[log fY|X(y|x,θ)|Y = y,θ(p− 1)]
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=
∂

∂σk

N∑
r=1

E

[
−

(yr −
∑D

s=−D hsµxr−s)
2

2σ2(r)
− 1

2
log σ2(r)∣∣∣∣∣Y = y,θ(p− 1)

]

=
∂

∂σk

N∑
r=1

E

[
L∑

l1=1

L∑
l2=1

· · ·
L∑

l2D+1=1

δ(xr+D = l1)

δ(xr+D−1 = l2) · · · δ(xr−D = l2D+1)

·

(
−

(yr − (h−Dµl1 + h−D+1µl2 + · · ·+ hDµl2D+1
))2

2v(l1, · · · , l2D+1)

− 1

2
log v(l1, · · · , l2D+1)

)∣∣∣∣∣Y = y,θ(p− 1)

]

=
∂

∂σk

N∑
r=1

L∑
l1=1

L∑
l2=1

· · ·
L∑

l2D+1=1{(
−

(yr − (h−Dµl1 + · · ·+ hDµl2D+1
))2

2v(l1, · · · , l2D+1)

− 1

2
log v(l1, · · · , l2D+1)

)
· E[δ(xr+D = l1)δ(xr+D−1 = l2) · · · δ(xr−D = l2D+1)

|Y = y,θ(p− 1)]

}

=
∂

∂σk

N∑
r=1

L∑
l1=1

L∑
l2=1

· · ·
L∑

l2D+1=1{(
−

(yr − (h−Dµl1 + · · ·+ hDµl2D+1
))2

2v(l1, · · · , l2D+1)

− 1

2
log v(l1, · · · , l2D+1)

)
· pXr+D,Xr+D−1,··· ,Xr−D|Y(xr+D = l1, xr+D−1 = l2, · · · ,

xr−D = l2D+1|y,θ(p− 1))

}
(A.3)
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If we use the single variance form v(l1, · · · , l2D+1) = σ2
k, this becomes

∂Q(θ,θ(p− 1))

∂σk

=
N∑
r=1

L∑
l1=1

· · ·
L∑

lD=1

L∑
lD+2=1

· · ·
L∑

l2D+1=1{(
(yr − (h−Dµl1 + · · ·+ hDµl2D+1

))2

σ3
k

− 1

σk

)
· pXr+D,··· ,Xr,··· ,Xr−D|Y(xr+D = l1, · · · , xr = k, · · · ,

xr−D = l2D+1|y,θ(p− 1))

}

= 0 (A.4)

Therefore,

N∑
r=1

L∑
l1=1

· · ·
L∑

lD=1

L∑
lD+2=1

· · ·
L∑

l2D+1=1(
yr − (h−Dµl1 + h−D+1µl2 + · · ·+ hDµl2D+1

)
)2

· pXr+D,··· ,Xr,··· ,Xr−D|Y(xr+D = l1, · · · , xr = k, · · · ,

xr−D = l2D+1|y,θ(p− 1))

− σ2
k

N∑
r=1

L∑
l1=1

· · ·
L∑

lD=1

L∑
lD+2=1

· · ·
L∑

l2D+1=1

pXr+D,··· ,Xr,··· ,Xr−D|Y(xr+D = l1, · · · , xr = k, · · · ,

xr−D = l2D+1|y,θ(p− 1)) = 0

(A.5)
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Let

Nk =
N∑
r=1

L∑
l1=1

· · ·
L∑

lD=1

L∑
lD+2=1

· · ·
L∑

l2D+1=1

pXr+D,··· ,Xr,··· ,Xr−D|Y(xr+D = l1, · · · , xr = k, · · · ,

xr−D = l2D+1|y,θ(p− 1))

=
N∑
r=1

pXr|Y(k|y,θ(p− 1))

(A.6)

then from (A.5) we can get

σ2
k =

1

Nk

{
N∑
r=1

L∑
l1=1

· · ·
L∑

lD=1

L∑
lD+2=1

· · ·
L∑

l2D+1=1(
yr − (h−Dµl1 + · · ·+ h−1µlD + h0µk+

h1µlD+2
+ · · ·+ hDµl2D+1

)
)2

· pXr+D,··· ,Xr,··· ,Xr−D|Y(xr+D = l1, · · · , xr = k,

· · · , xr−D = l2D+1|y,θ(p− 1))

}
(A.7)
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B. PARAMETRIC PATH FOR CONTINUITY

POTENTIAL CALCULATION

u(t ; l, w) =


−t− l

2
− (π−2

4
)w t ∈ T1

(1− cos(2t
w
))w

2
− l

2
t ∈ T2

t− l
2
− (π−2

4
)w t ∈ T3

(B.1)

v(t ; l, w) =


−w

2
t ∈ T1

w
2
sin(2t

w
) t ∈ T2

w
2

t ∈ T3

(B.2)

where

T1 = {t ∈ R| − l − (
π − 4

4
)w ≤ t < −π

4
w}

T2 = {t ∈ R| − π

4
w ≤ t <

π

4
w}

T3 = {t ∈ R|π
4
w ≤ t ≤ l + (

π − 4

4
)w}. (B.3)
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C. THE RATIO OF KERNELS FOR THE SWITCHING

KERNEL

Let an object xi of type m be switched to an object x̂i of type n such that the current

configuration x is perturbed into the configuration x′ = x − {xi}
∪

x̂i. And if the

number of parameter of xi is different from that of x̂i, we need to make them be

equal with auxiliary variables as (x̂i, vnm) and (xi, umn). Then the ratio of kernel is

expressed by:

QS(x
′ → x)

QS(x → x′)
=

Jnmφnm(vnm)

Jmnφmn(umn)

∣∣∣∣∂Ψmn(xi, umn)

∂(xi, umn)

∣∣∣∣ (C.1)

where Ψmn(xi, umn) is a mapping between (x̂i, vnm) and (xi, umn) given by:

(x̂i, , vnm) = Ψ(xi, umn) (C.2)

In our switching kernel, the number of parameters of both types is equal. Therefore,

(C.1) becomes:

QS(x
′ → x)

QS(x → x′)
=

Jnm
Jmn

∣∣∣∣∂Ψmn(xi)

∂xi

∣∣∣∣ (C.3)

Now, let a necking channel object xi = (ai, bi, li, wi, θi) be switched to denting

channel object according to switching type 1. And, let the probability to choose

switching from a necking channel to a denting channel be JND and denting to necking

be JDN . In our case, a denting and a necking channel are equiprobable(JDN = JND).

Again, for the switching of type 1, let the probability to choose switching from a

necking channel to a denting channel be J ′
ND and denting to necking be J ′

DN . We
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want switching type 1 and 2 are equiprobable. Therefore, J ′
ND = JND

2
, J ′

DN = JDN

2

and
J ′
DN

J ′
ND

= JDN

JND
= 1. Then, (C.3) becomes:

QS(x
′ → x)

QS(x → x′)
=

∣∣∣∣∂ΨND(xi)

∂xi

∣∣∣∣ (C.4)

where, for the ‘case 1’ of ‘switching type 1’ in Figure 3.8(a),

x̂i = ΨND(xi) =



ai +
wi

8
cos(θn)

bi +
wi

8
sin(θn)

li − wi

4

wi

θi



T

. (C.5)

And, ∣∣∣∣∂ΨND(xi)

∂xi

∣∣∣∣ =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 cos(θi)
8

−wi

8
sin(θi)

0 1 0 sin(θi)
8

wi

8
cos(θi)

0 0 1 −1
4

0

0 0 0 1 0

0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1. (C.6)
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For the ’case 2’,

x̂i = ΨND(xi) =



ai − wi

8
cos(θn)

bi − wi

8
sin(θn)

li − wi

4

wi

θi + π



T

. (C.7)

And, ∣∣∣∣∂ΨND(xi)

∂xi

∣∣∣∣ =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 − cos(θi)
8

wi

8
sin(θi)

0 1 0 − sin(θi)
8

−wi

8
cos(θi)

0 0 1 −1
4

0

0 0 0 1 0

0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1. (C.8)

Therefore, in both cases,

QS(x
′ → x)

QS(x → x′)
= 1. (C.9)

And then, let us consider ‘case 3’ of ‘switching type 1’.

When θi ≤ π,

x̂i = ΨDN(xi) =



ai − wi

8
cos(θn)

bi − wi

8
sin(θn)

li +
wi

4

wi

θi



T

. (C.10)
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Or, when θi > π,

x̂i = ΨDN(xi) =



ai − wi

8
cos(θn)

bi − wi

8
sin(θn)

li +
wi

4

wi

θi − π



T

. (C.11)

In both cases,

QS(x
′ → x)

QS(x → x′)
=

∣∣∣∣∂ΨDN(xi)

∂xi

∣∣∣∣ =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 − cos(θi)
8

wi

8
sin(θi)

0 1 0 − sin(θi)
8

−wi

8
cos(θi)

0 0 1 1
4

0

0 0 0 1 0

0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1. (C.12)

Similarly, The ratio of the kernels of switching type 2 is also equal to 1.
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D. DERIVATION OF THE RANGE OF SEMI-AXIS

LENGTH C

φ

p
c
φ

z

p
cz

p
c ɶ

p
r
φ

(a)

φ

p
c
φ

z

p
cɶ

p
r
φ

z

p
c

(b)

Fig. D.1. Derivation of cmp and cMp

Figure D.1 illustrates side view of 3D object when the tilt angle is ϕp. The vertical

direction is z direction and horizontal line is x−y plain. From this figure, by geometric

calculation, we can derive some relations as below:

cϕp =
c̃zp

cos(ϕp)
− rϕp tan(ϕp) (D.1)

czp ≤ c̃zp ≤ czp + rϕp sin(ϕp) (D.2)

From (D.1) and (D.2), we can get

cϕp ≤
czp + rϕp sin(ϕp)

cos(ϕp)
− rϕp tan(ϕp) =

czp
cos(ϕp)

(D.3)
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Therefore, the maximum value of cϕp is given by

cMp =
czp

cos(ϕp)
(D.4)

From (D.1) and (D.2), we can also get

cϕp ≥
czp

cos(ϕp)
− rϕp tan(ϕp) (D.5)

Here,

rϕp ≤
√
(a3Dmax)

2 + (b3Dmax)
2 (D.6)

then

cϕp ≥
czp

cos(ϕp)
−
√

(a3Dmax)
2 + (b3Dmax)

2 tan(ϕp) (D.7)

Finally, the minimum value of cϕp is given by

cmp =
czp

cos(ϕp)
−
√
(a3Dmax)

2 + (b3Dmax)
2 tan(ϕp) (D.8)
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