
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

12-2016

Modeling for thermal resistance of non-O157 shiga
toxin producing Escherichia coli in ground beef
Jagpinder S. Brar
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Food Science Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Brar, Jagpinder S., "Modeling for thermal resistance of non-O157 shiga toxin producing Escherichia coli in ground beef " (2016). Open
Access Dissertations. 946.
https://docs.lib.purdue.edu/open_access_dissertations/946

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/84?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/946?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F946&utm_medium=PDF&utm_campaign=PDFCoverPages


MODELING FOR THERMAL RESISTANCE OF NON-O157 SHIGA 

TOXIN PRODUCING ESCHERICHIA COLI IN GROUND BEEF 

by 

Jagpinder S Brar 

 

 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Doctor of Philosophy  

 

 

 

Department of Food Science 

West Lafayette, Indiana 

December 2016 

 
 



ii 

 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF DISSERTATION APPROVAL 

Dr. Manpreet Singh, Chair 

Department of Food Science 

Dr. Arun Bhunia 

Department of Food Science 

Dr. Bruce Applegate 

Department of Food Science 

Dr. Jolena Waddell 

Department of Animal Science, Tarleton State University 

 

Approved by: 

Dr. Carlos Corvalan 

Head of the Departmental Graduate Program 

 



iii 

 

I would like to dedicate my work to my loving wife, Mandeep Brar, my mom, dad, sister 

and the newest addition to the family, my nephew Aval Grewal.



iv 

 

ACKNOWLEDGMENTS 

I would like to express my sincere gratitude to my advisor Dr. Manpreet Singh for 

his motivation, patience and his continuous support throughout my project. All the food 

safety knowledge that I have acquired during this time and this journey could not have 

been possible without his guidance. I sincerely appreciate him for sending me to different 

conferences and workshops to enhance my understanding of food safety and nurture my 

interests in the field. I would also like to thank my committee members Dr. Arun Bhunia, 

Dr. Bruce Applegate and Dr. Jolena Waddell for their suggestions and recommendations 

to improve my research project. 

Furthermore, I want to thank all my friends in Singh lab who have helped me in 

my research project, including Matthew Bailey, Rhonda Taylor, Sydney Coakran, 

Carmen Velasquez, and Estefania Novoa Rama. In addition, I would like to thank one of 

my dearest friend Lucky Mehra for providing his expertise in statistics and helping me in 

data analysis. This project would not have completed on time without all their assistance 

and support.  Finally, I would like to extend my special appreciation to my parents, my 

wife, my sister and my friends for all their love and constant support.



v 

 

TABLE OF CONTENTS 

LIST OF TABLES ............................................................................................................. ix 

LIST OF FIGURES ............................................................................................................ x 

ABSTRACT ...................................................................................................................... xii 

CHAPTER 1: INTRODUCTION ....................................................................................... 1 

CHAPTER 2: REVIEW OF LITERATURE ...................................................................... 4 

2.1 General Overview .................................................................................................. 4 

2.2 Shiga-toxin Producing Escherichia coli (STEC) ................................................... 4 

2.3 Heat resistance of STEC ........................................................................................ 7 

2.4 Predictive Modeling .............................................................................................. 7 

2.4.1 Design of Experiments ................................................................................. 8 

2.4.1.1 Complete factorial design ................................................................. 8 

2.4.1.2 Fractional factorial design ................................................................ 9 

2.4.1.3 Central composite design ................................................................. 9 

2.4.2 Primary modeling ....................................................................................... 10 

2.4.2.1 Log-linear model ............................................................................ 10 

2.4.2.2 Log-linear with tail ......................................................................... 12 

2.4.2.3 Biphasic Model ............................................................................... 13 

2.4.2.4 Modified Gompertz model ............................................................. 14 

2.4.2.5 Sigmoidal model ............................................................................. 15 

2.4.2.6 Weibull Model ................................................................................ 16 

2.4.2.7 Mixed Weibull model ..................................................................... 17 



vi 

 

2.4.2.8 Baranyi Model ................................................................................ 19 

2.4.3 Best Performing Primary Model ................................................................ 20 

2.4.3.1 Residual sum of squares (RSS) ...................................................... 20 

2.4.3.2 Akaike Information Criteria ........................................................... 21 

2.4.3.3 Akaike’s weights (w) ...................................................................... 21 

2.4.3.4 Bayesian information criterion ....................................................... 22 

2.4.3.5 Accuracy and Bias factors .............................................................. 22 

2.4.3.5 F test ............................................................................................... 23 

2.4.4 Secondary Modeling ................................................................................... 24 

2.5 References ........................................................................................................... 25 

CHAPTER 3: THERMAL INACTIVATION OF SHIGA TOXIN PRODUCING 

ESCHERICHIA COLI IN GROUND BEEF WITH VARYING FAT 

CONTENT ...................................................................................................... 37 

Abstract ..................................................................................................................... 37 

3.1. Introduction ........................................................................................................ 38 

3.2. Materials and Methods ....................................................................................... 41 

3.2.1 Bacterial Strains ......................................................................................... 41 

3.2.2 Growth Curve ............................................................................................. 41 

3.2.3 Laboratory Medium .................................................................................... 42 

3.2.4 Ground Beef ............................................................................................... 43 

3.2.5 Fat content of ground beef .......................................................................... 45 

3.2.6 D-values and Statistical analysis ................................................................ 46 

3.3. Results and Discussion ....................................................................................... 47 



vii 

 

3.3.1 Growth Curve ............................................................................................. 47 

3.3.2 Laboratory media ....................................................................................... 47 

3.3.3 Ground Meat ............................................................................................... 49 

3.4 References ........................................................................................................... 62 

CHAPTER 4: A PREDICTIVE MODEL FOR THERMAL INACTIVATION OF     

NON-O157 SHIGA TOXIN PRODUCING ESCHERICHIA COLI IN 

GROUND BEEF. ............................................................................................ 65 

Abstract ..................................................................................................................... 65 

4.1 Introduction ......................................................................................................... 66 

4.2 Material and Methods .......................................................................................... 68 

4.2.1 Experiment design ...................................................................................... 68 

4.2.2 Primary Modeling ....................................................................................... 68 

4.2.3 Comparing primary models ........................................................................ 69 

4.2.4 Secondary Modeling ................................................................................... 70 

4.2.5 Validation of model .................................................................................... 70 

4.3 Results and Discussion ........................................................................................ 73 

4.3.1 Primary Model ............................................................................................ 73 

4.3.2 Parameters estimation of primary model: .................................................. 75 

4.3.3 Secondary Model ........................................................................................ 75 

4.3.4 Validation of predictive model ................................................................... 77 

4.4 References ........................................................................................................... 93 

CHAPTER 5: CONCLUSION ......................................................................................... 99 

APPENDIX A: SAS CODES ......................................................................................... 101 



viii 

 

APPENDIX B: PARAMETER ESTIMATIONS ........................................................... 112 

APPENDIX C: SOXHLET FAT ANALYSIS PROTOCOL ......................................... 128 

  



ix 

 

LIST OF TABLES 

Table 3.1 Growth parameters for non-O157 STEC strains grown in Tryptic Soy          

Broth (TSB) supplemented with 50ppm Nalidixic Acid (NAL) at 37°C ............... 53 

Table 3.2 Decimal reduction time (D-value) of a cocktail of six strains of STEC in    

ground beef with varying fat content at 55, 60, 65 and 68°C. ................................ 60 

Table 3.3 z-values and coefficient of regression calculated for a cocktail of six             

non-O157 STEC strain in ground beef with varying fat content. ........................... 61 

Table 4.1: Primary inactivation models used for curve fitting in survival curves .............. 80 

Table 4.2 Akaike’s informational criterion (AIC) values of primary models for       

survival curves obtained at different fat content and temperatures ........................ 81 

Table 4.3 Akaike weighs (w) of primary models for survival curves at different fat  

content and temperature .......................................................................................... 84 

Table 4.4 Weibull model parameters (b and n) estimation, standard error (SE),              

Root mean square error (RMSE) and coefficient of regression (r2) calculated     

from SAS® non-linear mixed program ................................................................... 86 

 

 

 



x 

 

LIST OF FIGURES 

Figure 2.1 Log-linear inactivation model ........................................................................... 11 

Figure 2.2: Log-linear with Tail inactivation model ........................................................... 12 

Figure 2.3: Biphasic inactivation model ............................................................................. 13 

Figure 2.4: Gompertz inactivation model ........................................................................... 15 

Figure 2.5: Sigmoidal inactivation model ........................................................................... 16 

Figure 2.6 Weibull inactivation model (a) when n>1 (b) when n<1 .................................. 17 

Figure 2.7: Four different possibilities of modified Weibull model. .................................. 18 

Figure 2.8: Baranyi inactivation model .............................................................................. 19 

Figure 3.1 A pouch (7.6 x 12.7 cm) containing 5-g inoculated ground beef used for 

thermal resistance study .......................................................................................... 44 

Figure 3.2: Pouches containing inoculated ground beef submerged in a water-bath         

with a thermocouple and datalogger to monitor temperature ................................. 45 

Figure 3.3: (a) Growth curves and (b) absorbance at 600nm light for six non-O157      

STEC strains in TSB+NAL (50ppm) at 37°C. ....................................................... 52 

Figure 3.4 Decimal reduction value (D-value) for non-O157 STEC strains grown 

individually in Tryptic Soy Broth (TSB) medium .................................................. 54 

Figure 3.5: Survival curves for non-O157 STEC strains in Tryptic Soy Broth (TSB)         

at (a) 55°C, (b) 60°C and (c) 65°C ......................................................................... 56 

Figure 3.6: Survival curves for a cocktail of six non-O157 STEC strains in ground        

beef with fat content of 5% (F5), 10% (F10), 15% (F15), 20% (F20),                

25% (F25) and 30% (F30) at (a) 55°C, (b) 60°C, (c) 65°C and (d) 68°C. ............. 58 



xi 

 

Figure 3.7: Survival curves for a cocktail of six non-O157 STEC strains in ground        

beef with varying fat content at 71.1°C. ................................................................. 59 

Figure 4.1 Curve fitting of (a) Weibull, (b) Log-linear with Tail, (c) Modified        

Weibull, (d) Sigmoidal, (e) Log-linear, (f) Biphasic, (g) Baranyi and                    

(h) Four factor Sigmoidal primary models in the survival curve                             

(Log CFU/g vs Time) at 55ºC in 25% (%w/w) of ground beef. ............................. 89 

Figure 4.2 (a) Residual plot (Observed value-predicted value) vs predicted Weibull      

value (b) and comparative plot between observed values v/s predicted values. ..... 90 

Figure 4.3 Response surface graph for five log reduction time for non-O157 STECs          

as a function of fat content and temperature of ground beef .................................. 91 

Figure 4.4 Validation of the predicted lethality (Log N/N0) with observed lethality             

in meat from three grocery stores (G1, G2 and G3) at (a) 58ºC, 10%;                    

(b) 58ºC, 27%; (c) 62ºC, 10%; and (d) 62ºC, 27%. ................................................ 92 

   



xii 

 

ABSTRACT 

Author: Brar, Jagpinder, Singh. Doctor of Philosophy 

Institution: Purdue University 

Degree Received: Fall 2016 

Title: Pathogen Modeling for Thermal Resistance of Non-O157 Shiga Toxin Producing 

Escherichia coli in Ground Beef. 

Major Professor: Manpreet Singh. 

 

Predictive models in microbiology are used for estimating the growth or survival 

of microorganism in a set of environmental conditions. A validated predictive model 

provides an alternative to extensive survival and shelf life studies. In this study, a 

predictive inactivation model for non-O157 shiga toxin producing Escherichia coli 

(STEC) in ground beef was developed. Six strains of non-O157 STEC; E. coli O26:H1, E. 

coli O45:H2, E. coli O103:H2, E. coli O111:H8, E. coli O121:H9, and E. coli O145: non-

motile, has similar pathogenicity as E. coli O157:H7 and can cause serious food borne 

illnesses. These pathogens are considered as an adulterant in meat products. The thermal 

behavior these non-O157 STECs was studied in laboratory media as well as in ground 

beef with varying fat content. There was no significant difference in the heat resistance 

among the strains, therefore, a cocktail of the strains was used for ground beef study. 

Ground beef fat content levels of 5, 10, 15, 20, 25, and 30% were used. Survival curves 

were generated between surviving population against time during heat treatment at five 

temperatures 55, 60, 65, 68, 71.1ºC. The shape of survival curves was analyzed by 

statistical analysis software (SAS®) to identify the best fitting primary model. The survival 

of these pathogens was modeled as a second order polynomial function of fat content of 

ground beef and temperature of cooking. The accuracy factor of the developed model was 

11.43%, which is in the acceptable limit of 25%. The model was successfully validated for 

predicting process lethality in ground beef obtained from three grocery stores. 
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CHAPTER 1: INTRODUCTION 

Shiga toxin producing Escherichia coli (STEC) or Enterohemorrhagic E. coli 

(EHEC) can cause gastrointestinal illnesses, bloody diarrhea, hemorrhagic colitis, and 

hemolytic uremic syndrome (HUS) in humans (Anderson et al., 2009). The infectious 

dose of STECs can be as low as 10-100 CFU/g and the incubation time approximately 2-

4 days (Paton et al., 1996). Young, old, immunocompromised, and pregnant populations 

are vulnerable to STEC infection and are a major concern in meat industry as 

approximately 75% of the STEC outbreaks are linked with meat and meat products 

(Nguyen and Sperandio, 2014). Scallan et al., (2011) estimated 175,905 infections and 

3,673 hospitalizations caused by STECs annually in the US. E. coli O157:H7 is the most 

frequent STEC strain causing food related outbreaks, however, the number of outbreaks 

linked with non-O157 STECs is increasing. A total of 1,113 incidences of E. coli 

infections in the United States have been reported from 2006-2013, of which, 49.6% of 

the cases were caused by E. coli O157 and 50.4% of them were caused by non-O157 

STECs, resulting in 286 hospitalizations and 4 deaths (Crim et al., 2014). Six strains of 

non-O157 STECs, E. coli O26:H1, E. coli O45:H2, E. coli O103:H2, E. coli O111:H8, E. 

coli O121:H9, and E. coli O145: non-motile, contribute to the majority of the non-O157 

STEC infections (Gould, 2009). To eliminate these pathogens from food products, USDA 

has a zero-tolerance policy for E. coli O157 and these six strains of non-O157 STECs 

(USDA, 2011). 

FSIS requires a minimum of 5-log CFU/g reduction of pathogens during 

processing in ready to eat (RTE) meat products as a preventive control (FSIS, 2001). 



2 

 

Understanding of thermal behavior of target pathogens is critical in designing the 

processing conditions to ensure the required process lethality. The rate of thermal 

inactivation varies with not only the temperature but also with the intrinsic properties of 

the food (Juneja et al., 1997). Juneja and Eblen (2000) found an increase in the heat 

resistance of Salmonella Typhimurium as the fat content of ground beef increased. The 

authors speculated that fat provides a protective layer for pathogens and hence it takes 

longer to kill pathogens at higher fat content. Similarly, other intrinsic factors like pH, 

water activity, and moisture content can also impact the survival of pathogens in food. 

Hence, studying impact of intrinsic factors is vital for ensuring microbial safety of food. 

Pathogen modeling provides an alternative to extensive pathogen survival studies 

and quantifying the impact of environmental conditions and intrinsic factors of food 

(Baranyi et al., 1994). The USDA has developed a pathogen modeling protocol (PMP) 

containing various predictive models to provide an estimation of growth and/or survival 

of different pathogens and spoilage organisms and to assist processors to design process 

conditions for adequate lethality (USDA, 2016). A scientific validation is required for 

each specific food product and target pathogen before applying predictive models 

(USDA, 2016). Juneja et al. (2009) developed a predictive model for inactivation of E. 

coli O157 as a function of tea leaf and apple skin powder for ground beef. Similarly, 

Skandamis et al. (2000) developed and validated a predictive model for inactivation of E. 

coli O157:H7 in homemade eggplant salad with environmental factors of pH, temperature 

and oregano essential oil concentration. Understanding of design of experiments, and 

statistical analysis are very important to develop an accurate predictive model. The 

thermal behavior of the pathogens of interest are studied and the data generated are used 
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for building a predictive model. Primary modeling analysis is performed to understand 

the distribution of survival curves; surviving population versus exposure time, and the 

impact of environmental factors are included in the secondary modeling analysis. 

Combinations of both primary and secondary models are used to estimate the population 

of target pathogen within the specification of a given set of intrinsic and extrinsic 

conditions (Baranyi et al., 1994). The potential pathogenicity of non-O157 STECs, low 

infectious dose, and high prevalence in meat products make it important to develop an 

inactivation model for these pathogens. Hence, thermal inactivation of non-O157 STECs 

has been modeled as a function of temperature and fat content of ground beef in this 

research. This predictive model for inactivation of non-O157 STEC will provide the 

information required for successful elimination of these pathogens in ready to eat meat 

products.  The following were the main objectives of the research 

1) To study the thermal behavior of six non-O157 STEC strains individually in 

laboratory medium at 55, 60, 65 and 71.1°C 

2) To study the impact of fat content of ground beef on the heat resistance of non-

O157 STEC at 55, 60, 65, 68 and 71.1°C 

3) To develop a mathematical predictive model for thermal inactivation of non-O157 

STEC in ground beef 

4) To validate the model developed in the objective 3 
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CHAPTER 2: REVIEW OF LITERATURE 

2.1 General Overview 

Escherichia coli is a gram negative, non-spore forming mesophilic bacteria, and 

has optimal growth conditions of 4.5-9 pH, 37 ± 2°C and <5% salt content. Pathogenic E. 

coli can cause gastrointestinal illness, Hemorrhagic colitis, Hemolytic Uremic Syndrome 

(HUS), nausea and self-limiting watery diarrhea (Tarr, 1995). Based on their mechanism 

of pathogenesis, E. coli has been divided into five groups; enterotoxigenic E. coli 

(ETEC), enteroinvasive E. coli (EIEC), enterohemorrhagic E. coli (EHEC) or Shiga toxin 

producing E. coli (STEC), enteropathogenic E. coli (EPEC) and enteroaggregative E. coli 

(EAEC) (Mathusa et al., 2010). 

The nomenclature of E. coli strains is based on their O and H antigen: O antigen 

is the somatic antigen and H antigen is flagellar antigen (Sheng et al., 2008). The O 

classification is based on repeats of oligosaccharide units, a part of outer membrane 

lipopolysaccharide (LPS) (Perry et al., 1986). H-antigen consists of flagellin polymer 

present in the flagellar filament, which helps in the motility of the bacterium. The N-

terminal and C-terminal of flagellin are conserved, however, the middle section is 

variable and yields different H-antigen (Lino et al., 1988). A total 53 flagellar antigen 

groups have been described for E. coli (Starr, 1986). 

2.2 Shiga-toxin Producing Escherichia coli (STEC) 

The pathogenicity of STECs is mainly attributed to shiga toxin genes (stx1 and/or 

stx2) and the E. coli eae, which codes for intimin allowing attachment and effacing. 
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Intimin is required for attachment of STEC cells to the intestinal cells and Shiga toxins 

damage the host cell by blocking its protein synthesis mechanism (Sandvig and van 

Deurs, 2000). Expression of eae gene is critical for the pathogenesis of STECs as Stx 

cannot invade host cells without attachment by intimin. The presence of Stx2 further 

increases the virulence of the organism and makes it more likely to cause HUS and 

bloody diarrhea (Mathusa et al., 2010). 

STECs can be further classified into five seropathotypes, A to E, based on the 

pathogenicity and frequency of occurrence. Type A are the most virulent pathogens 

including strains of O157:H7 and O157:H- (non-motile). Seropathotype B contains non-

O157 strains that have eae, stx1, and/or stx2. Six major strains of type B, also called the 

“Big Six”, are O26:H1, O45:H2, O103:H2, O111:H8, O121:H9, and O145: H-. Type C 

can sometimes cause HUS but not frequently associated with outbreaks, type D causes 

diarrhea and cannot cause HUS, and type E lacks intimin (eae) gene, required for 

invasion of E. coli and are non-pathogenic for humans (Karmali et al., 2003). 

Seropathotype A, O157:H7 and O157: H-, has been associated with major outbreaks with 

different food products in the United States. Young, old, immunocompromised and 

pregnant population are more vulnerable to STEC infection. One of the major outbreak in 

1993 associated with ground beef infected 732 people and caused death of 4 children 

(Golan et al., 2004). As a result of this outbreak and the public health risks that E. coli 

O157:H7 can pose, the United State Department of Agriculture (USDA) declared E. coli 

O157 as an adulterant and has a “zero tolerance” policy against it, which was further 

extended to six non-O157 STEC strains (USDA, 2011). Seropathotype B, Non-O157 

STECs, are the STEC strains that do not have O157 as their somatic antigen. More than 
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200 non-O157 STEC strains have been associated with illness worldwide (Brooks et al., 

2005). However, the big six strains are the most common occurring non-O157 STECs. 

About 82% of the human isolates from diseases collected by FoodNet from 2000-07 

(n=803) belong to these six strains (Gould, 2009). The infectious dose of non-O157 

STECs can be as low as E. coli O157 (Paton et al., 1996) and the disease onset time for 

non-O157 STECs is 3-4 days but it can be as low as 1-2 days (Mathusa et al., 2010). Four 

of the ‘Big six’ strains, O26, O103, O111, and O145, possess both stx1 and stx2 and 

therefore more virulent than others (Erickson and Doyle, 2007). 

Non-O157 STEC infection has been linked with various types of foods like 

sausage, iceberg lettuce, milk, raw meat and poultry products. Contamination of beef 

carcasses with STECs is a major concern in the meat industry as these pathogens are 

naturally present in the intestine of ruminants (Bettelheim, 2001). Some researchers have 

found the prevalence of non-O157 STECs higher than E. coli O157 in beef carcasses. 

Beutin et al. (1997) found 63.2% of cattle feces positive with E. coli and all of the 33 

strains collected were non-O157 STECs. Hussein (2007) found non-O157 STEC 

prevalence rate of 2.1 to 70.1% in different beef processing plants. Non-O157 STECs 

have been linked with various outbreaks in meat products. In 2007, an outbreak was 

caused by E. coli O26:H11 in beef sausage infecting 20 people. Among them, one patient 

developed bloody diarrhea and others reported mild symptoms. Recently, two multistate 

outbreaks in a fast food chain restaurant caused by non-O157 STEC infected 60 people in 

14 states and 22 patients were hospitalized (CDC, 2016). It is suspected that 

contaminated meat was the main cause of these outbreaks, however, the exact sources 

could not be determined. 
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2.3 Heat resistance of STEC 

The survival of E. coli at higher temperature is attributed to heat shock sigma 

factor σ32 encoded by rpoH gene. σ32 is very unstable at the optimum growth temperatures 

but becomes stable as the temperature increases and promotes transcription of heat shock 

genes (Nagai et al., 1991). Bukau et al., (1993) observed a 15-fold increase in the heat 

shock proteins (HSPs) in E. coli when the temperature was increased from 30 to 42°C. 

The HSPs consists of chaperones systems, which help in stabilizing and folding of 

proteins and protect them from heat damage. Heat resistance of E. coli O157 has been 

very widely studied in different laboratory media and food products like fluid milk 

(D’Aoust et al., 1998); beef and chicken (Juneja et al., 1997); apple cider (Ugarte‐

Romero et al., 2006) and liquid white (Geveke, 2008), however, limited data is available 

for thermal behavior of non-O157 STECs. Juneja et al. (1997) studied the thermal 

behavior of E. coli O157 in ground beef. The survival curves, surviving microbial 

population versus time, were generated at 55, 57.5, 60, 62.5, and 65°C. Decimal 

reduction time (D-value), was 21.13 min at 55°C, which decreased to 4.95, 3.17, 0.93 and 

0.39 min for 55, 60, 62.5, and 65°C. The survival data in different environmental 

conditions can be used to develop a predictive model. The distribution of data in survival 

curves is very important to understand for developing a predictive model. In the next 

section, the basic principles of predictive modeling and the tools used for selection of a 

model, and validation of a model will be covered. 

2.4 Predictive Modeling 

Predictive models are widely used in the food industry to estimate the growth or 

death of pathogenic microorganisms in the storage or processing conditions, respectively. 
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The construction of a predictive model is divided into two main stages: Primary and 

Secondary modeling. As most of the scientific studies, a careful design of experiments is 

very important for developing an effective model. The estimations of predictive models 

can only be made by interpolation of data (Baranyi et al., 1996), therefore, the minimum 

and maximum values of environmental factors should be considered in the experimental 

design. 

2.4.1 Design of Experiments 

2.4.1.1 Complete factorial design 

In complete factorial design, experiments are performed to investigate the effect 

of each factor level and data is collected in multiple replicates at each level of each 

factor. The advantage of this design is that it helps in determining the impact of factors 

with highest accuracy. However, this also means that a higher volume of experiments 

needs to be performed. For example, if there are four factors and three levels per factor, 

two biological replicates; a total to 34x2=162 experiments would be needed. This design 

is best suited for the conditions where number of factors is less and higher accuracy is 

demanded. Dalgaard et al. (1997) used complete factorial design to design an experiment 

for understanding the impact of temperature and carbon dioxide on shelf life of packed 

fish. Similarly, Chhabra et al. (1999) used a complete factorial design to quantify the 

effect of fat, pH and processing temperature on thermal inactivation of Listeria 

monocytogenes in milk. Three levels for each factor were selected and a complete 

factorial designs yielded 3x3x3x3=81 experiments with three replicates at each factor and 

level. In the present study, a complete factorial design to estimate the impact of two 

factors; fat and temperature, on heat resistance of non-O157 STECs was used. There 
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were six levels of fat and four levels of temperature and three biological replicates were 

performed. Hence, making the total number of 72 experiments (6x4x3). 

2.4.1.2 Fractional factorial design 

In fractional factorial design the number of experiments is reduced by omitting 

some factors and levels. A statistical software is used to minimize the impact of omitted 

experiments on the response variable. The goal of this experimental design is to obtain 

statistically similar information for the factors by performing lesser experiments as 

compared to a complete factorial design.  Juneja and Eblen (1999) used fractional 

factorial design to develop a predictive model including the impact of temperature, pH, 

NaCl and sodium pyrophosphate on thermal inactivation of L. monocytogenes. There 

were four main factors and three levels for each factor and three replications per 

combination. The researchers would have to perform 34x3= 247 experiment runs for a 

complete factorial designs but they successfully reduced the number of experiment to 47 

by using a fractional factorial design. 

2.4.1.3 Central composite design 

In this design, two levels: minimum and maximum are considered for each factor 

and at least one experiment is performed at the central intersection of all factors. Hence, 

making the total number of 2k + 2k + no, where k is the number of factors and n0 is the 

number of experiments at central portion (≥1). For example, to investigate the impact of 

three factors on the response variable, a minimum of 15 experiments will be required. 

Lebert et al. (1998) developed a predictive growth model for Listeria monocytogenes in 

meat broth. The impact of three factors, pH, temperature and NaCl, was studied for this 



10 

 

experiment. The temperature range was 4 to 14°C, aw was 0.98-1.00 and pH ranged from 

5.8 to 6.2. A total of 10 growth curves were generated based on the central composite 

experimental design as compared to 32x3=27 growth curves for a complete factorial 

design. Similarly, Geurzoni et al. (2002) also used central composite design to study the 

impact of pH, pressure treatment and NaCl concentration (%w/w) on survival of S. 

Enteritidis in egg-based products. 

2.4.2 Primary modeling 

After design of experiments and data collection, primary modeling is the first step 

of data analysis. The objective of primary modeling is to define the distribution of the 

data with highest accuracy and minimum residual sum of squares. It is very important to 

select the best performing primary model in order to have reliability in the secondary 

model. The following are the different types of primary models defined in the literature 

that help in understanding the behavior of survival curves. 

2.4.2.1 Log-linear model 

The most common and widely used model in thermal inactivation studies is the 

log-linear model, which assumes that the survival curves follow first order kinetics and 

population reduction is directly proportional to the time (Stumbo, 1973). This is the 

simplest primary model for thermal inactivation of microorganisms. The other major 

assumption of log-linear model is that all cells of a culture have similar thermal tolerance 

and they respond similarly to heat. The equation for log-linear model is given below. 

𝑙𝑜𝑔 𝑁𝑡 = 𝑙𝑜𝑔 𝑁0 −𝑏 ∗ 𝑡 

𝐷 = −
1

𝑏
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Where, Nt = Bacterial population at a given time; 

N0 = Initial bacterial population at the target temperature; 

t = time; 

b = slope of the line; 

D = Decimal reduction time (D-value). 

Nt, No and t are known based on the experiments and b is estimated by 

using a curve fitting software. 

 

Figure 2.1 Log-linear inactivation model 

 

Figure 2.1 shows a typical behavior of the log-linear primary model with bacterial 

population in log scale on the y-axis and time on the x-axis. Decimal reduction time (D-

value) is calculated by talking a negative inverse of the slope. The data can further be 

extrapolated to calculate z-values (Stumbo, 1973). Various researches have used log-

linear model to calculate D, and z-values of different microorganism in the past (Juneja et 

al, 1997; Juneja et al., 1999; Murphy et al., 2002; Luchansky et al., 2013). However, in 

most cases, survival curves deviate from the log-linear model hence creating a necessity 

to look for other primary models to define the distribution. The reason of the deviation 

could be the differential heat resistance of the cells, environmental factors that could act 

as a protective layer for the cells, differential stress response of the cells etc. Various non-

linear models have been used by researchers in the past to define the data distribution of 

survival curves. 
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2.4.2.2 Log-linear with tail 

The major assumption of this model is that a certain portion of the surviving 

population is very resistant to the treatment and it survives for a longer time period 

(figure 2.2; Geeraerd et al., 2005). This model was initially designed for bacterial spores 

but later adopted for vegetative cells for mild heat or other treatments. Greenacre et al. 

(2003) used this model for acid tolerance response of Listeria monocytogenes and 

Salmonella enterica. Lactic and acetic acids were used to adapt the pH of the growth 

media and the survival curves followed the log-linear with tail reduction. Similarly, 

Marquenie et al. (2003) applied this model for pulsed white light treatment for 

inactivation of fungi, Monilia fructigena and Botrytis cinerea. The survival curves 

showed a complete fit to the log-linear with tail model. 

  

Figure 2.2: Log-linear with Tail inactivation model 

log10 𝑁𝑡 = log10(( 𝑁0 − 𝑁𝑟𝑒𝑠)𝑒−𝑘∗𝑡 + 𝑁𝑟𝑒𝑠) 

Where, Nt = Bacterial population at a given time; 

N0 = Initial bacterial population at the target temperature; 

t = time; 

k= inactivation rate; 

Nres=remaining heat resistant surviving population 

Nt, No and t are known based on the experiments and k and Nres estimated 

by using a curve fitting software. 
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2.4.2.3 Biphasic Model 

Biphasic inactivation of microorganisms also called Cerf model, shows two 

separate linear regions in the survival curve (Cerf, 1977), indicating two regions of 

different heat resistance in the population (figure 2.3). Microorganisms are assumed to 

have two death rates and hence two D-values for each set of population. Humpehson et 

al. (1998) studied the cause of biphasic inactivation of Salmonella Enteritidis PT4 in 

nutrient broth (NB) and reported that the initial cell concentration impacts the death 

kinetics. The survival curves obtained from less than 7-logCFU/ml initial concentration 

were linear and more than 7-logCFU/ml showed two phases of linear regions. By 

extrapolating the data, it was determined that 1 in 105 cells had higher heat resistance. 

Another reasons for tailing effect could be protective effect from the debris of dead cells, 

localized locations with low water activity, and induction of heat shock proteins (Allan et 

al., 1988; Cerf, 1977).  

Figure 2.3: Biphasic inactivation model 

log10 𝑁𝑡 = log10 𝑁0 − log10(𝑓𝑒−𝑘1𝑡 + (1 − 𝑓)𝑒−𝑘2𝑡) 

𝐷1 =
1

𝑘1
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𝐷2 =
1

𝑘2
 

Where, Nt = number of cells at a given time; 

 N0= initial population; 

f = portion of population that is more heat resistant; 

 k1, k2 = death rates of both populations respectively; 

 D1, D2 = D-values for both regions 
Nt, No and t are known based on the experiments; f, D1 and D2 are 

estimated by using a curve fitting software 

2.4.2.4 Modified Gompertz model 

Gompertz model (figure 2.4) is used to understand the sigmoidal shape survival 

curves. The sigmoidal shape or inverted ‘S’ shape survival curves show significant 

deviation from the log-linear model. Two asymptotes are formed in this curve: upper and 

a lower asymptote (Bhaduri et al., 1991). Upper asymptote represents the lag phase and 

the lower asymptote represents the tailing effect. The center part of the Gompertz curves 

follow the first order kinetics with log-linear death rate. If the asymptotes are not present, 

then Gompertz model is similar to log-linear model. Linton et al. (1995 and 1996) and 

Bhaduri et al., (1991) used modified Gompertz model to understand the thermal 

inactivation behavior of L. monocytogenes in various food products. These authors 

reported that Gompertz model showed better representation of data distribution of 

survival curves than that of linear first order kinetics model. 
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Figure 2.4: Gompertz inactivation model 

Log
𝑁

𝑁0
= 𝐴 − 𝐶𝑒−𝑒−𝐵(𝑡−𝑀)

 

μ𝑚𝑎𝑥 =
𝐵𝐶

𝑒
 

𝑡𝑙𝑎𝑔 = 𝑀 −
1

𝐵
+

(log 𝑁0 − 𝐴)

μ𝑚𝑎𝑥
 

Where, Nt = number of cells at a given time; 

N0= Initial population; 

A = value for upper asymptote; 

M = time at which absolute death rate is maximal; 

B = relative death rate at M; 

C = difference in the value between upper and lower asymptote; 

μmax = maximum death rate; 

tlag = lag phase of the survival curve. 

Nt, No and t are known based on the experiments and A, B, C and M are 

estimated by using a curve fitting software 

2.4.2.5 Sigmoidal model 

The standard sigmoidal curve (figure 2.5) and the equation to define the curve are 

shown below. This model is also used for inverted ‘S’ shaped curve with longer lag phase 

and a tail. In this model, a and b are the function of lag period (shoulder), rate of 

inactivation, and the tail. 
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Figure 2.5: Sigmoidal inactivation model 

log10 𝑁𝑡 = log10 𝑁0 − log10(1 + 𝑒𝑎+𝑏 log(𝑡)) 

Where Nt = number of cells at a given time; 

N0= initial population; 

t = time in min.; 

a, b = constants that define the shape of the curve 

2.4.2.6 Weibull Model 

Weibull model consists of two main parameters, b and n, that defines the slope 

and the shape of the curve respectively. For n=1, the Weibull function is same as the log-

linear model. For n>1, the survival curve shows downward concavity and for n<1 an 

upward concavity is shown by the survival curves (figure 2.6a and 2.6b). An upward 

concavity of the Weibull model represents that the surviving cells have adapted to the hot 

temperature and shown more resistance initially. Similarly, downward concavity 

represents the tailing effect and shows that the surviving population and a downwards 

concavity represents that the remaining cells are more resistant to heat in the later phase 

of heat treatment (Van Boekel., 2002). 

The equation defining the Weibull model is shown below. 

log10 𝑁𝑡 = log10 𝑁0 −𝑏 ∗ (𝑡)𝑛 
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Where, Nt = number of cells at a given time; 

N0= Initial population; 

b =function of slope of the curve; 

n= function that defines the shape of the curve. 

Nt, No and t are known based on the experiments and b and n are estimated 

by using a curve fitting software 

  

Figure 2.6 Weibull inactivation model (a) when n>1 (b) when n<1 

Chen (2007) studied the high pressure inactivation of Vibrio parahaemolyticus, L. 

monocytogenes, E. coli O157:H7, Salmonella Enteritidis, Salmonella Typhimurium and 

Staphylococcus aureus in milk. The author observed that Weibull model with downwards 

concavity (n>1) was the best fit for the distribution of survival curves. In another study, 

Couvert et al. (2005) also used Weibull model to understand the survial cuvres of 

Bacillus pumilus A40 spores at 89, 92, 95, 98, 101 and 104°C. All the survival curves 

also showed a downward concavity with n>1. 

2.4.2.7 Mixed Weibull model 

A mixed Weibull model (figure 2.7) is an extension of the existing Weibull 

model. This model assumes the co-existence of two portions with different heat 

resistance, and both populations follow Weibull model. The upper portion of the curve 

follows the Weibull model with upward concavity and the lower portion follows the 
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Weibull model with downwards concavity (Coroller et al., 2006). Coroller et al. (2006) 

studied the inactivation of L. monocytogenes and S. Typhimurium and observed that the 

survival curves showed two different heat resistance patterns. The authors developed the 

following mixed Weibull equation. 

 

 

 

Figure 2.7: Four different possibilities of modified Weibull model. 

N𝑡 =
𝑁0

1 + 10𝑎
[10

(
𝑡

∂1
)

𝑛

+𝑎
+ 10

(
𝑡

∂2
)

𝑛

] 

𝑎 = log10 (
𝑓

1 − 𝑓
) 

Where, Nt = number of cells at a given time; 

N0= Initial population; 

t = time 
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f= portion of population which has different heat resistance; 

𝑎 = transformation of f 

∂1, ∂2 = decimal reduction times for sub-population 1 and 2 respectively; 

n= function of the shape of curve for each sub-population 

2.4.2.8 Baranyi Model 

Baranyi model (figure 2.8) was originally developed to understand growth of 

microorganisms in different environmental conditions (Baranyi and Roberts, 1994). Later 

on, researchers tried to fit this model for survival curves data and modified it to represent 

thermal inactivation (Baranyi et al., 1996). Baranyi model very commonly uses primary 

model for survival curves (Xiong et al., 1999, Pal et al., 2008, Farakos et al., 2013). umax, 

h0 and Nmin are the functions of deactivation rate, lag phase and tailing of the curve. is the 

maximum The equation for Baranyi inactivation model is given below. 

log10 𝑁𝑡 = log10 𝑁0 + 𝑢𝑚𝑎𝑥𝑡 +
1

𝑢𝑚𝑎𝑥
log(𝑒−𝑢𝑚𝑎𝑥.𝑡 + 𝑒−ℎ0 −  𝑒−𝑢𝑚𝑎𝑥𝑡−ℎ0)  

− log10 (1 +
𝑒

𝑢𝑚𝑎𝑥+
1

𝑢𝑚𝑎𝑥
log(𝑒−𝑢𝑚𝑎𝑥.𝑡+𝑒−ℎ0− 𝑒−𝑢𝑚𝑎𝑥𝑡−ℎ0)

− 1

𝑒(log10 𝑁𝑚𝑖𝑛−log10 𝑁0)
) 

Where, Nt = number of cells at a given time; 

 N0= Initial population; 

t = time, 

umax= maximum kill rate; 

Nmin = minimum population after the treatment; 

ho = function lag phase or shoulder; 

 

Figure 2.8: Baranyi inactivation model 
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A Microsoft Excel extension, DMFit, has been developed by the Institute of food 

research which uses Baranyi Model as a primary model and estimate growth/death 

parameters of the curves (Institute of Food Research, 2016).  DMFit has been used in 

many publications for curve fitting data analysis (Koutsoumanis et al., 1999; Aljarallah et 

al., 2007; Luchansky et al., 2013). 

2.4.3 Best Performing Primary Model 

In predictive modeling, it is assumed that only one primary model defines the 

distribution of data, i.e. best fitted in the distribution and then its parameters are estimated 

(Burnham and Anderson, 2004). Secondary model is developed on the basis of primary 

model. Hence, it is very important to find the best performing primary model for a given 

set of data. Various performance measuring statistical tools can be used to identify the 

primary model. Following are the most common accuracy measurement criterion used for 

estimating the best performing primary model. 

2.4.3.1 Residual sum of squares (RSS) 

The residual sum of square (RSS) is calculated by adding the square of the 

difference between observed value and prediction value. Higher RSS values indicates that 

the predicted values are different from the observed values. Therefore, a lower RSS value 

is desired for the best fitted model. An RSS value of 0 would indicate the model is a 

complete fit and an RSS value is also used for parameter estimation of a given primary 

model for a survival curve. The parameters that yields minimum RSS value are selected.  

    𝑅𝑆𝑆 = ∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2𝑛

𝑖=1  

Where, yi= observed value at i 

f(xi)= predicted value at i 
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2.4.3.2 Akaike Information Criteria 

Akaike information criteria (AIC) is a function of RSS and number of parameters 

to be estimated by the model. The model selection based on AIC numbers works on the 

principal of parsimony. If two or more models have similar RSS value, then the model 

with minimum number of parameters is selected (Akaike 1981). As the number of 

parameters increases, the error related to each parameter also increases and reduces the 

accuracy of the model. Hence, a penalty for number of parameters to be estimated has 

been included in the AIC formula. The following equation is used for calculating AIC 

value of a primary model 

𝐴𝐼𝐶 = 𝑛 ∗ log10 (
𝑅𝑆𝑆

𝑛
) + 2𝑘 

Where, n = number of data points on the curve; 

RSS = residual sum of squares;  

k = number of parameters. 

2.4.3.3 Akaike’s weights (w) 

The AIC number is a good criterion to measure best performing model for a 

single surviving curve. However, in order to identify primary model in a survival curve 

with multiple environmental factors, a weighted value of AIC is taken. The following 

equations are used to calculate combined AIC weight for each primary model and the 

model with highest weight is selected for further analysis (Burnham and Anderson, 

1998). Minimum AIC value for one survival curve is subtracted from all other AIC 

values resulting in a 𝛥𝑖  of 0 for the best fitting model for the curve. Similarly, 𝛥𝑖 is 

calculated for other survival curves and a net AIC weightage is calculated. An AIC 

weight of 10 means that there is five times more confidence in choosing this model over 

the model with w of 2 (Link et al., 2006). 
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𝛥𝑖 = 𝐴𝐼𝐶𝑖 − 𝑚𝑖𝑛𝐴𝐼𝐶 

𝑤𝑖 =
𝑒(−0.5𝛥𝑖)

∑ 𝑒(−0.5𝛥𝑟)𝑅
𝑟=1

 

Where, AICi= AIC number of model i 

minAIC= minimum AIC among all primary models. 

∆i = AIC difference for model i 

R= number of primary models 

2.4.3.4 Bayesian information criterion 

Bayesian information criterion (BIC) is directly proportional to the log-likelihood 

function of model and can also be used to differentiate best performing models among a 

group (Schwarz, 1978). Minimum BIC value is preferred for a best fitted model. 

𝐵𝐼𝐶 = −2 ∗ 𝑙𝑛 (𝐿) + 𝑘 ∗ 𝑙𝑛 (𝑛) 

Where, L = maximized value of likelihood function; 

k=number of parameters; 

n= number of data points; 

2.4.3.5 Accuracy and Bias factors 

Baranyi et al. (1999) proposed Accuracy factor (Af) and Bias factor (Bf) to test the 

performance of a predictive model. These factors are used to measure average deviation 

of the prediction from the observed data point. Af can further be used to measure 

percentage discrepancy (Df), that tells the average error of prediction. A Df of less than 

25% is desired for a good predictive model (Ross et al., 2000). Bf provides the 

information if the model is overestimating or underestimating the predicted value. The Af 

and Bf of 1 shows that the model is predicting the exact value as the experimental data. 

The major difference between Af and Bf formulas are that the Bf formula uses the value 

with sign of Log (Nmodel/Ndata) value, whereas Af uses the absolute value. Bf >1 shows 
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that model is overestimating and Bf<1 shows the model is underestimating the predicted 

variable. 

%𝐵𝑓 = 𝑠𝑔𝑛(𝐵𝑓) ∗  (𝐵𝑓 − 1) ∗ 100 

𝐵𝑓 = 10^

[
∑ (log

𝑁𝑚𝑜𝑑𝑒𝑙
𝑁𝑑𝑎𝑡𝑎

 )𝑛
1

𝑛
]

 

𝑠𝑔𝑛(𝐵𝑓) =  (

+1     𝑖𝑓     𝐵𝑓 > 0

0       𝑖𝑓     𝐵𝑓 = 0

−1     𝑖𝑓     𝐵𝑓 < 0

) 

𝐴𝑓 = 10^

[
∑ |( log

𝑁𝑚𝑜𝑑𝑒𝑙
𝑁𝑑𝑎𝑡𝑎

 )|𝑛
1

𝑛
]

 

%𝐷𝑓 = (𝐴𝑓 − 1) ∗ 100% 

Where, LogNmodel = predicted value  

LogNData = observed value 

n= number of data points 

2.4.3.5 F test 

The F-test can also be used to test the performance of a primary model. The mean 

square error of the model is calculated and compared with the mean square error of data. 

The f-value is compared with the F-table of 95% confidence interval with degree of 

freedom of the model and the data. The following equations are used for the analysis. 

𝑀𝑆𝐸𝑑𝑎𝑡𝑎 =  
∑ ∑ (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 log10 𝑁𝑖 − log10 𝑁𝑖𝑗)𝑘

𝑖=1
𝑚
𝑖=1

2
 

𝑛 − 𝑚
 

𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙 =  
∑ (log10 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

𝑖 − log10 𝑁𝑓𝑖𝑡𝑡𝑒𝑑
𝑖 )

2𝑛
𝑖=1

𝑛 − 𝑠
 

𝑓 =
𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙

𝑀𝑆𝐸𝑑𝑎𝑡𝑎
 

Where, Nobserved i is the observed population value 
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Nfitted i is the fitted population level  

n is the number of data points,  

s is the number of parameters of the model,  

m is the number of time points (sampling times), 

k is the number of replicates at each time point, 

average Ni is the mean value of the population at time point i, 

Nij is the population at time point i for specific replicate j 

2.4.4 Secondary Modeling 

Secondary modeling analysis is performed to incorporate the impact of environmental 

factors in the equation of best performing primary model. Response surface modeling (rsm) 

has been widely used for the secondary modeling analysis for predictive modeling (Buchanan 

et al., 1994; Aouadhi et al., 2013; Wang et al., 2014). This multiple regression analysis 

defines the output variable as a second degree polynomial function of input variable. Wang 

et al. (2014) developed a predictive model inactivation of Vibrio parahaemolyticus in acidic 

electrolyzed water on cooked shrimp by using this method. Similarly, Aouadhi et al. (2013) 

used rsm for modeling of inactivation of Bacillus sporothermodurans spores in high 

hydrostatic pressure with combination of mild heat. The following equation is developed as 

secondary model for each primary model parameter. 

𝑥1 = ß0 + ß1𝐸1 + ß2𝐸1
2 +  ß3𝐸2 … … … … … . +ß𝑛𝐸1𝐸𝑚 + 𝑒 

Where, x1 is a parameter of best performing model; 

E1, E2…Em:  Environmental factors  

e= random error  

ß1 to ßn= coefficients of the model 
  



25 

 

2.5 References 

Akaike, H. (1981). Likelihood of a model and information criteria. Journal of 

Econometrics, 16(1), 3-14. 

Aljarallah, K. M., & Adams, M. R. (2007). Mechanisms of heat inactivation in 

Salmonella serotype Typhimurium as affected by low water activity at different 

temperatures. Journal of Applied Microbiology, 102(1), 153-160. 

Allan, B. R. E. N. D. A., Linseman, M. I. C. H. E. L. L. E., MacDonald, L. A., Lam, J. S., 

& Kropinski, A. M. (1988). Heat shock response of Pseudomonas aeruginosa. 

Journal of Bacteriology, 170(8), 3668-3674. 

Aouadhi, C., Simonin, H., Prévost, H., de Lamballerie, M., Maaroufi, A., & Mejri, S. 

(2013). Inactivation of Bacillus sporothermodurans LTIS27 spores by high 

hydrostatic pressure and moderate heat studied by response surface 

methodology. LWT-Food Science and Technology, 50(1), 50-56. 

Baranyi, J., & Roberts, T. A. (1994). A dynamic approach to predicting bacterial growth 

in food. International Journal of Food Microbiology, 23(3-4), 277-294. 

Baranyi, J., Jones, A., Walker, C., Kaloti, A., Robinson, T. P., & Mackey, B. M. (1996). 

A combined model for growth and subsequent thermal inactivation of Brochothrix 

thermosphacta. Applied and Environmental Microbiology, 62(3), 1029-1035. 

Baranyi, J., Pin, C., & Ross, T. (1999). Validating and comparing predictive 

models. International Journal of Food Microbiology, 48(3), 159-166. 

Baranyi, J., Ross, T., McMeekin, T. A., & Roberts, T. A. (1996). Effects of 

parameterization on the performance of empirical models used in ‘predictive 

microbiology'. Food Microbiology, 13(1), 83-91. 



26 

 

Bettelheim, K. A. (2001). Enterohaemorrhagic Escherichia coli O157: H7: a red 

herring?. Journal of medical microbiology, 50(2), 201. 

Bhaduri, Saumya, Phillip W. Smith, Samuel A. Palumbo, Carolyn O. Turner-Jones, 

James L. Smith, Benne S. Marmer, Robert L. Buchanan, Laura L. Zaika, and 

Aaron C. Williams. (1991). Thermal destruction of Listeria monocytogenes in 

liver sausage slurry. Food Microbiology 8 (1): 75-78. 

Brooks, J. T., E. G. Sowers, J. G. Wells, K. D. Greene, P. M. Griffin, R. M. Hoekstra, 

and N. A. Strockbine. 2005. Non-0157 Shiga toxin producing Escherichia coli 

infections in the United States, 1983— 2002. Journal of Infectious Diseases 

92:1422-1429. 

Buchanan, R. L., Golden, M. H., Whiting, R. C., Phillips, J. G., & Smith, J. L. (1994). 

Non-Thermal Inactivation Models for Listeria monocytogenes. Journal of Food 

Science, 59(1), 179-188. 

Bukau, B. (1993). Regulation of the Escherichia coli heat‐shock response. Molecular 

Microbiology, 9(4), 671-680. 

Burnham, K. P., & Anderson, D. R. (1998). Model selection and inference: a practical 

information-theoretic approach Springer-Verlag. New York. 

Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference understanding AIC and 

BIC in model selection. Sociological Methods and Research, 33(2), 261-304. 

Center of Disease Control and Prevention (2016).  Multistate Outbreak of Shiga toxin-

producing Escherichia coli O157:H7 Infections Linked to Beef Products 

Produced by Adams Farm. Accessed on October 15th, 2016. Accessed from 

http://www.cdc.gov/ecoli/2016/o157h7-09-16/index.html 

http://www.cdc.gov/ecoli/2016/o157h7-09-16/index.html


27 

 

Center of Disease Control and Prevention. (2016). Multistate Outbreaks of Shiga toxin-

producing Escherichia coli O26 Infections Linked to Chipotle Mexican Grill 

Restaurants. Accessed on May 13th, 2016. Accessed from 

http://www.cdc.gov/ecoli/2015/o26-11-15 

Cerf, O. (1977). A review tailing of survival curves of bacterial spores. Journal of 

Applied Bacteriology, 42(1), 1-19. 

Chen, H. (2007). Use of linear, Weibull, and log-logistic functions to model pressure 

inactivation of seven foodborne pathogens in milk. Food Microbiology, 24(3), 

197-204. 

Chhabra, A. T., Carter, W. H., Linton, R. H., & Cousin, M. A. (1999). A predictive 

model to determine the effects of pH, milkfat, and temperature on thermal 

inactivation of Listeria monocytogenes. Journal of Food Protection, 62(10), 

1143-1149. 

Coroller, L., Leguérinel, I., Mettler, E., Savy, N., & Mafart, P. (2006). General model, 

based on two mixed Weibull distributions of bacterial resistance, for describing 

various shapes of inactivation curves. Applied and Environmental Microbiology, 

72(10), 6493-6502. 

Couvert, O., Gaillard, S., Savy, N., Mafart, P., & Leguérinel, I. (2005). Survival curves of 

heated bacterial spores: effect of environmental factors on Weibull 

parameters. International Journal of Food Microbiology, 101(1), 73-81. 

  

http://www.cdc.gov/ecoli/2015/o26-11-15


28 

 

Crim, S. M., Iwamoto, M., Huang, J. Y., Griffin, P. M., Gilliss, D., Cronquist, A. B., and 

Lathrop, S. (2014). Incidence and trends of infection with pathogens transmitted 

commonly through food—Foodborne Diseases Active Surveillance Network, 10 

US sites, 2006–2013. Morbidity and Mortality Weekly Report, 63(15), 328-32. 

D’Aoust, J. Y., Park, C. E., Szabo, R. A., Todd, E. C. D., Emmons, D. B., & McKellar, 

R. C. (1988). Thermal inactivation of Campylobacter species, Yersinia 

enterocolitica, and hemorrhagic Escherichia coli 0157: H7 in fluid milk. Journal 

of Dairy Science, 71(12), 3230-3236. 

Dalgaard, P., Mejlholm, O., & Huss, H. H. (1997). Application of an iterative approach 

for development of a microbial model predicting the shelf-life of packed 

fish. International Journal of Food Microbiology, 38(2), 169-179. 

Erickson, M. C., & Doyle, M. P. (2007). Food as a vehicle for transmission of Shiga 

toxin–producing Escherichia coli. Journal of Food Protection, 70(10), 2426-

2449. 

Ethelberg, S., Smith, B., Torpdahl, M., Lisby, M., Boel, J., Jensen, T., & Mølbak, K. 

(2007). An outbreak of Verocytotoxin-producing Escherichia coli O26: H11 

caused by beef sausage, Denmark 2007. Eurosurveillance, 12(5). 

Starr, M. P. (1986). Edwards and Ewing's Identification of 

Enterobacteriaceae. International Journal of Systematic and Evolutionary 

Microbiology, 36(4), 581-582. 

  



29 

 

Farakos, S. S., Frank, J. F., & Schaffner, D. W. (2013). Modeling the influence of 

temperature, water activity and water mobility on the persistence of Salmonella in 

low-moisture foods. International Journal of Food Microbiology, 166(2), 280-

293. 

Geeraerd, A. H., Valdramidis, V. P., & Van Impe, J. F. (2005). GInaFiT, a freeware tool 

to assess non-log-linear microbial survivor curves. International Journal of Food 

Microbiology, 102(1), 95-105. 

Geveke, D. J. (2008). UV inactivation of Escherichia coli in liquid egg white. Food and 

Bioprocess Technology, 1(2), 201-206. 

Golan, E., Roberts, T., Salay, E., Caswell, J., Ollinger, M., & Moore, D. (2004). Food 

safety innovation in the United States evidence from the meat industry. USDA 

Agricultural Economics Reports, 831. 

Gould, H. (2009). Update on the epidemiology of STEC in the United States. Centers for 

Disease Control and Prevention. Annual Capital Area Food Protection 

Association ‘‘Non-O157 STEC: Waiting for the other shoe to drop,’’Washington, 

DC, 15. 

Greenacre, E. J., Brocklehurst, T. F., Waspe, C. R., Wilson, D. R., & Wilson, P. D. G. 

(2003). Salmonella enterica serovar Typhimurium and Listeria monocytogenes 

acid tolerance response induced by organic acids at 20 C: optimization and 

modeling. Applied and Environmental Microbiology, 69(7), 3945-3951. 

  



30 

 

Guerzoni, M. E., Vannini, L., Lanciotti, R., & Gardini, F. (2002). Optimisation of the 

formulation and of the technological process of egg-based products for the 

prevention of Salmonella Enteritidis survival and growth. International Journal of 

Food Microbiology, 73(2), 367-374. 

Humpheson, L., Adams, M. R., Anderson, W. A., & Cole, M. B. (1998). Biphasic 

thermal inactivation kinetics in Salmonella Enteritidis PT4. Applied and 

Environmental Microbiology, 64(2), 459-464. 

Hussein, H. S. (2007). Prevalence and pathogenicity of Shiga toxin-producing in beef 

cattle and their products. Journal of Animal Science, 85(13_suppl), E63-E72. 

Iino, T., Komeda, Y., Kutsukake, K., Macnab, R. M., Matsumura, P., Parkinson, J. S., 

and Yamaguchi, S. (1988). New unified nomenclature for the flagellar genes of 

Escherichia coli and Salmonella Typhimurium. Microbiological reviews, 52(4), 

533. 

Institute of Food Research. (2016). Computational Microbiology. Accessed on May 14th, 

2016. Accessed from http://comicro.ifr.ac.uk 

Jagannath, A., & Tsuchido, T. (2003). Validation of a polynomial regression model: the 

thermal inactivation of Bacillus subtilis spores in milk. Letters in Applied 

Microbiology, 37(5), 399-404. 

Juneja V.K., Bari M.L., Inatsu Y., Kawamoto S., and Friedman M. 2009. Thermal 

Destruction of Escherichia coli O157:H7 in Sous-Vide Cooked Ground Beef as 

Affected by Tea Leaf and Apple Skin Powders. Journal of Food Protection, 72 

(4): 860-865. 

http://comicro.ifr.ac.uk/


31 

 

Juneja, V. K., & Eblen, B. S. (1999). Predictive thermal inactivation model for Listeria 

monocytogenes with temperature, pH, NaCl, and sodium pyrophosphate as 

controlling factors. Journal of Food Protection, 62(9), 986-993.  

Juneja, V. K., & Marmer, B. S. (1999). Lethality of heat to Escherichia coli O157: H7: 

D-and z-value determinations in turkey, lamb and pork. Food Research 

International, 32(1), 23-28. 

Juneja, V. K., Cadavez, V., Gonzales-Barron, U., Mukhopadhyay, S., & Friedman, M. 

(2016). Effect of pomegranate powder on the heat inactivation of Escherichia coli 

O104: H4 in ground chicken. Food Control, 70, 26-34. 

Juneja, V. K., Snyder, O. P., & Marmer, B. S. (1997). Thermal destruction of Escherichia 

coli O157: H7 in beef and chicken: determination of D-and z-

values. International Journal of Food Microbiology, 35(3), 231-237. 

Karmali, M.A., Mascarenhas, M., Shen, S., Ziebell, K., Johnson, S., Reid-Smith, R., 

Isaac-Renton, J., Clark, C., Rahn, K. and Kaper, J.B,(2003). Association of 

genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing 

Escherichia coli seropathotypes that are linked to epidemic and/or serious 

disease. Journal of Clinical Microbiology, 41(11), 4930-4940. 

Kim, S. A., & Rhee, M. S. (2015). Predictive model and optimization of a combined 

treatment of caprylic acid and citric acid for the reduction of Escherichia coli 

O157: H7 using the response surface methodology. International Journal of Food 

Microbiology, 197, 9-14. 

  



32 

 

Koutsoumanis, K., Lambropoulou, K., & Nychas, G. E. (1999). A predictive model for 

the non-thermal inactivation of Salmonella Enteritidis in a food model system 

supplemented with a natural antimicrobial. International Journal of Food 

Microbiology, 49(1), 63-74. 

Lebert, I., Bégot, C., & Lebert, A. (1998). Development of two Listeria monocytogenes 

growth models in a meat broth and their application to beef meat. Food 

Microbiology, 15(5), 499-509. 

Link, W. A., & Barker, R. J. (2006). Model weights and the foundations of multimodel 

inference. Ecology, 87(10), 2626-2635. 

Linton, R. H., Carter, W. H., Pierson, M. D., & Hackney, C. R. (1995). Use of a modified 

Gompertz equation to model nonlinear survival curves for Listeria 

monocytogenes Scott A. Journal of Food Protection, 58(9), 946-954. 

 Linton, R.H., Pierson, W.H., Hackney, M.D., Eifert, C.R., Carter, J.D., & Linton, J.D. 

(1996). Use of a modified Gompertz equation to predict the effects of 

temperature, pH, and NaCI on the inactivation of Listeria monocytogenes Scott A 

heated in infant formula. Journal of Food Protection, 59(1), 16-23. 

Luchansky, J. B., Porto-Fett, A. C. S., Shoyer, B. A., Phillips, J., Eblen, D., Evans, P., & 

Bauer, N. (2013). Thermal Inactivation of a Single Strain Each of Serotype O26: 

H11, O45: H2, O103: H2, O104: H4, O111: H–, O121: H19, O145: NM, and 

O157: H7 Cells of Shiga Toxin–Producing Escherichia coli in Wafers of Ground 

Beef. Journal of Food Protection, 76(8), 1434-1437. 

  



33 

 

Marquenie, D., Geeraerd, A. H., Lammertyn, J., Soontjens, C., Van Impe, J. F., Michiels, 

C. W., & Nicolaı, B. M. (2003). Combinations of pulsed white light and UV-C or 

mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia 

fructigena. International Journal of Food Microbiology, 85(1), 185-196. 

Mathusa, E., Y. Chen, E. Enache, and L. Hontz. (2010). Non-0157 Shiga toxin—

producing Escherichia coli in foods. Journal of Food Protection, 73, 1721-1736  

Murphy, R. Y., Duncan, L. K., Johnson, E. R., Davis, M. D., & Smith, J. N. (2002). 

Thermal inactivation D-and z-values of Salmonella serotypes and Listeria 

innocua in chicken patties, chicken tenders, franks, beef patties, and blended beef 

and turkey patties. Journal of Food Protection, 65(1), 53-60. 

Nagai, H., Yuzawa, H., & Yura, T. (1991). Regulation of the heat shock response in E 

coli: involvement of positive and negative cis-acting elements in translational 

control of σ32 synthesis. Biochimie, 73(12), 1473-1479. 

Nguyen, Y., & Sperandio, V. (2014). Enterohemorrhagic E. coli (EHEC) 

pathogenesis. Shiga toxin-producing Escherichia coli in human, cattle and foods. 

Strategies for Detection and Control. 

Pal, A., Labuza, T. P., & Diez-Gonzalez, F. (2008). Comparison of primary predictive 

models to study the growth of Listeria monocytogenes at low temperatures in 

liquid cultures and selection of fastest growing ribotypes in meat and turkey 

product slurries. Food Microbiology, 25(3), 460-470. 

  



34 

 

Paton, A. W., Ratcliff, R. M., Doyle, R. M., Seymour-Murray, J., Davos, D., Lanser, J. 

A., & Paton, J. C. (1996). Molecular microbiological investigation of an outbreak 

of hemolytic-uremic syndrome caused by dry fermented sausage contaminated 

with Shiga-like toxin-producing Escherichia coli. Journal of clinical 

Microbiology, 34(7), 1622-1627. 

Perry, M. B., MacLean, L., & Griffith, D. W. (1986). Structure of the O-chain 

polysaccharide of the phenol-phase soluble lipopolysaccharide of Escherichia coli 

0157: H7. Biochemistry and Cell Biology, 64(1), 21-28. 

Quinto, E. J., Arinder, P., Axelsson, L., Heir, E., Holck, A., Lindqvist, R., ... & Pin, C. 

(2014). Predicting the concentration of verotoxin-producing Escherichia coli 

bacteria during processing and storage of fermented raw-meat sausages. Applied 

and Environmental Microbiology, 80(9), 2715-2727. 

Ross, T., Dalgaard, P., & Tienungoon, S. (2000). Predictive modelling of the growth and 

survival of Listeria in fishery products. International Journal of Food 

Microbiology, 62(3), 231-245. 

Sandvig, K., & van Deurs, B. (2000). Entry of ricin and Shiga toxin into cells: molecular 

mechanisms and medical perspectives. The European Molecular Biology 

Organization Journal, 19(22), 5943-5950. 

Scallan, E., R. M. Hoekstra, F. J. Angulo, R. V. Tauxe, M. Widdowson, S. L. Roy, J. L. 

Jones, and P. M. Griffin. 2011. Foodbome illness acquired in the United States— 

major pathogens. Emerging Infectious Diseases, 17, 7—15. 

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 

461-464. 



35 

 

Sheng, H., Lim, J. Y., Watkins, M. K., Minnich, S. A., & Hovde, C. J. (2008). 

Characterization of an Escherichia coli O157: H7 O-antigen deletion mutant and 

effect of the deletion on bacterial persistence in the mouse intestine and 

colonization at the bovine terminal rectal mucosa. Applied and Environmental 

Microbiology, 74(16), 5015-5022. 

Skandamis, P. N., & Nychas, G. J. E. (2000). Development and evaluation of a model 

predicting the survival of Escherichia coli O157: H7 NCTC 12900 in homemade 

eggplant salad at various temperatures, pHs, and oregano essential oil 

concentrations. Applied and Environmental Microbiology, 66(4), 1646-1653. 

Stumbo, C. R. (1973). Death of bacteria subjected to moist heat. Thermo-bacteriology in 

Food Processing, 70-92. 

Tarr, P. I. (1995). Escherichia coli O157: H7: clinical, diagnostic, and epidemiological 

aspects of human infection. Clinical Infectious Diseases,20(1), 1-8. 

Teixeira, A. (1992). Thermal process calculations. Handbook of food engineering, 563-

619. 

Tomlins, R. I., & Ordal, Z. J. (1976). Thermal injury and inactivation in vegetative 

bacteria. Inhibition and Inactivation of Vegetative Microbes, 5, 153-191. 

Ugarte‐Romero, E., Feng, H., Martin, S. E., Cadwallader, K. R., & Robinson, S. J. 

(2006). Inactivation of Escherichia coli with power ultrasound in apple 

cider. Journal of Food Science, 71(2), E102-E108. 

  



36 

 

United State Department of Agriculture (2011) Designation extends zero tolerance policy 

for E. coli O157:H7 to six additional E. coli serogroups. Accessed on October 1st, 

2016 Accessed from 

http://www.usda.gov/wps/portal/usda/usdahome?contentidonly=true&contentid=2

011/09/0400.xml 

Van Boekel, M. A. (2002). On the use of the Weibull model to describe thermal 

inactivation of microbial vegetative cells. International journal of food 

microbiology, 74(1), 139-159. 

Vega, S., Saucedo, D., Rodrigo, D., Pina, C., Armero, C., & Martinez, A. (2016). 

Modeling the isothermal inactivation curves of Listeria innocua CECT 910 in a 

vegetable beverage under low-temperature treatments and different pH 

levels. Food Science and Technology International, 1082013215624807. 

Wang, J. J., Zhang, Z. H., Li, J. B., Lin, T., Pan, Y. J., & Zhao, Y. (2014). Modeling 

Vibrio parahaemolyticus inactivation by acidic electrolyzed water on cooked 

shrimp using response surface methodology. Food Control, 36(1), 273-279. 

  

http://www.usda.gov/wps/portal/usda/usdahome?contentidonly=true&contentid=2011/09/0400.xml
http://www.usda.gov/wps/portal/usda/usdahome?contentidonly=true&contentid=2011/09/0400.xml
http://www.usda.gov/wps/portal/usda/usdahome?contentidonly=true&contentid=2011/09/0400.xml
http://www.usda.gov/wps/portal/usda/usdahome?contentidonly=true&contentid=2011/09/0400.xml


37 

 

CHAPTER 3: THERMAL INACTIVATION OF SHIGA TOXIN 

PRODUCING ESCHERICHIA COLI IN GROUND BEEF WITH 

VARYING FAT CONTENT 

Abstract 

Decimal reduction time (D-value) was calculated for six non-O157 shiga toxin 

producing Escherichia coli (STEC), in laboratory medium and ground beef at 55, 60, 65, 

68 and 71.1°C. For laboratory medium, overnight grown cultures were divided into 10ml 

sample bags and heated in a water bath for a specific time based on temperature. Survival 

curves were generated by plotting the surviving bacterial population against time and 

linear-log primary model was used to estimate the D-values from survival curves. z-

values were calculated by plotting the log D-values against temperature. Similarly, for 

ground beef, six fat contents, 5, 10, 15, 20, 25, and 30% were used. Inoculated meat was 

divided into 5-g sample bags and submerged in water bath set at specific temperatures 

(55, 60, 65, 68, and 71.1°C). Results showed no significant differences (p>0.05) in the D-

values between the six strains of STECs in laboratory medium at all temperatures. There 

was a negative correlation between fat content of ground beef and D-values at 55°C. 

However, at temperatures greater than 60°C, there was no impact (P>0.05) of fat content 

of ground beef on the thermal resistance of non-O157 STECs. The data generated can be 

helpful for the meat industry to develop predictive models for thermal inactivation of 

non-O157 STECs in ground beef.  
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3.1. Introduction 

Heat treatment is typically a critical control point (CCP) as part of the overall 

food safety system for cooked and ready to eat (RTE) meat and poultry products.  To 

make this process successful in eliminating and/or reducing pathogens, it is important to 

understand the heat resistance of target bacteria. Decimal reduction time (D-value) and 

the temperature raised to reduce D-value by one tenth (z-value) are critical parameters 

that help decide the processing limits to ensure safety of meat products (Stumbo, 1973). 

The F-value, defined as time taken to kill a known population of microorganisms, is 

calculated from the D and z-values and is used to obtain standard operating conditions 

(SOC) for meat processing. Hence, the understanding of D, z and F-values is important to 

ensure food safety of cooked and RTE meat and poultry products. 

A major outbreak of Escherichia coli O157:H7 (ECO157) in 1993 lead to the 

United States Department of Agriculture (USDA) enforcing zero tolerance of this 

pathogen in ground beef in the United States. This multistate outbreak infected 732 

people, of which 4 children died and 178 patients developed hemolytic uremic syndrome 

(HUS; Golan et al., 2004). Like E. coli O157:H7, non-O157 Shiga toxin producing E. 

coli (STEC) strains have the potential to cause bloody diarrhea, which can further 

develop into HUS, especially in young, old, pregnant, and immunocompromised 

populations. More than 200 other serotypes of non-O157 have been isolated from 

infections worldwide (Brooks et al., 2005). However, six serotypes, distinguished based 

on their O antigen, are most common. These six strains have resulted in approximately 

71% of the infections in the US from 1993 to 2002 (Brooks et al., 2005) and are also 

known as ‘Big Six’; E. coli: O26:H1, O45:H2, O103:H2, O111:H8, O121:H9, and O145: 
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non-motile. Scallan and others (2011) estimated about 110,000 illnesses caused by the 

non-O157 group in the US. 

Various foods such as dairy, leafy vegetables, game meat, beef, pork, fruit and 

nuts have been linked to non-O157 outbreaks in the US (Gierke et al., 2014). In 2010, 

two of the big six, E. coli O103 and E. coli O145, were isolated from an outbreak caused 

by consumption of undercooked venison in Minnesota (CDC, 2010), which infected 29 

high school students and two of them were hospitalized. In a multistate outbreak related 

to the non-O157 group, consuming contaminated romaine lettuce infected 27 people, of 

which 14 were hospitalized and three developed HUS (Taylor et al., 2013). Pulsed field 

gel electrophoresis (PFGE) confirmed the presence of E. coli O145:Non-motile strain 

causing the outbreak. Recently, two outbreaks caused by non-O157 STEC in a fast food 

chain restaurant infected 60 people in 14 states, hospitalizing 22 (CDC, 2016). Even 

though the exact ingredient that caused this outbreak is not known yet, it is expected that 

consumption of undercooked meat was the cause. Whole genome sequencing (WGS) and 

DNA fingerprinting analysis confirmed the presence of E. coli O26 in stool samples of 

the patients. In another study, the Connecticut Department of Health reported 51% 

(n=403) laboratory confirmed STEC infections were caused by non-O157 STECs (CDC, 

2007). 

More non-O157 outbreaks were observed in the last decade because of increased 

surveillance methods and more strain specific tests being performed. The actual number 

of infections could likely be higher than reported, as only 4% of the laboratory in the US 

actively screen for non-O157 group infections (Kalchayanand et al., 2012). Multiple 

outbreaks, wide variety of food vehicles, and potential pathogenicity of the non-O157 
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group have resulted in the zero-tolerance policy of USDA-FSIS in raw and non-intact 

beef. These pathogenic strains are considered as an adulterant in beef products (USDA, 

2011), therefore eliminating E. coli O157:H7 and the non-O157 STECs from beef and 

beef products is very critical to the meat industry. 

Thermal inactivation of pathogens during meat processing could be affected by 

various intrinsic and extrinsic factors; fat content being one of them. Juneja and Eblen 

(2000) studied the impact of fat content in ground beef on the thermal inactivation of 

Salmonella Typhimurium. An increase in the death rate, indicating a lower D-value, was 

observed in beef with higher fat content at 55, 58 and 62°C. However, a longer lag period 

was observed with more fat, which increased the overall D-value along with increased fat 

content of ground beef. The researchers concluded that fat acts as a protective barrier for 

cells and hence caused a longer lag period. In another study, Kotrola et al., (1997) did not 

observe any significant impact of fat content on the thermal inactivation of E. coli O157 

in ground turkey meat. The thermal behavior of E. coli O157:H7 has been very well 

studied and documented in various food products and conditions; however, there is 

limited information available for the non-O157 group in literature. Given the contrasting 

reports that are available on behavior of E. coli O157:H7 and the non-O157 STECs, and 

to bridge the gap of knowledge, this study was conducted to determine the thermal 

inactivation parameters for non-O157 STECs in laboratory medium and ground beef with 

varying fat contents at 55, 60, 65, 68 and 71.1°C. 
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3.2. Materials and Methods 

3.2.1 Bacterial Strains 

The bacterial strains used for this study were obtained from American Type 

Culture Collection (ATCC). The six strains used were E. coli O26:H1 ATCC BAA 2196 

(ECO26), E. coli O45:H2 SJ9 (ECO45), E. coli O103:H2 87.1368 (ECO103), E. coli 

O111:H8 ATCC BAA 179 (ECO111), E. coli O121:H9 ATCC BAA 2221 (ECO121), 

and E. coli O145:Non-motile ATCC BAA 2192 (ECO145). Nalidixic acid resistance 

(NAL+) was induced to differentiate the cells from the background flora of ground beef. 

Bacterial strains were grown overnight in Tryptic Soy Broth (TSB; Neogen, Lansing MI) 

at 37°C to target populations of 8-9 log CFU/ml and 100μl of the inoculum was 

transferred to two tubes for each strain containing 10ml of TSB supplemented with 5ppm 

of NAL, and incubated at 37°C for 24h. Following this, 100μl of the inoculum was 

transferred to another 10ml of TSB supplemented with 10ppm of NAL and this process 

was repeated until a 50ppm NAL resistance was induced in the strains. The NAL+ strains 

were stored on slants of plate count agar (PCA; Neogen, Lansing, MI) supplemented with 

50ppm of NAL at 4°C for future use. Fresh slants were prepared every six weeks by 

repeating the above process. 

3.2.2 Growth Curve 

Each strain of non-O157 STEC was grown in TSB supplemented with 50ppm of 

Nalidixic acid (NAL; Fisher BioReagents, Fair Lawn, NJ) overnight at 37°C. Cultures 

were then serially diluted to 10-6 and 1ml of the culture was used to inoculate 99ml of 

TSB + NAL. Following this, 2ml of the sample was taken every hour and the bacterial 
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population was enumerated by serial dilution in 0.1% peptone water (PW; Neogen, 

Lansing, MI) and plating onto PCA supplemented with 50ppm of NAL. A 100μl portion 

of the sample was used to measure absorbance at 600nm wavelength using an Epoch 

spectrophotometer (BioTech, Winooski, VT). The data were collected for up to 24h and 

the increase in the absorbance of light was co-related with the increase in the cell 

concentration. The data were analyzed with curve fitting software DMFit (Institute of 

Food Research, Colney, UK) to estimate the growth parameters. 

3.2.3 Laboratory Medium 

For the first part of this experiment, the D-values of these pathogenic strains was 

studied in TSB. A 10μl loop from slants was used to inoculate 200ml TSB supplemented 

with 50ppm NAL and incubated overnight at 37°C.  Following this, 10ml of the 

inoculum was transferred into sterile bags (3”x5”, Fisher Brand, Fisher Scientific, 

Waltham, MA) and a total of 12 bags were prepared for each temperature exposure and 

submerged in a thermostatic water bath (Model: Haake A25B, Fisher Scientific, 

Waltham, MA) set at 55, 60 and 65°C with an immersion circulator (Model: Haake 

AC150, Fisher Scientific, Waltham, MA). Bags were removed from the water bath at a 

fixed interval (10 min. for 55°C, 1 min. for 60°C and 15s for 65°C) and cooled 

immediately in an ice water bath. Temperature of the inoculated TSB in bags was 

monitored by inserting a K-type thermocouple connected with a temperature data logger 

(Model: HH806AU, Omega Engineering, Stamford, CT). After cooling, serial dilutions 

were made in 0.1% PW and plated onto PCA supplemented with 50ppm NAL. Plates 

were then incubated for 48h to provide time for recovery of heat-treated cells, and the 
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bacterial population at each time interval was calculated (log CFU/ml) and plotted against 

the exposure time. 

3.2.4 Ground Beef 

For the second part of this experiment, the heat resistance of non-O157 STECs in 

ground beef with varying fat content was studied. Ground beef was obtained from the 

Purdue University Meat Lab. Meat was trimmed to remove all visible fat and then the 

required amount of beef fat was added to make the desired fat content of 5, 10, 15, 20, 25 

and 30% (%w/w). Meat was ground three times to obtain a homogenous distribution of fat 

and pouches containing 100g of ground beef were prepared and stored at -20°C. Meat was 

thawed at 4°C for 24h before use. A cocktail of NAL+ non-O157 STECs was used in this 

study to inoculate ground beef. NAL+ phenotype helped to select against background flora 

of meat. A cocktail of all six strains was prepared and after 24h of incubation, cells were 

washed twice with 0.1% PW after centrifugation (Model: Sorvell Legend XTR, Thermo 

Scientific, Waltham, MA) at 4700xg, for 10 min. at 4°C and re-suspended in 1ml of 0.1% 

PW. The washed cells were homogenized to dissolve the pellets, and all strains were mixed 

together to prepare the cocktail. One ml of the cocktail was used to inoculate 100g of 

ground beef to achieve a target initial population of ca. ~log 7-8 CFU/g of ground beef. 

After inoculation, ground beef pouches were hand massaged for 2 min. for homogenous 

distribution of cells and maintained at room temperature for 30 min. for attachment of cells 

to the meat. Small pouches (figure 3.1, 7.6 x 12.7 cm or 3”x5”) containing 5 ± 0.05g of 

inoculated meat were heat sealed, and flattened to a target 1-2 mm thickness to facilitate 

even distribution of heat during thermal treatment. The pouches were submerged in a 

thermostatic circulating water bath (Model: Haake A25B, Fisher Scientific, Waltham, MA) 
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set at four temperatures: 55, 60, 65 and 71.1°C as showin in figure 3.2. Bags were removed 

from the water bath at a fixed time interval (7.5 min. at 55°C, 30s at 60°C, 5s at 65°C, 2s at 

68°C and 1s at 71.1°C) and cooled in ice water for instant cooling. In order to enumerate 

the survival population of bacteria, meat from bags was aseptically transferred to filter bags 

(7 oz., Nasco Whirl-Pak, Atkinson, WI) followed by addition of 5ml (1:1) of 0.1% PW. 

Filter bags were homogenized in a Stomacher (Stomacher 400, Steward Limited, West 

Sussex, UK) at 260 rpm for 60s, serially diluted in 9ml of 0.1% PW and then plated onto 

PCA supplemented with 50 ppm NAL. Plates were incubated for 48 h at 37°C to provide 

recovery time for heat injured cells and the populations were reported as log CFU/g of 

ground beef. 

  

Figure 3.1 A pouch (7.6 x 12.7 cm) containing 5-g inoculated ground beef used for 

thermal resistance study. 
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Figure 3.2: Pouches containing inoculated ground beef submerged in a water-bath with a 

thermocouple and datalogger to monitor temperature. 

3.2.5 Fat content of ground beef 

Fat content of the ground beef samples was measured by Soxhlet extraction with 

petroleum ether (ACS, VWR International, Radnor, PA). The samples were weighted 

(approx. 2-3 g) in a filter paper, and dried in a convection oven (Binder, Cole-Parmer, 

Vernon Hills, IL) at 105°C for 18-24h (AOAC, 1995 Method 939.60). Dried samples were 

transferred into a Soxhlet apparatus and heating temperature was set to obtain condensation 

rate of 4-5 drops/s. The extraction was performed for 6 h followed by overnight drying of 

samples at 105°C. Three replications for each sample were performed. Sample weight, pre-

extraction and post-extraction weights were measured the following equation was used to 

calculate fat content: 
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𝐹𝑎𝑡 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%) =  (
𝐵 − 𝐶

𝐴
) ∗ 100 

Where, A = sample weight (g); 
B = weight of filter paper prior to extraction (g); 

C = weight of filter paper after extraction (g). 

3.2.6 D-values and Statistical analysis 

Survival curves were generated for each experiment set by plotting log survival 

population against exposure time. A log-linear primary model, in which the log number of 

the bacterial population decreases linearly with time, was used to calculate D-value: 

log10

𝑁𝑡

𝑁𝑜
= 𝑏 ∗ 𝑡 

𝐷 = −
1

𝑏
 

Where Nt = bacterial population at a given time; 

N0 = Initial bacterial population at the target temperature; 

t = time 

b = slope of the line 

D = decimal reduction time (D-value) 

A minimum of five data points with a coefficient of regression (r2) more than 0.90 

were used to estimate the slope of the curve. Three replicates for each experiment were 

performed After calculating the D-values from the curves, analysis of variance of the data 

was performed using SAS® (SAS Institute, Cary, NC, USA) with a 95% confidence 

interval. The z-values were computed by plotting log of D-values against the temperature. 

The negative inverse of the slope of this plot was taken to compute z-values (time taken to 

reduce D-value by one log). 
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3.3. Results and Discussion 

3.3.1 Growth Curve 

The bacterial cells from the stationary phase were harvested and used in this study 

as they have been reported to be more heat resistant than the cells in the exponential 

phase (Gauthier and Clement, 1994). Growth curves were generated for each strain of 

non-O157 STECs to identify the lag, log and stationary phases of growth. Figure 3.3 

illustrates the growth pattern of each strain of non-O157 STEC. DMFit analysis showed a 

complete fit of Baranyi and Roberts primary growth model (Baranyi and Roberts, 1994) 

with the coefficient of regression as 0.97, 0.97, 0.97, 0.98, 0.98, and 0.99 for ECO26, 

ECO45, ECO103, ECO111, ECO121, and ECO145, respectively. The growth parameters 

for the six strains are shown in Table 3.1. Based on these results bacteria were grown for 

18 to 24h at 37°C before making a cocktail of the six non-O157 STECs to target the cells 

in the stationary phase of their growth. 

3.3.2 Laboratory media 

Thermal inactivation of each strain of non-O157 was studied in TSB supplemented 

with 50 ppm of NAL. The survival curves at 55, 60, and 65°C for each strain of non-O157 

STEC are shown in figure 3.4. When the overnight grown cultures were heated at 55°C, an 

average lethality of 6.13, 5.17, 5.44, 5.57, 5.01, and 4.65 log CFU/ml of bacterial 

population was observed for ECO26, ECO45, ECO103, ECO111, ECO121, ECO145, 

respectively after 60 min. of heating. Similarly, the lethality at 60°C was 6.05, 4.50, 6.38, 

5.93, 4.98, and 5.88 log CFU/ml after 9 min. of heating and at 65°C, lethality was 3.51, 
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5.32, 4.41, 4.50, 3.08, 5.59 log CFU/ml after 1.5 min. of heating for ECO26, ECO45, 

ECO103, ECO111, ECO121, ECO145, respectively. 

The D-values, calculated by fitting primary log-linear model to the survival 

curves, are shown in figure 3.5. The average D-value, irrespective of strain, at 55°C was 

17.96 min. and it reduced significantly (p<0.05) to 1.58 min. at 60°C and then further 

reduced (p<0.05) to 0.46 min. at 65°C. The D55°C values were 20.92, 19.68, 19.51, and 

19.69 min. for ECO45, ECO103, ECO121 and ECO145. respectively and there was no 

significant difference (p<0.05) among these strains. D-values for ECO26 and ECO111 

were recorded as 14.37 and 13.63 min. respectively, and they were significantly lower 

(p<0.05) than the other four strains. The results indicate that ECO45, ECO103, ECO121 

and ECO145 were more heat resistant than ECO26 and ECO111 and longer heat 

treatment is required to eliminate these pathogens from food at 55°C. At 60 and 65°C, 

there was no significant difference (p>0.05) in the heat resistance of all six of these non-

O157 STECs.  The D60°C was 1.63, 1.77, 1.40, 1.54, 1.61, and 1.58 min. for ECO26, 

ECO45, ECO103, ECO111, ECO121 and ECO145, respectively. The D65°C values were 

0.44, 0.45, 0.55, 0.45, 0.53, and 0.33, respectively. The results indicate that in laboratory 

medium, it would take 2.25, 2.75, 2.25, 2.65, and 1.65 min. for a 5D treatment, reducing 

5 log CFU/ml population, of ECO26, ECO45, ECO103, ECO111, ECO121 and ECO145, 

respectively at 65°C. 

Based on the D-values at three different temperatures, z-values were computed. 

The z-value was also used to estimate D-values at unknown temperatures by 

extrapolating the graph (Stumbo. 1973). The z-values were 6.6, 6.0, 5.8, 6.6, 6.4, and 

5.6°C for ECO26, ECO45, ECO103, ECO111, ECO121 and ECO145, respectively. The 
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results show that an increase of 6.6°C can reduce the D-value to one tenth for ECO26. 

Hence the D-value of ECO26 can be estimated at 0.044 min. (2.64s) at 71.6°C. 

3.3.3 Ground Meat 

There was no significant difference (p>0.05) in the thermal behavior of single 

strain non-O157 STECs, hence a cocktail containing all six strains was used to study their 

heat resistance in ground beef. Fat content of the ground beef samples was 8.03 ± 1.524, 

11.97 ± 0.999, 17.66 ± 0.737, 21.70 ± 1.586, 28.52 ± 0.325, and 31.04 ± 0.786% for F5, 

F10, F15, F20 F25 and F30 respectively. Survival curves generated from the inactivation 

of non-O157 STECs in ground beef are shown in figure 3.6. Sample bags containing 5g 

of ground beef were prepared and subjected to heat treatment as described in the methods 

section 2.4. The average come-up time, was 31.2, 32.2, 27.2s, and 18.2s for 55, 60, 65 

and 68°C, respectively, irrespective of the fat content of the meat. Luchansky et al., 

(2013) observed a quicker come-up time, 9.5, 8.1 and 8.1s for 54.4, 60 and 65.6°C, for 

non-O157 STEC strains in ground beef, however, this could be attributed to the use of 3g 

meat pouches as compared to 5g pouches that were used in our study. 

The D-values decreased significantly (p<0.05) when the temperature increased 

from 55 to 68°C (table 3.2). The D55°C ranged from 11.69 to 15.93 min. in 5 to 30% of fat 

content of ground beef. There was a significant decrease (p<0.05) in the D-value when 

the fat content increased from 5% to 10%. However, no significant difference was 

observed when the fat content was increased from 10 to 25%. A further significant 

decrease (p<0.05) was observed from 25% to 30% fat content. Overall, the D-values 

showed a negative correlation with fat content of ground beef at 55°C, indicating that low 

heating times are required at higher fat content to get similar lethality at 55°C. Vasan et 
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al., (2014) compared the heat tolerance of non-O157 STECs with E. coli O157:H7 and 

observed a significant decrease (p<0.05) in the D-values of E. coli O45:H2 from 29.26 

min. to 21.07 min. when the fat content of the ground beef was increased from 7% to 

27%. There was no impact of fat content on the heat tolerance of other five of the ‘Big 

six’ non-O157 STEC strains. However, some researchers have shown that heat resistance 

of organisms increases with the fat content of ground beef. Juneja and Eblen (2000) 

studied the heat resistance of Salmonella Typhimurium in ground beef with varying fat 

content and observed a ‘shoulder’ or ‘lag period’ in the survival curve, followed by a log-

linear phase. The researchers suggested that the fat content act as a protective layer and 

caused the shoulder/lag-period effect.  The lag-period was added to the D-values to 

estimate the time for 5-D (5-log reduction) process. ‘Lag period’ increased significantly 

(p<0.05) from 4.43 to 28.12 min. when the fat content was increased from 7 to 24% but 

the D-values decreased from 3.22 to 1.61 min. for the same increase in fat content and 

hence increased the heat resistance of S. Typhimurium. In our study, lag-phase in the 

survival curves was not significant (p>0.05) irrespective of fat content and hence a 

negative correlation was observed. 

At 60°C, a total of 3.99 log CFU/g lethality was calculated in 1.5 min. 

irrespective of the fat content. There was no significant difference (p>0.05) in heat 

resistance of the non-O157 STECs due to change in the fat content of ground beef. The 

D60°C values were 1.15, 1.16, 1.06, 1.11, 0.91, and 1.12 min. for 5, 10, 15, 20, 25, and 

30% fat content of ground beef, respectively. Similarly, at 65 and 68°C, there was no 

significant (p>0.05) impact of fat content on the D-values. The D65°C values were 0.14, 

0.14, 0.12, 0.11, 0.10, and 0.09 min. and the D68°C values were 0.05, 0.05, 0.06, 0.07, 
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0.06, and 0.05 min. for 5, 10, 15, 20, 25, and 30% fat content of ground beef. The average 

lethality irrespective of fat content was 3.94 and 3.66 log CFU/g at 65 and 68°C in 30 and 

14s. Our results are in agreement with a study conducted by Luchansky et al. (2013), 

where it was reported that there were no significant differences in D60°C values of non-

O157 STECs in ground beef with 7 and 30% fat content. 

The z-values of non-O157 STEC strains and the coefficient of regression of the 

plot between log D-value v/s temperature are shown in table 3.3. The coefficient of 

regression for the z-value curves was greater than 0.98 and ranged from 5.28 to 5.60°C 

for all the fat contents. The z-values calculated for this data are in the proximity of z-

values reported for E. coli O157 in the literature. Osaili et al. (2006), observed the z-

value of 5.2°C in ground beef. Similarly, Juneja et al. (1997), observed z-value of 6.0°C 

for a four strain cocktail of E. coli O157 in ground beef with 10% fat. In this study, an 

attempt was made to collect thermal inactivation data at 71.1°C in ground beef, however, 

due to lower initial bacterial numbers because of a higher kill rate during the come-up 

time, the data could not be collected. The survival curves are shown in figure 3.7. This 

data confirms that 71.1°C (160°F) is a lethal temperature for non-O157 STECs in ground 

beef. The data collected in this study is useful to enhance our knowledge about the heat 

resistance of the non-O157 STECs and further provide information to develop predictive 

models for thermal inactivation of non-O157 STECs in ground beef. These predictive 

models that are then generated from various data sets such as the one generated on our 

study can prove to be useful for meat processers to set up their standard operating 

conditions for safer processing of RTE meat products. 
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Figure 3.3: (a) Growth curves and (b) absorbance at 600nm light for six non-O157 STEC strains in 

TSB+NAL (50ppm) at 37°C. 
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Table 3.1 Growth parameters for non-O157 STEC strains grown in Tryptic Soy Broth (TSB) supplemented with 50ppm 

Nalidixic Acid (NAL) at 37°C 

 ECO26 ECO45 ECO103 ECO111 ECO121 ECO145 

Initial conc. (log CFU/ml) 0.92 ± 0.39 1.99 ± 0.34 1.39 ± 0.40 1.79 ± 0.28 0.46 ± 0.29 1.86 ± 0.23 

Lag time (h) 0.67 ± 0.94 2.29 ± 0.77 0.78 ± 1.50 2.57 ± 0.53 2.33 ± 0.76 2.15 ± 0.49 

Max Rate (h/(log CFU/ml)) 0.64 ± 0.05 0.88 ± 0.10 0.39 ± 0.03 0.97 ± 0.09 0.59 ± 0.03 0.81 ± 0.06 

Final conc. (log CFU/ml) 8.64 ± 0.13 8.68 ± 0.11 9.11 ± 0.37 8.49 ± 0.09 8.20 ± 0.13 8.59 ± 0.07 
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Figure 3.4 Decimal reduction value (D-value) for non-O157 STEC strains grown 

individually in Tryptic Soy Broth (TSB) medium  
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Figure 3.5: Survival curves for non-O157 STEC strains in Tryptic Soy Broth (TSB) at (a) 

55°C, (b) 60°C and (c) 65°C  

0

2

4

6

8

10

0 0.5 1 1.5

65ᵒC
ECO26 ECO45 ECO103

(c)

0

2

4

6

8

10

0 0.5 1 1.5

65ᵒC
ECO111 ECO121 ECO145

(c)

Time (min.) 

L
o

g
 C

F
U

/g
 



57 

 

 

 

0

2

4

6

8

0 10 20 30 40 50(a)

55ᵒC

F5 F10 F15

0

2

4

6

8

0 10 20 30 40 50(a)

55ᵒC

F20 F25 F30

0

2

4

6

8

0.0 1.0 2.0 3.0 4.0(b)

60ᵒC

F5 F10 F15

0

2

4

6

8

0.0 1.0 2.0 3.0 4.0(b)

60ᵒC

F20 F25 F30

L
o

g
 C

F
U

/g
 

Time (min.) 



58 

 

 

 

Figure 3.6: Survival curves for a cocktail of six non-O157 STEC strains in ground beef 

with fat content of 5% (F5), 10% (F10), 15% (F15), 20% (F20), 25% (F25) and 30% 

(F30) at (a) 55°C, (b) 60°C, (c) 65°C and (d) 68°C.  
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Figure 3.7: Survival curves for a cocktail of six non-O157 STEC strains in ground 

beef with varying fat content at 71.1°C.  
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Table 3.2 Decimal reduction time (D-value) of a cocktail of six strains of STEC in 

ground beef with varying fat content at 55, 60, 65 and 68°C. 

Temperature Fat content (%) D-value (min.) RMSE r2 

55°C (131°F) 

5 15.93 ± 0.44a 0.44 0.91 

10 13.87 ± 0.40b 0.40 0.91 

15 12.75 ± 0.17b, c 0.17 0.91 

20 12.40 ± 0.74b, c 0.74 0.94 

25 12.66 ± 0.35b, c 0.35 0.94 

30 11.69 ± 0.91c, d 0.91 0.91 

60°C (140°F) 

5 1.15 ± 0.04e 0.04 0.92 

10 1.16 ± 0.14e 0.14 0.92 

15 1.10 ± 0.08e 0.08 0.90 

20 1.10 ± 0.13e 0.13 0.90 

25 0.91 ± 0.05e 0.05 0.93 

30 1.12 ± 0.10e 0.10 0.92 

65°C (149°F) 

5 0.14 ± 0.01f 0.12 0.94 

10 0.14 ± 0.01f 0.12 0.92 

15 0.12 ± 0.01f 0.11 0.94 

20 0.11 ± 0.01f 0.11 0.93 

25 0.10 ± 0.02f 0.08 0.90 

30 0.09 ± 0.01f 0.08 0.94 

 
 5 0.05 ± 0.01g 0.45 0.87 

 10 0.05 ± 0.01g 0.14 0.89 

68°C (154.4°F) 15 0.06 ± 0.01g 0.39 0.83 

 20 0.07 ± 0.01g 0.25 0.88 

 25 0.06 ± 0.02g 0.34 0.82 

 30 0.05 ± 0.01g 0.24 0.86 

a-g: values with no common letter indicate significant difference at 95% confidence interval.
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Table 3. 3 z-values and coefficient of regression calculated for a cocktail of six non-O157 

STEC strain in ground beef with varying fat content. 

Fat content (% w/w) z-value (°C) Coefficient of regression (r2) 

5 5.17 0.99 

10 5.32 1.00 

15 5.55 0.99 

20 5.60 0.98 

25 5.47 0.98 

30 5.28 0.98 
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CHAPTER 4: A PREDICTIVE MODEL FOR THERMAL 

INACTIVATION OF NON-O157 SHIGA TOXIN PRODUCING 

ESCHERICHIA COLI IN GROUND BEEF. 

Abstract 

A mathematical model to predict the thermal inactivation of non-O157 shiga toxin 

producing Escherichia coli (STEC) in ground beef was developed in this study. The input 

parameters were temperature and fat content of ground beef. Survival curves for a 

cocktail of non-O157 STECs in ground beef at four temperature levels: 55, 60, 65 and 

68ºC and six fat contents: 5, 10, 15, 20, 25 and 30% were generated. Nine primary 

models: Log-linear, Log-linear with tail, Biphasic, Sigmoidal, four factor Sigmoidal, 

Baranyi, Weibull, Mixed Weibull, and Gompertz models were tested for betterment of fit. 

The model with the highest Akaike’s weight was selected as the best performing primary 

model. Data analysis showed the Weibull model to be the best fitted to define the 

distribution of survival curves. The parameters of Weibull model were estimated using 

non-linear mixed model in SAS® and response surface modeling was used to develop a 

second order polynomial regression to quantify the impact of fat in ground beef and 

cooking temperature on the heat resistance of non-O157 STECs. The secondary model 

developed was successfully validated by comparing the predicted lethality (log CFU/g) 

with the observed value for 10 and 27% fat content of ground beef at 58 and 62ºC. 

Process lethality obtained from experimental data was in the accuracy range of the 

predictive model.  
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4.1 Introduction 

Pathogen modeling provides an alternative to intensive and extensive tests used to 

determine shelf life and food safety (Baranyi et al., 1994). A validated predictive model 

for pathogens helps in estimating their behavior in various environmental conditions by 

interpolation within the experimental limits (Baranyi et al., 1996). Therefore, the 

experiments should be designed carefully to cover extremes of environmental factors 

impacting survival/growth of pathogens. The process of constructing a predictive model 

is divided into two parts: Primary modeling and secondary modeling. Primary modeling 

analysis is performed to identify the best model for defining the distribution of survival 

curves and secondary modeling quantifies the impact of environmental factors on 

primary modeling parameters (Whiting and Buchanan., 1993). 

Log-linear primary model with first order kinetics is very commonly used for 

thermal inactivation of pathogens (Stumbo, 1973; Tomlins and Ordal, 1976), however, 

deviation from log-linear curves has been reported by various researchers (Bhaduri et al., 

1991; Linton et al., 1996; Coroller et al., 2006). Sigmoidal model (Augustine et al., 

(1998), Gompertz (Linton et al., 1995), four factor sigmoidal, Baranyi models (Baranyi et 

al, 1996) have been widely used for survival curves with “S” shape containing a lag 

phase and a tail; Weibull (Van Boekel., 2002) and Mixed Weibull (Coroller et al., 2006) 

models for concave and convex curves; Biphasic (Cerf, 1977) and log-linear with tail for 

two proportions of populations, each following a different log-linear model. To compare 

primary models, different statistical tools have been used in literature such as mean 

square errors (MSE), coefficient of regression (R2), Akaike’s information criteria (AIC), 

Bayesian information criteria (BIC), and residual sum of squares (RSS) (Farakos et al., 
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2013; den Besten et al., 2006, Vega et al., 2016, Juneja et al., 2016). Response surface 

modeling (RSM), a quadratic model used to optimize the response variable (Box and 

Wilson, 1992), has been widely used for secondary modeling in predictive microbiology 

(Aouadhi et al., 2013; Beatty and Walsh, 2016). 

Six strains of non-O157 shiga toxin producing Escherichia coli (STEC) are 

considered as an adulterant in non-intact beef products (USDA, 2011). These strains, E. 

coli O26:H1, E. coli O45:H2, E. coli O103:H2, E. coli O111:H8, E. coli O121:H9, and E. 

coli O145:Non-motile, attribute to more than 80% of the non-O157 STEC human 

infections (Gould, 2009) and have been linked with contamination in meat products in the 

recent past (CDC, 2010; CDC, 2016). It has been estimated that the non-O157 STECs 

cause 110,000 illnesses per year in US (Scallan et al., 2011). Therefore, it is important to 

understand processing parameters to control these non-O157 STECs in beef and beef 

products. The challenge with determining the level of control at various parameters is that 

it requires extensive experimentation that forces processors to rely on estimations that can 

be accurate if predictive modeling is used. A predictive model for thermal inactivation of 

non-O157 STEC can be used for designing processing times and temperatures to ensure 

food safety. In this study, a predictive model was developed and validated for thermal 

inactivation of non-O157 STECs in ground beef with varying fat content. The major 

objectives for this study was to (a) identify the primary model with goodness of fit in 

survival curves; (b) quantify the impact of fat content of ground beef and cooking time 

and temperature on parameters of primary model; (c) validate the developed predictive 

model with experimental data. 
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4.2 Material and Methods 

4.2.1 Experiment design 

The experiments were divided into two stages: Model development and 

validation. For model development, six non-O157 Shiga toxin producing Escherichia coli 

(STEC), E. coli O26:H1 ATCC BAA 2196, E. coli O45:H2 SJ9, E. coli O103:H2 

87.1368, E. coli O111:H8 ATCC BAA 179, E. coli O121:H9 ATCC BAA 2221, and E. 

coli O145:Non-motile ATCC BAA 2192 were used. Four temperatures 55, 60, 65, and 

68ºC and six fat contents 5, 10, 15, 20, 25, and 30% (%w/w) of ground beef were used in 

this study. Survival curves were generated between the surviving non-O157 STEC 

population (log CFU/g) verses time (min.) of heat exposure as described in chapter 3. A 

complete factorial design of experiment was performed with three replicates at each 

level, resulting in 6x4x3=72 survival curves. Primary modeling analysis was performed 

by using nlmixed program in SAS® to identify the best model to define the distribution 

for survival curves. 

4.2.2 Primary Modeling 

Nine primary models: Log-liner (LL), Log-linear with tail (LLT), Gompertz 

(GM), Biphasic (Bph), Weibull (WB), Mixed Weibull (MdWB), Sigmoidal (Sgm), four 

factor sigmoidal (FFSgm) and Baranyi (BRNI) were used for the analysis. Non-linear 

mixed program of SAS® Analytics software (Cary, NC) was used to fit primary models in 

the survival curves. The primary model parameters were estimated based on the 

minimum residual sum of square (RSS) values obtained by curve fitting. The coefficient 

of regression (r2), root mean square error (RMSE) and RSS were calculated for each 
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survival curve. The primary models used for the analysis and their equations are shown in 

table 4.1. 

4.2.3 Comparing primary models 

Akaike’s information criteria (AIC) values were calculated for the goodness of fit 

of primary models for each survival curve. The AIC number is directly proportional to 

log of residual sum of squares (RSS) of residuals with penalty added for additional 

number of parameters (Akaike, 1981). As per the principle of parsimony, the model with 

minimum parameters is preferred for estimation. Therefore, a penalty for number of 

parameters has been added in our estimations in this study. For the best performing 

model a minimum deviation between the predicted value and the experimental value 

(RSS) is desired, which is suggested by a lower AIC number. The equation for 

calculating AIC is given below. 

 𝐴𝐼𝐶 = 𝑛 ∗ log10 (
𝑅𝑆𝑆

𝑛
) + 2𝑘    (4.1) 

Where, n = number of data points on the curve; 

RSS = residual sum of squares;  

k = number of parameters to be estimated. 

Akaike’s weights (w) were calculated to compare the primary models and identify 

the best performing model for all survival curves. Equation 4.2 and 4.3 were used to 

measure AIC weights that provide the evidence in favor of one primary model to be the 

best fitted model (Burnham and Anderson, 1998). The sum of w for a model for all 

survival curves was the total weightage in favor of that model. The primary model with 

highest w was the best model to define the distribution of survival curves. 
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𝛥𝑖 = 𝐴𝐼𝐶𝑖 − 𝑚𝑖𝑛𝐴𝐼𝐶     (4.2) 

𝑤𝑖 =
𝑒(−0.5𝛥𝑖)

∑ 𝑒(−0.5𝛥𝑟)𝑅
𝑟=1

     (4.3) 

Where, AICi= AIC number of model i 

minAIC= minimum AIC among all primary models 

∆i = AIC difference for model i 

R= number of primary models 

4.2.4 Secondary Modeling 

Response surface modeling (rsm) was used to develop a secondary model to 

quantify the impact of environmental factors on thermal inactivation of pathogens by 

using SAS® analytical software (SAS, 1990). The parameters of best preforming primary 

models were expressed as a function of temperature and fat content of ground beef. 

𝑥1 = ß0 + ß1𝑇 + ß2𝑇2 +  ß3𝑓 + ß4𝑓2 + ß5𝑓𝑇 + 𝑒   (4.4) 

Where, x1 is a parameter of best performing model; 

T= Temperature (ºC) 

f= fat content of ground beef (%w/w) 

e= random error  

ß1 to ß5= coefficients of the model 

4.2.5 Validation of model 

For the second stage of the experiments, the survival population predicted by the 

model were validated against the experimental data. The developed model was used to 

estimate time taken for 3 and 5-log CFU/g reduction and bacterial population at the same 

time were enumerated. For the validation study, two fat content of ground beef 10 and 

27% at both 58 and 62ºC were selected. Ground beef with 10 and 27% fat was procured 

from three different local grocery stores. Beef samples were stored at -20ºC, thawed at 

4ºC for 24h before use. A cocktail of the non-O157 STECs was prepared for inoculating 

ground beef. The bacterial strains were grown at 37°C in Tryptic Soy Broth (TSB; 
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Neogen, Lansing MI) supplemented with 50 ppm of Nalidixic acid (NAL; Fisher 

BioReagents, Fair Lawn, NJ). After 18-24 h of incubation, cells were washed twice with 

0.1% peptone water (PW, Neogen, Lansing, MI) after centrifugation (Model: Sorvell 

Legend XTR, Thermo Scientific, Waltham, MA) at 4700xg, for 10 min. at 4°C and re-

suspended in 1ml of 0.1% PW. The washed cells were homogenized to dissolve the 

pellets, and washed cells of each strain were mixed together to prepare the cocktail. Fifty 

grams of thawed ground beef was inoculated with 500µl cocktail to target 7-8 log CFU/g 

of bacterial population on the meat and hand massaged for 2 min for homogenous 

distribution of cells. Small pouches containing 5-g of inoculated meat with dimensions 

7.6 x 12.7 cm (3” x 5”) were made, heat sealed and then flattened to target 1-2 mm 

uniform thickness. The pouches were submerged into an isothermal circulating water 

bath (Model: Haake A25B, Fisher Scientific, Waltham, MA) set at 58 and 62ºC. The 

temperature inside the sample pouches were monitored by K-type probe and a datalogger 

(Model: HH806AU, Omega Engineering, Stamford, CT). One pouch was taken out once 

the desired temperature was reached to calculated the starting population. Two more 

sample bags, one each at the predicted time for 3- and 5-log CFU/g reduction, were taken 

out from the water bath and immediately cooled down in an ice-water bath. Meat form 

the pouches was aseptically transferred into filter bags (7 oz., Nasco Whirl-Pak, 

Atkinson, WI) containing 5 ml (1:1 dilution) of 0.1% PW. Meat samples in the filter bags 

were homogenized in a stomacher (Stomacher 400, Steward Limited, West Sussex, UK) 

at 260 rpm for 1 min. The bacterial population was enumerated by serial dilution in 0.1% 

PW and plating onto Plate Count Agar (PCA, Neogen, Lansing, MI) supplemented with 
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50-ppm NAL. Three replicates were performed for each temperature and fat level 

resulting a total of 2x2x3x3=36 experiments. 

The model performance was tested by calculating the accuracy factor (Af) for 

%discrepancy (Df) and bias factor (Bf) for the % bias. The Af provides the confidence in 

the predicted data and Bf provides the information if the model is over estimating or 

underestimating the predicted values (Baranyi et al., 1999).  The following equations 

were used to calculate validation parameters. 

%𝐵𝑓 = 𝑠𝑔𝑛(𝐵𝑓) ∗  (𝐵𝑓 − 1) ∗ 100 

𝐵𝑓 = 10^
[

∑ (log(
𝑁𝑚𝑜𝑑𝑒𝑙
𝑁𝑑𝑎𝑡𝑎

) )𝑛
1

𝑛
]

    (4.5) 

𝑠𝑔𝑛(𝐵𝑓) =  (

+1     𝑖𝑓     𝐵𝑓 > 0

0       𝑖𝑓     𝐵𝑓 = 0

−1     𝑖𝑓     𝐵𝑓 < 0

) 

𝐴𝑓 = 10^
[

∑ |(log(
𝑁𝑚𝑜𝑑𝑒𝑙
𝑁𝑑𝑎𝑡𝑎

) )|𝑛
1

𝑛
]

    (4.6) 

%𝐷𝑓 = (𝐴𝑓 − 1) ∗ 100% 

The confidence interval around the predicted data was calculated by using the 

standard error of the residual values. Confidence interval was further used to estimate 

prediction width by using the following equation (Montgomery et al., 2006) 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑑𝑡ℎ = √(𝐶𝐼𝑖)2 + (𝑡α/2,𝑛−𝑝 ∗ 𝑅𝑀𝑆𝐸)
2
  (4.7) 

Where, CIi= Confidence interval around estimated parameter i 
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4.3 Results and Discussion 

4.3.1 Primary Model 

Eight of the nine primary models showed convergence of data for all 72 survival 

curves and their corresponding parameters were estimated successfully. However, 

Gompertz model was only able to converge 36 out of 72 survival curves, showing that 

this model does not have goodness of fit (Table 8, Appendix B). The AIC values of each 

survival curve against eight primary models are shown in Table 4.2. For survival curve at 

55°C and 5% fat content, AIC values were 13.8, 15.8, 17.8, 13.2, 16.4, 17.4, 12.4, and 

16.4 for LL, LLT, Bph, Sgm, FFSgm, BRNI, WB and MdWB model, respectively. 

Minimum AIC values represent lower RSS and hence better fitting model (Akaike, 

1981). Hence, WB has better goodness of fit for the first survival curve at 55ºC and 5% 

fat content followed by Sgm (13.2) and LL (13.8). However, for the third survival curve 

at the same temperature and fat combination, The LLT model has the lowest AIC value 

(2.2 vs 7.2 of Sgm and 14 of WB) and has better fitness. Therefore, different best fitted 

primary model for different survival curves were observed. Thermal inactivation of 

microbes is affected by temperature and intrinsic properties of food, which, in turn, 

affects the shape of survival curve. Hence, different models are used to define the 

distribution of data. To find the best fitting model for all survival curves, AIC values 

were further used to calculate Akaike’s weights (w) (Equation 4.3). 

High Akaike’s weights (w) provide more confidence in the primary model and 

hence desired to select the best fitting primary model (Burnham and Anderson, 1998). 

Akaike’s weight for all survival curves are shown in Table 4.3. For the 55ºC and 5% fat 

content, w values were calculated as 0.40, 0.33 and 0.23 for Sgm, LLT and WB models. 
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Hence, w values helped in selecting Sgm as the best performing model for survival 

curves at 55ºC and 5% fat content. Similarly, WB was the best performing model for 5/60 

and 5/65 (Fat content/Temp) with w of 0.69 and 0.63, respectively. The combined w for 

all survival curves was 8.77 for WB followed by 4.78 for Sgm 4.70 for LLT, 2.90 for LL, 

1.84 for MdWB, 0.57 for FFSgm and 0.44 each for Bph and BRNI. This analysis 

concludes that WB was two times (8.77/4.78; 8.77/4.70) better than Sgm and LLT, and 

approximately 20 (8.77/0.44) times better than the BRNI and Bph in defining distribution 

for survival curves at all temperature and fat content combinations. Therefore, WB model 

was the best performing primary model based on Akaike’s weight’s (w) analysis. 

To further increase our confidence in selecting the best fitting primary model, the 

percentage discrepancies (Df) were calculated (Equation 4.6) and observed to be 

minimum (11.43%) for WB model, indicating that the predicted data will be in the range 

of ±11.43% of the observed data. The Df values were 16.77, 11.70, 12.41, 15.08, 37.99, 

11.56, and 16.54 % for LL, LLT, Sgm, BRNI, FFSgm, MdWB and BpH, respectively. 

Based on both analyses, WB model was selected as the primary model for thermal 

inactivation of non-O157 STECs in ground beef. Juneja et al., (2014) also observed 

Weibull model as the best fitting primary model for thermal inactivation of L. 

monocytogenes in ground beef. A secondary model for thermal inactivation of L. 

monocytogenes as a function of NaCl, sodium pyrophosphate and sodium lactate on 

survival behavior of L. monocytogenes was developed. Similarly, Huang (2009) also 

found that Weibull model describes the distribution of survival of L. monocytogenes in 

ground beef. However, under dynamic conditions, where heating temperature was 
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gradually increased from 30-65ºC, modified Gompertz model was the best performing 

model. The equation for the WB model is given below. 

𝑙𝑜𝑔 𝑁𝑡 = 𝑙𝑜𝑔 𝑁0 −𝑏 ∗ (𝑡)𝑛     (4.8) 

Where Log Nt = population at time t 

Log No= initial population  

b= slope parameter 

n= shape parameter 

4.3.2 Parameters estimation of primary model: 

The parameters of WB model, b and n for slope and shape respectively, were 

estimated with non-linear mixed program in SAS®. This program estimates the 

parameters that yields minimum residual sum of square values. The estimated 

parameters, root mean square error (RMSE) and coefficient of regress (r2) of the WB 

model are shown in table 4.3. The r2 values 60/72 curves were more than 0.85 for WB 

model, which further added confidence in choosing this model as the primary model. A 

square root transformation of the parameters was performed, which made √𝑏  and √𝑛 

normally distributed along 2.40 ± 1.77 and 0.95 ± 0.20, respectively. The transformed 

data were used for further analysis. 

4.3.3 Secondary Model 

To predict the survival of non-O157 STECs in the range of temperature (55-68ºC) 

and fat content (8-31% w/w), the parameters of WB were defined as a second order 

polynomial function of fat content and temperature. The multiple regression analysis was 

performed by response surface modeling was used in SAS® (proc rsreg) for estimating 

the coefficients of equation 4.4 as shown in the material and method section. The fat 

content of the beef samples was measured by Soxhlet extraction method (Chapter 3). The 
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average measured fat content of ground beef was 8.03, 11.97, 17.66, 21.70, 28.52, and 

31.04% and these values were used as an input in response surface modeling. The 

secondary models for estimates of b and n are shown in equation 4.9 and 4.10. A constant 

error term of 0.06911 and 0.00 were added to √𝑏 and √𝑛 respectively to make sum of 

residuals as zero, for satisfying the assumption of secondary modeling (Robinson, 2014). 

√𝑏 = 57.309488 + 0.239032𝑓 − 2.020609𝑇 − 7.85 𝑋 10−4𝑓2 − 3.532 𝑋 10−3𝑓𝑇 +

0.201106𝑇2 − 0.06911         (4.9) 

√𝑛 = −0.543841 + 3.2695 𝑋 10−2𝑓 + 1.895 𝑋 10−2𝑇 − 3.6 𝑋 10−4𝑓2 −

3.12 𝑋 10−3𝑓𝑇 + 5.6864 𝑋 10−5𝑇2       (4.10) 

Where; T= Temperature (ºC) 

f= fat content of ground beef (%w/w) 

A response surface plot was generated for predicted time taken to reduce 5-log 

CFU/g of non-O157 STECs as a function of fat content and temperature (fig. 4.3). As 

expected, the predicted time decreased with the increase of temperature. At lower 

temperatures, there is a downward slope of time for a 5-log CFU/g lethality suggesting 

that the heat resistance decreases with increase in fat content at low temperatures. 

However, a slight upward slope was observed in time with higher fat content, indication 

that the heat resistance would increase with fat content at higher temperatures according 

to the model. 

Residual (observed values - WB prediction) plot and comparative plots are shown 

in figure 4.3. According to model assumptions, residuals should be random and normally 

distributed for a predictive model. The r2 values of the residual plot was 0.16, showing 

that 84% of the residuals were random and there was no trend in the residual plots. The 
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residuals were normally disturbed with average of 0.00 and standard deviation of 1.04, 

hence satisfying residuals assumption of secondary modeling (Robinson, 2014). 

4.3.4 Validation of predictive model 

Validation of a predictive model is a critical step before using it for decision 

making (Jagannath and Tsuchido, 2003) and was validated with experimental data 

collected at the data points different from those used in developing the model. The 

predicted values of b and n (using equations 4.9 and 4.10), were 0.567 and 0.73 for 10% 

fat conent at 58ºC. By using these values in WB model (Equation 4.8), time taken for 3 

and 5-log CFU/g reduction was calculated as 9.69 and 19.44 min. Similarly, b values 

were 0.706, 3.733 and 3.165 and n values were 0.771, 0.897 and 0.898 for 27/58, 10/62 

and 27/62 (Fat content/Temp) combinations. Time predicted for 3 and 5-log CFU were 

6.53, 12.66; 0.78, 1.39; and 0.94, 1.66 for 27/58, 10/62 and 27/62 combinations. 

Inoculated ground beef was exposed to heat for the predicted times and lethality was 

measured. 

Bias factor (Bf) and Accuracy factor (Af) (equations 4.6 and 4.7) are used to 

measure the performance of a predictive model. The major difference between both 

factors is that an absolute value is taken for Af calculation. Af=Bf=1 shows that the model 

is predicting response variable with 100% accuracy; Bf>1shows overestimated; and Bf<1 

shows underestimated predicted value (Baranyi et al., 1999). Irrespective of the fat 

content, Bf values were 1.002, 1.003, 0.977, and 1.0039 for 55, 60, 65, and 68ºC. The 

overall bias factor was 0.971 for the model. Accuracy factor helps in deciding the 

percentage discrepancy (Df) of the predicted values. The Df of our model was 11.43% 

indicating that that the experimental values will be in the range of ±11.43% of the 
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predicted values. Skandamis and Nychas (2000) calculated Df of 23.3% and bias factor of 

3.3% for a predictive model for inactivation of E. coli O157 in eggplant salad with pH, 

temperature and oregano essential oil concentration as the input factors. Ross et al., 

(2000) established standards for measuring performance of a predictive model; Bf range 

of 0.95-1.10 is considered as ‘good’, 0.85-1.30 considered ‘acceptable’ and outside this 

limit is considered ‘unacceptable’ for inactivation models. The authors also estimated an 

increase 10-15% in Df with addition of one input variable in the model. Hence, the 

acceptable limit for this model with two input parameters, fat content and temperature, 

would be less than 25-30%. Df and Bf values of this model was 11.43% and 0.971 

respectively, therefore satisfying the standards of predictive modeling. 

Figure 4.4 shows the validation data for process lethality in ground meat obtained 

from three grocery stores (G1, G2 and G3) with 3 replications at each level resulting in a 

total of 9 validation data points per fat/temp combination. The prediction interval (PI) is 

the range in which the prediction values should be present for successful validation of a 

predictive model (Montgomery et al., 2006). PI of the model, calculated from equation 

2.7, was ±1.71 logCFU/g. Figure 4.4 shows the WB predictions, %D and PI of the 

developed predictive model. Underestimation of surviving population (Overestimation of 

lethality) is the major concern that causes a failure of a microbiological inactivation 

model. For 10/58 (fat content/temp) combination, the experimental values were below the 

prediction line, which means the experimental lethality (Log No/N) was higher than the 

predicted lethality, hence not a food safety concern. Both 3 and 5 log CFU/g reduction 

values were in the range of accuracy factor for 27/58 and 10/62 for meat from all three 

grocery stores with model overestimating surviving population in 2/9 cases at 27/58. 
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However, none of the predicted population value was outside the upper limit of the model 

(-11.43% of predicted value), hence these data validate the predictive model.  
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Table 4. 1: Primary inactivation models used for curve fitting in survival curves 

Model  Equation  

Log-Linear  𝑙𝑜𝑔 𝑁𝑡 = 𝑙𝑜𝑔 𝑁0 −𝑘 ∗ 𝑡 ;   𝐷 = −
1

𝑘
 

Biphasic  𝑙𝑜𝑔 𝑁𝑡 = 𝑙𝑜𝑔 𝑁0 − 𝑙𝑜𝑔(𝑓𝑒−𝑘1𝑡 + (1 − 𝑓)𝑒−𝑘2𝑡)  

Log-linear with tail  𝑙𝑜𝑔 𝑁𝑡 = 𝑙𝑜𝑔(( 𝑁0 − 𝑁𝑚𝑖𝑛)𝑒−𝑘∗𝑡 + 𝑁𝑚𝑖𝑛)  

Modified Gompertz  𝑙𝑜𝑔
𝑁

𝑁0
= 𝐴 − 𝐶𝑒−𝑒−𝐵(𝑡−𝑀)

;  μ𝑚𝑎𝑥 =
𝐵𝐶

𝑒
 

 

𝑡𝑙𝑎𝑔 = 𝑀 −
1

𝐵
+

(𝑙𝑜𝑔 𝑁0 − 𝐴)

μ𝑚𝑎𝑥

 

 

Baranyi 
𝑙𝑜𝑔 𝑁𝑡 = 𝑙𝑜𝑔 𝑁0 + 𝑢𝑚𝑎𝑥𝑡 +

1

𝑢𝑚𝑎𝑥
log(𝑒−𝑢𝑚𝑎𝑥.𝑡 + 𝑒−ℎ0 −  𝑒−𝑢𝑚𝑎𝑥𝑡−ℎ0) 

− 𝑙𝑜𝑔 (1 +
𝑒

𝑢𝑚𝑎𝑥+
1

𝑢𝑚𝑎𝑥
log(𝑒−𝑢𝑚𝑎𝑥.𝑡+𝑒−ℎ0− 𝑒−𝑢𝑚𝑎𝑥𝑡−ℎ0)

− 1

𝑒(log10 𝑁𝑚𝑖𝑛−log10 𝑁0)
) 

Sigmoidal  𝑙𝑜𝑔 𝑁𝑡 = 𝑙𝑜𝑔 𝑁0 − log10(1 + 𝑒𝑎+𝑏 log(𝑡))  

Four Factor 

Sigmoidal  

𝐿𝑜𝑔 𝑁𝑡 = 𝐿𝑜𝑔 𝑁0 − 𝑘1𝑡𝑛1𝑘2𝑡𝑛2 

Weibull  𝑙𝑜𝑔 𝑁𝑡 − 𝑙𝑜𝑔𝑁0 = −𝑏 ∗ (𝑡)𝑛  

Mixed Weibull  N𝑡 =
𝑁0

1+10𝑎 [10𝑘1𝑡𝑛+𝑎 + 10𝑘2𝑡𝑛
]  

𝑎 = log10 (
𝑓

1−𝑓
)  

No: Initial count; Nt: count at time t; t: time; k, k1, k2: inactivation rates; D:-D-value; Nmin: 

remaining population after heat treatment; umax: maximum inactivation rate; f: portion of 

heat resistant population; A, C, B, M, a, b, ho, n, n1, n2: Model coefficients  



 

 

 

8
1
 

Table 4. 2 Akaike’s informational criterion (AIC) values of primary models for survival curves obtained at different fat content and 

temperatures 

Fat 

(%w/w) 

T (ºC) LL LLT Bph Sgm FFSgm BRNI WB MdWB 

5 55 13.8 15.8 17.8 13.2 16.4 17.4 12.4 16.4 
5 55 17.3 15.4 21.3 11.8 13.2 20.1 9.2 13.2 
5 55 23 2.2 27 7.2 18 20.4 14 24.4 
5 60 13.2 15.2 17.2 15.6 15.2 17.2 11.2 15.1 
5 60 14.5 14.7 18.5 10.2 7.5 18.4 3.5 7.5 
5 60 13.5 15.1 17.5 13.9 13.6 17.5 9.6 13.6 
5 65 7.9 3.5 11.9 7.3 35.3 11.3 -0.2 3.8 
5 65 16.1 17.9 20.1 15.5 42.1 19.9 14.1 18.1 
5 65 11.9 13.9 15.9 14.2 39.7 15.9 10.6 14.6 
5 68 19.2 20.5 23.2 25 53.3 23.2 21.2 32.9 
5 68 21.9 21.8 25.9 25.1 50.6 25.8 22.4 27.4 
5 68 13.7 15.1 17.7 12.5 35.7 17.7 15.5 10.4 
10 55 15 12.8 19 8.3 15.7 16.9 11.7 15.7 
10 55 22.3 24.3 11.2 8.8 14.7 23 10.7 14.7 
10 55 13.4 13.1 17.4 16.4 18.8 13.4 14.8 18.8 
10 60 12.9 12.9 16.9 19.9 47.4 16.9 14.6 16.9 
10 60 14.6 11.6 18.6 5.6 11.1 18.5 7.1 2.8 
10 60 11.6 12.1 15.6 9.8 9.7 11.2 5.7 9.7 
10 65 10 11.5 14 13 38.6 14 10.5 14.5 
10 65 11 2.7 15 11.3 35.8 14.6 6.6 10.6 
10 65 15.1 9 19.1 20.6 42.1 18.9 15.8 19.8 
10 68 12.4 13.6 16.4 7.7 37.3 16.5 9.7 23.1 
10 68 17.6 11.5 21.6 24 51 21.4 17.3 4.9 
10 68 9.5 10.3 13.5 9.2 27.8 13.6 9.1 13.9 
15 55 22.1 11.6 26.1 -0.3 3.4 22.2 -0.6 19.3 
15 55 10.9 8.7 14.9 13.1 10.4 9.5 6.4 10.4 
15 55 27 11.3 31 10.9 16.6 25.2 12.6 17.8 
15 60 18.6 14.7 22.6 8.9 13.2 22.6 9.2 13.2 
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15 60 12.9 12.9 16.9 14 17.4 16.9 13.4 17.4 
15 60 16.1 7 20.1 1.9 2.6 20 -1.4 2.6 
15 65 12.6 13.4 16.6 18.4 39.3 16.5 14.5 19.7 
15 65 10.8 12.7 14.8 15.6 41.3 14.8 12.8 16.4 
15 65 13.8 15.1 17.8 16.9 40.4 17.8 14.5 18.8 
15 68 24.2 25.2 28.2 19.7 43.7 28.2 11.6 27.7 
15 68 24 25.5 28 24.9 49.7 27.9 22.6 26.6 
15 68 21 23 25 25 46.4 25 22.7 26.7 
20 55 11.4 8.8 15.4 6.6 3.5 12.9 -0.5 3.5 
20 55 18.6 16.1 22.6 13.3 4.4 4.2 0.4 39.5 
20 55 18.5 14 22.5 11.2 15.5 17.8 11.5 15.5 
20 60 14.3 15.8 18.3 11.2 20.2 18.2 16.2 20.2 
20 60 19.5 4.4 23.5 3 48.7 23.4 8.4 2.8 
20 60 20.8 14.8 24.8 9.2 13.9 24.8 9.9 13.9 
20 65 16 12.3 20 17 37.7 19.9 15.5 11.1 
20 65 3.9 2.5 7.9 11.3 40.4 7.8 3.4 16 
20 65 14.1 15.1 18.1 16.9 39.2 17.9 14.1 16 
20 68 13.2 13.2 17.2 17.2 43.1 17.2 15.2 19.2 
20 68 14.5 12.7 18.5 11.4 45.9 18.5 6.6 21.4 
20 68 19.4 20.3 23.4 21.8 48.1 23.4 20.4 20.6 
25 55 8.3 8.8 12.1 9.9 6.1 11.5 2.1 6.1 
25 55 16.5 14 20.5 11 14.1 18.2 10.1 14.1 
25 55 21.3 15.1 25.3 8.9 6.9 23.1 2.9 20.9 
25 60 15.9 11.2 19.9 11.7 16.2 19.9 12.2 14.6 
25 60 20.3 16.6 24.3 10.7 16.6 24.3 12.6 16.6 
25 60 14.1 14.6 18.1 10.3 19.6 18.1 15.6 19.6 
25 65 9.9 11.4 13.9 13.7 40 13.9 11.9 7 
25 65 16.6 16.1 20.6 20 45 20.6 17 21 
25 65 14.2 16.1 18.2 11.7 37.3 18 15.1 14 
25 68 8 4.2 12 8.2 36.8 12 7.8 7.7 
25 68 22.7 24.7 26.7 21.3 43.7 26.7 23.9 27.9 
25 68 20.3 22.2 24.3 25 51.6 24.3 22.3 26.3 
30 55 22.3 2.6 26.2 8.9 

 

 

18.9 18.2 14.9 25.9 
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LL: Log-linear model; LLT: Log-linear with tail; BpH: Biphasic model; WB: Weibull Model; MdWB: Mixed Weibull model; Sgm: 

Sigmoidal model; FFSgm: four factor Sigmoidal model; BRNI: Baranyi Model  

30 55 17.9 13.1 21.9 9.5 18.6 20.4 14.6 18.6 
30 55 24.7 17.5 28.7 16 20.3 26.1 16.3 20.3 
30 60 6.3 8.2 10.3 9.8 40.1 10.3 5.4 8.9 
30 60 10.1 12 14.1 15.2 15.7 13.7 11.7 15.7 
30 60 18.5 17.1 22.5 10.9 19.4 22.5 15.4 19.4 
30 65 19.7 19.1 23.7 14.2 37.6 23.5 12.8 14.8 
30 65 20 18.3 24 16.4 43.1 24 16.9 13 
30 65 11.4 9.3 15.4 18.9 42.7 15.1 12.2 16.2 
30 68 10.6 11.1 14.6 14.9 45.5 14.5 12.2 16.2 
30 68 23.5 25.5 27.5 23.4 50.1 27.5 23.9 27.9 
30 68 25.4 20.6 29.4 22.9 48 29.4 24.6 12.6 
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Table 4. 3 Akaike weighs (w) of primary models for survival curves at different fat content and temperature 

Fat (%w/w) T (ºC) LL LLT WB* MdWB SGM FFSgm BRNI BpH 

5 55 0.01 0.33 0.23 0.01 0.40 0.03 0.01 0.00 

5 60 0.04 0.02 0.69 0.09 0.05 0.09 0.01 0.01 

5 65 0.09 0.10 0.63 0.08 0.08 0.00 0.01 0.01 

5 68 0.38 0.25 0.19 0.03 0.10 0.00 0.05 0.05 

10 55 0.03 0.03 0.28 0.04 0.53 0.04 0.02 0.05 

10 60 0.06 0.09 0.42 0.30 0.11 0.00 0.02 0.01 

10 65 0.08 0.72 0.14 0.02 0.02 0.00 0.01 0.01 

10 68 0.16 0.31 0.28 0.11 0.12 0.00 0.02 0.02 

15 55 0.00 0.07 0.60 0.00 0.25 0.08 0.00 0.00 

15 60 0.01 0.06 0.52 0.07 0.28 0.07 0.00 0.00 

15 65 0.44 0.23 0.20 0.02 0.04 0.00 0.06 0.06 

15 68 0.09 0.05 0.74 0.01 0.09 0.00 0.01 0.01 

20 55 0.00 0.01 0.84 0.00 0.03 0.11 0.02 0.00 

20 60 0.00 0.10 0.11 0.07 0.71 0.00 0.00 0.00 

20 65 0.21 0.42 0.25 0.05 0.03 0.00 0.03 0.03 

20 68 0.19 0.22 0.43 0.02 0.11 0.00 0.03 0.03 

25 55 0.00 0.02 0.79 0.01 0.07 0.11 0.00 0.00 

25 60 0.03 0.12 0.17 0.03 0.62 0.02 0.00 0.00 

25 65 0.28 0.17 0.16 0.22 0.13 0.00 0.04 0.04 

25 68 0.29 0.29 0.18 0.05 0.16 0.00 0.04 0.04 
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30 55 0.00 0.51 0.06 0.00 0.42 0.01 0.00 0.00 

30 60 0.23 0.15 0.34 0.05 0.19 0.00 0.03 0.03 

30 65 0.08 0.17 0.37 0.26 0.11 0.00 0.01 0.01 

30 68 0.17 0.25 0.14 0.28 0.13 0.00 0.02 0.02 

 Total  2.90    4.70 8.77* 1.84 4.78 0.57 0.44 0.44 

T: Temperature LL: Log-linear model; LLT: Log-linear with tail; WB: Weibull Model; MdWB: Mixed Weibull model; Sgm: 

Sigmoidal model; FFSgm: four factor Sigmoidal model; BRNI: Baranyi Model: BpH: Biphasic model*Best performing model 

(Highest combined Akaike weight) 
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Table 4.4 Weibull model parameters (b and n) estimation, standard error (SE), Root mean 

square error (RMSE) and coefficient of regression (r2) calculated from SAS® non-linear 

mixed program 

Fat 

(%w/w) 

Temp 

(ºC) 

b SE (b) n SE (n) RMSE r2 

5 55 0.196 0.086 0.738 0.117 0.417 0.891 

5 55 0.388 0.117 0.571 0.081 0.341 0.901 

5 55 0.535 0.161 0.538 0.081 0.455 0.888 

5 60 1.471 0.186 0.704 0.115 0.383 0.888 

5 60 1.683 0.115 0.576 0.064 0.236 0.940 

5 60 1.493 0.169 0.652 0.104 0.348 0.888 

5 65 10.197 1.163 1.567 0.128 0.172 0.984 

5 65 16.395 3.273 1.471 0.220 0.581 0.941 

5 65 6.376 0.958 0.675 0.137 0.426 0.869 

5 68 20.748 6.778 0.989 0.201 0.718 0.863 

5 68 32.486 16.873 1.388 0.336 0.750 0.838 

5 68 21.701 10.552 0.877 0.232 0.789 0.829 

10 55 0.241 0.087 0.706 0.096 0.394 0.916 

10 55 0.673 0.197 0.400 0.080 0.373 0.802 

10 55 0.113 0.067 0.869 0.155 0.483 0.871 

10 60 1.102 0.238 0.892 0.191 0.464 0.849 

10 60 1.558 0.135 0.611 0.079 0.299 0.918 

10 60 0.523 0.092 1.469 0.145 0.275 0.966 

10 65 6.496 1.071 0.786 0.155 0.431 0.879 

10 65 11.687 2.438 1.680 0.239 0.299 0.957 

10 65 14.061 3.434 1.295 0.263 0.650 0.909 

10 68 49.169 20.819 1.556 0.236 0.403 0.939 

10 68 31.211 11.077 1.340 0.229 0.555 0.916 

10 68 9.247 4.424 0.575 0.200 0.505 0.743 

15 55 0.615 0.071 0.523 0.031 0.184 0.980 

15 55 0.018 0.009 1.359 0.126 0.280 0.971 

15 55 0.952 0.232 0.386 0.067 0.422 0.842 

15 60 1.888 0.156 0.540 0.077 0.341 0.898 

15 60 1.212 0.195 0.804 0.143 0.444 0.870 

15 60 1.761 0.081 0.541 0.043 0.176 0.966 

15 65 8.049 2.053 0.948 0.254 0.581 0.831 

15 65 9.984 1.633 0.996 0.163 0.521 0.918 

15 65 7.320 1.477 0.756 0.188 0.598 0.820 

15 68 46.531 26.740 1.669 0.381 0.786 0.849 

15 68 15.919 8.632 0.835 0.302 0.936 0.679 

15 68 465.230^ 312.59 3.018 0.4318 0.399 0.967 

20 55 0.259 0.042 0.709 0.043 0.186 0.982 

20 55 0.003 0.001 1.806 0.104 0.190 0.991 

20 55 0.386 0.125 0.586 0.087 0.394 0.893 

20 60 0.924 0.202 1.037 0.186 0.515 0.882 

20 60 1.816 0.143 0.489 0.074 0.321 0.885 
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20 60 2.099 0.163 0.507 0.073 0.357 0.895 

20 65 12.496 4.413 1.596 0.398 0.651 0.872 

20 65 8.256 0.638 0.866 0.074 0.238 0.975 

20 65 11.901 3.038 1.386 0.278 0.582 0.903 

20 68 16.092 6.274 0.968 0.221 0.552 0.846 

20 68 36.844 9.585 1.658 0.172 0.277 0.966 

20 68 23.469 11.042 1.281 0.300 0.689 0.835 

25 55 0.198 0.039 0.787 0.052 0.219 0.979 

25 55 0.317 0.091 0.665 0.077 0.360 0.936 

25 55 0.570 0.083 0.547 0.039 0.230 0.972 

25 60 1.583 0.184 0.656 0.105 0.411 0.881 

25 60 2.075 0.190 0.570 0.084 0.420 0.893 

25 60 1.210 0.206 0.892 0.148 0.495 0.893 

25 65 8.938 1.534 0.996 0.171 0.485 0.914 

25 65 17.405 3.363 1.261 0.205 0.735 0.929 

25 65 9.236 2.569 1.293 0.293 0.610 0.870 

25 68 11.138 2.842 0.770 0.130 0.343 0.903 

25 68 20.031 14.689 1.388 0.472 0.856 0.667 

25 68 17.882 7.112 0.963 0.244 0.750 0.796 

30 55 0.473 0.153 0.573 0.087 0.482 0.888 

30 55 0.283 0.108 0.690 0.101 0.470 0.903 

30 55 0.690 0.247 0.450 0.098 0.531 0.779 

30 60 1.036 0.125 0.783 0.108 0.268 0.919 

30 60 0.804 0.164 1.107 0.174 0.399 0.910 

30 60 1.758 0.220 0.659 0.113 0.497 0.871 

30 65 23.312 7.706 2.355 0.404 0.482 0.949 

30 65 7.186 1.204 0.525 0.142 0.734 0.758 

30 65 13.477 2.167 1.187 0.169 0.468 0.951 

30 68 24.181 6.642 1.100 0.158 0.444 0.933 

30 68 10.026 3.688 0.675 0.212 0.851 0.670 

30 68 6.957 2.673 0.549 0.213 0.888 0.546 

b, n: constants for Weibull Model; SE: Standard Error; RMSE: Root Mean Square Error; 

r2: Coefficient of regression^: outlier  
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Figure 4.1 Curve fitting of (a) Weibull, (b) Log-linear with Tail, (c) Modified Weibull, (d) 

Sigmoidal, (e) Log-linear, (f) Biphasic, (g) Baranyi and (h) Four factor Sigmoidal primary models 

in the survival curve (Log CFU/g vs Time) at 55ºC in 25% (%w/w) of ground beef.  
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Figure 4.2 (a) Residual plot (Observed value-predicted value) vs predicted Weibull value 

(b) and comparative plot between observed values v/s predicted values.  
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Figure 4.3 Response surface graph for five log reduction time for non-O157 STECs as a 

function of fat content and temperature of ground beef   
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        Lethality predicted by the model 

 Accuracy factor of the model 

 Prediction interval 

Figure 4. 4 Validation of the predicted lethality (Log N/N0) with observed lethality in 

meat from three grocery stores (G1, G2 and G3) at (a) 58ºC, 10%; (b) 58ºC, 27%; (c) 

62ºC, 10%; and (d) 62ºC, 27%.  
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CHAPTER 5: CONCLUSION 

Heat resistance of non-O157 shiga toxin producing Escherichia coli (STEC) in 

laboratory media and ground beef with varying fat content was studied. Six non-O157 

shiga toxin producing Escherichia coli (STEC), E. coli O26:H1 ATCC BAA 2196, E. 

coli O45:H2 SJ9, E. coli O103:H2 87.1368, E. coli O111:H8 ATCC BAA 179, E. coli 

O121:H9 ATCC BAA 2221, and E. coli O145: Non-motile ATCC BAA 2192 were used. 

In the first phase of the study, heat resistance of individual grown strains was measured in 

tryptic soy broth (TSB) media. There was no statistical difference (p>0.05) in the heat 

response among the strains, therefore, cocktail of these strains was used to study the heat 

resistance in ground beef. Ground beef with six fat levels of 5, 10, 15, 20, 25, and 30% 

(%w/w) was used. The ground beef was inoculated with a cocktail of non-O157 STEC 

strains and their inactivation rate was studied at 55, 60, 65, 68 and 71.1°C. Survival 

curves, surviving population versus time, were generated at each temperature and fat 

level with three replicates. A significant decrease (p<0.05) in heat resistance was 

observed with an increase of fat content at 55°C. However, no significant impact of fat 

content was observed at higher temperature. 

In the second phase of the experiment, data generated in the first phase was used 

to develop a predictive inactivation model. Rate of inactivation of non-O157 STEC was 

modeled as a function of fat content of ground beef and temperature. Nine primary 

models were used to determine the distribution of data in survival curves. Three models 

were based on log-linear decline of pathogens, Log-linear, log-linear with tail and 

Biphasic model. Six models were used for non-linear decline; Sigmoidal, Gompertz, four 
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factor sigmoidal, Baranyi, Weibull and mixed Weibull models. Primary modeling 

analysis showed Weibull model has the highest accuracy factor and Akaike’s weight, 

making it the best fitting model. The parameters of Weibull model were expressed as a 

function of fat content and temperature by using response surface modeling. The 

equations of the developed predicted model are given below. The percentage discrepancy 

factor of the model was 11.43%. The model was successfully validated in ground beef 

obtained from three grocery stores. 

𝑙𝑜𝑔 𝑁𝑡 = 𝑙𝑜𝑔 𝑁0 −𝑏 ∗ (𝑡)𝑛 

√𝑏 = 57.309488 + 0.239032𝑓 − 2.020609𝑇 − 7.85 𝑋 10−4𝑓2 − 3.532 𝑋 10−3𝑓𝑇

+ 0.201106𝑇2 − 0.06911 

√𝑛 = −0.543841 + 3.2695 𝑋 10−2𝑓 + 1.895 𝑋 10−2𝑇 − 3.6 𝑋 10−4𝑓2 −

3.12 𝑋 10−3𝑓𝑇 + 5.6864 𝑋 10−5𝑇2   

Where Log Nt = population at time t; 

Log No= initial population  

t= time (min.) 

T= Temperature (ºC) 

f= fat content of ground beef (%w/w)  
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APPENDIX A: SAS CODES 

1. SAS® Code for curve fitting, AIC values, and parameters estimation 

data mod; 

input Sample $ time logCFU @@; 

datalines; 

F05T55r1 0 7.32 

F05T55r1 7.5 6.62 

F05T55r1 15 6.09 

F05T55r1 22.5 4.91 

F05T55r1 30 4.40 

F05T55r1 37.5 4.99 

F05T55r1 45 4.51 

F05T55r1 52.5 3.53 

F05T55r1 60 3.15 

F05T55r2 0 7.10 

. 

. 

. 

. 

. 

. 

F30T68r3 0.23 2.41 

F30T68r3 0.27 1.78 

; 

 

libname fit clear; 

data beef; 

 set mod; 

 Fat=substr(Sample,2,2); 

 Temp=substr(Sample,5,2); 

 Rep=substr(Sample,8); 

 N=10**logCFU; 

 y=logCFU; 

 if time=0 then N0=N; 

run; 

 

libname fit clear; 
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data beef1; 

 set beef; 

 retain N01; 

 if not missing(N0) then N01=N0; 

 else N0=N01; 

 drop N01; 

run; 

 

proc sort data=beef1; 

 by fat temp rep; 

run; 

 

proc univariate data=beef1 normal plots; 

 by fat temp rep; 

 var y; 

run; 

 

ods output ConvergenceStatus=Convergence 

ParameterEstimates=Parameters FitStatistics=FitStat; 

ods output clear; 

ods output ConvergenceStatus=Convergence 

ParameterEstimates=Parameters FitStatistics=FitStat; 

 

proc nlmixed data=beef1; 

where time ^=0; 

by fat temp rep; 

parms b=0.5 n=0.5 var=0.5; 

model = log10(N0) - b*time**n; 

model y ~ normal(model,var); 

predict model out=p_beef; 

run; 

 

proc reg data=p_beef noprint outest=r2; 

by fat temp rep; 

model y=pred/rsquare; 

run; 

 

proc print data=r2; 

var fat temp rep _rsq_; 

run; 
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ods output clear; 

 

proc print data=convergence; 

 where status=3; 

run; 

 

Replace the bold part with the following for the specific model  

 

I. Log-linear model: 

proc nlmixed data=beef1; 

where time ^=0; 

by fat temp rep; 

parms b=0.5  var=0.5; 

model = log10(N0) - b*time; 

model y ~ normal(model,var); 

predict model out=p_beef; 

run; 

II. Log-linear with a Tail  

proc nlmixed data=beef1; 

where time ^=0; 

by fat temp rep; 

parms k=0.5 Nres=10 var=0.5; 

model = log10((N0-Nres)*exp (-k*time)+Nres); 

model y ~ normal(model,var); 

predict model out=p_beef; 

run; 

III. Sigmoidal Model  

proc nlmixed data=beef1; 

where time ^=0; 

by fat temp rep; 

parms a=0.5 b=0.5 var=0.5; 

model =log10(N0)-log10(1+exp(a+b*log(time))); 

model y ~ normal(model,var); 

predict model out=p_beef; 

run; 

IV. Baranyi Model  

proc nlmixed data=beef1; 

where time ^=0; 
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by fat temp rep; 

parms umax=0.1 Nmin=10 h0=0 var=0.2; 

a = log(exp(umax*time) + exp(-h0) - exp((umax*time)-h0));  

b= (exp(-umax*time)-a/umax)-1; 

c= exp(log(N0)-log(Nmin));  

model = log(N0)- umax*time - a/umax - log(1 + b/c); 

model y ~ normal(model,var); 

predict model out=p_beef; 

run; 

V. Biphasic Model  

proc nlmixed data=beef1; 

where time ^=0; 

by fat temp rep; 

parms f=0.5 k1=0.5 k2=0.5 var=0.5; 

model =log10(N0)+ log10(f*exp(k1*time)+(1-f)*exp(k2*time)); 

model y ~ normal(model,var); 

predict model out=p_beef; 

run; 

VI. Four Factor Sigmoidal  

proc nlmixed data=beef1; 

where time ^=0; 

by fat temp rep; 

parms n1=1 n2=1 k1=0.5 k2=0.5 var=0.5; 

y= Log10(N0)-k1*(time**n1)*k2*(time**n2); 

model y ~ normal(model,var); 

predict model out=p_beef; 

run; 

VII. Gompertz Model  

proc nlmixed data=beef1; 

where time ^=0; 

by fat temp rep; 

parms C=1.00 A=1.00 B=2.00 M=0.05 var=0.05; 

alpha=exp(B*M-B*time); 

model=log10(N0) + A-C*exp(-alpha); 

model y ~ normal(model,var); 

predict model out=p_beef; 

run; 

VIII. Mixed Weibull  
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proc nlmixed data=beef1; 

where time ^=0; 

by fat temp rep; 

parms alpha=2 delta1=0.1 delta2=0.1 p=0.5 var=0.5; 

a= 1+10**alpha; 

b= (time/delta1)**p; 

c= (time/delta2)**p; 

model = Log10(N0)-Log10(a)+ Log10(10**(-b+alpha)+10**(-c)); 

model y ~ normal(model,var);     

model y ~ normal(model,var); 

predict model out=p_beef; 

run; 

IX. Weibull Model  

proc nlmixed data=beef1; 

where time ^=0; 

by fat temp rep; 

parms b=0.5 n=0.5 var=0.5; 

model = log10(N0) - b*time**n; 

model y ~ normal(model,var); 

predict model out=p_beef; 

run; 
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2.  SAS® Code for Response surface modeling   

data mod; 

input fat temp Sqrtb Sqrtn; 

datalines; 

8.03 55 0.44260592 0.858836422 

8.03 55 0.622655603 0.755843899 

8.03 55 0.731436942 0.733143915 

8.03 60 1.212806662 0.839166253 

8.03 60 1.297420518 0.758814865 

. 

. 

. 

. 

. 

. 

. 

. 

31.04 65 2.68069021 0.724361788 

31.04 65 3.671089756 1.089541188 

31.04 68 4.91737735 1.048999523 

31.04 68 3.166401743 0.821827232 

31.04 68 2.637517772 0.740675367 

 

; 

 

proc univariate; 

histogram/midpoints= -0.6 to 0.6 by 0.05 

   normal; 

probplots; 

run; 

proc rsreg data=mod; 

model Sqrtb=temp fat/lackfit; 

run;  

ods graphics on; 

 

proc rsreg data=mod plots=all; 

model Sqrtb=temp fat/lackfit; 

run; 

ods graphics off; 
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3. SAS® code for Calculating Error Term  

data model; 

input fat temp time ocfu cfu0; 

datalines; 

8.03 55 0 7.32 7.32 

8.03 55 7.5 6.62 7.32 

8.03 55 15 6.09 7.32 

8.03 55 22.5 4.91 7.32 

8.03 55 30 4.4 7.32 

8.03 55 37.5 4.99 7.32 

8.03 55 45 4.51 7.32 

8.03 55 52.5 3.53 7.32 

8.03 55 60 3.15 7.32 

8.03 55 0 7.1 7.10 

8.03 55 7.5 5.89 7.10 

. 

. 

. 

. 

. 

31.04 68 0.17 1.74 4.77 

31.04 68 0.2 1.48 4.77 

31.04 68 0.23 2.41 4.77 

31.04 68 0.27 1.78 4.77 

; 

run; 

proc print data=model (obs=10); 

run; 

 

data model1; 

set model; 

sqrb = 57.309488 + (0.239032*fat) - (2.202609*temp) - 

(0.000785*fat*fat) - (0.003532*fat*temp) 

+ (0.021106*temp*temp); 

b=sqrb*sqrb; 

sqrn = -0.543841 + 0.032695*fat + 0.01895*temp - 0.00036*fat*fat - 

0.000312*fat*temp 

+ 0.000056864*temp*temp; 

n=sqrn*sqrn; 

ont_n0 = ocfu-cfu0; 
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do x=-0.0692 to 0.0691 by 0.00001; 

pnt_n0 = -((sqrb+x)**2)*(time**n); 

output; 

end; 

 

*residual = pnt_n0 - ont_n0; 

drop sqrb sqrn; 

run; 

 

data model2; 

set model1; 

residual = pnt_n0 - ont_n0; 

run; 

 

proc sort data=model2; 

by x; 

run; 

proc means data=model2 noprint; 

by x; 

var residual; 

output out=s_resid sum=sum_residual; 

run; 

 

proc sort data=s_resid; 

by sum_residual; 

run; 

 

proc print data=s_resid; 

where -0.1<= sum_residual <=0.1; 

run; 

title; 

 

title 'using random term = -0.06911'; 

data model3; 

set model; 

sqrb = 57.309488 + (0.239032*fat) - (2.202609*temp) - 

(0.000785*fat*fat) - (0.003532*fat*temp) 

+ (0.021106*temp*temp); 

b=sqrb*sqrb; 
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sqrn = -0.543841 + 0.032695*fat + 0.01895*temp - 0.00036*fat*fat - 

0.000312*fat*temp 

+ 0.000056864*temp*temp; 

n=sqrn*sqrn; 

ont_n0 = ocfu-cfu0; 

pnt_n0 = -((sqrb-0.06911)**2)*(time**n); 

*residual = pnt_n0 - ont_n0; 

drop sqrb sqrn; 

run; 

 

proc reg data=model3; 

model ont_n0 = pnt_n0; 

run; 

title; 

ods pdf close;  



110 

 

4. SAS® code for Surface plot  

data mod; 

input fat temp b n logf; 

datalines; 

8.03 55 0.443 0.859 80.8073022 

8.03 55 0.623 0.756 87.85514572 

8.03 55 0.731 0.733 63.94367946 

8.03 60 1.213 0.839 5.68324661 

8.03 60 1.297 0.759 6.624195981 

. 

. 

. 

. 

. 

31.04 65 3.671 1.090 0.43376094 

31.04 68 4.917 1.049 0.238757012 

31.04 68 3.166 0.822 0.35695845 

31.04 68 2.638 0.741 0.547733718 

 

; 

run; 

 

proc rsreg data=mod; 

   model logf = fat temp/ predict; 

 run; 

 

data surf; 

 do Fat=8 to 31; 

  do Temperature=55 to 67; 

  Logf = 3656.906443 - 5.312920*fat - 

111.883774*temperature + 0.009781*fat*fat + 0.075168*fat*temperature + 

0.855170*temperature*temperature; 

  output; 

  end; 

  output; 

 end; 

run; 

 

 data surf1; 

  set surf; 



111 

 

 label logf='Time (min.)'; 

 label fat ='Fat (%w/w)'; 

 label Temperature= 'Temp (C)'; 

run; 

 

title "5-LogCFU/g reduction time"; 

proc g3d data=surf1; 

  plot fat*temperature=logf /cbottom=black ctop=black zaxis=axis3 

rotate=320 tilt=60 

      xticknum=7 yticknum=7; 

run; 

quit; 
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APPENDIX B: PARAMETER ESTIMATIONS 

Table 1. Akaike’s information criterion (AIC), parameter estimates, Root mean square 

error (RMSE) and coefficient of regression (RSQ) of log-linear model obtained from 

nlmixed model in SAS® 

Fat (%w/w) Temp (ºC) AIC b  D-value (min.) RMSE RSQ 

5 55 13.8 0.07 13.85 0.44 0.88 

5 55 17.3 0.08 13.11 0.34 0.90 

5 55 23 0.09 10.82 0.60 0.80 

5 60 13.2 1.07 0.94 0.35 0.91 

5 60 14.5 1.06 0.94 0.17 0.97 

5 60 13.5 1.02 0.98 0.31 0.91 

5 65 7.9 6.05 0.17 0.29 0.96 

5 65 16.1 10.60 0.09 0.66 0.92 

5 65 11.9 8.74 0.11 0.35 0.91 

5 68 19.2 21.10 0.05 0.72 0.86 

5 68 21.9 17.65 0.06 0.85 0.79 

5 68 13.7 27.85 0.04 0.82 0.81 

10 55 15 0.08 12.68 0.46 0.89 

10 55 22.3 0.07 14.41 0.45 0.71 

10 55 13.4 0.07 14.58 0.49 0.87 

10 60 12.9 0.98 1.02 0.44 0.86 

10 60 14.6 1.02 0.98 0.35 0.89 

10 60 11.6 0.89 1.12 0.32 0.95 

10 65 10 7.98 0.13 0.41 0.89 

10 65 11 6.28 0.16 0.44 0.91 

10 65 15.1 10.68 0.09 0.73 0.88 

10 68 12.4 17.70 0.06 0.49 0.91 

10 68 17.6 18.28 0.05 0.62 0.90 

10 68 9.5 24.31 0.04 0.51 0.74 

15 55 22.1 0.10 9.93 0.32 0.94 

15 55 10.9 0.07 14.10 0.36 0.95 

15 55 27 0.09 10.74 0.54 0.74 

15 60 18.6 1.15 0.87 0.38 0.87 

15 60 12.9 0.98 1.02 0.46 0.86 

15 60 16.1 1.07 0.93 0.23 0.94 

15 65 12.6 8.46 0.12 0.57 0.84 

15 65 10.8 10.03 0.10 0.52 0.92 

15 65 13.8 9.27 0.11 0.56 0.84 

15 68 24.2 16.70 0.06 0.96 0.81 

15 68 24 16.38 0.06 0.88 0.81 

15 68 21 21.23 0.05 0.91 0.70 

20 55 11.4 0.09 11.67 0.23 0.97 
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20 55 18.6 0.07 13.79 0.47 0.94 

20 55 18.5 0.08 12.48 0.45 0.86 

20 60 14.3 0.96 1.04 0.51 0.89 

20 60 19.5 1.04 0.96 0.42 0.80 

20 60 20.8 1.23 0.81 0.41 0.86 

20 65 16 7.22 0.14 0.64 0.88 

20 65 3.9 9.39 0.11 0.23 0.98 

20 65 14.1 8.31 0.12 0.60 0.90 

20 68 13.2 17.01 0.06 0.55 0.85 

20 68 14.5 13.20 0.08 0.45 0.91 

20 68 19.4 15.07 0.07 0.69 0.83 

25 55 8.3 0.09 11.35 0.25 0.97 

25 55 16.5 0.09 11.28 0.41 0.92 

25 55 21.3 0.10 9.78 0.28 0.96 

25 60 15.9 1.09 0.92 0.45 0.85 

25 60 20.3 1.30 0.77 0.49 0.85 

25 60 14.1 1.07 0.93 0.52 0.88 

25 65 9.9 8.97 0.11 0.49 0.91 

25 65 16.6 13.63 0.07 0.80 0.92 

25 65 14.2 7.02 0.14 0.55 0.89 

25 68 8 17.14 0.06 0.37 0.89 

25 68 22.7 10.85 0.09 0.86 0.67 

25 68 20.3 18.96 0.05 0.74 0.80 

30 55 22.3 0.09 10.70 0.62 0.82 

30 55 17.9 0.09 11.46 0.56 0.86 

30 55 24.7 0.09 11.66 0.59 0.73 

30 60 6.3 0.82 1.22 0.26 0.93 

30 60 10.1 0.91 1.10 0.40 0.91 

30 60 18.5 1.21 0.83 0.57 0.83 

30 65 19.7 6.89 0.15 0.49 0.95 

30 65 20 11.43 0.09 0.78 0.73 

30 65 11.4 11.31 0.09 0.55 0.93 

30 68 10.6 20.34 0.05 0.45 0.93 

30 68 23.5 16.92 0.06 0.88 0.65 

30 68 25.4 14.39 0.07 0.97 0.46 
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Table 2. Akaike’s information criterion (AIC), parameter estimates, Root mean square 

error (RMSE) and coefficient of regression (RSQ) of log-linear with tail model obtained 

from nlmixed model in SAS® 

Fat (%w/w) Temp (ºC) AIC k Nres  RMSE RSQ 

5 55 15.8 0.17 0.90 0.44 0.88 

5 55 15.4 0.22 2227.96 0.42 0.85 

5 55 2.2 0.32 773.42 0.22 0.97 

5 60 15.2 2.49 30.59 0.36 0.90 

5 60 14.7 2.78 208.95 0.30 0.90 

5 60 15.1 2.47 152.36 0.35 0.89 

5 65 3.5 11.84 -7885.68 0.22 0.97 

5 65 17.9 23.52 -1.45 0.69 0.91 

5 65 13.9 20.00 -0.16 0.34 0.92 

5 68 20.5 46.74 -2.93 0.67 0.88 

5 68 21.8 36.85 -84.09 0.75 0.84 

5 68 15.1 69.52 0.90 0.76 0.84 

10 55 12.8 0.22 1878.30 0.43 0.90 

10 55 24.3 0.16 0.89 0.45 0.71 

10 55 13.1 0.17 1039.70 0.44 0.89 

10 60 12.9 2.08 -294.87 0.31 0.93 

10 60 11.6 2.98 1222.48 0.37 0.87 

10 60 12.1 1.92 -1018.47 0.34 0.95 

10 65 11.5 17.49 -1.91 0.34 0.92 

10 65 2.7 11.52 -694.64 0.22 0.98 

10 65 9 21.36 -49.41 0.36 0.97 

10 68 13.6 37.52 -1138.03 0.51 0.90 

10 68 11.5 37.38 -38.55 0.39 0.96 

10 68 10.3 88.94 3.50 0.58 0.66 

15 55 11.6 0.31 138.38 0.28 0.96 

15 55 8.7 0.15 -227.20 0.32 0.96 

15 55 11.3 0.35 790.90 0.30 0.92 

15 60 14.7 4.28 1902.69 0.48 0.80 

15 60 12.9 2.47 512.24 0.43 0.88 

15 60 7 3.29 2581.77 0.22 0.95 

15 65 13.4 18.08 -3.73 0.46 0.90 

15 65 12.7 22.85 -0.34 0.52 0.92 

15 65 15.1 20.05 -185.26 0.44 0.90 

15 68 25.5 27.15 -1198.85 0.89 0.81 

15 68 23 35.54 -170.65 0.89 0.71 

20 55 8.8 47.86 -0.76 0.28 0.96 

20 55 16.1 0.22 384.40 0.43 0.95 

20 55 14 0.15 -1005.36 0.40 0.89 

20 60 15.8 0.23 1831.11 0.45 0.91 

20 60 4.4 2.36 328.45 0.25 0.93 
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20 60 14.8 4.04 1202.00 0.47 0.82 

20 65 12.3 4.54 564.86 0.49 0.93 

20 65 2.5 13.04 -60.41 0.21 0.98 

20 65 15.1 22.83 95.45 0.60 0.90 

20 68 13.2 17.66 -38.00 0.44 0.90 

20 68 12.7 35.51 -7.52 0.40 0.93 

20 68 20.3 27.00 -1148.66 0.67 0.84 

25 55 8.8 32.07 -377.60 0.28 0.97 

25 55 14 0.21 125.89 0.42 0.91 

25 55 15.1 0.24 156.25 0.41 0.91 

25 60 11.2 0.32 290.24 0.37 0.90 

25 60 16.6 3.06 365.33 0.52 0.83 

25 60 14.6 4.15 119.18 0.44 0.91 

25 65 11.4 2.77 314.11 0.46 0.92 

25 65 16.1 19.84 -1.51 0.69 0.94 

25 65 16.1 28.92 -19.87 0.51 0.91 

25 68 4.2 16.60 35.74 0.26 0.95 

25 68 24.7 46.19 630.78 0.86 0.66 

25 68 22.2 24.42 -7.97 0.73 0.81 

30 55 2.6 43.12 -7.28 0.23 0.98 

30 55 13.1 0.30 259.25 0.43 0.92 

30 55 17.5 0.26 252.36 0.50 0.80 

30 60 8.2 0.29 319.44 0.27 0.92 

30 60 12 1.93 233.41 0.40 0.91 

30 60 17.1 2.04 -71.70 0.56 0.84 

30 65 19.1 3.70 95.79 0.70 0.89 

30 65 18.3 12.31 -455.28 0.82 0.70 

30 65 9.3 41.45 17.56 0.37 0.97 

30 68 11.1 24.06 -9.59 0.41 0.94 

30 68 25.5 44.33 -3.35 0.86 0.66 

30 68 20.6 37.93 -1.72 0.64 0.76 
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Table 3. Akaike’s information criterion (AIC), parameter estimates, Root mean square 

error (RMSE) and coefficient of regression (RSQ) of Sigmoidal model obtained from 

nlmixed model in SAS® 

Fat (%w/w) Temp (ºC) AIC a  b  RMSE RSQ 

5 55 13.2 -6.87 3.79 0.44 0.88 

5 55 11.8 -3.97 3.10 0.40 0.86 

5 55 7.2 -5.71 4.04 0.30 0.95 

5 60 15.6 3.75 3.23 0.51 0.80 

5 60 10.2 4.19 2.78 0.36 0.86 

5 60 13.9 3.76 2.93 0.46 0.81 

5 65 7.3 11.94 6.59 0.30 0.95 

5 65 15.5 20.63 11.18 0.59 0.94 

5 65 14.2 10.66 3.19 0.58 0.75 

5 68 25 18.99 5.69 0.91 0.78 

5 68 25.1 22.55 8.72 0.83 0.80 

5 68 12.5 19.82 5.47 0.59 0.90 

10 55 8.3 -7.58 4.17 0.32 0.94 

10 55 8.8 -1.77 2.35 0.33 0.84 

10 55 16.4 -9.59 4.43 0.53 0.85 

10 60 19.9 3.00 3.36 0.66 0.69 

10 60 5.6 3.66 3.11 0.27 0.93 

10 60 9.8 -1.51 7.27 0.33 0.95 

10 65 13 10.45 3.53 0.53 0.81 

10 65 11.3 12.88 7.36 0.42 0.92 

10 65 20.6 17.54 8.15 0.95 0.80 

10 68 7.7 23.03 8.74 0.26 0.97 

10 68 24 19.10 6.50 0.86 0.80 

10 68 9.2 11.63 2.56 0.51 0.74 

15 55 -0.3 -4.73 3.98 0.19 0.98 

15 55 13.1 -21.33 7.63 0.38 0.95 

15 55 10.9 -1.85 3.00 0.38 0.87 

15 60 8.9 4.48 3.12 0.33 0.90 

15 60 14 2.72 3.76 0.46 0.86 

15 60 1.9 4.19 2.88 0.22 0.95 

15 65 18.4 10.89 3.67 0.83 0.65 

15 65 15.6 16.50 7.62 0.54 0.91 

15 65 16.9 11.72 3.75 0.74 0.73 

15 68 19.7 33.85 15.48 0.73 0.89 

15 68 24.9 28.80 13.07 0.78 0.85 

15 68 25 15.00 3.77 1.11 0.55 

20 55 6.6 -7.25 4.25 0.29 0.96 

20 55 13.3 -33.02 10.76 0.39 0.96 

20 55 11.2 -4.98 3.49 0.39 0.90 

20 60 11.2 1.07 5.39 0.39 0.93 
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20 60 3 4.16 2.81 0.23 0.94 

20 60 9.2 4.96 3.20 0.34 0.90 

20 65 17 13.00 6.55 0.73 0.84 

20 65 11.3 12.78 4.61 0.46 0.91 

20 65 16.9 13.90 6.53 0.74 0.84 

20 68 17.2 14.15 4.12 0.64 0.79 

20 68 11.4 20.63 8.84 0.29 0.96 

20 68 21.8 17.01 6.06 0.75 0.80 

25 55 9.9 -8.95 4.77 0.35 0.95 

25 55 11 -6.86 4.23 0.38 0.93 

25 55 8.9 -4.87 4.04 0.33 0.94 

25 60 11.7 3.71 3.51 0.40 0.89 

25 60 10.7 4.89 3.75 0.38 0.91 

25 60 10.3 2.44 4.77 0.36 0.94 

25 65 13.7 12.97 5.08 0.56 0.88 

25 65 20 24.51 12.40 0.82 0.91 

25 65 11.7 12.87 6.52 0.47 0.92 

25 68 8.2 12.51 3.40 0.35 0.90 

25 68 21.3 15.65 6.33 0.72 0.76 

25 68 25 21.61 7.78 0.73 0.81 

30 55 8.9 -6.52 4.29 0.34 0.95 

30 55 9.5 -8.15 4.56 0.35 0.95 

30 55 16 -2.79 3.05 0.52 0.79 

30 60 9.8 2.44 2.93 0.35 0.86 

30 60 15.2 1.26 4.72 0.49 0.86 

30 60 10.9 4.04 4.06 0.38 0.93 

30 65 14.2 18.75 12.86 0.58 0.93 

30 65 16.4 13.95 4.03 0.71 0.78 

30 65 18.9 19.74 9.78 0.68 0.90 

30 68 14.9 21.33 7.33 0.47 0.92 

30 68 23.4 14.01 3.80 0.83 0.69 

30 68 22.9 11.91 3.16 0.80 0.63 
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Table 4. Akaike’s information criterion (AIC), parameter estimates, Root mean square 

error (RMSE) and coefficient of regression (RSQ) of Baranyi model obtained from 

nlmixed model in SAS® 

Fat (%w/w) Temp (ºC) AIC h0 Nmin Umax RMSE RSQ 

5 55 17.4 0.00 10.00 0.17 0.45 0.87 

5 55 20.1 0.00 10.00 0.19 0.38 0.88 

5 55 20.4 0.00 10.00 0.24 0.42 0.90 

5 60 17.2 18.22 10.00 1.45 0.35 0.91 

5 60 18.4 17.11 10.00 1.45 0.17 0.97 

5 60 17.5 17.56 10.00 1.35 0.31 0.91 

5 65 11.3 0.04 10.00 13.52 0.27 0.96 

5 65 19.9 0.01 10.00 23.97 0.65 0.93 

5 65 15.9 6985.50 0.00 19.13 0.35 0.91 

5 68 23.2 1.49 10.00 47.60 0.72 0.86 

5 68 25.8 0.00 10.00 40.31 0.84 0.80 

5 68 17.7 8.16 9.99 63.12 0.82 0.81 

10 55 16.9 0.00 10.00 0.19 0.44 0.89 

10 55 23 0.00 10.00 0.18 0.42 0.75 

10 55 13.4 0.00 10.00 0.17 0.39 0.92 

10 60 16.9 16.98 10.00 1.25 0.44 0.86 

10 60 18.5 19.20 10.00 1.35 0.35 0.89 

10 60 11.2 0.05 10.00 1.63 0.28 0.96 

10 65 14 5126.11 0.00 17.37 0.41 0.89 

10 65 14.6 0.03 10.00 14.07 0.43 0.91 

10 65 18.9 0.00 10.00 24.36 0.72 0.89 

10 68 16.5 8.48 10.00 39.75 0.49 0.91 

10 68 21.4 0.00 10.00 41.81 0.61 0.90 

10 68 13.6 19.68 9.80 54.99 0.51 0.74 

15 55 22.2 0.00 10.00 0.25 0.26 0.96 

15 55 9.5 0.00 10.00 0.14 0.30 0.97 

15 55 25.2 0.00 10.00 0.25 0.30 0.92 

15 60 22.6 17.16 10.00 1.64 0.38 0.87 

15 60 16.9 17.48 10.00 1.25 0.46 0.86 

15 60 20 17.97 10.00 1.46 0.23 0.94 

15 65 16.5 17.68 9.98 18.48 0.57 0.84 

15 65 14.8 1.26 10.00 22.13 0.52 0.92 

15 65 17.8 14.53 10.00 20.34 0.56 0.84 

15 68 28.2 4.44 10.00 37.44 0.96 0.81 

15 68 27.9 0.01 10.00 37.34 0.88 0.81 

15 68 25 1.76 10.00 47.92 0.91 0.70 

20 55 12.9 0.00 10.00 0.21 0.25 0.97 

20 55 4.2 0.03 10.00 0.05 0.22 0.99 

20 55 17.8 0.00 10.00 0.20 0.38 0.90 

20 60 18.2 1.08 10.00 1.32 0.52 0.88 
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20 60 23.4 18.87 10.00 1.40 0.42 0.80 

20 60 24.8 17.70 10.00 1.84 0.41 0.86 

20 65 19.9 0.02 10.00 16.23 0.64 0.88 

20 65 7.8 19.42 10.00 20.61 0.23 0.98 

20 65 17.9 0.01 10.00 18.77 0.59 0.90 

20 68 17.2 4.98 10.00 38.17 0.55 0.85 

20 68 18.5 4.50 10.00 29.39 0.45 0.91 

20 68 23.4 2.70 10.00 33.70 0.69 0.83 

25 55 11.5 0.00 10.00 0.21 0.26 0.97 

25 55 18.2 0.00 10.00 0.22 0.41 0.92 

25 55 23.1 0.00 10.00 0.25 0.32 0.95 

25 60 19.9 19.35 10.00 1.50 0.45 0.85 

25 60 24.3 16.92 10.00 1.99 0.49 0.85 

25 60 18.1 16.20 10.00 1.47 0.52 0.88 

25 65 13.9 16.22 9.99 19.66 0.49 0.91 

25 65 20.6 2.54 10.00 30.39 0.80 0.92 

25 65 18 0.08 10.00 15.57 0.56 0.89 

25 68 12 8.66 10.00 38.46 0.37 0.89 

25 68 26.7 5.20 10.00 23.99 0.86 0.67 

25 68 24.3 1.39 10.00 42.69 0.74 0.80 

30 55 18.2 0.00 10.00 0.24 0.39 0.93 

30 55 20.4 0.00 10.00 0.21 0.55 0.87 

30 55 26.1 0.00 10.00 0.22 0.57 0.75 

30 60 10.3 19.11 10.00 0.88 0.26 0.93 

30 60 13.7 0.33 10.00 1.38 0.40 0.91 

30 60 22.5 17.27 10.00 1.79 0.57 0.83 

30 65 23.5 0.03 10.00 15.45 0.48 0.95 

30 65 24 13.54 10.00 25.32 0.78 0.73 

30 65 15.1 0.00 10.00 25.72 0.53 0.94 

30 68 14.5 0.02 10.00 46.32 0.45 0.93 

30 68 27.5 15.79 9.97 37.95 0.88 0.65 

30 68 29.4 3.07 10.00 32.13 0.97 0.46 
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Table 5. Akaike’s information criterion (AIC), parameter estimates, Root mean square 

error (RMSE) and coefficient of regression (RSQ) of Biphasic model obtained from 

nlmixed model in SAS® 

Fat (%w/w) Temp (ºC) AIC f  k1 k2 RMSE RSQ 

5 55 17.8 0.5 -0.2 -0.2 0.44 0.88 

5 55 21.3 0.5 -0.2 -0.2 0.34 0.90 

5 55 27 0.5 -0.2 -0.2 0.60 0.80 

5 60 17.2 0.5 -2.5 -2.5 0.35 0.91 

5 60 18.5 0.5 -2.4 -2.4 0.17 0.97 

5 60 17.5 0.5 -2.4 -2.4 0.31 0.91 

5 65 11.9 0.5 -13.9 -13.9 0.29 0.96 

5 65 20.1 0.5 -24.4 -24.4 0.66 0.92 

5 65 15.9 0.5 -20.1 -20.1 0.35 0.91 

5 68 23.2 0.5 -48.6 -48.6 0.72 0.86 

5 68 25.9 0.5 -40.6 -40.6 0.85 0.79 

5 68 17.7 0.5 -64.1 -64.1 0.82 0.81 

10 55 19 0.5 -0.2 -0.2 0.46 0.89 

10 55 11.2 1.0 -0.4 0.0 0.34 0.84 

10 55 17.4 0.5 -0.2 -0.2 0.49 0.87 

10 60 16.9 0.5 -2.3 -2.3 0.44 0.86 

10 60 18.6 0.5 -2.3 -2.3 0.35 0.89 

10 60 15.6 0.5 -2.0 -2.0 0.32 0.95 

10 65 14 0.5 -18.4 -18.4 0.41 0.89 

10 65 15 0.5 -14.5 -14.5 0.44 0.91 

10 65 19.1 0.5 -24.6 -24.6 0.73 0.88 

10 68 16.4 0.5 -40.8 -40.8 0.49 0.91 

10 68 21.6 0.5 -42.1 -42.1 0.62 0.90 

10 68 13.5 0.5 -56.0 -56.0 0.51 0.74 

15 55 26.1 0.5 -0.2 -0.2 0.32 0.94 

15 55 14.9 0.5 -0.2 -0.2 0.36 0.95 

15 55 31 0.5 -0.2 -0.2 0.54 0.74 

15 60 22.6 0.5 -2.6 -2.6 0.38 0.87 

15 60 16.9 0.5 -2.2 -2.2 0.46 0.86 

15 60 20.1 0.5 -2.5 -2.5 0.23 0.94 

15 65 16.6 0.5 -19.5 -19.5 0.57 0.84 

15 65 14.8 0.5 -23.1 -23.1 0.52 0.92 

15 65 17.8 0.5 -21.3 -21.3 0.56 0.84 

15 68 28.2 0.5 -38.4 -38.4 0.96 0.81 

15 68 28 0.5 -37.7 -37.7 0.88 0.81 

15 68 25 0.5 -48.9 -48.9 0.91 0.70 

20 55 15.4 0.5 -0.2 -0.2 0.23 0.97 

20 55 22.6 0.5 -0.2 -0.2 0.47 0.94 

20 55 22.5 0.5 -0.2 -0.2 0.45 0.86 

20 60 18.3 0.5 -2.2 -2.2 0.51 0.89 
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20 60 23.5 0.5 -2.4 -2.4 0.42 0.80 

20 60 24.8 0.5 -2.8 -2.8 0.41 0.86 

20 65 20 0.5 -16.6 -16.6 0.64 0.88 

20 65 7.9 0.5 -21.6 -21.6 0.23 0.98 

20 65 18.1 0.5 -19.1 -19.1 0.60 0.90 

20 68 17.2 0.5 -39.2 -39.2 0.55 0.85 

20 68 18.5 0.5 -30.4 -30.4 0.45 0.91 

20 68 23.4 0.5 -34.7 -34.7 0.69 0.83 

25 55 12.1 0.5 -0.2 -0.2 0.24 0.97 

25 55 20.5 0.5 -0.2 -0.2 0.41 0.92 

25 55 25.3 0.5 -0.2 -0.2 0.28 0.96 

25 60 19.9 0.5 -2.5 -2.5 0.45 0.85 

25 60 24.3 0.5 -3.0 -3.0 0.49 0.85 

25 60 18.1 0.5 -2.5 -2.5 0.52 0.88 

25 65 13.9 0.5 -20.7 -20.7 0.49 0.91 

25 65 20.6 0.5 -31.4 -31.4 0.80 0.92 

25 65 18.2 0.5 -16.2 -16.2 0.55 0.89 

25 68 12 0.5 -39.5 -39.5 0.37 0.89 

25 68 26.7 0.5 -25.0 -25.0 0.86 0.67 

25 68 24.3 0.5 -43.7 -43.7 0.74 0.80 

30 55 26.2 0.5 -0.2 -0.2 0.61 0.82 

30 55 21.9 0.5 -0.2 -0.2 0.56 0.86 

30 55 28.7 0.5 -0.2 -0.2 0.59 0.73 

30 60 10.3 0.5 -1.9 -1.9 0.26 0.93 

30 60 14.1 0.5 -2.1 -2.1 0.40 0.91 

30 60 22.5 0.5 -2.8 -2.8 0.57 0.83 

30 65 23.7 0.5 -15.9 -15.9 0.49 0.95 

30 65 24 0.5 -26.3 -26.3 0.78 0.73 

30 65 15.4 0.5 -26.0 -26.0 0.55 0.93 

30 68 14.6 0.5 -46.8 -46.8 0.45 0.93 

30 68 27.5 0.5 -38.9 -38.9 0.88 0.65 

30 68 29.4 0.5 -33.1 -33.1 0.97 0.46 
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Table 6. Akaike’s information criterion (AIC), parameter estimates, Root mean square 

error (RMSE) and coefficient of regression (RSQ) of Four Factors Sigmoidal model 

obtained from nlmixed model in SAS® 

Fat (%w/w) Temp (ºC) AIC k1 k2 n1 n2  RMSE RSQ 

5 55 16.4 0.28 -0.71 0.37 0.37 0.42 0.89 

5 55 13.2 0.31 -1.24 0.29 0.29 0.34 0.90 

5 55 18 -0.78 0.69 0.27 0.27 0.46 0.89 

5 60 15.2 -1.16 1.27 0.35 0.35 0.38 0.89 

5 60 7.5 1.28 -1.32 0.29 0.29 0.24 0.94 

5 60 13.6 0.32 -4.60 0.33 0.33 0.35 0.89 

5 65 35.3 0.00 0.00 1.56 1.56 1.21 0.00 

5 65 42.1 -0.39 -0.39 10.20 10.20 2.13 0.00 

5 65 39.7 -0.01 -0.01 5.83 5.83 1.06 0.00 

5 68 53.3 -1.20 -1.20 5.78 5.78 1.80 0.00 

5 68 50.6 -0.34 -0.34 5.49 5.49 1.73 0.00 

5 68 35.7 -0.26 -0.26 3.81 3.81 1.65 0.00 

10 55 15.7 0.85 -0.28 0.35 0.35 0.39 0.92 

10 55 14.7 0.69 -0.98 0.20 0.20 0.37 0.80 

10 55 18.8 -0.78 0.14 0.43 0.43 0.48 0.87 

10 60 47.4 0.00 0.00 2.19 2.19 1.11 0.00 

10 60 11.1 -1.41 1.10 0.31 0.31 0.30 0.92 

10 60 9.7 -0.70 0.75 0.73 0.73 0.27 0.97 

10 65 38.6 0.00 0.00 4.13 4.13 1.11 0.00 

10 65 35.8 0.00 0.00 1.77 1.77 1.29 0.00 

10 65 42.1 -0.29 -0.29 10.61 10.61 1.92 0.00 

10 68 37.3 0.00 0.00 2.73 2.73 1.46 0.00 

10 68 51 -0.40 -0.40 5.73 5.73 1.77 0.00 

10 68 27.8 0.00 0.00 1.80 1.80 0.81 0.00 

15 55 3.4 1.33 -0.46 0.26 0.26 0.18 0.98 

15 55 10.4 0.03 -0.54 0.68 0.68 0.28 0.97 

15 55 16.6 0.86 -1.10 0.19 0.19 0.42 0.84 

15 60 13.2 -0.56 3.35 0.27 0.27 0.34 0.90 

15 60 17.4 1.28 -0.95 0.40 0.40 0.44 0.87 

15 60 2.6 1.39 -1.27 0.27 0.27 0.18 0.97 

15 65 39.3 0.02 0.02 5.11 5.11 1.26 0.00 

15 65 41.3 0.19 0.19 9.67 9.67 1.62 0.00 

15 65 40.4 -0.02 -0.02 7.13 7.13 1.26 0.00 

15 68 43.7 0.00 0.00 3.84 3.84 2.00 0.00 

15 68 49.7 -0.15 -0.15 5.07 5.07 1.87 0.00 

15 68 46.4 -0.58 -0.58 4.95 4.95 1.51 0.00 

20 55 3.5 0.57 -0.45 0.35 0.35 0.19 0.98 

20 55 4.4 0.03 -0.11 0.90 0.90 0.19 0.99 

20 55 15.5 -0.56 0.69 0.29 0.29 0.39 0.89 

20 60 20.2 1.63 -0.57 0.52 0.52 0.52 0.88 

20 60 48.7 0.00 0.00 2.51 2.51 0.88 0.00 
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20 60 13.9 1.43 -1.47 0.25 0.25 0.36 0.90 

20 65 37.7 0.00 0.00 2.95 2.95 1.63 0.00 

20 65 40.4 -0.09 -0.09 7.13 7.13 1.34 0.00 

20 65 39.2 0.00 0.00 4.73 4.73 1.67 0.00 

20 68 43.1 0.00 0.00 3.75 3.75 1.28 0.00 

20 68 45.9 -0.01 -0.01 3.10 3.10 1.39 0.00 

20 68 48.1 0.05 0.05 4.40 4.40 1.57 0.00 

25 55 6.1 0.26 -0.76 0.39 0.39 0.22 0.98 

25 55 14.1 0.42 -0.75 0.33 0.33 0.36 0.94 

25 55 6.9 -1.08 0.53 0.27 0.27 0.23 0.97 

25 60 16.2 0.78 -2.04 0.33 0.33 0.41 0.88 

25 60 16.6 0.88 -2.36 0.28 0.28 0.42 0.89 

25 60 19.6 1.21 -1.00 0.45 0.45 0.49 0.89 

25 65 40 0.05 0.05 6.30 6.30 1.48 0.00 

25 65 45 -2.76 -2.76 12.89 12.89 2.47 0.00 

25 65 37.3 0.00 0.00 2.70 2.70 1.52 0.00 

25 68 36.8 -0.03 -0.03 2.50 2.50 0.98 0.00 

25 68 43.7 0.00 0.00 2.21 2.21 1.37 0.00 

25 68 51.6 -0.53 -0.53 6.04 6.04 1.54 0.00 

30 55 18.9 -1.36 0.35 0.29 0.29 0.48 0.89 

30 55 18.6 -0.39 0.72 0.35 0.35 0.47 0.90 

30 55 20.3 -0.88 0.78 0.22 0.22 0.53 0.78 

30 60 40.1 -0.08 0.08 2.36 2.36 0.48 0.75 

30 60 15.7 0.72 -1.11 0.55 0.55 0.40 0.91 

30 60 19.4 0.97 -1.81 0.33 0.33 0.50 0.87 

30 65 37.6 0.00 0.00 2.68 2.68 1.92 0.00 

30 65 43.1 -1.73 -1.73 9.70 9.70 1.34 0.00 

30 65 42.7 -1.23 -1.23 9.89 9.89 1.88 0.00 

30 68 45.5 -0.36 -0.36 4.82 4.82 1.57 0.00 

30 68 50.1 -0.23 -0.23 5.20 5.20 1.37 0.00 

30 68 48 0.04 0.04 4.16 4.16 1.22 0.00 
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Table 7. Akaike’s information criterion (AIC), parameter estimates, Root mean square 

error (RMSE) and coefficient of regression (RSQ) of Mixed Weibull model obtained 

from nlmixed model in SAS® 

Fat (%w/w) Temp (ºC) AIC Alpha Delta1 Delta2 p RMSE RSQ 

5 55 16.4 20.53 9.12 23.59 0.74 0.42 0.89 

5 55 13.2 15.90 5.25 8.46 0.57 0.34 0.90 

5 55 24.4 2.40 0.54 0.00 0.32 0.39 0.92 

5 60 15.1 1.53 0.58 0.00 0.70 0.38 0.89 

5 60 7.5 1.95 0.41 0.00 0.58 0.24 0.94 

5 60 13.6 1.83 0.55 0.00 0.66 0.35 0.89 

5 65 3.8 1.97 0.23 0.23 1.57 0.17 0.98 

5 65 18.1 1.98 0.15 0.00 1.47 0.58 0.94 

5 65 14.6 1.88 0.06 0.00 0.68 0.43 0.87 

5 68 32.9 2.01 0.02 0.00 0.56 0.79 0.83 

5 68 27.4 1.97 0.07 0.00 1.25 0.78 0.82 

5 68 10.4 2.88 0.05 0.15 4.10 0.32 0.97 

10 55 15.7 17.87 7.49 13.01 0.71 0.39 0.92 

10 55 14.7 9.37 2.69 6.76 0.40 0.37 0.80 

10 55 18.8 18.88 12.28 31.41 0.87 0.48 0.87 

10 60 16.9 -0.16 1.28 0.00 1.12 0.42 0.88 

10 60 2.8 -1.92 3.00 0.61 2.05 0.18 0.97 

10 60 9.7 2.06 1.56 0.01 1.47 0.27 0.97 

10 65 14.5 2.00 0.09 0.09 0.79 0.43 0.88 

10 65 10.6 1.88 0.23 0.00 1.69 0.30 0.96 

10 65 19.8 1.93 0.13 0.00 1.30 0.65 0.91 

10 68 23.1 2.01 0.03 0.00 0.74 0.57 0.88 

10 68 4.9 -1.65 0.18 0.05 3.55 0.20 0.99 

10 68 13.9 2.01 0.02 0.00 0.63 0.50 0.74 

15 55 19.3 2.12 0.47 0.00 0.32 0.16 0.99 

15 55 10.4 4.62 19.32 7.62 1.36 0.28 0.97 

15 55 17.8 2.28 0.52 0.00 0.32 0.41 0.85 

15 60 13.2 1.99 0.31 0.20 0.54 0.34 0.90 

15 60 17.4 7.79 0.79 0.20 0.80 0.44 0.87 

15 60 2.6 2.03 0.35 0.27 0.54 0.18 0.97 

15 65 19.7 2.01 0.08 0.00 0.75 0.63 0.80 

15 65 16.4 2.27 0.13 0.29 1.78 0.48 0.93 

15 65 18.8 2.00 0.09 0.00 0.85 0.58 0.83 

15 68 27.7 2.04 0.10 0.00 1.53 0.74 0.89 

15 68 26.6 1.86 0.10 0.00 1.67 0.79 0.85 

15 68 26.7 1.99 0.04 0.00 0.84 0.94 0.68 

20 55 3.5 17.54 6.73 3.38 0.71 0.19 0.98 

20 55 39.5 1.98 0.12 0.00 0.17 0.89 0.79 

20 55 15.5 14.65 5.08 5.74 0.59 0.39 0.89 

20 60 20.2 7.69 1.08 0.05 1.04 0.52 0.88 
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20 60 2.8 -2.28 3.60 0.57 1.25 0.18 0.96 

20 60 13.9 1.99 0.23 0.16 0.51 0.36 0.90 

20 65 11.1 -2.01 0.47 0.17 16.38 0.31 0.97 

20 65 16 2.00 0.09 0.00 0.93 0.23 0.98 

20 65 16 -1.38 0.34 0.12 3.03 0.48 0.93 

20 68 19.2 2.00 0.06 0.00 0.97 0.55 0.85 

20 68 21.4 2.00 0.10 0.00 1.30 0.35 0.94 

20 68 20.6 -1.92 0.21 0.08 4.48 0.54 0.90 

25 55 6.1 17.79 7.82 3.97 0.79 0.22 0.98 

25 55 14.1 14.64 5.63 0.26 0.66 0.36 0.94 

25 55 20.9 2.11 0.46 0.00 0.32 0.25 0.97 

25 60 14.6 3.73 0.64 62503494 0.84 0.37 0.90 

25 60 16.6 2.00 0.28 0.21 0.57 0.42 0.89 

25 60 19.6 7.33 0.81 0.08 0.89 0.49 0.89 

25 65 7 -2.05 0.38 0.10 3.65 0.23 0.98 

25 65 21 1.93 0.10 0.10 1.26 0.74 0.93 

25 65 14 3.49 0.21 1907.29 2.09 0.41 0.94 

25 68 7.7 3.06 0.05 878430 1.15 0.24 0.95 

25 68 27.9 2.00 0.12 0.10 1.39 0.86 0.67 

25 68 26.3 1.95 0.05 0.00 0.97 0.75 0.80 

30 55 25.9 2.38 0.55 0.00 0.32 0.40 0.92 

30 55 18.6 14.46 6.22 4.04 0.69 0.47 0.90 

30 55 20.3 7.19 2.28 0.04 0.45 0.53 0.78 

30 60 8.9 0.06 1.29 0.00 0.93 0.26 0.92 

30 60 15.7 2.05 1.22 0.03 1.11 0.40 0.91 

30 60 19.4 2.09 0.43 0.32 0.66 0.50 0.87 

30 65 14.8 -4.36 40.08 0.28 3.18 0.43 0.96 

30 65 13 3.66 0.08 0.50 94.92 0.38 0.93 

30 65 16.2 1.99 0.11 0.11 1.19 0.47 0.95 

30 68 16.2 1.94 0.06 0.00 1.10 0.44 0.93 

30 68 27.9 2.01 0.03 0.00 0.68 0.85 0.67 

30 68 12.6 2.97 0.08 7.53 7.32 0.31 0.94 
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Table 8. Akaike’s information criterion (AIC), parameter estimates, Root mean square 

error (RMSE) and coefficient of regression (RSQ) of Gompertz model obtained from 

nlmixed model in SAS® 

Fat (%w/w) Temp (ºC) AIC A B C M RMSE RSQ 

5 55 - - - - - - - 

5 55 3.7 41.47 0.01 51.67 -

212.82 

0.34 0.90 

5 55 2.5 -0.34 0.11 4.07 13.26 0.19 0.98 

5 60 - - - - - - - 

5 60 - - - - - - - 

5 60 - - - - - - - 

5 65 11.8 0.25 1.38 40.67 1.13 0.16 0.99 

5 65 17.5 -0.76 9.55 5.81 0.31 0.43 0.97 

5 65 - - - - - - - 

5 68 -2.7 0.09 1.08 1243.93 1.81 0.65 0.89 

5 68 -1.4 -0.93 5.56 19.63 0.34 0.66 0.87 

5 68 - - - - - - - 

10 55 - - - - - - - 

10 55 4.3 7.59 0.07 10.90 -14.88 0.31 0.86 

10 55 31.7 -0.72 0.07 3.55 28.57 0.45 0.89 

10 60 - - - - - - - 

10 60 - - - - - - - 

10 60 41.7 -0.24 0.71 5.32 2.60 0.25 0.97 

10 65 - - - - - - - 

10 65 - - - - - - - 

10 65 - - - - - - - 

10 68 0.4 -0.49 34.97 3.44 0.12 0.10 1.00 

10 68 - - - - - - - 

10 68 - - - - - - - 

15 55 30.6 1.24 0.05 6.83 4.23 0.14 0.99 

15 55 - - - - - - - 

15 55 14.6 -1.99 0.17 2.31 19.81 0.20 0.96 

15 60 - - - - - - - 

15 60 - - - - - - - 

15 60 22 -1.02 1.02 2.76 1.40 0.14 0.98 

15 65 5.8 -1.69 15.97 3.42 0.39 0.18 0.98 

15 65 18.5 -0.92 11.14 3.96 0.24 1.62 0.00 

15 65 15.7 -1.55 0.69 19368.00 3.62 1.26 0.00 

15 68 8.7 -0.22 1.96 33937.00 1.34 2.00 0.00 

15 68 27.6 -0.92 71.92 3.95 0.18 1.87 0.00 

15 68 10.8 -1.77 21.77 3.92 0.16 0.79 0.77 

20 55 - - - - - - - 

20 55 - - - - - - - 

20 55 - - - - - - - 

20 60 14.4 -0.07 1.82 3.34 1.50 0.34 0.95 
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20 60 - - - - - - - 

20 60 - - - - - - - 

20 65 - - - - - - - 

20 65 17.5 -1.11 8.13 3.87 0.26 0.13 0.99 

20 65 - - - - - - - 

20 68 - - - - - - - 

20 68 -1.4 -0.55 16.24 4.41 0.18 0.15 0.99 

20 68 - - - - - - - 

25 55 - - - - - - - 

25 55 - - - - - - - 

25 55 31.7 138.32 0.02 144.76 -

143.24 

0.21 0.98 

25 60 28.7 -1.00 0.05 4.80 19.19 0.39 0.89 

25 60 - - - - - - - 

25 60 - - - - - - - 

25 65 24.2 316.72 0.59 321.12 -6.72 1.48 0.00 

25 65 13.1 24.96 0.23 114.16 1.82 0.70 0.94 

25 65 0 -0.93 5.14 9.87 0.34 0.43 0.93 

25 68 0.4 0.23 9.88 3.94 0.22 0.18 0.97 

25 68 5.8 -0.75 36.95 2.31 0.09 0.52 0.88 

25 68 15.3 0.03 134.21 2.53 0.11 0.59 0.87 

30 55 30.6 -1.40 15.26 4.48 0.16 0.22 0.98 

30 55 - - - - - - - 

30 55 14.6 486.93 0.04 491.77 -97.92 0.48 0.82 

30 60 - - - - - - - 

30 60 19.9 3.78 0.05 64.07 19.97 0.40 0.91 

30 60 - - - - - - - 

30 65 - - - - - - - 

30 65 - - - - - - - 

30 65 15.7 543.37 4.75 548.63 -0.98 0.27 0.98 

30 68 - - - - - - - 

30 68 27.6 3.27 1.29 96.93 0.94 0.84 0.68 

30 68 10.8 378.63 8.33 383.03 -0.52 0.29 0.95 
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APPENDIX C: SOXHLET FAT ANALYSIS PROTOCOL 

The following protocol for measuring fat content of the ground beef samples was used: - 

1. Measure and record the weight of a filter paper 

2. Add 2-3 g of meat to the filter paper (Mark meat weight as A) 

3. Fold the filter paper to make a pouch 

4. Dry samples at 105ºC for 18-24 hours in an oven 

5. Measure the weight of dried samples 

6. Subtract the weight of filter paper from the dried sample (Mark weight as B) 

7. Load the dried samples in extraction unit of Soxhlet apparatus with Petroleum 

either in the flat bottom flask 

8. Set up the temperature to obtain condensation rate of 4-5 drops/sec  

9. Let the extraction run for 4-6 hours  

10. Switch off heating and collect petroleum either in the flat bottom flask 

11. Take the samples out from the extraction unit 

12. Let the samples cool down for 20-30 min at a room temperature in a biosafety 

hood 

13. Dry the cooled samples overnight at 105ºC 

14. Measure weight of the dried extracted samples and subtract the weight of filter 

paper from it (Mark weight as C) 

 

The following equations can be used to measure moisture content and fat content 

of the samples 

𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%𝑤/𝑤) =  
𝐴−𝐵

𝐴
 𝑋 100  

𝐹𝑎𝑡 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (%𝑤/𝑤) =
𝐵 − 𝐶

𝐴
𝑋 100 
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