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Introduction: 

This final report presents the outcomes from the SBIR project Sensor Fusion and MOE Development for 
Off-Line Traffic Analysis of Real Time Data that was carried out in 2015 and 2016. This study explored 
the potentials of two new data sources, vehicle re-identification data and high-resolution controller event 
data, to improve the state of the practice in arterial traffic management. Chapter 1 of this report provides a 
brief introduction to the two new data sets that are envisioned as the enabling technologies for enhanced 
arterial management, and includes an overview of how they can be used in tandem for that purpose. The 
rest of the deliverables for this project advance those ideas further. 

This project provided three sets of deliverables. The first group of deliverables was a collection of five 
reports and two case study whitepapers that explain the new technologies in depth, touch upon different 
aspects of their application, and include demonstrative examples of their use. These include: 

• A four-module informational report drafted to introduce the new technologies in depth. It 
discusses their application to arterial management with regard to the two main aspects of signal 
system operation: corridor progression and capacity allocation. A shorter, Executive Summary 
style report was also written to provide an overview of this material. 

• The potential uses of both data sets for real-time monitoring which are investigated in a second 
report. 

• A third report which investigates arterial trip length characteristics through a field study using 
vehicle re-identification data, culminating with a distribution of measured trip lengths. 

• A fourth report proposing a framework for arterial management at a network level, drawing 
parallels with approaches for assessing pavement condition. 

• A fifth report focused on the use of graphical performance measures based on vehicle re-
identification data and high-resolution data. 

• Finally, two case studies that are carried out using two data sets to evaluate arterial performance 
in two different scenarios. The first looks at the use of high-resolution data to optimize offsets in 
a signalized corridor over a 5-year period. The data is used to identify a user benefit of 
approximately $3.4 million obtained over that time. The second case study looks at conditions on 
an arterial highway where traffic from a parallel freeway was detoured onto the arterial. The 
length duration of the detour necessitated the development of a special signal timing plan, the 
impacts of which are examined with high-resolution data. The origin-destination characteristics of 
detour vehicles are also investigated. 

This project final report includes a summary of each of these items in Chapter 2. 

The second set of deliverables for this project encompasses tools to assist in implementation of methods 
and performance measures for arterial traffic management.  This includes documentation of algorithms 
and associated software, standard data formats, and a lexicon of terms as described below: 

• A lexicon for acronyms and terms is provided to clearly communicate definitions, concepts, and 
parameters for the implementation of software.   
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• A common data format report for re-identification and high-resolution data was prepared that 
emphasizes data standards so that any resulting software from differing sources may be used 
independent of type or brand of re-identification technology and high-resolution controller data. 

• Algorithms and software for arterial performance measures reliant on re-identification data were 
developed in an open source format for use as reference implementations.  Software includes the 
implementation of a re-identification data standard (CWS5200), the analytics processing, and the 
visualization routines.   

• The arterial performance measures open source software was extended to support network level 
travel time and reliability metrics identified to support a network level arterial management 
framework.  

• A recorded demonstration was prepared explaining the purpose, development, framework, and 
potential uses of the developed open-source software.  

• Existing analysis software (BluSTATs) was extended to capture the roadway trip length 
characteristic (RTLC) metric defined in initial research efforts.  

Chapter 3 provides a summary of each these items. 

The third set of deliverables for this project was the presentation of the material in a series of public 
forums, allowing for dialog with practitioners, giving them a chance to provide feedback and comment on 
the direction of the methodology and its potential. Six public forums were conducted in 2015 as part of 
this research in six different locations across the US. Chapter 4 presents an overview of those forums and 
summarizes the feedback obtained from the attendees.  

Finally, Chapter 5 concludes this report with a discussion of the future directions of the methodology, 
taking into consideration recent trends in signal data, and connecting the present research to some related 
research in the area of performance-based arterial management. 
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Chapter 1: New Data Sources and Emerging Arterial Management 
Concepts 

 

1.1 Motivation 
In the 21st century, transportation agencies have seen their pools of available resources decline as their 
revenues have not increased proportionately to the costs of maintaining the infrastructure. In the past, 
construction of new facilities carried a highly visible benefit that would allow for systems to be improved 
by adding new capacity. As the overall shape of transportation networks have matured, the need for 
maintenance of the existing system has grown in importance. The current state of affairs demands that 
agencies extract the best performance of their system by the most efficient means, and that those agencies 
demonstrate accountability in the stewardship of the resources given by the public. This has been 
underscored by the emphasis on performance measurement in recent highway funding bills. 

Arterial traffic systems have rather complex needs in that their performance is dependent not only on the 
capacity provided in their geometric design, but also on the management of that capacity by traffic control 
devices. Traffic signals are the principal means of controlling traffic on major arterial roadways with at-
grade intersections. Although traffic signal controllers are in essence hardened computers, advanced data 
collection capabilities have historically been difficult to realize, for a number of reasons. Until recently, 
most controllers did not possess enough memory or computing power to support detailed data collection. 
Even if they did, it was expensive to establish good communication systems with a large inventory of 
intersections that would in some cases be distributed over a wide geographic area. Advanced systems that 
did provide these capabilities were quite expensive, entirely proprietary, and not interoperable with each 
other. This limited their use to selected areas with the greatest need. Furthermore, there was no common 
concept of what kinds of data a system might collect, other than the occupancy and volume metrics used 
in traffic responsive control. 

As a consequence, traffic signal operations have often fared poorly, particularly in areas where the 
managing agencies have lacked the resources to invest in proactive maintenance programs. The National 
Traffic Signal Report Card [1], an industry self-assessment carried out several times between 2005 and 
2012, repeatedly yielded low overall scores for the US, and consistently produced a subscore of “F” for 
the category of traffic monitoring and data collection. In short, very few agencies were collecting data on 
a widespread basis at a scale necessary to keep up with changes in traffic levels. Agencies relied on 
manual methods, such as manual turning movement counts and floating-car studies, to understand how 
their systems were doing. Due to the expense of the data collection, such studies would typically only be 
undertaken when signalized corridors were being retimed and the schedule for carrying out retiming 
activities was usually arbitrary. That is, the attention spent on maintaining systems was often 
disproportionate to the need. 

The state of arterial management stands in great contrast to that of pavement management. The domain of 
pavement management is today quite mature. There are standard metrics for measuring the quality of 
pavement and well-established means of using that information to program resources to maintain an 
inventory of roadways. Figure 1.1 contrasts the history of this development with that of arterial 
management systems. As can be seen here, efforts to quantify pavement condition began in the late 1950s 
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[2], and had become commonplace in engineering practice by the 1990s. Today, decisions on repaving 
and reconstruction of roadways can be informed by nearly complete knowledge of the pavement 
condition across an agency’s inventory, using a common metric, such as the International Roughness 
Index (IRI). New construction can be evaluated with such data, and it is even possible to implement 
performance-based contracting on such a basis. 

 

Figure 1.1 Evolution of pavement management systems and arterial management systems 

 

Arterial management systems have lagged behind. This is somewhat due to the complexity of traffic 
management. Whereas pavement quality tends to degrade predictably with the exposure of pavement to 
weather and traffic volumes, traffic demand is less predictable and experiences considerable variation 
spatially and temporarily. 

In the past, traffic conditions were usually measured by manual methods during specific traffic studies. 
These included turning movement counts, which could be used in a modeling system such as the Highway 
Capacity Manual [3] to determine metrics like the Level of Service; and floating-car travel times. In lieu 
of having such metrics on a widespread basis, often times agencies would instead measure the amount of 
effort expended. Examples of such metrics would include the number of signal retiming activities carried 
out, or the amount of time between consecutive retiming activities. 

Extensive instrumentation is needed to automatically measure changes on a network scale. The basic 
equipment needed for automated measurements—detectors—have been in place for many years, but 
scalable data infrastructure to record, transmit, and process the data has only emerged recently. 
Scalability relies on the components being inexpensive enough to distribute throughout the network. In 
the past 10–15 years, the following technologies have arisen. 
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• One is the development of high-resolution data, which records the measureable events at a 
signalized intersection. The controller (or an inexpensive cabinet widget) monitors the state of 
each detector and signal head output, among other things, and records the times when any of 
these states change. This can be used to develop a number of performance measures that quantify 
the performance of different aspects of the signal operation, in microscopic detail. This type of 
data can make use of the existing components of a conventional traffic control system. 

• Another is the development of vehicle re-identification data. That is, some unique identifier 
associated with a sample of individual vehicles can be identified relative to the location and time 
that it is identified. This can then be used to understand the movement of traffic. Travel times 
between multiple locations can be measured by re-identifying vehicles. An example would be 
matching of Bluetooth MAC addresses by onboard mobile devices at multiple locations. This 
type of data represents a new functionality for a conventional traffic control system, but the 
equipment needed for re-identification is relatively inexpensive. 

With the advent of these technologies, a number of possibilities for arterial management have emerged. 
Several studies on automated performance measures based on high-resolution data have extensively 
demonstrated the breadth of their application to all aspects of signal operation at traffic signals—such as 
allocation of capacity [4] [5], quality of progression [6] [7] [8], safety of users [9], and equipment 
maintenance [10]. Vehicle re-identification methods have also been used in arterial management, 
providing a way to directly measure the impact of that operation on user travel times [11] [12] and origin-
destination characteristics [13]. Because the two datasets essentially work in separate domains, they are 
most powerful when combined together [6]. User impacts can be quantified by vehicle re-identification, 
while the reasons for those impacts can be deduced by performance measures based on high-resolution 
data. Rather than relying solely on intuitive or anecdotal knowledge of the system and making inferences 
on the level of investment, agencies can now adopt a data-driven process, more similar to that already 
used in pavement management systems. 

1.2 Vehicle Re-Identification Data 
One of the key performance indicators for the quality of service given by an arterial highway to its users 
is the travel time needed to make it from one end of a highway section to another. Any increase in that 
travel time beyond the amount needed for travel at the free flow speed represents the delay incurred due 
to slowing and stopping caused by congestion and traffic control. In the past, travel times could be 
measured by floating-car studies, or by license plate matching. In the floating car study, the analyst would 
collect data by driving a probe vehicle up and down the corridor and measuring the travel time directly in 
that manner. In license plate matching, observers would record license plate numbers at two different 
locations in the system and note the time of observation. By matching the plate numbers and comparing 
the times, they could infer the time needed for the vehicle to travel from one location to the other. 

Automated vehicle re-identification works in much the same way as license plate matching. In this case 
there needs to be some method of identification that is easy to obtain in an automated fashion. Bluetooth 
MAC address matching emerged about 10 years ago as an easy and scalable means of doing so, and is 
still in rather widespread use at the time of writing. MAC addresses are quasi-unique identifiers that are 
often broadcast by mobile devices when using the Bluetooth protocol to wirelessly connect devices, such 
as a headset to a cell phone. Any other device within range can read such a broadcast and observe the 
MAC address. Thus, by putting a Bluetooth transceiver within range of a roadway, an observer can 
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develop a list of timestamped observations of unique vehicle IDs. When multiple transceivers are used at 
multiple locations, their lists are compared to deduce the travel time. 

Figure 1.2 illustrates the concept of vehicle re-identification. In this case, a vehicle with particularly 
unique characteristics is observed at two different places in a traffic network—in this case, during a 
special event (a football game at a university stadium). The vehicle was first observed at a stadium, and 
then observed again elsewhere, on a local arterial while most likely en route to an Interstate highway. 
From the time of the two photographs, it is a simple matter to compute the travel time. 

 

 

Figure 1.2 Vehicle re-identification data concept 

 

The potential of this type of information becomes much clearer when many individual data points are 
brought together. Figure 1.3 shows a scatterplot of individual travel time observations from one direction 
along an arterial highway, including data from all of the Wednesdays within a 6-month period. The 
vertical red lines indicate times of day when the signal timing plan changes from one pattern to another. 
The point cloud shows how travel times change through the day. The impact of the signal timing is 
illustrated by how the patterns in the travel times change. There are a number of other things that can be 
observed. For example, in the PM period (15:00–19:00), the range of typical travel times is between 6 and 
10 minutes, but there are three horizontal “bands” in the distribution showing a tri-modal distribution, 
with the different modes explained by places where vehicles were stopped at traffic signals. 

Vehicle observed at Stadium

Vehicle observed en route to I-65
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Figure 1.3 Example of vehicle re-identification data in a signalized corridor 

 

The data can be still more valuable when extracted to summary metrics to facilitate comparisons; changes 
in travel time before and after an investment are particularly useful. A number of aggregate metrics can be 
used to reduce a travel time distribution to a single number. A compromise between the detail of the raw 
data and the simplicity of a single value is the cumulative frequency of the distribution, which can be 
displayed as a single curved line called a cumulative frequency diagram (CFD), also called a cumulative 
distribution function (CDF). Figure 1.4 shows an example of CFDs for two directions along a roadway 
for two conditions, before and after an update to the signal timing plan. Each line shows the shape of the 
distribution in a cumulative form, the vertical axis representing different percentiles of the distribution 
and the horizontal showing what travel times are observed at that value. The “After” line is entirely to the 
left of the “Before” line, showing reductions in travel time; the arrows show the magnitudes of those 
reductions at the median and the 25th and 75th percentiles. In this case, the travel times are reduced by 
about a minute, or what appears to be roughly 20% of the original travel time, in both directions. 

 

Figure 1.4 Comparison of changes in travel time using cumulative frequency diagrams 

 

The reports produced in this project extensively explore the uses of vehicle re-identification data for 
understanding current travel times in an arterial network, knowing how they are trending, and how they 
change under interventions. This can provide a very powerful tool for managing an arterial system, as the 
performance of individual corridors can be assessed and ranked to understand where to invest resources 
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for retiming. However, this data itself does not shed light on why travel time increased or decreased. 
Although in Figure 1.4 it is clear that travel times have been reduced, the reason why this reduction 
occurred is not known from the data by itself. It is possible that traffic patterns were changed by the 
amended signal timing, but it is also possible that there was congestion in the “before” case that increased 
the travel times that was absent in the “after” case. High-resolution data can be used to develop some of 
those insights. 

1.3 High-Resolution Controller Event Data 
Signal timing plans are typically designed with the assistance of software tools, based on intersection and 
corridor geometry along with expected traffic volumes. After signal timing is deployed in the field, 
engineers often observe traffic in order to ascertain whether adjustments are needed, since no software 
model can completely predict field conditions. This process greatly improves the quality of the timing, 
but it is sharply limited by to the amount of time that the analyst can spend in the field making 
observations and responding to them. Some agencies have access to video cameras that enable operations 
to be observed remotely, and this helps them multiply their efforts. However, even then, the capability of 
the operators to make adjustments are still limited to the periods when they can spend time to make the 
observations.  

High-resolution data offers a way for these types of observations to be made automatically, by means of 
analysis of the events at intersections and by making some inferences using observations from the events. 
An “event” is a state change, of which the two main states of interest are those of the signal head outputs 
(red, yellow, or green for vehicles, and walk, flashing don’t walk, and don’t walk for pedestrians) and the 
detector inputs (the zone is occupied or unoccupied). Although this is less information than a complete 
visual representation of the corridor, when an intersection has enough detection to cover enough of its 
movements, it can provide enough information to identify where further attention should be paid to the 
operation. Thus, in lieu of having a human observer present at all times at the intersection, the data can be 
present at all times and provide a good estimate of the quality of operation. 

One major operational consideration at a traffic signal, and one that significantly affects arterial travel 
times, is the quality of signal coordination: that is, whether traffic patterns facilitate the smooth flow of 
vehicles along the corridor and through multiple intersections. Figure 1.5 shows a time-space diagram 
showing vehicle trajectories as lines moving diagonally across the plot. The red horizontal lines show the 
location of the stop bar and the times when the signal is red. The trajectories do not cross the line, instead 
becoming horizontal here: these are stopped vehicles. The blue horizontal line shows the location of a 
detector situated 400 ft upstream of the stop bar. The black dots where the trajectories intersect the 
detector line show the times of detection. For the signal controller, this would be where the detector turns 
ON when a vehicle passes over it. This is the only information that the controller knows—the rest of the 
trajectory is invisible to it. However, when combined with the timing data, it provides a powerful piece of 
information. The dashed red and green lines project the signal timing upward to a diagram above the plot, 
which shows the red and green intervals in one cycle. On top of this, the detection times are also 
projected, with some in red and others in green—in this case it is clear that the majority of vehicles arrive 
in green, which is preferable. 
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Figure 1.5 High-resolution controller event data concept 

 

In the same way that the travel time data becomes more powerful when data from multiple vehicles are 
combined, this particular view of the intersection state becomes more powerful when combined with that 
of multiple cycles. Figure 1.6 shows this view. Here, the diagram at the top of Figure 1.5 has been 
produced for all of the signal cycles over a 24-hour period; it is shown vertically rather than horizontally, 
with the shaded green region again representing the time in every cycle where the signal was green, the 
white region showing when it was red, and the dots showing the time of vehicle arrivals relative to the 
state. The green and red lines show the time of the beginning of green (BOG) and end of green (EOG) 
respectively. In this example, over most of the day, the largest distribution of the arrivals are coincident 
with green, meaning that most vehicles are progressed rather than stopped. This chart, called a “Purdue 
Coordination Diagram” (PCD), illustrates conditions for one approach at a signalized intersection. 

 

Figure 1.6 Example of a graphical performance measure: the Purdue Coordination Diagram (PCD) 
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The microscopic detail provided by the PCD can 
be summarized in a number of various metrics; 
the basic information here consists of the number 
of arrivals in red and in green, and the durations 
of green. One simple metric that succinctly 
conveys the quality of progression is the percent 
on green (POG). Figure 1.7 shows a collection of 
charts for a corridor that explains how POG 
changed before and after an update of the signal 
timing. Each pie chart shows the condition for an 
individual approach; there are two approaches 
along the mainline at each intersection. The dark 
slices of the pies show where POG increased, the 
red slices where it decreased. 

Most of the approaches in the southern four 
intersections exhibit large dark-green slices, 
showing that POG increased greatly in that area. 
This data corresponds directly to the travel time 
changes illustrated in Figure 1.4, helping correlate 
the signal operation with the impact on the facility 
users. This summary view is built on the 
microscopic data, which is still available to the 
analyst who wishes to “drill down” to the next 
level and examine the performance of an 
individual approach in detail. 

  

 

Figure 1.7 Example before/after assessment of percent on 
green using high-resolution data 

 

Unchanged POG
Increase in POG
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1.4 Synthesis: A New, Structured Approach for Analyzing Arterial Performance 
Vehicle re-identification data and high-resolution data provide intelligence on arterial operations and, 
when combined together, enable a powerful set of tools to be developed. However, the complexity of 
arterial operation, particularly its temporal and spatial variation, demands that a structured approach be 
taken to make use of such tools to the greatest advantage. Already in the examples presented here, the 
notion of there being aspects of operation relevant to individual movements, to intersections, and to 
corridors has been shown, and it has been seen that performance will differ with the time series selected 
for analysis: time of day, day of week, and so forth. 

This research proposes a structured approach to the analysis that uses different levels that go from 
holistic, system-level views, down to individual signalized movements. Figure 1.8 shows a graphical 
example of how this might break down for an agency. 

• At the network or “50,000 ft” level, the entire arterial program is of interest. Agencies make 
planning and programming decisions at such a level, and resources for operations and 
maintenance are distributed according to need. The overall plan for running the system is 
relevant; interaction with other systems as well as other agencies is also important. The 
performance measures at this level consist of aggregations of the lower levels and quality of 
service provided by the system. For example, the travel time between selected origins and 
destinations would make a good high-level performance measure.  

• At the corridor or “5000 ft” level, the scope is narrowed to an individual roadway facility, which 
in an arterial would typically be a corridor or a localized grid area comprising several 
intersections. The performance measures may consist of direct measurements of travel time at the 
corridor level as well as aggregations of intersection-level metrics. At this point, relevant 
performance measures would include the travel time characteristics of the corridor and the 
existence of deficiencies in capacity or anomalies in the operation. Sometimes multiple corridors 
work together in a system, perhaps varying with time of day, and perhaps affecting operation of 
freeways and other facilities. 

• At the intersection or “500 ft” level, the analyst becomes more concerned with the details of 
individual movements. Here, the performance measures of specific movements become 
important. When zoomed in at this level, it is likely that a deficiency is already known from 
higher level analysis; the details can be helpful to assess ways to remedy the situation and to 
evaluate the effects of an action. 
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Figure 1.8 Analysis levels for arterial management 
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Another way to structure the analysis of arterial operations is to divide the activities into groups. Figure 
1.9 shows a chart that illustrates the idea. Under the overall umbrella of management, the activities of 
monitoring, analysis, and improvement are supported by performance measures. Arterial operation can be 
divided into two functions based on the spatial organization of systems. System control involves the 
coordination of multiple intersections on a corridor for progression, while local control is concerned with 
phase-switching at a single intersection. Different components can be seen to be relevant to each activity 
under operation. 

These two perspectives on performance map into two categories of operational concerns that would be 
considered for system management. Progression is the function of a signal system whereby traffic is 
moved along multiple signals in a corridor, ideally with little to no stopping and with little delay when 
stops are incurred. This involves system control; it affects mostly the major movements, and the 
effectiveness can be measured with travel times as well as with progression metrics at the intersection 
level. Capacity allocation is the function of a signalized intersection where competing traffic demands of 
different movements are reconciled by the amounts of green time apportioned to them. This is the main 
function of local control, operating with the constraints needed to meet the demands of system control.  
All of the movements are affected, not only those serving the mainline along roadways. The effectiveness 
can be measured using intersection level metrics, and aggregated to higher levels. 

 

 

Figure 1.9 Breakdown of arterial management into components 
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This research synthesizes these concepts into a unified vision for establishing condition metrics for 
managing arterial systems at a broad level, in the Network Report. Concepts from pavement management 
are reviewed to gain perspective on an effective way of assessing conditions for a large inventory of 
roadway facilities. In pavement management, ratings of different aspects of pavement conditions are used 
to develop a composite index for roadway sections. These can then be used to evaluate the overall 
network—for example by considering the percent of the system in good condition or in poor condition. 
Similarly, the same concepts can be applied to arterial management, by considering the aspects of 
evaluation and how to roll them up into condition indicators. 

The Network Report takes on this problem and proposes a framework to develop it. Figure 1.10 illustrates 
the basic idea. The core elements of the analysis are the basic definitions of the roadway segments and 
their attributes. The next level that builds on those definitions is the condition ratings, which is where data 
is integrated and given context by comparison to thresholds. Finally, that condition data is aggregated and 
used to develop performance indicators at a network level. With such a framework, it becomes feasible to 
consider high level metrics that reveal the overall state of an arterial system, track changes over time, and 
after perhaps enough data has been collected to understand the potential impacts of different treatments, 
predict the changes in performance that can be expected with investments. 

 

Figure 1.10 Network performance framework 
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Chapter 2: Reports and Case Studies 
This project generated one four-module report that covered performance measures in detail, four 
additional reports discussing topics related to applications of those performance measures, and two case 
studies that demonstrated the use of the performance measures to evaluate conditions in two different 
real-world operational scenarios. This material is one part of the deliverables of the project. This chapter 
summarizes the content of those reports. 

2.1 Performance Measures of Interrupted-Flow Roadways 
The report entitled “Performance Measures of Interrupted-Flow Roadways Using Re-Identification and 
Signal Controller Data” summarizes the use of performance measures generated from vehicle re-
identification data and high-resolution event data from signal controllers to evaluate arterial roadways. 
The report relies on the use of conceptual “levels” on which an analysis takes place: intersection, corridor, 
and network. The material is organized into four modules that can be presented independently: 

• Module 1 presents basic concepts for arterial management, including a discussion of objectives 
for arterial operation and measurable items at each level. 

• Module 2 discusses vehicle re-identification data and high-resolution controller event data in 
detail, including basic data requirements and some example applications. 

• Module 3 discusses performance measures oriented toward managing travel times through an 
arterial system. These are used to evaluate progression through traffic signals and the associated 
impact on route travel times through signalized intersections. 

• Module 4 discusses performance measures oriented toward managing capacity allocation at 
signalized intersections. These are used to evaluate the utilization of capacity and locations where 
demand exceeds capacity in a network of arterials. 

The four modules each include several examples drawn from field evaluation of traffic signal systems 
using vehicle re-identification and high-resolution controller event data. The report also includes a shorter 
executive summary that can be used to communicate the essential concepts of the full report to less 
technical audiences, including agency executive staff and the public. 

2.1.1 Module 1 Overview 
The key to a performance evaluation of any system, including an arterial network, is to determine the 
objectives of the system operation. The evaluation can then determine the degree to which the system 
meets those objectives. Different agencies will have different objectives depending on their own policies, 
and these will vary with the context of the arterials, such as their environment and geographic 
distribution. Table 2.1 shows an example of how two different stakeholders might have different 
perspectives on objective priorities for the same system. Stakeholder A is more interested in management 
of vehicle movements, while for Stakeholder B these are secondary to improving service for pedestrians 
and bicycles. These objectives are likely to evolve over time as well, especially as the characteristics of 
service change in response to changes driven by the objectives. The selection of performance measures 
should relate strongly to the desired objectives for the system.  

The emergence of new data sets has made it possible to begin developing more detailed information about 
operations than has been possible in the past. This project has focused on two data sets in particular, 
vehicle re-identification data and high-resolution controller event data. Module 1 of the report presents 



Final Report 16 
Contract #: DTFH61-14-C-00035 

some background on these data sets and discusses performance measures that can be developed from 
them at different levels (intersection, corridor, and network). Table 2.2 presents a mapping of potential 
performance measures from these data sets against different objectives that could be considered for 
evaluating an arterial system. Several examples are given for performance measures at the network, 
corridor, and intersection levels. 

Another important topic is about understanding how to implement performance measures. The report 
briefly touches on some specific tasks and roles of agency personnel as they relate to performance 
measures. Table 2.3 shows a summary of typical personnel roles. Importantly, the implementation of a 
system to manage the data sets, which are required to support performance measures from vehicle re-
identification and high-resolution data, introduces some tasks that may be new for some agencies. This 
includes the development of a system to support the storage and retrieval of the data, as well as some 
“data curation” tasks needed to maintain data in the long term, such as whether or not to archive the data 
beyond some horizon. 

 

Table 2.1 Example objectives and how they might be prioritized between two stakeholders 

Objective Stakeholder A Stakeholder B 
Improve Progression 1 4 
Improve Capacity Allocation 2 3 
Improve Pedestrian Service 3 1 
Improve Bicycle Service 4 2 
Maintain Working Detection 5 8 
Maintain Working Preemption 6 9 
Minimize Pollution and Noise 7 5 
Automate Traffic Counts 8 6 
Develop Origin-Destination Data 9 7 
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Table 2.2 An example of matching potential performance measures to possible objectives 

Objective 
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Improve Progression     X X X     
Improve Capacity Allocation X X X X   X     
Improve Pedestrian Service X X          
Improve Bicycle Service X X          
Maintain Working Detection X   X    X    
Maintain Working Preemption         X   
Minimize Pollution and Noise     X X      
Automate Traffic Counts X           
Develop Origin-Destination Data       X     
Improve Roadway Safety          X X 

 

Table 2.3 Personnel roles in arterial management and opportunities for performance measures to assist and 
improve tasks, and new roles (highlighted) required for successful deployment of performance measures 

Task 

Personnel Role 

Traffic System 
Engineer 

Traffic Analyst 
/ 

TMC Operator 

Maintenance 
Technician IT Specialist 

Project Management Assisted    
System Design Assisted    
System Evaluation Improved    
Control Plan Development Improved    
System Checking  Improved   
Complaint Handling Improved Improved   
Maintenance Requests Improved Improved   
Implementation of  Contingencies Improved Improved   
Data System Maintenance    Required 
Data Curation Required Required Required Required 
Traffic Equipment Installation   Assisted  
Detection System Maintenance   Improved  
Communication System Maintenance   Improved Improved 
Traffic Equipment Troubleshooting 
and Repair   Improved  

Equipment Inventorying Assisted  Assisted  
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2.1.2 Module 2 Overview 
The second module provides more background on the two data sets that are applied for arterial 
performance measures: vehicle re-identification data, and high-resolution controller event data. Several 
examples are presented to demonstrate their use. Several examples are included, a few of which are 
shown here. 

Vehicle re-identification data works by matching unique identifiers of vehicles at different locations in a 
roadway network, to find the travel time between them and other information such as origin-destination 
patterns. Figure 2.1 shows an overlay chart that includes travel times for one direction through an arterial 
over a number of different Wednesdays. Vertical lines show when signal timing plans change. The same 
data is shown as cumulative frequency diagrams for individual Wednesdays in Figure 2.2. The charts 
illustrate both the overall trend in travel time as well as variation by time of day, and individual dates 
where travel times were somewhat anomalous. 

High-resolution data is used to analyze signal performance in detail, often by using detector states to 
measure vehicle activity in response to changing phase states. Figure 2.3 shows an example of how 
vehicle arrivals measured by an advance detector can be related to the overall flow patterns as would be 
visualized by a time-space diagram. The resulting performance measure, the percent on green, can be 
tabulated for all of the cycles within a day, as shown in Figure 2.4. The chart shows the individual cycle-
by-cycle data, which can be highly variable, and a 20-cycle moving average. This type of information can 
be aggregated to a higher level, and correlated with the travel time data. Additional examples, including a 
before-after signal retiming study, are presented in the full report. 

 

 

Figure 2.1 View of corridor travel time data aggregated over Wednesdays over 7 months 
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Figure 2.2 Cumulative frequency diagrams for individual Wednesdays 

 

Figure 2.3 An example high-resolution data metric: Percent on green calculation 
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Figure 2.4 An example high-resolution data metric: Percent on green over 24 hours for a movement at a 
signalize intersection 

 

 

2.1.3 Module 3 Overview 
This module looks at how vehicle re-identification data and high-resolution controller event data can be 
applied to travel time and travel time reliability objectives. These are most relevant to signal progression 
through routes in a network, typically following corridors, and where arriving traffic interacts with signal 
timing at individual approaches of individual intersections. There are clearly opportunities for analysis at 
the intersection, corridor, and network level. Module 3 presents several examples from case studies where 
the data was applied to signal progression objectives. 

The Purdue Coordination Diagram (PCD) is explained in detail in this module, and a number of 
observable traffic conditions are related to how they would be exhibited in the PCD through several visual 
examples. For a simple, contrasting illustration, consider good progression versus poor progression. 
Figure 2.5a shows a time-space diagram exemplifying perfect progression, with no vehicles stopped or 
slowed by a traffic signal, and Figure 2.5b shows a PCD from real-world data that exhibits a similar 
pattern, with most of the vehicles arriving in green during certain times of day. Meanwhile, Figure 2.6a 
shows a different pattern, with many vehicles arriving in red, and Figure 2.6b shows a corresponding 
PCD where most arrivals are in red during certain times of day. 

Figure 2.7 presents an example of corridor travel times, which are plotted as monthly averages for 
weekdays over the course of a year. The red line shows when signals were retimed on the corridor, which 
corresponds to a visible decrease in the travel times. These are charted over time, showing that the 
improvement is sustained for at least a year. This demonstrates an effective corridor level metric, in this 
case supporting a before-after review as well as following up with continuous monitoring. 
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Performance characteristics of intersections and corridors can also be aggregated to the network level to 
identify deficiencies across the system. Figure 2.8 shows an example using a performance measure called 
the maximum vehicle delay (MVD), which looks at the longest possible vehicle delays by movement at 
an intersection. This map view shows the highest MVD value by intersection across seven corridors in the 
Indianapolis area. The data are sorted by quintiles, enabling the locations of the greatest delay to be 
quickly identified. 

 

 
(a) Conceptual time-space diagram 

 

 
(b) Coordination diagram 

 
Figure 2.5 Traffic flow through an intersection with near-perfect progression 
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(a) Conceptual time-space diagram 

 
(b) Coordination diagram 

 
Figure 2.6 Traffic flow through an intersection with poor progression 
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Figure 2.7 Evaluation of corridor travel times over one year after signal retiming 

 

 
Figure 2.8 Map showing highest median MVD by intersection, organized into five groups 
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2.1.4 Module 4 Overview 
Module 4 examines performance measures relevant to traffic demand and intersection capacity in the 
analysis of arterial networks. Several performance measures are demonstrated in a series of use cases that 
show application at the intersection, corridor, and network levels. This module demonstrates the 
performance measures using several case studies that investigate impacts of changes to the signal timing, 
including both split adjustments and cycle length adjustments. Applications of the data for predicted 
impacts of traffic growth are also discussed. 

For an individual intersection, the performance of individual movements can be examined. Many 
intersections use an eight-phase signal timing scheme that separates left-turn and through movements, as 
shown in Figure 2.9. This structure can be directly applied as an organizational pattern for viewing 
movement performance. For example, Figure 2.10 shows the number of split failures per 
movement/phase, which maps directly to Figure 2.9. A split failure is an instance where there is 
insufficient green time to clear the amount of demand present on a phase within one cycle. The chart 
quickly reveals which movements are experiencing the highest number of these, and during what times of 
day they are occurring. Figure 2.11 shows a similar view for a before-after study showing how the 
number of split failures changed with respect to a timing plan change. 

Movement values can easily be aggregated to the intersection, corridor, and network levels. Figure 2.12 
presents an example taken from the network level. In this case the data is abstracted away from the 
geographic relationships and the intersections are ranked by performance from the highest to smallest 
number of split failures per hour, for different times of day. Here, the maximum number of split failures 
on any individual movement is used as the individual intersection value. Perhaps surprisingly, this 
analysis finds that the midday time period actually experiences more split failures than the PM peak for 
most of the system, and the AM peak has fewer split failures than the evening time period. Another 
interesting observation is that the resulting curve shapes are roughly consistent from one time of day to 
the next, and the shapes suggest a Pareto-like distribution. That is, a relatively small proportion of the 
intersections would seem to account for a disproportionate number of the split failures. 

 

 

Figure 2.9 Ring diagram showing the sequence of phases at a signalized intersection 
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Figure 2.10 Number of split failures per half-hour, by phase 

 

Figure 2.11 Number of split failures before and after split adjustment 
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Figure 2.12 Maximum phase failure rate per intersection across 61 intersections, by time of day 
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appropriate detour route, determine if signal timing needs to be changed to accommodate the detour 
traffic, provide an anticipated travel time to travelers, and so forth. 

The next chapter investigates possible uses of vehicle re-identification data for real-time analysis of 
arterial performance. The proposed approach is to look at a record of past data to provide context for the 
current operation, using the concept of cascading windows. Figure 2.13a presents an example of 
cascading windows on top of example travel time data. Starting after 6:15 a.m., 15-minute windows are 
created for analysis, which move forward in time by a 5-minute step. Combining the analyses for the 
series of windows provides context for the current travel times. Three types of visualizations are proposed 
in this report: cascading CFDs (Figure 2.13b), cascading histograms (Figure 2.13c), and stacked 
histograms (Figure 2.13d). Each of these shows the relevant data for the current conditions superimposed 
on the past conditions from previous time windows. The cascading CFDs show that travel times are 
increasing, because the current CFD is to the right of the previous ones. The slope is also becoming less 
steep, meaning that there is increased variability of travel times. The cascading histograms show the same 
trends with a different graphical interpretation: the peak of the current histogram moving to the right and 
spreading out. Finally, the stacked histogram shows an overall trend from all the data, but the contribution 
from the current time window (the darkest blue series) is clustered toward the higher end of the overall 
distribution, and is fairly spread out. These visualizations enable the analyst to determine if travel times 
are increasing or decreasing, or becoming more or less reliable. 
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(a) Cascading time window concept. 

 
(b) Cascading CFDs 

 
(c) Cascading Histograms 

 
(d) Stacked Histograms 

 
Figure 2.13 Visualizations of travel time for real-time monitoring, using cascading windows 

 

  



Final Report 29 
Contract #: DTFH61-14-C-00035 

The technical considerations for aggregating data are further discussed in the next chapter of the report. 
Signal operation introduces some unique requirements for data collection. The choice of the size of a time 
window is influenced by the cycle lengths used by the traffic signals. Cycle lengths typically range 
between 1 and 3 minutes; an aggregation window needs to be longer than one cycle length, and it is 
preferred to include several cycles. Care must also be taken to avoid the choice of a time window that 
interacts with the cycle length in such a way to influence the sampling. A minimum time window of 10 
minutes is suggested to avoid these issues. Another technical consideration is that of data density. Based 
on analysis of resulting graphics with diminishing sample sizes, a minimum of 15 samples is suggested. 
Other considerations such as the number of steps are also examined. 

The final chapter in the report discusses potential uses of the high-resolution data for real-time analysis. 
Two performance measures highlighted for this application are the use of the green occupancy ratio 
(GOR) and red occupancy ratio (ROR) to examine excessive demand. As discussed earlier, high values of 
ROR and GOR are indicators of split failures, and successive split failures indicate that queues are likely 
growing. Figure 2.14 shows an example view of such a metric, where each approach at an intersection 
shows the number of split failures occurring over a sample time period (such as the past 30 minutes). In 
this example, it is likely that the northbound approach has an operational problem. Traffic volumes are 
another piece of information that could potentially be obtained from high-resolution data in real time. 

 

 

Figure 2.14 Proposed visualization of the number of split failures on approaches at a signalized intersection 
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2.3 Arterial Trip Length Characteristics Report 
Methods to classify where a roadway falls on the mobility versus land access spectrum have traditionally 
relied on professional judgment typically based on assessing its geometric attributes. This research takes 
an alternative approach to quantifying the throughput versus land access properties of a roadway by 
introducing a new method called the “Roadway Trip Length Characteristic” or RTLC. Rather than using 
indirect attributes of the roadway design, such as intersection density or number of access points, the 
RTLC directly measures how travelers use the roadway for trip making purposes.  Specifically, in this 
approach, the distribution of trip distance along a corridor is used as a quantifiable indicator of throughput 
versus land access continuum.  A preponderance of long trips along a corridor would indicate the primary 
function of throughput.  If the majority of trips along the corridor are short in duration, it would indicate 
that vehicles are accessing goods and services within the corridor.  The full distribution of trip lengths 
(defined as the RTLC) reflects the mixture of conflicting demands on the corridor, creating a defining 
signature.  This RTLC can be specified under various conditions such as time of day (rush hour versus 
non-rush hour), special events, or seasonal conditions.   

Measuring roadway trip lengths and the statistical distribution of those trip lengths on a specific facility 
can be performed cost effectively with modern re-identification equipment  The proliferation of consumer 
wireless technology allows re-identification to be performed automatically using unique identifiers in 
Bluetooth and Wi-Fi electronic communication protocols. 

Bluetooth and Wi-Fi re-identification sensors, placed at key intersections along a corridor as illustrated in 
Figure 2.15, record the unique electronic identifiers of consumer electronics in vehicles as they pass. A 
roadway vehicle trip is described by the series of sensors traversed.  A vehicle that enters the roadway at 
3rd street and exits at 10th street will be observed by sensors C, D, E, and F, producing a sensor sequence 
pattern of CDEF.  By analyzing these patterns, and with knowledge of the distance between each sensor, 
trip lengths can be measured and various statistics about the trip length on the roadway can be calculated.   

  

 

Figure 2.15 Placement of re-identification sensors for assessing corridor movement 

 

The case study from Maryland route 140, depicted in Figure 2.16, illustrates the use of the RTLC 
approach.  Sensors were placed along MD-140 for a period of approximately two weeks, beginning on 
June 5, 2014 and extending to June 17, 2014.   

Trip sequences were assessed for all Bluetooth re-identified vehicles in this corridor during the data 
collection period.   Bluetooth is able to sample approximately 5% of all trips.  Combining the trip 
sequencing information with the distance between sensors provides the base data to illustrate the 
distribution of roadway vehicle trip lengths.  A histogram of observed roadway vehicle trip lengths is 
illustrated in Figure 2.17. 
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(a) Location of the MD 140 study corridor. (b) Placement of re-identification sensors. 
 

Figure 2.16 Location for the arterial trip length characterization study 

 

 
Figure 2.17 Histogram of observed trip length frequency for MD-140 
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The roadway trip length statistic is an objective measure directly reflecting the subjective concept of 
throughput versus land access.  As a directly measurable attribute, it is useful for engineering and 
performance assessment processes. It can supplant subjective judgment or indirect measures to provide a 
repeatable and defendable method for classifying roadways in order to compare and contrast roadway 
operations.  Moreover, it can also be used to find like roadways across broad geographical regions to 
compare for performance, as illustrated in Figure 2.18 below. Figure 2.18 contrasts the RTLC from 
MD140 with that obtained from a segment on New Jersey route 37. In this comparison, the RTLC is 
illustrated (and normalized) using cumulative frequency diagrams (CFD) such that the distribution of trip 
lengths can be directly compared. Whereas the through movements were a dominant use of Maryland 
Route 140, in contrast, the trip lengths on NJ37 are more evenly distributed across multiple trip lengths. 

 

 

Figure 2.18 Cumulative frequency diagram of trip lengths from two different corridors 
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Data and inferences gained from the RTLC method allow for comparisons of vehicle traffic operations 
either on the same facility (different times of day) or between two different facilities. This provides a 
valuable tool for management policy, signal timing and coordination schemes, and other operations 
treatments. 

Although the RTLC was illustrated with Bluetooth based re-identification data, the RTLC is not restricted 
to any particular type of re-identification data, nor is it only applicable to re-identification data.  As 
modern data sources continue to mature, individual vehicle location data can also be used as the basis for 
calculating RTLC information.  Data sources such as vehicle probe based traffic data and vehicle-to-
vehicle dedicated short-range communication are anticipated to provide such data in the future.   

The RTLC method provides a repeatable and objective procedure to characterize roadway function based 
on how it is used by drivers. The RTLC also complements classification by design attributes and allows 
for a higher granularity approach to roadway characterization.  

2.4 Network Report 
As mentioned in Chapter 1, the granular performance measures need to be aggregated up to higher levels 
to assist managers and decision makers with a way to quickly assess the entire system. This high level 
view is explored in the network report. 

The report begins by examining concepts in pavement management systems, where performance based 
management is a mature practice. Figure 2.19 shows two key concepts. One is the assessment of facilities 
with different criteria, which can then be used to develop an aggregate score, as illustrated in Figure 
2.19a. Here, a “1” rating is good and “3” is poor; four different aspects of pavement performance are 
rated for different facilities. With this, one can begin tracking performance over time. Figure 2.19b shows 
the percentage of facilities with pavement in good condition and the percentage in poor condition over 
time. The chart reveals gradual improvement. 

 
(a) Condition ratings for different 
combination of performance measures. 
 

 
(b) Condition rating over time from the Kansas State Highway 
System. 
 

Figure 2.19 Condition rating concepts from pavement management 
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This overall management concept is applied to arterial traffic operations in the network report. The first 
step is to classify and segment arterials by their attributes. The reason for doing so is to identify target 
metrics appropriate to the roadway class. It would not make sense, for example, to use the same condition 
thresholds for a higher-speed rural arterial with a lower-speed urban arterial. The second chapter of the 
report discusses potential properties of arterial highway segments that could be used for this purpose, 
referring to the AASHTO Green Book and Highway Capacity Manual for reference on design categories 
and functional categories. 

The third chapter proposes a series of performance measures and target thresholds to serve as the rubric 
for arterial condition ratings. The median travel time, travel time reliability (here measured as the 
difference between the 85th and 15th percentiles), quality of signal coordination (here measured by the 
percent on green), and the quality of capacity allocation (measured by the percent of cycles with split 
failures) are used as the basis performance measures. Next, condition thresholds are proposed to serve as 
the basis for these in establishing condition ratings, varying with road categories. For example, the 
proposed thresholds for the median travel time are shown in Table 2.4 below. 

Table 2.4 Proposed condition thresholds for median travel time 

Road 
Category 

Level 1 Level 2 Level 3 
Minutes/Mile 
(maximum) 

MPH 
(minimum) 

Minutes/Mile 
(maximum) 

MPH 
(minimum) 

Minutes/Mile 
(maximum) 

MPH 
(minimum) 

I 1.20 50 1.50 40 > 1.71 < 40 
II 1.50 40 2.00 30 > 2.40 < 30 
III 1.71 35 2.40 25 > 4.00 < 25 
IV 2.00 30 3.00 20 > 4.00 < 20 

 

At the time of writing, such data was not available for an entire arterial network for analysis, so 
conceptual examples are given, with some discussion of characteristics of arterial management that may 
require special consideration. For example, the time-dependent properties of traffic performance fluctuate 
over several different periods, so a resulting system condition diagram would probably take on 
characteristics such as shown in Figure 2.20a. The pattern shown here indicates five weekdays followed 
by two weekend days, as is characteristic of traffic fluctuations. In this particular example, the weekends 
have relatively poor operation, indicating some effort should be spent on signal timing plans that operate 
on weekends. 

Once data is narrowed down to the appropriate time of day, days of week, and filtered for holidays and 
exceptional incidents, one can begin to deduce the impacts of treatments to the operation. Figure 2.20b 
shows a chart of system condition over the previous 30 days, with the percentage of the system in good 
condition rising around day 15. This conceptual example shows how the impact of an investment like 
signal retiming could be visualized. This simple graphical approach would provide a much needed tool 
for agencies to present information about current operations and outcome assessments to decision makers 
and to the public. 
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(a) A chart showing characteristic differences in weekday and weekend operations. 

 
(b) A chart showing before/after impact of signal retiming. 

Figure 2.20 Visualizations of arterial network performance based on percent of network operating in good 
and poor condition over a 30-day period 
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2.5 Graphics Report 
This report focuses on visualizations of the performance measures. It is intended as a companion 
document to the four-module report Performance Measures of Interrupted-Flow Roadways using Re-
identification and Signal Controller Data. Rather than providing the more in-depth examination of each 
performance measure, the graphics report focuses on visualizations, explaining the construction and 
interpretation of several graphics based on vehicle re-identification data and high-resolution data. 

Figure 2.21 provides a summary of the graphical performance measures highlighted in this report. 

• The travel time overlay plot (Figure 2.21a) is a scatterplot where observed travel times are plotted 
by time of day. The observations are gathered over several days or longer to provide enough 
density of data to allow visualization, since one individual day may have sparser data. In Figure 
2.21a, the signal plan changes are indicated by red vertical lines, which also correspond to 
changes in the travel time data. 

• The travel time CFD (Figure 2.21b) provides a summary of travel time data for a particular data 
segment, such as a particular time of day. This may be gathered for one particular day or several 
days combined together. 

• The Purdue Coordination Diagram (PCD) is a chart that shows the vehicle arrival characteristics 
for an individual signalized approach, typically over a 24-hour period (Figure 2.21c). The dots 
show individual vehicle arrivals measured with a detector, which are overlaid on the red and 
green intervals of individual cycles through the time period. Dots in the shaded region above the 
green line are arrivals in green, while those below the green line are arrivals in red. 

• The percent on green (POG) is a summary metric based on the arrival data (Figure 2.21d). It is 
helpful for examining conditions before and after a change is made. In Figure 2.21d, the POG for 
four approaches at two intersections are shown; the pie charts indicate changes in the value after a 
change to the signal timing. A brief visual inspection finds that POG increased at two of the 
approaches and decreased at the other two. 

• The number of split failures can be examined by looking at the red occupancy ratio (ROR) and 
green occupancy ratio (GOR). When both are high, it is likely that a split failure occurred. 
Tabulation of split failures across all the movements at an intersection enables hot spots of 
congestion to be identified. Figure 2.21e shows a plot of the number of split failures by 
movement at several dozen intersections; a handful of problem movements are easily identified 
by spikes in the chart. 

• The individual plots of ROR versus GOR for an individual movement can also be shown, as in 
Figure 2.21f. The individual values for each cycle are indicated here. It would be possible for an 
analyst examining Figure 2.21e to “drill down” to the details of an individual movement for more 
information. 
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(a) Travel Time Overlay Plot. 

 
(b) Travel Time CFD. 

 
(c) Purdue Coordination Diagram (PCD). 

 
(d) Changes in Percent on Green (POG). 

 
(e) Longitudinal plot of split failures. 

 

 
(f) ROR vs. GOR for One Phase. 

Figure 2.21 Summary of visualizations discussed in the Graphics Report 
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2.6 Case Studies 
Two case studies using combined sensor data for field analysis were developed as part of this project. The 
first case study used data that had been collected over a 5-year period (2010–2015) on a high-speed 
arterial in the Indianapolis area, where the traffic signal offsets were repeatedly optimized based on traffic 
patterns observed in high-resolution data, and results were quantified using vehicle re-identification data. 
The second case study demonstrated the application of these two data sources in an unplanned detour 
situation where an Interstate highway was diverted onto parallel arterial highways that included a 
signalized section. 

2.6.1 Impact of Five Years of Offset Optimization 
This study focuses on the performance of Indiana State Road 37, which is a 10-intersection arterial 
highway located north of Indianapolis, Indiana. Figure 2.22 presents a map showing the location of this 
route. This roadway was the focus of several pilot studies on the use of high-resolution controller event 
data, which included the first few studies on offset optimization based on that type of data, initially with a 
four-intersection subset of the system in 2009, followed up with a corridor-wide study in 2010. In 
subsequent years, the offset optimization was repeated in 2013 and again in 2015. Each time this was 
done, vehicle re-identification data was collected at the same time, measuring conditions before and after 
the new timing plans were programmed. Thus, there were 5 years of data that could be analyzed to 
understand the impact of offset optimization on the traveling public. Weekday and Saturday timing plans 
were analyzed separately using the same method. 

Comparing traffic volumes (collected with high-resolution data) with the number of re-identified vehicles 
found that about 5% of the total volume was captured by Bluetooth MAC address matching. The travel 
time distributions before and after each individual retiming were first filtered for outliers, then 
characterized by finding their averages and standard deviations, for comparison purposes. User benefits 
were calculated by scaling the travel time values using the volume and travel time value factors. For this 
study, travel time values were taken from the 2011 Urban Mobility Report and converted into 2015 values 
using Consumer Price Index differences, and a unit change in travel time standard deviation was 
considered equivalent to a unit change in the average travel time. Finally, the values were annualized by 
scaling with an appropriate conversion factor from day to year. 

Figure 2.23 shows the overall results for the 5-year comparison. Each stacked bar shows the user costs in 
terms of travel time (TT) and travel time reliability (TTR), with the percent change in the total value for 
each year. Figure 2.23a shows the differences for Saturdays and Figure 2.23b shows weekdays. Each 
iteration was associated with a modest reduction ranging between 2.5–8.5%. The total user benefit 
associated with these differences is shown in Table 2.5. Some disbenefits are observed, mostly due to 
directional tradeoffs within each year. That is, improvement in one direction sometime came at the cost of 
worsened performance in the other direction. However, the overall outcome for each pass is a net 
positive. The total user benefit achieved over the 5-year period is approximately $4.2 million. 
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Figure 2.22 Location of Indiana State Road 37 relative to Indianapolis and neighboring communities 

 

Figure 2.23 Annual travel time (TT) and travel time reliability (TTR) costs for Saturdays and weekdays0600–
1900, before and after offset optimization.  (a) Combined annual northbound/southbound TT and TTR costs, 
Saturdays;  (b) Combined annual northbound/southbound TT and TTR costs, weekdays; 
 

 
 

 
 

 
 

 
 

TT TT TT

TTR TTR
TTR

TT TT TT

TTR
TTR

TTR

0

1

2

3

4

5

6

A
nn

ua
l U

se
r C

os
t (

$ 
M

illi
on

)

-8.5% -2.5%
-2.6%

TT TT TT

TTR
TTR

TTR

TT TT
TT

TTR
TTR

TTR

0

10

20

30

40

A
nn

ua
l U

se
r C

os
t (

$ 
M

illi
on

)

-6.2%
-7.8%

-3.5%

 
 

 
 

 
 

 
 

2010           2013             20152010            2013             2015

                         

                        

                         

                        

(a) (b)



Final Report 40 
Contract #: DTFH61-14-C-00035 

Table 2.5 Annual TT and TTR user benefits from offset optimization. 

Comparison Group Year Travel Time Travel Time Reliability Total 
Saturday -Northbound 2010 $138,231 -$18,773 $119,458 
Saturday -Southbound 2010 $235,527 $49,557 $285,084 
Saturday -Northbound 2013 $307 -$13,732 -$13,425 
Saturday -Southbound 2013 $107,385 $32,003 $139,388 
Saturday -Northbound 2015 $53,942 $22,278 $76,220 
Saturday -Southbound 2015 $89,432 -$21,002 $68,430 
Weekday -Northbound 2010 $984,006 $498,710 $1,482,716 
Weekday -Southbound 2010 -$471,029 -$477,777 -$948,806 
Weekday -Northbound 2013 $961,588 $277,381 $1,238,969 
Weekday -Southbound 2013 $684,400 $588,986 $1,273,386 
Weekday -Northbound 2015 -$799,909 -$10,853 -$810,762 
Weekday -Southbound 2015 $637,189 $639,879 $1,277,068 
Total $2,621,069 $1,566,657 $4,187,726 
 

2.6.2 Impact of an Unplanned Interstate Detour 
In August 2015, the northbound direction of I-65 near Lafayette, Indiana was shut down in response to 
unexpected settlement of a bridge pier that made it unsafe for traffic to continue using the bridge. The 
Indiana Department of Transportation diverted the traffic onto a 62-mile detour route, illustrated in Figure 
2.24. Because of road work taking place in the city of Lafayette, it was not possible to route the detour 
through local roads. Also, the geometry of the ramp at exit 141 made it a better candidate to begin the 
detour than the alternate at exit 158. 

The detour route followed northbound US 52, a four-lane divided highway, before making a left onto 
Indiana 28, a two-lane highway. The route then made a right turn onto US 231, which is also a two-lane 
highway, becoming a four-lane divided highway with traffic signals as it passes around the Lafayette 
area. That route included a left turn following the routing of US 231, before making one last right turn 
onto another two-lane section before rejoining I-65 at exit 193.  I-65 was closed for approximately 6 
weeks during bridge repairs. 

Bluetooth devices were deployed in the field about a week after the detour began. Ten devices were 
deployed in total, as shown in Figure 2.24. The devices were left in the field for nine days. In addition, 
high-resolution data was available from most of the intersections on US 231. The high resolution data 
could be used to compare volumes before and after the diversion, as shown in Figure 2.25. Here, a week 
of volumes at the same location is presented for one week prior to the detour versus one week during the 
detour. Note that volumes more than doubled for much of the day, and nearly tripled during the 
weekends. 

The Bluetooth data could be used to determine vehicle routing through the detour, as well as travel times 
on each alternative route. As Figure 2.24 shows, in addition to the official detour, some alternative routes 
are also possible. One of these follows US 52 (known locally as Sagamore Parkway) up to exit 175. This 
path goes through road work in Lafayette. The other leaves the detour route at Indiana 43 (known locally 
as River Road) in West Lafayette, and follows it up to exit 178. Figure 2.26 shows the resulting travel 
times and proportions of identified matches for each of the three alternatives. The data shows that about 
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60% of the diverted traffic followed the detour, with about 27% following the Sagamore Pkwy route and 
13% following the River Rd route. The Sagamore route had a longer median travel time, and a much 
higher interquartile range (IQR), meaning the travel time was highly unreliable—not unexpected, due to 
the road work going on at the time. Motorists who chose the River Rd path did end up saving about three 
minutes’ travel time. However, overall results were quite similar, suggesting that user equilibrium was at 
least approximately established in the detour area. 

 

Figure 2.24 Map of the I-65 detour. The black line shows the official detour, while the blue and green lines 
show alternative routes. Letters A–I indicate where Bluetooth monitoring stations were located 
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Figure 2.25 Weekly comparison of traffic volumes before and after the I-65 detour 
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Figure 2.26 Map of origin-destination routes taken and travel times experienced on each 
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Figure 2.27 shows results for detour route travel times. Figure 2.27a shows the travel times from the 
origin point to several destinations, while Figure 2.27b shows the amount of delay occurring on individual 
segments along the route. Figure 2.27a shows the slope of the curve gradually becoming more horizontal 
with distance, which is a fairly typical pattern for arterials as delay accumulates at intersections. Figure 
2.27b shows that the highest amount of delay is actually seen on the first and second segments, which 
include situations where two lanes of traffic merge into a single lane and make a left turn (segment A to 
B), or where that single lane of traffic makes a right turn (segment B to C). The remaining segments have 
some delay but it is lower in magnitude. 

The high-resolution data was also used to evaluate the efficacy of a signal timing plan that was 
implemented for the detour. Figure 2.28 shows a more detailed map of the signalized portion of US 231, 
which includes 12 intersections. At the time that the detour began, only intersections 4–8 operated as a 
coordinated system along US 231, which was set up for a much lower volume of traffic. Intersections 1–3 
were not coordinated, intersection 8 was not yet signalized and was operating as two-way stop controlled, 
and intersections 10–12 were coordinated for east-west traffic. By the time that the data collection effort 
was underway, all twelve intersections had been coordinated under a new timing plan intended to shunt 
northbound traffic through the system as efficiently as possible. High-resolution data was available for 
eight of the twelve intersections. 

Figure 2.29 shows PCDs for all of the intersections from which data was available during a representative 
date during the detour after the emergency plan was deployed. A visual glance at the PCDs finds evidence 
of a well formed platoon captured within the green band at each intersection along the route. Progression 
was also fairly good in opposing southbound direction, as well. Table 2.6 shows the results in terms of the 
percent on green (POG), as well as the green-to-cycle ratio (g/C) and the platoon ratio (Rp) for each 
approach in the system for which there was data. Northbound POG values were found to exceed 80% for 
all of the approaches except for the entry approach (Int. 1) in the northbound direction, and several had 
POG above 90%. Platoon ratios exceeded 1.1 for most, further indicating better progression than under 
random arrivals (as indicated by Rp = 1.0). Travel in the southbound direction was not considered when 
designing the timing plan, but the results show that it performed reasonably well at most approaches. The 
good quality of progression in the northbound direction explains why there was relatively little delay 
associated with the sections of the signalized arterial in Figure 2.27b. Sections C to D, D to E, and E to F 
have much less delay than A to B and B to C. Section E to F has the highest amount of delay among the 
signalized arterial sections, likely because it includes a left turn at Int. 10, as shown in Figure 2.28.  
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(a) Travel time from origin to destination 

 

(b) Northbound delay by segment 

Figure 2.27 Travel time data during the I-65 detour 
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Figure 2.28 Map of the existing signalized portion of US 231 
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(a) Northbound 

 

 
(b) Southbound 

 
Figure 2.29 PCDs from the US 231 corridor. 
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Table 2.6 Summary performance metrics for progression along US 231 

 Southbound Northbound 
Intersection POG g/C Rp POG g/C Rp 
10 N/A 90.2% 66.8% 1.35 
9 No Data No Data 
8 70.3% 77.4% 0.91 88.2% 76.3% 1.15 
7 82.8% 79.7% 1.04 94.5% 77.6% 1.22 
6 79.7% 85.9% 0.93 95.8% 86.1% 1.11 
5 96.4% 91.7% 1.05 96.4% 86.4% 1.12 
4 74.5% 72.1% 1.03 80.8% 68.4% 1.18 
3 No Data No Data 
2 95.8% 87.0% 1.10 89.5% 82.4% 1.09 
1 75.6% 80.5% 0.94 76.0% 77.4% 0.98 
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Chapter 3: Resources to Support Performance Measurement 
This project includes several products to encourage widespread adoption of the breakthroughs in arterial 
characterization using new data sources. These resources include a lexicon of terms as well as three 
software development efforts that serve as reference implementations for the performance measure 
visualizations and data standards developed previously in this initiative.  Consistency of language, data 
standards and reference-able pseudo-code, when used in conjunction with prevailing procurement 
practices, encourage uniformity of application within the industry, create increased value for the customer 
(typically a transportation jurisdiction), and hasten adoption of best practices.  

Improvements in technology and methods are often accompanied by a confused and fragmented market as 
vendors vie for market share.  Vendors typically provide proprietary technology and software spanning 
sensor field hardware all the way to analytics and visualizations from back-office processing software, 
resulting in wide variance in implementation from vendor to vendor and a corresponding variance in user 
experience. As technology proliferates and market matures, price competition begins to enforce 
uniformity and interoperability through procurement specifications.  Product consistency across vendors, 
and uniformity of customer experience are signs of a mature, standards-driven market place.  The re-
identification market finds itself at a transition point.  Initial product offerings by vendors have been 
vertically integrated solutions based on vendor specific (typically proprietary) software and data 
structures integrated with hardware (sensor) offerings.  Interoperability of re-identification equipment 
with down-stream processing for performance measures and visualization are NOT the norm in the 
market.  Currently data analytics options available to customers are limited to the analytics offered by the 
equipment vendor unless the customer invests in a significant and costly data integration process.   

A goal of this project is to provide additional tools to encourage best practice and uniformity in the 
market.  In addition to a lexicon of terms, this toolset includes the creation of a re-identification segment 
travel time data standard, referenced as CWS5200, implementation of the arterial performance measure 
and network performance metrics based on the CWS5200 in an open source software known as 
VPXplore, and the implementation of the RTLC in Traffax’s BluSTATs analysis software along 
accompanying algorithm documentation.  Combined, these tools will encourage market maturation – 
creating uniform expectations and experience for the customer, increasing customer value, extending the 
shelf-life of data, and ultimately faster market growth.   

3.1 Lexicon 
The project’s lexicon is intended to complement other project deliverables by providing background 
information, definitions, and clarification of terms and acronyms.  It draws on concepts, language and 
ideas from the transportation engineering field in general.  For this work, such terms, at times, take on 
specific or narrower meanings than that used in common vernacular.  

3.2   Common Data Format 
This SBIR initiative also targeted the delivery of common data formats to facilitate adoption of, and 
uniformity within, arterial performance measures from re-identification and high-resolution controller 
data (HRCD).  The traffic data industry has typically been characterized by independent data collection 
activities to support separate and distinct data analysis activities.  For example, data needed for long term 
planning of roadway capacity was collected separately from the data needed by operations personnel 
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responsible for day to day management of traffic and incidents.  A common data format allows for more 
for efficient data collection from newer and richer data sources such as re-identification and HRCD, 
allowing data collection activities to support numerous analysis functions such as traffic operations, 
transportation management centers and long-term planning.    Data standards also allow for cost 
efficiency during procurement, insuring the output from different vendors can support data analysis 
activities without custom integration of vendor specific data feeds.     

A common HRCD format would minimize the variability of implementation from vendor to vendor.  A 
significant step toward a common data format for HRCD was completed by a team lead by Purdue in 
2012, in a document named INDIANA TRAFFIC SIGNAL HI RESOLUTION DATA LOGGER 
ENUMERATIONS [14].  These enumerations, or numbered codes, have been used effectively to combine 
data from multiple signal control vendors in early implementations.  Although not a fully formatted data 
message standard, such as an XML application programming interface (API) data feed, the enumerations 
provide common definitions, and set expectations within the industry for uniformity.  Indeed they have 
been widely accepted, and now all major signal manufacturers support the enumerations. 

Within this initiative a standard data format was developed for segment level travel time data based on re-
identification technology.    The standard was developed in conjunction with the University of Maryland 
Center for Advanced Transportation Technology (CATT) research and analytics branch, called 
CATTWorks.  As such the standard is labeled as the CWS5200 re-identification data standard where 
CWS stands for CATTWorks Standard.  This standard format is intended to support various forms of re-
identification technologies such as Bluetooth, Wi-Fi, automated license plates readers, and toll tag readers 
to name a few.   The CWS5200 standard is intended to provide a uniform method of conveying observed 
travel times collected along corridors using any form of re-identification technology, and a complete 
description is available in the Common Data Format Report.   
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3.3 Arterial Performance Measures Software 
This Small Business Innovative Research (SBIR) project includes aspects of software development meant 
to encourage widespread adoption of the breakthroughs in arterial characterization resulting from the use 
of new data collection methods such as re-identification data.  The software developed to support arterial 
performance measures is intended to encourage uniformity of application by providing reference routines 
(or pseudo-code) for implementation of the performance measures and data standards developed in this 
initiative.  A full description of the arterial performance measures software, including code listings and 
source code access is available in the project report entitled, “Arterial Performance Measures Software” 
[15]. 

The software reference routines are provided in a standard numerical processing and visual scripting 
language, MatlabTM, common to the analysis and R&D community.  These reference software routines are 
embedded in an analysis tool, jointly developed between Traffax Inc. and the University of Maryland 
(UMD) Center for Advanced Transportation Technology (CATT), referred to as VPXplore.  VPXplore, 
which originated as a set of MatlabTM scripts to assist in comparing traffic data from different sources, has 
evolved into open source software for the comparison and visualization of re-identification and 
commercial probe vehicle data.   

Support for the CWS5200 data standard was implemented in both VPXplore and BluSTATs, Traffax’s 
engineering analysis software for Bluetooth and WiFi re-identification data, allowing the porting of 
processed sensor data to common open source platforms.  BluSTATs is representative of any vendor’s 
custom analytics processing software.  VPXplore was augmented for use with CWS5200 data standards, 
and extended for overlay and cumulative frequency diagram visualizations for arterial performance 
measures, all operating on CWS5200 data sets.  The flowchart in Figure 3.1 is representative of the type 
of open data format evolution needed to unlock travel time information from proprietary vendor-specific 
analytics packages and to support a larger variety of public agency needs.   

 

Figure 3.1 Implementation framework of the CWS5200 data standard 

Representative output from VPXplore is shown in Figure 3.2 below showing a comparison between travel 
times produced from a commercial vehicle probe data set and a re-identification data set for the same 
facility.  The data sets are compared using both the 24 hour overlay view and the cumulative frequency 
distribution (CFD) chart.   
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Figure 3.2 Representative output of VPXplore between two data sets using overlays and CFDs 
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3.4 Network Metrics Software 
 
In this initiative, the VPXplore open-source software (as described in 3.3 above) was extended to support 
the base travel time network performance measures developed in “Network Performance Measures for 
Arterials – a Systematic Level Perspective” [16] (referred to as the NPMA report), and as summarized in 
section 2.4 above.   The NPMA report introduced a framework for arterial network performance measures 
and management patterned off of other infrastructure management systems and based on four key 
condition performance metrics from either re-identification travel time or high-resolution controller data.   

VPXplore was augmented to provide the two measures emanating from re-identification travel time data 
sets which include:  (1) median travel time measured in minutes per mile, or miles per hour, and (2) travel 
time reliability, implemented as the difference in the 15th and 85th percentile travel time, divided by the 
median travel time for normalization.   

NPMA support is built upon the VPXplore software architecture, leveraging the integration of the 
CWS5200 standard data format for segment level re-identification data.  The implementation of 
VPXplore required two additional software modules as illustrated in Figure 3.3 below. .  The first 
module, Analytics Processing, calculates the specific performance measures called out in the NPMA 
report based on the CWS5200 data structure. The second module, the Visualization Engine, produces 
customized visualizations of the NPMA performance measures, a sample output of which is illustrated in 
Figure 3.4. 

 

Figure 3.3 Augmentation of VPX Software for Network Performance Measures 
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Figure 3.4 Sample output of the Network Performance Measures implemented in VPXplore 

 

3.5 Software Demonstration 
A recorded demonstration was prepared explaining the purpose, development, framework, and potential 
uses of the developed open-source software.   The recorded presentation can be viewed at: 
https://webmeeting.umd.edu/p3c5ymxjq97/?OWASP_CSRFTOKEN=e1c84f4446075128a4ceb0979ccc05c3c12da7eb212a4
f14ca957d2e11c4514c and the PowerPoint slide deck can be accessed at https://tinyurl.com/ydz7dm3j. 

  

https://webmeeting.umd.edu/p3c5ymxjq97/?OWASP_CSRFTOKEN=e1c84f4446075128a4ceb0979ccc05c3c12da7eb212a4f14ca957d2e11c4514c
https://webmeeting.umd.edu/p3c5ymxjq97/?OWASP_CSRFTOKEN=e1c84f4446075128a4ceb0979ccc05c3c12da7eb212a4f14ca957d2e11c4514c
https://tinyurl.com/ydz7dm3j
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3.6 Accessibility Metrics 
 

The implementation of the roadway trip length characteristic (RTLC), as discussed in Section 2.3 of this 
report, is carried out in the BluSTATs software, owned and maintained by Traffax Inc., and distributed in 
a compiled form for the WindowsTM operating environment.  The RTLC operates on vehicle detection 
data from the sensors within a corridor before it is aggregated to segment level travel times.  The goal of 
the software, along with its detailed report entitled “Arterial Trip Length Characteristics Software” [17], 
is to provide a reference for implementation, sort of a standard recipe, for the RTLC.  The software 
operationalizes the RTLC statistics for use on data collected in the field, and the associated report [17] 
provides a detailed explanation of the processing sequence and algorithms needed for implementation.    

A diagram of the approach is shown in Figure 3.5 below.  Data from field sensors are input into 
BluSTATs.  Station processing performs cleaning, filtering and aggregating to provide detection data in a 
station data structure format.  Station detection data sets are then input into the RTLC processing which 
consists of two processing steps.   

 
Figure 3.5 Implementation of RTLC within BluSTATs 

 
The first process is a trip chain analysis in which the vehicles are observed as they progress through a 
series of stations, resulting in what are referred to as trip chains.  Trip chains are denoted in a short-hand 
format in which each station along a corridor is assigned a letter in the order of progression along the 
corridor.  The first station is assigned ‘A’, the second ‘B’, the third ‘C’ and so on.   The short hand 
notation provides the path taken on the corridor.  The trip chain ‘BCD’ indicates the vehicle was first 
observed at station B, then C, and lastly D.   The analysis of trip chains results in a tabulated list of unique 
trips observed, and the total number of observances of that trip, a sample of which is shown in Figure 3.6 
below.   Trip chain analysis is a foundational step that contributes to various analytics, and contains 
optional filtering parameters.    
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Figure 3.6 Trip chain summary table for US-1 with RTLC filter options applied 

The second process creates the RTLC using the information in the trip chain summary table combined 
with distance information and additional filtering that removes noise and outliers, and consolidates 
output.  These filters eliminate zero length trips, loop-back trips, and omit trip chains observed below a 
specified minimum observation threshold.   With additional filtering and tabulated trip distances (as 
shown in Figure 3.6) the data in the trip chain summary table is transformed into various tables providing 
trip characteristics.  One such table is the trip length distribution as shown in Figure 3.7, which forms the 
basis for histograms and cumulative frequency distributions (CFDs) of the RTLC.  A normalized 
histogram produced from the trip length distribution table is illustrated in Figure 3.8. 
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Figure 3.7 Distance distribution table 

  
Figure 3.8 Sample normalize histogram view of the RTLC  

Note that the implementation of the RTLC operates on station detection records, not on segment travel 
time records available in the CWS5200 segment data standard.  This implementation exposed the need to 
define a station detection data standard, comparable to CWS5200, but applicable to individual detections 
at stations. 
 
This report is intended as a reference document for the implementation of the RTLC for procurement of 
equipment and analytics related to re-identification data.   The RTLC software, as described herein and 
detailed in “Arterial Trip Length Characteristics Software” [17], is available in BluSTATs version 2.25 
and above. 
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Chapter 4: Forums 
During the course of this research project, a series of six forums were held in which the research team 
presented material to and interacted with practitioners. These forums took the format of interactive 
workshops. The goals were to introduce new data tools, educate attendees about how these could be used 
to assist in the management of arterial traffic control, and gather information about the needs, challenges, 
and preferences of the practitioners who are most likely to make use of these tools. 

Figure 4.1 shows a map with the location and dates of the forums. The six forums were held in six 
different states in different parts of the US. They attracted over 300 attendees in total across all of the 
forums. This section presents an overview of each forum. 

 

 

Figure 4.1 Forum Locations 
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4.1 Georgia Department of Transportation (Atlanta, GA) 

On May 13, 2015, Darcy Bullock presented a workshop behalf of the SBIR 3 project in Atlanta, Georgia.  
The event was hosted by Alan Davis of Georgia Department of Transportation at the offices of Atkins and 
was advertised through the website of the Georgia Section of the Institute of Transportation Engineers.  
Darcy also gave a brief presentation at the Georgia ITE monthly meeting held the following day.  The 
workshop had a turnout of approximately 60 to 70 participants as seen in Figure 4.2. 

This was a conversational style workshop. Though a great deal of material was covered, participation was 
strongly encouraged throughout the day and the attendees responded enthusiastically. The day’s agenda is 
shown below in Table 4.1. 

 

Figure 4.2 Workshop participants on May 13, 2015, Atlanta, Georgia 

Table 4.1 Atlanta, GA workshop agenda 

1. Survey 
2. Introductory Remarks 
 a. Stan Young (Traffax) 
 b. Alan Davis (GDOT) / Eddie Curtis (FHWA) 
3. Discussion Corridor 
 a. Map 
 b. VLC Video 
 c. Dialog 
4. Basics of Probe Data Reduction 
 a. Deployment 
 b. How to tabulate BT Data CFD 
 c. CFD 
5. Pyramid Perspective on Active Traffic Management 
6. PCD / Progression Concepts 
7. Split Failure Concepts 
8. Future Directions 
9. Probe Data and Ranking Indexes 
10. Real Time Corridor Performance Measure Dashboards 
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The first item on the agenda for the day was to hand out a survey (shown in Table 4.2).  This survey was 
administered prior to the workshop presentation and discussion to gauge the participants’ assessment of 
the importance of traffic signal performance measures as well as their access to tools for performance 
measurement. 

Attendees were asked to respond to the questions with the following scale: 

 5 Strongly Agree 
 4 Agree 
 3 Neutral 
 2 Disagree 
 1 Strongly Disagree 
 
Figure 4.3 shows the distribution of public sector and consultant attendees at the workshop.  Thirty-nine 
participants returned the survey, and the majority self-identified as consultants. 

Table 4.3 shows the relationship between pairs of questions in the survey. Figure 4.4 shows the 
distribution of the responses. Of particular note is the approximately one point gap between what 
respondents believe are the performance measures they need to effectively manage their traffic signal 
system infrastructure and what they currently have available.  Subsequent discussion throughout the day 
validated this perceived gap and the need for a technical document that agencies can use as a basis for 
procurement specifications.   

 

 

Figure 4.3 Distribution of attendee employment sectors   
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Table 4.2 Workshop survey 

The following performance measures are important in my daily professional activities: 
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1.      Travel Time  
2.      Travel Time Reliability 
3.      Quality of Progression  (arrivals on green on an arterial) 
4.      Sufficient Green Time to serve vehicles waiting 
5.      % of Detection that is working 
6.      % of Communication that is working 
 
Please answer the questions below based upon what you have operational today. 
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7.      I believe I have access to good technology to measure travel time along corridors. 
8.      I believe I have access to tools that let me quickly analyze corridor travel time trends and 

travel time reliability. 
9.       I believe I have access to data and tools to identify locations where there are 

opportunities to improve progression between signalized intersections on a signalized 
arterial. 

10.      I believe I have access to data and tools to identify locations where I may need to adjust 
the allocation of green time between competing movements. 

11.      I believe I have access to data and tools to identify vehicle detection maintenance issues. 
12.      I believe I have access to data and tools to identify traffic signal communication 

maintenance issues. 
13.      I believe I have access to data and tools to quickly perform before/after assessment of 

traffic signal timing and improvement initiatives 
 
14. Which of the following best describes your employer 
a. Consultant 
b. Public Sector 
c. Vendor 
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Table 4.3 Paired survey questions 

Questions regarding importance of Performance 
Measures 

Corresponding question regarding access to 
performance measure tools 

 1. Travel Time  7. I believe I have access to good technology to 
measure travel time along corridors. 

2. Travel Time Reliability 8. I believe I have access to tools that let me quickly 
analyze corridor travel time trends and travel time 
reliability. 

3. Quality of Progression  (arrivals on green on an 
arterial) 

9. I believe I have access to data and tools to identify 
locations where there are opportunities to improve 
progression between signalized intersections on a 
signalized arterial. 

4. Sufficient Green Time to serve vehicles waiting 10. I believe I have access to data and tools to identify 
locations where I may need to adjust the allocation of 
green time between competing movements. 

5. % of Detection that is working 11. I believe I have access to data and tools to identify 
vehicle detection maintenance issues. 

6. % of Communication that is working 12.  I believe I have access to data and tools to identify 
traffic signal communication maintenance issues. 

 
 

 

Figure 4.4 Results of survey questions 
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The following summarizing some the key dialog obtained from participants during the workshop: 

- Effective arterial management requires a diverse set of data  
o High resolution traffic signal data to characterize arrivals on green and split failures 
o Probe data to characterize arterial travel time 
o Infrastructure health data to verify that communication and detection is functioning 

properly is important. 
- The Atlanta area has a relatively large deployed base of Bluetooth sensors for obtaining probe 

vehicle travel time information. 
- When Bluetooth sensors are deployed, mid-block deployment is the preferred location.  However, 

due to power and communication costs, they are frequently deployed at signalized intersections.  
This necessitates using slightly more complex data reduction algorithms to reduce noise in the 
data set. 

- Using probe data to measure before/after changes in travel time is a very effective tool for 
communicating the impact to decision makers, particularly when it is combined with AADT to 
estimate savings in user costs. 

- Georgia is aggressively deploying high resolution data collection capabilities at its signalized 
intersections. 

- Georgia consultants generally spend considerable time in the field tweaking Synchro output.  This 
is found to be very beneficial, but costly to scale to all TOD plans, particularly Saturday and 
Sunday plans. 

- There is mixed feeling on the utility of adaptive control.  However, all agreed that both hi-
resolution signal data and probe data based performance measures are critical to objectively 
assess the impact of adaptive control. 

- Although not unanimous, there was general consensus that the consultant model will likely 
evolve from the current practice of: 

o Obtain turning movement counts 
o Run Synchro 
o Implement Timing plans 
o Assess impact Synchro 

To the following practices: 

o Use probe data to prioritize locations for deploying high resolution data logging 
equipment 

o Use high resolution data instead of count data/Synchro to identify opportunities to 
improve green allocation and offsets 

o Assess outcome with both high res data and probe data 
o Report quantitative improvement data to decision makers to demonstrate impact their 

investments are having in signal system management. 
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4.2 International Performance Measurement and Data Conference (Denver, CO) 

On June 2, 2015, Stan Young presented an overview of the SBIR III project at the 5th International 
Transportation Systems Performance Measurement and Data Conference held in Denver, Colorado.  This 
two day event brought together US and international experts to address developing, applying, and 
delivering performance measures to support transportation decisions. The conference was structured with 
plenary sessions, and breakout sessions in four thematic areas with respect to performance measures: 
Driving Decision, Tracking the Moves, Data Web, and State of the Practice.  

Stan Young hosted a discussion on ‘Monitoring and Assessing Arterial Traffic Performance’ as part of 
one of the Data Web breakout sessions. About 300 people attended the overall conference. The breakout 
session included 30 to 50 people. 

Two other presenters in this breakout session gave talks on ‘Florida’s Approach to Maximizing Advances 
in Data and Technology for Performance Management’ and ‘Reinventing the MPO Performance 
Monitoring Process in the Era of Interactive Data Visualizations’.  The titles of the co-presenters 
presentations were indicative of the interests of the majority of the attendees, most had broad management 
responsibilities to organize data and report on a variety of transportation related items ranging from 
pavement condition, to safety, to congestion. This audience makeup is in contrast to that of the recently 
completed George workshop in which about 70 highly focused traffic engineering professionals discussed 
detailed aspects of the proposed measures and the enabling technology. 

The presentation combined an overview of outsourced probe data fidelity assessed at the University of 
Maryland, and then used that as a bridge to begin to discuss the need for more standardized, broad-based 
arterial performance measures as explored in the SBIR III project, and enabled by re-identification data  
and High Resolution Probe data. The agenda is shown in Table 4.4. 

The following PPT file was used for the presentation: 

• https://app.box.com/s/c45fa22zr5l16rp49in98j1wxsqr2uvk 

This crowd was interested in understanding top level metrics and how / whether they appropriately reflect 
the condition of the arterial system as a whole.  For example, one question raised was whether the percent 
of arrivals on green and likelihood of split failures were too intersection specific and granular to use for 
broad-based performance reporting.  

Material related to creating a common language to facilitate communications between operations, 
planning (typically responsible for system level performance reporting), and traffic engineers was well 
received. The four main (or proposed) metrics of travel time, reliability, percent arrival on green, and split 
failures provided a concise and easily communicable performance criteria – not only with the public and 
elected officials, but also to streamline internal communications within DOTs, city agencies, and MPOs 
to better advance the mission of the agency. 

The proposed reliability measure for signal controlled arterials was discussed briefly in response to the 
question of the preferred reliability metric for arterials.   The slope formed from the line adjoining the 
15th and 85th percentile travel times was proposed. 

https://app.box.com/s/c45fa22zr5l16rp49in98j1wxsqr2uvk


Final Report 65 
Contract #: DTFH61-14-C-00035 

Lastly, the presentation emphasized the need to address signal controlled arterial performance measures 
distinct from the performance measures that have been adopted for freeways. The audience readily 
acknowledged this point as most have come to realize that freeway measures are not only difficult to 
apply to arterials, but are also inadequate in many respects to portray the true performance of the arterial 
management system. 
 

 
Table 4.4 Presentation Outline 

1. Traffic Data – Fidelity of Outsource Probe Data 
 a. Where we have been 
 b. Where we are now 
2. Completing the Picture with Arterial Performance Measures 
 a. Bringing in Volume Data - Statewide 
 b. Extending Real-Time to Arterial Networks 
 c. Arterial Management Systems 
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4.3 ITE Western District Annual Meeting (Las Vegas, NV) 
On July 20, 2015, Chris Day (Purdue University) presented a workshop at the ITE Western District 
Annual meeting in Las Vegas, Nevada. The workshop was included in the program for the meeting 
(Figure 4.5) and competed with three other technical sessions and other events that were scheduled in 
parallel. There were approximately 20 attendees.  

This workshop was presented as a technical podium session. The total time allotted for the workshop was 
90 minutes. About one hour was used to present material and the remaining 30 minutes were used for 
audience questions. Audience questions and discussion filled the entire 30 minutes. Table 4.5 shows a list 
of topics covered in the workshop. 
 

 

Figure 4.5 Listing of the Arterial Performance Management Workshop (Session 4D) in the ITE Western 
District program for Monday, July 20 events. 
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Table 4.5 Las Vegas, NV workshop topics 

1. Background and objectives 
2. Motivation for performance measurement 
3. State of the practice and system requirements 
4. Evaluation of arterial travel times 
 a. Introduction to probe data 
 b. How to visualize data (raw data and CFDs) 
 c. Example of a before/after scenario 
5. Signal performance measures 
 a. Brief recap of signal control concepts 
 b. Introduction to high resolution data 
 c. Example use of high resolution data for simple 

diagnostics 
6. Evaluation of Arterial Progression 
 a. Possible causes of progression deficiencies 
 b. Visualization of high resolution data using PCD 
 c. Corridor before/after example 
 d. Outcome assessment using probe vehicle data 
7. Evaluation of Capacity Utilization 
 a. Examples of under-saturated and oversaturated 

movements 
 b.  ROR and GOR as metric for identifying split failure 
 c. Use of ROR/GOR for before/after comparison 
 d. Agency-wide and longitudinal analysis 
8. Signal maintenance 
 a. Scope of problem 
 b. Classifying vehicle detector errors 
 c. Quantified relative impact of maintenance 
9. Recap, future directions, and questions 
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The following summarizes participant input and questions during the workshop. 

- The value of good equipment maintenance and validating public complaint calls resonated well 
with the audience. 

- A participant asked how the performance measures would appear with video detection rather than 
the typical INDOT loop detection used for the data shown in the presentation. The response was 
that, as long as the quality of the detection was the same, the performance measures should have 
the same appearance and that, essentially, the performance measures are intended to be 
independent from the specific detector technology. 

- A participant asked about INDOT’s use of four-channel count and presence loop amplifier cards. 
- A participant asked about some specific details about one vendor’s implementation of the high 

resolution data. Essentially, it was asked how to enable the data and how it could be harvested. In 
response, the necessary steps to set up data collection were explained. Essentially, the following 
was explained. The high resolution data is collected on the controller independently of any central 
system management software, but has to be enabled and retrieved. Central system management 
software can assist enabling and retrieving the data but is not required. It was pointed out that 
several vendors were now offering high resolution data collection in their controller products. 

- The question was asked about whether INDOT tended to focus its attention on peak or off peak 
operations. The response was that both were of interest, but in many cases it is the off-peaks 
where the spare capacity exists to address problems. 

- A participant commented on a slide that was presented in which the rate of split failures were 
shown by data to be higher during the midday than during the other times of day. This engineer’s 
experience was that midday was becoming the most difficult time of day to design signal timing 
for, because there was no dominant direction in the traffic flow. Changing activity patterns as the 
population ages were thought to be driving these trends. The participant asked if the researchers 
had seen other evidence of this phenomenon. The response was that the data that inspired the 
comment was probably the best example, and that the insights provided a helpful explanation for 
why there were more midday split failures than we otherwise might have expected. 

 

  



Final Report 69 
Contract #: DTFH61-14-C-00035 

4.4 NRITS Conference (Snowbird, UT) & FLTDS (Orlando, FL) 

On August 10, 2015, Stan Young presented ‘Monitoring and Assessing Arterial Traffic Performance’, 
which included an overview of the SBIR III project emphasis at the National Rural Intelligent 
Transportation System (NRITS) Conference in Snowbird, Utah.   This three day event brought together 
primarily US interests in rural ITS deployment and operations.  Total attendance was approximately 200. 

On August 19, 2015 Stan Young presented the same presentation at the Florida Transportation Data 
Symposium (FLTDS) in Orlando, Florida.  This three day event is sponsored by the Florida Department 
of Transportation, and attracts planning, traffic and operations personnel from all of Florida as well as 
their industry partners, and representatives from other states.  Total attendance was approximately 400.   

Both events were organized with plenary sessions followed by a topical breakout.  At the NRITS 
conference, Dr. Young presented in a breakout session along with Mark Taylor from Utah DOT.  Mark 
was instrumental in implementing a software reporting system for high-resolution controller data 
throughout Utah. At the FLTDS, Dr. Young presented in a session that included Anita Vandervalk from 
Cambridge Systematics and Michael Pack from University of Maryland Center for Advanced 
Transportation Technology. Anita presented on an arterial performance initiative in Los Angeles and 
Michael presented on the Regional Integrated Transportation Information System which has performance 
measures tools for a variety of freeway and arterial applications.   

At both events, Dr. Young presented and hosted a discussion on ‘Monitoring and Assessing Arterial 
Traffic Performance’ within the respective breakout sessions.   

Dr. Young’s presentation opened with an overview of outsourced probe data fidelity assessed at the 
University of Maryland both for freeways and arterials, and then bridged to a discussion on the need for 
more standardized, broad-based arterial performance measures as explored in the SBIR III project, 
enabled by re-identification data and High Resolution Probe data.  The presentation covered four 
proposed measures (travel time, travel time reliability, percent stopped on red, and intersection capacity), 
as well as the need for a common language to elevate the needs for optimized signal management within 
transportation, and to begin to establish a mature management system for arterials like those already in 
place for other infrastructure systems such as roads and bridges. The outline for the presentation is shown 
in Table 4.6. 

At the FLTDS, the presentation led to significant discussion.  Highlights included: 

• The Florida division of statistics recently obtained probe based data and has been informally 
evaluating it for accuracy.  Observations include an apparent over-reporting of speed in urban 
areas, and under-reporting on rural freeways.  Results on arterials are preliminary, but appear to 
agree with those presented. 

• Cambridge Systematics is assisting Maryland SHA on the implementation of SHRP products that 
emphasize the use of travel time reliability in design, and then measured in operation.  The 
concepts presented for arterials were discussed within the context of the SHRP implementation.  
Dr. Young also suggested inviting the community working on this implementation to the 
upcoming workshop in Maryland. 

• Several questions related to the clarification and more in-depth assessment of probe data were 
asked and discussed subsequent to the presentation.  One question solicited the critical issues for 
probe data to evolve to more accurate arterial travel times.  The response identified three items:  
(1) continued increased probe density, (2) evolving to  point-pair processing rather than the now 
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dominant point speed processing, (3) reporting more than just the central tendency in order to 
capture the complex travel time patterns.  However, at this time no one is sure what those other 
metrics are. 

• The director of the Office of Traffic Engineering and Operations for FDOT chaired the session.  
Discussion after the session indicated an eagerness to host a workshop in Florida similar to the 
one hosted in Georgia (and soon to be Maryland). 

• The audience was a mix of traffic engineers, ITS operations, and planning personnel.  It was the 
most balanced audience to date in Dr. Young’s opinion.  The audience stayed engaged, and 
receptive to the Arterial Management emphasis, and not just the technology discussion. 

• Gridsmart, a startup in this area, attended the conference and the session.  This is evidence of 
some commercial activity in the area. 

• Mohammed Hadi from Florida International University attended the presentation, and later 
engaged in questions about the statistical models of Bluetooth for use in traffic simulation tools 
such as VISSUM.   This is similar to the concept David Gibson proposed for an SBIR IIB 
initiative.   

At NRITS, the presentation complemented the material presented by Mark Taylor.  However, there were 
minimal questions and discussion. 

 
Table 4.6 Presentation Outline 

1. Traffic Data – Fidelity of Outsource Probe Data 
 a. Freeways with multiple vendors 
 b. Arterial data quality challenges 
2. Completing the Picture with Arterial Performance Measures 
 a. Re-identification and High-Res Controller data 
 b. Four key measures from these sources 
 c. Growing toward  Arterial Management Systems 
3. Announcement for volume based probe initiative 
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4.5 Maryland ITS (Hanover, MD) 
On November 10, 2015, Stan Young (Traffax), Darcy Bullock (Purdue University), and Chris Day 
(Purdue University) presented a workshop at the Maryland State Highway Administration facility in 
Hanover, MD. The event was hosted by the Intelligent Transportation Society of Maryland and was 
organized by Diederick VanDillen of Jacobs Engineering Group. There were approximately 60 attendees 
(Figure 4.6, Figure 4.7). 

This workshop was presented as a series of presentations in a 2-hour morning session and a 2.5-hour 
afternoon session. This was a conversational style workshop and there was active audience participation 
as well as time for individual discussions with the presenters throughout the day. The program opened 
with an introduction of the presenters by Diederick VanDillen and a short history of the work and 
Traffax-Purdue collaboration given by Peter Carnes (Traffax). Stan Young then presented an overview of 
the work being done under this SBIR III project followed by a summary of the use of re-identification and 
probe data in assessing arterial performance.  

After a break, Darcy Bullock presented background material on high resolution data and gave an 
overview with several brief examples of using high resolution data in tandem with probe data. After 
breaking for lunch, Chris Day presented material on integrating high resolution controller data and probe 
data using the example of signal progression. Darcy Bullock followed this up with some additional case 
study discussion including an example of capacity utilization and origin-destination analysis with probe 
data. Finally, Stan Young presented some closing words to wrap up the workshop. Table 4.7 shows the 
day’s agenda. 
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Figure 4.6 Stan Young speaking at the ITS Maryland workshop, November 10, 2015. 

 
Figure 4.7 Chris Day speaking at the ITS Maryland workshop, November 10, 2015. 
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Table 4.7 Hanover, MD workshop agenda 

1. Introductions (VanDillen) 
2. Opening Words (Carnes) 
3. “50,000 Foot View” (Young) 
 Break 
4. Vehicle Probe Data Collection & Performance Measures 

Methodology (Young) 
 a. Monitoring and Assessing Arterial Traffic Performance 
 b. Use of Outsourced Probe Data 
5. Integration of High Resolution Controller Data and Probe Data 

(Bullock) 
 a. Research perspective 
 b. Probe data applications to arterial networks 
 c. Hierarchy of signal system needs 
 d. Relationship to pooled fund study 
 e. High level view on use of high resolution data to identify 

where to improve operations 
 f. High level view on use of probe data to communicate to 

decision makers 
 g. Future vision – less modeling and more measuring 
 Lunch 
6. High Resolution Data Performance Measures to Support 

Active Traffic Management (Day) 
 a. Development of performance measures 
 b. How probe data tells us where problems are—but not 

necessarily the causes 
 c. Introduction to Purdue Coordination Diagram and how to 

use it 
 d. Offset optimization based on high resolution data 
 e. Outcome assessment of offset optimization with probe 

data 
 f. Monetization of user cost reductions—examples from a 

5-year longitudinal study 
 g. Implementation 
 Break 
7. Case Studies: Integration and Application of Performance 

Measures 
 a. Use of Red Occupancy Ratio / Green Occupancy Ratio to 

evaluate capacity utilization 
 b. Longitudinal comparison over wide temporally and 

spatially distributed data 
 c. Use of probe data to separate fact from fiction—example 

from I-65 diversion 
8. Closing Words (Young) 
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The following summarizes some of the key dialog with participants: 

- Participants asked about accuracy of probe data for arterials. The presentation showed that probe 
data from commercial sources (INRIX, HERE, TomTom) can be used to show proportional 
improvement for before and after studies but caution should be used for long term longitudinal 
studies.  As probe data improves, long term analysis may show worsening performance but this 
may only be reflecting improved probe data accuracy (i.e. addressing the positive speed bias 
during congestion). It was also stated that the validation of probe data through the I-95 Corridor 
Coalition will continue. 

- Regarding the evaluation of probe data accuracy by comparison with re-identification data, a 
participant asked how re-identification data was itself ground truth. The response was that the 
accuracy of re-identification travel times has been compared to travel times calculated using other 
sources such as toll tag data and was shown to have equivalent means and distributions. 

- Participants asked about the difference between Bluetooth and Wi-Fi detection. The response was 
that Wi-Fi provides significantly more detections (15% to 25% of the Traffax streams) but it is 
sensitive to the speed of traffic. As traffic speed increases, the probability of detection decreases. 
Use of Wi-Fi and Bluetooth data are complimentary and recommended to be used in tandem. 

- A participant commented that the spatial resolution of outsourced probe data needs to improve to 
provide similar performance as Bluetooth/WiFi data collection technology.  

- The notion that performance measures can be good indicators of what generates phone calls 
seemed to strongly capture audience interest. 

- A goal of statewide performance reporting was stated as an important place to get to with 
automated performance measures. 

- The automatic triggering of alarms based on the performance data was mentioned as a potential 
application of the data. For example, a potential trigger would be a certain number of 
performance measures exceeding a defined threshold over a given time period. 

- An audience member pointed out that it is important to understand the performance of a system 
throughout the year. For example, do “summer” timing plans still operate well during the fall? 
And so on. 

- An audience member mentioned that the workshop presented topics that were mostly vehicle 
focused and that it is important to include pedestrians in performance analysis. The response was 
that this was important, and while the workshop focused mainly on the vehicle mode, pedestrian-
focused performance measures have been previously demonstrated using high resolution data. 

- Several audience members pointed out the importance of having good context for stating user 
costs. There were numerous audience questions regarding the assumptions made to tabulate these 
costs. Additionally, there was audience interest in knowing whether similar information for the 
environmental costs could also be derived from the same analysis. 

- Some adaptive control systems can be designed to encompass the “coordination” and “timing” 
aspects of the signal system hierarchy of needs. However, that does not necessarily show the 
value added by those systems. Comparison of their performance against a true “do-nothing” 
scenario is a poor perspective to determine value added. Instead, the performance of those 
systems to better handle their intended use cases – more dynamic response to changing conditions 
– would be a better basis of evaluation. This would develop understanding of where advanced 
control systems can be used to their best advantage, rather than installing them where they may 
provide less return on investment. There is likely potential to use performance measures to help 
facilitate the FHWA systems engineering approach. 
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- Some discussion was focused on uses of both types of data in an integrated fashion. It was 
pointed out that high resolution controller data and probe data are both needed. High resolution 
data provides the tools to assess and address the signal timing issues at each intersection while re-
identification and probe data provide the user experience directly. Re-identification and probe 
data should be used to document before and after conditions so that travel time and user costs can 
be objectively quantified. 

- The message of “measure, not model” seemed to be well received. The key message was that 
tools presented during the workshop allow for direct measurement of many performance 
objectives. Models based on one day counts no longer need to be relied upon. Specific examples 
touched upon in the workshop include use of ROR/GOR for evaluating capacity utilization, or 
PCDs and re-identification / probe data travel times (particularly cumulative frequency diagrams 
showing their distribution) to evaluate progression. These fit into an overall hierarchy of needs 
for operating the system. 
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Chapter 5: Conclusions and Future Development 
The deliverables produced in this SBIR project explored the potential of recently developed traffic data 
sets, vehicle re-identification data and high-resolution data from signal controllers, to enable new methods 
of data-driven arterial management. This final report provided an overview of these data sources in 
Chapter 1, and summarized the content of the deliverables, with Chapter 2 giving a synopsis of the five 
reports and two case studies, Chapter 3 describing the implementation tools, including a data standard and 
software products of this project, and Chapter 4 summarizing the public forums conducted by the research 
team as part of this project. 

At the time this final report was written, the arterial management concepts being explored in this project 
have become increasingly relevant as agencies endeavor to integrate the new sources into their operations. 
Many agencies have invested in systems to measure travel times with vehicle re-identification, while 
private sector data vendors have introduced similar data products based on analysis of GPS-enabled 
mobile devices. Meanwhile, the six major manufacturers of traffic signal controllers in the US have all 
adopted the high-resolution data concept and are now offering this feature in at least one newer controller 
model. This chapter outlines the near and long term prospects of this technology in light of these 
developments. 

5.1 Vehicle Re-Identification Data and Emerging Data Sets 
Automated vehicle re-identification continues to be a useful traffic engineering tool. Bluetooth MAC 
address matching, which began to proliferate rapidly about 10 years ago, continues to be a valuable data 
source. In recent years it has been augmented with the addition of Wi-Fi network detection in response to 
evolving consumer preferences for wireless communication and, given that mobile wireless devices are 
unlikely to decline in popularity in the near future, the potential for automatic vehicle re-identification 
remains strong. 

This stream of technology could be considered the first generation of scalable automated vehicle re-
identification methods. At the time of writing, there are two potential candidates for what might become a 
second generation, one based in the private sector and the other in the public sector.  These new forms are 
presented here both as an indication of possible future data collection technology and to understand that 
the fundamental improvements introduced through re-identification technology, namely the ability to 
characterize performance using travel time distribution data, is not limited to re-identification technology.  
The fundamental enhancements demonstrated through application of travel time overlay plots and 
cumulative frequency distributions are equally valid when applied to the data from these emerging 
technologies. 

• Private sector data providers have been harvesting GPS location data from a variety of mobile 
devices for the past several years. This resource has been the basis of several new and evolving 
data products, the main one being minute-by-minute speeds for predefined roadway segments. 
The “raw” data on which those speeds are based can potentially provide a wealth of information. 
The GPS traces of individual devices, which are roughly equivalent to the data from floating car 
studies and does not require field infrastructure to obtain, can be processed to obtain travel times 
for individual paths . However, the data, which is gathered through cellular and other 
communication networks, has the disadvantage that agencies do not generally have direct access, 
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but must procure through some type of negotiated data subscription.  There are also privacy 
concerns related to traveler GPS information which have not been fully reconciled against 
potential benefits of the data. 

• The connected vehicle initiative is a federal initiative that includes investment in development of 
a shared data format, dedication of spectrum for communication, and investment in resources to 
build test beds to develop the technology. As of 2017, the auto industry had launched the first 
vehicle model to have the on-board equipment to broadcast basic safety messages (BSMs) and 
receive signal phase and timing information (SPaT) from roadside equipment.  In the public 
domain, the National Operations Center of Excellence has recently launched the “SPaT 
Challenge”, to encourage each state in the US to implement broadcasting of SPaT messages at 
approximately 20 intersections by the year 2020. The advantage of connected vehicle data is that 
agencies will have control of the data; the disadvantage is that a substantial infrastructure 
investment is needed and the same privacy concerns that have affected the use of broadly 
collected GPS information also apply. As a result of privacy concerns, the connective 
infrastructure has been designed such that individual vehicles will be traceable through an 
intersection, but they would not generally be traceable through a network. 

A substantial amount of work remains to be done before the potential of these data sets can be fully 
known and whether they will supplant or augment existing methods. At the time of writing, the sample 
rates achievable by either of these emerging methods remains much lower than prevailing Bluetooth and 
Wi-Fi re-identification sensing rates and the overall accuracy of metrics calculated from broadly-collected 
GPS data is unknown.  Connected vehicle data, if fully deployed will have excellent spatial and temporal 
resolution, but for privacy reasons, the analysis scope of the data will likely be initially limited to 
individual intersections.  Currently, research emanating from laboratory simulations of this data shows 
promise, but it is unclear whether real-world data will match laboratory results. In addition, the rate at 
which the technology will proliferate remains to be seen. 

In summary, even as new data collection technology continues to evolve and mature, the processes and 
methods introduced for arterial performance characterization using data from automated re-identification 
based sensing such as used with Bluetooth and WiFi are equally valid with new data streams.  The quality 
of flow metrics applied within this project, whether from high-resolution controller data or from re-
identification data, can be applied to other high-density data streams that provide sufficient vehicle 
position and trajectory data content.  If these new methods are successful, they may provide the means to 
cost effectively scale arterial performance management nationwide. 

 

5.2 High-Resolution Data and Automated Traffic Signal Performance Measures 
High-resolution data has attracted an increasing amount of attention in the past few years. In 2013, Utah 
DOT began to invest resources into developing a system for automatically downloading the data and 
providing the performance measures using a web-based system. The name “Automated Traffic Signal 
Performance Measures” (ATSPMs) was adopted for the overall concept, and the software for the website 
has been published as open-source code on FHWA’s Open Source Application Development Portal 
(OSADP) [18]. The efforts by Utah DOT were showcased by selection as a focus technology by the 
AASHTO Innovation Initiative [19]. 
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Figure 5.1 shows a view of the Utah DOT website for Automated Traffic Signal Performance Measures 
(ATSPMs). The upper portions of the page show a menu for selecting an intersection from a map or a list, 
and for filtering the intersections shown by region or available metrics. The user also specifies a particular 
metric, some parameters controlling it, and a date for analysis. The bottom of the page is where the 
metrics are displayed. This example shows PCDs for two approaches at a particular intersection. At the 
time of writing, several agencies had implemented this software for their own systems, while a number of 
vendors had developed similar software or had adapted the open-source code into their own systems. 

 

Figure 5.1 View of Utah DOT’s Automated Traffic Signal Performance Measures website 
(http://udottraffic.utah.gov/atspm/) 

http://udottraffic.utah.gov/atspm/
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As of 2017, ATSPMs had been selected as an implementation initiative by FHWA for its Every Day 
Counts program [20], which means that federal funding resources are being used to help agencies 
implement their own systems. Further, at the time of writing, the National Academies has an active 
project, NCHRP 03-122, which will develop guidance for those agencies to use in such implementations. 
Thus, ATSPMs will likely continue to see additional usage by agencies. Although the data concepts have 
been around for over a decade, widespread usage of ATSPMs is a nascent development. Agency 
experience with ATSPMs will likely influence the future direction of the technology.  As with re-
identification technology, the potential for wide-spread adoption of either connected vehicle, or high-
density GPS data may provide more cost effective means to scale ATSPMs without the needs for costly 
investment and maintenance of associated field hardware.  Also (similar to travel time distribution 
measures) the fundamental advancements enabled by use of high-resolution controllers will be applicable 
and valid independent of the source of the enabling field data. 

5.3 New Methods of Arterial System Management 
The research discussed in the present report is particularly timely in light of these developments. As more 
agencies begin adding data collection capabilities to their systems and begin developing data sets of their 
own similar to those described above, there will be a need to apply these in an arterial management 
program. To do so, there will be a need to integrate the data in such a way as to make decisions. The 
current tools, such as the ATSPM website discussed above, are able to provide the data for one particular 
location at a time. In other related tools, travel time information would typically be provided for a single 
corridor. The user must piece together the information to develop a view of the overall system. The 
methods of aggregation and the concepts of threshold and target setting of different facilities to develop 
an overall system score, as discussed in this research, would be applicable to the more granular data 
available in present systems. 

With current developments in mind, we can return to the vision presented at the beginning of this report 
(repeated in Figure 5.2 below), which shows the development of arterial management systems relative to 
pavement management systems. The current trends, which have made considerable progress even since 
the beginning of this research project, reflect the development of standard data collection methodologies. 
These are starting to congeal into a few methods that seem likely to achieve widespread acceptance. The 
present research introduces concepts relevant to the development of the upper three activities—
development of management systems and integration into engineering practices. With the elements of the 
system coming into place, the dashed line in Figure 5.2 could be realized in the next few years, 
revolutionizing arterial systems management through addition of data-driven means of intelligence 
gathering and decision making. 
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Figure 5.2 Evolution of pavement management systems and arterial management systems 

To reach that goal a look toward future needs and research is needed in order to continue to quickly 
evolve signal management to data driven performance practices.  The rapid adoption of high-resolution 
controller data and re-identification data, and more importantly the performance measures enabled by 
these technologies is beginning to fundamentally change the arterial signal management practice.  As this 
trend continues, the maturation of the process will require additional tools and changes in business 
practice.  Research using new data sources is already underway as previously described.  This data rich 
world will require a number of new tools and practices to efficiently manage.  

• Additional standards work such that data created from one vendor can be ported to many tools, 
ensuring longer data shelf life and more robust and cost efficient industry support. 

• Better data management and hosting practices.  Arterial data collection is quickly bridging the 
‘Big Data’ threshold in which the shear size of the data sets requires specialized knowledge for 
efficient analytics and visualization processing.  Appropriate business models for federated data 
sharing practices among and between public jurisdiction and private industry is required to scale 
these practices nationwide. 

• Business model innovation that allows jurisdictions, particularly smaller jurisdictions, to leverage 
these investments without the need for highly specialized staffing.  Business models and best 
practices for outsourcing not only of equipment, but also management practices and the data 
management inherent in these new data-driven approaches. 

The good news is that arterial signal management is not the only field to be rapidly evolving to data 
driven processes.  The internet of things and other technology revolutions are causing business 
disruptions in parallel industries that can provide case studies and lessons learned to inform the traffic 
industry.  From these lessons learned, the arterial management profession can learn how to overcome the 
challenges and leverage the opportunities presented in the ever evolving traffic data landscape moving 
forward.  
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