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ABSTRACT 

Stephen Lallana Hodson, PhD, Purdue University, December 2016.  Carbon Nanotube 
Thermal Interfaces and Related Applications.  Major Professor: Timothy S. Fisher, School 
of Mechanical Engineering. 
 

The development of thermal interface materials (TIMs) is necessitated by the 

temperature drop across interfacing materials arising from macro and microscopic 

irregularities of their surfaces that constricts heat through small contact regions as well as 

mismatches in their thermal properties.  Similar to other types of TIMs, CNT TIMs 

alleviate the thermal resistance across the interface by thermally bridging two materials 

together with cylindrical, high-aspect ratio, and nominally vertical conducting elements.  

Within the community of TIM engineers, the vision driving the development of CNT TIMs 

was born from measurements that revealed impressively high thermal conductivities of 

individual CNTs.  This vision was then projected to efforts focused on packing many 

individual CNTs on a single substrate that efficiently conduct heat in parallel and ultimately 

through many contact regions at CNT-to-substrate contacts.   

This thesis encompasses a comprehensive investigation of the viability of carbon 

nanotube based thermal interface materials (CNT TIMs) to efficiently conduct heat across 

two contacting materials.  The efforts in this work were initially devoted to engaging CNT 

TIMs with an opposing substrate using two bonding techniques.  Using palladium 

hexadecanethiolate, Pd(SC16H35)2 the CNT ends were bonded to an opposing substrate 

(one-sided interface) or opposing CNT array (two-sided interface) to enhance  



 xv 

 

contact conductance while maintaining a compliant joint.  The palladium weld is 

particularly attractive for its mechanical stability at high temperatures. The engagement of 

CNT TIMs with an opposing substrate was also achieved by inserting a solder foil between 

the CNT TIM and opposing substrate and subsequently raising the temperature of the 

interface above the eutectic point of the solder foil.  This bonding technique creates a strong 

weld that not only reduces the thermal resistance significantly but also minimizes the 

change in thermal resistance with an applied compressive load.  The thermal performance 

was further improved by infiltrating the CNT TIM with paraffin wax, which serves as an 

alternate pathway for heat conduction across the interface that ultimately reduces the bulk 

thermal resistance of the CNT TIM. 

For CNT TIMs synthesized at the Birck Nanotechnology Center at Purdue University, 

the thermal resistance was shown to scale linearly with their aggregate, as-grown height.  

Thus, the bulk thermal resistance can alternatively be tuned by adjusting the as-grown 

height.   The linear relationship between thermal resistance and CNT TIM height provides 

a simple and efficient methodology to estimate the contact resistance and effective thermal 

conductivity of CNT TIMs.  In this work, the contact resistance and effective thermal 

conductivity were estimated using two measurement techniques: (i) one-dimensional, 

steady-state reference bar and (ii) photoacoustic technique.  A discrepancy in the estimated 

contact resistance exists between the two measurement techniques, which is due to the 

difficulty in measuring the true contact area.  In contrast, the effective thermal 

conductivities estimated from both measurement techniques moderately agreed and were 

estimated to be on the order of O(1 W/mK). 
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In Chapter 7, the thermomechanical behavior of CNT TIMs was investigated to assess 

their thermal performance under compression.  Companion CNT TIMs were compressed 

by a flat-punch nanoindenter to assess mechanical properties.  Photoacoustic 

measurements of CNT TIMs with as-grown heights ranging from 3 to 50 µm indicated that 

shorter CNTs exhibit lower thermal resistance than their taller counterparts.  In addition to 

the contact resistance, the effective thermal conductivity was found to depend on 

compressive stress.  Clear buckling shoulders are observed in the nanoindentation 

measurements within the compressive stress ranges corresponding to changes in thermal 

resistance, indicating that the thermal performance is coupled to the mechanical response. 

We postulate that the observed change in effective thermal conductivity of the CNT TIM 

with compressive stress counteracts the change in contact area of the CNT TIM with the 

opposing substrate.  Additionally, the roles of defects and CNT-to-CNT contacts were 

qualitatively considered in an underlying microstructural framework that dictates the 

thermomechanical behavior of CNT TIMs. 

In collaboration with Sandia National Laboratories, this thesis also includes auxiliary 

chapters that investigate the thermal performance of CNT TIMs in abnormal environments 

such as those in space applications in which components are subjected to gamma-ray 

irradiation as well those in thermoelectric generators that operate at elevated temperatures.  

The former investigation included subjecting CNT TIMs to gamma irradiation doses of 50 

and 100 Mrad.  The latter investigation included mechanical and thermal cycling of the 

CNT TIMs at interface temperatures up to 450°C.  For each application, the thermal 

performance of CNT TIMs was determined to be stable in the abnormal environments 
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The final chapter is in collaboration with Sandia National Laboratories and focuses on 

the development of an apparatus to measure the thermal conductivity of insulation 

materials critical for the operation of molten salt batteries.  Molten salt batteries are 

particularly useful power sources for radar and guidance systems in military applications 

such as guided missiles, ordinance, and other weapons.  Molten salt batteries are activated 

by raising the temperature of the electrolyte above its melting temperature using 

pyrotechnic heat pellets.  The battery will remain active as long as the electrolyte is molten.  

As a result, the thermal processes within the components and interactions between them 

are critical to the overall performance of molten salt batteries.  A molten salt battery is 

typically thermally insulated using wrappable and board-like insulation materials such as 

Fiberfrax wrap, Fiberfrax board, and Min-K insulation.  The Fiberfrax board and Min-K 

insulation are composites of alumino-silicate and fumed silica-titania, respectively.  In 

Chapter 9, the thermal conductivities of the Fiberfrax board and Min-K insulation were 

measured under different uniaxial compressive states and ambient environments.  The 

thermal conductivity of the mixed separator pellets (LiCl/MgO/KCl) was also measured 

along with its contact resistances with interfacing members.  To measure the thermal 

quantities, a steady-state reference bar with thermocouples was employed.  The resulting 

values serve as inputs to a thermal model that aims to predict lifetimes of the batteries. 

  



 1 

 

1.    INTRODUCTION  

1.1 Motivation 

Thermal contact conductance or thermal contact resistance between contacting 

members has been formally studied over the past century.  The first publications on thermal 

contact conductance were on polished stainless steel surfaces at cryogenic temperatures in 

the 1930s.  When the world was spun into turmoil during the second World War, studies 

on thermal contact conductance transitioned to military applications such as aircraft and 

missiles, which focused on thermal transport between metallic components.  In the advent 

of the nuclear age, thermal engineers became interested in the effects of high temperature, 

high contact pressure, and high gas temperature on thermal contact resistance for the design 

of nuclear reactors.  As the space race with the former Soviet Union became a mission 

statement for the nation, interstitial metals such as indium, lead, and tin were studied as 

thermal interface materials (TIMs) for the modular components in spacecraft and satellites 

in vacuum.  

Presently, thermal contact resistance continues to play a significant role in the 

development small-scale devices for a diverse group of applications in which heat is 

generated from an electronic device.  As the size of electronic devices scales down and 

power densities increase, the demand for innovative cooling solutions becomes more 

imperative.  The prototypical architecture for electronic devices generally consists of a  
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heat generating component such as a microprocessor and a heat spreader in tandem with a 

heat sink that transfers the heat to the ambient environment.  Due to the modular assembly 

of the device architecture, thermal resistances at the interfaces of the components can 

significantly contribute to the total thermal budget. This thermal resistance, or thermal 

interface resistance is a consequence of the constriction of heat flow through small contact 

regions between adjoining components. When a TIM is inserted between the components, 

this thermal resistance is comprised of the thermal contact resistance at the adjoining 

interfaces as well as the bulk resistance of the TIM. 

 

1.2 Contributions and Organization of Thesis 

Chapter 2 contains a comprehensive literature review of thermal interface materials, 

carbon nanotube synthesis, carbon nanotube thermal interface materials (CNT TIMs), and 

mechanical deformation of carbon nanotubes. 

Chapter 3 provides an overview of the various techniques used to assess the thermal 

performance of CNT TIMs (photoacoustic and one-dimensional steady-state reference bar).  

A comparison between the two measurement techniques is included.  This chapter also 

includes an overview of the palladium thiolate and solder bonding techniques employed in 

this work.     

Chapter 4 presents an innovative bonding technique that involves the use of a metal-

organic precursor as the bonding agent.  The metal-organic precursor is palladium (Pd) 

thiolate that was previously developed by T. Bhuvana in her work with Dr. G. U. Kulkarni.  

After thermolysis, a strong Pd weld is created at the CNT/Ag foil interface that shows 
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promising thermal performance and possibly indicates a transition from a traditional van 

der Waals type bond for unbonded interfaces to a more covalent-like bond.  Overall, this 

bonding technique provides a promising method to improve the thermal performance of 

CNT TIMs at temperatures up to 250°C.  The work on this topic was published in the 

Proceedings of the ASME InterPACK Conference in 2009 and later in the Journal of 

Electronic Packaging in June 2011.   

Chapter 5 assesses the performance of CNT TIMs for space applications in 

collaboration with Sandia National Laboratories.  The CNT TIMs were irradiated with 

different doses of gamma rays.  Raman spectroscopy and PA measurements were 

conducted before and after irradiation.  This work was initially published in the 

Proceedings of the ASME International Mechanical Engineering Congress & Exposition 

in 2013 and a more comprehensive overview was published in the International Journal of 

Micro-Nano Scale Transport in 2014.   

Chapter 6 focuses on two-sided CNT TIMs grown on Cu foil that were measured using 

the 1D steady state reference bar technique at Raytheon.  This chapter is in conjunction 

with the Nano Thermal Interface Materials (nTIM) project in collaboration with Raytheon 

and Georgia Tech.  These samples were first solder-bonded and subsequently infiltrated 

with paraffin wax and discussion is provided regarding the mechanisms for improved 

thermal performance (effective thermal conductivity and contact resistance).  The vital role 

of wettability of solder and paraffin wax to the CNTs is considered to be paramount to 

improving thermal performance.  The work related to CNT arrays enhanced with paraffin 

wax was published in Proceedings of ASME Summer Heat Transfer Conference in 2008.  

The work in collaboration with Raytheon on solder bonded TIMs was published in the 
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Proceedings of the ASME 2011 Pacific Rim Technical Conference and Exhibition on 

Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS and 

won best paper award at the InterPACK 2011 conference.  A manuscript related to this 

project focuses on quantifying the effective thermal conductivity and contact resistances.   

Chapter 7 focuses on the thermomechanical performance of CNT TIMs within a 

pressure range of 20 and 145 kPa.  The thermal performance was evaluated using the PA 

technique while nanoindentation tests, courtesy of Dr. Matthew R. Maschmann at the 

University of Missouri, served as a supplement to the PA measurements to assess the 

mechanical performance.  The contributions of the bulk and contact resistances are 

extracted from the PA measurements and the results suggest that CNT TIMs are limited 

not only by the amount of contact they make with opposing substrates but also by the 

aggregate changes in their microstructure in response to uniaxial compression normal to 

the growth direction.  The role of CNT-to-CNT contacts and defects on the bulk thermal 

resistance are highlighted thermal transport mechanisms that adversely affect the effective 

thermal conductivity of CNT TIMs.  A manuscript has been submitted for internal review. 

Chapters 8 provides an overview of efforts devoted to assess the thermal performance 

of CNT TIM and CNT/Petal TIMs at elevated temperatures (up to 450°C).  At 450°C, the 

CNT and CNT/petal TIMs outperform a bare interface as well as a bare Cu foil.  

Additionally, both TIMs exhibited adequate mechanically cyclic stability at 450°C. A 

hysteresis in thermal resistance during the temperature cycle was also observed.  Post-

mortem SEM images revealed that the CNT TIMs were significantly compacted and 

plastically deformed while the aggregate structure of the CNT/petal TIMs remained 

relatively unchanged.  For the latter, post-mortem SEM images revealed that the petals on 
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the surface of the TIM flattened, indicating that upon sufficient pressure and temperature 

conditions, the surface of the CNT/petal TIM began to conform to the stainless steel heat 

flux meter.  This observation suggests that sufficient pressure and temperature conditions 

are necessary for CNT/petal TIMs to significantly outperform CNT TIMs. 

Chapter 9 provides an overview of the work conducted at Sandia National Laboratories 

in Albuquerque, NM on molten salt battery materials.  A steady-state reference bar 

technique was employed to measure the thermal conductivities of the separator pellets 

(LiCl/MgO/KCl) and thermally insulating materials (Fiberfrax board and Min-K). The 

separator thermal conductivity was measured to be approximately 2.30 W/mK and constant 

within the pressure range of 400 and 2250 kPa.  The effective thermal conductivity of the 

Fiberfrax board and Min-K insulation materials were measured to be on the order of O(0.1) 

W/mK and O(0.01) W/mK, respectively, at 350 and 500 psi.  This work was published in 

the 47th Power Conference Proceedings Conference in 2016. 
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2.    LITERATURE REVIEW 

 

2.1 Thermal Interface Materials 

Thermal pads, thermal greases, and metallic foils are commonly inserted between the 

components to alleviate the constriction of heat flow by conforming to the surface 

roughness of the components and filling the gaps between them, thus creating more contact 

points and paths for heat transport [1].  Moreover, many applications require TIMs to 

accommodate a variety of stress conditions associated with either external vibrations or 

mismatches in the coefficient of thermal expansion between the components. However, a 

given TIM may be best suited for only a specific regime in the mechanical and thermal 

parameter space associated with an application.  For example, thermal pads provide high 

mechanical conformability and effectively dampen low stress vibrations, yet possess low 

thermal conductivities on the order of 1 W/mK [2].  Thermal greases are commonly chosen 

for their ability to accommodate mechanical stresses during operation. Non-conductive 

thermal greases consist of a matrix of electrically insulating polymers and metal oxide filler 

materials with thermal conductivities less than 0.5 W/mK [3].  To increase the thermal 

conductivity to approximately 2 W/mK, metallic particles such as silver are substituted as 

the filler material [3]. When heated above their eutectic point, solder foils conform to 

surface asperities and offer the highest thermal performance with  
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thermal conductivities above 20 W/mK [4].  However, when solidified, solder foils suffer 

from their inability to withstand mechanical stresses due to their rigidity.   

 

2.2 CNT Growth by Microwave Plasma Chemical Vapor Deposition 

CNTs can be synthesized by many different methods including electrolysis, pyrolysis, 

laser ablation, arc discharge, thermal chemical vapor deposition (CVD) and microwave 

plasma chemical vapor deposition (MPCVD).  In this work, CNTs were fabricated using 

the MPCVD method and typically exhibit a bamboo-like structure as seen in past studies 

[5].  The energetic electrons created by the plasma can be used to hasten the dissociation 

of feed gases (H2, CH4 in this work) and produce large quantities of free radical, carbon 

species that are necessary for CNT nucleation.  In the work of Qin et al. [6], it was proposed 

that one role of the plasma was to enhance the diffusion of carbon species into catalyst 

particles.  In more detail, Bower et al. [7] proposed a process for the nucleation and growth 

of CNTs in a plasma reactor.  Initially starting with a thin catalyst layer (Co) and the 

annealing process, the surface forms semi-spherical islands, which is driven by surface 

tension and the lowering of total surface energies.  These islands serve as CNT nucleation 

and growth sites that can dictate tube diameter.  As carbon species interact with the islands 

via dissolution, saturation, and precipitation [7], CNTs nucleate and grow as carbon atoms 

begin self-assemble. 

The remarkable mechanical and thermal properties of individual CNTs are a 

consequence of their high aspect ratio, cylindrical shape that is sewn together by covalently 

bonded carbon atoms.  The elastic modulus of an individual CNT has been measured to be 

on the order of terapascals [8, 9] while the thermal conductivity of an individual CNT has 
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been measured to be as high as 3000 W/mK [10, 11], making them strong candidates to 

strengthen composite materials and efficiently conduct thermal energy.  In order to exploit 

these extraordinary properties for practical applications, CNTs are often mass-produced on 

a single substrate to match the length scales of larger components and devices.  A 

remarkable feature of the aggregate structure is the formation of billions of neighboring 

high aspect ratio CNTs that are moderately parallel and vertical with a tortuous 

microstructure.  The underlying framework that governs the as-grown structure balances 

the strain energy due to ambient vibrations and mechanical constraints [12] with intra- and 

inter-tube van der Waals interactions [12-15]. 

 

2.3 Mechanical Deformation of CNT TIMs 

The same mechanisms responsible for the microstructure of as-grown CNT TIMs also 

govern the state of its aggregate structure when subjected to external mechanical loading.  

In response to a compressive stress, the concentric shells of individual multi-walled CNTs 

bend and form buckles, ripples, or wrinkles in a coordinated manner [9, 14 - 18].  During 

this coordination, the intra-tube spacing between shells of the CNTs is predominantly 

preserved as van der Waals interactions oppose the compressive stresses induced from 

bending [9, 18].  As a result, the buckles, ripples, or wrinkles are most pronounced at the 

outermost tube and propagate to a lesser degree to the inner shells of the CNTs [9, 18].  

The compressive response of CNT TIMs to uniaxial compression similarly incorporates 

the balance of bending stresses with van der Waals interactions, except at a much larger 

scale at which the entire structure collectively deforms in unison. 
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An analogy to the deformation of open-cell foams has been employed in prior research to 

describe the compressive behavior of CNT TIMs, with the stress-strain evolution divided 

into three distinct regions that represent linear elastic deformation, the onset of coordinated 

buckling, and rapid densification of the CNT TIM [12-14, 19-25]. 

 

2.4 Carbon Nanotube Thermal Interface Materials 

Because of their perceived high thermal conductivity, mechanical compliance, and 

stability over a substantially large temperature range, CNTs have been extensively studied 

as thermally conductive elements, including as alternatives to current state-of-the-art TIMs 

[26-41].  Depending on the synthesis method, CNT TIMs are comprised of high aspect 

ratio, vertically oriented nanotubes with heights ranging orders of magnitude from 1 µm to 

1 mm and diameters from 10 to 100 nm. The efficacy of a CNT TIMs is predicated on the 

ability of the nanotube constituents to collectively act as a cohesive network of parallel 

heat conductors.  The contact area of a typical CNT TIM is dictated by the van der Waal 

forces between the nanotubes and the opposing substrate as well as the mechanical 

properties of the constituent nanotubes and their interactions as a collective network. 

By modifying wool theory developed by van Wyk [42] to study the mechanical 

compression of dense fibrous masses to CNT TIMs, Cola et al. [41] predicted that the real 

area of contact that a CNT TIM makes with the opposing substrate relative to the nominal 

area is on the order of 0.1% for a dry, unbonded state with characteristic CNT to substrate 

contact sizes between 1 to 5 nm.  Depending on the synthesis method and growth rate of 

vertically oriented CNT TIMs, density gradients and height variations of nanotubes 

represent other morphological features that can affect contact area.  The amount of contact 
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area that the CNT TIM makes with the opposing substrate coupled with their mismatches 

in vibrational modes, density of states and dimensionality [40] between the nanotubes and 

opposing substrate have commonly been highlighted as significant contributors to the 

thermal contact resistance. Panzer et al. [27] performed thermoreflectance measurements 

on palladium-coated vertically oriented single-walled CNTs and determined that a small 

fraction of CNTs contribute to heat capacity (and ultimately heat conduction) due to such 

morphological features and material properties.  As a result, developments in innovative 

bonding and semi-bonding techniques have been employed to counteract the poor CNT tip 

to opposing substrate contact.  Notably, thermal contact resistances as low as 1.3 mm2 K/W 

[31] and 2 mm2 K/W [35] have been measured by thermoreflectance and photoacoustic 

methods for bonded and semi-bonded TIMs, respectively. 

The idea of employing CNTs as a TIM was logically proposed after experiments 

yielded and molecular dynamics simulations predicted impressively high thermal 

conductivities for individual single- or multiwalled CNTs (3000 W/mK) [10, 11].  

Vertically oriented CNT TIMs can be synthesized using many different methods yielding 

CNTs of varying alignment, density, height, and quality (defectiveness), and they can be 

thermally characterized by myriad techniques such as photoacoustic [32 - 34], 

photothermoelectric [43 - 46], thermoreflectance [27], laser flash [47 - 51], 3ω [52, 53], 

steady state reference bar [54 - 56], and infrared thermometry [57].  This state of affairs 

involving different synthesis and measurement techniques has likely been the primary 

cause of the wide range of reported values for the aggregate or effective CNT TIM thermal 

conductivity, 0.1 – 265 W/mK [27, 32 - 34, 43 - 57].  This range falls well below the 

measurements and predictions on the thermal conductivity of individual CNTs [10, 11], 
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with CNT TIMs producing either thermal insulating behavior of randomly oriented CNT 

mats [56] or a network of vertically oriented parallel conductors that transport heat as well 

as metals.  Consequently, the CNT TIM can either facilitate or impede thermal transport. 

Heat conduction in CNT TIMs is fundamentally complex and difficult to 

experimentally resolve the transport mechanisms with fidelity.  The complexities are 

embedded in extracting the phonon transport mechanisms that affect heat conduction 

within individual CNTs, the interactions between adjacent CNTs, and the transmission of 

heat carriers between CNTs and dissimilar materials.  The structural condition of the CNTs 

(defects and quality) can dictate the thermal conductivity of individual CNTs [58].  The 

effective thermal conductivity is predicated upon the density of defects in the nanotube 

walls that serve as phonon scattering sites, the inter-tube spacing and morphology that 

dictate inter-tube coupling, and the distribution of nanotube heights that control the 

quantity of nanotubes participating in heat conduction.  While the structural properties of 

individual CNTs and the aggregate morphology of the ensemble can affect the heat 

transport properties of CNT TIMs, the manner in which the effective thermal conductivity 

is measured or estimated can also lead to wide discrepancies in reported values.  The 

effective thermal conductivity can be measured or estimated by the aforementioned 

techniques, which are distinguished by the manner in which the response of the CNT 

sample to heating is directly measured.  The photothermal and thermoreflectance 

techniques measure the thermal response of the CNT sample using optical methods while 

the photoacoustic method uses a pressure transducer to measure the acoustic response of a 

gas medium that is thermodynamically related to heat conduction in the CNT sample.  The 

well-established 3ω technique measures the change in electrical resistance of a metallic 
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heater in contact with the CNT sample that is related to the temperature rise in the heaters.  

In order to estimate parameters such as the effective thermal conductivity, these techniques 

employ regression approaches in which the estimated values depend significantly on the 

sensitivity of the response variable to the estimated parameter within the framework of the 

thermal model.  Another commonly used measurement technique is the laser flash method 

in which the thermal diffusivity of the CNT sample is directly measured and the effective 

thermal conductivity of the CNT layer can be estimated from the product of the thermal 

diffusivity, α, and volumetric thermal capacitance, ρcp.  The associated estimate of the 

effective thermal conductivity is depends significantly on the choices for the specific heat 

capacity, cp, and mass density, ρ.  The former is typically assumed to be that of graphite 

(approx. 700 J/kg K) while the latter has been estimated to either be on the order of O(100 

kg/m3) [47] or O(1000 kg/m3) [48 - 50].  This wide range in mass densities translates to a 

correspondingly wide range (1 to 60 W/mK) in reported effective thermal conductivities.  

In contrast to the foregoing transient techniques, steady-state methods can directly measure 

temperature gradients within mediums to estimate thermal conductivity as well as 

temperature discontinuities at interfaces to infer thermal contact resistances.  The primary 

advantage of such steady-state techniques within the framework of estimating effective 

thermal conductivity is that knowledge of the density and specific heat capacity is not 

required.  Therefore, the effective thermal conductivity can be estimated in a more direct 

manner that enables better comparisons between values reported in literature.   Marconnet 

et al. [57] used steady-state, high-resolution infrared microscopy to visualize the 

temperature gradient in MWCNT arrays and measured effective thermal conductivities 

ranging from 0.3 to 3.6 W/mK, attributing higher effective conductivities to denser packing 
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fractions.  By employing a steady-state method similar to the ASTM standard one-

dimensional reference bar technique, Pal et al. [55] estimated the effective thermal 

conductivity of their MWCNTs and thermal contact resistances to be 0.8 W/mK and 150 

mm2 K/W, respectively.  In their work, the effective thermal conductivity and thermal 

contact resistance were inferred from the linear relationship between the total thermal 

resistances (bulk and contact) of three MWCNT TIMs and their respective heights (14, 40, 

and 72 µm). 
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3.   EXPERIMENTAL SETUP 

 

3.1 Photoacoustic Characterization of Multi-Layered Structures 

 

3.1.1 Introduction 

The photoacoustic effect (PA) in solids was first described by Parker in 1973, and a 

more general quantitative model was developed by Rosencwaig and Gersho three years 

later.  While spectroscopic techniques based on the PA effect were initially used to measure 

optical absorption coefficients of solids, extensions of the PA theory to characterize multi-

layer structures have been developed [59-66].  The technique has been used to successfully 

measure not only the thermal conductivity of thin films [59-66] but also the thermal 

resistance of both bonded and non-bonded interfaces [32-39]. 

 

3.1.2 Theory 

A typical multi-layered structure that can be characterized is shown in Figure 3.1.  The 

structure consists of a backing layer 0 and N successive layers.  An additional gas medium 

(air or helium), denoted as layer N + 1, is in contact with layer N (thin titanium layer).  The 

backing layer 0 and gas medium (N+1) are assumed to be thermally thick.   
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The transient temperature distribution in the multi-layer structure, which is induced by 

periodic laser heating, can be derived by solving a set of one-dimensional transient heat 

conduction equations.  A detailed derivation is presented in Ref. 59. 

 

Figure 3.1.  Schematic of typical CNT TIM thermally characterized by PA technique. 
 
In summary, the governing equation for thermal transport in each layer is defined as  

  (3.1) 

where θi = Ti – Tamb is the modified temperature in layer i, Tamb is the ambient temperature, 

βi is the optical absorption coefficient, Io is the incident laser flux, li is the is the distance 

from the interface between the top layer and gas medium, ω is the modulation frequency, 

and t is time.  The solution to the governing equations consists of three components: a 

transient, steady dc and steady ac.  Since the lock-in amplifier used in a PA measurement 

only detects the periodic signal, only the steady ac component is usable.  The steady ac 

component in each layer has a complex temperature distribution defined as 

 ( ) ( ) ( )
,

i i i i i ix l x l x l j t
i s i i iAe B e E e eσ σ β ωθ − − − − = + − 
  (3.2) 

where σi is defined at (1+j)ai with j is imaginary and ai is the thermal diffusion coefficient 

representative of the thermal diffusion length, which is dependent upon the thermal 
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diffusivity of the layer as well as the modulation frequency.  The coefficients Ai and Bi are 

determined from two boundary conditions at the interface of two layers that require the 

heat flux to be constant across the interface with an associated temperature drop.  The 

temperature in the gas layer is thermodynamically related to the pressure oscillation 

induced by both a thermal and mechanical piston, which is ultimately sensed by a 

microphone in the form of a phase shift and amplitude.  The periodic temperature in the 

gas layer is defined as 

 1
N 1, 1

N j t
s NB e eσ ωθ +−

+ +=  (3.3) 

According to the theory of Hu et al. [59], the phase shift of the PA signal is 

, and the amplitude of the PA signal is

, where Po and To are the ambient pressure and temperature, respectively. 

 

3.1.3 Experimental Setup 

The PA apparatus that has been described in detail in previous work [32, 59] was used 

to characterize thermal contact resistances in Chapters 4, 5, and 7.  The experimental setup 

is illustrated schematically in Figure 3.2 and images of the actual apparatus are shown in 

Figure 3.3 and 3.4.  A new cell was fabricated from an acrylic block as the previous cell 

was in poor condition after numerous runs during the work of Cola at high pressures and 

temperatures.  The new cell consists of a more robust gas feed and microphone housing.  

Additionally, the cell base allows for more consistent alignment of sample with the laser 

beam.  For a multilayer structure, the PA technique can resolve both bulk and component 

resistances in which the measured resistance in Figure 3.1 is defined as 

Arg BN +1( )− π 4 1 1 1[(1 ) / 2 ]N o N N oAbs B P l a Tρ + + +− ⋅
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 ( ) comp
meas bulk contact Ag foil CNT TIM CNT TIM Ag foil

eff

h
R P R R R R

k − −= + = + +  (3.4) 

where Rbulk is the bulk resistance of the CNT TIM defined by the ratio of the compressed 

CNT TIM height, hcomp, to the effective thermal conductivity of the CNT TIM, keff.  Rcontact 

is the combined contact resistances of the CNT TIM with the Ag foil and Si growth 

substrate.  The PA technique can resolve the thermal diffusivity or thermal conductivity of 

layers of interest, however, meticulous care must be taken when accounting for the contact 

resistance between the layer (Ti) that absorbs the laser irradiation and the layer of interest 

[65].  For measuring the total thermal resistance between the Ag foil and bottom substrate, 

as done throughout this work, the PA technique can resolve resistance values between 

approximately 0.1 and 100 mm2 K/W [32].  The lower and upper measurement limits are 

determined by the thermal penetration depth within the layer of interest in which the layer 

is substantially thermally thin or thick, respectively. 

  

Figure 3.2.  Schematic of PA apparatus. 
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Figure 3.3.  Image of PA apparatus showing the laser, cell, helium tank, lock-in amplifier, 
function generator and conditioning amplifier. 
 

 

Figure 3.4.  Photograph of PA cell showing test stage, microphone and gas feed. 
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In a given PA measurement, the sample surface is surrounded by a sealed acoustic cell 

that is pressurized with He gas in a pressure range from 20 to 145 kPa.  The PA 

measurement can also be performed in air at standard temperature and pressure.  The 

sample is then periodically heated over a range of frequencies by a 350 mW, modulated 

laser source.  Using the acoustic signal in conjunction with the thermal model above, 

thermal interface resistances and thermal diffusivities of specific layers can be determined 

using a least-squares fitting method. 

The measurement uncertainty arises from the capabilities of the microphone to sense 

the amplitude and phase shift signals, which are typically on the order of ± 1.0° [32].    As 

previously reported by Cola et al. [32], the uncertainties due to ‘known’ parameters and 

laser drift are negligible in comparison to the measured phase of the reference sample from 

which the ± 1.0° variation manifests itself.  The uncertainty in measuring the thermal 

interface resistance of CNT TIMs shown in Figure 3.2 is lower, approximately 80% less 

than the reference sample, because they possess a higher thermal resistance and produce a 

stronger signal [32].  The uncertainty associated with estimation of thermal quantities such 

as thermal conductivity and thermal resistance is evaluated by determining range of 

property values that yield amplitude or phase shift values within the measurement 

uncertainty [65].   
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3.1.4 Measurement of the Thermal Conductivity of SiO2 

To validate the accuracy of the new PA cell, the thermal conductivity of a thermally 

grown, 0.5 μm thick SiO2 layer on Si was measured.  An 80 nm Ti absorption layer was 

deposited atop the SiO2 layer.  The sample was tested at a pressure of 5 psi.  The phase 

shift versus modulation frequency data is shown in Figure 3.5.  The phase shift was used 

as it produces a steadier signal than the amplitude and is indicative of the PA measurements 

in this work.  In a similar manner to Hu et al. [59], a wide range of frequencies was used 

to probe the SiO2 layer (1 – 6 kHz).  While a maximum frequency of 20 kHz was used in 

the work of Hu et al. [59], the current laser used in this work was to oscillate at a maximum 

frequency of 6 kHz.  Nonetheless, the maximum frequency is well above the range of 

frequencies (300 – 1000 Hz) appropriate for CNT TIMs measured in this work.  Using an 

updated algorithm that simplifies choosing initial guesses, a thermal conductivity of the 

SiO2 film was measured to be 1.49 ± 0.17 W/mK.  This result is in close agreement with 

the work of Hu et al. [59]. 
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Figure 3.5.  Experimental and fitted phase shift data for 0.5 μm thick, thermally grown 
SiO2 layer on Si. 
 

3.2.  One-Dimensional Reference Bar Measurement with in situ Solder Bonding and 
Paraffin Wax Infiltration (supporting documentation for Chapter 6) 

 

3.2.1 Theory 

To measure thermal contact resistance, the technique uses a one-dimensional steady-

state (1DSS) heat conduction model to determine the heat flux through two heat flux meters 

of known thermal conductivity via equally spaced thermocouples or infrared thermography 

to measure temperature.  At the junction between the heat flux meters, the heat flux is 

constant while a temperature drop exists due to the thermal contact resistance.  By 

extrapolating the temperature profile to the interface, the thermal resistance between the 

two heat flux meters can be determined from the ratio of the temperature drop to that of 

the heat flux.  Uncertainties in determining the thermal resistance arise from thermocouple 
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location, temperature measurement, regression analysis, and alignment of the heat flux 

meters. 

 

3.2.2 Experimental Setup 

The apparatus used in this work (Chapter 6) consisted of a precision linear guide with 

low-friction slide features and ball-in-socket joints to account for heat flux meter 

misalignment and surface nonplanarity [66].  The heat flux meters were 1 cm2, 38 cm long 

copper-molybdenum (CuMo) bars (15/18 composition).  Additionally, insulating 

thermoplastic housing was used to minimize heat loss to less than 10% and the 

thermocouples were calibrated with an uncertainty of 0.03°C [66].  The measurement 

uncertainty was expected to be 15% for thermal resistances as low as 4 mm2 K/W with 

significant contributions from the uncertainty in the locations of the thermocouples along 

the length of the heat flux meters and tolerances associated with the diametric clearance of 

the thermocouple bores [66].  The measurement uncertainty is also dependent on thermal 

resistance because the accuracy to which the thermocouples are calibrated (0.03°C) has 

greater influence at smaller temperature differences measured at the interface (see Figure 

3.6 below).  Therefore, the actual measurement uncertainties for thermal resistances greater 

and less than 8 mm2 K/W are below and above 15%, respectively.  The measurement 

uncertainty for low thermal resistances can be improved by increasing the heat rate across 

the interface and by choosing an appropriate heat flux meter.  Further details on the 

measurement technique and apparatus are in Reference 66. 
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Figure 3.6.  Dependence of measurement uncertainty on thermal resistance for 1DSS 
reference bar technique. 
 

Prior to solder bonding, the tips of the CNT TIMs were metallized with 150 nm of 

nickel and 250 nm of gold to promote adhesion of the CNT tips to the solder foil.  In the 

test fixture, thin solder foils (Indalloy Sn63, 121, 265) of 0.051 mm thickness bonded the 

CNT TIMs to the CuMo heat flux meters by raising the temperature above the eutectic 

point of the solder foil and subsequently cooling until solidified.  The bonding temperature 

was raised to 10-30°C above the eutectic point for 30 seconds while the bonding pressure 

was maintained at 30 psi.  Once bonded, the samples were tested at interface pressures 

between 135 and 400 kPa with and without the infiltration of paraffin wax.  In the fixture, 

the CNT TIM was infiltrated with paraffin wax using a syringe.  Figures 3.7 and 3.8 below 

show wetting of the solder to the CNT TIMs.  Additionally, Figure 3.8 indicates that while 

the solder engages the CNT tips quite well, it does not penetrate deeply into the CNT TIM.  

The images were acquired by solder bonding similar CNT TIMs to Si substrates, potting 

the interface in epoxy, and slicing the stack for imaging. 
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Figure 3.7.  Top view of solder wettability of metalized CN T TIM. 

 

Figure 3.8.  Cross section view of solder bonded CNT TIM.  Note that this sample was 
potted in epoxy and sliced to obtain cross section view. 
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3.2.3 Comparison of 1DSS Reference Bar and Photoacoustic Techniques 

Thermal engineers are equipped with a variety of techniques to measure the thermal 

properties of materials as well as the contact resistance between these materials and other 

components.  Therefore, the ability to confidently compare measurements of such 

quantities across a variety of measurement techniques is imperative for further 

development of materials such as TIMs.  In this work, the 1DSS reference bar and 

photoacoustic (PA) techniques are extensively employed to measure the total thermal 

resistance as well as estimate the contact resistance and effective thermal conductivity of 

CNT TIMs.  As shown in Figure 3.9, measurements of the total thermal resistance of 

unbonded CNT TIMs by the reference bar technique are approximately a factor of three 

greater than the total thermal resistance of unbonded CNT TIMs measured by the 

photoacoustic technique.  Variations in the total thermal resistance for each plot group (i.e., 

unbonded, Pd bonded, solder bonded, and solder bonded with paraffin wax infiltration) are 

due to differences in CNT TIM height. 
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Figure 3.9.  Comparison of total thermal resistance of CNT TIMs measured by the 1DSS 
reference bar and PA techniques. 
 

When the contact resistance (Figure 3.10) and effective thermal conductivity (Figure 3.12) 

are estimated from the total thermal resistance using the methodology employed in 

Chapters 6 and 7, we observe that the discrepancy in the total thermal resistance measured 

by the two techniques is solely due to the contact that is formed between the CNT TIM and 

opposing surfaces.  Furthermore, the rigid and macroscopically irregular surface of the heat 

flux meters used in the 1DSS technique (Figure 3.11) poorly engage the CNT TIM relative 

to the flexible and smooth surface of the Ag foil used in the PA technique.  Hence, 

normalizing the total thermal resistance by the apparent contact area (i.e., cross-sectional 

area of a heat flux meter) rather than the true contact area results in a higher resistance.  As 

observed in Figure 3.10, the engagement is increased as the CNT TIMs are bonded to the 

heat flux meters and the contact resistances estimated from the 1DSS measurements begin 

to decrease to within the range of contact resistances estimated from the PA technique.  In 
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contrast, the effective thermal conductivities estimated from both techniques are on the 

order of O(1 W/mK) and exhibit similar dependencies on pressure. 

 
Figure 3.10.  Comparison of contact resistance of CNT TIMs estimated from the total 
thermal resistance measured by the 1DSS reference bar and PA techniques. 
 

 

Figure 3.11.  Topological surface profile of typical heat flux meter used in 1DSS reference 
bar technique. 
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Figure 3.12.  Comparison of effective thermal conductivity of CNT TIMs estimated from 
the total thermal resistance measured by the 1DSS reference bar and PA techniques. 
 

3.3  Palladium Thiolate Bonding of CNT TIMs 

 

3.3.1 Background 

Metal alkanethiolates can serve as sources of metal clusters upon thermolysis and yield 

either metal or metal sulfide nanoparticles [68]. While metal alkanethiolates are insoluble 

in most organic solvents, Pd alkanethiolates have been reported to be soluble in these 

solvents and also exhibit repeated self-assembly [69]. The soluble nature of Pd 

alkanethiolates in such solvents like toluene makes them attractive for forming smooth, 

thin films on substrates.  In a previous investigation by Bhuvana and Kulkarni [70], Pd 

hexadecanethiolate has been patterned using electron beam lithography and subsequent 

formation of Pd nanoparticles on thermolysis was demonstrated. Energy-dispersive 

spectral (EDS) values before and after thermolysis were 21:71:8 and 90:9.6:0.4 for 
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(Pd:C:S), respectively [69].  Most notably, electrical measurements yielded resistivity 

values of Pd nanoparticles that were similar to that of bulk Pd.   In Section 4.1, we used Pd 

hexadecanethiolate (Figure 3.13) to coat the CNT sidewalls with Pd nanoparticles.  Upon 

thermolysis, a strong bond at the CNT/Ag interface was observed.  

 

Figure 3.13.  Pd(SC16H35)2 structure [69]. 

 

3.3.2 Bonding Process 

For preparation of Pd hexadecanethiolate, an equimolar solution of Pd(OAc)2 (Sigma 

Aldrich) in toluene is added to hexadecanethiol and stirred vigorously. Following the 

reaction, the solution becomes viscous and the initial yellow color deepens to an orange-

yellow color. The hexadecanethiolate is washed with methanol and acetonitrile to remove 

excess thiol and finally dissolved in toluene to obtain a 200 mM solution. Using a 

micropipette, approximately 16 µL of Pd hexadecanethiolate is added to the CNT array.  

The CNT array is then heated for 5 minutes at 130°C to evaporate the toluene.  Finally, the 

components of the two TIM structures tare formed by sandwiching the substrates under a 

pressure of 273 kPa and commencing thermolysis at 250°C for 2 hours in air. Figure 3.14 

contains an FESEM image of a CNT array after thermolysis at 250°C.  The Pd 
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nanoparticles that decorate the CNT walls typically range from approximately 1 to 10 nm.  

Similar to other studies [71, 72], we assume that Pd nanoparticles preferentially attach to 

defect sites in the CNT sidewalls. 

 

Figure 3.14.  Post-thermolysis FESEM image of CNT array on Si substrate. 
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4.    PALLADIUM THIOLATE BONDING OF CARBON NANOTUBE THERMAL 

INTERFACES 

 

4.1 Introduction 

This study aimed to utilize CNT TIMs enhanced with palladium (Pd) nanoparticles to 

achieve low thermal interface resistances suitable for electronics in a wide temperature 

range.  In particular, two possible enhancements of Pd nanoparticle-coated CNTs on 

interface conductance are assessed.  The first enhancement is an increase in contact area 

between the CNT ‘free tips’ and an opposing metal substrate that is formed from the Pd 

weld. This increase in contact area mitigates the phonon bottleneck at the CNT/metal 

substrate interface.  Secondly, we consider an increase in electron density of states (DOS) 

near the Fermi level at the CNT/metal substrate interface that is a result of charge transfer 

between CNTs and Pd nanoparticles.  In particular, we discuss the possibility of using 

electrons as a secondary energy carrier at the interface.  One- and two-sided interfaces, 

comprised of CNT arrays grown on Si substrates, are bonded to opposing metal substrates 

using a new method that utilizes the behavior of Pd hexadecanethiolate upon thermolysis. 

Using a transient PA technique, bulk and component thermal interface resistances of the 

Pd-bonded CNT interfaces were resolved.  

Recent thermal resistance values for CNT based TIMs have been measured to be 

between 1 – 20 mm2 K/W [26-41].  The thermal resistance values include both bonded  
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and non-bonded interfaces, and measurements were obtained using different 

characterization techniques (1DSS reference bar, thermoreflectance, PA, and 3ω). Weak  

bonding at heterogeneous interfaces, differences in phonon dispersion and density of states, 

and wave constriction effects are factors that could hinder further reduction in thermal 

contact resistance.  Adverse phonon constriction can be moderated by increasing the 

interfacial contact area.  In an effort to increase the interfacial contact area, developments 

in bonded and semi-bonded CNT TIMs have rendered thermal interface resistances as low 

as 1.3 mm2 K/W [31] and 2 mm2 K/W [34], respectively.  CNTs exhibit ballistic conduction 

of electrons in the outermost tubes [73] and ohmic current-voltage characteristics with 

certain metals [74-76].  When this effect is coupled with a strong metallic-like bond at the 

CNT/metal substrate interface, phonon constriction could be circumvented by using 

electrons as a secondary energy carrier.  A possible way to achieve electron transmission 

is through a strong CNT/metal substrate bond and sufficiently high electron DOS at the 

interface. 

Functionalizing CNTs with metal nanoparticles (Pt, Au, Pd, Ag, Au) has been an area 

of growing interest for a diverse set of applications [72, 77 - 79]. For example, a biosensor 

[77] involving Au/Pd nanocube-augmented SWCNTs showed significant increases in 

glucose sensing capabilities.  The increased performance was attributed to a highly 

sensitive surface area, low resistance pathway at the nanocube-SWCNT interface, and 

selective enzyme adhesion, activity, and electron transfer at the enzyme, Au/Pd nanocube 

interfaces.  Metal nanoparticles can adhere to CNTs through covalent or van der Waals 

interactions, which can lead to charge transfer.  Voggu et al. [80] performed ab initio 

calculations on semiconducting single-walled CNTs interacting with Au and Pt 
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nanoparticles and found a significant increase in the ratio of metallic to semiconducting 

tubes.  Charge density analysis showed a decrease in electron density in the valance band 

of Au and an increase in the outer orbitals of C, indicating direct charge transfer.  A recent 

study [72] also found significant changes in the Raman G-band peak intensity for pristine 

and silver nanoparticle-decorated metallic SWCNTs, indicating that the nanoparticles alter 

the electronic transitions of the tubes.  With its high work function [81] and strong adhesion 

to CNTs, Pd has proven to be a metal that electronically couples well to CNTs [74-76, 81].  

Additionally, it has been suggested that efficient carrier injection from Pd monolayers to 

graphene can be accomplished because of the band structure that results from the 

hybridization between the d orbital of Pd and p-π orbital of graphene [82]. 

 

4.2 Experimental Setup 

 

4.2.1 CNT TIM Fabrication and Characterization 

In manner similar to that described by Xu and Fisher [29], an electron beam evaporative 

system was used to deposit a tri-layer metal catalyst stack consisting of 30 nm Ti, 10 nm 

Al, and 3 nm Fe on polished intrinsic Si substrates.  For a two-sided interface, the tri-layer 

catalyst was deposited on both a Si substrate and 25 µm thick Cu foil purchased from Alfa 

Aesar (Puratronic®, 99.999% metals basis).  Vertically oriented CNT arrays of moderately 

high density were then synthesized in a SEKI AX5200S microwave plasma chemical vapor 

deposition (MPCVD) system described in detail in previous work [83].  In summary, the 

growth chamber was evacuated to 1 Torr and purged with N2 for 5 min.  The samples were 

heated in N2 (30 sccm) to a growth temperature of 900οC.  The N2 valve was then closed 
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and 50 sccm of H2 was introduced to maintain a pressure of 10 Torr in the growth chamber.  

After the chamber pressure stabilized, a 200 W plasma was ignited and 10 sccm of CH4 

was introduced to commence 10 minutes of CNT synthesis.  The samples were imaged 

using a Hitachi field-emission scanning electron microscope (FESEM).  Figure 4.1 

contains images of the vertically oriented CNT arrays synthesized on Si. CNT arrays grown 

on Cu foil are similar.  The array densities were estimated to be approximately 108-109 

CNTs/mm2.  This estimation was conducted by manually counting CNTs from five 

different array locations at a moderate magnification in the FESEM.  The average CNT 

diameter for each array was approximately 30 nm while the array heights were 

approximately 15-25 μm. 

 

 

Figure 4.1.  CNT arrays synthesized on Si substrate.  (a) FESEM cross-section image 
illustrating array height and (b) FESEM image illustrating CNT diameter. 
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4.3 Results and Discussion 

The PA technique was used to resolve bulk thermal interface resistances of one- and 

two-sided TIMs with configurations of Si/CNT/Ag and Si/CNT/CNT/Cu.  The latter 

samples had CNT arrays grown on both the Si and Cu substrates, and the resulting interface 

formed a two-sided, Velcro™-like structure (Figure 4.2).  In addition, component 

resistances were resolved on a separate Si/CNT/Ag sample to elucidate possible 

mechanisms for enhanced performance. 

 

Figure 4.2.  Cross-sections of various TIM structures tested using PA technique.  (a) 
Si/CNT/Ag and (b) Si/CNT/CNT/Cu. 

 

In order to ensure proper operation of the pressure-field microphone used in the PA 

setup, the maximum temperature tested was 250°C, and the chamber pressure was limited 
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to 34 kPa.  Bulk resistance measurements for the Si/CNT/Ag and Si/CNT/CNT/Cu samples 

were taken in a temperature range of 27°C to 250°C while the component resistance 

measurement on the second Si/CNT/Ag sample was performed at 27°C.  Figure 4.3 shows 

bulk thermal resistance values as a function of temperature for the Si/CNT/Ag and 

Si/CNT/CNT/Cu samples.  The resolved component resistances for the second Si/CNT/Ag 

are tabulated in Table 4.1. 

 

Figure 4.3.  Bulk thermal interface resistance as a function of temperature.  (a) Si/CNT/Ag 
w/ and w/o Pd nanoparticles and (b) Si/CNT/CNT/Cu w/ and w/o Pd nanoparticles. 
 
Table 4.1.  Component thermal resistances for Si/CNT/Ag structure with and without Pd 
nanoparticles. 
 

Sample 
RSi-CNT 

(mm2 K/W) 

RCNT  

(mm2 K/W) 

RCNT-Ag 

(mm2 K/W) 

Si/CNT/Ag 2 ± 1 < 1  40 ± 4 

Si/CNT+Pd/Ag  < 1 < 1 15 ± 1 

 

Within the temperature range, the Si/CNT/Ag and Si/CNT/CNT/Cu structures 

decorated with Pd nanoparticles significantly outperform the structures without Pd 
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nanoparticles where the average thermal resistance value for the Pd nanoparticle-enhanced 

structures was 11 mm2 K/W and 5 mm2 K/W, respectively.  Averaging thermal resistances 

across the temperature range yielded reductions of thermal resistance across the interface 

of approximately 50% in both cases.  In addition, all structures exhibited only small 

variations in performance across the temperature range, indicating thermal stability and 

applicability to devices that operate in this temperature range.  To assess the effect that 

toluene has on the morphology of the CNT array and thermal transport, an additional set 

of samples were fabricated under the same heating and loading conditions and tested by 

PA.  The interface resistances tabulated in Table 4.2 indicate that while toluene is expected 

to significantly alter the CNT array morphology, its effect on thermal transport is negligible 

compared to the welding process that occurs during thermolysis. 

Table 4.2.  Bulk thermal resistances for Si/CNT/Ag structures with and without Pd 
nanoparticles and/or toluene. 

 

Sample RSi-CNT (mm2 K/W) 

Si/CNT/Ag 21 ± 1 

Si/CNT+toluene/Ag  21 ± 1 

Si/CNT+Pd/Ag 14 ± 1 

 

Thermal testing was proceeded by assessment of the Pd enhanced bond by FESEM.  

Figures 4.4 and 4.5 contain images of the structures after the bond was broken and the 

substrates were separated.  For the Si/CNT/Ag structure, the Si and Ag foil substrates are 

depicted in Figure 4.4 while the Si and Cu foil substrates of the Si/CNT/CNT/Cu structure 
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corresponds to Figure 4.4.  Clumps of CNTs that either remain attached to their Si growth 

substrate or are bonded to the Ag foil are readily seen in Figure 4.4.  Additionally, Figure 

4.4 (a) shows a mesoscopic chasm in the CNT array and at higher magnification, Figure 

4.4 (b) reveals sites in which CNTs were once attached to the growth substrate.  

Examination of Figures 4.4 (c) and (d) indicates the clumps of CNTs are also attached to 

the Ag foil.  While not observable in the Si/CNT/Ag structure, the CNT arrays in Figures 

4.5 (a) and (c), in particular the latter, resemble a topographical landscape indicating that 

significant bonding occurred at or around the CNT/CNT interface and most likely depends 

on the extent that one array penetrates into the other. 

 
Figure 4.4.  FESEM images of Si/CNT/Ag foil structure after detachment.  (a) and (b) 
correspond to the Si substrate while (c) and (d) correspond to the Ag foil. 
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Figure 4.5.  FESEM images of Si/CNT/CNT/Cu structure after detachment.  (a) and (b) 
correspond to the Si substrate while (c) corresponds to the Cu foil. 
 
The summary results in Table 4.1 indicate that reductions in bulk thermal resistance 

between decorated and undecorated TIMs occurred at the Si-CNT and CNT-Ag interfaces, 

with the latter having the largest reduction.  These results are consistent with Ref. 31 in 

which the dominant thermal resistance was at the CNT ‘free tip’ interface as opposed to 

the growth substrate interface where the CNTs are well adhered.  This significant reduction 

at the CNT-Ag interface can be attributed to two mechanisms, both comprising of nano- 

and mesoscopically sized contact regions as seen in Figures 4.4 and 4.5. 

First, upon thermolysis, a strong bond between at the CNT/Ag was created such that 

greater contact area was achieved and we attribute the majority of improvement to the 

reduced phonon reflection at the CNT/Ag interface.  In a previous study [33], the authors 



 40 

 

concluded that the increase in contact area reduced phonon reflection at the boundary 

consisting of nano-sized contacts and provided enhanced pathways for heat conduction.  

Similarly, we postulate that the primary effect of Pd nanoparticles is to enlarge individual 

contact points both at the CNT/CNT and CNT/substrate interfaces. In a broader perspective 

relative to length scales, the ballistic component of constriction resistance that dominates 

its diffusive counterpart [41] would be more influential in an unbonded structure that 

primarily consists of many nano-sized contact points as opposed to a Pd bonded structure 

in which the aggregated effect of Pd nanoparticles gives rise to more mesoscopically sized 

contact regions.  

Secondly, in previous work by Bhuvana and Kulkarni [70], thermal treatment of Pd 

hexadecanethiolate at 230°C in air produced metallic Pd nanowires with a specific 

electrical resistivity near 0.300 µΩm. Similarly, thermal treatment of structures in this 

study could have produced a metallic-like bond between CNT free ends and Ag foil via Pd 

nanoparticles in which a higher electron DOS near the Fermi level at the CNT/Ag interface 

was established.  We also note that two types of contacts can exist at a CNT/metal interface: 

side- and end-contacted.  Although the general orientation of the dense, CNT arrays in 

Figure 4.1 (a) is vertical, we assume that the majority of the contacts have side-contacted 

geometries upon compression into an interface.  For non-bonded, side-contacted 

geometries, the contact quality depends on tunneling of electrons across an energy barrier 

created by van der Waals interaction at the metal/CNT interface [84] and since the physical 

separation between the metal and CNT is comparable to the carbon/metal bond length, 

tunneling depends on the chemical composition and configuration of electronic states at 

the surface [74].   If we consider Ag making uniform contact to graphene and the 
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transmission of an electron across the CNT/Ag interface, then in-plane wave vector 

conservation is enforced and for good coupling, the metal Fermi wave vector (kf,Ag = 1.2 

Å-1) should be comparable to that of graphene (kf,graph. = 4π/3ao = 1.70 Å-1) [84, 85].  Under 

weak coupling assumption (i.e., van der Waals interaction), calculated transmission 

probabilities at a uniform metal/graphene contact have been shown to exhibit a monotonic 

increase with contact length depending on CNT chirality [85].  Indeed, the transmission 

probabilities reported in Ref. 85 are quite small and therefore serve as a lower limit because 

the calculations were based on coupling strengths ~ O(10-3) eV.  Furthermore, if the 

coupling strength were increased via a metallic-like bond, then higher transmission 

probabilities could be achieved.   

For larger diameter tubes, such as the CNTs in the present work, wave vector 

conservation becomes increasingly important [85].  However, such conservation principles 

can be relaxed when disorder (defects and impurities) are present [85].  Plasma-enhanced 

chemical vapor deposition (PECVD) grown CNTs in previous work have exhibited 

relatively high defects at the sidewalls due to plasma etching [83, 86, 87].  Thus, the 

additional disorder from sidewall defects caused by PECVD synthesis and Pd impurities at 

the CNT/Ag interface could relax wave vector conservation constraints.  In this case, 

additional scattering from defects and Pd impurities could increase the transmission 

probability across the CNT/Ag interface, mediated by the presence of the Pd nanoparticles.  

However, for CNT/metal contacts as opposed to graphene/metal, it has been shown that 

coupling of electronic states between the CNT and metal will exist regardless of scattering 

from defects and impurities [88].  We expect similar effects to be operative for the two-



 42 

 

sided TIM configuration (Figure 4.2 (b)), with most of the improvement localized at the 

CNT/CNT interface.  

4.4 Conclusions 

In this study, CNT TIMs enhanced with Pd nanoparticles were fabricated using a 

previously developed method for CNT synthesis and a new process for bonding interfaces 

using Pd hexadecanethiolate.  A transient photoacoustic technique was used to resolve bulk 

and component thermal interface resistances. All structures enhanced with Pd 

nanoparticles exhibited markedly improved thermal performance and thermal interface 

resistances that are comparable to previously reported values in the literature and that 

outperform most state-of-the-art TIMs used in industry.  We attribute the majority of 

improved performance to the strong Pd weld that reduced phonon reflection at the interface 

by increasing the contact area between the CNT ‘free-tips’ and an opposing metal substrate.  

In addition, we considered utilizing electrons as a secondary energy carrier at the interface 

because of an increase in electron density of states at the CNT/Ag interface and offered 

discussion on the dependence that electron transmission has on wave vector conservation 

and disorder.  With thermal stability across a wide temperature range, these structures are 

suitable for a variety of applications, particularly high-temperature electronics.  Further 

investigation of energy and charge transport mechanisms at interfaces and Raman 

characterization of the CNT TIMs will elucidate the results of this study.  Lastly, additional 

optimization related to coating and thermolysis of the Pd hexadecanethiolate solution on 

the CNT arrays could further reduce thermal interface resistance. 
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5.    CNT TIMS IN ABNORMAL ENVIRONMENTS 

 

5.1 Introduction 

Systems in space are often exposed to higher levels of radiation, including charged 

particles and electromagnetic waves, than their terrestrial counterparts due to the lack of 

the atmosphere to serve as an absorbing medium.  Particle radiation has been shown to 

drastically affect CNTs [88-91] by forming inter-tube bonds and cross-linking [91].  TIMs 

are shielded from these radiation sources which are easily absorbed by the external 

components of a spacecraft.  On the other hand, high-energy electromagnetic waves such 

as gamma rays penetrate the exterior materials with minimal attenuation thus providing the 

potential to affect the CNT TIM.   

Skakalova et al. [92] observed an increase in the Young’s modulus and electrical 

conductivity of single-walled CNT (SWCNT) papers exposed to gamma-irradiation doses 

of 5, 17 and 50 Mrad.  The maximum change was observed for a dose of 17 Mrad, however, 

the number of data points are too few to draw a concrete conclusion. Guo et al. [93] 

observed a dramatic increase in the ID/IG of the Raman spectrum of gamma-ray irradiated 

multi-walled CNTs (MWCNTs), which was attributed to the large presence of sp3-

hybridized carbon atoms.  This is opposite the trend reported by Xu et al. [94], who noted 

an 8% decrease in ID/IG for MWCNTs irradiated to 20 Mrad in air, signaling improved 

graphitic order.  However, when the gamma-ray dosing was conducted in epoxy 

chloropropane a 9% increase in ID/IG occurred.  Miao et al. [95] investigated the  
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effects of dose rate and total dose on the breaking stress and Young’s modulus of MWCNT 

yarns.  Gamma-irradiation was found to increase both of these properties, however the 

majority of the changes occur rapidly at doses below 10 Mrad. Furthermore, dose rate was 

negligible on the measured results. 

In this work, CNT TIMs are exposed to representative doses of gamma radiation in an 

effort to explore their capabilities in aerospace and deep space exploration applications.  In 

a gamma cell, the CNT TIMs were irradiated at a rate of 250 rad/s to total doses of 50 Mrad 

and 100 Mrad.  The ID/IG band ratio of the tubes was tracked using a Renishaw InVia 

Raman microscope, and the thermal interface resistances were monitored using a 

previously developed photoacoustic technique. 

 

5.2 Experimental Setup 

 

5.2.1 CNT TIM Fabrication and Characterization 

Vertically aligned CNT arrays of low density were then synthesized in the MPCVD. 

The samples were imaged using a Hitachi field-emission scanning electron microscope 

(FESEM).  Figure 5.1 contains images of the vertically aligned CNT arrays synthesized on 

Si. The array characteristics possessed average densities of 108-109 CNTs/mm2, tube 

diameters of 30 nm, and heights near 10 μm. 
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Figure 5.1.  FESEM of CNT TIM grown on Si tab by MPCVD. 

 

5.2.2 Radiation Dosing 

Radiation aging of the samples was performed in a gamma cell shown in Figure 5.2 

below.  The TIM samples were separated into two bags containing equal numbers of test 

coupons. The bags were inserted vertically into the test cell together and since the gamma 

rays penetrated through the materials, no spacing between bags was necessary. The 

samples were exposed to a gamma ray dose rate of 250 rads/sec for approximately 55 hours 

to obtain a 50 Mrad dose on each bag. One bag containing three of six samples was 

removed from the gamma cell, while the second bag was reinserted to the gamma cell for 

an additional 55 hours to receive a total cumulative 100 Mrad dose of gamma irradiation. 
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Figure 5.2.  Photograph of test samples in the gamma cell. 

 

5.3 Results and Discussion 

 

5.3.1 Raman Characterization 

Raman spectra for every sample were collected at several locations on the sample 

surface. For all samples and locations the Raman spectra show the presence three distinct 

spectral features, as shown in Figures 5.3 (a) and (b): the D-peak at ~1360 cm-1, G-peak at 

~1585 cm-1 and a small peak at ~1620 cm-1. To evaluate the impact of the radiation damage 

to the CNT films, the ratio of the intensities of the D and G peaks monitored before and 

after irradiation, as it is a useful indicator of long range order in carbon structures [71]. 
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Figure 5.3.  Raman spectra for CNT TIMs exposed to (a) 50 Mrad and (b) 100Mrad gamma 
radiation. Raman spectra before exposure also shown. 
 

To determine the intensities of each peak, the acquired Raman spectra were analyzed by 

fitting them to a Breit-Wagner-Fano (BWF) spectral line shape [96].  This procedure 

removes uncertainty due to contributions from overlapping peaks in determining the peak 
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intensity.  All samples before irradiation showed ID/IG ratios of ~1.3 which is higher than 

typical for MWCNTs [97] indicating significant presence of defects or edge effects 

resulting from the probing geometry used for the Raman measurement.  After irradiation, 

samples subjected to a 50 Mrad dose exhibited a much lower ID/IG ratio of approximately 

1.00; 100 Mrad samples showed a slightly lower ratio of approximately 0.95.  The ratio of 

the D’-peak height to the G-peak height is also affected, but less markedly, changing from 

approximately 0.40 before irradiation to approximately 0.35 after irradiation for both doses. 

These changes result in a decrease of approximately 20% in the ID/IG ratios for both 

exposures and indicate that the ID/IG ratio is independent of gamma radiation dose, at least 

within the range of dosages tested.  Figure 5.4 below summarizes these observations.  

  

Figure 5.4.  ID to IG band ratios for CNT TIMs before and after exposure to 50 and 100 
Mrad. 
 
The trends observed in Figure 5.4 resemble those reported by Xu et al. [94] but contradict 

the trends reported by Guo et al. [93]. Thus, sp-3 hybridization does not occur in the tube 

structures in this work, and the increase in quality is most likely due to improved graphitic 

order within the tube walls [94]. The scatter in the reported results could be attributed to 

the plethora of growth processes for CNT arrays that yield myriad tube structures.  
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5.3.2 Thermal Characterization 

The thermal resistances for six CNT TIMs were measured by the PA technique at a 

contact pressure 134 kPa and room temperature.  Each of the CNT TIMs was tested before 

and after exposure.  Figure 5.5 contains a plot of the thermal resistance values for the six 

CNT TIMs before and after exposure.  The resistance values in the figure are averaged 

across three samples for each of the dosages.  Based on the measurement uncertainty, the 

error associated with the thermal resistances is 1 mm2 K/W.  The thermal results indicate 

that exposure to gamma radiation dosages between 50 and 100 Mrad has no effect on 

thermal performance.  The slight decreases in thermal resistance after exposure to both 50 

and 100 Mrad are most likely due to the sequential process of thermal testing the CNT 

TIMs rather than CNT interaction with gamma radiation.  The thermal results are 

encouraging because the performance did not degrade after exposure, indicating that the 

CNT TIMs can withstand gamma-ray irradiation without adverse thermal effects, at least 

within the range of 50 and 100 Mrad dosages. 
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Figure 5.5.  Thermal resistance for CNT TIMs before and after exposure to 50 and 100 
Mrad.  The opposing substrate was a 25 μm thick Ag foil.  Thermal resistance values are 
averaged across three samples. 
 

5.4 Conclusions 

CNT-TIMs were exposed to gamma radiation in dosages of 50 and 100 Mrad. The 

quality of the CNTs, based on the ID/IG band ratio, was monitored by Raman spectroscopy 

and showed a moderate increase in the graphitic order of the CNT walls.  Additionally, the 

thermal interface resistance was measured before and after gamma-ray irradiation using a 

transient photoacoustic method and while the exposure to such radiation has the potential 

to significantly affect CNT TIMs, no degradation in thermal performance was observed.  

Further studies such as thermal testing in a range of contact pressures coupled with 

nanoindentation experiments would help delineate the effects of gamma irradiation on the 

thermomechanical performance of CNTs. 
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6.    SOLDER BONDED AND PARAFFIN WAX INFILTRATED CNT TIMS 

 

6.1 Introduction 

As the size of electronic devices scales down and power densities increase, the need 

for innovative cooling solutions becomes more imperative.  The prototypical architecture 

for electronic devices generally consists of a heat generating component such as a 

microprocessor and a heat spreader in tandem with a heat sink that transfers the heat to the 

ambient environment.  Because of the modular assembly of the cooling architecture, 

thermal resistances at interfaces between components can significantly contribute to the 

total thermal budget. This thermal resistance, or thermal interface resistance is a 

consequence of the constriction of heat flow through small contact regions between 

adjoining components. When a TIM is inserted between the components, this thermal 

resistance is comprised of the thermal contact resistance at the adjoining interfaces as well 

as the intrinsic resistance of the TIM. This work considers the behavior of carbon nanotube 

array TIM materials of practical sizes and fabrication methods, with the aim of quantifying 

the effects of solder bonding and wax infiltration using a 1D reference bar technique.  

Thermal pads, thermal greases, and metallic foils are commonly inserted between the 

components to alleviate the constriction of heat flow by conforming to the surface 

roughness of the components and filling the gaps between them, thus creating more  
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contact points and paths for heat transport [1].  Moreover, many applications require the 

TIM to accommodate a variety of stress conditions associated with either external 

vibrations or mismatches in the coefficient of thermal expansion between the components. 

However, a given TIM may best suited for only specific regime in the mechanical and 

thermal parameter space associated with a specific application.  For example, thermal pads 

provide high mechanical conformability and effectively dampen low stress vibrations, yet 

possess low thermal conductivities on the order of 1 W/mK [2]. Thermal greases are 

commonly chosen for their ability to accommodate mechanical stresses during operation. 

Non-conductive thermal greases consist of a matrix of electrically insulating polymers and 

metal oxide filler materials with thermal conductivities less than 0.5 W/mK [3]. To increase 

the thermal conductivity to approximately 2 W/mK, metallic particles such as silver are 

substituted as the filler material [3]. When heated above their eutectic point, solder foils 

conform to surface asperities and offer the highest thermal performance with thermal 

conductivities above 20 W/mK [4].  However, when solidified, solder foils suffer from 

their inability to withstand mechanical stresses due to their rigidity.   

In this work, MWCNT TIMs were sequentially solder bonded and infiltrated with 

paraffin wax while fixture in a one-dimensional, steady-state apparatus with copper-

molybdenum bars as heat flux meters.  The total thermal interface resistance was measured 

over the pressure range of 135 to 400 kPa. MWCNT CNT TIMs of varying heights were 

fabricated using microwave plasma CVD (MPCVD), which typically yield highly 

defective bamboo-like structures [5, 83, 86] with tortuous morphologies.  Although the 

defect concentration of the CNT TIMs are not quantified in this work, we assume that heat 

conduction within the CNTs grown by this method is predominately diffusive, provided 
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that the most dominant phonon mean free path is much smaller than the number of defects 

per unit length with effective CNT heights on the order of 1 µm.  In the diffusive regime, 

the effective thermal conductivity remains constant and the intrinsic thermal resistance 

scales linearly with CNT TIM height, which enables an analysis similar to Pal et al. [55] 

for estimating the effective thermal conductivity from thermal resistance and effective 

CNT TIM height measurements.  The dependencies of thermal resistance on the 

compression of the CNT TIMs in unbonded and bonded states and the addition of paraffin 

wax into the interface material are considered.  The CNT TIM height and volume fraction 

are also assessed to determine the contributions of contact resistance and intrinsic 

resistance to the total thermal resistance.   

 

6.2 Experimental Setup 

 

6.2.1 CNT TIM Fabrication and Characterization 

MWCNT TIMs were fabricated using a microwave plasma chemical vapor deposition 

chamber [83] on both sides of 10 µm thick copper foil.  Two groups of CNT TIMs were 

fabricated with different heights and volume fractions.  The first group was grown using 

100W of plasma generator power for 2.5 minutes and yielded CNT TIM heights between 

5 – 7 µm.  The second group was grown using 200W of plasma generator power for 2.5 

minutes and yielded CNT TIM heights of approximately 17 µm.  The additional plasma 

generator power increases the growth rate of the CNTs. CNT TIM heights were estimated 

by field emission scanning electron microscopy (FESEM) images from a cross-section 

view while the volume fractions were estimated by measuring the CNT mass before and 
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after synthesis using an Orion-Cahn C33 microbalance with a sensitivity of 1 µg. FESEM 

images of the CNT TIMs are shown below in Figure 6.1, and the total CNT TIM heights 

(side 1 and side 2) and volume fractions are plotted in Figure 6.3.  The average CNT TIM 

heights range from approximately 5 to 18 µm and the mass densities range from 

approximately 0.05 to 0.13 g/cm3 before compression. 

 

Figure 6.1.  FESEM images of CNT TIMs after synthesis. 

 
Figure 6.2.  Average CNT TIM heights and mass density estimates. 
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6.3 Results and Discussion 

 

6.3.1 Thermal Measurements  

Figure 6.3 below shows 1D reference bar measurements of the total thermal resistance 

as a function of applied pressure for CNT TIMs that were unbonded and bonded with solder 

foils to the CuMo heat flux meters.  Thermal resistance values are also shown for bare 10 

µm thick, Cu foil for reference.  The most apparent distinction between the unbonded and 

bonded states is embedded in the dependence of thermal resistance on the applied pressure.  

In the unbonded state, the thermal resistance values decrease nonlinearly with increased 

pressure and are expected to approach an asymptotic value at pressures much greater than 

400 kPa. 

 

Figure 6.3.  Thermal resistance values measured by 1D reference bar technique for bare, 
10 µm thick Cu foil as well as CNT TIMs on 10 µm thick Cu foil that were unbonded and 
bonded with solder foils to the CuMo heat flux meters. 
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Figures 6.4 and 6.5 below show the total thermal resistance plotted against CNT TIM 

height and volume fraction, respectively. Note that the thermal resistance values are 

representative of CNT TIMs that were initially bonded to the heat flux meters with solder 

foil and subsequently infiltrated with paraffin wax.  The values for total thermal resistance, 

height, and volume fraction were taken at the highest applied pressure in order to minimize 

variations in alignment and sample to sample loading to the total thermal resistance. 

Figures 6.4 and 6.5, respectively indicate that the thermal resistance moderately correlates 

with the CNT TIM height and volume fraction. Figure 6.6 shows the probability density 

curves for the uncertainties associated with the measured thermal resistance and CNT TIM 

height.  A linear fit to the data in Figure 6.4 was used to calculate the effective thermal 

conductivity of the CNT TIM and equivalent contact resistance (CNT TIM to heat flux 

meter) 

 
 

Figure 6.4.  Total thermal resistance measured by 1D reference bar technique as a function 
of CNT TIM height with and without paraffin wax. 
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Figure 6.5.  Total thermal resistance measured by 1D reference bar technique as a 
function of CNT TIM mass density with and without paraffin wax. 
 

The total thermal resistance Equation (6.1) is comprised of series of thermal resistances: 

(i) contact between the CNT TIM and Cu foil growth substrate with a catalyst layer medium 

and (ii) contact between the CNT TIM and CuMo heat flux meters with a solder medium, 

and (iii) the bulk resistances of the CNT TIMs, Cu foil growth substrate, and solder layers. 

Note that due to the double-sided structure of the CNT TIM, Rcontact includes eight contact 

resistances (two for the growth substrate interface before and after the catalyst layer and 

two for the CNT to CuMo heat flux meter interface before and after the solder layer) while 

Rbulk, Rsolder, Rfoil include the bulk resistances of the CNT TIM, solder layers, and Cu foil 

respectively.  

  (6.1) total bulk contact solder foilR R R R R= + + +



 58 

 

Assuming a linear relationship approximately fits the data in Figure R2, Equation (6.1) can 

be rewritten as 

 total solder foilR R R mh C− − = +  (6.2) 

where the slope, m, represents the change in the bulk resistance of the stack with CNT TIM 

height, h, as shown below in Equation (6.3. 

 bulkdRm
dh

=  (6.3) 

If the contact resistances and bulk resistances of the solder and Cu foil are assumed to be 

independent of the CNT TIM height, then the contact resistances as well as the bulk 

resistances of the solder and Cu foil manifest themselves as a constant, or equivalent 

contact resistance, Req, determined by the thermal resistance as t  0 and keff is the inverse 

of the slope as shown below in Eqs. 4 and 5 

 C Rcontact eqR= =  (6.4) 
 

  (6.5) 

Therefore, Equation (6.2) can be rewritten as 

 total solder foil eq
eff

hR R R R
k

− − = +  (6.6) 

The average uncertainty in measuring thermal resistance is 15% (see Figure 3.6 and 

Figure 6.6 (a)) and represents the 95% confidence interval associated with the measurement 

of temperature, thermocouple location, and data fitting.  The uncertainty in estimating the 

average CNT TIM height is approximately 20% and the estimated CNT TIM heights are 

assumed to follow a normal distribution bounded by this uncertainty (Figure 6.6 (b)).  A 

1
bulk

eff
dRk

dh

−
 =  
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bootstrapping method [98, 99] was implemented to determine the uncertainty of 

estimations effective thermal conductivity of the CNT TIMs and the equivalent contact 

resistance.  The probability density functions of the effective thermal conductivity of the 

CNT TIMs and equivalent contact resistance with and without wax are shown below in 

Figure 6.7 (a) and (b), respectively. 

  

Figure 6.6.  Probability density curves for uncertainties in (a) measured thermal resistance 
and (b) CNT TIM height. 
 

  
Figure 6.7.  Probability density functions of the (a) effective thermal conductivity of the 
CNT TIMs with and without wax and (b) equivalent contact resistance with and without 
wax. 
 

By carrying out the bootstrapping simulation using Equation (6.6), estimates for the 

effective thermal conductivities and the corresponding 95% confidence bounds are 0.28 

(0.25, 0.30) and 0.55 (0.52, 0.59) W/mK without and with paraffin wax, respectively.  

These values reside on the lower end of the reported values for the effective thermal 
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conductivity of CNT TIMs [27, 32 - 34, 43 - 57].  The equivalent contact resistance is 

slightly reduced when paraffin wax is added as significant contact was already established 

during solder bonding.  Note that the tail ends of the equivalent contact resistance 

distributions are negative and non-physical.  The negative resistances are an artifact of the 

measurement uncertainty and lower limit of the 1DSS reference bar technique.  This 

artificial feature would be eliminated if a TIM without CNTs was measured (i.e., zero CNT 

TIM height). 

Using these estimates for the effective thermal conductivities of CNT TIMs without 

and with paraffin wax, the contributions of the bulk thermal resistance and equivalent 

contact resistance to the total thermal resistance are plotted in Figure 6.8 and 6.9 for the 

CNT TIMs, respectively.  The equivalent contact resistance is independent of CNT TIM 

height and the variation is due to the differences in thermal conductivity of the solder foils.  

In contrast, due to the relatively low effective thermal conductivity of the CNT TIM, 

thermal transport through the CNT TIM plays a significant role in the thermal performance 

and scales linearly with height.  The contribution of the CNT TIM to the total resistance is 

significantly mitigated when paraffin wax is added as the bulk resistance deceases below 

the equivalent contact resistance for the shorter CNT TIMs.   

The thermal conductivity of paraffin wax used in this study was not directly measured 

nor used in the calculations of keff, but can be estimated from a simple equivalent thermal 

resistance consisting of two parallel components, one for thermal conduction through 

CNTs and another through the paraffin wax.  Assuming no thermal transport between the 

CNTs and surrounding paraffin wax medium as well as the average keff of the CNT TIM 

without wax, the estimate of the thermal conductivity of paraffin wax is approximately 
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0.34 W/mK, which is within the upper range of values reported for different types of 

paraffin (0.15 – 0.36 W/mK [100]).  Given that the CNT TIMs are compressed to a 

maximum volume fraction of 27%, we postulate that the predominant effect of paraffin 

wax is to fill the air gaps void of CNTs and provide a parallel pathway for thermal transport 

across the interface.  A similar effect has been observed for CNT TIMs tested in vacuum 

and air in which air serves an analogous role to paraffin wax [101].  However, paraffin wax 

can also provide alternate pathways for thermal conduction for CNTs that do not make 

contact with the solder (CNT  wax  solder or CNT  wax  CNT) [102] and cannot 

be explicitly determined from the measurements. 

 

Figure 6.8.  Contributions of the bulk thermal resistance, contact resistance, solder 
resistance, and Cu foil resistance relative to the total thermal resistance for CNT TIMs 
without wax.  Samples identified with the letter A were grown using 100W plasma 
generator power while those identified with the letter B were grown using 200W plasma 
power. Sn63, 121, and 256 refer to the type of solder foil. 
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Figure 6.9.  Contributions of the bulk thermal resistance, contact resistance, solder 
resistance, and Cu foil resistance relative to the total thermal resistance for CNT TIMs with 
wax.  Samples identified with the letter A were grown using 100W plasma generator power 
while those identified with the letter B were grown using 200W plasma power. Sn63, 121, 
and 256 refer to the type of solder foil. 
 

6.4 Conclusions 

When the CNT TIMs are bonded to solder, a drastic reduction in thermal resistance 

relative to the unbonded state is achieved.  In the bonded state, the thermal resistance was 

observed to be independent of pressure, indicating that the wettability of solder to the CNT 

TIMs is sufficient enough to maximize the contact area and minimize the contact resistance.  

While 1D reference bar technique employed in this work cannot directly resolve the 

component resistances (bulk and contact), an alternative method to extracting their 

contributions to the total thermal resistance was proposed.  In a bonded state, the CNT 

TIMs exhibit moderate correlations to both CNT TIM height and volume fraction with 

shorter CNT TIMs having lower thermal resistance than taller CNT TIMs.  A linear fit to 
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the thermal resistance and CNT TIM height data reveals a lower limit to the effective 

thermal conductivity of the compressed TIMs of approximately 0.28 W/mK without 

paraffin wax and 0.55 W/mK with paraffin wax.  These values are on the lower end of 

reported values for standalone and composite CNT TIMs, which is attributed to the high 

degree of compaction that the CNT TIMs undergo during thermal testing within a pressure 

range of 135 and 400 kPa.  The role of paraffin wax is expected to provide a parallel 

pathway to thermal transport and potentially mitigate CNT to CNT interactions. 
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7.    THERMOMECHANICAL PERFORMANCE OF CNT TIMS 

 

7.1  Introduction 

The scope of this study involves CNT TIMs that can be used to facilitate the transfer 

of thermal energy from a heat-generating device to a thermal sink. TIMs of a variety of 

types are commonly used in the electronics cooling industry in which heat-generating 

devices such as microprocessors and thermal management components (e.g., heat 

spreaders) are commonly assembled in a modular fashion.  This modular assembly causes 

thermal interface resistances (TIR) to manifest at mating surfaces, which are often 

mediated by inserting TIMs between the modular components.  By applying a compressive 

load to the modular assembly, thermally conductive pathways are created across the 

interface.  CNT TIMs have been viewed as potential alternatives to current commercially 

available TIMs [27 - 41] such as thermal pads and paste due to the intrinsically high thermal 

conductivity of individual, isolated CNTs and their ability to mechanically comply with 

the topography of opposing materials. 

The outstanding mechanical and thermal properties of individual CNTs are a 

consequence of their high aspect ratio and cylindrical shape that is maintained by 

covalently bonded carbon atoms.  The elastic modulus of an individual CNT has been 

measured to be on the order of teraPascals [8, 9] while the thermal conductivity of an 

individual CNT has been measured to be as high as 3000 W/mK [10, 11], making CNTs  
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strong candidates to strengthen composite materials and efficiently conduct thermal energy.  

In order to exploit these extraordinary properties for practical applications, CNTs are often 

mass-produced on a single substrate to match the length scales of larger components and 

devices. CNT arrays, bundles, forests, films, mats or CNTs are commonly produced in 

chemical vapor deposition processes.  A feature of the aggregate structure is the formation 

of billions of neighboring high-aspect ratio CNTs that are nominally parallel and vertical, 

yet exhibit a tortuous microstructure.  The underlying framework that governs the as-grown 

structure balances the strain energy due to ambient vibrations and mechanical constraints 

[12] with intra- and inter-tube van der Waals interactions [12 - 15].  

The same mechanisms responsible for the microstructure of as-grown CNT TIMs also 

govern the state of its aggregate structure when subjected to external mechanical loading.  

In response to a compressive stress, the concentric shells of individual multi-walled CNTs 

bend and form buckles, ripples, or wrinkles in a coordinated manner [9, 14 - 18].  During 

this coordination, the intra-tube spacing between shells of the CNTs is predominantly 

preserved as van der Waals interactions oppose the compressive stresses induced from 

bending [9, 18].  As a result, the buckles, ripples, or wrinkles are most pronounced at the 

outermost tube and propagate to a lesser degree to the inner shells of the CNTs [9, 18].  

The compressive response of CNT TIMs to uniaxial compression similarly incorporates 

the balance of bending stresses with van der Waals interactions, except at a much larger 

scale at which the entire structure collectively deforms in unison.   

An analogy to the deformation of open-cell foams has been employed in prior research 

to describe the compressive behavior of CNT TIMs, with the stress-strain evolution divided 

into three distinct regions that represent linear elastic deformation, the onset of coordinated 
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buckling, and rapid densification of the CNT [12 - 14, 19 - 28].  A possible implication of 

the mechanical behavior is that heat conduction within the CNT may be coupled to changes 

in microstructure under a compressive stress.  Indeed, heat conduction in CNT TIMs does 

not resemble a system of billions of pristine, individual, and isolated elements that 

independently conduct heat in parallel, each with its exceptional thermal conductivity [10, 

12], but rather a coordinated network of conducting constituents [40, 56].  The coordinated 

network is mechanically and thermally constrained by van der Waals forces and exhibits 

much less desirable thermal properties, with steady state and transient measurements of the 

aggregate or effective thermal conductivity of CNT TIMs reported over a tremendously 

wide range of 0.3 – 265 W/mK [27, 32 - 34, 43 - 57].   

Heat conduction in CNT TIMs is fundamentally complex, and the underlying transport 

mechanisms are difficult to resolve experimentally with high fidelity.  The complexities 

are embedded in extracting the phonon transport mechanisms that affect heat conduction 

within individual CNTs, the interactions between adjacent CNTs, and the transmission of 

heat carriers between CNTs and dissimilar materials.  The structural condition of CNTs 

(defects and quality) can dictate the thermal conductivity of individual CNTs [58].  The 

mass density, alignment, and waviness of the CNT microstructure can dictate the quantity 

and sizes of CNT-to-CNT contacts and ultimately the CNT-to-CNT contact conductance 

through van der Waals interactions.  For bare interfaces (i.e., without a TIM), conduction 

through the gaseous medium can play a significant role in thermal transport across the 

interface, particularly at low contact pressures for which the solid-solid contact area is 

small and when the surface profiles of the opposing materials produce a gap distance (0.1-

10 µm) that is comparable to the mean free path of gas molecules (0.064 µm for air) [1].   
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In addition to the gap distance, heat transport by this mechanism also depends on the 

thermal conductivity of the gas as well as the efficacy of energy transfer between the gas 

molecules and surface of the solid [46].  For CNT TIMs, conduction through the gaseous 

voids between CNTs can serve as a parallel transport mechanism for CNT CNTs of low 

mass density and short heights [101]. 

In this study, the thermomechanical performance of CNT TIMs under uniaxial 

compression is evaluated by measuring the bulk TIR (contact and bulk resistances) 

between Ag foil and a Si substrate (on which the CNTs are grown) at different compressive 

loads.  To fit within the framework of the measurements, the CNT TIM is considered to be 

a non-interacting composite layer consisting of CNTs and air with an effective thermal 

conductivity, with additional thermal contact resistances to the Ag foil and Si growth 

substrate. The complex and intricate thermal transport mechanisms associated with the 

layered system (Ag foil, CNT TIM CNT, and growth substrate) are not explicitly quantified 

or individually resolved, but rather lumped into the bulk and contact resistances resulting 

from the TIR measurements. Nanoindentation results are also reported on duplicate 

samples, as in situ monitoring of the mechanical behavior during thermal testing was not 

possible.  The nanoindentation results serve to complement the TIR measurements in order 

to infer mechanical effects that correlate to thermal performance, particularly the changes 

in thermal resistance under uniaxial compressive loading. 
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7.2 Experimental Setup 

 

7.2.1 MWCNT TIM Fabrication 

MWCNT TIMs were fabricated in-house using a microwave plasma enhanced 

chemical vapor deposition chamber [83] on standard silicon substrates.  By controlling the 

synthesis times, CNT TIMs of varying heights (3 to 50 µm) were produced.  A set of 

companion CNT TIMs was also prepared for the corresponding nanoindentation 

measurements.  The heights were estimated by field emission scanning electron 

microscopy (FESEM) images from a cross-section view while the mass densities were 

estimated by measuring the CNT mass before and after synthesis.  The as-grown mass 

densities ranged between approximately 0.04 – 0.06 g/cm3. Post-mortem FESEM images 

of short, moderately tall, and tall CNT TIMs are shown in Figure 7.1. 
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Figure 7.1.  FESEM images of (a) 3.5, (b) 10, and (c) 41 µm tall CNT TIMs post thermal 
measurement. 
 
Evidence of plastic deformation or buckling is difficult to observe in Figures 7.1 (a) and 

7.1 (b) for the 3.5 and 10 µm tall CNT TIMs, but the 41 µm tall CNT TIM clearly displays 

these features as shown in Figure 7.2.  The top of the CNT TIM appears to retain vertical 

alignment while a single buckling mode is present approximately at the midsection of the 

CNT TIM.  Near the Si substrate, coordinated buckling of the CNTs and regions of 

localized strain can be observed. 
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Figure 7.2.  Magnified FESEM images of 41 µm tall CNT showing different morphologies 
spanning the height of the CNT TIM. 
 

7.2.2 Photoacoustic Thermal Characterization 

In electronics cooling applications, the microprocessor and thermal management 

components including the TIM are compressively preloaded to contact pressures between 

15 - 60 kPa that can be subsequently amplified to a significantly higher pressure of 138 

kPa in the event of a mechanical shock [103].  Additionally, depending on the absolute 

temperature of the components and relative differences in temperature and coefficients of 

thermal expansion during normal operation, stress tensors in other directions are likely 

present, but are not formally considered in this work.  Within this pressure range, the 

thermal performance of CNT TIMs was evaluated using a transient PA technique.  The 

thermal interface resistance between the Si substrate and opposing material (Ag foil) was 

directly measured, while the effective thermal conductivities and thermal contact 

resistances were inferred from a linear fit to thermal resistance measurements and CNT 

TIM height estimations.  A more detailed review of the PA technique can be found in 

References 32, 59, and 65. 

Figure 7.3 shows the experimental setup, and Figure 7.4 is a schematic of a typical 

multi-layered stack.  During thermal testing the Ti-coated Ag foil was surrounded by a 

sealed acoustic cell that was pressurized with helium at four different pressures, 
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approximately 21, 41, 75, and 145 kPa, which sequentially compressed the CNT TIMs.  

The multi-layered stack was then heated over a range of frequencies by a 350 mW, 

modulated laser source.  The thermal response of the multi-layered stack induces a transient 

temperature field in the gas that can be related to cell pressure. A microphone housed in 

the chamber wall measures the phase shift of the temperature-induced pressure response in 

the acoustic chamber, and the signal is then directed to a lock-in amplifier.  Using the 

acoustic signal in conjunction with a model developed in prior work [32, 59, 65] that is 

based on a one-dimensional transient conduction analysis, thermal interface resistances 

were determined using a nonlinear least-square fitting algorithm.  Similar to the work of 

Reference 59, the measurement technique was benchmarked against a 0.5 µm thick SiO2 

layer of known thermal conductivity (1.40 W/mK).  By measuring the phase shift response 

of the SiO2 layer in the frequency range of 1 to 6 kHz, the thermal conductivity was 

measured to be approximately 1.49 ± 0.17 W/mK. 

 
 

Figure 7.3.  Experimental setup of photoacoustic technique and schematic of CNT TIMs 
in a configuration for thermal measurement in the PA technique. 
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Figure 7.4.  Schematic illustrating PA measurement of a multi-layered stack consisting of 
Ag foil, TIM, and substrate. 
 
 
7.2.3 Nanoindentation Measurements 
 

Indentation measurements on the 3.5, 10, and 41 µm tall CNT TIMs were conducted 

using a nanoindenter (Agilent G200) [21].  To mimic the compression of the CNT TIMs 

by the Ag foil in the PA technique, a 100 µm diamond flat punch was used during the 

indentation measurements.  Two indentation methods were applied to each of the 

aforementioned CNT TIMs.  Both methods involved indents at 9 different locations in a 

3x3 grid pattern with a 500 µm spacing between indent locations.  The first method 

consisted of a single load and unload segment at a constant strain rate of 0.1 s-1 [102].  The 

second method consisted of sequential cycles of load and unload segments in which the 

unloading stiffness as a function of stress was extracted from the unloading curve of each 

segment.  The first method was used to estimate the CNT TIM height as a function of 

pressure for the PA measurements.  The second method was used to infer deformation 

features and changes in stiffness that complement the PA measurements. 
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7.2.4 Uncertainty Quantification 

Uncertainty in the thermal resistance measured by the PA technique arises from the 

variability in the phase shift signal acquired by the microphone as well as the uncertainty 

associated with loading the CNT TIM into the PA cell.  The former has been shown to have 

an uncertainty of (±0.2°) [32].  The latter was determined by measuring the thermal 

resistance of the same CNT TIM at five different instances in which the Ag foil was moved 

out of contact with the CNT TIM and realigned for the next measurement. The uncertainty 

with the loading procedure was determined to be approximately (±1°) and is propagated 

through the analysis to determine the contact resistance and effective thermal conductivity.  

We find this approach to be appropriate because the uncertainty in the loading procedure 

is significantly greater than the uncertainty in the phase shift signal and serves as a better 

representation when comparing thermal resistance measurements of different CNT TIMs.  

This uncertainty was assumed to be normally distributed with a standard deviation of ± 1°, 

and the error bars in the proceeding figures represent the 95% confidence interval.   

The CNT TIM height is frequently used in the following discussion, and the uncertainty 

was determined by the error associated with the image analysis employed to determine the 

initial and compressed CNT TIM heights.  An example of the image analysis is shown in 

Figure 7.5. 
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Figure 7.5.  Image analysis performed on an SEM image to determine the initial and 
compressed CNT TIM height. 
 
The bottom traced line in Figure 7.5 represents the interface between the Si substrate and 

CNTs while the top traced line is the contour defining the apparent roughness of the CNT 

tips.  The CNT TIM height was assumed to be normally distributed with a mean and 

standard deviation determined from the distance between the two traced lines at each 

longitudinal slice of the SEM image.  The width of the longitudinal slice was determined 

from the resolution of the image.  We note that uncertainty can arise from the perspective 

in which the SEM image is captured (i.e., non-orthogonal projection).  However, this 

uncertainty is difficult to quantify and is not included in the analysis. 

The mass of CNTs used to calculate the mass density was assumed to follow a normal 

distribution with a standard deviation of ± 5 µg (microbalance specification data sheet 

reports ± 1 µg).  The aforementioned uncertainties were propagated through the entire 

analysis using a boot-strapping method with ten thousand ‘virtual’ samples. 
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7.3 Results and Discussion 

 

7.3.1 Mechanical Compression 

The displacements into the CNT TIMs are plotted against the engineering stress applied 

by the indenter in Figures 7.6 (a) - (c) for the 3.5, 10, and 41 µm tall CNT TIMs, 

respectively.  The unloading stiffness as a function of engineering stress is plotted in Figure 

7.6 (d).  The engineering stress is defined as the applied load sensed by the indenter divided 

by the cross-sectional area of the indenter.  Note that throughout the proceeding sections, 

the engineering stress is assumed to be equivalent to the applied cell pressure in the PA 

measurement. For the taller CNT TIMs (10 and 41 µm), the displacement curves exhibit 

behaviors similar to open-cell foams [104, 105] in that three distinct regions exist: (i) a 

linear elastic region at stresses approximately less than 160 kPa, (ii) a flat plateau region at 

stresses approximately above 160 kPa and (iii) a densification region at higher stresses.  

Between the linear elastic and flat plateau regions, the stiffness of the 10 and 41 µm tall 

CNT TIMs increases until a stress of approximately 80 kPa is reached and then decreases 

as the CNT TIM begins to buckle in a coordinated manner [13, 19].  A monotonic increase 

in stiffness is observed for the 3.5 µm CNT TIM, which is likely due to substrate effects. 

In the flat plateau region, the CNT TIM is significantly strained with a small increase 

in stress, while the densification region is indicative of significant increases in mass density 

as CNTs are compacted as well as stiffening effects from the Si substrate.  The flat plateau 

and densification regions are representative of regimes in which significant microstructural 

changes in the aggregate CNT structure are occurring with plastic deformation observed 

during the unloading cycles.  Plastic deformation is also apparent for the shortest, 3.5 µm 
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tall CNT TIM, but its displacement curve is noticeably different than those of taller CNT 

TIMs, likely due to substrate effects. 

  
 

  
 
Figure 7.6.  Distance into CNT TIM as a function of engineering stress for (a) 3.5 µm, 
(b), 10 µm, and (c) 41 µm.  (d) Unloading stiffness as a function of engineering stress. 
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Figure 7.6.  Continued. 

 

7.3.2 Estimation of CNT TIM Height 

Height estimates as functions of stress for the 3.5, 10, and 41 µm tall CNT TIMs were 

determined directly from nanoindentation measurements. Height estimates for CNT TIMs 
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that did not undergo nanoindentation measurements were determined with a calibration 

curve based on their as-grown heights and compression profiles of the 3.5, 10 and 41 µm 

tall CNT TIMs.  As shown in Figure 7.7, a piecewise linear fit from the nanoindentation 

measurements was used to determine the change in CNT TIM height of the 3.5, 10, and 41 

µm tall CNT TIMs at different stresses.  In the absence of an indentation measurement, the 

piecewise linear fits allow for estimation of the change in height of other CNT TIMs based 

on their initial as-grown heights.  For example, the height of a CNT TIM compressed to 

145 kPa with an as-grown height of 15 µm can be determined from the dashed red line in 

Figure 7.7.  Figure 7.8 shows the compressed heights of the 3.5, 10, and 41 µm tall CNT 

TIMs as functions of stress (solid lines) as well as the compressed heights of the other CNT 

TIMs that were not measured by nanoindentation.  The circled points in Figure 7.8 

correspond to the calibration curves in Figure 7.7 and represent the applied cell pressure at 

which the CNT TIMs were compressed during PA measurements. 
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Figure 7.7.  Piecewise linear fit at 21, 41, 76, and 145 kPa of the change in CNT TIM height 
relative to the initial CNT TIM height for the 3.5, 10, and 41 µm tall CNT TIMs measured 
by nanoindentation. 

 

 
Figure 7.8.  Compressed CNT TIM height as a function of engineering stress for the 3.5, 
10, and 41 µm tall CNT TIMs measured by nanoindentation (solid lines) as well as 
estimates of the compressed CNT TIM heights for CNT TIMs not measured by 
nanoindentation (dashed lines). 
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7.3.3 Thermal Performance 

Thermal resistance values obtained by the PA technique are shown in Figure 7.9 for 

as-grown CNT TIMs in three general height regimes: (i) < 10 μm (short CNT TIM), (ii) 10 

- 30 μm (moderately tall CNT TIM) and (iii) greater than 30 µm (tall CNT TIM).  The 

height regimes are defined in this manner in order to provide a categorical methodology to 

predict the thermal performance of CNT TIMs grown using our deposition process based 

on initial heights.  For example, a CNT TIM with an as-grown height of 25 µm is expected 

have a thermal resistance profile similar to a 10 µm tall CNT TIM.  An interface with a 

liquid metal as the TIM (GaInSn eutectic, k = 16.5 W/mK [106]) as well as an interface 

without a CNT TIM were also measured for comparison. 

Thermal resistances were assessed at four pressures between 21 and 145 kPa with the 

maximum pressure limited by the acoustic hardware.  Additionally, the thermal resistance 

values represent the resistance between the Ag foil and Si growth substrate with the CNT 

TIM separating these two layers.  Note that the pressure corresponds to the gas pressure 

within the photoacoustic cell, which in turn induces a uniaxial compressive stress on the 

Ag foil and underlying CNT TIM.  Thus, the thermal resistance without an applied cell 

pressure (0 kPa) represents the thermal resistance at a compressive load comprising the 

weight of foil and the photoacoustic cell (approximately 2 kPa). 
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Figure 7.9.  Thermal resistance measured by the photoacoustic technique as a function of 
applied cell pressure for CNT TIM heights ranging from 3 to 50 µm.  Measurements of a 
bare interface (Ag foil to Si) and liquid metal are shown for comparison.  The solid lines 
are displayed to guide the eye. 
 

The GaInSn eutectic exhibits the lowest thermal resistance, and its thermal resistance 

also remains constant with pressure.  The latter is an indication that the contact area with 

the opposing substrates is maximized once the opposing substrates (Ag foil and Si) come 

into contact with the GaInSn eutectic.  Additionally, the interface without a CNT TIM has 

the most aggressive decrease in thermal resistance as the pressure increases, followed by 

short and moderately CNT TIMs.  Across the pressure range at which the thermal 

measurements were conducted, the thermal performance of the CNT TIMs typically reside 

between two extremes: (i) an interface dominated by the contact resistance (i.e., a bare 
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interface) and (ii) a TIM that wets the opposing substrates well and conducts heat 

efficiently (i.e., liquid metal).  The shortest CNT TIMs exhibit the lowest thermal resistance 

followed by the moderately tall and tallest CNT TIMs in ascending order.  Within this 

pressure range, short and moderately tall CNT TIMs display a monotonic decrease in 

thermal resistance as pressure increases.  Conversely, tall CNT TIMs exhibit a monotonic 

increase in thermal resistance as pressure increases, to the point that a bare interface 

thermally outperforms it at the highest pressure.   

The thermal network of the CNT TIM as a function of the applied cell pressure is shown 

in Equation (7.1).  The network is represented in a manner to tailor the foregoing analysis 

to the framework of the measured thermal resistance in Figure 7.9 and interface 

configuration in Figure 7.10.  In this representation, phonon scattering mechanisms within 

individual CNTs induced by defects and kinks as well as intra- and inter-tube van der Waals 

interactions are inherently included in the bulk resistance.  Additionally, since the CNT 

TIM is considered to be a non-interaction composite comprised of CNTs and air, the bulk 

resistance also incorporates heat conduction through the gaseous voids.  Similarly, the 

transmission of heat carriers across solid-solid and solid-gas interfaces is implicitly 

included in the contact resistance. 

 ( ) comp
meas bulk contact Ag foil CNT TIM CNT TIM Ag foil

eff

h
R P R R R R

k − −= + = + +  (7.1) 
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Figure 7.10.  Schematic of interface showing contributors to contact and bulk resistances. 
 
In Equation (7.1), Rbulk is the bulk resistance of the CNT TIM defined by the ratio of 

compressed CNT TIM height, hcomp, to the effective thermal conductivity of the CNT TIM, 

keff.  Rcontact is the combined contact resistances of the CNT TIM with the Ag foil and Si 

growth substrate.  Within this framework, the effective thermal conductivity of the CNT 

TIM at each pressure can be estimated by a linear fit of Equation (7.1) to the measured 

thermal resistances and CNT TIM height estimates as shown in Figure 7.11.  The inverse 

slope represents the effective thermal conductivity of the CNT TIM, while the intercept 

with the vertical axis represents the combined contact resistance of the CNT TIM with the 

Ag foil and Si substrate. 
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Figure 7.11.  Total thermal resistance as a function of CNT TIM Height at (a) 21 kPa, (b) 
41 kPa, (c) 76 kPa, and (d) 145 kPa.  Inverse slope of the linear fit is the effective thermal 
conductivity and the intercept is the contact resistance. 
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Figure 7.11.  Continued. 
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An important implication of applying a linear fit to the data in Figure 7.11 is that the 

contact resistance and effective thermal conductivity are independent of CNT height.  For 

CNT heights ranging from 5 to 150 µm, Taphouse et al. [107] observed a similar trend (i.e., 

higher thermal resistance with taller CNT TIMs) and qualitatively attributed the 

dependence of a contact-dominated thermal resistance on CNT height to non-uniformities 

in CNT growth rate and ultimately CNT surface roughness as observed through SEM 

imaging.  The effect of CNT height on the effective thermal conductivity depends on the 

average distance a phonon travels before scattering (i.e., mean free path).  If the dominant 

phonon mean free path is significantly less than the CNT height, then the effective thermal 

conductivity should not be affected by CNT height.  Indeed, a study quantifying the surface 

roughness and dominant phonon mean free paths of these CNT TIMs would serve as a 

strong supplement to the underlying implications of applying a linear fit to the data in 

Figure 7.11, but such an analysis falls outside the scope of this work.  Nonetheless, if CNT 

height significantly influenced the contact resistance and effective thermal conductivity, 

then the data in Figure 7.11 would exhibit nonlinear behavior, and at least within the range 

of CNT heights in this work, a linear fit seems to adequately describe the data. 

A feature that can be inferred from Figure 7.11 is that the coefficient of determination 

(R2 value) of the linear fit monotonically increases (Figure 7.12), suggesting that variations 

in the alignment of the CNT TIM with the Ag foil during the assembly procedure are 

mitigated as the pressure increases.  The effective thermal conductivity of the CNT TIM 

and the combined contact resistances with the Ag foil and Si growth substrate as functions 

of pressure are shown in Figure 7.13. 
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Figure 7.12.  Coefficient of determination of linear fits to TIR and CNT TIM height 
measurements at different pressures. 
 

 
 
Figure 7.13.  CNT TIM effective thermal conductivity and the combined contact resistance 
with Ag foil and Si growth substrate. 
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The contact resistances in Figure 7.13 are comparable to previously reported values for 

similar CNT TIMs grown on Si substrates that were measured by the photoacoustic 

technique [32 - 34].  The contact resistance between the CNT TIM and Ag foil is expected 

to dominate the combined contact resistance because phonon transmission at this interface 

depends on weak van der Waals interactions [41], whereas the CNTs are expected to 

covalently root into the catalyst layer on the Si growth substrate [108].  The effective 

thermal conductivities in Figure 7.13 reside on the lower end of the range of reported values 

[27, 32 - 34, 43 - 57] and correspond well with Bougher et al. [34] using the photoacoustic 

technique and Pal et al. [55] using similar analysis in this work.  Bougher et al. treated the 

CNT TIM as a thermally capacitive layer in the photoacoustic model and employed 

multivariate regression to determine the effective thermal conductivity and contact 

resistances to the opposing substrates.  In order to eliminate the uncertainties associated 

with density and heat capacity estimations, the CNT TIM was not included as a thermally 

capacitive medium in this work. Nonetheless, the agreement between the effective thermal 

conductivities resulting from these differing approaches is encouraging, considering the 

wide range of reported values [27, 32 - 34, 43 - 57]. 

With the contact resistances, effective thermal conductivities, and CNT TIM heights 

determined at the four pressures the thermal resistances of the CNT TIMs were measured, 

the contributions of the bulk and contact resistances can be compared.  Figure 7.14 shows 

comparisons of the bulk and contact resistances to the total thermal resistance as a function 

of pressure for CNT TIMs with as-grown heights of 3, 10, 23, and 43 µm. 
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Figure 7.14.  Comparison of the contributions of the bulk and contact resistance to the total 
thermal resistance as function of pressure for CNT TIMs with as-grown heights of (a) 3, 
(b) 10, (c) 23, and (d) 43 µm. 

 



 90 

 

 

 

Figure 7.14.  Continued. 

For shortest CNT TIM (Figure 7.14a), the total thermal resistance is dominated by the 

contact made with the Ag foil as the bulk resistance is significantly lower than the contact 
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resistance, and the change in total thermal resistance with pressure is driven by the change 

in contact resistance.  For the CNT TIM with an as-grown height of 10 µm (Figure 7.14b), 

the contact resistance remains the main contributor to total thermal resistance, but the bulk 

resistance is greater than that of the shortest CNT TIM.  As a result, the decrease in total 

thermal resistance with pressure is less pronounced relative to the shortest CNT TIM.  For 

the CNT TIMs with as-grown heights of 23 and 43 µm (Figures R7.14c and 7.14d), the 

bulk resistance is even more influential relative to the contact resistance and ultimately 

causes an increase in the total thermal resistance as pressure increases. 

Within the range of pressures at which the PA measurements were performed, both the 

contact resistance to the opposing substrates and the effective thermal conductivity 

monotonically decrease as the CNT TIM compresses.  The former is expected as the CNT 

tips elastically bend and the size of CNT to Ag foil contacts increases as the interface is 

compressed [41].  As the compression profile of the CNT TIM transitions from the linear 

elastic to buckling region, we postulate that stiffening due to CNT-to-CNT contacts and 

localized strain adversely affects thermal transport within the CNT TIM, causing the 

effective thermal conductivity to reduce.   

Effective medium approximations are commonly employed to describe the effective 

thermal conductivity of CNT TIMs [57, 109] as a function of volume fraction.  Within the 

framework of an effective medium approximation, the effective thermal conductivity will 

increase with volume fraction as the CNT TIM compresses.  To calculate the volume 

fraction (i.e., the ratio of the volume occupied by CNTs to the nominal volume), the density 

of a single MWCNT is required, which can be difficult to measure with high fidelity given 

the variation in the number of walls in a given MWCNT.  Therefore, mass density, which 
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only requires knowledge of measurable quantities (i.e., mass of the CNT array, apparent 

cross-sectional area of the Si growth substrate, and CNT TIM height), was used as a 

surrogate for volume fraction.  The mass density for short, moderately tall, and tall CNT 

TIMs are plotted as functions of pressure in Figure 7.15.  For the 3, 10, and 43 µm tall CNT 

TIMs, the mass densities monotonically increase with pressure by factors of approximately 

3.7, 2.0, and 1.1, respectively. 

 

Figure 7.15.  Mass density as a function of engineering stress for (a) 3, (b) 10, and (c) 41 
µm tall CNT TIMs.  Solid lines represent the 95% confidence intervals. 
 

A consequence of a monotonically increasing mass density is that an effective medium 

approximation, such as the model developed by Nan et al. [109], would predict a continual 

increase in the effective thermal conductivity as a function of pressure that contradicts the 

observations in this work.  Additionally, according to Equation (7.1), a monotonic increase 

in effective thermal conductivity (decrease in the bulk resistance) in conjunction with a 

monotonic decrease in contact resistance will result in a monotonic decrease in total 
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thermal resistance, which is not observed for the tallest CNT TIMs.  In the work of Na et 

al. [110], the thermal resistance of CNT arrays of varying heights and mass densities was 

shown to decrease by approximately 70% with an approximate three-fold increase in the 

as-grown mass density (0.07 to 0.26 g/cm3), which is expected because a greater packing 

density should increase the number of CNTs that participate in thermal transport.  In this 

work, the range of as-grown mass densities is limited to approximately 0.02 g/cm3, with 

the shortest CNT TIMs having the highest mass density and the tallest CNT TIMs having 

the lowest.  Therefore, we expect the number of CNTs participating in thermal transport to 

be similar amongst our CNT TIMs.  

While the as-grown mass density can be used as a basic indicator of thermal 

performance [110], the mechanical effects on thermal transport within CNT TIMs as they 

are compressed is not captured solely by this quantity.  As moderately tall and tall CNT 

TIMs stiffen under compression due to inter-tube interactions [13, 19], their mass densities 

also steadily increase, and as they begin to buckle and deform in a coordinated manner, 

their mass densities increase at a relatively faster rate.  Therefore, tracking mass density as 

a function of pressure in tandem with stiffness (Figure R1) can serve as an indicator of 

microstructural changes affecting thermal transport (i.e., inter-tube interactions as the CNT 

TIM stiffens and localized strain as the CNT TIM buckles) as the CNT TIM is compressed. 

The preceding analysis and observations show evidence of a complex interplay 

between the contact and bulk resistances that are driven by the mechanical response of 

CNT TIMs to compression.  The dependence of the contact resistance on pressure is 

congruent with traditional thermal contact conductance theory [1, 41] as the quantity and 

sizes of CNT-to-Ag foil contacts should increase upon compression, thus enhancing the 
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pathways for heat conduction.  In contrast, minimal literature has been reported on the 

pressure dependence of the effective thermal conductivity of CNT TIMs, with many 

publications either measuring this quantity at a single pressure or assuming that the CNT 

TIM conducts heat effectively enough to neglect its contribution to the total temperature 

drop across the interface.  The only prior work documenting pressure-dependent effective 

thermal conductivity of CNT TIMs was by Lin et al. [50], who reported a decrease in 

thermal diffusivity with increasing compressive stresses using the laser flash technique.  

Despite the dearth of prior work, the roles of defects, localized strain, and CNT-to-CNT 

contacts are commonly highlighted as key factors that can affect the effective thermal 

conductivity of CNT TIMs and are often qualitatively considered due to the difficultly in 

quantifying their contributions experimentally.  Defects, localized strain, and CNT-to-CNT 

contacts should increasingly affect heat conduction not only in individual CNTs but also 

in the aggregate CNT TIM structure as the CNT TIM buckles (defects and localized strain) 

in a coordinated fashion (CNT-to-CNT contacts).  Using microthermometry on individual 

MWCNTs, Pettes and Shi [58] reported thermal conductivities between 42 and 343 W/mK 

at 300 K, which corresponded to phonon mean free paths between 4 – 30 nm.  And 

importantly, TEM imaging in their study revealed high defect concentrations (dislocations) 

within the MWCNTs that moderately correlated with the characteristic phonon mean free 

paths.  Recent molecular dynamics simulations by Volkov et al. [111] indicate that 

significant reductions in thermal conductance of single-walled CNTs occur when buckling 

kinks are introduced into the lattice.  Using the 3ω method on MWCNT bundles, Aliev et 

al. [112] reported that the thermal conductivity of CNT bundles monotonically decreased 

as CNTs were added to the bundles and elucidated the role of CNT-to-CNT contacts in 
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damping out-of-plane acoustic and optical phonon modes that significantly contribute to 

heat conduction. 

 

7.4 Conclusions 

The present nanoindention measurements reveal that tall and moderately tall CNT 

TIMs stiffen in the linearly elastic region, soften in the coordinated buckling region, and 

finally stiffen again in the densification region. Parallel PA measurements indicate that in 

the linearly elastic region and at the onset of the coordinated buckling region, shorter CNT 

TIMs have lower total thermal resistance relative to taller CNT TIMs due to a lower bulk 

resistance.  Hence, the contributions of the bulk and contact resistances to the total thermal 

resistance can be modulated with CNT TIM height.  Indeed, having the ability to control 

the contributions of the bulk and contact resistances could be advantageous depending on 

the application.  If the application is limited more by thermal constraints relative to 

mechanical constraints (i.e., high heat flux and low mechanical stress), then shorter CNT 

TIMs may be a better option.  In contrast, taller CNT TIMs may be more appropriate for 

applications that are limited by the mechanical constraints relative to thermal constraints 

(i.e., high mechanical stress and low heat flux). 
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8.    THERMAL CONTACT CONDUCTANCE AT ELEVATED TEMPERATURES: 

MEASUREMENT SYSTEM AND THE CAPABILITIES OF CNT AND CNT/PETAL 

TIMS AT ELEVATED TEMPERATURES 

 

8.1 Introduction 

In a review of thermal management for future heat-generating electronics, panelists 

from Northrup Grumman, JPL, and Rockwell Collins explored the challenges that thermal 

engineers face in designing innovative cooling solutions for systems subjected to harsh or 

extreme environments in military, automotive and space applications.  As many of these 

electronics are assembled in a modular fashion that manifests a thermal contact resistance, 

the need to develop light-weight TIMs of higher thermal conductivity and lower thermal 

coefficients of expansions was highlighted as a critical issue, particularly in extreme 

temperature and pressure enviornments.  Electronic components in future NASA space 

systems will require operation in wide pressure and temperature ranges between 0 and 10 

MPa and from -230°C to 486°C, while military units in avionics currently involve 

operation between -55°C and 125°C [113] under shock and vibration stimuli.  In the 

automotive industry, semiconductor power densities are currently at 300 W/cm2 [113] 

whereas the Intel i7 chip only generates 50 W/cm2.  Additionally, drive motor controllers 

in next-generation hybrid and fully-electric vehicles can generate heat in the kilowatt range 

[113].  Thermal contact conductance at elevated temperatures also  



 97 

 

plays an important role in thermoelectric applications in which operating temperatues can 

reach 1000°C [114] and SiC devices that can theoretically operate up to 600°C [36]. 

In comparison to room temperature or sub-100°C applications, in which many different 

TIMs are available, high-temperature applications are relegated to sparse options.  Thermal 

greases and solders are effective at reducing the temperature drop in microprocesser related 

applications, but will significantly degrade at temperatures above 180°C (Arctic Silver 5, 

Arctic Silver Inc. [115]) and 280°C (AuSn Indalloy, Indium Inc. [116]).  As a result, 

thermal engineers often do not use TIMs (bare interface) or are limited to metallic foils in 

high-temperature applications. However, at the elevated temperatues and pressues, 

diffusion bonding between the constituent materials occurs, rendering any rework or 

maintanence a difficult task.  Graftech Inc. offers graphitic based foils that are suitable for 

high-temperature applications and depending on the thickness of the foil, perform between 

10 and 100 mm2 K/W.  While as-grown CNT TIMs, without any subsequent bonding 

technique or treatment, do not break performance barriers relative to current room-

temperature, commercially-available TIMs, their stability at elevated temperatures may 

render them more appropriate for high-temperature applications.  Studies have shown that 

CNTs are stable in oxididative environments up to approximately 450°C [117, 118], with 

defects and diameter playing a major role in their reactivity with oxygen [117].  Bom et al. 

[117] and Zhao et al. [118] increased the stability of raw CNTs in oxidative environments 

to 700-800°C by annealing out the defects at temperatures between 2800-3000°C in 

oxygen-free atmospheres. 

An equally important necessicity is the development of experimental systems that are 

capable of measuring the performance of TIMs and quantifying thermal properties of 



 98 

 

materials in extreme environments.  Additionally, many materials, such as metals, exhibit 

strong temperature dependent thermal and mechanical properties at these temperatures. 

Commonly used data analysis techniques ignore both of these factors and as a result yield 

inaccurate results, rendering a need for measurement systems with such capabilities in 

high-temperature environments.  Presently, experimental quantification of the performance 

of TIMs and thermal properties of materials at eleveted temperatures is particularly sparse 

for abnormal thermal environments, with values often selected from room-temperature 

results, or in some cases, ignored completely.  However, many different techniques are 

certainly able to recreate high-temperature environments  [114, 119 - 121].  The 

photoacoustic technique is capable of testing the performance of TIMs up to 250°C [36, 

38], as limited by the microphone hardware. 

In this work, a thermal contact resistance measurement system at Sandia National 

Laboratories was built and modified to measure the contact resistance of metallic interfaces 

under wide interfacial pressure (0.1 – 8 MPa) and temperature (>450°C) ranges.  The 

system was used to measure the thermal contact resistance of stainless steel, aluminum and 

copper interfaces as well as CNT and CNT/graphitic petal TIMs. 

 

8.2 Experimental Setup 

The measurement system is based on the ASTM D470-06 standard [122] for measuring 

contact resistance.  The system is equipped with two bars of known thermal conductivity 

that serve as heat flux meters.  Each heat flux meter has 7 thermocouples to monitor the 

temperature gradient and thus make known the heat flux at the interface between the two 

bars.  In this work, the heat flux meters are stainless steel 304, Al6061, or Cu101001 and 
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of tailored length to provide a large enough temperature gradient to yield accurate 

measurements of the thermal contact resistance between them. At elevated temperatures, 

radial radiation heat flux from meters causes significant non-linearity of the measured 

temperature profile. To mitigate these losses, eliminate convective losses, and ultimately 

maximize heat conduction across the interface, the measurement system is housed in a Kurt 

J. Lesker© vacuum chamber capable of reaching pressures below 10 µTorr.  Additionally, 

an Au electroplated type 304 stainless steel radiation shield surrounds the heat flux meters 

to further reduce radiative losses.  The maximum interface temperature with this equipment 

is approximately 630°C for bare interfaces.  The interface pressure can be adjusted in situ 

and can also compress the interface up to 8 MPa for ½-inch diameter heat flux meters.  Due 

to the large thermal mass that the system possesses and thus long time constants, a custom 

PID controller was implemented to maintain a constant pressure (+/- 0.5 kPa) on the 

interface.  A real-time multivariate regression code, based on the Levenberg-Marquardt 

method, was developed to fit thermal quantities to the experimental data. 
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Figure 8.1.  1D steady-state measurement system for thermal conductivity and thermal 
contact resistance measurements at elevated temperatures [123]. 
 

The model accompanying the measurement system is based on the one-dimensional heat 

conduction equation with an extra term to account for radiative losses.  The governing 

equation and boundary conditions are  

 ( )
22

4 4
2 0o

rad

d T dk dTk T T
dx dT dx R

σ + − − = 
 

 (8.1) 
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= = −  (8.2 - 8.4) 

in which T is the temperature in the heat flux maters, k is the temperature-dependent 

thermal conductivity of the heat flux meters, σ is the Stefan-Boltzmann constant, T0 is the 
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temperature of the bell jar, and Rrad is the radiative resistance between the heat flux meters 

and bell jar.  Rrad is defined below as 

  (8.5) 

where ε and D are the emissivity and diameter, respectively, of each the heat flux meters, 

radiation shield, and bell jar.  FHFM-shield is the view factor from the heat flux meters to the 

radiation shield and Fshield-jar is the view factor from the radiation shield to the bell jar.  

Temperature-dependent values for all intrinsic material properties are considered in the 

model. A multivariate regression algorithm based on the Levenberg-Marquardt method fits 

the model to the data with the heat flux, ambient temperatures, and temperatures at the 

boundaries of the heat flux meters as fitting parameters.  Typical temperature profiles at 

interface temperatures of 150 and 510°C that highlight the radiative effects are shown 

below in Figures 8.2 (a) and (b), respectively. 
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Figure 8.2.  Typical temperature profiles at (a) 150°C and (b) 510°C.   
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8.3 Results and Discussion 

 

8.3.1 Bare Interfaces 

A stainless steel 304 (SS304) heat flux meter was interfaced with each with SS304, 

aluminum 6061 (Al 6061) and copper 10100 (Cu 10100) heat flux meters.  The thermal 

contact resistance between the heat flux meters was measured in the temperature range of 

150 – 550°C for the SS304-SS304 and SS304-Cu10100 combinations and 150 – 450°C for 

the SS304-Al6061 combination.  The temperature range for the latter was reduced to 

remain under the melting temperature of Al6061.  For all combinations, the interface 

pressure was approximately 1.50 – 4.25 MPa.  Figures 8.3 (a)-(c) show how thermal 

contact resistance responds to a change in interface pressure at each surface combination. 

Further, Figure 8.3 (d) shows how thermal contact resistance responds to a change in 

temperature at constant interface pressure for each surface combination.  The dashed lines 

represent the interface resistance during the cool-down phase.  
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Figure 8.3.  Thermal contact resistance as a function of interface pressure for (a) SS304-
SS304, (b) SS304-Al6061, and (c) SS304-Cu10100.  Thermal contact resistance as a 
function of interface temperature for all three combinations in (d) at an interface pressure 
of 1.5 MPa.  The dashed lines in (d) represent the ramp down in temperature [124]. 
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Figure 8.3.  Continued. 

For all three material combinations in Figures 8.3 (a)-(c), the thermal resistance 

monotonically decreases with increasing pressure as the materials conform and engage.  

The rate of change of the thermal resistance with interface pressure is driven by the 
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microhardness and the initial surface profile of the material, the former of which is 

dependent on temperature.  The rate of change of thermal resistance with interface pressure 

is noticeably less dramatic as the interface temperature is increased.  This is likely due to 

the pressure and temperature dependence of the microhardness of each material as well as 

the measurement sequence. The interface pressure was first loaded from 1.50 to 4.25 MPa 

at one temperature, then unloaded to 1.50 MPa and subsequently heated to the next 

temperature.  As a result, the material surfaces repeatedly conformed to each other, and 

this effect becomes more influential in creating additional contact as the material softens 

at higher temperatures.  In Figure 8.3 (d), the Al6061-SS304 and Cu10100-SS304 

combinations possess a significant hysteresis in the temperature cycle, indicating that the 

surface of the softer material (Al6061 or Cu10100) plastically conforms to the harder 

material (SS304). The resulting bonded interface was observed post-test, but was not 

quantified in this case. 

 

8.3.2 CNT and CNT/Petal TIMs 

The intention of this study was to assess the efficacy of carbon-based materials as TIMs 

at elevated temperatures (150 to 450°C) and moderate interface pressures (120 to 640 kPa).  

Additionally, the results stemming from this study were intended to serve as an extension 

of the findings in Chapter 7, particurily at higher interface pressures and temperatures.  In 

Chapter 7, the effective thermal conductivity and thermal contact resistance as functions 

of pressure were estimated from the measured thermal resistance values and bond line 

thickness estimates.  The same methodology in Chapter 7 was employed in this work using 

the 1D reference bar technique rather than the PA technique.  However, alignment of the 
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sample stack (i.e., heat flux meter/TIM/heat flux meter) proved to be a difficult endeavor, 

given the manner in which the measurement system was initially constructed as well as the 

nature in which the measurements were conducted. 

Prior to conducting measurements on the CNT and CNT/petal sample set, a series of 

measurements were performed on a bare interface (i.e., heat flux meter/heat flux meter) to 

determine the repeatability of the sample loading procedure.  Figure 8.4 below shows the 

measured thermal resistance values for four independent alignments in which the heat flux 

meters were guided into contact, the thermal resistance was measured, the flux meters were 

guided out of contact, and finally guided back into contact for another measurement.   

These measurements were conducted at relativley low interface pressures and temperatures 

(120 kPa and 150°C) in order to minimize irreversible changes to the heat flux meter 

surfaces.   

 

Figure 8.4.  Measured thermal resistance values for bare interfaces in which the heat flux 
meters were guided into contact using the alignment procedure. 
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In Figure 8.4., the average thermal resistance is approximately 3668 mm2 K/W with a 

standard deviation of approximately of approximately 392 mm2 K/W.  The maximum and 

minimum values are approximately 4130 and 3326 mm2 K/W, respectively. 

The thermal resistances of CNT and CNT/petal TIMs were measured in pressure and 

temperature ranges of 120 – 640 kPa and 150 - 450°C.  The pressure was held constant at 

120 kPa at each 150°C, 300°C, and 400°C.  At 450°C, the TIMs were subjected to 

mechanical cycling between the minimum and maximum pressures, 120 and 640 kPa, 

respectively.  The TIMs comprised of 100 µm-thick Cu foils with CNTs or CNT/petals on 

one side.  The TIM heights ranged from approximately 3 – 50 µm, which were chosen to 

match the CNT TIMs measured in Chapter 7. 

Figures 8.5 and 8.6 below show the measured thermal resistance as a function of 

pressure and temperature for a CNT TIM with approximately 40 µm tall CNTs and a 

CNT/petal TIM of similar height.  The other CNT TIMs measured in this study possess 

similar behavior with the thermal resistances of all the CNT and CNT/petal TIMs residing 

in the range of 200 – 700 mm2 K/W at an interface temperature of 450°C.  Due to the 

uncertainty in the alignment procedure (see Figure 8.4 and the range of thermal resistances 

measured for the CNT and CNT/petal TIMs, comparisons between TIMs of varying CNT 

or CNT/petal heights were not explored.  Nonetheless, each of the CNT and CNT/petal 

TIMs outperformed a bare Cu foil, which possessed thermal resistances in the range of 900 

– 1200 mm2 K/W across the entire pressure and temperature ranges.  
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Figure 8.5.  (a) Measured thermal resistance as a function of pressure for CNT TIM at an 
interface temperature of 450°C and (b) measured thermal resistance as a function of 
interface temperature for CNT TIM. 
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Figure 8.6.  (a) Measured thermal resistance as a function of pressure for CNT/petal TIM 
at an interface temperature of 450°C and (b) measured thermal resistance as a function of 
interface temperature for CNT/petal TIM. 
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During the initial compression, the CNT and CNT/petal TIMs exhibit different thermal 

behavior.  The thermal resistance of the CNT TIM remains relatively constant between 120 

and 180 kPa.  At 180 kPa, a slight decrease in thermal resistance of approximately 20 mm2 

K/W occurs, which is in the vicinity of the pressure at which buckling of the CNT array 

that is expected to occur (see Figure 7.4 (d) in Chapter 7).  As the CNT TIM is compressed 

to 640 kPa, the thermal resistance decreases at a relatively constant rate.  The thermal 

resistance of the CNT/petal TIM slightly increases by 20 mm2 K/W as the pressure is 

increased to 210 kPa.  After 210 kPa, the thermal resistance decreases in a moderately 

aggressive manner to 640 kPa.  This behavior is likely due to the morphology of the 

CNT/petal surface that initially comes into contact with the heat flux meter.  Typical 

CNT/petal growth is more aggressive along the edges of the substrate (Cu foil), which 

results in a ‘bowl-like’ morphology.  As a result, the CNT/petal TIM must be compressed 

to sufficiently high pressures in order to fully engage the heat flux meter.  Additionally, 

above 275 kPa, the rate of change of the thermal resistance for the CNT/petal TIM appears 

to be more dramatic than the CNT TIM, suggesting that the CNT/petal TIM may 

outperform the CNT TIM at higher pressures. 

During the subsequent compression cycles, both the CNT and CNT/petal TIMs exhibit 

a hysteresis relative to the initial compression.  For the CNT TIM, the CNT array plastically 

deforms and likely only recovers a few microns of its original height.  During the 

compression cycles, the contact area and bond line thickness (i.e., CNT array height) likely 

remain relatively constant.  This compaction and plastic deformation of the CNT TIM can 

be observed in the post-mortem SEM images in Figures 8.7 (b) and (c) below. CNTs 

decorated with petals are considerably stiffer than undecorated CNTs.  Therefore, the 
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aggregate microstructure of the CNT/petal array should remain relatively unchanged 

within the pressure range of 120 – 640 kPa as shown below in Figure 8.8 (c).  The hysteresis 

in Figure 8.7 (a) is likely due to plastic deformation of the graphitic petals at the surface of 

the CNT/petal TIM that engages with the heat flux meter, which can be observed in the 

post-mortem SEM images in Figures 8.8 (b) and (d).  A minimal hysteresis in the thermal 

resistance is observed during the subsequent secondary compression cycles, indicating that 

the CNT and CNT/petal TIMs possess adequate mechanical cyclic stability. 

 
Figure 8.7.  (a) As-grown SEM image of a CNT TIM and (b)-(c) post-mortem SEM images 
of a CNT TIM. 
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Figure 8.7.  Continued. 
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Figure 8.8.  (a) As-grown SEM image of a CNT/petal TIM and (b)-(d) post-mortem SEM 
images of a CNT/petal TIM. 
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Figure 8.8.   Continued. 
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The flattened petal regions of the CNT/petal TIM provide sufficient contrast in the 

SEM image and enables a basic image analysis to define the regions of contact with the 

heat flux meter.  These regions are defined by contour lines in Figure 8.9 and ultimately 

yield an estimation of the contact area.  The contact area fraction (i.e., real to nominal) was 

estimated by determining the number of image pixels enclosed in the contours relative to 

the nominal area (i.e., total number of pixels in the image).  By performing this image 

analysis on Figure 8.8, the fraction of contact that the CNT/petal TIM makes with the heat 

flux meter is estimated to be approximately 0.1.  In comparison, Cola et al. [41] and 

Sadasivam et al. [102] reported contact area fractions on the order of O(0.001) at a pressure 

of approximately 150 kPa.  The significant increase in contact area achieved by flattening 

the graphitic tips of the CNT/petal TIM should yield a comparable reduction in the thermal 

resistance relative to the CNT TIM.  However, the large uncertainty associated with the 

alignment procedure renders a comparison between the CNT/petal and CNT TIMs 

unresolvable.  

 
 
Figure 8.9.  Post-mortem image analysis and processing of flattened petal regions.  
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As the interface temperature was increased from 150 to 450°C, the thermal resistances 

of the CNT and CNT/petal TIMs monotonically decreased by approximately 40 and 50% 

of the initial thermal resistance at 150°C, respectively.  Conversely, the thermal resistance 

for both TIMs monotonically increased as the interface was cooled from 450 to 150°C, and 

the entire temperature cycle exhibited a hysteresis.  Similar trends for similar CNT TIMs 

and instrumentation have been reported in the experiments conducted by Hao et al. [125], 

in which the thermal resistance decreased by 48% as the interface temperature was 

increased from 100 to 700°C, with a slight hysteresis forming after the initial temperature 

cycle.  In their work, subsequent secondary and tertiary temperature cycles exhibited 

similar monotonic changes in the thermal resistance without significant hysteresis. Using 

molecular dynamics on a CNT/Cu interface, Wang et al. [126] reported a monotonic 

decrease in thermal resistance by 17% as temperature increased from room temperature to 

approximately 477°C.  This behavior is likely due to activation of additional vibrational 

modes that contribute to thermal transport across the interface, which dominates over any 

additional scattering mechanisms that would decrease the thermal conductivity of the CNT 

or CNT/petal array [125]. 

 

8.4 Conclusions 

In this work, the thermal performance of bare-interface configurations (stainless 

steel/stainless steel, stainless steel/aluminum, and stainless steel/copper) as well as CNT 

and CNT/petal TIMs were investigated in abnormal temperature environments using a 

customized 1D reference bar system. For bare interfaces, the thermal resistance decreased 
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with increasing pressure as the materials engaged and conformed.  This effect was less 

dramatic as the interface temperature was increased, implying that the interface softened 

and forms a bond between the mismatched materials.  The bonding induced by elevated 

pressures and temperatures resulted in a hysteresis in the thermal resistance during the 

temperature cycle for the stainless steel/aluminum and stainless steel/copper configurations. 

The CNT and CNT/petal TIMs outperform a bare interface as well as a bare Cu foil, 

exhibiting adequate mechanically cyclic stability at 450°C and a hysteresis in thermal 

resistance during the temperature cycle.  Post-mortem SEM images revealed that the CNT 

TIMs were significantly compacted and plastically deformed while the aggregate structure 

of the CNT/petal TIMs remained relatively unchanged.  For the latter, post-mortem SEM 

images revealed that the petals on the surface of the TIM flattened, indicating that under 

sufficient pressure and temperature conditions, the surface of the CNT/petal TIM began to 

conform to the stainless steel heat flux meter.  This observation suggests that sufficient 

pressure and temperature conditions are necessary for CNT/petal TIMs to significantly 

outperform CNT TIMs. 
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9.    THERMAL CHARACTERIZATION OF THERMAL  
 

9.1 Introduction 

The overall performance of molten salt batteries is dictated by complex multiphysics 

consisting of electrochemical processes, mechanical responses, and thermal transport 

mechanisms. The molten electrolyte and separator [LiCl/KCl, MgO] serve as the battery’s 

hub by providing an ionically conductive path between the anode [Li(Si)] and cathode 

[CaCrO4 or FeS2].  Depending on the application, the desired lifetimes can vary between a 

few seconds and one hour [127], which is partially dictated by the cooling rate of the molten 

electrolyte.  To mitigate cooling, molten salt batteries are packaged with insulation 

materials such as Fiberfrax board and Min-K thermal insulation.  The latter is often 

employed in molten salt batteries that require long lifetimes [128].  These insulations are 

included at the top and bottom of the battery stack and are compressed under force before 

the battery can is sealed.  Other Fiberfrax insulation is wrapped around the stack under 

tension. 

Predictive models for molten salt battery activation can be improved with high fidelity 

measurements of thermal properties such as heat capacity and thermal conductivity.  

Specifically, non-molten separator thermal conductivity is necessary for predicting rise 

time whereas insulation thermal conductivity has been found to be a great source of 

uncertainty in predicting the lifetime of the battery [129].  Currently, the  
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insulation thermal conductivity is not implemented as a function of strain in the Sandia 

multiphysics model for battery activation (TABS v 3.0).   

Various techniques, either steady state or transient, can be employed to measure 

thermal conductivities of materials and each has advantages and disadvantages.  Transient 

techniques such as laser flash, thermoreflectance, and photoacoustic provide quick 

determination of thermal conductivities relative to steady state techniques, but generally 

require prior knowledge of the density and heat capacity of the material.  Steady state 

techniques such as reference bar and infrared thermography do not require knowledge of 

the density and heat capacity, but are not suitable for rapid characterization of large 

quantities of samples.  In this work, a steady state technique [122] was used to measure the 

thermal conductivities of the separator pellets as well as annealed Fiberfrax board and Min-

K insulation materials in different ambient environments and compressive stresses which 

are congruent with common molten salt battery packaging protocols.   

 

9.2 Experimental Setup 

The separator material was formed by mixing, melting, and grinding LiCl/KCl 

electrolyte salt with MgO to form a powder.  The mixture was then hydraulically pressed 

to form LiCl/MgO/KCl pellets of varying thicknesses. Pellets were all 1.75 g/cm3 in 

density. 

The Fiberfrax board and Min-K insulation materials were purchased in a variety of 

thicknesses from Unifrax and Morgan Thermal Ceramics, respectively.  The insulation 

materials were then annealed in dry air at 600°C for 4 hours to remove moisture and stored 
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in a dry environment until tested. SEM images showing the cross-section of the insulation 

materials are shown below in Figures 9.1 (a) and (b). 

The steady state reference bar technique is based on the ASTM D470-06 standard for 

measuring thermal conductivity and contact resistance and is used to measure the thermal 

conductivity of the different materials as well as the contact resistance with stainless steel 

304 (SS304). 

 

 

Figure 9.1.  Cross-sectional SEM images of (a) annealed Fiberfrax board and (b) annealed 
Min-K. 
 
and Macor heat flux meters.  The system, shown in Figure 9.2 uses thermocouples to 

measure the temperature gradient in the heat flux meters while a mechanical translator 

compresses the interface to a load which is measured by a load cell.  The mechanical 

translators are terminated with flat plates which are also cooled and heated to constant 

temperatures.  The system has the capability to measure thermal properties in Ar, He, N2, 
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air, and vacuum, which can simulate the hermitically sealed environment of the battery and 

gases released during chemical reactions.  Note that thermal conductivity values measured 

by this technique are solely in the cross-plane direction. 

 

Figure 9.2.  Thermal conductivity measurement system utilizing a 1D reference bar 
technique. Photographs of (a) the vacuum chamber and (b) the heat flux meters (HFMs) 
instrumented with thermocouples. 
 

When compressed to a constant strain, Fiberfrax and Min-K insulations are known to 

undergo stress relaxation for extended periods of time.  Therefore, both load and strain 

were measured simultaneously during measurements.  Strain was recorded using a camera 

image of the sample.  

The thermal model that accompanies the measurement technique is based on the one 

dimensional heat conduction equation and depending on the ambient environment (vacuum 

or gas), includes radiative and convective losses to the surroundings.  The temperature 

throughout the stack is determined by solving Equation (9.1)  

  ( ) ( )4 4 0HFM surr
d dTk T T h T T
dx dx

εσ ∞
  − − − − = 
 

 (9.1) 

where T is the temperature in the stack along the direction x, kHFM is the thermal 

conductivity of the heat flux meter, ε is the emissivity of the heat flux meter, σ is the Stefan-
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Boltzmann constant, Tsurr is the temperature of the surroundings that exchange thermal 

radiation with the heat flux meters, h is the convective heat transfer coefficient and T∞ is 

the average temperature of the ambient gas.  The total thermal resistance between the top 

and bottom heat flux meters is determined by fitting Equation (9.1) to the temperature 

profiles in the heat flux meters using COMSOL.  For the separator pellets, SS304 heat flux 

meters were chosen while Macor heat flux meters were chosen for the insulation materials. 

Note that the thermal conductivity of the Macor heat flux meters was determined by testing 

the material against SS304 bars of known thermal conductivity.  The temperature profile 

and the thermal conductivity of the heat flux meters are used to determine the heat flux, 

temperature drop, and ultimately the thermal resistance across the interface.  In Equation 

(9.2) below, the total thermal resistance between the heat flux meters (Rtotal) comprises of 

two contact resistances (RTCR) that are in series with the bulk (intrinsic) resistance (Rbulk) 

of the material of interest: 

 total bulk TCR TCR
tR R R R
k

= + = +  (9.2) 

where t and k are the thickness and thermal conductivity of the material of interest, 

respectively.  The thermal conductivity can be determined by measuring the total thermal 

resistance between the heat flux meters for different thicknesses of the material of interest.  

This produces a linear relationship between thermal resistance and material thickness in 

which the inverse slope of the linear relationship is the thermal conductivity and the y-

intercept is the contact resistance.  The uncertainties associated with this measurement 

technique include thermocouple error, uncertainty in estimating the thickness, regression 

uncertainty, and sample to sample uncertainty. 
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9.3 Results and Discussion 

Thermal conductivity measurements on the separator pellets (LiCl/MgO/KCl) were 

conducted within the pressure range of 400 and 2250 kPa and an average interface 

temperature (material temperature) of approximately 45°C.  Due to the fact that the molten 

salt battery materials are moisture sensitive, the system was purged with dry air (5-10% 

humidity) during thermal testing.  Tests were conducted on mixtures of three distinct 

thicknesses of 0.5, 1, and 2 mm.  The thermal conductivity of the mixture and contact 

resistance with the heat flux meters were estimated by a linear fit to the measured thermal 

resistance and mixture thicknesses for interface pressures of 400, 1700, and 2250 kPa. 

The variation in the measured thermal resistance for samples of the same thickness is 

greatest at lower interface pressures and smallest at the highest interface pressure.  This 

indicates that the sample to sample uncertainty decreases with increasing pressure and that 

the misalignment between the separator pellet and heat flux meters is mitigated as the 

pressure increases.  The thermal conductivity and contact resistance as functions of 

interface pressure are shown below in Figure 9.3 (a) and (b), respectively.  The error bars 

include the sample to sample, linear fit, and thermocouple uncertainty. 
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Figure 9.3.  (a) Separator thermal conductivity and (b) Separator-heat flux meter contact 
resistance as a function of contact pressure.  Inset: Contact resistance vs. pressure on a log-
log scale. 

 

The thermal conductivity of the separator pellets remains constant with interface 

pressure with a mean value of 2.30 W/mK with a lower and upper bound of 2.08 and 2.49 

W/mK, respectively, at an interface pressure of 2250 kPa.  As expected, the contact 
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resistance of the separator pellets with the heat flux meters monotonically decreases with 

interface.  Therefore, the separator pellets are not being affected by the compressive stress 

that is applied during the measurement, except that the contact with the instrument bars 

improves. 

Thermal conductivity measurements on the Min-K and Fiberfrax board insulation 

materials were conducted at compressive stresses of 350 and 500 psi with an average 

material temperature of approximately 55°C.  To assess the thermal transport mechanisms 

across the insulation materials, the samples were tested in both air and vacuum ambient 

environments.  The test sequence was as follows: (i) air at 350 psi, (ii) vacuum at 350 psi, 

(iii) vacuum at 500 psi, and (iv) air at 500 psi. Figures 9.4 (a)-(d) below shows the linear 

fits to the measured thermal resistances in air and insulation thicknesses for the 

aforementioned test sequence.  Vacuum data was also obtained but is not shown.  The error 

bars include uncertainties due to thermocouple readings, thermocouple locations, heat flux 

meter thermal conductivity, tolerances associated with machining the heat flux meters, and 

estimation in material thickness.  With coefficients of determination ranging between 0.86 

and 0.99 for the experimental data presented in Figure 9.4, a linear fit properly describes 

the change in thermal resistance with material thickness.  As such, the thermal conductivity 

of each material can be determined by the inverse slope of the linear fit.  The thermal 

conductivity values for both insulation materials are summarized in Table 9.1 below and 

are in good agreement with the work of Guidotti et al. [128]. The aforementioned 

uncertainties were propagated through the linear regression analysis using a boot strapping 

method to determine the 95% confidence intervals specified in Table 9.1.  The distributions 
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of the estimated thermal conductivity are shown in Figure 9.5 and serve as a visual aid for 

Table 9.1. 

The changes in thermal conductivity with respect to the ambient environment are 

consistent between the Min-K and Fiberfrax board insulations. When the test chamber is 

evacuated, the thermal conductivities decrease by 10% and 31%, respectively. However, 

minimal changes in thermal conductivity occur when the materials are compressed to 500 

psi. When air is subsequently introduced into the test chamber to atmospheric pressure, the 

thermal conductivities increase by 50% and 88%.  

The changes in thermal conductivity of the insulation materials suggest that the ambient 

environment serves a significant role in thermal transport throughout the insulation 

materials. Depending on the porosity of the insulation materials, thermal transport through 

the air medium can serve as a parallel pathway for heat transfer.  In this sense, the thermal 

conductivity of the insulation materials is an effective thermal conductivity that comprises 

of thermal transport through the alumino-silicate (Fiberfrax board) or fumed silica-titania 

(Min-K) as well as the air medium.  In the absence of the latter, thermal transport is 

relegated only through the solid medium.   
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Figure 9.4.  Thermal resistance in air as a function of insulation thickness for (a) Min-K at 
350 psi, (b) Min-K at 500 psi (c) Fiberfrax board at 350 psi and (d) Fiberfrax board at 500 
psi. 
 

Table 9.1.  Thermal conductivity (W/mK) of Fiberfrax board and Min-K insulations 
under different conditions. 
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Figure 9.5.  Distributions of the estimated thermal conductivity of the Min-K and Fiberfrax 
insulation materials. 

 

9.4 Conclusions 

A steady state reference bar technique was employed to measure the thermal 

conductivities of the separator pellets (LiCl/MgO/KCl) and thermally insulating materials 

(Fiberfrax board and Min-K). The separator thermal conductivity was measured to be 
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approximately 2.30 W/mK and constant within the pressure range of 400 and 2250 kPa.  

The effective thermal conductivity of the Fiberfrax board and Min-K insulation materials 

were measured to be on the order of O(0.1) W/mK and O(0.01) W/mK, respectively, at 

350 and 500 psi.  The thermal conductivities exhibited strong dependence on the ambient 

environment rather than the compressive stress. 
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10.    SUMMARY 

The overarching theme of this thesis entailed a comprehensive investigation of the 

viability of CNT TIMs to efficiently conduct heat across two contacting materials.  The 

development of TIMs is necessitated by the temperature drop across the materials arising 

from macro and microscopic irregularities of their surfaces that constricts heat through 

small contact regions as well as mismatches in their thermal properties.  Similar to other 

types of TIMs, CNT TIMs alleviate the thermal resistance across the interface by thermally 

bridging two materials together with cylindrical, high-aspect ratio, and nominally vertical 

conducting elements.  Within the community of TIM engineers, the vision driving the 

development of CNT TIMs spawned from measurements that revealed impressively high 

thermal conductivities of individual CNTs.  This vision was then projected to efforts 

focused on packing many individual CNTs on a single substrate that efficiently conduct 

heat in parallel and ultimately through many contact regions at CNT-to-substrate contacts.  

The final paragraphs of this dissertation highlight the major contributions of my efforts to 

improve CNT TIMs, reveal my perspective on their viability, and provide insight to 

avenues that can potentially pave new pathways for further development. 

Similar to other CNT TIM engineers, the efforts in thesis were initially devoted to 

engaging CNT TIMs with an opposing substrate using various bonding techniques.  An 

innovative bonding technique using Pd thiolate as bonding agent was  
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developed to not only increase in the contact area between a CNT TIM and opposing 

substrate but also to assess the performance of CNT TIMs at temperatures up to 250°C.  

Upon thermolysis, a strong weld between the CNT TIMs and opposing substrate with 

thermalized Pd thiolate as a medium was created and a significant reduction in the thermal 

resistance was observed.  The reduction in thermal resistance is likely due to a transition 

from a van der Waals type bond between the CNT TIM and opposing substrate to a more 

covelant-like bond resulting from the welded joint.  The bonded structure also exhibited 

thermal stability up to 250°C. 

Alternatively, the engagement of a CNT TIM with an opposing substrate can also be 

improved by inserting a solder foil between the CNT TIM and opposing substrate and 

subsequently raising the temperature of the interface above the eutectic point of the solder 

foil.  This bonding technique creates a strong weld that not only reduces the thermal 

resistance significantly but also minimizes the change in thermal resistance with an applied 

compressive load.  The latter is an indication that the contact area between the CNT TIM 

and opposing substrate is maximized.  With the contact area maximized, the thermal 

resistance can be further reduced by infiltrating the CNT TIM with paraffin wax, which 

serves as an alternate pathway for heat conduction across the interface that ultimately 

reduces the bulk resistance of the CNT TIM.  Thus, infiltrating CNT TIMs with another 

material provides an avenue for modulating their effective thermal conductivity. 

Within the CNT TIM height range of 1 to 50 µm, the bulk resistance of CNT TIMs 

scales linearly with height and can alternatively be modulated by adjusting the as-grown 

height.  The linear relationship between thermal resistance and CNT TIM height provides 
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a simple and efficient methodology to estimate the contact resistance and effective thermal 

conductivity of CNT TIMs grown in our deposition system.  In this thesis, the contact 

resistance and effective thermal conductivity were estimated using two measurement 

techniques: (i) one-dimensional, steady-state reference bar and (ii) photoacoustic 

technique.  The contact resistance of CNT TIMs estimated using the reference bar rig were 

greater than the contact resistance of CNT TIM estimated using the photoacoustic 

technique by approximately a factor of three.  This discrepancy is due to poor engagement 

between the rigid and macroscopically irregular surface of the heat flux meters used in the 

reference bar rig relative to the flexible and smoother surface of the Ag foil used in the 

photoacoustic technique.  Using both measurement techniques, the effective thermal 

conductivity was estimated to be on the order of O(1 W/mK).  Additionally, the effective 

thermal conductivity decreased as the CNT TIMs were compressed, which indicates that 

heat conduction within CNT TIMs is dependent upon the nature in which they 

mechanically deform (i.e., stiffening due to CNT-to-CNT contacts and localized strain due 

to buckling).  

Currently, the major limitations of CNT TIMs are the quality and mass density at which 

they can be synthesized and further development will rely on our ability to increase both 

of these quantities to improve their conductive attributes.  The quality of CNTs can be 

improved by developing catalyst layers that not only control the diffusion of carbon into 

the catalyst particle and growth rate but also form uniformly-shaped, hemispherical catalyst 

particles that dictate the morphology of CNTs.  Furthermore, by investigating the balance 

between the surface energies of catalyst particles and underlying surfaces, we can develop 

catalyst layers that increase the number of nucleation sites for CNT growth on a given 
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substrate and increase the quantity of CNTs that participate in thermal transport.  An 

alternative method to increase the mass density of CNT TIMs is to decorate the array with 

graphitic petals that not only repair individual CNTs but also strongly connects adjacent 

CNTs covalently rather than by weak van der Waals interactions.  However, the 

development of methods to flatten the stiff graphitic petals protruding through the top of 

the array is imperative to properly engage the CNT-petal TIM to the opposing substrate. 
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