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ABSTRACT

Guo, Xingye. Ph.D., Purdue University, December 2016. Thermomechanical Proper-
ties of Novel Lanthanum Zirconate Based Thermal Barrier Coatings – An Integrated
Experimental and Modeling Study. Major Professors: Jing Zhang, School of Engi-
neering and Technology and Yung C. Shin, School of Mechanical Engineering.

Thermal barrier coatings (TBCs) are refractory materials deposited on gas turbine

components, which provide thermal protection for metallic components at operating

conditions. The current state-of-art TBC material is yttria-stabilized zirconia (YSZ),

whose service temperature is limited to 1200 ◦C, due to sintering and phase transition

at higher temperatures. In comparison, lanthanum zirconate (La2Zr2O7, LZ) has

become a promising candidate material for TBCs due to its lower thermal conductivity

and higher phase stability compared to YSZ.

The primary objective of this thesis is to design a novel robust LZ-based TBC sys-

tem suitable for applications beyond 1200 ◦C. Due to LZ’ s low coefficient of thermal

expansion and fracture toughness, which cause poor thermal cycling performance,

two TBC architectures are proposed: (1) multiple layered coating, and (2) LZ/8YSZ

composite coating.

In this work, LZ powders are fabricated using the solid-state reaction method,

and all of the coatings are deposited using air plasma spray (APS) technique. The

physical, thermal and mechanical properties of the sprayed LZ coatings have been

systematically investigated, including temperature-dependent thermal conductivity,

coefficient of thermal expansion, density, hardness, Young’ s modulus, bond strength,

and erosion resistance. The durability of the coatings in various thermal and mechan-

ical conditions is also investigated, including furnace cycling test, thermal gradient

mechanical fatigue test, and jet engine thermal shock test. The results show that

for the layered TBCs, porous YSZ + LZ has reasonably good thermal cycling perfor-
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mance. For the composite TBCs, LZ/8YSZ (vol. % is 50:50) with a thin buffer layer

LZ/8YSZ (vol. % is 25:75) has the greatest thermal cycling performance, comparable

to pure 8YSZ coatings. The improved performance is explained by graded coefficient

of thermal expansion and enhanced fracture toughness.

In parallel to experimental investigations, a multi-scale modeling approach is em-

ployed to study the fundamental thermal and mechanical properties of LZ crystal

and coatings. Physics-based models are developed, including using density functional

theory (DFT), molecular dynamics (MD), and finite element (FE) methods. The

nanoscale tensile and shear deformations of LZ single crystal are simulated using

DFT calculations with the generalized gradient approximation (GGA) functional.

The anisotropic Young’ s moduli are studied using two approaches: (1) stress-strain

curve of large deformation, and (2) analytical method in small deformation. Addi-

tionally, the nanoscale tensile and shear large deformations of LZ single crystal are

simulated using the MD method with Buckingham and Coulomb potentials at room

temperature (300K). Both DFT and MD results show that LZ has strong anisotropic

Young’ s modulus with the ranking [111] > [110] > [100]. The shear modulus in

{111}<110> direction is slightly larger than that in {111}<112̄> direction. Both

Bader charge transfer and electron charge density analyses indicate that the electron

interactions between O and Zr ions in LZ are stronger in [111] for tensile and in

{111}<110> for shear deformation.

For thermal properties, the temperature-dependent thermal conductivities of LZ

coating are calculated using a multiscale approach. First, the thermal conductivity

of LZ single crystal is calculated using a reverse non-equilibrium molecular dynamics

(reverse NEMD) approach. The single crystal data is then passed to an FE model

which takes into account realistic TBC microstructures. The predicted thermal con-

ductivities from the FE model are in good agreement with experimental validations

using both flash laser technique and pulsed thermal imaging-multilayer analysis.

Furthermore, the mechanical properties at the ceramic-metal (C-M) interface in

TBCs are investigated. The nanoscale tensile and shear deformations of the ZrO2/Ni
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interface, an approximation of the interface between the top and bond coats, are

performed using both DFT and MD calculations. The DFT results indicate that the

elastic modulus, ultimate strength, and toughness of the C-M interface increase with

the decrease of the Ni layer thickness. The charge transfer analysis and the charge

density distribution show that a thin interface layer exhibits a strong interaction

between Ni and O ions. The MD simulations using COMB3 potential show that

the Young’ s modulus of ZrO2/Ni interface in [111] direction is larger than that in

[100] direction, and the shear modulus in {111}<110> direction is larger than that

in {111}<112̄> direction.

In summary, this thesis work provides important thermomechanical properties of

LZ-based thermal barrier coatings and can serve as a design tool for future advanced

coating systems.
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CHAPTER 1. BACKGROUND AND LITERATURE REVIEW

1.1 Thermal Barrier Coatings

The development of gas turbine engines relates to a great variety of engineering

disciplines including turbine design, combustion, and cutting-edge materials. The

application of thermal barrier coatings (TBCs) on turbine components has dramat-

ically increased the operation temperature and lifetime of the alloy components in

gas turbine engine [1]. The engine efficiency of gas turbines is increased due to the

increase of operation temperature [2]. TBCs were initially introduced to the gas-

turbine industry in the mid-70s [3]. Nowadays, TBCs are widely used in aeronautics,

astronautics, motor industry, and heat power stations. They are extensively applied

in high-temperature components of gas turbines to protect the surface of metallic

parts, such as combustor wall, rotating blades, stationary guide vanes, blade outer

air seals, and afterburners in the tail section of jet engines and so on, because, in gen-

eral, superalloy materials used as substrate of high-temperature components have a

temperature allowance below 1100 ◦C [4–7]. TBCs are multi-layered coating systems

deposited on the turbine components, especially the turbine blade, which can ther-

mally insulate them and protect them against the hot and corrosive gas stream [1,6,8].

The typical structure of the TBCs includes four layers: (1) superalloy substrate,

(2) bond coat, (3) thermally grown oxide (TGO), and (4) ceramic top coat. The

bond coat consists of an MCrAlN intermetallic alloy with a thickness of 100 - 300

µm, wherein the M is an element selected from nickel, cobalt, iron and their mix-

ture, and the N is an element selected from yttrium, zirconium, hafnium, ytterbium

and mixture thereof [9]. Typically, it can be deposited directly on the substrate us-

ing various techniques, such as air plasma spraying (APS), high velocity oxygen-fuel

(HVOF) spraying, vacuum plasma spraying, low-pressure plasma spraying and diffu-
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sion deposition method [10–13]. In high-temperature operation conditions, the bond

coat is inevitably oxidized and a TGO layer is formed at the interface between the

bond and the top coats with a thickness of 1 – 10 µm. The main composition of

TGO is α-alumina (α-Al2O3), which can work as a good oxygen diffusion barrier to

protect the bond coat and substrate from further oxidation. On the other hand, the

growth of the TGO layer can lead to TBC failure [14]. The ceramic top coat is one or

multiple low thermal conductivity ceramic layers with a typical thickness of 100 - 600

µm, which is deposited by the APS or electron-beam physical vapor deposition (EB-

PVD) methods [5, 8]. The criteria for TBCs material selection include high melting

point, low thermal conductivity, high CTEs, good thermal and chemical stability, no

phase change, low sintering activity, good erosion resistance and good foreign objec-

tive damage (FOD) or calciummagnesiumalumino-silicate (CMAS) resistance [15].

Currently, the state-of-the-art TBCs are 7 – 8 wt % yttria (Y2O3) stabilized zir-

conia (ZrO2) (8YSZ). The 8YSZ has a metastable tetragonal phase (t’), and Y2O3 is

used to stabilize the ZrO2 structure. The 8YSZ has a relatively high melting point

(2680 ◦C) [15], relatively low thermal conductivity about 2.0 - 2.3 W/m/K around

1000 ◦C for a fully dense status (0.9 - 1.2 W/m/K for 10 - 15 % porosity) [16, 17], a

relatively high CTEs (11× 10−6 K−1 at 1273 K) [15], and good thermal and chemical

stability [18]. However, the maximum surface temperature that can be employed as

TBCs of 8YSZ is limited to 1200 ◦C for long-time operation. At temperatures above

1200 ◦C, there are two important degradation mechanisms in 8YSZ. The first mech-

anism is that the t phase of YSZ will decompose to two equilibriums tetragonal (t)

and cubic (c) phases. During the cooling process, the t phase will transform to the

monoclinic (m) phase, accompany with ∼4 % volume expansion. Another mecha-

nism is the sintering of coating, which will change the microstructure as well as the

mechanical and thermal properties. These phase and microstructure changes as well

as the thermal and mechanical properties changes will finally lead to high thermal

induced stress and shorten the coating’s lifetime [15]. However, some approaches can

be chosen to enhance TBCs’ performance: 1) find a new the feedstock powder with a
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higher sintering resistance or no phase change, 2) control the porosity of TBCs [19].

In addition, increase the thickness of top coat can reduce the substrate temperature,

although the performance of TBC still keeps same.

Lanthanum zirconate (La2Zr2O7, LZ) is a typical pyrochlore structure ceramic

material. The general chemical formula of the pyrochlore structure is A2B2O7. The

A element in A2B2O7 generally is a rare earth or an element with an inert single pair

of electrons, and the B element typically is a transition metal or a post-transition

metal with a variable oxidation state [10, 20]. Compared to the 8YSZ, the LZ has

many advantages for the application of TBCs: (1) no phase transformation from

room temperature to its melting temperature, (2) considerably high sintering resis-

tance, (3) a very low thermal conductivity (1.5 - 1.8 W/m/K at 1000 ◦C for a fully

dense material), (4) the LZ has a lower oxygen ion diffusivity, which protects the

bond coat and the substrate from oxidation [15]. The principle drawback of the LZ

is its small CTE, which does not match the high CTE of the bond coat.

In this introduction chapter, the fabrication technique, physical, thermal and me-

chanical properties of the LZ coating are summarized, and the advantages and disad-

vantages of LZ for TBC application are described by comparison of YSZ coating. At

the last, the modeling techniques with respect to the LZ coating properties and the

coating failure mechanism are also reviewed.

1.2 Fabrication and Characterization of LZ Powder

1.2.1 Powder Fabrication

There are several ways to fabricate the LZ powder, which can be used in thermal

spray process, including solid state reaction method, co-precipitation method and the

sol-gel method, etc. [15,21–23].

The LZ powder can be synthesized by the solid state reaction method from a

mixture of the lanthanum oxide (La2O3, 99.9 %) and ZrO2 (99 %) powders at high

temperatures (T=1773 K) under an argon atmosphere for 10 hrs [21, 22]. The pure



4

La2O3 is typically prepared by dissolving La2(CO3)38H2O in nitric acid and subse-

quently producing a precipitate by an addition of NH3. The precipitate is dried in air

and then heated in oxygen at 1173 K to remove the nitrogen-containing fragments.

The resulting La2O3 is heated at 1473 K to remove any absorbed water [21]. The

LZ powder is the spherical or ellipsoidal shape with a porous microstructure on the

surface. The theoretical chemical composition of LZ powder coating is La 48.6 wt%,

Zr 31.9 wt%, O 19.5 wt%, which is equivalent to the 1:2 molar ratios of La2O3 and

ZrO2 [18].

In the co-precipitation method, an aqueous solution of lanthanum nitrate hex-

ahydrate (La(NO3)36H2O) and zirconium oxychloride (ZrOCl28H2O) with a diluted

NH3 solution is used to prepare LZ powder [15]. During this preparation process,

the La(NO3)36H2O and ZrOCl28H2O is dissolved in a distilled water in equimolar

amounts. The liquid mixtures are slowly added under stirring to an ammonium hy-

drate solution with pH 12.5. The resulting precipitate is filtered, washed with distilled

water, and then dried at 120 ◦C overnight. The remaining solid is then calcined at

900 ◦C for 5 hrs.

The sol-gel method is another way to synthesize nanostructured powders, which

have high sintering ability for the A2Zr2O7 (A=La, Nd, Sm) system [23]. Tang et al.

fabricated LZ fibers by a sol-gel combined electrospinning method [24]. LaCl37H2O

(9 mmol) was dissolved in the zirconium acetate solution in an equimolar ratio, and

0.4 g silica sol (SiO2, 22%, pH=3.2) was added with magnetic stirring for 6 hrs. The

transparent sol was added to absolute ethanol (8.0 ml) with Polyvinylpyrrolidone

(PVP, 0.4g). The sol was transferred into a syringe and 20 kV power was supplied

between the syringe tip and a stainless steel collector. The LZ gel fiber was fabricated

on the collector under the electrostatic force, after the dry and calcination in high

temperatures.

In addition to the aforementioned three commonly used methods, other methods

also can fabricate LZ powders. Tong et al. prepared the LZ nano-powder using the

stearic acid combustion method [25]. La(NO3)3nH2O and Zr(NO3)49H2O were used
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as the precursors, and stearic acid (C17H35COOH) was used as the solvent and dis-

persant. The mixed solution was ignited in the air, and the obtained powder was

calcined at a series of increasing temperatures ranging from 600 - 900 ◦C for 5 hrs in

the air.

1.2.2 Crystal Structure

The LZ is a typical ZrO2-Ln2O3 (Ln is lanthanide elements, Ln= La → Gd)

system, which has a pyrochlore structure with space group Fd3m̄ [26]. Although the

compounds Ln2Zr2O7 (Ln=La → Gd) are stable at room temperatures, an order-

disorder transition occurs at high temperature (>1500 ◦C), namely the compounds

transfer from pyrochlore to defect fluorite structure, with the only exception of LZ

(actually Ln2Zr2O7, Ln=Tb → Lu adopt the defect fluorite structure) [20]. The

transition temperature depends on the radius of Ln ions (La, no transition; Nd, 2300

◦C, Sm 2000 ◦C, and Gd 1530 ◦C) [27].

X-ray diffraction is widely used to identify the crystal structures. Figure 1.1 shows

the X-ray diffraction patterns of several Ln2Zr2O7 materials at room temperature [23].

Two peaks indexed (331) and (511) shown in the LZ pattern originate from the

pyrochlore structure, and are also observed in Nd2Zr2O7, Sm2Zr2O7, and Gd2Zr2O7

patterns. Other peaks are commonly observed for the pyrochlore and defect fluorite

structures [23].

The Ln2Zr2O7 pyrochlore crystal is a cubic structure in space group Fd3m̄

(origin choice 2) with four crystallographically independent atom sites (rear earth

ion Ln, in 16d at (1/2, 1/2, 1/2) , Zr in 16c at (0, 0, 0), O1 in 48f at (x, 1/8,

1/8) and O2 in 8b at (3/8, 3/8, 3/8). The structure type can be considered as an

ordered defect fluorite structure with the trivalent rare earth Ln3+ and quadrivalent

Zr4+ cations forming an ordered, face-centered cubic eutectic cation array. Oxygen

ions are located in 7/8 of the tetrahedral interstices: O1 in an off-center position

within the Ln2Zr2 tetrahedral, O2 in the Zr tetrahedral [28]. The x values of O1
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Figure 1.1. X-ray diffraction patterns of Ln2Zr2O7 [23].

can be varied from 0.3125 to 0.375. The x values 0.3125 and 0.375 correspond to

the regular octahedral oxygen environment around the Zr4+ ion and regular cubic

oxygen environment around Ln3+ respectively. Tabira et al. determined the x value

of LZ using systematic row wide-angle convergent beam electron diffraction (CBED)



7

techniques [28]. The results showed that the x value varied systematically with the

rare earth ion radius, the larger radius corresponding to the larger x value. The

experimental result of x value in LZ is 0.333, according to Tabiras work [28].

The lattice parameter of a conventional cubic LZ cell can be calculated using

XRD results based on Braggs Law [29]. Shimamura et al. reported that the lattice

parameters of Ln2Zr2O7 pyrochlores increased with the ionic radius of Ln, as shown

in Figure 1.2 [23]. The lattice parameter of LZ is 10.8 Å in Shimamuras experiments,

and 10.802 Å in Tabiras work [28].

Figure 1.2. Lattice parameters of Ln2Zr2O7 as a function of ionic
radius of Ln. Solid and open symbols stand for pyrochlore and defect
fluorite structures, respectively [23].

As discussed from the XRD pattern in Figure 1.1, the LZ has a cubic phase at

room temperature. As shown in the ZrO2 – La2O3 phase diagram of Figure 1.3, the

LZ has no phase transformation from room temperature to its melting point [30–32].

When the molar ratio of ZrO2 and La2O3 reaches 2:1, which corresponds to 33.3 %
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La2O3, only a single LZ cubic phase is available from room temperature to its melting

point.

Figure 1.3. Phase diagram of ZrO2 and La2O3 in mole percentage [30–32].

1.3 LZ Coating Deposition and Physical Properties

1.3.1 LZ Coating Deposition Techniques

APS is the most widely used thermal spray technique for LZ deposition. Plasma

normally consists of neutral atoms, positive ions, and free electrons. Plasma is pro-
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duced by transferring energy into the gas until the energy level is large enough to

ionize the gas, allowing the electrons and ions to move independently of one another.

As a result, plasma is often called the fourth state of matter. The plasma state is

achieved when the current can be sustained under an electric field and the free elec-

tron can move through the ionized gas [10]. The plasma temperature in the core

of the heating gas exceeds 20 000 ◦C, which depends on the gas properties. During

the APS process, feedstock powders are carried by some noble gasses, such as argon

and nitrogen, to the APS torch. The thermal plasma can be generated using electric

arcs. Natural air can be used as the source of the plasma gas for the LZ spray. The

essential APS parameters include current, carrier air flow rate, primary air flow rate,

spray distance, powder feed rate, substrate tangential speed, etc. [33].

Figure 1.4. Cross-sectional microstructure of APS sprayed LZ coating [33].

As shown in Figure 1.4, the APS sprayed LZ has many amorphous pores and

cracks, which is well known as the “splat” grain [33]. The thermal conductivity of the

APS deposited coating is lower than the EB-PVD deposited one, due to its splat grain

morphology. The porosity of the LZ coating can be easily controlled by changing the

spray parameters, which results in changing the thermal and mechanical properties.
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Another commonly used deposition technology is EB-PVD. The term PVD de-

notes those vacuum deposition processes where the coating material is evaporated

by various mechanisms (resistant heating, high-energy ionized gas bombardment, or

electron gun) under vacuum, and the vapor phase is transported to the substrate,

forming a coating [34]. The main EB-PVD deposition parameters include vacuum

pressure, substrate distance, power supply, average substrate temperature (1223 ±

25 K, 950 ± 25 ◦C) and substrate rotate speed, etc. [35,36]. As shown in Figure 1.5,

the EB-PVD deposited LZ coating microstructure has a fine columnar microstruc-

ture that results in a higher strain tolerance [37]. Typically, the EB-PVD deposited

coating has a higher thermal conductivity than APS sprayed coatings in the same

porosity level. Because the splat boundaries of APS deposited coating act as scatter-

ing centers perpendicular to the direction of heat flux, which weaken the heat transfer.

However, the columnar grain boundaries in EB-PVD deposited coating are parallel

to the direction of heat flux. As a result, the EB-PVD deposited coating has a good

performance and considerably longer operating lifetimes [12].

Figure 1.5. Cross-sectional microstructure of EB-PVD deposited LZ coating [37].
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However, the main disadvantages of EB-PVD technique are its low deposition rate,

high investment costs, high thermal conductivity, and vapor pressure requirements.

In addition to the two methods mentioned above, there are other techniques to

deposit LZ coatings, such as suspension plasma spray (SPS) and spray pyrolysis

[12,38,39].

Figure 1.6. Cross-sectional microstructure of LZ coatings (a) SPS
deposited with standoff 40 mm, (b) SPS deposited with standoff 50
mm, (c) surface view, and (d) cross section view of spray pyrolysis
deposited LZ coatings [38,39].

Wang et al. deposited a LZ coating using the SPS method [38]. The suspension

of 30 wt.% nano-LZ particles in (99.5 %) ethanol was produced. Meanwhile, an

electrostatic dispersant of 1 wt.% polyethylene glycol (PEG 1000) was added to the

suspension. The suspension was injected into the plasma spray jet and the LZ coating

was deposited. The main deposition parameters are standoff distance of the substrate
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and the concentration of the suspension feedstock. A liquid solution was used as

a feedstock material instead of powder, which provide the possibility of tailoring

the coating composition easily and facilitating the doped, multilayered and graded

coatings [39]. As shown in Figure 1.6a and Figure 1.6b, many pores and cracks

were spotted in the microstructure of SPS deposited coatings [38]. Weber et al.

fabricated the LZ coating using the spray pyrolysis method [39]. Zirconyl oxynitrate

hydrate (ZrO(NO3)2·xH2O) and lanthanum nitrate hexahydrate (La(NO3)3·6H2O)

were dissolved in deionized water and further mixed in a molar ratio of 1:1 of La to

Zr. The precursor solution was sprayed at the flow rate of 1 ml/min at 240 ◦C. The

deposited coatings were dried at 500 – 600 ◦C after the deposition process. As shown

in Figure 1.6a and Figure 1.6b, a lot of cracks were observed in the coating layer [39].

1.3.2 Coating Density and Porosity Measurements

The theoretical density of LZ material can be calculated using the molecular

weight and the number of formula units per elementary cell [40]. Lehmann et al.

calculated the theoretical density of LZ material as 6050 kg/m3 [40]

The porous LZ coating density can be measured following the ASTM standard

B328-96, which is based on the Archimedes’ principle [41]. Free standing samples,

which were peeled off from the substrate without the bond coat, were used in the

coating density measurements. Engine oil was used to seal the pores on the sample

surface by dipping the sample with the oil, so the volume of the sample can be mea-

sured by Archimedes’ principle. Density (D, g/cm3) of the sample can be calculated

by [41]:

D =
A

(B − C + E)
Dw (1.1)

where A is the mass of oil-free specimen in the air, B is mass of oil-impregnated

specimen, C is mass of oil-impregnated specimen and wire in water, E is the mass of

wire in water, Dw is density of water at specific immersion temperature.
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The porosity of the coating (ϕ) can be measured by the ratio of coating density

to the theoretical density (Dt), which can be expressed by:

ϕ = (1− D

Dt

)× 100% (1.2)

The porosity of the LZ coating varies with the deposition parameters, such as deposi-

tion power, powder feed rate and substrate standoff distance. For the APS deposited

coating, the higher the power used in the torch, and the larger the powder feed ratio

and the shorter standoff distance used in the deposition process, the denser the coat-

ing will be. The commercial APS deposited coating shows a porosity of 15 - 25 %.

However, it is important to tailor the porosity of the LZ coating in a range of 8 - 19

% to acquire good thermal and mechanical properties [42].

1.3.3 Sintering Behavior

Sintering in the porous ceramic coating is the process by which the coating will

be densified by the reduction in surface energy associated with the excess surface

area of the pores and cracks [1]. Sintering of the porous TBCs normally occurs at

elevated temperature. When the sintering occurs, the densification process inevitably

increases the elastic modulus and thereby decreases the strain compliance of the coat-

ing. Meanwhile the thermal conductivity of the coating increases due to the decrease

of the porosity [1].

Many experimental approaches can be used to describe the sintering behavior: 1)

record the dimension change of the coating sample using a high-temperature dilatome-

ter, 2) detect the porosity distribution change using mercury porosimetry, 3) mea-

sure the relative density of the coating during the sintering process, 4) monitor the

thermal conductivity increases during a long time heating period at various temper-

atures [15,43,44]. Vassen et al. investigated the sintering behavior of APS deposited

LZ coating at temperatures as high as 1650 ◦C using the high-temperature dilatometer

and the mercury porosimetry [15,43]. The higher porosity the coating had, the higher

sintering rate it had. The coating with high porosity level (20 %) densified strongly
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during the annealing process at 1250 ◦C [43]. Vassen et al. indicated that decrease

porosity might lead to a better thermomechanical behavior [15]. Zhu investigated

the sintering behavior by continuously monitoring the thermal conductivity [44]. Zhu

found that the LZ coating showed significant thermal conductivity increase (from 0.55

W/m/K to 0.95 W/m/K in 20 hrs.) at 1575 ◦C, suggesting the coating was under-

going substantial sintering. Nair et al. systematically studied the sintering of the LZ

coating [45]. They found that the major mechanism of the sintering process in the

temperature range of 8001100 ◦C is surface diffusion. The sintering above 1100 ◦C is

mainly because of grain boundary diffusion combined with the surface diffusion. The

contribution from surface diffusion becomes negligible as the sintering temperature

increases.

In general, the sintering resistance of LZ coating is higher than that of YSZ coat-

ing, and also BaZrO3 and SiZrO3 coatings [15, 43]. The low-sintering activity of the

LZ is beneficial for TBC applications.

1.3.4 Crack and Pore Morphology

The crack and pore morphology of TBC is a crucial parameter affecting the ther-

mal and mechanical properties of the coatings. The cracks can be categorized as the

horizontal, vertical, and spherical forms. Zhang et al. studied the crack morphology

of the APS deposited LZ coating using a quantitative imaging analysis method [46].

It was found that the cracks were primarily horizontal in the top and middle regions

of the cross section area, while vertical cracks became dominant in the bottom region.

In addition, the calculated porosities showed a nonuniformity in the cross section area.

Weber et al. indicated that vertical crack is beneficial in TBC application due to

enhanced thermomechanical compliance [8, 47]. The LZ-based TBCs were deposited

using the spray pyrolysis method, and the vertical cracks were introduced by decom-

posing the dried coating layer at 575 ◦C, as shown in Figure 1.6d. Moreover, the

multilayer coating with vertical cracks was fabricated by the successive deposition



15

and decomposition of multiple thin layers. The heat conduction is slowed in this

multilayer coating due to the generated cracks, and the thermal durability can be

increased due to the increased thermo-mechanical compliance [47].

1.4 Mechanical Properties of LZ-based Coating

1.4.1 Elastic Modulus

Elastic moduli include Young’ s modulus (E), bulk modulus (K), shear modulus

(G) and Poisson’ s ratio (ν). These elastic moduli can be measured by a depth-sensing

micro- and nanoindentation technique or an ultrasound pulse-echo method [15, 23].

In the micro-indentation technique, E can be obtained from the unloading slope

by adopting Sneddon’ s flat-ended cylindrical punch model [15]. Shimamura et al.

studied the moduli for a series of Ln2Zr2O7 material using ultrasound pulse-echo

measurement [23]. Shimamura found that the elastic moduli (except for Poisson’ s

ratio) strongly depend on the atomic radius of rare earth elements for the lanthanide

zirconate pyrochlore Ln2Zr2O7. The larger atomic radius corresponds to larger E, K,

and G values. La has larger atomic radius than Nd, Sm and Gd, so LZ has larger

elastic modulus than Nd2Zr2O7, Sm2Zr2O7 and Gd2Zr2O7 [23].

Many researchers successfully measured the elastic moduli of the LZ powder and

coating, as summarized in Table 1.1. The sample used in Vassen’ s work was prepared

by pressing the LZ powders at 1350 – 1400 ◦C. In this thesis, the Youngs modulus of

APS deposited LZ coating with porosity of 7.53 % were measured (detailed discussion

in 2.2) [48]. Xu et al. investigated the E of EB-PVD deposited LZ coating [49].

Shimamura et al. measured the LZ powder using the ultrasound pulse-echo method

[23]. Girolamo et al. tested the APS deposited LZ coating, which was exposed at

1350 ◦C for 50 h [33].

The Young’ s modulus of the hot pressed LZ sample are about 15 % lower than

that of the hot pressed 8YSZ, which is 210 ± 10 GPa. The low Young’ s moduli
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of LZ are advantageous for reducing thermal stresses, which might compensate CTE

mismatch in coatings [15].

Table 1.1. Mechanical properties of LZ coating vs. YSZ coating.

Properties LZ YSZ

Young’ s modulus 175±11 GPa (densified powder, Vassen [15]) 210±10 GPa

156±10 GPa (coating, Zhang [48]) (densified

153 GPa (coating, Xu [49]) powder,

280 GPa (powder, Shimamura [23]) Vassen [15])

141 GPa (porous coating, Girolamo [33])

Bulk modulus 216 GPa (Shimamura [23]) -

Shear modulus 109 GPa (Shimamura [23]) -

Poisson’ s ratio 0.28 (Shimamura [23]) -

Vicker’ s hardness 5.51±0.25 GPa (coating, Zhang [48]) -

8.83 GPa (coating, Xu [49])

Microindentation 9.9±0.4 GPa (densified powder, Vassen [15]) 13±1 GPa

hardness (Vassen [15])

Nanoindentation 8.8±2.1 GPa (coating, Zhang [48]) -

hardness

Fracture toughness 1.1±0.2 MPa·m1/2 (densified powder [15]) 2.0–3.3

1.84 MPa·m1/2 (coating, Xu [49]) MPa·m1/2

0.9 MPa·m1/2 (densified powder, Jiang [50]) (Beshish [51])

1.4.2 Hardness and Fracture Toughness

The hardness test can be classified into three categories according to the length

scale applied in the measurement: macroindentation hardness, microindentation hard-

ness and nanoindentation hardness. The measured hardness results of LZ are listed
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in Table 1.1. The sample used in each researchers work is the same as aforementioned

in section 1.4.1. The hardness of LZ varies significantly due to the sample density

change. The hardness increases with increasing coating density.

Fracture toughness is a material property which describes the ability of fracture

resistance to maintain cracks in the material without elongation of cracks. The def-

inition of fracture toughness is that if a sample has a crack in loading, the stress

intensity factor increases with increasing load until the unstable crack propagation

occurs at a critical value of KI [52]. This critical value is fracture toughness (KIC).

The standard measurement method of fracture toughness is the four-point bending

test of the bulk sample. Another alternative technique is the indentation method,

which is widely used to evaluate the fracture toughness of ceramic and coating sys-

tems [53]. The fracture toughness can be estimated from the indentation test, and

the relationship between fracture toughness and hardness can be expressed by the

following equation [52]:

KIC = 0.16

√
E

H
· P
c1.5

(1.3)

where E is the elastic modulus, H is the hardness, P is the applied load, and c is the

sum of the crack length and one-half of the indenter imprint diagonal. The fracture

toughness of LZ powders and coatings summarized in Table 1.1.

Hot pressed 8YSZ has higher hardness and fracture toughness than LZ (microin-

dentation hardness of densified 8YSZ is 13±1, fracture toughness of densified 8YSZ

is 2.0 – 3.3 MPa·m1/2) [15,51]. The low fracture toughness is the major disadvantage

of LZ, which leads to a severe limit on its application as a TBC material.

To improve the fracture toughness of LZ material, a composite or multilayer LZ

coating can be used. Jiang et al. studied the microstructure and mechanical proper-

ties of LZ/Zr0.92Y0.08O1.96 composite ceramics, which were prepared by spark plasma

sintering at 1450 ◦C. The results revealed that the composite ceramics had a higher

fracture toughness than single phase LZ [50]. Jiang et al. also showed that the

fracture toughness of composite LZ and 4YSZ coatings increased with increasing the

content of 4YSZ. The fracture toughness reached to a value of 1.8±0.1 MPa·m1/2 for
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50 % 4YSZ plus 50 % LZ composite coating, which is about two times of that of

single phase LZ coating.

In this thesis, we compared single LZ and double-layer LZ/8YSZ coatings [54].

The results showed that the double-layer coating composed of LZ plus porous 8YSZ

substantially improved the durability in thermal cycling tests, suggesting the bi-layer

design is a feasible solution to improve the fracture toughness in LZ-based coatings.

1.5 Thermal Properties of LZ-Based Coating

1.5.1 Melting Point and Specific Heat Capacity

The high melting point is an important criterion for TBC material, which is

good for the thermal stability during the high-temperature operation environment.

Thermal analysis is the commonly used method to detect the melting point, which

is performed in sealed tungsten crucibles, and the sample temperature is monitored

by a spectro-pyrometer. In addition, high-temperature X-ray diffraction experiments

(the Advanced Photon Source, Argonne National Laboratory) can also be used to

determine the melting temperature by monitoring the pyrochlore (111) peaks [55,56].

As shown in Table 1.2, the experimentally measured melting point of the LZ is about

2523 - 2573 K (2250 - 2300 ◦C), which is lower than that of YSZ (2953 K, 2680

◦C) [15,43,55]. Although the melting point of LZ is lower than that of YSZ, it is still

high sufficient for most TBC applications.

Differential scanning calorimetry (DSC) is the most widely used technique to pre-

cisely measure the specific heat capacity (Cp). Several researchers investigated the

specific heat capacity of LZ in different conditions, as shown in Figure 1.7 [15,21,22,

33]. The samples tested in Vassen’ s work were the densified LZ powder using hot

pressing technique at the temperature around 1350 – 1400 ◦C. LZ samples in powder

form were used in Bolech and Sedmidubsky’ s work. In Girolamo’ s work, the specific

heat of the LZ coating with a porosity of 11 % was measured. The specific heat of

8YSZ is ∼0.55 – 0.65 J/g/K in the temperature range of 300 – 1200 ◦C, which is
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larger than that of the LZ [57]. For the TBC materials, small Cp values are preferred

to reduce thermal diffusivity.

Figure 1.7. Specific heat capacity (Cp) of LZ in the temperature
range from 0 – 1600 K. [15,21,22,33].

1.5.2 Thermal Conductivity

For TBC materials, thermal conductivity is the most important material property.

Thermal conductivity is a measurement of heat flux in a temperature gradient ac-

cording to Fourier’ s law, which provides the fundamental theory for heat conduction

analysis [60].

κ =
q̇

dT/dx
(1.4)
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Table 1.2. Thermal properties of LZ coating vs. YSZ coating.

Properties LZ YSZ

Melting point 2523-2573 K 2953 K

(Vassen [15], Hong [55]) (Vassen [15])

Specific heat 0.48 J/g/K (1200 K, Vassen [15]) 0.65 J/g/K

capacity 0.41 J/g/K (400 K, Bolech [21]) (at 1200 K,

0.42 J/g/K (400 K, Sedmidubsky [22]) Khor [57])

0.44 J/g/K (1200 K, Girolamo [33])

Thermal 1.55 W/m/K (dense, 1273 K, Vassen [15]) 2.25 W/m/K

conductivity 2.15 W/m/K (dense, 1273 K, Zhu [44]) (dense [15])

0.68 W/m/K (porous, 1173 K, this work [54]) 0.88 W/m/K

0.87 W/m/K (EB-PVD, 1273 K, Bobzin [37]) (porous [54])

Coefficients of 9.45×10−6 /K (273-1473 K, Chen [58]) 11×10−6 /K

thermal expansion 9-10×10−6 /K (400-1600 K, this work, [54]) (dense,1273 K

9.0-9.7×10−6 /K (400-1600 K, Zhang [59]) Vassen [15])

7.6-9.1×10−6 /K (400-1400 K, Lehmann [40])

Later, Debye used the phonon gasses analogy to explain the heat conduction

process and derived an expression for thermal conductivity, which shows that thermal

conductivity is related to the phonon mean free path (Λ) [61,62].

κ =
cvνsΛ

3
(1.5)

where cv is the specific heat capacity (about constant volume) and νs is the speed of

sound. As a result, the thermal conductivity is related to the amount of energy that

is carried by a particle, the phonon travel speed, and the distance the phonon travels

before scattering [53]. The phonon scattering effect would decrease the thermal con-

ductivity, and the point defect (such as oxygen vacancies) would substantially increase
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the phonon scattering, so the Ln2Zr2O7 pyrochlore structure and doped pyrochlore

can have a lower thermal conductivity than that of fluorite structure materials.

The most widely used experimental method to measure thermal conductivity is

the laser-flash method, which was first proposed by Parker in 1961 [63]. Thermal

conductivity can be determined using thermal diffusivity (Dth), specific heat capacity

(cp) and density (ρ), which can be independently measured experimentally. During

the experiment process, the front surface of the sample is irradiated by a high-energy

laser pulse (usually duration time less than 1ms). The temperature at the back sur-

face of the sample is monitored by an infrared detector [53]. The thermal diffusivity

(Dth) can be determined by the bottom surface temperature and time curves using

Parker’ s theory [63]:

Dth =
1.38L2

π2t0.5
(1.6)

where L is the sample thickness, and t0.5 is the time required for the bottom surface to

reach half of the maximum temperature rise. The measurement error of the standard

flash method is less than 5 %. Subsequently, the thermal conductivity (κ) of the LZ

coating with given density can be determined according to the following equation [15]:

κ = Dthρcp (1.7)

Vassen et al. measured the thermal conductivity of LZ samples using the laser-

flash method, in which samples were prepared by hot pressing in the temperature

range of 1350 - 1400 ◦C [15, 40]. The density of the hot pressed sample was greater

than 95 %. The thermal conductivity that Vessen measured was ∼1.5 – 2.0 W/m/K

in the temperature range of 200 – 1400 ◦C. Zhu et al. did similar studies for the hot

pressed disk-shape samples using the spray-dried LZ powders [44,64]. The measured

thermal conductivities of the densified LZ were 2 - 4 W/m/K, which were larger than

Vessen’ s results, in the temperature range of 200 - 1400 ◦C. The thermal conductivity

is very sensitive to porosity level. A low porosity leads to a high thermal conductivity.

The high thermal conductivity in Zhu’ s work may be due to the coating’ s lower

porosity than that in Vassen’ s work. In this thesis, the thermal conductivities of
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APS deposited LZ coating with a porosity of 11.54 % were measured using the laser-

flash method (detailed discussion is in section 2.3) [54]. The measured average thermal

conductivity of the porous LZ was ∼0.59 - 0.68 W/m/K in the temperature range of

297 – 1172 K (24 - 899 ◦C). Chen et al. also measured the thermal conductivity of

APS deposited LZ coating with a lower porosity [58]. Bobzin et al. investigated the

thermal conductivity of mixed 7 wt.% YSZ and LZ layers deposited by the EB-PVD

method [37]. All of the experimental data are compiled in Figure 1.8 [15,37,44,54,58].

As shown in Figure 1.8, the thermal conductivities of the LZ coating decrease with

the increase of temperature till 1200 K due to lattice scattering, and the conductivities

increase again above 1200 K due to radiation contribution. The conductivities also

depend on coating porosity. In Vassen and Zhu’ s works, the porosities of the LZ

samples were very low so the thermal conductivities were much larger than those of

the porous coatings in this thesis, Bobzin and Chen’ s research [15,37,44,58].

Figure 1.8. Thermal conducitivity of LZ in the temperature range of
273 - 1700 K [15,37,44,54,58].
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In addition to porosity, doped LZ materials were developed to further reduce

the thermal conductivity value and improve other thermal and mechanical prop-

erties, which enhance the thermal cycling performance. Lanthanide elements are

an available option of dopants because they form a similar pyrochlore structure

with ZrO2. Lehmann et al. showed that the thermal conductivities of the Nd,

Eu, Gd and Dy doped LZ (30 % of La3+ was substituted) were lower than that

of pure LZ below 1000 ◦C [40]. Consequently, Lehmann indicated that the ther-

mal conductivity was affected by the atomic mass and radius of the substituted

and substituting atoms. Bansal et al. suggested that Gd and Yb can replace the

La3+ cation to form new pyrochlore structure materials such as La1.7Yb0.3Zr2O7,

La1.7Gd0.3Zr2O7 and La1.7Gd0.15Yb0.15Zr2O7 [64]. The Gd and Yb doped LZ showed

a lower thermal conductivity, a better high-temperature stability up to 1650 ◦C (3000

◦F) and a better sintering resistance than LZ. In addition, Yb, Ce, Y, In and Sc

were reported as dopants for both La3+ and Zr4+ site [53, 65]. Xiang et al. in-

dicated that (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 and (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7 had lower

thermal conductivities than LZ [65]. Wang found that (La1−x1Yx1)2(Zr1−x2Yx2)2O7,

(La1−x1Inx2)2(Zr1−x2Inx2)2O7 and (La1−x1Scx1)2(Zr1−x2Scx2)2O7 had the potential to

acquire lower thermal conductivity than LZ [53].

The low thermal conductivity is the prime advantage of the LZ coating over the

YSZ coating. Vassen et al. compared the thermal conductivity of hot pressed YSZ and

LZ samples [15]. Vassen indicated that high dense LZ samples’ thermal conductivities

were 30 – 35 % lower than YSZ at 800 – 1000 ◦C, in the similar porosity level. Bobzin

et al.’ s work showed that the thermal conductivity of EB-PVD deposited 7YSZ was

about 25 – 40 % larger than the EB-PVD deposited LZ coating [37]. However, the

thermal conductivity of APS deposited LZ coating was not investigated. In chapter

2 and 4, the thermal conductivity of APS deposited LZ-based TBC coating will be

systematically studied using experimental and modeling methods.
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1.5.3 Coefficient of Thermal Expansion

TBC is a multiple layer coating system including alloy, intermetallic bond coat,

TGO layer and ceramic top coat, therefore the volume change in the thermal cycling

process is different due to the different CTEs in each layer. Thermally induced residual

stress generated among TBC layers due to CTE mismatch becomes a primary cause

of failure [5]. Since the CTE values of superalloy substrate and bond coat are usually

about 15×10−6 and 14×10−6 /K, respectively, at 1000 ◦C [5, 9], which are much

larger than the typical ceramic top coat. As a result, large CTEs are preferred for

the ceramic top coat to reduce CTE mismatch. Additionally, due to large thickness

of substrate, its CTE influence may be more important than bond coat.

The most widely used approach to measure CTEs is the dilatometry method.

The linear CTE value can be obtained from the measurements of the temperature-

dependent length change of the measured sample using a high-temperature dilatome-

ter. The bar-shaped sample is used in the measurement. The specimen is heated at

a constant heating rate (normally 5 ◦C/min) and the temperature and length value

are continuously monitored. The linear CTE can be calculated by [66]:

αl =
1

L
· dL
dT

(1.8)

where L is the original length at initial testing temperature, dL represents the unit

length change between each scan step, and dT is the unit temperature change between

each scan step.

Many researchers measured the CTE of LZ using the dilatometer, as summarized

in Figure 1.9 and Table 1.2 [40, 54, 58, 59]. Chen et al. investigated the CTE of

both bulk LZ material and APS deposited LZ coating using the dilatometer, and

the results showed a similar trend [58]. The apparent CTE value of the LZ coating

was about 9.45×10−6 ◦C−1 in the temperature range of 0 – 1200 ◦C. In this thesis,

dilatometry method was used to measure the CTE of LZ. The average porosity of

the APS deposited LZ coating in this measurement was 11.54 % (detailed discussion

is in section 2.3) [54]. Zhang et al. determined the CTE value of LZ powders by
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the variation of lattice parameters during the heating process [59]. The lattice pa-

rameters came from the XRD analysis at different temperatures. Lehmann, using a

dilatometer, investigated the CTE of hot pressed LZ samples with density between

69 % and 93 % of the theoretical value [40].

Figure 1.9. CTEs of LZ in the temperature range of 273 - 1600 K. [40,54,58,59].

The CTE of pure LZ is lower than that of YSZ (11×10−6 /K at 1000 ◦C) [15]. As

a result, the CTE difference between the LZ top coat and the bond coat in LZ-based

TBC system is larger than that between the YSZ top coat and the bond coat in YSZ

TBCs. This is a disadvantage for LZ in TBC application because this may lead to a

large volume change during the thermal cycling process, which generates higher ther-

mal and residual stress. However, CTE value of the LZ-based coating can be increased

by doping with some rare earth element dopants. For example, Xiang et al. indi-

cated that the CTE of (La0.7Yb0.3)2(Zr0.7Ce0.3)2O7 and (La0.2Yb0.8)2(Zr0.7Ce0.3)2O7

were higher in the high-temperature range (above 400 ◦C) than that of pure LZ [65].
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Meanwhile, Cao and Zhang suggested that using Ce (5 - 20 %) to dope into LZ to

increase the CTE value [59,67].

1.6 Thermomechanical Durability of LZ-Based Coating

1.6.1 Thermal Cycling Test

Thermal cycling tests are applied to simulate the operation environment of TBCs

in gas turbines. Thermal cycling tests can be sorted into two broad categories based

on temperature gradient during thermal process [68]. (1) A constant temperature

distribution in the sample without a gradient in TBC samples. When heating/cooling

rates are low, such as the furnace cycling test (FCT), the sample is slowly heated in a

furnace, which creates a high-temperature isothermal environment for the entire TBC

system, and then it is cooled by the compressed gas or ambient air cooling out of the

furnace [69]. (2) The thermal cycling tests with a temperature gradient across the

sample due to fast heating/cooling, such as the jet engine thermal shock (JETS) test,

laser rig and flame rig [68]. In the JETS test, a typical cycle consists of a 20 s heating

process, a 20 s forced nitrogen gas cooling and a 40 s dwell cooling in ambient air

environment. The front surface temperature can reach 1400 ◦C. The failure criterion

in the JETS tests is more than 20 % spallation of the TBC sample. Since the back

side of the sample is not heated, a thermal gradient is generated in the TBC samples

during the JETS test. The temperature gradient in the JETS over the whole sample

depends on the thickness of the coating system, coating composition, porosity, and

microstructure of the coating [69].

Although the maximum temperature and the heating and cooling duration time

vary in different thermal cycling tests, large thermal stress and strain mismatch gen-

erated due to the CTE mismatch between the top and bond coats are the principal

reason for the failure of LZ coatings. To obtain a long thermal cycling lifetime, the LZ

coating needs to accommodate the thermal strain associated with thermal cycling [1].
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In addition, oxidation of bond coat and low KIC of LZ are additional factors for the

spallation of the LZ coating [54,70].

Many researchers have conducted thermal cycling tests of LZ in different testing

conditions. Because the TBC is a complicated system, the thermal cycling results

vary due to different cycling test parameters, coating porosities, coating microstruc-

tures, multilayer coating architectures, and coating compositions, etc. Vassen et al.

conducted thermal cycling test with a large temperature gradient across the sam-

ple [15, 43, 71]. The APS deposited LZ coating with single-layer coatings and the

APS double-layer coatings with YSZ plus LZ top coat were used in these tests. These

TBC systems were tested in the surface temperature range of 1200 - 1450 ◦C. The

heating and cooling time periods were 5 min and 2 min. The results indicated that the

single-layer coating had a rather poor thermal cycling performance. The double-layer

system showed a similar to or slightly better performance than that of YSZ coatings

at temperatures below 1300 ◦C, suggesting the double-layer coating with YSZ is an

effective way to improve the lifetime of TBC in thermal cycling tests [71]. Meanwhile,

Cao et al. also showed that the single-layer LZ coating had a short thermal cycling

lifetime, but the double-layer LZ coating with La2O3-ZrO2-CeO2 composite sublayer

can greatly improve the lifetime [72]. However, the more layers that the TBC coating

has, the more artificial defects might be generated during the deposition process. To

reduce artificial defects, the composition, thickness and porosity in the double-layer

coatings need to be properly tailored.

Bobzin et al. investigated the thermal cycling performance of EB-PVD deposited

LZ and 7YSZ coatings using the FCT test [70]. The samples were heated to 1050 ◦C

for about 30 min, then cooled to 35 ◦C in compressed air for 5 min. Delamination

of the LZ coating occurred at 1856 cycles, which showed a better performance than

7YSZ coating (1380 cycles). The alumina scale was observed in Bobzin’ s thermal

cycle experiments, which was evidence of bond coat oxidation. Bobzin suggested

that the main reason of the failure was a combined effect of oxidation of the bond

coat and CTE mismatch. In this thesis, we conducted JETS test for single-layer LZ
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coating and double-layer coating composed of LZ and 8YSZ deposited by APS with

different porosities [54]. The front surfaces of the TBC samples were heated to 1232

◦C for 20 s, cooled by compressed N2 gas for 20 s and followed by ambient cooling

for 40 s. The front and back side temperatures were monitored during the test by

pyrometers to analyze the cross-sectional temperature gradient. The initial spallation

time of the TBC can be pinpointed by the temperature difference between the front

and back side surfaces. Our results showed that the single-layer porous 8YSZ coating

had better JETS performance than the single-layer porous LZ coating. Additionally,

the thermal durability of LZ-based coating can be improved by introducing a porous

8YSZ buffer layer between the top and bond coat [54].

1.6.2 Erosion Test

Erosion is regarded as a secondary cause of failure of TBCs by deteriorating the

coating through progressive removal of the coating material due to the mechanical

interaction between the coating surface and the impinging solid particles [73]. The

erosion tests by solid particle impingement were standardized by ASTM G76-13 [74].

Typically, the Al2O3 medium with the particle size of 50 µm is used as the abrasive

particles, and the abrasive particles are accelerated by the high-velocity carrier gas

through a particle-gas supply system. Finally, the abrasive particles are impacted

on the surface of the coating at a specific impinging angle. The average erosion

rate (mg/g or g/kg) is used to evaluate the erosion resistance performance, which is

determined by the slope of TBC mass loss (mg) versus the mass (g) of erodent. Many

variables like velocity, working distance, impact angle, abrasive particles properties,

coating hardness and mechanical properties of coating (H and KIC) affect the erosion

results.

Ramachandran et al. studied the erosion of APS deposited YSZ and LZ coatings

with different coating porosity, abrasive particles’ velocity, and impact angle [75].

They found that the porosity level is the most predominant factor affecting the erosion



29

rate of the coatings. High porosity in the coating increased erosion rate. The erosion

rate increased with the increasing of the abrasive particles’ velocity.

One method of improving erosion test performance is microstructure modification.

For instance, the columnar microstructure of EB-PVD deposited coating typically

provides the improvement of erosive resistance compared to the “splat” grain mi-

crostructure of APS deposited coating [73]. In addition, the aging of the APS coating

decreases the erosion rate and therefore enhances the erosion performance. However,

the aging of the EB-PVD coating results in a significant increase of erosion rate due

to the sintering of columns [73].

1.7 Simulation Methodology

1.7.1 Density Functional Theory

Material is a collection of bonded atoms, and chemical reactions can be expressed

by interactions between electrons, which can be described by the Schrödinger equa-

tion. As a result, almost all the material properties, including the chemical, mechan-

ical, electrical, magnetic, optical, thermal, etc., can be predicted from the atomic

number and mass of the atomic species by solving the Schrödinger equation. First

principles calculation is actually a series methods to solve the Schrödinger equation.

Density function theory (DFT) was proposed as an alternate approach to solve

the Schrödinger equation. The DFT interprets the theory of electronic structure by

electron density distribution n(r) rather than the many-electron wave function [76].

The Kohn-Sham equation is applied in DFT to describe the density distribution,

shown in Equation (1.9) [77–80].

[− h2

2m
∇2 + V (r) + VH(r) + VxC(r)] ·Ψnk(r) = εnkΨnk(r) (1.9)

where m is electron mass, h is Planck’s constant, Ψnk(r) is electron wave function, r

is the coordinate of electron, V(r) is a potential energy that defines the interaction

between an electron and the correlated atomic nuclei, VH(r) is Hartree potential which
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defines the Coulomb repulsion between electrons, VXC(r) is functional derivative of

the exchange-correlation potential. VH and VXC can be expressed as the following

equations.

VH(r) = e2

∫
n(r′)

|r − r′|
d3r′ (1.10)

VXC(r) =
δEXC(r)

δn(r)
(1.11)

n(r) =

# of e∑
nk

|Ψnk(r)|2 (1.12)

where n(r) is electron density.

Kohn-Sham equation is typically used for self-consistent-field electronic structure

calculations of the ground-state properties of atoms, molecules, and solids. In this

equation, only the exchange-correlation potential as a function of electron densities

need to be approximated. The most successful approaches to describe the electron

density are (1) local density approximation (LDA), and (2) Generalized gradient

approximation (GGA). The LDA approach uses a slow varied and localized spin

density to make the approximation. The exchange-correlation energy can be expressed

as the following equation using the LDA approach [81].

ELDA
XC (n ↑, n ↓) =

∫
d3rnεunifXC (n ↑, n ↓) (1.13)

On the other hand, the exchange-correlation energy can be expressed as the following

equation using the GGA approach [82,83].

EGGA
XC (n ↑, n ↓) =

∫
d3rf(n ↑, n ↓,∇n ↑,∇n ↓) (1.14)

To obtain the system energy of the atomic model, the Kohn-Sham equation is

treated using the iterative algorithm: (1) assign a reasonable initial electron den-

sity n0(r), (2) solve Kohn-Sham equations to find the single particle wave func-

tion Ψ(r), (3) calculate the election density from single particle wave function using

nks(r)=2
∑

i Ψ∗i (r)Ψi(r), (4) compare the calculated electron density with the one used

in previous step, if the difference between the two is smaller than the error tolerance,
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then can be regarded as the ground state electron density [80]. The ground state

energy of the system can be computed by substituting the ground electron density

into the Kohn-Sham equation. Since this iterative process requires enormous compu-

tational effort, supercomputer and numerical method codes become imperative tools

to solve these problems. In this thesis, most of the DFT calculations are performed

by Vienna Ab initio Simulation Package (VASP) and Cambridge Serial Total Energy

Package (CASTEP) [84–88]. The VASP uses the plane-wave pseudopotential to spec-

ify the interaction between ions and electrons, the projector-augmented wave (PAW)

and ultrasoft pseudopotential are the most widely used pseudopotentials [89, 90]. In

CASTEP, CA-PZ (Ceperley, Alder, Perdew and Zunger) functional is used in this

work as an LDA functional [91, 92]. For both the VASP and the CASTEP, the most

common functionals of GGA approach are PBE (Perdew, Burke, Ernzerhof) and

PW91 (Perdew et al) [81,83]. The election density and the total system energy com-

puted by DFT method are in the ground energy state, which is the lowest energy

state of the electron and at 0 K in most cases. To calculated the properties in higher

temperature, large scale model and further simplifications need to be introduced.

1.7.2 Molecular Dynamics Method

In molecular dynamics (MD) method, the successive structured system is gener-

ated by an ensemble of particles, whose trajectories follow Newton’s law of motion [93].

The trajectories specifies the positions and velocities of the particles in the system as

a function of time, which can be obtained by solving the differential equation based

on Newton’s second law (F=ma):

d2xi
dt2

=
Fxi

mi

(1.15)

where mi is the atomic mass, xi is the coordinate of the atom, and Fxi is the force on

the atom. To describe the interatomic interactions in the actual system, the forces

on each atom are changed whenever the position of atoms changes. As a result, the

continuous force field is used to realize this regime [93].
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The MD particle trajectories are generated using the finite difference techniques

with continuous force field models. This algorithm assumes that the position, velocity,

accelerations can be approximated using Taylor series expansion:

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) +

1

6
δt3b(t) + ... (1.16)

v(t+ δt) = v(t) + δta(t) +
1

2
δt2b(t) + ... (1.17)

a(t+ δt) = a(t) + δtb(t) + ... (1.18)

where t is the time, δt is the finite time step between two consecutive positions, r is

the position, v is the velocity (the first derivative of position with respect to time), a

is the acceleration (the second derivative of position), b is the third derivative, and

so on [93]. To describe the actual atomic motion, δt should be at least one order of

magnitude smaller that the fastest motion in the atomic system. Since the vibrational

frequencies and optical phonon frequencies are in the time period of ∼10 fs and ∼100

fs in a typical molecular system respectively, the typical time step used in the MD

calculations is in an order of fs [94]. Among all the time integration algorithms, the

Verlet algorithm is the most widely used method for integrating the motion equations

in the MD calculations [95]. In Verlet algorithm, the new position at t+δt is calculated

from the position and acceleration at t and the position at t-δt, which can be derived

following equations:

r(t+ δt) = r(t) + δtv(t) +
1

2
δt2a(t) + ... (1.19)

r(t− δt) = r(t)− δtv(t) +
1

2
δt2a(t)− ... (1.20)

Add Equation (1.19) and Equation (1.20) gives the position equation at t+δt [93].

r(t+ δt) = 2r(t)− r(t− δt) + δt2a(t) (1.21)

In addition to Verlet algorithm, several variations are developed such as the leap-frog

algorithm and velocity Verlet algorithm [96,97].

In the MD calculation, the atom is described as a rigid body, without considering

electrons explicitly. With this simplification, the complicated quantum parameters



33

leave only the particle wavelength, which is comparable with the interatomic dis-

tance. Therefore, the atomic dynamics can be predicted using the semi-empirical

potentials, which specifies the force field with the atomic configuration [98]. The po-

tentials for a specific systems are developed by fitting the potential functions to the

experimental data or the DFT-calculated data, such as equilibrium lattice parame-

ters, adhesion energy, defects formation energy, surface energy, elastic modulus, etc.

The most widely used potentials include pairwise potentials (Lennard-Jones, Bucking-

ham, Morse, etc.), charged pairwise potentials (Coulombic, point-dipole), many body

potentials (embedded atom method (EAM), charge-optimized many body potential

(COMB), Tersoff , etc.), reactive-force-field potential (ReaxFF) [98–100].

The necessary steps to perform an MD simulation in a microcanonical ensemble

include: (1) establish an initial model with reasonable atomic construction, and the

initial velocities may be assigned to the system, (2) find a suitable potential for the

system, hence the force on each atom can be calculated by differentiating the potential

function, (3) set the boundary condition and equilibrate the system by energy min-

imization, (4) perform the simulation in a suitable constant ensemble (NVE, NVT,

NPT etc.) [93].

1.8 Research Objectives

The primary goal of this work is to design a novel robust LZ based on TBC system

suitable for application beyond 1200 ◦C. There is no systematic characterization of

the physical, thermal and mechanical properties of LZ TBC coatings in previous work.

Most of the existing researches about thermal and mechanical properties of LZ were

characterized using the fully dense hot pressed powders or the EB-PVD deposited

coatings, whose properties are extremely different with the APS deposited coating.

In this thesis, the physical, thermal and mechanical properties of APS deposited LZ

coatings are systematically investigated, and thermomechanical durability of APS de-

posited LZ coating are also studied. To improve the durability of the APS deposited
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LZ-based coating, two schemes are performed to design and fabricate the TBC coat-

ing: (1) multiple layered coating, and (2) LZ/8YSZ composite coating. Different

architecture and composition ratio are used to construct the LZ-based coatings.

On the other hand, the thermal and mechanical properties of the pure LZ can

hardly be measured using experiments way due to the porous characteristic of the

LZ powders. However, theoretical modeling method can be an alternative way to

obtain the properties of single crystal pure LZ materials. Since there is a lack of

comprehensive theoretical understanding of the LZ material, so in this thesis some

basic thermal and mechanical properties are investigated using DFT, MD, and finite

element method modeling.

In addition, from the thermomechanical durability analysis, most of the thermal

cycling failures occur at the interface between the top coat and the bond coat. The

stress-strain behaviors at the interface are responsible for the failure of the TBC in

thermal cycling test. To better understand the thermal cycling failure mechanism,

the mechanical properties of the interface between top and bond coat are investigated

using the DFT calculations. Since the main composition of the YSZ is ZrO2 (8YSZ

contains about 92 wt% ZrO2), and the LZ is also synthesized from ZrO2 (66.6 wt%)

and La2O3, the interface tensile and shear simulations are performed using ZrO2/Ni

interface models with different Ni thickness.

1.9 Thesis Outline

In this chapter, the background of TBC research, literature review, and the re-

search objective of LZ-based TBC are presented.

Chapter 2 will describe the experimental research of APS deposited LZ-based

TBC. After characterizing the basic physical properties of the LZ powder, several

layered architectures of the LZ and 8YSZ TBCs are designed and deposited using

APS technique. Mechanical, thermal properties and thermomechanical durability of

the layered LZ-based TBC are studied. To further improve the thermal durability of
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LZ-based TBC, the LZ/8YSZ composite TBC are proposed and the corresponding

thermal durability experiments are performed. The delamination mechanism of the

LZ-based TBC is analyzed, and the fracture toughness and the stress status at the

interface and in the LZ layer are the primary reason of the failure.

Chapter 3 will discuss the DFT and MD modeling work on mechanical properties

of single crystal LZ. The single crystal LZ unit cell is optimized by energy minimiza-

tion. Nanoscale tensile and shear simulations are performed on the single crystal LZ

using DFT and MD calculations, respectively. Young’s modulus of the single crys-

tal LZ is calculated using two approaches: the stress-strain curve analysis in large

deformation and the elastic constant approximation in small deformation. The LZ

has anisotropic elastic properties, and the charge transfer analyses are performed to

explain this phenomenon.

Chapter 4 will elaborate the simulation work about the thermal properties of the

single crystal LZ and the LZ coating. Based on the optimized single crystal LZ in

Chapter 3, the specific heat of the LZ is calculated using DFT method. The thermal

conductivity of the single crystal LZ is calculated using a reverse non-equilibrium

molecular dynamics (RNEMD) method, which based on Muller-Plathe algorithm.

The thermal conductivity of porous LZ coating can be calculated by plugging the

MD results into the image-based finite element model.

Chapter 5 will focus on the stress status at the interface between the top coat and

bond coat. The tensile and shear stress-strain simulation are performed on the ZrO2

and Ni interface DFT models, and corresponding elastic modulus, ultimate strength,

and toughness are calculated. Charge density and Bader charge analyses are analyzed

to explain the mechanical properties trend.

Chapter 6 will summarize the entire dissertation and suggest the future study

about LZ-based TBC.
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CHAPTER 2. EXPERIMENTAL STUDY OF LZ COATINGS

2.1 Powder Fabrication and Characterization

2.1.1 Powder Fabrication Process

The criteria of the fabrication of LZ feedstock powders are (1) spherical shaped

powder, (2) uniform and fine particle size, (3) homogeneous composition, (4) high pu-

rity, and (5) low fabrication cost. The requirement of the shape and size distribution

in powder is because the powder flow capability is very important for the feedstock

in a thermal spray process. The spherical shaped powder and its uniform particle

size are critical for the smooth flow of powders through the feedstock-feeding pipe of

the thermal spray facility. Homogeneous composition and higher purity can enhance

the phase stability and corrosion resistance, which is available to improve the coating

lifetime.

In general, three preparation methods are used in the laboratory: (1) a solid

state reaction [49, 101], (2) a nitric acid dissolution method [102] and (3) a sol-gel

technique [91,103,104]. Comparing these methods, the solid state reaction method is

good for large scale fabrication in industry. Because one objective of this research is

to develop a TBC material that is applicable to the massive manufacture, all of the

LZ powders used in this thesis were fabricated using solid state. The raw materials for

the LZ fabrication include La2O3 and ZrO2. The raw materials were milled into small

particles as the first step. Then La2O3 and ZrO2 powders were mixed together using

a V-shaped powder blender. After that, water and binder material were pumped in

to the mixed raw materials, and all the materials were made into a slurry cake. After

that, the slurry cake was dried in 150 ◦C for several hours. Finally, the mixed raw

materials were filled into an alumina case and sintered in the furnace at 1650 ◦C.

The LZ material was synthesized during the high-temperature calcination process.
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To satisfy the size requirement of the thermal spray equipment, the powder needs to

be filtered several times using screeners with a specific mesh size and atomized using

a high-pressure atomization device.

2.1.2 LZ Powder Characterizations

The size of LZ powder was limited to a particular dimension range because uniform

particle size can provide a good flow capability in the feedstock system for an APS

torch. The LZ Powder size was measured by a Microtrac standard range particle

analyzer (Microtrac, s3500, Pennsylvania, USA). The particle analyzer statistically

analyzed the particle size using three precisely placed red laser diodes to accurately

characterize particles. The column in Figure 2.1 shows the distribution percentage of

the LZ particle size, and the curve in Figure 2.1 depicts the accumulative distribution

percentage. The distribution percentage of particles shows that the average powder

size of LZ powder was about 65 µm, which satisfied the powder size requirement of

the APS equipment.

The chemical composition of the LZ powders was investigated by weight per-

centage using inductively coupled plasma techniques (ICP) and inductively coupled

plasma mass spectrometry (ICP-MS) methods in NSL Analytical test laboratory.

Table 2.1 shows the tested chemical composition of LZ. The measured chemical com-

position ratio of LZ powders is very close to the theoretical weight ratio of ZrO2 and

La2O3 in LZ (43% : 57%), suggesting this solid state reaction approach is able to

fabricate the LZ coating in a good quality.

X-ray diffraction (XRD) testing of LZ powder was performed using laboratory

XRD equipment with a wavelength of 1.54 Å. The XRD scan speed is 4 degrees per

minute and the scan increment is 0.02 degrees per step. As shown in Figure 2.2,

the XRD pattern of the LZ powder synthesized by solid state reaction (red curve)

matched very well to the standard XRD pattern card of LZ (pdf card #73-0444,

green lines). In addition, it can be concluded from the XRD pattern that LZ is a
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Figure 2.1. Powder size analysis results.

Table 2.1. Chemical composition of LZ powders.

Chemistry Test method Weight percentage

Lanthanum Oxide ICP 57.0

Zirconium Oxide ICP 41.6

Aluminum Oxide ICP < 0.1

Silicon Dioxide ICP 0.7

Ferric Oxide ICP-MS 0.1

Hafnium Oxide ICP 0.1

Other Oxides Total ICP-MS ∼0.4

cubic phase with space group Fd3m̄. The powder shows slim peak widths, indicating

relatively big crystalline sizes or higher crystalline disorder in the LZ powders.
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Figure 2.2. X-ray diffraction data of LZ powders.

Figure 2.3. High energy XRD as a function of temperature.

In addition, phase stability of the LZ from room temperature to 1673K (1400 ◦C)

has been studied using synchrotron X-ray diffraction (XRD) at Argonne National
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Laboratory, as shown in Figure 2.3 [46, 48, 105]. The synchrotron XRD curves of LZ

powder show very similar patterns from 30 ◦C to 1400 ◦C, indicating that there was

no phase change during this continuous heating and cooling process.

The scanning electron microscope (SEM) images of LZ powders, which can be

directly used as the feedstock powders in the thermal spray equipment, are shown in

Figure 2.4. The powder images show spherical or ellipse shapes with uniform particle

size. Even in a single powder, the LZ powder is still porous with a lot of holes and

pores in the powder particle.

(a) X100 (b) X500

(c) X1000 (d) X2000

Figure 2.4. SEM images of LZ powders under different magnification.

To further detect the LZ crystal morphology, the transmission electron microscopy

(TEM) image of milled LZ coating powders is shown in Figure 2.5, which exhibits

the polycrystalline morphology in nanoscale.
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Figure 2.5. TEM image of LZ coating powder.

2.2 Mechanical Properties and Stability of Layered LZ Coating

2.2.1 Single (SCL) and Double Ceramic Layer (DCL) LZ Coating Preparation

All LZ coatings were deposited using the the air plasma spray (APS) technique

using a Praxair patented plasma spray torch. Haynes 188 superalloy (Haynes Inter-

national, Kokomo, IN, USA) was used as the standard substrate material. NiCrAlY

powder, Ni-211 (Praxair Surface Technologies, Indianapolis, IN, with a chemistry Ni

61.5 wt%, Cr 21.12 wt%, Al 9.94wt%, Y 1.02wt% [9]) was selected as the standard

bond coat feedstock in this work. The bond coat thickness was in the range of 180–

230 µm. Ceramic LZ or 8YSZ top coats were deposited above the bond coat using

the APS technique. The thicknesses of the top coats used in this thesis range from

300 to 600 µm. In order to deposit the top coat with designated porosity, all of the

APS parameters were properly tailored. Dense and porous 8YSZ TBC systems were

also deposited as a reference sample on the same bond coat and substrate using the

same deposition technique and similar deposition parameters. AMPERIT 825.001
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and AMPERIT 827.006 powders (HC Starck, Munich, Germany) were selected to

produce the dense and porous 8YSZ.

Four kinds of shapes were applied as substrate. 10 mm cubic bulk substrates were

used to produce the free-standing samples, which were deposited directly on smooth

substrates without any bond coats, so that the top coats can be easily peeled off from

the cubic substrates. Round button HS 188 substrates with a diameter of 1 inch (25.4

mm) were used in the bond strength tensile tests. Tensile bar samples (200×20 mm)

were used in thermal gradient mechanical fatigue (TGMF) tests. Rectangular panel

(50.8×25.4 mm) samples were used in erosion tests.

Single ceramic layer (SCL) LZ coating samples deposited in the first batch were

aimed to investigate the physical, mechanical and thermal properties of the LZ coat-

ing. The SCL samples were coated using the same powder feed ratio, deposition

speed, and plasma current for single layer coating. The only differences among sam-

ple 1 to sample 5 are the standoff distances, which are the distances from the spray

torch to the sample surface. The deposition standoff and physical parameters of SCL

LZ coatings in the first batch are listed in Table 2.2.

Table 2.2. Physical properties of SCL LZ coatings deposited in the 1st batch.

Sample Standoff Density Top coat Porosity

number distance (mm) (g/cm3) thickness (µm) (%)

1 165.1 5.2587 445 11.36

2 177.8 5.2584 422 12.36

3 190.5 5.2917 389 11.81

4 203.2 5.2614 373 12.31

5 215.9 5.0089 325 16.52

Double layer TBCs deposited in the second batch include both 8YSZ and LZ lay-

ers. Both coating layers were sprayed using the APS method in the second batch.
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Two different types of double-layer TBC samples were deposited: LZ coating on a

porous 8YSZ layer and LZ coating on a dense 8YSZ layer. Additionally, two types

of single-layer TBC samples, single-layer LZ and single-layer porous 8YSZ, were pro-

duced for comparison purposes. All prepared TBC samples are listed in Table 2.3.

Table 2.3. List of SCL and DCL LZ/8YSZ layered TBCs deposited
in the 2nd batch.

Sample Bond coat Top coats Top coat Porosity

number thickness (µm) (%)

6 NiCrAlY SCL LZ 424 11.54

7 NiCrAlY DCL Porous 8YSZ + LZ 138 + 305 15.95/11.54

8 NiCrAlY DCL Dense 8YSZ + LZ 140 + 292 7.24/11.54

9 NiCrAlY SCL porous 8YSZ 452 15.95

Both SCL and DCL TBCs systems and the free-standing samples were used to

observe the cross-sectional microstructure. All of the samples were sectioned and

mounted by the cold-mounting method with epoxy and hardener. A significant ben-

efit gained by using cold-mount materials is that the epoxy can impregnate and fill

surface-connected pores, which can provide a strong support to the porous sample [10].

The microstructures of the complete TBCs system samples were observed using an op-

tical microscope, and the free standing samples were examined by a scanning electron

microscope (SEM; JEOL, JSM–5610, Japan).

The optical images of cross-sectional microstructures of the as-prepared TBC spec-

imens are shown in Figure 2.6. The LZ thermal barrier coatings were deposited above

the bond coat (white layer). LZ with different thicknesses and porosities can be well

deposited on the bond coat without delamination or cracking at the interface. Fig-

ure 2.6 illustrates that all LZ top coats have lots of pores, but without large cracks.

The coating thickness decreased from sample 1 to sample 5, while porosity increased
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(a) Sample 1 (b) Sample 2

(c) Sample 3 (d) Sample 4

(e) Sample 5

Figure 2.6. Optical microscope images of SCL LZ samples.

from sample 1 to sample 5. Relatively larger defects such as pores and unmelted

particles were increased from sample 1 to sample 5.

Figure 2.7 shows the SEM images of SCL LZ free-standing samples. It illustrates

the detailed microstructure for samples of various porosity. The microstructures show
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(a) Sample 1 (b) Sample 2 (c) Sample 3

(d) Sample 4 (e) Sample 5

Figure 2.7. SEM images of LZ cross section microstructures.

a lot of intrinsic defects, such as pores, unmelted particles and splat boundaries in the

coat preparation process. In Figure 2.6(e) sample 5 shows obviously higher porosity
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than sample 1 – sample 4. Different pores in various morphologies can be spotted,

and some of the unmelted feedstock powders can also be found in SEM microstruc-

ture images. In general, the microstructures in Figure 2.6 and Figure 2.7 indicated

that the amount and dimension of the defects are proportional to the porosity mea-

surements shown in Table 2.2. As the standoff distance increases, the defects in the

microstructure increase. So, the coatings with relatively accurate porosity can be

achieved using the proper standoff distance.

(a) Sample 6 (b) Sample 7 (c)Sample 8 (d)Sample 9

Figure 2.8. Microstructure of as-sprayed SCL and DCL samples.

That the pores constituted a large portion of total porosity can be clearly illus-

trated from the microstructure as shown in Figure 2.7. The distribution and the
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size of the pores are not uniform in all samples. The porosity has a large influence

on thermal and mechanical properties. With a large number of pores and cracks in

TBCs, the mechanical properties will have a severe change.

The microstructure images of as-sprayed DCL and SCL LZ/8YSZ layered coating

are shown in Figure 2.8. All of the coating shows a sound status without delamination.

There is no TGO at the interface between the top coat and bond coat, suggesting the

bond coat is not oxidized yet. Scattered pores and cracks are obvious in the porous

LZ and 8YSZ layer, and vertical cracks are generated in the dense 8YSZ layers, which

is good for the coating durability performance [106].

2.2.2 Diffusion Investigation at the Interface

Energy-dispersive X-ray spectroscopy (EDS) experiments were performed on sam-

ple 8 to detect the diffusion characteristic between the LZ and the 8YSZ layers in the

bilayer TBC system. Before the EDS test, sample 8 was heat-treated at the temper-

ature of 1080 ◦C for about 4 hours. Both Zr and La elements were tracked through a

cross-sectional line in the sample. The relative proportion of Zr and La as a function

of distance at the interface area is shown in Figure 2.9. There is no obvious diffusion

of Zr and La elements between two layers. Since almost no diffusion occurred at

the interface, the adhesion strength between the LZ and the 8YSZ layers primarily

came from the mechanical binding such as friction and hook. As a result, the inter-

face roughness is very important to the bond capacity of the layered coatings. Since

there is no chemical interaction between the LZ and the 8YSZ coatings, the thermal

and mechanical properties of LZ-based TBC are recognized as the primary factors to

improve the operation performance and understand the mechanism of delamination.

2.2.3 Porosity Measurement

The density measurement for the LZ top coat was conducted using 432 µm

thick free standing coatings that peeled off from the 10 mm cubic substrate. The
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(a) (b)

Figure 2.9. EDS analysis at the interface between LZ and 8YSZ
layers on sample 8.

density was measured following the ASTM standard B328-94, which is based on

Archimedes’ principle. The measurement apparatus includes an analytical balance

(Mettler AE240, Switzerland) and a density determination kit (Denver Instrument,

density kit, Arvada, Colorado).

The porosities and densities of the as-sprayed SCL samples deposited in the first

batch are summarized in Table 2.2. The porosities range from 11.81 % to 16.52 %.

The porosity values obtained here are calculated using the theoretical density of LZ

6.05 g/cm3 [40]. Typically, the commercial APS 8YSZ coatings have a porosity of 10-

20 % [5]. Since the mechanical properties of LZ will drop severely, it is important that

the porosity can be restricted from 10% to 15% by controlling the APS parameters.

Table 2.2 shows that when the standoff distance increases, the porosity increases as

well.

The porosities of the second batch SCL and DCL LZ/8YSZ layered coatings are

listed in Table 2.3. The free standing LZ top coat of sample 6 was used to measure

the porosity and density of all the LZ coat layers because the densities of the LZ
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coat layers among sample 6, 7 and 8 are the same. The measured average densities

and porosities of the LZ layer in samples 6, 7 and 8 were 5.35g/cm3 and 11.54 %,

respectively. Porosities in the dense and porous 8YSZ layers were 7.24 % and 15.95

%, respectively.

2.2.4 Hardness and Young’s Modulus

The whole TBCs system samples (include top coat, bond coat, and substrate)

were used to evaluate the mechanical properties. Vickers indentation experiments

were applied on the cross-sectional mounted samples of the TBC system so that the

hardness of each layer could be measured individually. The hardness values of the

top coats were determined using a Vickers hardness tester (Mitutoyo Corp., HM114,

Japan) with a Vickers tip for a load of 10 N and a nanoindenter (MTS, nanoindenter

XP, Minnesota).

Figure 2.10. Vickers hardness of SCL LZ coatings sprayed in first batch.
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The Vickers hardness results of SCL LZ samples that sprayed in the first batch

were summarized in Figure 2.10. The hardness values in porous TBCs are not as

easily and clearly defined as those in dense material since the “splat” boundaries and

pores would influence the indentation measurement results. As a result, the data in

Figure 2.10 show some variations.

Figure 2.11. Vickers hardness in different layers of DCL TBC samples.

The hardness of sample 5 is the lowest, which is consistent with its low density

and high porosity. Figure 2.10 shows the trend that the hardness will decrease as

the porosities increase. Figure 2.11 shows the hardness results of the SCL and DCL

LZ/8YSZ layered coatings, which were sprayed in the second batch. The hardness

values of porous 8YSZ coats were similar to the LZ coats, as shown in Figure 2.11.

The tiny difference might be due to the difference of porosity between these two

coating layers. The hardness values of dense 8YSZ coats were much higher than that
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of other coats, due to the low porosity of the other coats. As a result, the hardness

of the TBC coating is related to the porosity and the material species.

Figure 2.12. Nanoindentation load curve of sample 3, S represents
the unloading stiffness.

The nanoindenter measures the hardness and Young’s modulus by continuously

monitoring the displacement of the indenter by a capacitance gauge as the load is

applied. The nanoindentation hardness was performed using the calibrated shape

of the diamond [107]. Nanoindentation employs the Berkovitch diamond indenter.

There are two testing modes that can be applied in the nanoindentation tests: the

depth control mode and the load control mode. In this study, the load control mode

was employed. A sample load-displacement curve is shown Figure 2.12. In order

to reach the predesignated 500 mN, five consecutive indentation movements were

conducted at the same position. The hardness values can be obtained from each

indentation. But when the indenter displacement was small, there are quite a lot

of errors due to artificial effects in the experiments, such as surface roughness and
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contact angle. The accuracy can be improved with the increasing the displacement.

As a result of that, the value obtained from the last curve was regarded as the true

result in this study.

The nanoindentation hardness results of LZ coating sprayed in the first batch are

summarized in Figure 2.13. The nanoindentation hardness normally has a higher

value than the Vickers hardness because localized indentations, where pores can be

avoided, were used. However, the variations of nanoindentation hardness were larger

than Vickers hardness because of the complex microstructure in various indentation

sites. These results indicate that nanoindentation hardness decreases as the porosity

increases because the existence of the pores, splat boundaries, and cracks severely

reduce the continuity of the coating, which causes the hardness decrease.

Figure 2.13. Nanoindentation hardness.

Young’s modulus results were calculated from the slope of unloading parts in

the load and displacement curve of nanoindentation measurements, as shown in Fig-

ure 2.12. During unloading, it is assumed that only the elastic displacements are
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recovered. Because of the elastic nature of the unloading curve, the elastic modulus

can be analyzed. Figure 2.14 shows the calculated Young’s modulus values. Sample 5

has a lower Young’s modulus than sample 2,3 and 4. Comparing microstructure and

porosity data, Young’s modulus in LZ coating decreased as the porosity increased.

Figure 2.14. Young’s modulus of SCL LZ TBC measured by nanoindentation.

The correlation between Young’s modulus and nanoindentation hardness is inves-

tigated. In order to calculate Young’s modulus, three important quantities must be

measured in the load curve: the maximum load, Pmax, the maximum displacement,

hmax, and the elastic unloading stiffness, S=dPmax/dhmax, which is defined as the

slope of the upper portion of the unloading curve during the initial stages of unload-

ing as shown in Figure 2.12. The relationship between hardness (H) and Young’s

modulus (E) can be expressed by the following equation [108]:

P

S2
=

π

(2β)2

H

E2
(2.1)

where β is the correction factor and β = 1.0226 for the Berkovich diamond indenter

[108]; P is the load force, and S is the stiffness. Figure 2.15 shows the correlation
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relation of P/S2 and H/E2. The experiment results are shown by round dots. The

theoretic P/S2 value is calculated from Equation (2.1). The experiment’s value is

distributed around the theoretical line. As a result, P/S2 and H/E2 can be expressed

as a linear relation.

Figure 2.15. Nanoindentation P/S2 and H/E2 relations.

2.2.5 Bond Strength Between the LZ Coat and Bond Coat

Sufficient adhesion bond strength between the coating layers and bond coat is

an important property for the TBC systems because the durability and integrity of

the coating depend on the adhesion bond strength. Bond strength experiments were

performed in this study to investigate the adhesion bond strength following ASTM

C633. Epoxy (FM 1000 adhesive film) was used to glue the TBC’s top coats to

two cylinders. This bonding agent is capable of bonding the coating to the loading

fixture with a tensile strength, which is at least larger than the minimum required
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adhesion strength of the coating. In addition, this FM 1000 has sufficient viscous not

to penetrate through the coating. The adhesion or cohesion bond strength can be

calculated by dividing the maximum load by the coating area.

Only the SCL LZ and 8YSZ coating samples (sample 6 and sample 9) were investi-

gated in the bond strength test. Because the adhesion bond strength will be affected

by various interfaces and layers in multiple layer coats, it is hard to determine the

adhesion bond strength at a specific interface for the DCL.

Figure 2.16. Load and bond strength results of bond strength tensile test.

As shown in Figure 2.16, the SCL 8YSZ sample can resist a higher load, so it

has a higher adhesion bond strength than the SCL LZ coating. When the tensile

stress is lower than the adhesion bond strength, the TBCs were intact. Local fracture

occurs when the tensile and shear stresses in the coating layer equal the adhesion

bond strength. There are typically two explanations for the failure mechanism: (1)

the residual stress enhances the defects inside the ceramic layer, which will lead to the
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delamination, and (2) the increasing tensile and shear stresses enhances the tendency

of cracking [109].

The LZ coats have lower fracture toughness than 8YSZ coats (2.2 – 3.3 MPa·m1/2

for YSZ and 1.1 ± 0.2 MPa·m1/2 for LZ), which means LZ coats are easy to break

[15, 50, 51]. As a result, the SCL LZ coating sample had a lower adhesion bond

strength than SCL porous 8YSZ in this work.

(a) Sample 6, x100 (b) Sample 6, x1000

(c) Sample 9, x100 (d) Sample 9, x1000

Figure 2.17. SEM images at the interface of SCL LZ and 8YSZ
coating in different magnification levels.

Figure 2.17 shows the cross sectional SEM images of the TBC systems after the

bond strength tests. There is almost no TGO layer at the interface between the top

and bond coat, so the TGO layer is not the main reason of spallation. The spallation
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occurs predominantly near the interface between the top coat and the bond coat,

although the spallation does not occur exactly at the interface. Although the porosity

of LZ and 8YSZ are similar, the LZ coat samples have scattered “splats” grains. The

microstructure shows the net-shape cracks inside the LZ layer. The cracks are easy to

propagate in grain boundaries. However, in the remnant 8YSZ layer, it shows fewer

grain boundaries but much larger pores than the LZ layer. As a result, there are

fewer initial crack resources in the 8YSZ layer, and its grains are connected better

than the LZ layer.

Since the sprayed coating samples are cooled in ambient environment from the

elevated deposition temperature. Thermal residual stress is originated in the TBC

layers, due to the different coefficient of thermal expansion in each TBC layers. The

residual stress is generated mainly from the strain mismatch among the coating layers

and the substrate when the TBC systems are cooled from the high temperature to

the room temperature. When the coatings are cooled from the high temperature,

the volume of substrate shrinks more than that of the coatings due to the higher

coefficient of thermal expansion. Considering the displace compatibility, compression

stress is applied in the ceramic coating layers and tension stress is applied in the

substrate. To calculate the residual stress in multiple layer coatings, the interface

between the substrate and the bond coat is defined as the origin plane, where z=0.

The distance from the ith layer to the substrate is defined as hi [110–112]. The thermal

residual stress in the substrate and ith coating layer, which relates to the misfit strain

εi and the bending curvature K, can be expressed by [110,112]:

σs = Es[εs +K(Z + δ)] (−ts ≤ z ≤ 0) (2.2)

σi = Ei[εi +K(Z + δ)] (1 ≤ i ≤ n, hi−1 ≤ z ≤ hi) (2.3)

where Es and Ei are Young’s modulus of substrate and ith coating layer. δ is the

distance from the bending axis, where the bending strain is zero. εi, εs, K and δ can

be expressed by the following equations [113].

εs = −
n∑

i=1

Eiti
Ests

∆α∆T (2.4)
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εi = ∆α∆T +
n∑

k=1

Ektk
Ests

(αk − αi)∆T (2.5)

δ =
ts
2
−

n∑
i=1

Eiti
Ests

(2hi−1 + ti) (2.6)

K = −
n∑

i=1

6Eiti∆α∆T

Ests
2

(2.7)

where α is the coefficient of thermal expansion (CTE), k is the ceramic coating layers

range from 1 to n, ti is the thickness of ith layer.

The thermal residual stress curves calculated by Equation (2.2)–(2.7) and the

Townsend model are shown in Figure 2.18 [111]. The compressive residual stress

difference at the interface of the SCL LZ coat is about 3 GPa larger than that of the

SCL porous 8YSZ at ∆ T= 400 K.

Because of the large residual stress difference, there are more defects, such as grain

boundaries and pores, at the interface between the top coat and the bond coat in the

SCL LZ TBCs than that in the SCL 8YSZ TBCs, as shown in Figure 2.17(b) and

2.17(d). Since there are more distributed grain boundaries in the LZ layer than in

the 8YSZ layer, so the LZ ceramic layer is easy to break. In addition, the LZ layer

is much weaker than the bond coat due to its low fracture toughness and scattered

boundaries [50], so the delamination occurs in the LZ coating layer instead of at the

interface. The magnitude of residual stress in the SCL LZ TBCs is larger than that

in the SCL 8YSZ TBCs. The bond strength in the LZ sample is lower than that of

8YSZ sample, which means that the spallation occurs easier in LZ coating than in

8YSZ coating. As a result, the delamination is due to the lower fracture toughness

of LZ and higher residual stress in the LZ coating layer.

2.2.6 Erosion Test

The Erosion resistance tests are performed according to the ASTM G76-13 stan-

dard. Alumina sand with a particle size of 50 µm is applied as the erosive material,

and 600 g sand is used for each sample. The speed of sand stream is 6 g/s, and the
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(a) Residual stress distribution in Sample 6

(b) Residual stress distribution in Sample 9

Figure 2.18. Residual stress distribution as a function of thickness at ∆T=400 K.
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impingement angle is 20 ◦. The erosion rate (µg/g) is used to evaluate the erosion

resistant performance in this experiment, which is calculated by dividing the removed

TBC weight (µg) by the erosive material weight (g).

Figure 2.19 summarizes the erosion rate values of the four TBC samples. The

SCL porous 8YSZ coating sample has the lowest erosion rates, which is about only

half of the other sample’s erosion rate. The erosion rates of the LZ coating layers in

all samples are much higher than that of the 8YSZ layer. However, the DCL dense

8YSZ + LZ has relatively lower erosion rates than other LZ-based coatings.

Figure 2.19. Erosion rate.

Figure 2.20 shows the optical images of TBC samples after the erosion tests. Al-

though the SCL 8YSZ sample has lower erosion rate, the center of this coating sample

is penetrated, as shown in Figure 2.20(d). The substrate of sample 9 is exposed, so

this small hole can lead to lethal failure of the entire coating system. Similarly, the

bond coats of both sample 6 and 7 are penetrated, as shown in Figure 2.20(a) and

Figure 2.20(b). Figure 2.20(b) shows three concentric ellipses, they represent LZ,
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porous 8YSZ, the bond coat and substrate respectively from outside to inside. The

dark solid ellipse area in Figure 2.20(c) is the dense 8YSZ layer, which is not pene-

trated. However, all the LZ top coat layer and part of the 8YSZ layer are removed in

this ellipse region.

(a) Sample 6 (b) Sample 7

(c) Sample 8 (d) Sample 9

Figure 2.20. Optical images of erosion test.

The cross-sectional SEM images of the erosion samples are shown in Figure 2.21.

As shown in Figure 2.21(a), the removed part is very large in the SCL LZ coating layer,

but both two edges are still connected with the substrate. As shown in Figure 2.21(b),

both the two top coat layers of the DCL porous 8YSZ + LZ coating are removed in

the center. There are more porous 8YSZ layers left than the LZ layer. However, the

interface between each layer in sample 7 is connected in a good shape. As shown in

Figure 2.21(c) although there is a great loss in the LZ layer, the dense 8YSZ layer is

almost intact. The interface between the dense 8YSZ layer and the substrate is also

intact. As shown in Figure 2.21(d), although the erosion hole is relatively small, the

porous 8YSZ top coat in this cross-sectional image is detached from the substrate.
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(a) Sample 6

(b) Sample 7

(c) Sample 8

(d) Sample 9

Figure 2.21. Across section SEM images of the erosion samples.

The SEM images at the edge of the erosion areas are shown in Figure 2.22. As

shown in Figure 2.22(a) and Figure 2.22(d), both SCL porous 8YSZ and SCL LZ

layers are delaminated from the substrate at the interface area. However, the double

layer coatings have sound interfaces, as shown in Figure 2.22(b) and Figure 2.22(c).

The 8YSZ coating shows better erosion resistant performance than the LZ coating

because the fracture toughness of the 8YSZ is higher than that of the LZ. In addition,

the hardness of the dense 8YSZ layers is higher than the other TBC layers, so the

erosion rate of the dense 8YSZ layer is the lowest.

Erosion model of brittle material, such as the top coat in TBC, can be described

using the indentation theory of the abrasive particle, which relates to the Young’s

modulus (E) and the fracture toughness (KIC) of the brittle material and the erosion
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(a) Sample 6 (b) Sample 7

(c) Sample 8 (d) Sample 9

Figure 2.22. SEM images at the edge of the erosion area.

conditions, such as impact velocity and abrasive particle size [114–117]. The erosion

model describes a threshold condition when the impinging particles initiate a crack

in a specific target material. The critical velocity is applied to express the threshold

condition to initiate the crack. Wellman proposed a critical velocity model, which is

expressed by the following equation [118].

Vcritical = 105
E3/4K3

IC

H13/4ρ1/2R3/2
(2.8)

where E is Young’s modulus, H is hardness, KIC is fracture toughness, ρ is the density

of the abrasive particles and R is the particle radius. As the LZ has a lower KIC than

the 8YSZ, lower erosion resistance of the LZ in the erosion test is expected [119].
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The calculated critical erosion velocities for each sample are shown in Figure 2.23.

The critical velocities of the LZ coating layers are much less than that of the 8YSZ

coating layers, so the erosion rate of the SCL LZ TBCs is larger than of the SCL

8YSZ TBCs. Compare sample 7 (DCL porous 8YSZ+ LZ) with sample 8 (DCL

dense 8YSZ+ LZ), the critical velocity of top layer LZ in samples 8 is larger than

that of sample 7, so sample 8 has lower erosion rate than sample 7.

Figure 2.23. Critical erosion velocity.

Figure 2.24 shows the reciprocal value of critical velocity as a function of erosion

rate. The scattered point can be fitted into a linear line, whose function is y=9.56e−6x-

0.00739.
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Figure 2.24. Relationship between critical erosion velocity and erosion rate.

2.3 Thermal Properties and Stability of Layered LZ Coating

2.3.1 Thermal Conductivity

For the TBC materials, the most important material property is thermal conduc-

tivity. There are several experimental methods to measure the thermal conductivity.

The most widely used one is the flash method, which is first proposed by Parker et

al. [63]. Three thermal properties - thermal diffusivity, specific heat capacity, and

thermal conductivity - can be deduced simultaneously using one sample [63]. The

flash method is designated as a standard method to measure thermal diffusivity,

which is described in ASTM E1461-11 standard. The measurement error of the flash

method is less than 5 % [120].
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In this work, the thermal conductivities were calculated from thermal diffusivity

Dth(t), specific heat capacity Cp(t) (from literature [15]) and density ρ(t). It can be

expressed by the follow equation [40]:

κ = Dth(t) · Cp(t) · ρ(t) (2.9)

where thermal diffusivity Dth(t) were measured by a laser flash diffusivity systems

(TA instrument DLF1200, Delaware, USA).

The thermal conductivity curves of the as-sprayed SCL LZ coating and the SCL

porous 8YSZ coating (sample 6 and sample 9) are plotted in Figure 2.25. Three

thermal conductivity measurements were conducted for the LZ coatings at each tem-

perature setting (297 K, 377K, 477K, 579K, 676K, 776 K, 874 K, 974 K, 1072K and

1172 K). The measured average thermal conductivity of the LZ is about 0.59 – 0.68

W/m/K in the temperature range of 297 to 1172 K (24 – 899 ◦C), which is about 25

% lower than that of the porous 8YSZ (0.84 – 0.87 W/m/K) in the same temperature

range. The thickness of the porous LZ top coat varies from 450 to 550 µm. The

density of the sprayed LZ coating is 5.35 g/cm3, and the corresponding porosity is

11.54 %. The porosity is essential for reducing thermal conductivity and maintaining

the resistance to fracture, erosion and foreign object damage [44]

2.3.2 Coefficient of Thermal Expansion

The thermal expansion coefficient (CTE, sample size 5 mm in width, 25 mm in

length and 0.43 mm in thickness) were measured by using a BAEHR dilatometer DIL

802 (now belonging to TA instrument, Delaware) at temperatures ranging from room

temperature to 1673 K (1400 ◦C).

The CTE values measured on sample 6 (SCL LZ coating) and sample 9 (SCL

porous 8YSZ coating) in this study are shown in Figure 2.26. CTE values of the

LZ change very little when the temperature is above 400 K. The CTE values of the

LZ are about 9–10×10−6 K−1 from 400 K (127 ◦C) to 1600 K (1327 ◦C), which are

very close to the reported literature data [40,59,121]. Although the porosity of 8YSZ
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Figure 2.25. Thermal conductivity of sample 6 and sample 9 as a
function of temperature. The curves are a guide to the eye.

coating is higher than that of the LZ coating, the CTE values of the LZ are about

10 % lower than those of the porous 8YSZ, which are 10–11×10−6 K−1 in the same

temperature range [67,122]. This indicates that the LZ coating has a lower CTE than

the 8YSZ coating in the same porosity level. Due to the CTE difference between the

8YSZ and the LZ, a thermal mismatch is generated at the interface between the 8YSZ

layer and the LZ layer during the thermal shock and thermal cycling tests. As the

NiCrAlY bond coat has much higher CTEs (about 15×10−6 K−1 at 1273 K) than the

8YSZ [9], a larger thermal mismatch between the bond coat and the LZ top coat is

expected during thermal shock and thermal cycling tests.



68

Figure 2.26. CTE curves of LZ and 8YSZ as a function of temperature.

2.3.3 Heat Treatment Test

Furnace heat treatment tests were conducted on sample 6, 7, 8 and 9 with round

button substrate in a diameter of 25.4 mm (1 inch) at 1353 K (1080 ◦C) for 4 hrs in

an argon atmosphere.

The optical images of the TBC samples before and after the furnace heat treatment

are summarized in Figure 2.27. After furnace heat treatment for 4 hrs, the sample 6

(SCL LZ coating, Figure 2.27(a)) and sample 8 (the DCL with the dense 8YSZ and

LZ layers, Figure 2.27(c)) were completely delaminated. One of the main reasons

for the failure is the CTE differences among the bond coat, the 8YSZ layer, and the

LZ layer. In the isothermal heating process, the volume change due to the thermal

expansion mismatch between the bond coat and the LZ layer leads to high thermal

residual stresses, which initiates cracks in ceramic top coats, as shown in the calculated

residual stress distribution in Figure 2.31. Additionally, the fracture toughness of LZ
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is ∼1.1 MPa·m1/2, which is much lower than that of 8YSZ (2.0 MPa·m1/2) [15,51]. As

a result, the cracks tend to be extended inside the LZ coating layer in the early stage

of heat treatment. The failure ultimately occurs in the LZ coating layer due to its low

fracture toughness and the CTE mismatch between the bond coat and the LZ layer

or between the LZ and the 8YSZ layers. In contrast with the finding for sample 8

(Figure 2.27(c)), the sample 7 (DCL with the porous 8YSZ and LZ layers) is partially

cracked on the edge, which only takes up about 10% of the coated area, as shown in

Figure 2.27(b). As the porosity of the porous 8YSZ coating is more than two times

higher than that of the dense 8YSZ coating, the porous 8YSZ coating has greater

compliance to accommodate the volume mismatch caused by the CTE differences, so

the double-layer top coat of the sample 7 survives in the heat treatment test. On

the other hand, the low compatibility of the dense 8YSZ coating in sample 8 lead to

its complete failure in the heat treatment. As shown in Figure 2.27(d), the sample

9 (SCL porous 8YSZ coating) is in good condition after heat treatment for 4 hrs,

suggesting the porous 8YSZ layer has good adhesion in TBC systems.

Figure 2.28 shows the SEM images of the cross-sectional view of TBC microstruc-

ture after heat treatment for 4 hrs. Except for sample 9 (Figure 2.28d), delamination

in all of the samples occurs in the LZ layer (The SEM microstructure image of sam-

ple 7 was taken at the delaminated area). Therefore, CTE difference is not the only

reason for delamination of the single-layer LZ coating. The occurrence of cracks is

also related to fracture toughness [123]. The Delamination can easily occurs in the

single-layer LZ coating due to the low fracture toughness of the LZ. The Failure in

the LZ coating is likely caused by a combination of its low fracture toughness and

high stresses created by CTE mismatch. Levi et al. proposed that the elastic energy

played a critical role in TBC systems to determine the lifetime of coating [124].When

the elastic energy reaches the critical value, delamination occurs. The elastic energy

is determined by the coating thickness, Young’s modulus, and CTE [124]. The cause

of delamination in sample 8 is similar to the SCL LZ coating, namely a combined

effect of both CTE difference and low fracture toughness of LZ.
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(a) Sample 6 (b) Sample 7

(c) Sample 8 (d) Sample 9

Figure 2.27. Optical images of the TBC samples after furnace heat treatment.

In addition, the heat treatments were also performed on TGMF dog-bone samples

at 1353 K (1080 ◦C) for 4 hrs. However, the TGMF tensile bar samples show a

better performance than the aforementioned round button samples. Only the SCL

LZ TGMF sample is delaminated. The SCL 8YSZ and the DCL coatings are in

a good condition after 4 hrs heat treatment. The delamination of single-layer LZ

coating is primarily due to the week fracture toughness of the LZ coating. The

volume change due to the discrepancy of thermal expansion coefficient between bond

coat and LZ coat leads to high thermal stress. The failure ultimately occurs due to
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(a) Sample 6 (b) Sample 7 (c)Sample 8 (d)Sample 9

Figure 2.28. SEM images of the cross-sectional view of the TBC
samples after furnace heat treatment: (a) fully delaminated SCL LZ
coating, (b) edge delaninated DCL coating with porous 8YSZ and
LZ, (c) fully delaminated DCL with dense 8YSZ and LZ, and (d)
SCL porous 8YSZ coating.

the large residual stress in the thermally grown oxide through its roles in amplifying

the imperfections near the interface [125].

2.3.4 Furnace cycling Test

The FCT experiments were conducted on sample 6, 7, 8 and 9 between high

temperature 1366 K (1093 ◦C) and room temperature. In each cycle, samples were
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heated at 1366 K for 50 minutes and then cooled by compressed air for 10 minutes. It

is recognized as a failure when more than 20 % surface area of top coat is delaminated.

All LZ coats layers were delaminated in the first 20 cycles in the FCT experiments.

However, no significant delamination occurred in SCL porous 8YSZ coating after 2000

cycles. Because the coefficient of thermal expansion (CTE) of LZ (9–10×10−6 /K) is

much lower than that of 8YSZ (10–11×10−6 /K), and bond coats have even higher

CTE (about 15×10−6/K). The CTE difference between LZ and bond coat is larger

than that between 8YSZ and bond coat, which leads to higher thermal stresses in

LZ layers [40, 71]. In addition, the fracture toughness of LZ is about half of that of

YSZ, as summarized in Table 1.1. The low fracture toughness means the resistance

for the crack propagation in LZ material is very weak, so the crack is more easily to

propagated in LZ than in YSZ. The failure mechanism for the LZ coating is associated

with the large residual stress at the interface due to the large CTE difference and the

low fracture toughness of LZ.

2.3.5 Jet Engine Thermal Shock Test

The JETS tests were conducted to investigate the thermal shock and thermal

cycling performance. During JETS tests, the TBC samples were heated to 1505

K (1232 ◦C) at the center for 20 seconds, and then were cooled by compressed N2

gas for 20 seconds, followed by ambient cooling for 40 seconds. The heating and

cooling cycles were repeated until the TBC samples failed. The failure criterion in

the JETS tests was more than 20 % spallation of the TBC surface [69]. For each

type of coats, at least 3 samples were tested in the JETS tests. Both the front and

back side temperatures were measured during the test through two-color pyrometers

to investigate the temperature gradient across sample thickness. The TBC samples

were sectioned and polished according to the ASTM standard E1920-30 to examine

their microstructures using a scanning electron microscope (SEM, JEOL Model JSM-

5610, Japan).
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The number of cycles-to-failure and final top coat status after the JETS tests are

summarized in Table 2.4. During the JETS tests, the single-layer LZ coating was

completely delaminated within 25 cycles, and the double-layer coating with the dense

8YSZ and the LZ was completely delaminated in about 885 cycles. Delamination

happened near the interface between the dense 8YSZ layer and the LZ layer in the

double-layer coating. However, the double-layer coating with the porous 8YSZ and

LZ was only partially delaminated at edges after 2000 cycles and the cracked edge

area took up about 20% of the total area of the top coat. In the remaining area,

the top coat of LZ was still bonded with the porous 8YSZ layer. The double-layer

coating with the porous 8YSZ and LZ had a better performance than other LZ-based

coatings. The single-layer porous 8YSZ coating was intact after 2000 cycles.

Table 2.4. Summary of the number of cycles and final status in JETS tests.

#6, SCL LZ #7, porous #8, dense #9, SCL

8YSZ + LZ 8YSZ + LZ porous 8YSZ

Number of

cycles before 25 >2000 885 >2000

delamination

Failure status Complete Edge Complete Intact

delaminated crack delaminated

The optical images of the TBC samples after the JETS tests are given in Fig-

ure 2.29. The single-layer LZ coating sample is shown in Figure 2.29(a), in which the

LZ top coat was completely delaminated from the bond coat. Only the bond coat

remained. The double-layer coating with the dense 8YSZ and LZ is shown in Fig-

ure 2.29(c). In this figure, the delaminated LZ coating fragments were laid on the top

surface, although it already detached from the dense 8YSZ layer. The bright area is

the dense 8YSZ layer, and the dark gray region is the LZ layer. After the JETS tests,
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only the dense 8YSZ layer was left on the substrate. The LZ top coat was totally

lost during the JETS tests. Delamination occurred between the 8YSZ and LZ layers.

The single-layer porous 8YSZ coating is shown in Figure 2.29(d). The 8YSZ top coat

was almost intact after 2000 cycles, suggesting good thermal shock resistance. The

three black marks on the edge of the samples in Figure 2.29(a) and Figure 2.29(d)

were caused by sample holding clips. The double-layer coating with the porous 8YSZ

and LZ is shown in Figure 2.29(b). The coating survived after the JETS tests with

cracks on the edge of LZ top coat. The double-layer coating with the porous 8YSZ

and LZ showed a considerably better performance than the single-layer LZ coating

and the double-layer coating with the dense 8YSZ and LZ. Heating and cooling cycles

led to the thermal residual stresses in TBC systems. The residual stress levels are

proportional to the distance from the interface, as shown in Figure 2.31 [15]. For

the double-layer coating with the porous 8YSZ and the LZ, the stress level at the

interface between the 8YSZ and LZ layers was less than that at the interface between

the 8YSZ and the bond coat.

The temperature differences between the front and back surfaces of the samples

during the JETS tests are shown in Figure 2.30. Figure 2.30(a) shows the temperature

difference in the cycle range from 0 to 2000, and Figure 2.30(b) is in the cycle range

from 0 to 50. As shown in Figure 2.30(a), the curve of double-layer coating with

the dense 8YSZ and LZ showed a sudden temperature change between 660 – 885

cycles, which is an evidence of delamination. However, the double-layer coating with

the porous 8YSZ and LZ, including the single-layer porous 8YSZ coating, did not

show a large temperature change, suggesting that the double-layer coating with the

porous 8YSZ and LZ had a similar performance in the JETS tests as that of 8YSZ.

However, the double-layer coating with the porous 8YSZ and LZ showed smaller

temperature drops (56 K on average) than the single-layer 8YSZ coating, although

thermal conductivity of the as-sprayed single-layer 8YSZ coating is higher than that

of the single layer LZ coating. In the JETS tests, the temperature drops of the single-

layer and double-layer coatings are not simply related to the thermal conductivities of
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(a) Sample 6 (b) Sample 7

(c) Sample 8 (d) Sample 9

Figure 2.29. Optical images of the TBC samples after JETS tests.

as-sprayed coatings. The temperature drops of the single layer porous 8YSZ coating

can be higher than those of the double-layer coatings with 8YSZ and LZ, due to

the porosity difference, the interface roughness, sintering and thermal conductivity

change in the JETS tests. In addition, the 8YSZ single layer coating was thicker than

the double-layer coatings, so the temperature drops in the single layer 8YSZ coating

can be larger than those of double-layer coatings.

As shown in Figure 2.30(b), the temperature differences of the single-layer LZ

coating bumped up after 10 cycles and then dropped after 25 cycles. The gaps

between the top and bond coats caused the increase of front-back surface temperature

differences, indicating that the LZ top coat partially delaminated from the bond coat
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(a) Number of cycles from 0 to 2000

(b) Number of cycles from 0 to 50

Figure 2.30. Average temperature differences during JETS tests.
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after 10 cycles. The top surface temperature of single-layer LZ coating reached to 2032

K (1759 ◦C) after 13 cycles due to accumulate of heat. As the top coat delaminated

after 25 cycles, the bond coat and substrate were exposed to the JETS flame directly,

causing a reduced temperature difference, as shown in Figure 2.30(b).

While the sprayed coating samples were heated and cooled in the thermal cycling

test, thermal residual stress was generated in the TBCs layers due to the different

CTE value between each layer. When the coating sample was heated, tensile stress

was generated in the top and bond coat, and the compressive stress in the substrate.

When the coatings were cooled from the high temperature, the compressive and

shear stresses were generated in the top and bond coat, and the tensile stress in the

substrate.

Figure 2.31. Calculated residual stress distributions as a function of
thickness in four TBC samples.



78

The Equation (2.2)–Equation (2.7) were used to calculated the thermal residual

stresses during the heating and cooling process. The residual stress distributions

across the coating thickness of sample 6, 7, 8, and 9 are shown in Figure 2.31. The

thermal residual stress difference at the interface between the top and bond coat of

SCL LZ coat is larger than that of SCL porous 8YSZ coating. The stress differences

at the interface between LZ and 8YSZ layers in DCL coatings were much smaller

than that between the top coat and bond coat in the SCL LZ coating. Although the

stress differences between the two DCL coatings were similar, the stress difference in

sample 7 is smaller than that of sample 8. As a result, the SCL LZ coating was easily

delaminated due to its larger residual stress and low fracture toughness, and sample

7 (porous 8YSZ + LZ) was survived due to its lowest residual stress at the interface

and the stress accommodation characteristic from porous 8YSZ buffer layer.

2.3.6 Thermal Gradient Mechanical Fatigue Test

The thermal gradient mechanical fatigue (TGMF) tests combine the thermal ex-

posure and mechanical loading test together, which introduce a thermal gradient over

the tensile bar [126]. The experiments were conducted in argon atmosphere using ten-

sile bar samples. A constant load of 150 N was added on the tensile bar during the

thermal exposure. The samples were heated to 850 ◦C or 1100 ◦C for 10 minutes on

the top coating side and kept at a constant temperature 350 ◦C on the back side, as

shown in Figure 2.32 and Figure 2.33.

The thermal gradient was established during TGMF test across the TBC samples.

After the heating process, the samples were cooled on front surface using a compressed

air for 3 minutes and using ambient cooling for another 7 minutes. The thermal

cycling experiments were repeated in this temperature control regime until the failure

occurred. The failure criterion is the spallation for more than 20 % of the surface

area.
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Figure 2.32. Schematic of TGMF test.

Figure 2.33. TGMF loading and heating and loading regime.

The TGMF tests in this work were categorized in two sets which were conducted

in two different temperatures gradient environment. The first set of experiments

heated 850 ◦C in the front side and kept 350 ◦C in back side; the second set heated

the sample 1100 ◦C in front and kept 350 ◦C in back.

Figure 2.34 shows the optical images of the samples before and after the first

set TGMF tests. As shown in Figure 2.34(e) and Figure 2.34(f), after 1200 cycles,

there was no crack or spallation tendency in SCL porous 8YSZ coats. As shown

in Figure 2.34(a) – Figure 2.34(d), the double layer LZ cannot last many cycles.
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In Figure 2.34(a) and Figure 2.34(b), DCL porous 8YSZ and LZ coats (sample 7)

delaminated on the edge after 220 TGMF cycles. In Figure 2.34(c) and Figure 2.34(d),

DCL dense 8YSZ and LZ coats delaminated after 50 cycles.

(a) as-sprayed sample 7

(b) sample 7 after 220 cycles

(c) as-sprayed sample 8

(d) sample 8 after 50 cycles

(e) as-sprayed sample 9

(f) sample 9 after 1200 cycles

Figure 2.34. Photograph of samples before and after the first set of TGMF test.
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The optical images of the second set of TGMF test samples were shown in Fig-

ure 2.35. As shown in Figure 2.35(b), both 8YSZ and LZ layer were partly delami-

nated near the center of the tensile bar after 38 TGMF cycles. Part of the bond coat

was exposed due to the delamination. Figure 2.35(d) shows only the top LZ layer

was delaminated after 49 TGMF cycles. Comparing with the first set TGMF tests,

both sample 3 and sample 4 have shorter lifecycles in the second set TGMF tests.

DCL porous 8YSZ + LZ has better performance in lower temperature gradient (the

first set TGFM tests) and became worse in higher temperature gradient (the second

set TGFM tests).

(a) as-sprayed sample 7

(b) sample 7 after 38 cycles

(c) as-sprayed sample 8

(d) sample 8 after 49 cycles

Figure 2.35. Photograph of samples before and after the second set
of TGMF tests.

Typically, the spallation process began at edges between LZ coats and 8YSZ coats

sublayer. In this TGMF experiments, all the spallation occurred near the interface of

the LZ layer and 8YSZ layers, which is just underneath the LZ top coats. The first

stage of the spallation process was the buckling of the LZ top coats layer, following
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the occurrence of cracks in the interface. The second stage was the propagation of

cracks in the interface, which followed by the spallation of top coat. Finally, the LZ

top coat was peeled off [127].

Because the coefficients of thermal expansion (CTE) in 8YSZ (11×10−6 K−1 at

1000 ◦C) are large than LZ (9 ×10−6 K−1 at 1000 ◦C) [59,71], so the volume difference

is very large between 8YSZ and LZ layers. Due to the mismatch of volume change,

thermal residual stress was induced in the thermal cycles. The thermal residual stress

in the interface was accumulated during this TGMF cycles. When the accumulated

residual stress became larger than the critical yield stress of the LZ material, crack and

spallation occurred. Besides, the fracture toughness of LZ is lower than 8YSZ [15,50],

so DCL 8YSZ and LZ coats tend to delaminate first at LZ layers near the interface.

2.4 Thermal and Mechanical Stability of Composite LZ/8YSZ Coatings

2.4.1 Architecture of the LZ/8YSZ Composite Coating

Currently, the biggest challenge of LZ for the TBC application is the relative

shorter thermal cycling lifetime than the traditional 8YSZ coating due to LZ’s lower

CTE and fracture toughness than 8YSZ. In this work, a new LZ/8YSZ composite

coating material is designed, which is aimed to improve the toughness and CTE of

the top coatings. Buffer layer is also introduced into this architecture to further

reduce the residual thermal stress at the interface between the top and the bond

coat. The architecture, composition, and thickness of the LZ/8YSZ composite coating

sample are listed in Table 2.5. Sample 10 and 12 are SCL coatings that do not

have buffer layer. Sample 11 is a double layer TBC that contains an 8YSZ buffer

layer and a 50 % LZ/50 % 8YSZ composite coat. Sample 13 has an 8YSZ buffer

layer and two composite top coats, which are a 25 % LZ/75 % 8YSZ composite

coating on the bottom and a 50 % LZ/50 % 8YSZ composite coat on the top. All of

these composite coating samples are deposited using APS technique on the Ni-based

superalloy substrates (Nimonic 263, ThyssenKrupp VDM, Germany, composition:
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Ni-20Cr-20Co-5.9Mo-0.5Al-2.1Ti-0.4Mn-0.3Si-0.06C, in wt.%) with an AMDRY 962

bond coat (Sulzer Metco Holding AG, Switzerland, composition: Ni-22Cr-10Al-1.0Y

in wt.%). The same LZ and 8YSZ powders are used in the deposition process as the

previous sections [128].

Table 2.5. List of the LZ/8YSZ composite coating sample.

Sample Buffer layer Buffer Top coat composition Top coat

number composition thickness thickness

(µm) (µm)

10 No buffer layer – 50% LZ/50% 8YSZ 430

11 Porous 8YSZ 60 50% LZ/50% 8YSZ 370

12 No buffer layer – 25% LZ/75% 8YSZ 430

13 Porous 8YSZ 60 25% LZ/75% YSZ + 60 +

50% LZ/50% YSZ (top) 310 (top)

The cross-sectional microstructure SEM images of the as-sprayed composite TBC

samples are shown in Figure 2.36. The bond coat and buffer layers show a typical

microstructure of APS deposited coating. The two component materials LZ (white

color) and 8YSZ (gray color) are glued together as a layered ‘’splats” form in the top

coat, which leaves some micro-cracks and pores in the coating. There is no delami-

nation in the as-sprayed top coat and buffer layer, suggesting the initial deposition

has a high quality. All the surface and interfaces show an irregular roughness, and

no TGO layer is observed at the interface between the top coat (or buffer layer) and

the bond coat [128].

2.4.2 Thermal Cycling Test of the LZ/8YSZ Composite Coating

Both the FCT and the JETS test were performed in the composite coating sam-

ples. In the FCT test, the round button samples were heated at a surface temperature
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(a) Sample 10 (b) Sample 11

(c) Sample 12 (d) Sample 13

Figure 2.36. SEM microstructure images of composite coatings.

of 1100 ◦C (1373 K) for 40 min and then cooled with natural air at room temperature

for 20 min. In the JETS test, the same equipment and heating/cooling regime were

applied as the layered coating (see section 2.3.2), except the surface heating temper-

ature is 1400 ◦C, which is higher than that used for the layered coating. The failure

criterion for both FCT and JETS tests are defined as 20 % top coat delamination.

The equivalent operating hours (EOH) is an analytical parameter that widely used

to estimate the TBC lifetime during the operation of the gas turbine engine, which

can be expressed as the following equations.

EOH = AOH + 20(
∑

Si +
∑

LRi +
∑

Ti +
∑

LCi)× F (2.10)

where AOH,
∑

Si,
∑

LRi,
∑

Ti,
∑

LCi and F correspond to actual operating hours,

the coefficient of correction, load rejection, trip, rapid load change, and fuel factor,
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respectively. In this study, the EOH is approximated by multiplying 21 to the member

of FCT cycles [128,129].

Table 2.6. Thermal cycling results of composite TBC samples.

Sample # FCT test/Status JETS test/Status

10 540 cycles (11,340 EOH) 70 cycles

Fully delaminated Fully delaminated

11 768 cycles (16,128 EOH) 2000 cycles

Fully delaminated Intact

12 936 cycles (19,656 EOH) 1022 cycle

Fully delaminated Fully delaminated

13 1143 cycles (24,000 EOH) 2000 cycles

Intact Intact

The results of the FCT test and the JETS test are summarized in Table 2.6. The

FCT tests are conducted for each sample to an equivalent thermal durability of 24000

EOH, which is equal to 1143 cycles. The JETS tests are aimed to perform for 2000

cycles to compare with the state-of-the-art 8YSZ coating shown in Table 2.4 (see

section 2.3.2). Comparing to the layered LZ-based TBC, all the composite LZ/8YSZ

coatings have better performance in FCT tests. Sample 10, which is a single layer

coating with the composition of LZ/8YSZ in a 50%: 50% volume ratio, delaminated

after 540 cycles in the FCT test and 70 cycles in the JETS test, showing very poor

thermal stability. Sample 12 which is a single layer coating with the composition

of LZ/8YSZ in a 25%: 75% volume ratio, delaminated in 936 cycles in the FCT

test and 1022 cycles in the FCT test, showing a better performance than sample

10. The comparison between sample 10 and sample 12 indicates that the thermal

durability can be improved by controlling the composition ratio of the composite

coating. Although the sample 11, which have single 8YSZ buffer layer, shares the
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same top coat with sample 10, it shows a better performance in the JETS test and

the FCT test than sample 10. The comparison between sample 10 and sample 11

indicates that the thermal durability can be effectively improved by introducing a

buffer layer. Sample 13 has two composite coat layers and an 8YSZ buffer layer.

Sample 13 shows the best performance in the FCT test and the JETS test, which is the

only TBC survives in both tests without spallation, suggesting that the combination

of the buffer layer and the gradient LZ/8YSZ composite coat is an effective way to

improve the thermal durability performance.

The cross-sectional SEM microstructure images of all samples after the FCT test

and the JETS test are shown in Figure 2.37 and Figure 2.38. As shown in Figure 2.37

and Figure 2.38, all delaminations occur near the interface between the top (the

LZ/8YSZ composite layer and the buffer layer) and bond coat. During the FCT

test the TGO layer (α-Al2O3 in black color) is observed at the interface between

the top coat and bond coat. The TGO layer at the interface becomes fragile part

and results to delamination if TGO thickness grows greater than 10 µm. However,

the TGO layers in these composite samples are far less than 10 µm, which can not

be the primary reason to the delamination of the top coat. In Figure 2.37(d) and

Figure 2.38(b), the sample 11 and sample 13 have vertical cracks in top coat after

the JETS test, which provide the strength compliance during the thermal cycling test

and improve the thermal durability [106].

Figure 2.39 summarizes the results of the FCT test and the JETS test for both

layered and composite LZ/8YSZ samples (from samples 6 to sample 13). As shown in

Figure 2.39, the FCT performances of the composite LZ/8YSZ coatings (sample 10 -

13) have a great improvement. The JETS test results of the coating with buffer layer

(multiple layer coatings, sample 7, 8, 11 and 13) have better performance than the

SCL LZ-based TBC. Sample 9 (SCL 8YSZ TBC) is the standard reference sample.

Comparing to other LZ-based TBC samples, sample 13 exhibits the most outstanding

thermal durability performance. The improvement of the thermal durability primarily

is primarily due to the reduce of the CTE mismatch at the interface by the relatively
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(a) sample 10 after FCT test (b) sample 10 after JETS test

(c) sample 11 after FCT test (d) sample 11 after JETS test

(e) sample 12 after FCT test (f) sample 12 after JETS test

Figure 2.37. SEM microstructure images of composite coatings after
the FCT and the JETS tests.
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(a) sample 13 after FCT test (b) sample 13 after JETS test

Figure 2.38. SEM microstructure images of sample 13 after the FCT
and the JETS tests.

Figure 2.39. Powder size analysis results.

continuous composition variation, and the increase of the fracture toughness in the LZ

coating by adding 8YSZ, which has a high fracture toughness. In addition, the double

layer gradient composite LZ/8YSZ coating with the buffer layers can accommodate
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the thermal residual stress, so the stress is dissipated in the composite top coat and

its buffer layers.

2.5 Summary

The SCL, DCL and composite LZ-based TBC samples are successfully deposited

using APS technique. The microstructures confirm that the porosities increase as the

standoff distance between the APS torch and the substrate increases. The intrinsic

defects including pores, splat boundaries, and cracks are not uniformly dispersed in

the LZ and the 8YSZ top coat. This chapter systematically discusses the physical,

mechanical, thermal properties of LZ-based coatings, and analyzes the thermome-

chanical durability of LZ-based layered and composite TBCs. The main conclusions

of this chapter are summarized in following aspects.

1. The Young’s modulus and the nanoindentation hardness results show that as

the porosity increases, the pores become larger and the “splat” boundaries become

thicker, so that the corresponding hardness and Young’s modulus show a decreasing

trend. The hardness and Young’s modulus results can be fitted into a linear equation.

2. The SCL LZ sample have lower adhesion strength than the SCL 8YSZ sample.

Since the microstructure of the LZ grains have net-shape boundaries, which leads to

the generation and propagation of the cracks. The 8YSZ material has higher fracture

toughness and hardness than the LZ, which leads to a higher adhesion bond strength

in the 8YSZ coatings. In addition, the LZ coating has a larger thermal residual stress

difference at the interface than the 8YSZ coating. The thermal residual stress induces

more grain boundary and pores inside the ceramic layer, where the crack occurs.

3. The Single and double layer LZ TBC samples have higher erosion rate than

8YSZ coats because the fracture toughness of LZ is lower than that of 8YSZ, and

the critical erosion velocity of LZ is much lower than that of 8YSZ. However, the

DCL dense 8YSZ + LZ TBC sample has lower erosion rate than other SCL and DCL
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LZ-based TBC samples, because the DCL dense 8YSZ + LZ TBC sample has higher

critical erosion velocity in its top coat.

4. The measured average thermal conductivity of SCL LZ coating is 0.59 – 0.68

W/m/K in the temperature range of 297 – 1172 K (24 – 899 ◦C), which is ∼25%

lower than that of SCL porous 8YSZ coating in the same temperature range.

5. The CTE values of LZ coating are approximately 9-10×10−6 K−1 in the tem-

perature ranges of 400 – 1600 K (127 – 1327 ◦C). However, the CTE values of LZ

are about 10 % lower than those of 8YSZ in the same temperature range. The large

CTE difference between the LZ coating and bond coat might lead to large thermal

residual stress, which is one of the main reasons for the failure of the SCL LZ coating

in mechanical and thermal durability tests.

6. Both the furnace heat treatment and the JETS tests show that the layered

DCL porous 8YSZ + LZ coating have a better thermal durability performances than

the SCL LZ coating and the DCL dense 8YSZ + LZ coating. The result indicates

that the porous 8YSZ can be used as a buffer layer for LZ-based TBC systems to

improve the durability during service. However, all the LZ-based layered coatings are

delaminated in the FCT tests. The delamination of the LZ-based coating in FCT and

JETS test are related to the high thermal residual stress that induced by the large

CTE difference and the low fracture toughness of the LZ material.

7. All the LZ-based coatings have shorter lifetime than the SCL 8YSZ coatings in

the TGMF experiments. The primary reason for the spallation of the LZ coating is

due to its low fracture toughness. In addition, the large CTE difference between the

8YSZ layer and the LZ layer leads to high thermal residual stress. The residual stress

accumulates during the thermal cycling test, until it reaches the ultimate strength of

the LZ coating. Then, the crack is initiated near the interface of 8YSZ and LZ layer.

8. Since the layered LZ-based TBCs have limited thermal durability performance,

the LZ/YSZ composite coatings are proposed and deposited in four architectures.

The triple layer composite TBC sample (sample 13, the gradient 50 % LZ/50 %

8YSZ + 25% LZ/75% 8YSZ top layer with the 8YSZ buffer layer) exhibits the best
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thermal durability performance in both the FCT test and the JETS test. This is

primarily because the composite LZ/YSZ coating reduce the CTE difference at the

interface, and the fracture toughness is increased in the LZ top coat by adding the

8YSZ powder.
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CHAPTER 3. MECHANICAL PROPERTIES MODELING OF LZ

3.1 Motivation and Introduction

Although the low thermal conductivity of LZ is an advantage for the application

of TBC, the LZ is also reported to have lower Young’s modulus, hardness, and frac-

ture toughness than the 8YSZ [15]. As discussed in chapter 2, the thermal cycling

performance of the SCL LZ TBC is worse than that of the 8YSZ, which might due to

the high thermal residual stress and the poor mechanical properties of the LZ [54,71].

As a result, the investigation of the mechanical properties of LZ would be very im-

portant for systematically understanding the LZ materials. The Tensile and shear

stress-strain relations of the single crystal LZ exhibit anisotropic characteristic. How-

ever, single crystal LZ samples are hard to be prepared. Since it is hard to measure

the intrinsic mechanical properties of the single crystal LZ in experiment due to its

porous character, theoretical modeling techniques are used to study these mechanical

properties.

The most widely used theoretical method to investigate the mechanical proper-

ties is an analytical method based on Voigt-Reuss-Hill’s theories, which calculates

the elastic moduli from the elastic constants [130–132]. The elastic constants can

be computed using the first principles calculation based on density functional the-

ory (DFT) [77, 78]. In addition, the nanoscale tensile and shear simulations can be

conducted using DFT and MD calculations directly. The uniaxial nanoscale-tensile

strain can be applied stepwise in the tensile direction. The shear strain can be applied

stepwise by changing the crystal angle. After the full relaxation at each strain stage,

the tensile and shear stresses can be computed using the DFT or the MD calculations.

Although several methods were developed to conduct the nanoscale tensile and

shear simulation, to our best knowledge, no such investigation was performed on LZ
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material. In this work, the single LZ crystal model is built and the lattice parameter

of LZ conventional unit cell is calculated by minimizing the total system energy. The

nanoscale tensile and shear stress-strain relations of single crystal LZ are investigated

using DFT and MD method. The corresponding elastic moduli are calculated using

two approaches: stress-strain curve analysis in large deformation and the elastic con-

stant analysis in small deformation [130, 133]. The Toughness of the single crystal

LZ is calculated based on the stress and strain curves as well. Average Bader charge

difference and charge density distribution are used to explain the influence of election

interaction on Young’s modulus.

3.2 Theoretical LZ Model

3.2.1 DFT Model

In this work, the DFT calculations were conducted using Vienna Ab initio Sim-

ulation Package (VASP) [87, 88]. The exchange-correlation potential was specified

using projector augmented wave (PAW) method of generalized gradient approxima-

tion (GGA) functional. The Brillouin zone k-point was conducted using 3×3×3

Monkhost-Pack scheme. A conjugate-gradient algorithm was used for the ironic re-

laxation. The plan-wave cutoff energy was 500 eV. The energy relaxation criterion

for the electron was 10−6 eV and the ionic relaxation convergence criterion was that

the total force was smaller than 0.01 eV/A.

The LZ crystal is a cubic pyrochlore structure, which is belong to space group of

Fd3m̄ [26]. There are four independent crystallographic atom sites, where La is at

16d at (1/2, 1/2, 1/2) , Zr is at 16c at (0,0,0), O1 is at 48f at (x, 1/8, 1/8) and O2

is at 8b position of (3/8, 3/8, 3/8). The x value of O1 varies from 0.3125 to 0.375.

According to Tabira’s experiments, 0.333 is chosen as the initial x value of the LZ

crystal in this work [28]. The conventional LZ unit cell is used in the elastic constant

calculation and the shear stress-strain calculations, as shown in Figure 3.1.
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Figure 3.1. Crystal structure of LZ unit cell. Each ball shown as
green, red, and blue indicates Zr atom, O atom and La atom, respec-
tively (same coloring schemes are used in all figures afterwards).

To calculate the stress in a specific crystal direction, the LZ unit cell was rebuilt

to align the (001), (011) and (111) surface perpendicular to the tensile axis for the

tensile stress-strain calculations, as shown in Figure 3.2. The atom numbers of the

(001), (011) and (111) model are 44, 44, 66 respectively. All of the LZ structures were

relaxed before the elastic constant, tensile and shear calculations.

Large deformation stress-strain analysis and the small deformation elastic constant

analysis were used to calculate the anisotropic elastic moduli. In the stress-strain

analysis, the anisotropic Young’s modulus and shear modulus in a particular tensile

and shear direction were obtained from the slope of the linear fitted line in the elastic

stage of the stress-strain curves. In the small deformation elastic constant analysis,

Voigt-Reuss-Hill approximation was used to calculate the elastic moduli of LZ base on

the elastic constants of single LZ unit cell. The elastic constants of LZ unit cell were

calculated using DFT method by performing finite distortion of the LZ unit cell [134].

The Voigt proposed approach expresses the stress in a single crystal in terms of the
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(a) (b) (c)

Figure 3.2. Tensile model at (a) [001] direction along a axis, (b) [011]
direction along c axis, and (c) [111] direction along c axis directions.
Each ball shown as green, red, and blue indicates Zr atom, O atom
and La atom, respectively.

given strain. On the other hand, the Reuss proposed approach expresses the strain

in terms of the giving stress. The Voigt-Reuss-Hill approximation calculated the

effective moduli of an aggregated polycrystalline combined the Voigt and Reuss’s

approximation [130, 135]. For cubic single crystal LZ, only 3 elastic constants are

independent (C11, C12, C44). The effective bulk modulus (K), shear modulus (G),

Young’s modulus (E) and Poisson’s ratio (υ) of cubic LZ crystal can be calculated

using following equations:

K =
C11 + 2C22

3
(3.1)

G =
GV +GR

2
(3.2)
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E =
9KG

3K +G
(3.3)

υ =
3K − 2G

2(3K +G)
(3.4)

where GV and GR are the shear modulus expressed by the Voigt and Reuss approach,

respectively [130,135].

Gv =
(C11 − C22) + 3C44

5
(3.5)

5

GR

=
4

C11 − C22

+
3

C44

(3.6)

The slip system (easy slip plane and direction) in the shearing process often locates

on the plane of high atomic density in closely packed directions [136]. For example,

the primary slip system for face center cubic (fcc) crystal is {111}<110> and the

secondary slip direction is {111}<112̄>. Because the {111} is the closest packed

plane in LZ crystal, the most possible slip directions are along {111}<110> and

{111}<112̄> directions. The conventional unit cell of LZ is used in the shear stress

calculation, as shown in Figure 3.1. The shear direction is controlled by rotating the

LZ unit cell to align the slip plane perpendicular to one of the coordination axes. The

shear strain is applied by changing the angle in the shear directions. The shear stress

is calculated using first principles calculations corresponding to each strain step.

Bader charge transfer analysis in tensile and shear DFT model is conducted to

describe the electron gain and loss between different atoms [137, 138]. The average

charge differences between Zr, La and O are calculated from the Bader charge results,

which give the insights of atom bonding characteristics in different orientations.

3.2.2 MD Model

However, all of the DFT calculations for tensile and shear are performed on the

ground state of atoms, which is typically at the temperature of 0 K. The tensile

and shear simulations at a higher temperature can be conducted using molecular

dynamics (MD) calculation, and MD also can be performed at a larger scale than the

first principles calculations. All of the MD calculations in this study are conducted
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using LAMMPS (Large-scale Atomic Molecular Massively Parallel Simulator) MD

simulation package [139]. In this work, the interactions between atoms are assumed to

be purely ionic, so the Buckingham and the Coulomb potentials are applied to describe

the short and long range atom interactions, respectively, which can be expressed as

follows:

Uij(rij) = Aijexp(
−rij
ρij

)− Cij

r6
ij

+
1

4πε0
· qiqje

2

rij
(3.7)

where rij is the distance of the interactive ions, qi and qj are the charges of La3+,

Zr4+, O2− ions, ρ is an ionic pair dependent length parameter, and A and C are

adjustable parameters. The parameters of the Buckingham potential used in this

study are listed in Table 3.1, which are fitted based on experimental crystallographic

data and Hartree-Fock calculated elastic constants by Crocombette et al. [140]. Both

the tensile and the shear MD simulations in this work were conducted in 300 K. The

tensile simulations were carried out using an uniaxial elongation regime along the x-

axis, and the shear simulations were performed using an uniaxial compression regime.

The periodical boundary condition was used in all these MD simulations. The LZ

unit cells model used in the first principles calculations, as shown in Figure 3.2, were

applied to assemble the MD tensile and shear models. For tensile MD calculation,

three tetragonal prisms with 12×12×24 (individually in x, y, z directions) LZ unit cells

in [001], [110] and [111] directions were assembled as tensile models in each direction.

The MD models of tensile simulation in [001] direction is shown in Figure 3.9(a).

In the tensile model, the (001), (110) and (111) surfaces are perpendicular to the

tensile axis (z). The shear models were built with 16×16×16 LZ unit cells in [112̄]

direction and 24×36×16 LZ unit cell in [110] direction. The compression axis was

aligned along [110] and [112̄] directions. The conjugate gradient method was used to

minimize the energy of the system in both tensile and shear simulations [141]. Then,

the time integration was performed in isothermal-isobaric (NPT) ensembles, which

was dedicated to generate the position and velocity parameters. Finally, the tensile

models were elongated in the NPT ensembles, and the shear models were compressed
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in the canonical (NVT) ensembles. The time step of all the MD simulations are at 1

femtosecond.

Table 3.1. Buckingham potential parameters for LZ [140].

Interactions A (eV ) P (Å) C (eV ·Å6) Charge

O-O 22764.00 0.1490 27.89 -2.0

La-O 1367.41 0.3591 0.00 -3.0

Zr-O 1478.69 0.3554 0.00 +4.0

3.3 LZ Crystal Constant Optimization

The crystal constant (geometry optimization) is calculated by minimization of

the total system energy. The interatomic potential energy is the sum of the repulsive

energy and attractive energy. The potential energy (E) as a function of interatomic

distance (r) is shown in Figure 3.3 [142]. In a two atoms system, when r is smaller

than the equilibrium distance r0, the r decreases as the repulsive energy increases and

attractive energy decreases, which results to a repulsive force on the atoms. Therefore,

the atom pair will be pushed away. On the other hand, when r becomes larger than

r0, the attractive energy takes advantage to pull the atoms together. When the

equilibrium distance r0 between the two atoms is reached, the total energy reaches

its lowest value. In a crystal system, the crystal constant that has the minimum

total energy can be regarded as the equilibrium state of the system, which means

the system has the highest possibility to balance the repulsive and the attractive

forces among all atoms. As a result, the lattice constants can be obtained by analysis

relations between the total energy and the lattice contents.

Since LZ is a cubic crystal, it has only one lattice constant. The actual LZ lattice

constant was determined by finding the minimum point on the curve of the total

energy as a function of lattice constant. Figure 3.4 shows the DFT-calculated total
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Figure 3.3. Potential energy as a function of interatomic distance.

energy of single LZ conventional cell as a function of lattice constant. This work

tries the lattice constant of LZ model from 9 Å to 12 Å, which has a wide enough

range to cover the actual LZ lattice constant. The calculation results indicate that

the equilibrium state of the system occurs at the lattice constant of 10.875 Å, where

the total energy reached its minimum point of -803.749 eV.

Figure 3.4. Total energy as a function of LZ lattice constant.
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To validate the DFT-calculated results, the lattice constant of LZ powders was

analytically calculated from XRD experimental data, as shown in Figure 2.2 (section

2.1.2 LZ Powder characterizations). Bragg’s Law was used to analyze the XRD data:

nλ = 2dsinθ (3.8)

where λ = 1.54 Å (for the laboratory XRD used in this work), and n = 1. The lattice

parameters can be derived from d and Miller indices <h k l> of each XRD peak.

specifically, for cubic unit cell, the lattice parameter (a0) can be expressed by:

dhkl =
a0

s
, wheres =

√
h2 + k2 + l2 (3.9)

Table 3.2 shows the calculated lattice constant from several XRD peaks experi-

ential data. The average lattice constant of LZ powders obtained from XRD experi-

mental data is 10.801 Å.

Table 3.2. Analytically calculated lattice constant from XRD peaks.

XRD Peak (2 2 2) (4 0 0) (4 4 0) (6 2 2) (4 4 4) (8 0 0)

Lattice constant (Å) 10.814 10.799 10.802 10.798 10.786 10.804

Shimamura and Tabira’s experiment results of the LZ lattice constant are 10.8 Å

and 10.802 Å, respectively, which are the same as the XRD experimental results in

this work [23, 28]. The difference between the DFT-calculated result and the XRD

experiments result is 0.68 %. The DFT-calculated lattice constant of LZ is very

accurate.

3.4 Stress-Strain Analysis and Anisotropic Elastic Moduli

3.4.1 Large Deformation Stress-Strain Analysis

As mentioned in section 3.2, the single LZ cell nanoscale models used for the DFT

tensile and shear simulations are (001), (110), (111) and conventional LZ cell, respec-
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Figure 3.5. DFT-calculated tensile stress-stain curve.

tively. The ions positions of all the DFT models are relaxed using conjugate-gradient

algorithm before and in the deformation calculations. In the tensile simulation, the

model is uniaxial elongated in the z-direction, so the tensile stress is obtained directly

from the stress tensor in the z direction. Figure 3.5 shows the tensile stress-strain

curves calculated using first principle calculations. The linear elastic stage on these

curves only occurs in the first a few steps, then the stress drops slowly after it reached

the ultimate tensile strength. The LZ tensile model in [001] direction has the largest

ultimate tensile strength, and the LZ tensile models in [110] and [111] directions have

similar ultimate strength. Young’s modulus can be calculated from the slope of the

linear section in the curve using Hooke’s law. The Young’s moduli in [001], [110] and

[111] directions are obtained from the slope of the linear fitted line, which corresponds

to the strain from 0 to 0.1 in [001] direction, and from 0 to 0.08 in [111] and [110]

directions. The toughness can be calculated from the integration of the area under

the stress-strain curve. The calculated Young’s modulus, ultimate tensile strength,
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and toughness are summarized in Table 3.3. The single crystal LZ has the maximum

tensile Young’s modulus in [111] direction, and minimum Young’s modulus in [001]

plane, this trend is consistent with Liu’s results [143]. In the nanoscale DFT simu-

lation results, the quasi-plastic deformation stage occurs on the stress-strain curves

rather than the ideally elastic-brittle type [144]. The stress and strain are largely

increased during the quasi-plasticity stage, which determined the magnitude of ulti-

mate strength and toughness. Although Young’s modulus in [001] direction is lower

than that in [110] and [111] directions, the tensile stress-strain curve in [001] direc-

tion possesses a higher “yield” point in quasi-plasticity stage than that in [110] and

[111] directions. As a result, the LZ tensile model in [001] direction has the max-

imum ultimate strength and toughness. The ultimate strength and the toughness

are properties of large deformation; however, Young’s modulus is a property of small

elastic deformation. These properties describe stress-strain relations under different

deformation circumstances, so they exhibit the different trends.

Figure 3.6. DFT-calculated shear stress-stain curve.
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Table 3.3. Calculated elastic modulus, ultimate strength, and toughness.

Calculation model Elastic modulus Ultimate strength Toughness

(GPa) (GPa) (MJ/m3)

DFT Tensile [001] 207.211 47.747 21.565

DFT Tensile [110] 213.225 23.453 12.219

DFT Tensile [111] 222.596 20.980 8.934

MD Tensile [001] 230.355 30.250 3.018

MD Tensile [110] 226.897 18.867 2.192

MD Tensile [111] 229.751 18.914 1.839

DFT Shear {111}<110> 76.037 22.507 8.862

DFT Shear {111 <112̄> 73.381 20.192 8.028

MD Shear {111}<110> - 29.008 -

MD Shear {111}<112̄> - 20.774 -

Figure 3.6 shows the DFT-calculated shear stress-strain curves in two slip system

{111}<112̄> and {111}<110>. Basically, the two curves are very similar. As sum-

marized in Table 3.3, the shear modulus of {111}<110> is slightly larger than that

of {111}<112̄>, and so as the ultimate shear strength and the toughness, although

the differences are very small. When the two slip systems of LZ crystal are under the

same stress level, the corresponding strain in {111}<112̄> direction is larger than

that in {111}<110> direction. Based on these DFT-calculated results, in single crys-

tal LZ material, the {111}<112̄> direction system is more likely to slip in the shear

deformation.
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3.4.2 Small Deformation Elastic Moduli Calculation

The elastic constants C11, C12 and C44 of LZ single crystal were calculated using

DFT method in small deformation condition, which were 256.001 GPa, 116.425 GPa

and 86.708 GPa, respectively. The effective elastic moduli of LZ were calculated using

Equation (3.1) – Equation (3.6), as summarize in Table 3.4. Selected experimental

results from the literature are also listed in Table 3.4 as a comparison. In these

literature results, Zhang et al. measured the Young’s modulus of 7 % porous LZ

coating using nanoindentation [48], and Shimamura et al. studied the moduli of

LZ materials using the ultrasound pulse-echo measurement [23]. Comparing with

the experimental data from the literature, the effective moduli of the LZ are in a

reasonable range.

Table 3.4. Effective moduli of LZ and the expeirmental results.

Effective moduli Experimental results

Young’ s modulus (GPa) 205.12 15610 (Zhang [48])

280 (Shimamura [23])

Bulk modulus (GPa) 162.95 216 (Shimamura [23])

Shear modulus (GPa) 79.49 109 (Shimamura [23])

Poisson’ s ratio 0.29 0.28 (Shimamura [23])

The anisotropic characteristics can be determined by Zener anisotropic ratio,

which is defined as Z= 2C44/(C11-C22) [131]. If the Z = 1, the material is isotropic.

The calculated Z value for LZ is 1.24, indicating that the elastic modulus of LZ is

anisotropic, and the maximum Young’s modulus is in <111> direction. Anisotropic

Young’s modulus of cubic LZ crystal can be expressed using the DFT-calculated

elastic constants, which is given by the following equations [131].

1

E
=
l4 +m4 + n4

E0

+
2(m2n2 + n2l2 + l2m2)

F0

(3.10)
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1

E0

=
C11 + C22

(C11 − C22)(C11 + 2C22)
(3.11)

2

F0

=
−2C12

(C11 − C22)(C11 + 2C22)
+

1

C44

(3.12)

where l, m, n are directional cosines. The (110) plane is chosen in this work for the

anisotropic calculation because it includes all three of the principal directions in a

cubic crystal <111>, <110> and <001>. The directional cosines for (110) plane can

be calculated by:

l = cosθ m =
sinθ√

2
n =

sinθ√
2

(3.13)

where θ is the angle in (110) plane, which measured from [100] direction to the [110]

direction.

The anisotropic Young’s modulus results are plotted in Figure 3.7, including the

solid curve calculated from the elastic constants of the LZ single crystal in small

deformation status, and the scattered points calculated from the DFT and the MD

(MD results will be discussed in section 3.4.4) stress-strain curves in large deformation

tensile simulation. As shown in Figure 3.7, most of anisotropic Young’s modulus

results are very close to each other, suggesting that these modeling studies have good

consistency and accuracy.

3.4.3 Bader Charge Analysis and Charge Density Distribution

Bader charge transfer was calculated according to each atom in the tensile and

shear systems. The unit of Bader charge is electron (e), which means that the number

of the electrons that one atom gains or losses. The average Bader charge difference

between cation and anion reveals the electron interaction between those two types

of atom, which relate to the bonding character of those atoms. The high average

Bader charge difference leads to a strong bond. Table 3.5 summarizes the Bader

charge differences between cation and anion in each tensile and shear deformation.

The charge differences between Zr and O, and between La and O in tensile [111]

calculation are the largest among three tensile cases, suggesting the bonding strength
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Figure 3.7. Summary of anisotropic Young’ s modulus.

in the tensile model in [111] direction are the strongest. The strong bond between

the cation and anion in the [111] tensile model corresponds to the high Young’s

modulus result in the DFT calculations. In the shear models, the average Bader

charge difference in LZ shear model in {111}<110> direction is slightly larger than

that in {111}<112̄> direction, suggesting the atom bond in {111}<110> shear model

is stronger than that in {111}<112̄> direction. The stronger bond in the shear model

in {111}<110> direction results to higher Young’ s modulus than that of the shear

model in {111}<112̄> direction.
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(a) (b) (c)

Figure 3.8. Charge density distribution (e/Å3) of tensile calcualtion
at strain of 0.5 in (a) [001] direction, (b) [110] direction and (c) [111]
direction.

The color map of charge density distribution in each LZ tensile simulation at the

strain of 0.5 are plotted in Figure 3.8. Charge density distribution reveals the election

gain and loss characteristic. The red color indicates election gain and the blue color

indicates the election loss. As shown in Figure 3.8, the Zr atoms lost almost all its

valence election to the O atoms. The Density distributions near O atoms are similar

between the [001] tensile model and [110] tensile model. However, the [111] tensile

model has the highest charge density near O atom among all the tensile models,
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Table 3.5. Calculated average Bader charge difference between O –
Zr and O – La atoms.

Young’s Average Bader Average Bader

modulus Charge Charge

(stress-strain difference difference

DFT analysis) (O – Zr) (O – La)

Tensile [001] 188.139 4.592 3.469

Tensile [110] 189.556 4.804 3.603

Tensile [111] 208.462 5.106 3.696

Shear {111}<110> 76.037 4.965 3.568

Shear {111}<112̄> 73.381 4.893 3.535

suggesting the electron interaction in [111] tensile model are the strongest. This

strong electron interaction leads to a high Young’s modulus in [111] direction.

3.4.4 MD Tensile and Shear Simulations

Figure 3.9 shows the models of the first and the last steps of the MD tensile

calculations in [001] direction. The model image of initial step demonstrates the

perfect LZ single crystal without any tensile strain. The model image of 0.16 strain

step shows that there are some vastly deformed areas in the model, which reach its

critical strength and are about to break apart.

Figure 3.10 shows the MD-calculated tensile stress and strain curves in [111], [001],

[011] directions. All the stress-strain curves in these tensile simulation cases exhibit

an elastic stage and the stress drops after the ultimate strength is reached. The slopes

of these stress-strain curves in the elastic stage are very similar when the strain is at

the beginning stage (less than 0.03). Then, the slope changes as the increase of the

stress, when the deformation occurs in the tensile model. The Young’s moduli of LZ
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(a) The initial step (no strain)

(b) The step with 0.16 strain

Figure 3.9. MD-calculated tensile model in [001] direction. Each
ball shown as green, red, and blue indicates Zr atom, O atom and La
atom, respectively.

in [111], [001], [011] directions are calculated from the slope of the elastic stage on the

MD-calculated stress-strain curves, whose strains range from 0 to 0.03, as summarized

in Table 3.3. The Young’s modulus values in [001] and [111] directions are very close

to each other, which are higher than that in [110] direction. The stress-strain curve

in [001] direction shows longer linear elastic stage and higher ultimate stress than the

stress-strain curves in other two directions, indicating that LZ has a larger toughness

in [001] direction than that in [110] and [001] directions. The MD-calculated ultimate

tensile strengths share the same trend with the DFT results. However, the magnitude

of Young’s modulus, ultimate strength and toughness results are different with DFT

results, as listed in Table 3.3. This is primarily due to the different scale in dimension

and different atom number between DFT and MD calculations. The MD models used
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in this works are about several hundred times larger than the DFT model in both

atom number and dimensions.

Figure 3.10. The MD-calculated tensile stress-strain curves.

The shearing stress is derived from the virial theory by averaging the virial stress

over the whole system, which includes both the potential and kinetic energies [145].

The shear stress is calculated by the following equation:

τ = −0.5[σxx − 0.5(σyy + σZZ)] (3.14)

where x is the uniaxial compression axis [146]. The relation between the resolved

compression and shear slip system is also considered. The orientation of the slip

plane in the LZ normal compression model is very close to the initial compression

axis, so the compressive shear strain is used to specify the strain in the slip plane as

a simplification [146].

Figure 3.11 shows the MD-calculated shear stress-strain curves in [110] and [112]

directions. The shear stress-strain curves have the similar form as the tensile stress-

strain curves, which show a linear elastic stage. The ultimate shear strength in
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Figure 3.11. The MD-calculated shear stress-stain curves.

[110] direction is obviously larger than that in [112] direction. Similar to the DFT-

calculated shear stress-strain curves, the MD shear results also indicate that the LZ

single crystal in [112] direction is more likely to slip than in [110] direction.

3.5 Summary

In this work, the conventional unit cell of the single crystal LZ was built, and

the lattice constant of LZ unit cell was optimized using the DFT calculations. Based

on the LZ unit cell model, the nanoscale tensile and shear simulations for LZ single

crystal material were performed using the DFT and the MD calculations, and the cor-

responding mechanical properties were calculated using two approaches: stress-strain

curve analysis in large deformation and elastic constants analysis in small deforma-

tion. The DFT-calculated results of both methods are very close, suggesting the

consistency of these two methods. Compare experimental results from the literature

data, the effective elastic moduli calculated from Voigt-Reuss-Hill approximation have
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a good accuracy. The major conclusions of this chapter can be summarized as the

following aspects.

(1) The actual lattice constant of LZ was calculated by minimization of the total

energy. The DFT-calculated LZ lattice constant is 10.875 Å, which has an error of

0.68 % comparing to the experimental result.

(2) The elastic moduli of LZ single crystal are anisotropic. The DFT results

show that the largest Young’s modulus occurs in [111] direction. The average Bader

charge difference analysis indicates that the bonds between Zr and O, and between

La and O are the strongest in LZ tensile model in [111] direction. The charge density

distribution analysis exhibits the strong electron interaction in tensile [111] model,

which leads to a high Young’s modulus.

(3) The DFT-calculated shear stress-strain curves in {111}<110> and {111}<112̄>

slip systems are very similar, so as the average Bader charge difference between the

cations and anions in these two models. The most likely slip system in {111} plane

is {111}<112̄>, because more strain is generated in {111}<112̄> shear model than

that in {111}<110> shear model under the same stress level.

(4) The MD-calculated tensile and shear stress-strain curves show the same trend

as the DFT-calculated results. However, the values of the mechanical properties

calculated using the MD method are quite different from the DFT results, because

the scale in dimensions and number of atoms are different between the MD and the

DFT models.
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CHAPTER 4. THERMAL PROPERTIES MODELING OF LZ

4.1 Introduction of Thermal Properties Calculations

TBCs are operated in the high-temperature environment, so the thermal proper-

ties are very important for TBC material. The primary requirements of TBCs for

the turbine designer are low thermal conductivity [1, 6]. Although there are several

experimental methods to measure the thermal conductivity, such as flash method and

pulsed thermal imaging-multilayer analysis (PTI-MLA) method (see section 4.3.3),

no theoretical modeling calculation of the thermal conductivity is performed on the

LZ material. Actually, the intrinsic thermal conductivity of single crystal LZ is al-

most impossible to be accurately measured using experimental method due to the

porous and fragile characteristic of the LZ powder, which includes the huge number

of defects. In addition, the experimental equipment has limitations on the tempera-

ture range and the sample size. However, the theoretical calculation does not have

the temperature limitation.

In this chapter, the specific heat of single LZ crystal was calculated based on the

optimized LZ unit cell using DFT calculations. Then, we propose a novel image-based

multi-scale simulation framework combining MD and FE method calculations to study

the thermal conductivity of LZ thermal barrier coating. A reverse non-equilibrium

molecular dynamics approach is used at first step to compute the temperature-

dependent thermal conductivity of LZ single crystal. Then, the single crystal data

is plugged into an FE model of a thermal barrier coating that generated using SEM

microstructures images. The predicted thermal conductivities from the FE model are

compared against thermal conductivity experimental results using both flash laser

and PTI-MLA techniques.
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4.2 Thermodynamic Energy and Specific Heat of LZ

The thermodynamic energies (Gibbs free energy, enthalpy and entropy) and spe-

cific heat capacity calculations of the LZ unit cell were implemented by CASTEP

code in this work [84]. The thermodynamic energies and specific heat can be well

described using a quasi-harmonic Debye model, in which the non-equilibrium Gibbs

function G∗(V, P, T) is expressed as the following equation [147].

G∗(V (x), P, T ) = E(x) + PV (x) + Avib[V (x), T ] (4.1)

where x represents all the geometric information such as lattice constant, E(x) is

the total energy of LZ unit cell, PV(x) represents the energy in constant hydrostatic

pressure condition, and Avib is the vibrational Helmholtz free energy. E(V) and PV

can be obtained from DFT calculation results, so the next step is to calculate the

vibrational contribution Avib using Debye model of the phonon density of states:

Avib(Θ, T ) = nkT [
9

8

Θ

T
+ 3ln(1− e−Θ/T −D(

Θ

T
] (4.2)

where Θ(V) is Debye temperature, n represents the number of atoms per formula

unit, and D(y) is the Debye integral that defined as:

D(y) =
3

y3

∫ y

0

x3

ex − 1
dx (4.3)

In Debye’s theory, the vibration of a solid is considered as elastic waves, so the Debye

temperature of the solid is related to the average sound velocity. In addition, Debye

temperature in a solid material is also determined by phonon perturbation and lattice

vibration, which can be computed as:

Θ =
h

k
(6π2V 1/2n)1/3f(υ)

√
B

M
(4.4)

where M represents the molecular mass, B is the adiabatic bulk modulus, υ is Poisson

ratio, and f(υ) is given by the following equation:

f(υ) = {3[2(
2

3

1 + υ

1− 2υ
)2/3 + (

1

3

1 + υ

1− υ
)2/3]−1}1/3 (4.5)
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The Phonon calculations in CASTEP are used to evaluate the enthalpy, entropy,

free energy, and the specific heat capacity of the LZ unit cell as a function of tem-

perature in the quasi-harmonic Debye approximation. The specific heat (Cv) can be

expressed using the following equation [147].

Cv = 3nk[4D(Θ/T )− 3(Θ/T

eΘ/T − 1
] (4.6)

The calculated thermodynamic energy curves are shown in Figure 4.1, in a tem-

perature range of 0 – 1800 K. The entropy increases as temperature increases, which

is consistent with the second law of thermodynamics. The enthalpy increases slowly

and the free energy decreases as the temperature increases. The enthalpy indicates

the amount of heat transfer into the crystal cell. Since the Gibbs free energy equals

to the enthalpy minus the product of temperature and entropy, it is reasonable that

the free energy decreases as temperature increases.

Figure 4.1. Thermodynamic energy curves of LZ as a function of temperature.

The calculated specific heat (Cv) curve in constant pressure shows in Figure 4.2,

in a temperature range of absolute zero to 1327 ◦C, which is very difficult to measure

by experiment in such wide temperature range. The value of specific heat increases
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Figure 4.2. Specific heat results and comparison to literatures.

as the temperature increases, especially in a low-temperature range it increases very

rapidly. When the temperature reaches above 400 ◦C, the specific heat increases very

slowly, the value is 0.4 – 0.467 J/(g·◦C) from 400 ◦C to 1400 ◦C.

Comparing experiment data from Vassen’s work [15, 40] and calculated results

from Chartier’s work [148], it can be concluded that the specific heat calculated in

this work is accurate and reliable.

4.3 Thermal Conductivity of LZ

4.3.1 Thermal Conductivity of Single Crystal LZ Using MD Simulation

The MD method can be used to investigate the thermal conductivity. For single

crystals, there are two common molecular dynamics methods for thermal conductivity

calculations: direct method [149,150] and Green-Kubo method [151,152]. The direct

method is a non-equilibrium molecular dynamics (NEMD) method which imposes a

temperature gradient to the system. The Green-Kubo method is an equilibrium MD

(EMD) method which uses the current fluctuation to calculate the thermal conduc-
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tivity according to the fluctuation-dissipation theorem [153]. Based on the NEMD,

a more reliable method to compute thermal conductivity was developed, which is

the reverse NEMD (RNEMD) method [154]. In RNEMD method, the Muller-Plathe

algorithm [155] is applied to exchange kinetic energy between two atoms in different

regions of the simulation box at every finite step to induce a temperature gradient in

the system. It works by exchanging velocities between two atoms in different parts

of the simulation cell. At set intervals, the velocity of the fastest atom in one re-

gion is replaced by the velocity of the slowest atom in another region and vice versa.

Consequently, the first region becomes colder, whereas, the second region increases

in temperature. The system will be reacted by flowing energy from the hot to cold

regions. Eventually, a steady state is established when the exchanged energy equili-

brates the energy flowing back in a temperature gradient over the space between the

two regions. This enables the thermal conductivity of a material to be calculated.

The usual NEMD approach is to impose a temperature gradient on the system and

measure the response as the resulting heat flux. In RNEMD using the Muller-Plathe

algorithm, the heat flux is imposed, and the temperature gradient is the system’

s response. The advantage of RNEMD over traditional NEMD is that there are

no artificial “temperature walls” in the simulated system because these cause a fluid

structure different from the bulk. Additionally, energy and momentum are conserved,

and there are no thermostat issues [154].

The reverse non-equilibrium molecular dynamics (RNEMD) method is used to

predict temperature-dependent thermal conductivities of the single crystal LZ model

in this work. The thermal conductivity model is assembled using the geometry op-

timized LZ unit cell, which contained 2×2×30 unit LZ cell and had the dimension

of 21.6×21.6×324 Å3 in x,y,z directions [156]. The thermal conductivity model (LZ

supercell model) contains total 10560 atoms, including 6720 O atoms, 1920 La atoms,

and 1920 Zr atoms. The supercell model is sliced into 30 layers with equal thickness.

A temperature decay constant 0.1 per picoseconds is imposed in each layer. The
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thermal conductivity calculations are performed as the energy flux divided by the

temperature gradient [154]:

κ =
q̇

∂T/∂z
(4.7)

where κ is thermal conductivity, q̇ is heat flux defined by the amount of heat (Q)

transferred per unit time per unit area in heat transfer direction; ∂T/∂z is the tem-

perature gradient in the heat transfer direction. The universal force field was used in

this work, which has a full coverage of the periodic table [157].

Figure 4.3. Temperature distribution in LZ single crystal supercell at 1273 K.

One of the calculated temperature distribution contour in the LZ supercell model

is shown in Figure 4.3. There are two high-temperature hot zones at the ends due to

the periodic boundary condition, and a low-temperature cold zone in the middle for

generating a temperature gradient. The target temperature in Figure 4.3 is 1273 K,

which is the average temperature in the supercell [158].

The temperature gradient along the heat flux direction in the supercell is plotted

in Figure 4.4. Two linear temperature gradients were identified and the thermal

conductivity was calculated using Equation (4.7).
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Figure 4.4. Temperature distribution along the heat flux direction.

The calculated temperature-dependent thermal conductivity of LZ single crystal is

shown in Figure 4.5. The thermal conductivity values range from 1.25 W/m/K to 1.39

W/m/K in the temperature range of 473 – 1273K. It is noted that thermal radiation

effect at high temperatures is not considered in this RNEMD model. Our predicted

LZ single crystal thermal conductivity is lower than Schelling’ s NEMD result (1.98

W/m/K at 1200 ◦C [149]), probably due to two factors. One is the method, Schelling

used NEMD and we use RNEMD. The second is the different force fields used in the

model. Schelling used Buckingham potentials and this work applied the universal

force field. Schelling’ s single crystal result compared reasonably well with fully

dense polycrystalline experimental data. However, the influence of microstructure in

the polycrystalline was not considered in Schelling’ s work. In our model, we also

calculate temperature-dependent thermal conductivity of polycrystalline LZ using the

FE model as discussed below.
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Figure 4.5. Temperature-dependent thermal conductivity of LZ single
crystal using the RNEMD method.

4.3.2 Thermal Conductivity of Polycrystalline LZ Coating

Finite element (FE) method can be used to simulate the heat conduction process

of a coating structures with cracks and pores [159]. The pore and crack morphology

of thermal barrier coating is an important parameter affecting the mechanical and

thermal properties [160,161]. The quantitative imaging analysis method can be used

to investigate the non-uniformity properties of the porous coating with polycrystalline

microstructure [46,48]. Based on the quantitative imaging analysis, the image-based

FE method uses scanning electron microscope (SEM) images to generate microstruc-

tures and import into an FE model [162]. Therefore, the image-based FE method

is able to calculate the thermal conductivity of non-uniform porous polycrystalline

coatings.

Three representative SEM images of the cross-sectional view of the porous LZ

TBC sample with the porosity of 13.61 % are converted into binary images using
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imaging processing software package ImageJ [163]. In the binary images, white color

regions represent solid LZ coating phase, and black color regions are pores and cracks.

The binary images then are passed into to an FE software package, COMSOL Mul-

tiphysics [164], to automatically generate FE meshes. In the FE models, a constant

temperature difference boundary condition is applied at the top (Ttop) and bottom

(Tbot) surface of the system, with the average temperature (Ttop/2+Tbot/2) as the tar-

get temperatures, 473 – 1273 K. The pores and cracks are filled with non-flowing air.

Zero thermal conductivity is assumed for the pores and cracks because the thermal

conductivity of non-flowing air is much smaller than that of the coating [165,166]. For

LZ coating solid phase, the calculated temperature-dependent thermal conductivities

of LZ single crystal from RNEMD are used.

For porous LZ polycrystalline coating samples, SEM images of cross-sectional

views of three free-standing coating samples were used. A representative SEM image

of LZ coating is shown in Figure 4.6(a). The simulated temperature contour in the

sample is shown in Figure 4.6(b). As shown in Figure 4.7, comparing with the flash

method experiment results, the FE method calculated thermal conductivity values

are in the good agreement with the experiments results. The cracks and pores in the

coating clearly reduce the thermal conductivity of the coatings.

(a) (b)

Figure 4.6. (a) SEM image and (b) calculated temperature contours of LZ.
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Figure 4.7. Thermal conductivity of LZ coating – FE method pre-
diction and flash method.

Using the flash method, the averaged thermal conductivity measured from the

three LZ porous coating samples is given in Figure 4.7, which ranges from 0.44 to

0.62 W/m/K in the temperature range of 300 – 1200 K. The measured thermal

conductivity is relatively constant below 900 K, and slightly increases above 900 K.

As shown in Figure 4.7, the predicted thermal conductivity using the FE model is in

a good agreement with experimental measurement.

Pulsed thermal imaging-multilayer analysis (PTI-MLA) method is recently devel-

oped as a new method to measure the thermal conductivity [167], to overcome the

limitations of the flash method. For example, the flash method requires two sides

accessible for the specimens. The sample surface is destructed by the laser flash. In

addition, the flash method obtains a single averaged thermal conductivity of the sam-

ple, and it does not provide the spatial distribution of the thermal conductivity [167].

In comparison, the PTI-MLA technique is a one-sided experimental system, which
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consists a photographic flash lamp (Source 6400; BALCAR, France), an infrared fil-

ter and a mid-wavelength (3 – 5 µm) infrared camera (Phoenix, FLIR). PTI-MLA

method is based on monitoring the surface temperature decay, after it is applied with

a pulsed thermal energy that is transferred inside the sample gradually [167].

In the pulsed thermal image-multilayer analysis method, the optical image of LZ

coating specimen, thermal conductivity map, and heat capacity map are shown in

Figure 4.8. The measured product of heat capacity is ∼2.16 J/cm3/K. The average

thermal conductivity measured by the PTI-MLA technique is 0.55 W/m/K, which is

also consistent with the results measured by the flash method and calculated by FE

model.

(a) (b) (c)

Figure 4.8. LZ coating (a) optical image; (b) thermal conductivity
map; (c) product of heat capacity (ρc) map.

4.4 Summary

In this chapter, some thermodynamic energies (Gibbs free energy, enthalpy and

entropy) and the specific heat of single crystal LZ were calculated using the DFT

calculations based on a quasi-harmonic Debye model. In addition, a novel image-

based multi-scale simulation framework combining the molecular dynamics and the

finite element calculations has been proposed to study the thermal conductivity of the
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porous LZ coatings. Experimental validations include the flash method and pulsed

thermal image-multilayer analysis technique were applied to measure the coating

thermal conductivity. The main conclusions of this chapter can be summarized as

the following aspects.

1. The calculated specific heat capacity of single crystal LZ ranges from 0.4 –

0.467 J/g/K at a temperature range from 400 ◦C to 1400 ◦C. The calculated results

have a good accuracy comparing to the literature data.

2. The calculated thermal conductivity of LZ single crystal ranges from 1.25

W/m/K to 1.39 W/m/K in the temperature range of 473 – 1273K, using RNEMD

method.

3. Using the image-based FE method and single crystal thermal conductivity

data, the calculated thermal conductivities of porous LZ polycrystalline are in the

range of 0.46 – 0.59 W/m/K at the temperature range of 473 – 1273K. The predicted

FE data are in good agreement with the flash method, 0.44 to 0.62 W/m/K, in the

temperature range of 300 – 1200 K, and the PTI-MLA technique, 0.55 W/m/K. The

image-based multi-scale simulation framework proposed in this work provides a design

tool to the future design of advanced coating systems.
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CHAPTER 5. TENSILE AND SHEAR MODELING OF ZRO2-NI INTERFACE

5.1 Introduction of Interface Modeling

It is widely accepted that the mechanical properties at the ceramic-metal interface

between the top and bond coats and/or between the top coat and the TGO layer have

a primary influence on the lifetime of the TBCs in the thermomechanical environ-

ments. It is still challenging to directly examine the interfacial mechanical properties

from experiments. Modeling and simulation are powerful tools as an alternative way

to investigate the interfacial properties and decipher failure mechanisms [168]. The

failure and spallation mechanisms of the were discussed by Evans et al. in the context

of continuum mechanics [125,169,170]. Evans suggested that the delamination, typi-

cally observed in TGO layer or near the interface, was related to a significant residual

stress gradient which amplifies the imperfections in TBCs. Cracks propagate when

the residual tensile and/or shear stresses exceed the delamination toughness of the

top bond coat interface. At the atomic level, the mechanical characteristics at the

ceramic-metal interface are related to the intrinsic atomic properties. The idealized

mechanical properties can be calculated which offers insights into the complex inter-

face systems. Guo et al. investigated the mechanical properties of Ni (111) / α–Al2O3

(0001) interface, and calculated the theoretical shear strength and unstable stacking

energy, using the first principles calculations [171]. Since the LZ, 8YSZ and NiCrAlY

bond coat structure is too complicated to calculate using DFT method, the ZrO2/Ni

interface structure is implemented as a simplified top and bond coat model. This

simplification is reasonable because the primary composition of the 8YSZ and the LZ

coatings is ZrO2, and Ni is the primary composition of the bond coat. Christensen

et al. studied the adhesion energy of ZrO2(111)/Ni(111) interface using the ultrasoft

pseudopotential within the density functional theory [172].
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Although previous efforts, however, the exact mechanical properties of ZrO2/Ni

interface are still not well examined using theoretical calculation approach. Specif-

ically, the interfacial mechanical behaviors under tensile and shear stresses are not

available. The difficulty of such studies primarily stems from the complexity of the

interface structure, which requires minimizing the misfit between different crystal

surfaces, and intensive calculations involved in the interfacial tensile and shear defor-

mation simulations.

In this chapter, we conduct the DFT and MD tensile and shear calculations of ZrO2

(111)/Ni (111) interface. In the DFT modeling, an interface model in Ref. [172] is

used to compare and/or partially validate the model through calculating the adiabatic

work of adhesion. For mechanical property calculations, two Ni thickness of 1 and

3 atomic layers are modeled to investigate the effect of interface thickness on the

mechanical properties. The crystallographic orientation (111) is considered since

the primary slip system in face-centered cubic (fcc) metal crystals, such as Ni, is

{111}<110>, with {111}<112̄> being the secondary slip system [136]. Although

the actual slip systems of the ZrO2/Ni interface may be more complicated, both

{111}<110> and {111}<112̄> should be the major slip systems. Therefore, the

tensile stress-strain curve in <111> direction is calculated, and the shear stress-

strain curves along {111}<110> and {111}<112̄> directions are computed. The

toughness and elastic modulus, Youngs modulus or shear modulus, are also calculated.

Finally, the Bader charge analyses are conducted to explain the observed interfacial

mechanical properties. In the MD model, the electron charge was considered in the

force field potential. The tensile simulation in [111] direction and the shear simulation

in {111}<110> and {111}<112̄> direction were conducted using MD method.
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5.2 DFT Methods of ZrO2/Ni Interface Model

5.2.1 ZrO2 (111)/Ni (111) Interface Model

The constructed ZrO2 (111)/Ni (111) interface atomistic models are shown in

Figure 5.1. The cubic zirconia (c–ZrO2) has the fluorite crystal structure (space

group Fm3m) and Ni has a face-centered cubic (fcc) crystal structure (space group

Fm3m). Both c-ZrO2 and Ni small portions are cut from their bulk counterpart on

(111) plane. To match the interface with minimal lattice misfit, the c-ZrO2 and Ni

small portions are rotated according to Ref. [172].

As shown in Figure 5.1, the interface model contains two layers of ZrO2 (111)

atoms, and 1 or 3 layers of Ni (111) atoms [173]. Because the O atoms and Zr

atoms are not positioned in the same horizontal plane, the termination of the ZrO2

(111) surface may result in dipole moment perpendicular to the interface. Therefore,

symmetric models are built to screen out the dipole interactions. Two ZrO2 (111)/Ni

(111) interfaces are in this interface model, corresponding to a sandwich structure.

This model with the interface is extended periodically in three dimensions, due to

the periodical boundary condition. To calculate adiabatic work of adhesion, ZrO2

(111)/Ni (111) interface slabs are built with a vacuum layer thickness of 10 Å, which

is large enough to eliminate the interaction between each interface film layer.

The first principles calculations in this chapter are carried out using the VASP

[86–88], based on the density functional theory (DFT) [77, 78].The projector aug-

mented wave (PAW) method of generalized gradient approximation (GGA) functional

is adopted to specify the exchange-correlation potential. A periodic supercell regime

is used and k-point of the Brillouin zone is conducted using 3×3×1 Monkhost-Pack

scheme. A conjugate-gradient algorithm is used to relax the ions into its instanta-

neous ground state. The plan-wave cutoff energy is 400 eV. The energy relaxation

criterion for the electron is 10−5 eV for the self-consistency. The total forces are

smaller than 0.01 eV/A in the ionic relaxation convergence criterion.
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(a) (b)

(c) (d)

Figure 5.1. Figure 5.1 ZrO2 (111)/Ni (111) interface models with
different Ni atomic layers: (a) side view and (b) top view with 3 layers
of Ni, and (c) side view and (d) top view of 1 layer of Ni. Green, red,
and black balls are Zr, O, and Ni atom, respectively (same coloring
schemes are used in all of the DFT modeling figures afterwards).

5.2.2 Adiabatic Work of Adhesion

In order to compare or partially validate the interface model, due to limited liter-

ature data, adiabatic work of adhesion (Wadh) is calculated using the atomistic model
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described in Ref. [172]. Wadh is the most commonly used property to describe the

adhesion characteristics, which can be described using the following equation [172]:

Wadh =
E0,Ni + EN

0,ZrO2
− EN

ZrO2,Ni

A
(5.1)

where E0,Ni and E0,ZrO2 are the total energies of the relaxed Ni and ZrO2 surfaces,

respectively. EZrO2,Ni is the total energy of the relaxed ZrO2/Ni interface structure.

A is the area of the interface and N is the number of the ceramic layers [172].

5.2.3 Stress-Strain Behaviors in Tensile and Shear Deformations

For tensile deformation, the calculations are conducted by extending the lattice

parameters of the interface model in [111] direction, which is perpendicular to the

interface. All ions in the interface model are relaxed, and the volume and the shape

of the interface unit cell are also optimized during the stress tensor calculation process.

Similarly, for shear deformations, the shear stress is calculated by accumulating the

shear strain in {111}<110> or {111}<112̄> direction [174].

5.2.4 Bader Charge Analysis

To explain the calculated stress-strain behaviors, the Bader method is used to

calculate the charge transfer numbers and electron density distributions [137, 138,

175]. The charge transfer results are processed by calculating the average charge

difference between O and Ni ions. This is because the bonds formed in the ZrO2/Ni

interface models through the Zr and Ni atoms losing electrons, and the O atoms

gaining electrons.
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5.3 DFT Interface Modeling Results and Discussion

5.3.1 Adiabatic Work of Adhesion

The relaxed ZrO2/Ni interface models for adiabatic work of adhesion calculations

are shown in Figure 5.2. In this work, all of the atoms except the two bottom Ni layers

(which are away from the interface) are relaxed to allow to reach their equilibrium.

Comparing with the structures in Ref. [172], the relaxed atomic structures in this

study are slightly different. This is due to limited information regarding computation

details in Ref. [172].

(a) (b) (c)

Figure 5.2. Relaxed ZrO2 (111)/Ni (111) interface models with a
vacume layer above the slabs: (a) 1-layer ZrO2, (b) 2-layer ZrO2, and
(c) 3-layer ZrO2.

In this work, the calculated Wadh value of the interface with 1-layer ZrO2 is 629

mJ/m2, which is greater than those of 2 and 3-layers ZrO2 (554 mJ/m2 and 296

mJ/m2, respectively). In Ref. [172], the Wadh values are 2011, 1308, and 995 mJ/m2
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for 1, 2, and 3-layers ZrO2, respectively. Although our calculated values are lower

than reported in Ref. [172] in ∼60 %, our calculated values follow the same trend as

Ref. [172], i.e., a thicker ZrO2 layer corresponds to a lower adhesion energy.

5.3.2 Stress-Strain Behaviors in Tensile and Shear Deformations

(1) Tensile Deformation Along [111] Direction

For mechanical property calculations, the atomic configurations of relaxed tensile

models along [111] direction with Ni slabs of 1 and 3 layers are shown in Figure 5.3

and Figure 5.4, respectively.

(a) (b) (c) (d)

Figure 5.3. Tensile deformation models with 1 layer of Ni: (a) initial
configuration, (b) strain of 0.051, (c) strain of 0.105 and (d) atom
displacement vector between strain 0.105 and initial steps.

The tensile stress-strain curves of ZrO2 (111)/Ni (111) interface with Ni slabs

of 1 and 3 layers are shown in Figure 5.5. As shown in Figure 5.5, a thinner (1-

layer) Ni layer has almost double Young’ s modulus (139.9 GPa) and higher ultimate

tensile strength (11.6 GPa) than those of the 3-layer Ni case (60.2 GPa and 7.9 GPa,

respectively) (see Table 1 for a complete summary of calculated mechanical properties,

including elastic modulus, ultimate tensile/shear strength, and toughness). The layer

thickness dependence is consistent with work of adhesion values in Section 3.1, i.e.,
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(a) (b) (c) (d)

Figure 5.4. Tensile deformation models with 3 layers of Ni: (a)
initial configuration, (b) strain of 0.072, (c) strain of 0.138 and (d)
atom displacement vector between strain 0.138 and initial steps.

Figure 5.5. Tensile stress-strain curves of ZrO2(111)/Ni (111) inter-
faces with Ni slabs of 1 and 3 layers.

a thin Ni layer interface model has higher strength or work of adhesion. In terms of

deformation strain, the 3-layer Ni interface is more ductile as illustrated with larger
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tensile strain. This can be interpreted by the atom displacement vectors between the

final and initial steps of the nanoscale tensile calculation, as shown in Figure 5.3(d)

and Figure 5.4(d). As shown in Figure 5.4(d), the atom displacement of Ni atoms at

the interface are larger than that of Zr and O atoms in 3-layer Ni interface model,

indicating most of the deformation occurs among Ni layers in the 3-Ni-layers model. In

the 1-layer Ni interface model, the displacement of Ni, Zr and O atoms are arbitrarily

distributed, but the total outcome of these displacement extends the model in the

tensile direction. The 3-layer Ni interface possesses more deformation compatibility

than 1-layer Ni interface, suggesting a thick Ni interface can provide extra deformation

to accommodate tensile strain.

(2) Shear Deformations Along {111}<110> and {111}<112̄> Directions

The atomic configurations of 1-layer Ni slab model during shear deformations

along {111}<110> and {111}<112̄> directions are shown in Figure 5.6, and Fig-

ure 5.7, respectively. The calculated shear stress-strain curves are given in Figure 5.8.

Both the shear modulus (43.9 GPa) and ultimate shear strength (7.9 GPa) along

{111}<110> direction are greater than those along {111}<112̄> direction (30.9 GPa

for shear modulus and 6.0 GPa for ultimate shear strength). Therefore, {111}<112̄>

is a favorable shear slip system in this ZrO2 (111)/Ni (111) interface system, which

is different from pure Ni. It is also noted that the ductility of {111}<110> measured

by strain, 0.23, is lower than that of {111}<112̄>, 0.27.

The shear deformations along {111}<110> and {111}<112̄> directions of the 3-

layer Ni model are shown in Figure 5.9 and Figure 5.10, respectively. The calculated

shear stress-strain curves are given in Figure 5.11. Similar to the 1-layer Ni model,

for the 3-layer Ni, both the shear modulus (30.4 GPa) and ultimate shear strength

(3.0 GPa) along {111}<110> direction are greater than those along {111}<112̄>

direction (17.3 GPa for shear modulus and 1.8 GPa for ultimate shear strength).

Therefore, {111}<112̄> is again a favorable shear slip system. Again, the ductility of

{111}<110> measured by strain, ∼0.10, is lower than that of {111}<112̄>, ∼0.11.
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(a) (b) (c) (d)

Figure 5.6. Figure 5.6 Shear deformation model with 1-layer Ni along
{111}<110> direction after relaxation: (a) initial position, (b) strain
0.126, (c) strain 0.230, and (d) atom displacement vectors between
strain 0. 230 and initial steps.

(a) (b) (c) (d)

Figure 5.7. Figure 5.7 Shear deformation model with 1-layer Ni along
{111}<112̄> direction after relaxation: (a) initial position, (b) strain
0.126, (c) strain 0.267, and (d) atom displacement vectors between
strain 0.267 and initial step.

The atom displacement vectors between the final and initial step of shear defor-

mation models are plotted in Figure 5.6(d), Figure 5.7(d), Figure 5.9(d) and Fig-

ure 5.10(d). In the 1-layer Ni interface models, there is no obvious difference for

the displacement vectors between Ni, Zr and O atoms, as shown in Figure 5.6(d)

and Figure 5.7(d). However, the displacement directions between upper and lower
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Figure 5.8. Calculated shear stress-strain curves of 1-layer Ni shear
deformation model.

ZrO2/Ni interface are in opposite trend, which properly illustrates the shear deforma-

tion. As shown in Figure 5.9(d) and Figure 5.10(d), the 3-layer Ni interface models

show larger displacement in the Ni layers than that in the ZrO2 layers, indicating

that the Ni layers provide the most deformation in these interface models.

Comparing with the 1-layer Ni shear deformation model, the shear modulus and

strengths in the 3-layer model are much lower by 40 %. This is because the shear

deformation is primarily achieved by the deformation of Ni atoms. A thicker Ni layer

allows to deformation at lower stress level.

In addition to stress, toughness can be used to measure the interfacial strength in

large deformations. Toughness is calculated by integrating the are below the stress-

strain curve. As shown in Table 5.1, the 1-layer Ni interface model has higher tough-

ness than the 3-layer Ni model for both tensile and shear deformations. This is also

consistent with the results from the adiabatic work of adhesion in section 3.1. In

addition, the toughness in {111}<110> system is higher than that of {111}<112̄>

direction for both 1-layer and 3-layer Ni models, primarily due to higher shear modu-

lus and ultimate shear strength in the {111}<110> system. It also suggests that the
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(a) (b) (c) (d)

Figure 5.9. Shear deformation model with 3-layer Ni along
{111}<110> direction after relaxation: (a) initial position, (b) strain
0.051, (c) strain 0.105, and (d) atom displacement vectors between
strain 0.105 and initial steps.

{111}<110> direction is stronger than that of {111}<112̄> direction during interface

fracture.

Since most interfacial deformation is achieved by Ni atoms, it is worthy to compare

the interfacial models with pure Ni. Ogata et al. calculated the shear stress-strain

curves of pure Ni in {111}<112̄> direction using the DFT calculations [176]. The

calculated ultimate strength is 5.1 GPa. It is similar to the 1-layer Ni interface model

in this work, 6.0 GPa. However, the shear modulus in Ogata’ s work is ∼60.3 GPa,

which is larger than that in this work, 30.9 GPa. Comparing to experimental data,

Young’ s modulus of polycrystalline Ni (190 – 220 GPa) [177] is also much higher than

that of ZrO2/Ni interface calculated in this work (139.9 GPa for 1-layer and 60.2 GPa

for 3-layer Ni). Both elastic modulus and the ultimate strength values decrease as

the increase of the Ni layer thickness. These comparisons suggest that the strength

of the ZrO2/Ni interface is substantially different from its pure component, and is

determined by the Ni layer thickness.
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(a) (b) (c) (d)

Figure 5.10. Shear deformation model with 3-layer Ni along
{111}<112̄> direction after relaxation: (a) initial position, (b) strain
0.062, (c) strain 0.116 and (d) atom displacement vectors between
strain 0.116 and initial steps.

Figure 5.11. Calculated shear stress-strain curves of 3-layer Ni shear
deformation model.
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Table 5.1. Calculated elastic modulus, ultimate strength, and toughness.

Deformation mode, stress Elastic Ultimate Toughness

direction, and number of modulus tensile/shear (MJ/m3)

Ni layers (GPa) strength (GPa)

Tensile [111] 1-layer Ni 139.9 11.6 0.728

Tensile [111] 3-layer Ni 60.2 7.9 0.486

Shear {111}<110> 43.9 7.9 1.040

1-layer Ni

Shear {111}<110> 30.4 3.0 1.038

3-layer Ni

Shear {111}<112̄> 30.9 6.0 0.166

1-layer Ni

Shear {111}<112̄> 17.3 1.8 0.096

3-layer Ni

5.3.3 Charge Density and Bader Charge Analyses

The contours of charge density distribution are plotted in Figure 5.12. As shown

in the figure, it is clear that the 1-layer Ni interface models (Figure 5.12(a), Fig-

ure 5.12(b), and Figure 5.12(c)) have stronger O–Ni bonds than the 3-layer Ni cases

(Figure 5.12(d), Figure 5.12(e), and Figure 5.12(f)). This is the reason why the 1-

layer Ni interface models have higher elastic modulus and strength. The electron

localization function (ELF) can be used to describe the electron localization status

and bonding behaviors, which depends on the electron density, gradient, and the ki-

netic energy density [178,179]. Typically the value of ELF ranges from 0 to 1, which

specifies vacuum to perfect localization of the electrons. A higher ELF value in the

ELF graph indicates the electron are more localized. Metallic bonding in the ELF

graph typically shows electron vacuum near the atom nucleus and a relatively high
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electron localization value at area far from the atom nucleus. Figure 5.13 shows the

ELF graph of 1-layer and 3-layer Ni shear {111}<110> interface models, ELF graph

in other tensile and shear cases shows the similar trend. The ELF of 3-layer Ni model

shows electron vacuum near the Ni atom, however, it has a comparatively higher elec-

tron localization value in space far from the Ni atom. The Ni layers in the interface

model show the typical metallic bonding characteristics, which can accommodate the

deformation during the tensile and shear process. This is consistent with the above

discussions that thicker Ni layer results to lower elastic modulus and lower ultimate

strength.

As shown in Figure 5.13, the O and Zr atoms have higher ELF values than that of

the Ni atoms in both 1-layer and 3-layer Ni interface models. The chemical bonding

between the O and Ni atom at the interface shows an ionic bonding feature. In

addition, both ELF graphs show a delocalized electron gap between ZrO2 and Ni

layer, suggesting the ionic bonding might be weaker than the metallic bonding in Ni

layer, which has higher ELF value than ionic bonding. During the tensile and shear

processes, the ionic bonding becomes weaker and weaker, until it breaks. Because 1-

layer Ni models have stronger ionic bonding than that of 3-layer Ni models, as shown

in Figure 5.12 of the charge density distribution contour, the 1-layer Ni interface

models possess higher ultimate strength than that of the 3-layer Ni counterpart.

To get more quantitative measurements about bond characteristics, the average

Bader charge numbers, including O, Zr, Ni ions, and the difference between O and

Ni ions for both tensile and shear deformations, are summarized in Table 5.2. It

is clear that the O and Ni differences, the average Bader charge difference between

O and Ni ions of 1-layer Ni interface are consistently larger than those of 3-layer

Ni interface in both tensile and shear cases. The Bader charge analysis results are

also consistent with the charge density distributions in Figure 5.12. A larger average

Bader charge difference indicates a stronger interaction between O and Ni, or more

interaction between ZrO2 and Ni. This explains the higher ultimate strength and
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(a) (b) (c)

(b) (b) (c)

Figure 5.12. Charge density distributions in logarithmic scale: (a)
tensile <111> with 1-layer Ni, (b) shear {111}<110> with 1-layer Ni,
(c) shear {111}<112̄> 1-layer Ni, (d) tensile <111> with 3-layer Ni,
(e) shear {111}<110> 3-layer Ni, (f) shear {111}<112̄> 3-layer Ni.

elastic modulus in the thin Ni layer interface than in the thick Ni layer interface, as

listed in Table 5.1.

From the calculated mechanical properties of ZrO2/Ni ceramic-metal interface, the

layer thickness of bond coat film, NiCrAlY, at the interface makes a major impact on

the coatings mechanical behavior. Typically, fracture or delamination in as-sprayed

TBC system occurs near the interfaces between the top and bond coats [54, 125].

Therefore, the mechanical properties near the interface are important to enhance the
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(a) (b)

Figure 5.13. ELF graph in the (a) shear {111}<110> 1-layer Ni
interface model, (b) shear {111}<110> 3-layer Ni interface model.

lifetime performance of TBC system. Higher toughness and elastic modulus at the

interface enhance the ability of fracture resistance to impede crack propagations in the

ceramic top coat near the interface. From the theoretical analyses of this work, the

ultimate tensile and shear strength are decreased with the increase of the bond coat

film thickness at the interface, which means a thicker thickness of bond coat in TBC

system corresponds to a weaker adhesion strength. On the other hand, a thin bond

coat film will deteriorate the oxidation resistance of the TBC system. Therefore, the

thickness of bond coat should be properly optimized to design and fabricate robust

TBC systems.
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Table 5.2. Average Bader charge number (e).

Deformation mode, stress Difference

direction, and number of O Zr Ni between O and Ni

Ni layers

Tensile [111] 1-layer Ni 1.258 -2.457 -0.050 1.308

Tensile [111] 3-layer Ni 1.264 -2.459 -0.019 1.283

Shear {111}<110> 1.252 -2.451 -0.045 1.297

1-layer Ni

Shear {111}<110> 1.266 -2.462 -0.019 1.285

3-layer Ni

Shear {111}<112̄> 1.257 -2.460 -0.046 1.303

1-layer Ni

Shear {111}<112̄> 1.265 -2.460 -0.019 1.284

3-layer Ni

5.4 MD Tensile and Shear Simulations of ZrO2/Ni Interface Model

The DFT calculation is performed at the ground energy state of the atomic system,

which means the DFT theoretical result is limited at very low temperatures (close

to 0 K). Therefore, the MD method was performed to simulate the nanoscale tensile

and shear process of ZrO2/Ni interface model at high temperatures. LAMMPS code

was used to conduct all of the MD calculations in this work. The charge-optimized

many body potential (COMB3) was applied to describe the interatomic force field of

the ZrO2/Ni interface [180]. In COMB potential series (including both COMB and

COMB3), the total potential energy Utot of system is described by:

U tot(r, q) = U es(r, q) + U short(r, q) + U vdW (r) + U corr(r) (5.2)
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where r represents the coordinate array of the system and q represents the charge

array. Ues represents the electrostatic energies that include the energies to form a

charge on an atom, the charge-nuclear interaction, the charge-charge interaction and

the energies related with atomic polarizability. Ushort is the short-range interaction

energies that describe the pairwise repulsive and attractive potentials. The long-range

van der Waals interactions (UvdW ) is described using Lennard-Jones expression. The

energy corrections term (Ucorr) were used to optimize the total energy.

To validate the COMB3 potential in the ZrO2/Ni interface system, the lattice con-

stants of ZrO2 unit cell and Ni unit cell were calculated using MD model, respectively.

Cubic ZrO2 with a space group Fm3m and cubic Ni of the same space group were

used to calculate the lattice constant. The DFT calculation methods were similar

to the one used in LZ unit cell model, except different cutoff energy and Brillouin

zone k-point scheme. The cutoff energy for ZrO2 and Ni were 500 eV and 300 eV,

respectively, and the 5×5×5 Monkhost-Pack scheme was used for both ZrO2 and Ni

as Brillouin zone k-point. Table 5.3 lists the DFT and MD calculation results of the

ZrO2 and the Ni lattice constants. The error difference between MD results and DFT

results for ZrO2 and Ni are 1.478 % and 0.378 %, respectively, suggesting that the

COMB3 potential is reliable in single material ZrO2 or Ni MD models.

The ZrO2/Ni interface MD models were built based on the DFT model as de-

scribed in section 5.2, and the lattice mismatch was less than 3%. The work of

adhesion of ZrO2(111)/Ni(111) interface was calculated according to Equation (5.1)

using MD method, and it was compared with the DFT results. The calculated work of

adhesion results are listed in Table 5.3 and plotted in Figure 5.14. The MD-calculated

work of adhesion results have the same trend as DFT results, which is acceptable in

the interface simulations.

The tensile stress-strain curves of the ZrO2/Ni interface model were calculated

using the same scheme as LZ model. However, the shear stress and strain values here

were calculated from the single direction pure shear deformation. Therefore, the shear
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Table 5.3. DFT and MD calculated lattice constant and work of adhesion results.

DFT-calculated result MD-calculated result

Lattice constant ZrO2 (Å) 5.146 5.070

Lattice constant Ni (Å) 3.514 3.527

Work of adhesion with 629 751

1 layer ZrO2 (mJ/m2)

Work of adhesion with 554 602

2 layer ZrO2 (mJ/m2)

Work of adhesion with 296 378

3 layer ZrO2 (mJ/m2)

Figure 5.14. Comparison of work of adhesion between DFT and MD models.

strain was represented by the deformation angle, and shear stress was calculated from

the elastic constants.

The MD models of the ZrO2(111)/Ni(111) interface before and after the tensile

simulation are shown in Figure 5.15. The periodic boundary condition was applied in

all 3 dimensions of this tensile model, so the ZrO2-Ni-ZrO2 sandwich model was built

to match the periodic condition in the tensile direction. As shown in Figure 5.15(b),
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the Ni layer in the model with 0.16 tensile strain does not keep the initial lattice

array, suggesting that the primary deformation comes from the Ni layer.

(a)

(b)

Figure 5.15. MD ZrO2(111)/Ni(111) interface model in tensile sim-
ulations at 300 K (a) initial position with 0 strain (b) the position of
tensile strain 0.16, Green, red, and grey balls represent Zr, O, and Ni
atom, respectively (same coloring schemes are used in all of the MD
figures afterwards).

(a) (b)

Figure 5.16. MD ZrO2(111)/Ni(111) interface model in shear simu-
lation in {111}<110> direction (a) initial position with 0 strain (b)
the position of shear strain 0.35.
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The MD ZrO2(111)/Ni(111) interface model used in the shear simulation of {111}

<110> direction at 300 K are shown in Figure 5.16. The non-periodic boundary

conduction was applied in the shear direction, and the periodic boundary condition

was used in the other two dimensions.

Figure 5.17. Tensile stress-strain curves of ZrO2/Ni interface at 300 K.

The tensile stress-strain curves of ZrO2(111)/Ni(111) interface model in [111] di-

rection and ZrO2(100)/Ni(100) model in [100] direction at 300K are shown in Fig-

ure 5.17. The tensile curve in [111] direction reaches its ultimate strength of ∼15

GPa at the strain of ∼0.143. The MD-calculated ultimate strength is in the similar

level but larger than the DFT-calculated results (The DFT results are shown in Fig-

ure 5.5). The undulation of the curve is due to the limitation of the atom numbers.

The average Young’s modulus in [111] direction is 131.56 GPa, which is similar as

the DFT result of 1 Ni-layer interface model as listed in Table 5.1 (139.9 GPa). The

average Young’s modulus in [100] direction is 127.85 GPa, which is slightly lower

than that in [111] direction. However, the ultimate strength in [100] direction is only

∼10 GPa, which is about two thirds of that in [111] direction, indicating that the
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mechanical strength of ZrO2/Ni interface in [111] direction is much stronger than that

in [100] direction.

Figure 5.18. Shear stress-strain curves of ZrO2/Ni interface at 300 K.

The shear stress-strain curves in {111}<112̄> and {111}<110> directions at 300K

are shown in Figure 5.18. These two curves share the similar shear stress-strain trend

as the thin-Ni-layer DFT results (The DFT results are shown in Figure 5.8). The

ultimate shear strength in {111}<112̄> direction is ∼9 GPa at the shear strain of

∼0.31. The average shear modulus in {111}<112̄> direction is ∼29.4 GPa. The

ultimate shear strength in {111}<110> direction is ∼12 GPa at the shear strain of

∼0.29. The average shear modulus in {111}<110> is ∼34.5 GPa. The ultimate

strength is larger than the DFT-calculated results, as listed in Table 5.1. The shear

modulus is similar to the DFT-calculated results. The differences of ultimate strength

and elastic modulus between the DFT and the MD results are due to the differences

of dimension scale and atom number. In addition, the MD calculation is performed
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in a dynamic equilibration, and the DFT calculations are conducted in the static

equilibration of each tensile steps.

5.5 Summary

The ideal tensile strength and shear strength of ZrO2/Ni ceramic-metal interface

are calculated using the DFT and MD methods. The major conclusions are summa-

rized as the following aspects.

For tensile deformation in [111] direction, Young’s moduli of the 1-layer Ni and 3-

layer Ni metal-ceramic models are 139.9 GPa and 60.2 GPa, respectively; the ultimate

tensile strengths are 11.6 GPa and 7.9 GPa, respectively; the toughnesses are 0.728

MJ/m3 and 0.486 MJ/m3, respectively. The 1-layer Ni model shows higher mechanical

strength than the 3-layer Ni model in tensile deformation.

For shear deformation in {111}<110> system, the shear moduli of the 1-layer Ni

and 3-layer Ni M-C models are 43.9 GPa and 30.4 GPa, respectively; the ultimate

shear strengths are 7.0 GPa and 3.0 GPa, respectively; the toughnesses are 1.040

MJ/m3 and 1.038 MJ/m3, respectively. The 1-layer Ni model shows higher mechanical

strength than the 3-layer Ni model in shear deformation.

For shear deformation in {111}<112̄> system, the shear moduli of the 1-layer Ni

and 3-layer Ni metal-ceramic models are 30.9 GPa and 17.3 GPa, respectively; the

ultimate shear strengths are 6.0 GPa and 1.8 GPa, respectively; the toughnesses are

0.166 MJ/m3 and 0.096 MJ/m3, respectively.

Both charge distribution and Bader charge analyses show that the 1-layer Ni

ceramic-metal model has stronger interaction between Ni and O ions than that of

the 3-layer Ni model, which explains the higher mechanical properties in 1-layer Ni

model from the calculated tensile and shear stress-strain results.

From the theoretical analyses of this work, the ultimate tensile and shear strength

are decreased with the increase of the bond coat film thickness at the interface, which

means a thicker thickness of bond coat in TBC system corresponds to a weaker
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adhesion strength. On the other hand, a thin bond coat film will deteriorate the

oxidation resistance of the TBC system. Therefore, the thickness of bond coat should

be properly optimized to design and fabricate robust TBC systems.
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CHAPTER 6. CONCLUSIONS

6.1 Summary of Major Conclusions

Lanthanum zirconate is proposed as a promising thermal barrier coating material

due to its outstanding phase stability in high temperature and lower thermal conduc-

tivity than the commercial 8YSZ TBCs material. In this work, the layered LZ TBC

(SCL LZ coatings with porosity range from 11.81 % to 16.52 % and DCL LZ/8YSZ

coatings with LZ porosity of 11.54 %) and composite LZ/8YSZ TBCs were designed

and deposited using APS method. The physical, mechanical and thermal properties

of LZ coating were investigated through experiments and multi-scale modeling tech-

niques. The thermal cycling tests of LZ-based coatings were performed to investigate

the thermal durability performance. The tensile and shear nanoscale simulations of

interface model were conducted to give an insight of the TBC’s delamination. The

primary conclusions of this dissertation are summarized as following aspects.

1. The mechanical properties of the layered LZ-based TBCs, such as hardness

and Young’s modulus, were investigated using Vickers microhardness and nanoinden-

tation. The Vickers hardness of SCL LZ is in the range of 3.90 – 4.22 GPa. On the

other hand, the nanoindentation shows the nanohardness of the SCL LZ is in the

range of 5.41 – 6.08 GPa, and the corresponding Young’s modulus is calculating from

the nanoindentation data with the value range of 89.0 – 104.3 GPa. The porosity

of the LZ coating has a big influence on the hardness and Young’s modulus. The

hardness and Young’s modulus decrease with the increase of the LZ coating porosity.

2. Bond strength test is used to study the adhesion bond strength between the

top coat and bond coat. The measured adhesion strength of the as-sprayed SCL

LZ coating is about 10.48 MPa, which is lower than the adhesion strength of the

SCL 8YSZ coating (13.59 MPa). After thermal spray process, the thermal residual
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stress is generated in the TBC system. From the theoretical thermal residual stress

calculation, the SCL LZ coating has larger residual stress difference at the interface

than that of 8YSZ coating due to the big CTE difference between LZ coating and

the bond coat. In addition, the LZ has lower fracture toughness than the 8YSZ,

indicating that the crack propagation in LZ is much easier than that in 8YSZ. The

low fracture toughness of LZ also leads to the high erosion rate.

3. Thermal conductivity and CTE of the LZ coating with a porosity of 11.54 %

were measured using the laser flash method and the dilatometry method, respectively.

The thermal conductivity of the LZ coating is 0.59 – 0.68 W/m/K in a temperature

range of 373 – 1173 K, which is about 25 % lower than that of the porous 8YSZ coating.

The CTE values of the LZ are approximately 9−10×10−6 /K in a temperature range

of 400 – 600 K, which are about 10 % lower than that of the 8YSZ. The large CTE

difference between the LZ and bond coat might lead to large thermal residual stress.

4. The furnace cycling test (FCT), heat treatments, and jet engine thermal shock

test (JETS) are performed to investigated the thermal durability performance of LZ-

based TBCs. The results show that all of the layered LZ coatings are delaminated

within the first 20 cycles in FCT tests. The large thermal residual stress and low

fracture toughens are the primary reason of LZ coating’s delamination. In both

the heat treatment and the JETS tests, the double-layer coating with porous 8YSZ

and LZ layers exhibits a better performance than other layered LZ-based coating,

suggesting that porous 8YSZ can be used as a buffer layer for increasing the lifetime

in thermal cycling tests. On the other hand, the composite LZ/YSZ TBC samples

have a big improvement in the FCT tests because the CTE difference between top

and bond coats are reduced by the composite coatings and buffer layer. The double

layer composite coating (50 % LZ/50 % 8YSZ and 25 % LZ/75 % 8YSZ) with 8YSZ

buffer layer shows the best thermal durability performance in both FTC and JETS

among all the LZ-based TBCs.

5. The thermal gradient mechanical fatigue (TGMF) test was performed to inves-

tigate the thermal-mechanical coupled stability. The LZ TBCs samples have fewer
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cycles than 8YSZ. The large CTE difference between LZ topcoat and bond coat leads

to high thermal residual stress, which is accumulated during the TGMF test process.

Delamination occurs at the interface of the LZ top coat and bond-coat.

6. The DFT and the MD calculations are effective techniques to investigate the

intrinsic physical, mechanical and thermal properties of various materials. The LZ

unit cell is geometrically optimized by minimization of the total energy using the

DFT calculations. The calculated lattice parameter is 10.875 Å. The nanoscale tensile

and shear simulations are conducted based on the optimized LZ unit cell using the

DFT and the MD method. The elastic modulus, ultimate strength, and toughness

are calculated based on the stress-strain curves. The anisotropic Young’s modulus is

calculated using two different approaches: (1) the tensile stress-strain relation in large

deformation, and (2) the elastic constant analysis in elastic deformation. The largest

Young’s modulus is located in [111] direction of LZ unit cell. The anisotropic Young’s

modulus is related to the bonds between cation and anion, which are investigated by

the electronic charge distribution and charge transfer analysis.

7. The thermal properties such as specific heat capacity and thermal conductivity

are investigated using DFT, MD, and FE methods. The specific heat of LZ unit cell

is 0.4 – 0.46 J/g/K at a temperature range of 673 – 1673 K, which is computed using

the DFT calculations. The thermal conductivities of LZ single crystal and porous

LZ coating are calculated using multiscale modeling techniques, which was based on

the MD and the image-based FE methods. The thermal conductivities of the single

crystal LZ is calculated using the MD method, whose values are 1.25 – 1.39 W/m/K

in a temperature range of 473 – 1273 K. The thermal conductivities of polycrystalline

LZ coating are calculated using the SEM image-based FE method, whose values are

0.46 – 0.59 W/m/K at a temperature ranges of 473 – 1273 K. The calculated specific

heat and thermal conductivity results have a good accuracy, comparing with the

experimental results.

8. The tensile and shear stress-strain conditions at the interface of top and bond

coat have a big influence on the thermal and mechanical durability of the LZ coating,
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so the nanoscale tensile and shear simulations are performed using the DFT calcu-

lations. The ZrO2/Ni interface model is chosen as a feasible simplification model

to mimic the interface of top and bond coat. Both of Young’s modulus and shear

modulus values of the interface ZrO2/Ni model are decreased with the increase of the

Ni layer thickness, so as the ultimate strength and the toughness.

6.2 Contributions of This Thesis Work

This dissertation systematically investigated the LZ-based coating in both ex-

perimental and modeling approaches. The major contributions of this thesis are

summarized as following aspects.

1. The layered LZ-based TBC is designed and deposited using APS technology.

The porous 8YSZ is proposed as a good buffer layer to improve the thermal durability

of LZ-based TBC.

2. This work proposes a double layer composite LZ/8YSZ coating materials with

the porous 8YSZ buffer layer, which greatly improves the thermal stability of the

LZ-based TBC.

3. In this work, the nanoscale tensile and shear stress-strain calculations of LZ

material are performed for the first time. The anisotropic Young’s modulus is calcu-

lated.

4. The thermal conductivities of single crystal and polycrystalline LZ are calcu-

lated using the MD method and the image-based FE method for the first time, which

provides a good method to predict the thermal conductivity of TBCs.

5. The tensile and shear nanoscale simulations of ZrO2/Ni interface are performed

to understanding the stress-strain status at the interface area, which also give us an

idea about the relation between the interface layer thickness and elastic modulus.
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6.3 Recommendation for Future Work

In this work, the physical, mechanical and thermal properties of lanthanum zir-

conate based thermal barrier coatings are systematically studied. The powder fab-

rication, deposition technique, microstructure morphology, physical, thermal and

mechanical properties, thermomechanical durability and failure mechanisms of LZ

coating are discussed. Since the TBC is a quite complicated composite material

system, there are many factors related to the TBC’s properties and durability, for

instance: the coating material species, deposition technique, coating porosity, cracks

and pore morphology, grain size, dope element choice, coating thickness, heat treat-

ment method, multiple layer coating architecture and so on. The research on the

LZ-based TBC is still far from the end. Based on this dissertation, there are several

issues of LZ, which need to be solved before it can be accepted as a TBC material.

The LZ possesses a lower fracture toughness as shown in Table 1.1. The low

fracture toughness leads to the initiation and propagation of the micro-cracks even at

a very low-stress level. The vulnerability of the LZ for the fracture propagation harms

its thermal durability. It becomes very important to improve the fracture toughness

of the LZ-based coatings. Although the composite material and the graded layered

structure help to improve the durability performance in thermal cycling test, some

artificial defects also introduce into the TBC systems, which might reduce the lifetime

of the coating. Doping some other element might be a feasible way to improve the

fracture toughness of LZ coating. But, the doping element and the doping ratio are

still unclear, which requires further investigations.

The thermal conductivity can be reduced and the coefficient of thermal expan-

sions can be increased by doping other elements. However, the material that has

better thermal properties does not guarantee a good thermal cycling performance.

The thermomechanical durability investigations about the low thermal conductivity

material need to be further conducted.
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The failure mechanisms of delamination of the LZ coatings in thermal cycling,

mechanical fatigue cycles, and chemical corrosive environment are not totally clear.

The combination of experimental techniques and theoretical modeling tools can be

the most effective way to unfold the mystery of failure in the LZ-based TBCs. The

modeling studies about the TGO initiation and growth, bond coating oxidation, and

the crack propagation in the LZ coating are still challenging work, which will help

to fully understand of those failure mechanisms and improve the design of the TBC

coating.

Most of the mechanical test conducted in this dissertation are in room temper-

ature. However, the high-temperature mechanical properties of the LZ-based TBCs

might affect the thermal mechanical durability. The mechanical properties in high-

temperature condition also need to be investigated.

The composite LZ/8YSZ TBC exhibits a better thermal durability performance

than the traditional layered LZ-based TBCs, which provides a feasible direction for

the future work. The architecture of the TBC and the species/ratio of the composite

coat need to be improved to achieve better performance. In addition, the phase

stability in high-temperature operation of the composite coating needs to be studied.



LIST OF REFERENCES



156

LIST OF REFERENCES

[1] D. Clarke and C. Levi. Materials design for the next generation thermal barrier
coatings. Annual Review of Materials Research, 33(1):383–417, 2003.

[2] J. Perepezko. The hotter the engine, the better. Science, 326(5956):1068–1069,
2009.

[3] R. Miller. Thermal barrier coatings for aircraft engines: history and directions.
Journal of Thermal Spray Technology, 6(1):35–42, 1997.

[4] R. Miller. Current status of thermal barrier coatings an overview. Surface and
Coatings Technology, 30(1):1–11, 1987.

[5] N. Padture, M. Gell, and E. Jordan. Thermal barrier coatings for gas-turbine
engine applications. Science, 296(5566):280–284, 2002.

[6] D. Clarke, M. Oechsner, and N. Padture. Thermal-barrier coatings for more
efficient gas-turbine engines. MRS Bulletin, 37(10):891–898, 2012.

[7] W. Pan, S. Phillpot, C. Wan, A. Chernatynskiy, and Z. Qu. Low thermal
conductivity oxides. MRS Bulletin, 37(10):917–922, 2012.

[8] S. Weber, H. Lein, T. Grande, and M. Einarsrud. Lanthanum zirconate thermal
barrier coatings deposited by spray pyrolysis. Surface and Coatings Technology,
227(0):10–14, 2013.

[9] T. Taylor. Low thermal expansion bondcoats for thermal barrier coatings. US
Patent 7910225 B2, 2011.

[10] J. Davis. Handbook of thermal spray technology. ASM international, 2004.

[11] W. Nelson and R. Orenstein. TBC experience in land- based gas turbines.
Journal of Thermal Spray Technology, 6(2):176–180, 1997.

[12] P. Fauchais, J. Heberlein, and M. Boulos. Thermal spray fundamentals: From
powder to part. Springer Science and Business Media, 2014.

[13] M. Chen, M. Glynn, R. Ott, T. Hufnagel, and K. Hemker. Characterization
and modeling of a martensitic transformation in a platinum modified diffusion
aluminide bond coat for thermal barrier coatings. Acta Materialia, 51(14):4279–
4294, 2003.
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