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PREFACE

This dissertation is interdisciplinary between physics and computer science. The

presentation assumes knowledge in basic elements of theoretical computer science but

none in physics. The mathematics used is mostly linear algebra. There are in total

four chapters. Chapter 1 serves to motivate the central problem that the dissertation

concerns. The remaining chapters and appendices are original results obtained in the

past three years of research. Most contents in the three chapters have been published;

but they also include previously unpublished materials and findings that facilitate the

discussions.

The main problem concerned in this dissertation is to use perturbation theory for

reducing many-body quantum interactions to realistic two-body ones. Many-body

interactions are extremely difficult to implement in experimental conditions, while

two-body interactions are far more technologically feasible to realize (for instance

D-Wave Systems Inc. has manufactured programmable quantum devices based on

two-body interactions to a rather impressive scale). Chapter 1 is intended to ar-

gue that 1) many-body interactions arise in a wide variety of contexts in quantum

computation, 2) quantum complexity theory offers a powerful set of tools, called per-

turbative gadgets, for reducing many-body interactions to two-body ones and 3) these

tools have inherent drawbacks from the perspective of physical realization; and it is

the purpose of this dissertation to propose methods for overcoming these drawbacks.

In addition, I would like to use Chapter 1 as an opportunity to introduce quantum

mechanics and provide simple intuitions on why it is difficult to simulate on classical

computers, thus motivating the subject of quantum computing and at the same time

provide the conceptual machinery necessary for the developments of later chapters.

Chapter 2 improves the existing constructions of perturbative gadgets. There are

also new gadgets that were discovered during the research (Sections 2.8 and 2.6),
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which could potentially be of interest. Compared with the published the version [1],

the chapter also contains an unpublished Section 2.7. Chapter 3, which is published

in [2], proposes a new gadget construction that is entirely different from the exist-

ing constructions in the sense that it circumvents the need for strong interactions,

which is a common downside of the perturbative gadgets. Apart from its experimen-

tal implications, the gadget construction in Chapter 3 is also used in an important

theoretical development which shows a counterexample to the area law conjecture in

condensed matter physics [3].

The title of this dissertation focuses on combinatorics of perturbation theory and

mentions quantum computing as an application. Although Chapters 2 and 3 appear to

be entirely devoted to perturbative gadgets, whose primary application is in quantum

computing and quantum complexity theory, a hidden theme that develops at their core

is in fact a continuously deepened understanding of perturbation theory. In Chapter

2 we are able to improve some existing gadget constructions by a careful examination

of the perturbation series. In Chapter 3, in order to prove that the perturbation series

expansion converges (Section 3.3.2), we adopt combinatorial analyses of perturbation

series that are more involved than those in Chapter 2. It is these analyses that

uncovered the association between the perturbative expansion and Motzkin walks,

paving the way for more general algorithms in Chapter 4. Essentially, improving

perturbative gadgets boils down to finding a tighter upper bound to the norm of the

perturbation series from a certain order to infinity. Chapters 2 and 3 deal with this

task for specific gadget constructions while the algorithms in Chapter 4 deal with far

more general settings (Section 4.2.1). In this sense, Chapters 2 and 3 build up to

Chapter 4, which is highlighted in the title as the strongest result of the dissertation.

Preliminary version of Chapter 4 is available online [4]. However, in the dissertation

there are additional rigorous analyses (Section 4.5.2) which provide evidence as to why

our algorithms are able to find tight upper bound to the norm of terms at arbitrary

order in the perturbation series.
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2.5 The function f(r) shows the dominant power of ∆ in the error terms in
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mized. The notion of “optimized case” refers to the search for the gap ∆
needed for yielding a spectral error of precisely ε between gadget and tar-
get Hamiltonian, which is described in Section 2.2. The slope of the line at
large ε−1 is 4.97 ≈ 5, which provides evidence that with the assignments of
µ = (α∆4/6)1/5, the optimal scaling of ∆ is Θ(ε−5). (b): The numerically
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4.3 A numerical example for demonstrating our algorithm estimating the per-
turbative error. (a): The 11-spin system constructed for testing. Each
node corresponds to a spin-1/2 particle and each edge represents an inter-
action term in the Hamiltonian between two spins. (b): Effective Hamil-
tonian truncating at 3rd order perturbation theory. Here each triangle
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∑
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individual subsystems. Often used to contrast

entangled state

quantum algorithm An algorithm that runs on a quantum com-

puter. Often a quantum algorithm is a sequence

of physically realizable operations

quantum computer A computational device that stores and manip-
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chanical behaviours of any closed physical sys-

tem

symmetric polynomial A polynomial f(x1, x2, · · · , xn) whose value is

invariant with respect to any permutation of the
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ABSTRACT

Cao, Yudong Ph.D., Purdue University, December 2016. Combinatorial Algorithms
for Perturbation Theory and Application on Quantum Computing. Major Professor:
Sabre Kais.

This dissertation concerns the problem of simulating arbitrary quantum many-

body interactions using realistic two-body interactions. To address this issue, a gen-

eral class of techniques called perturbative reductions (or perturbative gadgets) is

adopted from quantum complexity theory and in this dissertation these techniques

are improved for experimental considerations. The idea of perturbative reduction is

based on the mathematical machinery of perturbation theory in quantum physics. A

central theme of this dissertation is then to analyze the combinatorial structure of the

perturbation theory as it is used for perturbative reductions. Specifically, the original

contribution of this dissertation is three-fold:

1. Improvement over existing perturbative reductions [7–9] by reducing the re-

sources needed for realizing them [1].

2. Proposal of a new perturbative reduction [2] that circumvents the need for

strong interaction in almost all existing constructions, providing a more prac-

tical alternative for realizing many-body simulation. Here we go beyond the

usual regime of convergence for perturbation theory where the perturbation as

a whole is much smaller than the unperturbed section.

3. An efficient algorithm for computing tight upper bounds to perturbation series

at arbitrary order [4]. The algorithm deals with a much broader class of physical

settings and treats the combinatorial structure of perturbative expansion in

much greater generality than the specific analyses for perturbative reductions.
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1. INTRODUCTION

1.1 Overview

Quantum computing is an emerging field at the intersection between computer

science and physics. The original ideas for quantum computing could be traced back

to the 1980s in the works of Richard Feynman [10,11] and Yuri Manin [12]. Feynman’s

observation was that classical computers1 take an exponentially long time to simulate

quantum many-body systems2. If this is an inherent property of quantum mechanics,

then one could imagine a computer exploiting quantum mechanical effects may be

able to perform such simulations exponentially faster than classical computers.

This idea of a quantum mechanical computer was later formally captured by quan-

tum Turing machine, which generalizes the notion of a Turing machine to include

quantum mechanics as its working principle [5, 6]. This sets the stage for further de-

velopment in computational complexity theory that seeks to identify which problems

are efficiently solvable using a universal quantum computer and which problems are

likely not. A major breakthrough was made by Peter Shor [13, 14] for finding an

algorithm that solves integer factorization in polynomial time using quantum com-

puters. Because of the presumed exponential cost of factoring on classical computers,

which underlies most of today’s crypto systems, the discovery of Shor’s algorithm

greatly motivated institutions around the world to realize scalable quantum comput-

ers. Although in theory there is no obstacle that prevents quantum computers from

being built, experimental progress so far has been rather slow. However, theoretical

1The term classical computer broadly refers to computational devices that store and manipulate
bits, as opposed to quantum computers, which stores and manipulates qubits.
2A physical system means a collection of physical objects such as atoms and molecules. In a quantum
system such objects interact according to laws of quantum mechanics
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developments born out of the interactions between computer scientists and physicists

have been quite fruitful.

In classical computational complexity theory, the complexity class P refers to the

set of problems that can be solved efficiently on a classical computer and NP refers

to those whose solutions can be checked efficiently on a classical computer. With

the formal definition of a quantum Turing machine, the quantum analogues of P and

NP could also be introduced. The class of problems that are efficiently solvable on

a quantum computer is called Bounded-error quantum polynomial time, or BQP [6].

Shor’s result on integer factorization [13, 14] could then be interpreted as saying

that integer factorization is in BQP. Of greater interest to this dissertation is the

complexity class QMA, which is short for Quantum Merlin-Arthur. Loosely speaking

QMA can be considered as the quantum analogue3 of NP [15, 16]. Every problem

in QMA has the property that given a solution in the form of a quantum state,

one could efficiently check the validity of the solution using a quantum computer in

polynomial time. If a problem being NP-complete can be regarded as an evidence

that it is hard to solve on a classical computer, a problem being QMA-complete can

be thought of it being hard to solve even with a quantum computer.

The formal definitions of BQP and QMA are not merely mathematical exercises

put forward by complexity theorists, but meaningful characterizations that provide

valuable insights on quantum physics and quantum chemistry. As the recent program

of Quantum Hamiltonian Complexity [17] has unveiled, many important problems in

condensed matter physics [7,8] and quantum chemistry [18–22] are QMA-hard. These

QMA-hardness shows for the first time that ultimate limitations in solving some of

the difficult open problems involving quantum mechanics come from a fundamental

computational complexity of the problem rather than a lack of human ingenuity, in

the same sense as a problem being NP-hard shows a fundamental difficulty of solving

the problem instead of a lack of smart ideas for devising a polynomial time algorithm.

3In a more strict and subtle sense QMA is a closer analogue to MA (short for Merlin-Arthur) and
BQP is closer to BPP. Here BPP and MA are probabilistic analogues of P and NP.
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Aside from insights on the quantum mechanical problems themselves, the com-

plexity specifications of problems in quantum physics and chemistry also have inspired

experimental efforts in engineering quantum systems that manifest the specified com-

putational complexity. For example, finding the lowest energy configuration (the

ground state) of an Ising model is NP-complete [23], which means if one were to

build a physical device with sufficient degrees of freedom to realize any instance of

Ising model, one may use the device as a tool for solving NP-complete problems

(though usually without a guarantee on efficiency). Indeed, the Canadian company

D-Wave Systems has based its business model on this fact and manufactured a vari-

ant of Ising system which can be physically controlled to an impressive scale [24–27].

Although whether the D-Wave quantum devices could produce algorithmic advantage

over the best known classical approaches still remains to be determined, the quan-

tum hardware constructed to date represents a crucial step towards the realization of

scalable quantum computers.

Cook-Levin theorem [28–30] is a classical result in computational complexity which

says that SAT is NP-complete. From a computational perspective, it shows that

SAT, a problem with deceptively simple structure, has enough degrees of freedom

to efficiently describe arbitrary finite computational processes of a classical computer

(a Turing machine). In other words, if we were given an oracle that solves SAT we

could use it as a universal Turing machine by feeding it appropriately constructed

SAT instances. D-Wave’s quantum devices do not qualify as oracles for solving all

instances of the Ising model, but they certainly provide a heuristic which exploits

physical effects that are previously unavailable to any classical computers. Since

Ising model is also NP-complete, in principle one could construct instances of the

Ising model to efficiently simulate all polynomial-time algorithms run by a classical

computer. A natural question to ask for the next step of this development would be:

what kind of physical systems could efficiently simulate all polynomial time algorithms

run by a quantum computer?
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As a first thought for answering this question, if we draw analogy from our dis-

cussion about Cook-Levin theorem, our physical system needs to manifest some form

of QMA-completeness. In other words it has to be “complex” enough to capture

arbitrary process of quantum computation. Indeed there is a quantum version of

Cook-Levin theorem [15, 17, 31] that contructs a specific form of quantum system

to efficiently simulate any processes of quantum computation. However, the con-

struction initially proposed [31, Sec. 14.4] requires the quantum particles to engage

in many-body interactions, which is highly non-trivial to physically realize in a lab.

Our current technology is mostly limited to implementing controllable two-body in-

teractions with additional restrictions on the their strengths and geometry (such as a

linear chain or a square lattice). It is then an important problem to reduce arbitrary

many-body interactions to the type of interactions that are more physically viable.

In the past years complexity theorists have worked hard to find the simplest QMA-

complete physical systems [32]. Many constructions of QMA-complete Hamiltonians

requiring only two-body interactions on a square lattice [8] or restricted types of

interactions [33] have been proposed.

A key technique for accomplishing such reduction from many-body to restricted

two-body problems is based on the framework of perturbation theory in quantum

mechanics. The basic idea of perturbation theory is quite simple, and it applies to a

broad class of problems in physics and engineering. Suppose we have a problem H̃

that can be partitioned into two parts: 1) a subproblem H whose solution is known

and 2) a perturbation V that has some rather irregular structures that render H̃ much

harder to solve directly than H. We could start from a solution ψ of H and obtain a

series expansion ψ′ = ψ0 + ψ1 + ψ2 + ψ3 + · · · that approximates the corresponding

solution of H̃. Here usually the zeroth order contribution ψ0 = ψ and the higher order

contributions ψi takes into account the influence of V on ψ. If the influence of V in

the overall problem H̃ is very small, commonly the contribution of each order ψi to

ψ′ gets smaller as i increases such that the infinite series ψ′ converges to a finite limit.

For many problems in quantum physics the series diverges and there are methods for
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handling such cases. This is not the setting of interest in this dissertation; we only

deal with convergent series.

Apart from the expansion for the approximate solution to the perturbed problem,

using perturbation theory we could also have an expansion for a specific part of the

problem H̃ that we are interested in. In our setting a physical system is described

using a Hermitian matrix called a Hamiltonian. Suppose we have a quantum system

described by a Hamiltonian H̃. Our H̃ is a sum of some diagonal Hamiltonian H,

whose eigenvalues and eigenvectors are trivially known, and some perturbation V

with more complicated off-diagonal structures. In quantum physics the eigenvalues

of a Hamiltonian are the energy levels of the physical system4 and often one is more

interested in the subspace spanned by eigenvectors (called eigenstates) with the lowest

few eigenvalues of H̃. The projection of H̃ into this subspace gives rise to the effective

low-energy physics of the system H̃. We could obtain an expansion that approximates

this low-energy effective Hamiltonian, which takes the form Σ− = T0 +T1 +T2 + · · · .
Here T0 is the projection of H onto its own low-energy subspace and the higher order

terms Ti correspond to how the perturbation V influences the low-energy subspace

of H to turn it into the low-energy subspace of H̃.

Back to the reduction from many-body to restricted two-body problems. Sup-

pose we have a many-body system Htarg. We then construct a two-body Hamiltonian

H̃ = H + V such that the perturbation theory expansion Σ− for the low-energy ef-

fective Hamiltonian gives rise to Htarg in its leading orders and the remaining terms

in the infinite sum are errors that can be suppressed, since we always assume con-

vergence. The constructions for H̃ are called perturbative reduction (or perturbative

gadgets). In this dissertation, I will describe different gadget constructions for differ-

ent purposes but the underlying idea is the same: for a target Hamiltonian Htarg of

certain form (for example, containing many-body interaction), we could construct a

4...thus the name “quantum” physics because the physical objects have only discrete energy levels,
or energy quanta, rather than the continuous energy manifested in macroscopic objects. For example
when a car accelerates from 0 to 100mph its energy undergoes a continuous change, while a hydrogen
atom in its ground state takes a specific amount of energy to jump into its first excited state.
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gadget Hamiltonian H̃ of simpler form (for example, two-body interaction, restricted

interaction type or restricted geometry) such that we could find the ground state

of H̃ if and only if we could do the same for the target Hamiltonian Htarg. Us-

ing perturbative reduction, we are able to reduce many-body systems whose ground

state is QMA-complete to find to simpler two-body ones that are presumably more

experimentally realizable.

Perturbative reductions certainly provide a tempting option for simulating arbi-

trary many-body interactions using simple two-body ones. However, for practical

realization of these gadget constructions, one important issue remains to resolved. In

order to guarantee convergence of the perturbation series, the unperturbed part of

the gadget constructions, H, often needs to be large. In fact if the original many-

body system Htarg contains n particles, H often contains terms whose norm need to

scale as poly(n) for increasing n, in order to make sure that the error terms5 in the

perturbative expansion Σ− have magnitude below a fixed threshold. The norm of

a term in a Hamiltonian often characterizes the strength of interaction it describes.

The polynomial scaling of some terms in H is then impractical because natural phys-

ical interactions are always local - an atom in a crystal lattice always interacts most

strongly with its nearest neighbors and much less so with its next-nearest ones and

so on, regardless of how large the lattice actually is. Hence in order to make the

perturbation reductions practical, it is critical to reduce the norm of the terms in H

as much as possible while still not exceeding the error threshold in the perturbative

expansion.

This dissertation makes progress in dealing with this issue in two ways. First,

it improves on existing constructions [7, 8] of perturbative reductions by deriving

tighter upper bounds for the norm of the error terms than previously known and also

numerically demonstrates that the interaction strengths of the gadget Hamiltonian

constructions can be reduced by orders of magnitude while the error is still below the

5Recall that in the expansion Σ− for the low-energy effective Hamiltonian of the gadget H̃, the
leading orders T1 + · · ·+ Tk gives Htarg while the remaining terms Tk+1 + · · · are error terms.
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given threshold [1]. Second, it proposes a new gadget construction [2] which entirely

avoids the need for strong interactions. Its perturbation theory analysis goes beyond

the usual convergent regime where the magnitude of the perturbation as a whole is

much smaller than the unperturbed part of the problem. Regardless, we are able to

show convergence of the perturbation series using an observation that maps the terms

in the perturbation series at any order r to different r-step Motzkin paths. Over the

process of developing the dissertation research, this observation has eventually led to

the combinatorial algorithms for perturbation theory based on cellular automata [4],

which is highlighted as the strongest result of the dissertation.

For convergent perturbation series, it is not hard to obtain an upper bound to the

error ‖Tk+Tk+1+· · · ‖ after a certain order k because each term Tr in Σ−(z) contains

a matrix power Ak for some matrix A and an exponent k = O(r). Hence it suffices to

find an upper bound to ‖A‖ and apply geometric series formula to calculate the total

error bound ‖A‖k + ‖A‖k+1 + · · · from the rth order to infinity (see for example [9,

Appendix]). However, what is difficult is to find a tight upper bound for the error.

The geometric series approach almost always fails to obtain a tight bound because

it does not take into account the details of matrix multiplication in Ak, while for

many quantum many-body systems the matrix A being exponentiated often admits

certain structures that have non-trivial consequences for its own exponentiation. If

we consider the geometric series approach as one extreme which completely ignores

the structure of matrix product in Ak, the other extreme would be to simply compute

Ak explicitly for each order and evaluate its norm directly. Of course since Σ− is an

infinite series, it is unfeasible to carry out calculation to infinite order. But even if we

ignore this issue for now, because quantum mechanics dictates that the dimensions of

the matrices involved in Σ− scale exponentially (refer to the discussion in the opening

paragraph of this section) with respect to the size of the physical system, the matrix

A itself easily becomes too large to store for even moderately-sized systems. In short,

we have one extreme (geometric series) which requires little computation but yields

highly inaccurate results and the other which yields entirely accurate results but
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requires an infeasible amount of computation. A natural question to ask would be

whether it is possible to find a middle ground where a sufficiently tight error bound

is obtained without doing an exponential amount of computation.

The set of algorithms proposed in [4] resolve this issue by building on the intuition

established in earlier work [2] that each element of the matrix Tr is a sum of contribu-

tions from r-step Motzkin paths of specific properties. The number of Motzkin walks

scales exponentially as the size of the physical system, just as quantum mechanics

dictates. However, by exploiting the permutational symmetry in the set of Motzkin

paths we show that there is a polynomial time algorithm that sums over all of the

Motzkin paths that contribute to a specific matrix element of Tr. The basic model of

computation that our algorithm assumes is cellular automata. A cellular automaton

consists of a collection of interconnected cells. Each cell has a state which can be a

discrete or continuous value. An initial state of the automaton is defined by assigning

a state for each cell. The states of the cells then evolves according to some update

rules which changes the current state of a cell only based on that of the cells that it

connects to. During an evolution of the automata, the update rules are applied to all

cells simultaneously. In the constructions of our cellular automaton, the states of each

cell contain parameters for symmetric polynomials6. These symmetric polynomials

provide a compact representation of different Motzkin walks and the update rules for

the cells are set up in a way such that r evolutions correspond exactly to summing

over all r-step Motzkin walks of the desired kind for Tr. The connection between

Motzkin paths and automata has been known from the perspective of symmetric

polynomials [34]. Our result [4] can be considered as combining that connection with

the tensor product structure of quantum mechanics to yield an efficient and accurate

procedure for estimating the error in perturbation theory.

6A symmetric function is a function whose value does not change if we permute the variables in any
way. For example f(x, y, z) = f(y, z, x) if f is a symmetric function over all three variables. If f is
furthermore a polynomial then f is a symmetric polynomial.
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1.2 Quantum mechanics

It is hard to define exactly what quantum mechanics is using a concise, self-

contained statement. For example, a common definition is that quantum mechanics

is “the physics of the very small”. However, there are macroscopic objects that also

obey the laws of quantum mechanics, such as a block of superconductor at low tem-

perature. Because of the extreme precision with which the predictions of quantum

mechanics have been verified over the past century, combined with the seemingly

strange physical picture that it suggests, the possible interpretations of quantum me-

chanics have triggered endlessly fascinating philosophical debates since the beginning

of the last century. On the practical side, applications of quantum mechanics on

a myriad of physical systems have also led to remarkable advances in science and

technology such as the laser, the transistor and magnetic resonance imaging (MRI).

Much is also to be said about the mathematical framework of quantum mechanics

and its deep roots in group theory. But here we pursue a minimalist introduction to

the aspects of quantum mechanics that are relevant to this dissertation. For more

comprehensive treatment, one could refer to any of the classic texts on quantum

mechanics [35–37] or a unique exposition in [38, Chapter 9] from a more computer

science perspective.

Perhaps the simplest way to explain quantum mechanics is to actually “take the

physics out of it” [38] and approach it from the perspective of probability distribution.

Consider a discrete probability distribution p(X) for some random variable X that

takes values from a finite set {x1, x2, · · · , xn}. Then we could write down p as a vector

p = (p1, p2, · · · , pn) where pi = p(X = xi). In our usual “classical” probability theory

we require that the probabilities pi be real numbers from 0 to 1 and p1+p2+· · ·+pn =

1. In quantum mechanics, the state of a physical system could also be described as

a vector ψ = (ψ1, ψ2, · · · , ψn), called the quantum state, and each element of the

vector is a complex number that corresponds to a possible state of the system. The

probability of a system being in a particular state i is given by |ψi|2. Hence unlike
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the usual probability theory, our requirement for the state vector is that ψi be any

complex number and |ψ1|2 +|ψ2|2 +· · ·+|ψn|2 = 1. If we think of the usual probability

theory as a theory that requires the 1-norm of the state vector p to be unity, we could

regard quantum mechanics as a new probability theory where the 2-norm of the state

vector normalizes to unity.

A quantum state ψ belongs to the space of unit vectors in CN , which is called the

N -dimensional Hilbert space. In quantum physics instead of the usual notations for

vectors, we use the Dirac braket notation to represent quantum states. We use the

symbol

|ψ〉

to describe a quantum state represented by a unit column vector in CN , while 〈ψ|
is its conjugate transpose, or dual vector in the Hilbert space. As a simple example,

if we consider the quantum state in our old notation ψ = ( αβ ) where α, β ∈ C and

‖ψ‖2 = |α|2 + |β|2 = 1, in our new notation we have

|ψ〉 = α|0〉+ β|1〉, (1.1)

where |0〉 = ( 1
0 ) and |1〉 = ( 0

1 ). When both α and β are non-zero, the state vector

represents a physical system that is in the state |0〉 and |1〉 at the same time. This

uniquely quantum mechanical phenomenon is called superposition.

The conjugate transpose of |ψ〉 defined in (1.1) then becomes 〈ψ| = α∗〈0|+ β∗〈1|
where 〈0| = (1 0) and 〈1| = (0 1). This allows us to write the inner product

between the state |ψ〉 and another state |φ〉 = γ|0〉 + δ|1〉 as 〈φ|ψ〉 = γ∗α + δ∗β.

Note that in this braket notation it is the direction of the braket |〉 or 〈| that matters.

Whatever that is inside the bracket is merely a label and serve no operational meaning

in calculation. For all purposes one could even have |,〉 and 〈/| and they are perfectly

valid notations for quantum states. The labelling of |0〉 and |1〉 in Equation 1.1 is

conventional for describing the state of a quantum bit, or qubit, which will be further

introduced in Section 1.4.
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A quantum state is not only a complex vector in an abstract sense, but also

something that produces physically measurable consequences. In quantum mechanics

a measurement is specified by a particular basis of quantum states. For example if

we measure the state in Equation 1.1 in the basis {|0〉, |1〉}, we will obtain |0〉 with

probabilty |〈0|ψ〉|2 = |α|2 and |1〉 with probability |〈1|ψ〉|2 = |β|2. In the context

of this dissertation we will only deal with measurement with respect to the basis |x〉
with x being a binary string. In quantum computing this basis is often called the

computational basis. After measurement, the quantum state of a system collapses

to the state that is obtained. For example if we measure |ψ〉 in Equation 1.1 and

obtain |0〉, the state of the qubit will no longer be |ψ〉 but |0〉 instead. Therefore we

could think of measurement as a projection operation that occurs probabilistically

according to the square of the norm of elements in the state vector.

In classical physics one specifies the state of a particle at any given time by two

variables: position x and momentum p. In quantum mechanics the state of the

particle is represented by a vector |ψ〉 in a Hilbert space. In classical physics, any

dynamical variable such as the total energy E (the kinetic energy plus the potential

energy) of the particle is a scalar function of x and p. In quantum mechanics, any

measurable physical quantity becomes Hermitian operators. Of central importance

is the Hermitian operator corresponding to the total energy of the system, called the

Hamiltonian. Since we have introduced quantum states as vectors in a Hilbert space,

the Hamiltonian of a physical system is a Hermitian matrix of the same dimensions

as the Hilbert space where the quantum states dwell. The Hamiltonian operator is

important because it contains essential information about the physical interactions

that the quantum system involves. Also the Hamiltonian governs the time evolution

of quantum states according to the Schrödinger equation7:

i
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (1.2)

7Typically there is a factor ~ called Planck’s constant that multiplies the left side of the equation
(see Equation 1.50). But for our purpose it is fine to assume that this constant is 1.
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where t is the time variable and i =
√
−1. If the Hamiltonian is time-independent,

we can solve Equation 1.2 by direct integration and yield

|ψ(t)〉 = e−iHt|ψ(0)〉. (1.3)

Since H is Hermitian, the operator U = e−iHt is unitary. So here we have a minimalist

picture of the quantum world8: a collection of particles whose states are described by a

unit complex vector in a Hilbert space and their interactions described by a Hermitian

matrix called the Hamiltonian. The states of these particles are perpetually evolving

under the unitary operation dictated by the Hamiltonian. When measured in a basis

where the state of the quantum system does not align with any of the basis states, the

state vector of the system collapses to one of the basis states according to a probability

that is equal to the norm square of the projection (inner product) between the state

vector and the said basis state.

The unitary nature of quantum evolution could also be understood by resorting

to our earlier comparison to classical probability theory. Consider a transformation

of one discrete probability distribution p to another one p′. If we assume p′ = Mp

for some matrix M, then M must be a stochastic matrix 9. For the case of quantum

states, the general form of matrices that map a quantum state vector ψ to another

one ψ′ is the unitary matrices.

From the Schrödinger equation 1.2 we could uncover two aspects of quantum

mechanics. One obviously deals with the dynamics of the physical system, namely

how a quantum state evolves over time. The other deals with the static aspect which

is completely specified by the spectrum of the Hamiltonian H. If our quantum system

8In fact quantum states that can be described using a single unit vector is only a specific type of
states called pure states. In general a quantum state can be not only a unit vector in a Hilbert
space, but a probabilistic mixture of unit vectors. That is, a quantum state could be considered as
an ensemble of possible states |φ1〉, |φ2〉, · · · each of which is assigned a probability pi. Then we
use a density matrix ρ =

∑
i pi|φi〉〈φi| to represent the quantum state (note that |φ〉〈φ| is an outer

product of a vector with its conjugate transpose). Also, in a strict sense Equation 1.2 describes only
a closed quantum system which has no energy or mass transfer with its external environment. For
open systems the gonverning equation will need to be modified from Equation 1.2. Much is to be
said about the fully general description of quantum systems but for the purpose of this dissertation
it suffices to focus only on pure states and closed systems.
9A matrix is stochastic if and only if its elements are non-negative and each row sums up to 1.
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is initialized to an eigenvector (called an eigenstate) of H i.e. |ψ(0)〉 = |φ〉 for some

|φ〉 such that H|φ〉 = E|φ〉 where the E is the eigenvalue corresponding to |φ〉, solving

the Schrödinger equation gives

|ψ(t)〉 = e−iEt|φ〉, (1.4)

which is but the eigenstate |φ〉 multiplied by a time-dependent phase factor e−iEt. We

remark that for any quantum state |ψ〉, multiplying the state vector by a complex

phase factor eiϕ does not change any measurable properties of the quantum state

because the probability of finding the system at any possible state remains the same10.

Therefore from Equation 1.4 we see that when a physical system starts out in an

eigenstate of H, it essentially stays in the same state at any time. This has gained the

eigenstates of a Hamiltonian a special status in quantum mechanics as the stationary

states of a physical system. In particular, the ground state of a quantum system,

which is the eigenstate of H with the smallest energy E (called the ground state

energy), is of even greater importance. We will elaborate this in Section 1.6 in the

context of quantum generalizations of computational complexity.

From our discussions so far we see that once we know the Hamiltonian H of a

physical system, we have all the information needed for computing properties of a

quantum system, be it static or dynamic, from Schrödinger equation. However, we are

met with the most crucial obstacle that prevents us from exactly solving Schrödinger

equation in an overwhelmingly majority of physical systems under consideration. It

is an obstacle so formidable that the past century of quantum physics and quantum

chemistry is almost entirely dedicated to finding heuristic methods that seem to alle-

viate its burden but without theoretical guarantee. As it turns out11, for two quantum

systems 1 and 2 each in a state |ψ1〉 and |ψ2〉 respectively, the joint quantum state

10For example, consider |ψ〉 = α|0〉+ β|1〉 as in Equation 1.1 and |ψ′〉 = eiϕ. The probability of the
system being in the state |0〉 for both states are |α|2.
11This is indeed a great mystery of quantum mechanics. There is no deeper theory that explains
the tensor product relation but it seems to stand up to the scrutiny of countless experimental
observations.
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of the combined system is the tensor product of the two states. For example, if we

consider the states of two qubits each in a state

|ψ1〉 =

α1

β1

 , |ψ2〉 =

α2

β2

 , (1.5)

then the joint state of the two qubits is described by

|ψ12〉 = |ψ1〉 ⊗ |ψ2〉 =


α1α2

α1β2

β1α2

β1β2

 . (1.6)

This fact has a dramatic consequence. Imagine we would like to study the quantum

behaviour of n qubits. Then the joint state of these qubits will be a vector of dimension

2n, which is exponential as the size of the physical system increases. To put the matter

in perspective, a droplet of water contains about 1021 molecules. To store the quantum

state of even a neglible fraction of it would be impossible even with the most powerful

supercomputer in the world.

In accordance with the exponential size of the state vector, the Hamiltonian de-

scribing the interactions involved in the n qubits will be a 2n× 2n Hermitian matrix.

By the sheer size of the matrix, if we try to find the ground state energy by diag-

onalizing the Hamiltonian, the calculation will easily become infeasible on classical

computers if we try to deal with physical systems of even a few dozen qubits. This

is precisely the difficulty that Feynman [10] was alluding to in the 1980s and it is

only natural to consider physically realizing quantum systems that could simulate

the dynamics of quantum systems that are presumably beyond the reach of classical

computers. We will discuss this point further in Section 1.4.

1.3 Perturbation theory

The discussion at the end of the last section should provide some evidence on why

quantum mechanics is hard. Indeed, so far very few problems in quantum physics
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and quantum chemistry can be solved analytically compared with those that seem

to be beyond analytical approaches. However, if a problem that cannot be solved

analytically looks very similar to one that can, one can find approximate solution

by modifying the solution to the solvable problem. Suppose we are asked to find

the ground state of a Hamiltonian H̃ which we do not know how to diagonalize

analytically but H̃ is very “close” to a Hamiltonian H whose spectrum is known. By

“close” we mean that H̃ = H + V for some perturbation V whose norm is much

smaller than H. Then we can find the approximate spectrum of H̃ by starting from

that of H and modify it by considering the influence of V on the spectrum of H.

This is the basic idea underlying perturbation theory.

There are several different yet somewhat related formulations of perturbation

theory. We will start by introducing the Rayleigh-Schrödinger (RS) formalism in

Section 1.3.1, which is one of the most commonly used frameworks in quantum physics

and quantum chemistry and also the first version of perturbation theory introduced

in most quantum mechanics textbooks. In Section 1.3.2 we will introduce self-energy

expansion which is more commonly used in quantum field theory. This is the central

formalism that the results of this dissertation is based on. We also mention its

connection to the RS formulation.

1.3.1 Rayleigh-Schrödinger formalism

The first step is to identify the magnitude of perturbation as an expansion param-

eter. Let λ = ‖V‖2 where ‖ · ‖2 is the 2-norm of a matrix. Then H̃ = H + λV̂ where

V̂ is the perturbation V normalized with respect to its 2-norm. Our goal to find the

eigenpairs of H̃, namely eigenvalues Ẽn and eigenstates |ñ〉 such that H̃|ñ〉 = Ẽn|ñ〉.
Accordingly we will denote the eigenpairs of H by H|n〉 = En|n〉. We now assume

that there is a series expansion for both Ẽn and |ñ〉 in λ:

Ẽn = E(0)
n + λE(1)

n + λ2E(2)
n + · · · (1.7)

|ñ〉 = |n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ · · · (1.8)
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where E
(j)
i denotes the jth term in the expansion for the ith eigenvalue (energy level).

When λ = 0, H̃ = H, we recover the solvable problem. Hence trivially Ẽ
(0)
n = En

and |n(0)〉 = |n〉. These are our 0th order approximation. To obtain higher order

terms in Equations (1.7) and (1.8), we use the relationship H̃|ñ〉 = Ẽn|ñ〉. Substitute

Equations (1.7) and (1.8) together with H̃ = H + λV̂ we have(
H + λV̂

) (
|n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ · · ·

)
=
(
E

(0)
n + λE

(1)
n + λ2E

(2)
n + · · ·

) (
|n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ · · ·

)
.

(1.9)

Also, from Section 1.2 we mentioned that the state vectors must be unit vectors.

Hence 〈ñ|ñ〉 = 1. Substituting in the expansion (1.8), we have

(
〈n(0)|+ λ〈n(1)|+ λ2〈n(2)|+ · · ·

) (
|n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ · · ·

)
= 1. (1.10)

Notice that if we take the 0th order term in both brackets, 〈n(0)|n(0)〉 = 〈n|n〉 = 1.

Therefore all terms of non-zero powers of λ on the left side must vanish. Matching

powers of λ on both sides of (1.9) and (1.10) we could iteratively compute higher

order terms in the perturbative expansion. Take λ1 for example. From (1.10) we

have

〈n(0)|n(1)〉+ 〈n(1)|n(0)〉 = 0, (1.11)

H|n(1)〉+ V̂|n(0)〉 = E(1)
n |n(0)〉+ E(0)

n |n(1)〉. (1.12)

Rearranging terms in (1.12), we have

(H− E(0)
n I)|n(1)〉 = −V̂|n(0)〉+ E(1)

n |n(0)〉. (1.13)

Here the identity operator I is often omitted in physics texts but for linear algebraic

rigor we keep it. Left multiply both sides of Equation (1.13) by the row vector

〈n(0)|, we see that the left side completely vanishes because from (1.11) we have12

〈n(0)|n(1)〉 = 0 and H is diagonal. On the right side of (1.13), multiplying by 〈n(0)|
from the left gives −〈n(0)|V̂|n(0)〉 at the first term and E

(1)
n 〈n(0)|n(0)〉 at the second

12A subtlety here lies in the fact that multipling by a phase factor eiϕ on any quantum state |ψ〉
does not change its physical meaning. Hence the left hand side of (1.11) may not be 0 if we replace
|n(1)〉 by eiϕ. But here we fix ϕ such that the left hand side is zero, thus giving 〈n(0)|n(1)〉 = 0.
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term, which is just E
(1)
n since we have 〈n(0)|n(0)〉 = 1. Hence Equation (1.13) gives

the first order correction in the nth energy of H̃

E(1)
n = 〈n(0)|V̂|n(0)〉 = 〈n|V̂|n〉. (1.14)

To compute the 1st order term in the eigenstate, |n(1)〉, left multiply the identity

operator I =
∑

k |k〉〈k| on −V̂ on the right hand side of Equation (1.13):

(H− E(0)
n I)|n(1)〉 = −∑k |k〉〈k|V̂|n(0)〉+ E

(1)
n

= −∑k〈k|V̂|n(0)〉|k〉+ 〈n(0)|V̂|n(0)〉|n(0)〉
= −∑k 6=n〈k|V̂|n(0)〉|k〉.

(1.15)

Multiplying both sides by 〈m|, for any m 6= n, gives us

〈m|(H− E(0)
n I)|n(1)〉 = −∑k 6=n〈k|V̂|n(0)〉〈m|k〉

(Em − En)〈m|n(1)〉 = −〈m|V̂|n(0)〉

〈m|n(1)〉 = −〈m|V̂|n
(0)〉

Em − En

(1.16)

where from the first line to the second we have used 〈m|H = Em〈m|, E(0)
n = En and

the orthogonality of the eigenstates 〈m|k〉 = δmk. From the second line to the third

we have assumed that the subspace with energy (eigenvalue) En has no degeneracy,

namely Em 6= En for any m 6= n. Using |n(0)〉 = |n〉 we have the first order term in

the expansion for |ñ〉 as

|n(1)〉 =
∑
m6=n

〈m|V̂|n〉
En − Em

|m〉. (1.17)

Equation (1.17) can be interpreted as summing over the contribution of all transitions

caused by the perturbation V̂ from the current unperturbed state |n〉 to the other

eigenstates |m〉, scaled by the inverse of the energy difference between the current

state and the state |m〉. In the basis of the eigenstates of H, 〈m|V̂|n〉 is the matrix

element of V̂ on the mth row and nth column. Since the norm of V̂ is 1, the matrix

element should also be bounded from above by a constant. The term 1
En−Em reflects

the physical intuition that the perturbation should be more likely to cause transitions

to the states |m〉 whose energy levels are close to the current state |n〉 than those

whose energies are further away from En.
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One could carry out similar computation using Equations (1.9) and (1.10) to find

E(2), |n(2)〉 and higher order terms. Collecting the λ2 terms in Equation (1.9) gives

H|n(2)〉+ V|n(1)〉 = E
(2)
n |n(0)〉+ E

(1)
n |n(1)〉+ E

(0)
n |n(2)〉

(H− E(0)
n I)|n(2)〉 = −V̂|n(1)〉+ E

(2)
n |n(0)〉+ E

(1)
n |n(1)〉

0 = −〈n(0)|V̂|n(1)〉+ E
(2)
n .

(1.18)

Here the second line is obtained from the first line by rearranging the terms and the

third line is obtained from the second line by left multiplying both sides by 〈n(0)|.
Using our earlier result in Equation (1.17) we have the 2nd order correction as

E(2)
n = 〈n(0)|V̂

∑
m 6=n

〈m|V̂|n〉
En − Em

|m〉 =
∑
m6=n

〈n|V̂|m〉 · 1

En − Em
· 〈m|V̂|n〉. (1.19)

We could interpret the expression for E
(2)
n as summing over all processes that starts

from |n〉 and makes a transition to |m〉 as a first step, contributing the factor 〈n|V̂|m〉
with the new energy level Em contributing a factor 1

En−Em , and as the second step,

returning to |n〉 while contributing a factor 〈m|V̂|n〉. The 2nd order correction to

the energy E
(2)
n could then be thought of as the total contribution of all processes as

such for any m 6= n. This type of interpretations intuitively resemble the notions of

Motzkin walk that will be used for contructing the algorithms in this dissertation.

Following similar ideas one could compute higher order corrections E
(3)
n , E

(4)
n etc

to the series expansion for Ẽn as well as |n(2)〉, |n(3)〉 etc to the series expansion for

|ñ〉. The detailed computations are rather involved and we will not elaborate on them

here. This formalism of perturbation theory is used widely in quantum physics and

quantum chemistry. However, a common usage is to compute the first few orders in

the expansion and compare the results to experimental measurements (energy and

eigenstates are both physically measurable), without much consideration on whether

the series converges or if it converges, whether it converges to the exact eigenvalue of

H̃. In Section 1.2 we have argued that finding the exact eigenvalues of H̃ is unrealistic

in most cases, which is the reason why perturbation theory is needed in the first

place. Hence the second best thing one could hope for is to find a converging series of
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approximations with known error bound. So that if we do not know the exact value,

we could at least have the theoretical guarantee that our answers lie somewhere in

an interval that shrinks with every new order of approximation computed. Even this

turns out to be too ideal for practical calculations, mostly because of two difficulties:

1. The regime of convergence for perturbation theory is in general hard to pinpoint;

2. If the perturbation expansion is converging, it is hard to obtain an error bound

that is tight enough for practical purposes.

Much theoretical progress has been made on the first issue (see [39,40] for example)

while the second issue remains on an empirical basis. The error in the perturbative ex-

pansion is often obtained by comparing calculation with experimental measurements.

Alternatively, one gets a qualitative sense of the error by observing the trend of how

the results change as higher order corrections are applied. Since part of the practi-

cal motivations for quantum mechanical calculation is to avoid the need to actually

perform experiments and the results of trend observing are not necessarily rigorous

as theoretical predictions, there is a need for rigorous methods to estimate the error

in perturbative expansion. As will be discussed later, this need is even more pressing

for adiabatic simulation on a quantum computer and it is the theme of Chapter 4 to

address this issue.

1.3.2 Self-energy expansion

The Rayleigh-Schrödinger perturbation theory is useful for finding approximations

to the energies and eigenstates of a Hamiltonian H̃. In this dissertation, however,

we are more concerned about approximating the low-energy effective Hamiltonian of

H̃, namely H̃<E′ =
∑′

n Ẽn|ñ〉〈ñ| where the summation is over all n such that the

energy Ẽn is less than some predefined cutoff E ′. In Section 1.3.1 we have developed

perturbative expansions for approximating the energy (eigenvalue) Ẽn and eigenstate

|ñ〉. Here we develop a perturbative expansion for the operator H̃−. We still retain
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the assumption that H̃ = H+V where the norm of V is much smaller than that of H.

We divide the Hilbert space H that H acts on into two parts, namely H = L− ⊕L+,

where

L− = span{|n〉|En < E ′}
L+ = span{|n〉|En > E ′}.

(1.20)

With this partitioning we could write both H and V in block forms

H =

H−

H+

 , V =

 V− V−+

V+− V+

 . (1.21)

In order to develop our perturbation expansion it is necessary to define operator-

valued resolvents G(z) = (zI −H)−1 and G̃(z) = (zI − H̃)−1 where z is a complex

parameter. Our perturbative expansion for the low-energy effective Hamiltonian of

H̃ is defined by the self-energy operator

Σ−(z) = zI− [G̃−(z)]−1. (1.22)

To derive an expansion from Equation (1.22) we need some linear algebra. Consider

first that by definition,

G̃(z) =

zI− −H− −V− −V−+

−V+− zI+ −H+ −V+

−1

=

 G̃−(z) G̃−+(z)

G̃+−(z) G̃+(z)

 . (1.23)

From the identityA B

C D

−1

=

 (A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1

 (1.24)

we then have

G̃− = (G−1
− −V− −V−+(G−1

+ −V+)−1V+−)−1. (1.25)

Using the series expansion (I−A)−1 = I + A + A2 + · · · on Equation (1.25) and sub-

stitute it into Equation (1.22), after some calculation we could obtain the expansion

that we have sought:

Σ−(z) = H− + V− + V−+G+V+− + V−+G+V+G+V+− + · · ·

= H− + V− +
∞∑
r=2

Tr

(1.26)
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where Tr = V−+G+(V+G+)r−2V+−, r ≥ 2. Equation (1.26) is the central equation

used in this dissertation. We now present some intuitive reason why the self-energy

expansion can be considered as an approximation to the low-energy effective Hamilto-

nian of H̃. Similar to the Rayleigh-Schrödinger formalism presented in Section 1.3.1,

we again use the form H̃ = H + λV̂ where V̂ is the perturbation V normalized by

some operator norm. Then Equation (1.26) becomes

Σ−(z) = H− + λV̂− + λ2V̂−+G+V̂+− + · · · . (1.27)

Let L− be spanned by the ground state (assuming no degeneracy) of H and L+ be

spanned by all the other eigenstates of H. Then we could consider the expansion

(recall the notation H|n〉 = En|n〉 for eigenstates of H)

Ẽ0 = 〈0|Σ−(E0)|0〉 = E
(0)
0 + λE

(1)
0 + λ2E

(2)
0 + λ3E

(3)
0 + · · · . (1.28)

If we go through with the computation using Equation (1.26), we find that

E
(0)
0 = 〈0|H−|0〉 = E0 (1.29)

E
(1)
0 = 〈0|V−|0〉 = 〈0|V|0〉 (1.30)

E
(2)
0 = 〈0|V−+G+V+−|0〉 =

∑
m6=0

〈0|V|m〉〈m|V|0〉
E0 − Em

(1.31)

E
(3)
0 = 〈0|V−+G+V+G+V+−|0〉 =

∑
m1,m2 6=0

〈0|V|m1〉〈m1|V|m2〉〈m2|V|0〉
(E0 − Em1)(E0 − Em2)

. (1.32)

If one compares the above results with the standard RS perturbation theory shown

in Section 1.3.1, one sees that the 0th, 1st (see Equation 1.14 and 1.30), and 2nd order

(cf. Equation 1.19 and 1.31) energy corrections are identical. At the 3rd order, RS

perturbation theory gives an extra term

E
(3)
0,RS =

∑
m1,m2 6=0

〈0|V|m1〉〈m1|V|m2〉〈m2|V|0〉
(E0 − Em1)(E0 − Em2)

− 〈0|V|0〉
∑
m6=0

〈0|V|m〉〈m|V|0〉
(E0 − Em)2

,

(1.33)

which indicates that for perturbation with matrix elements 〈i|V |j〉 all non-negative,

the energy expansion due to self-energy could be an overestimate compared with the

RS formalism.
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A second angle from which to understand Σ−(z) as an approximation to the low-

energy effective Hamiltonian H̃<E′ is to consider their formal similarity. Define the

projectors Π̃− =
∑

n:Ẽn<E′
|ñ〉〈ñ| and Π− =

∑
n:En<E

|n〉〈n|. Then we could write

Σ−(z) and H̃<E′ as

Σ−(z) = zI− [Π−G̃(z)Π−]−1,

H̃<E′ = zI− Π̃−[G̃(z)]−1Π̃−.
(1.34)

As is explained by Oliveira and Terhal [8], loosely speaking, if Σ−(z) is roughly

constant in some range of z (defined below in Theorem 1.3.1) then Σ−(z) is playing

the role of H̃<E′ . This was formalized in [7] and improved in [8] where the following

theorem is proven (as in [8] we state the case where H has E0 = 0 and E1 = ∆ for

some positive number ∆ as the spectral gap. We use operator norm ‖ · ‖ which is

defined as ‖M‖ ≡ max|ψ〉∈M |〈ψ|M|ψ〉| for an operator M acting on a Hilbert space

M):

Theorem 1.3.1 (Adapted from [7,8]) Consider a system H̃ = H+V. Let ‖V‖ ≤
∆/2 where ∆ is the spectral gap of H and let the low and high spectrum of H be sep-

arated by a cutoff E ′ = ∆/2. Now let there be an effective Hamiltonian Heff with a

spectrum contained in [a, b]. If for some real constant ε > 0 and ∀z ∈ [a − ε, b + ε]

with a < b < ∆/2−ε, the self-energy Σ−(z) has the property that ‖Σ−(z)−Heff‖ ≤ ε,

then each eigenvalue Ẽj of H̃<E′ differs to the jth eigenvalue of Heff by at most ε.

Theorem 1.3.1 provides a rigorous evidence on how Σ−(z) approximates the low

energy effective Hamiltonian. This is very attractive to us because there is a theo-

retical guarantee on the upper bound in the error ‖Σ−(z)−Heff‖, which circumvents

the difficulties mentioned in Section 1.3.1 on the convergence and error estimation

for perturbation expansion. In Section 1.6 we will discuss how Theorem 1.3.1 is used

in quantum complexity theory and how it can also be used for adiabatic quantum

simulation of many-body systems.
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1.4 Quantum computing

In Section 1.2 we have introduced a minimalist picture of the quantum world

where the state of a quantum system is described by a state vector |ψ〉 (of exponen-

tial size) in Hilbert space that evolves over time via the unitary operator U = e−iHt

(See Equation 1.4). For the better part of the past century, experimental quan-

tum physicists have sought to understand the quantum interactions in atoms and

molecules by making measurements that allow them to construct Hamiltonians H

that best desribe the quantum behaviours of the physical systems. In this context

the Hamiltonian H is supplied by nature and the goal is to uncover its true form.

However, as quantum technologies such as laser and microwave have made rapid ad-

vances, it is not only possible to measure the quantum interactions in a physical

system, but also to control the quantum interactions under certain circumstances.

In other words, there are well-engineered physical systems where the parameters in

the Hamiltonian can be varied experimentally. This provides the hardware basis that

allows one to manipulate quantum states of a system, which is what is needed for

realizing quantum computing. There are many ways of using controllable quantum

systems for realizing computations that are potentially beyond classical computers.

Here we mention three of them - the gate model (Section 1.4.1), the adiabatic model

(Section 1.4.2) and the measurement-based model (Section 1.4.3). The gate model

is the most standard model of quantum computation that one would encounter in

any quantum computing textbooks [41–43]. The adiabatic model is the model that is

most relevant to this dissertation. The three models are shown to be equivalent [44],

namely one could simulate another efficiently.

The basic unit of quantum information is a qubit, which we have introduced in

Section 1.2 as the simplest example of a quantum system. The state of a qubit is

decribed by a unit complex vector |ψ〉 = α|0〉+ β|1〉. The joint state of n qubits are
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described by a unit vector in C2n . A particular subclass of n-qubit states is those

that can be expressed as a tensor product of n single-qubit states, namely

|φ〉 = |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φn〉. (1.35)

Any n-qubit state that can be expressed in the form of Equation (1.35) is called an

unentangled state, or product state, while any n-qubit state that cannot be expressed

in this form is called an entangled state. For joint states we often use a compact

notation |φ1φ2 · · ·φn〉 for representing states of the form (1.35). For example we

use |010〉 to represent |0〉 ⊗ |1〉 ⊗ |0〉. The phenomenon that two quantum systems

can be in an entangled state (for example 1√
2
(|00〉 + |11〉)) is called entanglement.

Both entanglement and superposition (Section 1.2) are properties that only quantum

mechanical systems exhibit and thus are mechanisms with which quantum computers

could perform computation beyond what is possible classically.

A unitary operator acting on the state of a single qubit is a 2×2 matrix U that can

always be expressed as a linear combination of I and the following Pauli operators :

X =

0 1

1 0

 , Y =

0 −i
i 0

 , Z =

1 0

0 −1

 . (1.36)

Alternatively we could also write the Pauli operators in terms of outer products

of the qubit states |0〉 and |1〉: X = |0〉〈1| + |1〉〈0|, Y = −i|0〉〈1| + i|1〉〈0| and

Z = |0〉〈0| − |1〉〈1|. This alternative description supplies the usful intuition that X

“flips” a qubit from 0 to 1 and vice versa, Y not only flips the qubit but also adds

a complex phase factor while Z does not flip the qubit but adds a phase −1 if the

current state is |1〉. These Pauli operators play an important role in later discussions,

especially when it comes to operators that act on an n-qubit system. We say an

n-qubit operator U operates non-trivially on m qubits when for a particular subset

S of m qubits, let HS be the Hilbert space of the qubits in S and HS̄ be the Hilbert

space of the other n−m qubits, U can be written as the tensor product of an identity

IS̄ acting on HS̄ and some operator QS 6= IS acting on HS. For example, for n = 5

qubits, the operator

X⊗ I⊗ I⊗Y ⊗ Z (1.37)
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acts non-trivially on qubits 1, 4 and 5. For convenience, we will introduce a subscript

notation to represent a single-qubit operator. For any single-qubit operator A, we

use Ai to represent the n-qubit operator I⊗ · · · ⊗ I⊗A⊗ I⊗ · · · ⊗ I where only the

ith operator is A and the other positions are padded with tensor products of 2 × 2

identity operators I. The example in Equation 1.37 can be written compactly as

X1Y4Z5.

1.4.1 Gate model

It is mentioned in the opening part of this section that it has become techno-

logically feasible to physically manipulate quantum system under certain conditions.

This means that we could potentially apply unitary transformations of our own choice

to a quantum state instead of the simple free evolution U = e−iHt, which sets the

stage for realizing quantum computation. On an abstract level, we could think of a

quantum algorithm as a unitary evolution U. To solve a computational problem, we

start from an initial state (without loss of generality assume it is |00 · · · 0〉) and apply

U to it, yielding a final state |ψ〉final = U|00 · · · 0〉 that encodes the solution to the

computational problem. For a quantum algorithm involving n qubits, the unitary U

is of size 2n × 2n. In order to realize U physically, one usually decomposes it into a

sequence of unitaries U = U`U`−1 · · ·U2U1 where each Ui acts non-trivially on at

most a few qubits (usually two, since experimentally, controllable two-body interac-

tions are more feasible than other many-body interactions). Each of the Ui operator

is called a quantum gate. These gates are the elementary building blocks of a quantum

circuit. In the gate model of quantum computation, an efficient quantum algorithm

on n qubits is a quantum circuit of poly(n) quantum gates.

With regard to the concepts of quantum circuit and quantum gates one could draw

analogy from classical computation, where an algorithm is essentially a mapping from

an initial bit string (without loss of generality assume it is 00 · · · 0) and some final

bit string. This mapping could always be reduced to a sequence of elementary logic
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operations such as AND, OR and NOT each of which acts on at most two bits. These

logic gates come together to form a circuit that implements the algorithm. Due to

its diagrammatic appeal, the circuit model is more intuitive than the more abstract

construction of Turing machine, although the two are equivalent to each other. The

quantum gate model is also known to be equivalent to the model of quantum Turing

machine [6]. Also, like in classical computation, we only need a handful of quantum

gates in order to realize arbitrary unitary operation with arbitrarily small error. The

set of such gates is called a universal gate set. A common choice for a universal gate

set is the Hadamard gate H, the phase gate S, the π/8 gate T and the controlled-NOT

gate CNOT:

H =
1√
2

1 1

1 −1

 , S =

1 0

0 i

 , T =

1 0

0 eiπ/4

 , CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

(1.38)

In general for universal quantum computation one must need at least one two-qubit

gate such as CNOT.

The existence of a universal gate set has greatly simplified the physical implemen-

tation of a quantum algorithm. However, on the experimental side, progress have

been slow in realizing scalable quantum computation in the gate model. In 1995, the

first quantum logic gate on 2 qubits was first realized with ion trap [45]. Subsequently

in 1999 a 3-qubit [46] and 5-qubit [47] NMR quantum computer was demonstrated.

In 2001, the famed Shor’s algorithm for factoring was implemented on a 7-qubit NMR

quantum computer [48] for factoring the number 15. In 2006, a 12-qubit NMR quan-

tum information processor was benchmarked for the first time [49]. Later on in 2011,

a 14-qubit register using ions was demonstrated [50]. Since then, we scarcely know of

larger scale experimental realization of quantum systems with potentials for universal

gate model quantum computation. Of course, the number of qubits is hardly the only

measure of progress in this area. In the past years a great deal of experimental results
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have deepened our understanding of the engineering issues that needs to be overcome

before a scalable gate model quantum computer can be built.

1.4.2 Adiabatic model

The basic idea of the adiabatic quantum computing (AQC) is introduced by Farhi

et al. [51]. The first step of the framework is to define a Hamiltonian HP whose

ground state encodes the solution of the computational problem. Then, we initialize

a system in the ground state of some beginning Hamiltonian HB that is easy to solve

classically, and perform the adiabatic evolution

H(s) = (1− s)HB + sHP . (1.39)

Here s ∈ [0, 1] is a time parameter. In this dissertation we only consider time-

dependent function s(t) = t/T for total evolution time T , but in general it could be

any general functions that satisfy s(0) = 0 and s(T ) = 1. The adiabatic evolution is

governed by the Schrödinger equation for time-dependent Hamiltonian (cf. Equation

1.2)

i
d

dt
|ψ(t)〉 = H(s(t))|ψ(t)〉 (1.40)

where |ψ(t)〉 is the state of the system at any time t ∈ [0, T ]. Let πi(s) be the ith

instantaneous eigenstate of H(s). In other words, let H(s)|πi(s)〉 = Ei(s)|πi(s)〉 for

any s. In particular, let |π0(s)〉 be the instantaneous ground state of H(s) at s.

According to the adiabatic theorem [37], for s varying sufficiently slow from 0 to

1, the state of the system |ψ(t)〉 will remain close to the true ground state |π0(s(t))〉.
At the end of the evolution the system is roughly in the ground state of HP , which

encodes the optimal solution to the problem. If the ground state of HP is difficult to

find (for instance consider the case for Ising spin glass [23], which is NP-complete),

then the adiabatic evolution H(s) could be used as a heuristic for solving the problem.

An important issue associated with AQC is that the adiabatic evolution needs to

be slow enough13 to avoid exciting the system out of its ground state at any point. In

13...thus the name adiabatic quantum computing.
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order to estimate the minimum runtime T needed for the adiabatic computation, we

often use criteria based on the minimum gap δmin = min0≤s≤1[E1(s)−E0(s)] between

the ground state energy and the first excited state energy of H(s), and the rate at

which the ground state is excited to the first excited state, which is characterized

by γ01 = max0≤t≤T
∣∣〈π1(s(t))|dH

dt
|π0(s(t))〉

∣∣. Specifically, according to the Adiabatic

Theorem, if the initial state |ψ(0)〉 = |π0(0)〉, then the probability that the final

state |〈π0(1)|ψ(T )〉|2 ≥ 1 − ε2 provided γ01

δmin
≤ ε. Since s(t) = t/T , by chain rule

dH
dt

= dH
ds
· 1
T

. Hence γ01 = 1
T
·max0≤s≤1 |〈π1(s)|dH

ds
|π0(s)〉| = γ̃01/T . Therefore in order

to guarantee that the success probability is no less than 1− ε2, we must have

T ≥ γ̃01

δminε
. (1.41)

For s(t) being a linear function and HB, HP being fixed, dH
ds

is a constant. Hence γ̃01

is a constant. ε is a predefined threshold and is also considered a constant. Therefore

the determining factor for the minimum total time required for the adiabatic evolution

to be a valid computation process is the inverse of the minimum gap δmin. In general

δmin is hard to find since diagonalizing the Hamiltonian is not an option (both because

the Hamiltonian is of exponential size and that the purpose of quantum computing

is to circumvent the classical difficulty to diagonalize the Hamiltonian in the first

place). However, to show that the adiabatic quantum algorithm is efficient, for an

n-qubit Hamiltonian H(s) we require T = poly(n), implying that we have to show

δmin = 1
poly(n)

. Commonly the inverse polynomial scaling of the minimum gap is

established by exploiting some structure of H(s). Alternatively, for certain cases

Quantum Monte Carlo methods are also available.

The largest scale implementation of AQC to date is by D-Wave Systems Inc

(hereby called D-Wave for short). In the case of D-Wave, the physical process in-

tended as the adiabatic evolution is more broadly called quantum annealing (QA).

The concepts of QA and AQC are closely related and almost synonymous, with the

subtle difference being that in practice the quantum state of a physical system is

always a mixed state (see footnote 8, Section 1.2) instead of a pure state |π0(0)〉 as

is assumed in AQC. Hence QA is used as a more general term that is not specific
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to pure states. The quantum processors manufactured by D-Wave are essentially a

transverse Ising model (TIM) with tunable local fields and coupling coefficients:

HTIM =
∑
i

∆iXi +
∑
i

hiZi +
∑
i,j

JijZiZj (1.42)

where the parameters ∆i, hi and Jij are tunable physically. The qubits are connected

in a specific graph geometry that allows for embedding of arbitrary graphs as its

minor. The adiabatic evolution starts with a beginning Hamiltonian HB = −h∑i Xi

and finishes with a problem Hamiltonian

HP =
∑
i

hiZi +
∑
i,j

JijZiZj. (1.43)

Equation (1.43) describes a classical Ising model, whose ground state is NP-complete

to find in the worst case [52, 53]. Therefore we could encode any combinatorial op-

timization problem in NP into the parameter assignments {hi, Jij} of HP and use

the adiabatic evolution under H(s) = (1− s)HB + sHP as a method for reaching the

ground state of HP . Here the evolution schedule s(t) is typically nonlinear, taking

into account the general feature that the minimum spectral gap always occurs in the

middle of the evolution and thus the optimal schedule should be fast in the beginning

and the end but slow in the middle.

Although it is tempting to consider the adiabatic evolution as a way of solving

NP-complete problems, we note that with a few known exceptions [51], the spectral

gap δmin typically becomes exponentially small as the size of the problem instance

grows. Hence to find the ground state of HP within an error margin ε in the sense of

Equation 1.41, in the worst case one needs at least an exponential amount of evolution

time. With that being said, the quantum annealing devices manufactured by D-Wave

still holds the potential as a heuristic approach that may be able to solve problems of

practical interest more efficiently than other classical heuristics because it makes use

of phenomena that are unavailable to classical information processing. The extent to

which such potential could materialize is currently a subject of intense study.

Since the initial proposal of QA [54–57], there has been much interest in the

search for practical problems where it can be advantageous with respect to classi-
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cal algorithms [24–27, 57–82], particularly simulated annealing (SA) [83–85]. Exten-

sive theoretical, numerical and expeirmental efforts have been dedicated to studying

the performance of quantum annealing on problems such as Satisfiability [51, 86,87],

Exact Cover [56, 87], Max Independent Set [87], Max Clique [88], integer factor-

ization [89], Graph Isomorphism [90, 91], Ramsey number [92], binary classifica-

tion [93, 94], unstructured search [95] and search engine ranking [96]. Many of these

approaches [51, 56, 86, 88–94] recast the computational problem at hand into a prob-

lem of finding the ground state of a classical Ising model in the form of Equation 1.43.

The progress so far have deepened our understanding of the regimes and mechanisms

of quantum speedup [97]. However, it still remains to find definitive evidence that

the D-Wave devices provide algorithmic speedup of practical use.

Regardless of whether interesting sets of problems can be found on which QA

outperforms classical heuristics, the quantum annealing devices constructed to date

represent an important step towards large scale quantum information technology. If

the current stage is classical Ising model of the form in Equation 1.43, which is univer-

sal for classical computation (NP-complete), a logical next stage would be to consider

AQC that simulates a universal quantum computer. As is already mentioned, AQC

is equivalent to the standard circuit model of quantum computing [44]. Specifically,

any quantum circuit (Section 1.4.1) of length L can be simulated by an adiabatic

quantum computation of poly(L) time that is governed by a slow varying Hamilto-

nian of the form in Equation 1.39. The basic idea behind the construction of HB and

HP in [44] starts from the proof of a quantum version of Cook-Levin theorem [31].

In [31, Section 14.4] a Hamiltonian construction is proposed for simulating arbitrary

quantum circuit U = ULUL−1 · · ·U2U1 where the unitary operators Ui are individ-

ual quantum gates. Let |ψ`〉, ` = 0, 1, · · · , L, be the state at the `th step, namely

|ψ`〉 = U`|ψ`−1〉 and |ψ0〉 is the initial state of the circuit. The proof in [31, Section
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14.4] then provides a recipe for constructing a Hamiltonian HU correponding to the

circuit U with the property that its ground state is14

|Ψ〉 =
1√
L+ 1

L∑
`=0

|ψ`〉 ⊗ |1`0L−`〉. (1.44)

The state |Ψ〉 in Equation 1.44 is called the history state because it is a superposition

of all intermediate states |ψ`〉 entangled with a separate L-qubit register that dis-

tinguishes each intermediate state by using different numbers of 1’s in its state. We

could think of it as a “clock register” that keeps track of how far along the state |ψ`〉
is in the sequence of quantum gates. The construction of AQC process in [31] starts

from identifying HU as the problem Hamiltonian HP in the adiabatic evolution under

H(s) = (1− s)HB + sHP . This way as the adiabatic evolution starts from the initial

state, which is the ground state of HB, and proceeds gradually towards the ground

state of HP , by adiabatic theorem the final state will approach the history state |Ψ〉.
To read out the final state |ψL〉, we simply measure the clock register and see if we get

|1L〉, which happens once in O(L) trials on average (see the discussion in Section 1.2

on measurements). For efficient quantum circuits on n qubits L = poly(n) and hence

we are able to simulate the quantum circuit efficiently with the adiabatic quantum

process. Of course, the minimal spectral gap δmin during the evolution process is also

shown to be 1/poly(n) in [44].

The construction of HU according to [31, 44] contains several terms in order to

ensure that its ground state is uniquely the history state |Ψ〉. The basic idea is to add

different terms in the Hamiltonian so that any quantum state whose form deviates

from |Ψ〉 will receive an energy penalty i.e. 〈ψ|HU|ψ〉 > 〈Ψ|HU|Ψ〉 for any |ψ〉 that

deviates from |Ψ〉. We will not go through each term of the Hamiltonian in detail but

to mention that one of the terms is Hprop = H1 + H2 + · · ·+ HL where if we use the

condensed label |`〉 = |1`0L−`〉 for the clock register, each term Hi is written as

H` = −1

2
U` ⊗ |`〉〈`− 1| − 1

2
U†` ⊗ |`− 1〉〈`|+ 1

2
I⊗ (|`〉〈`|+ |`− 1〉〈`− 1|). (1.45)

14Here the notation |1a0b〉 represents a state of a + b qubits with the first a qubits in the |1〉 state
and the last b qubits in the |0〉 state.
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The basic intuition for Hprop is that it represents how a quantum state propagates

through the quantum circuit. Take the first term for example: it applies U` onto

the qubits that represent those of the quantum circuit and at the same time updates

the clock register by applying |`〉〈`− 1| to move it forward from |`− 1〉 to |`〉. The

second term has the reverse meaning: if the inverse of a quantum gate is applied

(since for unitaries U†U = I) then the clock register is updated backwards. This is

also to ensure that Hi is a Hermitian matrix. The last term essentially says that if

nothing is done to the qubits in the circuit (i.e if the identity I is applied) then the

state of the clock register also remains the same.

As mentioned in Section 1.4.1, to realize universal quantum computing one must

use a universal gate set such as the one described in Equation 1.38. Hence some of

the gates U` could be a two-qubit gate. Note from Equation 1.45 that the U` terms

are also coupled to the corresponding operator on the clock register. For instance

the operator |`〉〈`− 1| with |`〉 = |1`0L−`〉 can be realized by simply applying |1〉〈0|
onto the `th qubit in the clock register. Of course we have to restrict to a subspace

where all the clock register qubits other than the `th remain in the same state but

this is taken care of by other terms in the construction of HU. From the discussion

after Equation 1.36 we can see that |1〉〈0|`,c = 1
2
(X`,c− iY`,c) where the subscript `, c

denotes the `th clock qubit to distinguish it from the qubits in the quantum circuit

being simulated, and i =
√
−1. By the same token, if U` happens to a CNOT gate then

from Equation 1.38 we have U` = |0〉〈0| ⊗ I + |1〉〈1| ⊗X = 1
2
(I + Z1) + 1

2
(I−Z1)X2.

Thus the term U` ⊗ |`〉〈`− 1| reads(
1

2
(I + Z1) +

1

2
(I− Z1)X2

)
⊗ 1

2
(X`,c − iY`,c) = −1

4
Z1X2X`,c +

1

4
iZ1X2Y`,c + · · · ,

(1.46)

where terms such as Z1X2X`,c and Z1X2Y`,c are three-body terms that are hard to

realize using the current technological capability. For a comparison see Equations

1.42 and 1.43, which contain only simple two-body terms that are far more amenable

for physical realization. In [44] the authors also proposed a construction with 6-state
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particles15 interacting in a nearest-neighbor two-body fashion. But 6-dimensional

particles are also difficult to experimetally realize so we do not mention it in detail

here. Subsequent works [7,8] have drawn from quantum complexity theory to reduce

many-body interactions to two-body. It is one of the central themes of this dissertation

to improve these existing methods and also propose new methods for constructing

physically realizable two-body Hamiltonians that simulates many-body terms like

those that arise in Equation 1.46.

1.4.3 Measurement-based model

The measurement-based model of quantum computation (or alternatively called

one-way quantum computing) is proposed [98,99] as an alternative to the more com-

mon gate model quantum computing. In the measurement-based model, a computa-

tion starts by preparing an entangled quantum state (called cluster state [100]) and

proceeds by making only single-qubit measurements on a subset of qubits in the state.

In a cluster state |Φ〉, the qubits are arranged on a graph G(V,E) e.g. on a square

lattice. Here V is the set of vertices and E is the set of edges. The entire resource

for the quantum computation is provided initially in the cluster state whose form is

independent of the algorithm to be performed. Informally one could think that the

cluster state contains all the entanglement needed for the quantum algorithm i.e. the

sequence of single-qubit measurements. Furthermore, it is shown that the measure-

ment based model is equivalent to the circuit model [99]. In other words, any quantum

circuit can be simulated efficiently by preparing a cluster state, which is simple to do

using elementary quantum operations [98], and making measurements on it. Since

from the discussion in Section 1.2 we see that measurements are in general projective

and thus irreversible, the quantum state at the end of the computation is likely no

longer a cluster state, thus the name one-way quantum computing.

15If a qubit is a 2-state particle with two possible states |0〉 and |1〉, a 6-state particle has six possible
states. It is called a qudit with dimension d = 6.
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The proposal of one-way quantum computing raises a fascinating possibility that

there exist physical systems that are intrinsically universal for quantum computation.

One may ask whether there are many-body physical systems whose ground state is

naturally a cluster state. Indeed, it is shown [100, 101] that the ground state of a

Hamiltonian of the following form is a cluster state |Φ〉 with a graph G(V,E):

H = −
∑
v∈V

Hv, Hv = Xv

∏
u:(u,v)∈E

Zu. (1.47)

For example, considerG being a square lattice. Then each term Hv in the Hamiltonian

H in Equation 1.47 for a vertex not on the edge of the lattice is a five-body term16

XvZu1Zu2Zu3Zu4 (1.48)

where ui denotes the four neighbors of the vertex v. Given the importance of the

cluster state in measurement-based quantum computing, it behooves us to consider

how to realize this many-body interaction using realistic two-body physical systems,

which is the central topic of this dissertation.

1.5 Quantum simulation

The idea of quantum simulation refers to using quantum computers to study quan-

tum systems that are difficult to model using classical computers. Since Feynman’s

suggestion that quantum computers would be best suited for simulating quantum

mechanics [10], quantum simulation has provided a fruitful ground for developing

algorithms where quantum computers may be able to solve computational problems

beyond the means of classical computation. Early works [102–107] on quantum sim-

ulation have provided algorithms for simulating specific quantum systems. Later

developments [108–113] also addressed the problems of computing various properties

such as the eigenvalues, dynamics and more.

One of the broadest sets of problems in which quantum simulation could find prac-

tical advantages is quantum chemistry. In particular, quantum chemists have been

16refer to the discussion after Equation 1.37 for explanation on the notations.
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concerned about computing the quantum mechanical properties of molecules such as

the energy levels their corresponding eigenstates. These computations appears to be

hard for classical computers because the cost of directly solving for the eigenvalues

of the molecular Hamiltonian grows exponentially with the problem size. At the end

of Section 1.2 we have shown the intuitive reason behind such exponential scaling.

1.5.1 Molecular Hamiltonian

Commonly, quantum chemical calculations of molecular properties treat a molecule

as a system of electrons and nuclei. For a molecule of N electrons and M nuclei, the

molecular Hamiltonian can be written as

H = Ke + Kn + Ve−n + Vn−n + Ve−e

=

(
−~2

2

N∑
j=1

m−1
e ∇2

j

)
+

(
−~2

2

M∑
j=1

m−1
j ∇2

j

)

+

(
−

M∑
j=1

N∑
k=1

qjqe
|rk −Rj|

)
+

(
M∑
j=1

M∑
k=j

qjqk
|Rk −Rj|

)
+

(
N∑
j=1

N∑
k=j+1

q2
e

|rj − rk|

)
.

(1.49)

Before unraveling the terms in Equation 1.49, it is necessary to mention first that

the version of quantum mechanics presented in Section 1.2 based on linear algebra

is only one formulation of quantum mechanics, largely due to Heisenberg (in fact

Heisenberg himself called it “matrix mechanics”). There is another slightly earlier

formulation of quantum mechanics by Schrödinger which describes quantum states

as continuous wave functions ψ(r) with r ∈ R3 being the coordinate of the particle in

the space. The wave function is a complex function that satisfies the normalization

condition
∫
R3 |ψ(r)|2dr = 1. Colloquially this formulation was called “wave mechan-

ics”. Both formulations are equivalent to each other, since we could introduce an

orthonormal17 set of basis functions {φi(r)} and expand any wave function ψ as a

linear combination of the basis functions ψ =
∑

i ciφi where ci =
∫
R3 φ

∗
i (r)ψ(r)dr is

17Here we are working with the space of continuous functions where the inner product between two
functions f, g : R3 7→ C is defined as

∫
R3 f

∗(r)g(r)dr.
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the inner product between ψ and φi. This way we have recovered the vector form of

the wave function (c1, c2, · · · )T .

Similar to the matrix formulation of quantum mechanics in Section 1.2, in the

wave formulation the physical quantities are also represented as operators. The dif-

ference is that instead of being matrices, these operators take a continuous form. For

example, the momentum operator P = −i~ ∂
∂x

where x is the coordinate in a one-

dimensional space. Here ~ is Planck’s constant. Consider the momentum eigenstates

Pψ(x) = kψ(x). They must satisfy −i~ ∂
∂x
ψ(x) = kψ(x) which gives ψ(x) ∝ ei

k
~x.

This essentially describes a plane wave traveling freely in the space. In classical me-

chanics the kinetic energy of a particle K is related to its momentum p by K = p2

2m

where m is the mass of a particle. Analogously in quantum mechanics the kinetic

energy operator is given by P2

2m
. For three dimensional space the kinetic energy oper-

ator becomes − ~2

2m
∇2. Hence the terms Ke and Kn in Equation 1.49 are the kinetic

energy operators of the electrons and nuclei, with me being the mass of an electron

and mj being the mass of the nucleus of the jth atom.

Both the electrons and nuclei are electrically charged particles and they interact

via Coulomb interactions. In general, a point with charge q1 and another with charge

q2 have an attractive force between them if q1 and q2 have opposite signs, the magni-

tude of the attraction force is given by F (r) = q1q2
r2 where r is the distance between the

two charges. If both points have charges of the same sign then they repulse each other

with force of the same magnitude. This force between objects with static charges is

called the Coulumb force. There is a potential energy associated with this force. For

instance if two attracting charges get closer the potential energy is released because

by the nature of their attracting force they have the tendency to get close. On the

other hand if two repulsing charges get closer the potential energy is built up because

this goes against the nature of how these two charges interact. More specifically the

change in potential energy from distance r1 to r2 should be equal to the amount of

work done by the Coulomb force
∫ r2
r1
F (r)dr. If we choose r = ∞ as the “reference

point”, we could define a potential energy for every r by computing the negative of



37

the work done by moving one of the charges from the reference point to r. This gives

the Coulumb potential V (r) = −
∫ r
∞ F (r′)dr′ = q1q2

r
. In the wave formulation of quan-

tum mechanics the operator corresponding to the Coulumb potential is simply V (r).

In Equation 1.49 the terms Ve−n, Vn−n and Ve−e account for the electron-electron,

electron-nucleus, and nucleus-nucleus coulumb interactions respectively. Here qe is

the charge of an electron and qj is the charge of the jth nucleus. rk is the coordinate

of the kth electron and Rj is the coordinate of the jth nucleus.

To extract important static features of the molecular system, one needs to find the

energy (eigenvalues) and eigenstates (eigenfunctions) of the Hamiltonian H in Equa-

tion 1.49. To understand the dynamic quantum behaviours of a molecular system, it

remains to solve the time-dependent Schrödinger equation

i~
∂

∂t
ψ = Hψ (1.50)

where H is given in Equation 1.49. Here the time-dependent wave function ψ is for all

N electrons and M nuclei, namely ψ = ψ({ri}Ni=1, {Rj}Mj=1, t). Equation (1.50) is ar-

guably a coupled differential equation that is very difficult to solve in its general form.

One way to proceed is to consider simplifications of Equation 1.49 based on intuitions

about the physics. An important physical intuition is that a nucleus is much heavier

than an electron. The nucleus mass mi is typically on the order of 1000 times that

of the electron mass me. Therefore if we manage to solve the Schrödinger equation

(1.50), we are expected to find that the nuclei move much slower than the electrons.

So we make an approximation by assuming that the nuclei are not moving at all. This

is called the Born-Oppenheimer approximation. By introducing this assumption our

lives are much easier: if we consider the Rj parameters fixed, in Equation 1.49 the

kinetic energy term for nuclei drops out i.e. Kn = 0, the nucleus-nucleus interaction

term Vn−n becomes constant (which becomes trivial to treat become it only shifts

the spectrum of H without changing any eigenstates), and finally the electron-nucleus
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interaction term Ve−n becomes a sum over terms only for each individual electrons.

The new molecular Hamiltonian under Born-Oppenheimer approximation reads

H = Ke + Ve−n + Ve−e

=
N∑
j=1

(
− ~2

2me

∇2
j −

M∑
k=1

qeqk
|rj −Rk|

)
+

N∑
j=1

N∑
k=j+1

q2
e

|rj − rk|
.

(1.51)

Equation 1.51 looks much simpler than Equation 1.49. Nonetheless the corresponding

Schrödinger equation is still hard to solve. This is because the Ve−e term couples the

coordinates ri of the electrons and renders the Schrödinger equation unseparable.

In our discussion on the equivalence between the wave formulation and matrix

formulation of quantum mechanics we have alluded to the idea that by introducing

an orthonormal set of basis functions we could recast a problem in one formulation

to the other. Indeed, quantum chemists use specific sets of basis functions, called

orbitals, for finding the eigenvalues of a molecular Hamiltonian. The solution to either

the eigenvalue equation H|Φ〉 = E|Φ〉 or the time-dependent Schrödinger equation

i~ ∂
∂t
|ψ〉 = H|ψ〉 could then be expressed as a function of the orbitals.

Apart from being orthonormal, the set of basis functions we use must obey the

same physical constraints as the wave function that we seek. So far we have only

considered an electron as a point charge. As a matter of fact, besides its spatial

coordinate ri, an electron also has another degree of freedom which is its spin18. For an

electron the state of its spin is a 2-dimensional unit complex vector |σ〉 = α|↑〉+β|↓〉.
Here the labels ↑ and ↓ represent the distinct “spin up” and “spin down” states.

Hence a complete description of the state of a single electron should not only involve

its spatial coordinate r ∈ R3 but also its spin coordinate |σ〉 ∈ C2. This leads to

the introduction of spin orbitals for describing a single electron state. Each spin

orbital takes the form ψ(x)σ with σ ∈ {|↑〉, |↓〉} and the inner product of two spin

orbitals is simply (
∫
ψ∗1(r)ψ2(r)dr) · σ∗1σ2. We could now construct a set {φj(x)}mj=1

of m orthonormal spin orbitals for describing the state of a single electron, where x

contains both the spatial coordinate r and the spin coordinate σ.

18The spin angular momentum is an intrinsic property of quantum particles, including electrons and
atomic nuclei.
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To describe the state of N electrons, which is what we are seeking for the Hamil-

tonian in Equation 1.51, an initial idea would be to use products of single-electron

wavefunctions i.e. {φj1(x1)φj2(x2) · · ·φjN (xN)|j1, j2, · · · , jN = 1, 2, · · · ,m} because

after all, the Hilbert space H of N -electron wave functions is a tensor product of sin-

gle electron Hilbert spaces H1 ⊗H2 ⊗ · · · ⊗ HM . But there are additional structures

that we can introduce to our basis set for N electrons. Because electrons belong to a

specific type of quantum particles called fermions, its many-body wave function must

be antisymmetric with respect to variable exchange19:

f(· · · ,xi, · · · ,xj, · · · ) = −f(· · · ,xj, · · · ,xi, · · · ). (1.52)

An immediate consequence of the antisymmetry requirement is that in an N -electron

basis function φj1(x1)φj2(x2) · · ·φjN (xN), if there is any pair of indices jk, j` that

are equal, then such function should vanish. This is because of the antisymmetry

requirement in Equation 1.52: f(· · · ,xi, · · · ,xi, · · · ) = −f(· · · ,xi, · · · ,xi, · · · ). The

requirement that the electrons occupy different spin orbitals in any multi-electron

wavefunction is termed Pauli exclusion principle. Because of this constraint we are

left only with antisymmetric basis functions. A general expression that captures the

antisymmetry is given by the Slater determinant

1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φj1(x1) φj2(x1) · · · φjN (x1)

φj1(x2) φj2(x2) · · · φjN (x2)
...

...
. . .

...

φj1(xN) φj2(xN) · · · φjN (xN)

∣∣∣∣∣∣∣∣∣∣∣∣
. (1.53)

Note in Equation 1.53 that if we exchange two electrons by swapping two columns of

the determinant, we get a negative sign, effectively capturing Equation 1.52.

19Such property comes from certain physical requirements due to relativity, which is rigorously
established with the spin-statistics theorem [114–116].
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1.5.2 Second quantization

Because of the Pauli exclusion principle, each electron i should occupy a unique

spin orbital φji . Hence we could represent a Slater determinant with more compact

representations by introducing an abstract linear vector space called the Fock space,

where each determinant is represented by an occupation number vector |n〉 with n =

n1n2 · · ·nm being an m-bit string. We use ni = 0 to indicate that φi is occupied by

an electron and ni = 0 to indicate that φi is not occupied. Note that |n〉 itself is

not a Slater determinant, but rather a representation of a Slater determinant in the

Fock space. In this vector space we use the set of vectors |n〉 with n ∈ {0, 1}m as the

orthonormal basis, so that two vectors |k〉 and |k′〉 have inner product that can be

expressed as

〈k|k′〉 = δk,k′ = δk1,k′1
δk2,k′2

· · · δkm,k′m . (1.54)

Equation 1.54 is consistent with the inner products between the corresponding Slater

determinants. Hence we can consider the Fock space as a 2m-dimensional vector

space spanned by the occupation number vectors. Of particular importance is the

state |00 · · · 0〉, which corresponds to the state with no electrons at all. This state is

called the vacuum state and we denote it as |vac〉. We will now show how the other

non-vacuum states in the Fock state can be constructed from the vacuum state by

introducing two new sets of operators: the creation and annihilation operators.

For any spin orbital index j = 1, · · · ,m, the creation operators are defined by

their actions on the occupation number states:

a†j|n1 · · ·nj−10nj+1 · · ·nm〉 = (−1)n1+n2+···+nj−1|n1 · · ·nj−11nj+1 · · ·nm〉
a†j|n1 · · ·nj−11nj+1 · · ·nm〉 = 0,

(1.55)

where the jth element of the occupation number vector is highlighted. The first

equation in (1.55) raises the occupation number of the jth spin orbital by 1, thereby

“creating” an electron at the spin orbital. The second equation in (1.55) attempts

to add another electron at the jth spin orbital, which is already occupied by one

electron, and makes the occupation number state vanish. This is consistent with the
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Pauli exclusion principle mentioned earlier. Therefore any occupation number vector

|n〉 can be constructed from the vaccum state by

|n〉 = (a†1)n1(a†2)n2 · · · (a†m)nm |vac〉. (1.56)

From the definition 1.55 we could derive the conjugate transpose of a creation oper-

ator, which is the annihilation operator aj:

aj|n1 · · ·nj−11nj+1 · · ·nm〉 = (−1)n1+n2+···+nj−1|n1 · · ·nj−10nj+1 · · ·nm〉
aj|n1 · · ·nj−10nj+1 · · ·nm〉 = 0.

(1.57)

Equation 1.57 is consistent with Equation 1.55 in the sense that for any occupation

number states |m〉 and |k〉, we have the relationship 〈m|aj|k〉∗ = 〈k|a†j|m〉. With

further computation it could be checked that the creation and annihilation operators

satisfy the anticommutation relations

[a†i , a
†
j]+ = 0, [ai, aj]+ = 0, [a†i , aj]+ = δij, (1.58)

where [A,B]+ = AB + BA denotes the anti-commutator between the operators A

and B. The anticommutation relations are the fundamental properties that underlie

all the other algebraic properties of the second-quantized formalism of quantum me-

chanics, where all operators and states can be constructed from a set of elementary

creation and annihilation operators. In Equation 1.56 we have shown how to con-

struct any occupation number state using creation operators. For general states in

the Fock space |c〉 =
∑

k∈{0,1}m ck|k〉 we simply take a linear combination of Equa-

tion 1.56. We now discuss constructing the operators in the molecular Hamiltonian

in Equation 1.51 using the creation and annihilation operators.

The first two terms in the molecular Hamiltonian of Equation 1.51, Ke + Ve−n,

consists of only one-electron operators. Hence in the Fock space their actions should

only cause one electron to change its spin orbital. In other words, if we let F1 =

Ke + Ve−n be the one-electron component of the molecular Hamiltonian, then we

could write F1 in the Fock space as

F̂1 =
∑
i,j

f1(i, j)a†iaj. (1.59)
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where f1(i, j) is a scalar coefficient function. Here a†iaj represents the process where

one electron hops from the ith spin orbital to the jth. By computing the matrix

elements 〈m|F̂1|k〉 in the Fock space and comparing with Slater-Condon rules [117],

we could determine that20

f1(i, j) =

∫
φ∗i (x)F̂1φj(x)dx. (1.60)

With the specification in Equation 1.60, the matrix elements of the one-electron

operator F̂1 (Equation 1.59) in the Fock space agree with their counterparts in F1.

The last term in the molecular Hamiltonian of Equation 1.51, Ve−e acts on two

electrons and thus may cause two electrons to change their spin orbitals. We use

Ve−e = F2(x1,x2) to denote this two-electron component of the Hamiltonian. Similar

to Equation 1.59, we could write F̂2 as

F̂2 =
∑
i,j,k,`

f2(i, j, k, `)a†ia
†
jaka`. (1.61)

With a similar approach involving Slater-Condon rules, we can arrive at the identifi-

cation

f2(i, j, k, `) =

∫ ∫
φ∗i (x1)φ∗k(x2)F2(x1,x2)φj(x1)φ`(x2)dx1dx2. (1.62)

The integrals in Equations 1.60 and 1.62 can be computed efficiently. Hence for a

fixed set of spin orbitals we could rewrite the molecular Hamiltonian in Equation 1.51

in second-quantized form

Ĥ =
∑
i,j

f1(i, j)a†iaj +
∑
i,j,k,`

f2(i, j, k, `)a†ia
†
jaka`. (1.63)

Note that although we could compute the f1, f2 integrals efficiently, the second-

quantized Hamiltonian still acts on a vast vector space that is 2m dimensional. For N

electrons we need the set of spin orbitals to at least be able to hold all electrons, thus

m ≥ N . We have gone through the second-quantization but the exponential scaling

of computational effort in diagonalizing Ĥ as the number of electrons N increases

(Section 1.2) still persists.

20See for instance [39, Section 1.4] for details.
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1.5.3 Mapping to many-body qubit systems

We have reduced a general problem that is continuous i.e. finding the spectrum of

the molecular Hamiltonian H in Equation 1.51, to another problem that is discrete

in nature i.e. diagonalizing the matrix Ĥ in Equation 1.63. In the limit of an infinite,

complete basis set, the operators H and Ĥ have the same eigenvalues and their

corresponding eigenstates are equivalent representations of each other. The second

quantized form Ĥ is still hard to diagonalize exactly on a classical computer. But

it is particularly convenient for realization on a quantum computer. Observe that

the setup of the occupation number vectors in the Fock space provides a natural

representation on a quantum computer - let each spin orbital be represented by a

qubit, where |0〉 stands for “unoccupied” and |1〉 stands for “occupied”. As for the

creation and annihilation operators, we start by introducing the qubit operators

Q+
j = |1〉〈0|j =

1

2
(Xj − iYj), Q−j = |0〉〈1|j =

1

2
(Xj + iYj), (1.64)

which seems to mimic the “creation” and “annihilation” behaviours of a†j and aj

except that they do not obey the anticommutation relations in Equation 1.58. To en-

sure that the many-body qubit operators mapped from the creation and annihilation

operators do obey the anticommutation relations, one could use the Jordan-Wigner

transformation [118]

a†j 7→ Q+
j

j∏
k=1

Zk

aj 7→ Q−j

j∏
k=1

Zk.

(1.65)

By referring to Equation 1.36 one could check that the mapping in Equation 1.65

indeed satisfies the anticommutation relations of the creation and annihilation op-

erators. We note that the Jordan-Wigner transformation is not the only method

for mapping creation and annihilation operators to spin operators. One could also

use the Bravyi-Kitaev transformation [119,120], which is shown to have advantageous

properties for adiabatic quantum many-body simulation for quantum chemistry [121].
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A mapping from the second-quantized operators to many-body spin operators

completes the last step in recasting an arbitrary molecular Hamiltonian to a many-

body qubit Hamiltonian. For example, consider a hydrogen molecule H2, which con-

tains two electrons and two nuclei that are fixed under Born-Oppenheimer approx-

imation (Section 1.5.1). Each electron has its own spatial coordinate described by

an orbital, and a spin coordinate which is 2-dimensional. Hence in a minimal basis

we need 4 spin orbitals to represent the two-electron states. In a chosen minimal

basis, if we write down the second-quantized Hamiltonian and apply Jordan-Wigner

transformation, we obtain a 4-qubit many-body Hamiltonian [119]

HJW = −0.81261I + 0.171201Z0 + 0.171201Z1 − 0.2227965Z2 − 0.2227965Z3

+ 0.16862325Z1Z0 + 0.12054625Z2Z0 + 0.165868Z2Z1 + 0.165868Z3Z0

+ 0.12054625Z3Z1 + 0.17434925Z3Z2 − 0.04532175Y3Y2X1X0

+ 0.04532175X3Y2Y1X0 + 0.04532175Y3X2X1Y0 − 0.04532175Y3Y2X1X0.

(1.66)

To experimentally realize such many-body Hamiltonian is far from physically fea-

sible. This necessitates one of the central themes of this dissertation, which is to

construct realistic two-body systems that simulate the many-body Hamiltonian de-

sired.

1.6 Quantum Hamiltonian complexity

We have discussed how quantum many-body qubit Hamiltonians can arise in mul-

tiple important applications for quantum computing, such as universal AQC (Equa-

tion 1.46 in Section 1.4.2), measurement-based quantum computing (Equation 1.47

in Section 1.4.3) and quantum simulation of molecular systems (Equation 1.66 in

Section 1.5.3). There are other circumstances where such many-body Hamiltonians

arise, for example in the quantum loop models describing topological quantum order

require Hamiltonians of four-body interactions [122, 123]. However, it is beyond the

scope of this introduction to expand on these subjects.
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1.6.1 Local Hamiltonian and QMA

The most general notion of a many-body Hamiltonian which encompasses the

many-body systems discussed so far is introduced due to the recently emerging field

of quantum Hamiltonian complexity. We say that an n-qubit Hamiltonian H is a

k-local Hamiltonian if H =
∑m

i=1 Hi where each Hi acts non-trivially on a distinct

subset of at most k qubits21. For example, the Hamiltian in Equation 1.46 is 3-

local, the Hamiltonian in Equation 1.47 is 5-local and the Hamiltonian in Equation

1.66 is 4-local. This definition of k-local Hamiltonian derives its inspiration from

the formulation of Circuit Satisfiability Problem (SAT) in classical computational

complexity. In an SAT instance of n Boolean variables (bits) there is a collection

of clauses each involving at most k bits. For 3-SAT each clause acts on at most 3

bits and the goal is to find a satisfying assignment or an assignment that violates the

minimum number of clauses. We could then consider a k-local Hamiltonian as a sum

of “quantum clauses” Hi each acting on at most k qubits, and the ground state |ψ〉
must minimize the quadratic form 〈ψ|H|ψ〉 = 〈ψ|H1|ψ〉+〈ψ|H2|ψ〉+ · · ·+〈ψ|Hm|ψ〉.
We could consider the quantity 〈ψ|Hm|ψ〉 as a measure of how much a given state

|ψ〉 has “violated” the clause Hi. Then finding the ground state is essentially finding

the state assignment |ψ〉 that minimizes the total violations to all of the quantum

clauses. In this sense finding the ground state of a local Hamiltonian is analogous

to classical SAT. We formalize this quantum generalization of SAT in the following

definition of k-local Hamiltonian problem:

Definition 1.6.1 (k-Local Hamiltonian [31]) Given a k-local Hamiltonian H =∑m
i=1 Hi acting on n qubits, and threshold values a, b ∈ R+ with b − a ≥ 1/p(n) for

some polynomial p. Let E0 be the ground state energy of H. Decide whether E0 ≤ a

or E0 ≥ b.

Cook-Levin theorem [28,29] is a classic result in computational complexity theory.

The proof of the theorem uses clauses of 3 bits to emulate an arbitrary computational

21More general definitions of k-local Hamiltonian assumes the quantum particles are general qudits
[17]. Here it suffices to consider only qubits.
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process of a Turing machine in the sense that the clauses are satisfiable if and only if

the Turing machine accepts. In the quantum realm, there is a result that is analogous

to the Cook-Levin theorem due to Kitaev [31]. The gist of Kitaev’s Hamiltonian con-

struction for the quantum Cook-Levin theorem is already presented in Section 1.4.2

when we are discussing universal AQC. If Cook-Levin theorem establishes 3-SAT

as the canonical complete problem for the complexity class NP, then the quantum

version establishes Local Hamiltonian as the canonical complete problem for the

complexity class QMA, which can be considered as a quantum analogue of NP [15].

We formally define QMA as the following (see [16] for details).

Definition 1.6.2 (Quantum Merlin-Arthur) A promise problem is in QMA if

and only if for any string x ∈ {0, 1}n, there is a poly(n) time uniform family of

quantum circuits {Un} that takes as its input x as well as a quantum proof |ψ〉,
which is a p(n)-qubit state with p being some polynomial, and q(n) ancilla qubits22 in

the state |0〉 for some polynomial q, such that

1. (Completeness) If x is a YES instance, there exists a proof |ψ〉 on p(n) qubits

such that Un accepts (x, |ψ〉) with probability at least 2/3;

2. (Soundness) If x is a NO instance, then for all proofs |ψ〉 on p(n) qubits, Un

accepts (x, |ψ〉) with probability at most 1/3.

The quantum analogue of the Cook-Levin theorem [31] has established that 5-

Local Hamiltonian is QMA-complete. Subsequently 3-Local Hamiltonian

is shown to be QMA-complete independently by Kempe and Regev [124], and Na-

gaj and Mozes [125]. Then Kempe, Kitaev and Regev [7] showed that 2-Local

Hamiltonian is QMA-complete. This completes the complexity characterization of

k-Local Hamiltonian for all k, since 1-Local Hamiltonian is in P because we

could simply minimize each term Hi individually. Attention is then shifted towards

2-Local Hamiltonian with additional restricted properties. For example, Oliveira

22The term ancilla qubits refer to qubits that serve as auxiliary variables in a quantum computing
process.
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and Terhal [8] showed that 2-Local Hamiltonian restricted to nearest neighbor

interactions on a 2D grid remains to be QMA-complete. Biamonte and Love [33]

showed that the form of the simplest QMA-complete Hamiltonian can be reduced

to physically relevant models such as

H =
∑
i

hiZi +
∑
i<j

JijZiZj +
∑
i<j

KijXiXj. (1.67)

By comparing the Hamiltonian in Equation 1.67 with the transverse Ising Hamiltonian

in Equation 1.42 as realized by D-Wave, we can see that the Hamiltonian in Equation

1.67 only contains additional XX terms (and local X operators but they are far easier

to realize with current experimental capabilities). However, find the ground state of

Hamiltonians of the form in (1.67) can be QMA-complete in the worst case, while

for the transverse Ising Hamiltonian in Equation 1.42 it is unlikely to be QMA-

complete [126].

1.6.2 Perturbative gadgets

Although the model described in Equation 1.67 contains only physically accessible

terms, programming problems into a universal adiabatic quantum computer [33] or

an adiabatic quantum simulator [127, 128] involves several types of k-body interac-

tions (for bounded k). To reduce from k-body interactions to 2-body is accomplished

through the application of perturbative gadgets. Perturbative gadgets were introduced

as theorem-proving tools in the context of quantum complexity theory yet their exper-

imental realization currently offers the only path towards universal adiabatic quantum

computation. In terms of experimental constraints, an important parameter in the

construction of these gadgets is a large spectral gap introduced into the ancilla space

as part of a penalty Hamiltonian. This large spectral gap often requires control preci-

sion well beyond current experimental capabilities and must be improved for practical

physical realizations.

A perturbative gadget consists of an ancilla system acted on by Hamiltonian H,

characterized by the spectral gap ∆ between its ground state subspace and excited
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state subspace, and a perturbation V which acts on both the ancilla and the sys-

tem. V perturbs the ground state subspace of H such that the perturbed low-lying

spectrum of the gadget Hamiltonian H̃ = H + V captures the spectrum of the tar-

get Hamiltonian, Htarg, up to error ε. The purpose of a gadget is dependent on

the form of the target Hamiltonian Htarg. For example, if the target Hamiltonian

is k-local with k ≥ 3 while the gadget Hamiltonian is 2-local, the gadget serves as

a tool for reducing locality23. Also if the target Hamiltonian involves interactions

that are hard to implement experimentally and the gadget Hamiltonian contains only

interactions that are physically accessible, the gadget becomes a generator of phys-

ically inaccesible terms from accessible ones. Apart from the physical relevance to

quantum computation, gadgets have been central to many results in quantum com-

plexity theory [32, 33, 129, 130]. Hamiltonian gadgets were also used to characterize

the complexity of density functional theory [20] and are required components in cur-

rent proposals related to error correction on an adiabatic quantum computer [131]

and the adiabatic and ground state quantum simulator [127, 128]. Since these works

employ known gadgets which we provide improved constructions of here, our results

hence imply a reduction of the resources required in these past works.

The first use of perturbative gadgets [7] relied on a 2-body gadget Hamiltonian

to simulate a 3-body Hamiltonian of the form Htarg = Helse + α · A ⊗ B ⊗ C with

three auxiliary spins in the ancilla space. Here Helse is an arbitrary Hamiltonian

that does not operate on the auxiliary spins. Further, A, B and C are unit-norm

operators and α is the desired coupling. For such a system, it is shown that it

suffices to construct V with ‖V‖ < ∆/2 to guarantee that the perturbative self-

energy expansion approximates Htarg up to error ε [7, 8, 129]. Because the gadget

Hamiltonian is constructed such that in the perturbative expansion Σ−(z) (with

respect to the low energy subspace, see Equation 1.26 in Section 1.3.2), only virtual

excitations that flip all 3 ancilla bits would have non-trivial contributions in the

1st through 3rd order terms. In [9] Jordan and Farhi generalized the construction

23Here use the notion locality to mean the value k for a k-local Hamiltonian.
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in [7] to a general k-body to 2-body reduction using a perturbative expansion due

to Bloch [132]. They showed that one can approximate the low-energy subspace of

a Hamiltonian containing r distinct k-local terms using a 2-local Hamiltonian. Two

important gadgets were introduced by Oliveira and Terhal [8] in their proof that

2-local Hamiltonian on a square lattice is QMA-complete. In particular, they

introduced an alternative 3- to 2-body gadget which uses only one additional spin

for each 3-body term as well as a “subdivision gadget” that reduces a k-body term

to a (dk/2e+ 1)-body term using only one additional spin [8]. These gadgets, which

we improve in this dissertation, find their use as the de facto standard whenever

the use of gadgets is necessitated. For instance, the gadgets from [8] were used by

Bravyi, DiVincenzo, Loss and Terhal [129] to show that one can combine the use of

subdivision and 3- to 2-body gadgets to recursively reduce a k-body Hamiltonian to

2-body, which is useful for simulating quantum many-body Hamiltonians. We note

that these gadgets solve a different problem than the type of many-body operator

simulations considered previously [133, 134] for gate model quantum computation,

where the techniques developed therein are not directly applicable to our situation.

While recent progress in the experimental implementation of adiabatic quantum

processors [92,135–137] suggests the ability to perform sophisticated adiabatic quan-

tum computing experiments, perturbative gadgets require very large values of ∆.

This places high demands on experimental control precision by requiring that devices

enforce very large couplings between ancilla qubits while still being able to resolve

couplings from the original problem – even though those fields may be orders of mag-

nitude smaller than ∆. Accordingly, if perturbative gadgets are to be used, it is

necessary to find gadgets which can efficiently approximate their target Hamiltonians

with significantly lower values of ∆.
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1.7 Summary

In this introductory chapter we have introduced the subject of quantum mechanics

(Section 1.2) and quantum computing (Section 1.4). In particular we have introduced

perturbation theory (Section 1.3), which provides the mathematical framework for the

rest of the dissertation. We have also motivated the subject of reducing many-body

to two-body quantum interactions from various different contexts: universal AQC

(Section 1.4.2), measurement-based quantum computing (Section 1.4.3), and quan-

tum simulation of molecular system (Section 1.5). We then introduced the central

tool for accomplishing the locality reduction - perturbative gadgets (Section 1.6.2) in

the context of quantum Hamiltonian complexity (Section 1.6.1).
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2. IMPROVED PERTURBATIVE GADGETS

Application of the adiabatic model of quantum computation requires efficient encod-

ing of the solution to computational problems into the lowest eigenstate of a Hamilto-

nian that supports universal adiabatic quantum computation. Experimental systems

are typically limited to restricted forms of 2-body interactions. Therefore, univer-

sal adiabatic quantum computation requires a method for approximating quantum

many-body Hamiltonians up to arbitrary spectral error using at most 2-body interac-

tions. Perturbative gadgets offer the only current means to address this requirement.

Although the applications of perturbative gadgets have steadily grown since their

introduction, little progress has been made in overcoming the limitations of the gad-

gets themselves. In this chapter of experimentally motivated theoretical study, we

introduce several gadgets which require significantly more realistic control parameters

than similar gadgets in the literature. We employ analytical techniques which result

in a reduction of the resource scaling as a function of spectral error for the commonly

used subdivision, 3- to 2-body and k-body gadgets. Accordingly, our improvements

reduce the resource requirements of all proofs and experimental proposals making use

of these common gadgets. Next, we numerically optimize these new gadgets to illus-

trate the tightness of our analytical bounds. Finally, we introduce a new gadget that

simulates a Y Y interaction term using Hamiltonians containing only {X,Z,XX,ZZ}
terms. Apart from possible implications in a theoretical context, this work could also

be useful for a first experimental implementation of these key building blocks by

requiring less control precision without introducing extra ancillary qubits.
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2.1 Overview

Continuing from our discussion in Section 1.6.2, previous works in the literature

[7, 8, 33, 129, 130] choose ∆ to be a polynomial function of ε−1 which is sufficient

for yielding a spectral error O(ε) between the gadget and the target Hamiltonian.

Experimental realizations however, will require a recipe for assigning the minimum

∆ that guarantees error within specified ε, which we consider here. This recipe will

need to depend on three parameters: (i) the desired coupling, α; (ii) the magnitude

of the non-problematic part of the Hamiltonian, ‖Helse‖; and (iii) the specified error

tolerance, ε. For simulating a target Hamiltonian up to error ε, previous constructions

[8, 129, 130] use ∆ = Θ(ε−2) for the subdivision gadget and ∆ = Θ(ε−3) for the 3-

to 2-body gadget. We will provide analytical results and numerics which indicate

that ∆ = Θ(ε−1) is sufficient for the subdivision gadget (Sections 2.2 and 2.3) and

∆ = Θ(ε−2) for the 3- to 2-body gadget (Sections 2.4 and 2.5), showing that the

physical resources required to realize the gadgets are less than previously assumed

elsewhere in the literature.

In our derivation of the ∆ scalings, we use an analytical approach that involves

bounding the infinite series in the perturbative expansion. For the 3- to 2-body reduc-

tion, in Appendix 2.5 we show that complications arise when there are multiple 3-body

terms in the target Hamiltonian that are to be reduced concurrently and bounding

the infinite series in the multiple-bit perturbative expansion requires separate treat-

ments of odd and even order terms. Furthermore, in the case where ∆ = Θ(ε−2) is

used, additional terms which are dependent on the commutation relationship among

the 3-body target terms are added to the gadget in order to compensate for the

perturbative error due to cross-gadget contributions (Appendix A).

The next result of this chapter, described in Section 2.6, is a 3- to 2-body gadget

construction that uses a 2-body Ising Hamiltonian with a local transverse field. This

opens the door to use existing flux-qubit hardware [135] to simulate Htarg = Helse +

αZiZjZk where Helse is not necessarily diagonal. One drawback of this construction
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is that it requires ∆ = Θ(ε−5), rendering it challenging to realize in practice. For

cases where the target Hamiltonian is diagonal, there are non-perturbative gadgets

[138–140] that can reduce a k-body Hamiltonian to 2-body. In this work, however,

we focus on perturbative gadgets.

The final result of this chapter in Section 2.8 is to propose a gadget which is capable

of reducing arbitrary real-valued Hamiltonians to a Hamiltonian with only XX and ZZ

couplings. In order to accomplish this, we go to fourth-order in perturbation theory

to find an XXZZ Hamiltonian which serves as an effective Hamiltonian dominated

by YY coupling terms. Because YY terms are especially difficult to realize in some

experimental architectures, this result is useful for those wishing to encode arbitrary

QMA-hard problems on existing hardware. This gadget in fact now opens the door

to solve electronic structure problems on an adiabatic quantum computer.

To achieve both fast readability and completeness in presentation, each section

from Section 2.2 to Section 2.8 consists of a Summary subsection and an Analysis

subsection. The former is mainly intended to provide a high-level synopsis of the

main results in the corresponding section. Readers could only refer to the Summary

sections on their own for an introduction to the results of the chapter. The Analysis

subsections contain detailed derivations of the results in the Summary.

2.2 Improved subdivision gadget

Summary. The subdivision gadget is introduced by Oliveira and Terhal [8] in their

proof that 2-local Hamiltonian on square lattice is QMA-Complete. Here

we show an improved lower bound for the spectral gap ∆ needed on the ancilla of

the gadget. A subdivision gadget simulates a many-body target Hamiltonian Htarg =

Helse + α · A ⊗ B (Helse is a Hamiltonian of arbitrary norm, ‖A‖ = 1 and ‖B‖ =

1) by introducing an ancilla spin w and applying onto it a penalty Hamiltonian

H = ∆|1〉〈1|w so that its ground state subspace L− = span{|0〉w} and its excited
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(a)

(b)

Fig. 2.1. Numerical illustration of the gadget theorem using a subdivision
gadget. Here we use a subdivision gadget to approximate Htarg = Helse +
αZ1Z2 with ‖Helse‖ = 0 and α ∈ [−1, 1]. ε = 0.05. The label “analytical”
stands for the case where the value of ∆ is calculated using Equation
2.9 when |α| = 1. The label “numerical” represents the case where ∆
takes the value that yield the spectral error to be ε. In (a) we let α = 1.
z ∈ [−max z,max z] with max z = ‖Helse‖ + maxα + ε. The operator
Σ−(z) is computed up to the 3rd order. Subplot (b) shows for every value
of α in its range, the maximum difference between the eigenvalues λ̃j in

the low-lying spectrum of H̃ and the corresponding eigenvalues λj in the
spectrum of Htarg ⊗ |0〉〈0|w.
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subspace L+ = span{|1〉w} are separated by energy gap ∆. In addition to the penalty

Hamiltonian H, we add a perturbation V of the form

V = Helse + |α||0〉〈0|w +

√
|α|∆

2
(sgn(α)A−B)⊗Xw. (2.1)

Hence if the target term A⊗B is k-local, the gadget Hamiltonian H̃ = H + V is at

most (dk/2e+ 1)-local, accomplishing the locality reduction. Assume Htarg acts on n

qubits. Prior work [8] shows that ∆ = Θ(ε−2) is a sufficient condition for the lowest

2n levels of the gadget Hamiltonian H̃ to be ε-close to the corresponding spectrum

of Htarg. However, by bounding the infinite series of error terms in the perturbative

expansion, we are able to obtain a tighter lower bound for ∆ for error ε. Hence we

arrive at our first result (details will be presented later in this section), that it suffices

to let

∆ ≥
(

2|α|
ε

+ 1

)
(2‖Helse‖+ |α|+ ε). (2.2)

In Figure 2.2 we show numerics indicating the minimum ∆ required as a function

of α and ε. In Figure 2.2a the numerical results and the analytical lower bound

in Equation 2.2 show that for our subdivision gadgets, ∆ can scale as favorably as

Θ(ε−1). For the subdivision gadget presented in [8], ∆ scales as Θ(ε−2). Though

much less than the original assignment in [8], the lower bound of ∆ in Equation 2.2,

still satisfies the condition of Theorem 1.3.1. In Figure 2.2 we numerically find the

minimum value of such ∆ that yields a spectral error of exactly ε.

Analysis. The currently known subdivision gadgets in the literature assume that the

gap in the penalty Hamiltonian ∆ scales as Θ(ε−2) (see for example [8,129]). Here we

employ a method which uses infinite series to find the upper bound to the norm of

the high order terms in the perturbative expansion. We find that in fact ∆ = Θ(ε−1)

is sufficient for the error to be within ε. A variation of this idea will also be used to

reduce the gap ∆ needed in the 3- to 2-body gadget (see Section 2.4).



56

(a) (b)

Fig. 2.2. Comparison between our subdivision gadget with that of Oliveira
and Terhal [8]. The data labelled as “numerical” represent the ∆ values
obtained from the numerical search such that the spectral error between
Htarg and H̃− is ε. The data obtained from the calculation using Equation
2.2 are labelled as “analytical”. “[OT06]” refers to values of ∆ calculated
according to the assignment by Oliveira and Terhal [8]. In this example
we consider Htarg = Helse + αZ1Z2. (a): Gap scaling with respect to ε−1.
Here ‖Helse‖ = 0 and α = 1. (b): The gap ∆ as a function of the desired
coupling α. Here ‖Helse‖ = 0, ε = 0.05.
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The key aspect of developing the gadget is that given H = ∆|1〉〈1|w, we need to

determine a perturbation V to perturb the low energy subspace

L− = span{|ψ〉 ⊗ |0〉w, |ψ〉 is any state of the system excluding the ancilla spin w}

such that the low energy subspace of the gadget Hamiltonian H̃ = H + V approxi-

mates the spectrum of the entire operator Htarg ⊗ |0〉〈0|w up to error ε. Here we will

define V and work backwards to show that it satisfies Theorem 1.3.1. We let

V = Helse +
1

∆
(κ2A2 + λ2B2)⊗ |0〉〈0|w + (κA + λB)⊗Xw (2.3)

where κ, λ are constants which will be determined such that the dominant contribu-

tion to the perturbative expansion which approximates H̃<E∗ gives rise to the target

Hamiltonian Htarg = Helse +α ·A⊗B. In Equation 3.5 and the remainder of the sec-

tion, by slight abuse of notation, we use κA +λB to represent κ(A⊗ IB) +λ(IA⊗B)

for economy. Here IA and IB are identity operators acting on the subspaces A and B
respectively. The partitions of V in the subspaces, as defined in Section 1.3.2 are

V+ = Helse ⊗ |1〉〈1|w, V− =

(
Helse +

1

∆
(κ2A2 + λ2B2)I

)
⊗ |0〉〈0|w,

V−+ = (κA + λB)⊗ |0〉〈1|w, V+− = (κA + λB)⊗ |1〉〈0|w.
(2.4)

We would like to approximate the target Hamiltonian Htarg and so expand the self-

energy in Equation 1.26 up to 2nd order. Note that H− = 0 and G+(z) = (z −
∆)−1|1〉〈1|w. Therefore the self energy Σ−(z) can be expanded as

Σ−(z) = V− +
1

z −∆
V−+V+− +

∞∑
k=1

V−+Vk
+V+−

(z −∆)k+1

=

(
Helse −

2κλ

∆
A⊗B

)
⊗ |0〉〈0|w︸ ︷︷ ︸

Heff

+
z

∆(z −∆)
(κA + λB)2 ⊗ |0〉〈0|w +

∞∑
k=1

V−+Vk
+V+−

(z −∆)k+1︸ ︷︷ ︸
error term

.

(2.5)

By selecting κ = sgn(α)(|α|∆/2)1/2 and λ = −(|α|∆/2)1/2, the leading order term

in Σ−(z) becomes Heff = Htarg ⊗ |0〉〈0|w. We must now show that the condition of
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Theorem 1.3.1 is satisfied i.e. for a small real number ε > 0, ‖Σ−(z)−Heff‖ ≤ ε,∀z ∈
[min z,max z] where max z = ‖Helse‖+ |α|+ ε = −min z. Essentially this amounts to

choosing a value of ∆ to cause the error term in Equation 2.5 to be ≤ ε. In order to

derive a tighter lower bound for ∆, we bound the norm of the error term in Equation

2.5 by letting z 7→ max z and from the triangle inequality for operator norms:∥∥∥∥ z

∆(z −∆)
(κA + λB)2 ⊗ |0〉〈0|w

∥∥∥∥ ≤ max z

∆(∆−max z)
· 4κ2 =

2|α|max z

∆−max z∥∥∥∥∥
∞∑
k=1

V−+Vk
+V+−

(z −∆)k+1

∥∥∥∥∥ ≤
∞∑
k=1

‖V−+‖ · ‖V+‖k · ‖V+−‖
(∆−max z)k+1

≤
∞∑
k=1

2|κ| · ‖Helse‖k · 2|κ|
(∆−max z)k+1

=
∞∑
k=1

2|α|∆‖Helse‖k
(∆−max z)k+1

.

(2.6)

Using Heff = Htarg ⊗ |0〉〈0|w, from (2.5) we see that

‖Σ−(z)−Htarg ⊗ |0〉〈0|w‖ ≤
2|α|max z

∆−max z
+
∞∑
k=1

2|α|∆‖Helse‖k
(∆−max z)k+1 (2.7)

=
2|α|max z

∆−max z
+

2|α|∆
∆−max z

· ‖Helse‖
∆−max z − ‖Helse‖

. (2.8)

Here going from Equation 2.7 to Equation 2.8 we have assumed the convergence of

the infinite series in Equation 2.7, which adds the reasonable constraint that ∆ >

|α|+ ε+ 2‖Helse‖. To ensure that ‖Σ−(z)−Htarg ⊗ |0〉〈0|w‖ ≤ ε it is sufficient to let

expression Equation 2.8 be ≤ ε, which implies that

∆ ≥
(

2|α|
ε

+ 1

)
(|α|+ ε+ 2‖Helse‖) (2.9)

which is Θ(ε−1), a tighter bound than Θ(ε−2) in the literature [7,8,129]. This bound

is illustrated with a numerical example (Figure 2.1). From the data labelled as “an-

alytical” in Figure 2.1a we see that the error norm ‖Σ−(z) − Heff‖ is within ε for

all z considered in the range, which satisfies the condition of the theorem for the

chosen example. In Figure 2.1b, the data labelled “analytical” show that the spectral

difference between H̃<E∗ and Heff = Htarg⊗ |0〉〈0|w is indeed within ε as the theorem

promises. Furthermore, note that the condition of Theorem 1.3.1 is only sufficient,
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which justifies why in Figure 2.1b for α values at maxα and minα the spectral error

is strictly below ε. This indicates that an even smaller ∆, although below the bound

we found in Equation 2.9 to satisfy the theorem, could still yield the spectral error

within ε for all α values in the range. The smallest value ∆ can take would be one

such that the spectral error is exactly ε when α is at its extrema. We numerically

find this ∆ (up to numerical error which is less than 10−5ε) and as demonstrated in

Figure 2.1b, the data labelled “numerical” shows that the spectral error is indeed ε at

max(α) and min(α), yet in Figure 2.1a the data labelled “numerical” shows that for

some z in the range the condition of the Theorem 1.3.1, ‖Σ−(z)−Htarg⊗|0〉〈0|w‖ ≤ ε,

no longer holds. In Figure 2.1 we assume that ε is kept constant. In Figure 2.2a we

compute both analytical and numerical ∆ values for different values of ε.

Comparison with Oliveira and Terhal [8]. We also compare our ∆ assignment with

the subdivision gadget by Oliveira and Terhal [8], where given a target Hamiltonian

Htarg = Helse + Q ⊗ R it is assumed that Q and R are operators with finite norm

operating on two separate spaces A and B.

The construction of the subdivision gadget in [8] is the same as the construction

presented earlier: introduce an ancillary qubit w with energy gap ∆, then the unper-

turbed Hamiltonian is H = ∆|1〉〈1|w. In [8] they add a perturbation V that takes

the form of [8, Equation 15]

V = H′else +

√
∆

2
(−Q + R)⊗Xw (2.10)

where H′else = Helse + Q2/2 + R2/2. Comparing the form of Equation 2.10 and

Equation 3.5 we can see that if we redefine Q =
√
|α|A and R =

√
|α|B, the gadget

formulation is identical to our subdivision gadget approximating Htarg = Helse +

αA⊗B with α > 0. In the original work ∆ is chosen as [8, Equation 20]

∆ =
(‖H′else‖+ C2r)

6

ε2
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where C2 ≥
√

2 and r = max{‖Q‖, ‖R‖}. In the context of our subdivision gadget,

this choice of ∆ translates to a lower bound

∆ ≥ (‖Helse + |α|I‖+
√

2|α|)6

ε2
. (2.11)

In Figure 2.2a we compare the lower bound in Equation 2.11 with our lower bound

in Equation 2.9 and the numerically optimized ∆ described earlier.

2.3 Parallel subdivision and k- to 3-body reduction

Summary. Applying subdivision gadgets iteratively one can reduce a k-body Hamil-

tonian Htarg = Helse + α
⊗k

i=1 Si to 3-body. Here each Si is a single spin Pauli oper-

ator. Initially, the term
⊗k

i=1 Si can be broken down into A⊗B where A =
⊗r

i=1 Si

and B =
⊗k

i=r+1 Si. Let r = k/2 for even k and r = (k + 1)/2 for odd k. The

gadget Hamiltonian will be (dk/2e + 1)-body, which can be further reduced to a

(ddk/2e+ 1e/2 + 1)-body Hamiltonian in the same fashion. Iteratively applying this

procedure, we can reduce a k-body Hamiltonian to 3-body, with the ith iteration in-

troducing the same number of ancilla qubits as that of the many-body term to be

subdivided. Applying the previous analysis on the improved subdivision gadget con-

struction, we find that ∆i = Θ(ε−1∆
3/2
i−1) is sufficient such that during each iteration

the spectral difference between H̃i and H̃i−1 is within ε. From the recurrence relation

∆i = Θ(ε−1∆
3/2
i−1), we are then able to show a quadratic improvement over previous

k-body constructions [129].

Analysis. The concept of parallel application of gadgets has been introduced in [7,8].

The idea of using subdivision gadgets for iteratively reducing a k-body Hamiltonian

to 3-body has been mentioned in [8, 129]. Here we elaborate the idea by a detailed

analytical and numerical study. We provide explicit expressions of all parallel sub-

division gadget parameters which guarantees that during each reduction the error

between the target Hamiltonian and the low-lying sector of the gadget Hamiltonian
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is within ε. For the purpose of presentation, let us define the notions of “parallel”

and “series” gadgets in the following remarks.

Remark 2.3.1 (Parallel gadgets) Parallel application of gadgets refers to using

gadgets on multiple terms Htarg,i in the target Hamiltonian Htarg = Helse+
∑m

i=1 Htarg,i

concurrently. Here one will introduce m ancilla spins w1, · · · , wm and the parallel

gadget Hamiltonian takes the form of H̃ =
∑m

i=1 Hi + V where Hi = ∆|1〉〈1|wi and

V = Helse +
∑m

i=1 Vi. Vi is the perturbation term of the gadget applied to Htarg,i.

Remark 2.3.2 (Serial gadgets) Serial application of gadgets refers to using gad-

gets sequentially. Suppose the target Hamiltonian Htarg is approximated by a gadget

Hamiltonian H̃(1) such that H̃
(1)
− approximates the spectrum of Htarg up to error ε.

If one further applies onto H̃(1) another gadget and obtains a new Hamiltonian H̃(2)

whose low-lying spectrum captures the spectrum of H̃(1), we say that the two gadgets

are applied in series to reduce Htarg to H̃(2).

Based on Remark 2.3.1, a parallel subdivision gadget deals with the case where

Htarg,i = αiAi ⊗ Bi. αi is a constant and Ai, Bi are unit norm Hermitian oper-

ators that act on separate spaces Ai and Bi. Note that with Hi = ∆|1〉〈1|wi for

every i ∈ {1, 2, · · · ,m} we have the total penalty Hamiltonian H =
∑m

i=1 Hi =∑
x∈{0,1}m h(x)∆|x〉〈x| where h(x) is the Hamming weight of the m-bit string x. This

penalty Hamiltonian ensures that the ground state subspace is L− = span{|0〉⊗m}
while all the states in the subspace L+ = span{|x〉|x ∈ {0, 1}m, x 6= 00 · · · 0} receives

an energy penalty of at least ∆. The operator-valued resolvent G for the penalty

Hamiltonian is (by definition in Section 1.3)

G(z) =
∑

x∈{0,1}m

1

z − h(x)∆
|x〉〈x|. (2.12)

The perturbation Hamiltonian V is defined as

V = Helse +
1

∆

m∑
i=1

(κ2
iA

2
i + λ2

iB
2
i ) +

m∑
i=1

(κiAi + λiBi)⊗Xui (2.13)
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where the coefficients κi and λi are defined as κi = sgn(αi)
√
|αi|∆/2, λi = −

√
|αi|∆/2.

Define P− = |0〉⊗m〈0|⊗m and P+ = I − P−. Then if Htarg acts on the Hilbert space

M, Π− = IM⊗P− and Π+ = IM⊗P+. Comparing Equation 2.13 with Equation 3.5

we see that the projector to the low-lying subspace |0〉〈0|w in Equation 3.5 is replaced

by an identity I in Equation 2.13. This is because in the case of m parallel gadgets

P− cannot be realized with only 2-body terms when m ≥ 3.

The partition of V in the subspaces are

V− =

(
Helse +

1

∆

m∑
i=1

(κ2
iA

2
i + λ2

iB
2
i )

)
⊗P−,

V+ =

(
Helse +

1

∆

m∑
i=1

(κ2
iA

2
i + λ2

iB
2
i )

)
⊗P+,

V−+ =
m∑
i=1

(κiAi + λiBi)⊗P−XuiP+,

V+− =
m∑
i=1

(κiAi + λiBi)⊗P+XuiP−.

(2.14)

The self-energy expansion in Equation 1.26 then becomes

Σ−(z) =

(
Helse +

1

∆

m∑
i=1

(κ2
iA

2
i + λ2

iB
2
i )

)
⊗P− +

1

z −∆

m∑
i=1

(κiAi + λiBi)
2 ⊗P−

+
∞∑
k=1

V−+(G+V+)kG+V+−.

(2.15)

Rearranging the terms we have

Σ−(z) =

(
Helse +

m∑
i=1

(
−2κiλi

∆
Ai ⊗Bi

))
⊗P−︸ ︷︷ ︸

Heff

+

(
1

∆
+

1

z −∆

) m∑
i=1

(κ2
iA

2
i + λ2

iB
2
i )⊗P−︸ ︷︷ ︸

E1

+

(
1

∆
+

1

z −∆

) m∑
i=1

2κiλiAi ⊗Bi ⊗P−︸ ︷︷ ︸
E2

+
∞∑
k=1

V−+(G+V+)kG+V+−︸ ︷︷ ︸
E3

(2.16)
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where the term Heff = Htarg ⊗P− is the effective Hamiltonian that we would like to

obtain from the perturbative expansion and E1, E2, and E3 are error terms. Theorem

1.3.1 states that for z ∈ [−max(z),max(z)], if ‖Σ−(z)−Htarg ⊗P−‖ ≤ ε then H̃<E∗

approximates the spectrum of Htarg ⊗P− by error at most ε. Similar to the triangle

inequality derivation shown in (2.6), to derive a lower bound for ∆, let z 7→ max(z) =

‖Helse‖ +
∑m

i=1 |αi| + ε and the upper bounds of the error terms E1 and E2 can be

found as

‖E1‖ ≤
max(z)

∆−max(z)

m∑
i=1

|αi| ≤
max(z)

∆−max(z)

(
m∑
i=1

|αi|1/2
)2

‖E2‖ ≤
max(z)

∆−max(z)

(
m∑
i=1

|αi|1/2
)2

.

(2.17)

From the definition in Equation 2.12 we see that ‖G+(z)‖ ≤ 1
∆−max(z)

. Hence the

norm of E3 can be bounded by

‖E3‖ ≤
∞∑
k=1

‖∑m
i=1(κiAi + λiBi)‖2 · ‖Helse‖+ 1

∆

∑m
i=1(κ2

iA
2
i + λ2

iB
2
i )I‖k

(∆−max(z))k+1

≤
∞∑
k=1

2∆(
∑m

i=1 |αi|1/2)2(‖Helse‖+
∑m

i=1 |αi|)k
(∆−max(z))k+1

=
2∆(

∑m
i=1 |αi|1/2)2

∆−max(z)
· ‖Helse‖+

∑m
i=1 |αi|

∆−max(z)− (‖Helse‖+
∑m

i=1 |αi|)
.

(2.18)

Similar to the discussion in Section 2.2, to ensure that ‖Σ−(z) −Htarg ⊗ P−‖ ≤ ε,

which is the condition of Theorem 1.3.1, it is sufficient to let ‖E1‖+‖E2‖+‖E3‖ ≤ ε:

‖E1‖+ ‖E2‖+ ‖E3‖ ≤
2 max(z)

∆−max(z)

(
m∑
i=1

|αi|1/2
)2

+
2∆(

∑m
i=1 |αi|1/2)2

∆−max(z)
· ‖Helse‖+

∑m
i=1 |αi|

∆−max(z)− (‖Helse‖+
∑m

i=1 |αi|)

=
2(
∑m

i=1 |αi|1/2)2(max(z) + ‖Helse‖+
∑m

i=1 |αi|)
∆−max(z)− (‖Helse‖+

∑m
i=1 |αi|)

≤ ε

(2.19)

where we find the lower bound of ∆ for parallel subdivision gadget

∆ ≥
[

2(
∑m

i=1 |αi|1/2)2

ε
+ 1

]
(2‖Helse‖+ 2

m∑
i=1

|αi|+ ε). (2.20)
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Note that if one substitutes m = 1 into Equation 2.20 the resulting expression is

a lower bound that is less tight than that in Equation 2.9. This is because of the

difference in the perturbation V between Equation 2.13 and Equation 3.5 which is

explained in the text preceding Equation 2.14. Also we observe that the scaling of

this lower bound for ∆ is O(poly(m)/ε) for m parallel applications of subdivision

gadgets, assuming |αi| = O(poly(m)) for every i ∈ {1, 2, · · · ,m}. This confirms the

statement in [7, 8, 129] that subdivision gadgets can be applied to multiple terms in

parallel and the scaling of the gap ∆ in the case of m parallel subdivision gadgets

will only differ to that of a single subdivision gadget by a polynomial in m.

Iterative scheme for k- to 3-body reduction. The iterative scheme in Algorithm 1 sum-

marizes how to use parallel subdivision gadgets for reducing a k-body Ising Hamilto-

nian to 3-body (Here we use superscript (i) to represent the ith iteration and subscript

i for labelling objects within the same iteration).

We could show that after s iterations, the maximum spectral error between

Π
(s)
− H̃(s)Π

(s)
− and H̃(0)

⊗s
i=1 P

(s)
− is guaranteed to be within sε. Suppose we would like

to make target Hamiltonian H̃0, we construct a gadget H̃ = H(1) + V(1) according

to Algorithm (1), such that |λ(H̃(1)) − λ(H̃(0))| ≤ ε for low-lying eigenvalues λ(·).
Note that in a precise sense we should write |λ(Π

(1)
− H̃(1)Π

(1)
− )−λ(H̃(0)⊗P

(0)
− )|. Since

the projectors Π
(i)
− and P

(i)
− do not affect the low-lying spectrum of H̃(i) and H̃(i−1),

for simplicity and clarity we write only H̃(i−1) and H̃(i). After H̃(1) is introduced,

according to Algorithm (1) the second gadget H̃(2) is then constructed by consider-

ing the entire H̃(1) as the new target Hamiltonian and introducing ancilla particles

with unperturbed Hamiltonian H(2) and perturbation V(2) such that the low-energy

spectrum of H̃(2) approximates the spectrum of H̃(1) up to error ε. In other words

|λ(H̃(1)) − λ(H̃(2))| ≤ ε. With the serial application of gadgets we have produced

a sequence of Hamiltonians H̃(0) → H̃(1) → H̃(2) → · · · → H̃(k) where H̃(0) is the

target Hamiltonian and each subsequent gadget Hamiltonian H̃(i) captures the entire

previous gadget H̃(i−1) in its low-energy sector with |λ(H̃(i))− λ(H̃(i−1))| ≤ ε. Hence
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Algorithm 1: Iterative scheme for reducing k-body Hamiltonian to 2-body

H̃(0) = Htarg; Htarg acts on the Hilbert space M(0).

while H̃(i) is more than 3-body

Step 1: Find all the terms that are no more than 3-body (including Helse

from H̃(0)) in H̃(i−1) and let their sum be H
(i)
else.

Step 2: Partition the rest of the terms in H̃(i−1) into α
(i)
1 A

(i)
1 ⊗B

(i)
1 ,

α
(i)
2 A

(i)
2 ⊗B

(i)
2 , · · · , α(i)

m A
(i)
m ⊗B

(i)
m . Here α

(i)
j are coefficients.

Step 3: Introduce m ancilla qubits w
(i)
1 , w

(i)
2 , · · ·w(i)

m and construct H̃(i)

using the parallel subdivision gadget.

Let P
(i)
− = |0 · · · 0〉〈0 · · · 0|

w
(i)
1 ···w

(i)
m

and Π
(i)
− = IM(i) ⊗P

(i)
− .

3.1: Apply the penalty Hamiltonian H(i) =
∑m

x∈{0,1} h(x)∆(i)|x〉〈x|.
Here ∆(i) is calculated by the lower bound in Equation 2.20.

3.2: Apply the perturbation

V(i) = H
(i)
else +

∑m
j=1

√
|α(i)
j |∆(i)

2
(sgn(α

(i)
j )A

(i)
j −B

(i)
j )⊗X

w
(i)
j

+
∑m

j=1 |α
(i)
j |I.

3.3: H̃(i) = H(i) + V(i) acts on the space M(i) and the maximum

spectral difference between H̃
(i)
− = Π

(i)
− H̃(i)Π

(i)
− and H̃(i−1) ⊗P

(i)
−

is at most ε.

Step 4: i← i+ 1.

end
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S1S2S3S4|S5S6S7 iteration (tree depth) i

��	
i = 1@@R

S1S2S3|S4Xu1
Xu1

S5|S6S7

��	 @@R ��	 @@R i = 2

S1S2|S3Xu2 Xu2S4Xu1 Xu1S5Xu3 Xu3S6S7

��	 @@R i = 3

S1S2Xu4 Xu4S3Xu2

(a)

(b) (c)

Fig. 2.3. (a): Reduction tree diagram for reducing a 7-body term to 3-
body using parallel subdivision gadgets. Each Si is a single-qubit Pauli
operator acting on qubit i. The vertical lines | show where the subdivisions
are made at each iteration to each term. (b): An example where we con-
sider the target Hamiltonian Htarg = αS1S2S3S4S5S6S7 with α = 5×10−3,
Si = Xi, ∀i ∈ {1, 2, · · · , 7}, and reduce it to 3-body according to (a) up
to error ε = 5×10−4. This plot shows the energy gap applied onto the an-
cilla qubits introduced at each iteration. (c): The spectral error between

the gadget Hamiltonian at each iteration H̃(i) and the target Hamiltonian
Htarg. For both (b)(c) the data labelled as “numerical” correspond to the
case where during each iteration ∆(i) is optimized such that the maximum
spectral difference between Π

(i)
− H̃(i)Π

(i)
− and H̃(i−1) ⊗ P

(i)
− is ε. For def-

initions of ∆(i), H̃(i), Π
(i)
− and P

(i)
− , see Algorithm 1. Those labelled as

“analytical” correspond to cases where each iteration uses the gap bound
derived in Equation 2.20.
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to bound the spectral error between the last gadget H̃(k) and the target Hamiltonian

H̃(0) we could use triangle inequality: |λ(H̃(s)) − λ(H̃(0))| ≤ |λ(H̃(s)) − λ(H̃(s−1))| +
· · ·+ |λ(H̃(1))− λ(H̃(0))| ≤ sε.

Total number of iterations for a k- to 3-body reduction. In general, given a k-body

Hamiltonian, we apply the following parallel reduction scheme at each iteration until

every term is 3-body: if k is even, this reduces it to two (k/2 + 1)-body terms; if k

is odd, this reduces it to a (k+1
2

+ 1)- and a (k−1
2

+ 1)-body term. Define a function

f such that a k-body term needs f(k) iterations to be reduced to 3-body. Then we

have the recurrence

f(k) =


f

(
k

2
+ 1

)
+ 1 k even

f

(
k + 1

2
+ 1

)
+ 1 k odd

(2.21)

with f(3) = 0 and f(4) = 1. One can check that f(k) = dlog2(k− 2)e, k ≥ 4 satisfies

this recurrence. Therefore, using subdivision gadgets, one can reduce a k-body inter-

action to 3-body in s = dlog2(k − 2)e iterations and the spectral error between H̃(s)

and H̃(0) is within dlog2(k − 2)eε.

Gap scaling. From the iterative scheme shown previously one can conclude that

∆(i+1) = Θ(ε−1(∆(i))3/2) for the (i+ 1)th iteration, which implies that for a total of s

iterations,

∆(s) = Θ
(
ε−2[(3/2)s−1−1](∆(1))(3/2)s−1

)
. (2.22)

Since s = dlog2(k − 2)e and ∆(1) = Θ(ε−1) we have

∆(s) = Θ
(
ε−3( 1

2
dk−2e)log2(3/2)−2

)
= Θ

(
ε−poly(k)

)
(2.23)

accumulating exponentially as a function of k. The exponential nature of the scaling

with respect to k agrees with results by Bravyi et al. [129]. However, in our con-
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struction, due to the improvement of gap scaling in a single subdivision gadget from

∆ = Θ(ε−2) to Θ(ε−1), the scaling exponents in

∆(i+1) = Θ(ε−1(∆(i))3/2)

are also improved quadratically over those in [129], which is ∆(i+1) = Θ(ε−2(∆(i))3).

Qubit cost. Based on the reduction scheme described in Algorithm 1 (illustrated

in Figure 2.3a for 7-body), the number of ancilla qubits needed for reducing a k-body

term to 3-body is k−3. Suppose we are given a k-body target term S1S2 · · ·Sk (where

all of the operators Si act on separate spaces) and we would like to reduce it to 3-body

using the iterative scheme in Algorithm 1. At each iteration, if we describe every in-

dividual subdivision gadget by a vertical line | at the location where the partition is

made, for example S1S2S3S4|S5S6S7 in the case of the first iteration in Figure 2.3a,

then after dlog2(k − 2)e iterations all the partitions made to the k-body term can be

described as S1S2|S3|S4| · · · |Sk−2|Sk−1Sk. Note that there are k − 3 vertical lines in

total, each corresponding to an ancilla qubit needed for a subdivision gadget. There-

fore in total k− 3 ancilla qubits are needed for reducing a k-body term to 3-body.

Example: Reducing 7-body to 3-body. We have used numerics to test the reduction

algorithm in Algorithm 1 on a target Hamiltonian Htarg = αS1S2S3S4S5S6S7. Here

we let Si = Xi, ∀i ∈ {1, 2, · · · , 7}, ε = 5 × 10−4 and α = 5 × 10−3. During each

iteration the values of ∆(i) are assigned according to the lower bound in Equation

2.20. From Figure 2.3c we can see that the lower bounds are sufficient for keeping

the total spectral error between H̃
(3)
<E∗

and H̃(0)
⊗3

i=1 P
(i)
− within 3ε. Furthermore,

numerical search is also used at each iteration to find the minimum value of ∆(i) so

that the spectral error between Π
(i)
− H̃(i)Π

(i)
− and H̃(i−1)

⊗i
j=1 P

(j)
− is ε. The numer-

ically found gaps ∆(i) are much smaller than their analytical counterparts at each

iteration (Figure 2.3b), at the price that the error is larger (Figure 2.3c). In both the
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numerical and the analytical cases, the error appears to accumulate linearly as the

iteration proceeds.

2.4 Improved 3- to 2-body gadget

Summary. Subdivision gadgets cannot be used for reducing from 3- to 2-body;

accordingly, the final reduction requires a different type of gadget [7,8,129]. Consider

3-body target Hamiltonian of the form Htarg = Helse + αA⊗B⊗C. Here A, B and

C are unit-norm Hermitian operators acting on separate spaces A, B and C. Here we

focus on the gadget construction introduced in Oliveira and Terhal [8] and also used in

Bravyi, DiVincenzo, Loss and Terhal [129]. To accomplish the 3- to 2-body reduction,

we introduce an ancilla spin w and apply a penalty Hamiltonian H = ∆|1〉〈1|w. We

then add a perturbation V of form,

V = Helse + µC⊗ |1〉〈1|w + (κA + λB)⊗Xw + V1 + V2 (2.24)

where V1 and V2 are 2-local compensation terms (details presented later in this

section):

V1 =
1

∆
(κ2 + λ2)|0〉〈0|w +

2κλ

∆
A⊗B− 1

∆2
(κ2 + λ2)µC⊗ |0〉〈0|w

V2 = −2κλ

∆3
sgn(α)

[
(κ2 + λ2)|0〉〈0|w + 2κλA⊗B

]
.

(2.25)

Here we let κ = sgn(α) (α/2)1/3 ∆3/4, λ = (α/2)1/3 ∆3/4 and µ = (α/2)1/3 ∆1/2.

For sufficiently large ∆, the low-lying spectrum of the gadget Hamiltonian H̃

captures the entire spectrum of Htarg up to arbitrary error ε. In the construction

of [129] it is shown that ∆ = Θ(ε−3) is sufficient. In [7], ∆ = Θ(ε−3) is also assumed,

though the construction of V is slightly different from Equation 2.24. By adding

terms in V to compensate for the perturbative error due to the modification, we find

that ∆ = Θ(ε−2) is sufficient for accomplishing the 3- to 2-body reduction:

∆ ≥ 1

4
(−b+

√
b2 − 4c)2 (2.26)
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where b and c are defined as

b = −
[
ξ +

24/3α2/3

ε
(max z + η + ξ2)

]
c = −

(
1 +

24/3α2/3

ε
ξ

)
(max z + η)

(2.27)

with max z = ‖Helse‖ + |α| + ε, η = ‖Helse‖ + 22/3α4/3 and ξ = 2−1/3α1/3 + 21/3α2/3.

From Equation 2.26 we can see the lower bound to ∆ is Θ(ε−2). Our improvement

results in a power of ε−1 reduction in the gap. For the dependence of ∆ on ‖Helse‖, α
and ε−1 for both the original [8] and the optimized case, see Figure 2.4. Results show

that the bound in Equation 2.26 is tight with respect to the minimum ∆ numerically

found that yields the spectral error between H̃<E∗ and Htarg ⊗ |0〉〈0|w to be ε.

Analysis. We will proceed by first presenting the improved construction of the 3-

to 2-body gadget and then show that ∆ = Θ(ε−2) is sufficient for the spectral error

to be ≤ ε. Then we present the construction in the literature [8, 129] and argue that

∆ = Θ(ε−3) is required for yielding a spectral error between H̃ and Heff within ε

using this construction.

In the improved construction we define the perturbation V as in Equation 2.24.

Here the coefficients are chosen to be κ = Θ(∆3/4), λ = Θ(∆3/4) and µ = Θ(∆1/2).

In order to show that the assigned powers of ∆ in the coefficients are optimal, we

introduce a parameter r such that

κ = sgn(α)
(α

2

)1/3

∆r, λ =
(α

2

)1/3

∆r, µ =
(α

2

)1/3

∆2−2r. (2.28)

It is required that ‖V‖ ≤ ∆/2 (Theorem 1.3.1) for the convergence of the perturbative

series. Therefore let r < 1 and 2 − 2r < 1, which gives 1/2 < r < 1. With the

definitions L− and L+ being the ground and excited state subspaces respectively,

V−, V+, V−+, V+− can be calculated as the following:

V− =

[
Helse +

1

∆
(κA + λB)2 − 1

∆
(κ2 + λ2)µC

− 2κλ

∆3
sgn(α)(κA + λB)2

]
⊗ |0〉〈0|w (2.29)
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V+ =

[
Helse + µC +

2κλ

∆
A⊗B− 4κ2λ2

∆3
sgn(α)A⊗B

]
⊗ |1〉〈1|w (2.30)

V−+ = (κA + λB)⊗ |0〉〈1|w (2.31)

V+− = (κA + λB)⊗ |1〉〈0|w. (2.32)

The self-energy expansion, referring to Equation 1.26, becomes

Σ−(z) = V− +
1

z −∆
V−+V+− +

1

(z −∆)2
V−+V+V+− +

∞∑
k=2

V−+Vk
+V+−

(z −∆)k+1

= Helse︸︷︷︸
(a)

+
1

∆
(κA + λB)2︸ ︷︷ ︸

(b)

− 1

∆
(κ2 + λ2)µC︸ ︷︷ ︸

(c)

−2κλ

∆3
sgn(α)(κA + λB)2︸ ︷︷ ︸

(d)

+
1

z −∆
(κA + λB)2︸ ︷︷ ︸

(e)

+
1

(z −∆)2
(κA + λB)

Helse︸︷︷︸
(f)

+ µC︸︷︷︸
(g)

+
2κλ

∆
A⊗B︸ ︷︷ ︸
(h)

−4κ2λ2

∆3
sgn(α)A⊗B︸ ︷︷ ︸

(i)

 (κA + λB) +
∞∑
k=2

V−+Vk
+V+−

(z −∆)k+1︸ ︷︷ ︸
(j)

.

(2.33)

Now we rearrange the terms in the self energy expansion so that the target Hamilto-

nian arising from the leading order terms can be separated from the rest, whcih are

error terms. Observe that term (g) combined with the factors outside the bracket

could give rise to a 3-body A⊗B⊗C term:

1

(z −∆)2
(κA + λB)2µC =

2κλµ

∆2
A⊗B⊗C︸ ︷︷ ︸

(g1)

+

(
1

(z −∆)2
− 1

∆2

)
2κλµA⊗B⊗C︸ ︷︷ ︸

(g2)

+
1

(z −∆)2
(κ2 + λ2)µC︸ ︷︷ ︸
(g3)

.

(2.34)

Here (g1) combined with term (a) in (2.33) gives Htarg. (g2) and (g3) are error terms.

Now we further rearrange the error terms as the following. We combine term (b)

and (e) to form E1, term (c) and (g3) to form E2, term (f) and the factors outside
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the bracket to be E3. Rename (g2) to be E4. Using the identity (κA + λB)(A ⊗
B)(κA + λB) = sgn(α)(κA + λB)2 we combine term (d) and (h) along with the

factors outside the bracket to be E5. Rename (i) to be E6 and (j) to be E7. The

rearranged self-energy expanision reads

Σ−(z) =

[
Helse +

2κλµ

∆2
A⊗B⊗C︸ ︷︷ ︸

Htarg

+

(
1

∆
+

1

z −∆

)
(κA + λB)2︸ ︷︷ ︸

E1

+

(
1

(z −∆)2
− 1

∆2

)
(κ2 + λ2)µC︸ ︷︷ ︸

E2

+
1

(z −∆)2
(κA + λB)Helse(κA + λB)︸ ︷︷ ︸

E3

+

(
1

(z −∆)2
− 1

∆2

)
2κλµA⊗B⊗C︸ ︷︷ ︸

E4

+

(
1

(z −∆)2
− 1

∆2

)
2κλ

∆
sgn(α)(κA + λB)2︸ ︷︷ ︸

E5

− 1

(z −∆)2
· 4κ2λ2

∆3
(κA + λB)2︸ ︷︷ ︸

E6

]
⊗ |0〉〈0|w +

∞∑
k=2

V−+Vk
+V+−

(z −∆)k+1︸ ︷︷ ︸
E7

.

(2.35)

We bound the norm of each error term in the self energy expansion Equation 2.35

by substituting the definitions of κ, λ and µ in Equation 2.28 and letting z be the

maximum value permitted by Theorem 1.3.1 which is max z = |α|+ ε+ ‖Helse‖:

‖E1‖ ≤
max z·24/3α2/3∆2r−1

∆−max z
= Θ(∆2r−2),

‖E2‖ ≤
(2∆−max z) max z

(∆−max z)2
· α = Θ(∆−1),

(2.36)

‖E3‖ ≤
24/3α2/3∆2r‖Helse‖

(∆−max z)2
= Θ(∆2r−2),

‖E4‖ ≤
(2∆−max z) max z

(∆−max z)2
· α = Θ(∆−1),

(2.37)

‖E5‖ ≤
(2∆−max z) max z

(∆−max z)2
· 25/3α4/3∆4r−3 = Θ(∆4r−4),

‖E6‖ ≤
4α2∆6r−3

(∆−max z)2
= Θ(∆6r−5),

(2.38)
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‖E7‖ ≤
∞∑
k=2

∥∥∥∥∥(κA+ λB)
(
Helse + µC + 2κλ

∆

(
1 + 2κλ

∆2

)
A⊗B

)k
(κA + λB)

(∆−max z)k+1

∥∥∥∥∥
≤ 24/3α2/3∆2r

(∆−max z)

∞∑
k=2

1

(∆−max z)k
(
‖Helse‖+ 2−1/3α1/3∆2−2r

+21/3α2/3∆2r−1 + 22/3α4/3∆4r−3
)k

= Θ(∆max{1−2r,6r−5,10r−9}).

(2.39)

Now the self energy expansion can be written as

Σ−(z) = Htarg ⊗ |0〉〈0|w + Θ(∆f(r))

where the function f(r) < 0 determines the dominant power in ∆ from ‖E1‖ through

‖E6‖:
f(r) = max{1− 2r, 6r − 5}, 1

2
< r < 1. (2.40)

In order to keep the error O(ε), it is required that ∆ = Θ(ε1/f(r)). To optimize the gap

scaling as a function of ε, f(r) must take the minimum value. As is shown in Figure

2.5b, when r = 3/4, the minimum value f(r) = −1/2 is obtained, which corresponds

to ∆ = Θ(ε−2). We have hence shown that the powers of ∆ in the assignments of

κ, λ and µ in Equation 2.28 are optimal for the improved gadget construction. The

optimal scaling of Θ(ε−2) is also numerically confirmed in Figure 2.4a. As one can

see, the optimized slope d log ∆/d log ε−1 is approximately 2 for small ε.

One natural question to ask next is whether it is possible to further improve the

gap scaling as a function of ε. This turns out to be difficult. Observe that the

6r − 5 component of f(r) in Equation 2.40 comes from E6 and E7 in Equation 2.35.

In E7, the Θ(∆6r−5) contribution is attributed to the term 1
∆

(κA + λB)2 in V1 of

Equation 2.25, which is intended for compensating the 2nd order perturbative term

and therefore cannot be removed from the construction.

We now let r = 3/4 be a fixed constant and derive the lower bound for ∆ such

that for given α, Helse and ε, the spectral error between the effective Hamiltonian
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Fig. 2.4. Comparison between our 3- to 2-body gadget with that of
Oliveira and Terhal [8]. As ∆ is not explicitly assigned as a function
of α, ‖Helse‖ and ε in [8], we numerically find the optimal ∆ values for
their constructions (marked as “[OT06]”). Subplot (a) shows the scaling
of the gap ∆ as a function of error tolerance ε. Subplot (b) shows the
gap ∆ as a function of the desired coupling α. For the meanings of the
labels in the legend, see Figure 2.2. The fixed parameters in each sub-
plots are: (a) ‖Helse‖ = 0, α = 1. (b) ε = 0.01, ‖Helse‖ = 0. Note that
our constructions have improved the ∆ scaling for the ranges of α and ε
considered.
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Fig. 2.5. The function f(r) shows the dominant power of ∆ in the er-
ror terms in the perturbative expansion. (a): When the error term E4 in
Equation 2.48, which contributes to the 4r−3 component of f(r) in Equa-
tion 2.50, is not compensated in the original construction by Oliveira and
Terhal, the dominant power of ∆ in the error term f(r) takes minimum
value of −1/3, indicating that ∆ = Θ(ε−3) is required. (b): In the im-
proved construction, minr∈(1/2,1) f(r) = −1/2 indicating that ∆ = Θ(ε−2).
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Heff = Htarg⊗|0〉〈0|w and H̃<E∗ is within ε. This amounts to satisfying the condition

of Theorem 1.3.1:

‖Σ−(z)−Heff‖ ≤ ε. (2.41)

Define the total error E = Σ−(z) −Heff = E1 + · · · + E7. For convenience we also

define η = ‖Helse‖+ 22/3α4/3 and ξ = 2−1/3α1/3 + 21/3α2/3. Then

‖E7‖ ≤
24/3α2/3∆3/2

∆−max z

∞∑
k=2

(η + ξ∆1/2)k

(∆−max z)k

=
24/3α2/3∆3/2

∆−max z − (η + ξ∆1/2)

(
η + ξ∆1/2

∆−max z

)2

.

(2.42)

The upper bound for ‖E‖ is then found by summing over Equation 2.36, 2.37, 2.38

and 2.42:

‖E‖ ≤ max z·24/3α2/3∆1/2

∆−max z
+

(2∆−max z) max z

(∆−max z)2
· 24/3α3/2ξ +

24/3α2/3∆3/2η

(∆−max z)2

+
24/3α2/3∆3/2

∆−max z − (η + ξ∆1/2)

(
η + ξ∆1/2

∆−max z

)2

.

(2.43)

By rearranging the terms in Equation 2.43 we arrive at a simplified expression for

the upper bound presented below. Requiring the upper bound of ‖E‖ to be within ε

gives

‖E‖ ≤ 24/3α2/3 (max z + η + ξ2)∆1/2 + ξ(max z + η)

∆− ξ∆1/2 − (max z + η)
≤ ε. (2.44)

Equation 2.44 is a quadratic constraint with respect to ∆1/2. Solving the inequality

gives the lower bound of ∆ given in Equation 2.26. Note here that ∆ = Θ(ε−2), which

improves over the previously assumed ∆ = Θ(ε−3) in the literature [7, 8, 129]. This

bound is shown in Figure 2.4b as the “analytical lower bound”. Comparison between

the analytical lower bound and the numerically optimized gap in Figure 2.4b indicates

that the lower bound is relatively tight when ‖Helse‖ = 0. If Helse is non-zero, the

bound is likely going to be less tight because Helse may not commute with the other

terms in the target Hamiltonian.
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Comparison with Oliveira and Terhal [8]. Given operators Q, R and T acting on

separate spaces A, B and C respectively, the 3- to 2-body construction in [7, 8] ap-

proximates the target Hamiltonian Htarg = Helse + Q⊗R⊗T. In order to compare

with their construction, however, we let α = ‖Q‖ · ‖R‖ · ‖T‖ and define Q = α1/3A,

R = α1/3B and T = α1/3C. Hence the target Hamiltonian Htarg = Helse+αA⊗B⊗C

with A, B and C being unit-norm Hermitian operators. Introduce an ancilla qubit

w and apply the penalty Hamiltonian H = ∆|1〉〈1|w. In the construction by Oliveira

and Terhal [8], the perturbation V is defined as

V = Helse ⊗ Iw + µC⊗ |1〉〈1|w + (κA + λB)⊗Xw + V′1 (2.45)

where the compensation term V′1 is

V′1 =
1

∆
(κA + λB)2 − 1

∆2
(κ2A2 + λ2B2)µC. (2.46)

Comparing Equation 2.46 with the expression for V1 in Equation 2.25, one observes

that V1 slightly improves over V′1 by projecting 1-local terms to L− so that V will have

less contribution to V+, which reduces the high order error terms in the perturbative

expansion. However, this modification comes at a cost of requiring more 2-local terms

in the perturbation V.

From the gadget construction shown in [8, Equation 26], the equivalent choices of

the coefficients κ, λ and µ are

κ = −
(α

2

)1/3 1√
2

∆r, λ =
(α

2

)1/3 1√
2

∆r, µ = −
(α

2

)1/3

∆2−2r (2.47)

where r = 2/3 in the constructions used in [8, 129]. In fact this value of r is optimal

for the construction in the sense that it leads to the optimal gap scaling ∆ = Θ(ε−3).

Expanding the self-energy to 3rd order, following a similar procedure as in (2.33), we

have

Σ−(z) =

[
Helse +

2κλµ

∆2
A⊗B⊗C︸ ︷︷ ︸

Htarg

+

(
1

∆
+

1

z −∆

)
(κA + λB)2︸ ︷︷ ︸

E1
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+

(
1

(z −∆)2
− 1

∆2

)
(κ2A2 + λ2B2)µC︸ ︷︷ ︸

E2

+
1

(z −∆)2
(κA + λB)Helse(κA + λB)︸ ︷︷ ︸

E3

+
1

(z −∆)2
· 1

∆
(κA + λB)4︸ ︷︷ ︸

E4

− 1

(z −∆)2
· 1

∆2
(κ2A2 + λ2B2)µ(κA + λB)2C︸ ︷︷ ︸

E5

]
⊗ |0〉〈0|w

+
∞∑
k=2

V−+Vk
+V+−

(z −∆)k+1︸ ︷︷ ︸
E6

. (2.48)

Similar to the derivation of Equation 2.36, 2.37, and 2.38 by letting z 7→ max z, where

max z = |α| + ε + ‖Helse‖ is the largest value of z permitted by the Theorem 1.3.1,

and using the triangle inequality to bound the norm, we can bound the norm of the

error terms E1 through E6. For example,

‖E1‖ ≤
(

1

∆−max z
− 1

∆

)
22 ·

(α
2

)2/3

∆2r = Θ(∆2r−2).

Applying the same calculation to E2,E3, · · · we find that ‖E2‖ = Θ(∆−1), ‖E3‖ =

Θ(∆2r−2), ‖E4‖ = Θ(∆4r−3), ‖E5‖ = Θ(∆4r−4). The norm of the high order terms

E6 can be bounded as

‖E6‖ ≤
∞∑
k=2

‖V−+‖ · ‖V+‖k · ‖V+−‖
(∆−max(z))k+1

≤ 4
(
α
2

)1/3
∆2r

∆−max(z)

∞∑
k=2

(
ρ

∆−max(z)

)k
=

24/3α2/3∆2r

∆−max(z)− ρ

(
ρ

∆−max(z)

)2

= Θ(∆2r−1+2 max{1−2r,2r−2}) = Θ(∆max{1−2r,6r−5})

(2.49)

where ρ = ‖Helse‖+ 2−1/3α1/3∆2−2r + 21/3α2/3∆2r−1. If we again write the self energy

expansion Equation 2.48 as

Σ−(z) = Htarg ⊗ |0〉〈0|w + Θ(∆f(r)),
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the function f(r) < 0, which determines the dominant power in ∆ among E1 through

E6, can be found as

f(r) = max{1− 2r, 2r − 2, 4r − 3, 6r − 5}, 1

2
< r < 1. (2.50)

Similar to the discussion after Equation 2.40, the optimal scaling of ∆ = Θ(ε1/f(r))

gives r = argminf(r) = 2/3, when f(r) = −1/3 and ∆ = Θ(ε−3), as is shown in

Figure 2.5a. Note that the 4r− 3 component in f(r), Equation 2.50, comes from the

error term E4 in Equation 2.48. The idea for improving the gadget construction comes

from the observation in Figure 2.5a that when we add a term in V to compensate for

E4, the dominant power of ∆ in the perturbation series, f(r), could admit a lower

minimum as shown in Figure 2.5b. In the previous calculation we have shown that

this is indeed the case and the minimum value of f(r) becomes −1/2 in the improved

case, indicating that ∆ = Θ(ε−2) is sufficient for keeping the error terms O(ε).

2.5 Parallel 3- to 2-body gadget

Summary. In Section 2.3 we have shown that by using parallel subdivision gadgets

iteratively, one can reduce a k-body target term to 3-body. We now turn our attention

to considering Htarg = Helse +
∑m

i=1 αiAi ⊗ Bi ⊗ Ci, which is a sum of m 3-body

terms. A straightforward approach to the reduction is to deal with the 3-body terms

in series i.e. one at a time: apply a 3-body gadget on one term, and include the

entire gadget in the Helse of the target Hamiltonian in reducing the next 3-body

term. In this construction, ∆ scales exponentially as a function of m. In order to

avoid that overhead, we apply all gadgets in parallel, which means introducing m

ancilla spins, one for each 3-body term and applying the same ∆ onto it. This poses

additional challenges as the operator valued resolvent G(z) now has multiple poles.

Enumerating high order terms in the perturbation series requires consideration of the

combinatorial properties of the bit flipping processes (Figure 2.6).

If we apply the current construction [8, 129] of 3-body gadgets in parallel, which

requires ∆ = Θ(ε−3), it can be shown [129] that the cross-gadget contribution is
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O(ε). However, if we apply our improved construction of the 3- to 2-body gadget

in parallel, the perturbation expansion will contain Θ(1) cross-gadget terms that are

dependent on the commutation relations between Ai, Bi and Aj, Bj. Compensation

terms are designed to ensure that these error terms are suppressed in the perturbative

expansion. With our improved parallel 3-body construction, ∆ = Θ(ε−2poly(m)) is

sufficient.

The combination of parallel subdivision with the parallel 3- to 2-body reduction al-

lows us to reduce an arbitrary k-body target Hamiltonian Htarg = Helse +αS1S2 · · ·Sk
to 2-body [129]. In this chapter we have improved both parallel 2-body and 3- to

2-body gadgets. When numerically optimized at each iteration, our construction re-

quires a smaller gap than the original construction [129] for the range of k concerned.

Analysis. In Section 2.3 we have shown that with subdivision gadgets one can reduce

a k-body interaction term down to 3-body. To complete the discussion on reducing

a k-body term to 2-body, now we deal with reducing a 3-body target Hamiltonian of

form

Htarg = Helse +
m∑
i=1

αiAi ⊗Bi ⊗Ci

where Helse is a finite-norm Hamiltonian and all of Ai, Bi, Ci are single-qubit Pauli

operators acting on one of the n qubits that Htarg acts on. Here without loss of

generality, we assume Ai, Bi and Ci are single-qubit Pauli operators as our construc-

tion depends on the commutation relationships among these operators. The Pauli

operator assumption ensures that the commutative relationship can be determined

efficiently a priori.

We label the n qubits by integers from 1 to n. We assume that in each 3-body

term of the target Hamiltonian, Ai, Bi and Ci act on three different qubits whose

labels are in increasing order i.e. if we label the qubits with integers from 1 to n, Ai

acts on qubit ai, Bi acts on bi, Ci on ci, we assume that 1 ≤ ai < bi < ci ≤ n must

hold for all values of i from 1 to m.
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One important feature of this gadget is that the gap ∆ scales as Θ(ε−2) instead

of the common Θ(ε−3) scaling assumed by the other 3-body constructions in the

literature [7, 8, 129].

To reduce the Htarg to 2-body, introduce m qubits labelled as u1, u2, · · · , um and

apply an energy penalty ∆ onto the excited subspace of each qubit, as in the case of

parallel subdivision gadgets presented previously. Then we have

H =
m∑
i=1

∆|1〉〈1|ui =
∑

x∈{0,1}m
h(x)∆|x〉〈x|. (2.51)

where h(x) is the Hamming weight of the m-bit string x. In this new construction

the perturbation V is defined as

V = Helse +
m∑
i=1

µiCi ⊗ |1〉〈1|ui +
m∑
i=1

(κiAi + λiBi)⊗Xui + V1 + V2 + V3

(2.52)

where V1 is defined as

V1 =
1

∆

m∑
i=1

(κiAi + λiBi)
2 − 1

∆2

m∑
i=1

(κ2
i + λ2

i )µiCi (2.53)

and V2 is defined as

V2 = − 1

∆3

m∑
i=1

(κiAi + λiBi)
4. (2.54)

V3 will be explained later. Following the discussion in Section 2.4, the coefficients κi,

λi and µi are defined as

κi = sgn(αi)

( |αi|
2

) 1
3

∆
3
4 , λi =

( |αi|
2

) 1
3

∆
3
4 , µi =

( |αi|
2

) 1
3

∆
1
2 . (2.55)

However, as we will show in detail later in this section, a close examination of the

perturbation expansion based on the V in Equation 2.52 shows that with assignments

of κi, λi and µi in Equation 2.55 if V has only V1 and V2 as compensation terms,

the cross-gadget contribution in the expansion causes Θ(1) error terms to arise. In

order to compensate for the Θ(1) error terms, we introduce the compensation

V3 =
m∑
i=1

m∑
j=1,j 6=i

V̄ij
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into V and V̄ij is the compensation term for cross-gadget contribution1. Before

presenting the detailed form of V̄ij, let s
(i,j)
1 = s

(i,j)
11 + s

(i,j)
12 where

s
(i,j)
11 =


1 if

 [Ai,Aj] 6= 0

[Bi,Bj] = 0
or

 [Bi,Bj] 6= 0

[Ai,Aj] = 0

0 otherwise

(2.56)

s
(i,j)
12 =


1 if [Ai,Bj] 6= 0 or [Bi,Aj] 6= 0

0 otherwise

(2.57)

and further define s
(i,j)
2 as

s
(i,j)
2 =


1 if [Ai,Aj] 6= 0 and [Bi,Bj] 6= 0

0 otherwise.

(2.58)

Then we define V̄ij as

V̄ij = −s(i,j)
1 · 1

∆3
(κiκj)

2I− s(i,j)
2

(
2

∆3
(κiκj)

2I− 2

∆3
κiκjλiλjAiAjBiBj

)
(2.59)

where s
(i,j)
1 and s

(i,j)
2 are coefficients that depend on the commuting relations between

the operators in the ith term and the jth term. Note that in Equation 2.59, although

the term AiAjBiBj is 4-local, it arises only in cases where s
(i,j)
2 = 1. In this case,

an additional gadget with a new ancilla uij can be introduced to generate the 4-

local term. For succinctness we present the details of this construction in Appendix

A. With the penalty Hamiltonian H defined in Equation 2.51, the operator-valued

resolvent (or the Green’s function) can be written as

G(z) =
∑

x∈{0,1}m

1

z − h(x)∆
|x〉〈x|. (2.60)

1As is shown by [129], for the gadget construction with the assignments of κi, λi and µi all being
O(∆2/3), the cross-gadget contribution can be reduced by increasing ∆, thus no cross-gadget com-
pensation is needed. However, with our assignments of κi, λi and µi in (2.55) there are cross-gadget
error terms in the perturbative expansion that are of order O(1), which cannot be reduced by in-
creasing ∆. This is why we need V̄ij . Since the O(1) error terms are dependent on the commuting
relations between Ai, Bi, Aj and Bj of each pair of ith and jth terms in the target Hamiltonian, V̄ij
depends on their commutation relations too.
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Define subspaces of the ancilla register L− = span{|00 · · · 0〉} and L+ = span{|x〉|x 6=
00 · · · 0}. Define P− and P+ as the projectors onto L− and L+. Then the projections

of V onto the subspaces can be written as

V+ =

(
Helse +

1

∆

m∑
i=1

(κiAi + λiBi)
2 − 1

∆2

m∑
i=1

(κ2
i + λ2

i )µiCi

− 1

∆3

m∑
i=1

(κiAi + λiBi)
4 +

m∑
i=1

m∑
j=1,j 6=i

V̄ij

)
⊗P+ +

m∑
i=1

µiCi ⊗P+|1〉〈1|uiP+

+
m∑
i=1

(κiAi + λiBi)⊗P+XuiP+︸ ︷︷ ︸
Vf

= Vs + Vf

V−+ =
m∑
i=1

(κiAi + λiBi)⊗P−XuiP+, V+− =
m∑
i=1

(κiAi + λiBi)⊗P+XuiP−

V− =

(
Helse +

1

∆

m∑
i=1

(κiAi + λiBi)
2 − 1

∆2

m∑
i=1

(κ2
i + λ2

i )µiCi

− 1

∆3

m∑
i=1

(κiAi + λiBi)
4 +

m∑
i=1

m∑
j=1,j 6=i

V̄ij

)
⊗P−.

(2.61)

Here the V+ projection is intentionally divided up into Vf and Vs components. Vf

is the component of V+ that contributes to the perturbative expansion only when

the perturbative term corresponds to flipping processes in the L+ subspace. Vs

is the component that contributes only when the perturbative term corresponds to

transitions that involve the state of the m-qubit ancilla register staying the same.

The projection of the Green’s function G(z) onto L+ can be written as

G+(z) =
∑

x 6=0···00

1

z − h(x)∆
|x〉〈x|. (2.62)

We now explain the self energy expansion

Σ−(z) = V− + V−+G+V+− + V−+G+V+G+V+− + V−+(G+V+)2G+V+−

+ V−+(G+V+)3G+V+− + · · ·
(2.63)
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in detail term by term. The 1st order term is simply V− from Equation Equation

2.61. The 2nd order term corresponds to processes of starting from an all-zero state

of the m ancilla qubits, flipping one qubit and then flipping it back:

V−+G+V+− =
1

z −∆

m∑
i=1

(κiAi + λiBi)
2 (2.64)

The 3rd order term corresponds to processes of starting from an all-zero state of the

ancilla register, flipping one qubit, staying at the same state for V+ and then flipping

the same qubit back. Therefore only the Vf component in V+ in Equation Equation

2.61 will contribute to the perturbative expansion for T3 = V−+G+V+G+V+−:

T3 =
1

(z −∆)2

m∑
i=1

(κiAi + λiBi)

[
Helse + µiCi +

1

∆

m∑
j=1

(κjAj + λjBj)
2

+
1

∆2

m∑
j=1

[
(κ2

j + λ2
j)µjCj −

1

∆3

m∑
j=1

(κjAj + λjBj)
4 +

m∑
j=1

m∑
l=1,l 6=j

V̄jl

]
(κiAi + λiBi).

(2.65)

The 4th order term is more involved. Here we consider two types of transition processes

(for diagrammatic illustration refer to Figure 2.6):

1. Starting from the all-zero state, flipping one of the qubits, flipping another

qubit, then using the remaining V+ and V+− to flip both qubits back one after

the other (there are 2 different possible sequences, see Figure 2.6a).

2. Starting from the all-zero state of the ancilla register, flipping one of the qubits,

staying twice for the two V+ components and finally flipping back the qubit

during V+− (Figure 2.6b).

Therefore in the transition processes of type (1), V+ will only contribute its Vf

component and the detailed form of its contribution depends on which qubit in the

ancilla register is flipped. The two possibilities of flipping the two qubits back ex-

plains why the second term in Equation 2.66 takes the form of a summation of two
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components. Because two qubits are flipped during the transition, G+ will contribute

a 1
z−2∆

factor and two 1
z−∆

factors to the perturbative term.

In the transition processes of type (2), V+ will only contribute its Vs component

to the 4th order term since the states stay the same during both V+ operators in the

perturbative term. G+ will only contribute a factor of 1
z−∆

because the Hamming

weight of the bit string represented by the state of the ancilla register is always 1.

This explains the form of the first term T4 = V−+(G+V+)2G+V+− in Equation 2.66.

T4 =
1

(z −∆)3

m∑
i=1

(κiAi + λiBi)

[
Helse + µiCi +

1

∆

m∑
j=1

(κjAj + λjBj)
2

− 1

∆2

m∑
j=1

(κ2
j + λ2

j)µjCj −
1

∆3

m∑
j=1

(κjAj + λjBj)
4 +

m∑
j=1

m∑
l=1,l 6=j

V̄jl

]2

(κiAi + λiBi)

+
1

(z −∆)2(z − 2∆)

m∑
i=1

m∑
j=1,j 6=i

[
(κiAi + λiBi)(κjAj + λjBj)

(κiAi + λiBi)(κjAj + λjBj)

+ (κiAi + λiBi)(κjAj + λjBj)(κjAj + λjBj)(κiAi + λiBi)

]
.

(2.66)

Although the 4th order does not contain terms that are useful for simulating the 3-

body target Hamiltonian, our assignments of κi, λi and µi values in Equation 2.55

imply that some of the terms at this order can be Θ(1). Indeed, the entire second term

in Equation 2.66 is of order Θ(1) based on Equation 2.55. Therefore it is necessary to

study in detail what error terms arise at this order and how to compensate for them

in the perturbation V. A detailed analysis on how to compensate the Θ(1) errors is

presented in the Appendix A. In Figure 2.6 we illustrate the transitions that occur at

4th order. Each diagram deals with a fixed pair of ancilla qubits labelled i and j. The

diagram (a) has three horizontal layers connected with vertically going arrows. Vf

and Vs are both components of V+. In fact V+ = Vf + Vs where Vf is responsible

for the flipping and Vs contributes when the transition does not have flipping. At the

left of each horizontal layer lies the expression for G+(z), which is different for states
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in L+ with different Hamming weights. The diagram (b) is constructed in a similar

fashion except that we are dealing with the type of 4th order transition where the

state stays the same for two transitions in L+, hence the Vs symbols and the arrows

going from one state to itself. The diagram (a) reflects the type of 4th order transition

that induces cross-gadget contribution and given our gadget parameter setting, this

contribution could be O(1) when otherwise compensated. The diagram (b) shows

two paths that don not interfere with each other and thus having no cross-gadget

contributions. The 5th order and higher terms are errors that can be reduced by

increasing ∆:
∞∑
k=3

V−+(G+V+)kG+V+−. (2.67)

At first glance, with assignments of κi, λi and µi in Equation 2.55, it would appear

that this error term is Θ(∆−1/4) since ‖V−+‖ = Θ(∆3/4), ‖V+−‖ = Θ(∆3/4), ‖V+‖ =

Θ(∆3/4) and ‖G+‖ = Θ(∆−1),

∞∑
k=3

V−+(G+V+)kG+V+− ≤
∞∑
k=3

‖V−+‖ · ‖G+V+‖k‖G+‖ · ‖V+−‖

= ‖V−+(G+V+)3G+V+−‖
∞∑
k=0

‖G+V+‖k

= O(∆−1/4)

(2.68)

as
∑∞

k=0 ‖G+V+‖k = O(1). However, here we show that in fact this term in Equation

2.67 is Θ(∆−1/2). Note that the entire term Equation 2.67 consists of contributions

from the transition processes where one starts with a transition from the all-zero state

to a state |x〉 with x ∈ {0, 1}m and h(x) = 1. If we focus on the perturbative term of

order k + 2:

V−+(G+V+)kG+V+−,

after k steps. During every step one can choose to either flip one of the ancilla qubits

or stay in the same state of the ancilla register, the state of the ancilla register will

go back to a state |y〉 with y ∈ {0, 1}m and h(y) = 1. Finally the |1〉 qubit in |y〉 is

flipped back to |0〉 and we are back to the all-zero state which spans the ground state
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L−
L+

G+ (z) =
1

z −∆

G+ (z) =
1

z − 2∆

|0 . . . 0︸︷︷︸
i

. . . 0︸︷︷︸
j

. . . 0〉

|0 . . . 1 . . . 0 . . . 0〉

|0 . . . 1 . . . 1 . . . 0〉

|0 . . . 0 . . . 1 . . . 0〉

V−+ V+−V+− V−+

Vf Vf VfVf

(a)

L−
L+

G+ (z) =
1

z −∆

|0 . . . 0︸︷︷︸
i

. . . 0︸︷︷︸
j

. . . 0〉

|0 . . . 1 . . . 0 . . . 0〉 |0 . . . 0 . . . 1 . . . 0〉

V−+ V+− V+− V−+

Vs Vs VsVs

(b)

Fig. 2.6. Diagrams illustrating the transitions that occur at 4th order.
The two diagrams each represent a type of transition that occurs at 4th

order. Each diagram is divided by a horizontal line where below the line
is L− space and above is L+ subspace.

subspace L−. Define the total number of flipping steps to be kf . Then for a given k,

kf takes only values from

K(k) =


{k, k − 2, · · · , 2} if k is even

{k − 1, k − 3, · · · , 2} if k is odd.

(2.69)
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2.6 Creating 3-body gadget from local X terms

Summary. In general, terms in perturbative gadgets involve mixed couplings (e.g.

XiZj). Although such couplings can be realized by certain gadget constructions [33],

physical couplings of this type are difficult to realize in an experimental setting.

However, there has been significant progress towards experimentally implementing

Ising models with transverse fields of the type [135]:

HZZ =
∑
i

δiXi +
∑
i

hiZi +
∑
i,j

JijZiZj. (2.70)

Accordingly, an interesting question is whether we can approximate 3-body terms

such as α · Zi ⊗ Zj ⊗ Zk using a Hamiltonian of this form. This turns out to be

possible by employing a perturbative calculation which considers terms up to 5th

order.

Similar to the 3- to 2-body reduction discussed previously, we introduce an ancilla

w and apply the Hamiltonian H = ∆|1〉〈1|w. We apply the perturbation

V = Helse + µ(Zi + Zj + Zk)⊗ |1〉〈1|w + µI⊗Xw + Vcomp (2.71)

where µ = (α∆4/6)
1/5

and Vcomp is

Vcomp =
µ2

∆
|0〉〈0|w −

(
µ3

∆2
+ 7

µ5

∆4

)
(Zi + Zj + Zk)⊗ |0〉〈0|w

+
µ4

∆3
(3I + 2ZiZj + 2ZiZk + 2ZjZk) .

(2.72)

To illustrate the basic idea of the 5th order gadget, define subspaces L− and L+

in the usual way and define P− and P+ as projectors into these respective subspaces.

Then the second term in Equation 2.71 with⊗|1〉〈1|w contributes a linear combination

µZi + µZj + µZk to V+ = P+VP+. The third term in Equation 2.71 induces a

transition between L− and L+ yet since it operates trivially on qubits 1-3, it only

contributes a constant µ to the projections V−+ = P−VP+ and V+− = P+VP−. In

the perturbative expansion, the 5th order contains a term

V−+V+V+V+V+−

(z −∆)4
=
µ5(Zi + Zj + Zk)

3

(z −∆)4
(2.73)
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due to the combined the contribution of the second and third term in Equation 2.71.

This yields a term proportional to α ·Zi⊗Zj⊗Zk along with some 2-local error terms.

These error terms, combined with the unwanted terms that arise at 1st through 4th or-

der perturbation, are compensated by Vcomp. Note that terms at 6th order and higher

are Θ(∆−1/5). This means in order to satisfy the gadget theorem of Kempe et al.

( [7, Theorem 3], or Theorem I.1) ∆ needs to be Θ(ε−5). This is the first perturbative

gadget that simulates a 3-body target Hamiltonian using the Hamiltonian Equation

2.70. By rotating the ancilla space, subdivision gadgets can also be implemented

using this Hamiltonian: in the X basis, Z terms will induce a transition between the

two energy levels of X. Therefore ZiZj coupling could be used for a perturbation

of the form in Equation 2.1 in the rotated basis. In principle using the transverse

Ising model in Equation 2.70, one can reduce some diagonal k-body Hamiltonian to

3-body by iteratively applying the subdivision gadget and then to 2-body by using

the 3-body reduction gadget.

Analysis. Similar to the gadgets we have presented so far, we introduce an an-

cilla spin w. Applying an energy gap ∆ on the ancilla spin gives the unperturbed

Hamiltonian H = ∆|1〉〈1|w. We then perturb the Hamiltonian H using a perturba-

tion V described in (2.71). Using the same definitions of subspaces L+ and L− as the

previous 3-body gadget, the projections of V into these subspaces can be written as

V+ =

{
Helse + µ(Z1 + Z2 + Z3) +

µ4

∆3

[
3I + 2(Z1Z2 + Z1Z3 + Z2Z3)

]}
⊗ |1〉〈1|w

(2.74)

V− =

{
Helse +

µ2

∆
I− µ3

∆2
(Z1 + Z2 + Z3)I +

µ4

∆3

[
3I + 2(Z1Z2 + Z1Z3 + Z2Z3)

]
(2.75)

V−+ = µI⊗ |0〉〈1|w, V+− = µI⊗ |1〉〈0|w. (2.76)
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The low-lying spectrum of H̃ is approximated by the self energy expansion Σ−(z)

below with z ∈ [−max z,max z] where max z = ‖Helse‖+ |α|+ ε. With the choice of

µ above the expression of V+ in Equation 2.76 can be written as

V+ =
(
Helse + µ(Z1 + Z2 + Z3) +O(∆1/5)

)
⊗ |1〉〈1|w. (2.77)

Because we are looking for the 5th order term in the perturbation expansion that

gives a term proportional to Z1Z2Z3, expand the self energy in Equation 1.26 up to

5th order:

Σ−(z) = V− ⊗ |0〉〈0|w +
V−+V+−

z −∆
⊗ |0〉〈0|w +

V−+V+V+−

(z −∆)2
⊗ |0〉〈0|w

+ +
V−+V+V+V+−

(z −∆)3
⊗ |0〉〈0|w +

V−+V+V+V+V+−

(z −∆)4
⊗ |0〉〈0|w

+
∞∑
k=4

V−+Vk
+V+−

(z −∆)k+1
⊗ |0〉〈0|w.

(2.78)

Using this simplification as well as the expressions for V−, V−+ and V+− in Equation

2.76, the self energy expansion Equation 2.78 up to 5th order becomes

Σ−(z) =

(
Helse +

6µ5

∆4
Z1Z2Z3

)
⊗ |0〉〈0|w︸ ︷︷ ︸

Heff

+

(
1

∆
+

1

z −∆

)
µ2I⊗ |0〉〈0|w︸ ︷︷ ︸

E1

+

(
1

(z −∆)2
− 1

∆2

)
µ3(Z1 + Z2 + Z3)⊗ |0〉〈0|w︸ ︷︷ ︸

E2

+

(
1

∆3
+

1

(z −∆)3

)
· µ4 · (Z1 + Z2 + Z3)2 ⊗ |0〉〈0|w︸ ︷︷ ︸

E3

+

(
1

(z −∆)4
− 1

∆4

)
7µ5(Z1 + Z2 + Z3)⊗ |0〉〈0|w︸ ︷︷ ︸

E4

+
µ2

(z −∆)2
· µ

4

∆3
(Z1 + Z2 + Z3)2 ⊗ |0〉〈0|w︸ ︷︷ ︸

E6

+O(∆−2/5) +O(‖Helse‖∆−2/5) +O(‖Helse‖2∆−7/5) +O(‖Helse‖3∆−12/5)
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+
∞∑
k=4

V−+Vk
+V+−

(z −∆)k+1
⊗ |0〉〈0|w︸ ︷︷ ︸

E7

. (2.79)

Similar to what we have done in the previous sections, the norm of the error terms

E1 through E7 can be bounded from above by letting z 7→ max z. Then we find that

‖Σ−(z)−Htarg ⊗ |0〉〈0|w‖ ≤ Θ(∆−1/5) (2.80)

if we only consider the dominant dependence on ∆ and regard ‖Helse‖ as a given

constant. To guarantee that ‖Σ−(z)−Htarg⊗|0〉〈0|w‖ ≤ ε, we let the right hand side

of Equation 2.80 to be ≤ ε, which translates to ∆ = Θ(ε−5).

This Θ(ε−5) scaling is numerically illustrated (Figure 2.7a). Although in principle

the 5th order gadget can be implemented on a Hamiltonian of form Equation 2.70,

for a small range of α, the minimum ∆ needed is already large (Figure 2.7b), render-

ing it challenging to demonstrate the gadget experimentally with current resources.

However, this is the only currently known gadget realizable with a transverse Ising

model that is able to address the case where Helse is not necessarily diagonal.

2.7 Alternative construction for k- to 2-body reduction

Summary. We have presented in Section 2.3 a general method of reducing k-body

interactions to 3-body ones. Subsequently, we used parallel 3-body gadgets in Section

2.5 to reduce k-body interactions to 2-body ones. There is an alternative method,

originally due to Kempe, Kitaev and Regev [7] and later generalized by Jordan and

Farhi [9] for the k- to 2-body reduction. Unlike the gadgets used in Sections 2.3 and

2.5, which iteratively reduces k-body terms to 2-body and introduces one ancilla per

reduction, the gadgets in [7,9] directly reduce a k-body term to 2-body by introducing

k ancillas and constructing the unperturbed Hamiltonian H over the ancilla register

— such that its ground state subspace is spanned by all-zero and all-one states. The

perturbation V is constructed such that when the spectrum of H is perturbed by V,

the lowest order non-trivial contribution in the perturbed expansion comes from the
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(a) (b)

Fig. 2.7. (a): The scaling of minimum ∆ needed to ensure ‖Σ−(z) −
Heff‖ ≤ ε as a function of ε−1. Here we choose ‖Helse‖ = 0, α = 0.1 and ε
ranging from 10−0.7 to 10−2.3. The values of minimum ∆ are numerically
optimized. The notion of “optimized case” refers to the search for the
gap ∆ needed for yielding a spectral error of precisely ε between gadget
and target Hamiltonian, which is described in Section 2.2. The slope of
the line at large ε−1 is 4.97 ≈ 5, which provides evidence that with the
assignments of µ = (α∆4/6)1/5, the optimal scaling of ∆ is Θ(ε−5). (b):
The numerically optimized gap versus the desired coupling α in the target
Hamiltonian. Here ε = 0.01 and ‖Helse‖ = 0.
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transitions in the ancilla space that start from all-zero states, flip all of the qubits and

terminate in all-one states (or vice versa, start from all-one and end in all-zero). For

a k-body target Hamiltonian, the lowest order non-trivial contribution comes right

at the kth order. Any lower order terms either vanish or are proportional to identity.

The k-body version of this construction [9] is analyzed based on a formulation

of perturbation theory different from that introduced in Section 1.3 and elsewhere

[8, 129]. However, for completeness, we review this construction here, along with

some new characterization of the construction, such that the optimal scaling of the

gap parameter as a function of k.

Analysis. The parallel subdivision (Section 2.3) and the parallel 3-body (Section

2.5) gadgets that we have presented so far enable us to reduce general k-body target

Hamiltonians Htarg = Helse +αS1S2 · · ·Sk to 2-body with O(k) ancilla qubits. There

has also been an alternative construction proposed by Kempe, Kitaev and Regev [7]

for 3- to 2-body reduction and generalized to k- to 2-body reduction by Jordan and

Farhi [9]. In this section we will review the the construction by Jordan and Farhi,

reproducing and elaborating on some of the results in the original paper [9].

For simulating a k-body interaction Htarg = αS1S2 · · ·Sk, the construction in [9]

introduces k ancilla qubits (labelled as w1 · · ·wk) and defines the penalty Hamiltonian

H as a 2-body Hamiltonian

H =
∆

2(k − 1)

∑
1≤i<j≤k

(I− ZwiZwj)

applied onto the ancilla qubits whose ground state subspace of H is

span{|00 · · · 0〉, |11 · · · 1〉}

and all the other states receive an energy penalty of at least ∆. Define P0 =

|00 · · · 0〉〈00 · · · 0|+ |11 · · · 1〉〈11 · · · 1| as the projector onto the ground state subspace
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of H. Define Pj as the projector into the subspace of H with energy Ej. Define the

perturbation V as (here the notation is consistent with Section 1.3.1)

V = λ

k∑
i=1

Si ⊗Xi = λV̂.

The gadget Hamiltonian is then defined as H̃ = H + V = H +λV̂ where λ is a small

parameter. Define Heff as the restriction of the gadget Hamiltonian to the lowest 2k

states and further restricted to the subspace spanned by the 1√
2
(|00 · · · 0〉+ |11 · · · 1〉)

state of the ancilla register. It turns out that using an expansion due to Bloch [9] one

can obtain the expression of the effective Hamiltonian as

Heff = UAU−1 (2.81)

where both the operators U and A have perturbative expansions

U =
∞∑
m=0

U (m) A =
∞∑
m=1

A(m). (2.82)

Here U (0) = P0 and A(1) = λP0V̂P0, U (m) for m ≥ 1 and A(m) for m ≥ 2 are defined

as

U (m) = λm
∑
(m)

Sl1V̂Sl2V̂ · · ·SlmV̂P0

A(m) = λm
∑

(m−1)

P0V̂Sl1V̂Sl2 · V̂Slm−1V̂P0

(2.83)

where

Sl =


∑
j 6=0

Pj

(−Ej)l
l > 0

−P0 l = 0

and
∑

(m) is a sum over a set of m-tuples (l1, l2, · · · , lm) such that

l1 + l2 + · · ·+ lm = m

l1 + · · ·+ lp ≥ p (p = 1, 2, · · · ,m− 1).

(2.84)

Let |ψ1〉, |ψ2〉, · · · |ψd〉 be the lowest d = 2k+1 eigenvectors of the gadget Hamiltonian

H̃. Define the projector

Π =
d∑
j=1

|ψj〉〈ψj|
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and Π satisfies

Π = UP0U−1.

With the above definitions in place, it can be shown (see [9] for details) that the

effective Hamiltonian Heff takes the form

Heff = f(λ)Π +

(
k − 1

∆

)k−1 −k(−λ)k

(k − 1)!
Htarg ⊗ (|0...0〉〈1...1|+ |1...1〉〈0...0|)

+ O

(
λk+1

∆k

)
(2.85)

where f(λ) is a function that can be evaluated analytically. Therefore the effective

coupling of the target Hamiltonian

α =

(
k − 1

∆

)k−1 −k(−λ)k

(k − 1)!
= O

(
λk

∆k−1

)
. (2.86)

In the approximation Equation 2.97, we require that the high order error terms be

O(ε) while the desired kth order term be α = O(1). Hence we require

λk+1

∆k
= O(ε)

λk

∆k−1
= Θ(1).

(2.87)

From the second constraint we have λ = Θ(∆(k−1)/k). Substituting into the first

constraint gives us

λk+1

∆k
= Θ

(
∆

k−1
k
·(k+1)/∆k

)
= Θ(∆−1/k) = O(ε) (2.88)

With Θ(∆−1/k) = O(ε) we have ∆ = Ω(ε−k), indicating that in order to simulate

Htarg = αS1 · · ·Sk up to absolute error ε, the gap ∆ in the penalty Hamiltonian

scales exponentially as a function of k.
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2.7.1 Numerical examples

We use numerics to verify Equation 2.97 for several sample cases. In order to be

consistent with the original work by Jordan and Farhi [9], let ∆ = k − 1 for all the

cases. Define the effective Hamiltonian with energy shift as

H̃eff = Heff − f(λ)Π. (2.89)

Define the ideal term in the expansion Equation 2.97 as

Hid =
−k(−λ)k

(k − 1)!
Htarg ⊗ (|0...0〉〈1...1|+ |1...1〉〈0...0|).

Example: XYZ gadget. As a first example, consider simulating Htarg = X1Y2Z3.

Construct the gadget Hamiltonian as described previously 2 and the expansion of Heff

takes the form of

Heff = (P0 +O(λ))
(
A(≤2) +A(3) +O(λ4)

)
(P0 +O(λ)) (2.90)

where A(≤2) = A(1) + A(2) can be evaluated according to the definition in Equation

2.83 as

A(≤2) = λP0V̂P0 + λ2P0V̂S1V̂P0 = −λ2P0V̂

(
1

2
P1

)
V̂P0 = −3

2
λ2P0. (2.91)

Here the first term P0V̂P0 = 0 because P0 projects into the subspace

C0 = span{|000〉, |111〉}

and the action of V̂ on any state of C0 will always produce a new state that is not in

C0. The A(3) term can then be evaluated as

A(3) = λ3(P0V̂S1V̂S1V̂P0 + P0V̂S2V̂P0V̂P0)

= = λ3P0V̂
(

1
−2

P1

)
V̂
(

1
−2

P1

)
V̂P0 = 1

4
λ3P0V̂P1V̂P1V̂P0.

(2.92)

The second term in the first line vanishes because P0V̂P0 = 0 as shown before.

2In fact the gadget construction by Jordan and Farhi for simulating 3-body interaction is identical
to that of Kempe, Kitaev and Regev [7].
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Fig. 2.8. The ratio of the error terms to the ideal Hamiltonian Hid as a
function of λ. The XYZ and XYZZ cases are chosen to verify the results
by Jordan and Farhi [9]. The YY and XYZZY cases are also plotted.
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Define the subspace

C1 = span{|001〉, |010〉, |100〉, |011〉, |101〉, |110〉}

which is the subspace that P1 projects into. In order for the term A(3) to be non-zero,

the sequential action of the three V̂ terms must first flip one bit to transform a state

from C0 into C1, then flip one bit and make sure the state still stays in C1, and finally

flip one bit to transform the state back to C0. For either state in C0, the only way to

accomplish this is to first flip any one of the three bits (there are 3 different ways to

do it), then flip a different bit (there are 2 choices) and finally flip the other bit so that

all three bits are flipped at the end of the sequence. By elementary combinatorics,

there are in total 3 ·2 = 6 ways to flip all three bits. Therefore the A(3) term becomes

A(3) =
1

4
λ3 · 6Htarg ⊗ (|000〉〈111|+ |111〉〈000|), (2.93)

which is our Hid for the XYZ gadget if we compare it to the Equation 2.97. Then

the expansion of Heff becomes

Heff = −3

2
λ2Π +

3

2
λ3Htarg ⊗ (|000〉〈111|+ |111〉〈000|)︸ ︷︷ ︸

Hid

+O(λ4). (2.94)

Hence f(λ) = −3
2
λ2 for the XYZ gadget. Plotting the relative error, which can be

expressed as (‖H̃eff−Hid‖)/‖Hid‖, versus λ, we have a linear dependence on λ (Figure

2.8). This is expected since the error is O(λ4) and Hid is O(λ3).

Other examples. Similar analysis can be done for simulating other Hamiltonians from

2-body to 5-body ones. Table 2.1 lists the analytical expressions for all example cases

considered and Figure 2.8 plots the relative error for all the cases.
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2.7.2 Error analysis

In order to improve the relative error (‖H̃eff − Hid‖)/‖Hid‖, it is necessary to

examine the expansion terms of higher order in λ than Hid.

Example: 3-body gadget. Consider the Θ(λ4) terms in the expansion Equation 2.90

for a 3-body gadget simulating S1S2S3 where Si is any Pauli operator. Expand

U = P0 + λS1V̂P0 + O(λ2) up to order λ. Then the expansion Equation 2.90 up to

order λ4 can be written as

Heff = −3

2
λ2Π +

3

2
λ3Htarg ⊗ (|000〉〈111|+ |111〉〈000|)︸ ︷︷ ︸

Hid

− 3

8
λ4Π− 3

4
λ4
[
S2S3 ⊗ (|00〉〈11|+ |11〉〈00|)w2w3

+S1S3 ⊗ (|00〉〈11|+ |11〉〈00|)w1w3

+S1S2 ⊗ (|00〉〈11|+ |11〉〈00|)w1w2

]︸ ︷︷ ︸
Θ(λ4)

+ O(λ5)

(2.95)

The purpose of the error analysis is to see the detailed forms of the error terms of

order λk+1. From this analysis it turns out that the error terms are more than 2-body,

making it hard to improve the construction by introducing terms of order λk+1 in V̂

to cancel the error terms.

2.7.3 Gap scaling

Now we return to the formulation presented in the beginning of the section where

the penalty Hamiltonian H has a gap ∆, which is a free parameter now (instead of

k− 1 assumed previously). Then according to Equation 2.97, for simulating a target

Hamiltonian Htarg = αS1S2 · · ·Sk we let(
k − 1

∆

)k−1 −k(−λ)k

(k − 1)!
= |α| · sgn(α).



100

Table 2.1
Analytical expressions for f(λ) in the example cases. Here we only list k
up to 5.

Target Hamiltonian f(λ)

2-body Y Y −2λ2

3-body XY Z −3

2
λ2

4-body XY ZZ −4

3
λ2 − 2

27
λ4

5-body XY ZZY −5

4
λ2 − 5

192
λ4
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Fig. 2.9. Scaling of the spectral gap ∆ as a function of k. Here α = 0.01
and ε = 0.001. For each case we let Htarg = αX1X2 · · ·Xk. The value
of ∆ is numerically found as the value that yields the spectral difference
between H̃eff and Hid being ε.

By rearranging the terms we get the expression for λ:

λ = (−1)k+1

[
(k − 1)!

k(k − 1)k−1
|α|∆k−1

]1/k

sgn(α). (2.96)

For a prescribed value of α, there is a value of ∆ such that the spectral difference

between H̃eff and Hid is exactly ε. We numerically find such ∆. Figure 2.9 shows the

numerically optimized ∆ as a function of k. The plots resembles a straight line on a

log-linear plot, showing that ∆ scales exponentially as a function of k, which provides

evidence for the previously established statement that ∆ = Ω(ε−k).

2.7.4 Connection between Bloch formalism and self-energy

Following [9], we have so far used the formulation of perturbation theory due to

Bloch [132] to analyze the gadget construction, while the earlier work [7] as well as
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several other works on perturbative reductions [1,2,8] employs the standard Feymann-

Dyson series formalism. Here we re-consider the construction in [9] in the light of

the usual Feynmann-Dyson series and derive connection with the original Bloch for-

malism. We illustrate the connection with a concrete example. We start by showing

how Bloch formalism and the standard perturbation series gives apparently different

terms at a fixed order. Then we clarify such difference by a closer examination of the

Bloch series.

Consider a target Hamiltonian Htarg = ασ1σ2σ3σ4 and a gadget Hamiltonian

H̃ = H + V according to [9]. Here H is a diagonal Hamiltonian acting on 4 ancilla

qubits w1, · · · , w4 such that its energy Ej = j(4−j), j = 0, 1, 2, 3, 4, for an eigenstate

with j ancilla qubits flipped to |1〉. Let Pj be a projector onto the eigenspace of

energy Ej. Then clearly in this example the ground state projector P0 = P4. Also

P1 = P3. The perturbation V = λ
∑4

i=1 σi ⊗Xwi .

Analysis in Bloch formalism

According to Bloch formalism, the effective Hamiltonian Heff of the lowest 24 × 2

eigenstates gives

Heff = UAU−1 (2.97)

where U and A are linear operators each having an expansion that could be derived

from Schrödinger equation [9,132]. In particular, U = P0+O(λ) and U−1 = P0+O(λ).

Let A = A(1) + A(2) + A(3) + A(4) + · · · where each A(t) is proportional to λt. Also

define operator Sl by

Sl =


∑
j 6=0

Pj

(−Ej)l
l > 0

−P0 l = 0

(2.98)

Then

A(1) +A(2) = λP0V̂P0 + λ2P0V̂S1V̂P0 = −4

3
λ2P0. (2.99)
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Also we can show A(3) = λ3(P0V̂S1V̂S1V̂P0 + P0V̂S2V̂S0V̂P0) = 0 and

A(4) = λ4(P0V̂S1V̂S1V̂S1V̂P0 + P0V̂S2V̂S0V̂S1V̂P0)

= − 2

27
λ4P0 +

(
−2

3
λ4σ1σ2σ3σ4

)
⊗PX

(2.100)

where PX = |0000〉〈1111| + |1111〉〈0000| is a projector acting on the ancilla qubits.

The effective Hamiltonian according to Eq. (2.97) becomes

Heff = f(λ)Π + Htarg ⊗ΠX +O(λ5). (2.101)

Here f(λ) = −4
3
λ2− 2

27
λ4, Π is the projector onto the lowest 24×2 lowest eigenstates

of H̃, and ΠX = UPXU−1. We choose λ such that −2
3
λ4 = α (the case where α > 0

could be addressed by a simple modification of V).

Using the Bloch formalism, we can see that when simulating the target Hamilto-

nian (say, measuring its energy spectrum), we prepare the gadget Hamiltonian, mea-

sure the low energy levels of the gadget Hamiltonian and shift the measured value

by a function f(λ) to correct for the actual spectrum of the target Hamiltonian. As

we will see in the upcoming discussion, adopting the standard formulation allows us

to modify the gadget construction such that the spectral shift f(λ) is “incorporated”

into the gadget construction and we could directly obtain the energies of the target

Hamiltonian by measuring the gadget Hamiltonian.

Analysis using the standard Feynmann-Dyson series

In the standard formalism, the ground state subspace

L− = span{|0000〉w1w2w3w4 , |1111〉w1w2w3w4}

and L+ = span{|x〉w1w2w3w4 , x ∈ {0, 1}4|h(x) > 0} where h(·) is the Hamming weight

of a bit string. Let Π± be projectors onto L± respectively. Define the operator-valued

resolvent (otherwise known as Green’s function) as G(z) = (zI − H)−1. Similarly
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define G̃(z) = (zI− H̃)−1. The self-energy expansion Σ−(z) = zI− (Π−G̃(z)Π−)−1

then reads

Σ−(z) = V− + V−+G+V+− + V−+G+V+G+V+− + · · · .

The kth order term is V−+(G+V+)k−2G+V+− for k ≥ 2. Evaluating the series term

by term, we have on the first order V− = 0, on the second order

V−+G+V+− = −4

3
λ2Π−, (2.102)

and the third order being 0 since there is no 3-step transition that goes from all-0 to

either all-1 or back to all-0 ancilla states. The fourth order reads

V−+G+V+G+V+G+V+− = −2

3
λ4Π− +

(
−2

3
λ4

)
σ1σ2σ3σ4 ⊗PX . (2.103)

Note in Eq. (2.103) that the coefficient of Π− is −2/3 instead of −2/27 in Eq. (2.100),

with Π− ≡ P0 in the previous section on Bloch formalism. We will address this

discrepancy by a closer look at the Bloch expansion (2.97).

Bloch expansion: a closer look

In Bloch’s original work3, he defines the low-energy sector of H̃ as being spanned

by orthonormal wave functions |α〉. In other words, the low-energy subspace projector

Π =
∑

α |α〉〈α|. Let |α0〉 = P0|α〉. Then |α0〉 is in the ground state subspace of H

and is in general not normalized. Also let |ᾱ0〉 be a state in the ground state subspace

of H such that Π|ᾱ0〉 = |α〉. |ᾱ0〉 is also not necessarily normalized. In the light of

the above definitions we could see that (see also appendix in [9])

P0 =
∑
α

|α0〉〈ᾱ0|, U =
∑
α

|α〉〈ᾱ0|, A =
∑
α

Eα|α0〉〈ᾱ0|. (2.104)

To recover the -2/3 coefficient from Eq. (2.97), one needs to expand not only A, but

all operators U , U−1 and A and glean terms of order λ4 from the product.

3I thank Stephen Jordan for translating the original paper [132] from French into English, and Ryan
Babbush for sharing with me the translated version so that it became accessible to me.
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First, with Π = UP0U−1 we obtain that U−1 =
∑

α |α0〉〈α|. We could further

show that in fact U−1 = P0Π. Indeed,

P0Π =
∑
α,β

|α0〉〈ᾱ0|β〉〈β|

=
∑
α,β

|α0〉δαβ〈β|

=
∑
α

|α0〉〈α|

= U−1

(2.105)

where going from first line to the second we have used 〈ᾱ0|β〉 = (〈α| + 〈α⊥|)|β〉 =

〈α|β〉 = δαβ. Using the expansion of Π from [132], it turns out that

U−1 = P0 + P0VS1 + P0VS1VS1 + P0VS2VP0 + P0VP0VS2 +O(λ3).

(2.106)

Whatever ends up in the self-energy Σ−(z) must be in the ground state subspace of

H, or in other words

Σ−(z) = P0UAU−1P0. (2.107)

Hence up to O(λ3) the expansion of U−1 is only contributing P0 and

P0VS2VP0 =
4

9
λ2P0

to the expansion of Σ−(z). Substituting U−1 = P0 + 4
9
λ2P0, U = P0 +O(λ) and the

expansion of A into Eq. (2.107), gleaning λ4 one could recover the the coefficient -2/3

from Eq. (2.103).

In conclusion, Eq. (2.107) essentially draws the connection between the two for-

malisms of perturbation theory. The contributions at each order of λ computed with

either formalism should be the same.
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2.8 YY gadget

Summary. The gadgets which we have presented so far are intended to reduce

the locality of the target Hamiltonian. Here we present another type of gadget,

called “creation” gadgets [33], which simulate the type of effective couplings that are

not present in the gadget Hamiltonian. Many creation gadgets proposed so far are

modifications of existing reduction gadgets. For example, the ZZXX gadget in [33],

which is intended to simulate ZiXj terms using Hamiltonians of the form

HZZXX =
∑
i

∆iXi +
∑
i

hiZi +
∑
i,j

JijZiZj +
∑
i,j

KijXiXj, (2.108)

is essentially a 3- to 2-body gadget with the target term A⊗B⊗C being such that

the operators A, B and C are X, Z and identity respectively. Therefore the analyses

on 3- to 2- body reduction gadgets that we have presented for finding the lower bound

for the gap ∆ are also applicable to this ZZXX creation gadget.

Note that YY terms can be easily realized via bases rotation if single-qubit Y

terms are present in the Hamiltonian in Equation 2.108. Otherwise it is not a priori

clear how to realize YY terms using HZZXX in Equation 2.108. We will now present

the first YY gadget which starts with a universal Hamiltonian of the form Equation

2.108 and simulates the target Hamiltonian Htarg = Helse + αYiYj. The basic idea

is to use the identity XiZi = ιYi where ι =
√
−1 and induce a term of the form

XiZiZjXj = YiYj at the 4th order. Introduce ancilla qubit w and apply a penalty

H = ∆|1〉〈1|w. With a perturbation V we could perform the same perturbative

expansion as previously. Given that the 4th order perturbation is V−+V+V+V+−

up to a scaling constant. we could let single Xi and Xj be coupled with Xw, which

causes both Xi and Xj to appear in V−+ and V+−. Furthermore, we couple single Zi

and Zj terms with Zw. Then 1
2
(I+Zw) projects single Zi and Zj onto the + subspace

and causes them to appear in V+. For Htarg = Helse + αY1Y2, the full expressions

for the gadget Hamiltonian is the following: the penalty Hamiltonian H = ∆|1〉〈1|w
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acts on the ancilla qubit. The perturbation V = V0 + V1 + V2 where V0, V1, and

V2 are defined as

V0 = Helse + µ(Z1 + Z2)⊗ |1〉〈1|w + µ(X1 − sgn(α)X2)⊗Xw

V1 =
2µ2

∆
(I⊗ |0〉〈0|w + X1X2)

V2 = −2µ4

∆3
Z1Z2

(2.109)

with µ = (|α|∆3/4)1/4. For a specified error tolerance ε, we have constructed a YY

gadget Hamiltonian of gap scaling ∆ = O(ε−4) and the low-lying spectrum of the

gadget Hamiltonian captures the spectrum of Htarg ⊗ |0〉〈0|w up to error ε.

The YY gadget implies that a wider class of Hamiltonians such as

HZZY Y =
∑
i

hiXi +
∑
i

∆iZi +
∑
i,j

JijZiZj +
∑
i,j

KijYiYj (2.110)

and

HXXY Y =
∑
i

hiXi +
∑
i

∆iZi +
∑
i,j

JijXiXj +
∑
i,j

KijYiYj (2.111)

can be simulated using the Hamiltonian of the form in Equation 2.108. Therefore

using the Hamiltonian in Equation 2.108 one can in principle simulate any finite-

norm real valued Hamiltonian on qubits. Although by the QMA-completeness of

HZZXX one could already simulate such Hamiltonian via suitable embedding, our

YY gadget provides a more direct alternative for the simulation.

Analysis. The results in [33] shows that Hamiltonians of the form in Equation 2.108

supports universal adiabatic quantum computation and finding the ground state of

such a Hamiltonian is QMA-complete. This form of Hamiltonian is also interesting

because of its relevance to experimental implementation [135]. Here we show that with

a Hamiltonian of the form in Equation 2.108 we could simulate a target Hamiltonian
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Htarg = Helse + αY1Y2. Introduce an ancilla w and define the penalty Hamiltonian

as H = ∆|1〉〈1|w. Let the perturbation V = V0 + V1 + V2 be

V0 = Helse + κ(Z1 + Z2)⊗ |1〉〈1|w + κ(X1 − sgn(α)X2)⊗Xw

V1 = 2κ2∆−1[|0〉〈0|w − sgn(α)X1X2]

V2 = −4κ4∆−3Z1Z2.

(2.112)

Then the gadget Hamiltonian H̃ = H + V is of the form in Equation 2.108. Here we

choose the parameter κ = (|α|∆3/4)1/4. In order to show that the low lying spectrum

of H̃ captures that of the target Hamiltonian, define L− = span{|ψ〉 such that H̃|ψ〉 =

λ|ψ〉, λ < ∆/2} as the low energy subspace of H̃ and L+ ⊕ L− = H. Define Π− and

Π+ as the projectors onto L− and L+ respectively.

With these notations in place, here we show that the spectrum of H̃<E∗ = Π̃−H̃Π̃−

approximates the spectrum of Htarg ⊗ |0〉〈0|w with error ε. To begin with, the pro-

jections of V into the subspaces L− and L+ can be written as

V− =

(
Helse +

κ2

∆
(X1 − sgn(α)X2)2︸ ︷︷ ︸

(a)

−4κ4

∆3
Z1Z2︸ ︷︷ ︸

(b)

)
⊗ |0〉〈0|w

V+ =

(
Helse + κ(Z1 + Z2)− 2κ2

∆
sgn(α)X1X2 −

4κ4

∆3
Z1Z2

)
⊗ |1〉〈1|w

V−+ = κ(X1 − sgn(α)X2)⊗ |0〉〈1|w

V+− = κ(X1 − sgn(α)X2)⊗ |1〉〈0|w.

(2.113)

Given the penalty Hamiltonian H, we have the operator valued resolvent G(z) =

(zI − H)−1 that satisfies G+(z) = Π+G(z)Π+ = (z − ∆)−1|1〉〈1|w. Then the low
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lying sector of the gadget Hamiltonian H̃ can be approximated by the perturbative

expansion Equation 1.26. For our purposes we will consider terms up to the 4th order:

Σ−(z) = V− +
1

z −∆
V−+V+− +

1

(z −∆)2
V−+V+V+−

+
1

(z −∆)3
V−+V+V+V+− +

∞∑
k=3

V−+Vk
+V+−

(z −∆)k+1
.

(2.114)

Now we explain the perturbative terms that arise at each order. The 1st order is the

same as V− in Equation 2.113. The 2nd order term gives

1

z −∆
V−+V+− =

1

z −∆
· κ2(X1 − sgn(α)X2)2︸ ︷︷ ︸

(c)

⊗|0〉〈0|w. (2.115)

At the 3rd order, we have

1

(z −∆)2
V−+V+V+− =

(
1

(z −∆)2
· κ2(X1 − sgn(α)X2)Helse(X1 − sgn(α)X2)

+
1

(z −∆)2

4κ4

∆
(X1X2 − sgn(α)I)︸ ︷︷ ︸

(d)

)
⊗ |0〉〈0|w +O(∆−1/4).

(2.116)

The 4th order contains the desired YY term:

V−+V+V+V+−

(z −∆)3
=

(
1

(z −∆)3
· 2κ4(X1 − sgn(α)X2)2︸ ︷︷ ︸

(e)

− 1

(z −∆)3
4κ4Z1Z2︸ ︷︷ ︸

(f)

+
4κ4sgn(α)

(z −∆)3
Y1Y2

)
⊗ |0〉〈0|w +O(‖Helse‖ ·∆−3/4)

+ O(‖Helse‖2 ·∆−1/2).

(2.117)

Note that with the choice of κ = (|α|∆3/4)1/4, all terms of 5th order and higher are of

norm O(∆−1/4). In the 1st order through 4th order perturbations the unwanted terms

are labelled as (a) through (f) in Eqs. 2.113, 2.115, 2.116, and 2.117. Note how they

compensate in pairs: the sum of (a) and (c) is O(∆−1/4). The same holds for (d) and

(e), (b) and (f). Then the self energy is then

Σ−(z) = (Helse + αY1Y2)⊗ |0〉〈0|w +O(∆−1/4). (2.118)
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Let ∆ = Θ(ε−4), then by the Gadget Theorem (1.3.1), the low-lying sector of the

gadget Hamiltonian H̃<E∗ captures the spectrum of Htarg ⊗ |0〉〈0|w up to error ε.

The fact that the gadget relies on 4th order perturbation renders the gap scaling

relatively larger than it is in the case of subdivision or 3- to 2-body reduction gadgets.

However, this does not diminish its usefulness in various applications.

2.9 Conclusion

We have presented improved constructions for the most commonly used gadgets,

which in turn implies a reduction in the resources for the many works which employ

these current constructions. We presented the first comparison between the known

gadget constructions and the first numerical optimizations of gadget parameters. Our

analytical results are found to agree with the optimised solutions. The introduction

of our gadget which simulates YY-interactions opens many prospects for universal

adiabatic quantum computation, particularly the simulation of physics feasible on

currently realizable Hamiltonians.
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3. PERTURBATIVE GADGETS WITHOUT STRONG

INTERACTIONS

In the last chapter we have introduced perturbative gadgets, which are used to con-

struct a quantum Hamiltonian whose low-energy subspace approximates a given quan-

tum k-local Hamiltonian up to an absolute error ε. Typically, gadget constructions

involve terms with large interaction strengths of order poly(ε−1). In this chapter we

present a 2-body gadget construction and prove that it approximates a Hamiltonian

of interaction strength γ = O(1) up to absolute error ε � γ using interactions of

strength O(ε) instead of the usual inverse polynomial in ε. A key component in our

proof is a new condition for the convergence of the perturbation series, allowing our

gadget construction to be applied in parallel on multiple many-body terms.

We also discuss how to apply this gadget construction for approximating 3- and

k-local Hamiltonians. The price we pay for using much weaker interactions is a large

overhead in the number of ancillary qubits, and the number of interaction terms

per particle, both of which scale as O(poly(ε−1)). Our strong-from-weak gadgets

have their primary application in complexity theory (QMA hardness of restricted

Hamiltonians, a generalized area law counterexample, gap amplification), but could

also motivate practical implementations with several weak interactions simulating a

much stronger quantum many-body interaction.

3.1 Overview

The physical properties of (quantum mechanical) spin systems can often be under-

stood in terms of effective interactions arising from the complex interplay of micro-

scopic interactions. Powerful methods for analyzing effective interactions have been

developed, for example the renormalization group approach distills effective interac-
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tions at different length scales. Another common approach is perturbation theory

– treating some interaction terms in the Hamiltonian as a perturbation to a simple

original system, giving us a sense of how the fully interacting system behaves. Here,

instead of trying to understand an unknown system, we ask an engineering question:

how can we build a particular (many-body) effective interaction from local terms of

restricted form?

This is where the idea of perturbative gadgets provides a powerful answer. Recall

from Section 1.6.2 that perturbative gadgets are initially introduced by Kempe, Ki-

taev and Regev [7] for showing the QMA-hardness of 2-Local Hamiltonian problem

and subsequently used and developed further in numerous works [1,8,9,20,33,129,130].

They are convenient tools by which arbitrary many-body effective interactions (which

we call the target Hamiltonian) can be obtained using a gadget Hamiltonian consist-

ing of only two-body interactions. In a broader context, these gadgets have also been

used to understand the computational complexity of physical systems (e.g. how hard

it is to determine the ground state energy) with restricted geometry of interactions [8],

locality [7, 8, 129], or interaction types [33]. Here, we choose to focus on the issue of

restricted coupling strengths.

In a nutshell, perturbative gadgets allow us to map between different forms of

microscopic Hamiltonians. This is an analogue of how gadgets are used in classical

complexity theory, for example in reductions among NP-complete constraint satis-

faction problems (e.g. 3-SAT and graph 3-coloring). In the context of combinatorial

reductions in classical computation complexity theory, a gadget is a finite structure

which maps a set of constraints from one optimization problem into a constraint of an-

other problem. Using such gadgets, an instance of 3-SAT (an NP-complete problem)

can be efficiently mapped to an instance of graph 3-coloring (also NP-complete [141]).

On the other hand, more complex constructions allow us to create more frustrated in-

stances of such problems without significant overhead, resulting in inapproximability

as well as the existence of probabilistically checkable proofs [142].
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Fig. 3.1. A ferromagnetic interaction E(a, b) = −2Jab of two classical
spins a, b ∈ {−1, 1} can be “built” from half-strength interactions involv-
ing two extra ancillas. The ground states of the system on the right have
a = b, while the lowest excited states have a 6= b and energy 4J above
the ground state energy. Each edge between two classical spins u and v
in this illustration represents a term uv in the expression for energy. The
# nodes symbolize target spins and 2 nodes are ancillas.

For classical CSP instances, gadgets can be used to reduce the arity of clauses,

to reduce the size of the alphabet, or to reduce the degree of each variable on the

constraint graph. Analogously, quantum gadgets [7–9, 126] have been devised for

reducing the locality of interactions (analogous to arity reduction in classical CSPs),

the dimension of particles (alphabet reduction) and the degree of interaction. These

reductions for quantum Hamiltonians give us tools that could help us explore the way

to the quantum PCP conjecture [143]. More modestly, gadget translations between

types of local Hamiltonians would have implications for the area law [144–146] and

other global properties. However, generating approximate quantum interactions from

a restricted set of terms is not straightforward.

For classical spin systems, creating effective interactions with arbitrary strength

by coupling a system to several ancilla degrees of freedom is a relatively simple task.

For example, we can create an effective (and twice stronger) ferromagnetic interaction

between target spins a, b using two ancilla spins x, y and connecting them to a, b as

illustrated in Figure 3.1. The lowest energy states of this new system correspond to

the lowest energy states of a system with a ferromagnetic interaction between a and

b, with doubled strength.
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For general quantum interactions where the target Hamiltonian consists of many-

body Pauli operators, the common perturbative gadget introduces a strongly bound

ancillary system and couples the target spins to it via weaker interactions, treating

the latter as a perturbation. The target many-body Hamiltonian is then generated in

some low order of perturbation theory of the combined system of ancillary and target

spins. Such gadgets first appeared in the proof of QMA-completeness of the 2-local

Hamiltonian problem via a reduction from 3-local Hamiltonian [7]. There they helped

build effective 3-local interactions from 2-body interactions. Perturbative gadgets can

also be used for reducing a target Hamiltonian with general geometry of interactions

to a planar interaction graph [8], approximating certain restricted forms of 2-body

interactions using other forms of 2-body interactions [32, 33], realizing Hamiltonians

exhibiting non-abelian anyonic excitations [147] and reducing k-local interactions to

2-local [9, 129].

For perturbation theory to apply1, all existing constructions of perturbative gad-

gets [1, 7–9, 33, 129] require interaction terms or local fields with norm much higher

than the strength of the effective interaction which they generate (see Figure 3.2b).

However, physically realizable systems often allow only limited spin-spin coupling

strengths. The main result of our paper is a way around this problem.

We first build a system with a large spectral gap between the ground state and the

first excited state using many relatively weak interactions: consider a collection of n

spins that interact with each other (i.e. O (n2) interaction terms) via ZZ interactions

of constant strength J . Then the first excited state of this n-spin system has energy

O(n) higher than the ground energy, since the ground state subspace is spanned

by {|0〉⊗n, |1〉⊗n} and flipping a spin raises the energy by O(n). This way we can

use weaker interactions to construct a core with a large spectral gap. We then use

it to replace the large local field applied onto the single ancilla (Figure 3.2b) with

weak interactions of a collection of ancillas (Figure 3.2c). Finally, we connect the

1 Note that there exist special cases (e.g. Hamiltonians with all terms diagonal in the same basis)
when one can analyze the Hamiltonian with non-perturbative techniques [138,148].
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target spins to multiple ancillas instead of just one, which allows us to use weaker

β to achieve the same effective interaction strength between the target spins (Figure

3.2d).

Let us review a few definitions and then state our results precisely. An n-qubit

Hamiltonian is an 2n × 2n Hermitian matrix; it is k-local or k-body (for a constant

k) if it can be written as a sum of M ≤ poly(n) terms Hj, each acting non-trivially

on a distinct set of at most k qubits. Furthermore, we require2 ‖Hj‖ ≤ poly(n), and

that the entries of Hj be specified by poly(n) bits. The smallest eigenvalue of H is

its ground state energy, and we denote it λ(H). We use λj(H) to represent the j-th

smallest eigenvalue of H, hence λ(H) = λ1(H). Taking a 2-local Hamiltonian acting

on n qubits, we can associate it with an interaction graph G(V,E). Every vertex

v ∈ V corresponds to a qubit, and there is an edge e ∈ E between vertices a and

b if and only if there is a non-zero 2-local term He on qubits a and b such that He

is neither 1-local nor proportional to the identity operator. More generally, we can

pair a k-local Hamiltonian with its interaction hypergraph in which the k-local terms

correspond to hyper-edges involving (at most) k vertices. Note that we depict all

2-local terms on the same spins as a single edge. Next, because we can decompose

any 2-local Hamiltonian term in the Pauli basis3, we can define a Pauli edge of an

interaction graph G as an edge between vertices a and b associated with an operator

γab Pa ⊗ Qb where P,Q ∈ {I,X,Y,Z} are Pauli matrices and γab is a real number

signifying the coupling coefficient. We refer to the maximum value of |γab| as the

interaction strength of the Hamiltonian. For an interaction graph in which every

edge is a Pauli edge, the degree of a vertex is called its Pauli degree. The maximum

Pauli degree of a vertex in an interaction graph is the Pauli degree of the graph.

2We use the operator norm ‖ · ‖, defined as ‖M‖ ≡ max|ψ〉∈M |〈ψ|M|ψ〉| for an operator M acting
on a Hilbert space M).
3For example, the spin chain Hamiltonian H = 1

2

∑n
i=1 |01− 10〉〈01− 10|i,i+1 has interaction

edges between successive spins. Each 2-local interaction can be rewritten in the Pauli basis as
1
4 (I⊗ I−X⊗X−Y ⊗Y − Z⊗ Z). It gives us an overall energy shift (from the first term), and
three Pauli edges with weight − 1

4 .
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We start in Section 3.2 with a theoretical framework of perturbation theory that

is used throughout our discussion, and then in Section 3.3 we present and prove our

main result – a gadget construction that simulates a target 2-local Hamiltonian using

arbitrarily weak 2-local couplings and ancilla particles, summarized in the following

Theorem:

Theorem 3.1.1 (Effective 2-body interactions from weak couplings)

Consider the Hamiltonian Htarg = Helse +
∑M

j=1 γj Aaj⊗Bbj on n qubits, with aj, bj ∈
[n] labeling the qubits that the operators A,B in the jth term act on. Htarg consists of

1. a Hamiltonian Helse with a non-negative spectrum, obeying ‖Helse‖ ≤ poly(n),

which corresponds to terms in the Hamiltonian that we will not decompose into

gadgets, and

2. M distinct 2-local interaction terms, acting on an n qubit system, with an inter-

action graph of Pauli degree p, assuming M ≤ poly(n), and bounded interaction

strength γmax = maxj |γj| = O(1).

Then for any ε > 0 and ε � γ, there exists a Hamiltonian H̃ which is a sum of

Helse and a 2-local (gadgetized) Hamiltonian with interaction strengths O(ε), whose

low-lying spectrum approximates the full spectrum of Htarg as |λj(H̃)− λj(Htarg)| ≤ ε

for all j from 1 to 2n. The new Hamiltonian H̃ acts on n + poly(‖Helse‖, ε−1,M)

qubits and has an interaction graph of Pauli degree poly(p, ‖Helse‖, ε−1,M).

Note that if we want to “gadgetize” the entire target Hamiltonian, Helse is simply

zero. In the remainder of the paper, for H̃ and Htarg in Theorem 3.1.1, when we

refer to H̃ approximating Htarg up to error ε, we mean the following. The low-lying

eigenstates of H̃ are ε-close to |φj〉 ⊗ |0 · · · 0〉anc where |0 · · · 0〉anc is the state of the

ancilla qubits of H̃ (the norm of the difference between the vectors is no greater than

ε), and the low-lying spectrum of H̃ is ε-close to {λj}.
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At first glance Theorem 1 seems naively true: we could always consider a given

target term γA⊗B as a sum of m identical but smaller terms γ
m

A⊗B and treat each

small term with a separate gadget. Presumably, these gadgets are of weaker interac-

tion strengths than a single gadget applied onto the target term directly. However,

if we intend to simulate γA⊗B up to error ε, we need to simulate each of the small

terms up to error ε/m, which would translate into interaction strength in the gadget

Hamiltonian scaling as poly(ε−1) regardless. Hence this idea does not improve the

interaction strength asymptotically. Our contribution here is to show that we could

improve the interaction strength from poly(ε−1) to poly(ε).

Our main Theorem 3.1.1 deals with 2-local target Hamiltonians, built from 2-local

gadgets. What about gadget constructions for reducing 3-local interactions [7,8,129]

or k-local interactions [9, 129] to 2-local ones? Here we generalize Theorem 1 to

propose gadget constructions for 3- and k-body target Hamiltonians. In particular:

Corollary 1 (3-body terms from weak 2-body interactions) Let us consider a

Hamiltonian Htarg = Helse +
∑M

i=1 γi Aai⊗Bbi⊗Ffi, with Here aj, bj, fj ∈ [n] labeling

the qubits that the operators A,B,F in the jth term act on. Here Htarg consists of

1. Helse (the part we will not decompose into gadgets), a Hamiltonian with a non-

negative spectrum, satisfying ‖Helse‖ ≤ poly(n), and

2. a sum of M interaction terms that are 3-local, acting on an n qubit system, with

an interaction graph of Pauli degree p and ground state energy λ(Htarg), assum-

ing M ≤ poly(n). The interaction strength of Htarg satisfies γmax = maxj |γj| =
O(1).

Then for any choice of ε > 0, there exists a Hamiltonian H̃ that consists of Helse (the

part we leave intact) and a sum of M terms that are 2-local, with interaction strength

O(ε), acting on a system with n + poly(‖Helse‖, ε−1,M) qubits, with an interaction

graph of Pauli degree poly(p, ‖Helse‖, ε−1,M) and |λj(H̃)− λj(Htarg)| ≤ ε for all j.
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We outline the proof of Corollary 1 in Section 3.4. An important property of these

new constructions is that they can be repeated in parallel, in essence generating arbi-

trary strong interactions from weak ones. Thus, we can effectively rescale interaction

strengths and amplify the eigenvalue gap of a local Hamiltonian. The price we pay is

the addition of many ancillas and a large increase in the number of interactions per

particle.

Whereas Theorem 3.1.1 states that a 2-local target Hamiltonian can be gadgetized

to a Hamiltonian with arbitrarily weak interactions, Corollary 1 states that the same

could be accomplished for a 3-local target Hamiltonian. (In Section 3.4 we also

generalize it to k-local Hamiltonians.)

Next, besides producing a gadget Hamiltonian with weak interactions that gener-

ates the target Hamiltonian, we could also generate the target Hamiltonian multiplied

by a positive factor θ. In case where θ > 1, this can be viewed as a coupling strength

amplification relative to the original target k-local Hamiltonian (see Corollary 2 be-

low). The basic proof idea is to view the rescaled target Hamiltonian θH (with θ > 1)

as a sum of O(θ) copies of itself with interaction strength O(1). Using the gadget

constructions from [9], we transform the k-local Hamiltonian θH to a 2-local one.

Finally, using our 2-body gadget construction in this work, we translate this Hamil-

tonian to one with only weak interactions (2-body).

Corollary 2 (Coupling strength amplification by gadgets) Let H =
∑M

j=1 Hj

be a k-local Hamiltonian on n qubits where M = poly(n) and each Hj satisfies ‖Hj‖ ≤
s for some constant s. Let |φj〉 and λj be the j-th eigenstate and eigenvalue of H.

Choose a magnifying factor θ > 1 and an error tolerance ε > 0. Then there exists

a 2-local Hamiltonian H̃ with interactions of strength O(1) or weaker. The low-lying
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eigenstates of H̃ are ε-close4 to |φj〉 ⊗ |0 · · · 0〉anc where |0 · · · 0〉anc is the state of the

ancilla qubits of H̃, and the low-lying spectrum of H̃ is ε-close to θ{λj}.

What is the efficiency of this way of amplifying the couplings? If we do it in a

series of reductions from k to dk/2e to ddk/2e/2e, etc., to 2-body interactions, the

final gadget Hamiltonian will act on a system whose total number of qubits scales

exponentially in k (which of course is not a problem for k = 3).

3.2 Effective interactions based on perturbation theory

The purpose of a perturbative gadget is to approximate a target n-qubit Hamil-

tonian Htarg by a gadget Hamiltonian H̃ which uses a restricted form of interactions

among the n qubits that Htarg acts on and poly(n) additional ancilla qubits. The sub-

space spanned by the lowest 2n eigenstates of H̃ should approximate the spectrum of

Htarg up to a prescribed error tolerance ε in the sense that the j-th lowest eigenvalue

of H̃ differs from that of Htarg by at most ε and the inner product between the corre-

sponding eigenstates of H̃ and Htarg (assume no degeneracy) is at least 1− ε. These

error bounds can be established using perturbation theory [7, 8]. There are various

versions of perturbation theory available for constructing and analyzing gadgets (for

a review see [149]). For example, Jordan and Farhi [9] use Bloch’s formalism, while

Bravyi et al. rely on the Schrieffer-Wolff transformation [129]. For the gadgets in Sec.

3.3, we use the technique from [7,8].

Let us now review the basic ideas underlying the construction of effective Hamilto-

nians from gadgets. The gadget Hamiltonian H̃ = H+V is a sum of an unperturbed

Hamiltonian H and a perturbation V. H acts only on the ancilla space, energetically

penalizing certain configurations, and favoring a specific ancilla state or subspace.

Second, we have a perturbation V describing how the target spins interact with the

ancillas.

4By ε-close we mean the norm of the difference between the two quantities (scalar, vector or matrix
operator) is ≤ ε.
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Let us introduce the following notations: let λj and |ψj〉 be the jth eigenvalue and

eigenvector of H and similarly define λ̃j and |ψ̃j〉 for H̃, assuming all the eigenvalues

are labeled in a weakly increasing order (λ1 ≤ λ2 ≤ · · · , similarly for λ̃j). Using

a cutoff value λ∗, let us call L− = span{|ψj〉 : λj ≤ λ∗} the low-energy subspace

and L+ = span{|ψj〉 : λj > λ∗} the high-energy subspace. Let Π− and Π+ be

the orthogonal projectors onto the subspaces L− and L+. For an operator O we

define the partitioning of O into these subspaces as O− = Π−OΠ−, O+ = Π+OΠ+,

O−+ = Π−OΠ+ and O+− = Π+OΠ−. We define similar notations L̃− and L̃+ for

H̃.

Our first goal is to understand H̃|L̃− , the restriction of the gadget Hamiltonian

to its low-energy subspace. Let us consider the operator-valued resolvent G̃(z) =

(zI−H̃)−1 where I is the identity operator. Similarly let us define G(z) = (zI−H)−1.

Note that G̃−1(z)−G−1(z) = −V, which allows an expansion of G̃ in powers of V:

G̃ = (G−1 −V)−1 = G(I−VG)−1 = G + GVG + GVGVG + · · · . (3.1)

It is also standard to define the self-energy Σ−(z) = zI− (G̃−(z))−1. It is important

because the spectrum of Σ−(z) gives an approximation to the spectrum of H̃−, since

by definition H̃− = zI − Π−(G̃−1(z))Π− while Σ−(z) = zI − (Π−G̃(z)Π−)−1. As

explained in [8], if Σ−(z) is roughly constant in some range of z (see Theorem 3.2.1

below for details) then Σ−(z) is (loosely speaking) playing the role of H̃−. This was

formalized in Theorem 3 in [7] (and improved in Theorem A.1 in [8]). Similarly to [8],

we choose to work with H whose lowest eigenvalue is zero and whose spectral gap

is ∆. In [7], the gadget theorem (Theorem 3) is proven by establishing a sequence

of Lemmas. Out of these, Lemma 5 requires the condition ‖V‖ < ∆
2

, with the

consequence being the separation of subspaces, namely L̃− ∩ L+ = {0}. Therefore,

we here remove the condition ‖V‖ < ∆
2

and use L̃− ∩ L+ = {0} as an alternative

assumption, giving us a slightly modified Gadget approximation theorem:

Theorem 3.2.1 (Gadget approximation theorem, modified from [7]) Let H

be a Hamiltonian with a gap ∆ between its ground state and first excited state. As-
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suming the ground state energy of H is 0, let λ∗ = ∆/2. Consider a bounded norm

perturbation V. The perturbed Hamiltonian is then H̃ = H + V. Following the

notations introduced previously, if the following holds:

1. L̃−∩L+ = {0}, with L+ = span{|ψj〉 : λj ≤ λ∗} for |ψj〉 eigenvectors of H and

L̃− = span{|ψ̃j〉 : λ̃j ≤ λ∗} for |ψ̃j〉 eigenvectors of H̃.

2. There is an effective Hamiltonian Heff with a spectrum contained in [E1, E2] for

some ε > 0 and E1 < E2 < ∆/2 − ε, such that for every z ∈ [E1 − ε, E2 + ε],

the self-energy Σ−(z) obeys ‖Σ−(z)−Heff‖ ≤ ε.

then all the eigenvalues of H̃− are close to the eigenvalues of H, obeying

|λj(Heff)− λj(H̃−)| ≤ ε.

The first, subspace condition, says that a combination of the unperturbed high-

energy eigenstates of H can not by themselves form a low-energy state of H̃. We

choose to avoid the original stronger condition ‖V‖ ≤ ∆
2

from [7], since it imposes

limitations on the global properties of the gadget construction, in particular the num-

ber of ancillas we use, disregarding the structure of the perturbation. One might

question whether the use of perturbation theory is sensible if we assume that the

perturbation ‖V‖ is no longer necessarily small compared to the spectral gap ∆ (we

want to use a large number M of gadgets). However, such use has been justified

previously by Bravyi et al. [129] in a similar context.

To apply Theorem 3.2.1, a series expansion for the self-energy Σ−(z) = zI−G̃−1
− (z)

is truncated at some low order, for which Heff is approximated. Using the series

expansion of G̃ in (3.1), the self-energy can be expanded as (see [7] for details)

Σ−(z) = H− + V− + V−+G+(z)V+− + V−+G+(z)V+G+(z)V+− + · · · , (3.2)

with G+(z) = Π+(zI − H)−1Π+. The 2nd and higher order terms in this expan-

sion give rise to effective many-body interactions. Introducing auxiliary spins and

a suitable selection of 2-local H and V, we can engineer Σ−(z) to be ε-close to
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Heff = Htarg⊗Π− (here Π− is the projector to the ground state subspace of the ancil-

las) in the range of z considered in Theorem 3.2.1. Therefore with ‖Σ−(z)−Heff‖ ≤ ε,

condition 2 of Theorem 3.2.1 is satisfied.

In the next Section, we will look at the usual 2-body gadgets and see how the

second order terms in the self-energy result in the desired effective Hamiltonian. Then

we present our construction that involves more ancillas with weaker interactions, and

show that the effective Hamiltonian is again what we want, and that the conditions

for Theorem 3.2.1 are met.

3.3 A new gadget for 2-body interactions

We can decompose any 2-local interaction of spin-1
2

particles in the Pauli basis5,

using terms of the form γA⊗B, with the operator A acting on spin a and B acting

on spin b, and γ the interaction strength. Without loss of generality, we can also use

± Pauli matrices, and fix the coupling strengths to be positive. It will be enough to

show how to replace any such “Pauli” interaction in our system by a gadget, aiming

at the target interaction Htarg = Helse + γA⊗B, with Helse some O(1)-norm, 2-local

Hamiltonian. First, we briefly review the existing constructions [1, 8, 129] for gener-

ating Htarg using a gadget Hamiltonian H̃. Then we present a new 2-body gadget

which simulates an arbitrary γ = O(1) strength 2-local interaction using a gadget

Hamiltonian with terms of strength only o(1), “building” quantum interactions from

many weaker ones.

The usual construction. Consider a target 2-local term involving two qubits a, b as

depicted in Fig. 3.2(a). The standard construction of a gadget Hamiltonian H̃ that

captures the 2-local target term is shown in Fig. 3.2(b). First, we introduce an ancilla

qubit w bound by a local field, with the Hamiltonian H = −∆
2
Zw. Alternatively, up

to a spectral shift we could write H = ∆|1〉〈1|w where |1〉〈1|w = 1
2
(I − Zw). Then

5It is useful that the Pauli matrices A,B ∈ {I,X,Y,Z} square to identity, because A2 and B2

terms in our effective Hamiltonian will become simple overall energy shifts
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Fig. 3.2. Interaction graphs for effective two-body interaction mediated
by ancilla qubits. Each node represents a particle. The size of the node
indicates the strength of local field applied onto it. The width of each
edge shows the strength of the interaction between the particles that the
edge connects. (a): The desired 2-local interaction between target spins
a, b. (b): The usual perturbative gadget uses a single ancilla w in a strong
local field, and large-norm interactions with the target spins. (c): We can
replace the strong local field ∆/2 by ferromagnetic interactions with a
fixed core – a group of C “core” ancilla qubits located in a field of strength
J/2, interacting with each other ferromagnetically (as a complete graph),
with strength J/2. (d): Instead of the strong interactions between target
spins a, b and a single ancilla w, we can use R different “direct” ancillas
(labeled as w1, w2, · · · , wR) and weaker interactions of strength β.
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we let w interact with a and b through
√

∆/2 A⊗ I⊗Xw and −
√

∆/2 I⊗B⊗Xw,

and choose ∆ = Θ(ε−1). We can view these terms as a perturbation to H. The low

energy effective Hamiltonian calculated from (3.2) is approximately A⊗B⊗ |0〉〈0|w
(up to an overall energy shift) [1]. Here “up to an error ε” means that the j-th lowest

eigenvalue of H̃ differs from that of Htarg by at most ε and the inner product between

the corresponding eigenstates of H̃ and Htarg (assume no degeneracy) is at least 1−ε.

Our construction. In the usual construction, with better precision (decreasing ε),

the spectral gap ∆ (related to local field strength) and interaction strengths grow

as inverse polynomials in ε. We now suggest a 2-body gadget which simulates an

arbitrary O(1) strength target interaction using a gadget Hamiltonian of only O(ε)

interaction strength i.e. without the need for large-norm terms. We build it in a

sequence of steps illustrated in Fig. 3.2.

The first step is to reduce the large local field ∆ in Fig. 3.2(b). Let us call the

ancilla w directly interacting with the target spins a direct ancilla. We add a core C
– a set of C ancilla qubits c1, . . . , cC , with a complete graph of ferromagnetic (ZZ)

interactions of strength J
2
, and in a local field of strength J

2
where J = O(ε). We then

let the direct ancilla w interact (ferromagnetically) with each of the core ancillas, as

in Fig. 3.2(c). The Hamiltonian for the direct and core ancillas then reads

J

2

∑
c∈C

(I− ZwZc) +
J

2

∑
c∈C

(I− Zc) +
J

2

∑
c,c′∈C

(I− ZcZc′)︸ ︷︷ ︸
≡HC

. (3.3)

HC is the Hamiltonian describing the core C. The ground state of this Hamiltonian

is |0〉w|0 · · · 0〉C, and the gap between its ground and first excited state |1〉w|0 · · · 0〉C
is ∆ = JC. Here C is the number of ancillas in the core C.
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The second step is to use R direct ancillas w1, . . . , wR instead of just one, con-

necting each of them to the core ancillas as in Figure 3.2(d). The Hamiltonian then

becomes

H =
J

2

R∑
i=1

∑
c∈C

(I− ZwiZc) + HC. (3.4)

Its ground state is |0 · · · 0〉w⊗|0 · · · 0〉C (here we use the subscript w to refer to all the

direct ancillas connected to the target qubits), and the gap between the two lowest

energies is still ∆ = JC.

We want to engineer an effective interaction Htarg = γAa ⊗ Bb + Helse, where

the first term is our desired Hamiltonian, and Helse is a finite-norm Hamiltonian that

includes all the other terms that we want to leave unchanged by this gadget. Starting

with the Hamiltonian H (3.4), we add a perturbation

V = Helse + β
R∑
i=1

(Aa ⊗Xwi −Bb ⊗Xwi) , (3.5)

where β > 0 is the strength of the interactions between the target spins and the

direct ancillas. Showing that we can use perturbation theory to obtain the effective

Hamiltonian crucially relies on Theorem 3.2.1, and we will justify that its conditions

hold later. Let us now prepare the notations and tools for this. Let L− be the

subspace with the ancillas in the state |0〉⊗(R+C). Denote L+ the subspace orthogonal

to L− and let Π− and Π+ be the projectors onto these subspaces. We then have

V− = Π−VΠ− = Helse ⊗Π−, (3.6)

V−+ = Π−VΠ+ = β(Aa −Bb)⊗
R∑
i=1

|0〉〈1|wi , (3.7)

V+− = Π+VΠ− = β(Aa −Bb)⊗
R∑
i=1

|1〉〈0|wi , (3.8)

V+ = Π+VΠ+ = Helse ⊗Π+ + β

R∑
i=1

(Aa −Bb)⊗Π+XwiΠ+. (3.9)

The low-energy sector of the gadget Hamiltonian H̃ = H + V can be described by

the self-energy expansion (3.2). Let us compute the terms up to the second order.
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• At the 0th order, H− = 0 by definition.

• At the 1st order, V− is given by (3.6).

• At the 2nd order, we have the term V−+G+V+−, where V−+ and V+− can be

computed from (3.7) and (3.8). We also need the operator-valued resolvent

G+(z) =
∑

x:h(x)>0

1

z − h(x)∆
|x〉〈x|.

A second order transition process from the low energy subspace back to itself

can only take the form |0〉⊗R → |x〉 → |0〉⊗R, with x an R-bit string of Hamming

weight 1 (there are R qubits that can be flipped there and back). Hence, the

only non-trivial terms in the product V−+G+V+− have the form β(Aa −Bb) ·
1

z−∆
· β(Aa − Bb). Altogether, we have R of these terms, so the second order

term becomes V−+G+V+− = 1
z−∆

Rβ2(Aa −Bb)
2.

We could obtain the higher order terms in a similar fashion. In the end, the self-energy

expansion becomes

Σ−(z) = Helse︸︷︷︸
1st order

+
1

z −∆
Rβ2(Aa −Bb)

2︸ ︷︷ ︸
2nd order

+
∞∑
m=1

V−+G+(V+G+)mV+−︸ ︷︷ ︸
error term

. (3.10)

Recall that G(z) = (zI − H)−1. The range of z we consider is |z| ≤ ‖Helse‖ + |γ|.
We can assume γ > 0 in Htarg (e.g. by absorbing a possible minus sign into the A

matrix), and choose

β =

√
γ∆

2R
=

√
γJC

2R
. (3.11)

Since z � ∆, we can write 1
z−∆

= − 1
∆

(
1− z

∆

)−1 ≈ − 1
∆

+ O
(

1
∆2

)
. Then the 1st

and 2nd order terms are approximately equal to the desired effective Hamiltonian

Heff = Htarg ⊗Π− up to an overall spectral shift (because A2 = B2 = I). We will

show later (Claim 2) that with good choices of R and C we can make β and J as

small as we want.
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Fig. 3.3. Parallel composition of M (here M = 4) two-body gadgets
from Fig. 3.2(d), using a single common core with C “core” ancillas. Each
gadget has R “direct” ancillas interacting with the target spins. The total
number of ancillas is thus MR + C.
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Parallel 2-body gadgets. So far, we have focused on a single 2-local term in our target

Hamiltonian (see Fig. 3.2). Similarly to [8], we can apply our gadgets in parallel,

which enables us to deal with a target Hamiltonian with M such 2-local terms. Let

us then consider a target Hamiltonian of the form

Htarg = Helse +
M∑
j=1

γjAaj ⊗Bbj (3.12)

and apply our construction to every term γjAaj ⊗Bbj in parallel, as in Fig. 3.3. Note

that we save a lot of resources by using only a single core. Each target term γjAaj⊗Bbj

is associated with R direct ancilla qubits w
(i)
1 , w

(i)
2 , · · · , w(i)

R that are connected to

target spins ai and bi. All of the direct ancillas also interact with each of the C

core ancillas. As before, the core consists of C qubits that are fully connected with

ferromagnetic (ZZ) interactions of strength J
2

and also with local fields of strength

J
2

on each qubit. Hence the full gadget Hamiltonian for the general 2-local target

Hamiltonian in (3.12) takes the form H̃ = H + V with

H =
J

2

M∑
j=1

R∑
i=1

∑
c∈C

(I− Z
w

(j)
i

Zc) + HC, (3.13)

V = Helse +
M∑
j=1

βj

R∑
i=1

(
Aaj −Bbj

)
⊗X

w
(j)
i
.

where HC is the core Hamiltonian from (3.4), βj =
√

γjJC

2R
and the spectral gap

between the ground state and the first excited state of H is ∆ = JC. Computing

the self-energy expansion as in (3.10) for the gadget Hamiltonian in (3.13) yields a

contribution − 1
z−∆

∑M
j=1 β

2
jR(Aaj −Bbj)

2 at the second order (see Claim 2 for more

details). Because each term in the perturbative expansion Σ−(z) corresponds to a

sequence of state transitions from L− to L+ and back6, the second order contribution

comes from those transitions where one ancilla is flipped from |0〉 to |1〉 and back to

6Note that in fact L− = span{|0 · · · 0〉w|0 · · · 0〉C} where the subscript w refers to all the ancillas w
(j)
1 ,

w
(j)
2 , · · · , w(j)

R , for j = 1, 2, · · · ,M . The transitions that contribute to the perturbative expansion
Σ−(z) are restricted to only to the direct ancillas |0 · · · 0〉w since the core ancillas do not interact
with the target qubits.
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|0〉. Such transitions cannot involve more than one ancilla qubit. Hence we can regard

the second order transitions involving different ancillas as occurring independently of

each other (in parallel). This enables the 2-body gadgets to capture multiple 2-

local target terms, and is much more effective than a “serial” approach: constructing

a gadget for a single 2-body interaction, calling what we get Helse, then building

another gadget for another 2-body interaction, and so on.

In order to show that the low-lying subspace of our gadget Hamiltonian H̃ cap-

tures the spectrum of Htarg using Theorem 3.2.1, it is necessary to establish that H̃

meets both conditions of the theorem. The first condition, L̃− ∩ L+ = {0}, requires

the vectors the unperturbed high-energy states not to become perturbed low energy

states by themselves. We will prove this as Claim 1 below. The second condition says

that the self-energy expansion Σ−(z) can be approximated by an effective Hamilto-

nian when z is in a certain range. We establish this as Claim 2 for H̃ by proving

that the perturbation series converges for Σ−(z). Theorem 3.1.1 then follows from

Theorem 3.2.1 with H̃ being the Hamiltonian in (3.13).

3.3.1 The 2-local construction satisfies the subspace condition.

The first condition in Theorem 3.2.1 is a property of the high-energy subspace of

the original Hamiltonian. We need it in order to avoid the need to bound the norm

of the whole perturbation. Let us provide a high-level description of the condition

and the ideas behind its proof.

Consider the gadget Hamiltonian H̃ = H + V defined in (3.13). We need to

lower bound the lowest energy E+ = minψ〈ψ|H̃|ψ〉 of a state |ψ〉 that comes from the

subspace L+, the excited subspace of H, spanned by states orthogonal to the state

|0 · · · 0〉w. The terms in H involve only ancilla qubits, while V includes Helse, and

terms that couple some computational (target) qubit a and a direct ancilla w. These

2-local terms have form βwAa ⊗Xw, with interaction strengths |βw| ≤ βmax = O(1),

as in Figure 3.4(a). We now want to show that E+ is strictly above λ∗ = ∆
2

. To do
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Fig. 3.4. A sequence of gadget Hamiltonians with progressively lower
lower bounds on E+. (a): Taking the terms acting on the target spins to
be all the same. (b): Decoupling the target spins from the direct ancillas
using −I operators on the target spins and (weighted) X-fields on the
direct ancillas. (c): Replacing the interactions with core ancillas by an
overall shift, and a (weighted) Z-field on the direct ancillas, arriving at
(3.30).

this, we find a sequence of successively lower lower bound E+ using a sequence of

progressively simpler Hamiltonians, finally arriving at 1-local ones in (3.24), (3.28)

and (3.30).

First, we will show that E+ for the general Hamiltonian H̃ is greater or equal

to the value of E+ for a similar system in which all of the operators Aa are the

same (so that they do not compete against each other in lowering the energy) as

in Figure 3.4(a). Second, we can only lower E+ by making all of the operators Aa

identities, and using only operators − |βw|Xw on the direct ancillas. Because the

target spins are now independent from the ancillas, the contribution from Helse is

then no larger in magnitude than ‖Helse‖. This is depicted in Figure 3.4(b).

We are now left with a Hamiltonian which is a sum of Helse, single-qubit terms on

the direct ancilla qubits, and their interactions7 with the core ancillas. The Hilbert

7If the values of β are different for different terms, we still use a single core with a fixed J , fixed
C, fixed ∆ = JC, and adjust each βw for each target interaction individually so that the resulting
effective interaction strength β2

wR/∆ = O(1) is what we desire.
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space divides into a direct sum of invariant subspaces labeled by the state of the

core ancillas. These subspaces are decoupled (the original Hamiltonian H and the

perturbation V do not flip the core ancillas), so we can analyze them one by one.

We do so for the subspaces with a ≥ 1 core ancillas flipped to |1〉, and then finally

for the subspace with all core ancillas equal to |0〉. It turns out that in each such

subspace we can map the terms ZwZc,ZcZc′ ,Zc and Helse of the Hamiltonian8 to one

that is simply an overall shift, and a −∆a

2
Zw term on each of the direct ancillas, with

∆a a function of how many ancillas were flipped. The resulting 1-local Hamiltonian

illustrated in Figure 3.4(c) can be analyzed, and yields the desired lower bound on

E+. Let us then state and prove our first Claim.

Claim 1 Consider the 2-body gadget Hamiltonian H̃ = H + V from (3.13), corre-

sponding to a target Hamiltonian Htarg = Helse +
∑M

i=1 γiAi⊗Bi with γj ≤ O(1) and

Helse positive semi-definite. Let ∆ be the spectral gap between the ground and the first

excited subspace of H, and define a cutoff λ∗ = ∆/2. Following Section 3.2, we define

L+ = span{|ψj〉 : λj > λ∗} for |ψj〉 eigenvectors of H, and L̃− = span{|ψ̃j〉 : λ̃j < λ∗},
for |ψ̃j〉 eigenvectors of H̃. Then if ∆ ≥ 160Mγmax, with γmax = maxj=1,··· ,M |γj|, we

have

L̃− ∩ L+ = {0}.

We start the proof by exhibiting a sequence of Hamiltonians with progressively

lower E+, and then showing Claim 1 for the last of them.

Let |ψ〉 ∈ L+ be the state with minimum energy for the perturbed Hamiltonian H̃,

and let us label this minimum energy E+ = 〈ψ|H̃|ψ〉. The Hamiltonian H̃ connects

target spins to direct ancillas via terms of the type Aa ⊗ Xj. We now argue that

E+ can be only lowered if we decouple the target spins from the direct ancillas, and

simply use −I⊗Xj instead of Aa ⊗Xj.

The expectation value 〈ψ|H̃|ψ〉 = EH + EV comes from the expectation value of

H which is diagonal in the computational basis (the Z and ZZ terms involving the

8There is no Zw term on the direct ancillas, so that a single direct ancilla flip increases the energy
by ∆ = JC.
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ancillas) and the expectation of V, which includes the interactions with target spins

as well as the term Helse. Let us rewrite the state |ψ〉 as

|ψ〉 =
∑
w

cw|w〉 ⊗ |φw〉, (3.14)

where w is a binary string labeling computational basis state of all the ancillas. The

expectation value of the term H depends only on the magnitudes of the cw’s. The

contribution from Helse is ∑
w

|cw|2 〈φw|Helse|φw〉. (3.15)

Finally, each term in V of the form Aa ⊗Xj contributes

c∗vcv′〈v|Xj|v′〉〈φv|Aa|φv′〉 (3.16)

for every pair v, v′ that differ only at bit j. This expression can be positive or negative,

depending on cv and cv′ . More crucially, its magnitude will depend on 〈φv|Aa|φv′〉.
Because Aa is a Pauli operator, this magnitude can never exceed 1. Let us now

consider a state

|ψ′〉 =

(∑
w

|cw| |w〉
)
⊗ |φ〉, (3.17)

with positive coefficients |cw|, and a particular state |φ〉 chosen to minimize 〈φ|Helse|φ〉.
The expectation value of H does not change, while the contribution from Helse

can only decrease, because we have chosen |φ〉 to minimize it. In other words,

〈ψ′|H|ψ′〉 ≤ 〈ψ|H|ψ〉 and 〈ψ′|Helse|ψ′〉 ≤ 〈ψ|Helse|ψ〉. Finally, the expectation value

of the interaction terms in V′ (when we set Aa = −I) like (3.16) now become

−|cv| · |cv′ |〈v|Xu|v′〉 ≤ −c∗vcv′〈v|Xu|v′〉〈φv|Aa|φv′〉. (3.18)

Thus, 〈ψ′|V′|ψ′〉 ≤ 〈ψ|V|ψ〉 and we conclude that the new minimum energy of H̃′

restricted to L+ is E ′+ ≤ 〈ψ′|H|ψ′〉+ 〈ψ′|V′|ψ′〉 ≤ E+. It means that when we replace

the Hamiltonian V with one that has no interactions between the direct ancillas and

the target spins, and uses operators −Xw on the direct ancillas, E+ decreases (or

remains what it was).
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Therefore, we can assume without loss of generality that the Hamiltonian H̃ has

this special form. We will continue the proof by showing that if |ψ〉 ∈ L+ then

〈ψ|H̃|ψ〉 > λ∗ for any normalized state |ψ〉.
The subspace L+ is spanned by (direct + core) ancilla qubit states with at least

one |1〉. Let K− = |0 · · · 0〉w be the all-zero state the direct ancillas, and let Sa =

span{|x〉C : h(x) = a} be the subspace of the core ancillas with exactly a qubits9 in

the state |1〉. Thus, the subspace L+ splits into two parts as L+ = L1 ⊕ L2, where10

L1 = Hw ⊗
(

C⊕
a=1

Sa
)
, L2 = K⊥− ⊗ S0. (3.19)

The first part L1 spanned by all the states where the core has at least one qubit

|1〉, while the second part L2 is spanned by all the states with the core ancillas all

|0〉, and at least one direct ancillas being |1〉. We now first show that ∀|ψ〉 ∈ L1,

〈ψ|H̃|ψ〉 > λ∗, and then similarly for L2.

(1) If |ψ〉 ∈ L1, then 〈ψ|H̃|ψ〉 > λ∗.

Let us first consider |ψa〉 ∈ Hw ⊗ Sa for some fixed a ∈ {1, 2, · · · , C}. Then |ψa〉 is a

(linear combination of) state(s) where a ancillas in the core are |1〉 and the other C−a
core ancillas are |0〉. We will find a lower bound for Ẽ+,a = 〈ψa|H̃|ψa〉 by considering

each component of H̃. Recall from (3.3) the definition of the core Hamiltonian

HC =
J

2

∑
c∈C

(I− Zc) +
J

2

∑
c,c′∈C

(I− ZcZc′). (3.20)

Then the energy of |ψa〉 with respect to the core Hamiltonian is EC,a = 〈ψa|HC|ψa〉 =

Ja(C − a+ 1) ≥ JC. Let

Hw =
J

2

M∑
j=1

R∑
i=1

∑
c∈C

(I− Z
w

(j)
i

Zc) =
J

2

M∑
j=1

R∑
i=1

(
CI− Z

w
(j)
i

∑
c∈C

Zc

)
(3.21)

9Here h(x) is the Hamming weight of the binary string x.
10Here Hw is the Hilbert space of the direct ancillas.
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be the interaction Hamiltonian between the direct ancillas and the core ancillas.

Recall from (3.13) that H = Hw + HC. The second equality in (3.21) indicates that

Hw consists of a sum of terms of the form CI−Z
w

(j)
i

∑
c∈C Zc. Let us focus on such a

term for a particular direct ancilla w. Consider the states |0〉w ⊗ |a〉C and |1〉w ⊗ |a〉C
with |a〉C ∈ Sa and look at the term Zw

∑
c∈C Zc. Its expectation value in these states

is C − 2a and 2a − C, regardless of the state of the core ancillas. Thus, we get an

effective Hamiltonian

h′w = CI− (C − 2a)Zw (3.22)

for each direct ancilla w. Collecting these effective Hamiltonians for each direct

ancilla, we get

H′w =
J

2

M∑
j=1

R∑
i=1

h′
w

(j)
i

=
J

2

N∑
k=1

h′k, (3.23)

whose lowest energy in the subspace Hw⊗Sa is equal to that of Hw. For convenience,

we relabel the direct ancillas by k = 1, . . . N with N = MR (we are simulating M

two-body interactions using R direct ancillas per interaction), and replace the sum

over i and j with a single index summation over k.

Let us now add the perturbation V (3.13). For each direct ancilla k there is a

term in V of the form vk = βk(A⊗Xk−B⊗Xk) = βkOAB⊗Xk, and we have shown

by a sequence of reductions that the lowest energy of vk in Hk⊗Sa is lower bounded

by that of v′k = 2βkXk. Thus, when we label V′ =
∑N

k=1 v′k =
∑N

k=1 2βkXk, we get a

1-local Hamiltonian

H̃′ = EC,aI + H′w + V′ = EC,aI +
N∑
k=1

(
2βkXk +

JC

2
I− J(C − 2a)

2
Zk

)

=

(
Ja(C − a+ 1) +

JCN

2

)
I +

N∑
k=1

√
4β2

k +
J2

4
(C − 2a)2Pk

(3.24)

acting only on the direct ancillas, which gives us a lower bound on E+, i.e. for any

|ψa〉 ∈ Hw ⊗ Sa,
min
Hw⊗Sa

〈ψa|H̃|ψa〉 ≥ min
Hw⊗Sa

〈ψa|H̃′|ψa〉, (3.25)
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with Pk a single qubit operator of the form p̂ · ~̂σ, with ~̂σ = {X,Y,Z} and unit vector

p̂. Note that the lower bound (3.25) does not include Helse in H̃′; because Helse ≥ 0,

we are only lowering the right side by omitting it.

Note that the above argument can be generalized to L1 = Hw ⊗ (⊕Ca=1Sa). For a

general |ψ〉 ∈ L1, |ψ〉 must take the form

|ψ〉 = |φ〉w ⊗
C∑
a=1

ηa|a〉C, where |a〉 =
∑
h(x)=a

ca,x|x〉, x ∈ {0, 1}C (3.26)

for some sets of complex coefficients {ηa} and {ca,x} that are both normalized. Then

〈ψ|HC|ψ〉 =
∑C

a=1 |ηa|2Ja(C − a + 1). Let A be the set of a for which ηa 6= 0. Let

amax be the value of a in A that maximizes (C − 2a)2. Define

|ψ′〉 = |φ〉w ⊗ |amax〉C,

h′w,amax
= CI− (C − 2amax)Zw,

H′w,amax
=

J

2

N∑
k=1

h′k.

(3.27)

Then 〈ψ|Hw|ψ〉 ≥ 〈ψa|H′w,amax
|ψa〉 for any |φ〉w ∈ Hw. Since the generalization from

Hw ⊗Sa to Hw ⊗ (⊕Ca=1Sa) does not concern the direct ancillas, we can use the same

argument as before to construct a 1-local Hamiltonian

H̃′amax
=

C∑
a=1

|ηa|2
(
Ja(C − a+ 1) +

JCN

2

)
I +

N∑
k=1

√
4β2

k +
J2

4
(C − 2amax)2Pk,amax

(3.28)

such that for any |ψa〉 ∈ L1, there always exists a value amax such that

min
|ψ〉∈L1

〈ψ|H̃|ψ〉 ≥ min
|ψ〉∈L1

〈ψ|H̃′amax
|ψ〉.

Let us now find a lower bound on 〈ψ|H̃′amax
|ψ〉. Note that Ja(C − a + 1) ≥ JC for

any a = 1, 2, · · · , C. Let βmax = maxk=1,2,··· ,N |βk|. Noting that Pk,amax in (3.28) is a

unit-norm operator, for any |ψ〉 ∈ L1 we get

〈ψ|H̃′amax
|ψ〉 ≥

(
JC +

JCN

2

)
−N

√
4β2

max +
J2

4
(C − 2amax)2
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= JC +
JCN

2
− JCN

2

√
1 +

16β2
max

J2C2

≥ JC − JCN

2
· 16β2

max

2J2C2
= JC − 4Nβ2

max

JC

= ∆− 4MRβ2
max

∆
≥ 79∆

80
>

∆

2
= λ∗, (3.29)

where we have used 2Rβ2
max/∆ = γmax from (3.11) and asked for ∆ ≥ 160Mγmax

in the last line. Here γmax = maxj=1,··· ,M |γj| where γj are coefficients in the target

Hamiltonian. Putting (3.29) into (3.25), we get E+ > ∆
2

= λ∗. We have thus shown

the desired lower bound on E+ in the subspace L1. Let us now deal with the other

part, L2.

(2) If |ψ〉 ∈ L2, then 〈ψ|H̃|ψ〉 > λ∗.

Any state in the subspace L2 = K⊥− ⊗ S0 has the core ancillas in the state |0 · · · 0〉C,
hence 〈ψ|HC|ψ〉 = 0. To find a lower bound for the energy of Hw in this subspace,

we use the construction H′w in (3.23) with a = 0. For the energy of V we use the

same simplifying argument and obtain (again) a 1-local Hamiltonian acting only on

the N = MR direct ancillas (cf. Equation 3.24)

H̃′0 =
N∑
k=1

(
∆

2
I− ∆

2
Zk − 2βkXk

)
=

N∑
k=1

Sk, (3.30)

such that

min
|ψ〉∈L2

〈ψ|H̃|ψ〉 ≥ min
|ψ〉∈L2

〈ψ|H̃′0|ψ〉. (3.31)

We now show that the energy of any direct ancilla state orthogonal to

K− = span{|0 . . . 0〉w}

is strictly lower bounded by λ∗ = ∆/2. Since the core ancilla state will always be

|0 · · · 0〉C, we will exclude it from our discussion and thus omit the w subscript for the

direct ancilla. All quantum states in the proof from here on refer to the state of the

direct ancillas.
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To show the energy lower bound we use induction on the number of direct ancillas,

n. Let

En = min
|φ〉⊥|0〉⊗n

〈φ|
n∑
k=1

Sk|φ〉. (3.32)

Specifically, we prove the following statement:

En ≥
3∆

4
− δn, with δn =

40nβ2

9∆
, n = 1, · · · , N. (3.33)

We start with the initial case n = 1. There the only state orthogonal to |0〉 is |1〉.
Hence E1 = ∆, which satisfies (3.33). Now assume (3.33) holds for some n. An

(n+ 1)-qubit state that is orthogonal to |0 · · · 0〉 (denoted by the superscript �) must

have the form

|ψ�n+1〉 = a|ξ�n 〉|0〉+ b|φ�n 〉|1〉+ c|0 · · · 0〉|1〉, (3.34)

where |ξ�n 〉 and |φ�n 〉 are some states that are orthogonal to |0 · · · 0〉. Let us calculate

the energy of the state (3.34).

En+1 =
n∑
i=1

〈ψ�n+1|Si|ψ�n+1〉+ 〈ψ�n+1|Sn+1|ψ�n+1〉

= |a|2
n∑
i=1

〈ξ�n |Si|ξ�n 〉〈0|0〉+ |b|2
n∑
i=1

〈φ�n |Si|φ�n 〉〈1|1〉

+ |c|2
n∑
i=1

〈0 · · · 0|Si|0 · · · 0〉〈0|0〉

+ 2Re

(
ab∗

n∑
i=1

〈ξ�n |Si|φ�n 〉〈0|1〉+ ac∗
n∑
i=1

〈ξ�n |Si|0 · · · 0〉〈0|1〉

+bc∗
n∑
i=1

〈φ�n |Si|0 · · · 0〉〈1|1〉
)

+ |a|2〈0|S|0〉n+1 + |b|2〈1|S|1〉n+1 + |c|2〈1|S|1〉n+1

+ 2Re
(
ab∗〈ξ�n |φ�n 〉〈0|S|1〉+ ac∗〈ξ�n |0 · · · 0〉〈0|S|1〉+ bc∗〈φ�n |0 · · · 0〉〈1|S|1〉

)
.

(3.35)

Note that 〈0|1〉 = 0 and 〈ψ�n |0 · · · 0〉 = 〈φ�n |0 · · · 0〉 = 0. Also recall that 〈0|Si|0〉 = 0,

〈1|Si|1〉 = ∆ and 〈0|Si|1〉 = −2βi. Hence,

En+1 = |a|2
n∑
i=1

〈ξ�n |Si|ξ�n 〉+ |b|2
n∑
i=1

〈φ�n |Si|φ�n 〉+ 0 + 0 + 0
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+ 2Re

(
bc∗

n∑
i=1

〈φ�n |Si|0 · · · 0〉
)

+ 0 + |b|2∆ + |c|2∆

+ 2Re
(
−ab∗〈ξ�n |φ�n 〉2βn+1

)
+ 0 + 0

≥ |a|2En + |b|2En + 2Re

(
bc∗

n∑
i=1

〈φ�n |Si|0 · · · 0〉
)

+ |b|2∆ + |c|2∆− 4|a||b|βmax, (3.36)

where we lower bounded the last term using absolute values, a maximum magnitude

of the β’s, and |〈ψ�n |φ�n 〉| ≤ 1. Next, we observe that the term 〈φ�n |Si|0 · · · 0〉n is

nonzero only for parts of |φ�n 〉 with a single |1〉. The largest magnitude it could

possibly have is when the state |φ�n 〉 is made only from states with a single |1〉 as

1√
n

∑n
i=1 |0 · · · 1i · · · 0〉. We then get

∑n
i=1〈φ�n |Si|0 · · · 0〉 ≥ −2βmax

√
n. Putting this

in, recalling (3.33) and using absolute values, we get

En+1 ≥
(
|a|2 + |b|2

)(3∆

4
− δn

)
− |b||c| · 4βmax

√
n+

(
|b|2 + |c|2

)
∆− |a||b| · 4βmax

(3.37)

=
3∆

4

(
|a|2 + |b|2 + |c|2

)
−
(
|a|2 + |b|2

)
δn + |b|2∆− |a||b| · 4βmax

− |b||c| · 4βmax

√
n+ |c|2 · ∆

4
(3.38)

≥ 3∆

4
− δn + |b|2∆− |b| · 4βmax + |c|

(
|c|∆

4
− |b| · 4βmax

√
n

)
︸ ︷︷ ︸

f(|c|)

, (3.39)

where we have used (3.33), and then |a|2 + |b|2 ≤ 1 and |a| ≤ 1. Independent of |b|,
let us look at f(|c|), a quadratic function of |c|. Its minimum is at |c| = |b|·8βmax

√
n

∆
,

with the value fmin = − |b|2·16nβ2
max

∆
. In (3.39) it means

En+1 ≥
3∆

4
− δn + |b|2∆− |b| · 4βmax −

16|b|2nβ2
max

∆
(3.40)

=
3∆

4
− δn + |b|2

(
∆− 16nβ2

max

∆

)
︸ ︷︷ ︸

≥9∆/10

−|b| · 4βmax (3.41)
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≥ 3∆

4
− δn + |b|

(
|b|9∆

10
− 4βmax

)
︸ ︷︷ ︸

g(|b|)

, (3.42)

where in the second line we have used ∆ ≥ 160Mγmax to guarantee ∆ − 16β2
maxn
∆

≥
∆− 16β2

maxN
∆

= ∆−16Mγmax ≥ 9∆
10

. The expression g(|b|) is quadratic in |b|, minimized

at |b| = 20βmax

9∆
, giving the value gmin = −40β2

max

9∆
. Putting it into (3.42), we get

En+1 ≥
3∆

4
− δn −

40β2
max

9∆
=

3∆

4
− δn+1, (3.43)

which proves our induction step, as δn = 40nβ2
max

9∆
. Therefore, (3.33) holds. Let n = N

and we have for any |ψ〉 ∈ L2,

〈ψ|H̃′0|ψ〉 ≥ EN ≥
3∆

4
− 40Nβ2

max

9∆
=

3∆

4
− 40MRβ2

max

9∆

=
3∆

4
− 20Mγmax

9
≥
(

3

4
− 1

72

)
∆ =

53

72
∆ >

∆

2
= λ∗, (3.44)

where in the last line we have used (3.11) and ∆ ≥ 160Mγmax. Combining the above

statement with (3.31), we have 〈ψ|H̃|ψ〉 > λ∗ for any |ψ〉 ∈ L2.

This concludes the proof of Claim 1. 2

3.3.2 The perturbation series converges.

Let us now state and prove our second claim – the convergence of the perturbation

series for our gadget construction.

Claim 2 Consider the 2-body gadget Hamiltonian H̃ = H + V defined in (3.13) with

spectral gap ∆ between the ground and the first excited subspace of H, and a target

Hamiltonian Htarg = Helse +
∑M

j=1 γjAj ⊗Bj with γj = O(1) and Helse positive semi-

definite. Choose a constant parameter d ∈ (0, 1) and an error tolerance ε. If we set

∆ = M3Rd and choose the number of direct ancillas per target term R and the core

size C according to

R = Ω

(
max

{
ε−

2
d ,

( ‖Helse‖2

2M4γmax

) 1
d

,
(
M3ε−2

) 1
1−d

})
, C = Ω

(
M3Rd ε−1

)
,

(3.45)
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then the strengths of the interaction terms in the gadget Hamiltonian are small, i.e.

βj, J = O(ε).

Furthermore, the self energy expansion (3.2) satisfies

‖Σ−(z)−Htarg ⊗Π−‖ = O(ε), (3.46)

where Π− is the projector onto L−, and z obeys |z| ≤ ε+ ‖Helse‖+
∑M

j=1 |γj|.

This claim is one of the central results of this work – it shows that our gadget Hamilto-

nian (for a 2-local target Hamiltonian) uses only interactions of strength O(ε), i.e. no

strong interactions. This is qualitatively different from previous constructions which

require interactions of strength poly(ε−1). However, the price we pay for avoiding

strong interactions is that the number of ancillas scales as poly(ε−1), as shown in

(3.45), while previous constructions require some number of ancillas independent of

ε. Hence we present a tradeoff between interaction strength and ancilla number in a

gadget Hamiltonian.

Let us prove Claim 2. First we show that H̃ consists of only weak interaction

terms. When we choose ∆ = M3Rd for some d ∈ (0, 1) and substitute it into (3.11),

we find that the interaction strength between the target spins and direct ancillas will

be βj =
√

γj∆

2R
= O(ε), if we choose

R�
(
M3ε−2

) 1
1−d . (3.47)

Next, recalling ∆ = CJ , the strength of the interaction J between the core ancillas

will be O(ε) if we choose C �M3Rd ε−1.

Furthermore, once we set ∆ = M3Rd, we can easily satisfy the requirement

∆ ≥ 160Mγmax in Claim 1 for reasonable R – more specifically, we need R �
(160γmax/M

2)
1/d

.
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We will now analyze the higher order terms in the self energy expansion Σ−(z)

according to (3.2) and show that the error term in Eq. 3.2 scales as O(ε). The

perturbative expansion of Σ−(z) for the construction in (3.13) yields

Σ−(z) = Helse +
1

z −∆

M∑
j=1

Rβ2
j (Aaj −Bbj)

2 +
∞∑
k=1

V−+ (G+V+)k G+V+−︸ ︷︷ ︸
error

. (3.48)

We can associate every term in the perturbation series with a path starting in the

ancilla state |0〉w|0〉C (i.e. belonging to L−) to states in L+ and back to L−. Each

path consists of a sequence of virtual transition steps between states of the ancillas,

denoted x→ x′ with R-bit strings x, x′. The number of steps for a path is dependent

on the order of the perturbation term. A path for the m-th order is

L−
V−+−−−→ |y〉 V+−−→ |y1〉

V+−−→ |y2〉
V+−−→ · · · V+−−→ |ym−2〉

V+−−→︸ ︷︷ ︸
(m− 2) steps

|y′〉 V+−−−−→ L−, (3.49)

where y and y′ are R-bit strings with Hamming weight 1, and |yi〉 ∈ L+. In particular,

these states belong to the subspace L2 = K⊥− ⊗ S0 in (3.19). Observe that each term

in Tm = V−+(G+V+)m−2G+V+− is composed from transitions of the following three

types

1. a |0〉 → |1〉 flip of some direct ancilla qubit w,

2. a |1〉 → |0〉 flip of some w,

3. the state of the ancillas stays the same.

In the first two cases, V+ (also V−+ or V+−) contributes the term from V that

flips the direct ancilla w via · · · ⊗Xw. In the third case, the ancilla state stays the

same, and V+ contributes a term that contains interaction with w via · · · ⊗ |1〉〈1|w.

This type of term contains the factor Helse. Note that for the k − 2 transitions, the

number of flips kf cannot exceed k. Furthermore, it must be even for the transition

to terminate in L−. Finally, every transition step yi → yi+1 also contributes a factor

1
z−h(yi)∆

coming from G+, with h(yi) the Hamming weight of the string yi.
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Fig. 3.5. A graphical representation of the contributions to the error
term of order m = 2k or m = 2k + 1. An up- and right-moving, sub-
diagonal path corresponds to a sequence of transitions. A bit flip moves
2 squares horizontally/vertically, while “staying” moves across one square
diagonally. The distance from the diagonal corresponds to the number
h(y) of flipped ancillas in a given state y.
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We can find the norms of the perturbation terms at a given order by enumerating

all possible paths and adding up their contributions. For this, we introduce a graphical

representation of the paths in Fig. 3.5. Each grid point in the lower-right triangle,

including the diagonal points, corresponds to a state with a particular number of the

direct ancillas flipped. We start from the lower-leftmost point, which corresponds

to the all-zero subspace L−. Each transition (ancilla flip) maps to a rightwards or

upwards movement on the graph, while remaining in the high-energy subspace is

depicted by a diagonal step. A valid path ends at the top-rightmost point, which

again belongs to the ground state subspace L−. Furthermore, a valid path can touch

the diagonal line only at the last step of the transition (otherwise, it would be a

composition of paths at lower orders).

Suppose at a certain point the direct ancillas are in a state |y〉 with h(y) ancillas

in |1〉 and the rest in |0〉, with h(y) ∈ {1, 2, · · · , N} being the Hamming weight of y.

Let us first look at transition steps that flip an ancilla takes |y〉 to a new state |y′〉
where y and y′ differ by one bit.

1. If an ancilla in |y〉 is flipped from |0〉 to |1〉, we move to the right in Figure 3.5.

There are N−h(y) ways to flip a 0 to 1 at this point, and we simply overestimate

it by N . Furthermore, we get a contribution from G+, and we overestimate it

by ‖G+‖ ≤ 1
|h(y)∆−z| ≤ 1

∆
. Thus, we find that the norm of a contribution from

this first type of transition step is upper bounded by N
∆

.

2. Second, when an ancilla is flipped from |1〉 to |0〉, we move up in Figure 3.5.

There are h(y) ways to unflip a spin now. The resolvent G+ again contributes

a factor 1
z−h(y)∆

. Taken together, the factor h(y) “cancels”11 the h(y) in the

denominator from the resolvent. The contribution from this process is less than

1
∆

.

3. Third, for a step that keeps the ancilla state, we remain in the same state y, and

move one step diagonally on the graph, getting a contribution Helse. We can

11Here “cancel” means that the product h(y)
|h(y)∆−z| is O(∆−1).
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do this in h(y) ways, because there are h(y) ancillas in the state |1〉 that terms

like · · · ⊗ |1〉〈1| apply to. The resolvent G+ again contributes a factor 1
z−h(y)∆

.

Similarly to what we did above, we “cancel” the factor h(y), and conclude that

a contribution from this type of step is upper bounded by ‖Helse‖
∆

.

Altogether, at order m, our paths have length m, out of which we have f flips,

f unflips, and m − 2f diagonal steps. The contribution of each such path is upper

bounded by

cpath ≤
N f (2βmax)2f‖Helse‖m−2f

∆m−1
. (3.50)

We now need to find an upper bound on the number of valid paths such as the one

shown in Fig. 3.5.

If we did not have the diagonal steps, for even m = 2k, this would be the kth Cata-

lan number – the number of up- & right-moving paths between corners of a square

of size 2k that don’t pass above the diagonal. In our case, the situation is just a bit

more difficult. The number of 2k-step (resp. (2k + 1)-step) paths is upper bounded

by the Motzkin number of order 2k (resp. 2k + 1). These numbers correspond to a

number of up-, diagonal-, and right-moving paths across a square, remaining below

the diagonal. It suffices for our purposes to use a crude upper bound on the Motzkin

numbers: M2k ≤ 32k and M2k+1 ≤ 3 · 32k, basically saying we have ≤ 3 ways to

go at each step. This is grossly over-counting (e.g. going above the diagonal, going

farther from the diagonal than N , etc.), but we do not mind, as it will suffice for our

argument. Let us finish it first for even m = 2k and then for odd m = 2k + 1.

Upper bounds on the (2k)th order. In estimating the error, we here consider only the

4th order and onward, i.e. k ≥ 2, as the second order is the actual term that we want

to generate (for details of the 2nd order, see Appendix B).

In order to make sure that the sequence of transitions finishes at L−, the number

of flips kf = 2f must be even (f ∈ N, f ≤ k). Hence, the number of steps where the
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ancilla state stays the same is 2(k − f), an even number. A contribution from some

path to Σ−(z) is a term whose norm is upper bounded by

≤

f︷ ︸︸ ︷
N(2βmax)2 × · · · ×N(2βmax)2×

k−f︷ ︸︸ ︷
‖Helse‖2 × · · · × ‖Helse‖2

∆2k−1
. (3.51)

The condition R ≥
(
‖Helse‖2
2M4γmax

) 1
d

from (3.45), combined with N = MR and (3.11)

implies

‖Helse‖2 ≤ 2M4Rdγmax = 4MR
∆γmax

2R
= N (2βmax)2 . (3.52)

Using this and (3.11), we conclude that the overall contribution of a single path (3.51)

is bounded from above by

≤
(
N(2βmax)2

∆

)k
1

∆k−1
= 2k (Mγmax)k

1

∆k−1
= ∆

(
2Mγmax

∆

)k
. (3.53)

The total number of legal paths is less than 9k. Thus, the norm of the (2k)th order is

bounded from above by

‖T2k‖ ≤ 9k∆

(
2Mγmax

∆

)k
= ∆

(
18Mγmax

∆

)k
. (3.54)

We have chosen ∆�M , which makes it a small contribution, as we wanted.

Upper bounds on the (2k + 1)th order. Finding a bound on the 3rd order is straight-

forward:

‖T3‖ = N · (2βmax) · 1

∆
· ‖Helse‖ ·

1

∆
· (2βmax) ≤ (4Nβ2

max)
3
2

∆2
=

√
(2Mγmax)3

∆
,

(3.55)

using (3.11). Recalling ∆ = M3Rd, we get ‖T3‖ ≤ (2γmax)3/2R−d/2 = O
(
R−d/2

)
, a

small contribution.

Analogously, we do the calculation for the general (2k + 1)th order, obtaining

‖T2k+1‖ ≤ 3 · 9k · [N(2βmax)2]f · ‖Helse‖2(k−f)+1

∆2k
≤ 3 · 9k · [N(2βmax)2]k+ 1

2

∆2k
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≤ 3 · 2k · 9k ·
(
Mγmax

∆

)k√
2Mγmax∆ =

(
3
√

2
)

∆

(
18Mγmax

∆

)k+ 1
2

.

(3.56)

Comparing with (3.55), we find that the last expression is also true for k = 1.

Therefore, together with (3.54), we can bound all of the terms in the error series by

‖Tm‖ ≤ 3
√

2 ∆

(
18Mγmax

∆

)m
2

= 3
√

2∆qm, (3.57)

for m ≥ 3 with q =
√

18Mγmax/∆ = O
(
M−1R−

d
2

)
. Thus, the whole series∑∞

m=3 ‖Tm‖ is upper bounded by a geometric series that converges, implying

∞∑
m=3

‖Tm‖ ≤ const.×∆q3 = O
(
R−

d
2

)
≤ ε, (3.58)

for our choice of ε when we choose a suitably large R � ε−
2
d . This concludes the

proof of Claim 2. 2

In conclusion, in Eq. 3.10 we have ‖Σ−(z) − Heff‖ = O(ε) where the effective

Hamiltonian Heff = Htarg ⊗Π− + γΠ− (up to an overall shift) captures the target

Hamiltonian. Therefore we have proven Theorem 3.1.1. Let us have a last look at

the required resources:

Remark 3.3.1 If Htarg acts on n qubits, our gadget Hamiltonian H̃ acts on

n+MR + C (3.59)

� n+MR +M3Rd ε−1

� n+ max

{
Mε−

2
d +M3ε−3,

(
M4−dε−2

) 1
1−d , M

( ‖Helse‖2

2M4γmax

) 1
d

+ ε−1 ‖Helse‖2

2Mγmax

}
qubits. If the interaction graph of Htarg has degree D, then the interaction graph of

the gadget Hamiltonian has total degree max{DR,RC} = poly(D, ε−1, ‖Helse‖,M).

This concludes the story of the 2-body gadgets with weak interactions. Let us now

apply the construction to reducing k-local to 2-body with weak interaction (k ≥ 3),

and prove Corollary 1.



147

Fig. 3.6. 3-local interactions from weak interactions. (a): The 3-local
interaction we want to approximate. (b): The standard construction by
Oliveira and Terhal [8] with target term Aa ⊗ Bb ⊗ Ff replaced by one
(direct) ancilla w in a large field ∆, interacting with the target spins
via strong interactions of order ∆2/3. In addition, a and b interact with
strength of order ∆1/3 to compensate for the error term at 2nd order
perturbation theory. (c): The local fields are replaced by interactions
with a core. (d): Each strong 2-local interaction term can be reduced
to many O(1) terms by our 2-body gadget construction, using another
common core.

3.4 Reducing k-body to 2-body interactions (k ≥ 3)

With the new 2-body construction in mind, is it possible to use the core idea and

“parallelism” of the 2-body gadgets to construct a 3-body to 2-body gadget that also

uses only weak interactions? There is a straightforward way to combine the usual

3-to-2-body gadgets with our strong-from-weak 2-body construction as sketched in

Figure 3.6. This is what we claim in Corollary 1. We start from the usual 3-body

to 2-body construction in [8] and replace the strong 1-local term of magnitude ∆ by

interactions with a core. Finally, we reduce the large-norm 2-body interactions in

these gadgets with weak ones using the 2-body gadgets from Section 3.3.

For general k-body to 2-body reduction, we can resort to the construction from [9],

where the gadget Hamiltonian consists of only 2-local interaction terms (i.e. no extra

1-local terms). This makes it easy to directly apply our new 2-body gadgets and

reduce the gadget Hamiltonian to one with only weak interactions.

Although it is possible to apply our construction to reduce any k-body target

Hamiltonian to a 2-body one with arbitrarily weak interactions, the qubit overhead is
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likely exponential in k. With the original constructions proposed in [7,8] it is possible

to use O(k) qubits with an exponential overhead in interaction strengths [1]. Perhaps

a middle ground between the two constructions could be sought such that both the

interaction strength and qubit overheads are polynomial in k.

3.5 Conclusion

A gadget construction based on perturbation theory allows us to map between

Hamiltonians of different types, with the same low-lying spectral properties. First,

we replace strong interactions by repetition of interactions with “classical” ancillas;

it works because for a low-energy state, all our extra qubits are close to the state |0〉.
This is reminiscent of repetition encoding found e.g. in [150]. Second, we employ

parallelization; it is crucial to show that the perturbation series converges even with

many gadgets, relaxing the usual assumption about the norm of the perturbation.

This construction should find use in computer science as well as physics. First,

in complexity theory, Theorem 3.1.1 together with [7] or Corollary 1 with [125] im-

plies QMA-completeness of the 2-local Hamiltonian problem with non-repeated terms

with norm at most O(1) and an O(1) promise gap. As a consequence, we also obtain

efficient universality for quantum computation with time-independent, 2-local Hamil-

tonians with restricted form/strength of terms, complementing [8, 151, 152]. Second,

our amplification method from Corollary 2 has been utilized in a counterexample to

the generalized area law in [3]. Finally, we envision practical experimental applica-

tions of Theorem 3.1.1 – strengthening effective interactions between target (atomic)

spins through many (but even for a few R) coupled mediator spins. In our case, these

interactions need to be precisely tuned, while elsewhere we have seen disordered net-

works used to enhance transport between two sites in a quantum system [153].

Thinking further about interaction strengths and spectra of local Hamiltonians,

we realize that Corollary 2 allows us to amplify the eigenvalue gap (low eigenvalue

spacing) of a Hamiltonian. Does it have direct implications for hardness of Local
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Hamiltonian problems? When we use it on Hamiltonians appearing in QMA-complete

constructions, the fractional promise gap (the ratio of the number of frustrated terms

to the number of all terms in the Hamiltonian for a ground state of a local Hamil-

tonian) gets smaller. Thus, it does not directly help us move towards the quantum

PCP conjecture [143]. Nevertheless, we have added another tool for mapping between

Hamiltonians to our repertoire.

An important problem remains open. The price we pay for our construction is

a massive blowup in the degree (the number of interactions per particle). Is there

a possibility of a quantum degree-reduction gadget? One might try to use a “bad”

quantum code for encoding each spin into several particles, whose encoded low-weight

operators that can be implemented in many possible ways; this does not seem possible

for both X and Z operators. As things stand, without a degree-reduction gadget,

we do not have a way to reproduce our results in simpler geometry. It would be

really interesting if one indeed could create O(1)-norm effective interactions from

O(1)-terms in 3D or even 2D lattices.

We also need to think about the robustness of our results – what will change

when the Hamiltonians are not exactly what we asked for? How precise do we need

to be (e.g. for the 3-body to 2-body gadgets), so that the second- and first-order

terms get canceled? Also, Bravyi, Terhal, DiVincenzo and Loss [129] mentioned that

a k-body to 2-body reduction might possibly be implemented with poly(k) overhead

in interaction strength (instead of exponential in k). However, this question remains

open. The exponential scaling in the overhead in [129] is due to the usual gadget

constructions which require poly(ε−1) interaction strength. We hope (but haven’t

proven) that with our new gadget construction, this result could be improved.
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4. EFFICIENT ALGORITHMS FOR ESTIMATING

PERTURBATIVE ERROR

We introduced perturbation theory in Section 1.3. Also we have showed how the

amount of information needed for specifying the state of a many-body system in

quantum mechanics commonly scales exponentially as the system size (Section 1.2).

This poses a fundamental difficulty in using perturbation theory at arbitrary order.

As one computes the terms in the perturbation series at increasingly higher orders,

it is often important to determine whether the series converges and if so, what is an

accurate estimation of the total error that comes from the next order of perturbation

up to infinity. Here we present a set of efficient algorithms that compute tight upper

bounds to perturbation terms at arbitrary order. We argue that these tight bounds

often take the form of symmetric polynomials on the parameter of the quantum

system. We then use cellular automata as our basic model of computation to compute

the symmetric polynomials that account for all of the virtual transitions at any given

order. At any fixed order, the computational cost of our algorithm scales polynomially

as a function of the system size. We present a non-trivial example which shows that

our error estimation is nearly tight with respect to exact calculation.

4.1 Overview

An overwhelming majority of problems in quantum physics and quantum chem-

istry do not admit exact, analytical solutions. Therefore one has to resort to ap-

proximation methods based on for instance series expansions [39, 154–157]. Often

these expansions are truncated to a finite order r as an approximation of the true

solution an the remaining terms from the (r + 1)th order on are errors. It is then

important to estimate the magnitude of errors at arbitrary order as a gauge of how
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the series performs as an approximate solution. The main challenge in this task is

that exact calculation of the perturbative terms commonly scales exponentially as the

size of the system under consideration, making it hard to pinpoint the regime where

perturbation theory yields acceptable accuracy [39].

Here we present an efficient method for deriving tight upper bounds for the norm of

perturbative expansion terms at arbitrary order. As we have mentioned in Section 1.3,

the use of perturbation theory starts with identifying a physical system H̃ as a sum

of an unperturbed Hamiltonian H that acts on a Hilbert space H and a perturbation

V. As shown in Figure 4.1a, we assume that H = H(1) + H(2) + · · · + H(m) consists

of m identical and non-interacting unperturbed subsystems with Hilbert space H(i),

i = 1, · · · ,m. Each subsystem interacts with a “bath” B through perturbation V that

is presumably small. We further assume that for each subsystem H(i), V can only

cause transitions in neighboring energy levels (Figure 4.1b). This form of physical

setting is typical in for example spin systems with perturbation on individual spins

via local fields [158, 159], or in Hartree approximation where m identical particles

interact with a mean field [155]. Here V does not necessarily act identically on each

H(i) ⊗B for every i. For a given V, one could determine an upper bound λi for each

subsystem i such that |〈φ|V|φ′〉| ≤ λi for any |φ〉, |φ′〉 being eigenstates of H(i). We

could also determine an upper bound ω such that for any |φ〉 that is an eigenstate

of H, |〈φ|V|φ〉| ≤ ω. With the spectrum of each H(i) fully known, one could also

determine for each energy level s and t the maximum number of possible ways for

an eigenstate at energy level s to make a transition to a state of energy level t via

the perturbation V. We let this number be Mst for all H(i), since their spectra are

identical.

In many cases we are only concerned about the property of the effective Hamil-

tonian below certain cutoff energy E∗. Similar to Section 1.3, we assume that the

ground state energy of every H(i) is 0 and E∗ = ∆/2 where ∆ = E1 is the spectral

gap between the ground and the first excited state. For ‖V‖ small enough com-

pared to ∆ we could extract this information using the operator valued resolvent
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Fig. 4.1. General setting of the perturbation theory.
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G(z) = (zI−H)−1 with a small expansion parameter z and construct the self-energy

(we duplicate Equation 1.26 here)

Σ−(z) = H−− + V−− + V−+G++V+− + V−+G++V++G++V+− + · · · (4.1)

where we partition H into subspaces L− and L+, with L− being the subspace of H
spanned by H eigenstates with energy below E∗ and L+ being the complement of

L− in H, and let O±± = Π±OΠ± be projections of any operator O onto the L±
subspaces. Π− and Π+ are projectors onto L− and L+ respectively. To compute an

approximation to the low-energy effective Hamiltonian of H̃, one simply truncates

Equation 4.1 at low orders to obtain an effective Hamiltonian Heff and discard the

remaining terms which constitutes the error of the perturbation series. Here we are

only restricted to convergent series. For divergent series one may resort to resumma-

tion techniques such as Padé approximation [154]. If we denote the rth order term in

the self energy expansion (4.1) as Tr = V−+(G++V++)r−2G++V+− for r ≥ 2 and

T1 = V−−, then our effective Hamiltonian Heff = T1 + T2 + · · · + TR for some R

and the remaining terms TR+1 + TR+2 + · · · are error. The connection between the

magnitude of the error ‖Σ−(z) −Heff‖2 and the spectral difference between H̃ and

Heff is well established. If for a suitable range of z, ‖Σ−(z)−Heff‖2 is no greater than

ε, then the energies of Heff are at most ε apart from their counterparts in the low

energy spectrum of H̃ (see [7,8]). Our goal is precisely to find tight upper bounds for

the magnitude of the error terms ‖Σ−(z)−Heff‖2.

For convergent series it suffices to be able to find tight estimates for the ∞-norm

of the rth order term ‖Tr‖∞ for any r ≥ 2. The ∞-norm of a matrix A ∈ Cm×n is

defined as maxi=1,··· ,m
∑n

j=1 |aij|. We could bound ‖Tr‖∞ from above by a function

of λi, Mst and ω. Because Tr is essentially a matrix product, one could think of the

matrix element 〈φ|Tr|φ′〉 as a sum of r-step walks on the eigenstates of H, which

can be written as |φ〉 → |φ(1)〉 → · · · → |φ(r−1)〉 → |φ′〉, with each |φ(i)〉 being an

eigenstate of H and each step of the walk contributing a factor and the total weight
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of the walk is the product of all the factors. Using the scalar quantities λi, Mst and

ω symbols we could derive an upper bound to |〈φ|Tr|φ′〉| by noting that

|〈φ|Tr|φ′〉| ≤
∑
{|φ(i)〉}

|〈φ|V|φ(1)〉| · |〈φ(1)|G|φ(1)〉| · |〈φ(1)|V|φ(2)〉| · · ·

· · · |〈φ(r−2)|V|φ(r−2)〉| · |〈φ(r−1)|G|φ(r−1)〉| · |〈φ(r−1)|V|φ′〉|

(4.2)

where the summation is over all possible r-step walks on the eigenstates of H that

starts at |φ〉 and ends at |φ′〉. The factors |〈φ(i)|G|φ(i)〉| = 1/|z − E(i)|, where E(i) =

〈φ(i)|H|φ(i)〉, can be computed easily since the spectrum of H is known. Suppose

V transforms an H eigenstate |φ(i)〉 into V|φ(i)〉 = |φ(i+1)〉 by changing the energy

level of one of the subsystems (say H(i)) from s to t. Then |〈φ(i)|V|φ(i+1)〉| ≤ λiMst.

However, if |φ(i)〉 = |φ(i+1)〉, then we have |〈φ(i)|V|φ(i+1)〉| ≤ ω. For each walk on the

eigenstates of H we could then assemble an upper bound that looks like for example

(Figure 4.2 top layer)

λiMst ·
1

|z − E(1)| · λjMpq ·
1

|z − E(2)| · ω · · · . (4.3)

At the second order we could use this technique to bound ‖T2‖∞ from above as

‖T2‖∞ ≤ λ1M01 ·
1

|z − E1|
· λ1M10 + λ2M01 ·

1

|z − E1|
· λ2M10 + · · ·

· · ·+ λmM01 ·
1

|z − E1|
· λmM10.

(4.4)

where we recall that E1 is the first excited state energy of any subsystem H(i) (Figure

4.1b). Each term in Equation 4.4 with λj corresponds to a 2-step walk where the jth

subsystem is excited from the ground state (0th energy level) into the first excited

state and then transitions back to the ground state energy subspace.

The expressions for the upper bounds to ‖Tr‖∞ such as on the right hand side of

Equation 4.4 looks simple for r = 2. At higher order, however, the situation quickly

becomes more complicated. Intuitively this is because each unperturbed system has

` possible energy levels, and m such subsystems could manifest `m possible ways in
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Fig. 4.2. An example of a walk arising at 7th order perturbation the-
ory T7 = V−+(G+V+)5G+V+−. Top left: the specific physical setting
concerned, where the number of subsystems is m = 2. Top layer: the
relationship between the 7-step walk in the space of energy configurations
c and an upper bound associated with it. Each transition due to V is
associated with a factor of either λiMst or ω. Each intermediate step with
energy E(i) contributes a term 1/|z − E(i)| due to G+. Middle layer: the
corresponding walk in c̃, where at each step c̃(i) is obtained by sorting
c in descending order. Bottom layer: the corresponding change in the
partition b and the mapping µ : c̃ 7→ b maintained throughout. By con-
vention, the partition b is always of non-decreasing order. Bottom right:
the walk in the space of energy combination n corresponding to the walk
in c̃. This walk in n is what the cellular automaton algorithm essentially
implements.
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which the energies of each subsystems are assigned. Therefore any matrix element

of Tr should be a sum of roughly at most O(`mr) walks, yielding an exponential

complexity with respect to the total system size m. However, we note that such ex-

ponential complexity could be reduced to merely poly(m) by exploiting the inherent

permutation symmetry of upper bounds such as Equation 4.4. The essential obser-

vation is that these upper bounds are invariant with respect to permutation of the

subsystems. This implies that they are symmetric functions over the λi variables.

In particular, these upper bounds to ‖Tr‖∞ are linear combinations of monomial

symmetric polynomials, which can be written in form of [160]

mb(λ) =
∑
π∈Sk

λb1π(1)λ
b2
π(2) · · ·λ

bk
π(k)

where b ∈ Nk is a vector which we call partition, λ = (λ1, · · · , λm) and the summation

is over a permutation group Sk, where any permutation π chooses k elements from m

elements and permutes them. For example, m(1,2)(λ1, λ2, λ3) = λ1λ
2
2 + λ1λ

2
3 + λ2λ

2
3 +

λ2λ
2
1 + λ3λ

2
2 + λ3λ

2
1 is a monomial symmetric polynomial. Equation 4.4 could be

compactly represented as ‖T2‖∞ ≤ 1
|z−E1|M01M10m(2). At 4th order we could show

that

‖T4‖∞ ≤
M01M10ω

2m(2)

|(z − E1)3| +
2M2

01M
2
10m(2,2)

|(z − E1)2(z − 2E1)| +
M01M12M21M10m(4)

|(z − E1)2(z − E2)| . (4.5)

By respecting the matrix product structure of Tr, the symmetric polynomial upper

bounds such as those in Equations 4.4 and 4.5 turn out to be a much more accurate

estimation of the true magnitude of ‖Tr‖∞ than crude bounds using geometric series

such as ‖Tr‖2 ≤ ‖V‖2 · ‖G++‖2 · ‖V‖2 · · · ‖G++‖2 · ‖V‖2. In later discussions we will

demonstrate this point using numerical examples.

The question then becomes how we may assemble expressions such as (4.4) and

(4.5) in an algorithmic fashion. We accomplish this efficiently by using cellular au-

tomata as the basic data structure. In a nutshell, a cellular automaton is a compu-

tational model consisting of a network of basic units called cells that are connected

by directed edges. Each cell stores some data which represent its current state. All
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the cells are assigned an initial state and the computation proceeds by evolving each

cell using an identical rule for updating its state. The new state of each cell is only

dependent on the previous states of the same cell and its neighbors. The study

of cellular automata dates back to the 1940s [161], followed by interesting construc-

tions [162–164] and formal, systematic study over the past decades [165,166]. Though

computationally rich, the structure of cellular automata considered in these contexts

are commonly rather simple, with cells that have discrete sets of possible states and

are connected by simple network geometries (such as a 2D grid). In our case, as we

will discuss later, the cells in cellular automata store more complex data structures

and are connected with often non-planar network geometries. The update rules de-

signed specifically so that the coordination of cells as a whole computes the symmetric

polynomial upper bound for ‖Tr‖∞.

The connection between cellular automata and perturbation theory seems unusual

at first glance. However, the connection between cellular automata and random

walks is well documented [167–169]. Such connection, combined with our earlier

discussion on how the symmetric polynomial upper bounds could arise from summing

over walks on the set of H eigenstates, suggests that one may also be able to use

cellular automata for the summation over these walks. One could further think of

our task of computing a symmetric polynomial upper bound to ‖Tr‖∞ as summing

over walks in a space of energy configurations c, which are m-dimensional vectors of

indices ranging from 0 to ` − 1 indicating the energy level of each subsystem in a

particular H eigenstate. In other words, c = (c1, · · · , cm) ∈ {0, 1, · · · , ` − 1}m and

〈φ|H(i)|φ〉 = Eci for any particular H eigenstate |φ〉. Therefore each r-step walk in

the space of H eigenstates corresponds to a walk in the space of energy configuration

c, which is of size O(`m). We could reduce the size of this space by taking every

energy configuration c and sort its elements to produce a new vector c̃, which we call

reduced energy configuration. Like the number of energy levels in H, the set of c̃ is

also of size O(m`), which is polynomial is m assuming ` is a constant and intensive

property of each subsystem (for instance a spin-1/2 particle has ` = 2 if we are only
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concerned with the spin degree of freedom). Each energy level of H is a sum of the

energies of the subsystems: 〈φ|H|φ〉 =
∑`−1

i=0 niEi = E(n) where Ei is one of the `

possible energy levels of a subsystem. We could write each energy level of H as an

`-dimension vector n = (n0, n1, · · · , n`−1) which we call energy combination (Figure

4.2 middle layer).

With the discussion so far we have reduced the problem of summing over walks on

the set of H eigenstates, whose number scales exponentially with respect to system

size parameter m, to one that concerns only with walks on the set of n, which is of

only polynomial size in m. In accomplishing this reduction, we introduced the notion

of energy configuration c and reduced energy configuration c̃. Going from walks in c

to c̃ is a major step that takes advantage of the permutation symmetry with respect

to the m subsystems in the rth order from Tr. We capture this symmetry with the use

of symmetric polynomials mb(λ). We illustrate this concept in Figure 4.2. We note

that the partition b does not contain all of the information associated with a walk in

c̃. Consider a particular walk on the set of H eigenstates and its associated weight

whose functional form is shown in Equation 4.3, b only records the number of times

that some subsystem is acted on by V, without the information about the order and

the energies of the subsystem before and after the action (Figure 4.2 bottom layer).

For example the partition (1, 2) means “one of the subsystems is acted on by V once

and another is acted on by V twice”. The expression m(1,2)(λ) sums over the weights

of walks that fits that description. But there are more than one possible walks, be it

on the set of H eigenstates or c or c̃, that fits the description. Therefore in order for

a symmetric polynomial to accurately represent an upper bound to the contributions

to 〈φ|Tr|φ′〉 from all walks in c̃, a mapping must be maintained between b and c̃

to indicate which subsystem is being acted on at the current step. Figure 4.2 shows

an example that illustrates the connection between c̃, b, and µ to a walk in the

configuration space c.

In our construction cellular automata that executes the summation over walks

in c̃, each cell corresponds to an energy level of H. Hence there are in total O(m`)
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cells. We use the energy combinations n to uniquely label each cell. Then the cells are

connected with directed edges such that cell n will only be connected to cell n′ if there

are eigenstates |φ〉, |φ′〉 of H with energy combinations n and n′ respectively such

that |〈φ|V|φ′〉| 6= 0. In our algorithm each monomial symmetric polynomial ξmb(λ)

is represented with a 4-tuple (c̃,b, ξ, µ) where ξ is a scalar quantity indicating the

weight of mb(λ) in the overall symmetric polynomial upper bound. c̃ and b are

respectively the reduced energy configuration and partition at the current step of the

walk. µ : c̃ 7→ b is a bijective mapping between c̃ and b, as justified in previous

discussion.

Each cell of the automaton stores a list of 4-tuples (c̃,b, ξ, µ) as its state. As

shown in Figure 4.4, at each iteration the state of each cell is updated in a two-phase

process. In phase I (Figure 4.4a), the list of 4-tuples stored in Sn is first merged with

thosed stored in all of the incident edges to Sn and then the coefficients of all the

4-tuples in Sn are multiplied by a factor 1/|z − E(n)|. The intuition is that each

4-tuple corresponds to a particular walk such as the one shown in Figure 4.2. The

multiplication by 1/|z−E(n)| essentially accounts for the contribution from G+ in Tr.

In phase II, we account for the contribution from V terms in Tr by first computing

new 4-tuples with c̃ that can be generated from the current 4-tuples in Sn with one

application of V, and then distributing the new 4-tuples among the outgoing edges

Sn,n′′ , as shown in Figure 4.4b.

As the cells evolve, the 4-tuples are updated and passed along between the cells so

that at the end of r iterations, we could glean the symmetric polynomial upper bound

from the states of the cells. The update rules for each cell are designed to maintain the

property that at any iteration, each cell n contains a list of 4-tuples (c̃,b, ξ, µ) each

of which corresponds to the set of all walks in c̃ that leads up to a state with energy

combination n, and ξmb(λ) is an upper bound to the total contribution of the walks

on the set of H eigenstates that share the same corresponding walk in c̃. In other

words, ξmb(λ) is a sum of expressions such as Equation 4.3 for these walks on the

set of H eigenstates. We are able to rigorously show that with suitable initialization,
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after r iterations the cellular automaton is indeed able to find a symmetric polynomial

upper bound for ‖Tr‖∞ similar to that of ‖T4‖∞ in Equation 4.5.

We stress that the overall time complexity of our algorithm scales polynomially

as the system size grows. The degree of the polynomial, however, depends on the

order of perturbation theory. For convergent series, the exponential dependence on

the order r of perturbation theory could be handled in practice by for instance setting

a threshold η such that when the symmetric polynomial upper bound computed by

the cellular automaton is below η at some order rc of perturbation, we bound the

remaining terms up to infinity by a geometric series. For different problems and

choices of η, the value of rc may vary. But the overall polynomial scaling with respect

to the system size m should not be affected.

In the mathematical developments of physical theories one is often concerned

with the representation of the solution to a problem. For very few problems are

we able to find a close-form, explicit formula as a representation of the solution.

Series expansions are then introduced to largely enhance our ability to solve difficult

problems far beyond analytical solution, as they allow for representation of a much

wider class of mathematical objects. If we think of these representations as efficient

procedures that allow us to construct our solution, then in greater generality we

could argue that the outputs of efficient algorithms are also valid representations of

our solution. Our scheme based on cellular automata essentially produces this type

of representation: the symmetric polynomial upper bound to ‖Tr‖∞ that we have

devised is most conveniently expressed in form of an algorithmic output, rather its

explicit self as a sum of monomials. A similar example to this situation is perhaps

the development of tensor networks as representations for quantum ground states

[170–172]. As is the case for our algorithmic development, tensor networks are also

intended to cope with the exponential size of Hilbert space as the physical system

grows. Using innovative data structures based on tensors, one obtains a polynomial

size approximation to the true ground state. The resulting ground state is then most

conveniently represented in form of a tensor network rather than its exponential-
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size self as a linear combination of basis states. Our cellular automaton algorithm

could also be thought of as producing an approximation to ‖Tr‖∞, in the sense

that we replace the action of V on the unperturbed eigenstates |φ〉, |φ′〉 of each

subsystem i by scalar quantities λi and ω, and we use the integers Mst to obtain a

sketch of the structure of V. Such approximations may seem crude at first sight, but

they preserve the combinatorial structure of Tr as a matrix product, and allow for

compact description using symmetric polynomials. We use iteration of cell evolution

as a natural means to compute these symmetric polynomials. As a result, the output

of our cellular automaton algorithm is the most natural representation for the upper

bound to ‖Tr‖∞ that we have devised.

One of the areas where our algorithm could find direct application is quantum

computation. Though perturbation theory has been pervasively used for calculating

properties of quantum systems, the lack of efficient and effective methods for esti-

mating the error even for convergent series has cast a wide shadow of uncertainty on

these calculations. Such problem becomes ever more imminent when one tries to en-

gineer quantum systems that are intended to meet specific application requirements

such as quantum computing [1, 2, 173]. As the implementations of quantum devices

scale up and perturbation theory finds its inevitable use in analyzing these devices, it

is imperative to have a scalable method for estimating the error in the perturbative

expansion.

For example, in quantum simulation one often wishes to construct a two-body

physical system H̃ whose low energy effective interactions Heff are many-body [7–9].

The most general construction of H̃ to date that could generate arbitrary many-body

dynamics in Heff is based on perturbation theory. Here in Figure 4.3 we show one

example of such construction with Heff = α1X1X2X3 + α2X2Y4Z5 being three-body

while H̃ = H + V is entirely two-body [9]:

H = H(1) + H(2), H(1) =
∆

4
(Zu1Zu2 + Zu2Zu3 + Zu1Zu3)

H(2) =
∆

4
(Zv1Zv2 + Zv2Zv3 + Zv1Zv3)
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V = V(1) + V(2), V(1) = µ1(X1Xu1 + X2Xu2 + X3Xu3)

V(2) = µ2(Y4Xv1 + X2Xv2 + Z5Xv3) (4.6)

where spins with ui and vi labels belong to the two unperturbed subsystems. Here

we let ∆ be orders of magnitude larger than µ1 and µ2 and keep the coefficients

µ1 and µ2 as µ1 = (α1∆2/6)1/3, µ2 = (α2∆2/6)1/3. Perturbative calculation on H̃

show that the leading three orders T1 + T2 + T3 = Heff ⊗Π for some projector Π

acting on a Hilbert space separate from that of Heff. The simulator Hamiltonian H̃

is constructed such that the perturbative series converges. In our example H̃ consists

of only two-body spin interactions and parameters ω = 0, λ1 = µ1, λ2 = µ2 and

Mst can be computed from Figure 4.3d. The cellular automaton in this case is set

up as in Figure 4.4. We then proceed to evolve the cellular automaton, gathering

outputs from the cells corresponding to the low energy subspace. As shown in Figure

4.5, even with the convergence, simple geometric series upper bounds fail to capture

the true magnitude of ‖Tr‖∞ while the output of our cellular automaton algorithm

is essentially tight with respect to the true value. Note that the true value takes

an exponential amount of computational effort in m while our cellular automaton

algorithm costs only polynomial in m, as discussed before. This implies that we could

obtain efficient and accurate estimations for the error of our quantum simulation that

are not previously available.

Beyond quantum computing, our algorithm should retain its effectiveness for gen-

eral spin systems and find its application in greater areas of condensed matter physics.

For example, dimensional scaling method, pioneered by Herschbach [157], uses the

inverse space dimensionality as a perturbation free parameter to solve complex many-

body problems by taking the large-dimensional limit as the zeroth order approxima-

tion. At this limit many problems admit a simple solution, as in the electronic struc-

ture calculations of atoms and molecules. Moreover, the second-order term also can

be calculated but the higher order terms are cumbersome and hard to estimate [157].

This new proposed algorithm might be useful to estimate the perturbation error in
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dimensional scaling method which will lead to a very powerful and efficient approach

to solve complex many-body problems. Like tensor networks, which triggered an

entirely new direction of research, it would be exciting to see what deeper truths of

our quantum world could be unveiled by innovative proposals of algorithms and data

structures.

The remainder of this chapter is organized as the following. Section 4.2 lays the

mathematical foundations for presenting the algorithm. Section 4.2.1 introduces the

assumed physical setting. Section 4.2.2 introduces the perturbation theory formalism

that we use. Section 4.2.3 expands on the intuition about viewing matrix products as

walking on a graph and introduces its connection to infinity norm, which will become

useful in later developments. Section 4.2.4 introduces symmetric polynomials, which

serve as the bedrock of our algorithms. Section 4.2.5 discusses cellular automaton from

the perspective of existing literature and the differences and similarities between our

construction and existing ones.

Section 4.3 further elaborates the content of Section 4.2 in the context of pertur-

bation theory and derives an upper bound for the magnitude of rth order term as a

sum of walks in the space of reduced energy configurations. Section 4.3.1 builds on

Section 4.2.1 to elaborate on the structure of V. Section 4.3.2 builds on the pertur-

bation theory outlined in Section 4.2.2 by applying the notions introduced in Section

4.3.1. Section 4.3.3 builds on the linear algebraic intuition described in Section 4.2.3

by incorporating it into the perturbation theory in Section 4.3.2. Section 4.3.4 car-

ries the notion of walking among H eigenstates, which is introduced in Section 4.3.3,

into the domain of energy configurations c. Section 4.3.5 describes how to transform

the sum over walks in energy configurations c to a sum over walks in reduced energy

configurations c̃ by using the symmetric polynomial defined in 4.2.4, see Lemma 4.3.6.

Section 4.4 is the main section introducing our algorithms for computing the

upper bounds established in Section 4.3. Section 4.4.1 describes the algorithm used

for constructing the cellular automaton given the physical setting. Section 4.4.2
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Fig. 4.3. A numerical example for demonstrating our algorithm estimating
the perturbative error. (a): The 11-spin system constructed for testing.
Each node corresponds to a spin-1/2 particle and each edge represents
an interaction term in the Hamiltonian between two spins. (b): Effec-
tive Hamiltonian truncating at 3rd order perturbation theory. Here each
triangle represents a 3-body interaction term. Using the perturbative
expansion in Equation 4.1 we could show that the low-energy effective
Hamiltonian truncated at 3rd order is Heff = α1X1X2X3 + α2X2Y4Z5 up
to a constant energy shift. (c): Rearranging and partitioning the system
in (a) according to the setting of perturbation theory used. Here each un-
perturbed system H(i) consists of three ferromagnetically interacting spins
(details in the long version). (d): Spectrum of each subsystem H(i) in (a),
i ∈ {1, 2}. Here each node represents an eigenstate of H(i). Nodes on a
same horizontal dashed line belong to the same energy subspace Pj. There
is an edge (u, v) iff |〈u|V|v〉| 6= 0. For example, if we consider this diagram
as representing H(1), since V(1)|001〉u1u2u3 ∝ (|101〉 + |011〉 + |000〉)u1u2u3

we connect the |001〉 with the nodes representing |101〉, |011〉 and |000〉.
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Incident
Outgoing

Current cell

(a) Phase I

Sn
Sn,n′′

Incident
Outgoing

Current cell

(b) Phase II
Cell n E(n) Subspace
S0 (2, 0, 0, 0) E0 L−

S1 (1, 1, 0, 0) E1 L+

S2 (0, 2, 0, 0) 2E1 L+

S3 (1, 0, 1, 0) E2 L+

S4 (0, 1, 1, 0) E1 + E2 L+

S5 (1, 0, 0, 1) E3 L−

S6 (0, 0, 2, 0) 2E2 L+

S7 (0, 1, 0, 1) E1 + E3 L+

S8 (0, 0, 1, 1) E2 + E3 L+

S9 (0, 0, 0, 2) 2E3 L−

(c)
(d)

Fig. 4.4. The cellular automaton generated for the example considered
in Figure 4.3. Here each cell corresponds to an energy level of the un-
perturbed system H = H(1) + H(2). The sets of 4-tuples Si and Si,j at
each cell and each directed edge store lists of 4-tuples (c̃,b, ξ, µ). (a) and
(b): Schematic diagrams for illustrating the two sequential steps executed
when updating the state of each cell during an iteration. (c): A table
listing the energy combinations n, energy E(n) and the subspace (low
energy L− or high energy L+) associated with each cell. (d): The cellu-
lar automaton constructed for the example considered in Figure 4.3 and
Equation 4.71. Here the dashed lines corresponds to edges that go from a
node in L+ to one in L−, which is only present in the automaton during
the final step.
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Heff = 0.1X1X2X3 + 0.2X2Y4Z5

Cellular automaton algorithm

Exact calculation of ‖Σ−(z)−Heff‖2

Simple upper bound
∑∞

r=4 ‖V‖r/Er−1
1

Spectral difference between Heff and H̃

Fig. 4.5. Comparison between the upper bounds computed using the
cellular automaton algorithm and the norm computed using (inefficient)
explicit method. The “actual spectral error” in this plot shows the maxi-
mum difference between the eigenvalues of Heff and their counterparts in
H̃, which are the energies of its 2N lowest eigenstates with N = 5 being the
number of particles that Heff acts on (Figure 4.3b). The actual spectral
error is always lower than the error computed based on ‖Σ−(z) −Heff‖2

because ‖Σ−(z)−Heff‖2 ≤ ε is only a sufficient condition that guarantees

the spectral difference between H̃ and Heff being within ε (see Theorem
1.3.1 and its variant Theorem 3.2.1).
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describes the update rules for the cells. Section 4.4.3 shows the final algorithm for

computing upper bounds of perturbative terms at arbitrary order r.

Section 4.5 shows a concrete example of a physical system and we conclude with

Section 4.6, where we discuss the potential uses of our technique in a broader context

of physical theories that require perturbative treatment. Due to a large amount of

symbols and notations introduced in this Chapter, we provide a glossary

for these symbols in alphabetical order in Appendix C.

4.2 Preliminaries

4.2.1 Basic setting

We consider the most general setting of perturbation theory, where we have an

unperturbed Hamiltonian H with an energy gap ∆ between its ground state subspace

L− and the rest of its spectrum which we denote as L+. Naturally in the eigenbasis

of H we could write down H as a block diagonal operator:

H =

H+

H−

 . (4.7)

Then we add a perturbation V to the unperturbed Hamiltonian. Here we assume

‖V‖2 < ∆/2. Here ‖ · ‖2 is the 2-norm defined as ‖A‖2 = max‖|ψ〉‖=1 ‖A|ψ〉‖. In the

same basis we could write V as a block matrix

V =

 V+ V+−

V−+ V−

 . (4.8)

For a parameter z such that |z| � ∆, define operator valued resolvent G(z) = (zI−
H)−1. Then like H, G is also block diagonal in the eigenbasis of H.

Suppose we are most concerned with the low-energy subspace of the perturbed

Hamiltonian H̃ = H + V, which is spanned by all the eigenvectors of H̃ with eigen-
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values that are less than ∆/2. However, we do not require that the ground state of

H be necessarily non-degenerate.

The unperturbed Hamiltonian H should correspond to some finite physical system

with ` energy levels E0, E1, E2, · · · , E`−1 with the corresponding eigenspaces which

we denote as P0, P1, P2, · · · , P`−1 and the respective projectors as P0, P1, P2, · · · ,
P`−1.

Without loss of generality assume E0, the ground state energy of H, is zero.

The energy values Ei do not have to be distinct or monotonically increasing but

they should be separable into two subsets with one corresponding to the low-energy

subspace L− = span{|Ej〉|Ej < ∆/2} and the other one corresponding to the rest of

the spectrum L+ = span{|Ej〉|Ej > ∆/2}.
Now let us consider a setting with m identical copies of such systems described

by H, each of which we call a subsystem. In this case all of the m subsystems are

mutually non-interacting. The possible total energy values of the this m-copy system

are thus simply linear combinations of energy levels of each subsystem. In essence,

the spectrum of the m-copy system can be described by the set{
E =

∑̀
i=0

niEi |
∑̀
i=0

ni = m, ni ∈ Z, 0 ≤ ni ≤ m

}
. (4.9)

Let H be the Hilbert space where H dwells. As a notation we use H(i), i =

1, · · · ,m, to denote the Hilbert space associated with the ith subsystem. Let H(i) be

the Hamiltonian of the ith subsystem. Correspondingly we introduce the notations

for eigenvalues E
(i)
j , eigenspaces P(i)

j spanned by eigenvectors |ψ(i)
j,p〉 with p ranging

from 1 to dim(P(i)
j ) and their projectors P

(i)
j defined as

P
(i)
j =

dim
(
P(i)
j

)∑
p=1

|ψ(i)
j,p〉〈ψ(i)

j,p|. (4.10)

where |ψ(i)
j,p〉 represents the pth degenerate eigenstate of H(i) with energy Ej.

Now we further introduce perturbation V for each subsystem, by letting each of

the subsystems interact with a common “bath” with Hilbert space B, as illustrated in
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Figure 1a of the main text. V contains a sum of terms V(i) that couples the eigenspace

H(i) of the ith unperturbed subsystem with the Hilbert space of the “bath” B by acting

non-trivially on the joint space H(i) ⊗ B.

The “bath” by itself has its own internal dynamics governed by some Hamiltonian

we write as HB. This Hamiltonian describes interactions in B that are independent

of each subspace H(i). We point out that both the H(i)’s and V(i)’s act on the total

Hilbert space H̃ = H(1) ⊗ H(2) ⊗ · · · ⊗ H(m) ⊗ B but only non-trivially on H(i) for

the H(i)’s and H(i) ⊗ B for the V(i)’s. Like before we could also partition each of

the local subspace H(i) into low and high energy subspaces L(i)
− and L(i)

+ such that

H(i) = L(i)
− ⊕L(i)

+ . Then the total Hilbert space can be written as H̃ = (L−⊕L+)⊗B
where L− = L(1)

− ⊗L(2)
− ⊗ · · · ⊗L(m)

− and L+ is the complement of L− in the subspace

H(1) ⊗H(2) ⊗ · · · ⊗ H(m).

With definitions of subspaces in place, we define the unperturbed Hamiltonian H

and the perturbation V as

H =
m∑
i=1

H(i), V = HB +
m∑
i=1

V(i). (4.11)

For each subsystem i, we assume that the perturbation V induces only transitions

between P(i)
j and P(i)

k such that j and k differ by at most one. In other words, for

any i = 1, 2 · · · ,m, we assume that the perturbation V be block tridiagonalizable in

the eigenbasis of H:

V(i) = 1H(1) ⊗ 1H(2) ⊗ · · ·1H(i−1) ⊗



O
(i)
00 O

(i)
01

O
(i)
10 O

(i)
11 O

(i)
12

O
(i)
21

. . . . . .

. . . O
(i)
`−2,`−2 O

(i)
`−2,`−1

O
(i)
`−1,`−2 O

(i)
`−1,`−1



⊗ · · ·
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· · · ⊗ 1H(i+1) ⊗ · · · ⊗ 1H(m) . (4.12)

Here each block O
(i)
jk represents the transition driven by the perturbation V from

states in the eigenspace P(i)
j to those in P(i)

k . With further block permutation by

grouping the blocks O
(i)
jk according to whether indices j and k correspond to + or −

subspace, we could rewrite H̃ in the block form consistent with 4.7 and 4.8.

4.2.2 Perturbation theory

Let Π− and Π+ be projectors onto the subspaces L− and L+ respectively. Then

the block form of Equations 4.7 and 4.8 still holds for the definitions of H and V in

Equation 4.11. More generally, any operator O can be written as the block form O+ O+−

O−+ O−

 . (4.13)

Our goal is to find a series expansion that approximates the low-energy effective

Hamiltonian of the perturbed system H̃−. In Section 4.2.1 we defined the operator-

valued resolvent G(z) = (zI − H)−1. We could similarly define operator-valued

resolvent G̃(z) = (zI − H̃)−1 for z � ∆ where I is the identity acting on H̃. We

could relate G̃ with G by G̃ = (G−1 −V)−1, which gives rise to a Taylor expansion

G̃ = G(I−VG)−1 = G + GVG + GVGVG + · · · (4.14)

Recall from Section 1.3 the central object of our concern, namely the self-energy

expansion Σ−(z) = zI − (G̃−(z))−1. Applying 4.13 and 4.14 on Σ−(z) leads to

Σ−(z) = H− + V− + V−+G+V+− + V−+G+V+G+V+− + · · ·

= H− + V− +
∞∑
r=2

Tr.

(4.15)

The self-energy Σ−(z) is important for approximating the low-energy effective

Hamiltonian H̃−. The following theorem makes this intuition precise.
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Theorem 4.2.1 (Theorem 1.3.1 restated, also adapted from [7], [8]) Given a

Hamiltonian H̃ = H+V. Suppose ‖V‖2 ≤ ∆/2 with ∆ being the spectral gap between

the ground and the first excited state of H. If there exists a Hamiltonian Heff whose

energies are contained in the interval [a, b] and some real constant ε > 0 such that

a < b < ∆/2− ε and for any z ∈ [a− ε, b+ ε],

‖Σ−(z)−Heff‖2 ≤ ε, (4.16)

then the jth eigenvalue λ̃j of H̃− and the corresponding jth eigenvalue of Heff differ

by at most ε, for any appropriate range of j values.

Most uses of perturbation theory involve truncating the perturbative expansion 4.15

to a specific order to obtain an effective Hamiltonian Heff that approximates the

exact solution. Theorem 4.2.1 is valuable in the sense that it establishes a connection

between the magnitude of the error term ‖Σ−(z) − Heff‖2 and the quality of Heff

as an approximation to H̃, modulo certain conditions that are clearly satisfied by

our assumed physical setting described in Section 4.2.1. The task of evaluating the

quality of perturbative approximation is then reduced to the task of estimating the

perturbative error ‖Σ−(z) −Heff‖2. More specifically, our goal is to find a tight yet

efficiently computable upper bound for the norm of the rth order term Tr which is

Tr ≡ V−+(G+V+)r−2G+V+−, (4.17)

Obviously one can obtain a crude bound by triangle inequality and submultiplicativity

of operator norm (namely ‖AB‖2 ≤ ‖A‖2 · ‖B‖2)

‖Tr‖2 ≤ ‖V‖r2 · ‖G+‖r−1
2 . (4.18)

However, as we will demonstrate with a concrete example in Section 4.5, this does

not serve as a bound tight enough to capture the true magnitude of ‖Tr‖2. In order

to find a tighter bound for ‖Tr‖2, an extreme would be to explicitly form Tr and

compute ‖Tr‖2 directly. But the computation cost is evidently exponential in the

size of the system. For the remainder of the Chapter we present a middle-ground
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possibility where a tighter bound than ‖V‖r2 · ‖G+‖r−1
2 can be obtained by efficient

computation. We show that in certain cases the bound obtained is even equal to the

value of ‖Tr‖2, providing evidence that significant improvement over our approach

for general settings is likely difficult.

4.2.3 Matrix product, walks on graphs and the infinity norm

In this section we note a few intuitions concerning matrices that will be instru-

mental to our later discussions. We start by pointing out the connection between

matrix products and walks on graphs. An N ×N matrix A =
∑

i,j aij|i〉〈j| could be

considered as a weighted directed graph on N nodes with the edge from i to j having

weight aij. In other words, each element aij signifies the “weight” of a walk i → j.

If we consider the product between A and another N ×N matrix B =
∑

i,j bij|i〉〈j|,
the (i, j) element of the product AB is (AB)ij =

∑
k aik|i〉〈k| · bkj|k〉〈j|, which is a

2-step walk i→ j → k. One could think of our central object Tr defined in Equation

4.17 as a collection of r-step walks in the space of H eigenstates. We will make this

notion precise later.

Much of our arguments in our proofs of correctness for the algorithms will be

based on∞-norm, instead of 2-norm, of matrices. As a simple reminder, the∞-norm

of an m × n matrix A is defined as ‖A‖∞ = max
1≤i≤m

∑n
j=1 |aij|, which is simply the

maximum absolute row sum of the matrix. We will be using the following properties

of the infinity norm of matrices:

1. For any matrices A and B of compatible dimensions, ‖A + B‖∞ ≤ ‖A‖∞ +

‖B‖∞;

2. For any matrices A and B of compatible dimensions, ‖AB‖∞ ≤ ‖A‖∞ · ‖B‖∞;

3. ‖A ⊗ 1‖∞ = ‖A‖∞ where 1 is an identity matrix of any finite dimension.

Similarly ‖1⊗A‖∞ = ‖A‖∞;
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4. If A is a block matrix and let Aij be the (i, j) block1, then

‖A‖∞ ≤ max
i

∑
j

‖Aij‖∞;

5. For a Hermitian matrix A, we have ‖A‖2 ≤ ‖A‖∞. This follows from ‖A‖2
2 ≤

‖A‖1 · ‖A‖∞ and ‖A‖1 = ‖A‖∞ for Hermitian matrices.

Here Property 5 is useful because it ties directly to 2-norm, which has a natural

connection to the spectrum of the matrix and is more commonly used for charac-

terizing the magnitude of perturbative error Tr at any order r. Our algorithms, on

the other hand are intended for computing upper bounds to ‖Tr‖∞. Property 5 thus

guarantees that the upper bounds computed for ‖Tr‖∞ also serve as upper bounds

to ‖Tr‖2.

We prefer to use infinity norm in the context of this work because of its natural

connection to the element-wise or block-wise structure of a matrix. Drawing on

the connection mentioned in the opening paragraph, consider the powers of a block

matrix A, namely An. Following the notation in Property 4, let Aij be the (i, j)

block. Assume A is an k× k block matrix. If we think of the matrix A as a directed

weighted graph on k nodes where each edge going from node i to j is associated with

“weight” Aij, then the (i, j) block of An essentially is a sum over contributions from

all n-step walks i0 → i1 → i2 → · · · → in on the graph of A that starts from i0 = i and

ends at in = j. Each one of such n-step walk contributes a term Ai0i1Ai1i2 · · ·Ain−1in

to the (i, j) block of An. Hence if use (An)ij to denote the (i, j) block of An,

(An)ij =
∑

i1,i2,··· ,in−1

Aii1Ai1i2 · · ·Ain−2in−1Ain−1j. (4.19)

Using Property 1, 2, 4 and 5 of infinity norm on Equation 4.19 we could find an upper

bound

‖An‖2 ≤ max
i=1,··· ,k

k∑
j=1

∑
i1,i2,··· ,in−1

‖Aii1‖∞ · ‖Ai1i2‖∞ · · · ‖Ain−2in−1‖∞ · ‖Ain−1j‖∞. (4.20)

1In our notation (i, j) block means the block on the ith row and jth column.
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Equation 4.20 underlies the basic intuition of our approach in finding a tight up-

per bound to ‖Tr‖2. Similar to Equation 4.20, Tr = V−+(G+V+)r−2G+V+− also

contains a basic structure of powering the matrix G+V+. As later discussion would

reveal, in the context of bounding ‖Tr‖∞ the walks over which the right hand side of

Equation 4.20 sums over correspond to sequences of transitions among eigenstates of

the unperturbed Hamiltonian H. However, note that the sum over i1, i2, · · · , in−1 in

Equation 4.20 contains an exponential number of terms in n due to the permutation

of indices, which means any naive algorithm that computes the right hand side of

Equation 4.20 will likely be inefficient. We introduce a mathematical tool in the next

section to help with this inefficiency due to combinatorics.

4.2.4 Symmetric polynomials

Symmetric polynomials are used in our algorithms as a fundamental data structure

to address the combinatorics of arbitrary-order virtual transitions in the perturbative

expansion. We start with a few definitions. Any monomial in n variables x1, x2,

· · · , xn can be written as xa1
1 · · ·xann where the exponents αi ∈ {0, 1, 2, · · · }. Writing

a = (a1, a2, · · · , an) and x = (x1, x2, · · · , xn) gives the abbreviated notation xa =

xa1
1 · · ·xann .

Definition 4.2.1 (Monomial symmetric polynomial) The monomial symmet-

ric polynomial ma(x) is defined as the sum of all monomials xa where a ranges over

all distinct permutations of elements in a = (a1, a2, · · · , an). Here a can be thought

of as a partition of an integer K =
∑n

i=1 ai and we say a is the partition of ma(x).

Note that by definition, a monomial symmetric polynomial is invariant with respect

to the ordering of elements in the partition. For convenience we impose the follow-

ing restrictions to the representations of partitions, which we call reduced partition.

From here on we will only use the reduced partition to uniquely describe a monomial

symmetric polynomial.
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Definition 4.2.2 (Reduced partition) For an n-variable monomial symmetric poly-

nomial ma(x), let k be the number of nonzero elements in a. Then we define the

reduced partition b of ma(x) to be a k-dimensional vector formed by taking all the k

nonzero elements of a and order them in non-descending order i.e. b1 ≤ b2 ≤ · · · ≤ bk.

There is a certain combinatorial intuition associated with monomial symmetric

polynomials which is important in the context of later discussions. For instance

consider m(1,2,3)(a, b, c) = ab2c3+ba2c3+ac2b3+ca2b3+bc2a3+cb2a3. As an analogy, we

could think of each variable a, b, c as a bucket of coins and each term in m(1,2,3)(a, b, c)

as a result of flipping the coins in the three buckets one at a time such that in the end

one bucket gets 1 coin flips, one gets 2 coin flips and the other gets 3. Each coin flip

does not have to be on different coins. For example the first term, ab2c3, corresponds

to the case where we administer 1 coin flip in bucket A, 2 coin flips in bucket B and

3 in C.

Another feature of monomial symmetric polynomial that we use is its compactness

in representation. For b such that
∑|b|

i=1 = r, mb(x1, · · · , xn) contains O(nr) terms,

while all the information for generating these terms can be condensed to b, a k-

element vector. As is shown in Appendix D, for a fixed partition b, evaluating

mb(x1, x2, · · · , xn) takes O(r!n) time. In our context r is the order of perturbation,

which is assumed to be fixed. Hence the cost of evaluating symmetric polynomials

scales linearly as the number of variables (or in our context the number of unperturbed

subsystems).

4.2.5 Cellular automata

A cellular automaton (CA) is typically defined as a collection of finite-state ma-

chines called cells that are positioned on a grid of any finite dimension. Each cell in

the grid also has a defined set of other cells as its neighborhood. The initial configu-

ration of the automaton is specified by assigning states to each cell in the grid. The

cells evolve together in discrete time steps, each time updating the state of each cell
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by a rule that is identical for each cell and does not change over time. During each

time step, the rule determines the new state of each cell in terms of the current state

of the cell and the states of the cells in its neighborhood.

While the initially proposed CA constructions adhere strictly to the definitions

above, CA constructions that deviate from the above definitions abound. This has

significantly added flexibility in the use of the terminology. For example,

• The states of cells need not be discrete; continuous-valued CAs in two-dimensions

have been explored [174];

• The grid that joins the cells could be more than two-dimensional [175];

• More generally, the states of the cells do not necessarily have to be single num-

bers, but could also be data structures [174].

In this work we construct CAs that admit all three variations, namely CAs with cells

connected in form of a (possibly high dimensional) grid and cell states that consist of

data structures designed to specifically suit our purpose. However, our construction

retains some typical features of cellular automata:

• The update rules are local in the sense that the states of the cells are only

dependent on their neighbors;

• The update rules are homogeneous in that they are identical and time indepen-

dent for all cells;

• The states of the cells are updated in parallel to produce a new generation.

An important problem concerning the theory of cellular automata is “What higher-

level descriptions of information processing in cellular automata can be given?” [176].

There have been prior works [177] on CA constructions that are strongly based on

analogues with conventional serial-processing computers. However, information pro-

cessing in cellular automata occurs in a fundamentally distributed and parallel fash-

ion. In this sense, the CAs constructed in this work perform computations in ways
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that departs from conventional serial computer models: to obtain an upper bound

to the norm of mth order perturbative term, we evolve the CA for m evolutions and

glean results from the states of a specific subset of cells.

4.3 Upper bounds for arbitrary order perturbation theory

4.3.1 Structure of the perturbation

In our basic setting we have assumed the perturbation V be block tridiagonalizable

with respect to subspaces of H(i), see Equation 4.12. Each block O
(i)
jk by itself has a

block structure. Each O
(i)
jk is a dim(P(i)

j ) × dim(P(i)
k ) array of operators B

(i)
pq,jk that

only acts on B. Explicitly,

O
(i)
jk =



B
(i)
11,jk B

(i)
12,jk · · · B

(i)
1K,jk

B
(i)
21,jk B

(i)
22,jk · · · B

(i)
2K,jk

...
...

. . .
...

B
(i)
J1,jk B

(i)
J2,jk · · · B

(i)
JK,jk


(4.21)

where for convenience we define J = dim(P(i)
j ) and K = dim(P(i)

k ). Here B
(i)
pq,jk

describes the action on B that is coupled with transition from the pth degenerate

state in P(i)
j to the qth degenerate state in P(i)

k .

The following definitions of quantities will become instrumental to our further

development in this work.

Definition 4.3.1 (Scalar quantity ω) Let ω be an upper bound to the norm of the

components in V such that

ω ≥ ‖HB‖∞ + max
j=0,··· ,`
i=1,··· ,m

‖O(i)
jj ‖∞. (4.22)
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Definition 4.3.2 (Vector λ) Let λi be an upper bound to the norms of the matrix

elements in the off-diagonal blocks O
(i)
jk (i.e. the blocks with j and k differing by one).

In other words,

λi = max
j,k=0,··· ,`,

j 6=k

max
p=1,··· ,J,
q=1,··· ,K

‖B(i)
pq,jk‖∞. (4.23)

For convenience we define the vector λ = (λ1, λ2, · · · , λm).

Definition 4.3.3 (Matrix M) For each block O
(i)
jk as defined in 4.12 and 4.21, let

M
(i)
jk be the maximum number of nonzero blocks per row in O

(i)
jk . In precise terms,

M
(i)
jk = max

p=1,··· ,J
Card{B(i)

pq,jk, q = 1, · · · , K|‖B(i)
pq,jk‖∞ 6= 0} (4.24)

where Card{·} is the size of a set. Furthermore, let M be an ` × ` matrix such that

Mjk = maxi=1,··· ,mM
(i)
jk .

Informally, λi characterizes the “strength” of perturbation V acting on the sub-

system Hi and causing a transition, while M
(i)
jk characterizes the combinatorial aspect

of V(i) inducing transitions between eigenstates in the subspaces Pj and Pk. Further-

more, Mjk represents the maximum possible ways, among all subsystems i, in which

an unperturbed eigenstate in a subspace P(i)
j can be transformed into an eigenstate

in P(i)
k via the action of V(i). From a more linear algebraic perspective, it is the

maximum row sparsity of the O
(i)
jk blocks among all subsystems.

4.3.2 Structure of terms at any order

The quantity Tr = V−+G+(V+G+)r−2V+− is a string of matrices multiplied

sequentially and we will consider finding upper bounds for the norm of each succes-

sively longer substring that starts with the first matrix V−+. By definition of block

structures introduced in Equations 4.12 and 4.21, in the general setting described in

Figure 1 of the main text we could express V−+ in terms of the finest block division

B
(i)
pq,jk as

V−+ =
m∑
i=1

∑
j:P(i)

j ⊆L
(i)
−

∑
k:P(i)

k ⊆L
(i)
+

∑
p:|ψ(i)

j,p〉∈P
(i)
j

∑
q:|ψ(i)

k,q〉∈P
(i)
k

B
(i)
pq,jk ⊗ |ψ

(i)
j,p〉〈ψ(i)

k,q| (4.25)
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where we recall that the operators B
(i)
pq,jk are defined in Equation 4.21 and the states

|ψ(i)
j,p〉 are defined in 4.10.

Following Equation 4.25 we could also express G+, V+ and V+− in terms of blocks

B
(i)
pq,jk and unperturbed eigenstates |ψ(i)

j,p〉. Starting from G+(z) = Π+(zI−H)−1Π+,

before expanding G+ we introduce the following notions of energy combination and

energy configuration of a given eigenstate of H. These notions are also important in

our further algorithmic development.

Definition 4.3.4 (Energy configuration) For an eigenstate |ψ〉 of H where the

energy of each subsystem H(i) is E(i) = 〈ψ|H(i)|ψ〉 ∈ {E0, E1, · · · , E`}. We define the

energy configuration of the eigenstate |ψ〉 as a vector c ∈ {0, 1, · · · , `}m with each

element ci be such that E(i) = Eci. We use the notation c(|ψ〉) to refer to the energy

configuration of |ψ〉.

Definition 4.3.5 (Energy combination) Given an energy configuration c, for each

energy level j ranging from 0 to ` − 1, let nj be the number of subsystems with en-

ergy j. In other words nj = Card{i = 1, · · · ,m|ci = j} where Card{·} is the

cardinality of a set. Then we define the energy combination of the energy configura-

tion c as n(c) = (n1, n2, · · · , n`) ∈ {1, 2, · · · ,m}`. Conversely, let C(n) = {c|∀j ∈
{0, · · · , `},∑i:ci=j

1 = nj} be the set of energy configuration that gives rise to a given

energy combination n.

Informally one could think of n as representing the eigenstates of H in a “number

basis”. Then G+(z) can be expressed as

G+(z) =
∑
n∈N+

1

z − E(n)

∑
c∈C(n)

P(c) (4.26)

where E(n) =
∑`

j=1 njEj is the total energy of the current energy combination.

N+ = {n|E(n) > ∆/2} is the set of energy combination that correspond to an

eigenstate of H in L+. Similarly we could also define N− = {n|E(n) < ∆/2}.
P(c) =

⊗m
j=1 P

(j)
cj is the projector onto the subspace of each subsystem as described
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by the energy configuration c. Each of the projector P
(j)
cj could be further expressed

as projectors onto individual eigenstates by (4.10).

The expression for V+ in terms of blocks B
(i)
pq,jk and unperturbed eigenstates |ψ(i)

j,p〉
can be obtained by replacing L(i)

− in the summation over j in (4.25) by L(i)
+ . Similarly,

the expression for V+− can be obtained by replacing L(i)
− in the summation over j in

(4.25) by L(i)
+ and at the same time replacing L(i)

+ in the summation over k in (4.25)

by L(i)
− .

4.3.3 Walk in the space of unperturbed eigenstates

With the notation P (c) introduced in Equation 4.26 we could express Π− and

Π+ explicitly as

Π− =
∑
n∈N−

∑
c∈C(n)

P(c), Π+ =
∑
n∈N+

∑
c∈C(n)

P(c). (4.27)

Combining Equation (4.27) with the definitions of P
(i)
j in Equation (4.10) we could

see that the term

Tr = V−+(G+V+)r−2G+V+−

for any r ≥ 3 consists of products of B
(i)
pq,jk ⊗ |ψ

(i)
j,p〉〈ψ(i)

k,q| with each term |ψ(i)
j,p〉〈ψ(i)

k,q|
multiplied together forming a sequence of virtual transitions

|φ(0)〉〈φ(1)|︸ ︷︷ ︸
V−+

· |φ(1)〉〈φ(1)|︸ ︷︷ ︸
G+

· |φ(1)〉〈φ(2)|︸ ︷︷ ︸
V+

· |φ(2)〉〈φ(2)|︸ ︷︷ ︸
G+

· · · |φ(r−1)〉〈φ(r)|︸ ︷︷ ︸
V+−

(4.28)

that corresponds to a walk among the eigenstates of H. For convenience in the

subsequent discussions we temporarily condense all the subscripts j, p and superscript

(i) of the state |ψ(i)
j,p〉 into a single-number superscript. To avoid confusion with the

superscript notation in |ψ(i)
j,p〉 we use φ instead of ψ. The superscript for φ indicates

the step of a walk while the superscript for ψ indicates the subsystem. We will only

use |φ(i)〉 notation when referring to a generic walk among eigenstates of H. Here in

Equation (4.28) the operators indicated under the brackets “︸︷︷︸” are the operators
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that contributes the respective projector |·〉〈·| in Tr. We formally define such walk in

the context of bounding ‖Tr‖2 as the following.

Definition 4.3.6 (Walk in the space of H eigenstates) We define an r-step walk

in the space of H eigenstates as a sequence of unperturbed eigenstates |φ(0)〉 →
|φ(1)〉 → · · · → |φ(r)〉 such that

|φ(0)〉 ∈ L−, |φ(r)〉 ∈ L−

|φ(i)〉 ∈ L+, i = 1, · · · , r − 1.

(4.29)

In addition, we require that ‖〈φ(i)|V|φ(i+1)〉‖ 6= 0 for any i = 0, 1, · · · , r− 1. Let E(i)

be the energy of |φ(i)〉, namely E(i) = 〈φ(i)|H|φ(i)〉.

Definition 4.3.6 is laid out specifically for enumerating terms in Tr. The following

lemma describes the explicit connection between the rth order perturbative term Tr

and the r-step walk in Definition 4.3.6.

Lemma 4.3.1 For an r-step walk |φ(0)〉 → |φ(1)〉 → · · · → |φ(r)〉, let B(i) be the B
(i)
pq,jk

block in V (Equation 4.12 and 4.21) associated with the transition |φ(i−1)〉 → |φ(i)〉.
In other words2, B(i) ⊗ |φ(i−1)〉〈φ(i)| = B

(i)
pq,jk ⊗ |ψ

(i)
j,p〉〈ψ(i)

k,q|. Then

Tr =
∑

|φ(0)〉∈L−

∑
|φ(r)〉∈L−

∑′
B(1) · 1

|z − E(1)| ·B
(2) · 1

|z − E(2)| · · ·

· · · 1

|z − E(r−1)| ·B
(r) ⊗ |φ(0)〉〈φ(r)|

(4.30)

where Σ′ sums over all r-step walks in the space of H eigenstates, as in Definition

4.3.6, but restricted to a fixed pair of |φ(0)〉 and |φ(r)〉.

Proof In Section 4.2.3 we interpret powers of block matrices as walks on a weighted

directed graph with each edge carrying a “weight” that is a block. Applying this

intuition to the block partitioning of the perturbation V introduced in Section 4.3.1,

2To avoid confusion with the (i) superscripts we use B instead of B. Here the superscript (i) of B(i)

stands for the ith step in the walk, while superscript (i) of B
(i)
pq,jk represents the ith subsystem.
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we could see that Tr is also a block matrix of dim(L−) ⊗ dim(L−) blocks with the

(i, j) block being the sum over all of the contributions from walks in the space of

H eigenstates (Definition 4.3.6) that start from the ith low energy eigenstate and

end at the jth low energy eigenstate. With |φ(0)〉 being the ith low energy eigenstate

and |φ(r)〉 being the jth, one could see that a term in Tr corresponding to a walk

|φ(0)〉 → |φ(1)〉 → · · · → |φ(r)〉 takes the form

(B(1) ⊗ |φ(0)〉〈φ(1)|)︸ ︷︷ ︸
V−+

·
(

1

z − E(1)
|φ(1)〉〈φ(1)|

)
︸ ︷︷ ︸

G+

· (B(2) ⊗ |φ(1)〉〈φ(2)|)︸ ︷︷ ︸
V+

· · ·

· · ·
(

1

z − E(r−1)
|φ(r−1)〉〈φ(r−1)|

)
︸ ︷︷ ︸

G+

· (B(r) ⊗ |φ(r−1)〉〈φ(r)|)︸ ︷︷ ︸
V+−

.

(4.31)

With the notation introduced in Equation 4.31 we could build up an expression

for Tr term by term. As a start, we could express V−+, V+−, V+, and G+ as

V−+ =
∑
|φ〉∈L−

∑
|φ′〉∈L+

Bφ,φ′ ⊗ |φ〉〈φ′|, V+ =
∑
|φ〉∈L+

∑
|φ′〉L+

Bφ,φ′ ⊗ |φ〉〈φ′|

V+− =
∑
|φ〉∈L+

∑
|φ′〉∈L−

Bφ,φ′ ⊗ |φ(r−1)〉〈φ(r)|, G+(z) =
∑
|φ〉∈L+

1

z − Eφ
|φ〉〈φ|.

(4.32)

where Bφ,φ′ is the B
(i)
pq,jk block in V (Equation 4.12 and 4.21) that corresponds to

transition from |φ〉 to |φ′〉, both of which are eigenstates of H. Eφ = 〈φ|H|φ〉.
Multiplying with G+V+ gives

V−+G+V+ =
∑

|φ(0)〉∈L−

∑
|φ(1)〉∈L+

∑
|φ(2)〉∈L+

(
B(1) ⊗ |φ(0)〉〈φ(1)|

)
·

·
(

1

z − E(1)
|φ(1)〉〈φ(1)|

)(
B(2) ⊗ |φ(1)〉〈φ(2)|

)

=
∑

|φ(0)〉∈L−

∑
|φ(1)〉∈L+

∑
|φ(2)〉∈L+

‖〈φ(1)|V |φ(2)〉‖6=0

B(1) · 1

z − E(1)
·B(2) ⊗ |φ(0)〉〈φ(2)|.

(4.33)
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Continue carrying out computations similar in nature to Equation 4.33 to the rth step

|φ(r)〉 gives us the full expression of Tr in terms of walks on H eigenstates in Equation

4.30.

We are now ready to derive a general upper bound for ‖Tr‖2 in a similar spirit to

Equation 4.20. Following Lemma 4.3.1 as well as properties of∞-norm mentioned in

Section 4.2.3, the 2-norm of Tr can be bounded from above as

‖Tr‖2 ≤ max
|φ(0)〉∈L−

∑
|φ(r)〉∈L−

∥∥∥∥∑′
B(1) · 1

|z − E(1)| ·B
(2) · 1

|z − E(2)| · · ·

· · · 1

|z − E(r−1)| ·B
(r)

∥∥∥∥
∞

(4.34)

where the maximum and the first summation are taken over eigenstates of H in L−.

Equation 4.34 serves as a starting point for finding tight upper bounds for ‖Tr‖2,

because each ‖B(i)‖∞ can be bounded from above by an appropriate choice of element

from the vector λ (Definition 4.3.2). In Appendix E we show a concrete example where

the upper bound in Equation 4.34 is derived explicitly in terms of elements in λ and

M.

Since the dimension of the Hilbert space H grows exponentially as m grows, any

algorithm that naively computes the right hand side of Equation 4.34 term by term

is likely going to cost O((D`)mr) where D = maxi=1,··· ,m dim(Pi) is the maximum

degeneracy of any subspace. As a first simplification, we could reduce this to O(`mr)

by considering walking in the space of energy configuration (Definition 4.3.4) instead

of H eigenstates.

4.3.4 Walking in the configuration space

The summation in Equation 4.34 is over r-step walks on the H eigenstates. Note

from Equation 4.26 that we could partition eigenstates of H according to their energy

configurations (Definition 4.3.4). We could use this partition simplify this summation

by first grouping walks that go through the same changes in energy configurations.
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Let c(i) be the energy configuration of |φ(i)〉 in an r-step walk in the space of H

eigenstates. Then the type of walks that appear in terms of Tr must consist of r

steps and satisfy (refer to Definition 4.3.5 for n(c))

n(c(0)) ∈ N−, n(c(r)) ∈ N−

n(c(i)) ∈ N+, i = 1, · · · , r − 1.

(4.35)

In other words, the type of walks, or sequences of transitions, must start and end in

the low-energy subspace L−, but stays in the high energy subspace L+ in between.

Since each term in V acts on one unperturbed subsystem Hi, at each step which

corresponds to the outer product |ψ(i)〉〈ψ(i+1)|, the energy configurations c(i) and

c(i+1) must differ in at most one element. Furthermore, because V is block-tridiagonal

with respect to any subsystem (Equation 4.12), the difference between the respective

elements in c(i) and c(i+1) must be at most 1. Hence the properties of sequences can

be summarized as the following definition.

Definition 4.3.7 (Walk in the configuration space) We define an r-step walk

in the space of configurations c (or walk in c for short) as a sequence of configurations

c(0) → c(1) → · · · → c(r) such that in addition to satisfying Equation 4.35, {c(i)}ri=0

also satisfies the property that for every step from c(i) to c(i+1) with i = 2, · · · , r − 1,

either one of the following is true:

1. c(i) = c(i+1), OR

2. c(i+1) is obtained by incrementing or decrementing one element in c(i) by 1.

The initial step c(0) → c(1) and the final step c(r−1) → c(r) only satisfy case 2 above.

The following lemma relates the set of r-step walks in the space of configuration,

as defined above, to that in the space of H eigenstates, as in Definition 4.3.6.

Lemma 4.3.2 For any r-step walk |φ(0)〉 → |φ(1)〉 → · · · → |φ(r)〉 described in Def-

inition 4.3.6 there is a walk c(0) → c(1) → · · · → c(r) as defined in Definition 4.3.7

such that c(|φ(i)〉) = c(i).
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Proof By Definition 4.3.6, ‖〈φ(i)|V|φ(i+1)〉‖ 6= 0 for any i = 0, · · · , r − 1. Because

of the block tridiagonal structure of V as in Equation 4.12, the energy configurations

c(|φ(i)〉) and c(|φ(i+1)〉) differ at at most one element and the difference is at most 1. In

particular, the initial step of the walk from |φ(0)〉 ∈ L− to |φ(1)〉 ∈ L+ and the final step

from |φ(r−1)〉 ∈ L+ to |φ(r)〉 ∈ L− satisfies c(|φ(i)〉) 6= c(|φ(i+1)〉), which fall into case 2

of Definition 4.3.7. Hence if we let c(i) = c(|φ(i)〉), the walk c(0) → c(1) → · · · → c(r)

satisfies Definition 4.3.7.

For computing a tight upper bound to the ∞-norm of a term in ‖Tr‖∞ that

corresponds to a particular walk satisfying the above Definition 4.3.7, the definitions

of λi and Mjk then come into play. Generally speaking, every step from c(i) to c(i+1)

contributes a factor. The product of these factors form an upper bound to a term

in Tr that corresponds to an entire walk. If a step falls into the case 1 in the above

Definition 4.3.7, then this step contributes a factor ω (Definition 4.3.1). Otherwise

if a step falls in the case 2 in Definition 4.3.7 then there must be some element, say

the jth element, of ci that is changed by 1 to yield the new energy configuration

ci+1. The contribution of such a step is λj. In other words, a transition has occurred

in the subsystem Hj under the action of V. Further, let j and k be such that the

step from |ψ(i)〉 to |ψ(i+1)〉 is from the subspace Pj to Pk for some subsystem. Then

the contributing factor of the step is further multiplied by Mjk. To make the above

intuition precise, we state the following lemma.

Lemma 4.3.3 Let f be a function of two energy configurations c and c′ such that

f(c, c′) =


λtMss′ c and c′ differ at subsystem t where ct = s and c′t = s′

ω c = c′.

(4.36)

Then for any r ≥ 3,

‖Tr‖2 ≤ max
c(0):n(c(0))∈N−

∑
c(r):n(c(r))∈N−

∑′′
f(c(0), c(1)) · 1

|z − E(1)| · · ·
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· · · f(c(r−2), c(r−1)) · 1

|z − E(r−1)| · f(c(r−1), c(r)). (4.37)

Here the summation Σ′′ is over all r-step walks in the space of configurations, as

defined in Definition 4.3.7, with fixed initial configuration c(0). E(i) is the energy of

the configuration c(i), namely
∑m

j=1Ec(i)j
.

Proof We start from Equation 4.34 and partition the max and summation opera-

tions over H eigenstates according to their energy configurations. Using Lemma 4.3.2

we could deduce from Equation 4.34 that

‖Tr‖2 ≤ max
c(0):n(c(0))∈N−

max
|φ(0)〉:c(|φ(0)〉)=c(0)

∑
c(r):n(c(r))∈N−

∑′′ ∑
|φ(1)〉→···→|φ(r)〉
c(|φ(i)〉)=c(i)∥∥∥∥B(1) · 1

|z − E(1)| ·B
(2) · 1

|z − E(2)| · · ·
1

|z − E(r−1)| ·B
(r)

∥∥∥∥
∞
,

(4.38)

where the summation Σ′′ is defined in the same way as in Equation 4.37. The first

two max operations are equivalent to the max operation on the right hand side of

Equation 4.34. The three summations essentially sums over the set of all r-step

walks on H eigenstates that are consistent with r-step walks in the space of energy

configurations. This set should contain the set of all r-step walks on H eigenstates

that yield non-zero contributions on the right hand side of Equation 4.34. Hence the

right hand side of Equation 4.38 is a valid upper bound to that of Equation 4.34. If

we remove the max and summation operations over energy configurations in Equation

4.38 by considering a fixed walk c(0) → c(1) → · · · → c(r), we are left with a term that

is bounded from above by

max
|φ(0)〉:c(|φ(0)〉)=c(0)

∑
|φ(1)〉→···→|φ(r)〉
c(|φ(i)〉)=c(i)

∥∥B(1)
∥∥
∞ ·
∥∥∥∥ 1

|z − E(1)| ·B
(2) · 1

|z − E(2)| · · ·

· · · 1

|z − E(r−1)| ·B
(r)

∥∥∥∥
∞
.

(4.39)

Recall that the operator B(1) is associated with the transition |φ(0)〉 → |φ(1)〉. The

corresponding change in energy configuration is c(0) → c(1). It is established in Lemma
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4.3.1 as well as Definition 4.3.7 that c(0) and c(1) must differ at one element by 1. Let

this be the tth element. In other words, c
(0)
t 6= c

(1)
t . Let c

(0)
t = s and c

(1)
t = s′. We

could then interpret c(0) → c(1) as the physical process of a transition in subsystem

t from sth energy level to the s′th. Furthermore, B(1) is the operator associated with

transitioning from a specific eigenstate |φ(0)〉 that satisfies 〈φ(0)|H(t)|φ(0)〉 = Es, to

another H eigenstate |φ(1)〉 with 〈φ(1)|H(t)|φ(1)〉 = Es′ . Recall that the superscript (t)

for H(t) represents the tth subsystem, while the superscript for |φ(i)〉 stands for the ith

step during the walk. Now we are considering all such transitions from |φ(0)〉 to |φ(i)〉,
summing over all possible |φ(1)〉 eigenstates and maximizing over all possible |φ(0)〉
eigenstates that are consistent with the (fixed) walk c(0) → c(1) → · · · . By Definition

4.3.2, ‖B(1)‖∞ ≤ λt for any specific step |φ(0)〉 → |φ(1)〉. By Definition 4.3.3, there are

at most Mss′ ways to make a transition from Ps to Ps′ for any subsystem. Hence the

contribution of the first step |φ(0)〉 → |φ(1)〉 to the right hand side of Expression 4.39

is bounded from above by λtMss′ . Hence Expression 4.39 is bounded from above by

f(c(0), c(1)) · 1

|z − E(1)| · max
|φ(0)〉:c(|φ(0)〉)=c(0)

∑
|φ(1)〉→···→|φ(r)〉
c(|φ(i)〉)=c(i)

∥∥B(2)
∥∥
∞ ·
∥∥∥∥ 1

|z − E(2)| · · ·

· · · 1

|z − E(r−1)| ·B
(r)

∥∥∥∥
∞

(4.40)

where f(c(0), c(1)) = λtMss′ following the definition of f in the statement of the

Lemma.

The scalar factors 1
z−E(i) are constants for all the walks |φ(1)〉 → · · · → |φ(r)〉

summed over since the walk in configuration space c(0) → c(1) → · · · → c(r) is

fixed for Expression 4.39. In other words E(i) = E(n(c(i))). The contribution of

‖B(2)‖∞ could be bounded from above by similar arguments that follow Expression

4.39 that treat ‖B(1)‖∞, except that one has to consider an alternative possibility

when c(1) = c(2), in which case the contribution of ‖B(2)‖∞ over all possible walks on
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H eigenstates is bounded from above by ω (Definition 4.3.1). We could thus bound

Expression 4.40 from above by

f(c(0), c(1)) · 1

|z − E(1)| · f(c(1), c(2)) · 1

|z − E(2)|

max
|φ(0)〉:c(|φ(0)〉)=c(0)

∑
|φ(1)〉→···→|φ(r)〉
c(|φ(i)〉)=c(i)

∥∥∥∥B(3) · · · 1

|z − E(r−1)| ·B
(r)

∥∥∥∥
∞
.

(4.41)

By repeating the arguments that produced Equation 4.41 from Equation 4.40 on

‖B(i)‖∞ for i = 3, · · · , r − 1, one could yield upper bounds that are functions of ω,

λ and M. Finally, apply the same argument for treating ‖B(1)‖∞ in Expression 4.39

for ‖B(r)‖∞ yields Equation 4.37.

With Lemma 4.3.3 we in essence have accomplished a reduction of the number

of walks that need to be enumerated, from O((D`)mr) as in the case with walks

on H eigenstates in Section 4.3.3, to O(`mr). In the next section we show how to

use symmetry to reduce the exponential dependence on the number of unperturbed

subsystems m to polynomial, assuming that both ` and r are constant.

4.3.5 Introducing symmetry

In order to further reduce the dimension of the space in which a walk is described,

we introduce a symmetric version of the energy configuration. We start by laying

down the following definition concerning the status of individual elements in an energy

configuration during a walk in the space of c.

Definition 4.3.8 (Active and inactive elements) Consider an energy configura-

tion c(i) during a walk in the configuration space c(0) → · · · → c(i−1) → c(i) with

c(1) = (0, 0, · · · , 0). For any k, if the kth element of c(j), which we denote as c
(j)
k , is

0 for every j ≤ i, then we call c
(j)
k an inactive element. Otherwise the kth element is

an active element.
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In other words, if the kth subsystem is never excited from P0 during the walk then

it is inactive. It is worth noting that an active element of an energy configuration

may also be 0. In this case the subsystem was excited from P0 at some point but

returns to P0.

Definition 4.3.9 (Reduced energy configuration) For an energy configuration

c (Definition 4.3.4) we define reduced energy configuration c̃ as the resulting vec-

tor of removing all inactive elements in c and then sorting the active elements in

non-decreasing order. In particular, let c̃(c) be the reduced energy configuration that

corresponds to a configuration c.

For example, in a setting with m = 3 subsystems, the configuration where the

first subsystem has energy E3, the second is inactive and thus has energy E0, the

third has E1 and the fourth has E0 but is active would have an energy configuration

c = (3, 0, 1, 0). However, in this case the reduced energy configuration c̃ = (0, 1, 3). If

the second subsystem is active then c̃ = (0, 0, 1, 3) is the reduced energy configuration.

The advantage of introducing this concept is that the space in which the walks

are described can be reduced from exponential in m to polynomial, assuming both `,

the total number of energy levels in each unperturbed subsystem, and r, the order of

the perturbation or the total number of steps in a walk, are constant. For a fixed set

of parameters m, `, the total possible energy configurations c is O(`m). However, as

we show in the following lemma, the set of a possible reduced energy configuration c̃

is polynomial in m.

Lemma 4.3.4 Let fm` be the total number of possible reduced energy configurations

of length m and maximum possible number of energy levels `. Then fm` ≤ m` for any

m ≥ 2 and ` ≥ 1.

Proof The last element of a reduced configuration could take any one of ` values.

Since by Definition 4.3.9, the elements of a reduced configuration is non-decreasing,

the remaining m−1 elements of c̃ has fm−1,c̃m choices where c̃m ∈ {0, · · · , `−1} is the
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last element of c̃. We then have the recursion fm` = fm−1,` + fm−1,`−1 + · · ·+ fm−1,1

with boundary condition fk1 = 1 for any k ∈ {1, · · · ,m} and f1k = k for any

k ∈ {0, 1, · · · , ` − 1}. Hence fm` = fm−1,` + fm,`−1 = 1 +
∑m

i=1 fi,`−1. Starting

from fm1 = 1, we have fm2 = 1 + f11 + f21 + · · · + fm1 ≤ 1 + mfm1 = 1 + m and

fm3 = 1 + f12 + f22 + · · · + fm2 ≤ 1 + m + m2. Applying this to fm`, we have

fm` ≤ 1 + fm,`−1 ≤ 1 +m(1 +mfm,`−2) ≤ · · · ≤ 1 +m+ · · ·+m`−1 ≤ m`.

We now define the notion of walks in the reduced configuration space as the

follows.

Definition 4.3.10 (Walk in the space of reduced configurations) A sequence

of reduced configurations c̃(0) → c̃(1) → · · · → c̃(r−1) → c̃(r) is an r-step walk in the

space of reduced configurations c̃ if

n(c̃(0)) = n(c̃0) ∈ N−, n(c̃(r)) ∈ N−

n(c̃(i)) ∈ N+, i = 1, · · · , r − 1.

(4.42)

and either one of the following is true for any i = 2, · · · , r − 1:

1. c̃(i) = c̃(i+1), OR

2. c̃(i) and c̃(i+1) differ by 1 at one element, OR

3. |c̃(i+1)| = |c̃(i)|+ 1.

As a consequence, for the initial step c̃(0) → c̃(1) only case 3 applies and for the final

step c̃(r−1) → c̃(r) only case 2 applies.

The following lemma connects the space of reduced energy configurations c̃ to

that of energy configuration c.

Lemma 4.3.5 For every walk c(0) → c(1) → · · · → c(r) in the space of c as in

Definition 4.3.7, there is a corresponding walk c̃(0) → c̃(1) → · · · → c̃(r) in the space

of c̃ as in Definition 4.3.10 such that c̃(c(i)) = c̃(i). Furthermore, for any permutation
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π over m elements, the walk π(c(0)) → π(c(1)) → · · · → π(c(r)) also maps to the

same walk in c̃. Conversely, for any walk c′(0) → c′(1) → · · · → c′(r) that satisfies

both Definition 4.3.7 and c̃(c′(i)) = c̃(i), there must be a permutation π′ such that

π′(c(i)) = c′(i) for any i.

Proof By definition, n(c(0)) ∈ N−. Since the definition of energy combination n

(Definition 4.3.5) is invariant with respect to permutation of unperturbed subsystems,

n(c̃(c(0))) = n(c(0)) ∈ N−. For every subsequent step c(i) → c(i+1), i ∈ {0, · · · , r−2},
case 1 in Definition 4.3.7 leads to c̃(c(i)) = c̃(c(i+1)), which fits case 1 of Definition

4.3.10. Case 2 in Definition 4.3.7 depends on whether an inactive element in c(i)

becomes active in c(i+1). If this is not the case, then c̃(c(i)) and c̃(c(i+1)) differ by 1

at one element, matching case 2 in Definition 4.3.10. Otherwise the additional active

element in c(i+1) contributes an additional element in c̃(c(i+1)), namely |c̃(c(i+1))| =

|c̃(c(i))| + 1. Finally from n(c(r)) ∈ N− we have n(c̃(c(r))) ∈ N−. Hence if we let

c̃(i) = c̃(c(i)) then the walk c̃(0) → c̃(1) → · · · → c̃(r) matches the Definition 4.3.10.

This proves the first part of the lemma.

The second part follows by noting that by Definition 4.3.9, the reduced energy

configuration of an H eigenstate is invariant with respect to permutation of the sub-

systems, namely c̃(c(i)) = c̃(π(c(i))) for any permutation π over m elements.

The last part (“Conversely...”) can be proved by starting with the observation

that for any walk c′(0) → c′(1) → · · · → c′(r) that satisfies both Definition 4.3.10 and

c̃(c′(i)) = c̃(i), because c̃(c(i)) = c̃(i) and by the permutation invariance of reduced

energy configuration there must be a permutation π(i) such that π(i)(c(i)) = c′(i)

for every i ∈ {0, · · · , r}. Our goal is thus to show that the permutations π(i) are

identical to the same permutation π′. For the sake of contradiction suppose π(i) 6=
π(i+1) for some i. Then there must be a (non-trivial) permutation ∆π such that

π(i+1) = ∆π · π(i). Since the walk c(0) → c(1) → · · · → c(r) conforms to Definition

4.3.7, either c(i) = c(i+1) or c(i) and c(i+1) differ by 1 at one element. We discuss each

case individually as the following:
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• Suppose c(i) = c(i+1), then c′(i) = π(i)(c(i)) = π(i)(c(i+1)). Hence c′(i+1) =

π(i+1)(c(i+1)) = ∆π(π(i)(c(i+1))) = ∆π(c′(i)), which is impossible if the walk

c′(0) → c′(1) → · · · → c′(r) conforms to Definition 4.3.7 because no step c′(i) →
c′(i+1) that conforms to case 1 or 2 in Definition 4.3.7 corresponds to a non-

trivial permutation of c′(i). Hence in this case the permutations π(i) and π(i+1)

must be identical.

• Suppose c(i) and c(i+1) differ by 1 at one element, namely c
(i)
j 6= c

(i+1)
j for some

j. Then π(i)(c(i)) and π(i)(c(i+1)) differ at an element k 6= j. Since c′(i+1) =

∆π(π(i)(c(i+1))) and c′(i) = π(i)(c(i)), we see that the step c′(i) → c′(i+1) is

realized by incrementing the kth element of c′(i) by c
(i+1)
j − c

(i)
j and apply a

non-trivial permutation ∆π. The latter step contradicts Definition 4.3.7 since

no permutation is possible in a single step with either case 1 or 2 in Definition

4.3.7.

Therefore we have shown that the set of r-step walks in c that is consistent with a

particular r-step walk in c̃ are merely the same walk in c with different permutations

of the unperturbed subsystems.

We could then establish an upper bound for ‖Tr‖2 that is based on a walk in the

space of c̃ as in Definition 4.3.10, which is stated in the following Lemma.

Lemma 4.3.6 For an r-step walk c̃(0) → c̃(1) → · · · → c̃(r) in the space of reduced

configuration c̃ as described in Definition 4.3.10, consider any r-step walk c(0) →
c(1) → · · · → c(r) such that c̃(c(i)) = c̃(i). Define the set Fi = {j = 1, · · · , r|c(j−1)

i 6=
c

(j)
i }, the vector f ∈ Nm such that fi = |Fi| and an integer k = r −∑m

i=1 fi. Let

b ∈ Nm be f sorted in non-increasing order (to match Definition 4.2.2). Then

‖Tr‖2 ≤ max
c̃(0):n(c̃(0))∈N−

∑
c̃(r):n(c̃(r))∈N−

∑∗

(
r∏
i=1

1

|z − E(i)|

)
·mb(λ) ·

( ∏
j:∃i,j∈Fi

M
c

(j−1)
i ,c

(j)
i

)
· ωk

(4.43)
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where ω, λ and M are defined in Definitions 4.3.1, 4.3.2 and 4.3.3 respectively.

The summation Σ∗ is over all r-step walks in the space of reduced configurations,

as defined in Definition 4.3.10, with fixed initial reduced configuration c̃(0) and final

reduced configuration c̃(r).

Proof Starting from Lemma 4.3.3, where we bounded from above contributions of

individual r-step walks in c by an expression

f(c(0), c(1)) · 1

|z − E(1)| · f(c(1), c(2)) · · · f(c(r−2), c(r−1)) · 1

|z − E(r−1)| · f(c(r−1), c(r)).

(4.44)

For a specific r-step walk in c space, let Fi = {j = 1, · · · , r|c(j−1)
i 6= c

(j)
i }. Then using

the definition of f(c, c′) in Lemma 4.3.3, we could rewrite expression 4.44 as(
m∏
i=1

1

|z − E(i)|

)
·
(

m∏
i=1

λ
|Fi|
i

)
·
( ∏
j:∃i,j∈Fi

M
c

(j−1)
i ,c

(j)
i

)
· ωk. (4.45)

For a fixed walk c̃(0) → c̃(1) → · · · → c̃(r), consider the set W of r-step walks in the

space of c such that c̃(c(i)) = c̃(i). By Lemma 4.3.5, W consists of permutations of

some r-step walk in c. If the contribution of a single walk in W can be bounded

from above by Equation 4.45, then the total contribution from the walks inW can be

bounded from above by summing over all possible permutations of the unperturbed

subsystems, namely∑
π:[m] 7→[m]

(
m∏
i=1

1

|z − E(i)|

)
·
(

m∏
i=1

λ
|Fi|
π(i)

)
·
( ∏
j:∃i,j∈Fi

M
c

(j−1)
i ,c

(j)
i

)
· ωk. (4.46)

Because the reduced energy configuration c̃ is invariant with respect to the energy

configuration c that it corresponds to, we have∏
j:∃i,j∈Fi

M
c

(j−1)
i ,c

(j)
i

=
∏

j:∃i,j∈F ′i

Mc′i
(j−1),c′i

(j) (4.47)

for any c′(0) → c′(1) → · · · → c′(r) such that π(c(i)) = c′(i) for some permutation

π. Here F ′i = {j = 1, · · · , r|c′i(j−1) 6= c′i
(j)}. Then by Definition 4.2.1 and 4.2.2,∑

π:[m] 7→[m] λ
bi
π(i) = mb(λ) where b is defined in the statement of the Lemma. Expres-

sion 4.46 serves as an upper bound for a fixed walk in c̃. Summing over all r-step
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walks in c̃ described in Definition 4.3.10, and incorporating Equation 4.47, we can

bound the right hand side of Equation 4.37 by that of Equation 4.43.

In Figure 2 of the main text we have already demonstrated the relationship be-

tween a walk in c and a walk in c̃. Furthermore, we presented Equation (5) in the

main text without proof. In Appendix F we illustrate Lemma 4.3.6 with a concrete

derivation of Equation (5) of the main text, in order to provide more intuitive argu-

ments for understanding the construction of the upper bound in Equation 4.43.

4.4 Efficient algorithm for computing upper bounds

4.4.1 Constructing cellular automaton

In Definition 4.3.5 for energy combination, we define C(n) as the set of energy

configurations that give rise to the energy combination n, while n(c) is the energy

combination corresponding to a given energy configuration. Note that the mapping

from an energy combination to an energy configuration is not unique (since for ex-

ample c = (0, 1) and c = (1, 0) both correspond to n = (1, 1)) while the mapping in

the reverse direction is unique. To enforce uniqueness in both directions, we define

uniquely reduced energy configuration as the following.

Definition 4.4.1 (Uniquely reduced energy configuration) Referring to Defi-

nition 4.3.4, for an energy configuration c we define uniquely reduced energy config-

uration ĉ as the resulting vector of removing all zero elements in c and then sorting

the active elements in ascending order. For each energy combination n let ĉ(n) be

the uniquely reduced energy configuration corresponding to n.

Note that Definition 4.4.1 is only minutely different from Definition 4.3.9 in terms

of which zero elements to remove. With Definition 4.4.1 for each energy combination

n there is a unique ĉ that is consistent with n. For example consider c1 = (0, 1, 0, 3)

and c2 = (0, 0, 3, 1), both of which belong in the set C(n) with n = (1, 0, 1), but we
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have a unique ĉ = (1, 3) that corresponds to n = (1, 0, 1). In fact it is not hard to see

that

ĉ(n) = (1, · · · , 1︸ ︷︷ ︸
n1

, 2, · · · , 2︸ ︷︷ ︸
n2

, · · · , `, · · · , `︸ ︷︷ ︸
n`

). (4.48)

Our cellular automaton then consists of cells (graph nodes) connected with di-

rected edges. Each cell is associated with a list of 4-tuples (c̃,b, ξ, µ). An n-tuple

is an ordered sequence of n elements. Here in our 4-tuple, c̃ is a reduced energy

configuration (Definition 4.3.9) and b is a reduced partition vector (Definition 4.2.2),

ξ is a scalar coefficient and µ : c̃ 7→ b is a one-one mapping from the reduced energy

configuration to the reduced partition. Because of its bijective nature, one could also

think of µ as a permutation map. The reason for introducing the mapping µ is be-

cause the reduced partition does not contain all the information about the current

configuration.

We construct the cellular automaton with BuildCA subroutine as described in

Algorithm 2. The algorithm produces a directed graph G(V , E) that represents the

cellular automaton. Each node vn ∈ V corresponds to an energy combination n.

In each node vn and each directed edge e(vn, vn′) ∈ E we store a list of 4-tuples

(c̃,b, ξ, µ) denoted as Sn and Sn,n′ respectively. For a given energy combination

vector n = (n0, n1, n2, · · · , n`−1), we introduce the notation

n0 = (m, 0, · · · , 0)︸ ︷︷ ︸
`

n′i = (n1, · · · , ni − 1, ni+1 + 1, · · · , n`−1), i = 1, · · · , `− 2.

(4.49)

For an energy combination n to be compatible with our physical setting (Figure 1 of

the main text), it is necessary that

`−1∑
i=0

ni ≤ m, and ni ≥ 0, ni ∈ Z, ∀i ∈ {0, · · · , `− 1}. (4.50)

Note that the definition of n′i in Equation 4.49 for a given n essentially corresponds

to a step c(j) → c(j+1) in the space of configurations c where c(j+1) and c(j) differ by



196

1 at one subsystem and going from c(j) to c(j+1) the subsystem makes a transition

from energy level i to i+1. The graph G(V , E) that Algorithm 2 connects any energy

combination n with another energy combination n′ as long as there is a walk in c

(Definition 4.3.7) such that at some step j, n(c(j)) = n and n(c(j+1)) = n′.

Since the energy combination n is a vector of length ` and each element of n

takes values from [m], there are in total O(m`+1) possible energy combinations. The

most naive implementation of Algorithm 2 takes O(m2(`+1)). If we consider ` to be

a constant for the physical system, Algorithm 2 costs computational resource that is

polynomial in the system size m.

4.4.2 Cell update rules

Recall that we are interested in computing an upper bound for ‖Tr‖∞ for any r.

The goal of this section is to present the update rules for each individual cells so that

in the end the upper bound for ‖Tr‖∞ can be gleaned from all nodes vn such that

n ∈ N− after r concurrent updates for all nodes in the cellular automaton.

Let Sn be the set of 4-tuples associated with the cell vn. To aid the presentation

we define a scalar multiplication rule for the 4-tuples: C(c̃,b, ξ, µ) ≡ (c̃,b, Cξ, µ)

where C is a scalar quantity. Naturally we extend the multiplication rule to entire

sets of the 4-tuples:

CSn ≡ {(c̃,b, ξ, µ) ∈ Sn|(c̃,b, Cξ, µ)}.

Similarly we define Sn,n′ as the set of 4-tuples associated with the edge e(n,n′) ∈ E .

The rules for updating Sn for each cell vn and Sn,n′ for any edge e(n,n′) is outlined

in the UpdateCell subroutine in Algorithm 3.

The procedure UpdateCell(vn) called on a particular cell vn contains two main

steps: the first updates the tuple list Sn of the current cell by combining Sn scaled

by ω/(z − E(n)) with the tuple lists on the incident edges scaled by 1/(z − E(n)).

See Equation 4.51. The second step is to generate 4-tuple lists for the outgoing edges

from the current cell by the Out(n,n′, T ) subroutine. During the first step, the factor
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Algorithm 2: Cellular automaton construction algorithm

Input: The number of subsystems m as shown in Figure 1a of the main text; The

matrix M ∈ R`×` as in Definition 4.3.3.

Output: A weighted directed graph G(V , E) that serves as a representation of the

cellular automaton.

Procedure G(V , E) = BuildCA(m,M)

1. V ← {vn0}, E ← ∅;

2. BuildCell(n0);

3. Return G(V , E).

Procedure BuildCell(n)

1. For each t = 0, 1, · · · , `− 1, compute n′t and test if it satisfies (4.50). If so, then

• If vn′i /∈ V , V ← V ∪ {vn′i};

• If e(vn, vn′i) /∈ E , AddEdge(n,n′t);

If e(vn′i , vn) /∈ E , AddEdge(n′t,n);

2. If n = (0, · · · , 0,m), return.

Otherwise for each t = 0, 1, · · · , `− 1, call BuildCell(n′t).

Procedure AddEdge(p,q)

1. Find s and t such that qs = ps − 1 and qt = pt + 1;

2. Add e(vp, vq) with weight Mst.
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b

v(1,1,0)

v(0,2,0) v(1,0,1)

v(0,1,1)

b

b· · ·

c̃

b
↓µ

vn v(1,0,1)

E(n) E2

(0 2)
↓ ↓
(2 2)

→ v(1,1,0)

E1

(0 1)
↓ ↓
(2 3)

(a) (b)

c̃

b
↓µ

vn v(0,2,0)

E(n) 2E1

(1 1)
↓ ↓
(1 1)

→ v(1,1,0)

E1

(0 1)
↓ ↓
(2 1)

;
(1 0)
↓ ↓
(1 2)

⇓ permute the updated c̃ and b

(0 1)

(1 2)

;
(0 1)

(1 2)

(c)

b

v(2,0,0) b

Fig. 4.6. An example illustrating the Out(n,n′, T ) subroutine in Algo-
rithm 3. Here we let the total number of subsystems be m = 2 and each of
them has ` = 3 energy levels. (a): The graph G(V , E) generated by Algo-
rithm 2. Here only part of G is shown. (b): During a call for Out(n,n′, T )
with n = (0, 1) and n′ = (1, 0), the 4-tuple T = (c̃,b, ξ, µ) ∈ Sn with
c̃ = (0,2) and b = (2, 2), which is shown in the left column of (b), is
being used for generating a new 4-tuple (c̃new,bnew, ξnew, µnew) ∈ Sn,n′
with c̃new = (0, 1) and bnew = (2, 3). Here the bold 2 in c̃ represents
the “marked” element in step 3b of Algorithm 3. Note that n(c) = n
and n(cnew) = n′. (c): During a call for Out(n,n′, T ) with n = (1, 1)
and n′ = (1, 0), similar to (b) we use the 4-tuple Sn to generate new 4-
tuples to be stored in Sn,n′ . However, here both elements of c̃ = (1,1) are
“marked”. Hence step 3c of Algorithm 3 generates two new 4-tuples, each
with their c̃new having one distinct element that differs its counterpart in c̃
by 1. The step with the label “permute the updated c̃ and b” illustrates
the step 6 in Out in Algorithm 3, where elements of cnew and bnew as
well as the mapping µnew : cnew 7→ bnew are arranged to conform to their
respective definitions (Definition 4.3.9 for c̃ and Definition 4.2.2 for b).
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1/(z − E(n)) is to account for the contribution of G+ terms in Tr. The ω factor in

the first step is to account for the case where the walk in c̃ (or c) stays at the same

configuration. The second step is to compute the correct list of 4-tuples to deliver

to each n′ in the next update. For each n′ that is accessible from the current energy

combination n, each 4-tuple in Sn will contribute an appropriate set of 4-tuples that

are stored in Sn,n′ . These new 4-tuples must conform to the transition from n to n′,

in the sense that is demonstrated in Figure 4.6. We will make these intuition precise

in the next section, where we prove Theorems 4.4.1 and 4.4.2.

Algorithm 3: Updating the cells and their outgoing edges

Input:

• The node vn ∈ V from the graph G(V , E) with E = Edashed∪Enon-dashed generated

by Algorithm 2.

Output:

• Updated list of 4-tuples Sn associated with vn, and Sn,n′ associated with each

outgoing edge e(vn, vn′) ∈ E .

Procedure UpdateCell(vn)

1. Update the list of 4-tuples at each cell vn:

Sn ←
(

ω

|z − E(n)|Sn
)
∪

 1

|z − E(n)|
⋃

n′:e(n′,n)∈E

Sn′,n

 . (4.51)

2. For each outgoing edge e(vn, v
′
n) ∈ E do the following

Sn,n′ ←
⋃
T ∈Sn

Out(n,n′, T ) (4.52)

where Out is a subroutine described in the Out subroutine.
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Procedure Snew = Out(n,n′, T )

1. ξnew ←Mn,n′ξ, where Mn,n′ is the weight of the edge e(vn, vn′).

2. Compute c̃ = (0, · · · , 0︸ ︷︷ ︸
|b|−|ĉ(n)|

, ĉ(n)) and c̃′ = (0, · · · , 0︸ ︷︷ ︸
|b|−|ĉ(n)|

, ĉ(n′)).

3. If |ĉ(n)| ≥ |ĉ(n′)|,

(a) Find k such that c̃k 6= c̃′k and compute ∆c = c̃′k − c̃k.

(b) Mark all c̃j, j ∈ {1, · · · , |b|}, such that c̃j = c̃k.

(c) For every marked j:

i. c̃new ← c̃′;

ii. (c̃new)j ← (c̃new)j + ∆c;

iii. µnew ← µ;

iv. bnew ← b;

v. µ((c̃new)j)← µ((c̃new)j)+1;

vi. Snew ← Snew ∪ {(c̃new,bnew, ξnew, µnew)}.

4. If |ĉ(n)| < |ĉ(n′)|,

(a) If |b| < m,

i. c̃new ← (1 c̃);

ii. bnew ← (1 b);

iii. µnew ←


(1 c̃) = c̃new

↓ ↓ µ

(1 b) = bnew


;

iv. Snew ← Snew ∪ {(c̃new,bnew, ξnew, µnew)}.

(b) If |b| > |ĉ(n)|, execute the same steps as 3a, 3b, and 3c.
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5. If necessary, rearrange the elements of c̃new (and update µnew accordingly) such

that c̃new conforms to Definition 4.3.9.

6. Return Snew.

4.4.3 Algorithm for computing an upper bound at arbitrary order

Now that we have introduced the major subroutines, we could put them together

into an algorithm for finding a tight upper bound to ‖Tr‖∞, see Algorithm 4.

We start by recalling that Definition 4.3.10 can be thought of as the reduced

configuration c̃ space counterpart to the description of walks in the space of configu-

ration c in Definition 4.3.7 in Section 4.3.4. We also define an energy combination n

counterpart as the following.

Definition 4.4.2 (Walk in the space of energy combination n) A sequence of

energy combinations n(0) → n(1) → · · · → n(r−1) → n(r) is an r-step walk in the space

of energy combination n (or walk in n for short) if

n(0) ∈ N−, n(r) ∈ N−

n(i) ∈ N+, i = 1, · · · , r − 1.

(4.53)

For every step from n(i) to n(i+1) with i = 1, · · · , r − 2, either one of the following is

true:

1. n(i) = n(i+1);

2. n(i+1) = (n
(i)
0 , n

(i)
1 , · · · , n(i)

j − 1, n
(i)
j+1 + 1, · · · , n(i)

`−1).

For the initial step n(0) → n(1) and final step n(r−1) → n(r) only case 2 above applies.

The following definition concerns the step 2i and 2k of Algorithm 4, where the

subroutine UpdateCell of Algorithm 3 is repeatedly invoked in all the cells of the

automaton.
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Algorithm 4: Algorithm for computing an upper bound to ‖Tr‖∞

Input: The order of perturbation, r, the scalar ω ∈ R as in Definition 4.3.1, the

vector λ ∈ Rm as in Definition 4.3.2, the matrix M ∈ R`×` as in Definition 4.3.3.

Output: An upper bound for ‖Tr‖∞, which we denote as τr.

Procedure τr = PerturbBound(r,λ,M)

1. Build the graph G0 using Algorithm 2: G0(V0, E0) = BuildCA(|λ|,M);

2. For each n− ∈ N−,

(a) G(V , E)← G0(V0, E0);

(b) For all n, n′, Sn ← ∅ and Sn,n′ ← ∅;

(c) E ← E0\
⋃

n∈N−\{n−},
n′∈N−

e(vn, vn′); Edashed ←
⋃

n′∈N+
n∈N−

e(vn′ , vn);

(d) T− = {ĉ(n−), b = (0, · · · , 0)︸ ︷︷ ︸
|ĉ(n−)|

, ξ = 1, µ : ĉ(n−) 7→ b};

(e) Randomly choose a neighbor n+ ∈ N+ of n−;

(f) Compute Sn−,n+ = Out(n−,n+, T−) and randomly choose one 4-tuple

T−+ ∈ Sn−,n+ ;

(g) Sn−,n+ ← T−+;

(h) E ← E\Edashed;

(i) Repeat (r−1) times the following: For any vn ∈ V , run UpdateCell(vn);

(j) E ← E ∪ Edashed;

(k) For any vn ∈ V , run UpdateCell(vn);

(l) τr,n− ←
∑
n∈N−

∑
(c̃,b,ξ,µ)∈Sn

ξmb(λ);

3. Return τr = max
n−∈N−

τr,n− .
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Definition 4.4.3 (Trace of the update algorithm) Let S(i)
n and S(i)

n,n′ be the set

of 4-tuples associated with the node vn and edge e(vn, vn′) respectively at the end of

the ith call to UpdateCell at step 2i of Algorithm 4. A trace of Algorithm 4 is a

sequence of 4-tuples T (0) → T (1) → · · · → T (r) that is associated with an r-step walk

in the space of energy combinations n (or equivalently on the vertices of the graph G

generated by BuildCA in Algorithm 2). The 4-tuple T (i) at each step i is given by

T (i) =



T−+, i = 0

1

|z − E(i)|Out(n(i−1),n(i), T (i−1)), i = 1, · · · , r − 1

Out(n(r−1),n(r), T (r−1)), i = r

(4.54)

where T−+ is computed by the initialization steps 2a through 2g of Algorithm 4.

From Equation 4.54 we see that T (i) ∈ S(i)

n(i) for any i = 0, · · · , r. Let P c̃
r be the set

of r-step walks in the reduced configuration space (Definition 4.3.7) that starts from

the initial reduced configuration c̃1 = ∅. Let PTr be the set of r-step traces (Definition

4.4.3) generated by running UpdateCell procedure r times (Algorithm 3), with the

initial input assigned by steps 2a through 2g of Algorithm 4. The following theorem

shows that Algorithm 4 captures all the paths in the space of reduced configurations

c̃ that follow Definition 4.3.10.

Theorem 4.4.1 There is a one-one correspondence (bijective mapping) between the

two sets P c̃
r and PTr .

Proof For every k < r, let Qc̃
k be the set of k-step walks in the space of reduced

configuration c̃ obtained by truncating all r-step walks in P c̃
r at step k. There could

be multiple walks in P c̃
r that share the same first k steps. We count them only once

in Qc̃
k. Since k < r, every step of the k-step walks in Qc̃

k is defined using Definition

4.4.3 but with all parts concerning n(r) removed. Similarly, we define QTk as the set

of k-step traces of the update algorithm obtained from truncating each trace in PTr
at the kth step and counting the redundant elements only once.
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To establish the theorem, we first show that for every k < r, there is a one-one

correspondence between the elements of the two sets Qc̃
k and QTk . Specifically, for

any k-step walk qk ∈ Qc̃
k such that qk = c̃(0) → c̃(1) → · · · → c̃(k), there is a trace

of Algorithm 4 denoted as tk ∈ QTK , that can be described as tK = T (0) → T (1) →
· · · → T (k) where T (i) = (c̃(i),b(i), ξ(i), µ(i)) for any i ∈ {1, · · · , k}.

We use induction on k. For k = 1, Qc̃
1 = {ĉ(n−)} for some n− ∈ N− (step 1 of

Algorithm 4), which corresponds to QT1 = {T−+}. For the definition of T−+, refer to

step 2f of Algorithm 4 respectively. By inspecting step 2a through 2g it is clear that

the reduced energy configuration of T−+ is ĉ(n−). Hence the above statement is true

for k = 1. Suppose the statement is true for all k ≤ K. Then consider any K-step

walk qK ∈ Qc̃
K such that

qK = c̃(0) → c̃(1) → · · · → c̃(K). (4.55)

By induction hypodissertation, there must be a K-step trace tK ∈ QTK that corre-

sponds to pK . Here the trace tK = T (0) → T (1) → · · · → T (K). It then suffices to

show that all paths of the form q′K+1 := qK → c̃′ has one-one correspondence with

traces of the form tK+1 = tK → Tnew where Tnew = (c̃′,b′, ξ′, µ′) is one of the new 4-

tuples generated at either step 1 or 2 of UpdateCell in Algorithm 3. By Definition

4.3.10, c̃′ has three possibilities:

(i) c̃′ = c̃(K);

(ii) |c̃′| = |c̃(K)| and |c̃′j − c̃
(K)
j | = 1 for some j;

(iii) |c̃′| = |c̃(K)|+ 1.

The case (i) is handled by the ω
z−E(n)

Sn term in step 1 of Algorithm 3, with

Equation 4.51. In other words, in this case q′K+1 maps to the trace tK+1 := tK →
Tnew with Tnew = ω

z−E(n)
T (K) = (c̃(K),b(K), ω

z−E(K) ξ
(K), µ(K)) generated at step 1 of

UpdateCell. Here E(K) = E(n(c̃(K))).

The case (ii) is handled by steps 3 and 4b of Out in Algorithm 3. By definition,

T (K) = (c̃(K),b(K), ξ(K), µ(K)). Recall c̃(K) = (c
(K)
1 , c

(K)
2 , · · · , c(K)

|b(K)|). Then c̃′ is ob-
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tained by incrementing or decrementing one of the ωi elements by 1. Incrementing or

decrementing any c̃
(K)
i element will change the energy combination of c̃(K). In partic-

ular, if there is a subset of the c̃
(K)
i elements, call them c̃

(K)
i1

, c̃
(K)
i2

, · · · , c̃(K)
iL

, such that

c̃
(K)
i1

= c̃
(K)
i2

= · · · = c̃
(K)
iL

, then incrementing or decrementing any c̃
(K)
ij

could yield the

same n(c̃′). In steps 3 and 4b we mark all such c̃
(K)
ij

elements. The case c̃
(K)
ij

= 0 for

any j = {1, · · · , L} is handled in step 3 and the case c̃
(K)
ij
6= 0 for any j = {1, · · · , L} is

handled in step 4b. In either cases, the new 4-tuple Tnew = (c̃′,b′, ξ′, µ′) generated by

Out is such that we map the path q′K+1 := qK → c̃′ to the trace tK+1 := tK → Tnew.

The case (iii) is handled in step 4a of Out in Algorithm 3. In this case an

inactive subsystem is active from E0 to E1. Hence c̃′ = (1 c̃(K)). q′K+1 then maps

to tK+1 := tK → Tnew where Tnew = (c̃′,b′, ξ′, µ′) is generated at step 4a.

In summary we have shown that for each possible path q′K+1 := qK → c̃′ in the

reduced configuration space there is a corresponding trace of the algorithm tK+1 :=

tk → Tnew where Tnew = (c̃′,b′, ξ′, µ′) is generated at various steps of Algorithm 3.

Because these steps are at mutually exclusive branches of IF conditions, no q′K+1

maps to two different tK+1’s simultaneously and vice versa. We also note that by

Definition 4.3.10, qK in Equation 4.55 must satisfy n(c̃(i)) ∈ N+ for all i = 1, · · · , K.

This is enforced by step 2h in Algorithm 4, where all edges that goes from N+ to N−,

namely the “dashed” edges, are removed.

We have thus far shown that for every walk in Qc̃
k, there is a corresponding trace

in QTk that maps to it, and this is true for any k < r. Conversely, since any new triple

T (i+1) generated by T (i) comes from either step 1 of UpdateCell in Algorithm 3,

or step 3 or 4a or 4b of Out in Algorithm 3, and the cases ((i)), ((ii)) and ((iii))

above has accounted for each of the steps, we conclude that for every trace in QTk
there must be a corresponding walk in Qc̃

k. Hence there is a one-one correspondence

between the two sets QTk and Qc̃
k for any k < r.

By Definition 4.3.10 the final step of any r-step walk in the space of reduced

configuration has to conform to the case 2 of Definition 4.3.10. Similarly, each trace

in PTr is associated with an r-step walk in the space of energy combination (Definition
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4.4.2), for which the last step also needs to conform to the case 2 of Definition 4.4.2.

Hence for any r-step walk in P c̃
r , if the first (r−1) steps are determined, the final step

is also uniquely known. The same goes for any trace in PTr . We prove the theorem

by using the one-one correspondence between Qc̃
r−1 and QTr−1 established from the

previous inductive argument. The condition of returning to N− at the last step,

namely the restriction n(c̃(r)) ∈ N− in Equation 4.42 of Definition 4.3.10 is enforced

in the step 2j of Algorithm 4 by adding back the dashed edges that enable transition

from N+ back to N−.

From the above proof we could have a rough upper bound of the complexity of

the algorithm. For a walk of r steps where each step has m choices, we have in total

O(mr) possible walks. From the proof of Theorem 4.4.1 we have established that at

any point during the algorithm, each 4-tuple at a node collects contributions from all

possible walks up to the node. Hence at the rth step of the algorithm, there are at

most as many 4-tuples stored in all of the nodes as there are r-step walks. Each tuple

takes O(m) time to update since there are at most m elements of identical values

in a reduced configuration c̃ in case (ii) of Out in Algorithm 3 while cases (i) and

(iii) takes O(1) time to treat. Putting these together, we have that r updates of the

algorithm takes O(rmr). If we fix the order of perturbation r, this is polynomial with

respect to the system size.

Theorem 4.4.1 shows that Algorithm 4 captures all the walks in c̃ that conform to

Definition 4.3.10. The theorem below shows that Algorithm 4 indeed computes the

right hand side of Equation 4.43.

Theorem 4.4.2 (Correctness of Algorithm 4)

Given an r-step trace T (0) → T (1) → · · · T (r) as described in Definition 4.4.3 and

(according to Theorem 4.4.1) its associated r-step walk c̃(0) → c̃(1) → · · · c̃(r) in

the space of reduced energy configurations c̃, let c(0) → c(1) → · · · → c(r) be an
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r-step walk in c such that c̃(c(i)) = c̃(i). Each step of the trace can be written as

T (i) = (c̃(i),b(i), ξ(i), µ(i)). Then we have

ξ(r)mb(r)(λ) =

(
r−1∏
i=1

1

|z − E(i)|

)
·mb(λ) ·

( ∏
j:∃i,j∈Fi

M
c
(j−1)
i ,c

(j)
i

)
· ωk (4.56)

where the symbols involved in the right hand side expression Equation 4.56 are the

same as those defined in Equation 4.43 of Lemma 4.3.6.

Proof The proof of Lemma 4.3.3 is based on r-step walks that follow Definition

4.3.7. In fact from the arguments outlined by Equations 4.39, 4.40 and 4.41 we could

see that any such r-step walk in the space of configuration c truncated at step q,

c(0) → c(1) → · · · → c(q), contributes a multiplicative factor in one of the terms in

the upper bound of ‖Tr‖2 (refer to the right hand side of Equation 4.43) that can be

written as

f(c(0), c(1)) · 1

|z − E(1)| · f(c(1), c(2)) · · · f(c(q−2), c(q−1)) · 1

|z − E(q−1)| · f(c(q−1), c(q)).

(4.57)

The first step of the walk in c̃, c̃(0) → c̃(1), falls into either case 2 or 3 of Definition

4.3.10. In either case, PerturbBound in Algorithm 4 will produce T−+ (step 2f)

with partition b(1) = (1) and coefficient ξ(1) = Mn−,n+ , which is correct because by

Lemma 4.3.5, steps in c that are consistent with c̃(0) → c̃(1) in the sense that c̃(c(0)) =

c̃(0) and c̃(c(1)) = c̃(1) are but the same step c(0) → c(1) with different permutations

of the m subsystems (or elements of c). In other words, the multiplicative factor

associated with the step in reduced configuration c̃(0) → c̃(1) can be written as3

∑
π:Nm 7→Nm

f(π(c(0)), π(c(1))) =
∑

π:[m] 7→[m]

λπ(j)Mst = m(1)(λ) ·Mst (4.58)

where we assume that during the step from c(0) to c(1), the jth subsystem makes a

transition from Ps to Pt. From Equation 4.58 we see that the initial partition is indeed

3Here we abuse the notation π to mean a generic permutation over m elements. When π acts on an
integer it returns another integer that results from the permutation. When π is applied on a vector
of size m it permutes the m elements.
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(1). Since in this one-step process only the jth subsystem is acted on, Fj = {1} and

Fi = ∅ for any i 6= j (for the definition of Fj see Lemma 4.3.6). The multiplicative

factor Mn−,n+ is determined during a call to AddEdge in BuildCell of Algorithm

2. Since c
(0)
j = s and c

(1)
j = t, n(c̃(1))s = n(c̃(0))s − 1 and n(c̃(1))t = n(c̃(0))t + 1.

Hence a call to AddEdge(n(c̃(0)),n(c̃(1))) adds weight Mst to the edge between the

node for n(c̃(0)) and that for n(c̃(0)). Because in the context of PerturbBound in

Algorithm 4, n(c̃(0)) = n− and n(c̃(1)) = n+, Mn−,n+ = Mst = ξ(1). We have thus far

shown that Equation 4.58 holds for r = 1.

Next we will use induction to show that for any 1 < q < r − 1,

ξ(q)mb(q)(λ) =

(
q−1∏
i=1

1

|z − E(i)|

)
·mb(q)(λ) ·

 ∏
j:∃i,j∈F(q)

i

M
c
(j−1)
i ,c

(j)
i

 · ωkq (4.59)

where F (q)
i = {j = 1, · · · , q|c(j−1)

i 6= c
(j)
i } and kq = q −∑m

i=1 |F
(q)
i |. Let f (q) be such

that fi = |F (q)
i |, then b(q) denotes f (q) with its elements sorted in non-descending

order to follow Definition 4.2.2 for reduced partitions. With the same rearrangement

that leads to Equation 4.45 from Equation 4.44, one could see that the right hand

side of Equation 4.59 is equal to Expression 4.57.

We start the induction by assuming that there is a Q < r− 1 such that Equation

4.59 holds for any q ≤ Q. Now consider the Qth call to UpdateCell (Algorithm 3)

during the step 2i of PerturbBound in Algorithm 4 on the node associated with

the energy combination n(c̃(Q)). Depending on the step c̃(Q) → c̃(Q+1) there are 3

possible scenarios according to Definition 4.3.10:

(i) c̃(Q) = c̃(Q+1). In this case T (Q+1) = ω
|z−E(Q)|T (Q) from step 1 of UpdateCell

in Algorithm 3. None of the sets F (Q)
i are changed so F (Q)

i = F (Q+1)
i for all

i = 1, · · · ,m and b(Q) = b(Q+1). Therefore

ξ(Q+1)mb(Q+1)(λ) =
ω

|z − E(Q)|ξ
(Q)mb(Q)(λ)

=
ω

|z − E(Q)| ·
Q−1∏
i=1

mb(Q)(λ)

|z − E(i)| ·
∏

j:∃i,j∈F(Q)
i

M
c
(j−1)
i ,c

(j)
i
· ωkQ
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=

(Q+1)−1∏
i=1

mb(Q+1)(λ)

|z − E(i)| ·
∏

j:∃i,j∈F(Q+1)
i

M
c
(j−1)
i ,c

(j)
i
· ωkQ+1 . (4.60)

where kQ+1 = Q+ 1−∑m
i=1 |F

(Q+1)
i |. On the second line we used the inductive

hypodissertation Equation 4.59 for q = Q. By Equation 4.60 we have established

that Equation 4.59 is also true q = Q+ 1.

(ii) c̃(Q) and c̃(Q+1) differ by 1 at one element. Consider a walk in c with c̃(c(i)) =

c̃(i). Let h be such that |c(Q+1)
h −c

(Q)
h | = 1. Note that here we are concerned with

the walk c(0) → c(1) → · · · c(Q) in c instead of c̃, which by similar arguments

that lead to Equation 4.45 from 4.44 in Lemma 4.3.6, contributes a factor

f(c(0), c(1)) · 1

|z − E(1)| · f(c(1), c(2)) · · ·

· · · f(c(Q−2), c(Q−1)) · 1

|z − E(Q−1)| · f(c(Q−1), c(Q))

=

(
m∏
i=1

1

|z − E(i)|

)
·
(

m∏
i=1

λ
|F(Q)
i |

i

)
·

 ∏
j:∃i,j∈F(Q)

i

M
c
(j−1)
i ,c

(j)
i

 · ωkQ .
(4.61)

Applying the inductive hypodissertation for q = Q, we have that the walk

c(0) → c(1) → · · · → c(Q) → c(Q+1) contributes an upper bound

f(c(0), c(1)) · 1

|z − E(1)| · f(c(1), c(2)) · · ·

· · · f(c(Q−1), c(Q)) · 1

|z − E(Q)| · f(c(Q), c(Q+1))︸ ︷︷ ︸
=λhM

c
(Q)
h

,c
(Q+1)
h

=

(
m∏
i=1

1

|z − E(i)|

)
·
(

m∏
i=1

λ
|F(Q)
i |

i

)
· λh·

·

 ∏
j:∃i,j∈F(Q)

i

M
c
(j−1)
i ,c

(j)
i

 ·Mc
(Q)
h ,c

(Q+1)
h

· ωkQ .

(4.62)

Here in Equation 4.62 λh will merge with the λ
F(Q)
h

h term in the product, produc-

ing λ
|F(Q)
h |+1

h . Since by definition of F (Q)
i , F (Q+1)

h = F (Q)
h ∪ {Q+ 1}, |F (Q+1)

h | =
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|F (Q)
h | + 1. Because c̃(Q) 6= c̃(Q+1) in this case, kQ = kQ+1. Finally, because

(Q + 1) ∈ F (Q+1)
h , M

c
(Q)
h ,c

(Q+1)
h

merges into the product
∏

j:∃i,j∈F(Q)
i

M
c
(j−1)
i ,c

(j)
i

and Expression 4.62 becomes(Q+1)−1∏
i=1

1

|z − E(i)|

 ·( m∏
i=1

λ
|F(Q+1)
i |

i

)
·

 ∏
j:∃i,j∈F(Q+1)

i

M
c
(j−1)
i ,c

(j)
i

 ·ωkQ+1 . (4.63)

By Lemma 4.3.5, the contribution of the (Q + 1)-step walk in the reduced

configuration c̃ can be obtained by summing over all permutation π : [m] 7→ [m]

of the subsystems, yielding(Q+1)−1∏
i=1

1

|z − E(i)|

· ∑
π:[m] 7→[m]

(
m∏
i=1

λ
|F(Q+1)
π(i)

|
π(i)

)
︸ ︷︷ ︸

m
b(Q+1) (λ)

·

 ∏
j:∃i,j∈F(Q+1)

i

M
c
(j−1)
i ,c

(j)
i

·ωkQ+1 .

(4.64)

We would like to show that our Algorithm indeed computes expression 4.64

correctly. First of all, T (Q+1) could only be generated by first making a func-

tion call to Out(n(Q),n(Q+1), T (Q)) in Algorithm 3. During the Out call, the

algorithm starts out by reconstructing c̃(Q) and c̃(Q+1) from b(Q), n(c̃(Q)) and

n(c̃(Q+1)) at step 2 of Out. Since we assumed that |c(Q+1)
h − c(Q)

h | = 1, there

must be an h′ such that |c̃(Q+1)
h′ − c̃

(Q)
h′ | = 1. In other words, c̃

(Q+1)
h′ = c

(Q+1)
h ,

c̃
(Q)
h′ = c

(Q)
h . The algorithm marks all such possible h′ indices in c̃(Q). With

mapping µ(Q) we are able to locate the element in b(Q) that stores |F (Q)
h |.

The algorithm Out then correctly increments the element by 1, to generate

b(Q+1). Because of the way AddEdge in Algorithm 2 is set up for construct-

ing the cellular automaton which leads to M
c̃
(Q)

h′ ,c̃
(Q+1)

h′
= Mn(Q),n(Q+1) , the step

1 leads to ξ(Q) ← ξ(Q) ·M
c̃
(Q)

h′ ,c̃
(Q+1)

h′
. Putting these together, we can see that

Out(n(Q),n(Q+1), T (Q)) produces a 4-tuple

T (Q,Q+1) = (c̃(Q+1),b(Q+1), ξ(Q) ·M
c
(Q)
h ,c

(Q+1)
h

, µ(Q+1)) (4.65)
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where µ(Q) = µ(Q+1) because no new element is introduced in b(Q). Then

during step 1 of UpdateCell in Algorithm 3, T (Q+1) is finally generated by

the operation

T (Q+1) =
1

|z − E(Q)|T
(Q,Q+1) = (c̃(Q+1),b(Q+1), ξ(Q+1), µ(Q+1)) ∈ Sn(c̃(Q)),n(c̃(Q+1)).

(4.66)

It is straightforward to verify that ξ(Q+1)mb(Q+1)(λ) equals to expression 4.64.

(iii) |c̃(Q+1)| = |c̃(Q)|+ 1. Consider the same walk c(0) → c(1) → · · · → c(Q) → c(Q+1)

as the case (ii) with c̃(c(i)) = c̃(i). In this case there is some h such that

c̃
(Q)
h = 0 and c̃

(Q+1)
h = 1. Also |F (Q)

h | = 0 and |F (Q+1)
h | = 1. In other words a

new element is added to b(Q) to store |F (Q+1)
h |. Hence b(Q) to store |F (Q+1)

h |.
Hence b(Q+1) = (b(Q) 1). The algorithm identifies this case by testing if both

|ĉ(n(c(Q)))| < |ĉ(n(c̃(Q+1)))| and |b(Q)| < m are true, because if the former is

false it implies that c̃(Q+1) has one more active element (Definition 4.3.8) with

energy E0 than c̃(Q), which is impossible for any possible step c̃(Q) → c̃(Q+1)

as stated in Definition 4.3.10. If |b(Q)| = m then there is no h such that

|F (Q)
h | = 0, another contradiction. Therefore the algorithm correctly captures

the necessary and sufficient condition for this case and once it does, during

the Qth call to UpdateCell on vn(c̃(Q)) it generates a new partition b(Q+1) =

(b(Q) 1), according to step 4(a)ii of Out in Algorithm 3, and the new element

“1” is mapped from c̃
(Q+1)
h . The call Out(n(c̃(Q)),n(c̃(Q+1)), T (Q)) returns a

new 4-tuple

T (Q,Q+1) = (c̃(Q+1),b(Q+1), ξ(Q) ·M01, µ
(Q+1)) ∈ Sn(c̃(Q)),n(c̃(Q+1)) (4.67)

The step 1 during the (Q+ 1)th call to UpdateCell on vn(c̃(Q+1)) generates

T (Q+1) =
1

|z − E(Q)|T
(Q,Q+1) (4.68)

with ξ(Q+1)mb(Q+1)(λ) being equal to Expression 4.59 with q = Q+ 1.

At the final step c(r−1) → c(r) only case (ii) holds. The same arguments carry over

here. This concludes our proof.
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4.4.4 Dealing with infinity

Obviously, computing the error exactly requires summing the perturbative series

(Equation 4.15) to infinite order, which is not possible. Hence we make a relaxation

by truncating the summation at some finite order p and proving that the norm of

the sum from p + 1 to infinity is bounded from above by some quantity that is

easy to calculate. In particular, at pth order, p ≥ 2, we have the perturbative term

Tp = V−+(G+V+)p−2G+V+−. Suppose we have found an upper bound γp such that

‖V−+(G+V+)p−2G+V+−‖ ≤ γp. Then an upper bound for the p+ 1-st order can be

established using the inequality ‖AB‖ ≤ ‖A‖ · ‖B‖ for submultiplicative norms:

‖Tp+1‖ ≤ ‖Tp‖ · ‖G+V+‖ ≤ γp‖G+V+‖ ≤
γp
∆
‖V+‖. (4.69)

Here in the last inequality we have used the definition of ∆ being the lowest excited

state energy in the unperturbed Hamiltonian H. Let r = ‖V+‖/∆. Then we could

bound the infinite sum by the triangle inequality:

‖
∞∑

j=p+1

Tj‖ ≤
∞∑

j=p+1

‖Tj‖ ≤ γp(r + r2 + r3 + ....) = γp
r

1− r . (4.70)

To make sure that the series on the right hand side converges, we need r < 1, which

is true for all the constructions we consider here.

4.5 Bit-flip gadgets: an example

In this section we use the gadget construction proposed in [7] and generalized

in [9] to demonstrate the effectiveness of our algorithm. The gadget construction is

called “bit-flip gadgets” in [1]. In Section 4.5.1 we show how our algorithm performs

in analyzing the perturbative expansion associated with a particular 11-spin gadget

Hamiltonian that simulates a target Hamiltonian consisting of two 3-local terms. We

numerically show that the error estimation produced with our algorithm is essentially

tight with respect to the exact value, which takes an exponential amount of computa-
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tion to compute4. In Section 4.5.2 we show rigorously that with minor modification to

the Algorithms in Section 4.4, we are able to efficiently compute perturbative terms

at arbitrary order for the bit-flip gadgets.

4.5.1 An 11-spin gadget Hamiltonian

Consider the quantum system of 11 spins described in Figure 3a of the main text.

The Hamiltonian can be expressed in form of the general setting H̃ = H+V described

in Figure 1a of the main text. Here the unperturbed Hamiltonian H and perturbation

V are defined as

H = H(1) + H(2), H(1) =
∆

4
(Zu1Zu2 + Zu2Zu3 + Zu1Zu3)

H(2) =
∆

4
(Zv1Zv2 + Zv2Zv3 + Zv1Zv3)

V = V(1) + V(2), V(1) = µ1(X1Xu1 + X2Xu2 + X3Xu3)

V(2) = µ2(Y4Xv1 + X2Xv2 + Z5Xv3)

(4.71)

where spins with ui and vi labels belong to the two unperturbed subsystems. Here

we let ∆ be orders of magnitude larger than µ1 and µ2 and keep the coefficients µ1

and µ2 as

µ1 =

(
α1∆2

6

)1/3

, µ2 =

(
α2∆2

6

)1/3

(4.72)

where α1 and α2 are parameters related to the low energy effective Hamiltonian (see

Equation 4.77). In Figure 3c of the main text we explicitly partition the Hamiltonian

in the form of general setting discussed in Section 4.2.1 (Figure 1a of the main text).

The low-energy subspace of the total Hamiltonian H̃ is then L− = L(1)
− ⊗ L(2)

− .

Inspecting the expressions H(1) and H(2) gives the low energy subspaces for each sub-

system: L(1)
− = span{|000〉u1u2u3 , |111〉u1u2u3} and L(2)

− = span{|000〉v1v2v3 , |111〉v1v2v3}.
4In fact we choose 11 spins and no more because diagonalizing 211 × 211 matrices is coming close to
the RAM limit of the laptop computers being used.
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For each subsystem i ∈ {1, 2}, the subspaces of H(i) and their corresponding energies

are

P0 = span{|000〉}, E0 = 0

P1 = span{|001〉, |010〉, |100〉}, E1 = ∆

P2 = span{|011〉, |101〉, |110〉}, E2 = ∆

P3 = span{|111〉}, E3 = 0.

(4.73)

In Figure 3d of the main text we show the spectrum of each subsystem. The

vector λ = (λ1, λ2), which characterizes the “magnitudes” of perturbations onto each

subsystem (Definition 4.3.2) can be determined based on Equation 4.71 as

λ1 = µ1, λ2 = µ2. (4.74)

From the diagram in Figure 3d of the main text we could also determine the matrix

M (see Definition 4.3.3) for this system. One could compute the matrix elements Mij

from the figure, where Mij is the maximum, over all eigenstates of H in Pi, number

of possible transitions from a particular |u〉 ∈ Pi to an eigenstate in Pj. Precisely,

Mij = max
|u〉∈Pi

Card{|v〉 ∈ Pj|‖〈v|V|u〉‖ 6= 0} (4.75)

where Card{·} stands for cardinality (number of distinct elements) of a set. We could

then determine that

M =



P0 P1 P2 P3

P0 3

P1 1 2

P2 2 1

P3 3


(4.76)
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where the row and column indices start from 0 because the subspaces P0, P1, · · · ,
have indices that start from 0.

From Figure 3a and 3c of the main text we can see that the unperturbed system

H essentially consists of two identical 4-level systems with energy levels E0, E1, E2

and E3. This gives rise to in total 9 possible energy combinations (Definition 4.3.5).

Starting from the all-zero energy combination n0 = [2, 0, 0, 0] and running Algorithm

2, we could construct a cellular automaton as shown in Figure 4d of the main text.

We tabulate all the cells and their relevant information as in Figure 4c of the main

text.

With the vector λ and the matrix M worked out as in Equations (4.74) and

(4.76), we could use Algorithm 4 to find a tight upper bound for ‖Tr‖∞ at any

order r. After a certain order p, when the upper bound becomes sufficiently small

(assuming ‖Tr‖∞ → 0 as r → ∞), we use Equation 4.70 to bound the terms from

p+ 1 to infinity.

Using the perturbation series in Equation (4.15) we could show that if we truncate

the series at the 3rd order, namely Σ−(z) = Heff +T4 +T5 + · · · , we have the effective

3-body Hamiltonian

Heff = α1X1X2X3 + α2X2Y4Z5 + γI (4.77)

for some γ that signifies the magnitude of the spectral shift. Here we let α1 =

0.1 and α = 0.2. Then the entire Hamiltonian H̃ = H + V in Equation 4.71 is

only dependent on a free parameter ∆. In order to test our algorithm for bounding

perturbative terms, we treat terms from 4th order onward as errors in the perturbation

series. This amounts to estimating ‖Σ−(z)−Heff‖. We could compute this value by

explicitly computing Σ−(z) by its definition zI − (G̃−(z))−1 and then evaluating

‖Σ−(z)−Heff‖. This method is inefficient but yields an accurate estimation for the

error ‖Σ−(z)−Heff‖. We will use it as a benchmark for comparison with the upper

bound computed by the new algorithm developed here. As shown Figure 5 of the

main text, the upper bounds computed by the cellular automaton algorithms are

tight with respect to the exact calculation. For the purpose of comparison we also
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compute the error bound due to triangle inequality (see Equation 4.18). We explicitly

computed ‖V‖2 and bounded ‖G+‖ from above by 1/E1. Hence the simple bound

based on Equation 4.18 becomes
∑∞

r=4 ‖V‖r2/Er−1
1 = ‖V‖4

2/(E
2
1(E1 − ‖V‖2)).

Note from Figure 5 of the main text that our upper bound based on the output

of the CA algorithm only differs from the simple bound by a constant factor. This

provides empirical justification for the method to treat infinity described in Section

4.4.4. When implementing the CA algorithm for the numerical example concerned

in this section, we compute τr = PerturbBound(r,λ,M) for r from 4 to a value

p such that τp ≤ 10−20. Then we resort to Equation 4.70 for computing an upper

bound to ‖Tp+1 + · · · ‖2.

4.5.2 Rigorous arguments for the tightness of our error bound

Here we rigorously show that for perturbative gadget Hamiltonian proposed by

Jordan and Farhi [9], we could efficiently compute terms Tr at arbitrary order. The

purpose of the gadget construction is such that its low energy effective Hamiltonian

is a sum of k-body interactions:

Heff =
m∑
i=1

ciHeff,i (4.78)

where for now we assume that ci > 0,

Heff,i = σi,1σi,2 · · ·σi,k

and σi,j ∈ {I,X,Y,Z} is either a Pauli or identity operator acting on the jth qubit

that the ith term in Heff acts on. An important assumption that we make here is that

for any i, j ∈ [m], Heff,i and Heff,j commute. In the notation introduced in Section

4.2.1, the gadget Hamiltonian H̃ = H + V takes the form

H =
m∑
i=1

H(i)

V =
m∑
i=1

V(i).

(4.79)
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where

H(i) =
∑

1≤s<t≤k

1

2
(I− Zi,sZi,t)

V(i) =
k∑
j=1

|ci|1/kσi,j ⊗Xi,j.

(4.80)

Here the coefficients in V(i) are defined in a slightly different way from [9].

For each Heff,i there is a corresponding register of k extra spins (ancilla qubits)

and Xi,j, Zi,j represent Pauli X and Z operators acting on the jth ancilla accosiated

with the ith term in Heff. The spectrum of H(i) is easy to find: the subspace of states

with j qubits in |1〉 has energy j(k − j). Hence E
(i)
j = j(k − j). The ground state

subspace of each subsystem H(i) is L(i)
− = span{|0〉⊗k, |1〉⊗k} and following Section

4.2.1 we let L− = L(1)
− ⊗· · ·⊗L(m)

− . Following Lemma 4.3.1, the self energy expansion

Σ−(z) = H− + V− +
∑∞

r=2 Tr (Section 4.2.2) for H̃ then has the structure where at

any order,

Tr =
∑
S⊆[m],
|S|≤br/kc

OS,r ⊗ΠS (4.81)

and

OS,r =


αrI S = ∅

βS,r
∏
i∈S

Heff,i S 6= ∅
(4.82)

with αr and βS,r being real coefficients, and

ΠS =
∏
i∈S

(
k⊗
j=1

|0〉〈1|i,j +
k⊗
j=1

|1〉〈0|i,j
)
. (4.83)

Based on the intuition about the connection between Tr and walks among the eigen-

states of H driven by V (Definition 4.3.6), we could see that for any r, Tr could

contain terms that are associated with two possible types of walks:

• Walks that start from |0〉⊗k (resp. |1〉⊗k) and end at |0〉⊗k (resp. |1〉⊗k);

• Walks that start from |0〉⊗k (resp. |1〉⊗k) and end at |1〉⊗k (resp. |0〉⊗k).
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For r < k, only the first type of walk is possible since V flips one ancilla at a

time and in this case the order of perturbation is simply not high enough for |0〉⊗k

to reach |1〉⊗k. Hence S = ∅ in this case and in Equation 4.82 the corresponding

operator is proportional to identity. In case the order of perturbation is high enough

to drive transitions between degenerate states in L−, the set S describes the subset

of m subsystems for which a transition from |0〉⊗k to |1〉⊗k has occured. Hence the

expression in Equation 4.82 for the case S 6= ∅. Note that this expression only applies

when the Heff,i terms commute.

In accordance with Equation 4.82 we define a scalar function

fr = |αr|+
∑
S⊆[m]

1≤|S|≤br/kc

|βS,r| = |αr|+
br/kc∑
i=1

γi,r (4.84)

where we define γi,r =
∑

S⊆[m],|S|=i |βS,r|. Our goal is to show that

• Under the assumptions of pairwise commutativity between terms in Heff, we

have ‖Tr‖2 = fr.

• Using the cellular automaton algorithms that we introduced, fr can be com-

puted in time O(rmr).

The combination of both goals will show that our cellular automaton algorithms

essentially yield tight upper bounds for ‖Tr‖2 if terms in Heff commute. If the terms

in Heff do not commute, ‖Tr‖∞ < fr strictly and the difference |fr−‖Tr‖∞| depends

on more detailed structure of non-commutativity among the terms of Heff.

To prove rigorously that ‖Tr‖2 = fr when the Heff,i terms commute pairwise, we

first note the following Lemma.

Lemma 4.5.1 For any operators A,B ∈ C2n⊗2n such that

A = P1 ⊗P2 ⊗ · · · ⊗Pn

B = Q1 ⊗Q2 ⊗ · · · ⊗Qn

(4.85)
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where for any i, Pi,Qi ∈ {I,X,Y,Z}. Then for commuting A and B,

‖c1A + c2B‖∞ =


|c1 + c2| if A = B

|c1|+ |c2| otherwise.

(4.86)

Proof The case where A = B is trivial so we focus on the case where A 6= B. Clearly

‖c1A + c2B‖∞ ≤ |c1|+ |c2|. On the other hand ‖c1A + c2B‖∞ ≥ ‖c1A + c2B‖2. We

show that ‖c1A+c2B‖2 = |c1|+|c2| by first noting that A and B must differ in at least

two operators. That is, there must be i 6= j ∈ [m] such that Pi 6= Qi and Pj 6= Qj.

Then we choose a state |φ〉 = |φ1〉⊗ |φ2〉⊗ · · ·⊗ |φm〉 where each |φs〉 ∈ C2 is a single-

qubit state, such that 〈φ|c1A + c2B|φ〉 = |c1|+ |c2|. For example if c1 > 0 and c2 < 0,

we will choose |φi〉 such that 〈φi|Pi|φi〉 = 1 but 〈φi|Qi|φi〉 = −1, which is possible

considering Pi,Qi ∈ {I,X,Y,Z} and Pi 6= Qi. We then choose for every s ∈ [m]\{i}
we have 〈φs|Ps|φs〉 = 1 and 〈φs|Qs|φs〉 = 1. This way 〈φ|c1A + c2B|φ〉 = |c1| + |c2|.
Similar idea works for other combinations of signs of c1 and c2.

Since ‖A‖∞ = ‖A‖2 = 1 and the same holds for B (Equation 4.85), Equation

4.86 in Equation 4.86 also applies to the 2-norm of c1A + c2B. For the projectors ΠS

defined in Equation 4.83, we have

‖ΠS‖2 = ‖ΠS‖∞ =

∥∥∥∥∥∏
i∈S

Xi

∥∥∥∥∥
∞

=

∥∥∥∥∥∏
i∈S

Xi

∥∥∥∥∥
2

. (4.87)

Combining Equation 4.87 with the expression of OS,r in Equation 4.82 we see that

the terms in the summation of Equation 4.81 are pairwise commutative. Applying

Equation 4.86 and 4.87 yields the desired tightness result

‖Tr‖2 =

∥∥∥∥∥∥∥∥
∑
S⊆[m]
|S|≤br/kc

OS,r ⊗
∏
i∈S

Xi

∥∥∥∥∥∥∥∥
2

= |αr|+
∑
S⊆[m]

1≤|S|≤br/kc

|βS,r| = fr. (4.88)

In general when the terms Heff,i do not commute, of course we always have the

inequality ‖c1A + c2B‖2 ≤ ‖c1A + c2B‖∞ ≤ |c1|+ |c2|. Hence ‖Tr‖2 ≤ ‖Tr‖∞ ≤ fr,

showing that fr is always an upper bound to ‖Tr‖2.
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The norm ‖Tr‖∞ can be computed by explicit calculation of Tr, which takes an

exponential amount of computation as the system size m increases. Here we show that

using a slightly modified variant of our cellular automaton algorithm we can compute

fr in time O(rmr), which is polynomial time in m. The exponential dependence on r

in the runtime is related to the number of possible r-step Motzkin walks and is likely

difficult to improve.

In order to compute fr, we start by identifying the parameters ω, λ and M (Section

4.3.1) for the gadget Hamiltonian H̃. Because V always induces transitions on the

eigenstates of H, by Definition 4.3.1, ω = 0. We define the elements of λ ∈ Rm to

be λs = |cs|1/k for s = 1, · · · ,m. From the definition of H(s) we could see that the

elements of M should be assigned such that Mst = k − s if t = s + 1, Mst = s if

t = s− 1, and 0 otherwise.

In addition, we make the following modifications to our algorithms:

1. In the PerturbBound subroutine of Algorithm 4, at step instead of looping

over N−, fix n− = n0 = (m, 0, · · · , 0).

2. At step 2l, compute

αr =
∑

(c̃,b,ξ,µ)∈Sn0

ξmb(λ),

γi,r =
∑

(c̃,b,ξ,µ)∈Sni

ξmb(λ), i = 1, · · · , br/kc
(4.89)

where ni = (m− i, 0, · · · , 0, i).

3. At step 3, instead of τr, return fr according to Equation 4.84.

The structure of V(s) does satisfy the block-tridiagonal property assumed in Sec-

tion 4.2.1. Therefore all the arguments on the walks in the space of c, c̃ and n hold.

The parameters of fr can be computed by calling fr = PerturbBound(r,λ,M)

with modifications listed above. The efficiency of this procedure is argued after the

proof of Theorem 4.4.1.
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4.6 Discussion and conclusion

• Our algorithms are constructed based on a physical setting that is not with-

out assumptions. The first major assumption concerns the structure of V as

described in Equation 4.11 and 4.12. The block tridiagonal structure of V(i)

has a direct consequence on what transitions are possible during one step of a

walk, be it in H eigenstates (Definition 4.3.6), energy configuration c (Definition

4.3.7), reduced energy configuration c̃ (Definition 4.3.10) or energy combination

n (Definition 4.4.2). In case one would like to relax the assumption of V(i) being

tridiagonal and would like to instead treat V(i)’s that are band diagonal with

the band width being greater than 3, the definitions of the walks will need to be

modified to account for V being able to change an element of c by more than 1

during a single step c(i) → c(i+1). The algorithms will also need to be adjusted

accordingly.

A second assumption concerns the magnitude of V. Here in order to guaran-

tee the convergence of perturbation series Σ−(z) in the regime of z specified

by Theorem 4.2.1, we assume that ‖V‖2 ≤ ∆/2. In general this assumption

could be weakened [2] to a statement that ultimately is not dependent on any

global property of V, such as ‖V‖2, and the series in Σ−(z) still converges and

Theorem 4.2.1 could still hold.

• We derive the upper bound using symmetric polynomials, as one could see from

Lemma 4.3.3 and Lemma 4.3.6. An implicit assumption on using symmetric

polynomials is that the terms in V commute with each other. Otherwise for

example if V contains terms that are proportional to λ1Xi and λ2Zi operating

on the same spin i, at high orders one may expect terms such as λ1λ2XiZi +

λ2λ1ZiXi, which is vanishing but the symmetric polynomial would include such

terms as λ1λ2 + λ2λ1 = 2λ1λ2, which is non-zero. This unawareness of non-

commutativity will cause the upper bound computed by the algorithm to be

less tight than the case shown in Section 4.5, where all terms in V commute.
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• Perhaps one of the areas where our algorithm could find direct application is

adiabatic quantum computation, where one often works with quantum systems

with simple, restricted forms of interaction but wishes to realize some effective

interactions Heff that are more complicated. A common idea is to construct

a Hamiltonian H̃ for which perturbation theory gives rise to Heff at the first

few orders. Then it becomes instrumental to have accurate estimation of how

large the higher order error terms are. In fact a seemingly minor improvement

in error estimation could lead to significant reduction in the resource required

for producing Heff using constructions of H̃, see for example [1]. Our algorithm

certainly will enable improvement on a broader class of constructions of H̃ for

adiabatic quantum computing than prior works by providing accurate error

estimates that are not available with simple techniques (such as those that lead

to Equation 4.18).

• The parallel nature of the update rules in cellular automata could facilitate

parallelism in the software implementation of our algorithms, which will further

speed up the computation. For example, with O(m) processors each storing the

information of one cell and its out going edges, the algorithm takes O(rh(r))

time. Here h(r) is the maximum number of 4-tuples stored in any cell or edge

during the algorithm.
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A. COMPENSATION FOR THE 4-LOCAL ERROR

TERMS IN PARALLEL 3- TO 2-BODY GADGET

Continuing the discussion in Section 2.5, here we deal with Θ(1) error terms that

arise in the 3rd and 4th order perturbative expansion when V in Eq. 2.52 is without

V3 and in so doing explain the construction of V̄ij in Eq. 2.59. From the previous

description of the 3rd and 4th order terms, for each pair of terms (i) and (j) where i

and j are integers between 1 and m, let

M1 = (κiAi + λiBi)(κjAj + λjBj) (A.1)

M2 = (κjAj + λjBj)(κiAi + λiBi) (A.2)

and then the Θ(1) error term arising from the 3rd and 4th order perturbative expansion

can be written as

1

(z −∆)2

[
1

z − 2∆
(M2

1 + M2
2) +

(
1

∆
+

1

z − 2∆

)
(M1M2 + M2M1)

]
. (A.3)

Based on the number of non-commuting pairs among Ai, Aj, Bi and Bj, all possible

cases can be enumerated as the following:

case 0: [Ai,Aj] = 0, [Bi,Bj] = 0, [Ai,Bj] = 0, [Bi,Aj] = 0

case 1: 1.1 : [Ai,Aj] = 0, [Bi,Bj] = 0, [Aj,Bi] 6= 0

1.2 : [Ai,Aj] = 0, [Bi,Bj] = 0, [Ai,Bj] 6= 0

1.3 : [Ai,Aj] = 0, [Bi,Bj] 6= 0

1.4 : [Ai,Aj] 6= 0, [Bi,Bj] = 0

case 2: [Ai,Aj] 6= 0, [Bi,Bj] 6= 0. (A.4)

In case 0, clearly M1 = M2. Then the Θ(1) error becomes

1

(z −∆)2

(
1

∆
+

2

z − 2∆

)
· 2M2

1 = Θ(∆−1)
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which does not need any compensation. In case 1, for example in the subcase 1.1, Aj

does not commute with Bi. Then M1 and M2 can be written as

M1 = K + κjλiBiAj (A.5)

M2 = K + κjλiAjBi (A.6)

where K contains the rest of the terms in M1 and M2. Furthermore,

M2
1 + M2

2 = 2K2 − 2(κjλi)
2I (A.7)

M1M2 + M2M1 = 2K2 + 2(κjλi)
2I. (A.8)

Hence the Θ(1) term in this case becomes

1

(z −∆)2

[(
1

∆
+

2

z − 2∆

)
2K2 +

1

∆
· 2(κjλi)

2I

]
(A.9)

where the first term is Θ(∆−1) and the second term is Θ(1), which needs to be

compensated. Similar calculations for cases 1.2, 1.3 and 1.4 will yield Θ(1) error with

the same norm. In case 2, define R = κiλjAiBj + λiκjBiAj and T = κiκjAiAi +

λiλjBiBi. Then

M2
1 + M2

2 = 2(R2 + T2) (A.10)

M1M2 + M2M1 = 2(R2 −T2). (A.11)

The Θ(1) error terms in the 3rd and 4th order perturbative expansion becomes

1

(z −∆)2

[(
1

∆
+

2

z − 2∆

)
· 2R2 − 1

∆
· 2T2

]
(A.12)

where the first term is Θ(∆−1) and hence needs no compensation. The second term

is Θ(1). Define

s
(i,j)
0 =


1 if case 0

0 Otherwise

(A.13)
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With the definitions of s
(i,j)
1 and s

(i,j)
2 in Eq. 2.56, Eq. 2.57 and Eq. 2.58, the con-

tribution of the i-th and the j-th target terms to the Θ(1) error in the perturbative

expansion Σ−(z) becomes

s
(i,j)
0 · 1

(z −∆)2

(
1

∆
+

2

z − 2∆

)
· 2(κiAi + λiBi)

2(κjAj + λjBj)
2

+ s
(i,j)
1 · 1

(z −∆)2

[(
1

∆
+

2

z − 2∆

)
· 2K2

ij +
1

∆
· 2(κiκj)

2I

]

+ s
(i,j)
2 · 1

(z −∆)2

[(
1

∆
+

2

z − 2∆

)
· 2R2

ij +
1

∆
· 2{[(κiκj)2 + (λiλj)

2]I

−2κiκjλiλjAiAjBiBj}
]
.

(A.14)

The term proportional to s
(i,j)
0 in Eq. A.14 does not need compensation since it is

already Θ(∆−1). The term proportional to s
(i,j)
1 can be compensated by the corre-

sponding term in V̄ij in Eq. 2.59 that is proportional to s
(i,j)
1 . Similarly, the Θ(1)

error term proportional to s
(i,j)
2 can be compensated by the term in V̄ij in Eq. 2.59

that is proportional to s
(i,j)
2 .

Now we deal with generating the 4-local term in V̄ij. Introduce an ancilla uij and

construct a gadget H̃ij = Hij + Vij such that Hij = ∆|1〉〈1|uij and the perturbation

Vij becomes

Vij = (κiAi + λjBj)⊗Xuij + (κjAj + λiBi)⊗ |1〉〈1|uij + V′ij (A.15)

where V′ij is defined as

V′ij =
1

∆
(κiAi + λjBj)

2 +
1

∆3

[
(κ2

j + λ2
i )(κiAi + λjBj)

2 − 2κjλi(κ
2
j + λ2

j)AjBi

]
(A.16)

The self-energy expansion Σ−(z) is now

Σ−(z) =
1

(z −∆)3
4κiκjλiλjAiAjBiBj +O(∆−1/2)

which is O(∆−1/2) close to the 4-local compensation term in V̄ij. We apply the the

gadget H̃ij for every pair of qubits with s
(i,j)
2 = 1. The cross-gadget contribution be-

tween the H̃ij gadgets as well as those cross-gadget contribution between H̃ij gadgets
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and gadgets based on ancilla qubits u1 through um both belong to the case 1 of the

Eq. A.4 and hence are easy to deal with using 2-body terms.
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B. UPPER BOUNDS ON LOW-ORDER PERTURBATION

SERIES TERMS FOR 2-BODY GADGETS

In this Appendix, for the purpose of illustration we calculate upper bounds on the

norm of the first few orders in the perturbation series for the self-energy for our 2-

body gadget construction from Section 3.3.2.

The 2nd order. This order is what contributes to the effective Hamiltonian, which has

M terms of norm O(1) there. Let us see what we get here. From (3.48) we see that

T2 = 1
z−∆

∑M
j=1Rβ

2
j (Aaj − Bbj)

2. Every term at the second order corresponds to a

transition of the form

L− → |y〉 → L−. (B.1)

Here |y〉 is a state where only one direct ancilla qubit w is flipped to |1〉 while the

others remain at |0〉. From our construction of V in (3.13), observe that each term that

involves a particular direct ancilla w
(j)
i is associated with a corresponding coefficient

βj. Therefore all the transitions of the form (B.1) involving w
(j)
i would contribute a

term of the form

βj(Aaj −Bbj)︸ ︷︷ ︸
V−+

· 1

z −∆︸ ︷︷ ︸
G+

· βj(Aaj −Bbj)︸ ︷︷ ︸
V+−

(B.2)

to the perturbative expansion Σ−(z). Note that because the Hamming weight of y is

h(y) = 1, the resolvent component G+ contributes a factor 1
z−h(y)∆

= 1
z−∆

. Since R

direct ancillas are introduced for the target 2-local term involving aj and bj, the total

contribution of the direct ancillas used for generating the j-th target term would be

multiplied by a factor of R. Summing over all the target terms from j = 1 to M , we

get the current form of T2. Assuming Aaj and Bbj are both unit-norm operators,

‖T2‖ ≤
1

∆
·MR(2βmax)2 = 2Mγmax, (B.3)
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using the choice βi =
√

γi∆
2R

. This is just what we expected (because the norm of

what we are generating should be something on the order of M).

The 4th order. Transitions at the 4th order could involve one or two direct ancillas1.

In the former case the transition would take the form of

L− → |y〉 → |y〉 → |y〉 → L− (B.4)

where y is a string of Hamming weight 1. Such processes all contribute 0 to the

perturbative expansion since ‖Helse‖ = 0. Now we consider processes that involve

two different direct ancillas wa and wb. There are two possibilities:

↑a↑b↓a↓b, ↑a↑b↓b↓a (B.5)

where ↑a means flipping wa from |0〉 to |1〉 and ↓a from |1〉 to |0〉. Similar for wb.

From N = MR direct ancillas, there are in total N(N − 1) ways to choose wa and

wb. For a fixed choice of wa and wb, each of the possible transitions listed above gives

rise to at most (2βmax)4 from the 4 flipping processes (from the above discussion on

(B.2) each flipping process contributes a factor of 2βj ≤ 2βmax in ‖Tk‖). The G+

terms contribute an overall factor of 1
z−∆
· 1
z−2∆

· 1
z−∆

to the perturbative expansion.

In particular the factor 2 in the component 1
z−2∆

is due to the fact that after the

second flipping process the state has two ancillas flipped to 1, resulting in a state |y′〉
with h(y′) = 2. Combining these arguments, we have

‖T4‖ ≤ 2N(N − 1) · (2βmax)4 · 1

∆ · (2∆) ·∆ =
N(N − 1)(2βmax)4

∆3

≤
(
N(2βmax)2

∆

)2
1

∆
= 2Mγmax ·

(
2Mγmax

∆

)
.

(B.6)

Note that compared with the 2nd order term, we collect a factor of 2Mγmax/∆ in the

upper bound for ‖T4‖.

1See also [1] for a detailed explanation.
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6th order. Following the same notation as before, at 6th order the following tran-

sitions contribute non-trivially to ‖T6‖:

↑a↑b↑c (↓)3, ↑a↑b↓a↑c (↓)2. (B.7)

The former type of transitions has N(N − 1)(N − 2) · 6 different ways of occuring

and the G+ terms contribute a factor of 1
z−∆
· 1
z−2∆

· 1
z−3∆

· 1
z−2∆

· 1
z−∆

. The latter has

N(N−1)·2·(N−1)·2 different ways of occuring and a factor 1
z−∆
· 1
z−2∆
· 1
z−∆
· 1
z−2∆
· 1
z−∆

from the G+ components. Both types involve 6 flipping processes, which amounts to

a factor of (2βmax)6. Hence

‖T6‖ = 6N(N − 1)(N − 2)(2βmax)6 1

∆2(2∆)2(3∆)
(B.8)

+ 4N(N − 1)(N − 1)(2βmax)6 1

∆3(2∆)2
(B.9)

≤ 3

2

(
N(2βmax)2

∆

)3
1

∆2
= 3Mγmax

(
2Mγmax

∆

)2

. (B.10)

Note that another 2Mγmax/∆ factor is collected at the 6th order compared with the

4th. Given our choice that ∆ = M3Rd, it is clear that 2Mγmax/∆ = O(M−2R−d). It

is reasonable to speculate that ‖T2m‖ = O(M−2mR−dm) converges exponentially as

m→∞, which implies that the series
∑∞

m=2 ‖T2m‖ converges.
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C. GLOSSARY OF NOTATIONS FOR CHAPTER 4

As a general guideline, throughout Chapter 4 we use lower case Greek letters for scalar

quantities, lower case bold English letters for representing vectors and capital case

English letters for representing matrices and operators. Calligraphic fonts (such as H
for the letter ‘H’) are reserved for representing vector spaces and sets of vertices (as

in E). For a vector v, the subscript in the notation vi represents the i-th element of v.

Superscripts in parentheses have two possible meanings: depending on the context,

they could mean either the subsystem that the operator acts on (as in Figure 1a of

the main text) or the step in a walk. Tables C.1 and C.2 contain the main recurring

notations introduced in Chapter 4.

Table C.1: Table of notations (English alphabet) that

have recurring appearances in Chapter 4.

Symbol Meaning and first appearance

a
Partition of a symmetric polynomial ma, see Definition 4.2.1

in Section 4.2.4

b
Reduced partition of a monomial symmetric polynomial. See

Definition 4.2.2.

B Hilbert space for the “bath” in the basic setting in Figure 1a

of the main text.

B
(i)
pq,jk

The pq-th block of O
(i)
jk (Eq. 4.21). It contributes a term

B
(i)
pq,jk ⊗ |ψ

(i)
j,p〉〈ψ(i)

k,q| to V. See Eq. 4.25.
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c, c(|ψ〉) Energy configuration of an eigenstate |ψ〉 of H. See Def. 4.3.4.

c̃, c̃(c)
Reduced energy configuration of a set of H eigenstates with

energy configuration c. See Def. 4.3.9.

ĉ(n)
Uniquely reduced configuration associated with an energy

combination n. See Def. 4.4.1.

E
(j)
i

The i-th energy level of the subsystem H(j) (Fig. 2b of the

main text). Also written as Ei.

E(i) The energy of the i-th step during a walk in H eigenstates, c,

c̃ or n. See Def. 4.3.6.

E(n) The energy of an energy combination n. See Equation 4.26.

G(z)
Operator-valued resolvent, or Green’s function. See Section

4.2.1 after Equation 4.8.

G(V , E)
The graph generated by Algorithm 2. V and E are the sets of

nodes and edges respectively.

H(i) Hilbert space of the i-th subsystem, see text after Equation

4.9.

H
Unperturbed Hamiltonian for all subsystems (Figure 1a of the

main text)

H(i) The Hamiltonian for the i-th unperturbed subsystem. See

Equation 4.11.

HB The part of H̃ that only acts on B. See Equation 4.8.

H̃
Perturbed Hamiltonian that equals to H + V. See Section

4.2.1 after Equation 4.8.
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`
Total number of energy levels in each subsystem H(i). See

Section 4.2.1 after Equation 4.8.

L−, L+

Low- and high- energy subspaces of H. See Section 4.2.1 after

Equation 4.8.

L(i)
− , L(i)

+ The low- and high- energy subspace of H(i).

m
Total number of subsystems. See Figure 1a of the main text

and Equation 4.11.

mb(x)
Symmetric polynomial over variables x ∈ Cn with reduced

partition b. See Section 4.2.4.

M, Mjk
Basic quantity for constructing an upper bound to ‖Tr‖2. See

Definition 4.3.3.

N−, N+
The set of energy combinations that corresponds to L− and

L+ respectively. See after Eq. 4.26.

n, n(c), n(c̃)
Energy combination an H eigenstate with energy configura-

tion c. Same for n(c̃). See Def. 4.3.5.

O
(i)
jk

The jk-th block of the perturbation V(i) corresponding to

transition from P(i)
j to P(i)

k , see Eq. 4.12

P(j)
i

The i-th subspace of the j-th subsystem H(j). Sometimes also

written as Pi if context permits.

P
(j)
i Projector onto P(j)

i . Defined in Equation 4.10.

P(c)
Projector onto the subspace of each subsystem as described

by energy configuration c. See Eq. 4.26.
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Sn, Sn,n′ Set of 4-tuples stored in the node vn or edge e(vn, vn′) in

G(V , E) generated in Alg. 2. See Sec. 4.4.2.

Tr
The r-th order term in the self energy expansion Σ−(z). See

Equations 4.15 and 4.17.

V(i) Perturbation that acts on the Hilbert space H(i) ⊗ B. See

Figure 1a of the main text and Eq. 4.11.

V Total perturbation HB + V(1) + ...+ V(m), see Equation 4.11

z
Expansion parameter for perturbation series. See Section

4.2.1 after Equation 4.8.
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Table C.2
Table of notations (Greek alphabet) that have recurring appearances in
Chapter 4.

Symbol Meaning and first appearance

∆
The spectral gap between the ground and the first excited

state of H. See Section 4.2.1 opening.

λ, λi
Basic quantity for constructing an upper bound to ‖Tr‖2. See

Definition 4.3.2.

Π−, Π+

Projectors onto L− and L+ respectively. See text before Equa-

tion 4.13 and also Equation 4.27.

|ψ(i)
j,p〉 The p-th degenerate eigenvector of P(i)

j . See Equation 4.10.

ω
Basic quantity for constructing an upper bound to ‖Tr‖2. See

Definition 4.3.1.
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D. EFFICIENT ALGORITHM FOR COMPUTING

MONOMIAL SYMMETRIC POLYNOMIALS

We start with a property of monomial symmetric polynomials that is instrumental to

our algorithm design. Although the proof is rather elementary, we state it in order

to facilitate further discussions.

Lemma D.0.1 Consider monomial symmetric polynomial mb : Rn 7→ R with b ∈ Nk

as its reduced partition (cf. Definition 4.2.2). Let x = (x1, x2, · · · , xn). Then for any

positive integer s

mb(x)m(s)(x) =


m(s,b)(x) +

k∑
t=1

mb′t
(x) k < n

k∑
t=1

mb′t
(x) k = n

(D.1)

where b′t = (b1, b2, · · · , bt+s, · · · , bk) and (s,b) denotes a new (k+1)-dimensional re-

duced partition vector with the element 1 concatenated to the original reduced partition

b.

Proof For every t ∈ [n], we could always rewrite mb as

mb(x) =
∑

π x
b1
π(1)x

b2
π(2) · · ·x

bk
π(k)

=
∑k

i=1 x
bi
t

∑
π

(i)
t
xb1
π

(i)
t (1)
· · ·xbi−1

π
(i)
t (i−1)

x
bi+1

π
(i)
t (i+1)

· · ·xbk
π

(i)
t (k)

≡ f(t).

(D.2)

Here π : [n] 7→ [k] takes k distinct elements from [n] and arranges them. π
(i)
t :

[n]\{t} 7→ [k]\{i} chooses (k − 1) elements from [n]\{t} and permutes them. Since
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the f(t) defined in Equation (D.2) satisfies f(t) = mb(x) for all t ∈ [n], the product

mb(x)m(s)(x) becomes

mb(x)m(s)(x) =
n∑
t=1

xstf(t) =
n∑
t=1

k∑
i=1

xbi+st

∑
π

(i)
t

xb1
π

(i)
t (1)
· · ·xbi−1

π
(i)
t (i−1)

x
bi+1

π
(i)
t (i+1)

· · · xbk
π

(i)
t (k)

.

(D.3)

If k = n, using Equation (D.2), Equation (D.3) becomes

k∑
t=1

mb′j
(x) (D.4)

where b′j is defined in the statement of the Lemma. When k < n, f(t) contains terms

where xt does not appear and hence the expression Equation (D.3) becomes

m(s,b)(x) +
k∑
t=1

mb′j
(x), (D.5)

where the additional term m(s,b)(x) accounts for terms that are linear in xt in xtf(t).

Lemma D.0.1 suggests that we could compute anymb(x) with b = (b1, b2, · · · , bk) ∈
Nk and x ∈ Nn recursively as follows:

mb(x) = m(b1,b2,··· ,bk−1)m(bk) −
k−1∑
i=1

m(b1,··· ,bi+bk,··· ,bk−1). (D.6)

Here m(bk) is a power sum that takes O(n) time to compute. With each recursion

the symmetric polynomials on the right hand side have partitions whose lengths that

are shorter than |b| by 1. The first iteration generates k − 1 terms, each of which

generates k− 2 terms in the next iteration etc, until we fully express mb(x) in terms

of power sums i.e. monomial symmetric polynomials with length of partition being

equal to 1. The final expression of mb(x) will consist of O(k!) terms involving power

sums. Hence the total cost of evaluating mb(x) using the method inspired by Lemma

D.0.1 costs Õ(k!n). For constant degree polynomials this is O(n) cost, as opposed to

O(nk) in case one evaluates the terms in mb(x) term by term.
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E. AN EXAMPLE FOR ILLUSTRATING WALKS IN

UNPERTURBED EIGENSPACES

Consider the setting described in Figure E.1 with m = 2 and ` = 2. This means that

there are in total 2 copies of identical unperturbed systems. Let H1 and H2 be their

respective Hilbert spaces. ` = 2 means that each of the unperturbed systems are

3-level systems with energy levels E
(1)
0 , E

(1)
1 and E

(1)
2 for system 1 and similarly for

system 2, with the superscript ‘(1)’ replaced with ‘(2)’. We assume the subspace P1

for both unperturbed systems is 2-fold degenerate with eigenstates |ψ1,1〉 and |ψ1,2〉, as

shown in Figure E.1b. Under the basis of the unperturbed eigenstates with ordering

|ψ0,1〉, |ψ1,1〉, |ψ1,2〉, |ψ2,1〉, the unperturbed Hamiltonian for each subsystems H(1)

and H(2) can be written as

H(1) =



E
(1)
0

E
(1)
1

E
(1)
1

E
(1)
2


⊗ IH2 , (E.1)

H(2) = IH1 ⊗



E
(2)
0

E
(2)
1

E
(2)
1

E
(2)
2


(E.2)
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where I is the identity operator of appropriate dimension. We assume that there is

a (large) gap ∆ between E0 and E1 of each subsystem and E∗ = E0+E1

2
is the cutoff.

Let the low energy subspace L− = P(1)
0 ⊗ P(2)

0 . This is illustrated in Figure E.1a.

We let the components V(1) and V(2) of the perturbation V = V(1) +V(2) be such

that

V(1) = B
(1)
11,01 ⊗ (|ψ(1)

0,1〉〈ψ(1)
1,1|+ |ψ(1)

1,1〉〈ψ(1)
0,1|)

+ B
(1)
12,01 ⊗ (|ψ(1)

0,1〉〈ψ(1)
1,2|+ |ψ(1)

1,2〉〈ψ(1)
0,1|)

+ B
(1)
11,12 ⊗ (|ψ(1)

1,1〉〈ψ(1)
2,1|+ |ψ(1)

2,1〉〈ψ(1)
1,1|)

+ B
(1)
21,12 ⊗ (|ψ(1)

1,2〉〈ψ(1)
2,1|+ |ψ(1)

2,1〉〈ψ(1)
1,2|)

(E.3)

and V(2) is the same as V(1) but with all superscripts replaced with ‘(2)’. In matrix

forms,

V(1) =



B
(1)
11,01 B

(1)
12,01

B
(1)
11,10 B

(1)
11,12

B
(1)
21,10 B

(1)
21,12

B
(1)
11,21 B

(1)
12,21


⊗ I, (E.4)

V(2) = I⊗



B
(2)
11,01 B

(2)
12,01

B
(2)
11,10 B

(2)
11,12

B
(2)
21,10 B

(2)
21,12

B
(2)
11,21 B

(2)
12,21


. (E.5)
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As shown in Figure E.1b, we can represent the component of V(i) acting on Hi

as a graph with the operator B
(i)
mn,jk as the “weight” of the edge that corresponds to

the transition |ψ(i)
j,m〉〈ψ(i)

k,n|. The factors λi in this case are

λ1 = max{‖B(1)
11,01‖∞, ‖B(1)

12,01‖∞, ‖B(1)
11,12‖∞, ‖B(1)

21,12‖∞},

λ2 = max{‖B(2)
11,01‖∞, ‖B(2)

12,01‖∞, ‖B(2)
11,12‖∞, ‖B(2)

21,12‖∞}.
(E.6)

From the diagram we could see that to excite the eigenstate |ψ0,1〉 of P0 into P1, there

are in total 2 ways: |ψ0,1〉 → |ψ1,1〉 and |ψ0,1〉 → |ψ1,2〉. Hence M01 = 2. Following a

similar line of argument we can see that M10 = 1, M12 = 1, and M21 = 2. Because

we assume that V is block tridiagonalizable with respect to any subsystem i, there

will not be any transition from P0 to P2.

The projections of V+ then can be determined by taking the subgraphs in Figure

E.1b on the eigenstates that belong to L+:

V+ = B
(1)
11,12 ⊗ (|ψ(1)

1,1〉〈ψ(1)
2,1|+ |ψ(1)

2,1〉〈ψ(1)
0,1|)

+ B
(1)
21,12 ⊗ (|ψ(1)

1,2〉〈ψ(1)
2,1|+ |ψ(1)

2,1〉〈ψ(1)
1,2|)

+ B
(2)
11,12 ⊗ (|ψ(2)

1,1〉〈ψ(2)
2,1|+ |ψ(2)

2,1〉〈ψ(2)
0,1|)

+ B
(2)
21,12 ⊗ (|ψ(2)

1,2〉〈ψ(2)
2,1|+ |ψ(2)

2,1〉〈ψ(2)
1,2|).

(E.7)

The projections V−+ (resp. V+−) are respectively cuts of edges that go from L−
to L+ (resp. L+ to L−):

V−+ = B
(1)
11,01 ⊗ |ψ(1)

0,1〉〈ψ(1)
1,1|+ B

(1)
12,01 ⊗ |ψ(1)

0,1〉〈ψ(1)
1,2|

+ B
(2)
11,01 ⊗ |ψ(2)

0,1〉〈ψ(2)
1,1|+ B

(2)
12,01 ⊗ |ψ(2)

0,1〉〈ψ(2)
1,2|

V+− = B
(1)
11,10 ⊗ |ψ(1)

1,1〉〈ψ(1)
0,1|+ B

(1)
21,10 ⊗ |ψ(1)

0,1〉〈ψ(1)
1,2|

+ B
(2)
11,10 ⊗ |ψ(2)

0,1〉〈ψ(2)
1,1|+ B

(2)
21,10 ⊗ |ψ(2)

0,1〉〈ψ(2)
1,2|.

(E.8)
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The operator valued resolvent G+(z) = (zI−H)−1 could then be written as

G+(z) =
1

z − E1

(|ψ(1)
1,1〉〈ψ(1)

1,1|+ |ψ(1)
1,2〉〈ψ(1)

1,2|)⊗ |ψ(2)
0,1〉〈ψ(2)

0,1|

+
1

z − E1

|ψ(1)
0,1〉〈ψ(1)

0,1| ⊗ (|ψ(2)
1,1〉〈ψ(2)

1,1|+ |ψ(2)
1,2〉〈ψ(2)

1,2|)

+
1

z − 2E1

(|ψ(1)
1,1〉〈ψ(1)

1,1|+ |ψ(1)
1,2〉〈ψ(1)

1,2|)⊗ (|ψ(2)
1,1〉〈ψ(2)

1,1|+ |ψ(2)
1,2〉〈ψ(2)

1,2|)

+
1

z − E2

(|ψ(1)
2,1〉〈ψ(1)

2,1| ⊗ |ψ(2)
0,1〉〈ψ(2)

0,1|+ |ψ(1)
0,1〉〈ψ(1)

0,1| ⊗ |ψ(2)
2,1〉〈ψ(2)

2,1|)
(E.9)

In our projector notations, we could rewrite G+ as

G+(z) =
1

z − E1

(P
(1)
1 ⊗P

(2)
0 + P

(1)
0 ⊗P

(2)
1 ) +

1

z − 2E1

P
(1)
1 ⊗P

(2)
1

+
1

z − 2E1

(P
(1)
2 ⊗P

(2)
0 + P

(1)
0 ⊗P

(2)
2 )

=
1

z − E1

(P([1, 0]) + P([0, 1])) +
1

z − 2E1

P([1, 1])

+
1

z − E2

(P([2, 0]) + P([0, 2])).

(E.10)

With definitions in eqs. (E.7) to (E.9) we could express any r-th order term Tr =

V−+(G+V+)r−2G+V+− as a sum of terms involving B
(i)
mn,jk operators. For example,

T2 = V−+G+V+− =
1

z − E1

(
B

(1)
11,01B

(1)
11,10 + B

(1)
12,01B

(1)
21,10

+ B
(2)
11,01B

(2)
11,10 + B

(2)
12,01B

(2)
21,10

)
⊗Π−.

(E.11)

Note in (E.11) that there are in total four terms, two for each subsystem. The fact

that there are two terms for each subsystem is due to the fact that for each subsystem

there are at most two ways to transform, through perturbation V , an eigenstate (of

H) in P0 to one in P1 (Figure E.1b). In other words, M01 = 2. For an eigenstate in

P1, there are at most one way to be transformed into P0 or P2 (or in other words,
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M10 = 1 and M12 = 1). Applying the definitions of λi, we have an upper bound to

the ∞-norm of T2 as

‖T2‖∞ = ‖V−+G+V+−‖∞ ≤
1

z − E1

2(λ2
1 + λ2

2) =
1

z − E1

M01M10m(2). (E.12)

The upper bound in the above equation can be interpreted diagrammatically as

in Figure E.2. The diagram shows how the upper bound to the ∞-norm “evolve” as

we compute the upper bounds to ‖V−+‖∞, ‖V−+G+‖∞, and ‖V−+G+V+−‖∞:

‖V−+‖∞ ≤ 2(λ1 + λ2) = M01m(1)

‖V−+G+‖∞ ≤ 1

z − E1

· 2(λ1 + λ2) =
1

z − E1

M01m(1)

(E.13)

and an upper bound to ‖T2‖∞ is computed in (E.12).
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E
(1)
0

E
(1)
1

E
(1)
2

E
(2)
0

E
(2)
1

E
(2)
2

∆
E∗

L−

L+

H(1) H(2)

B

V (1) V (2)

amssymb

(a)amssymb

|ψ(1)
0,1〉

|ψ(1)
1,1〉 |ψ(1)

1,2〉

|ψ(1)
2,1〉

B
(1)
12,01B

(1)
11,01

B
(1)
11,12 B

(1)
21,12

P(1)
2

P(1)
1

P(1)
0

|ψ(2)
0,1〉

|ψ(2)
1,1〉 |ψ(2)

1,2〉

|ψ(2)
2,1〉

B
(2)
12,01B

(2)
11,01

B
(2)
11,12 B

(2)
21,12

P(2)
2

P(2)
1

P(2)
0

H(1) H(2)

L−

L+

(b)

Fig. E.1. An example for illustrating the setting of perturbation theory
that is concerned in this work.
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amssymb amssymb amssymb

L−

L+

E1

b

b

V−+ G+

b
m(1)M01

m(1)M01

z−E1

V+−

bE0

E2

m(2)M01M10

z−E1
s

Fig. E.2. Diagram illustrating the virtual transitions associated with T2.
Here each horizontal line represents an (unperturbed) energy level. Each
vertical line represents an operator in Tr (here we show the diagram for
r = 2). Each edge is associated both horizontally with an energy level and
vertically with the operator corresponding to the vertical line that the edge
crosses. Each node is associated with an upper bound to ‖Qe1Qe2 · · ·Qek‖∞
with e1, · · · , ek forming a path from the starting node s to the current node
and Qe being the operator associated with edge e.
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F. AN EXAMPLE FOR ILLUSTRATING WALKS IN

REDUCED CONFIGURATIONS

Lemma 4.3.3 has established the basic idea that Tr is essentially a sum of operator

products associated with specific types of walks in the space of energy configuration c.

For each particular walk, we could bound the ∞-norm of its corresponding operator

product using a product of scalar quantities λi, Mjk introduced in Definition 4.3.2

and 4.3.3 and 1
z−E where E is taken from the set described in Equation (4.9). For

a setting with m unperturbed subsystems, Tr is a summation of contributions from

O(mr) walks. For example in Tr = V−+(G+V+)r−2G+V+− for any r, the first

factor V−+ corresponds to the first step in the walk that departs from L− into L+.

To accomplish such departure one could excite any of the m subsystems to raise the

total energy into the high energy subspace L+, which gives a sum

λ1M01 + · · ·+ λmM01 (F.1)

as shown in Equation (E.13). Each term in the sum corresponds to a distinct walk.

If we consider the lowest order term T2, which sums over contributions from 2-step

walks that first enters L+ and immediately return to L−, each walk that contributes

to T2 must first excite a subsystem and subsequently de-excite it so that the total

state returns to L−. Hence an upper bound to ‖T2‖∞ can be computed as

1

z − E1

[(λ1M01)(λ1M10) + (λ2M01)(λ2M10) + · · ·+ (λmM01)(λmM10)] (F.2)

where E1 is the first energy level above the cutoff λ∗. Expression F.2 is identical to

the right hand side of Equation E.12 in the Appendix E, where a far more detailed

derivation is presented. Expression F.2 is written in a way that highlights the struc-

ture of a summation over contributions from 2-step walks. The term in each pair of

parenthesis (·) corresponds to the factor contributed from a single step. For general
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Tr we have O(rm) products of such (·) terms to sum over, which could quickly be-

come computationally infeasible for large systems. Using symmetric polynomials to

represent the summation, as can be seen in Equations E.12 and E.13, alleviates this

concern by turning the problem of managing expressions such as Equations F.1 and

F.2 into the problem managing the reduced partitions (Definition 4.2.2) of symmetric

polynomials. The process of summing over walks in c hence becomes summing over

walks in the space of reduced configurations c̃.

We now consider 4-th order perturbation theory i.e. r = 4. Figure F.1 illustrates

the process of finding an upper bound to ‖T4‖∞ according to Lemma 4.3.6. There

are in total 3 distinct walks in c̃ and indeed the upper bound of ‖Tr‖∞, denoted as 4
in Figure F.1, consists of 3 terms of symmetric polynomials with distinct partitions.

Each step of the walk is driven by an operator in Tr. Each node that the walk passes

through corresponds to both a specific energy configuration and a particular position

in the walk. Each node is also associated with a scalar number that serves as an

upper bound to the ∞-norm of the product of operators so far.

An analogous diagram for T2 is shown in Figure E.2 in Appendix E. The upper

bounds associated with the nodes passed through by the walk undergo a certain kind

of “evolution” as the walk progresses, as can be observed both Figures E.2 and F.1.

Informally the “evolution” can be described as the following: we start from an upper

bound for ‖V−+‖∞. By modifying the upper bound according to some fixed rules,

we arrive at an upper bound for ‖V−+G+‖∞. Then by further modifying the upper

bound for ‖V−+G+‖∞ we get an upper bound for ‖V−+G+V+‖∞ etc.

The goal of the algorithms presented in the Sections 4.4.1 and 4.4.2 is to efficiently

automate this “evolution” of walks using cellular automaton as the basic data struc-

ture. In the context of Algorithm 4, each horizontal line in Figure F.1 corresponds

to a cell (or a node) of the graph G(V , E) generated by BuildCA in Algorithm 2

and each vertical column of nodes corresponds to a snapshot of the cell states at a

given repetition of cell updates during step 2i of PerturbBound in Algorithm 4.

An upper bound for ‖Tr‖∞ is computed by evolving the cellular automaton r times
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in total (r − 1) times during step 2i and once during step 2k). Each path in Figure

F.1 corresponds to a walks in c̃, which by Theorem 4.4.1, also corresponds to a trace

of the algorithm.

Another observation concerns the property of monomial symmetric polynomials.

Note first that mb(λ) contains terms that have one-one correspondence with walks

that consists of b1 transitions on one subsystem, b2 transitions on another system, b3

transitions on another system etc. For example, if we have m = 3 subsystems, then

λ = (λ1, λ2, λ3) and the symmetric polynomial m(1,3)(λ) = λ1λ
3
2+λ1λ

3
3+λ2λ

3
1+λ2λ

3
3+

λ3λ
3
1 +λ3λ

3
2 represents a collection of 4-step walks (because the sum of elements in the

reduced partition is 4). Each term in m(1,3)(λ) corresponds to a type of 4-step walk.

If we consider 5-step walks that are continuation of 4-step walks included in m(1,3)(λ),

naturally we could choose any subsystem to act on for the 5-th step. An algebraic

way of describing this freedom of choice is to use the sum λ1 + λ2 + λ3 = m(1)(λ).

Hence the collection of 5-step walks with the first 4 steps being any walk contained

m(1,3)(λ) can be represented as [178, Lemma 1]

m(1,3)(λ)m(1)(λ) = m(2,3)(λ) +m(1,4)(λ) +m(1,1,3)(λ). (F.3)

The above equation shows an example of generating terms for (t + 1)-step walks

from terms for t-step walks. As can be noticed from Figure F.1, such “generation”

mechanism of high-order symmetric polynomials from lower-order ones as exemplified

in Equation F.3 plays an important role in the “evolution” of upper bounds mentioned

in the previous paragraph.

If one runs PerturbBound(4,λ,M) as described in Algorithm 4 with the initial

assignment of cell state being n− = n0 and n+ = (m − 1, 1, 0, · · · , 0) during step 2a

through 2g, the returned value τ4,n− at step 2l should be the total value of the list of

4-tuples shown in Table F.1, which is

τ4,n− =
∑

T =(c̃,b,ξ,µ)∈Sn0

mb(λ) =
M01M10ω

2

(z − E1)3
m(2) +

2M2
01M

2
10

(z − E1)2(z − 2E1)
m(2,2)

+
M01M12M21M10

(z − E1)2(z − E2)
m(4) = (4)

(F.4)
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L−

L+

E1

2E1

E2

b

b

V−+ G+

bm(1)M01

m(1)M01

z−E1

b

b

b

m(2)M01M12

z−E1

V+

b
m(1)M01ω

z−E1

b

b

G+ V+

m(2)M01M12

(z−E1)(z−E2)

(∗) = m(1,1)M
2
01

(z−E1)(z−2E1)

m(1)M01ω

(z−E1)2

b

b

b

G+

b

V+−
b

(∗)

(△)

(�)

1
z−E1

(�)

(�) =
m(1)M01ω

2

(z−E1)2
+

2m(1,2)M
2
01M10

(z−E1)(z−2E1)
+

m(3)M01M12M21
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Fig. F.1. An example of enumerating 4-step walks in c̃. Each path marked
with bold edges corresponds to a walk in c̃ with c̃(0) = c̃(4) = (0, · · · , 0).
Due to limited space we replace some of the longer expressions with symbols
(∗), (�) and (4) in the diagram and provide their full expressions below the

diagram. Here we assume that L(i)
− = P(i)

0 for any i. Each horizontal line
represents an energy level of the total unperturbed system H(1) ⊗ H(2) ⊗
· · · ⊗ H(m), or equivalently an energy combination n. Each vertical line
represents an operator in Tr. Each edge is associated both horizontally
with an energy level and vertically with the operator corresponding to the
vertical line that the edge crosses.

where by (4) we refer to Figure F.1. Equation F.4 is also one of the terms on the

right hand side of Equation 4.43 in Lemma 4.3.6 with c̃(0) = c̃(4) = (0, · · · , 0). See

Figure F.1.
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Table F.1
4-tuple list associated with the cell Sn0 , representing the the expression (4)
in Figure F.1, which is the final upper bound computed for ‖T4‖∞.

c̃ b ξ µ

(0) (2)
M01M10ω

2

(z − E1)3

c̃ = (0)

↓

b = (2)

(0,0) (2,2)
2M2

01M
2
10

(z − E1)2(z − 2E1)

c̃ = (0 0)

↓ ↓

b = (2 2)

(0) (4)
M01M12M21M10

(z − E1)2(z − E2)

c̃ = (0)

↓

b = (4)



VITA



261

VITA

Yudong Cao obtained his Bachelor of Science in mechanical engineering in spring

2011, simultaneously from Purdue University and Shanghai Jiaotong University due

to an exchange program between the two institutions. In spring 2013, he finished his

master’s degree, also in mechanical engineering at Purdue, with a thesis on quantum

algorithm for solving linear systems of equations. He joined the Computer Science

Department in Fall 2013. In spring 2015, obtained a second master’s degree, which

is in computer science. He defended his doctoral dissertation in August 2016. Imme-

diately after completing the program, he started working at Harvard University as a

postdoctoral researcher.


	Purdue University
	Purdue e-Pubs
	12-2016

	Combinatorial algorithms for perturbation theory and application on quantum computing
	Yudong Cao
	Recommended Citation


	LIST OF TABLES
	LIST OF FIGURES
	SYMBOLS
	ABBREVIATIONS
	NOMENCLATURE
	ABSTRACT
	Introduction
	Overview
	Quantum mechanics
	Perturbation theory
	Rayleigh-Schrödinger formalism
	Self-energy expansion

	Quantum computing
	Gate model
	Adiabatic model
	Measurement-based model

	Quantum simulation
	Molecular Hamiltonian
	Second quantization
	Mapping to many-body qubit systems

	Quantum Hamiltonian complexity
	Local Hamiltonian and QMA
	Perturbative gadgets

	Summary

	Improved perturbative gadgets
	Overview
	Improved subdivision gadget
	Parallel subdivision and k- to 3-body reduction
	Improved 3- to 2-body gadget
	Parallel 3- to 2-body gadget
	Creating 3-body gadget from local X terms
	Alternative construction for k- to 2-body reduction
	Numerical examples
	Error analysis
	Gap scaling
	Connection between Bloch formalism and self-energy

	YY gadget
	Conclusion

	Perturbative gadgets without strong interactions
	Overview
	Effective interactions based on perturbation theory
	A new gadget for 2-body interactions
	The 2-local construction satisfies the subspace condition.
	The perturbation series converges.

	Reducing k-body to 2-body interactions (k3)
	Conclusion

	Efficient algorithms for estimating perturbative error
	Overview
	Preliminaries
	Basic setting
	Perturbation theory
	Matrix product, walks on graphs and the infinity norm
	Symmetric polynomials
	Cellular automata

	Upper bounds for arbitrary order perturbation theory
	Structure of the perturbation
	Structure of terms at any order
	Walk in the space of unperturbed eigenstates
	Walking in the configuration space
	Introducing symmetry

	Efficient algorithm for computing upper bounds
	Constructing cellular automaton
	Cell update rules
	Algorithm for computing an upper bound at arbitrary order
	Dealing with infinity

	Bit-flip gadgets: an example
	An 11-spin gadget Hamiltonian
	Rigorous arguments for the tightness of our error bound

	Discussion and conclusion

	LIST OF REFERENCES
	Compensation for the 4-local error terms in parallel 3- to 2-body gadget
	Upper bounds on low-order perturbation series terms for 2-body gadgets
	Glossary of notations for Chapter 4
	Efficient algorithm for computing monomial symmetric polynomials
	An example for illustrating walks in unperturbed eigenspaces
	An example for illustrating walks in reduced configurations
	VITA
	Blank Page

