
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

12-2016

A framework for the statistical analysis of mass
spectrometry imaging experiments
Kyle Bemis
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Bioinformatics Commons, Computer Sciences Commons, and the Statistics and
Probability Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Bemis, Kyle, "A framework for the statistical analysis of mass spectrometry imaging experiments" (2016). Open Access Dissertations.
905.
https://docs.lib.purdue.edu/open_access_dissertations/905

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/905?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F905&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form
30 Updated 12/26/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

Kyle Dwayne Bemis

A FRAMEWORK FOR THE STATISTICAL ANALYSIS OF MASS SPECTROMETRY IMAGING EXPERIMENTS

Doctor of Philosophy

Olga Vitek
Co-chair

Hyonho Chun

 Co-chair

Hao Zhang

R. Graham Cooks

Hyonho Chun

Hao Zhang August 22, 2016

A FRAMEWORK FOR THE STATISTICAL ANALYSIS OF

MASS SPECTROMETRY IMAGING EXPERIMENTS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Kyle Bemis

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2016

Purdue University

West Lafayette, Indiana

ii

For my mother and father. For my brother, my sister-in-law, and my niece.

For my Native family and my trans sisters. May you have the strength to make your

dreams come true.

iii

ACKNOWLEDGMENTS

I would like to thank my PhD committee for their generosity, for giving me so

much of their valuable time and expert advice. I give a special thanks to my major

professor Dr. Olga Vitek, who has been incredible in every way a major professor can

be. I thank her for her patience and guidance in all aspects of academia, research,

and life. I couldn’t ask for a better PhD advisor. Thank you, Dr. Olga Vitek, Dr.

Hyonho Chun, Dr. Hao Zhang, Dr. Bowei Xi, and Dr. R. Graham Cooks.

I thank the collaborators with whom I’ve had the privilege to work at Purdue and

elsewhere. Thank you, Livia Eberlin, Christina Ferreira, and everyone else from Dr.

R. Graham Cook’s lab. You first introduced me to imaging mass spectrometry, helped

teach me when I was a clueless statistician, and helped me in so many other ways with

this research. Thank you, Stephanie Van de Ven, Uma Kota, Parag Mallick, Mark

Stolowitz, and everyone else from the Canary Center at Stanford. You re-invigorated

my interest in research in the wake of terrifying qualifying exams, made much of this

work possible, and helped me on the road to my first publication. A statistician is

nothing without her collaborators, and I greatly valued working with all of you. This

dissertation would not exist without you.

I thank Dr. Rebecca W. Doerge and Dr. Mary Ellen Bock for their friendship and

guidance, and for making Purdue Statistics the welcoming and diverse place that it

is today. I am eternally grateful to have such inspiring and strong role models in Dr.

Rebbeca W. Doerge, Dr. Mary Ellen Bock, and Dr. Olga Vitek.

I thank all of Dr. Olga Vitek’s research group for their help, support, and friend-

ship. Especially April Harry, who has been the most amazing research partner in the

world, and has contributed countless hours to the work that made this dissertation

possible. Thank you for supporting me through many crises I never thought I’d face.

I thank all of the other Purdue Statistics students who have been with me from the

iv

beginning. Thank you Meena Choi, Faye Zheng, Kelly-Ann Dixon Hamil, and many

others, for giving me a great time at Purdue Statistics.

I thank everyone from the Native American Educational and Cultural Center at

Purdue for giving me a family away from home, and supporting me through many

tough times. Thank you, Felica Ahasteen-Bryant and Debra Swihart for giving us a

place to call home on campus. Thank you Darryl Reano, Wai Allen, Janelle Cronin,

Kyle Dahlin, Jordan Oshiro, Rylan Chong, Mike King, Michelle Yatchmene↵, Patrick

Austin Freeland, Studie Red Corn, RaeLynn Butler, Emily Head, and the rest of my

Native family at Purdue. We had great times together, and you will all always have

a special place in my heart. Elahkwa.

Thank you, Ken Ridgeway, Kevin Gibson, and everyone else from the Sloan In-

digenous Graduate Partnership program at Purdue and elsewhere, especially those

from the Montana programs, who all welcomed me with open arms. Your support for

me and the rest of my Native family at Purdue throughout graduate school has been

priceless. I would like to give a special thanks to Ken Ridgeway for o↵ering so much

wisdom throughout many great discussions at Purdue, in Alaska and Yellowstone,

and on the road. Every field trip needs a Native geologist.

Finally, I thank my family. I thank my brother Kirk, my sister-in-law Esther, and

my niece Raina for their acceptance and support of me in all aspects of life. I thank

my father for giving me the wisdom and inspiration to begin this work. I thank my

mother for giving me the strength to perservere and complete it.

Thank you, all. Elahkwa.

v

TABLE OF CONTENTS

Page

LIST OF FIGURES . ix

ABBREVIATIONS . xiii

ABSTRACT . xiv

1 PROBLEM STATEMENT AND CONTRIBUTIONS 1

1.1 Statement of the Problem . 1

1.1.1 Statement of the Biotechnological Problem 1

1.1.2 Statement of the Statistical and Computational Problem . . 2

1.2 Statement of the Contributions . 3

1.2.1 Statistical Methods . 3

1.2.2 Open-source Software and Implementation 4

1.3 Outline . 7

2 BACKGROUND . 9

2.1 MS-based Imaging Experiments . 9

2.1.1 Introduction . 9

2.1.2 Overview of Spectral Processing Steps 10

2.1.3 Overview of Image Processing Steps 12

2.2 Review of Related Work . 13

2.2.1 Review of Existing Statistical Methods for Analysis of MS Imag-
ing Experiments . 13

2.2.2 Review of Existing Computational Algorithms for Analysis of
MS Imaging Experiments 14

2.2.3 Review of Existing Software for MS Imaging 15

3 SPATIAL SHRUNKEN CENTROIDS METHOD FOR MODEL-BASED
CLASSIFICATION AND SEGMENTATION OF MS IMAGES 16

3.1 Overview of Spatial Shrunken Centroids 16

vi

Page

3.2 Proposed Statistical Framework for Supervised Classification and Un-
supervised Segmentation of Mass Spectrometry Images 17

3.2.1 Characterization of Classes and Segments by their Shrunken
Centroids . 18

3.2.2 Selection of Informative Features 19

3.2.3 Spatially-aware (SA) and Spatially-aware Structurally-adaptive
(SASA) Distances . 20

3.2.4 Defining the SA and SASA Distances to the Shrunken Centroid
of a Class or Segment . 21

3.2.5 Assignment of Segment or Class Probabilities to Pixels . . . 22

3.2.6 Selection of Parameters . 23

3.3 Algorithm and Implementation . 24

3.3.1 Procedure for Spatial Shrunken Centroids Classification (Su-
pervised) . 24

3.3.2 Procedure for Spatial Shrunken Centroids Segmentaiton (Un-
supervised) . 25

4 EVALUATION AND DISCUSSION FOR SPATIAL SHRUNKEN CEN-
TROIDS . 28

4.1 Datasets for Evaluating Spatial Shrunken Centroids 28

4.1.1 Unsupervised Segmentation: Pig Fetus Cross-section 28

4.1.2 Unsupervised Segmentation: Cardinal Painting with Known
Segmentation . 29

4.1.3 Unsupervised Segmentation: Rodent Brain Images of Varying
Quality . 30

4.1.4 Supervised Segmentation: Human Renal Cell Carcinoma . . 31

4.2 Evaluation for Spatial Shrunken Centroids 34

4.2.1 Spatial Probabilistic Modeling Improves the Quality of Segmen-
tation over Per-Pixel Segmentation 34

4.2.2 Statistical Regularization Enables Data-Driven Selection of the
Number of Segments for Unsupervised Experiments 38

vii

Page

4.2.3 Feature Selection Aids Interpretation by Automatically Select-
ing Spectral Features Associated with Di↵erentiating Each Seg-
ment from Others . 41

4.2.4 Probabilistic Modeling Allows for Characterization and Visual
Inspection of Uncertainty in Segment Membership in Unsuper-
vised Experiments . 44

4.2.5 Classification in Supervised Experiments 46

4.3 Discussion of Spatial Shrunken Centroids 48

5 CARDINAL: OPEN-SOURCE SOFTWARE FORANALYSIS OFMS IMAG-
ING EXPERIMENTS . 50

5.1 Overview of Cardinal . 50

5.1.1 Applicability and Requirements 50

5.1.2 Data Import, Processing and Visualization 51

5.1.3 Functionalities for Statistical Analysis 51

5.1.4 Implementation and Performance 52

5.2 Design and Implementation of Cardinal 52

5.2.1 S4 Classes . 53

5.2.2 Visualization . 60

5.2.3 pixelApply and featureApply 62

5.2.4 Simulation of Test Datasets 64

5.3 Cardinal Examples . 71

5.3.1 Unsupervised Segmentation Workflow 71

5.3.2 Supervised Classification Workflow 78

6 MATTER: OPEN-SOURCE SOFTWARE FOR LARGE COMPLEX DATASETS
ON DISK . 84

6.1 Overview of matter . 84

6.1.1 Necessity of Scalability . 84

6.1.2 Applicability and Requirements 86

6.1.3 Functionalities for Statistical Analysis 86

6.1.4 Implementation and Performance 87

viii

Page

6.2 Design and Implementation of matter 88

6.2.1 S4 Classes . 89

6.2.2 C++ Classes . 91

6.3 matter Examples . 92

6.3.1 Example 1: Attaching and Working with On-disk Matrices . 92

6.3.2 Example 2: Linear Regression for On-disk Datasets 98

6.3.3 Example 3: Principal Components Analysis for On-disk Datasets 101

6.3.4 Example 4: 3D Mouse Pancreas MS Imaging Dataset 103

7 SUMMARY AND FUTURE RESEARCH 107

7.1 Conclusions about Spatial Shrunken Centroids 107

7.2 Conclusions about Cardinal . 108

7.3 Conclusions about matter . 108

7.4 General Conclusions . 109

VITA . 111

REFERENCES . 112

ix

LIST OF FIGURES

Figure Page

2.1 Spectral processing. A, signal smoothing, B, baseline reduction, and
C, peak picking, as implemented in Cardinal 11

2.2 Image processing. A, a raw molecular ion image. B, an ion image with
contrast enhancement. C, an ion image with contrast enhancement and
spatial smoothing. 13

4.1 Pig fetus cross-section: morphology and single ion images. A,
Optical image of H&E stained pig fetus cross-section showing its morphol-
ogy, including the brain (left), heart (center), and liver (dark region below
heart). B–C, Characteristic ion images for the pig fetus dataset at B,
888.67 m/z, showing the brain and liver, and C, 186.42 m/z, showing the
heart. 28

4.2 Cardinal painting: optical image and single ion images. A, Optical
image of the cardinal painting during collection of mass spectra. B–C,
characteristic single ion images for the cardinal painting dataset at B,
650.17 m/z, showing the “DESI-MS” text, and C, 327.25 m/z, showing
the body (red pigment). 29

4.3 Rodent brain morphologies. A, Optical image of rat brain (R1). B,
Optical image of mouse brain (R2). C, Optical image of mouse brain
(R3). 30

4.4 Human renal cell carcinoma: morphology. The morphology is char-
acterized by optical images of the H&E stained tissues. For each matched
pair, cancerous tissue is on the left, and normal tissue is on the right. . 32

4.5 Human renal cell carcinoma: normal tissue single ion images.
For each matched pair, cancerous tissue is on the left, and normal tissue
is on the right. 215.25 m/z is known to be more abundant in normal
tissue [2]. Note that some of the cancerous tissues appear to have regions
of normal tissue, such as samples B, UH0505 12, C, UH0710 33, and F,
UH9905 18. 33

x

Figure Page

4.6 Human renal cell carcinoma: cancer tissue single ion images. For
each matched pair, cancerous tissue is on the left, and normal tissue is
on the right. 885.67 m/z is known to be more abundant in cancerous
tissue [2]. Note that some of the normal tissues appear to have regions of
cancerous tissue, such as the left edge of sample E, UH9812 03. 34

4.7 Pig fetus cross-section: segmentation comparison. A, K-means
clustering applied to the peak-picked spectra. B, K-means clustering ap-
plied to the first five principal components of the peak-picked spectra. C,
Spatially-aware (SA) clustering. D, Spatially-aware structurally-adaptive
(SASA) clustering. E, Spatial shrunken centroids with SA distance. F,
Spatial shrunken centroids with SASA distance. 36

4.8 Cardinal painting: segmentation comparison. A, K-means cluster-
ing applied to the peak-picked spectra. B, K-means clustering applied to
the first five principal components of the peak-picked spectra. C, Spatially-
aware (SA) clustering. D, Spatially-aware structurally-adaptive (SASA)
clustering. E, Spatial shrunken centroids with SA distance. F, Spatial
shrunken centroids with SASA. 37

4.9 Pig fetus cross-section: selection of the number of segments. A,
Spatially-aware (SA) distance. B, Spatially-aware structurally-adaptive
(SASA) distance. C–F, Segmentations using SA distance with smoothing
radius of 2 and 20 initial segments, for increasing sparsity parameter s. C,
s = 0, D, s = 3, E, s = 6, F, s = 9. 39

4.10 Cardinal painting: selection of the number of segments. A, Spatially-
aware (SA) distance. B, Spatially-aware structurally-adaptive (SASA) dis-
tance. C–F, Segmentations using SA distance with smoothing radius of 2
and 20 initial segments, for increasing sparsity parameter s. C, s = 0, D,
s = 3, E, s = 6, F, s = 9. 40

4.11 Pig fetus cross-section: t-statistics and representative single ion
images. A–C The predicted segment membership probabilities from spa-
tial shrunken centroids with SA distance. A, the brain segment, B, the
heart segment, and C, the liver segment. D–F The shrunken t-statistics
of the spectral features. D, the brain segment, E, the heart segment, and
F, the liver segment. G–I The single ion images corresponding with the
top-ranked spectral feature by shrunken t-statistic. G, the brain segment,
H, the heart segment, and I, the liver segment. 42

xi

Figure Page

4.12 Cardinal painting: t-statistics and representative single ion im-
ages. A–C The predicted segment membership probabilites from spatial
shrunken centroids with SA distance. A, the text segment, B, the body
segment, and C, the wing segment. D–F The shrunken t-statistics of the
spectral features. D, the text segment, E, the body segment, and F, the
wing segment. G–I The single ion images corresponding with the top-
ranked spectral features by shrunken t-statistic. G, the text segment, H,
the body segment, and I, the wing segment. 43

4.13 Comparison of segmentation uncertainty in datasets of di↵ering
quality. A–C show the predicted number of segments as the sparsity
increases. A, rat brain (R1) with little noise. B, mouse brain (R2) with
moderate noise. C, mouse brain (R3) with strong noise. D–F show the
“best” segmentations selected by choosing the first (least sparse) segmen-
tation after which the predicted number of segments are approximately
equal for di↵erent initial numbers of segments. D, rat brain (R1). E,
mouse brain (R2). F, mouse brain (R3). G–I show the segmentations
resulting in 2 predicted segments through increasing sparsity. G, rat brain
(R1). H, mouse brain (R2). H, mouse brain (R3). 45

4.14 Human renal cell carcinoma: classification. For each matched pair,
cancerous tissue is on the left, and normal tissue is on the right. Trans-
parency is used to show the predicted probabilities based on spatial shrunken
centroids classification. The parameters used were r = 3, s = 20, selected
by cross-validation, as illustrated in Figure 4.15. 46

4.15 Human renal cell carcinoma: cross-validation. The highest cross-
validated accuracy rate was for r = 3, s = 20 with 88.9% accuracy, defined
as correctly classifying a pixel as cancer or normal. Each slide was treated
as its own fold in 8-fold cross-validation, i.e., leave-one-sample-out cross-
validation. 47

4.16 Human renal cell carcinoma: shrunken centroids and t-statistics.
A, the shrunken centroids for cancerous tissue. B, the shrunken centroids
for normal tissue. C, the shrunken t-statistics for normal and cancerous
tissue, showing 215 m/z (t0

normal,215 = 18.83) is strongly associated with
normal tissue, and 886 m/z (t0

cancer,886 = 15.9) is strongly associated with
cancerous tissue. 47

5.1 Trellis display of molecular ion images using Cardinal . Top-ranked
ion images for the cardinal painting dataset by t-statistic. 61

5.2 Overlay of molecular ion images using Cardinal . Recreation of the
cardinal painting using overlaid ion images. 62

xii

Figure Page

5.3 MALDI-like simulated spectra. 65

5.4 DESI-like simulated spectra. 65

5.5 Ground truth image used to generate the simulated dataset. 66

5.6 Generated image from an integer matrix. A, black peak. B, red
peak. 67

5.7 Generated images from factor and coordinates. A, blue peak. B,
black peak. C, red peak. 68

5.8 Ground truth images of a dataset with overlapping regions. A,
region 1. B, region 2. 69

5.9 Simulated images at the two peaks. A, m/z 500. B, m/z 510. . . 70

5.10 Simulated mass spectra from the two regions. A, region 1, pixel 34.
B, region 2, pixel 56. 70

6.1 Principal components analysis of on-disk dataset. A, Sample vari-
ance. B, PC1 loadings. C, PC2 loadings. 103

6.2 Benchmark 3D mouse pancreas images. A, m/z 5806 (insulin). B,
total ion current (TIC). 106

xiii

ABBREVIATIONS

DESI desorption electrospray ionization

MALDI matrix-assisted laser desorption/ionization

MS mass spectrometry

m/z mass-to-charge ratio

O-PLS-DA orthogonal projection to latent structures discriminant analysis

PLS-DA projection to latent structures distriminant analysis

RCC renal cell carcinoma

SA spatially-aware

SASA spatially-aware structurally-adaptive

TOF time-of-flight

xiv

ABSTRACT

Bemis, Kyle PhD, Purdue University, December 2016. A Framework for the Statistical
Analysis of Mass Spectrometry Imaging Experiments. Major Professor: Olga Vitek.

Mass spectrometry (MS) imaging is a powerful investigation technique for a wide

range of biological applications such as molecular histology of tissue, whole body sec-

tions, and bacterial films , and biomedical applications such as cancer diagnosis. MS

imaging visualizes the spatial distribution of molecular ions in a sample by repeat-

edly collecting mass spectra across its surface, resulting in complex, high-dimensional

imaging datasets. Two of the primary goals of statistical analysis of MS imaging

experiments are classification (for supervised experiments), i.e. assigning pixels to

pre-defined classes based on their spectral profiles, and segmentation (for unsuper-

vised experiments), i.e. assigning pixels to newly discovered segments with relatively

homogenous and distinct spectral profiles. To accomplish these goals, this research

provides both statistical methods and statistical computing tools. First, we pro-

pose a novel spatial shrunken centroids framework for performing classification and

segmentation of MS imaging experiments with feature selection. Spatial shrunken

centroids combines spatial smoothing with statistical regularization in a model-based

framework appropriate for both supervised and unsupervised settings. Second, we

provide Cardinal , a free and open-source R package for processing, visualization, and

statistical analysis of MS imaging experiments. Cardinal is the first R package de-

signed specifically for MS imaging, and the first software for MS imaging that focuses

specifically on experiments and statistical analysis. In addition to providing tools for

statistical analysis, it also provides infrastructure to enable other statisticians to more

easily develop new methods for MS imaging experiments. Lastly, to enable scalability

of Cardinal to larger-than-memory datasets, we provide matter , a free and open-

xv

source R package for statistical computing with structured datasets-on-disk, such as

MS imaging data files. Together, spatial shrunken centroids, Cardinal , and mat-

ter aim to allow scalable statistical analysis for high-resolution, high-throughput MS

imaging experiments.

1

1. PROBLEM STATEMENT AND CONTRIBUTIONS

1.1 Statement of the Problem

1.1.1 Statement of the Biotechnological Problem

Mass spectrometry (MS) imaging has emerged as a powerful tool for revealing

the spatial distribution of molecules in a sample. Using a mass spectrometer with a

computer-controlled stage, mass spectra are collected across the surface of the sam-

ple, creating a hyperspectral image where each pixel is associated with a correspond-

ing mass spectrum. The mass spectral intensities at a particular m/z-value can

then be plotted to create a false-color image showing the relative spatial abundance

of that molecule. Using leading technologies such as matrix-assisted laser desorp-

tion/ionization (MALDI) and desorption electrospray ionization (DESI), MS imag-

ing is being applied to a wide range of biological applications including molecular

histology of tissue, whole body sections, and bacterial films [1], and biomedical ap-

plications such as cancer diagnosis [2, 3]. There are even emerging non-biological

applications such as minerals, circuit boards, and fingerprints [1]. However, even as

the technology evolves toward ever-increasing mass and spatial resolutions, includ-

ing 3D applications, the tools available for the downstream workflow and analysis

have not advanced at nearly the same pace as the rapid instrumentrational improve-

ments. There is a dearth of freely-available, open-source tools that can handle the

cutting-edge MS imaging datasets being collected today, and those that exist often

lack statistical analysis methods appropriate to the experimental design and data

structure. Therefore, there is a pressing need for statistically-minded software that

solves the problems of user-accessible visualization, processing, and analysis of MS

imaging experiments.

2

1.1.2 Statement of the Statistical and Computational Problem

MS imaging experiments can be thought of as a “data cube” of spectral inten-

sities, with x and y spatial dimensions, and an additional dimension representing

the m/z-values. For experiments with multiple samples or 3D imaging experiments,

this becomes a data hypercube, with additional dimensions for a spatial z-axis, the

sample IDs, or even a time axis for time-course experiments. Because technological

improvements are being made in both mass and spatial resolutions, this means the

size of datasets is growing exponentially. Statistical methods designed for analysis

of MS imaging experiments must scale to both a large number of features P (i.e.,

the m/z-values) and a large number of observations N (i.e., the number of pixels

across all samples, subjects, time points, etc.), while simultaneously respecting the

spatial (and possible temporal) structure of the data. While smaller datasets may

be loaded into computer memory, high-resolution datasets quickly grow to sizes that

exceed the memory limits of a single machine. The complex structure of the data

creates additional challenges both statistically, in modeling the spatial correlation

appropriately, and computationally, in that the most appropriate algorithms may

not be easily parallellized, and the data cannot be partitioned in a straightforward

manner. Visualization and exploratory data analysis are already di�cult considering

the high-dimensionality and complexity of the data, and become even more di�cult

when considering MS imaging experiments with multiple samples. Interactive graph-

ics are a practical necessity for visualizing such datasets. The goal of this work is

to solve a subset of these problems which are currently feasible – such as proposing

spatially-aware statistical methods and providing software for statistical analysis –

and elsewhere provide a framework to greatly lower the barrier to entry for working

with MS imaging datasets so that other statisticians and computational scientists may

more easily make contributions to this exciting field – such as by providing software

that simplifies development of statistical methods for larger-than-memory datasets.

3

1.2 Statement of the Contributions

1.2.1 Statistical Methods

Two of the primary goals of current MS imaging experiments are classification

(for supervised experiments) and segmentation (for unsupervised experiments). For

MS imaging experiments, classification involves the assignment of pixels to known

classes, and segmentation involves the assignment of pixels to discovered segments. A

common secondary goal is the selection of a subset of important features that define

the classes or segments. I proposed the spatial shrunken centroids framework for

performing classification and segmentation of MS imaging experiments with feature

selection [4]. The proposed spatial shrunken centroids framework:

• combines the desirable properties of nearest shrunken centroids [5,6] and spatially-

aware clustering [7] by using statistical regularization to select important fea-

tures, while also using locally-adaptive spatial smoothing to improve the result-

ing classified or segmented image.

• allows data-driven selection of an appropriate number of segments in unsuper-

vised experiments, by taking advantage of the empirical relationship between

sparsity in the number of selected features and the predicted number of segments

in the resulting segmentations.

• facilitates interpretation of the segmented or classified images by automatically

selecting features that best di↵erentiate each class or segment from the others.

• enables the characterization and visual inspection of the uncertainty in class

or segment membership by calculating their probabilities through analogy to

Gaussian mixture models.

The proposed framework is applicable to and has been tested on both DESI- and

MALDI-imaging datasets, including both supervised and unsupervised experiments.

4

1.2.2 Open-source Software and Implementation

To solve the problem of the lack of freely available software tools o↵ering scalable

statistical analysis of MS imaging experiments, I contributed two major software

packages for statistical computing with MS imaging experiments.

Cardinal

I designed and implemented the R software package Cardinal (www.cardinalmsi.

org) [8], which provides a full pipeline for the import, pre-processing, visualization,

and statistical analysis of MS imaging experiments. As the first R package designed

specifically for the analysis of MS imaging experiments, Cardinal implements both

statistical methods and computational infrastructure, including:

• native support for importing two most common MSI data formats (Analyze 7.5

and imzML).

• e�cient, modular data structures for working with biological imaging data such

as

– iSet an extensible virtual class for imaging experiments

– MSImageSet a class for MSI experimental data and metadata

– MSImageData a class for e�cient storage of MSI data

– MSImageProcess a class for tracking pre-processing applied to MSI data

– IAnnotatedDataFrame a class for pixel-level metadata

– MIAPE-Imaging a class for the Minimum Information about a Proteomics

[Imaging] Experiment, based on the imzML specification [9]

– ResultSet a class for the results of analysis of imaging experiments

• generateSpectrum and generateImage functions allowing highly customizable

simulation of mass spectra and images for testing new analytic methods.

5

• pixelApply and featureApply methods allowing for the easy application of

arbitrary functions over the data of imaging experiments (similar to lapply),

including optionally applying functions over specific conditions (similar to tap-

ply) such as the sample ID.

• powerful and flexible visualization tools for plotting mass spectra, molecular

ion images, and analysis results, including a formula interface based on lattice

graphics allowing conditional plots arranged in a trellis display or overlaid using

transparency.

• image processing tools including contrast enhancement and spatial smoothing.

• spectral processing tools including normalization, smoothing, baseline reduc-

tion, binning and resampling, and peak picking and peak alignment (all imple-

mented using pixelApply).

• statistical methods including spatial shrunken centroids, spatially-aware cluster-

ing, principal components analysis (PCA), projection to latent structures (PLS),

and orthogonal projection to latent structures (O-PLS) for the analysis of imag-

ing experiments.

Cardinal (v1.5.0) consists of 7,870 lines of R code and 1,757 lines of C and C++

code. It has been downloaded more than 1,800 times from distinct IP addresses in the

four months since its public release with Bioconductor 3.1 on April 17, 2015, and has

won the John M. Chambers Statistical Software Award for 2015. Cardinal is open

source and freely available from Bioconductor at www.bioconductor.org/packages/

Cardinal. Its source code is hosted on Github at www.github.com/kuwisdelu/

Cardinal.

matter

To enable Cardinal to scale to high-resolution, high-throughput MS imaging ex-

periments, as well as facilitate development of new statistical methods for MS imag-

6

ing experiments and other scientific domains with larger-than-memory datasets, I

designed and implemented the matter R package. matter provides computational

infrastructure for statistical computing with data on disk. Its functionalities include:

• flexible definitions of the structure of on-disk binary data, customizable to di↵er-

ent domain-specific file formats, and allowing for a single experimental dataset

to span multiple files

• e�cient data structures in R and C++ for accessing on-disk data, including:

– atoms an S4 class, defined in R, to refer to a set of contiguous (’atomic’)

sectors of disk belonging to the dataset, with known byte o↵sets and extents

– matter an S4 class, defined in R, which translates a combination of atoms

objects into a vector or matrix

– Atoms a C++ class for on-demand reading of data on disk from the sectors

described by an atoms object, possibly from non-contiguous disk locations,

batched into sequential reads for e�ciency whenever possible

– Matter a C++ class for translating the data read from disk (by an Atoms

object) into an R-friendly data format

– MatterAccessor a C++ class for accessing and iterating over a bu↵ered

version of a Matter vector or over a row or column of a Matter matrix.

• e�cient indexing into matter on-disk vectors and matrices without loading the

full object into memory

• an apply method (similar to R’s built in apply function) for iterating over rows

and columns of matter matrices without loading more than a single row or

column into memory at a time

• transposition of matter matrices without loading any data into memory or

touching a single byte of data on disk

7

• basic linear algebra for matter on-disk matrices with R in-memory matrices

• calculation of statistical summaries such as mean and variance, for vectors, and

for rows and columns of matrices, without fully loading the object into memory

• linear regression and fitting of generalized linear models without loading the full

dataset into memory using the biglm package

• principal components analysis without loading the full dataset into memory

using the irlba package

matter (v.0.4.0) consists of 1,345 lines of R code and 1,664 lines of C and C++

code. Portions of code using the same ideas as matter were incorporated into Car-

dinal v1.4, which was released as part of Bioconductor 3.3 on May 4, 2016. mat-

ter will be submitted to Bioconductor for the October 2016 release of Bioconduc-

tor 3.4, and Cardinal will transition to using matter as its primary backend for

larger-than-memory datasets. The source code of matter is hosted on Github at

www.github.com/kuwisdelu/matter.

1.3 Outline

This dissertation is organized as follows. Chapter 1 introduces the biotechnological

and statistical problem and summarizes the contributions. Chapter 2 describes the

experimental procedures of MS imaging, the spectral and image processing steps lead-

ing up to analysis, and the existing statistical methods, computational algorithms,

and software for MS imaging. Chapter 3 describes the spatial shrunken centroids

statistical method for supervised classification and unsupervised segmentation of MS

imaging experiments. Chapter 4 evaluates the proposed spatial shrunken centroids

method by comparing it to existing methods based on results from experimental

datasets. Chapter 5 describes the R package Cardinal for the processing, visualiza-

tion, and analysis of MS imaging experiments. Chapter 6 describes the R package

8

matter for statistical analysis of larger-than-memory datasets (including MS imag-

ing datasets) on disk. Chapter 7 summarizes the proposed statistical methods and

software and discusses the directions for future work.

9

2. BACKGROUND

2.1 MS-based Imaging Experiments

2.1.1 Introduction

Recently, MS imaging has been shown to be promising in a wide range of biological

applications such as molecular histology of tissue, whole body sections, and bacterial

films [1], and biomedical applications such as cancer diagnosis [2, 3]. MS imaging vi-

sualizes the spatial distribution of molecular ions in a sample by repeatedly collecting

mass spectra across its surface. This dissertation will focus on statistical methods

and statistical computing environments for the analysis of MS imaging experiments.

This section discusses the structure and steps of MS imaging experiments up to the

point of statistical analysis. MALDI and DESI are the leading technologies for per-

forming MS imaging. MALDI-imaging requires the application of a matrix solution,

and is typically used to detect large molecules such as peptides and proteins. DESI-

imaging does not require a matrix, and is typically used to detect small molecules such

as lipids, metabolites, and drug molecules [10]. Equipped with a computer-controlled

sample stage, a mass spectrometer rasters across the sample, and collects individual

mass spectra from discrete or continuous locations. The intensities at a particular

m/z value and spatial location can then be plotted as pixels in a false-color image,

called an ion image, that displays the spatial distribution of the analyte associated

with that m/z value.

Computational analysis of MS imaging experiments typically consists of process-

ing, followed by a statistical analysis [11]. The processing ensures that mass spectral

intensities are comparable across all mass spectra in the experiment. This is typically

done via normalization and (if necessary) baseline reduction. Furthermore, the pro-

10

cessing extracts spectral features that correspond to the underlying analytes. This

is typically done via peak picking, or m/z binning or resampling. Much progress

has already been made in the processing of MS imaging data. Many mature tools

for processing mass spectra already exist [12]. However, a major bottleneck is the

downstream statistical analysis of the processed data.

Two common primary goals of statistical analysis of MS imaging experiments

post signal processing are classification (for supervised experiments), i.e. assigning

pixels to pre-defined classes based on their spectral profiles, and segmentation (for

unsupervised experiments), i.e. assigning pixels to newly discovered segments with

relatively homogenous and distinct spectral profiles.

However, achieving these goals is often quite di�cult due to the large and complex

nature of the datasets, and due to the biological and technical variation in intensities

of spectral features. While a number of machine learning algorithms for analysis of

MS imaging experiments exist, methods for statistical inference are key for distin-

guishing the systematic signals in the spectra from noise. This dissertation focuses

on the downstream statistical analysis steps, which take place after the detection,

quantification, alignment, normalization, and (optionally) identification of the initial

set of high quality spectral features.

2.1.2 Overview of Spectral Processing Steps

Processing of mass spectra ensures that mass spectral intensities are comparable

across all spectra in the experiment. The processing steps described below are all

implemented in Cardinal as discussed in Chapter 5.

• Normalization ensures that mass spectra from di↵erent pixels are comparable

to each other. This is typically done by equalizing the sum of all intensities to a

common total ion current (TIC), but normalization to a known reference is also

possible. More experimental work comparing di↵erent methods of normalization

for MS imaging is still required [13].

11

A

8SPECTRAL AND IMAGE PROCESSING
smoothSignal(Brain_1, plot=TRUE)

reduceBaseline(Brain_1, plot=TRUE)

peakPick(Brain_1, plot=TRUE)

627.61

0

m/z = 9984.72

627.61

6.54

m/z = 9984.72

627.61

14.05

m/z = 9984.72

image(Brain_1, mz=9984.7)

image(…, contrast.enhance=“histogram”)

image(…, smooth.image=“gaussian”)

B

8SPECTRAL AND IMAGE PROCESSING
smoothSignal(Brain_1, plot=TRUE)

reduceBaseline(Brain_1, plot=TRUE)

peakPick(Brain_1, plot=TRUE)

627.61

0

m/z = 9984.72

627.61

6.54

m/z = 9984.72

627.61

14.05

m/z = 9984.72

image(Brain_1, mz=9984.7)

image(…, contrast.enhance=“histogram”)

image(…, smooth.image=“gaussian”)C

8SPECTRAL AND IMAGE PROCESSING
smoothSignal(Brain_1, plot=TRUE)

reduceBaseline(Brain_1, plot=TRUE)

peakPick(Brain_1, plot=TRUE)

627.61

0

m/z = 9984.72

627.61

6.54

m/z = 9984.72

627.61

14.05

m/z = 9984.72

image(Brain_1, mz=9984.7)

image(…, contrast.enhance=“histogram”)

image(…, smooth.image=“gaussian”)

Fig. 2.1. Spectral processing. A, signal smoothing, B, baseline
reduction, and C, peak picking, as implemented in Cardinal .

• Signal smoothing (shown in Figure 2.1A) reduces noise in the mass spectral

signal for downstream baseline reduction and peak picking. This can be done

using techniques such as moving average filter, Savitsky-Golay filter, Gaussian

filter, etc. [12]

• Baseline reduction (shown in Figure 2.1B) removes unwanted background from

the mass spectra (usually due to the matrix in MALDI). The baseline is typically

12

estimated using linear interpolation of minima or medians, or LOESS regression,

and then subtracting o↵ the estimated baseline [12].

• Peak picking (shown in Figure 2.1C) extracts spectral features corresponding to

biological signal (i.e., analytes). There are many mature algorithms for detection

of peaks in mass spectra based on various criteria, including signal-to-noise ratio

(SNR), slopes of peaks, local maxima, peak shape, peak width, etc. [12, 14]

• Peak alignment corrects for unwanted shifts in m/z values to ensure peaks are

comparable across all spectra, for example, by aligning the detected peaks in

each spectrum to peaks in the mean spectrum or other reference [13].

• Binning and resampling are options to reduce the size of the dataset prior to

analysis or other spectral processing steps.

2.1.3 Overview of Image Processing Steps

Processing of molecular ion images (shown in Figure 2.2A) is often necessary due

to the multiplicative noise prevalent in MS imaging experiments. The steps typically

consist of:

• Spatial smoothing (shown in Figure 2.2B) reduces noise while retaining and

highlighting the important spatial patterns in the image, using methods such

Gaussian filter or adaptive bilateral filter [15].

• Contrast enhancement (shown in Figure 2.2C) corrects unbalanced contrast in

an image (usually from multiplicative noise) that may hide spatial patterns,

using methods such as histogram equalization or suppression of the brightest

pixels [11].

13

A

8SPECTRAL AND IMAGE PROCESSING
smoothSignal(Brain_1, plot=TRUE)

reduceBaseline(Brain_1, plot=TRUE)

peakPick(Brain_1, plot=TRUE)

627.61

0

m/z = 9984.72

627.61

6.54

m/z = 9984.72

627.61

14.05

m/z = 9984.72

image(Brain_1, mz=9984.7)

image(…, contrast.enhance=“histogram”)

image(…, smooth.image=“gaussian”)

B

8SPECTRAL AND IMAGE PROCESSING
smoothSignal(Brain_1, plot=TRUE)

reduceBaseline(Brain_1, plot=TRUE)

peakPick(Brain_1, plot=TRUE)

627.61

0

m/z = 9984.72

627.61

6.54

m/z = 9984.72

627.61

14.05

m/z = 9984.72

image(Brain_1, mz=9984.7)

image(…, contrast.enhance=“histogram”)

image(…, smooth.image=“gaussian”)C

8SPECTRAL AND IMAGE PROCESSING
smoothSignal(Brain_1, plot=TRUE)

reduceBaseline(Brain_1, plot=TRUE)

peakPick(Brain_1, plot=TRUE)

627.61

0

m/z = 9984.72

627.61

6.54

m/z = 9984.72

627.61

14.05

m/z = 9984.72

image(Brain_1, mz=9984.7)

image(…, contrast.enhance=“histogram”)

image(…, smooth.image=“gaussian”)

Fig. 2.2. Image processing. A, a raw molecular ion image. B, an
ion image with contrast enhancement. C, an ion image with contrast
enhancement and spatial smoothing.

2.2 Review of Related Work

2.2.1 Review of Existing Statistical Methods for Analysis of MS Imaging

Experiments

Traditional multivariate statistical methods are frequently used for both classifi-

cation and segmentation. For classification, methods including linear discriminant

14

analysis (LDA), projection to latent structures discriminant analysis (PLS-DA) and

orthogonal projection to latent structures discriminant analysis (O-PLS-DA) have

proven e↵ective [2, 3, 16–19]. For segmentation, clustering methods such as hierar-

chical clustering or k-means (sometimes preceded by principal components analysis

(PCA) to reduce the dimensionality of the spectra) are frequently used [20–22]. The

traditional multivariate methods have two drawbacks. First, they are agnostic of the

spatial structure of the data. They treat each pixel independently, and ignore simi-

larities of spectra acquired from spatially proximate locations, thereby compromising

the accuracy of the results. Second, they do not reduce the input features to more

informative subsets, thereby compromising the interpretation.

Although statistical regularization has become a method of choice for extracting

subsets of informative features from highly multivariate data, most such methods

have not yet been applied to MS imaging experiments. One such method is nearest

shrunken centroids introduced by Tibshirani et al. [5, 6], which was originally devel-

oped for classification of gene expression microarrays. A related method has been

applied to classify tissues in MS imaging experiments using regularized logistic re-

gression [23]. However, similarly to the multivariate analysis methods, they do not

account for the spatial structure of the data.

2.2.2 Review of Existing Computational Algorithms for Analysis of MS

Imaging Experiments

Several recent computational algorithms were specifically designed to account for

the spatial structure of MS images. One family of methods relies on the spatial struc-

ture to detect quality peaks from raw spectra [24, 25]. Although highly valuable,

these methods stop at processing the signals, and do not address the goals of image

segmentation or image classification. Another family of methods, including spatially-

aware clustering and spatially-aware structurally-adaptive clustering by Alexandrov

and Kobarg [7], account for the spatial structure of the data, and demonstratively

15

improve the quality of image segmentation [11]. However, similarly to the multivari-

ate analysis methods, they do not select subsets of spectral features that define the

segments, and rely on post hoc techniques to interpret the features associated with

the segments, e.g. using the Pearson correlation between a segment and the single

ion images [11,20].

Most existing computational algorithms designed for analysis of MS imaging ex-

periments are not statistical in nature, and do not allow for statistical inference.

2.2.3 Review of Existing Software for MS Imaging

Existing freely-available software for MS imaging include BioMap, DataCube Ex-

plorer, and MSiReader, and typically focus on data exploration and visualization,

without emphasis on statistical modeling and inference. They generally require that

the full dataset must fit into computer memory. Commercially-available software such

as SCiLS Lab (SCiLS), flexImaging (Bruker), HDI (Waters), and TissueView (AB

Sciex) sometimes include more advanced analytic capabilities (particularly SCiLS),

sometimes including support for larger-than-memory datasets (again SCiLS), but are

often expensive and are not open-source. In addition, most existing software for MS

imaging are designed around exploration or analysis of a single sample, rather than

experiments involving multiple samples.

16

3. SPATIAL SHRUNKEN CENTROIDS METHOD FOR

MODEL-BASED CLASSIFICATION AND

SEGMENTATION OF MS IMAGES

3.1 Overview of Spatial Shrunken Centroids

Spatial shrunken centroids is a statistical model-based framework for both super-

vised classification and unsupervised segmentation. It takes as input a set of previ-

ously detected, quantified, aligned and normalized features, produced by any signal

processing method(s) of choice. It combines the advantages of both spatially-aware

clustering by Alexandrov and Kobarg [7] and statistical regularization by Tibshirani

et al. [5, 6].

In Chapter 4, we will show that for unsupervised segmentation, the spatial proba-

bilistic modeling provides better quality segmentation. It characterizes the probabil-

ity of segment membership for each pixel, and allows us to quantify and visualize the

uncertainty of segmentation for each pixel. Moreover, statistical regularization aids

interpretation by automatically selecting subsets of the spectral features, such that

each subset defines each segment. Statistical regularization also enables data-driven

selection of the number of segments. Similarly, for supervised image classification

probabilistic modeling characterizes the probability of pre-defined tissue class mem-

bership for each pixel, and aids interpretation by automatically selecting subsets of

spectral features that define each class.

17

3.2 Proposed Statistical Framework for Supervised Classification and Un-

supervised Segmentation of Mass Spectrometry Images

Let m = 1, . . . ,M denote the index of the biological sample, i.e. a slide with one

(or several) tissues. On slide m, the experiment collects N
m

spectra at N
m

total pixel

locations. Therefore, over all the samples, the experiment contains N =
P

M

m=1 Nm

spectra and pixels.

Let (i, j) denote the location of a pixel on a sample m. We do not assume that the

samples are rectangular in shape, so the indices (i, j) are arbitrary. However, we do

assume (i+�

i

, j+�

j

) describes the location of a pixel (�
i

, �

j

) away on the same sample.

We assume that the spectra acquired at these locations have been processed, so that

every spectrum has the same P features, defined as a picked peak or a binned m/z

range. We also assume that the pixel intensities are normalized, so that spectra are

comparable across pixels and across samples. Then, denote the spectrum acquired at

a pixel location (i, j) on sample m as x
ijm

= {x
ijmp

, p = 1, . . . , P}. In other words,

spectrum x
ijm

is a vector of scalar intensities x
ijmp

for P spectral features.

Suppose also that the spectra and the pixels belong to one of K classes (for su-

pervised classification), or segments (for unsupervised segmentation). For supervised

classification, the class membership is known, for example, from annotation by a

pathologist, and the statistical goal of the experiment is to classify each pixel to one

of these classes in a supervised manner based on its spectrum. Alternatively, for un-

supervised segmentation, the class membership is unknown, and the statistical goal

of the experiment is to discover these classes from the spectra in an unsupervised

manner. Let N

k

denote the number of spectra, and the number of pixel locations,

assigned to class k = 1, . . . , K by an unsupervised or a supervised procedure.

Additionally, we denote the mean spectrum for a known class or discovered seg-

ment k as x̄
k

, and the overall mean spectrum as x̄. That is, x̄
k

is a vector of P scalar

intensities x̄

kp

, which are the mean intensities for spectral feature p, over spectra

18

from all pixel locations assigned to class k, and x̄ is a vector of P scalar intensities

x̄

p

, which are the overall mean intensities for spectral feature p, over all spectra.

In the following section we discuss the proposed spatial shrunken centroids frame-

work for both supervised classification and unsupervised segmentation. For supervised

classification, the method relies on the known classes. For unsupervised segmenta-

tion, where the segments are unknown, the segments are initialized randomly or by

another segmentation method such as spatially-aware clustering [7], and are updated

over multiple iterations until one of several convergence criteria is met. We detail

the important steps below. The full algorithms are available in Section 3.3.1 and

Section 3.3.2.

3.2.1 Characterization of Classes and Segments by their Shrunken Cen-

troids

In mass spectrometry imaging, a tissue region, condition, or class is typically sum-

marized by a mean spectrum, also called its centroid, x̄
k

. Here we propose that each

class (or segment) is better represented using shrunken centroids, from the method of

nearest shrunken centroids by Tibshirani et al. [5, 6]. This will allow us to compare

the class (or segment) centroids to the overall centroid, and to select the informative

spectral features (defined as being very dissimilar to the overall centroid). We detail

this below.

We follow Tibshirani et al. and calculate the class (or segment) centroids x̄
k

, and

use statistical regularization to shrink the centroids toward the overall centroid x̄. We

then calculate the t-statistic for spectral feature p for class (or segment) k as

t

kp

=
x̄

kp

� x̄

p

⌧̂

p

·
q

1
Nk

� 1PK
k=1 Nk

(3.1)

Here, ⌧̂
p

is the pooled estimate of the within-class standard deviation for feature p.

The number
q

1
Nk

� 1PK
k=1 Nk

makes the denominator equal to the estimated standard

19

error of the numerator. Second, we apply the soft thresholding operator ()+ to shrink

the t-statistics toward 0

t

0
kp

= sign(t
kp

)(|t
kp

|� s)+, where t+ = t if t > 0, and t+ = 0 if t  0 (3.2)

and s is the shrinkage parameter. Larger values of s lead to a larger number of t-

statistics t0
kp

to be set to 0. Finally, we define the intensities of the shrunken centroids

for each feature p for each class (or segment) k as

x̄

0
kp

= x̄

p

+ t

0
kp

⌧̂

p

·
s

1

N

k

� 1
P

K

k=1 Nk

(3.3)

so that x̄0
k

= {x0
kp

, p = 1, . . . , P} is the shrunken centroid for class (or segment) k.

The shrunken centroids x̄0
k

here can be viewed as adjusted mean spectra of the

K classes (or segments), where the intensities have been adjusted toward the overall

mean spectrum. Therefore, the characteristic mean spectrum for a class (or segment)

should di↵er from the overall mean spectrum only for those spectral features that

are truly characteristic of the class (or segment). Spectral features which are not

meaningfully di↵erent from the overall mean spectrum will have intensities set to the

overall mean intensity for that feature.

3.2.2 Selection of Informative Features

The shrunken t-statistics t0
kp

calculated in Equation 3.2 are well suited for selecting

informative features. The spectral features with t

0
kp

> 0 are systematically enriched

for class (or segment) k. Likewise, spectral features with t

0
kp

< 0 are systematically

absent from class (or segment) k, as compared to the overall mean spectrum. Spectral

features with t

0
kp

= 0 are non-informative, as only the features with t

0
kp

6= 0 matter

when assigning a pixel’s spectrum to class (or segment) k.

20

3.2.3 Spatially-aware (SA) and Spatially-aware Structurally-adaptive (SASA)

Distances

To classify the individual pixel, or to assign a pixel to a segment, we need to define

a distance between the spectra from individual pixels and the shrunken centroids. We

propose to use the spatially-aware distance defined by Alexandrov and Kobarg [7].

We detail this method below, and show how we adapt it in Section 3.2.4.

Alexandrov and Kobarg proposed a spatially-aware distance between two spectra

x
ijm

and x
i

0
j

0
m

, which depends on the spectra from pixels within a neighborhood of

(i, j) and (i0, j0). The authors showed that this approach is beneficial, as it produces

better quality segmentations, as compared to näıve methods that do not account for

the spatial relationships between pixels [26]. Therefore, for a neighborhood radius of

r, the distance between two spectra is defined as

d(x
ijm

, x
i

0
j

0
m

) =
X

�r�i,�j ,r

↵

�i�j(xijm

, x
i

0
j

0
m

0) · kx(i+�i)(j+�j)m � x(i0+�i)(j0+�j)m0k2(3.4)

Here the ↵
�i�j(xijm

, x
i

0
j

0
m

0) are spatial weights of the neighbors. The exact definition

of these weights results in either a spatially-aware (SA) distance or a spatially-aware

structurally adaptive (SASA) distance. In the SA distance, the weights are defined

as

↵

�i�j = exp

⇢
�
�

2
i

+ �

2
j

2�2

�
, where � = (2r + 1)/4 (3.5)

which are Gaussian weights independent of the spectra and only depend on the neigh-

borhood. Using Gaussian weights, which decrease with the distance �

2
i

+ �

2
j

from the

neighborhood center, is a natural choice, because it assumes that pixels further away

from each other are less related than pixels that are closer together. In the SASA

distance, the weights are defined as

↵

�i�j(xijm

, x
i

0
j

0
m

0) = exp

⇢
�
�

2
i

+ �

2
j

2�2

�
·
q
�

�i�j(xijm

)�
�i�j(xi

0
j

0
m

0) (3.6)

where

�

�i�j(xijm

) = exp

⇢
� 1

2�2
kx(i+�i)(j+�j)m � x

ijm

k2
�

(3.7)

21

which are adaptive weights that downweight neighborhood locations where the spec-

tra are very di↵erent from the neighborhood center. This is designed to preserve

edges between morphological regions and small details in local structure, which could

otherwise be lost due to oversmoothing by the ordinary Gaussian weights. The term

� is set empirically to the half of the norm of the di↵erence between the two most

di↵ering spectra in the neighborhood.

3.2.4 Defining the SA and SASA Distances to the Shrunken Centroid of

a Class or Segment

The distance above can be adapted to express the distance between the individual

pixels and the shrunken centroids as follows:

d(x
ijm

, x̄0
k

) =
X

�r�i,�j ,r

↵

�i�j(xijm

) · kx(i+�i)(j+�j)m � x̄0
k

k2 (3.8)

where defining the ↵

�i�j using the Gaussian weights as in Equation 3.5 results in our

version of the SA distance, and using adaptive weights defined as

↵

�i�j(xijm

) = exp

⇢
�
�

2
i

+ �

2
j

2�2

�
· �

�i�j(xijm

) (3.9)

with �

�i�j(xijm

) as in Equation 3.7 results in our version of the SASA distance. We

normalize the weights in both cases so that they sum to 1.

Unlike in Equation 3.4 above, in Equation 3.8 we consider the dissimilarity between

a pixel’s spectrum and a class (or segment), rather than the dissimilarity between the

spectra at two pixels. Note that our version of the SASA distance has only one �

�i�j

rather than two, reflecting this di↵erence. In the case of supervised classification, we

will use this distance to classify pixels according their spectrum’s similarity to the

shrunken centroids of known classes. In the case of unsupervised image segmenta-

tion, we will use this distance to iteratively update the pixels assigned to discovered

segments.

Note also that in both supervised and unsupervised situations this requires the

empirical selection of the shrinkage parameter s. Moreover, for unsupervised segmen-

22

tation, the selection of the number of segments K is also required. The procedure for

selecting these parameters and their e↵ect and implications will be described further

in Section 3.2.6.

3.2.5 Assignment of Segment or Class Probabilities to Pixels

For supervised classification nearest shrunken centroids can be interpreted as a

regularized version of linear discriminant analysis [5, 6]. In this case each of the K

classes has a prior probability ⇡

k

, and is modeled as a multivariate Gaussian distri-

bution. All classes are assumed to share a common diagonal within-class covariance

matrix. This leads to a straightforward way to calculate probabilities for individual

observations belonging to a class using Gaussian likelihoods. By analogy, we calculate

a discriminant score based on the SA or SASA distances from each spectrum x
ijm

to

each of the shrunken centroids x̄
k

as

D(x
ijm

, x̄0
k

) =
1

⌧̂

2
p

d(x
ijm

, x̄0
k

)� 2 log ⇡
k

(3.10)

where, as before, ⌧̂
p

is the pooled within-class standard deviation for feature p. We

typically estimate the prior probabilities empirically as ⇡̂

k

= N

k

/N . If the training

data is not representative of the population, di↵erent priors could be used. Because

we are using spatial distances which incorporate spectra from multiple pixels, the

discriminant scores cannot be interpreted directly as following Gaussian distributions.

However, we empirically demonstrate below that the technique still produces good

results in practice. Therefore, we further follow Tibshirani et al. by calculating class

probabilities for each spectrum x
ijm

for each class (or segment) k as

p̂

k

(x
ijm

) =
e

�(1/2)D(xijm, x̄

0
k)

KP
l=1

e

�(1/2)D(xijm, x̄

0
l)

(3.11)

A pixel is assigned to the class with the highest p̂
k

(x
ijm

).

Unsupervised segmentation follows the same procedure. K is the maximum num-

ber of segments, and the segments are initialized randomly or with another segmenta-

tion procedure. We typically use ⇡
k

= 1/K, but a semi-supervised procedure could be

23

developed which uses di↵erent priors and a di↵erent initialization procedure. During

each iteration of the segmentation, a pixel is updated as belonging to the segment

with the highest p̂
k

(x
ijm

) using Equation 3.11.

3.2.6 Selection of Parameters

The proposed framework requires the choice of the shrinkage parameter s, and,

for unsupervised segmentation, the number of segments K.

In the case of supervised classification, the classes are known, and therefore s

can be selected by cross-validation. Specifically, given a set of M biological samples

on M slides, each slide is viewed as an experimental unit for cross-validation. For

experiments with a small number of biological replicates, M -fold (i.e., leave-one-

sample-out) cross-validation can be performed. Within each fold (or sample) of cross-

validation, fit spatial shrunken centroids for a range of values of s. The final selected

value of s is the one that maximizes the overall classification accuracy on the left-out

samples. This is illustrated for the human RCC experiment in Figure 4.15.

In the case of unsupervised segmentation, the individual segments, and also the

exact number of segments, are unknown. However, there is a relationship between the

number of informative features in the model, expressed by the shrinkage parameter s,

and the number of segments K. First, spurious segments tend to be defined by non-

informative features. When those are removed through statistical regularization, the

spurious segments become empty. They have N
k

= 0, and are, in fact, removed. Sec-

ond, excessive regularization can remove some informative features, and this results

in the loss of the correct segments. We balance the regularization and the number of

segments by creating segmentations for multiple values of s and K, and then plotting

the relationship between s and the number of non-empty segments. We illustrate this

using experimental data in Section 4.2.2 and in Section 4.2.2.

24

3.3 Algorithm and Implementation

The full algorithms for spatial shrunken centroids for a single set of parameters

for supervised classification and for unsupervised segmentation are described below.

They are implemented in the R package Cardinal (cardinalmsi.org) [8], which is

described in Section 5.

The implementation is e�cient, utilizing C and C++ for speed. It can e�ciently

handle large datasets, and is limited only by the requirement that the dataset must

be fully loaded into memory. For example, the segmentations for the fetal pig dataset

(143 peaks and 4,959 pixels) in Figure 4.7E and Figure 4.7F took 51 and 52 seconds,

respectively. The segmentations for the cardinal painting (51 peaks and 12,600 pixels)

in Figure 4.8E and Figure 4.8F took 67 and 48 seconds, respectively. The cross-

validation for the human RCC dataset (850 features and 6,077 pixels) in Figure 4.15

took 69 seconds.

3.3.1 Procedure for Spatial Shrunken Centroids Classification (Super-

vised)

The following describes the algorithm for a single set of parameters for a single

fold of cross-validation. Parameters should be selected as described in Section 3.2.6.

Input

1. Training set of samples with class labels k = 1, . . . , K

2. Testing set of samples m = 1, . . . ,M

3. Parameters

(a) Neighborhood radius r

(b) Shrinkage parameter s

Fitting – performed on samples from the training set

25

1. Calculate the overall centroid x̄

2. For each class k = 1, . . . , K:

(a) Calculate the class centroid x̄
k

(b) For each feature p = 1, . . . , P :

i. Calculate the t-statistics t
kp

[Equation 3.1].

ii. Calculate the shrunken t-statistics t0
kp

[Equation 3.2].

(c) Calculate the class shrunken centroid x̄0
k

[Equation 3.3].

3. Output the shrunken t-statistics t0
kp

and shrunken centroids x̄0
k

.

Prediction – performed on samples from the testing set

1. For each pixel at a location (i, j) on sample m = 1, . . . ,M :

(a) For each class k = 1, . . . , K:

i. Calculate the distance to the class centroid d(x
ijm

, x0
k

) [Equation 3.8].

ii. Calculate discriminant score D(x
ijm

, x̄0
k

) [Equation 3.10].

iii. Calculate the class membership probability p̂

k

(x
ijm

) [Equation 3.11]

(b) Assign the pixel to the class with the highest probability p̂

k

(x
ijm

).

2. Output the class assignments and class probabilities p̂
k

(x
ijm

).

3.3.2 Procedure for Spatial Shrunken Centroids Segmentaiton (Unsuper-

vised)

The following describes the algorithm for a single set of parameters. Parameters

should be selected as described in Section 3.2.6.

Input

1. Unlabeled samples m = 1, . . . ,M

26

2. Maximum number of iterations iter.max

3. Parameters

(a) Neighborhood radius r

(b) Maximum number of segments K

(c) Shrinkage parameter s

Fitting

1. Use SA or SASA clustering by Alexandrov and Kobarg [7] to initialize the K

segments.

2. Calculate the overall centroid x̄

3. For each segment k = 1, . . . , K with N

k

6= 0:

(a) Calculate the segment centroid x̄
k

(b) For each feature p = 1, . . . , P :

i. Calculate the t-statistics t
kp

[Equation 3.1].

ii. Calculate the shrunken t-statistics t0
kp

[Equation 3.2].

(c) Calculate the segment shrunken centroid x̄0
k

[Equation 3.3].

4. For each pixel at a location (i, j) on sample m = 1, . . . ,M :

(a) For each segment k = 1, . . . , K:

i. Calculate the distance to the segment shrunken centroid d(x
ijm

, x0
k

)

[Equation 3.8].

ii. If a segment has N
k

= 0, define the distance to it as d(x
ijm

, x0
k

) = 1.

iii. Calculate discriminant score D(x
ijm

, x̄0
k

) [Equation 3.10].

iv. Calculate the segment membership probability p̂
k

(x
ijm

) [Equation 3.11]

(b) Assign the pixel to the segment with the highest probability p̂

k

(x
ijm

).

27

5. Update the segments with the pixel assignments from step 4b.

6. Repeat steps 3–5 until no segments change, or at most iter.max times.

7. Output the shrunken t-statistics t

0
kp

, shrunken centroids x̄0
k

, and probabilities

p̂

k

(x
ijm

).

28

4. EVALUATION AND DISCUSSION FOR SPATIAL

SHRUNKEN CENTROIDS

4.1 Datasets for Evaluating Spatial Shrunken Centroids

4.1.1 Unsupervised Segmentation: Pig Fetus Cross-section

The primary goal of this experiment was to discover morphological features of the

pig fetus, such as major organs, through unsupervised analysis of the mass spectra.

A secondary goal was to find spectral features associated with the morphological

features. Figure 4.1A is an optical image of the H&E stained tissue section showing

the general morphology of the pig fetus, including major organs such as the brain,

heart, and liver.

A B C

39.9

0

m/z = 888.67
41.34

0

m/z = 186.42

Fig. 4.1. Pig fetus cross-section: morphology and single ion
images. A, Optical image of H&E stained pig fetus cross-section
showing its morphology, including the brain (left), heart (center), and
liver (dark region below heart). B–C, Characteristic ion images for
the pig fetus dataset at B, 888.67 m/z, showing the brain and liver,
and C, 186.42 m/z, showing the heart.

Mass spectra were collected using a Thermo Finnigan LTQ linear ion trap mass

spectrometer with a DESI ion source over the 150–1,000 m/z range. The images

29

were cropped to remove non-informative spectra originating from the glass slide. The

cropped dataset consisted of 4,959 mass spectra with 10,200 spectral features. The

mass spectra were normalized to a common total ion current, and peak picking was

performed to reduce the dataset to 143 peaks. All data processing and analysis was

performed using Cardinal [8].

Figure 4.1B shows a single ion image featuring the brain and liver, and Figure 4.1C

shows a single ion image featuring the heart. Below, we will use this dataset to

demonstrate unsupervised statistical analysis using all the mass spectral peaks to

recover the major morphological features.

4.1.2 Unsupervised Segmentation: Cardinal Painting with Known Seg-

mentation

The goal of this experiment was to use a controlled sample to evaluate the quality

of data acquisition and statistical analysis. A painting of a cardinal on paper was

a�xed to a glass slide and MS imaging was applied. An optical image of the cardinal

painting during data acquisition is shown in Figure 4.2A.

A B C

265.36

0

m/z = 650.17
149.15

0

m/z = 327.25

Fig. 4.2. Cardinal painting: optical image and single ion im-
ages. A, Optical image of the cardinal painting during collection of
mass spectra. B–C, characteristic single ion images for the cardinal
painting dataset at B, 650.17 m/z, showing the “DESI-MS” text, and
C, 327.25 m/z, showing the body (red pigment).

30

The mass spectra were acquired using a Thermo Finnigan LTQ linear ion trap

mass spectrometer with a DESI ion source over the 100–1,000m/z range. The dataset

consisted of 12,600 mass spectra with 10,800 spectral features. Mass spectra were nor-

malized to a common total ion current, and peak picking was performed to reduce the

dataset to 51 peaks. All data processing and analysis was performed using Cardinal .

Figure 4.2B shows a single ion image featuring the “DESI-MS” text part of the

painting and Figure 4.2C shows a single ion image featuring the red pigment used in

the cardinal body. The painting itself shown in Figure 4.2A can be considered the

ground truth image. We use this dataset to evaluate the ability of the unsupervised

statistical analysis of the mass spectral peaks to recover the ground truth.

4.1.3 Unsupervised Segmentation: Rodent Brain Images of Varying Qual-

ity

The goal for these datasets is to compare the results of several similar experiments

of varying data quality. All three experiments involved a rodent brain.

A B C

[20:07 6/6/2011 Bioinformatics-btr246.tex] Page: i234 i230–i238

T.Alexandrov and J.H.Kobarg

A B C

D E F

G H I

Fig. 5. Rat brain dataset. (A) Optical image. (B) Schematic representation based on the rat brain atlas, reproduced from (Alexandrov et al., 2010) with
permission from the American Chemical Society. (C–I) Segmentation maps, q=20, k =10. C. Straightforward k-means clustering of spectra. (D–F) SA
method. (G–I) SASA method.

3.1.1 Overview Each of our proposed segmentation methods,
SA (spatially adaptive, with Gaussian weights used) and SASA
(spatially adaptive, with structure-adaptive weights), has only three
parameters: the pixel neighborhood radius r, the dimension q of the
space where FastMap projects the mapped data into, and the number
of clusters k.

We consider segmentation maps produced for r =2, 3, 4. The
FastMap dimension is q=20. The number of clusters (i.e. map
colors) is k =10, what by Alexandrov et al. (2010) was found to
be representative for this dataset. Figure 5 shows an optical image
(A), the schematic of the anatomical structure (B), a segmentation
map produced with straightforward clustering of spectra when no
spatial relations between spectra are taken into account (C), and
maps for SA (D–F) and SASA methods (G–I).

First, one can see that for the segmentation maps produced with
both SA and SASA methods reflect the anatomical structure. Some
anatomical regions (cortex, hippocampus, corpus callossum and
internal capsule, amygdala) are very well represented. Note that
the hippocampus has different parts (one in the middle and another
close to amygdala) which still have the same color in the map (mid
blue). Some regions are not well represented, e.g. a thin part of
thalamus which goes around hypothalamus is not visible. However,
as discussed by Alexandrov et al. (2010), this might be not a
computational problem but an underrepresentation of these regions
in the processed IMS dataset.

Second, our methods significantly outperform the straightforward
clustering (Fig. 5C) where strong noise hides details and the whole
anatomical regions. For example, in Figure 5C amygdala are not
separated from hippocampus; hippocampus from the inner part of
cortex and from paraventrical nuclei. Importantly, the noise in the
segmentation map is a technological and computational artifact but
not a property of the brain tissue; for more details on noise in
MALDI-imaging, see (Alexandrov et al., 2010).

Thus, we conclude that the overall quality of the produced
segmentation maps for the rat brain dataset is good. Note the blue
small region interrupting the left part of cortex (Fig. 6, region A).
This represents a tissue slice preparation defect (visible in the optical
image as well) when the thin 10 µm tissue slice was folded during
transferring it onto a glass slide.

3.1.2 Efficiency The efficiency of the segmentation method was
the ultimate goal for us because existing advanced segmentation
methods run several tens of minutes for a dataset. Tens of minutes
seems acceptable because it is still less than the dataset acquisition
time (several hours). However, this does not allow one to use
segmentation interactively, what is of very importance in imaging
applications. Moreover, at the present moment datasets with higher
lateral resolution of 20 µm are becoming to be measured (Lagarrigue
et al., 2010). If the rat brain slice would be measured with 20 µm
resolution (instead of 80 µm used in this article), this would result

i234

 by guest on June 19, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

Fig. 4.3. Rodent brain morphologies. A, Optical image of rat
brain (R1). B, Optical image of mouse brain (R2). C, Optical image
of mouse brain (R3).

The first dataset (R1) is a high-quality image of a rat brain [7,26] which is shown

in Figure 4.3A. Mass spectra were acquired on a Bruker Autoflex III MALDI-TOF

mass spectrometer over the 2,500 to 25,000 m/z range. The images were cropped to

31

remove non-informative spectra, and only the 2,500 to 10,000 m/z range was used.

The reduced dataset consisted of 20,185 mass spectra with 3,045 spectral features.

The mass spectra were normalized to a common total ion current, and baseline cor-

rection was performed using ClinProTools. Cardinal was thereafter used to perform

peak picking to reduce the dataset to 80 peaks. Except for baseline correction and

normalization, all data processing and analysis was done in Cardinal .

The second dataset (R2) is a mouse brain shown in Figure 4.3B. This experiment

produced high quality spectra but with a moderate amount of experimental noise.

Mass spectra were acquired on a Thermo Finnigan LTQ linear ion trap mass spec-

trometer with a DESI ion source over the 200–1,000 m/z range. The images were

cropped to remove non-informative spectra. The cropped dataset consisted of 8,950

mass spectra with 9,600 spectral features. The mass spectra were normalized to a

common total ion current, and peak picking was performed to further reduce the

dataset to 123 peaks. All data processing and analysis was done in Cardinal .

The third dataset (R3) is a mouse brain shown in Figure 4.3C. This dataset fea-

tures a high degree of experimental noise. Mass spectra were acquired using an AB

Sciex MALDI TOF/TOF 5800 System over the 4,000 to 20,000 m/z range. The

images were cropped to remove non-informative spectra. The cropped dataset con-

sisted of 4,923 mass spectra with 22,667 spectral features. The mass spectra were

normalized to a common total ion current, smoothed, and baseline corrected. Peak

picking was then performed to reduce the dataset to 57 peaks. All data processing

and analysis was done in Cardinal .

We will use these datasets to characterize the ability of the results of statistical

analysis to reflect di↵erences in data quality.

4.1.4 Supervised Segmentation: Human Renal Cell Carcinoma

The goal of this experiment was to classify renal tissue specimens as cancer or

normal. In accordance with approved Institutional Review Board protocols at Indiana

32

University School of Medicine, matched pairs of tissue were collected from human

subjects with renal cell carcinoma (RCC), with each pair consisting of cancerous

tissue and adjacent normal tissue [2]. Figure 4.4 shows optical images of the eight

tissue pairs we analyzed. Each tissue was manually annotated as normal or cancerous

by a pathologist. However, the annotations are based on the dominant tissue type for

each whole tissue, so some tissues may contain regions from the non-dominant class.

A B C D

E F G H

Fig. 4.4. Human renal cell carcinoma: morphology. The mor-
phology is characterized by optical images of the H&E stained tissues.
For each matched pair, cancerous tissue is on the left, and normal tis-
sue is on the right.

The mass spectra were collected using a Thermo Finnigan LTQ linear ion trap

mass spectrometer with a DESI ion source over the 150–1,000 m/z range. The images

were cropped to remove non-informative spectra originating from the glass slide. The

cropped dataset consisted of 6,077 mass spectra with 10,200 spectral features. Indi-

vidual tissue samples consisted of between 972 to 3564 mass spectra per matched pair.

The mass spectra were normalized to a common total ion current, and resampled to

unit resolution resulting in 850 spectral features. All data processing and analysis

was performed using Cardinal .

33

A B C D
11

1.18

m/z = 215.25
MH0204_33

14

1.27

m/z = 215.25
UH0505_12

17

1.35

m/z = 215.25
UH0710_33

20

1.64

m/z = 215.25
UH9610_15

E F G H
16

1.3

m/z = 215.25
UH9812_03

28

1.58

m/z = 215.25
UH9905_18

25

1.37

m/z = 215.25
UH9911_05

30

1.62

m/z = 215.25
UH9912_01

Fig. 4.5. Human renal cell carcinoma: normal tissue single ion
images. For each matched pair, cancerous tissue is on the left, and
normal tissue is on the right. 215.25 m/z is known to be more abun-
dant in normal tissue [2]. Note that some of the cancerous tissues ap-
pear to have regions of normal tissue, such as samples B, UH0505 12,
C, UH0710 33, and F, UH9905 18.

Figure 4.5 shows single ion images for 215.3 m/z, which is an ion known to be

more abundant in normal tissue, and Figure 4.6 shows single ion images for 885.7

m/z, which is known to be more abundant in cancerous tissue [2]. Some tissues

appear to exhibit heterogeneity, such as the abundance of 215.3 m/z along the edge

of the cancerous tissue in sample UH0505 12 (Figure 4.5B). We will use this dataset

to demonstrate the ability of the proposed framework to perform classification, while

selecting spectral features important in distinguishing the disease condition.

34

A B C D
97

1.9

m/z = 885.67
MH0204_33

69

2.66

m/z = 885.67
UH0505_12

118

2.5

m/z = 885.67
UH0710_33

93

6.49

m/z = 885.67
UH9610_15

E F G H
101

2.79

m/z = 885.67
UH9812_03

50

2.69

m/z = 885.67
UH9905_18

74

1.42

m/z = 885.67
UH9911_05

79

1.89

m/z = 885.67
UH9912_01

Fig. 4.6. Human renal cell carcinoma: cancer tissue single
ion images. For each matched pair, cancerous tissue is on the left,
and normal tissue is on the right. 885.67 m/z is known to be more
abundant in cancerous tissue [2]. Note that some of the normal tissues
appear to have regions of cancerous tissue, such as the left edge of
sample E, UH9812 03.

4.2 Evaluation for Spatial Shrunken Centroids

4.2.1 Spatial Probabilistic Modeling Improves the Quality of Segmenta-

tion over Per-Pixel Segmentation

Spatial segmentations for the pig fetus cross-section dataset are illustrated in

Figure 4.7, which compares results from existing segmentation methods with the pro-

posed segmentation method. In Figure 4.7A, k-means clustering was applied to the

peak-picked spectra, resulting in a noisy segmentation. The heart is not assigned to a

unique segment. Figure 4.7B shows k-means clustering applied to the first five princi-

pal components of the peak-picked spectra, which also results in a noisy segmentation,

again without the heart represented as a unique segment. Figure 4.7C and Figure 4.7D

show the spatially-aware clustering and spatially-aware structurally-adaptive cluster-

ing of Alexandrov and Kobarg [7], which both result in cleaner segmentations with

35

clearer edges between segments. The heart is assigned to a unique segment in both

segmentations, as well as the brain and liver. All of the methods above require a pre-

determined number of segments, which was set to 6, based on the procedure described

in Section 4.2.2. Figure 4.7E and Figure 4.7F show the proposed spatial shrunken

centroids segmentation method with SA and SASA distances, which produce clean

segmentations comparable to those in Figure 4.7C and Figure 4.7D. The number of

segments for these methods was initialized to 20, and resulted in 6 segments in the

final segmentations, as described in Section 4.2.2. In addition, the segmentations in

Figure 4.7E and Figure 4.7F are more similar to each other than those in Figure 4.7C

and Figure 4.7D, suggesting that the proposed spatial shrunken centroids method

produces more consistent results across di↵erent types of spatial smoothing.

Spatial segmentations of the cardinal painting are illustrated in Figure 4.8, which

demonstrates the performance of existing and proposed methods compared to the

ground truth.. In Figure 4.8A, k-means clustering was applied to the peak-picked

spectra, resulting in a noisy segmentation. The face (black feathers) are not rep-

resented as a unique segment. Figure 4.8B shows k-means clustering applied to the

first five principal components of the peak-picked spectra, which also results in a noisy

segmentation, but with all parts of the painting represented as segments. Figure 4.8C

and Figure 4.8D show the spatially-aware clustering and spatially-aware structurally-

adaptive clustering of Alexandrov and Kobarg [7], which both result in cleaner seg-

mentations with clearer edges between segments. The methods above, which require

a predetermined number of segments, were set to 8 segments. Figure 4.8E and Fig-

ure 4.8F show the proposed spatial shrunken centroids segmentation method with SA

and SASA distances, which produce clean segmentations comparable for Figure 4.8C

and Figure 4.8D. The proposed method was initialized to 10 segments, resulting in 8

segments in the final segmentations.

36

A B
K−means PCA + K−means

C D
SA + K−means SASA + K−means

E F
SA + Shrunken Centroids SASA + Shrunken Centroids

Fig. 4.7. Pig fetus cross-section: segmentation comparison.
A, K-means clustering applied to the peak-picked spectra. B, K-
means clustering applied to the first five principal components of the
peak-picked spectra. C, Spatially-aware (SA) clustering. D, Spatially-
aware structurally-adaptive (SASA) clustering. E, Spatial shrunken
centroids with SA distance. F, Spatial shrunken centroids with SASA
distance.

37

A B
K−means PCA + K−means

C D
SA + K−means SASA + K−means

E F
SA + Shrunken Centroids SASA + Shrunken Centroids

Fig. 4.8. Cardinal painting: segmentation comparison. A, K-
means clustering applied to the peak-picked spectra. B, K-means
clustering applied to the first five principal components of the peak-
picked spectra. C, Spatially-aware (SA) clustering. D, Spatially-aware
structurally-adaptive (SASA) clustering. E, Spatial shrunken cen-
troids with SA distance. F, Spatial shrunken centroids with SASA.

38

4.2.2 Statistical Regularization Enables Data-Driven Selection of the Num-

ber of Segments for Unsupervised Experiments

The selection of the number of segments for the pig fetus cross-section dataset is

illustrated in Figure 4.9. Figure 4.9A shows the predicted number of segments for

increasing shrinkage parameter s for spatial shrunken centroids with the spatially-

aware (SA) distance. Figure 4.9B shows the same for spatial shrunken centroids

with the spatially-aware structurally-adaptive (SASA) distance. The method was

initialized for spatial smoothing radii r = 1 and r = 2, and for starting number of

segments K = 15 and K = 20. The shrinkage parameter s was increased from 0 to 9

in increments of 3.

To identify segmentations with the most appropriate number of segments, we

first look for where the predicted number of segments become similar across di↵erent

numbers of starting segments K. When this happens, only meaningful segments

should remain. This occurs around s = 3. Next, we look for where the predicted

number of segments stabilizes, which should correspond with an“elbow” in the graph,

similar to a scree plot. For Figure 4.9A, this occurs at s = 6, but for Figure 4.9B,

this may occur earlier at Figure 4.9B s = 3.

Figure 4.9C–F show the segmentions resulting for increasing shrinkage parameter

s for spatial smoothing radius r = 2 and starting number of segments K = 20.

The selection of the number of segments for the cardinal painting dataset is il-

lustrated in Figure 4.10. Figure 4.10A shows the predicted number of segments for

increasing shrinkage parameter s for spatial shrunken centroids with SA distance. Fig-

ure 4.10B shows the same for spatial shrunken centroids with SASA distance. The

method was initialized for spatial smoothing radii r = 1 and r = 2, and for starting

number of segments K = 10 and K = 15. The shrinkage parameter s was increased

from 0 to 9 in increments of 3. For both versions, the segmentations begin to stabilize

around s = 3.

39

A B

0 2 4 6 8

6
8

10
12

14
16

18

Shrinkage parameter (s)

Pr
ed

ic
te

d

of
 C

la
ss

es

●

●

●

●

●

●

● ●

●

●

r = 1, k = 15
r = 2, k = 15
r = 1, k = 20
r = 2, k = 20

0 2 4 6 8

6
8

10
12

14
16

18
20

Shrinkage parameter (s)

Pr
ed

ic
te

d

of
 C

la
ss

es

●

●

● ●

●

●

●

●

●

●

r = 1, k = 15
r = 2, k = 15
r = 1, k = 20
r = 2, k = 20

C D

r = 2, k = 20, s = 0 r = 2, k = 20, s = 3

E F

r = 2, k = 20, s = 6 r = 2, k = 20, s = 9

Fig. 4.9. Pig fetus cross-section: selection of the number of
segments. A, Spatially-aware (SA) distance. B, Spatially-aware
structurally-adaptive (SASA) distance. C–F, Segmentations using SA
distance with smoothing radius of 2 and 20 initial segments, for in-
creasing sparsity parameter s. C, s = 0, D, s = 3, E, s = 6, F, s =
9.

Figure 4.10C–F show the segmentions resulting for increasing shrinkage parameter

s for spatial smoothing radius r = 2 and starting number of segments K = 15.

40

A B

0 2 4 6 8

7
8

9
10

11
12

13
14

Shrinkage parameter (s)

Pr
ed

ic
te

d

of
 C

la
ss

es

●

●

● ●

●

● ● ●

●

●

r = 1, k = 10
r = 2, k = 10
r = 1, k = 15
r = 2, k = 15

0 2 4 6 8

6
7

8
9

10
11

12
13

Shrinkage parameter (s)

Pr
ed

ic
te

d

of
 C

la
ss

es

●

●

●

●

●

●

●

●

●

●

r = 1, k = 10
r = 2, k = 10
r = 1, k = 15
r = 2, k = 15

C D

r = 2, k = 15, s = 0 r = 2, k = 15, s = 3

E F

r = 2, k = 15, s = 6 r = 2, k = 15, s = 9

Fig. 4.10. Cardinal painting: selection of the number of
segments. A, Spatially-aware (SA) distance. B, Spatially-aware
structurally-adaptive (SASA) distance. C–F, Segmentations using SA
distance with smoothing radius of 2 and 20 initial segments, for in-
creasing sparsity parameter s. C, s = 0, D, s = 3, E, s = 6, F, s =
9.

41

4.2.3 Feature Selection Aids Interpretation by Automatically Selecting

Spectral Features Associated with Di↵erentiating Each Segment

from Others

For the pig fetus cross-section segmentation from Figure 4.7E, the selected spec-

tral features using the proposed spatial shrunken centroids segmentation method are

shown in Figure 4.11. Feature selection is shown for the brain, heart, and liver seg-

ments, along with their corresponding t-statistics and top-ranked single ion images.

Note that each unsupervised or supervised segment is characterized by its own re-

duced subset of informative features. Some features may be found informative for

multiple segments, and some features may be found informative for no segment. For

the brain segment, 49 spectral features were systematically enriched, and 54 features

were systematically absent. For the heart segment, 7 spectral features were system-

atically enriched, and 1 feature was systematically absent. For the liver segment, 41

spectral features were systematically enriched, and 74 features were systematically

absent. Compared to the brain and liver segments, the heart had very few spectral

features associated with it.

For the cardinal painting segmentation from Figure 4.8E, the selected spectral fea-

tures using the proposed spatial shrunken centroids segmentation method are shown

in Figure 4.12. Feature selection is shown for the text, body, and wing segments,

along with their corresponding t-statistics and top-ranked single ion images. For the

text segment, 4 spectral features were systematically enriched, and 27 features were

systematically absent. For the body segment, 12 spectral features were systemati-

cally enriched, and 36 features were systematically absent. For the wing segment, 13

spectral features were systematically enriched, and 20 features were systematically

absent.

42

A B C

D E F

200 400 600 800

−3
0

−1
0

10
30

m z

br
ai

n
t−

st
at

is
tic

s

200 400 600 800−4
0

−2
0

0
20

40

m z

he
ar

t t
−s

ta
tis

tic
s

200 400 600 800

−4
0

−2
0

0
20

40

m z

liv
er

 t−
st

at
is

tic
s

G H I

36.6

0

m/z = 834.5
188.7

0

m/z = 187.33
43.11

0

m/z = 537.25

Fig. 4.11. Pig fetus cross-section: t-statistics and representa-
tive single ion images. A–C The predicted segment membership
probabilities from spatial shrunken centroids with SA distance. A,
the brain segment, B, the heart segment, and C, the liver segment.
D–F The shrunken t-statistics of the spectral features. D, the brain
segment, E, the heart segment, and F, the liver segment. G–I The
single ion images corresponding with the top-ranked spectral feature
by shrunken t-statistic. G, the brain segment, H, the heart segment,
and I, the liver segment.

43

A B C

D E F

100 200 300 400 500 600

−6
0

−2
0

20
60

m z

te
xt

 t−
st

at
is

tic
s

100 200 300 400 500 600

−5
0

0
50

m z

bo
dy

 t−
st

at
is

tic
s

100 200 300 400 500 600

−6
0

−2
0

20
60

m z

w
in

g
t−

st
at

is
tic

s

G H I

725.69

0

m/z = 649.17
420.81

0

m/z = 207.08
295.08

0

m/z = 235

Fig. 4.12. Cardinal painting: t-statistics and representative
single ion images. A–C The predicted segment membership proba-
bilites from spatial shrunken centroids with SA distance. A, the text
segment, B, the body segment, and C, the wing segment. D–F The
shrunken t-statistics of the spectral features. D, the text segment, E,
the body segment, and F, the wing segment. G–I The single ion im-
ages corresponding with the top-ranked spectral features by shrunken
t-statistic. G, the text segment, H, the body segment, and I, the wing
segment.

44

4.2.4 Probabilistic Modeling Allows for Characterization and Visual In-

spection of Uncertainty in Segment Membership in Unsupervised

Experiments

The rodent brain datasets of varying quality were used to evaluate the ability of

the proposed method to visually display uncertainty in its resulting segmentations.

Because spatial shrunken centroids segmentation results in probabilities of segment

membership, using transparency to reflect this probabability creates a straightforward

way of visually assessing uncertainty in a segmentation. Segmentations for the 3

rodent brain datasets are compared in Figure 4.13.

Spatial shrunken centroids segmentation was performed for each rodent brain

dataset with increasing shrinkage parameter (s), and the “best” segmentations were

plotted in Figure 4.13D–F using the criteria described in Section 4.2.2 for selecting an

appropriate number of segments. This resulted in 5 segments for both the rat brain

(R1) with little noise, 3 segments for the mouse brain (R2) with moderate noise, and

3 segments for the mouse brain (R3) with strong noise. For the strongly noisy mouse

brain (R3), there was no clearly appropriate parameter set, as shown in Figure 4.13C.

Even for K = 10 starting segments, s = 0 resulted in only 2 predicted segments, and

the predicted number of segments actually increased to 3 temporarily as s was in-

creased before dropping to 2 again. This reflects the lower quality of the information

in this brain dataset.

For the sake of comparison, the shrinkage parameter s was further increased past

the point of stabilization until the predicted number of segments eventually dropped

to only 2 segments. That is, more and more spectral features were excluded from

the segmentation until the remaining ones only explained 2 segments. These segmen-

tations are plotted in Figure 4.13G–I. For the rat brain (R1) with little noise, this

occured at s = 25. For the mouse brain (R2) with moderate noise, this occured at

s = 28. For the mouse brain (R3) with strong noise, this occured at s = 0, reflecting

the lesser amount of information in the data.

45

A B C

0 5 10 15 20 25

2
3

4
5

6
7

8

Shrinkage parameter (s)

Pr
ed

ic
te

d

of
 C

la
ss

es

● ●

● ● ●

●

● r = 2, k = 5
r = 2, k = 10

0 5 10 15 20 25 30 35

2
4

6
8

10

Shrinkage parameter (s)

Pr
ed

ic
te

d

of
 C

la
ss

es

● ●

● ●

●

●

● r = 3, k = 5
r = 3, k = 10

0 1 2 3 4 5

2.
0

2.
5

3.
0

3.
5

4.
0

Shrinkage parameter (s)

Pr
ed

ic
te

d

of
 C

la
ss

es

● ●

●

● ● ●

● r = 2, k = 5
r = 2, k = 10

D E F

r = 2, k = 10, s = 5 r = 3, k = 10, s = 28 r = 2, k = 10, s = 0

G H I

r = 2, k = 10, s = 25 r = 3, k = 5, s = 35 r = 2, k = 5, s = 0

Fig. 4.13. Comparison of segmentation uncertainty in datasets
of di↵ering quality. A–C show the predicted number of segments as
the sparsity increases. A, rat brain (R1) with little noise. B, mouse
brain (R2) with moderate noise. C, mouse brain (R3) with strong
noise. D–F show the “best” segmentations selected by choosing the
first (least sparse) segmentation after which the predicted number
of segments are approximately equal for di↵erent initial numbers of
segments. D, rat brain (R1). E, mouse brain (R2). F, mouse brain
(R3). G–I show the segmentations resulting in 2 predicted segments
through increasing sparsity. G, rat brain (R1). H, mouse brain (R2).
H, mouse brain (R3).

46

4.2.5 Classification in Supervised Experiments

Classification of the human RCC dataset using the proposed method is illustrated

in Figure 4.14 for two of the matched pairs. Eight-fold cross-validation was used to

select the shrinkage parameter, as illustrated in Figure 4.15. Spatial shrunken cen-

troids achieves 88.9% cross-validated accuracy, defined as correctly classifying pixels

as cancer or normal with respect to the manual annotation of the entire tissue. By

comparison, PLS-DA applied to the same dataset achieves 96.8% cross-validated ac-

curacy, and O-PLS-DA achieves 95.4%.

A B C D

cancer
normal

cancer
normal

cancer
normal

cancer
normal

E F G H

cancer
normal

cancer
normal

cancer
normal

cancer
normal

Fig. 4.14. Human renal cell carcinoma: classification. For each
matched pair, cancerous tissue is on the left, and normal tissue is on
the right. Transparency is used to show the predicted probabilities
based on spatial shrunken centroids classification. The parameters
used were r = 3, s = 20, selected by cross-validation, as illustrated in
Figure 4.15.

A clear advantage of spatial shrunken centroids for classification is its selection

of informative features that di↵erentiate each class, as shown in Figure 4.16C. Un-

like PLS-DA and O-PLS-DA, which use all features, making interpretation di�cult,

spatial shrunken centroids only uses the features that best distinguish each class.

Among the selected features, the top ion associated with cancerous tissue was 885.7

47

0 5 10 15 20 25

0.
82

0.
84

0.
86

0.
88

Shrinkage parameter (s)

Ac
cu

ra
cy

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

r = 1, k = 2
r = 2, k = 2
r = 3, k = 2

Fig. 4.15. Human renal cell carcinoma: cross-validation. The
highest cross-validated accuracy rate was for r = 3, s = 20 with 88.9%
accuracy, defined as correctly classifying a pixel as cancer or normal.
Each slide was treated as its own fold in 8-fold cross-validation, i.e.,
leave-one-sample-out cross-validation.

m/z, which is known to be more abundant in cancer [2]. The top ion associated

with normal tissue was 215.3 m/z, which is known to be more abundant in normal

tissue [2].

A B C

200 400 600 800 1000

0
5

10
15

20

m z

in
te
ns
ity

r = 3, k = 2, s = 20

200 400 600 800 1000

0
5

10
15

20

m z

in
te
ns
ity

r = 3, k = 2, s = 20

200 400 600 800 1000

−2
0

−1
0

0
10

20

m z

t−
st
at
is
tic

r = 3, k = 2, s = 20 cancer
normal

Fig. 4.16. Human renal cell carcinoma: shrunken centroids
and t-statistics. A, the shrunken centroids for cancerous tissue. B,
the shrunken centroids for normal tissue. C, the shrunken t-statistics
for normal and cancerous tissue, showing 215m/z (t0

normal,215 = 18.83)
is strongly associated with normal tissue, and 886 m/z (t0

cancer,886 =
15.9) is strongly associated with cancerous tissue.

48

Another advantage of spatial shrunken centroids is the estimation of probabilities

of class membership. Plotting these probabilities with transparency allows visual

assessment of the confidence in the prediction. This can help pinpoint heterogeneous

regions of the individual tissues, and possible inconsistencies in manual whole-tissue

annotations. For example, in Figure 4.14B, the tumor tissue (left) shows an indistinct

border of normal tissue along the left side, and in Figure 4.14E, the normal tissue

(right) shows an indistinct border of tumor tissue along the left side. These borders are

defined by ions known to be associated with cancer and normal tissue [2] (Figure 4.5

and Figure 4.6). Therefore, the manual annotation may be imprecise, and PLS-DA

and O-PLS-DA may be overfitting.

4.3 Discussion of Spatial Shrunken Centroids

Spatial shrunken centroids is a general statistical framework for both unsupervised

segmentation and supervised classification of MS imaging experiments. For unsuper-

vised segmentation, it produces better segmentations than k-means clustering of the

mass spectra, or k-means clustering of their principal components. It outputs prob-

abilities of segment membership, and therefore helps characterize and visualize the

uncertainty in the segmentation. It automatically selects the total number of seg-

ments, as well as subsets of informative features that define each segment to provide

more interpretable results. For supervised classification spatial shrunken centroids

achieves similar accuracy as compared to commonly used methods such as PLS-DA

and O-PLS-DA. However, similarly to the unsupervised segmentation, it character-

izes and visualizes the uncertainty of segment membership, and subsets of informative

features that define each class.

Spatial shrunken centroids is designed to work with data obtained after signal

processing. It takes as input a set of previously detected, quantified, aligned and

normalized features, and is not designed for detecting such features from the raw

data anew. Also, spatial shrunken centroids does not require a previous identification

49

on the underlying analytes. The approach only aims at interpreting the quantitative

information in the spectra, and this can be done with or without the knowledge of

the analyte identity. However, spatial shrunken centroids can potentially enhance the

process of identification. For example, the informative subsets of features selected in

each segment or class can reduce the possible search space of analytes that we would

like to identify.

This framework is implemented in the open-source R package Cardinal [8]. We

hope that the flexibility, versatility, and e�ciency of the method will make it a useful

tool for biological and clinical investigations.

50

5. CARDINAL: OPEN-SOURCE SOFTWARE FOR

ANALYSIS OF MS IMAGING EXPERIMENTS

5.1 Overview of Cardinal

Cardinal is a free and open-source R package for processing, visualization, and

statistical analysis of MS imaging experiments of biological samples such as tissues. It

di↵ers from existing software in its focus on statistical analysis and experiments. The

companion data package CardinalWorkflows includes the pig fetus, cardinal painting,

and human RCC datasets described in Chapter 4.

Cardinal contributes statistical methods and statistical computing infrastructure,

with a focus on e�ciency and scalability.

5.1.1 Applicability and Requirements

Cardinal is applicable to experiments aiming at segmentation and classification of a

single tissue, or multiple tissues collected across biological subjects. It is applicable to

both DESI and MALDI workflows, and for analyzing either intact or in-situ digested

proteins and lipids. Cardinal has been tested on raw MS1 spectra from Thermo LTQ

linear ion trap, ABSciex TOF/TOF, and Bruker Autoflex MALDI-TOF instruments

with resolving powers ranging from 1,000 to 22,000. Cardinal is compatible with

Windows, Mac and Linux operating systems. The size of the input dataset must be

such that it can be loaded entirely into computer memory. Cardinal runs optimally

when the available memory is twice the size of the dataset.

51

5.1.2 Data Import, Processing and Visualization

Cardinal supports input data in the imzML format [9], and the Analyze7.5 for-

mat. Free converters to imzML are available for most other formats at www.imzml.org,

and the converted imzML input data can be read into Cardinal .

Cardinal implements a complete set of common spectral processing methods [12],

including normalization (e.g., using total ion current), baseline correction (e.g., using

median interpolation), peak detection (e.g., using LIMPIC [14]), and peak alignment

(e.g., using mean spectrum).

Cardinal visualizes mass spectra, molecular ion images, and results of the statis-

tical analyses. The images are optimized with contrast enhancement and smoothing.

The plots can be conditioned on experimental metadata (such as the type of the tis-

sue), and viewed separately using a grid layout with multiple conditions, or jointly in

a superposition.

5.1.3 Functionalities for Statistical Analysis

For unsupervised segmentation, Cardinal implements several existing methods,

e.g. principle component analysis (PCA), and spatially-aware (SA) and spatially-

aware structurally-adaptive (SASA) clustering [7]. Cardinal also implements the novel

method spatial shrunken centroids, discussed in Section 3 and Section 4, for model-

based unsupervised image segmentation.

For supervised classification, Cardinal implements partial least squares discrimi-

nant analysis (PLS-DA) and orthogonal projections to latent structures discriminant

analysis (OPLS-DA) [2, 3]. Cardinal also implements the supervised version of spa-

tial shrunken centroids for model-based image classification, which utilizes the same

principles as the model-based image segmentation but works in a supervised manner.

For all the methods, Cardinal automates the estimation of classification error rate by

(cross-)validation.

52

5.1.4 Implementation and Performance

Cardinal employs e�cient data structures to store the data and the metadata, and

optimized methods for data manipulation. As a result, Cardinal can be used with

any dataset that fits in the computer memory. For example, for a dataset with 28,016

pixels that was 2.2 GB before peak picking, and for which the processed version was

63.7 MB after the peak picking, computation of the first 20 principal components

took 86.9 sec on the raw data and 4.3 sec on the picked peaks on a MacBook Pro

with a 2.6 GHz Intel Core i7 and 16 GB memory. Segmentation with spatial shrunken

centroids on the picked peaks took 241 sec (shortest) to 827 sec (longest), depending

on the initial values of regularization parameters and the number of clusters, on the

same computer.

Cardinal facilitates the development of new functionalities, and interoperability

with other software. For example, raw mass spectra can be stored as either a R matrix,

or as any matrix-like object, such as a sparse matrix. Most of the processing methods

utilize an extendable framework pixelApply, similar to the apply family of methods

in R. The ResultSet data structure allows the developers to store the results of any

analyses, and directly access the Cardinal ’s plotting capabilities. Cardinal also has

functions for simulating mass spectra, to assist method testing. It is publicly available

at part of the Bioconductor at www.bioconductor.org.

5.2 Design and Implementation of Cardinal

Cardinal is designed with two primary purposes in mind: (1) to provide an environ-

ment for experimentalists for the handling, pre-processing, analysis, and visualization

of mass spectrometry-based imaging experiments, and (2) to provide an infrastructure

for computationalists for the development of new computational methods for mass

spectrometry-based imaging experiments.

Although MS imaging has attracted the interest of many statisticians and com-

puter scientists, and a number of algorithms have been designed specifically for such

53

experiments, most of these methods remain unavailable to experimentalists, because

they are often either proprietary, or di�cult for non-experts use. Additionally, the

complexity of MS imaging creates a significant barrier to entry for developers. Car-

dinal aims to remove this hurdle, by providing R developers with an accessible way

to handle MS imaging data.

5.2.1 S4 Classes

Cardinal extensively uses R’s object-oriented S4 class system to handle data and

metadata from MS imaging experiments. This section describes the classes used by

Cardinal .

The iSet object is the foundational data structure of Cardinal .

• similar to eSet in Biobase and pSet in MSnbase (from Bioconductor).

• coordinates high-throughput imaging data, feature data, pixel data, and exper-

imental metadata.

• provides an interface for manipulating data from imaging experiments.

Just as eSet from Biobase coordinates gene expression data and pSet fromMSnbase

coordinates proteomics data, iSet coordinates imaging data. It is a virtual class, so

it is used only through its subclasses.

MSImageSet is a subclass of iSet, and is the primary data structure used in Car-

dinal . It is designed to coordinate data from mass spectrometry-based imaging ex-

periments. It contains mass spectra (or mass spectral peaks), feature data (including

m/z values), pixel data (including pixel coordinates and phenotype data), and other

metadata. When a raw MS image data file is read into Cardinal , it is turned into

an MSImageSet, which can then be used with Cardinal ’s methods for pre-processing,

analysis, and visualization.

MSImageData is the class responsible for coordinating the mass spectra themselves,

and reconstructing them into images when necessary. Every MSImageSet has an

54

imageData slot containing an MSImageData object. It is similar to the assayData

slot in Biobase, in that it uses an environment to store large high-throughput data

more e�ciently in memory, without R’s usual copy-on-edit behavior.

IAnnotatedDataFrame extends the Biobase AnnotatedDataFrame class by mak-

ing a distinction between pixels and samples. An IAnnotatedDataFrame tracks pixel

data, where each row corresponds to a single pixel, and each column corresponds to

some measured variable (such as phenotype). An MSImageSet may contain multi-

ple samples, where each sample is a single image, and possibly thousands of pixels

corresponding to each sample.

ResultSet is a class for containing results of analyses performed on iSet objects.

A single ResultSet object may contain results for multiple parameter sets. Using a

ResultSet provides users and developers with a standard way of viewing and plotting

the results of analyses.

Together, these classes (along with a few others) provide a useful way of accessing

and manipulating MS imaging data while keeping track of important experimental

metadata.

iSet: High-Throughput Imaging Experiments

Inspired by eSet in Biobase and pSet in MSnbase, the virtual class iSet provides

the foundation for other classes in Cardinal . It is a generic class for the storage of

imaging data and experimental metadata.

Structure:

• imageData: high-throughput image data

• pixelData: pixel covariates (coordinates, sample, phenotype, etc.)

• featureData: feature covariates (m/z, protein annotation, etc.)

• experimentData: experiment description

• protocolData: sample protocol

55

Of particular note is the imageData slot for the storing of high-throughput image

data, which will be discussed further in Section 5.2.1, and the pixelData slot, which

will be discussed further in Section 5.2.1.

SImageSet: Pixel-Sparse Imaging Experiments

SImageSet extends iSet without extending its internal structure. SImageSet

implements methods assuming that the structure of imageData is a (# of features) x

(# of pixels) matrix, where each column corresponds to a pixel’s feature vector (e.g.,

a single mass spectrum), and each row corresponds to a vector of flattened image

intensities.

SImageSet further assumes that there may be a number of missing pixels in the

experiment. This is useful for non-rectangular images, and experiments with multiple

images of di↵erent dimensions.

MSImageSet: Mass Spectrometry-based Imaging Experiments

MSImageSet extends SImageSet with mass spectrometry-specific features, includ-

ing expecting m/z values to be stored in the featureData slot. This is the pri-

mary class in Cardinal for handling MS imaging experiments. It also adds a slot

processingData for tracking the what pre-processing has been applied to the dataset.

ImageData: High-Throughput Image Data

iSet and all of its subclasses have an imageData slot for storing the high-throughput

image data. This must be an object of class ImageData or one of its subclasses.

Similar to the assayData slot in eSet from Biobase and pSet from MSnbase,

ImageData uses an environment as its data slot to store data objects in memory

more e�ciently, and bypass R’s usual copy-on-edit behavior. Because these data

elements of ImageData may be very large, editing any metadata in an iSet object

56

would trigger expensive copying of these large data elements if a usual R list were

used. Using an environment avoids this behavior.

ImageData makes no assumptions about the class of objects that make up the

elements of its data slot, but they must be array-like objects that return a positive-

length vector to a call to dim. These data elements must also have the same number

of dimensions, but they may have di↵erent extents.

Structure:

• data: high-throughput image data

• storageMode: mode of the data environment

Similar to assayData, the elements of ImageData can be stored in three di↵erent

ways. These are as a immutableEnvironment, lockedEnvironment, or environment.

The modes lockedEnvironment and environment behave the same as for assayData

in Biobase andMSnbase. Cardinal introduces immutableEnvironment, which is a com-

promise between the two. When the storage mode is immutableEnvironment, only

changing the values of the elements of ImageData directly will trigger copying, while

changing object metadata will not trigger copying.

SImageData: Pixel-Sparse Imaging Experiments

While ImageData makes very few assumptions about the objects that are the

elements of its data slot, its subclass SImageData expects a very specific structure to

its data elements.

SimageData expects at least one element named“iData”(accessed by iData) which

is a (# of features) x (# of pixels) matrix, where each column is a feature vector (i.e.,

a single mass spectrum) associated with a single pixel, and each row is a vector of

flattened image intensities. Additional elements should follow the same structure,

with the same dimensions.

Structure:

57

• data: high-throughput image data

• storageMode: mode of the data environment

• coord: data.frame of pixel coordinates.

• positionArray: array mapping coordinates to pixel column indices

• dim: dimensions of array elements in data

• dimnames: dimension names

SimageData implements methods for re-constructing images from the rows of flat-

tened image intensities on-the-fly. In addition, it assumes the images may be pixel-

sparse. This means data for missing pixels does not need to be stored. Instead, the

positionArray slot holds an array of the same dimension as the true dimensions

of the imaging dataset, i.e., the maximum of each column of coord. For each pixel

coordinate from the true image, the positionArray stores the index of the column

for which the associated feature vector is stored in the matrix elements of data.

This allows transforming the image (e.g., changing the pixel coordinates such as

transposing the image, rotating it, etc.) without editing (and thereby triggering R

to make a copy of) the (possibly very large) data matrix elements in data. This

also means that it doesn’t matter what order the pixels’ feature vectors (e.g., mass

spectra) are stored.

MSImageData: Mass Spectrometry Imaging Data

MSImageData is a small extension of SImageData, which adds methods for access-

ing additional elements of data specific to mass spectrometry. There are an element

named “peakData” (accessed by peakData) for storing the intensities of peaks, and

“mzData” (accessed by mzData) for storing the m/z values of peaks. Generally, these

elements will only exist after peak-picking has been performed. (They may not exist

58

if the data has been reduced to contain only peaks, i.e., if the“iData”element consists

of peaks rather than full mass spectra.)

The “peakData” and “mzData” elements (when they exist) are usually objects of

class Hashmat.

Hashmat: Compressed-Sparse Column Matrices

The Hashmat class is a compressed-sparse column matrix implementation designed

to store mass spectral peaks e�ciently alongside full spectra, and allow dynamic

filtering and re-alignment of peaks without losing data.

Structure:

• data: sparse data matrix elements

• keys: identifiers of non-zero elements

• dim: dimensions of (full) matrix

• dimnames: dimension names

In a Hashmat object, the data slot is a list where each element is a column of the

sparse matrix, represented by a named numeric vector. The keys slot is a character

vector. The columns of the dense matrix are reconstructing by indexing each of the

named vectors in data by the keys. This means that a Hashmat can store matrix

elements that are selectively zero or non-zero depending on the keys.

In the context of mass spectral peak-picking, this means that each sparse column

is a vector of mass spectral peaks. Peaks can be filtered (e.g., removing low-intensity

peaks) or aligned (e.g., to the mean spectrum) loss-lessly, by changing the keys.

Filtering peaks simply means deleting a key, while peak alignment simply means re-

arranging the keys. Additionally, the dimension of the dense matrix will be the same

as the full mass spectra, while requiring very little additional storage.

59

IAnnotatedDataFrame: Pixel Metadata for Imaging Experiments

IAnnotatedDataFrame is extension of AnnotatedDataFrame from Biobase. It

serves as the pixelData slot for iSet and its subclasses. In an AnnotatedDataFrame,

each row corresponds to a sample. However, in an IAnnotatedDataFrame, each row

instead corresponds to a pixel.

In an imaging experiment, each image is a sample, and a single image is composed

of many pixels. Therefore, IAnnotatedDataFrame may have very many pixels, but

have very few (or even just a single) sample.

An IAnnotatedDataFrame must have a column named “sample”, which is a fac-

tor, and gives the sample to which each pixel belongs.

For an IAnnotatedDataFrame, pixelNames retrieves the row names, while sampleNames

retrieves the levels of the “sample” column.

In addition, varMetadata must have a column named “labelType”, which is a

factor, and takes on the values “pheno”, “sample”, or “dim”. If a variable is “dim”,

then it describes pixel coordinates; if a variable is “sample”, then the variable is the

“sample” column and it is not currently acting as a pixel coordinate; if a variable is

“pheno”, then it is describing phenotype.

Note that the “sample” column may sometimes act as a pixel coordinate, in which

case its “labelType” will be “dim”, while all other times its “labelType” will be “sam-

ple”.

MIAPE-Imaging: Minimum Information about a Proteomics Experiment for

MS imaging

For MSImageSet objects, the experimentData slot must be an object of class

MIAPE-Imaging. That is the Minimum Information About a Protemics Experiment

for Imaging. Most of its unique slots are based on the imzML specification [9].

60

MSImageProcess: Mass Spectral Pre-processing Information

MSImageSet objects also have a processingData slot, which must be an object

of class MSImageProcess. This gives information about the pre-processing steps that

have been applied to the dataset. All of the standard pre-processing methods in Car-

dinal will fill in processingData with the appropriate processing type automatically.

ResultSet: Analysis Results for Imaging Experiments

ResultSet is a subclass of iSet, and is used to store the results of analyses applied

to iSet and iSet-derived objects.

In addition to the usual iSet slots, a ResultSet also has a resultData slot, which

is a list used to store results, and a modelData slot, which describes the parameters

of the fitted model. The ResultSet class assumes that multiple models may be fit

(i.e., multiple parameter sets over a grid search). Therefore, each element of the

resultData list should be another list containing the results for a single model,

and each row of modelData should describe the parameters for that one model.

5.2.2 Visualization

Cardinal implements a powerful graphics interface inspired by the lattice graphics

package’s implementation of trellis plots [27]. Both Cardinal ’s image method for

plotting of images and its plot method for plotting of mass spectra take formulas that

allow conditioning on grouping variables, as well as other lattice-inspired arguments

that enable simple formulations for creating complex plots.

To demonstrate a subset of Cardinal ’s plotting functionality, we will use the

cardinal painting dataset described in Section 4.1 and shown Figure 4.2. We load

the dataset from the companion data package CardinalWorkflows , and request the

top 9 features selected by spatial shrunken centroids (by greatest t-statistic) in the

segmentation shown in Figure 4.8E.

61

> library(CardinalWorkflows)

> data(cardinal, cardinal_analyses)

> top <- topLabels(cardinal.sscg, model=list(r=1, k=10, s=3), n=9)

Now we plot their molecular ion images with contrast enhancement via histogram

equalization, and normalizing their intensities so that each ion image has the same

intensity range.

> image(cardinal, mz=top$mz, plusminus=0.5, normalize.image="linear",

+ contrast.enhance="histogram", layout=c(3,3))

20 40 60 80 100 120

10
0

80
60

40
20

0

x

y

100

1.15

m/z = 207.08

20 40 60 80 100 120

10
0

80
60

40
20

0

x

y

100

1.15

m/z = 235

20 40 60 80 100 120

10
0

80
60

40
20

0

x

y

100

1.15

m/z = 255.25

20 40 60 80 100 120

10
0

80
60

40
20

0

x

y

100

1.15

m/z = 265.17

20 40 60 80 100 120

10
0

80
60

40
20

0

x

y

100

1.15

m/z = 277.25

20 40 60 80 100 120

10
0

80
60

40
20

0

x

y

100

1.15

m/z = 291.25

20 40 60 80 100 120

10
0

80
60

40
20

0

x

y

100

1.15

m/z = 327.25

20 40 60 80 100 120

10
0

80
60

40
20

0

x

y

100

1.15

m/z = 418.83

20 40 60 80 100 120

10
0

80
60

40
20

0

x

y

100

1.15

m/z = 649.17

Fig. 5.1. Trellis display of molecular ion images using Cardinal .
Top-ranked ion images for the cardinal painting dataset by t-statistic.

Using Cardinal ’s plotting methods, we can recreate the painting by overlaying

specific ion images. Based on the ion images in Figure 5.1, we choose m/z 207.08

to represent the cardinal’s body in red, m/z 235 to represent the cardinal’s wing

in dark red, m/z 255.25 to represent the gray background, m/z 265.17 to represent

the cardinal’s face in black, and m/z 649.17 to represent the text in brown. It is

straightfoward to overlay the ion images by setting superpose=TRUE.

62

> image(cardinal, mz=c(207.08, 235, 255.25, 265.17, 649.17),

+ plusminus=0.5,

+ normalize.image="linear",

+ contrast.enhance="histogram",

+ col=c("red", "darkred", "gray", "black", "brown"),

+ superpose=TRUE)

20 40 60 80 100 120

10
0

80
60

40
20

0

x

y

Fig. 5.2. Overlay of molecular ion images using Cardinal .
Recreation of the cardinal painting using overlaid ion images.

5.2.3 pixelApply and featureApply

The apply family of functions are a powerful feature of statistical computing in

R. The apply function applies a function over margins of an array, while sapply

applies a function over every element of a vector-like object. The function tapply

applies a function over a “ragged” array, so that the function is applied over groups

of values given by levels of another variable (usually a factor). Cardinal provides the

methods pixelApply and featureApply for apply-like functionality that combine

63

traits of each of these, tailored specifically for mass spectrometry imaging datasets.

Their most important parameters are:

• .object the MSImageSet with the experimental data

• .fun the function to be applied over the dataset

• .pixel which pixels the function should be applied over

• .feature which features the function should be applied over

• .pixel.groups which pixels should be grouped together and the function ap-

plied to them seperately

• .feature.groups which features should be grouped together and the function

applied to them seperately

In fact, many of the spectral processing methods Cardinal provides are internally

implement through the use of pixelApply and featureApply.

Below we show a toy example of how TIC normalization and standardization of

samples could both be implemented very easily using pixelApply and featureApply.

Note that these are simplifications for the sake of demonstration, and do not reflect

all of the concerns that must be taken into account when doing normalization of mass

spectra or standardization of samples on real data.

> standardize <- function(x) x / sum(x)

> normalize.tic <- function(data) {

+ pixelApply(data, .fun=standardize)

+ }

> standardize.samples <- function(data) {

+ featureApply(data, .fun=standardize, .pixel.groups=sample)

+ }

The definition of normalize.tic is straightforward and applies TIC normalization

to the mass spectrum of each pixel. The definition of standardize.samples shows

tapply-like functionality by applying standardization separately to each sample by

specifying .pixel.groups=sample.

64

5.2.4 Simulation of Test Datasets

Cardinal provides functions for the simulation of mass spectra and mass spec-

trometry imaging datasets. This is particularly important for statisticians and other

developers for testing newly developed methodology for analyzing mass spectrometry

imaging experiments.

Simulation of Spectra

The generateSpectrum function can be used to simulate mass spectra. Its pa-

rameters can be tuned to simulate di↵erent kinds of mass spectra from di↵erent kinds

of machines, and di↵erent protein and peptide patterns.

One spectrum with m/z range from 1001 to 20000, 50 randomly selected peaks,

baseline 3000, and m/z resolution 100 is generated below and plotted in Figure 5.3A.

> set.seed(1)

> s1 <- generateSpectrum(1, range=c(1001, 20000), centers=runif(50,

+ 1001, 20000), baseline=2000, resolution=100, step=3.3)

> plot(x ~ t, data=s1, type="l", xlab="m/z", ylab="Intensity")

An example with fewer peaks, larger baseline, and lower resolution (Figure 5.3B):

> set.seed(2)

> s2 <- generateSpectrum(1, range=c(1001, 20000), centers=runif(20,

+ 1001, 20000), baseline=3000, resolution=50, step=3.3)

> plot(x ~ t, data=s2, type="l", xlab="m/z", ylab="Intensity")

Above we simulated MALDI-like spectra. We can also simulate DESI-like spectra,

shown in Figure 5.4.

> set.seed(3)

> s3 <- generateSpectrum(1, range=c(101, 1000), centers=runif(25,

+ 101, 1000), baseline=0, resolution=250, noise=0.1, step=1.2)

> plot(x ~ t, data=s3, type="l", xlab="m/z", ylab="Intensity")

> set.seed(4)

> s4 <- generateSpectrum(1, range=c(101, 1000), centers=runif(100,

+ 101, 1000), baseline=0, resolution=500, noise=0.2, step=1.2)

> plot(x ~ t, data=s4, type="l", xlab="m/z", ylab="Intensity")

65

A B

5000 10000 15000 20000

0
10

20
30

40

m/z

In
te
ns
ity

5000 10000 15000 20000

0
5

10
15

m/z

In
te
ns
ity

Fig. 5.3. MALDI-like simulated spectra.

A B

200 400 600 800 1000

0
5

10
15

20

m/z

In
te
ns
ity

200 400 600 800 1000

0
5

10
15

m/z

In
te
ns
ity

Fig. 5.4. DESI-like simulated spectra.

Simulation of Images

The generateImage function can be used to simulate mass spectral images. This

is a simple wrapper for generateSpectra that will generate unique spectral patterns

based on a spatial pattern. The generated mass spectra will have a unique peak

66

associated with each region. The pattern must have discrete regions, most easily

given in the form of an integer matrix. We use a matrix in the pattern of a cardinal.

> data <- matrix(c(NA, NA, 1, 1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA,

+ NA, NA, NA, NA, NA, 0, 1, 1, NA, NA, NA, NA, NA, 1, 0, 0, 1,

+ 1, NA, NA, NA, NA, NA, 0, 1, 1, 1, 1, NA, NA, NA, NA, 0, 1, 1,

+ 1, 1, 1, NA, NA, NA, NA, 1, 1, 1, 1, 1, 1, 1, NA, NA, NA, 1,

+ 1, NA, NA, NA, NA, NA, NA, 1, 1, NA, NA, NA, NA, NA),

+ nrow=9, ncol=9)

As seen in Figure 5.5, we can plot the ground truth image directly.

> image(data[,ncol(data):1], col=c("black", "red"))

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 5.5. Ground truth image used to generate the simulated dataset.

Below, we generate the dataset. To make it easy to visualize, we set up the range

and step size so that the feature indices correspond directly to their values. We create

two peaks at m/z 100 and m/z 200, one of which is associated with each region in

the image.

> set.seed(1)

> img1 <- generateImage(data, range=c(1, 1000), centers=c(100, 200),

+ step=1, as="MSImageSet")

67

Now to confirm the reasonability of our simulated dataset, we plot images cor-

responding to the two peaks associated with each region in Figure 5.6. (Note that

rows in the original matrix correspond to the x-axis in the image and the columns

correspond to the y-axis.)

> image(img1, mz=100, col.regions=alpha.colors(100, "black"))

> image(img1, mz=200, col.regions=alpha.colors(100, "red"))

A B

0 2 4 6 8 10

8
6

4
2

x

y

200.73

107.77

m/z = 100

0 2 4 6 8 10

8
6

4
2

x

y

162.45

67.84

m/z = 200

Fig. 5.6. Generated image from an integer matrix. A, black
peak. B, red peak.

We can generate the same kind of dataset using a factor and a data.frame of

coordinates, as is done in the running example for earlier sections of this vignette.

> pattern <- factor(c(0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 0,

+ 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 2, 1, 1, 2,

+ 2, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 0, 0, 0, 0, 1, 2, 2,

+ 2, 2, 2, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 2,

+ 2, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0),

+ levels=c(0,1,2), labels=c("blue", "black", "red"))

> coord <- expand.grid(x=1:9, y=1:9)

> set.seed(2)

> msset <- generateImage(pattern, coord=coord, range=c(1000, 5000),

+ centers=c(2000, 3000, 4000), resolution=100, step=3.3,

+ as="MSImageSet")

68

Again, we can plot the images to see that the simulated dataset is the same pattern

as before (though the exact intensities will di↵er, because we have used a di↵erent

seed for the random number generator), Figure 5.7.

> image(msset, mz=2000, col.regions=alpha.colors(100, "blue"))

> image(msset, mz=3000, col.regions=alpha.colors(100, "black"))

> image(msset, mz=4000, col.regions=alpha.colors(100, "red"))

A B C

0 2 4 6 8 10

8
6

4
2

x

y

59.41

23.11

m/z = 1999.9

0 2 4 6 8 10

8
6

4
2

x

y
39.05

15.56

m/z = 2999.8

0 2 4 6 8 10

8
6

4
2

x

y

30.38

11.92

m/z = 3999.7

Fig. 5.7. Generated images from factor and coordinates. A,
blue peak. B, black peak. C, red peak.

Advanced Simulation

The generateImage function provides a straightforward method for rapid simu-

lation of many kinds of images to test classification and segmentation models, but

suppose we wish to simulate a more complex dataset with spatial correlations. Be-

low we simulate a dataset with two overlapping regions. In each of these regions,

the intensity degrades with distance from the center of the region, implining spatial

correlation, Figure 5.8.

> x1 <- apply(expand.grid(x=1:10, y=1:10), 1,

+ function(z) 1/(1 + ((4-z[[1]])/2)^2 + ((4-z[[2]])/2)^2))

> dim(x1) <- c(10,10)

> image(x1[,ncol(x1):1])

69

> x2 <- apply(expand.grid(x=1:10, y=1:10), 1,

+ function(z) 1/(1 + ((6-z[[1]])/2)^2 + ((6-z[[2]])/2)^2))

> dim(x2) <- c(10,10)

> image(x2[,ncol(x2):1])

A B

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig. 5.8. Ground truth images of a dataset with overlapping
regions. A, region 1. B, region 2.

We generate the image by using generateSpectrum with the calculated mean

intensities. We use two peaks for the two regions with nearly overlapping peaks at

m/z 500 and m/z 510.

> set.seed(1)

> x3 <- mapply(function(z1, z2) generateSpectrum(1, centers=c(500,510),

+ intensities=c(z1, z2), range=c(1, 1000), resolution=100,

+ baseline=0, step=1)$x, as.vector(x1), as.vector(x2))

> img3 <- MSImageSet(x3, coord=expand.grid(x=1:10, y=1:10), mz=1:1000)

Below, we plot the ion images for each of the two peaks in Figure 5.9.

> image(img3, mz=500, col=intensity.colors(100))

> image(img3, mz=510, col=intensity.colors(100))

Finally, we plot the mass spectrum for a pixel from each region in Figure 5.10.

70

A B

0 2 4 6 8 10

10
8

6
4

2

x

y

70.53

0

m/z = 500

0 2 4 6 8 10

10
8

6
4

2

x

y

70.7

0

m/z = 510

Fig. 5.9. Simulated images at the two peaks. A, m/z 500. B, m/z 510.

A B

200 300 400 500 600 700 800

0
10

20
30

40
50

m z

In
te
ns
it
y

x = 4, y = 4

200 300 400 500 600 700 800

0
10

20
30

40
50

m z

In
te
ns
it
y

x = 6, y = 6

Fig. 5.10. Simulated mass spectra from the two regions. A,
region 1, pixel 34. B, region 2, pixel 56.

> plot(img3, coord=list(x=4, y=4), type="l", xlim=c(200, 800))

> plot(img3, coord=list(x=6, y=6), type="l", xlim=c(200, 800))

71

By creating spatial correlation patterns and combining them with the intensi-

ties, sd, and noise arguments in generateSpectrum, it is possible to simulate more

complex mass spectrometry imaging datasets.

5.3 Cardinal Examples

5.3.1 Unsupervised Segmentation Workflow

Here we show how Cardinal was used to analyze the pig fetus dataset shown in

Figure 4.1 and produce the segmentation results shown in Figure 4.7 from Section 4.1.

> library(CardinalWorkflows)

> data(pig206)

> summary(pig206)

Class: MSImageSet
Features: m/z = 150.08 ... m/z = 1000 (10200 total)
Pixels: x = 72, y = 1 ... x = 83, y = 66 (4959 total)
x: 10 ... 120
y: 1 ... 66
Size in memory: 195.4 Mb

Normalization

In order to ensure that the spectra are comparable pixel-to-pixel, normalization

is often done as a pre-processing step. As described in Section 2.1.2, a popular choice

for normalization in mass spectrometry image analysis TIC normalization.

> pig206.norm <- normalize(pig206, method = "tic")

Peak Picking and Alignment

For computational e�cency, it is necessary to do peak picking prior to analysing

the data. As in Alexandrov et al. [26], we peak pick on every 10th mass spectrum,

retaining only those peaks that occur in at least 1% of the considered spectra. The

72

selection of peaks in Cardinal is done using a comparison of local maxima against

noise.

First, we perform peak-picking on ever 10th mass spectrum using the peakPick

method, looking for peaks with a signal-to-noise ratio (SNR) of at least 6.

> pig206.peaklist <- peakPick(pig206.norm, pixel = seq(1, ncol(pig206),

+ by = 10), method = "simple", SNR = 6)

The peaks must be aligned using peakAlign. Below, the mean spectrum of the

raw data is used as the reference, so the peaks will be aligned to the local maxima in

the mean spectrum.

> pig206.peaklist <- peakAlign(pig206.peaklist, ref = pig206.norm,

+ method = "diff", units = "ppm", diff.max = 200)

Below, we use the peakFilter method to drop peaks that occur less frequently

than once every 100 spectra.

> pig206.peaklist <- peakFilter(pig206.peaklist, method = "freq",

+ freq.min = ncol(pig206.peaklist)/100)

Finally, reduceDimension method is used to sweep back through the full normal-

ized dataset retrieve the identified peaks from all of the pixels.

> pig206.peaks <- reduceDimension(pig206.norm, ref = pig206.peaklist,

+ type = "height")

> summary(pig206.peaks)

Class: MSImageSet
Features: m/z = 151.33 ... m/z = 889.67 (143 total)
Pixels: x = 72, y = 1 ... x = 83, y = 66 (4959 total)
x: 10 ... 120
y: 1 ... 66
Size in memory: 6.6 Mb

An alternative pre-processing workflow would be to perform peak-picking on all

mass spectra and use these peaks directly (after alignment) rather than use reduceDimension.

However, this would result in 0 intensities for mass spectra where certain peaks were

not found, so it places a greater burden on the accuracy of the peak detection algo-

rithm.

73

Visualization of Molecular Ion Images

Plotting ion images is the natural first step in exploring a mass spectrometry

imaging dataset. The ion images shown in Figure 4.1B and Figure 4.1C can plotted

using Cardinal with the following code.

> image(pig206, mz = 888.67, contrast.enhance = "histogram",

+ smooth.image = "gaussian")

> image(pig206, mz = 186.42, contrast.enhance = "histogram",

+ smooth.image = "gaussian")

Segmentation Using Spatial Shrunken Centroids

This section demonstrates the spatial shrunken centroids segmentation method

(as described in Chapter 3 and Chapter 4) for statistical analysis implemented in

Cardinal .

The parameters to be explicitly provided in the spatialShrunkenCentroidsmethod

are:

• r: The neighborhood smoothing radius

• k: The initial number of segments (clusters)

• s: The shrinkage parameter

For a detailed explanation of the parameters, see Section 3.2.6.

Below, we perform spatial shrunken centroids segmentation with the method="gaussian"

weights.

> set.seed(1)

> pig206.sscg <- spatialShrunkenCentroids(pig206.peaks, r = c(1, 2),

+ k = c(15, 20), s = c(0, 3, 6, 9), method = "gaussian")

> summary(pig206.sscg)

74

r k s method time Predicted # of Classes
1 1 15 0 gaussian 14.557 15
2 1 15 3 gaussian 25.602 10
3 1 15 6 gaussian 32.892 7
4 1 15 9 gaussian 19.852 6
5 1 20 0 gaussian 20.906 19
6 1 20 3 gaussian 28.911 11
7 1 20 6 gaussian 27.199 8
8 1 20 9 gaussian 36.020 6
9 2 15 0 gaussian 55.460 13
10 2 15 3 gaussian 42.302 10
11 2 15 6 gaussian 40.441 6
12 2 15 9 gaussian 42.164 6
13 2 20 0 gaussian 48.375 18
14 2 20 3 gaussian 77.894 9
15 2 20 6 gaussian 50.536 6
16 2 20 9 gaussian 43.045 6

Mean # of Features per Class
1 143
2 91
3 77
4 63
5 143
6 92
7 74
8 62
9 143
10 90
11 82
12 62
13 143
14 90
15 82
16 60

We perform spatial shrunken centroids segmentation with adaptive weights by

setting method="adaptive" weights.

The resulting object has sixteen sets of model parameters, in the parameter space

of r = 1, 2, k = 15, 20, and s = 0, 3, 6, 9.

As seen in the summaries above, many of the segmentations result in fewer num-

bers of segments than at initialization, and the number of segments is generally lower

75

for higher sparsity. This can be used to determine the number of segments, as de-

scribed in Section 4.2.2.

Plotting the Spatial Segmentations

We will plot four of the spatial segmentations for the Gaussian weights with dif-

ferent levels of sparsity. This is specified by the model argument, where we can list

the parameters for the models we would like to plot.

> image(pig206.sscg, model = list(r = 2, k = 20, s = c(0, 3, 6, 9)),

+ key = FALSE, layout = c(2, 2))

This plots the four segmentations shown in Figure 4.9 from Section 4.2.2.

Plotting and Interpreting the t-statistics of the m/z Values

As described in Section 4.2.3, an important goal of our approach to spatial seg-

mentation is that we not only want a meaningful segmentation, but we also want to be

able to identify and rank the important mass features that inform that segmentation.

The spatialShrunkenCentroids method produces t-statistics for this purpose.

For each mass feature (m/z value), t-statistics are calculated for each segment as

described in Section 3.2.2, by comparison to the global mean spectrum.

Positive t-statistics correspond to systematic enrichment in that segment. Nega-

tive t-statistics correspond to systematic absence from that segment. The shrinkage

parameter s is used to shrink t-statistics toward 0, and when a t-statistic is set to 0,

that mass feature is no longer used to determe segment membership.

The t-statistics for the heart segment and the liver segment, as shown in Fig-

ure 4.11E and Figure 4.11F from Section 4.2.3, can be plotted as follows.

> plot(pig206.sscg, mode = "tstatistics", model = list(r=2, k=20, s=6),

+ key = FALSE, column = 5, ylab = "liver t-statistics")

> plot(pig206.sscg, mode = "tstatistics", model = list(r=2, k=20, s=6),

+ key = FALSE, column = 6, ylab = "heart t-statistics")

76

In this case, the 5th segment corresponds to the heart, and the 6th segment

corresponds to the liver.

Plotting the t-statistics reveals that the liver segment has many more mass features

associated with it compared to the heart segment.

The top m/z values for a segmentation can be queried using the topLabels

method.

> topLabels(pig206.sscg, n = 10)

mz r k s classes centers tstatistics
1 269.3333 2 20 0 11 177.93947 49.26370
2 269.3333 2 15 0 11 178.60039 48.95050
3 269.3333 1 20 0 11 167.71484 48.59475
4 269.3333 1 15 0 11 168.12032 48.50941
5 537.2500 2 15 0 5 31.48324 47.73488
6 537.2500 1 15 0 5 31.72642 47.64653
7 269.3333 1 15 3 4 165.49849 47.43609
8 269.3333 1 20 3 11 165.49371 47.41058
9 563.2500 2 15 0 5 28.73309 47.40687
10 563.2500 1 15 0 5 28.93201 47.25001

p.values adj.p.values
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0
10 0 0

This list can be filtered by the segment, model parameters, etc.

> topLabels(pig206.sscg, model = list(r = 2, s = 6, k = 20),

+ filter = list(classes = 5))

mz r k s classes centers tstatistics p.values adj.p.values
1 537.2500 2 20 6 5 27.35050 42.19177 0 0
2 563.2500 2 20 6 5 24.70218 41.70469 0 0
3 535.2500 2 20 6 5 19.56177 39.62103 0 0

77

4 887.6667 2 20 6 5 38.07015 31.04249 0 0
5 509.2500 2 20 6 5 12.68780 30.56082 0 0
6 281.6667 2 20 6 5 57.27400 29.44007 0 0

This makes it easy to rank the most important mass features for distinguishing

each segment.

Identifying the Number of Segments

As described in Section 4.2.2, a unique property of spatial shrunken centroids

segmentation is that it facilitates a natural way to identify an appropriate number

of segments for a segmentation. We do this by plotting the number of predicted

segments against the shrinkage parameter s as shown Figure 4.9A from Section 4.2.2.

> plot(summary(pig206.sscg), main = "Number of segments")

In Figure 4.9A, we look for the shrinkage parameter s for which the predicted

number of segments match up between di↵erent initialized numbers of segments k.

For r = 2, this occurs at s = 6.

Therefore, we choose the segmentation with Gaussian weights with r = 2, k =

20, r = 6 for further exploration. This segmentation is plotted with custom colors in

Figure 4.8E in Section 4.2.1.

> mycol <- c(internal1 = "#FD9827", back = "#42FD24",

+ internal2 = "#1995FC", brain = "#FC23D9",

+ liver = "#3524FB", heart = "#FC0D1B", bg = "#CDFD34")

> image(pig206.sscg, model = list(r = 2, k = 20, s = 6), key = FALSE,

+ col = mycol, main = "SA + Shrunken Centroids")

Typically, we recommend choosing the segmentation with the most retained fea-

tures (least sparsity) after which the predicted number of segmentations become ap-

proximately equal between di↵erent initializations of k.

78

5.3.2 Supervised Classification Workflow

Here we show how Cardinal was used to analyze the RCC dataset shown in Fig-

ure 4.4 and produce the classification results shown in Figure 4.14 from Section 4.1.

The RCC dataset consists of 8 matched pairs of human kidney tissue. Each tissue

pair consists of a normal tissue sample and a cancerous tissue sample. The goal of

the workflow is to develop classifiers for predicting whether a new tissue sample is

normal or cancer.

> library(CardinalWorkflows)

> data(rcc, rcc_analyses)

In this dataset, we expect that normal tissue and cancerous tissue will have unique

chemical profiles, which we can use to classify new tissue based on the mass spectra.

> summary(rcc)

Class: MSImageSet
Features: m/z = 150.08 ... m/z = 1000 (10200 total)
Pixels: x = 1, y = 13, sample = MH0204_33 ... x = 77, y = 5, sample
= UH9912_01 (16000 total)

x: 1 ... 99
y: 1 ... 38
Size in memory: 629.1 Mb

As can be seen in Figure 4.4 in Section 4.1, each matched pair of tissues belonging

to the same subject are on the same slide. Note also the the cancer tissue is on the

left and the normal tissue is on the right on each slide.

The image contains 16000 pixels with 10200 spectral features measured at each

location (m/z range from 150 to 1000).

Normalization

Before resampling or binning, normalization is necessary to correct for pixel-to-

pixel variation. We will use TIC normalization, which is a popular choice for mass

spectrometry imaging datasets, as described in Section 2.1.2.

> rcc.norm <- normalize(rcc, method = "tic")

79

Resampling to Unit Resolution

The normalized data is then resampled to unit resolution. Binning would also

be an appropriate alternative, and could be used by setting method="bin" in the

reduceDimension method.

> rcc.resample <- reduceDimension(rcc.norm, method = "resample")

Resampling or binning is preferred to peak-picking for classification, in order to

avoid bias in cross-validation. However, if peak-picking is preferred, this can be

worked around by performing peak-picking separately on the training set only, and

using the same peaks in the testing and validation sets. This can become a complex

procedure if cross-validation is desired.

Subsetting the Dataset

We will subset the dataset to drop pixels that contain only the slide background,

so that the final dataset will only consist of mass spectra from actual tissue.

To subset the data, we will use the diagnosis variable stored in the object’s

pixelData. This variable is a factor with the disease condition for each pixel, as

annotated by a pathologist.

> summary(rcc$diagnosis)

cancer normal NA's
2775 3302 9923

We drop the 9923 pixels without annotation.

> rcc.small <- rcc.resample[,rcc$diagnosis %in% c("cancer", "normal")]

> summary(rcc.small)

Class: MSImageSet
Features: m/z = 151 ... m/z = 1000 (850 total)
Pixels: x = 17, y = 15, sample = MH0204_33 ... x = 61, y = 6, sample
= UH9912_01 (6077 total)

x: 2 ... 91
y: 2 ... 37
Size in memory: 41.6 Mb

80

Now the dataset contains only the 6077 mass spectra we need to train and test a

classifier.

Visualization of Molecular Ion Images

To begin visualizing the dataset, we will plot ion images for m/z values we already

know to be useful in distinguishing normal tissue versus cancer.

The ion images for m/z 215.3, known to be more abundant in normal tissue

(right) [2], as shown in Figure 4.5 from Section 4.1, can be plotted as follows.

> image(rcc, mz = 215.3, normalize.image = "linear",

+ contrast.enhance = "histogram", smooth.image = "gaussian",

+ layout = c(4, 2))

Likewise, the ion images for m/z 885.7, known to be more abundant in cancerous

tissue (left) [2], as shown in Figure 4.6 from Section 4.1, can be plotted as follows.

> image(rcc, mz = 885.7, normalize.image = "linear",

+ contrast.enhance = "histogram", smooth.image = "gaussian",

+ layout = c(4, 2))

From Figure 4.6 and Figure 4.5, we note that there is still a great deal of variation

in these images for ions that should be associated with a particular disease condition.

For example, m/z 215.3 – which should be more abundant in normal tissue – is also

abundant in cancerous tissue for samples UH0505 12 and UH9905 18. This shows

that multiple ions will be necessary for classification.

Classification Using Spatial Shrunken Centroids

This section demonstrates the spatial shrunken centroids classification method (as

described in Chapter 3 and Chapter 4) as implemented in Cardinal .

The parameters to be explicitly provided in the spatialShrunkenCentroidsmethod

are:

• r: The neighborhood smoothing radius

81

• s: The shrinkage parameter

For a more detailed explanation of these parameters, see Section 3.2.6.

Cross-validation with Spatial Shrunken Centroids

An important step in classification is testing and validation. Therefore, Cardi-

nal implements the cvApply method, which performs cross-validation for any of the

supplied classification methods, including PLS, OPLS, and |spatialShrunkenCentroids|.

By default, cvApply considers each unique sample (as given by the sample variable

in an MSImageSet object’s pixelData) as a fold for n-fold cross-validation. In most

cases, these should correspond to biological replicates, which is our recommended

workflow.

This is the case for the RCC dataset, where each matched pair on a separate slide

constitutes a unique sample.

> summary(rcc.small$sample)

MH0204_33 UH0505_12 UH0710_33 UH9610_15 UH9812_03 UH9905_18 UH9911_05
811 394 363 801 756 614 937

UH9912_01
1401

Generally, biological replicates should be used to partition the dataset rather than

technical replicates or individual pixels. The only exception would be in the case of

a sample size of one, in which case there are no biological replicates. However, a

sample size of one is a worst case scenario, and biological replicates should always be

preferred.

Below, we perform cross-validation with spatial shrunken centroids classification

and the method="gaussian" weights.

> rcc.cv.sscg <- cvApply(rcc.small, .y = rcc.small$diagnosis,

+ .fun = "spatialShrunkenCentroids", method = "gaussian",

+ r = c(1, 2, 3), s = c(0, 4, 8, 12, 16, 20, 24, 28))

82

We could also perform cross-validation with spatial shrunken centroids classifica-

tion with adaptive weights by setting method="adaptive" weights.

Below, we plot the cross-validated accuracy for the classifier with Gaussian weights,

as shown in Figure 4.15 from Section 4.2.5.

> plot(summary(rcc.cv.sscg))

As shown in Figure 4.15, for all smoothing radii r, the highest accuracy occurs

with a shrinkage parameter s = 20. For Gaussian weights with r = 3, s = 20, accuracy

was 88.8%.

Note that in general, the accuracy increases with larger smoothing neighborhood

radii r. This is true in this case because rather than heterogenous samples with both

normal and cancerous cells on the same tissue, each tissue is relatively homogenous

with predominantly normal or cancerous cells. Therefore, greater spatial smoothing

increases the accuracy, and adaptive weights would have no advantage over Gaussian

weights. For classification on more heterogenous tissue, adaptive weights and smaller

neighborhod radii may perform better.

Plotting the Classified Images

Below, the classified images for Gaussian weights, as shown in Figure 4.14 from

Section 4.2.5, are plotted.

> image(rcc.cv.sscg, model = list(r = 3, s = 20), layout = c(4, 2))

Spatial shrunken centroids produce probabilities of cancer versus normal, which

we plot using higher opacity for higher probability. This makes for more interpretable

predicted images than non-probabilistic classifiers.

Plotting and Interpreting the t-statistics of the m/z Values

To inspect the t-statistics of the m/z values, we now train a classifier on the full

dataset using the parameters r = 3, s = 20.

83

> rcc.sscg <- spatialShrunkenCentroids(rcc.small, y =

+ rcc.small$diagnosis, r = 3, s = 20, method = "gaussian")

Below, we show how to plot the shrunken centroids and the t-statistics, as shown

in Figure 4.16 from Section 4.2.5.

> plot(rcc.sscg, mode = "centers", model = list(r = 3, s = 20),

+ column = "cancer")

> plot(rcc.sscg, mode = "centers", model = list(r = 3, s = 20),

+ column = "normal")

> plot(rcc.sscg, mode = "tstatistics", model = list(r = 3, s = 20))

As seen in Figure 4.16, only a few m/z values have non-zero t-statistics.

> summary(rcc.sscg)

r k s method time Predicted # of Classes
1 3 2 20 gaussian 3.128 2

Mean # of Features per Class
1 40

In fact, only 40 of 850 mass features are used in the spatial shrunken centroids

classifier.

We identify the top-ranked mass features using the topLabels method.

> topLabels(rcc.sscg)

mz r k s classes centers tstatistics p.values adj.p.values
1 215 3 2 20 normal 5.955134 18.83852 0 0
2 886 3 2 20 cancer 19.711863 15.90639 0 0
3 810 3 2 20 normal 8.640044 13.79732 0 0
4 751 3 2 20 cancer 4.030214 12.62721 0 0
5 279 3 2 20 normal 3.596872 12.54607 0 0
6 353 3 2 20 normal 2.261867 11.95248 0 0

Spatial shrunken centroids identified m/z 215, m/z 886, and m/z 810, which are

all known to be important in disinguishing cancer from normal in RCC [2].

84

6. MATTER: OPEN-SOURCE SOFTWARE FOR LARGE

COMPLEX DATASETS ON DISK

6.1 Overview of matter

matter is a free and open-source R package for the rapid development of statistical

methods for large experimental datasets on disk. It is aimed at statistical analysis of

datasets that do not fit into computer memory, and which may be stored in domain-

specific binary formats, such as high-resolution MS imaging experiments, which are

commonly stored as Analyze 7.5 or imzML [9]. It di↵ers from similar R packages

aimed at analysis of large datasets in that it is focused on flexibility and applicability

to a wide variety of experimental file formats. It is designed for rapid adaptation of

statistical methods to data stored in new file formats.

matter contributes scalable, flexible statistical computing infrastructure for the

analysis of larger-than-memory experimental datasets in custom file formats, includ-

ing support for statistical analysis of high-resolution, high-throughput MS imaging

experiments.

6.1.1 Necessity of Scalability

Scalability is a growing concern for statistical analysis of MS imaging experiments.

Consistent improvements in instrumentation have led to rapid increases in mass and

spatial resolutions, leading to dramatically larger datasets. Due to di↵ering experi-

mental requirements, the largest MS imaging datasets can often be several orders of

magnitude larger than smaller experiments. Where smaller experiments may result

in datasets on the order of 100 MB per sample, higher-resolution experiments can

produce datasets on the order of 100 GB per sample.

85

In addition to increasing mass and spatial resolutions, experimental complexity is

also increasing. More experiments are now utilizing multiple samples, and as sample

preparation is continually improved and perfected, these sample sizes are increasing,

too. With the wider prevalence of 3D imaging, it is also more common for each sample

in the experiment to span multiple 2D images.

Increasing mass resolution, spatial resolution, and sample sizes mean that many

experiments now span multiple files, and those files are becoming larger. It is neces-

sary for statistical software and methods to scale to these new requirements.

This is a problem for many existing statistical software packages in R which assume

that the dataset fits entirely into memory. Although some languages o↵er advantages

in this area, they are less e�cient than R in terms of development time for statistical

methods, because they do not o↵er comparable resources for statistical programming.

However, the existing R packages that are designed to work with large datasets, such

as bigmemory and ff, often require converting the dataset to a new file format, or

have strict requirements on the file format [28, 29]. In domains such as MS imaging,

this can be a major burden on statisticians and experimentalists who must already

convert many large data files from a proprietary vendor-specific format to an open

format such as imzML. It is especially burdensome considering that the data will

likely still need to be processed (e.g., with normalization, baseline reduction, peak

picking, etc.), before any statistical analysis can take place.

This problem is not limited to MS imaging, but applies to statistics in general.

Scalability must be a major concern for development of new statistical methods if

statistics is to remain relevant in the era of big data. Existing packages like bigmemory

and ff have greatly simplified the problem for statisticians, but still require additional

care when using them due to the limitations they impose to achieve fast computation.

However, the success of R has shown that the flexibility to facilitate rapid prototyping

of new statistical methods is often more important than premature optimization.

This is especially important when developing statistical methods for experimental

applications dominated by large datasets and unique file formats. It is important to

86

be able to demonstrate statistical results on the datasets that are most relevant to

experimentalists in the area, which may sometimes be too large to load into memory.

It is not possible to develop statistical methods for experiments without being able to

work directly with the data. For the growing number of fields with big data, working

with the data is becoming a challenge in itself.

matter proposes to solve these problems by providing a flexible infrastructure for

statistical computing with datasets on disk. It is customizable to di↵erent binary

file formats, and allows direct access to the on-disk data for either processing or

statistical analysis, so that additional file conversion is not necessary. matter enables

visualization and statistical analysis of complex, larger-than-memory datasets stored

in an arbitrary number of files of any size. In particular, it allows Cardinal to analyze

high-resolution, high-throughput MS imaging experiments.

6.1.2 Applicability and Requirements

matter is applicable to datasets stored on disk, in any number of files, in any

open-source binary file format, including the imzML and Analyze 7.5 formats for MS

imaging experiments. matter has been tested on imzML datasets up to 26.4 GB in

size. matter is compatible with Windows, Mac, and Linux operating systems. There

are no specific memory requirements on the total size of data, but available memory

should be twice the size of the largest segment of data required to be accessed at once

for a single calculation. Most calculations can operate on small segments of the data

at a time. matter runs optimally with contiguous data stored on a fast storage device,

such as a solid state drive (SSD), but these are not requirements.

6.1.3 Functionalities for Statistical Analysis

For summary statistics, matter provides methods for memory-e�cient calculation

of mean and variance for matter objects. Variance is calculated using the method of

Welford [30], which has been shown to be accurate for large floating-point datasets,

87

while requiring only a single data pass instead of two. For other statistical calcu-

lations, matter also provides its own apply method for user-specified operations on

rows and columns of its on-disk matrices, while loading only a single row or column

into memory at a time.

For statistical modeling, matter provides an interface to the biglm package, which

implements memory-e�cient linear regression and fitting of generalized linear models

[31]. The bigglm function from the biglm package requires as input a function which

retrieves the next chunk of the data, and matter provides a wrapper function so that

matter matrices can be treated as an ordinary data.frame for linear model fitting.

matter opens the possibility for many statistical approaches to be applied to larger-

than-memory data. For example, because matter implements basic linear algebra for

on-disk matrices, iterative methods that operate only on small portions of the data at

once, such as the implicitly restarted Lanczos bidiagonalization algorithm (IRLBA)

for eigendecomposition of large matrices, can be applied directly to on-disk matter

matrices with the irlba package to perform principal components analysis (PCA) on

larger-than-memory datasets [32, 33]. matter enables these approaches to be applied

with other statistical methods such as PLS-DA and O-PLS-DA.

6.1.4 Implementation and Performance

matter is designed around the idea of contiguous (“atomic”) sectors of disk, by

analogy to R’s notion of “atomic” vectors, which are the building blocks of R’s more

complex data structures like lists, data.frames, etc. Likewise, matter is organized

around the idea of “atomic” sectors of disk that are part of a larger dataset. A matter

object is a vector or matrix defined by user-specified locations of the dataset on disk.

In the simplest possible case, this could be a vector stored contiguously in a single

file. In a more complex case, it could be a matrix where each row or column is stored

in a separate file. However, neither vectors nor the rows and columns of matrices

need to be stored contiguously, or even in the same file.

88

matter uses memory-e�cient data structures so that only the portion of the dataset

that is necessary for a calculation is loaded into memory, and then freed after that cal-

culation completes. This allows for a minimal memory footprint, at the cost of heavy

disk use. matter compensates for this by attempting to utilize sequential read/writes

over random read/writes whenever possible, while minimizing the total number of

atomic read/write operations. For example, by using matter matrices with the biglm

package, fitting a generalized linear model to a 1.2 GB dataset used only 468 MB of

total memory and took 49 seconds on a 2012 MacBook Pro 2.6 GHz with SSD.

matter is intended for rapid prototyping of statistical methods for larger-than-

memory on-disk datasets, and therefore focuses on minimizing the amount of devel-

oper e↵ort that must be devoted to thinking about dataset management and com-

putational concerns. In particular, it is intended for domain-specific applications

where existing binary file formats are already in use for storage of large experimen-

tal datasets. When computational performance becomes a priority, related packages

such as bigmemory or ↵, which place more stringest requirements on data structure

to allow for greater computational optimizations, may be preferable [28, 29].

6.2 Design and Implementation of matter

matter is designed with several goals in mind. Like the bigmemory and ↵ pack-

ages, it seeks to make statistical methods scalable to larger-than-memory datasets

by utilizing data-on-disk. Unlike those packages, it seeks to make domain-specific

file formats (such as Analyze 7.5 and imzML for MS imaging experiments) accessi-

ble from disk directly without additional file conversion. It seeks to have a minimal

memory footprint, and require minimal developer e↵ort to use, while maintaining

computational e�ciency wherever possible.

89

6.2.1 S4 Classes

matter utilizes S4 classes to implement on-disk matrices in a way so that they can

be seamlessly accessed as if they were ordinary R matrices. These are the atoms class

and the matter class. The atoms class is not exported to the user, who only interacts

with the matter class and matter objects to create and manipulate on-disk matrices.

atoms: Contiguous Sectors of Data on Disk

By analogy to R’s notion of “atomic” vectors, the atoms class uses the notion of

contiguous“atomic”sectors of disk. Each“atom” in an atoms object gives the location

of one block of contiguous data on disk, as denoted by a file path, an byte o↵set from

the beginning of the file, a data type, and the number of data elements (i.e., the

length) of the atom. An atoms object may consist of many atoms from multiple files

and multiple locations on disk, while ultimately representing a single vector or row

or column of a matrix.

Structure:

• length: the number of atoms in the object

• file_id: the ID’s of the files where each atom is located

• datamode: the type of data (short, int, long, float, double) for each atom

• offset: each atom’s byte o↵set from the beginning of the file

• extent: the length of each atom

• index_offset: the cumulative index of the first element of each atom

• index_extent: the cumulative one-past-the-end index of each atom

The atoms class has a C++ backend in the Atoms C++ class.

90

matter: Vectors and Matrices Stored on Disk

A matter object is made of one or more atoms objects, and represents a vector or

matrix. It includes additional metadata such as dimensions and row names or column

names.

Structure:

• data: one or more atoms objects

• datamode: the type of data (integer, numeric) for the represented vector or

matrix

• filepath: the paths to the files used by the atoms objects

• filemode: should the files be open for read/write, or read-only?

• chunksize: how large the chunk sizes should be for calculations that operate

on chunks of the dataset

• length: the total length of the dataset

• dim: the extent of each dimension (for a matrix)

• names: the names of the data elements (for a vector)

• dimnames: the names of the dimensions (for a matrix)

A matter_vec vector contains a single atoms object that represents all of the

atoms of the vector. The matter_mat matrix class has two subtypes for column-

major (matter_matc) and row-major (matter_matr) matrices. A column-major mat-

ter_matc matrix has one atoms object for each column, while a row-major mat-

ter_matr matrix has one atoms object for each row.

The matter class has a C++ backend in the Matter C++ class.

91

6.2.2 C++ Classes

matter utilizes a C++ backend to access the data on disk and transform it into

the appropriate representation in R. Although these classes correspond to S4 classes

in R, and are responsible for most of the computational work, all of the required

metadata is stored in the S4 classes in R, and are simply read by the C++ classes.

This means that matter never depends on external pointers, which makes it trivial

to share matter vectors and matter matrices between R sessions that have access to

the same filesystem.

Atoms: Contiguous Sectors of Data on Disk

The Atoms C++ class is responsible for reading and writing the data on disk,

based on its metadata. For computational e�ciency, it tries to perform sequential

read/writes rather than random read/writes whenever possible, while minimizing the

total number of atomic read/writes on disk.

Matter: Vectors and Matrices Stored on Disk

The Matter C++ class is responsible for transforming the data read by the Atoms

class into a format appropriate for R. This may include re-arranging contiguous data

that has been read sequentially into a di↵erent order, either due to the inherent

organization of the dataset, or as requested by the user in R.

MatterAccessor: Iterate over Virtual Disk Objects

The MatterAccessor C++ class acts similarly to an iterator, and allows bu↵ered

iteration over a Matter object. It can either iterate over the whole dataset (for both

vectors and matrices), or over a single column for column-major matrices, or over a

single row for row-major matrices.

92

A MatterAccessor object will load portions of the dataset (as many elements

as the chunksize at once) into memory, and then free that portion of the data and

load a new chunk, as necessary. This bu↵ering is handled automatically by the class,

and code can treat it as a regular iterator. This allows seamless and simple iteration

over Matter objects while maintaining strict control over the memory footprint of the

calculation.

6.3 matter Examples

6.3.1 Example 1: Attaching and Working with On-disk Matrices

matter matrices and vectors can be initialized similarly to ordinary R matrices.

When no file is given, a new temporary file is created in the default temporary file

directory, which will be cleaned up later by either R or the operating system.

Here, we initialize a matter matrix with 10 rows and 10 columns. The resulting

object is a subclass of the matter class, and stores file metadata that gives the location

of the data on disk. In many cases, it can be treated as an ordinary R matrix.

> x <- matter_mat(data=1:50, nrow=10, ncol=5)

> x

An object of class 'matter_matc'
<10 row, 5 column> on-disk binary matrix

files: 1
datamode: numeric
16.5 KB in-memory
400 bytes on-disk

> x[]

[,1] [,2] [,3] [,4] [,5]
[1,] 1 11 21 31 41
[2,] 2 12 22 32 42
[3,] 3 13 23 33 43
[4,] 4 14 24 34 44
[5,] 5 15 25 35 45
[6,] 6 16 26 36 46

93

[7,] 7 17 27 37 47
[8,] 8 18 28 38 48
[9,] 9 19 29 39 49

[10,] 10 20 30 40 50

As seen above, this is a small toy example in which the in-memory metadata

actually takes up more space than the size of the data stored on disk. For much

larger datasets, the in-memory metadata will be a small fraction of the total size of

the dataset on disk.

matter ’s matrices and vectors can be indexed into like ordinary R matrices and

vectors.

> x[1:4,]

[,1] [,2] [,3] [,4] [,5]
[1,] 1 11 21 31 41
[2,] 2 12 22 32 42
[3,] 3 13 23 33 43
[4,] 4 14 24 34 44

> x[,3:4]

[,1] [,2]
[1,] 21 31
[2,] 22 32
[3,] 23 33
[4,] 24 34
[5,] 25 35
[6,] 26 36
[7,] 27 37
[8,] 28 38
[9,] 29 39

[10,] 30 40

We can assign names to matter_vec vectors and row and column names to mat-

ter_mat matrices.

> rownames(x) <- 1:10

> colnames(x) <- letters[1:5]

> x[]

94

a b c d e
1 1 11 21 31 41
2 2 12 22 32 42
3 3 13 23 33 43
4 4 14 24 34 44
5 5 15 25 35 45
6 6 16 26 36 46
7 7 17 27 37 47
8 8 18 28 38 48
9 9 19 29 39 49
10 10 20 30 40 50

matter provides methods for calculating summary statistics for its vectors and

matrices, including some methods that do not exist in base R, such as colVar.

> colSums(x)

a b c d e
55 155 255 355 455

> colSums(x[])

a b c d e
55 155 255 355 455

> colVar(x)

a b c d e
9.166667 9.166667 9.166667 9.166667 9.166667

> apply(x, 2, var)

a b c d e
9.166667 9.166667 9.166667 9.166667 9.166667

One of the major advantages of the flexibility of matter is being able to treat

data from multiple files as a single dataset. This is particularly useful if analysing

data from a domain where each sample in an experiment generates large files, such

as high-resolution, high-throughput mass spectrometry imaging.

Below, we create a second matrix, and show its data is stored in a separate file. We

then combine the matrices, and the result can be treated as a single matrix, despite

originating from multiple files. Combinging the matrices does not create new data or

change the existing data on disk.

95

> y <- matter_mat(data=51:100, nrow=10, ncol=5)

> filepath(x)

[1] "/var/folders/bf/tcngbyjj6kn540c74_kf6ypw0000gp/T//Rtmpqjdp9A/
fileede37a87e46d.bin"

> filepath(y)

[1] "/var/folders/bf/tcngbyjj6kn540c74_kf6ypw0000gp/T//Rtmpqjdp9A/
fileede313cb3744.bin"

> z <- cbind(x, y)

> z

An object of class 'matter_matc'
<10 row, 10 column> on-disk binary matrix

files: 2
datamode: numeric
33 KB in-memory
800 bytes on-disk

> z[]

a b c d e
1 1 11 21 31 41 51 61 71 81 91
2 2 12 22 32 42 52 62 72 82 92
3 3 13 23 33 43 53 63 73 83 93
4 4 14 24 34 44 54 64 74 84 94
5 5 15 25 35 45 55 65 75 85 95
6 6 16 26 36 46 56 66 76 86 96
7 7 17 27 37 47 57 67 77 87 97
8 8 18 28 38 48 58 68 78 88 98
9 9 19 29 39 49 59 69 79 89 99
10 10 20 30 40 50 60 70 80 90 100

Note that matrices in matter are either stored in a column-major or a row-major

format. The default is to use the column-major format, as R does. Column-major

matrices are optimized for fast column-access, and assume that each column is stored

contiguously or mostly-contiguously on disk. Conversely, row-major matrices are

optimized for fast row-access, and make the same assumption for rows.

Since matter does support both column-major and row-major formats, transpos-

ing a matrix is a trivial operation in matter that only needs to change the matrix

metadata, and doesn’t touch the data on disk.

96

> t(x)

An object of class 'matter_matr'
<5 row, 10 column> on-disk binary matrix

files: 1
datamode: numeric
16.8 KB in-memory
400 bytes on-disk

> rbind(t(x), t(y))

An object of class 'matter_matr'
<10 row, 10 column> on-disk binary matrix

files: 2
datamode: numeric
33 KB in-memory
800 bytes on-disk

Note that this is equivalent to t(cbind(x, y)).

Below, we inspect the metadata associated with the di↵erent columns of x.

> x@data

[[1]]
file_id datamode offset extent index_offset index_extent

1 1 double 0 10 0 10

[[2]]
file_id datamode offset extent index_offset index_extent

1 1 double 80 10 0 10

[[3]]
file_id datamode offset extent index_offset index_extent

1 1 double 160 10 0 10

[[4]]
file_id datamode offset extent index_offset index_extent

1 1 double 240 10 0 10

[[5]]
file_id datamode offset extent index_offset index_extent

1 1 double 320 10 0 10

97

Note that each column has a byte o↵set and an extent (i.e., length) associated

with it.

Now we show how to create a matter_mat matrix for an pre-existing file. We will

point the new matrix to the bottom half of x.

> xsub <- matter_mat(offset=c(40, 120, 200, 280, 360),

+ extent=rep(5,5), filepath=filepath(x))

> x[6:10,]

a b c d e
6 6 16 26 36 46
7 7 17 27 37 47
8 8 18 28 38 48
9 9 19 29 39 49
10 10 20 30 40 50

> xsub[]

[,1] [,2] [,3] [,4] [,5]
[1,] 6 16 26 36 46
[2,] 7 17 27 37 47
[3,] 8 18 28 38 48
[4,] 9 19 29 39 49
[5,] 10 20 30 40 50

It is possible to build matter objects from nearly any possible combination of files

and locations within files. It is even possible to build up a matrix from vectors, which

we do below.

> x2 <- matter_vec(offset=80, extent=10, filepath=filepath(x))

> y3 <- matter_vec(offset=160, extent=10, filepath=filepath(y))

> cbind(x2, y3)[]

[,1] [,2]
[1,] 11 71
[2,] 12 72
[3,] 13 73
[4,] 14 74
[5,] 15 75
[6,] 16 76
[7,] 17 77
[8,] 18 78
[9,] 19 79

[10,] 20 80

98

> cbind(x[,2], y[,3])

[,1] [,2]
1 11 71
2 12 72
3 13 73
4 14 74
5 15 75
6 16 76
7 17 77
8 18 78
9 19 79
10 20 80

This is a quick and easy way to build a dataset from many files where each column

of the dataset is stored in a separate file. Even if the resulting matrix would fit into

memory, using matter can be a tidy, e�cient way of reading complex binary data

from multiple files into R.

6.3.2 Example 2: Linear Regression for On-disk Datasets

matter is designed to provide a statistical computing environment for larger-than-

memory datasets on disk. To facilitate this, matter provides a method for fitting

of linear models for matter matrices through the biglm package. matter provides a

wrapper for biglm’s bigglm function that works with matter_mat matrices, which we

demonstrate below.

First, we simulate some data appropriate for linear regression.

> set.seed(81216)

> n <- 15e6

> p <- 9

> b <- runif(p)

> names(b) <- paste0("x", 1:p)

> data <- matter_mat(nrow=n, ncol=p + 1)

> colnames(data) <- c(names(b), "y")

> data[,p + 1] <- rnorm(n)

> for (i in 1:p) {

+ xi <- rnorm(n)

99

+ data[,i] <- xi

+ data[,p + 1] <- data[,p + 1] + xi * b[i]

+ }

> data

An object of class 'matter_matc'
<15000000 row, 10 column> on-disk binary matrix

files: 1
datamode: numeric
31.2 KB in-memory
1.2 GB on-disk

> head(data)

x1 x2 x3 x4 x5
[1,] -0.45330471 0.5995144 -0.1392395 0.36748584 1.4000923
[2,] -1.60355974 0.5862366 -0.5421275 -0.36101120 -0.4930582
[3,] 0.22920974 0.5138377 -1.7860077 1.53126322 0.3557548
[4,] -1.38862865 0.1411892 0.3166607 -0.08396404 0.9629351
[5,] -0.36473656 0.4315282 1.1860328 -1.13518455 0.5386445
[6,] -0.07204838 0.2744724 -0.6730541 0.03472469 0.2138691

0.5555708 x7 x8 x9 y
[1,] 0.5555708 -2.4031764 -0.57037899 -0.4356390 0.2280728
[2,] 0.7549443 -0.1348020 0.05384544 -0.5209713 0.3358334
[3,] -0.6093811 1.0381120 0.72976777 0.9689488 3.8910764
[4,] 0.3443397 -1.5310565 -0.44875206 -1.1320185 -0.8646491
[5,] 1.1426125 0.2239818 1.40000992 -0.9843404 1.8709778
[6,] 0.5923886 0.4852140 -0.29082018 1.0831832 1.5140973

This creates a 1.2 GB dataset on disk, but barely 32 KB of metadata is stored in

memory.

Now we calculate some statistical summaries using matter ’s apply method for

matter_mat matrices.

> apply(data, 2, mean)

x1 x2 x3 x4 x5
2.962621e-04 -2.596339e-04 -2.729651e-04 3.014581e-05 -5.893552e-05

x6 x7 x8 x9 y
-2.835383e-04 -1.309537e-04 -9.810476e-05 -1.404680e-04 -3.225581e-04

> apply(data, 2, var)

100

x1 x2 x3 x4 x5 x6 x7
1.0003094 0.9996336 0.9990518 1.0003654 0.9999593 0.9995961 0.9999286

x8 x9 y
1.0001395 0.9996875 4.4527319

We could also have used colMeans and colVar.

Now we fit the linear model to the data using the bigglm method for matter_mat

matrices. Note that it requires a formula, and (unfortunately) it does not allow y ~ .,

so all variables must be stated explicitly.

> fm <- as.formula(paste0("y ~ ", paste(names(b), collapse=" + ")))

> bigglm.out <- bigglm(fm, data=data, chunksize=floor(n / 2000))

> summary(bigglm.out)

Large data regression model: bigglm(formula, getNextDataChunk, ...)
Sample size = 1.5e+07

Coef (95% CI) SE p
(Intercept) 0.0004 -0.0001 0.0009 3e-04 0.1001
x1 0.1689 0.1684 0.1695 3e-04 0.0000
x2 0.9572 0.9566 0.9577 3e-04 0.0000
x3 0.3801 0.3796 0.3806 3e-04 0.0000
x4 0.6042 0.6037 0.6048 3e-04 0.0000
x5 0.5198 0.5193 0.5203 3e-04 0.0000
x6 0.6926 0.6921 0.6931 3e-04 0.0000
x7 0.8374 0.8369 0.8380 3e-04 0.0000
x8 0.4616 0.4610 0.4621 3e-04 0.0000
x9 0.5782 0.5777 0.5788 3e-04 0.0000

> cbind(coef(bigglm.out)[-1], b)

b
x1 0.1689408 0.1689486
x2 0.9571547 0.9574388
x3 0.3800765 0.3802078
x4 0.6042379 0.6043915
x5 0.5198087 0.5194832
x6 0.6926179 0.6927430
x7 0.8374374 0.8373628
x8 0.4615518 0.4617963
x9 0.5782414 0.5775168

On a 2012 retina MacBook Pro with 2.6 GHz Intel CPU, 16 GB RAM, and 500

GB SSD, fitting the linear model takes 49 seconds and uses an additional 322 MB

101

of memory overhead. The max amount of memory used while fitting the model was

only 468 MB, for the 1.2 GB dataset. This shows that fitting the linear model used

less memory than the size of the dataset on disk.

While this example used a dataset that could have fit into memory, its shows the

memory savings that are possible. Linear regression could still be performed if the

dataset were larger than the 16 GB memory of this computer.

6.3.3 Example 3: Principal Components Analysis for On-disk Datasets

Because matter provides basic linear algebra for on-disk matter_mat matrices

with in-memory R matrices, it opens up the possibility for the use of many iterative

statistical methods which can operate on only small portions of the data at a time.

For example, matter_mat matrices are compatible with the irlba package, which

performs e�cient, bounded-memory singular value decomposition (SVD) of matrices,

and which can therefore be used for e�cient principal components analysis (PCA) of

large datasets [33].

First, we simulate some data appropriate for principal components analysis.

> set.seed(81216)

> n <- 15e5

> p <- 100

> data <- matter_mat(nrow=n, ncol=p)

> for (i in 1:10)

+ data[,i] <- (1:n)/n + rnorm(n)

> for (i in 11:20)

+ data[,i] <- (n:1)/n + rnorm(n)

> for (i in 21:p)

+ data[,i] <- rnorm(n)

> data

An object of class 'matter_matc'
<1500000 row, 100 column> on-disk binary matrix

files: 1
datamode: numeric
281 KB in-memory
1.2 GB on-disk

102

This again creates a 1.2 GB dataset on disk, but barely 32 KB of metadata is stored

in memory. Note that only the first twenty variables show systematic variation, with

the first ten varying distinctly from the next ten variables.

First we calculate the variance for each column.

> var.out <- colVar(data)

> plot(var.out, type='h', ylab="Variance")

This takes only 7 seconds and uses less than 30 KB of additional memory. The

maximum amount of memory used while calculating the variance for all columns of

the 1.2 GB dataset is only 27 MB.

Now we load the irlba package and use it to calculate the first two right singular

vectors, which correspond to the first two principal components.

Note that the irlba function has an optional argument mult which allows spec-

ification of a custom matrix multiplication method, for use with packages such as

bigmemory and ↵. This is especially useful since it allows a transpose=TRUE argu-

ment, so that the identity t(t(B) %*% A) can be used in place of t(A) %*% B) when

transposition is an expensive operation. However, this is not necessary for matter,

since transposition is a trivial operation for matter_mat matrices.

> library(irlba)

> irlba.out <- irlba(data, nu=0, nv=2)

On a 2012 retina MacBook Pro with 2.6 GHz Intel CPU, 16 GB RAM, and 500

GB SSD, calculating the first two principal components takes roughly 2-3 minutes

and uses an additional 337 MB of memory overhead. The max amount of memory

used during the computation was only 433 MB, for the 1.2 GB dataset. This shows

that PCA can be performed using less memory than the size of the dataset on disk,

which is necessary if the dataset is larger than memory.

Now we plot the first two principal components.

> plot(irlba.out$v[,1], type='h', ylab="PC 1")

> plot(irlba.out$v[,2], type='h', ylab="PC 2")

103

A B C

0 20 40 60 80 100

1.
00

1.
02

1.
04

1.
06

1.
08

Index

Va
ria
nc
e

0 20 40 60 80 100

−0
.2

0
−0

.1
5

−0
.1

0
−0

.0
5

0.
00

Index

PC
 1

0 20 40 60 80 100

−0
.2

−0
.1

0.
0

0.
1

0.
2

Index

PC
 2

Fig. 6.1. Principal components analysis of on-disk dataset. A,
Sample variance. B, PC1 loadings. C, PC2 loadings.

As shown in the PCA plots in Figure 6.1, the first PC reveals that most of the

variation in the data occurs in the first twenty variables, while the second PC distin-

guishes the first ten variables from the next ten variables.

As in the previous example, this example again used a dataset that could have

fit into memory, but its shows that PCA could still be performed if the dataset were

larger than the 16 GB memory of this computer.

6.3.4 Example 4: 3D Mouse Pancreas MS Imaging Dataset

This section demonstrates the usefulness of matter for working with large MS

imaging experiments in Cardinal . For versions >=1.5, Cardinal supports using mat-

ter matrices to access larger-than-memory MS imaging datasets.

We will use one of the benchmark 3D MS imaging experiments from Oetjen et

al. [34]. We will use the 3D mouse pancreas dataset, which is comprised of 29 tissue

sections, with a total of 497,227 pixels and 13,297 features. The data is stored in

imzML format [9]. The “.imzML”XML file with experimetnal metadata is 857.7 MB,

and the “.ibd” binary file with the m/z values and spectral intensities is 26.45 GB.

104

Due to the various o↵sets in imzML ibd files, they cannot be attached as simply

as bigmemory or ↵ files. These packages have strict requirements on the format of

their data, for maximum computational e�ency. matter takes a di↵erent approach

with more flexibility, which allows use of imzML’s domain-specific binary file format

directly, and with minimal memory footprint, at the cost potentially slower compu-

tational performance in some situations.

> library(matter)

> library(Cardinal)

> path <- "~/Documents/Datasets/MALDI-Imaging/3D_Mouse_Pancreas/"

> file <- "3D_Mouse_Pancreas.imzML"

We load the dataset with readMSIData with attach.only=TRUE. In older versions

of Cardinal (<1.5), this would use a Binmat matrix, which is far less e�cient than

a matter matrix. For newer versions of Cardinal (>=1.5), if matter is in the search

path, then Cardinal will use a matter matrix.

> mouse <- readMSIData(paste0(path, file), attach.only=TRUE)

> summary(mouse)

Class: MSImageSet
Features: m/z = 1591.3 ... m/z = 14317.36 (13297 total)
Pixels: x = 118, y = 72, z = 1 ... x = 138, y = 140, z = 29 (497225
total)

x: 1 ... 224
y: 1 ... 164
z: 1 ... 29
Size in memory: 1453.1 Mb

On a 2012 retina MacBook Pro with 2.6 GHz Intel CPU, 16 GB RAM, and 500

GB SSD, parsing the imzML file and attaching the dataset takes approximately 5

minutes and uses roughly 3.6 GB of memory. This is entirely from parsing the 857.7

MB imzML file. Cardinal relies on an XML library to parse the imzML file which

requires building a full representation of the XML file in memory, in addition to the

overhead of reading the file.

> iData(mouse)

105

An object of class 'matter_matc'
<13297 row, 497225 column> on-disk binary matrix

files: 1
datamode: numeric
1.4 GB in-memory
26.4 GB on-disk

As shown above, the matrix metadata takes up approximately 1.4 GB in memory,

and points to 26.4 GB on disk. This dataset is larger than the 16 GB of memory of

this computer, and could not be loaded at all without using matter .

Some Cardinal methods can be used normally, such as pixelApply and fea-

tureApply. Note that it is advisable to avoid using featureApply for large on-disk

MS imaging datasets, because the structure of imzML and Analyze 7.5 files make

this ine�cient. Both file formats stores spectra contiguously, rather than images, so

loading images requires many non-contiguous reads, which take much longer to read

than contiguous mass spectra.

Nonetheless, we can, for example, use pixelApply to calculate the total ion current

(TIC) for each pixel.

> mouse.tic <- pixelApply(mouse, sum)

> summary(mouse.tic)

Min. 1st Qu. Median Mean 3rd Qu. Max.
267.4 1104.0 1640.0 2392.0 2736.0 56690.0

On the same MacBook Pro, computing the TIC for every pixel takes approximately

4 minutes and uses about 500 MB of additional memory.

3D molecular ion images can be plotted using the image3D method introduced

in Cardinal v1.3.2. We will plot the ion image for m/z 5806, which corresponds to

insulin.

> image3D(mouse, mz=5806, plusminus=1, phi=45, theta=180)

Loading the ion image from file and plotting it takes approximately 2 minutes on

the same MacBook Pro and uses an additional 2 GB of memory in overhead. The

106

max amount of memory used while plotting the image was just under 3 GB, for the

26.4 GB dataset. The ion image could not be plotted at all without matter , because

the dataset is too large to be loaded into memory.

Lastly, we will plot the TIC of each pixel, which we calculated using pixelApply

above.

> image3D(mouse, mouse.tic ~ x * y * z, phi=45, theta=180)

A B

x

y

z

m/z = 5805.56

x
y

z

mouse.tic

Fig. 6.2. Benchmark 3D mouse pancreas images. A, m/z 5806
(insulin). B, total ion current (TIC).

Using matter , it is possible to visualize and analyze datasets that could not be

visualized or analyzed before, because they are too large to fit into memory. mat-

ter solves this by working with the data on disk, allowing us to analyze high-resolution,

high-throughput MS imaging experiments that we could not before.

107

7. SUMMARY AND FUTURE RESEARCH

7.1 Conclusions about Spatial Shrunken Centroids

We proposed spatial shrunken centroids, a regularized statistical framework for

segmentation and classification of MS imaging experiments. Spatial shrunken cen-

troids combines the feature selection properties of nearest shrunken centroids with

the spatially-aware properties of spatially-aware clustering. The result is a powerful

method that delivers results which are comparable to spatially-aware clustering for

segmentation, and PLS-DA and O-PLS-DA for classification, but which can also be

used for statistical inference.

Its use of statistical regularization aids interpretability by selecting important fea-

tures, while also creating a clear relationship between sparsity and the number of

segments in segmentation, which helps guide the selection of the number of segments.

By using opacity to reflect probability when plotting the segmented or classified im-

age, it is also possible to visually characterize the certainty of the segmentation or

classification.

However, spatial shrunken centroids does have drawbacks. Although statistical

regularization helps to guide the selection of the number of segments, the procedure

requires fitting many segmentations, which can be time-consuming. This can make it

di�cult to find the best parameters, which can be subjective in many cases.

Further study of the relationship between sparsity and the number of segments

would be fruitful area for further research. Currently, there is nothing linking common

segments between di↵erent segmentations initialized with di↵erent parameters. It

could be very enlightening to find a way to track and visualize how particular segments

grow and shrink as the regularizing shrinkage parameter changes, and as certain

features are or are not selected to remain in the model.

108

7.2 Conclusions about Cardinal

Cardinal is a general, flexible, open-source tool for the statistical analysis of MS

imaging experiments. It can be used by researchers with and without background in R

and computing. For experimentalists, Cardinal provides a full toolchain for multiple

workflows, with emphasis on multivariate statistical modeling, inference, and model-

based visualization. For developers, Cardinal provides a foundation for designing and

implementing new methods of computational and statistical analysis of MS imaging

experiments.

Cardinal has been well-received by the MS imaging community with over 3,000

downloads, and has an active Google help group where users frequently request new

features. These requests have been from both experimentalists, who request new ana-

lytic methods, and from statisticians and other developers, who request new developer

features.

A major limitation for Cardinal has been adapting to the fast-paced development

of MS imaging technology and increasing mass and spatial resolution. At release, Car-

dinal was limited to available memory. Rudimentaly support for larger-than-memory

data-on-disk was added in v1.3.0, but functionality for such datasets remained lim-

ited. While matter promises to alleviate some of this di�culty, the statistical methods

in Cardinal – including spatial shrunken centroids – utilize C and C++ code which as-

sume in-memory matrices. These must be adapted to use larger-than-memory matrix

implementations such as matter and bigmemory.

Support for parallel processing is also frequently requested, but there are still

major challenges to solve in terms of how best to implement it – particularly given

the growing size of datasets and the complex structure of MS imaging experiments.

7.3 Conclusions about matter

matter is a flexible, open-source framework for rapid prototyping with data on

disk. It enables development of statistical methods for larger-than-memory datasets.

109

It is easily adaptable to domain-specific file formats, such as imzML and Analyze

7.5 for MS imaging experiments, without the need for additional file conversion. It

provides bounded-memory statistical summeries with data-on-disk. It also provides

bounded-memory linear regression for data-on-disk using the biglm package. matter ’s

C++ API o↵ers bu↵ered iteration over on-disk vectors and matrices. As a backend

for Cardinal , it allows processing, visualization, and statistical analysis of larger-

than-memory MS imaging experiments which could not be analyzed before.

However, there is a lot of room for improvement. Currently, matter only supports

dense matrices on disk. Support for sparse matrices on disk is a necessity, particularly

for domains such as MS imaging, which relies on the imzML format. Currently

matter can only be used with the“continuous” imzML format, but not the“processed”

imzML format, which must be treated as a kind of sparse matrix. This poses a unique

challenge, since the representation on disk is already compressed, so it’s uncertain how

to best represent the matrix in memory without using a data structure as large as its

size on disk.

7.4 General Conclusions

In conclusion, MS imaging is a rapidly advancing field where the experimental

technology continues to outpace statistical and computational methodology. Simply

loading data and preparing it for statistical analysis can often be di�cult. The barri-

ers to entry for statisticians remain high, despite Cardinal significantly lowering them.

The development of Cardinal was necessary for the development of spatial shrunken

centroids and other statistical methods. However, as dataset sizes continue to grow,

matter is quickly becoming a practical necessity for the development of new statisti-

cal methods that can handle the new generation of high-resolution, high-throughput

MS imaging experiments, which continue to bring new challenges, as biology becomes

ever-more-complicated as it approaches the scale of single cells. MS imaging is posing

a new set of challenges which combine the statistical complexities of bioinformatics

110

with the computational complexities of big data, where “embarrasingly parallel” is no

longer an adequate answer to the size of a dataset when faced with its complex corre-

lation structures. Development of statistically-focused computational infrastructure

alongside new statistical methods is the only way forward.

VITA

111

VITA

Kylie Ariel Bemis was born Kyle Dwayne in 1989 in Indianapolis, IN. She received

a B.S. in Statistics and Mathematics from Purdue University in 2010. She received a

M.S. in Applied Statistics from Purdue University in 2011. She is an enrolled member

of the Zuni tribe. Her hobbies include writing fiction and poetry.

REFERENCES

112

REFERENCES

[1] J. D. Watrous, T. Alexandrov, and P. C. Dorrestein, “The evolving field of imag-
ing mass spectrometry and its impact on future biological research,” Journal of
Mass Spectrometry, vol. 46, p. 209, 2011.

[2] A. L. Dill, L. S. Eberlin, C. Zheng, A. B. Costa, D. R. Ifa, L. Cheng, T. A.
Masterson, M. O. Koch, O. Vitek, and R. G. Cooks, “Multivariate statistical
di↵erentiation of renal cell carcinomas based on lipidomic analysis by ambient
ionization imaging mass spectrometry,”Analytical and Bioanalytical Chemistry,
vol. 398, pp. 2969–2978, October 2010.

[3] A. L. Dill, L. S. Eberlin, A. B. Costa, C. Zheng, D. R. Ifa, L. Cheng, T. A.
Masterson, M. O. Koch, O. Vitek, and R. G. Cooks, “Multivariate Statistical
Identification of Human Bladder Carcinomas Using Ambient Ionization Imaging
Mass Spectrometry,”Chemistry - A European Journal, vol. 17, no. 10, pp. 2897–
2902, January 2011.

[4] K. D. Bemis, A. Harry, L. S. Eberlin, C. R. Ferreira, S. M. van de Ven, P. Mallick,
M. Stolowitz, and O. Vitek, “Probabilistic Segmentation of Mass Spectrometry
(MS) Images Helps Select Important Ions and Characterize Confidence in the
Resulting Segments,”Molecular & Cellular Proteomics, vol. 15, no. 5, pp. 1761–
1772, May 2016.

[5] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu,“Diagnosis of multiple can-
cer types by shrunken centroids of gene expression,”Proceedings of the National
Academy of Sciences, vol. 99, pp. 1–6, May 2002.

[6] ——, “Class prediction by nearest shrunken with applications to DNA microar-
rays,” Statistical Science, vol. 18, p. 104, June 2003.

[7] T. Alexandrov and J. H. Kobarg, “E�cient spatial segmentation of large imag-
ing mass spectrometry datasets with spatially aware clustering,”Bioinformatics,
vol. 27, p. i230, June 2011.

[8] K. D. Bemis, A. Harry, L. S. Eberlin, C. Ferreira, S. M. van de Ven, P. Mallick,
M. Stolowitz, and O. Vitek, “Cardinal: an R package for statistical analysis of
mass spectrometry-based imaging experiments,”Bioinformatics, 2015.

[9] T. Schramm, A. Hester, I. Klinkert, J. P. Both, R. M. Heeren, A. Brunelle,
O. Laprévote, N. Desbenoit, F. Robbe M, M. Stoeckli, B. Spengler, and
A. Römpp, “imzML – A common data format for the flexible exchange and
processing of mass spectrometry imaging data,” Journal of Proteomics, vol. 75,
p. 5106, 2012.

[10] J. M. Wiseman and B. C. Laughlin, “Desorption Electrospray Ionization (DESI)
Mass Spectrometry: A brief introduction and overview,” Current Separations
and Drug Development, vol. 22, no. 1, pp. 11–14, April 2007.

113

[11] T. Alexandrov, “MALDI imaging mass spectrometry: statistical data analysis
and current computational challenges,” BMC Bioinformatics, vol. 13, no. Suppl
16, p. S11, November 2012.

[12] C. Yang, Z. He, and W. Yu, “Comparison of public peak detection algorithms for
MALDI mass spectrometry data analysis,”BMC Bioinformatics, vol. 10, 2009.

[13] T. Alexandrov, S. Meding, D. Trede, J. H. Kobarg, B. Ballu↵, A. Walch,
H. Thiele, and P. Maass, “Super-resolution segmentation of imaging mass spec-
trometry data: Solving the issue of low lateral resolution,”Journal of Proteomics,
vol. 75, no. 1, pp. 237–245, Dec. 2011.

[14] D. Mantini, F. Petrucci, D. Pieragostino, P. Del Boccio, M. Di Nicola, C. Di Ilio,
G. Federici, P. Sacchetta, S. Comani, and A. Urbani, “LIMPIC: a computational
method for the separation of protein MALDI-TOF-MS signals from noise,”BMC
Bioinformatics, vol. 8, p. 101, 2007.

[15] C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray and Color Images,”
in Proceedings of the 1998 IEEE International Conference on Computer Vision,
Bombay India, Apr. 1998, pp. 1–8.

[16] K. A. Veselkov, R. Mirnezami, N. Strittmatter, R. D. Goldin, J. Kinross, A. V. M.
Speller, T. Abramov, E. A. Jones, A. Darzi, E. Holmes, J. K. Nicholson, and
Z. Takats, “Chemo-informatic strategy for imaging mass spectrometry-based hy-
perspectral profiling of lipid signatures in colorectal cancer,” Proceedings of the
National Academy of Sciences, vol. 111, no. 3, pp. 1216–1221, Jan. 2014.

[17] N. E. Mascini, G. B. Eijkel, P. ter Brugge, J. Jonkers, J. Wesseling, and R. M. A.
Heeren, “The Use of Mass Spectrometry Imaging to Predict Treatment Response
of Patient-Derived Xenograft Models of Triple-Negative Breast Cancer,” Journal
of Proteome Research, vol. 14, no. 2, pp. 1069–1075, Feb. 2015.

[18] L. S. Ferguson, F. Wulfert, R. Wolstenholme, J. M. Fonville, M. R. Clench,
V. A. Carolan, and S. Francese, “Direct detection of peptides and small proteins
in fingermarks and determination of sex by MALDI mass spectrometry profiling,”
The Analyst, vol. 137, no. 20, pp. 4686–7, 2012.

[19] C. Wu, A. L. Dill, L. S. Eberlin, R. G. Cooks, and D. R. Ifa, “Mass spectrometry
imaging under ambient conditions,” Mass Spectrometry Reviews, vol. 32, no. 3,
pp. 218–243, Sep. 2012.

[20] S. Sarkari, C. Kaddi, R. Bennett, F. Fernandez, and M. Wang, “Comparison of
Clustering Pipelines for the Analysis of Mass Spectrometry Imaging Data,” pp.
1–4, Jun. 2014.

[21] G. McCombie, D. Staab, M. Stoeckli, and R. Knochenmuss,“Spatial and Spectral
Correlations in MALDI Mass Spectrometry Images by Clustering and Multivari-
ate Analysis,”Analytical Chemistry, vol. 77, no. 19, pp. 6118–6124, Oct. 2005.

[22] S.-O. Deininger, M. P. Ebert, A. Fütterer, M. Gerhard, and C. Röcken, “MALDI
Imaging Combined with Hierarchical Clustering as a New Tool for the Inter-
pretation of Complex Human Cancers,” Journal of Proteome Research, vol. 7,
no. 12, pp. 5230–5236, Dec. 2008.

114

[23] L. S. Eberlin, R. J. Tibshirani, J. Zhang, T. A. Longacre, G. J. Berry, D. B.
Bingham, J. A. Norton, R. N. Zare, and G. A. Poultsides, “Molecular assessment
of surgical-resection margins of gastric cancer by mass-spectrometric imaging,”
Proceedings of the National Academy of Sciences, vol. 111, no. 7, pp. 2436–2441,
Feb. 2014.

[24] T. Alexandrov and A. Bartels, “Testing for presence of known and unknown
molecules in imaging mass spectrometry,” Bioinformatics, vol. 29, no. 18, pp.
2335–2342, September 2013.

[25] C. D. Wijetunge, I. Saeed, B. A. Boughton, J. M. Spraggins, R. M. Caprioli,
A. Bacic, U. Roessner, and S. K. Halgamuge, “EXIMS: an improved data anal-
ysis pipeline based on a new peak picking method for EXploring Imaging Mass
Spectrometry data,”Bioinformatics, pp. 1–9, June 2015.

[26] T. Alexandrov, M. Becker, S.-O. Deininger, G. Ernst, L. Wehder, M. Grasmair,
F. von Eggeling, H. Thiele, and P. Maass, “Spatial Segmentation of Imaging
Mass Spectrometry Data with Edge-Preserving Image Denoising and Clustering,”
Journal of Proteome Research, vol. 9, no. 12, pp. 6535–6546, December 2010.

[27] D. Sarkar, Lattice: Multivariate Data Visualization with R. New York:
Springer, 2008, iSBN 978-0-387-75968-5. [Online]. Available: http://lmdvr.
r-forge.r-project.org

[28] M. J. Kane, J. Emerson, and S. Weston, “Scalable strategies for computing with
massive data,” Journal of Statistical Software, vol. 55, no. 14, pp. 1–19, 2013.
[Online]. Available: http://www.jstatsoft.org/v55/i14/

[29] D. Adler, C. GlÃd’ser, O. Nenadic, J. OehlschlÃd’gel, and W. Zucchini,
↵: memory-e�cient storage of large data on disk and fast access
functions, 2014, r package version 2.2-13. [Online]. Available: https:
//CRAN.R-project.org/package=↵

[30] B. P. Welford, “Note on a Method for Calculating Corrected Sums of Squares
and Products,”Technometrics, vol. 4, no. 3, pp. 1–3, Aug. 1962.

[31] T. Lumley, biglm: bounded memory linear and generalized linear models, 2013,
r package version 0.9-1. [Online]. Available: https://CRAN.R-project.org/
package=biglm

[32] D. Calvetti, L. Reichel, and D. C. Sorensen, “An implicitly restarted lanczos
method for large symmetric eigenvalue problems,” Electronic Transactions on
Numerical Analysis, vol. 2, pp. 1–21, Mar. 1994.

[33] J. Baglama and L. Reichel, irlba: Fast Truncated SVD, PCA and Symmetric
Eigendecomposition for Large Dense and Sparse Matrices, 2015, r package
version 2.0.0. [Online]. Available: https://CRAN.R-project.org/package=irlba

[34] J. Oetjen, K. Veselkov, J. Watrous, J. S. McKenzie, M. Becker, L. Hauberg-Lotte,
J. H. Kobarg, N. Strittmatter, A. K. Mróz, F. Ho↵mann, D. Trede, A. Palmer,
S. Schi✏er, K. Steinhorst, M. Aichler, R. Goldin, O. Guntinas-Lichius, F. von
Eggeling, H. Thiele, K. Maedler, A. Walch, P. Maass, P. C. Dorrestein, Z. Takats,
and T. Alexandrov, “Benchmark datasets for 3D MALDI- and DESI-imaging
mass spectrometry,”GigaScience, vol. 4, no. 1, pp. 2105–8, May 2015.

	Purdue University
	Purdue e-Pubs
	12-2016

	A framework for the statistical analysis of mass spectrometry imaging experiments
	Kyle Bemis
	Recommended Citation

	Blank Page

