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ABSTRACT

Zheng, Yiqiang PhD, Purdue University, August 2016. Mathematical Models of Ebola
Virus Disease and Vaccine Preventable Diseases. Major Professor: Zhilan Feng.

This thesis focuses on applying mathematical models to studies on the transmis-

sion dynamics and control interventions of infectious diseases such as Ebola virus

disease and vaccine preventable diseases.

Many models in studies of Ebola transmission are based on the model by Legrand

et al. (2007). However, there are potential issues with the Legrand model. First, the

model was originally formulated in a complex form, leading to confusion and hindering

its uses in practice. To overcome the difficulty, the Legrand model is reformulated

in a much simpler but equivalent form in this thesis. The reformulated model also

provides an intuitive understanding of its parameterization. Second, the underlying

assumptions of the Legrand model are not mathematically clear for researchers, which

might lead to inadvertent misuse of the model. The assumptions are clearly identified

through comparison with three models developed with clear assumptions in this thesis,

one of which simplifies to the Legrand model. This three models are also built with

more realistic sojourns of epidemiological processes. The comparison among these

models also demonstrates the importance of the underlying assumptions as they may

provide different implications on control strategies.

In addition, a concern about current Ebola models is that many of them consider

only infections with typical symptoms, but Ebola presents clinically in a more com-

plicated way. To account crudely for the wide spectrum of clinical symptoms that

characterizes Ebola infection, a model is developed including asymptomatic, mild and

severe infections. Comparing to the model with only typical symptoms, it shows that

modeling the spectrum is important as it could affect estimation of the reproduction
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number and effectiveness of interventions. Possible effective control strategies are also

evaluated. We show that the spectrum of Ebola infection is important in modeling

as it has implications for policy-making.

In many parts of the world, people seasonally migrate between rural and urban/peri-

urban patches for economic opportunities. Migration meanwhile changes the immu-

nity levels of patches and might increase the chance of recurrent outbreaks of vaccine

preventable diseases. A three-patch meta-population model is developed that in-

corporates spatially explicit migration of individuals. The model is used to evaluate

vaccination strategies to mitigate outbreaks. It suggests that rural-urban migration is

an important factor in designing public health policies to mitigate vaccine-preventable

diseases.



1

1. INTRODUCTION AND BACKGROUND

The 2014-15 Ebola outbreak in West Africa presents a serious threat to the public

health world wide [1] and is the largest and longest since the first identification of

the disease [2]. Ebola virus disease (EVD), also known as Ebola haemorrhagic fever,

is a potentially severe illness with high case fatality rate in human [3, 4]. The first

recorded Ebola outbreak dates to 1976 in a remote village Zaire [5, 6], and its name

is from the Ebola River close to the village [7]. Since then, 24 Ebola outbreaks have

been recorded in different African countries [3, 8]. It is believed that Ebola virus

originated from wild animals, which transmit the pathogen to humans [9–11]. The

Ebola virus is transmitted among humans through close contact with bodily fluids of

infected ill and dead persons, including blood, secretions, semen [12], breast milk [13],

etc. Symptoms of Ebola infection start from 3 to 21 days and commonly include,

fever, fatigue, loss of appetite, vomiting, diarrhea, headache, etc, as well as specific

hemorrhagic symptoms, unexplained bleeding at different organs, etc [14]. The 2014-

15 Ebola outbreak in West Africa was caused by the strain called Zaire, one of three

strains (Zaire, Bundibugyo, Sudan) linked to large outbreaks in Africa [8]. This

outbreak started in Guinea in December 2013, and then propagated to its neighbors

Liberia and Sierra Leone [2,15]. Later, many other countries were affected, including

Nigeria, Senegal, United States, Spain, Mali, United Kingdom and Italy [2]. A total

of 28647 suspected cases and 11322 deaths were reported to WHO by March 27,

2016 [16].

Ebola transmission, unlike most other infectious diseases, contains three major

components, including their community, hospital and post-death transmission [17–20].

Transmission among people in community is the major component in Ebola outbreaks.

Absent awareness of the disease, Ebola cases grow exponentially without any preven-

tion and intervention [2]. Most of time, people are infected by Ebola virus without
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accurate diagnosis, or are wrongly diagnosed as other prevalent infectious diseases,

for instance, Malaria or flu, even though they seek for medical care in these develop-

ing Africa countries [3]. Without properly handling the EVD cases, transmission in

hospitals occurs widely. Hospital visitors and other non-Ebola patients are infected

by Ebola virus in hospital [3]. Many healthcare workers are also infected and die of

EVD, which poses further difficulties to contain the disease due to the lack of expe-

rienced healthcare workers [2]. Those deceased from EVD still have the infectious

viruses in their bodily fluids, and can transmit the disease if they are not properly

buried. Some traditional customs in funerals also promote the spreading, including

washing, touching and kissing the deceased [19]. Thus, post-death transmission of

the deceased yet not buried is also important in Ebola virus transmission.

Many mathematical models have been applied to the recent and previous Ebola

outbreaks in Africa. Some of contain transmission in only community [21], in both

community and hospital [22], and in community and at funerals [23]. However, few

models include the three transmission components together. Legrand et al. (2007) [20]

developed a model that captures Ebola virus transmission in the community, at hos-

pital and at funerals. Although it was devoted to studies of the 1995 Congo and

2000 Uganda outbreaks [20], the Legrand model was applied to the first recorded

outbreak [24] and recently to the 2014-15 outbreak in West Africa [25]. Many other

models are built on ideas of Legrand et al. (for example, [26]). Thus, the Legrand

model is widely used for Ebola outbreaks. However, the formulation of the Legrand

model involves many intermediate parameters of no particular biological meanings

that poses difficulties in understanding and applying the model to practice (see the

online discussions in [25]). Further, similar to most ordinary differential equation

models, the Legrand model assumes exponential sojourns implicitly for different bi-

ological states. When more than one process is considered, it seems even difficult to

understand the relationship among them and how they are modeled mathematically.

An investigation of these underlying assumptions is of great practical value in model

verification for further application in practice.
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Chapter 2 unveils the underlying assumptions of the Legrand model and provides

three alternative models with more realistic assumptions. First, the Legrand model

is reformulated in an equivalent form. The reformulated model is much simpler,

and it does not rely on intermediate parameters as does the original formulation.

Thus, it is much easier to understand and to compute the reproduction number.

Second, the relationship among the epidemiological processes (recovery, death, and

hospitalization) is also investigated by comparing with three models developed in

Chapter 2. One of them simplifies to the Legrand model. The three models have clear

assumptions and more realistic distributions of the sojourns in the epidemiological

states. They are built from the basic assumptions of the relationship among the three

processes of recovery, death and hospitalization using integro-differential equations.

Basic and control reproduction numbers are also derived for these general models

based on an understanding of stochastic processes. In addition, a detailed proof is

shown of how the integro-differential equations are reduced to ordinary differential

equations when the sojourns are assumed to follow Gamma distributions using so

called “linear chain trick”. The linear chain trick is introduced later in Section 1.2 of

this chapter. Comparison among these models demonstrate that different underlying

assumptions have distinct implications about control strategies.

Ebola virus disease presents clinically in a complicated way, as infected individ-

uals report various symptoms. Symptoms of Ebola infection vary widely, including

flu-like nonspecific symptoms, as well as specific hemorrhagic symptoms [14]. For the

2014-15 West Africa Ebola outbreak, even the most common symptom, fever, is not

experienced by 13% of patients. There are even rare cases reported with hemorrhagic

symptoms (< 5.7%) [14]. This suggests that infected individuals experience a spec-

trum of symptoms, from mild to severe. Asymptomatic infections are quite possible,

as shown in previous Ebola outbreaks [27,28].

Chapter 3 develops a compartmental model including asymptomatic(mild), mod-

erate and severe symptoms to account crudely for the wide spectrum of clinical symp-

toms that characterizes Ebola infection. The model is based on Model II in Chapter 2,
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which is augmented by including asymptomatic and moderately symptomatic infec-

tion to susceptible, exposed, infectious, hospitalized and deceased (not yet buried) and

recovered compartments. The model captures the dynamics of the 2014-15 Liberia

outbreak when calibrated to the case data. Our estimate of the basic reproduction

number is 1.83 (CI: 1.73, 1.95), consistent with the WHO response team’s estimate

using early outbreak case data. We also estimate the effectiveness of interventions

using case data before and after their introduction. As the final epidemic size is linked

to the timing of interventions in an exponential fashion, a simple empirical formula is

provided to guide policy-making. It suggests that early implementation could signifi-

cantly decrease final size. We also compare our model to one with typical symptoms

by disabling mild and moderate symptoms. The model with only typical symptoms

overestimates the basic reproduction number and effectiveness of control measures,

and exaggerates changes in final size attributable to the timing of interventions. In

addition, uncertainty about asymptomatic or mild and moderate symptoms affects

the variability of the basic reproduction number. Sources of variability are quan-

tified by Sobol indices, which suggest the need for further study. Possible control

strategies are evaluated through sensitivity analyses, indicating that simultaneously

strengthening contact tracing and effectiveness of isolation in hospital would be most

effective. In this chapter, we show that the spectrum of Ebola symptoms is important

in modeling as it has implications for policy-making.

Chapter 4 develops models to evaluate public health policies for vaccine-preventable

diseases. Unlike other models assuming homogeneous mixing, the model in this chap-

ter explicitly includes urban, peri-urban and rural patches. A deterministic discrete

model is used to determine the immunity levels of patches in the long term, in which

models the rural patch has lower immunity than the urban/peri-urban patches. Thus,

seasonal migration of rural residents between rural to urban/peri-urban patches pos-

sibly changes the immunity levels of patches dynamically. This increases chances of

recurrent outbreaks. A short term stochastic model is developed to capture migration

as well as disease transmission. Stochastic simulations evaluate the effects of alterna-
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tive vaccination strategies on preventing disease outbreaks, examine the distribution

of possible outcomes, and compare the likelihood of outbreak mitigation and pre-

vention across immunization policies. The results may help public health officials to

ensure the best possible use of available vaccines. They also suggest that the spatial

structure is an important factor in designing the public health policies of vaccination.

The remainder of this chapter is organized as follows. Section 1.1 includes a brief

summary of mathematical models applied to Ebola outbreaks. Section 1.2 introduces

the linear chain trick to reduce integro-differential equations to ordinary differential

equations. Sections 1.3 and 1.4 includes some commonly used parameter estimation

techniques and uncertainty quantification techniques can be found. These sections

are closely connected to the work presented in the following chapters.

1.1 Ebola models

This section reviews some of the Ebola models that have been applied to Ebola

outbreaks in Africa. SEIR models in Chowell et al. [29] and [30] were applied to study

the 1995 and 2000 outbreaks in Congo and Uganda. However, the SEIR does not

capture the transmission in hospital and post-death transmission, which are important

components in the transmission chain for EVD. Legrand et al. [20] extended the SEIR

model by including compartments for hospitalized individuals and those deceased yet

not buried. They applied their model to the Congo and Uganda outbreaks in 1995 and

2000. It has become a widely used model for Ebola outbreaks, having been applied

to first known 1976 outbreak in Congo [24] and recent 2014-15 outbreak in West

Africa [25, 31, 32]. Many other models are based on the idea in the Legrand model,

for example, [26], which contains a more complex model with 36 compartments.

In this section, the Legrand model [20] is explained. The model includes: the

susceptible S, the latent (exposed) E , the infectious I, the hospitalized H, and the

disease-induced death and not sanitarily buried D as well as the recovered R and the

total population N = S + E + I +H +R.
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H

S E I R

D

Fig. 1.1. Diagram of the Legrand Model [20].

Based on the diagram, the model in [20] is as follows,

dS

dt
= − 1

N
(βISI + βHSH + βDSD),

dE

dt
=

1

N
(βISI + βHSH + βDSD)− αE,

dI

dt
= αE − (γhθ1 + γi(1− θ1)(1− δ1) + γd(1− θ1)δ1)I, (1.1)

dH

dt
= γhθ1I − (γdhδ2 + γih(1− δ2))H,

dD

dt
= γd(1− θ1)δ1I + γdhδ2H − γfD,

dR

dt
= γi(1− θ1)(1− δ1)I + γih(1− δ2)H,

where βI , βH and βD are the transmission rates for community, hospital and funerals,

1/α is the duration of the incubation period, 1/γh is the time from onset to hospital-

ization, 1/γd is the time from onset to death, 1/γi is the time from onset to end of

infectiousness for survivors, and 1/γf is the time from death to traditional burial.

The parameters θ1, δ1 and δ2 are defined through the probability of hospitalization

p and case-fatality ratio f based on the following expressions [20],

θ1 =
p[γi(1− δ1) + γdδ1]

p[γi(1− δ1) + γdδ1] + (1− p)γh
(1.2)

and

δ1 =
fγi

fγi + (1− f)γd
, (1.3)

δ2 =
fγih

fγih + (1− f)γdh
.
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Remark that the parameters θ1, δ1 and δ2 are intermediate parameters without par-

ticular biological meanings. The Legrand model also imposes the constraints [20]

γih =
1

1
γi
− 1

γh

and γdh =
1

1
γi
− 1

γh

. (1.4)

From complex expressions, it is difficult to understand the formulation, parametriza-

tion, and underlying assumptions about the epidemiological processes, including hos-

pitalization, recovery and death. In more detail, exponential sojourns of disease

stages are commonly assumed in ODEs models. For example, if infected individuals

are assumed to recover at a constant per-capita rate γ, then the infectious period is

assumed to follow exponential distribution, i.e. the probability that an individual is

still infectious s > 0 time since onset is

PI(s) = e−γs,

in which case the mean of infectious period is

DI =
1

γ
.

It becomes complicated for the Legrand model because once an individual enters

the infectious class I, he or she can leave due either to hospitalization (entering the

H class) or recovery without being hospitalized (entering the R class from I) or

death without being hospitalized (entering the D class from I) with mean durations

1/γh, 1/γi, 1/γd, respectively. This is equivalently assumed that individuals after

onset enters the H, R and D classes at constant rates γh, γi, γd, respectively. From

the I equation, the model assumes that the overall rate of leaving the I class is a

combination of the rates γh, γi, γd as

∆ = θ1γh + (1− θ1)δ1γd + (1− θ1)(1− δ1)γi. (1.5)

However, it is not clear what underlying assumptions have been made about the rela-

tionship of the three epidemiological processes, i.e. hospitalization, recovery without

hospitalization, and death without hospitalization. Let IH, IR and ID denote the



8

events of the three processes. At first, it may seem that the waiting times of IR, IH

and ID are assumed to be independent and all follows exponential distributions with

mean durations 1/γh, 1/γi, 1/γd, respectively. If so, the mean overall rate of exiting

the I compartment would be different from ∆ in (1.5). Let random variables TP , TL

and TM represent the waiting times associated with events IR, IH and ID and denote

their survival functions by P (t) = e−γit, L(t) = e−γht and M(t) = e−γdt, respectively,

then the overall waiting time in I has survival functions defined as

P (min {TP , TL, TM} > t) = P ({TP > t} ∩ {TL > t} ∩ {TM > t})

= P (TP > t)P (TL > t)P (TM > t) . (1.6)

Thus, the mean overall duration of the I compartment is

E
(

min {TP , TL, TM}
)

=

∫ ∞

0

P (t)L(t)M(t)dt =
1

γi + γh + γd
.

It follows that the overall exiting rate of I is γi + γh + γd, which is inconsistent

with ∆ in (1.5). Similarly, for hospitalized individuals, there are two possible events,

recovery or death, denoted by HR and HD. Therefore, a natural question is what the

assumptions are made underlying the three events IH, IR and ID and the two events

HR and HD.

The complex formulation also leads to an unnecessarily complex expression for

the reproduction number. The reproduction number [20] is computed using next

generation matrix approach [33],

R0 =
βI
∆

+

γhθ1
γdhδ2+γih(1−δ2)

βH

∆
+
δβD
∆

. (1.7)

This expression (1.7) is complex and hard to interpret biologically.

In Chapter 2, a reformulated model is provided to better understand the model

formulation and parameterization. The reformulated model is shown to be equivalent

to its original formulation, but much cleaner and simpler, and it provides an intuitive

interpretation of the Legrand model. The reproduction number for the reformulated

model is a much simpler expression. It is of essential importance to accurately identify
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the underlying assumptions behind models so that they closely approximate biological

systems of interest. The underlying assumptions of the Legrand model are identified

through comparison to three models, which are developed in Chapter 2. The three

alternatives have clear assumptions and they are formulated from the stochastic pro-

cesses of hospitalization, recovery and death using integro-differential equations. The

integro-differential equations are then reduced to ordinary differential equations using

the “linear chain trick” (see the following section for more detail), when the sojourns

are assumed to follow more realistic Gamma distributions. One of the three model

simplifies to Legrand model so that the underlying assumptions are identified.

1.2 Linear chain trick

A common underlying assumption of ordinary differential equation based epidemi-

ological models is about exponentially distributed sojourns of disease stages (e.g. the

exponentially distributed infectious period). However, exponentially distributed du-

rations might provide biased or misleading estimates (for example, [34]). Similarly,

for discrete models, geometrically distributed sojourns are equivalent to exponentially

ones (for examples, [35, 36]). Many works [34, 37–39], therefore, adopt more general

distributions for sojourns, which result in integro-differential equations. When general

distributions are specified as Gamma distributions, the integro-differential equations

can be reduced to ordinary differential equations with multiple sub-stages, which is

known as “linear chain trick”. This linear chain trick is also used for delayed differ-

ential equations [40]. This technique is used for complex models in Chapter 2.

In this section, I provide a simple example using “linear chain trick” to reduce

a SEIR with generally distributed infectious period to a set of ordinary differential

equations when the general distribution is assumed as Gamma. The technique relies

on the expression of the Gamma survival function. For a Gamma distribution with
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shape and rate parameter (n, nγ) (where n ≥ 1 is an integer), the probability density

function g(t) is

g(t) =
nγ(nγt)n−1

(n− 1)!
e−nγt, (1.8)

and the survival fuction G(t) is given by

G(t) =
n∑

j=1

(nγt)j−1e−nγt

(j − 1)!
. (1.9)

This form of Gamma survival function is derived based on the property that sum

of independently and identically distributed exponential random variables follows

Gamma distribution and these exponential random variables can be viewed as waiting

times in a Poisson process (see Section 5.6.1 of Ross (2002) [41]). In more detail,

denote by W the waiting time until the n-th event in the Poisson process with rate

nγ. If n = 1, it is known that W is exponentially distributed. If n ≥ 1, then W

follows Gamma distribution with shape and rate parameter (n, nγ). Denote by F (t)

the cumulative distribution function of W . Then

F (t) = 1− P(W < t),

= 1− P(fewer than n events in [0, t]),

= 1− P(0 events or 1 event or . . . or n− 1 events in [0, t]),

= 1−
n−1∑

k=0

(nγt)ke−nγt

k!
or 1−

n∑

j=1

(nγt)j−1e−nγt

(j − 1)!
,

where the probability of the event {k events in [0, t]} is (nγt)ke−nγt/k! based on the

Poisson process with rate nγ.

A standard SEIR model with generally distributed infectious period is

dS

dt
= −βSI/N,

dE

dt
= βSI/N − αE, (1.10)

I(t) =

∫ t

0

αE(s)P (t− s)ds+ I(0)P (t),

R(t) =

∫ t

0

[∫ τ

0

αE(s)gP (τ − s)ds+ I(0)gP (τ)

]
dτ,
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where P is the survival function for the infectious period, i.e., the probability that an

individual is still infectious s > 0 time since onset, and gP is the negative derivative

of the survival function. In more detail, I = I(t) is the total number of infectious

individuals at time t, including the individuals who became infectious t − s units of

time ago (0 < s < t) and have not recovered yet, as well as those individuals who

were infectious at time 0 and are still in the I class at time t. Then differentiating

I(t), it gives

I ′(t) = αE(t)−
[∫ t

0

αE(s)gP (t− s)ds+ I(0)gP (t)

]
(1.11)

where the first term αE(t) is the inflow to I class and the second term is the outflow

from I class to R class at time t. Therefore, R = R(t) equation is an integral equation

as in equations (1.10), which is the total number of the recovered individuals leaving

from I class at τ from time 0 to t.

Next, the integro-differential equations can be shown to reduced to ordinary differ-

ential equations, if the survival distribution is Gamma with shape and rate parameter

(n, nγ) as (1.9). In this case, the I equation in (1.10) becomes

I(t) =

∫ t

0

αE(s)
n∑

j=1

(nγ(t− s))j−1e−nγ(t−s)
(j − 1)!

ds+ I(0)
n∑

j=1

(nγt)j−1e−nγt

(j − 1)!
,

.
=

n∑

j=1

Ij(t)

where

Ij(t) =

∫ t

0

αE(s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
ds+ I(0)

(nγt)j−1e−nγt

(j − 1)!
,

for j = 1, · · · , n. Differentiating each Ij(t) equations, it gives

dI1
dt

= αE − nγI1,
dIj
dt

= nγIj−1 − nγIj, for j = 2, · · · , n.

Differentiating R(t) equation, gives

dR

dt
= nγIn,
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Therefore, model (1.10) becomes a system of ordinary differential equations

dS

dt
= −βSI/N,

dE

dt
= βSI/N − αE,

dI1
dt

= αE − nγI1, (1.12)

dIj
dt

= nγIj−1 − nγIj, for j = 2, · · · , n,
dR

dt
= nγIn.

Remark that the substages Ij’s are not only for the mathematical convenience,

but also may represent the individuals with typical symptoms shown in the j-th sub-

stage. Although the infectious compartment is stratified into n sub-stages, it does not

necessarily mean that every individual spends the same amount of time in each sub-

stage or have the same total infectious period. It only describes the average behaviors

of infectious individuals, so some individuals could progress through the sub-stages

faster than others.

1.3 Parameter estimation

In this section, parameter estimation methods are introduced as the basis for the

data fitting in Chapter 4. Commonly used data fitting techniques include least squares

and maximum likelihood estimation [42]. I will provide an example that is adapted

from [21] and [29]. The example is based on a SEIR model that has been applied to

Ebola breaks of Congo (1995) and Uganda (2000) as well as Guinea, Liberia, Sierra

Leone of West Africa (2014)

dS

dt
= −βSI/N,

dE

dt
= βSI/N − αE,

dI

dt
= αE − γI,

dR

dt
= γI,
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where S, E, I and R denote the population of susceptible, exposed, infectious, and

removed individuals, β is the tranmission rate, 1/α is the average duration of incu-

bation, and 1/γ is the average infectious period.

The basic reproduction number for this model is simply given by

R0 = β/γ,

which is the quantity to be estimated.

To connect the model and observed case data, an auxiliary equation is defined as

dC

dt
= αE,

where C represents the cumulative number of Ebola cases.

The reported cumulative numbers of cases for the 2014-15 West Africa outbreak

are available through the WHO website. Here we used the case data presented in [21]

for Liberia as an example. The parameters 1/α = 5.3 days and 1/γ = 5.61 days are

assumed in the example, which are estimates from the 1995 Congo outbreak [29]. The

population at risk is assumed to be 1 million [21]. Denote by Oi and Ci the observed

cases and the model predicted cases at time ti for i = 1, · · · , n. In this example, the

transmission rate β is to be estimated.

The method of least squares estimation is to minimize the sum of squared errors

SSE =
n∑

i=1

(Ci −Oi)
2

to obtain the best fitting parameters, where n is the number of observations.

The method of maximum likelihood is a statistical inference method that maxi-

mizes the likelihood (or probability) of the observed data. Count data are commonly

assumed to follow Poisson distribution, i.e. Oi ∼ Poisson(Ci). Then, to obtain the

best fitting parameters, maximize the likelihood or log likelihood function,

log(Likelihood) =
n∑

i=1

log(fPoisson(Oi;Ci))
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where fPoisson(·;Ci) is the probability mass function of the Poisson distribution with

mean Ci. In addition to Poisson distribution, other distributions, for example, Normal

distribution, Binomial and Negative Binomial distributions are also used.

Remark that least squares and maximum likelihood estimation are equivalent,

given that observed cases follow Normal distribution of model predicted cases Ci (See

Chapter 4 in [42]). This is because the Normal log likelihood is log(fNormal(Oi;Ci, σ
2) =

a(Ci−Oi)
2 + b, where fNormal(·;Ci, σ2) is the probability density function of Normal

distribution with mean Ci and variance σ2, and a, b are constants independent of Ci

and Oi. Therefore, the two methods provide the same estimates.

0
50
0

10
00

15
00

Liberia Cases

10-May 29-Jun 18-Aug

Fig. 1.2. Fitting an SEIR model to Liberia Cases as an example.
Estimated R0 is 1.59.

These two methods can be implemented in R using packages bbmle and deSolve

[21, 43]. The specified ODE model is numerically sovled by the ODE solver package

deSolve. To ensure that the parameters to be estimated are in the correct ranges, those
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to-be-estimated parameters are transformed if they are assumed positive (0,∞) or in

the range of (0, 1) using log or logistic transformation, respectively. Implementation

has four major parts: 1) a function that specifies a model, 2) a function that calculates

the negative log-likelihood or the sum of squared errors , 3) a call to a function that

does the optimization to search best parameter values, and 4) analyzing the results.

1.4 Sensitivity analysis

In this section, some useful sensitivity and uncertainty analysis techniques are

shown as the basis for Chapter 4. Sensitivity analysis is routinely employed to evaluate

how and to what extents model outputs are affected by model inputs [44], which is

divided into local and global analyses. Denote by u a scaler output and by x =

(x1, · · · , xn) an n-dimensional input, then a function u = f(x) defines the relationship

between the output and the input. Local sensitivity analysis is about evaluation of

the partial derivatives (∂u/∂xk)x=x∗ that describes the sensitivity of u∗ = f(x∗) with

respect to xk locally at x = x∗. Sometimes elasticity is defined as the proportional

changes in u with respect to proportional changes in xk, i.e., [(∂u/u∗)/(∂xk/x
∗
k)] x=x∗ .

Therefore, local sensitivity and elasticity analyses by definition study the local linear

dependence between the output and inputs.

The global sensitivity approach does not need to specify the particular input

x = x∗ but considers the output u = f(x) for all x in the possible range. Thus, global

sensitivity analysis is used to study the overall dependence between the output and

its inputs instead of their dependence at a given point. Two popular and widely used

global sensitivity analysis methods are illustrated, partial rank correlation coefficients

(PRCC) and Sobol indices. Both methods involve the sampling of inputs in their

ranges, for which a method called Latin hypercube sampling (LHS) is widely used.

Latin hypercube sampling is a stratified sampling method that controls how ran-

dom samples are drawn from a probability distribution of an input. A distribution is

assigned to each input variables, which specifies the range of possible values and the
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probability of each value. Two popular distributions in global sensitivity analysis are

triangular and uniform. The triangular distribution is used when a most likely value

and range of the input are estimable, while the uniform distribution is used when

only the range is estimable. For each input, the probability density function (PDF)

is divided into N equiprobable partitions and samples are obtained in each partition.

The N sample values for one parameter are generated and then are randomly com-

bined with samples for other parameters through shuffling. This process forms length

N vectors of sampled parameter values, called Latin hypercube samples.

The global sensitivity analysis applies partial rank correlation coefficients (PRCC)

to assessing pairwise relations between inputs and the output after removing the in-

fluence of other input variables [45,46]. In detail, a rank transformation is performed

for the samples of each input variable as well as the output variable. In rank transfor-

mation, sample values are replaced by their ranks (or orders) for each input and the

output. The rank transformed samples are then used to compute partial correlation

coefficients. To compute the partial rank correlation coefficient for a given input and

the output, two linear regression models are fitted to the rank transformed samples. In

detail, the rank transformed samples denoted by {(X(j)
1 , X

(j)
2 , · · · , X(j)

n , U (j))}j=1,··· ,N

are obtained through replacing x
(j)
i in the sample {x(j)i }j=1,··· ,N by its order denoted

by X
(j)
i for i = 1, · · · , n and replacing u(j) in the sample {u(j)}j=1,··· ,N by its order

denoted by U (j) . Two linear regression models are

Xi = b0 +
n∑

j=1,j 6=i

bjXj + εi

and

U = c0 +
n∑

j=1,j 6=i

cjXj + ηi

where εi and ηi are the residuals of the two linear models.

The first linear model treats the input of interest as the dependent variable and

other inputs as independent variables. Similarly, the other regression model is fitted to

the same independent variables with the output variable as dependent variable. The

residuals from the two linear regression models can be interpreted as the remaining
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association between the input and output after removing the influences of other input

variables. Then the residual vectors from the two regression models are used to

compute a Pearson correlation coefficient,

ρεi,ηi =

∑N

j=1(ε
(j)
i − ε̄i)(η(j)i − η̄i)√∑N

j=1(ε
(j)
i − ε̄i)2

∑N

j=1(η
(j)
i − η̄i)2

,

where ε̄i, η̄i are the means of ε
(j)
i j=1,··· ,N and η

(j)
i j=1,··· ,N, respectively, and ρεi,ηi is the

PRCC value of xi and u. Therefore, PRCC identifies and measures the statistical

influence, specifically the monotonicity, of the inputs on the output, even though the

relationship between the input and output may be nonlinear.

The Sobol method is a variance-based global sensitivity analysis method [44, 47],

which is different from the correlation-based method using partial rank correlation

coefficients. It decomposes the variance of the output and quantifies the sources

of variability for inputs and interactions by Sobol indices. In detail, the ANOVA

(Analysis of Variances) representation [47] of u = f(x) is

u = f(x) = f0 +
n∑

i=1

fi(xi) +
n∑

j>i

fij(xi, xj) + · · ·+ f1,··· ,n(x1, · · · , xn),

where f0, fi(xi), ... f1,··· ,n(x1, · · · , xn) are defined as follows

∫
f(x)dx = f0,

∫
f(x)

∏

k 6=i

dxk = f0 + fi(xi),

∫
f(x)

∏

k 6=i,j

dxk = f0 + fi(xi) + fj(xj) + fij(xi, xj),

and so on, where the integrals have bounds of the input ranges. Then define variances

[47] by

V =

∫
f 2dx− f 2

0 , Vi1,··· ,is =

∫
f 2
i1,··· ,isdxi1 · · · dxis ,

and

V =
n∑

s=1

n∑

i1<···<is

Vi1,··· ,is .
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Define Sobol indices [47] by

Si1,··· ,is =
Vi1,··· ,is
V

,

and
n∑

s=1

n∑

i1<···<is

Si1,··· ,is = 1.

Therefore, Sobol indices are the percentages of variability attributed to inputs, and

can be directly interpreted as measures of sensitivity. The Sobol method can be also

applied to nonlinear relationship between inputs and the output.
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2. EBOLA MODELS - CONSEQUENCES OF

UNDERLYING ASSUMPTIONS

The chapter presents the work in collaboration with Feng, Hernandez-Ceron, Zhao,

Glasser and Hill. Most of the results and ideas in this chapter have been accepted

for publication in the journal of Mathematical Biosciences [48]. I contribute several

parts of the manuscript but not exclusively, including model formulation and analysis

as well as the writing of the manuscript.

2.1 Introduction

The Legrand model [20] is widely used model for many Ebola outbreaks. However,

its complex expression makes it difficult to understand the formulation, parameter-

ization, and underlying assumptions about the epidemiological processes including

hospitalization, recovery and death, which are discussed in Section 1.1 in Chapter 1.

This chapter focuses on unveiling the underlying assumptions used in the Legrand

model. We simplify the Legrand model by reformulating it, which helps us to gain

more insights into its formulation and parameterization. We also specifies the under-

lying assumptions of the Legrand model by comparing it with three alternative models

developed in this chapter with more realistic assumptions. Through comparison, it

also demonstrates that different underlying assumptions have distinct implications

about control strategies.

We first provide a simpler (but equivalent) formulation of the Legrand model in

Section 2.2. In particular, we define the overall waiting time in the I class to be the
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weighted combination of waiting times DIH = 1/γIH , DIR = 1/γIR and DID = 1/γID

in the following form:

TI = p
1

γIH
+ (1− p)f 1

γID
+ (1− p)(1− f)

1

γIR
, (2.1)

or equivalently using parameters in Legrand model:

TI = p
1

γh
+ (1− p)f 1

γd
+ (1− p)(1− f)

1

γi
, (2.2)

where p and f denote the probability of hospitalization and case-fatality, respectively.

Using this assumption, as shown in Section 2.2, we obtain a much simpler formulation

of the Legrand model. This facilitates identification of its underlying assumptions, as

illustrated in Sections 2.3 and 2.4.

To fully understand the underlying assumptions used in the Legrand model, we

develop three models based on general distributions for the waiting times of key pro-

cesses and consider various assumptions about their relationships. We demonstrate

that, when specific stage distributions are considered, one of these general models

reduces to the Legrand model. The models that we develop in this chapter under

arbitrarily distributed disease stages consist of integro-differential equations. It has

been asserted that, when the arbitrary distributions are replaced by Gamma distribu-

tions, the so-called “linear chain trick” (see Section 1.2 for more detail) can be applied

to reduce the integral equations to ordinary differential equations (ODEs) [37,49,50].

However, apart from a proof of the linear chain trick in a simpler setting by Smith

in [40], a rigorous derivation of this fact for more complex epidemic models, such

as the one in this chapter, is lacking. In this chapter, we provide a derivation (see

Section 2.3).

This chapter is organized as follows. In Section 2.2, we present an equivalent

Legrand model with a simpler formulation. Section 2.3 is devoted to the derivation

of three models with arbitrarily distributed disease stages under various assumptions

about the relationships between the overall waiting time in the I class and those for

recovery, hospitalization and death. It is shown that these integro-differential equa-
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Table 2.1.
Definition of quantities commonly used in models in Chapter 2.

Symbol Definition

DIR Mean duration from onset to recovery (absent intervention) or in-

fectious period

γIR (γi) = 1/DIR

DID Mean duration between onset and death (absent intervention)

γID (γd) = 1/DID

DIH Mean duration from onset to hospitalization (given hospitalized)

γIH (γh) = 1/DIH

DHR Mean duration from hospitalization to recovery

ωHR (γih) = 1/DHR

DHD Mean duration from hospitalization to death

ωHD (γdh) = 1/DHD

p Proportion hospitalized (dependent on control effort)

f Probability of death (with or without hospitalization)

Note: the symbols in parentheses are the corresponding quantities used in the Legrand

model (1.1).

tions models reduce to ODE models when the distributions are Gamma or exponen-

tial. One of these ODE models is shown to be equivalent to the Legrand model. Basic

and control reproduction numbers for these general models are derived in Section 2.4.

The three models and the Legrand model are compared in Section 2.5. Discussions

of the results are included in Section 2.6. The Appendix is given in Section 2.7 and

collects the detailed proofs of results.
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2.2 An equivalent and simpler formulation of the Legrand model

The Ebola model (1.1) studied by Legrand et al. (2007) [20] has been widely cited

(see Section 1, Chapter 1). Their model consists of a system of ordinary differential

equations with six compartments representing the epidemiological classes of suscep-

tible (S), exposed (E), infectious (I), hospitalized (H), dead but not yet buried (D)

and recovered (R). We can show (Section 2.7.2) that the Legrand model given by

system (1.1) is equivalent to the following system

dS

dt
= − 1

N
S(βII + βHH + βDD),

dE

dt
=

1

N
S(βII + βHH + βDD)− αE,

dI

dt
= αE − γI,

dH

dt
= pγI − ωH,

dD

dt
= (1− p)fγI + fωH − γfD,

dR

dt
= (1− p)(1− f)γI + (1− f)ωH,

(2.3)

where γ is the overall rate of leaving the I compartment (and 1/γ is the overall

waiting time in I) and ω is the the average rate of leaving H (and 1/ω is the overall

waiting time in the H), which are defined as

1

γ
= p

1

γIH
+ (1− p)f 1

γID
+ (1− p)(1− f)

1

γIR
,

1

ω
= f

1

ωHD
+ (1− f)

1

ωHR
,

(2.4)

or equivalently, using the notation in Legrand model (see Table 2.1 for the biological

meanings of γ’s):

1

γ
= p

1

γh
+ (1− p)f 1

γd
+ (1− p)(1− f)

1

γi
,

1

ω
= f

1

γdh
+ (1− f)

1

γih
.

(2.5)
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From the above expressions, the intermediate parameters θ1, δ1 and δ2 of the

Legrand model (1.1) in (1.2) and (1.3) are determined by the fraction of infectious

people hospitalized is

p =
γhθ1

γhθ1 + γi(1− θ1)(1− δ1) + γd(1− θ1)δ1
, (2.6)

and the probabilities of death with (fh) and without hospitalization (fi) are given by

fh =
γdhδ2

γdhδ2 + γih(1− δ2)
and fi =

γdδ1
γi(1− δ1) + γdδ1

. (2.7)

Moreover, the Legrand model (1.1) and model (2.3) impose the following con-

straints (see also (1.4))

fi = fh
.
= f,

1

γi
=

1

γh
+

1

γih

(
or equivalently

1

γIR
=

1

γIH
+

1

ωHR

)
,

1

γd
=

1

γh
+

1

γdh

(
or equivalently

1

γID
=

1

γIH
+

1

ωHD

)
.

(2.8)

and assumes that hospitalization does not affect the time from onset to recovery or

from onset to death.

We show in the Section 2.7.1 that model (2.3) is equivalent to the Legrand model

(1.1). However, the presentation of the model formulation (2.3) is much simpler and

easier to follow than that of (1.1). Moreover, the system (2.3) facillatates derivation

of the control reproduction number Rc, which (based on the next generation matrix

approach) is

Rc =
βI
γ

+ p
βH
ω

+ f
βD
γf
. (2.9)

We remark that the computation from model (2.3) does not require any of the γj

in Table 2.1, or the intermediate parameters, such as θ1, δ1 and δ2, used in Legrand

model.

2.3 Models with general distributions for disease stages

To examine the underlying assumptions in the Legrand (1.1) or equivalent model

(2.3), and to provide more accurate evaluations of disease control strategies, we de-
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velop models using more realistic assumptions about the disease stage distributions.

In this section, we formulate three models based on different assumptions about the

relationship between the overall waiting time in the I class and the waiting times

from onset to hospitalization, recovery without hospitalization, and death without

hospitalization. We illustrate that these various assumptions lead to different mod-

els. We will adopt probabilistic terminology to facilitate the interpretation of our

deterministic model, and focus on the following three scenarios:

(I). Assume that the three events IR, IH and ID are independent and the waiting

times are described by the survival functions P1(s), L1(s) and M1(s), respec-

tively, where s represents the time-since-onset. It is also assumed that hospi-

talization does not affect the time from onset to recovery or death.

(II). The two events IR and ID are combined and described by a single distribution

P2(s), with a fraction 1−f of the exiting individuals recovering (and the fraction

f dying). The event IH is independent of IR and ID and the waiting time is

described by distribution L2(s). Similar to Model I, it is also assumed that

hospitalization does not affect the time from onset to recovery or probability of

death.

(III). All three events (IH, IR, and ID) are combined and described by a single dis-

tribution P3(s), with a fraction p of the exiting individuals being hospitalized

and a fraction 1− f (respectively, f) of the non-hospitalized individuals recov-

ering (respectively, dying). The two events HR and HD are combined and the

waiting time is described by a single distribution Q3(s) with a fraction 1 − f
(or f) of the exiting individuals recovering (or dying). P3 and Q3 are assumed

to be independent. Unlike in Models I and II, in which the time from onset to

hospitalization is tracked due to the independent stage distributions, in Model

III a constraint must be imposed so that the time between onset and hospital-

ization plus the time beween hospitalization and recovery (or death) equals the

time between onset and recovery (or death).
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Because we focus on the general waiting time for the infectious stage and its

influence on model formulation when hospitalization is considered, we assume simpler

distributions for other stages including the latent stage and the duration between

death and burial. That is, the E and D stages are assumed to have exponential

distributions with constant rates α and γf . As the models are derived under arbitrary

distributions for the waiting times of key disease stages, they consist of systems of

integro-differential equations. We show that these systems reduce to ODEs systems

when the arbitrary stage distributions are replaced by Gamma distributions.

We introduce the following notation for two conditional probabilities, which will

be used later in the following section. Let s denote the time of disease onset. The

conditional probability of being still infectious at time t, given that the individual

was hospitalized at time τ is as

P1(t− s|τ − s) :=
P[TP1 > t− s]
P[TP1 > τ − s] =

P1(t− s)
P1(τ − s)

. (2.10)

Similarly, the assumption that hospitalization does not affect the time from onset to

death implies that the conditional probability of being still alive at time t given being

alive and hospitalized at τ (s < τ < t) is

M1(t− s|τ − s) :=
P[TM1 > t− s]
P[TM1 > τ − s] =

M1(t− s)
M1(τ − s)

. (2.11)

2.3.1 Model I

The model associated to (I) is described in this section. For the three independent

events IR, IH, and ID, the waiting times are described respectively by the survival

functions

• P1(s): Probability that a living individual remains infectious s units of time

since onset (governing both IR and HR events).

• L1(s): Probability of a living individual not being hospitalized s units of time

since onset (governing the IH event).
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• M1(s): Probability of surviving the disease s units of time since onset (governing

ID and HD events).

Figure 2.3.1 depicts the transitions between epidemiological classes for the model

under scenario (I). All variables and parameters have the same meanings as before

unless otherwise stated. The diagram in (a) depicts transitions between compart-

ments when stage durations for the IR, IH, and ID events are arbitrary described by

probability distributions P1(t), L1(t) and M1(t). The dotted rectangle around the I

and H compartments indicates that individuals in these two compartments are being

tracked for their time-since-onset using the distribution P1(t); i.e., the time elapsed in

I before entering H is taken into account when determining the time between entering

H and recovery R. The diagram in (b) illustrates the effect of the ‘linear chain trick’

when P1(t) is a Gamma distribution, and L1(t) and M1(t) are exponential survival

functions. More details about the parameters for these distributions are given later

(see also Remark 2.1 for explanations about the multiple compartments for the I and

H classes).

The equations for the S and E classes are ODEs given by

dS

dt
= −λ(t)S,

dE

dt
= λ(t)S − αE, (2.12)

where λ(t) denotes the force of infection (or hazard rate) given by

λ(t) =
βII + βHH + βDD

N
, (2.13)

and I = I(t) is the total number of infectious individuals given by

I(t) =

∫ t

0

αE(s)P1(t− s)L1(t− s)M1(t− s)ds+ I(0)P1(t)L1(t)M1(t). (2.14)

The first term in (2.14) represents the total number of individuals at time t who

became infectious t− s units of time ago (0 < s < t) and have not recovered, or been

hospitalized or died by time t. The second term in (2.14) represents those individuals

who were infectious at time 0 and are still in the I class at time t. Assume that the

number of initially infected individuals I(0) is small and, for simplicity, that these

individuals all have stage age 0 in I.
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Let gP1 = −P ′1, gL1 = −L′1 and gM1 = −M ′
1 denote the probability density func-

tions of P1, L1 and M1 respectively. These functions also give the rates of entering the

R, H and D classes, respectively. Differentiating the I equation (2.14) will generate

inflow terms from I to R, H and D classes:

I ′(t) = αE(t)−
[∫ t

0

αE(s)P1(t− s)gL1(t− s)M1(t− s)ds+ I(0)P1(t)gL1(t)M1(t)

]

−
[∫ t

0

αE(s)P1(t− s)L1(t− s)gM1(t− s)ds+ I(0)P1(t)L1(t)gM1(t)

]

−
[∫ t

0

αE(s)gP1(t− s)L1(t− s)M1(t− s)ds+ I(0)gP1(t)L1(t)M1(t)

]
.

If an infectious individual entered the H class τ − s (0 < s < τ < t) units after

becoming infectious, then based on the conditional probabilities P1(t − s|τ − s) and

M1(t− s|τ − s) shown in (2.10) and (2.11), the H equation can be written as

H(t) =

∫ t

0

[∫ τ

0
αE(s)P1(τ − s)M1(τ − s)gL1(τ − s)P1(t− s|τ − s)M1(t− s|τ − s)ds

+ I(0)P1(τ)M1(τ)gL1(τ)P1(t− τ |τ)M1(t− τ |τ)] dτ,

=

∫ t

0

[∫ τ

0
αE(s)P1(t− s)M1(t− s)gL1(τ − s)ds+ I(0)P1(t)M1(t)gL1(τ)

]
dτ,

=

∫ t

0
αE(s)P1(t− s)M1(t− s)

∫ t

s
gL1(τ − s)dτds+ I(0)P1(t)M1(t)

∫ t

0
gL1(τ)dτ,

=

∫ t

0
αE(s)P1(t− s)M1(t− s)(1− L1(t− s))ds+ I(0)P1(t)M1(t)(1− L1(t)).

For the inflows to the D class, in addition to the term from the I equation there is

also a term from the H equation. Differentiating the H equation, we have

H ′(t) =

∫ t

0
αE(s)P1(t− s)M1(t− s)gL1(t− s)ds+ I(0)P1(t)M1(t)gL1(t)

−
∫ t

0
αE(s)P1(t− s)gM1(t− s)(1− L1(t− s))ds− I(0)P1(t)gM1(t)(1− L1(t))

︸ ︷︷ ︸
to D class

)

−
∫ t

0
αE(s)gP1(t− s)M1(t− s)(1− L1(t− s))ds− I(0)gP1(t)M1(t)(1− L1(t))

︸ ︷︷ ︸
to R class

)
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(b) Gamma distributions
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Fig. 2.1. Transition diagram for Model I when distributions
P1(t) (red), L1(t) (green), and M1(t) (blue) are arbitrary (a), or
Gamma/exponential (b).

From equations (2.3.1) and (2.15), we obtain the equations for D and R:

D′(t) =

∫ τ

0
αE(s)P1(τ − s)gM1(τ − s)ds+ I(0)P1(τ)gM1(τ)

−γf
∫ t

0

[∫ τ

0
αE(s)P1(τ − s)gM1(τ − s)ds+ I(0)P1(τ)gM1(τ)

]
e−γf (t−τ)dτ.
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and

R(t) =

∫ t

0

[∫ τ

0
αE(s)gp1 (τ − s)M1(τ − s)L1(τ − s)ds+ I(0)gp1 (τ)M1(τ)L1(τ)

]
dτ

︸ ︷︷ ︸
(from I class)

+

∫ t

0

[∫ τ

0
αE(s)gp1 (τ − s)M1(τ − s)(1− L1(τ − s))ds+ I(0)gp1 (τ)M1(τ)(1− L1(τ))

]
dτ

︸ ︷︷ ︸
(from H class)

,

=

∫ t

0

[∫ τ

0
αE(s)gp1 (τ − s)M1(τ − s)ds+ I(0)gp1 (τ)M1(τ)

]
dτ,

Using the equations derived above, we obtain the system of integro-differential

equations for Model I:

dS(t)

dt
= −λ(t)S(t),

dE(t)

dt
= λ(t)S(t)− αE(t),

I(t) =

∫ t

0
αE(s)P1(t− s)M1(t− s)L1(t− s)ds+ I(0)P1(t)M1(t)L1(t), (2.15)

H(t) =

∫ t

0
αE(s)P1(t− s)M1(t− s)(1− L1(t− s)) + I(0)P1(t)M1(t)(1− L1(t)),

D(t) =

∫ t

0

[∫ τ

0
αE(s)P1(τ − s)gM1(τ − s)ds+ I(0)P1(τ)gM1(τ)

]
e−γf (t−τ)dτ,

R(t) =

∫ t

0

[∫ τ

0
αE(s)gp1 (τ − s)M1(τ − s)ds+ I(0)gp1 (τ)M1(τ)

]
dτ,

where λ(t) is given in (2.13). The initial condition is (S(0), E(0), I(0), H(0), D(0), R(0)) =

(S0, E0, I0, 0, 0, 0), where S0 and E0 are positive constants.

We remark that, in the system (2.15), the probability distributions P1, L1 and M1

are arbitrary. We show in the next section that when these general distributions are

replaced by Gamma distributions, the integral equations can be reduced to ODEs.

Reduction of Model I (2.15) to ODEs

In this section, we show that the system of integro-differential equations (2.15) for

Model I can be reduced to a system of ordinary differential equations when P1, L1 and

M1 are Gamma distributions. Note that, for a Gamma distribution with shape and
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rate parameters (n, nα) (where n ≥ 1 is an integer), the probability density function

g(t) and the survival function G(t) are given, respectively, by

g(t) =
nα(nαt)n−1

(n− 1)!
e−nαt, G(t) =

n∑

j=1

(nαt)j−1e−nαt

(j − 1)!
. (2.16)

A derivation for the survival function G(t) in (2.16) can be found in Section 1.2 of

Chapter 1.

Consider the case when P1(t) is a Gamma distribution with shape and rate pa-

rameters (n, nγ1) (where n ≥ 1 is an integer), and L1(t) and M1(t) are exponential

distributions with parameters χ1 and µ, respectively (which are Gamma distributions

with shape parameter 1). That is,

P1(t) = Gn
nγ1

(t) =
n∑

j=1

(nγ1t)
j−1e−nγ1t

(j − 1)!
,

L1(t) = G1
χ1

(t) = e−χ1t,

M1(t) = G1
µ(t) = e−µt.

(2.17)

In this case, the I equation in (2.15) becomes

I(t) =

∫ t

0
αE(s)e−µ(t−s)e−χ1(t−s)

n∑

j=1

(nγ1(t− s))j−1e−nγ1(t−s)
(j − 1)!

ds

+I(0)e−µte−χ1t
n∑

j=1

(nγ1t)
j−1e−nγ1t

(j − 1)!

.
=

n∑

j=1

Ij(t),

where

Ij(t) =

∫ t

0
αE(s)e−µ(t−s)e−χ1(t−s) (nγ1(t− s))j−1e−nγ1(t−s)

(j − 1)!
ds

+ I(0)e−µte−χ1t (nγ1t)
j−1e−nγ1t

(j − 1)!
,

for j = 1, · · · , n. Similarly, the hospitalized class can be written as

H(t) =
n∑

j=1

Hj(t)
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with Hj(t) being the functions given by

Hj(t) =

∫ t

0
αE(s)e−µ(t−s)

(nγ1(t− s))j−1e−nγ1(t−s)
(j − 1)!

(1− e−χ1(t−s))ds

+ I(0)e−µt
(nγ1t)

j−1e−nγ1t

(j − 1)!
(1− e−χ1t)

Then, we can show (see the detailed derivation in Appendix) that the system (2.15)

is equivalent to the following system of ODEs:

dS(t)

dt
= −λ(t)S(t),

dE(t)

dt
= λ(t)S(t)− αE(t),

dI1(t)

dt
= αE(t)− (nγ1 + χ1 + µ)I1(t),

dIj(t)

dt
= nγ1Ij−1(t)− (nγ1 + χ1 + µ)Ij(t), for j = 2, . . . n (2.18)

dH1(t)

dt
= χ1I1(t)− (nγ1 + µ)H1(t),

dHj(t)

dt
= χ1Ij(t) + nγ1Hj−1(t)− (nγ1 + µ)Hj(t), for j = 2, . . . n

dD(t)

dt
=

n∑

j=1

µIj(t) +
n∑

j=1

µHj(t)− γfD(t),

dR(t)

dt
= nγ1In(t) + nγ1Hn(t).

Remark 2.1. System (2.18) is consistent with the ODE system obtained by applying

the linear chain trick to system (2.15), which implies that the Gamma distributed

stage can be considered as a sequence of n sub-stages with equal length, each of which

follows an exponential distribution with parameter γ1 (see, for example, MacDonald,

1978; Hethcote and Tudor, 1980; Lloyd, 2001). However, a rigorous proof for the

reduction of integral equations to the ODEs has not been provided. Note that, in

this case, the diagram in Fig. 2.3.1(a) becomes the one illustrated in Fig. 2.3.1(b),

where the I and H stages are divided into n sub-stages each of which follows an

exponential distribution with parameter nγ1. In this case, the period between Hi

and Hi+1 is the same as that between Ii and Ii+1 (due to the memoryless property of

exponential distributions).
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We observe that the recovery rates from both In and Hn, as well as the transition

rates from Ij to Ij+1 and from Hj to Hj+1 (j = 1, · · ·n−1) are all the same and equal

to nγ1.

Remark 2.2. When n = 1 (i.e., when P1(t) is an exponential distribution), model

(2.18) has a very similar structure to the Legrand model. However, because the

exiting rates from I and H due to recovery are the same (γ1), model (2.18) differs

from the Legrand model (see section 2.5.1 for more details).

2.3.2 Model II

In Model I, the three processes IR, IH and ID are assumed to be independent, in

which case the three events ‘compete’ for individuals in the I class. Another scenario

is to consider only two independent processes, one being hospitalization and other

combining recovery and death for those who are not hospitalized. In this case, we

have two survival probability functions:

• P2(s): Survival probability of recovery and death s time units after onset (gov-

erning events IR, ID, HR and HD).

• L2(s): Probability of not being hospitalized s time units after onset (governing

the IH event).

Assume that, for those who exit I without being hospitalized, a fixed fraction 1−f (or

f) will recover (or die), an assumption of Legrand model. Assume also that individuals

in I and H classes have the same probability of death (f), also as assumed in the

Legrand model. The transition diagram is depicted in Fig. 2.3.2(a).

Let gP2 = −P ′2 and gL2 = −L′2. Note that the I equation in this case is

I(t) =

∫ t

0

αE(s)P2(t− s)L2(t− s)ds+ I(0)P2(t)L2(t).
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(a) Arbitrary distributions
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(b) Gamma distributions
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Fig. 2.2. A transition diagram for Model II when P2 and L2 are arbi-
trary distributions (a) and when they are Gamma or exponential (b).
In (a), the recovery/death (red) and hospitalization (green) processes
are governed by P2 and L2. In (b), he recovery/death (red) and hos-
pitalization (green) processes are indicated by the same colors as in
(a).

Differentiation yields

I ′(t) = αE(s)−
[∫ t

0

αE(s)P2(t− s)gL2(t− s)ds+ I(0)P2(t)gL2(t)

]

︸ ︷︷ ︸
to H

−
[∫ t

0

αE(s)gP2(t− s)L2(t− s)ds+ I(0)gP2(t)L2(t)

]

︸ ︷︷ ︸
to D,R

.
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For the variable H, we have

H(t) =

∫ t

0

[∫ τ

0

αE(s)P2(t− s)gL2(τ − s)
]
dsdτ +

∫ t

0

I(0)P2(t)gL2(τ)dτ,

=

∫ t

0

αE(s)P2(t− s)(1− L2(t− s)) + I(0)P2(t)(1− L2(t)),

and

H ′(t) =

∫ t

0

αE(s)P2(t− s)gL2(t− s)ds+ I(0)P2(t)gL2(t)

−
∫ t

0

αE(s)gP2(t− s)(1− L2(t− s))ds− I(0)gP2(t)(1− L2(t))

︸ ︷︷ ︸
to D,R

)

Then, using the assumption of fixed fraction of death (f), we arrive at the system

of equations for Model II:

dS(t)

dt
= −λ(t)S(t),

dE(t)

dt
= λ(t)S(t)− αE(t),

I(t) =

∫ t

0

αE(s)P2(t− s)L2(t− s)ds+ I(0)P2(t)L2(t),

H(t) =

∫ t

0

αE(s)P2(t− s)(1− L2(t− s)) + I(0)P2(t)(1− L2(t)), (2.19)

D′(t) = f

∫ t

0

[∫ τ

0

αE(s)gP2(τ − s)ds+ I(0)gP2(τ)

]
e−γf (t−τ)dτ − γfD(t),

R′(t) = (1− f)

∫ t

0

[∫ τ

0

αE(s)gp2 (τ − s)ds+ I(0)gp2 (τ)

]
dτ,

The function λ(t) is the same as in Model I and given in (2.13).

Reduction of Model II to a system of ODEs

If P2(t) is a Gamma distribution with parameters (n, nγ2) and L2(t) is an expo-

nential distribution with parameter χ2, i.e.,

P2(t) = Gn
nγ2

(t) =
∑n

j=1
(nγ2t)j−1e−nγ2t

(j−1)! ,

L2(t) = G1
χ2

(t) = e−χ2t,

(2.20)
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then, similar to the derivation of system (2.18) for Model I, we can reduce the integral

equations in (2.19) to the ODEs given below:

dS

dt
= − 1

N
S
(
βI

n∑

j=1

Ij + βH

n∑

j=1

Hj + βDD
)
,

dE

dt
=

1

N
S
(
βI

n∑

j=1

Ij + βH

n∑

j=1

Hj + βDD
)
− αE,

dI1
dt

= αE − (nγ2 + χ2)I1,

dIj
dt

= nγ2Ij−1(t)− (nγ2 + χ2)Ij, for j = 2, . . . n

dH1

dt
= χ2I1 − nγ2H1,

dHj

dt
= χ2Ij + nγ2Hj−1 − nγ2Hj, for j = 2, . . . n

dD

dt
= fnγ2In + fnγ2Hn − γfD,

dR

dt
= (1− f)nγ2In + (1− f)nγ2Hn.

(2.21)

Because of the different assumptions made in Model II, the ODE reduction (2.21)

differs from the ODE reduction (2.18) for Model I. This is more clearly illustrated in

the transition diagram for (2.21) in Fig. 2.3.2(b). For example, we observe in Fig.

2.3.2(b) that transitions to R or D occur only to individuals in the last infectious

and hospitalized compartments (In and Hn), whereas in Fig. 2.3.1(b), recovery and

death can be from all the Ij and Hj (j = 1, · · · , n) compartments. Observe also that

the recovery rates from both In and Hn, as well as the transition rates from Ij to Ij+1

and from Hj to Hj+1 (j = 1, · · ·n− 1), are all the same and equal to nγ2.

Remark 2.3. Note that the distributions P1(t) and P2(t) describe two very different

processes. Thus, the two parameters γ1 and γ2 in the Gamma distributions P1 =

Gn
nγ1

and P2 = Gn
nγ2

have very different meanings. That is, they have different

connections with epidemiological parameters such as the infectious period. More

detailed discussions of this point can be found in Section 2.5.
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Remark 2.4. From the ODEs model (2.21) or the transition diagram 2.3.2(b) we

observe that, in the case of n = 1, the rates from I to R and from H to R are

the same. Therefore, as in the case of Model I, the ODE model (2.21) cannot be

equivalent to the Legrand model. This suggests that the Legrand model does not

assume that the hospitalization process is independent of the (combined) recovery

and death processes.
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(b) Gamma distributions
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Fig. 2.3. A transition diagram for Model III when P3 and Q3 are
arbitrary distributions (a) and when they are Gamma or exponential
(b).
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2.3.3 Model III

Models I and II focus on the three exiting processes from the I class. In Model

III, both the processes exiting the I and H classes are considered. Consider two

independent distributions for the infectious individuals in I and H classes

• P3(s): Probability of remaining in the I class s units of time since onset (gov-

erning the events IR, IH and ID).

• Q3(s): Probability remaining in the H class s units of time after being hospi-

talized (governing the HR and HD events).

Let p3(t) = −P ′3(t) and q3(t) = −Q′3(t) denote the probability density functions.

P3 describes the waiting time for the combined events, IR, IH and ID. Assume that

among the individuals exiting the I class, fractions of p, (1 − p)f , (1 − p)(1 − f)

will be hospitalized, non-hospitalized and dead, and non-hospitalized and recovered,

respectively (0 ≤ p, f < 1). Q3 describes the waiting time for the combined two

events, HR and HD, and we assume that fractions 1 − f and f of the hospitalized

individuals recover or die, respectively.

In this case, Model III consists of the following system of integro-differential equa-

tions:

S ′(t) = −λ(t)S(t), E ′(t) = λ(t)S(t)− αE(t),

I(t) =

∫ t

0

αE(s)P3(t− s)ds+ I(0)P3(t),

H(t) =

∫ t

0

p

[∫ s

0

αE(τ)p3(s− τ)dτ + I(0)p3(s)

]
Q3(t− s)ds

D′(t) = (1− p)f
[∫ t

0

αE(s)p3(t− s)ds+ I(0)p3(t)

]

+f

∫ t

0

[
p

∫ s

0

αE(τ)p3(s− τ)dτ + pI(0)p3(s)

]
q3(t− s)ds− γfD(t),

R′(t) = (1− p)(1− f)

[∫ t

0

αE(s)p3(t− s))ds+ I(0)p3(t)

]

+(1− f)

∫ t

0

[
p

∫ s

0

αE(τ)p3(s− τ)dτ + pI(0)p3(s)

]
q3(t− s)ds.

(2.22)
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Note that it is easier in this case to write equations for D′ and H ′ than for D and

H.

Reduction of Model III (2.22) to a system of ODEs

Assume that P3 and Q3 are Gamma distributions with parameters (n, nγ3) and

(m,mω3), respectively, i.e.,

P3(t) = Gn
nγ3

(t) =
n∑

j=1

(nγ3t)
j−1e−nγ3t

(j − 1)!
,

Q3(t) = Gm
mω3

(t) =
m∑

j=1

(mω3t)
j−1e−mω3t

(j − 1)!
.

(2.23)

Then, the system (2.22) reduces to the following system of ODEs:

dS

dt
= − 1

N
S
(
βI

n∑

j=1

Ij + βH

m∑

j=1

Hj + βDD
)

dE

dt
=

1

N
S
(
βI

n∑

j=1

Ij + βH

m∑

j=1

Hj + βDD
)
− αE,

dI1
dt

= αE − nγ3I1,

dIk
dt

= Ik−1 − nγ3Ik, k = 2, . . . , n

dH1

dt
= pnγ3In −mω3H1,

dHk

dt
= mω3Hk−1 −mω3Hk, k = 2, . . . ,m

dD

dt
= (1− p)fnγ3In + fmω3Hn − γfD,

dR

dt
= (1− p)(1− f)nγ3In + (1− f)mω3Hm.

(2.24)

A transition diagram under the Gamma distributions for P3 and Q3 and for the ODE

model (2.24) is shown in Fig. 2.3.2(b). We observe a major difference between this

figure and Fig. 2.3.1(b) or Fig. 2.3.2(b) in the recovery rates from In and Hm, which

have different values here. A similar difference exists in the transition rates from Ij

to Ij+1 (j = 1, · · · , n− 1) and from Hj to Hj+1 (j = 1, · · · ,m− 1).
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Remark 2.5. As pointed out in Remark 2.3, the distributions Pi(t) (i = 1, 2, 3)

describe waiting times for three very different processes. Thus, the three parameters

γi (i = 1, 2, 3) in the Gamma distributions Pi = Gn
nγi

have very different meanings and

connections with epidemiological parameters such as the infectious period determined

by γIR. More detailed discussions about this can be found in Section 2.5.

Remark 2.6. We observe from the ODE model (2.24) and diagram 2.3.2(b) that,

in the case of n = m = 1, the transition rates from I to R and from H to R can

differ. This is a major difference between Model III and Models I and II. In fact,

we show in Section 2.5.3 that with an appropriate definition for γ3 and ω3 and the

constraints (2.8), model (2.24) when m = n = 1 is the same as the model (2.3), which

is equivalent to the Legrand model (1.1).

2.4 Reproduction numbers

In this section, we provide formulas for the control reproduction numbers for

Models I, II and III. Both the case of arbitrary distributions and the special case of

Gamma distribution are considered. These reproduction numbers are derived both

using the next generation matrix approach and from biological interpretations. De-

note the control reproduction numbers for Models I, II and III by RC1, RC2 and RC3,

respectively.

2.4.1 Reproduction number RC1 for Model I

We derive the control reproduction number RC1 using two approaches, one using

arguments based on the probabilistic processes behind the integro-differential equa-

tions, which provide a formula for RC1 for general distributions. We present the

formula under the specific distributions for P1, L1 and M1 used in the ODEs model

(2.18). The other approach uses the next generation matrix for the ODE model

(2.18).
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For the first approach, define three independent waiting times TP1 , TL1 and TM1 ,

which are random variables distributed according to P1, L1 and Q1 and describe,

repectively, the timing of events IR and HR; IH; and ID and HD. The expectations of

Tj (j = P1, L1,M1) represent times to recovery, hospitalization or death, respectively.

Then, the average time spent in the I compartment is E (min {TP1 , TL1 , TM1}). Then

P (min {TP1 , TL1 , TM1} > x) = P ({TP1 > x} ∩ {TL1 > x} ∩ {TM1 > x})

= P (TP1 > x)P (TL1 > x)P (TM1 > x) .

Thus,

E (min {TP1 , TL1 , TM1}) =

∫ ∞

0

P1(t)L1(t)M1(t)dt.

Letting pM1 denote the probability of death for Model I, which includes two events,

death before hospitalization and death during hospitalization, we have

pM1 = P(TM1 = min {TP1 , TL1 , TM1}) + P(TL1 < TM1 < TP1).

Note that the average duration in the D compartment is 1/γf . Then, based on the

biological meaning of RC1, we obtain the following expression for RC1 under general

stage distributions:

RC1 = βIE (min {TP1 , TL1 , TM1}) + βH [E (min {TP1 , TM1})− E (min {TP1 , TL1 , TM1})]

+βF
1

γf
pM . (2.25)

The formula (2.25) is convenient to use when specific distribution functions for Tj

(j = P1, L1,M1) are given. For example, consider the special case of Model I with

P1(t) = Gn
nγ1

(t), L1(t) = e−χ1t and M1(t) = e−µt (see (2.17)). Note that the average

time in I is

E (min {TP1 , TL1 , TM1}) =

∫ ∞

0

n∑

k=1

(nγ1t)
k−1e−nγ1t

(k − 1)!
e−χ1te−µtdt

=
n∑

k=1

∫ ∞

0

(nγ1t)
k−1e−(nγ1+χ1+µ)t

(k − 1)!
dt

=
1

χ1 + µ

[
1−

(
nγ1

nγ1 + χ1 + µ

)n]
,

(2.26)
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and the average total time spent in I and H is given by

E (min {TP1 , TM1}) =

∫ ∞

0

n∑

k=1

(nγ1t)
k−1e−nγ1t

(k − 1)!
e−µtdt

=
n∑

k=1

∫ ∞

0

(nγ1t)
k−1e−(nγ1+µ)t

(k − 1)!
dt =

1

µ

[
1−

(
nγ1

nγ1 + µ

)n]
.

(2.27)

Thus, the average time spent in H is given by

E (min {TP1 , TM1})− E (min {TP , TL, TM})

=
1

µ

[
1−

(
nγ1

nγ1 + µ

)n]
− 1

χ1 + µ

[
1−

(
nγ1

nγ1 + χ1 + µ

)n]
.

(2.28)

Note also that

pM1 = P(TM1 = min {TP1 , TL1 , TM1}) + P(TL1 < TM1 < TP1) = 1−
(

nγ1
nγ1 + µ

)n
.

(2.29)

Substituting expressions (2.26)–(2.29) into (2.25), we arrive at the following expres-

sion

RC1 =
βI

χ1 + µ

[
1−

(
nγ1

nγ1 + χ1 + µ

)n]

+
βH
µ

[
χ1

χ1 + µ
+

µ

χ1 + µ

(
nγ1

nγ1 + χ1 + µ

)n
−
(

nγ1
nγ1 + µ

)n]

+
βF
γf

[
1−

(
nγ1

nγ1 + µ

)n]
.

(2.30)

The next generation matrix approach for model (2.18) requires much more in-

volved computations including the inverse of the transition matrix. The expression

for RC has the following form

RC1 =
βI

nγ1 + χ1 + µ

n∑

j=1

qIj +
βH

nγ1 + µ

n∑

j=1

qHj +
βF
γf
pM1, (2.31)

where qX denote the probabilities of being in compartment X = Ij or Hj for j =

1, · · · , n; i.e.,

qIj =

(
nγ1

nγ1 + χ1 + µ

)j−1
,

qHj =

j∑

i=1

(
nγ1

nγ1 + χ1 + µ

)i−1
χ1

nγ1 + χ1 + µ

(
nγ1

nγ1 + µ

)j−i
, j = 1, · · · , n,
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and pM1 denotes the probability of death for Model I, given by

pM1 =
µ

nγ1 + χ1 + µ

n∑

j=1

qIj +
µ

nγ1 + µ

n∑

j=1

qHj = 1−
(

nγ1
nγ1 + µ

)n
. (2.32)

In pM1 , the first term corresponds to the probability of death without being hospi-

talized, whereas the second term corresponds to the probability of death after being

hospitalized. Note that the average total times in I, H and D are
∑n

j=1

qIj
nγ1+χ1+µ

,
∑n

j=1

qHj
nγ1+µ

and pM1/γf , respectively. Note also that

n∑

j=1

qIj = 1 +
nγ1

nγ1 + χ1 + µ
+ · · ·+

(
nγ1

nγ1 + χ1 + µ

)n−1
=

n∑

j=1

(
nγ1

nγ1 + χ1 + µ

)j−1

=
nγ1 + χ1 + µ

χ1 + µ

[
1−

(
nγ1

nγ1 + χ1 + µ

)n]

and

n∑

j=1

qHj =
n∑

j=1

(
nγ1

nγ1 + χ1 + µ

)j−1
χ1

nγ1 + χ1 + µ
︸ ︷︷ ︸

(probability of path I1→Ij→Hj)

+
n∑

j=1

j∑

i=1

(
nγ1

nγ1 + χ1 + µ

)i−1
χ1

nγ1 + χ1 + µ

(
nγ1
γ1 + µ

)j−i

︸ ︷︷ ︸
(probability of path I1→Ii→Hi→Hj)

=
n∑

k=1

(
nγ1

nγ1 + χ1 + µ

)k−1
χ1

nγ1 + χ1 + µ

n∑

i=k

(
nγ1

nγ1 + µ

)i
.

Based on the biological meanings of the quantities involved in the expression for RC1

in (2.31), it is clear that the formula (2.31) describes the control reproduction number

for the ODE model (2.18).

We repeat that the formula of RC1 for general distributions (2.25) is very helpful

and convenient to use when specific stage distributions are considered. The derivation

using probabilistic arguments also provides a contrast to the derivation of RC1 using

the next-generation matrix approach, which requires intensive algebraic computations

including the computation of the inverse of the transition matrix.
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2.4.2 Reproduction number RC2 for Model II

As for Model I, we derive the formula for RC2 using two approaches. For the

derivation of RC2 using the approach of probabilistic process, define two waiting

times TP2 and TL2 corresponding to P2 and L2. The expectations of TP2 and TL2 are

the infectious period and average time before hospitalization. Let E (TP2) denote the

expected total time spent in the I and H compartments and let E (min {TP2 , TL2})
denote the expected time in the I compartment. Then the expected time spent in

the H compartment is E (TP2) − E (min {TP2 , TL2}). Let pH2 = P(TL2 < TP2), which

denotes the probability of being hospitalized. Then, using these general notations we

can write the reproduction number RC2 as

RC2 = βIE (min {TP2 , TL2}) + βH [E (TP2)− E (min {TP2 , TL2})]

+βF
1

γf
[f(1− pH2) + fpH2] . (2.33)

Consider the special case when P2 = Gn
nγ2

and L2 = G1
χ2

(see (2.20)). Note that

E (min {TP2 , TL2}) =

∫ ∞

0

n∑

k=1

(nγ2t)
k−1e−nγ2t

(k − 1)!
e−χ2tdt

=
n∑

k=1

∫ ∞

0

(nγ2t)
k−1e−(nγ2+χ2)t

(k − 1)!
dt =

1

nγ2 + χ2

n∑

k=1

(
nγ2

nγ2 + χ2

)k−1

=
1

χ2

[
1−

(
nγ2

nγ2 + χ2

)n]
.

The time spent in the H compartments is given by

E (TP2)− E (min {TP2 , TL2}) =
1

γ2
− 1

χ2

[
1−

(
nγ2

nγ2 + χ2

)n]
.

Note that f (1− pH2) + fpH2 = f . Substituting these expressions into the general

formula (2.33) for RC2, we obtain

RC2 = βI
1

χ2

[
1−

(
nγ2

nγ2 + χ2

)n]
+ βH

[
1

γ2
− 1

χ2

[
1−

(
nγ2

nγ2 + χ2

)n]]
+ βF

f

γf
.

(2.34)
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When using the next generation matrix approach for the ODEs model (2.21), we

obtain

RC2 = βI
1

nγ2 + χ2

n∑

k=1

qIk + βH
1

nγ2

n∑

k=1

qHk + βF
1

γf
pM2, (2.35)

where qX and pM are defined in the same way as in section 2.4.1, although they have

different expressions from those in Model I. It can be verified that the formula for

RC2 is identical to (2.33).

2.4.3 Reproduction number RC3 for Model III

We can derive RC3 using the two approaches as for Models I and II. Because

the derivations are similar, we omit the details, and present the formula only for the

special case when P3 and Q3 are both exponential distributions, i.e., P3 = G1
γ3

and

Q3 = G1
ω3

(see (2.23)). In this case, the formula for RC3 for the ODEs model (2.24)

with m = n = 1 is given by

RC3 =
βI
γ3

+ p
βH
ω3

+ f
βD
γf
. (2.36)

Remark 2.7. If we compare the RC3 formula with the RC formula in (2.9), the two

are identical when γ3 = γ and ω3 = ω. This suggests again that the model (2.24), as

the reduction of Model III when P3 and L3 are exponential distributions, is equivalent

to the Legrand model.

2.5 Connections between the Legrand model and Models I, II and III

In this section, we compare the general Models I, II and III, particularly the ODEs

models (2.18), (2.21) and (2.24), which are their reductions when the distributions

P , L, M , Q are Gamma or exponential. We investigate the key differences between

these models and compare them with the Legrand model, which helps identify its

underlying assumptions.

The key difference between Models I, II and III (or between the ODEs models

(2.18), (2.21) and (2.24)) is in the parameters that define the stage distributions P ,
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L, M and Q. Particularly, the parameters γj for the Gamma distributions Pj = Gn
nγj

(j = 1, 2, 3) have very different connections with other epidemiological parameters.

Because the distributions P1, P2 and P3 describe different processes, γ1, γ2 and γ3

have very different meanings. In fact, how γ’s are connected to other epidemiological

parameters (e.g., the time between onset and recovery absent control, duration of

hospitalization, time between onset and death, etc.) can play important role in model

structure and outcomes, as well as the meaning of other parameters such as χ and µ.

2.5.1 Parameters in Model I and their connection to other epidemiolog-

ical parameters

When P1, L1 and M1 are exponential with the respective parameters γ1, χ1 and

µ, because of the assumption for Model I that the three events IR, IH and ID are

independent, the overall waiting time in the I compartment is also exponential with

the rate constant γ1 + χ1 + µ. From the definition of these parameters, we can link

them to those in Table 2.1. For example,

1

γ1
= (1− p)(1− f)

1

γIR
, (2.37)

It is also convenient sometimes to express the rates χ1, and µ in terms of γIR, p

and f . Note from (2.37) that

γ1 =
γIR

(1− p)(1− f)
. (2.38)

Note that the probability of death (see (2.29) with n = 1 and (2.38)) is given by

f = pM1 = 1−
(

nγ1
nγ1 + µ

)n
=

µ

γ1 + µ
. (2.39)

from (2.37) and (2.39) we can solve for µ, i.e.,

µ =
γIRf

(1− p)(1− f)2
. (2.40)
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Notice also that the probability of hospitalization, which occurs before recovery or

death, is (see Appendix for a detailed derivation)

p = pH1 = P(TL1 = min {TP1 , TL1 , TM1}) =

∫

TP1 ,TM1
>TL1

gP1(s)gM1(u)gL1(t)dudtds,

=

∫ ∞

0

∫ t

0

∫ u

0

gL1(s)ds gM1(u)du gP1(t)dt (TP1 ≥ TM1 ≥ TL1)

+

∫ ∞

0

∫ u

0

∫ t

0

gL1(s)ds gP1(t)dt gM1(u)du (TM1 ≥ TP1 ≥ TL1)

=
χ1

χ1 + µ

[
1−

(
nγ1

χ1 + nγ1 + µ

)n]
=

χ1

γ1 + χ1 + µ
(for n = 1).

(2.41)

Using (2.38) and (2.41) we can solve for χ1, i.e.,

χ1 =
pγIR

(1− p)2(1− f)2
. (2.42)

In this case, the formula for RC1 in (2.25) simplifies to

RC1 =
βI

γ1 + χ1 + µ
+

βH
γ1 + µ

χ1

γ1 + χ1 + µ
+
βD
γf

µ

γ1 + µ
=

βI
γ1 + χ1 + µ

+
βHp

γ1 + µ
+
βDf

γf
.

(2.43)

The formula for pH1 for Gamma distributions can also be calculated from the

reduced ODE model (2.18) or by looking at all possible paths to enter any of the Hk

(Fig. 2.3.1(b)), which leads to

pH1 =
n∑

k=1

χ1

χ1 + nγ1 + µ

(
nγ1

χ1 + nγ1 + µ

)k−1
=

χ1

χ1 + µ

[
1−

(
nγ1

χ1 + nγ1 + µ

)n]
.
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Comparison between Model I and the Legrand model

Consider the ODE formulation (2.18) of Model I. In the special case when P1 is

exponential (i.e., P1 = G1
γ1

), the ODE system reduces to

dS

dt
= − 1

N
S(βII + βHH + βDD),

dE

dt
=

1

N
S(βII + βHH + βDD)− αE,

dI

dt
= αE − (γ1 + χ1 + µ)I,

dH

dt
= χ1I − (γ1 + µ)H,

dD

dt
= µI + µH − γfD,

dR

dt
= γ1I + γ1H.

(2.44)

We can compare the system (2.44) with the system (2.3) (which is equivalent to the

Legrand model).

First, note that in model (2.44) the per-capita transition rates from I to R and

from H to R are both equal to γ1, which means that the second constraint in (2.8)

for model (2.3) cannot be satisfied (note that γIR = ωHR). Thus, Model I cannot be

equivalent to the Legrand model. This suggests that Legrand et al. did not assume

that the three processes of IR, IH and ID were independent exponential distributions

and that the overall waiting time in the I compartment was the minimum of these

three exponential waiting times.

Second, note that the exiting rate γ from I in (2.3) corresponds to the sum of

rates γ1+χ1+µ from I in (2.44). Note also that the condition (2.4) defines γ in terms

of the common parameters γIR, γIH , γID, p and f (see Table 2.1). To examine if this

condition holds in model (2.44), we note from (2.37) that γIR = (1 − f)(1 − p)γ1,

γIH = pχ1 and γID = f(1 − p)µ. Thus, The left- and right-hand-sides of the 1/γ

equation in (2.4) are
1

γ1 + χ1 + µ
and

1

γ1
+

1

χ1

+
1

µ
,

respectively. Therefore, the condition (2.4) does not hold for model (2.44).



48

2.5.2 Parameters in Model II and their connection to other epidemiolog-

ical parameters

The key difference between Model I and Model II may become more transparent

by examining how the parameters such as γi and χi, which determine the stage

distributions Pi(t) and Li(t) (i = 1, 2), are connected to the common parameters

listed in Table 2.1. For example, for Model I, when the stage distributions are Gamma

(P1 and L1) and exponential (M1), the parameters γ1, χ1 and µ are linked to the

common parameters as given in (2.37). For Model II, consider model (2.21) in which

P2(t) = Gn
nγ2

(t) and L2(t) = G1
χ2

(t) = e−χ2t, with the fraction 1− f of the individuals

exiting I recovering and the fraction f dying. Then, one way to link the parameter

γ2 to common parameters is to assume that the duration in I before recovery or

death (1/γ2) is the weighted average of the durations DIR and DID given not being

hospitalized (see Table 2.1),

1

γ2
= (1− p)

[
(1− f)

1

γIR
+ f

1

γID

]
. (2.45)

From (2.45) and the fact that the probability of death is γID/(γID + γIR) = f , we

can also solve for γ2 and get

γ2 =
γIR

2(1− p)(1− f)
. (2.46)

From (2.37) and (2.45) we can observe the difference between γ1 and γ2 in terms of

their connections with the common parameters listed in Table 2.1, particularly p, f

and γIR.

Because P2 and L2 are independent, similar to the definition of χ1 in Model I, we

can link χ2 to common parameters as

1

χ2

= p
1

γIH
. (2.47)

Similar to the derivation of p = pH1 for Model I, we can also get p = pH2 = χ2/(γ2 +

χ2). Then, for the ODE model (2.49), the formula for RC2 in (2.33) simplifies to

RC2 =
βI

γ2 + χ2

+
βHp

γ2
+
βDf

γf
. (2.48)



49

Comparison of Model II with the Legrand model

In the special case when P2 is exponential (i.e., n = 1), the ODE system (2.21)

becomes
dS

dt
= − 1

N
S(βII + βHH + βDD),

dE

dt
=

1

N
S(βII + βHH + βDD)− αE,

dI

dt
= αE − (γ2 + χ2)I,

dH

dt
= χ2I − γ2H,

dD

dt
= fγ2I + fγ2H(t)− γfD(t),

dR

dt
= (1− f)γ2I + (1− f)γ2H.

(2.49)

For the same reason as in Model I (i.e., equal rates of recovery from I and H com-

partments in (2.49) and the constraint (2.8) in Legrand model), Model II or (2.49)

cannot be the same as the Legrand model.

In addition, similar to the case of Model I, we can examine whether or not the

condition (2.4) for γ in model (2.3) also holds for model (2.49). Note, from the I

equations in the two models, that the γ in (2.4) corresponds to the sum of rates

γ2 + χ2 in (2.49), which implies that

1

γ
=

1

γ2 + χ2

. (2.50)

However, condition (2.4) implies (see (2.45) and (2.47)) that

1

γ
=

1

γ2
+

1

χ2

,

which is not the same as (2.50). Therefore, the condition (2.4) does not hold in model

(2.49).

2.5.3 Parameters in Model III and its equivalence to Legrand model

Recall that the ODE model (2.24), as the reduction of Model III, assumed that

the distributions of overall times in the I and H compartments were two independent
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Gamma distributions P3 = Gn
nγ3

and Q3 = Gm
mω3

. Consider the special case when

n = m = 1 (i.e., P3 and Q3 are exponential). The ODE model (2.24) simplifies to

dS

dt
= − 1

N
S(βII + βHH + βDD),

dE

dt
=

1

N
S(βII + βHH + βDD)− αE,

dI

dt
= αE − γ3I,

dH

dt
= pγ3I − ω3H,

dD

dt
= (1− p)fγ3I + fω3H − γfD,

dR

dt
= (1− p)(1− f)γ3I + (1− f)ω3H.

(2.51)

Notice that, if we ignore the last term in the R equation in the equivalent Legrand

model (2.3) (this term indicates that the R class includes those buried), the the model

(2.51) is identical to the model (2.3) when the subscript “3” is dropped; that is, when

γ3 and ω3 are defined as the follows:

1

γ3
=

p

γIH
+

(1− p)f
γID

+
(1− p)(1− f)

γIR
,

1

ω3

=
f

ωHD
+

1− f
ωHR

,
(2.52)

together with the constraints

1

γIR
=

1

γIH
+

1

ωHR
,

1

γID
=

1

γIH
+

1

ωHD
.

(2.53)

Remark 2.8. Note that the main difference between Models I, II and III lies in the

assumptions on the underlying biological processes, particulaly the sojourn distribu-

tions for various stage transitions, which are described by functions L(t), P (t), M(t)

and Q(t). The fact that the Legrand model can only be obtained from Model III, not

from Models I and II, makes it transparent to identify the specific model assumptions

made in the Legrand model in terms of these sojourn distributions. For example, our

analyses suggest the following assumptions made in Legrand model:
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(a) The overall sojourn in the I stage is assumed to be exponentially distributed

with the average duration 1/γ, which is further assumed to be the specific

weighted average of 1/γIR, 1/γIH and 1/γID as given in (2.4), where 1/γIR,

1/γIH and 1/γID are the respective average stage durations of the IR, IH and

ID events. However, from Model I we see that if the IR, IH and ID events follow

independent exponential distributions with parameters γIR, γIH and γID, then

the overall sojourn in the I stage is exponentially distributed with the parameter

γ = γIR + γIH + γID with the average duration

1

γ
=

1

γIR + γIH + γID
,

which differs from (2.4).

(b) The distributions for the I and H stages are independent (see distributions

P3(t) and Q3(t)). This implies that the average time spent in the H stage

before recovery or death (1/ω3) does not depend on the average time spent in

the I stage before recovery or being hospitalized or dying (1/γ3). Under this

assumption, the time spent in H before recovery (1/γHR) does not take into

consideration the time spent in I before being hospitalized (1/γIH) . Because

of this independence, the model needs to impose a constraint to link these two

durations (see (2.8)).

2.6 Discussion

The objective of this chapter is to investigate the underlying assumptions made in

the Legrand model. Our approach is to develop three models with general distributed

waiting times (e.g., P (s), L(s), M(s) and Q) for the processes associated with recov-

ery, hospitalization, and death (referred to as events IR, IH and ID) under different

assumptions about the connections between these processes. These models (see Mod-

els I, II and III in Sections 2.3.1, 2.3.2 and 2.3.3) are systems of integro-differential

equations, but we show that they can be reduced to systems of ordinary differential
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equations when sojourns are Gamma or exponential. Particularly, when these distri-

bution are exponential, we can compare the resulting ODE models with the Legrand

model, which allows us to identify the assumptions under which the general model

reduces to the Legrand model.

Among the three ODE models (2.44), (2.49) and (2.51), which are reduced from

the Models I, II and III with general distributions, the only model that can match the

Legrand model is (2.51), for which the assumptions include: (i) The waiting times

of the three events IR, IH and ID are not independent and (ii) the overall waiting

time in the I compartment is a weighted average of the mean durations (1/γIR,

1/γIH and 1/γID) for the three events with weights determined by the probabilities

of hospitalization p and death f , as described in (2.4) or (2.5). By examining ODE

model (2.44), we found that, if the waiting times of three events IR, IH and ID are

independent and exponentially distributed (with parameters γ1, χ1 and µ), then the

overall waiting time from I should be an exponential distribution with the parameter

γ1 + χ1 + µ. That is, the average overall waiting time should be 1/(γ1 + χ1 + µ), not

a weighted average such as the ones in (2.4) or (2.5).

Control reproduction numbers RCi (i = 1, 2, 3) for the three general models are

derived, as well as their expressions when the general distributions are replaced by

Gamma or exponential distributions. These formulas for RCi provide a means of

examining the influence of assumptions on model outcomes. For example, consider

the three control reproduction numbers RCi (i = 1, 2, 3), which are given in (2.43),

(2.48), and (2.36) corresponding to the three ODE models (2.44), (2.49), and (2.51),

respectively. In the absence of hospitalization (i.e., p = 0), these RCi reduce to the

corresponding basic reproduction numbers R0i (i = 1, 2, 3). Figure 2.4 illustrates the

difference between the basic and control reproduction numbers of the three models

for a given set of parameter values. Most of these parameter values are based on the

Ebola outbreak in West Africa in 2014. We fix all parameters except βi (i = 1, 2, 3)

and f . Then, for a fixed value of f0 = 0.7, we estimate βi (i = 1, 2, 3) from a

given value of R0 (assumed to be the same for all three models). Once we have the
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value of βi, we have three functions of f , R0i(f) (i = 1, 2, 3). For Figure 2.4(A),

we used the common value of R0(f0) = 1.8. The three curves are for Model I (the

thin solid curve), Model II (the thick dashed curve), and Model III ( the thick solid

curve). The decreasing property of these curves represents the fact that higher disease

morality decreases R0i(f), which is expected because the assumption that βD < βI .

An interesting observation is that the dependence of the basic reproduction number

on disease death f is more dramatic in Model I than Models II and III, particularly

for smaller f values. For smaller values f , Model I tends to generate the highest R0,

while for larger f values, Model III provides higher R0. Other parameter values used

are (time in days): 1/γIR = 18, 1/γf = 2, 1/α = 9. Parameters such as µ, χi (i = 1, 2)

are calculated based on their relationships with the common parameters (e.g., (2.38),

(2.40) and (2.42) for γ1, µ and χ1, respectively, (2.46) for γ2, and (2.52) for γ3 and

ω3, etc.).

Model	  III	  

Model	  II	  

Model	  I	  

Fig. 2.4. Plots of the basic reproduction numbers (A) and control
reproduction numbers (B) for the three models. In (A), R0 is plotted
as a function of f for Model I (thin solid), Model II (thick dashed),
and Model III (thick solid). The parameter values are chosen such
that all three R0i have the same value 1.8 at f = 0.7. In (B), RCi

is plotted as a function of p and f for Models I, II, and III. Other
parameter values are given in the text.
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When control is considered (p > 0), the dependence ofRCi on p and f is illustrated

in Figure 2.4(B). We observe that, for the given set of parameter values, Model I (the

darker surfce with mash) generates the highest RC value than Models II (the lighter

surface) and III (the darker surface with no mash) for smaller p and f , while Model

III provides the highest for larger values of p and/or f . The differences in R0 and RC

between the three models indicate that model predictions about and evaluations of

the effectiveness of control measures could be very different as well. Such an example

is demonstrated in Figure 2.5. It shows the numerical simulation results of the three

ODE models (2.44), (2.49) and (2.51), which are reduced from the Models I, II and III,

and presented in columns 1 , 2, and 3, respectively. The A, B, and C panels correspond

to three sets of (p, f) values: (p, f) = (0, 0.7) (top panel), (p, f) = (0.3, 0.5) (middle

panel), (p, f) = (0.2, 0.7) (bottom panel). The top panel (A1–A3) is for the case of no

hospitalization (p = 0). We observe that the three models generate similar epidemic

curve (fraction of infected individuals (E + I + H)/N), including peak sizes, times

to peak, durations of epidemic (which lead to similar final epidemic sizes). From the

middle panel (B1–B3), we observe that Model I has the highest peak size while Model

II has the lowest. This is in agreement with the relative magnitudes of the control

reproduction numbers RCi, as the point (p, f) = (0.3, 0.5) lies in the region where

RC1 > RC3 > RC2 (see Figure 2.4). For the bottom panel (C1–C3), because the

point (p, f) = (0.2, 0.7) lies in the region where RC3 > RC1 > RC2, we observe that

Model III generates the highest peak size while Model II has again the lowest.

Another interesting observation from Figure 2.5 is that Model 3 generated very

similar epidemic curves for all three sets of (p, f) values (see A3, B3 and C3), whereas

Model I (and II) produced vary different epidemic curves (A1, B1 and C1). This

suggests that these three models may provide very different evaluations of the effects

of control.

One of the main contributions of this study is to provide an equivalent (but sim-

pler) formulation of the Legrand model (see Section 2.2). This simpler formulation

not only makes the model presentation much clearer (due to a large reduction in the
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Fig. 2.5. Numerical simulations of the three ODE models (2.44),
(2.49) and (2.51), which are reduced from the Models I (column 1)
, II (column 2) and III (column 3), respectively. The fractions of
infected individuals (E + I + H)/N) and death (D/N) are plotted
over a time period of 1000 days. Three sets of (p, f) values are used:
(p, f) = (0, 0.7) (top row), (p, f) = (0.3, 0.5) (middle row), (p, f) =
(0.2, 0.7) (bottom row). All other parameter values are the same as
in Figure 2.4.

number of parameters involved), particularly when its extensions are considered, but

also makes the computation of RC much easier. More importantly, the simpler for-

mulation makes it possible to compare the Legrand model with our three new models

and to identify underlying assumptions used in the Legrand model.

Another significant contribution of this study is a detailed proof showing that the

systems of integro-differential equations under arbitrarily-distributed stage durations

can be reduced to systems of ODEs under Gamma distributions. Although such



56

reductions have been used in the literature (the so called “linear chain trick”), there

has not heretofore been a rigorous proof for epidemiological models.

In this chapter, we focused only on identifying assumptions in the Legrand model.

We have started to explore possible differences in the outcomes of Models I, II and III

as well as their ODE reductions, both under Gamma- and exponentially-distributed

stage durations, particularly which model would better capture the observed epi-

demics. Results will be published elsewhere.

2.7 Appendix

In this appendix, we provide a detailed proof showing that the simpler formulation

of model (2.3) is equivalent to the Legrand model (1.1). We also provide the detailed

derivation showing that the general integro-differential equations model (2.15) can

be reduced to the ODE model (2.18) under gamma distribution for P1 = Gn
nγ1

and

exponential distributions for L1 = G1
χ1

and M1 = G1
µ, as given in (2.17).

2.7.1 Equivalence of model (2.3) to the Legrand model (1.1)

In this section, we show that model (2.3) is equivalent to the Legrand model (1.1),

by showing that the coefficients in corresponding terms in the two models are equal.

Note that the model (2.3) involves fewer parameters than the Legrand model (1.1).

In addition to the two common parameters, p and f , the model equations involve two

more parameters, γ and ω, which are defined by using only the common parameters

listed in Table 2.1 (see (2.4) or (2.5)).

Our derivation is for the general case in which fi and fh can be different, which

simplifies if fi = fh = f . Define γ and ω as

1

γ
= p

1

γh
+ (1− p)fi

1

γd
+ (1− p)(1− fi)

1

γi
, (2.54)

1

ω
= fh

1

γdh
+ (1− fh)

1

γih
, (2.55)
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which simplifies to (2.5) when fi = fh = f . Notice that, in Legrand et al. (2007) [20],

δ1 =
γifi

γifi + γd(1− fi)
, δ2 =

γihfh
γihfh + γdh(1− fh)

, θ1 =
p(γdδ1 + γi(1− δ1))

p
[
γdδ1 + γi(1− δ1)

]
+ (1− p)γh

,

(2.56)

with p = θ and fi = fh = δ, from which we have that

fi =
1

γdδ1 + γi(1− δ1)
, fh =

1

γdhδ2 + γih(1− δ2)
, p =

1

γhθ1 + γi(1− θ1)(1− δ1) + γd(1− θ1)δ1
.

(2.57)

Substituting (2.57) into (2.55), we obtain

γ = γhθ1 + γi(1− θ1)(1− δ1) + γd(1− θ1)δ1, (2.58)

ω = γdhδ2 + γih(1− δ2). (2.59)

Next, we match other coefficients in the H, D, and R equations of the model (2.3)

to the corresponding ones in the model (1.1). This includes (note that fi = fh = f)

pγ in the H equations:

pγ =
γhθ1

γhθ1 + γi(1− θ1)(1− δ1) + γd(1− θ1)δ1
· (γhθ1 + γi(1− θ1)(1− δ1) + γd(1− θ1)δ1)

= γhθ1,

(1− p)fiγ and fhω in the D equation (with fi = fh = f):

(1− p)fiγ =
γi(1− θ1)(1− δ1) + γd(1− θ1)δ1

γhθ1 + γi(1− θ1)(1− δ1) + γd(1− θ1)δ1

· γd(1− θ1)δ1
γi(1− θ1)(1− δ1) + γd(1− θ1)δ1

· (γhθ1 + γi(1− θ1)(1− δ1) + γd(1− θ1)δ1)

= γd(1− θ1)δ1,

and

fhω =
γdhδ2

γdhδ2 + γih(1− δ2)
· (γdhδ2 + γih(1− δ2)) = γdhδ2,

(1− p)(1− fi)γ and (1− fh)w in the R equation (with fi = fh = f):

(1− p)(1− fi)γ =
γi(1− θ1)(1− δ1) + γd(1− θ1)δ1

γhθ1 + γi(1− θ1)(1− δ1) + γd(1− θ1)δ1

· γi(1− θ1)(1− δ1)
γi(1− θ1)(1− δ1) + γd(1− θ1)δ1

·(γhθ1 + γi(1− θ1)(1− δ1) + γd(1− θ1)δ1)
= γi(1− θ1)(1− δ1),
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and

(1− fh)ω =
γih(1− δ2)

γdhδ2 + γih(1− δ2)
· (γdhδ2 + γih(1− δ2)) = γih(1− δ2).

It follows that all corresponding coefficients in the two models, (1.1) and (2.3), are

the same. Thus, these two models are equivalent.

2.7.2 Derivation of the ODE formulation for Model I

In this section, we show that ODE system (2.18) can be derived from the general

Model I (2.15) under Gamma and exponential distributions. For ease of notation, we

omit the subscripts in P , L, M , γ and χ.

Consider the I equation in (2.17). From the I equation in (2.15), we have

I(t) =

∫ t

0

αE(s)G1
µ(t− s)G1

χ(t− s)Gnnγ(t− s)ds+ I(0)G1
µ(t)G1

χ(t)Gnnγ(t),

=

∫ t

0

αE(s)e−µ(t−s)e−χ(t−s)
n∑

j=1

(nγ(t− s))j−1e−nγ(t−s)
(j − 1)!

ds+ I(0)e−µte−χt
n∑

j=1

(nγt)j−1e−nγt

(j − 1)!
,

=

n∑

j=1

(∫ t

0

αE(s)e−µ(t−s)e−χ(t−s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
ds+ I(0)e−µte−χt

(nγt)j−1e−nγt

(j − 1)!

)
,

.
=

n∑

j=1

In(t),

where

Ij(t) =

∫ t

0

αE(s)e−µ(t−s)e−χ(t−s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
ds+ I(0)e−µte−χt

(nγt)j−1e−nγt

(j − 1)!
,

for j = 1, · · · , n. Note that for j = 1,

I1(t) =

∫ t

0

αE(s)e−µ(t−s)e−χ(t−s)e−nγ(t−s)ds+ I(0)e−µte−χte−nγt.

Differentiation of this I1(t) equation yields

I ′1(t) = αE(t)− (nγ + χ+ µ)

(∫ t

0

αE(s)e−µ(t−s)e−χ(t−s)e−nγ(t−s)ds+ I(0)e−µte−χte−nγt
)
,

= αE(t)− (nγ + χ+ µ)I1(t),
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which is the I ′1 equation in (2.18). Differentiation of the Ij(t) equation for j > 1

leads to

I ′j(t) = αE(t)e−µ·0e−χ·0
(nγ · 0)j−1e−nγ·0

(j − 1)!

+

∫ t

0

αE(s)
d

dt

(
e−µ(t−s)e−χ(t−s)

(nγ(t− s))j−1e−nγ(t−s)
(j − 1)!

)
ds

+I(0)
d

dt

(
e−µte−χt

(nγt)j−1e−nγt

(j − 1)!

)
,

=

∫ t

0

αE(s)e−µ(t−s)e−χ(t−s)
(
nγ

(nγ(t− s))j−2e−nγ(t−s)
(j − 2)!

− nγ (nγ(t− s))j−1e−nγ(t−s)
(j − 1)!

)
ds

−(µ+ χ)

∫ t

0

αE(s)e−µ(t−s)e−χ(t−s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
ds

+I(0)e−µte−χt
(
nγ

(nγt)j−2e−nγt

(j − 2)!
− nγ (nγt)j−1e−nγt

(j − 1)!

)

−(µ+ χ)I(0)e−µte−χt
(nγt)j−1e−nγt

(j − 1)!
,

=

∫ t

0

αE(s)e−µ(t−s)e−χ(t−s)
(
nγ

(nγ(t− s))j−2e−nγ(t−s)
(j − 2)!

)
ds

+I(0)e−µte−χt
(
nγ

(nγt)j−2e−nγt

(j − 2)!

)

+

∫ t

0

αE(s)e−µ(t−s)e−χ(t−s)
(
−nγ (nγ(t− s))j−1e−nγ(t−s)

(j − 1)!

)
ds

+I(0)e−µte−χt
(
−nγ (nγt)j−1e−nγt

(j − 1)!

)

−(µ+ χ)

∫ t

0

αE(s)e−µ(t−s)e−χ(t−s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
ds

−(µ+ χ)I(0)e−µte−χt
(nγt)j−1e−nγt

(j − 1)!
,

= nγIj−1(t)− (nγ + χ+ µ)Ij(t),

which is the same as the I ′j equation in (2.18).
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From the H equation in (2.15),

H(t) =

∫ t

0

αE(s)P (t− s)M(t− s)(1− L(t− s))ds+ I(0)P (t)M(t)(1− L(t)),

=

∫ t

0

αE(s)e−µ(t−s)
n∑

j=1

(nγ(t− s))j−1e−nγ(t−s)
(j − 1)!

(1− e−χ(t−s))ds

+I(0)e−µt
n∑

j=1

(nγt)e−nγt

(j − 1)!
(1− e−χt),

=

n∑

j=1

[∫ t

0

αE(s)e−µ(t−s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
(1− e−χ(t−s))ds

+ I(0)e−µt
(nγt)e−nγt

(j − 1)!
(1− e−χt)

]
,

.
=

n∑

j=1

Hj(t).

Thus, for j = 1

H1(t) =

∫ t

0

αE(s)e−µ(t−s)e−nγ(t−s)(1− e−χ(t−s))ds+ I(0)e−µte−nγt(1− e−χt).

Differentiating this H1 equation we have

H ′1(t) = χ

[∫ t

0

αE(s)e−µ(t−s)e−nγ(t−s)e−χ(t−s)ds+ I(0)e−µte−nγte−χt
]

−(nγ + µ)

[∫ t

0

αE(s)e−µ(t−s)e−nγ(t−s)χe−χ(t−s)ds+ I(0)e−µte−nγtχe−χt
]
,

= χI1(t)− (nγ + µ)H1(t).

which is the H ′1 equation in (2.18).

For j > 1,

Hj(t) =

∫ t

0

αE(s)e−µ(t−s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
(1− e−χ(t−s))ds

+I(0)e−µt
(nγt)e−nγt

(j − 1)!
(1− e−χt).

Thus,

H ′j(t) = χ

[∫ t

0

αE(s)e−µ(t−s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
e−χ(t−s)ds+ I(0)e−µt

(nγt)j−1e−nγt

(j − 1)!
e−χt

]

+

[∫ t

0

αE(s)e−µ(t−s)
d

dt

(
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!

)
e−χ(t−s)ds

+ I(0)e−µt
d

dt

(
(nγt)j−1e−nγt

(j − 1)!

)
e−χt

]

−µ
[∫ t

0

αE(s)e−µ(t−s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
χe−χ(t−s)ds

+ I(0)e−µt
(nγt)j−1e−nγt

(j − 1)!
χe−χt

]
,

= χIj(t) + nγHj−1(t)− nγHj(t)− µHj(t),
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which is the H ′j (j > 1) equation in (2.18).

For the D equation

D(t) =

∫ t

0

[∫ τ

0

αE(s)P (τ − s)gM (τ − s)ds+ I(0)P (τ)gM (τ)

]
e−γf (t−τ)dτ,

=

∫ t

0



∫ τ

0

αE(s)

n∑

j=1

(nγ(τ − s))j−1e−nγ(τ−s)
(j − 1)!

µe−µ(τ−s)ds

+ I(0)

n∑

j=1

(nγτ)j−1e−nγτ

(j − 1)!
µe−µτ


 e−γf (t−τ)dτ,

=

n∑

j=1

∫ t

0

[∫ τ

0

αE(s)
(nγ(τ − s))j−1e−nγ(τ−s)

(j − 1)!
µe−µ(τ−s)ds

+ I(0)
(nγτ)j−1e−nγτ

(j − 1)!
µe−µτ

]
e−γf (t−τ)dτ.

and thus,

D′(t) = µ

n∑

j=1

[∫ t

0

αE(s)e−µ(t−s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
e−χ(t−s)ds+ I(0)e−µt

(nγt)e−nγt

(j − 1)!
e−χt

]

+µ

n∑

j=1

[∫ t

0

αE(s)e−µ(t−s)
(nγ(t− s))j−1e−nγ(t−s)

(j − 1)!
(1− e−χ(t−s))ds

+ I(0)e−µt
(nγt)e−nγt

(j − 1)!
(1− e−χt)

]

−γf
n∑

j=1

∫ t

0

[∫ τ

0

αE(s)
(nγ(τ − s))j−1e−nγ(τ−s)

(j − 1)!
µe−µ(τ−s)ds

+ I(0)
(nγτ)j−1e−nγτ

(j − 1)!
µe−µτ

]
e−γf (t−τ)dτ,

=

n∑

j=1

µIj(t) +

n∑

j=1

µHj(t)− γfD(t),

which is the D′ equation in (2.18).

Finally, for the R equation,

R(t) =

∫ t

0

[∫ τ

0

αE(s)gp(τ − s)M(τ − s)ds+ I(0)gp(τ)M(τ)

]
dτ

=

∫ t

0

[∫ τ

0

αE(s)
(nγ(τ − s))n−1nγe−nγ(τ−s)

(n− 1)!
e−µ(τ−s)ds+ I(0)

(nγτ)n−1nγe−nγτ

(n− 1)!
e−µτ

]
dτ,

which leads to the R′ equation in (2.18):

R′(t) =

∫ t

0

αE(s)
(nγ(t− s))n−1nγe−nγ(t−s)

(n− 1)!
e−µ(t−s)ds+ I(0)

(nγt)n−1nγe−nγt

(n− 1)!
e−µt,

= nγIn(t) + nγHn(t).

This completes the proof.
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The probability of hospitalization pH1 for Model I

Consider the model (2.18), which is Model I in the case when P1(t) = Gn
nγ1

, L1(t) =

G1
χ1 and M1(t) = G1

µ. The proportion of infected individuals that are hospitalized

(see (2.41)) is given by smaller

pH1 =

∫ ∞

0

∫ t

0

∫ u

0

χe−χsds µe−µudu
(nγ)ntn−1e−nγt

n!
dt

+

∫ ∞

0

∫ u

0

∫ t

0

χe−χsds
(nγ)ntn−1e−nγt

n!
dt µe−µudu,

=

∫ ∞

0

∫ t

0

(
1− e−χu

)
µe−µudu

(nγ)ntn−1e−nγt

n!
dt

+

∫ ∞

0

∫ u

0

(
1− e−χt

) (nγ)ntn−1e−nγt

n!
dt µe−µudu,

=

∫ ∞

0

∫ t

0

(
1− e−χu

)
µe−µudu

(nγ)ntn−1e−nγt

n!
dt

+

∫ ∞

0

∫ ∞

t

µe−µudu
(
1− e−χt

) (nγ)ntn−1e−nγt

n!
dt,

=

∫ ∞

0

[
1− e−µt − µ

χ+ µ

(
1− e−(χ+µ)t

)] (nγ)ntn−1e−nγt

n!
dt

+

∫ ∞

0

e−µt
(
1− e−χt

) (nγ)ntn−1e−nγt

n!
dt,

=

[
1− (nγ)n

(nγ + µ)n
− µ

χ+ µ

(
1− (nγ)n

(nγ + χ+ µ)n

)]

+

[
(nγ)n

(nγ + µ)n
− (nγ)n

(nγ + χ+ µ)n

]
,

=

(
1− µ

χ+ µ

)(
1− (nγ)n

(nγ + χ+ µ)n

)
,

=
χ

χ+ µ

[
1−

(
nγ

χ+ nγ + µ

)n]
.
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3. EBOLA MODELS - THE SPECTRUM OF EBOLA

SYMPTOMS

The work presented in this chapter was done in collaboration with Lin, Glasser and

Hill. Most of the results and ideas in this chapter will be submitted to a Mathe-

matical Biology related journal. I contribute several parts of the manuscript but not

exclusively, including model formulation and analysis as well as the writing of the

manuscript.

3.1 Introduction

Many mathematical models have been applied to the 2014-15 Ebola outbreak in

West Africa to estimate the basic reproduction number and evaluate control measures

[20–22, 25, 32, 51–53]. Most of these models do not consider the spectrum of Ebola

infection symptoms. However, Ebola virus disease presents clinically in a complicated

way, as infected individuals report various symptoms. For the 2014-15 West Africa

Ebola outbreak, even the most common symptom, fever, is not experienced by 13%

of patients. There are even rare cases reported with hemorrhagic symptoms (< 5.7%)

[14]. This suggests that infected individuals experience a spectrum of symptoms,

from mild to severe. Asymptomatic infections are quite possible, as shown in previous

Ebola outbreaks [27, 28]. There are few exceptions [26, 54], but these studies do not

consider asymptomatic or moderately symptomatic infections.

Some of the spectrum of Ebola symptoms might be explained through immuno-

logical responses to Ebola infection [55–57]. Following the infection of some naive

individuals, Ebola virus could evade the innate immune response by interfering with

or disabling the detection and signaling functions of immune cells, for instance, den-

dritic cells and macrophages, etc. This evasion could lead to systemic virus replication
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and increase the chance of disease-induced death due to multiple organ failures. For

those infected whose innate responses to infection are successful, the initial replication

of Ebola virus may be limited or even contained [28]. Successful adaptive immune

responses to the virus could lead to full recovery from infection. Variable immune

response processes might be the ultimate source of the wide range of symptoms. As

similar Ebola viruses circulated in Africa previously (the earliest outbreak caused by

Ebola virus was traced back to 1976 [5]), however, people infected before might have

partial immunity against the new strain [58] and their adaptive immune response

work quickly enough after infection to contain initial viral replication, resulting in

few or mild symptoms. In addition, the immunological responses may be related to

host genetics. Host genetic studies [59] show that genetic background determines

susceptibility and resistance to many infectious diseases, including the strain Ebola

virus recently circulating in West Africa [60]. Thus, host genetics may determine if

individuals are resistant or susceptible to severe hemorrhagic fever [61].

This chapter aims to account crudely for the spectrum of clinical symptoms that

characterizes Ebola infection by modeling mild, moderate and severe infections explic-

itly through a compartmental model. We augment Model II in Chapter 2 by adding

mild and moderately symptomatic to susceptible, exposed, infectious, hospitalized

and deceased (not buried yet) and recovered compartments. Furthermore, in mod-

eling mild and moderate symptoms, two possible pathways are considered based on

possible outcomes of the initial replication of Ebola virus due to host biological pro-

cesses. If replication of the virus is limited by genetic resistance or partial immunity,

infected people are routed from the susceptible to mild or asymptomatic compart-

ment. If Ebola virus replicates, but is contained by a strong innate immune response,

the resulting moderate symptoms are captured by moving people from the exposed

compartment to the moderately infectious compartment. Based on their viral load,

those becoming asymptomatic directly probably are not infectious, while moderately

symptomatic individuals from the exposed class probably are infectious, but less so

than those with severe symptoms.
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This chapter demonstrates the importance of modeling asymptomatic and mod-

erately symptomatic people in modeling applications. For example, early outbreak

data from Liberia are used to estimate the basic reproduction number (there were

limited effects of control measures before the middle of September, 2014 [14, 26]).

Using this model, the basic reproduction number is estimated as 1.83 for Liberia,

consistent with the WHO estimate via a different approach. If mild and moderate

symptoms are disabled, however, the estimated reproduction number is 1.97, which is

7.6% higher. This shows that models without the full range of symptoms might over-

estimate the basic reproduction number. In addition, after international interventions

began ( [62], the outbreak shows a significant reduction in admissions to hospitals by

mid-September, 2014). Based on estimation results, the model without mild and

moderately symptomatic infections overestimates the reduction in transmission rates

in the community, hospitals and after death. This means that credit given to control

measures actually is due to asymptomatic or moderately symptomatic infections as

those people also contribute to herd immunity.

This chapter is organized as follows: Section 3.2 elaborates the model, derives

the reproduction number, and calibrates the model to the Liberia outbreak. Section

3.3 studies the effectiveness of possible controls from the perspectives of the basic

reproduction number and final size. Section 3.4 is devoted to discussion.

3.2 Models and data fitting

The objective of the chapter is to enhance our understanding of the effects of

infections with mild and moderate symptoms on Ebola modeling. A compartmental

model is developed based on Model II in Chapter 2 by including mildly (or asymp-

tomatic) and moderately symptomatic compartments. This model is fitted to case

reports from the 2014-2015 Liberia outbreak. The basic reproduction number is es-

timated based on the method of maximum likelihood using the early data. The case



66

counts are assumed to be Poisson distributed. The control effects are estimated using

the data after inventions were implemented.

𝑆 𝐸 𝐼1

𝐻1 𝐷
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Fig. 3.1. Model Diagram of Chapter 3.

3.2.1 Compartmental model and basic reproduction number

The model developed in this chapter considers different possible outcomes of Ebola

infection, including asymptomatic, moderate and severe symptoms, to crudely ac-

count for the spectrum of disease reported by Ebola patients. For new infections,

individuals might become asymptomatic directly from susceptible, if the initial virus

replication is contained due to genetic resistance or partial immunity due to previous

exposure. Individuals could also go through the exposed period if the virus repli-

cates and symptoms appear. Depending on the outcome of viral replication and host

immunological response, individuals could be mildly infectious with moderate symp-

toms or fully infectious with severe symptoms. The infectious periods of moderate

and severe symptoms are assumed to have different distributions. Those with moder-

ate symptoms have an infectious period following a Gamma distribution with shape

parameter m and rate parameter mγδ, i.e., on average 1/γδ infectious period. Once
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their infectious period ends, these individuals recover. They could be hospitalized,

but have limited infectivity, so the reduction in their transmission rate by virtue of

isolation is negligible. Thus, the hospitalization of moderately symptomatic people

is ignored for simplicity. Individuals with severe symptoms have an infectious period

following another Gamma distribution with shape parameter n and rate parameter

nγ, i.e., on average 1/γ infectious period. During their infectious period, individuals

could be hospitalized at each sub-stage. The infectious period ends due either to re-

covery or disease-induced death if individuals are not hospitalized. These individuals

could only die during the last sub-stage of their infectious periods when symptoms

become severe, for example, internal bleeding and organ failures. The total infec-

tions contain σ mild (or asymptomatic), (1− σ)δ moderate and (1− σ)(1− δ) severe

symptoms. Model II in Chapter 2 is used as the base model for severe symptoms.

One advantage of this base model is that it allows infection histories to carry over

after hospitalization. This advantage arises from its underlying assumption that the

transitions to hospitalization and disease progression are independent. Intuitively,

the waiting times of these transitions are measured by independent clocks. If the

hospitalization clock rings, individuals are hospitalized before they progress. The

clock of disease progression continues running even after the hospitalization of these

individuals and rings due either to their recovery or disease-induced death. This un-

derlying assumption is explained in more detail in [48] through integral-differential

equations, which are reduced to ordinary differential equations (ODEs) when waiting

times follow Gamma distributions.

The ODE models contain compartments: susceptible S, mild (or asymptomatic)

infected A, latent (exposed) E, infectious with moderate symptoms Iδk , k = 1, . . . ,m,

infectious with severe symptoms Ij, j = 1, . . . n, hospitalized Hj, j = 1, . . . n, and

disease-induced death and not safely buried D as well as recovered R, where the

shape parameters of the gamma distributions are integers m and n for the infectious

with moderate and severe symptoms. The total population is N(t) = S(t) + A(t) +
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E(t) + I(t) + Iδ(t) + H(t) + R(t), where Iδ(t) =
∑m

k=1 I
δ
k(t), I(t) =

∑n
j=1 Ij(t), and

H(t) =
∑n

l=1Hl(t).

The model is as follows,

dS(t)

dt
= −λ(t)S(t), λ(t) =

βI(I(t) + εIδ(t)) + βHH(t) + βDD(t)

N(t)

dA(t)

dt
= σλ(t)S(t)− νA(t),

dE(t)

dt
= (1− σ)λ(t)S(t)− αE(t),

dIδ1(t)

dt
= δαE(t)−mγδIδ1(t),

dIδk(t)

dt
= mγδI

δ
k−1(t)−mγδIδk(t), for k = 2, . . . ,m (3.1)

dI1(t)

dt
= (1− δ)αE(t)− (nγ + χ)I1(t),

dIj(t)

dt
= nγIj−1(t)− (nγ + χ)Ij(t), for j = 2, . . . , n

dH1(t)

dt
= χI1(t)− nγH1(t),

dHj(t)

dt
= χIj(t) + nγHj−1(t)− nγHj(t), for j = 2, . . . , n

dD(t)

dt
= fnγIn(t) + fnγHn(t)− γfD(t),

dR(t)

dt
= (1− f)nγIn(t) + (1− f)nγHn(t) +mγδI

δ
m(t) + νA.

where λ(t) is the force of infection, βI , βH and βD are transmission rates in the

community, hospital and at funerals (deceased but not yet safely buried), σ is the

fraction mildly symptomatic, δ is the fraction moderately symptomatic from exposed,

1/ν is the duration of asymptomatic (or mildly symptomatic) infections, 1/γδ and 1/γ

are the average infectious periods for moderate and severe symptoms, 1/α is the latent

period, 1/χ is the time from disease onset to hospitalization, and f is the case fatality.

In addition, the infectious period 1/γ can be parameterized by the weighted average

1

γ
= f

1

γID
+ (1− f)

1

γIR
, (3.2)

where 1/γID is the period from disease onset to death and 1/γIR is the period from

onset to recovery. (See Table 3.1). This is because disease progression is in fact the
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coupled process of recovery and disease-induced death, as when either of these two

events occurs the infectious period ends.

The basic reproduction number is the average number of secondary infections

caused by an infected individual while infectious. The reproduction number may be

computed based on the underlying stochastic processes modeled. This provides an al-

ternative to the next generation matrix approach that is more intuitive and simpler.

There are four infectious compartments for moderately and severely symptomatic

people. For an infectious person with severe symptoms, there are stochastic waiting

times for disease progression and hospitalization denoted, respectively, by TP and TL.

The expectations of TP and TL are the infectious period and time from disease onset

to hospitalization denoted by E(TP ) and E(TL). Then E(min{TP , TL}) is the ex-

pected time in the I compartment before infectious individuals leave I due to disease

progression or hospitalization, and further E(TP ) − E(min{TP , TL}) is the expected

time in H compartment. Moderately symptomatic individuals have only a waiting

time for disease progression denoted by Tδ and their duration moderately infectious is

E(Tδ). Remember that the probability of being moderately symptomatic is (1− σ)δ

and of severely symptomatic is (1 − σ)(1 − δ). Thus, the basic reproduction num-

ber is the weighted average of the reproduction number of severely and moderately

symptomatic,

R0 = (1− σ)(1− δ)R10 + (1− σ)δR20,

where R10 is the reproduction number if there are only severe symptoms and no mild

or moderate symptoms, i.e.

R10 = βIE(min{TP , TL}) + βH [E(TP )− E(min{TP , TL})] + βD
f

γf
,

and R20 is the reproduction number if there are only moderate symptoms and no

mild or severe symptoms, i.e.

R20 = εβIE(Tδ).

Biologically, R10 and R20 are the sums of transmission rates times the corresponding

expected durations of severe and moderate symptoms.
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To compute the expectations, we assume Gamma distributed sojourns, i.e., the

distributions of these waiting times TP , TL and Tδ follow Gamma distributions as is

implicitly assumed by the multiple sub-stages of the compartmental ordinary differ-

ential equation model. The waiting times TP , TL and Tδ have the Gamma survival

functions

Gn
nγ(t) =

n∑

j=1

(nγt)j−1e−nγt

(j − 1)!
, G1

χ = e−χt, Gm
mγδ

(t) =
n∑

j=1

(mγδt)
j−1e−mγδt

(j − 1)!
.

Then E(TP ) = 1/γ, E(TL) = 1/χ, E(Tδ) = 1/γδ and

E(min{TP , TL}) =

∫ ∞

0

n∑

j=1

(nγt)j−1e−nγt

(j − 1)!
e−χtdt =

n∑

j=1

∫ ∞

0

(nγt)j−1e−(nγ+χ)t

(j − 1)!
dt

=
1

nγ + χ

n∑

j=1

(
nγ

nγ + χ

)j−1
=

1

χ

[
1−

(
nγ

nγ + χ

)n]
,

and

E(TP )− E(min{TP , TL}) =
1

γ
− 1

χ

[
1−

(
nγ

nγ + χ

)n]
.

Therefore,

R0 = (1− σ)(1− δ)βI
1

χ

[
1−

(
nγ

nγ + χ

)n]

+(1− σ)(1− δ)βH
[

1

γ
− 1

χ

[
1−

(
nγ

nγ + χ

)n]]

+(1− σ)(1− δ)βD
f

γf
+

(1− σ)δεβI
γδ

.

It is shown that the basic reproduction number given in this way is equivalent to the

next generation matrix in previous chapter. We also denote the components of R0

associated with I, H and D by RI
0, RH

0 and RD
0 , and to Iδ by RIδ

0 , respectively, and

R0 = RI
0 +RH

0 +RD
0 +RIδ

0 with

RI
0 = (1− σ)(1− δ)βI

1

χ

[
1−

(
nγ

nγ + χ

)n]
,

RH
0 = (1− σ)(1− δ)βH

[
1

γ
− 1

χ

[
1−

(
nγ

nγ + χ

)n]]
,

RD
0 = (1− σ)(1− δ)βD

f

γf
, RIδ

0 =
(1− σ)δεβI

γδ
.
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It is helpful to find the contributions from all infectious compartments in the model,

as they shed light on how to mitigate each part.

Remark that in case of no asymptomatic or mildly symptomatic infections σ = 0

and no moderately symptomatic ones δ = 0, the reproduction number R0 = R10 is

the same as the reproduction number for Model II in Chapter 2.

3.2.2 Estimation of the reproduction number

Data from the Liberia outbreak were obtained through the CDC’s website [63],

which are extracted from WHO situation reports [16]. Observations before September

12, 2014 are suitable for estimating the reproduction number because interventions

had not yet altered the epidemic curve [14]. Though there were some local efforts to

curtail the outbreak from the middle of August 2014, their effects were not significant

[26]. To have an accurate estimate, we used the data from June 6, 2014 to September

12, 2014 to calibrate the models and estimate the reproduction number [14,26].

In estimation, the reported cases from Liberia are assumed to be Poisson samples

from the model. We implement maximum likelihood estimation using the R pack-

age bbmle for estimation and the package deSolve for solving ODEs similar to [21].

We estimate the transmission rate and use estimates of the WHO Ebola Response

Team [14] and others (see Table 3.3) for other parameters. Given the estimated trans-

mission rate, the basic reproduction number is computed. The confidence intervals

are computed through bootstrapping. The method firstly reassembles the data by

combining predictions and residuals randomly. Second, the model is refitted to the

reassembled data. Then confidence intervals are based on estimates of the refitted

model. We used Bellan et al.’s estimate [54] that 50% of infections are asymptomatic

with a lower bound of 20%. The proportions of infections that are asymptomatic

and moderately symptomatic are assumed to be 20% and 30% with 50% of infected

people having severe symptoms, i.e., σ = 0.2, (1 − σ)δ = 0.3, to which we refer as

combination (a). Three other combinations are also considered: 50% of infections
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Table 3.1.
Model parameters in Chapter 3.

Symbol Definition Value (Range) References

βI community transmission rate 0.433 (0.35, 0.45) estimated

βH hospital transmission rate 0.6 (0.55, 0.65)βI [22]

βD traditional burial transmission

rate

1.2 (0.9, 1.3)βI [18, 26]

ε the ratio of mild relative to

typical infectivity

0.1 (0, 0.3) assumed

1/γIH time from disease onset to

hospitalization

4.9 (4.8, 5.3) days [8, 14,20]

1/γID duration from disease onset to

death

7.9 (7.5, 8.5)days [8, 20]

1/γIR duration from disease onset to

recovery

9 (8.5, 9.5)days [26]

1/ν duration of asymptomatic

infection

3 days assumed

1/γδ duration of mild symptoms 7 (3, 9) days assumed

1/α duration of the latent (exposed)

period for symptomatic infection

9.5 (9, 12)days [9, 14,26]

1/γf duration of the diseased 2 (1.5, 2.5) days [8, 20,26]

σ probability of asymptomatic

infection

0.2 (0.2, 0.5) [54]

δ conditional probability of having

mild symptoms

0.375 (0, 0.375) [54]

f probability of disease induced

death for the infected with

typical symptoms (case fatality

rate)

0.723 (0.69, 0.73) [9, 14]
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Table 3.2.
Estimated reproduction number using the data from June 8, 2014
until September 12, 2014. (a) 20% (σ) asymptomatic and 30%
(1 − σ)δ moderately symptomatic, (b) 0% asymptomatic and 50%
moderately symptomatic, (c) 50% asymptomatic and 0% moderately
symptomatic (d) 0% asymptomatic and 0% moderately symptomatic.

R0 RI
0 RH

0 RD
0 RIδ

0

(a)
1.83

(1.73, 1.95)

0.75

(0.70, 0.79)

0.62

(0.58,0.66)

0.38

(0.35, 0.40)

0.09

(0.08, 0.10)

(b)
1.77

(1.70, 1.83)

0.70

(0.67, 0.72)

0.58

(0.55, 0.60)

0.35

(0.33, 0.36)

0.14

(0.13, 0.15)

(c)
1.972

(1.88, 2.13)

0.85

(0.81, 0.91)

0.70

(0.67, 0.76)

0.43

(0.40, 0.46)
0.00

(d)
1.97

(1.84, 2.17)

0.85

(0.79, 0.93)

0.70

(0.65, 0.77)

0.43

(0.40, 0.47)
0.00

with severe symptoms; (b) no asymptomatic (or mild) infections but 50% moderate

symptoms, i.e. σ = 0, (1−σ)δ = 0.5; (c) 50% asymptomatic and no moderate symp-

toms, i.e. σ = 0.5, (1 − σ)δ = 0; (d) no asymptomatic or moderate symptoms, i.e.,

σ = (1−σ)δ = 0. The estimates of the basic reproduction number are listed in Table

3.2. The estimate from (1), i.e., R0 = 1.83, is consistent with the estimate from WHO

response team using other statistical methods. We estimate that community trans-

mission RI
0 = 0.747 contributes the largest proportion 41% of the basic reproduction

number. The hospital transmission RH
0 = 0.618 contributes 34% and the deceased

yet not buried transmission RD
0 = 0.375 contributes 20%. The transmission from the

moderate symptomsRIδ
0 = 0.091 accounts for 5%. To control the outbreak in Liberia,

community transmission is critical and controlling post-death transmission alone is

not sufficient, consistent with results from [26]. All other estimates of (b), (c) and (d)

are also in the range of existing estimates [8,9]. From the estimation results, combina-



74

tion (b) with 50% moderate symptoms provides the lowest estimate, possibly because

of the limited infectivity of individuals with moderate symptoms. Combinations (c)

and (d) provide similar estimates of the reproduction number because asymptomatic

(or mildly symptomatic) infections are a small fraction from the very large suscep-

tible population and thus these people have little impact on disease dynamics. The

estimates of (c) and (d) are higher than (a) and (b) because asymptomatic (or mildly

symptomatic) infections have little effect on transmission at the beginning, and they

do not account explicitly for infected individuals with moderate symptoms, who have

lower infectivity than those with severe symptoms. Comparison of reports and model

fits are shown in Figure 3.2. All models capture the initial growth of the outbreak,

though it is observed that the exponential curves are steeper for higher R0.

3.2.3 Uncertainty analysis of asymptomatic and moderately symptomatic

infection

Uncertainty concerning mild (or asymptomatic) and moderately symptomatic in-

fections could account for variability in reproduction number estimates. Thus, we

implement the Sobol method by R package sensitivity and compute Sobol indices.

The Sobol method [47] quantifies sources of variability due to different parameters.

Sobol indices are the decomposed variance due to related parameters. We focus on

asymptomatic and moderately symptomatic related parameters, which are drawn

using the Latin hypercube sampling method from their ranges as follows: σ is the

fraction asymptomatic and its range is (0.2, 0.5), δ is the fraction moderately symp-

tomatic and its range is (0, 0.375), ε is the discounted ratio of transmission of infected

people with moderate and typical symptoms (0, 0.3), and 1/γδ is the infectious period

of those moderately symptomatic with range (3, 9) days. Then the variability of the

reproduction number is stratified according to uncertainty of the parameters. The

proportions of variability due to each are shown in a pie chart and a histogram of the
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(a) 20% asymptomatic, 30% moderately

symptomatic, i.e. σ = 0.2, (1− σ)δ = 0.3.
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(b) 0% asymptomatic, 50% moderately symp-

tomatic, i.e. σ = 0, (1− σ)δ = 0.5.

0 20 40 60 80

0
50

0
10

00
15

00
20

00
25

00

(c) 50% asymptomatic, 0% moderately symp-

tomatic, i.e. σ = .5, (1− σ)δ = 0.0.
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(d) 0% asymptomatic, 0% moderately symp-

tomatic, i.e. σ = 0, (1− σ)δ = 0.

Fig. 3.2. Fitting results based on the data from June 8th 2014 until
September 12th 2014.

reproduction number is also shown in Figure 3.3. The reproduction number ranges

from 1.32 at 2.5% quantile to 2.57 at 97.5% quantile.

3.2.4 Impact of the control measures

In the countries with widespread and intense spreading, containment of the West

Africa Ebola outbreak relied on non-pharmaceutical interventions due to the lack
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(b) Histogram of the reproduction number

with uncertainty of mild and moderate symp-

toms. 95% CI (1.32, 2.57)

Fig. 3.3. Uncertainty analysis of the basic reproduction number with
respect to parameters related to mild and moderate symptoms.

of effective medicines. These interventions include social mobilization, use of per-

sonal protective equipment (PPE) in healthcare facilities, safe and dignified burials,

and contact-tracing and quarantine. Social mobilization activities include raising the

population’s awareness of mode of transmission, social distancing with infectious peo-

ple, timely seeking of medical care and proper handling of deceased persons. Widely

used, personal protective equipment (PPE) can lower infections in hospitals and other

healthcare facilities. Social and dignified burials conducted by trained teams can re-

duce transmission from deceased people. Contact-tracing helps to promptly identify

and hospitalize suspected and isolate probable cases. All of these interventions are as-

sociated with one or multiple parameters in the model. A natural question is whether

considering mild and moderate symptoms affects the estimated effectiveness of these

interventions.
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Table 3.3.
Estimates of reduction in transmission rates. (a) 20%(σ) mild and
30% (1 − σ)δ moderate symptoms, (b) 0% mild and 50% moderate
symptoms, (c) 50% mild and 0% moderate symptoms (d) 0% mild
and 0% moderate symptoms.

Biological definition (a) (b) (c) (d)

zI Percentage reduction in βI 0.274 0.265 0.293 0.293

zH Percentage reduction in βH 0.823 0.796 0.880 0.881

zD Percentage reduction in βD 0.548 0.530 0.587 0.587

We assume that the transmission rates for community (βI), hospital (βH) and

funeral (βD) and the time from disease onset to hospitalization (1/χ) are piecewise

functions of time [20]. For example,

βI(t) =





βI

βI(1− zI)

for t < t0,

for t ≥ t0,

where t0 corresponds to September 12, 2014 and zI is the reduced transmission rate

in the community due to interventions. Before September 12, 2014, these parameters

remain the same as in the section on estimating the basic reproduction number.

After September 12, 2014, there are reductions (i.e., zI , zH , zD and zχ) that are to be

estimated. To focus on estimating the effects of interventions on transmission rates,

the reduction zχ is assumed 0.25, which is around 1.2 days earlier hospitalization than

before [32]. The estimated reductions in the transmission rates are shown in Table

3.3. From the table, the reduction in transmission rates for (a) and (b) are smaller

than for (c) and (d), which means that interventions seem more effective if only severe

symptoms are considered. The reason that (c) and (d) are similar is probably that

any herd immunity contributed by asymptomatic (or mildly symptomatic) infections

has not yet taken effect as these infections are only a small proportion of the total

population (for Liberia, the population is more than 4 million, and the observed final
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cumulative cases are around 11000.) The results of the data fitting for the control

time-series are shown in Figure 3.4, which also includes the early fitting results from

Figure 3.2 before September 12, 2014. These results suggest that considering the

full spectrum of symptoms is necessary in estimating the effects of interventions for

policy-making.
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(a) 20% asymptomatic infections, 30% mod-

erate symptoms, i.e. σ = 0.2, (1− σ)δ = 0.3.
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(b) 0% asymptomatic infections, 50% moder-

ate symptoms, i.e. σ = 0, (1− σ)δ = 0.5.
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(c) 50% asymptomatic infections, 0% moder-

ate symptoms, i.e. σ = .5, (1− σ)δ = 0.0.
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(d) 0% asymptomatic infection, 0% moderate

symptoms, i.e. σ = 0, (1− σ)δ = 0.

Fig. 3.4. Fitting results based on the data from June 8th 2014 until
September 12th 2014 for the basic reproduction number and the data
after September 12th 2014 for estimating the control effectiveness.
The jump of the case data between day 100 and day 200 is due to a
catch up in data monitoring and reporting in Liberia [64].
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3.3 Control strategies evaluation

This section further studies the effectiveness of possible control interventions on

Ebola propagation. The analysis is conducted from two perspectives: one is to find

parameters to which the basic reproduction number is sensitive and the other is to

investigate the timing of interventions and changes in possible control parameters

based on final size and cumulative cases. The results could be helpful in guiding

interventions in future Ebola outbreaks.

Fig. 3.5. Local sensitivity and elasticity analysis of R0 with respect to
epidemiological parameters in Table 3.1. Sensitivity analysis is about
the change in R0 and elasticity analysis is about the proportional
change in R0.

3.3.1 Sensitivity analysis of basic reproduction number

We performed local sensitivity and elasticity analysis with respect to epidemiolog-

ical parameters in Table 3.1. This analysis represents how changes (or proportional

changes) in R0 are associated with changes (or proportional changes) in different pa-

rameters at their given values. Results are shown in Figure 3.5. The most sensitive

biological parameters are the progression rate of severely symptomatic infections γ,

and two parameters for asymptomatic (or mildly symptomatic) infections, i.e., the

proportions with moderately symptomatic infections through the latent period δ and

of asymptomatic infections σ. This shows that asymptomatic and moderately symp-
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tomatic infections are crucial in the reproduction number. The figure also offers clues

about how R0 might be reduced efficiently. The reduction in community transmis-

sion rate βI is most influential, followed by reductions in hospital βH and post-death

transmission βD. This tells us that, if transmission in community can be controlled,

it would be very effective in reducing the reproduction number. Then hospital and

post-death transmission follow.

We also investigate interaction effects as the local sensitivity analysis is about

one-on-one linear relationships between individual parameters and the reproduction

number. Figure 3.6 shows the dependence ofR0 on moderate symptom related param-

eters. The left figure shows that R0 is not sensitive to the fraction of asymptomatic

infections (1− σ)δ when ε is small, but as ε increases R0 becomes more sensitive to

the fraction of asymptomatic infections (1 − σ)δ. The right figure shows similarly

that R0 becomes more sensitive to the infectious period for moderately symptomatic

infections as ε increases. This explains that, if the transmission rate of those moder-

ately symptomatic is small, then other parameters related to the reproduction number

become less influential.

Fig. 3.6. Contour plots of R0 and moderate symptom related pa-
rameters. (a) the reduced infectivity of moderate relative to severe
infection ε and the proportion with moderate symptoms (1−σ)δ; (b)
the reduced infectivity of moderate relative to severe symptoms ε and
the infectious period of the moderate symptoms 1/γδ.
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Fig. 3.7. Contour plots R0 and control by reducing hospital trans-
mission (reduction in βH and time from onset to hospitalization 1/χ)
and post-death transmission (reduction in βD and time from death to
burial 1/γf ).

The basic reproduction number R0 could be reduced through hospital transmis-

sion and post-death transmission. This is shown in Figure 3.7, where the left figure

shows control via hospital transmission, i.e., reduction in βH , and the time from

disease onset to hospitalization (1/χ). R0 is effectively decreased by early hospital-

ization if the transmission rate in hospital is reduced. But if this transmission rate

is not reduced, then early hospitalization would not be effective in controlling the re-

production number. Early hospitalization might be achieved by contact-tracing and

reduction in transmission rate in βH might be achieved by increasing the effectiveness

of isolation in hospital and use of personal protective equipment (PPE). This suggests

that to control R0 effectively, both contact-tracing and isolation must work together.

The right figure shows control via post-death transmission, i.e., reduction in βD and

time from death to burial 1/γf . This figure shows that reducing βD or reducing 1/γf

is effective early, but becomes less effective as either of the two is controlled. It is not

possible to make R0 less than 1 by controlling only post-death transmission.

To further investigate how to control the reproduction number R0 effectively,

Figure 3.8 shows combinations of reduction in hospital and post-death transmission
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rates βH and βD under different levels of reduction in the community transmission

rate βI (0%, 10%, 20% and 30%). First, the four sub-figures show that R0 is more

sensitive to reduction in βH than reduction in βD. This means that control of the

hospital transmission rate is more effective than the post-death transmission rate.

This is more achievable in realty by strictly implementing isolation and increasing use

of personal protective equipment by healthcare workers. Second, the four sub-figures

show that reducing R0 below 1 is most probable by control of hospital and post-

death transmission with some reduction in community transmission. If community

transmission is not reduced (0 reduction in βI), then it is very difficult to reduce

R0 below 1 by controlling the transmission rates βH and βD. It is only possible to

reduce R0 below 1 if βH has been reduced at least by 65% (vertical dashed line) and

βD has been reduced at least by 45% (horizontal dashed line). In fact, one needs

to further reduce βI and βH to make R0 below than 1 in the upper left triangle

bounded above the thick line. However, it becomes more probable to reduce R0

below 1 by decreasing transmission rates βH and βD, with the reduction in community

transmission rate βI by from 0% to 30%. Then the required reduction in βH becomes

more achievable, from 65% to 28%, and the required reduction in βD is from 45% to

0%. Therefore, to reduce the reproduction number R0 below 1, all three transmission

rates for community, hospital and post-death must be reduced together.

Global sensitivity and uncertainty analysis is conducted through Latin hypercube

sampling (LHS) and partial rank correlation coefficients (PRCC). The uncertainty

analysis uses the Latin hypercube sampling method to sample the parameters of the

reproduction number R0 [45] (see Section 1.4, Chapter for more detail). The size of

Latin hyper cube samples is set at N = 2000 in this section. The parameter ranges

are listed in Table 3.2. Some statistics about the basic reproduction number R0 are

obtained from the samples, mean 1.83, median 1.80, and standard deviation 0.34,

and the 95% upper bound is 2.42. For the components of R0 , RI
0 has mean 0.774,

median 0.762, and standard deviation 0.152, RH
0 has mean 0.677, median 0.654, and

standard deviation 0.134, RD
0 has mean 0.34, median 0.334, and standard deviation
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Fig. 3.8. R0 and the reduction in hospital transmission rate βH and
in post-death transmission rate βD under different levels of reduction
in community transmission rate βI by 0%, 10%, 20% and 30%. The
thick lines in each sub-figure corresponds to R0=1.

0.078, and RIδ
0 has mean 0.049, median 0.034, and standard deviation 0.045. The

sample distributions of R0 and its components are shown in Figures 3.9 and 3.10.

The empirical distribution of R0 is shown in Figure 3.11, which also includes the

proportions of each component of R0 as R0 samples are sorted. This shows that the

probability of R0 > 1 is equal to 1, which means that the outbreak will occur when an

index patient is introduced to the population. The most important component of R0

is the community, then hospital and post-death transmission, and finally transmission

through those with moderately symptomatic infections.
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Fig. 3.9. Global sensitivity and uncertainty analysis of R0 with re-
spect to epidemiological parameters in Table 3.1.

Fig. 3.10. Histograms of the components of R0 .

The global sensitivity analysis applies the partial rank correlation coefficient (PRCC)

to assessing pairwise relations between parameters and the reproduction number RC

after removing the influence of other parameters (see Section 1.4, Chapter 1). PRCC

identifies and measures the statistical influence, specifically the monotonicity, of the

parameters on R0. Figure 3.9 shows the influence of asymptomatic (σ) as well as

asymptomatic infections (δ and ε) on R0. It also shows that post-death transmission



85

Fig. 3.11. Empirical distribution of R0 and components of R0.

(βD and γf ) is important, but the effects of community and hospital transmission (βI

and βH) are similar.

3.3.2 The effects of intervention timing

The timing of interventions is critical for disease control, and early effective inter-

ventions usually reduce the final outbreak size. With the same interventions, if the

timing is three weeks earlier, then more than 50% cases are prevented. On the other

hand, if the timing is three weeks later, then final size could triple (See Figure 3.12

(a)). The peak sizes and times with different intervention timing are shown in Figure

3.12 (b). The epidemics reach their peaks shortly (around 10 days) after implementa-

tion of interventions. The peak size could be decreased by 63% or increased by 169%

due to earlier or later interventions.

The predicted cumulative cases vary among different combinations of asymp-

tomatic and moderately symptomatic infections (see Figure 3.13). For early interven-

tion, models with 20% asymptomatic and 30% moderately symptomatic and models

with 0% asymptomatic and 50% moderately symptomatic infections provide larger

estimates than models with 0% asymptomatic and 0% moderately symptomatic infec-

tions and models with 50% asymptomatic and 0% moderately symptomatic infections.

However, late intervention switches the order of predictions. This shows that the pre-
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Fig. 3.12. Timing of the interventions. The lower blue thin curves
correspond to three weeks earlier implementation, the middle black
curves correspond to the actual time of implementation, and the top
red thick curves corresponds to three weeks later implementation. The
exponential growth dashed curve in sub-figure (a) corresponds to no
control.

diction from models without moderately symptomatic infection are more sensitive

to the timing of intervention and might exaggerate their effects. This is also shown

further by varying the timing of controls in Figure 3.14. The final size as a function

of intervention timing is obtained by fitting a regression line to the log transformed

final size, and the equation is

FS(t) = FS(t0)exp(k(t− t0))

with k=0.0470, 0.0440, 0.0531 and 0.0536 for (a-d), where t0 corresponds to September

12, 2014, and FS(t0) corresponds to the actual final size with intervention at t0. Using

this formula, it is easy to estimate the effects of intervention timing on final size. This

might be useful in intervention policy-making.
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Fig. 3.13. Early and late interventions.
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Fig. 3.14. Final sizes depend on the timing of the interventions.

3.3.3 Control parameters and their effects on the time course

To assess the importance of control measures for future outbreaks based on the

2014-15 Liberia outbreak, time course sensitivity is conducted through Latin hyper-
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cube sampling of the control parameters and partial rank correlation coefficients. (See

Figure 3.15) The timing of intervention T ranges from 3 weeks earlier than the current

timing to 3 weeks later. The reductions in βI , βH and βD , i.e., zI , zH and zD, range

from 0 to 30%, 50% to 90%, 30% to 70%, respectively. The reduction in the time

from onset to hospitalization zχ ranges from 0 to 60%. The PRCC curves of control

parameters are similar and close to zero before implementation of control measures.

Once control measures are implemented, the PRCC curves of different control param-

eters quickly go to relatively stable values. The first PRCC curve approaching 1 is

the timing of control measures, which is positively correlated with cumulative cases.

This means that the later the implementation of control measures, the larger the out-

break. Early implementation of control measures is very important in the exponential

growth phase of the outbreak. Later on, the influence of intervention timing wanes.

All other control measures are negatively correlated with the outbreak, which means

that implementing them mitigates the outbreak. The most influential measures are

hospital transmission zH , i.e., effectiveness of isolation in hospitals, and the time from

onset to hospitalization zχ, which could be reduced by contact-tracing and educating

the public about Ebola. Contact-tracing and raising public awareness could also af-

fect the next most influential parameter, the community transmission rate βI . The

PRCC of the reduction of βD is the smallest, but proper burials might be the most

easily implemented control measure.

3.4 Discussion

To crudely account for the spectrum of symptoms of Ebola infection, assumptions

for the newly developed model are based on biological findings about Ebola infections

with mild, moderate and severe symptoms. First, those mildly or asymptomatic

directly from the susceptible class have very little if any viral replication, which is

controlled rapidly by virtue of genetic resistance or immunity from prior infection

with a related virus. Therefore, they are probably not infectious due to their low
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Fig. 3.15. Time course sensitivity with respect to control parameters.

viral load. Secondly, those with moderately symptomatic infections from the exposed

class have some virus replication. However, viral replication is controlled due to strong

innate immunity plus successful adaptive immunity. These individuals are not very

infectious even though they have moderately symptomatic infections, because they

have limited amount of viruses circulating within their bodies. Third, those from the

exposed class with severe symptoms have higher virus load and therefore are more

infectious than the moderately symptomatic cases. Based on the estimate of Bellan

et al. [54] (Asymptomatic infection accounts for 50% of the total infection with lower

bound 20%), the fraction asymptomatic is 20%, moderately symptomatic is 30%

and severely symptomatic is 50%. Various other combinations of asymptomatic and

moderately symptomatic infections are considered as well.
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The model developed in this chapter extends one of the models in [48], which

has multiple sub-stages of infectious and hospitalized individuals, based on the as-

sumption of Gamma distributed disease progression (the infectious period). The

formulation and its underlying assumptions are clearly shown via integral-differential

equations and their reduction to ordinary differential equations in [48]. The merit of

this model is that it allows the infection history to pass over even after hospitaliza-

tion. This is important in determining the times of recovery and death, especially

when there is no treatment with effective medicines. The Gamma assumption also

provides a realistic infectious period, and infectious individuals recover or die in the

later stage of the infection, but not sooner.

The results show the importance of considering a spectrum of symptoms. First,

the estimated basic reproduction number for this model is 1.83, consistent with

WHO’s estimate independent of compartmental modeling. Without considering mildly

and moderately symptomatic infections, reproduction number estimates can be in-

flated as shown by disabling these states in this model. However, uncertainty about

the prevalence of asymptomatic and mildly symptomatic infections could lead to re-

production numbers from 1.32 to 2.57. This suggests the need for studies of the full

spectrum of symptoms. Second, interventions are estimated to be more effective when

ignoring the full spectrum of symptoms. Models with different levels of infectivity

provide more reasonable estimates of the effectiveness of interventions. Without con-

sidering asymptomatic and moderately symptomatic infections, extra credit is given

to implemented control measures. In addition, the timing of interventions is of great

importance to mitigate final epidemic size. Because final size is an exponential func-

tion of the time of intervention, early interventions could significantly reduce epidemic

size. An empirical regression equation linking final size and timing of interventions

could be useful for policy-making. It is also observed that the model with only typical

infections provides more dramatic changes in final size with respect to intervention

timing compared to the model with a full spectrum of symptoms.
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Control strategies are also studied through sensitivity analysis. Local sensitivity

and elasticity analyses show that the most effective way to control the reproduction

number is by reducing transmission in the community, followed by reductions in hospi-

tal and post-death transmission. This is consistent with the estimated magnitudes of

reproduction numbers due to each transmission component. The analysis also shows

the importance of moderately symptomatic and asymptomatic infection to the basic

reproduction number. In real applications, various combination of different interven-

tions are implemented at the same time. Different combinations are evaluated in this

chapter. The combination of contact-tracing and effective isolation in hospital is more

effective than implementation of these interventions separately. With a certain reduc-

tion in community transmission, mitigating the outbreak by control of hospital and

post-death transmission becomes more achievable. A time course sensitivity analysis

is conducted to show how sensitive cumulative cases is to control parameter changes

at different times. The timing of interventions shows waning effects on cumulative

cases, while all other controls show constant effectiveness.

It is necessary to stratify infections by severity of clinical symptoms in modeling.

This permits reasonable estimates of the reproduction number and effectiveness of

control measures, especially when infected persons present with various symptoms.

More epidemiological investigation of asymptomatic and moderately symptomatic

infections of Ebola will be helpful to estimate their fractions of the total infection

and infectivity. These are crucial to more useful modeling of future outbreaks.
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4. VACCINE PREVENTIBLE DISEASES MODELS -

DESIGNING AND EVALUATING CONTROL

STRATEGIES FOR MIGRATING POPULATIONS

The work presented in this chapter was done in collaboration with Feng, Hernandez-

Ceron and Zhao. Most of the results and ideas in this chapter have been accepted

for publication as a book chapter [65]. I contribute several parts of the manuscript

but not exclusively, including model formulation and analysis as well as the writing

of the manuscript.

4.1 Introduction

Most epidemiological models simply assume that the population under study is

homogeneous. However, this assumption might not be accurate because people are

clustered and form different residential patches. One of typical structures consists

of urban, peri-urban and rural patches, where patches are connected when people

migrates. Most of the time rural residents migrate to urban/peri-urban areas for

better economic opportunities. This rural to urban migration might be seasonal, as

people from rural patch seek temporal employment in cities in non-farming seasons

and return homes in growing seasons.

These patches are different in population density, and therefore residents of differ-

ent patches have contact rates, which leads to the possibility that infectious diseases

are long-lasting may be epidemic in rural, but endemic in urban/peri-urban areas. In

such case, rural residents are less likely to be immune than urban people of the same

age. Together with births, rural-urban migration thus increases the proportions of

urban or peri-urban populations that are susceptible to infection by the pathogens

causing these diseases. Jos Cassio de Moraes et al. [66] argue that–insofar as the cov-



93

erage required to prevent outbreaks is lower in rural than urban areas – rural-urban

migration motivates regional versus local design of optimal vaccination programs.

In this chapter we developed a system of long-term and short-term models with

three sub-populations consisting of urban, peri-urban, and rural populations. One of

the main differences between these sub-populations is their density (and immunity,

naturally acquired or vaccine-induced). The model system is constructed to include

not only the usual mixing between the three sub-populations (deterministic) but also

seasonally-driven migrations of individuals from rural to urban areas (stochastic). In

addition to routine vaccination within each patch, supplementary vaccination may be

used to mitigate the consequences of the migration.

Compared to deterministic models describing the expected effects of various im-

munization policies, stochastic models enable to capture the inherent randomness of

contact between susceptible and infectious people. They also allow us to examine the

distribution of possible outcomes and compare the likelihood of certain results across

immunization policies. When the threat of a disease outbreak cannot be eliminated

entirely, it may be possible to contain those to specific desired levels. For example,

stochastic simulations are conducted to analyze the likelihood of containing outbreaks

to a prescribed final or peak size. Perhaps the goal is a below 5% risk of the disease

spreading to more than that threshold level, because the policies necessary to elim-

inate that final 5% are prohibitively expensive or unrealistic to implement. In such

cases, stochastic models can provide more insights than deterministic ones, which are

demonstrated in this chapter.

Many researchers have been studied effects of spatial movement of humans on the

spread and control of infectious diseases in different settings. For example, [31,67,68]

study international spread of Ebola virus via air travel, and the efficacy of control

measures including travel restrictions or exit and entry screening of travelers. They

provide important quantitative information about the benefits and associated costs of

screening and restriction of travel, which can be very helpful for policy-making. The

study presented in this chapter aims at assessing the role of vaccinating migrants from
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a rural area at their entry (e.g. bus stops, train stations, etc.) to urban and peri-urban

areas, where disease transmission rates can be much higher due to greater population

densities. Results in this study suggest that such a difference in population densities

can have important implications for disease outbreaks and vaccination strategies.

This chapter is organized as follows: Section 4.2 elaborates the models for long

term and short term, and simulates the models in various situations. Section 4.3

studies the impacts of different possible vaccination policies. Section 4.4 is devoted

to discussion.

4.2 Models and analysis

The objective of this study is to identify the best short-term vaccination policy

to mitigate outbreaks. Therefore, our focus is on an short-term stochastic epidemic

model without demographics, i.e., neither births nor deaths. However, long-term

vaccination policy influences the population immunity among different patches. This

is captured by a long-term deterministic endemic model. For each sub-population,

the steady-state distribution of the epidemiological classes is computed and passed

to the short-term model via its initial conditions. We adopt discrete-time models

following the approach of Lloyd et al. [69].

4.2.1 The long-term endemic model

The long term model consists of six epidemiological classes for each of urban, peri-

urban, and rural populations. Let Mi, Vi, Si, Ei, Ii and Ri denote individuals with

maternal immunity, individuals with temporary immunity due to vaccination, sus-

ceptible individuals, exposed or latent, infectious, and those who have recovered from

infection (and are immune), respectively, where the subscripts i = 1, 2, 3 correspond

to urban, peri-urban, and rural populations, respectively. Temporary immunity is

considered in both V and M classes. Birth and death rates within each patch are
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Long term model

In this model, we introduce the compartment M for maternal immunity and V for vaccination. Loss of
maternal and vaccine induced immunity is included in the long term dynamics through transitions from
V and M back to S. In particular, long term dynamics are governed by

Mipn` 1q “ θiµNi ` p1´ µqp1´ σqMipnq
Vipn` 1q “ αν0i p1´ µqe´β

0
i IipnqSipnq ` p1´ µqp1´ χqVipnq

Sipn` 1q “ p1´ θiqµNi ` p1´ µqp1´ αν0i qe´β
0
i IipnqSipnq ` σp1´ µqMipnq ` χp1´ µqVipnq

Eipn` 1q “ p1´ µqp1´ e´β0
i IipnqqSipnq ` p1´ µqp1´ γqEipnq

Iipn` 1q “ p1´ µqγEipnq ` p1´ µqp1´ ρqIipnq
Ripn` 1q “ p1´ µqρIipnq ` p1´ µqRipnq

Ni “ Mi ` Vi ` Si ` Ei ` Ii `Ri

Vi Mi

Si Ei Ii Ri

χ
µ

σ

θiµNi

µ

p1´θiqµNi

αν0i

µ

β0
i Ii γ

µ

ρ

µ µ

Figure 1: Diagram of the long term dynamics.

where θi is the percentage of new born with maternal immunity, ν0i is the probability of background
vaccination per person per day(assumed to be small if low coverage) and α is the efficacy of the vaccine,
1{χ is the average length of immunity induced by vaccination, and µ is the birth and death probability
per person per day(1{µ is the average life span, this might depend on patches.). β0i is the transmission
rate, 1{γ is the average length of latency and 1{ρ is the average length of infectivity.

The equilibrium from the long term model probably does not have a closed form since the equilibrium
equation is transcendental, but it can be obtained numerically. (Find the stable equilibrium as we run
simulation long enough.)

Short term model

For the short term model, we focus on mitigating a single outbreak and ignore the long term processes
of birth/death and vaccine/maternal induced immunity waning, since such events happen in a very slow
time scale. A discrete stochastic framework was chosen due to the high impact of randomness in the early
stages of the outbreak. A discrete approach gives the advantage of monitoring immigrants and facilitates
the implementation of the day to day policies, even if these are of dynamic nature (time and/or patch
dependent).

The model equations are below

1

Fig. 4.1. Transition diagram for the long-term endemic model. The
blue arrow to Mi represent the new born with maternal immunity
while the other to Si represent the new born without maternal immu-
nity.

assumed to be equal so that the total population remains constant. A transition

diagram of the long-term MVSEIR model is shown in Figure 4.1.

The long-term model is given by

Mi(n+ 1) = θiµiNi + (1− µi)(1− σ)Mi(n)

Vi(n+ 1) = αν0i (1− µi)e−β
0
i
Ii(n)

Ni Si(n) + (1− µi)(1− χ)Vi(n)

Si(n+ 1) = (1− θi)µiNi + (1− µi)(1− αν0i )e
−β0

i
Ii(n)

Ni Si(n)

+σ(1− µi)Mi(n) + χ(1− µi)Vi(n)

Ei(n+ 1) = (1− µi)(1− e−β
0
i
Ii(n)

Ni )Si(n) + (1− µi)(1− γ)Ei(n)

Ii(n+ 1) = (1− µi)γEi(n) + (1− µi)(1− ρ)Ii(n)

Ri(n+ 1) = (1− µi)ρIi(n) + (1− µi)Ri(n), i = 1, 2, 3,

(4.1)

where Ni = Mi + Vi +Si +Ei + Ii +Ri. For patch i, θi is the proportion of newborns

with maternal immunity, µi is the daily per-capita birth and death probability (1/µi

is the average lifespan, based on Geometric distribution) in patch i, σ is the daily

probability of immunity loss due to maternal antibodies (1/σ is the average period

of maternal immunity); α is the vaccine efficacy, ν0i is the daily probability of being

vaccinated, β0
i is the daily transmission rate, 1/χ is the duration of immunity due to

vaccination, 1/γ and 1/ρ are the average periods of latency and infection, respectively.

The probability of infection for a susceptible individual in patch i, e
−β0

i
Ii
Ni , has the
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same form as in [35,36,69,70]. All parameters and their meanings are listed in Table

4.1.

Table 4.1.
Parameters in the long-term model (4.1) for patch i (i = 1, 2, 3). The
subscripts i = 1, 2, 3 correspond to urban, peri-urban, rural patches,
respectively.

Symbol Description Value (patch 1, 2, 3)

θi Fraction of newborns with maternal im-

munity

(0.7, 0.7, 0.7)

1/µi Lifespan (70, 70, 68) years

1/σ Duration of maternal immunity 6 months

1/χ Duration of vaccine-induced immunity 60 years

α Vaccine efficacy 92% – 95%

ν0i Daily probability of being vaccinated determined by pi

β0
i Daily transmission rate (1.4, 1.1, 0.85)

Rvi Effective reproduction number (long-

term)

(1.25, 1.16, 1.03)

R0i Basic reproduction number (long-term) (9.79, 7.70, 5.95)

1/γ Latent period 7 days

1/ρ Infectious period 7 days

N Total population size = N1 +N2 +N3 (0.125N , 0.2N , 0.675N)

The parameter values listed in Table 4.1 are based on measles, and the three

sub-populations have a similar spatial structure to the urban, peri-urban and rural

populations in São Paulo, Brazil. Some parameter values are selected from the litera-

ture while others are calculated or estimated from available data. For example, given

the long-term vaccination policy of vaccinating pi = 0.9 of susceptibles within 10

years, the daily probability ν0i of being vaccinated can be determined from using the
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relationship 1−pi = (1−ν0i )10×360. Also, knowing the basic reproduction number R0i

and all other parameter values except βi, we can estimate βi. Using these parameter

values, we can numerically compute the steady-state values of each epidemiological

class, which then can be used in stochastic simulations of the short-term model.

Because the long-term model is used to determine the local population immunity

within each patch under the long term routine vaccination policy, no interactions

between patches are modeled. Even though the interactions between patches are

ignored, it is difficult to obtain an explicit expression for the non-trivial steady state

of the system for sub-population i. Numerical computations of these steady states will

be used for short-term simulations. Nevertheless, the effective reproduction number

for sub-population i, denoted by Rvi, can be computed (see Appendix) and is given

by

Rvi =

(
(1− µi)γ

1− (1− µi)(1− γ)

)(
β0
i (1− µi)

1− (1− µi)(1− ρ)

)
S0
i

Ni

, (4.2)

in which the first factor is the probability that a newly infected individual survives

the latent period, the second factor is the number of new infections that a typical

infectious individual produces during the entire infectious period in a completely sus-

ceptible population, and the third factor is the fraction of the susceptible population

i at the disease-free equilibrium. The susceptible fraction and the immunized fraction

by routine vaccination (see Appendix in this chapter) at the disease-free equilibrium

are

S0
i

Ni

=

[
(1− θi) + θi

σ(1−µi)
1−(1−µi)(1−σ)

]
µi

1− (1− µi)(1− αν0i )− χ(1−µi)αν0i (1−µi)
1−(1−µi)(1−χ)

,
V 0
i

Ni

=
αν0i (1− µi)S0

i /Ni

1− (1− µi)(1− χ)
. (4.3)

The expressions in (4.2) and (4.3) jointly illustrate how the effective reproduction

number Rvi, the population susceptibility S0
i /Ni and level of immunity V 0

i /Ni depend

on vaccination at rate ν0i , which depends on immunization policies of patches and

therefore may differ among the three patches.

Similarly, it is clear that the endemic equilibrium of patch i,

Êi = (M̂i, V̂i, Êi, Îi, R̂i), i = 1, 2, 3, (4.4)
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depends on transmission rate β0
i in addition to vaccination rate ν0i . This may lead to

susceptibility of the rural population much higher than that of the urban population

due to vaccination coverage and population density (lower densities corresponds to

smaller values of β0
i through contact rates). Consequently, migrants from rural to

urban or peri-urban might significantly increase the likelihood of an outbreak (see

[66]). The long-term steady state values of the components in Êi will are computed

and passed to the short-term model via initial conditions. The simulations of the

long-term model is shown in Figure 4.2.

6 Zhilan Feng and Yiqiang Zheng and Nancy Hernandez-Ceron and Henry Zhao

1.2.2 The short-term model

The short-term stochastic model focuses on mitigating a single outbreak during one
season. It ignores the birth and death processes, as well as the vaccination/immunity
loss considered in the long-term model. In this case, the individuals in the V , M, and
R classes are all considered as immune so can be combined in the same compart-
ment, which we denote by R. Disease transmission and migration for the short-term
model are depicted in Fig. 1.3.

The stochasticity is modeled following the approach used in [8]. The model equa-
tions are given by:

Si(n+1) =
3

∑
j=1

m ji(n)S j(n)e−λ j(n)(1−η ji(n))

Ei(n+1) =
3

∑
j=1

m ji(n)S j(n)
[
1− e−λ j(n)

]
+

3

∑
j=1

(1− γ)m ji(n)E j(n)

Ii(n+1) =
3

∑
j=1

γm ji(n)E j(n)+(1−ρ)Ii(n)

Ri(n+1) = ρIi(n)+
3

∑
j=1

m ji(n)R j(n)

V s
i (n+1) =

3

∑
j=1

m ji(n)S j(n)eλ j(n)η ji(n)+
3

∑
j=1

m ji(n)V s
j (n), i = 1,2,3,

(1.5)
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Fig. 1.2 Long-term dynamics of the model (1.1) for each of the three patches when rural-urban
migration is ignored.Fig. 4.2. Long-term dynamics of the model (4.1) for each of the three

patches when rural-urban migration is ignored.

4.2.2 The short-term model

The short-term stochastic model focuses on mitigating a single outbreak during

one season. It ignores the demographic processes (i.e., birth and death), as well as

the vaccination/immunity loss considered in the long-term model. In this case, the

individuals in the V , M , and R classes are all considered immune and grouped in the

same compartment, denoted by R for each patch. Disease transmission and migration

between patches for the short-term model are shown in Figure 4.3.
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Fig. 4.3. A disease transmission diagram for the short-term model
(top) and a depiction of the movement between the three patches
(bottom). The dashed arrows in the top diagram represent migra-
tion. The parameter mij represents the daily per capita migration
probability from patch i to patch j.

The stochasticity is considered following the approach in [69]. The short-term

model is given by:

Si(n+ 1) =
3∑

j=1

mji(n)Sj(n)e−λj(n)(1− ηji(n))

Ei(n+ 1) =
3∑

j=1

mji(n)Sj(n)
[
1− e−λj(n)

]
+

3∑

j=1

(1− γ)mji(n)Ej(n)

Ii(n+ 1) =
3∑

j=1

γmji(n)Ej(n) + (1− ρ)Ii(n)

Ri(n+ 1) = ρIi(n) +
3∑

j=1

mji(n)Rj(n)

V s
i (n+ 1) =

3∑

j=1

mji(n)Sj(n)e−λj(n)ηji(n) +
3∑

j=1

mji(n)V s
j (n), i = 1, 2, 3,

(4.5)
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where V s
i denotes the individuals in patch i who are vaccinated due to the routine

vaccination program as well as supplemental efforts; mij(n) is the time-dependent

exiting probability from patch i to patch j at time step n (see the migration diagram

in Figure 4.3); ηij represents the combined routine and supplementary vaccination; γ

and ρ have the same meanings as in the long-term model (4.1). The force of infection,

λi is given by

λi(n) = βai

3∑

j=1

cij
Ij(n)

Nj(n)
, i = 1, 2, 3. (4.6)

Here, the cij represent casual mixing between patches i and j, which we consider to

be preferential and are given by

cij = εiδij + (1− εi)fj, fj =
(1− εj)ajNj∑
k(1− εk)akNk

, (4.7)

where ai denotes the number of contacts per day in patch i, and Ni(n) = Si(n) +

Ei(n) + Ii(n) +Ri(n) + V s
i (n) is the total population in patch i at time n. Note that

the Mi and Vi classes of the long-term model are included in the Ri class in the short-

term model. The parameter εi denotes the proportion of contacts of patch i reserved

for the same patch. The rest 1−εi of contacts are distributed proportionately among

all patches including i. The parameter ai denotes the per-capita number of contacts

in population i, and the balance equation aiNicij = ajNjcji must be satisfied. That

is, the total number of contacts from individuals in patch i with individuals in patch

j must equal to the total contacts of individuals in patch j with those in patch i.

We remark that, although Ni(n) may change with time n when migration rates

are not zero, the balance equation will always hold as long as cij are defined as in

(4.7). We also remark that, although vaccinations are also given to individuals in the

Ei class (assuming that no testing will be done before vaccinating), these individuals

will remain in the Ei class assuming vaccination for them is in effective, which is why

this process need not to be explicitly modeled. However, the wasted vaccines are

included in determining the actual doses consumption.

To evaluate the effect of various short-term vaccination programs, particularly

those involving migrants, it is important to obtain reasonable parameter values for
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the migration probabilities mij. Although these parameters are chosen to be time-

invariant constants in many patch models, it is not appropriate here as the migration

considered in this chapter is driven by seasonally-available job opportunities, and

migrants will return to their home patch within one year. To capture this seasonally

varying pattern, we consider piecewise-constant mij values as described below.

For demonstration purposes, consider the case in which a proportion of rural

individuals will move to urban and peri-urban for jobs during a fixed period of time

in a year and return to their rural homes afterwards; there is no migration between

patches during the rest of the year. Let M = (mij) denote the 3 × 3 migration

matrices. Denote by Mru, Mur, and M0 the matrices for the migration from rural

to urban/peri-urban, the migration from urban/peri-urban back to rural, and no

migration, respectively, during the corresponding periods of a year.

To parameterize the migration matrix Mru, we assume that the migration season

lasts for d days, and that a fraction l3 of the rural population move to the urban/peri-

urban patches, of which a fraction q1 go to the urban patch and fraction q2 go to the

peri-urban patch. Then 1− l3 = md
33 or

m33 = (1− l3)
1
d . (4.8)

Note that m31 +m32 +m33 = 1 and that

q1 =
m31

m31 +m32

, q2 =
m32

m31 +m32

.

It follows that

m31 = q1(1−m33), m32 = q2(1−m33). (4.9)

Thus, the matrix Mru is given by

Mru =




1 0 0

0 1 0

q1[1− (1− l3)
1
d ] q2[1− (1− l3)

1
d ] (1− l3)

1
d


 . (4.10)

For the matrix Mur for migrants returning from urban/peri-urban to rural, let

ni = Ni/(N1 +N2 +N3) denote the ratio of sub-population Ni of patch i to the total
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population N . Let li (i = 1, 2) denote the ratios of rural migrants in patch i to the

total population in patches i (i = 1, 2 for urban and peri-urban, respectively). Then

li =
n3l3qi

ni + n3l3qi
= 1−md

ii, i = 1, 2, (4.11)

and thus,

m11 = (1− l1)
1
d , m22 = (1− l2)

1
d .

Noticing that m21 = m31 = m12 = m32 = 0, m33 = 1, and
∑3

j=1mij = 1 (i = 1, 2, 3),

we have

Mur =




(1− l1)
1
d 0 1− (1− l1)

1
d

0 (1− l2)
1
d 1− (1− l2)

1
d

0 0 1


 , (4.12)

where l1 and l2 are determined in (4.11). The no-migration matrix M0 is simply the

identity matrix I3.

4.2.3 Stochastic simulations of the short-term model

For simulations of the short-term model, we use the migration matrices given in

(4.10) and (4.12) with (n1, n2, n3) = (0.125, 0.2, 0.675), l3 = 0.25, q1 = 0.3, q2 = 0.7,

and d = 90 days. This means 25% of the rural population migrate, to rural and peri-

urban patches with 30% and 70% proportions, respectively. The values of l2 and l3

can be determined by (4.11). For the mixing matrix, the preferential parameters (εi)

are chosen to be (0.95, 0.9, 0.95), which assumes that the peri-urban residents have a

higher probability of having contacts with people from the other two patches. The

per capita contact rates or activity levels for the three sub-populations are chosen to

be (8, 5, 2) based on the assumption that the activity level for disease transmission

is correlated with population density. The probability of infection per contact is

assumed to be β = 0.23. The initial values for the short-term model are based on the

immunity level of each patch estimated from long-term models, which are assumed

to be 90%, 87%, 83% of the total population equal to 1 million in the simulations.
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One focus of the short-term vaccination policy is to vaccinate migrants from

patches where density is lower (e.g., rural patch) who are entering patches with higher

density (urban or peri-urban). We assume that it is possible to vaccinate these immi-

grants (e.g., at bus stations) if needed. This policy (i.e., vaccinate migrants only) is

compared to other policies including vaccinating (besides routine local vaccination)

additional local populations. To identify a better vaccination strategy, we examine

several measures including final epidemic and peak sizes of potential outbreaks. Be-

cause of the costs associated with vaccination programs, identification of the best

policy will consider the total number of doses required to achieve a prescribed goal

under the specific measures mentioned above.

We conducted simulations in both the deterministic and stochastic settings. Fig-

ure 4.4 shows the deterministic (left) and stochastic (right) outcomes of the short-term

model in the absence of supplemental vaccinations. We examine how the outbreak

can be affected by various vaccination policies. We compare outbreak (final and peak)

sizes over a fixed period of time, one year in this case.

For ease of reference, we use the term “final size” to denote the number of infections

over the fixed period in each patch, and use the term “total final size” to denote the

final size over all three patches. Similarly, the total peak size denotes the peak size

over the three patches. The measures used for comparison include the total final

size, total peak size, and total number of vaccine doses used. For the deterministic

outcome shown in Figure 4.4 (left) the total final size is 12044, which is about 12%

of the total population, the total peak size is 540, and the total number of vaccine

doses is zero (as this is the case of no supplemental vaccinations).

For stochastic simulations of the short-term model, events (e.g., migration, being

vaccinated, etc.) occur based on their corresponding probabilities. In these simu-

lations, for each fixed set of parameter values, the trajectories can be dramatically

different, as illustrated in Figure 4.4 for identical parameter values. This figure illus-

trates various levels of outbreaks in the three patches. It demonstrates the result of

20 realizations for the case of no supplementary vaccination. Each of the trajectories
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shows the total number of infectious individuals in all three patches at time t. We

observe that these epidemic curves exhibit various final epidemic as well as peak sizes.

The mean of the total final sizes is 1.2%, and the mean of the total peak sizes is 564.

The final and peak sizes of each of the 20 realizations are plotted in Figure 4.5. as

well as the mean values for the total final size and peak size among the 20 realizations

(the dashed lines). Plots A and B illustrate the final size and peak size, respectively,

and plot C shows the peak sizes in each patch. The dot-dashed, dotted and dashed

lines mark the mean values of the peak sizes for urban, peri-urban and rural patches,

respectively. In the peak sizes in each patch shown in plot C, we observe large

variations, particularly in the urban patch, which vary between 150 and 515 with a

mean value of about 400 (marked by the dot-dashed line). The mean peak sizes in

the peri-urban and rural patches are 150 and 50, respectively.
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For ease of reference, we use the term “final size” to denote the number of infec-
tions over the entire period (one year in this case) in each patch, and use the term
“total final size” to denote the final size over all three patches. Similarly, the total
peak size denotes the peak size over the three patches. The measures used for com-
parison include the total final size, total peak size, and the total number of vaccine
doses used. For the deterministic outcome shown in Fig 1.4 (left) the total final size
is 12044, which is about 12% of the total population, the total peak size is 540, and
the total number of vaccine doses is zero (as this is the case of no supplemental
vaccinations).

For stochastic simulations of the short-term model, events (e.g., migration, being
vaccinated, etc.) occur based on their corresponding probabilities. In these simu-
lations, for each fixed set of parameter values, the trajectories can be dramatically
different, as illustrated in Fig.1.4 for identical parameter values. The figure illus-
trates various levels of outbreaks in the three patches It demonstrates the result of
20 realizations for the case of no supplementary vaccinations. Each of the trajec-
tories shows the total number of infectious individuals in all three patches at time
t. We observe that these epidemic curves exhibit various outbreak as well as peak
sizes. The mean of the total final sizes is 1.2%, and the mean of the total peak size
is 540.

The final and peak sizes of each of the 20 realizations are plotted in Fig. 1.5.
as well as the mean values for the total final size and peak size among the 20 re-
alizations (the dashed lines). Plots A and B illustrate the final size and peak size,
respectively, and plot C shows the peak sizes in each patch. The dot-dashed, dotted
and dashed lines mark the mean values of the peak sizes for urban, peri-urban and
rural patches, respectively. From the peak sizes in each patch shown in plot C, we
observe large variations, particularly in the urban patch, which vary between 150
and 515 with a mean value of about 400 (marked by the dot-dashed line). The mean
peak sizes in the peri-urban and rural patches are 150 and 50, respectively.
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Fig. 1.4 Deterministic (left) and stochastic (right) simulations of the short-term model (1.5) over
the period of one year in the absence of supplementary vaccinations. The left figure shows the
epidemic curves in the urban (dot-dashed), peri-urban (dotted), and rural patches (dashed), as well
as the total number of infectious individuals in all three patches (solid). The right figure shows the
epidemic curves from 20 stochastic realizations, each of which shows the total number of infectious
individuals in the three patches. The dashed line indicates the mean of the total peak size.

Fig. 4.4. Deterministic (left) and stochastic (right) simulations of the
short-term model (4.5) over one year in the absence of supplemen-
tary vaccinations. The left figure shows the epidemic curves in the
urban (dot-dashed), peri-urban (dotted), and rural patches (dashed),
as well as the total number of infectious individuals in all three patches
(solid). The right figure shows the epidemic curves from 20 stochastic
realizations, each of which shows the total number of infectious indi-
viduals in all three patches. The dashed line indicates the mean of
the total peak sizes (564).
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4.3 Impact of vaccination policies on short-term outbreaks

We can compare different ways of distributing supplemental vaccines to identify

the best vaccination strategy. For local populations, we incorporate supplementary

vaccination in the short-term model via initial conditions by moving the corresponding

fraction of susceptible individuals (Si) in patch i to the vaccinated class V s
i . For

migrants, supplementary vaccination is reflected in the daily vaccination probability

ηji of individuals migrating from patch j to patch i (j 6= i). Because we are focusing

on migrations from rural to urban and peri-urban patches, we have ηji = 0 for all i, j

except η31 and η32.

For ease of reference, let

hloc = (hloc1, hloc2, hloc3), hmig = (hmig1, hmig2),
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1.3 Impact of vaccination policies on short-term outbreaks

We can compare different ways of distributing supplemental vaccines to identify the
best vaccination strategy. For supplementary vaccinations of local populations, we
incorporate them in the short-term model as initial conditions by moving the corre-
sponding fraction of susceptible individuals (Si) in patch i to the vaccinated class V c

i .
For migrants, supplementary vaccination is reflected in the daily vaccination prob-
ability η ji of individuals migrating from patch j to patch i ( j 6= i). Because we are
focusing on migrations from rural to urban and peri-urban patches, we have η ji = 0
for all i, j except η31 and η32.

For ease of reference, let

hloc = (hloc1,hloc2,hloc3), hmig = (hmig1,hmig2),

where hloc1, hloc2 and hloc3 denote the probabilities of local individuals in urban,
peri-urban and rural, respectively, receiving supplementary vaccinations, and hmig1
and hmig2 denote the vaccination probabilities for migrants. We consider three types
of supplementary vaccination:

Policy I. Vaccinate local populations only, i.e., hloc > 0 and hmig = 0;
Policy II. Vaccinate migrants only, i.e., hloc = 0, and hmig > 0;
Policy III. Vaccinate both local people and migrants, i.e., hloc > 0, hmig > 0.
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Fig. 1.5 Total final size (A) and total peak size (B) from the 20 realizations of stochastic simula-
tions shown in Fig. 1.4. Peak sizes in the three patches are shown in C. The dashed lines mark the
mean values over the 20 realizations.Fig. 4.5. Total final size (A) and peak size (B) from the 20 realizations

of stochastic simulations shown in Figure 4.4. Peak sizes in the three
patches are shown in C. The dashed lines mark the mean values over
the 20 realizations.
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where hloc1, hloc2 and hloc3 denote the probabilities of local individuals in urban,

peri-urban and rural, respectively, receiving supplementary vaccinations, and hmig1

and hmig2 denote the vaccination probabilities for migrants. We consider three types

of supplementary vaccination:

Policy I. Vaccinate local populations only, i.e., hloc > 0 and hmig = 0;

Policy II. Vaccinate migrants only, i.e., hloc = 0, and hmig > 0;

Policy III. Vaccinate both local people and migrants, i.e., hloc > 0, hmig > 0.

Introduce the following vector notation

u = (1, 1, 1), v = (a1, a2, a3), w = (1, 1), z = (a1, a2), (4.13)

where ai > 0 are the activity levels in population i. For ease of reference, we define

several terms based on the properties of hloc and hmig (ki > 0 are constants):

(i) Homogeneous policy I (or Hom I) is a program with hloc = k1u, hmig = 0.

(ii) Heterogeneous policy I (or Het I) is a program with hloc = k2v, hmig = 0.

(iii) Homogeneous policy II (or Hom II) is a program with hmig = k3w, hloc = 0.

(iv) Heterogeneous policy II (or Het II) is a program with hmig = k4z, hloc = 0.

(v) Heterogeneous policy III (or Het III) is a program with hloc > 0, hmig > 0,

and they are not multiples of u or w.

We will compare both homogeneous and heterogeneous coverages. In addition to

the cases mentioned above, we may also consider other heterogeneous programs for

which hmig is a non-zero multiple of neither w nor z.

Figure 4.6 compares the outcomes of four vaccination programs under policies I

and II. The activity levels are the same as in Figures 4.4 and 4.5 (i.e., a1 = 8, a2 =

5, a3 = 2). In this case, v = (8, 5, 2) and z = (8, 5). Rows 1 and 2 are for policy I
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with homogeneous coverage hloc = 0.01u (A1 and B1) and heterogeneous coverage

hloc = 0.0332v (A2 and B2), and rows 3 and 4 are for policy II with homogeneous

coverage hmig = 0.547w (A3 and B3) and heterogeneous coverage hmig = 0.092z

(A4 and B4). For ease of comparison, the results are also summarized in Table

4.2 (see (a)–(d)). The h values are chosen such that all four programs described in

rows (a)-(d) use a similar total number of vaccine doses: 15227, 15244, 15131 and

15091, respectively. However, the outcomes of these four programs are very different.

The mean total final sizes are 0.47% , 0.14%, 0.14% and 0.07% of the population,

respectively, and the mean total peak sizes are 190, 57, 55 and 36, respectively. This

suggests that heterogeneous policy II is most effective among the four programs in

terms of reducing total final and peak sizes, while using fewer vaccine doses.

Table 4.2.
Comparison of policies I and II under homogeneous and heterogeneous
coverages. Hom: Homogeneous policy. Het: Heterogeneous policy.
Vectors u,v,w, z are defined in (4.13).

Policy Values Mean Mean Mean Figure

type final

size

peak

size

total

doses

None hloc = hmig = 0 1.21% 564 0 Figure 4.5

(a) Hom I hloc = 0.1u 0.47% 190 15227 Figure 4.6 (A1, B1)

(b) Het I hloc = 0.0332v 0.14% 57 15244 Figure 4.6 (A2, B2)

(c) Hom II hmig = 0.547w 0.14% 55 15131 Figure 4.6 (A3, B3)

(d) Het II hmig = 0.092z 0.07% 36 15091 Figure 4.6 (A4, B4)

(e) Het I hloc = 0.01v 0.74% 324 4591 Figure 4.8 (A1, B1)

(f) Hom II hmig = 0.16w 0.75% 316 4180 Figure 4.8 (A2, B2)

Although the mean values presented in Figure 4.6 provide useful information,

further insights can be obtained by examining the distribution of possible events
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shown in the stochastic results. Particularly important to policy decisions is the

likelihood that the final size of an outbreak may exceed some prescribed level of

severity under various vaccination programs. Figure 4.7 compares the four programs

shown in Figure 4.6 in terms of the frequencies of the 100 realizations (which is

analogous to likelihood in a single outbreak) under each policy that corresponds to

the final sizes being below some hypothetical prescribed thresholds. We observe that

the homogeneous policy I with hloc = 0.1u is less likely to reduce the final size

to be below 0.2% of the total population, while the heterogeneous policy II with
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Although the mean values presented in Fig. 1.6 provide useful information, fur-
ther insights can be obtained by examining the distribution of possible events shown
in the stochastic results. Particularly important to policy decisions is the likelihood
that the final size of an outbreak may exceed some prescribed level of severity under
various vaccination programs. Fig. 1.7 compares the four programs shown in Fig.
1.6 in terms of the frequencies of the 100 realizations (which is analogous to likeli-
hood in a single outbreak) under each policy that corresponds to the final sizes being
below some hypothetical prescribed thresholds. We observe that the homogeneous
policy I with hloc = 0.1u is less likely to reduce the final size to be below 0.2% of
the total population, while the heterogeneous policy II with hmig = 0.092z is most
likely (with a 80% chance) to contain the final size to be below 0.1%. The mid-
dle two programs (heterogeneous policy I with hloc = 0.0332v and homogeneous
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Fig. 1.6 Results of 100 stochastic realizations of the short-term model under homogeneous or
heterogeneous policies I and II. See text for detailed descriptions.Fig. 4.6. Results of 100 stochastic realizations of the short-term model

under homogeneous or heterogeneous policies I and II. See text for
detailed descriptions.
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hmig = 0.092z is most likely (with a 80% chance) to contain the final size to be

below 0.1%. The middle two programs (heterogeneous policy I with hloc = 0.0332v

and homogeneous policy II with hmig = 0.092z) have very similar likelihood for all

threshold levels. Similarly, the heterogeneous policy II has a much higher likelihood

than other three policies to contain the urban peak size to be below 25 or 50.

From Figure 4.6, we also observe that, under the similar number of total vaccine

doses, the heterogeneous policy II (A2 and B2) and homogeneous policy I (A3 and B3)

14 Zhilan Feng and Yiqiang Zheng and Nancy Hernandez-Ceron and Henry Zhao

policy II with hmig = 0.092z) have very similar likelihood for all threshold levels.
Similarly, the heterogeneous policy II has a much higher likelihood than other three
policies to contain the urban peak size to be below 25 or 50.

From Fig. 1.6, we also observe that, under the similar number of total vaccine
doses, the heterogeneous policy II (A2 and B2) and homogeneous policy I (A3 and
B3) have similar effects in reducing the final and peak sizes. Many of our simula-
tions under other parameter values illustrate similar features. One such example is
demonstrated in Fig. 1.8. The vaccination programs are represented by hloc = 0.01v
(Figs. 1.8 (A1 and B1)) and hmig = 0.15w (A2 and B2). The average total numbers
of vaccine doses over 20 realizations in these two cases are similar with 4591 in
A1 and B1, and 4180 in A2 and B2. We observe that the mean final and peak sizes

Fig. 1.7 Likelihood that the final size of an epidemic may exceed some prescribed level of severity
(top) or the likelihood that the peak size in urban is below certain thresholds (bottom) under the
four vaccination programs presented in Fig. 1.6 based on 100 stochastic realizations. The four
policies correspond to the vaccination programs shown in A1–A4 in Fig. 1.6 or cases (a)–(d) in
Table 1.2.

Fig. 4.7. Likelihood that the final size of an epidemic may exceed
some prescribed level of severity (top) or the likelihood that the peak
size in urban is below certain thresholds (bottom) under the four
vaccination programs presented in Figure 4.6 based on 100 stochastic
realizations. The four policies correspond to the vaccination programs
shown in A1–A4 in Figure 4.6 or cases (a)–(d) in Table 4.2.
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have similar effects in reducing the final and peak sizes. Many of our simulations under

other parameter values illustrate similar features. One such example is demonstrated

in Figure 4.8. The vaccination programs are represented by hloc = 0.01v (Figures

4.8 (A1 and B1)) and hmig = 0.15w (A2 and B2). The average total numbers of

vaccine doses over 20 realizations in these two cases are similar with 4591 in A1

and B1, and 4180 in A2 and B2. We observe that the mean final and peak sizes

under these two programs are also similar: the mean total final sizes are 0.74% and

0.75%, and the mean total peak sizes are 324 and 325. These comparison results are

also listed in Table 4.2. From these and many other simulations, we observe that

homogeneous policy I is least effective and heterogeneous policy II is most effective in

terms of reducing the total final and peak sizes with a similar number of vaccine doses.

However, it needs to be pointed out that the conclusion that heterogeneous policy II

is more effective depends critically on the relative activity levels ai (i = 1, 2, 3).

We can also compare policies to identify the best strategy in the sense of using the

fewest vaccine doses under a prescribed upper bound for the total final size. One such
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under these two programs are also similar: the mean total final sizes are 0.74% and
0.75%, and the mean total peak sizes are 324 and 325. These comparison results
are also listed in Table 1.2. From these and many other simulations, we observe
that homogeneous policy I is the least effective one and heterogeneous policy II is
the most effective strategy in terms of reducing the total final and peak sizes with
a similar number of vaccine doses. However, it needs to be pointed out that the
conclusion that heterogeneous policy II is more effective depends critically on the
relative activity levels ai (i = 1,2,3).

We can also compare policies to identify the best strategy in the sense of using
the fewest vaccine doses under a prescribed upper bound for the total final size.
One such example is presented in Table 1.3. All parameter values are the same as
in Table 1.2 except for the hi values. The results presented in Table 1.3, however,
are computed from the deterministic model. In rows (a)-(c), the three vaccination
programs lead to the same total final size (0.43%), but the number of vaccine doses
required differ with program (c) being the most effective policy (6896 doses versus
9183 in (a) and 8905 in (b)). Similarly, the vaccination policies represented in (d)-(f)
lead to the same final size (0.19%) but the option (f) of heterogeneous policy II uses
the least vaccine doses (10673 versus 13774 in (d) and 13915 in (e)).

To explore the effects of policy III, in which supplementary vaccination is given
to both local populations and migrants, many factors can influence the allocation
of supplementary vaccines among sub-groups, including the costs associated with
vaccine distribution and administration. Here, we present in Fig. 1.9 several sce-
narios based on two main objectives. One objective is to identify the policy that
uses the least vaccine doses to contain the final size at the same (or similar) level,
and the other objective is to identify a policy that reduces the final size the most
with the same (or similar) vaccine doses. We compared various vaccination policies
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Fig. 1.8 Similar to Fig. 1.6 except the values of hi. A1 and B1 are for the heterogeneous policy
I with hloc = 0.01v, and A2 and B2 are for the homogeneous policy II with hmig = 0.15w. The
two cases used similar numbers of average total vaccine doses with 4591 (top) and 4180 (bottom).
Fig. 4.8. Similar to Figure 4.6 except the values of hi. A1 and B1 are
for the heterogeneous policy I with hloc = 0.01v, and A2 and B2 are
for the homogeneous policy II with hmig = 0.15w. Similar numbers
of vaccine doses, 4591 (top) and 4180 (bottom), were used.
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example is presented in Table 4.3. All parameter values are the same as in Table 4.2

except for the hi values. The results presented in Table 4.3, however, are computed

from the deterministic model. In rows (a)-(c), the three vaccination programs lead to

the same total final size (0.43%), but the number of vaccine doses required differ with

program (c) being the most effective policy (6896 doses versus 9183 in (a) and 8905

in (b)). Similarly, the vaccination policies represented in (d)-(f) lead to the same final

size (0.19%) but the option (f) of heterogeneous policy II uses the least vaccine doses

(10673 versus 13774 in (d) and 13915 in (e)).

Table 4.3.
Comparison of policy I and policy II (equal final size with fewer vac-
cine doses). Hom: Homogeneous policy. Het: Heterogeneous policy.
Vectors v,w, z are defined in (4.13).

Policy type Values Mean final

size

Mean peak

size

Mean total

doses

(a) Het I hloc = 0.02v 0.43% 147 9183

(b) Hom II hmig = 0.32w 0.43% 144 8905

(c) Het II hmig = 0.042z 0.43% 142 6896

(d) Het I hloc = 0.03v 0.19% 55 13774

(e) Hom II hmig = 0.5w 0.19% 54 13915

(f) Het II hmig = 0.065z 0.19% 54 10673

To explore the effects of policy III, in which supplementary vaccination is given

to both local populations and migrants, many factors can influence the allocation of

supplementary vaccines among sub-groups, including the costs associated with vac-

cine distribution and administration. We present in Figure 4.9 several scenarios based

on two main objectives. One is to identify the policy that uses the least vaccine doses

to contain the final size at the same (or similar) level, and another is to identify a

policy that reduces the final size the most with the same (or similar) vaccine doses.
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We compared various vaccination policies for local and migrant populations, includ-

ing both homogeneous and heterogeneous coverages. Figure 4.9 (A1) is a baseline

scenario, which corresponds to the combination of homogeneous local coverage with

hloc = 0.02u and homogeneous migrant coverage with hmig = 0.028z. It shows 20

realizations of the stochastic simulations. The top panel is for the case when local

vaccinations are homogeneous with hloc = 0.02u, and the bottom B panel is for the

case of heterogeneous local coverage with hloc = 0.07v. The six cases are for differ-

ent coverages in migrants: homogeneous with hmig = 0.2w (A1); heterogeneous with

hmig = 0.28z (A2); heterogeneous with hmig = (0.54, 0.054) (A3); homogeneous with

hmig = 0.192w (B1); heterogeneous with hmig = 0.2z (B2); and heterogeneous with

hmig = (0.52, 0.052) (B3). In each plot, the mean total final size and the mean total

number of vaccine doses are listed. We observe again that, with the same or similar

vaccine doses (e.g., see A1, A3, B1 and B3)), heterogeneous coverage (A3 and B3)

will likely lead to a lower final size than homogeneous coverage (A1). The greater

effectiveness can be represented either by a lower final size with similar vaccine doses

(A1 versus A3, or B1 versus B3) or by a lower number of vaccine doses when final

sizes are similar (A1 versus A2, or B1 versus B2).

We need to point out that the assessments presented above are based only on

the final and peak epidemic sizes or the number of vaccine doses needed to achieve a

prescribed epidemic size. When other factors are considered, such as economic costs

related to vaccinating local populations versus migrants, the conclusions might differ.

In addition, parameter values may affect the relative effectiveness of these programs,

including population density, migration patterns, infectious period, and others.

4.4 Discussion

The objective of this chapter is to evaluate vaccination policies for a vaccine-

preventable disease using a meta-population model that explicitly incorporates mi-

gration between patches. This is an extension of the model considered in [66], in
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which migrations are modeled implicitly. In the short-term model (4.5), seasonal

spatial movements from one patch to another are included to capture the migration

from rural to urban or peri-urban for employment opportunities and return home

afterwards. The main findings of the study suggest that (because of the significant

difference in population density, which directly influences the contact rate, affecting

the rate of disease transmission), vaccinating migrants can be a very important means

of preventing outbreaks. Particularly, heterogeneous coverages among migrants are

likely the most effective vaccination strategies.

The model outcomes are generated by both deterministic and stochastic simula-

tions. Various vaccination programs are compared in terms of three measures: number

of vaccine doses used, final epidemic size, and peak epidemic size (either within in-

dividual patches or over all three patches). Deterministic simulations help identify

suitable vaccination scenarios for comparison, and stochastic simulations with multi-

ple realizations provide a range of possibilities in terms of epidemic sizes, for which
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tial movements from one patch to another are included to capture the migration from
rural to urban or peri-urban for employment opportunities and return home after-
wards. The main findings of the model study suggest that, because of the significant
difference in population density, which directly influences the contact rate, affect-
ing the rate of disease transmission, vaccinating migrants can be a very important
means of preventing outbreaks. Particularly, heterogeneous coverages in migrants
are likely the most effective vaccination strategies.

The model outcomes are generated by both deterministic and stochastic sim-
ulations. Various vaccination programs are compared in terms of three measures:
number of vaccine doses used, final epidemic size, and peak epidemic size (either
within individual patches or over all three patches). The deterministic simulations
help identify suitable vaccination scenarios for comparison, and the stochastic sim-
ulations with multiple realizations provide a range of possibilities in terms of epi-
demic sizes, for which the mean value of each measure also provides useful insights
into possible outcomes of various vaccination policies.

Our comparisons focused on identifying the best vaccination strategy based on
two objectives: Objective 1 is to apply fewer vaccine doses while bringing the epi-
demic size below a prescribed level, and Objective 2 is to reduce the outbreak size
the most with a given number of vaccine doses. Three types of vaccination poli-
cies are considered in terms of the allocation of supplementary vaccines: policy
I involves vaccinating only local populations; policy II involves vaccinating only
migrants; and policy III involves combined vaccinations of both local and migrant
populations. In all comparisons, we considered homogeneous and heterogeneous
vaccination coverages in either local populations or migrants or both. One of the
main results is that, in the case when the heterogeneity in population density is sig-
nificant, the best vaccination strategy likely involves heterogeneous coverages in
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Fig. 1.9 Comparison of six scenarios under policy III. It shows the epidemic curves from 20
stochastic realizations in each scenario. The top panel is for the case when the local vaccinations
are homogeneous with hloc = 0.02u, whereas the bottom panel is for the heterogeneous local cov-
erage with hloc = 0.07v. The six cases are for different coverages in migrants. See the text for
detailed information.

Fig. 4.9. Comparison of six scenarios under policy III. It shows the
epidemic curves from 20 stochastic realizations in each scenario. The
top panel is for the case when the local vaccinations are homogeneous
with hloc = 0.02u, whereas the bottom panel is for the heterogeneous
local coverage with hloc = 0.07v. The six cases are for different
coverages in migrants. See the text for detailed information.
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the mean value of each measure also provides useful insights into possible outcomes

of various vaccination policies.

Our comparisons focused on identifying the best vaccination strategy based on two

objectives: Objective 1 is to apply fewer vaccine doses while bringing the epidemic size

below a prescribed level, and Objective 2 is to reduce the outbreak size the most with

a given number of vaccine doses. Three types of vaccination policies are considered in

terms of the allocation of supplementary vaccines: policy I involves vaccinating only

local populations; policy II involves vaccinating only migrants; and policy III involves

combined vaccinations of both local and migrant populations. In all comparisons,

we considered homogeneous and heterogeneous vaccination coverages in either local

populations or migrants or both. One of the main results is that, in the case when the

heterogeneity in population density is significant, the best vaccination strategy likely

involves heterogeneous coverages among migrants. For example, Figure 4.6(A1–A4)

and the cases (a-d) in Table 4.2 present four policies that use similar vaccine doses.

The homogeneous policy I (A1 and (a)) corresponds to a much higher final size than

the other three policies, while the heterogeneous policy II (A4 and (d)) leads to

the lowest final size. The results presented in Table 4.3 show two cases in which

heterogeneous policy II is more effective then heterogeneous policy I in terms of using

fewer doses while leading to similar final sizes.

In most cases, heterogeneous coverages are taken to be proportional to the activity

levels v = (a1, a2, a3), which are related to the population densities in urban, peri-

urban and rural patches (i.e., hloc = kv or hmig = k′z for some positive constants k

and k′). Results are shown for v = (a1, a2, a3) = (8, 5, 2). For the set of parameter

values used, simulation results show that the selection of vaccination policies should

be guided by the objectives of outbreak prevention, and that for the evaluation of

certain types of policy goals, stochastic models can provide more useful insights than

deterministic ones. For example, based on 100 realizations from stochastic simulations

of the short-term model (4.5) presented in Figure 4.6 or the corresponding scenarios

listed in (a)–(d) in Table 4.2, it is shown in Figure 4.7 that the heterogeneous policy I
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is more likely than the homogeneous policy II to contain the outbreak within a small

size (e.g., final size below 0.05% or 0.1%, or urban peak size below 20 or 50), but

that homogeneous policy II is more likely than the heterogeneous policy I to contain

the outbreak within a medium to larger size (e.g., final size below 0.15% or 0.2%, or

urban peak size below 75 or 100). This illustrates that, while the deterministic model

implies that these two vaccination policies are essentially identical, the stochastic

model reveals meaningful differences.

It is important to emphasize that the conclusion that heterogeneous coverages

among migrants are more effective is critically dependent on heterogeneity in contact

and migration rates. If these heterogeneities are not very strong, vaccinating local

populations could be more effective than vaccinating migrants. Which vaccination

strategies are most effective may also depend on other characteristics of the population

such as immunity (see [71]).

4.5 Appendix

This section includes the derivation of the reproduction numbers Rvi for the long-

term model (4.1). Denote the disease-free equilibrium by U0
i = (M0

i , V
0
i , S

0
i , E

0
i , I

0
i , R

0
i ),

i = 1, 2, 3. Then U0 is obtained by solving the following equation with E0
i = I0i =

R0
i = 0:

Mi = θiµiNi + (1− µi)(1− σ)Mi

Vi = αν0i (1− µi)Si(n) + (1− µi)(1− χ)Vi

Si = (1− θi)µiNi + (1− µi)(1− αν0i )Si + σ(1− µi)Mi(n) + χ(1− µi)Vi,

given Ni are constants. It gives

M0
i

Ni

=
θiµi

1− (1− µi)(1− σ)
,

S0
i

Ni

=

[
(1− θi) + θi

σ(1−µi)
1−(1−µi)(1−σ)

]
µi

1− (1− µi)(1− αν0i )− χ(1− µi) αν0i (1−µi)
1−(1−µi)(1−χ)

,

V 0
i

Ni

=
αν0i (1− µi)

1− (1− µi)(1− χ)

[
(1− θi) + θi

σ(1−µi)
1−(1−µi)(1−σ)

]
µi

1− (1− µi)(1− αν0i )− χ(1− µi) αν0i (1−µi)
1−(1−µi)(1−χ)

.
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To compute the reproduction number, we follow the method outlined in [36]. The

Jacobian matrix at U0
i can be written in the form F + T , where

F =


 0 (1− µi)β0

i
S0
i

Ni

0 0


 , T =


 (1− µi)(1− γ) 0

(1− µi)γ (1− µi)(1− ρ)


 .

Then

(1− T )−1 =




1
1−(1−µi)(1−γ) 0

(1−µi)γ
(1−(1−µi)(1−γ))

1
(1−(1−µi)(1−ρ))

1
1−(1−µi)(1−ρ)


 ,

and

F (1− T )−1 =




(1−µi)γ
1−(1−µi)(1−γ)

(1−µi)β0
i (S

0
i /Ni)

1−(1−µi)(1−ρ)
(1−µi)β0

i (S
0
i /Ni)

1−(1−µi)(1−ρ)

0 0


 .

Therefore,

Rvi = %(F (1− T )−1) =
(1− µi)γ

1− (1− µi)(1− γ)

(1− µi)β0
i (S

0
i /Ni)

1− (1− µi)(1− ρ)
,

where (1−µi)γ
1−(1−µi)(1−γ) is the probability that an infected individual survives the latent

period, and
(1−µi)β0

i (S
0
i /Ni)

1−(1−µi)(1−ρ) is the expected number of new infections that an infectious

individual can generate during the entire infectious period in a population where the

fraction of susceptibles is S0
i /Ni.
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5. SUMMARY

This thesis consists of several models for Ebola virus disease and vaccine preventable

infectious diseases. These models are motivated, developed and studied to answer the

driving questions in epidemiology:

• What are the underlying assumptions of the Legrand model, which has been

widely used in modeling Ebola outbreaks?

• What difference does it make if the spectrum of Ebola symptoms are not con-

sidered?

• How do we design efficient vaccination plans to mitigate the vaccine preventible

disease epidemics if migration between patches differing in density is considered?

Through Chapter 2 to 4 in this thesis, these questions are addressed using differ-

ent mathematical tools including systems of ordinary differential equations, integro-

differential equations as well as deterministic and stochastic discrete models. The

results may be helpful for providing insights into consequences of the underlying as-

sumptions, disease transmission dynamics and evaluation of disease control strategies.

Chapter 2 studies the assumptions underlying the widely used Legrand model.

The Legrand model has been applied to major Ebola outbreaks in Africa by vari-

ous researchers, and many other Ebola models are based on it. The Legrand model

includes transmission in community, hospital and funeral based on a system of ordi-

nary differential equations. However, in its original formulation, several intermediate

parameters are introduced without direct epidemiological meanings, hindering the in-

terpretation and further applications. In this chapter, a much simpler but equivalent

formulation is provided that helps researchers to understand the parametrization of

this model. This complex formulation also disguises how mathematical processes are
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related to epidemiological ones for infectious individuals, including hospitalization,

recovery and death. It is difficult to determine the dependence or independence of

these processes. Three alternative models are developed with clear assumptions about

these processes, one of which simplifies to the Legrand model. The three models also

include more realistic Gamma distributed sojourns, whereas the Legrand model as-

sumes exponential sojourns. Comparison of these models shows that the underlying

assumptions are important in evaluating control strategies.

Chapter 3 also develops a mathematical model to crudely account for the wide

spectrum of Ebola symptoms. Even 13% of infected individuals do not experience

the most common symptom, fever, in the recent West Africa outbreak. This suggests

that asymptomatic (mild) and moderate symptoms of Ebola infection are possible

as observed in previous outbreaks. Model II in chapter 2 is extended to include

the Ebola infection with asymptomatic (mild) and moderate symptoms. The model

is calibrated to the Liberia outbreak and captures the observed dynamics. If we

disable the infection with asymptomatic (mild) and moderate symptoms, the model

overestimates the reproduction numbers and effectiveness of interventions. Sensitivity

analyses of the model are used to evaluate possible control strategies. It is shown that

modeling the spectrum of Ebola symptoms is important regarding policy-making.

Chapter 4 develops models to design and evaluate public health policies for vaccine-

preventable diseases. Unlike models assuming homogeneous mixing, the model in this

chapter explicitly includes a spatial structure of urban, peri-urban and rural patches.

A deterministic discrete model is used to determine the immunity levels of patches in

the long-term, finding that the rural patch has lower immunity than urban/peri-urban

patches. Thus, seasonal migration of rural residents between rural and urban/peri-

urban patches may change the immunity levels of patches dynamically. This increases

chances of outbreaks in urban patch as more susceptible people migrate to urban area

from rural area and therefore it decreases the immunity level of urban patch. A short-

term stochastic model captures migration as well as disease transmission. It is also

used to compare different short-term vaccination policies to mitigate the recurrent



119

outbreaks. The results help public health officials to ensure the best possible use of

available vaccines.
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