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ABSTRACT

Zheng, Faye H. Ph.D., Purdue University, August 2016. The Design and Statisti-
cal Analysis of Single-Cell RNA-Sequencing Experiments. Major Professor: R.W.
Doerge.

Next-generation DNA- and RNA-sequencing (RNA-seq) technologies have ex-

panded rapidly in both throughput and accuracy within the last decade. The mo-

mentum continues as emerging techniques become increasingly capable of profiling

molecular content at the level of individual cells. One goal of this research is to put

forward best practices in the design of single-cell RNA-sequencing (scRNA-seq) exper-

iments, specifically as it relates to choices regarding the trade-off between sequencing

depth and sample size. In addition to general guidelines, an interactive tool is pre-

sented to aid researchers in making experiment-specific decisions that are informed

by real data and practical constraints. Further, a new approach to the modeling and

testing of differential gene expression in scRNA-seq data is proposed, which notably

incorporates salient features (e.g. highly zero-inflated expression values) of single-cell

transcription that are otherwise obscured at the tissue level. As single-cell technolo-

gies offer an unprecedented window into cell-to-cell heterogeneity and its biological

consequences, it is essential that suitable approaches are adopted for both the design

and analysis of these experiments.
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1. INTRODUCTION

Next-generation DNA- and RNA-sequencing technologies have expanded rapidly in

both throughput and accuracy within the last decade. The momentum continues as

emerging techniques become increasingly capable of profiling molecular content at the

level of individual cells. Cell-to-cell heterogeneity and its biological consequences are

now the focus of many unprecedented studies capable of illuminating the dynamic

nature of single cells. Recent investigations have pushed the boundaries of under-

standing structural changes in cancer genomes, varying paths of cell differentiation,

and finer mechanisms of cell regulation. Like many emerging technologies, the sta-

tistical analysis of single-cell data currently remains in the exploratory stage, but

is poised to shift towards informative tests of specific hypotheses. Moving forward,

thoughtful decisions regarding experimental design are essential if these experiments

are to be maximally efficient, reproducible, and informative. One of the overarching

goals of this research is to put forward best practices in the design of single-cell RNA-

sequencing (scRNA-seq) experiments, specifically as it relates to choices regarding

the trade-off between sequencing depth and sample size.

Aside from experimental design, the statistical analysis of scRNA-seq data itself

invites a critical revisitation of standard RNA-seq methods. In particular, the model-

ing and testing of differential gene expression is currently addressed by implementing

a variety of standard and available methods which incorporate salient features of

tissue-level RNA-seq data. Because these current methods do not adequately extend

to RNA-seq data from single cells, another goal of this work is the development of

a novel approach for the detection of differential gene expression signatures between

subpopulations of single cells; this is essential, given the great interest in understand-

ing cell-to-cell heterogeneity.
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1.1 History of Sequencing Technologies

The aim of DNA sequencing technologies is to decipher the order of nucleotides

(i.e., the adenine, thymine, cytosine, and guanine units, collectively called bases) in a

DNA molecule, which constitutes the genetic code of an organism. Sanger sequencing

marked the inception of these technologies, and culminated in the completion of the

landmark Human Genome Project in 2001 [Lander et al., 2001]; this feat ushered in

the age of genomics. The second wave of sequencing methods, beginning in 2004 and

widely used today, brought with it substantial increases in speed and throughput.

The parallel, automated nature of the process, commonly dubbed “next-generation

sequencing” (NGS), produces millions of sequences concurrently, increasing through-

put by many orders of magnitude [Metzker, 2010]. In addition, these high-throughput

sequencing technologies have significantly decreased the cost of sequencing, which is

now less than ten cents per megabase [National Human Genome Research Institute,

2015].

1.2 Next-Generation Sequencing: From Tissues to Cells

NGS procedures have become more affordable, ubiquitous, even routine, and

yet the ceiling of optimization is being pushed still further. Capitalizing on well-

established NGS platforms, recent technological advances have enabled a dramatic

scaling down in the amount of genomic starting material required to produce se-

quence information. Indeed, it is now possible to sequence at the level of individual

cells. In the past, genomic data generated by NGS procedures typically came from

aggregating the entire population of thousands to millions of cells within a tissue

(Figure 1.1), even though it is increasingly understood that genetic heterogeneity is

the norm rather than the exception [Eberwine et al., 2014]. The bulk pooling of cell

populations averages out differences between the behaviors of individual cells, blends

together the patchwork composition of cells within certain tissues, and obscures the

dynamic nature of cellular function. Sequencing at the single cell level allows for
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the dissection of genetic heterogeneity with the intent of obtaining a much higher

resolution of information.

Figure 1.1. Bulk tissue sample (left) is used to obtain sequence informa-
tion on an aggregate of the entire population of thousands to millions of
cells within a tissue. A single-sampled cell (right) allows for genetic het-
erogeneity to be dissected by obtaining sequence information on each cell
within the population of cells.

The ability to ask questions of individual cells has motivated a flood of research in

pursuit of insights into both new and longstanding questions that previously could not

be answered from bulk tissue analysis [Shapiro et al., 2013]. Living tissues are often

comprised of a multitude of cell types with different lineages, stages of development,

and function within the tissue. Cell lineage is particularly important in the study of in-

tratumor heterogeneity; several single-cell sequencing studies have shown that tumor

development occurs through a series of somatic mutations that drive groups of cells

into distinct clonal subpopulations, each with its own mutational signatures and even

drug response [Navin et al., 2011, Alexandrov and Stratton, 2014, Yates and Camp-

bell, 2012]. Single-cell technologies have also made it possible to detect the presence

of cancer by way of rare circulating tumor cells in blood specimens [Ramsköld et al.,

2012, Cann et al., 2012]. Aside from cancer applications, the sensitivity of single-cell
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sequencing allows for the isolation and characterization of complex microbes in the

environment, offering a way to detect low-abundance and sometimes unculturable

species [Yilmaz and Singh, 2012, Blainey, 2013]. The prevalence of somatic mosaic

mutations in individual neurons of the human brain has recently been highlighted

[McConnell et al., 2013], setting the stage for studying the roles of this mosaicism

for neurodevelopmental diseases [Poduri et al., 2013]. Applications of NGS have even

reached the realm of reproductive health, where single-cell sequencing has demon-

strated its utility in diagnosing potential problems with in-vitro fertilized embryos

prior to implantation, and in offering a viable non-invasive alternative for prenatal

testing [Yan et al., 2013, Chandrasekharan et al., 2014]. Promising ventures have

also been made into single-cell epigenomics [Lorthongpanich et al., 2013], proteomics

[Willison and Klug, 2013], and metabolomics [Rubakhin et al., 2013], thus rounding

out the astounding range of possibilities for single-cell NGS technologies.

1.3 RNA-Sequencing

1.3.1 Basics of RNA

RNA-sequencing (or RNA-seq) is one application of NGS high-throughput tech-

nologies, and is the primary focus of this work. RNA-seq is used to measure gene

expression by sequencing and quantifying a sample’s mRNA content. To fully under-

stand the context of RNA-seq and what its measurements represent, it is instructive

to review how genetic information flows from DNA to biological function, as explained

by the classic Central Dogma of Biology (Figure 1.2) [Crick et al., 1970]. DNA, lo-

cated in the nucleus of every cell, consists of a sequence of nucleotides that comprise

the organism’s genetic code. Genes are specific sections of DNA that encode for a

particular protein or function. Through the process of transcription, the genetic in-

formation in DNA becomes copied into complementary strands of messenger RNA

(mRNA). These aptly named mRNA deliver the copied genetic information to the
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1.3.2 The Process of RNA-Seq

The RNA-seq process begins with the extraction of mRNA from the given biolog-

ical starting material. In original applications involving the analysis of bulk tissue,

whole tissues are simply obtained by sampling, dissecting, or biopsying the organism

of interest. For single-cell investigations, this primary tissue is first disassociated into

its constituent cells, which must be isolated intact; cells that pass screening proce-

dures for viability are finally submitted for further processing.

Single cell isolation does not yet have a single standard procedure and remains

an active area of development and refinement [Saliba et al., 2014]. At the most rudi-

mentary level, cells may be isolated by micromanipulation under a microscope using

a patch pipette or nanotube. Despite the obvious limitations of low throughput, high

risk of disruption, and the potential for experimental bias towards certain morpholo-

gies, manual handling is still employed for targeted applications, such as for rare cells

[Shapiro et al., 2013].

The single cell gene expression applications considered here rely on the far more

prevalent automated methods for isolating cells at high volume. For example, the

technique known as fluorescence-activated cell sorting (FACS), which involves flow-

sorting cells that are labeled with fluorescent antibodies [Shapiro, 2005], has achieved

popularity due to its wide availability on commercial platforms [Saliba et al., 2014].

Another rapidly expanding and highly efficient approach is the use of automated

microfluidic devices that compartmentalize cells into low-volume chambers and si-

multaneously screen them for viability. Current iterations of this technology offer

standard plates with 96-well capacity for the parallel isolation of cells. However, 800-

well plates are on the near horizon [Fluidigm, Inc., 2015], signaling the imminent need

for statistical and computational tools that can accommodate this rapidly expanding

scale of data.

Once the initial biological material has been obtained, whether from a tissue or

individual cell, the mRNA that is extracted must be reverse-transcribed into comple-
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mentary strands of cDNA. This step is required due to the fact that DNA molecules

are much more biologically stable and resistant to degradation; in fact, for this rea-

son all NGS technologies are solely designed for sequencing DNA, rather than RNA

directly. This cDNA acts as input to the remaining RNA-seq protocol.

While there are several NGS sequencing platforms available that are capable of

performing RNA-seq (e.g., SOLiD, Roche 454, Pacific Biosciences, Ion Torrent), by far

the most successful and widely adopted is the Illumina platform, whose “sequencing

by synthesis” (SBS) chemistry has produced approximately 90% of global sequencing

data, by the company’s own accounts [Illumina, Inc., 2015a]. The general workflow,

specific to the Illumina platform, can be broken into four basic steps: library prepa-

ration, cluster amplification, sequencing, and read alignment (Figure 1.3) [Illumina,

Inc., 2015b].

Following reverse-transcription of the extracted mRNA, the resulting cDNA un-

dergoes preparation for sequencing (Figure 1.3A). Specifically, the cDNA is randomly

fragmented into millions of pieces, and specialized adapters are ligated to the ends

of each piece. The resulting collection of fragments comprise the units which will

get sequenced, and hence is termed the ‘sequencing library’. The adapters on each

fragment help attach them onto the surface of the flow cell within the sequencing ma-

chine (Figure 1.3B). Each fragment is copied thousands of times through many cycles

of ‘bridge amplification’, creating distinct clusters containing identical copies of the

same fragment. Sequencing by synthesis, specific to the Illumina platform, proceeds

in the following manner (Figure 1.3C): fluorescently labeled nucleotides are washed

onto the surface of the flow cell; as each nucleotide binds to a complementary base

on a fragment cluster, its fluorescent signal is emitted and read as a digital image to

identify the base; this wash-and-scan cycle is repeated one-by-one for each consecu-

tive base, for all fragment clusters in parallel, to generate milions of sequenced reads

of about 125 to 300 bases each in length. From this point in the workflow, compu-

tational tools are used to map each read to its appropriate location on a reference
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genome, a process called sequence alignment. If no reference genome is available, the

reads can also be assembled de novo (Figure 1.3D).

Gene expression is finally quantified by counting the number of reads that map to

the genomic feature of interest, e.g., genes [Wang et al., 2009, Oshlack et al., 2010,

Mortazavi et al., 2008]. The data are typically represented as a matrix, in which

genes constitute row labels, samples constitute column labels, and values within the

matrix are read counts representing the expression of a particular gene in a particular

sample (Table 1.1). Samples can represent either bulk tissue samples or single-cell

samples; in either case, the matrix representation is the same.

Table 1.1
RNA-seq data are typically represented as a matrix of the following form.
The values yig represent the expression of gene g in sample i. The library

sizes, Li =
∑G

g=1 yig, are the total number of reads aligned to sample i
across all genes.

Sample 1 Sample 2 ... Sample N

Gene 1 y11 y21 ... yN1

Gene 2 y12 y22 ... yN2

... ... ... ... ...

Gene G y1G y2G ... yNG

L1 L2 ... LN

1.3.3 Bulk Tissue vs. Single Cell Protocols

The workflow described in Figure 1.3 is shared between the RNA-sequencing of

bulk tissues and that of individual cells. However, the single-cell procedure requires

one important extra step: additional amplification of the cDNA during library prepa-
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ration. Specifically, this amplification is applied to the fragments of genomic cDNA

prior to adapter ligation (Figure 1.3A), and is done repeatedly until the DNA concen-

tration matches the requirements of the sequencing technology. The amount of ampli-

fication required can often be around one million-fold, substantially more magnitudes

beyond what is necessary for bulk tissue sequencing. This is a direct consequence of

the scant amount of biological material that single cells provide.

Amplification comes with the unfortunate cost of biases that compromise quan-

titative accuracy, most often in the form of nonlinear distortions of transcript abun-

dance and preferential amplification of certain sequence patterns. Amplification bi-

ases have previously been noted with traditional bulk RNA-seq, and a number of

methods exist to correct the resulting data. The additional cDNA amplification of

single-cell quantities exacerbates this already-existing problem and has required this

issue to be revisted. Recently, Islam et al. [2014] developed an inventive technique in

which unique labels are attached to each single-cell cDNA molecule prior to amplifica-

tion. These labels, called unique molecular identifiers (UMIs), mark as distinct each

molecule originally present in the sample. Following amplification, one can quantify

gene expression by counting only the number of distinct UMIs aligned to each ge-

nomic feature, rather than counting all the amplified reads that are aligned. Since

this method effectively counts only the original, unamplified molecules, amplification

noise may be avoided altogether.

Amplification biases, combined with the delicate process of isolating single cells

and the technical difficulty of sequencing a miniscule pool of transcripts, contribute

substantially to the high levels of technical noise seen in scRNA-seq data. While not

addressed directly in this work, these challenges that set single-cell sequencing apart

are important considerations in other aspects of the design and statistical analysis of

single-cell experimental data.
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2. EXPERIMENTAL DESIGN OF SCRNA-SEQ EXPERIMENTS

Two leading questions are central to the design of a scRNA-seq experiment: the depth

at which to sequence each cell, and how many cells to sequence. These decisions are

affected by the biological question being considered, and by the tradeoffs imposed by

practical financial constraints.

2.1 Sequencing Depth and Replication

The currently accepted definition of sequencing coverage originated from Lander

and Waterman [1988]. This work first defined theoretical coverage as LN/G, where L

is the length of each sequencing read, N is the number of high-quality reads aligned

to the genome, and G is the total number of bases in the genome. In other words,

this is the expected number of times that a given base is covered by a read. It is often

reported as a technical specification of a sequencing experiment (e.g., samples were

sequenced at 1× or 30× coverage). The terms coverage, depth, and depth of coverage,

all referring to this definition, are used interchangeably in the literature. In practice,

particularly in RNA-seq, is often thought of as simply the total number of reads

that are mapped to the genome and then counted as gene expression measurements

(Figure 2.1). This will be the usage of the term subsequently adopted here.

The higher the sequencing depth, the more accurate the quantification of gene

expression. This stems from the imperfect nature of the sequencing technology, in

which reads are short and contain errors. At higher sequencing depths, alignment

tools are better able to distinguish a base that is sequenced in error to a base that

is a true variant from the reference genome. For example, a base that is covered by

twenty reads, of which the base call consistently varies from the reference genome

in a majority of those reads, is much more likely to be a true genetic variant than
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Figure 2.1. In the context of RNA-seq, sequencing depth most commonly
refers to the total number of reads that are mapped to the genome and
subsequently quantified as gene expression measurements.

a sequencing error. At lower depths, this distinction is harder to make [Sims et al.,

2014]. In addition, there exist genes with low expression levels that are hence repre-

sented by fewer mRNA transcripts in the biological pool. Higher sequencing depths

increase the likelihood that even these rare transcripts are sequenced. To illustrate,

in Figure 2.1, a reduction to the pool of reads could lead to gene B being missed

completely, whereas the remaining sequencing real estate becomes concentrated in

the more highly expressed genes A and C.

Despite the clear benefits of sequencing at sufficiently high depths, researchers

would be remiss to simply sequence as much as possible. Higher sequencing depths are

accompanied by higher costs, as sequencing machines can accommodate only a limited

number of reads per expensive run. Moreover, it has been shown that there exists

a point of diminishing returns at which continuing to increase the sequencing depth

fails to yield substantially more genomic information. This is demonstrated in so-

called ‘saturation curves’, which plot the number of genes detected in a given sample

against an increasing number of reads. The saturation curves in Figure 2.2, generated

from the R package NOISeq [Tarazona et al., 2011], demonstrate this property using

randomly chosen samples from a real scRNA-seq data set on human prostate cell lines

(described in Section 2.2).
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Figure 2.2. Saturation curves of randomly chosen samples from a real
scRNA-seq data set on human prostate cancer cell lines. Each curve plots
the number of detected genes, defined as genes with counts greater than 3,
against against sequencing depth for a cell sample. For a full description
of how this plot was generated, see Tarazona et al. [2011]. As the number
of reads increase, the number of genes detected also increases, but begins
to taper off. This pattern is typical of both bulk and single-cell RNA-seq
data.

Sequencing depth is but one piece of the puzzle when designing a scRNA-seq

experiment. A second consideration of great practical interest to a researcher is

the optimal number of cells to sequence. The pricing structure of the sequencing

technology links these two choices of depth and replicates. As mentioned previously,

the sequencing reaction occurs on the surface of a flow cell within the machine. In

practice, these flow cells are composed of multiple independent lanes, with a limit to

the number of reads that can be sequenced per lane. For example, the various Illumina

systems can accommodate between 80 to 200 million reads per lane, depending on

the choice of read length. Importantly, the largest cost of a sequencing experiment

is in the price per lane. Therefore, given the financial constraints of an experiment,

there exists a tradeoff between sequencing fewer cells with more reads each or more
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cells each at lower depths. The optimal balance point is the question of interest,

specifically in the context of detecting differential expression.

The question of optimizing the trade-off between sequencing depth and biologi-

cal replicates has been asked previously of bulk RNA-seq tissues [Liu et al., 2014].

However, here the focus has changed, in keeping with the shift in context going from

designing experiments for bulk samples as opposed to single cells. While bulk RNA-

seq studies often limit themselves to around a dozen samples (sometimes more but

often less) over two or more treatments, single-cell studies are seen to involve hun-

dreds to occasionally thousands of cells that are considered biological replicates. This

is partially due to the enormous reduction of labor and cost involved in isolating

single cells as opposed to collecting tissue samples from whole organisms. It is also

partially a necessity; a large number of cells is needed to characterize cell populations

and to counter the variability of each individual cell. Hence, while in bulk RNA-

seq the popular recommendation is to always obtain as many biological replicates

as possible, for single-cell applications, the question remains whether there may be

a saturation point beyond which more replicates is not necessary. With respect to

sequencing depth, the standard is to use around 30 million reads per sample for bulk

RNA-seq differential expression studies. By contrast, the number of reads per single

cell, though markedly less than what is used for bulk samples, still varies substantially

between studies [Stegle et al., 2015]. For example, Jaitin et al. [2014] used around

20, 000 reads per cell for over 1, 500 cells, while Mahata et al. [2014] sequenced an

average of 16 million reads per cell for each of around 90 cells.

There is currently no accepted rule of thumb or guide that either empirically or the-

oretically instructs researchers about the optimal choice of sequencing depth and/or

replicate number. Certainly, understanding this relationship has great value when

designing a scRNA-seq experiment. Here, a simulation study attempts to provide

guidance by investigating the effect of different combinations of sequencing depths

and numbers of replicates on the detection of differential gene expression.
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2.2 Procedure for Simulating scRNA-seq Data

The starting point of any simulation study is the choice of how to generate simu-

lated data in a way that adequately mimics real data. Throughout this work, count

data are all simulated from a zero-inflated negative binomial (ZINB) distribution,

with gene-wise parameters extracted from a real scRNA-seq dataset. Specifically,

for each gene g, take ȳg to be the mean of the non-zero counts; λg = ȳg/
∑

g ȳg is

then the proportion of all read counts originating from gene g, and can be consid-

ered the baseline rate of expression from gene g. The NB dispersion is calculated as

φg = (s2g − ȳg)/ȳ
2
g , where s2g is the variance of the non-zero counts. Also recorded are

the gene-wise proportions of zero counts, pg. Parameters are sampled in gene-wise

triplets of {λg, φg, pg} to be used to generate simulated gene counts.

To introduce differential expression on a select proportion of genes, coefficients

βg reflecting the group effect are drawn as βg ∼ logNormal(2, 1) for differentially

expressed genes, while coefficients for non-DE genes are set to 0. The log-linear

model for the expected count μgi of gene g in sample i is

log(μgi) = λg + xiβg + log(mi) (2.1)

where xi indicates the group membership of the ith sample and mi is the sample i

library size included as an offset. Finally, counts are simulated as ygi ∼ NB(μgi, φg),

with a proportion of counts for each gene set to zero with probability pg to mimic

the zero-inflation prevalent in real scRNA-seq data. Figure 2.3 visually demonstrates

that the mean-variance plot of the simulated data suitably mimics that of the original

data from which the simulation parameters were sampled.

Real scRNA-Seq Prostate Dataset

All simulated datasets in this work are based on a real scRNA-seq dataset from an

experiment involving human prostate cancer cell lines, henceforth referred to simply

as the “prostate” dataset. The dataset is comprised of a treatment group containing
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Figure 2.3. Count data from a real scRNA-seq experiment (left) provide
the parameters that are used to generate simulated gene counts (right).
Mean-variance plots of the simulated gene expression data suitably mimic
that of the original data from which the simulation parameters were sam-
pled.

65 cells in which a gene implicated in prostate cancer was knocked out, and the

negative control group consisting of 76 cells to which no treatment was applied. Each

cell underwent the standard process of cell capture, viability screening, and reverse-

transcription. Paired-end libraries were prepared and sequenced on an Illumina HiSeq

2500 machine at an average depth of 1 million reads per cell. Following quality control,

alignment, and expression quantification, the resulting count data exhibited a middle-

50% of library sizes ranging from 0.85 to 1.3 million read counts. The original data

comprised 36,135 sequenced genes, many of which exhibit very low expression levels.
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Adopting a standard practice in the literature, only the genes that have average counts

of at least 5 across all cells are considered, resulting in 10,854 remaining genes.

Sequencing Depth Resampling

In simulations that follow, sequencing depth is treated as an experimental feature

whose effect on the outcome of interest is to be studied. To this end, it is necessary

to vary this parameter between otherwise comparable datasets. This process is re-

ferred to as “resampling” in general; specifically, “downsampling” or “subsampling”

describes the process of generating datasets to lower depths.

Sequencing depth generally refers to the number of reads that are sequenced in an

experiment. Recall that the library size is the total number of sequencing reads that

are successfully mapped to a sample. The observed difference between raw sequencing

depth and the final library size is due to a number of factors that cause a proportion

of reads to be discarded. These factors include quality-control filtering, removal of

non-mRNA reads (e.g., ribosomal RNA or other artifacts), and reads that fail to map

unambiguously to the reference genome. Library sizes are therefore not equivalent

to sequencing depth; however, they can reasonably act as a proportionate proxy. It

has been argued by Robinson and Storey [2014] that in simulation applications that

require subsampling reads in order to perform identical analyses on each subsample,

it is functionally identical and substantially more computationally efficient to directly

subsample the read count matrix (Table 1.1) as opposed to the raw unaligned reads.

Hence, in subsequent simulations, the term ‘sequencing depth’ is used to refer to the

‘library size’ as opposed to the ‘number of raw sequencing reads’.

Mulitnomial sampling in the following manner is used to obtain samples of desired

depths D based on a set of original samples. Let yi = {yig}Gg=1 be counts for the G

genes from sample i of the original dataset, with corresponding library size Li =∑
g yig. Let xi = {xig}Gg=1 be the sample generated from yi with desired depth

Di. The gene counts for xi are drawn from a multinomial distribution with size Di
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and probabilities {yig/Li}Gg=1. This results in simulated samples xi with the same

probability distribution of gene counts as the originating yi, but with the new depth

of Di.

2.3 Simulations

In order to study the relationship between sequencing depth and replicate number

and their combined effect on detecting differential expression, datasets of varying

depths and replication levels were generated from the original prostate dataset. The

depths considered for the simulation are D = {0.1, 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8}
million reads. The number of replicates per treatment group considered are N =

{10, 20, 30, 40, 50, 60}; that is, N replicates were randomly chosen from each of the

treatment and control groups. 50 datasets were generated for each combination of

D × N (Table 2.1). The R package edgeR was applied to each simulated dataset

to test for differentially expressed genes. The genes considered ‘truly’ DE are those

testing significant in the most ‘robust’ simulation scenario, i.e., the dataset with the

highest sequencing depth (D = 1.8 million reads) and replicates per group (N = 60),

at a false discovery rate (FDR) cutoff of 0.001. Using these ‘true’ DE genes as the

gold standard for comparison, the statistical power of each experimental design may

be calculated as the number of true DE genes that are also detected as DE (true

positives), divided by the total number of true DE genes (positives).

Figure 2.4 (top) shows the statistical power to detect DE genes as a function of

depth and replicates. Increasing the number of replicates substantially and consis-

tently increases statistical power. By contrast, increasing the sequencing depth has

a much smaller effect on power, and plateaus off after a point. Figure 2.4 (bottom)

depicts the number of differentially expressed (DE) genes detected for the various

combinations of sequencing depths and replicates per group. Consistently more DE

genes are called as the number of replicates increases, particularly at higher sequenc-

ing depths. Increasing the sequencing depth has little to no effect on calling DE genes
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Table 2.1
Simulated datasets are generated from the real prostate dataset, by ran-
domly selecting N replicates per experimental group in the real data,
and resampling counts to the desired depth D. 50 datasets are simulated
for each combination of D × N , and edgeR is applied to obtain lists of
differentially expressed genes detected in each setting.

Depths (D)

0.1M 0.2M ... 1.8M

Reps per Group (N)

10

20 ×50

...

60

at lower replication levels, but has increasing effects at higher replication levels. The

ROC curves in Figure 2.5 depict the effect of sequencing depth on the accuracy of DE

testing for each level of replication. At lower replication levels, increasing the number

of reads has some effect on accuracy, most notably moving away from the very lowest

depths. However, as replication levels increase, more reads hardly contributes at all

to increasing the accuracy of the test. In general, the area under the ROC curve

improves as more replicates are included.

The results depicted in Figures 2.4 and 2.5 are limited in the maximum num-

ber of replicates per group that they are able to show, as they are based on direct

subsampling of a real prostate dataset consisting of only 64 replicates for its smaller

experimental group. The effects of greater sample sizes may be observed through gen-

erating synthetic data containing higher replicate numbers. This was accomplished

by simulating datasets based on parameters extracted from the same human prostate

scRNA-seq data (as described in Section 2.2). The intended effect was to mimic the

real data in distributional parameters, but with group replicate numbers ranging from
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Figure 2.5. Results from datasets subsampled from the real prostate data,
to varying sequencing depths and replicates per group. A separate ROC
curve is depicted for each of the considered replication levels per group,
and individual lines represent sequencing depths.

20 to 200. As expected, as the number of replicates per group continue to increase,

diminishing returns are observed in both the number of DE genes detected as well as

the statistical power to call true DE genes (Figure 2.6), particularly as the number

of replicates per group reaches into the hundreds. ROC curves for the synthetic data
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(Figure 2.7) demonstrate similar patterns to those in Figure 2.5, in that higher repli-

cates consistently lead to higher areas under the curve, and increasing sequencing

depth has little positive effect beyond the lowest depths.

Observations made here are consistent with what has been suggested previously

with Liu et al. [2014] in bulk RNA-seq studies; that is, the number of biological

replicates has a markedly more positive effect than sequencing more deeply. This

said, for both variables, more is always better, but only up to a point.

2.4 Guiding the Choice of Optimal Experimental Design

Recommendations as to the choice of sequencing depth and replicate number may

offer general guidelines in the way of experimental design. However, the real practi-

cal interest for researchers is in the ability to make experiment-specific decisions that

are informed by the real or expected variability in their data, as well as constraints

such as desired statistical power and budgetary limits. As part of this investigation,

an interactive tool was implemented in a Shiny web application called scDesignApp,

which may be accessed at https://fayezor.shinyapps.io/scDesignApp/. It is

accompanied by an associated R package called scDesign, which may be installed

from GitHub at https://github.com/fayezor/scDesign. Given pilot data, typi-

cally based on real data, this tool calculates statistical power and estimates costs for

each of a user-specified range of experimental designs.

The general workflow for the implementation of the scDesign tool is as follows.

First, the user provides a pilot dataset from which parameters will be estimated in

subsequent calculations. These pilot data may be either a small-scale portion of

the planned experiment or related prototype data from similar previous experiments.

Recommendations for pilot data best practices are proposed in Section 2.4.3. To

compare a variety of hypothetical experimental designs, users must specify a range

of sequencing depths and a range of replication levels to be considered. Each com-

bination of depth and replication level constitutes an experimental design. Other
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Figure 2.7. ROC curves for each of the considered replicate numbers per
group. Lines in each curve represent the sequencing depth. Plots were
generated from simulated data generated using distributional parameters
extracted from the human prostate scRNA-seq dataset.

inputs from the user may include the desired statistical power, budget constraint,

false-discovery rate (FDR) to be controlled, and anticipated cost parameters.

Gene-specific parameters are estimated from the user-provided pilot data, and

statistical power is calculated for each experimental design. Statistical power is ad-
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dressed in two ways. First, an empirical power calculation is performed by simulating

datasets for each design and recording the observed levels of statistical power ob-

tained. Second, a theoretical method implements the power-estimation procedure of

Bi and Liu [2016]. Both statistical power calculation methods are described in Section

2.4.1 in greater detail. Finally, the cost of each experimental design is also projected,

based on the formula and default cost assumptions provided in Section 2.4.2.

2.4.1 Statistical Power Calculation

The utility of the interactive tool comes from employing a dataset that is either

a subset of or representative of a full experiment, and obtaining estimates of what

the statistical power might be to detect differential expression if the researcher were

to carry out a full experiment of a specified size. It is therefore important to choose

with care the method of experiment-wide statistical power estimation.

Several methods exist for RNA-seq statistical power calculations that are per-

formed on a gene-by-gene basis, with varying assumptions about the distribution of

the true underlying expression values. For example, Fang and Cui [2011] propose a

formula based on the Wald test for single-gene differential expression analysis, while

treating the data as Poisson. Hart et al. [2013] treat the data as negative binomial and

derive a formula based on a score test, highlighting the relationship between technical

and biological variability, and using empirical justifications for how to choose certain

parameters of the formula. Busby et al. [2013] uses a non-central t-distribution to

approximate the statistical power of an experiment, arguing that a normal approxi-

mation is reasonable for RNA-seq data; however, such justifications are generally not

accepted in the general literature, as RNA-seq count data are often known to have

distributions too skewed to be modeled as normal.

What is of most interest, however, is not merely the statistical power of a single

gene, but of experiment-wide power over the tens of thousands of genes measured in an

RNA-seq experiment. Single gene statistical power calculations are often accompanied
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by suggestions for how to pool per-gene powers over an experiment; typically this

involves taking the average, with or without allowing parameters to vary between

genes. However, in situations involving many simultaneous tests as with RNA-seq, it

is necessary to account for this multiple testing using error criterion such as the false

discovery rate (FDR) [Benjamini and Hochberg, 1995].

One procedure for calculating experiment-wide statistical power while controlling

for FDR is proposed in Li et al. [2013a], consisting of a single gene formula for com-

puting statistical power based on several test statistics, and an extension of that

formula to incorporate FDR control. However, the procedure is based on a Poisson

distribution, which is inappropriate for the overdispersion present in RNA-seq exper-

iments involving many biological replicates. The authors try to address this in Li

et al. [2013b] by assuming a negative binomial distribution for the expression counts,

and using a statistical power calculation based on the exact test as used in edgeR

for testing differential expression between two groups. However, several features of

the procedure render it extremely conservative; for example, statistical power is com-

puted by setting the fold change parameter to be the minimum fold change observed

across all genes deemed differentially expressed, and similarly setting the dispersion

to the maximum observed. This likely limits the practicality of the procedure.

It is evident that experiment-wide statistical power considerations for RNA-seq

data while controlling FDR is underdeveloped. Reflecting on the microarray litera-

ture, Liu and Hwang [2007] calculate statistical power at a specified FDR level by

finding the rejection region for the test procedure. The authors use t-tests to model

microarray data. The recent Bi and Liu [2016] takes the machinery of Liu and Hwang

[2007] and makes it applicable to RNA-seq data by applying the voom method of the

limma package to first transform the count data into normalized log-counts. This

circumvents the direct use of the negative binomial distribution, for which there exist

no analytical relationships between statistical power and sample size, as there are

no closed-form solutions for the maximum likelihood estimate of the NB dispersion.

Due to the applicability of Bi and Liu [2016] to RNA-seq data, its control of FDR to
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account for multiple testing, and its avoidance of computationally-heavy simulations,

this procedure is implemented for the theoretical statistical power calculation in our

experimental design tool. The details of the procedure are as follows, as originally

described in Liu and Hwang [2007] and Bi and Liu [2016].

Theoretical Calculation of Statistical Power

Let H0 and H1 be indicators that the null or the alternative hypothesis is true,

respectively; let Γ be the rejection region of a given test statistic T ; and let π0 be

the assumed proportion of true nulls. Table 2.2, originally shown in Benjamini and

Hochberg [1995], is popularly used to categorize the different outcomes of testing G

hypotheses.

Table 2.2
Table of outcomes when testing G simultaneous hypotheses, π0 of which
are true nulls.

Declared non-significant Declared significant Total

H0 is true U V π0 ·G
H1 is true T S (1 − π0) ·G
Total G−R R G

The false discovery rate (FDR) is defined as the expected proportion of false positives

among the rejected hypotheses Benjamini and Hochberg [1995]. That is,

FDR = E

(
V

R

∣∣∣∣R > 0

)
P (R > 0). (2.2)

Storey [2003] offered a slight modification of this to the positive false discovery rate,

defined as

pFDR = E

(
V

R

∣∣∣∣R > 0

)
. (2.3)



28

Since it may safely be assumed in genomic studies that there will be at least one

rejection, i.e. that R > 0, pFDR and FDR will be used interchangeably here. By

Bayes rule, (2.3) can be written1as

P (H0|T ∈ Γ) =
P (T ∈ Γ|H0) · π0

P (T ∈ Γ|H0) · π0 + P (T ∈ Γ|H1) · (1 − π0)
(2.4)

In order to control FDR at a given level α, setting equation (2.4) to be less than or

equal to α yields the following relationship with some simple algebra.

α

1 − α

1 − π0

π0

≥ P (T ∈ Γ|H0)

P (T ∈ Γ|H1)
(2.5)

On the right-hand side, Type I error is in the numerator and statistical power is in

the denominator. The task is to find the rejection region Γ so that equation (2.5) is

satisfied, hence controlling FDR at level α; statistical power may be computed once

the rejection region is known.

The original application of Liu and Hwang [2007] was intended for microarrays,

in which the data were appropriately assumed to be normal and t-tests could be

applied for two-sample comparisons. However, the method is not directly applicable to

commonly applied tests for RNA-seq data involving a negative binomial distribution,

as there are no closed-form solutions for calculating P (T ∈ Γ|H0) and P (T ∈ Γ|H1).

As mentioned earlier, Bi and Liu [2016] extended the method to be used for RNA-seq

data by first transforming the data to a normalized log-counts per million (log-cpm)

value, as part of the method called voom implemented in the R package limma (Linear

1The Bayesian interpretation of the pFDR (2.3) is detailed and proven in Theorem 1 of Storey [2003].
Briefly, given G identical tests of the null hypothesis H0 with accompanying test statistics T1, ...TG

and a given rejection region Γ, pFDR may be rewritten as

pFDR = E

(
V (Γ)

R(Γ)

∣∣∣∣R(Γ)

)
,

where V (Γ) = #{null Ti|Ti ∈ Γ} and R(Γ) = #{Ti|Ti ∈ Γ}. P (H0|T ∈ Γ) represents the probability
of a false positive, given a significant test statistic. For the case when G = 1, V (Γ)/R(Γ) must be
either 0 or 1, so it easily follows that pFDR = P (H0|T ∈ Γ). Storey [2003] show, with proof, that
this result is the same for when G > 1.
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Models for Microarray Data). This approach allows for the derivation of a t-test

based test statistic formula that can subsequently be used in the application of the

original method as before.

In a two-sample comparison, where the interest is to find differentially expressed

genes between two experimental groups, the hypothesis to test for each gene g is

Hg
0 : μg1 = μg2 (2.6)

Hg
1 : μg1 �= μg2, (2.7)

where μg1 and μg2 are means of the normalized counts in each group. The t-test

statistic for gene g is

Tg =
Δg

sg
√

1
n1

+ 1
n2

, (2.8)

where Δg is the scaled effect size, defined as the weighted mean difference of log-cpm

values between groups, and sg is the pooled standard deviation. To accommodate

the practical situation where genes may exhibit different parameters, assume that the

effect size Δg for each gene follows a normal distribution

Δg ∼ N(μΔ, σ
2
Δ), denoted by π1(Δg), (2.9)

and the variance of log-cpm values follows an inverse gamma distribution

σ2
g ∼ InvGamma(a, b), denoted by π2(σg). (2.10)

The average statistical power across all genes may be written as an integral over these

distributions,

P (T ∈ Γ|H1) =

∫∫
P (T ∈ Γ|H1,Δg, σg)π1(Δg)π2(σg)dΔgdσg. (2.11)

Putting (2.11) into equation (2.5), it follows that FDR is controlled at level α when
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α

1 − α

1 − π0

π0

≥ P (T ∈ Γ|H0)

P (T ∈ Γ|H1)

=
P (T ∈ Γ|H0)∫∫

P (T ∈ Γ|H1,Δg, σg)π1(Δg)π2(σg)dΔgdσg

=
P (|Tg| > c|H0)∫∫

P (|Tg| > c|H1,Δg, σg)π1(Δg)π2(σg)dΔgdσg

(2.12)

Using the knowledge that Tg is distributed as a central t-distribution under the null

and a non-central t-distribution under H1, the denominator in (2.12) is

1 −
∫∫

Tn1+n2−2(c|θg)π1(Δg)π2(σg)dΔgdσg

+

∫∫
Tn1+n2−2(−c|θg)π1(Δg)π2(σg)dΔgdσg, (2.13)

where θg is the non-centrality parameter defined as

θg =
Δg

σg

√
1
n1

+ 1
n2

, (2.14)

and the numerator in (2.12) equals

P (T ∈ Γ|H0) = P (|Tg| > c|H0) = 2 · Tn1+n2−2(−c). (2.15)

Once the critical value c has been obtained which satisfies the relationship in (2.12)

for a given level α and proportion of nulls π0, statistical power may be calculated

from equation (2.13) for a specific sample size.

The practical implementation of this method based on pilot data is achieved by

first simulating a scRNA-seq count dataset as described in Section 2.2, with simula-

tion parameters drawn empirically from the user-submitted pilot data. These counts

are normalized to log-cpm by applying voom/limma as previously described, and are

used to estimate the hyperparameters μΔ, σΔ, a, and b which characterize π1(Δg) and

π2(σg). These characterized distributions can finally be used to solve the integrals

necessary for computing statistical power.
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Empirical Calculation of Statistical Power

In order to double-check how reasonable the theoretical statistical power calcu-

lation is, scDesign also implements an empirical power calculation based fully on

simulations. This is done by first extrapolating the given pilot data to each desired

experimental design setting. That is, parameters drawn from the pilot data are used

to simulate a new dataset with the desired sequencing depth and number of repli-

cates per group and containing a known set of differentially expressed genes. The

R package edgeR is then applied to test for differential expression, and the resulting

adjusted p-values are used to obtain the statistical power. Specifically, statistical

power is calculated as the number of genes determined significant at a specified FDR

that are truly DE (true positives), divided by the total number of truly DE genes

in the simulated dataset (positives). This is repeated a number of times, and the

average of statistical powers in each iteration is taken to be the empirical calculation

of statistical power for the given experimental design. Figure 2.8 shows that for a

given depth, the theoretical and empirical estimates of statistical power are similar,

with empirical calculations being slightly more conservative. While a statistical power

of 0.8 is a typical standard target for experiments, such levels of power are harder

to achieve for scRNA-seq data, which are often zero-inflated with higher variability

among replicates even of the same treatment group.

A few remarks bear noting. First, the empirical statistical power calculation in-

evitably reflects the power of the method chosen to test differential expression, in

this case edgeR. Other methods, for example DESeq2, SCDE, or limma, among others,

will likely yield different power estimates. edgeR was chosen for its useability on

data simulated to mimic scRNA-seq data; other attempted methods either yielded

substantially lower statistical power or were computationally intractable for large

numbers of replicates. Second, the empirical power calculation is significantly more

computationally intensive than the theoretical power calculation, as it involves ap-

plying edgeR to each experimental design a repeated number of times. Hence, while
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tiplexing, and equipment. Attolini et al. [2015] incorporate read-specific costs in the

following equation:

cost = (c0 ×N) + (c1 × 2rDN), (2.17)

where N is the number of samples, each associated with a fixed cost c0. 2r denotes

the read length for paired-end experiments, D the number of reads per sample, and

c1 the cost per read.

Building on (2.17) to incorporate costs specific to single-cell experimental designs,

the following cost function is proposed. Let N , as before, denote the number of

samples, in this case individual cells, with a per-cell cost of ccell. These cells are

captured onto plates which hold a default 96 cells at a time, at a per-plate cost of

cplate. This may be adjusted to a higher number of cells per plate, which may soon

increase to as many as 800 cells per plate, as high-throughput cell capture protocols

become more widely available. In addition to cell and plate costs, there are also

per-lane costs clane, where each lane can accommodate a maximum number of reads,

max. Finally, there may be other miscellaneous costs to be captured in cfixed.

cost = (ccell ×N) + (cplate × �N/96�) + (clane × �ND/max�) + cfixed (2.18)

A practical adjustment to the cost function is to account for inefficiencies in the

capturing of cells and the sequencing of reads. That is, there may be some proportion

of cells on the 96-well capture plates that are captured incorrectly or do not pass a

viability screen. If pcapture denotes the capture efficiency, an input of N cells will result

in N × pcapture cells being used in the analysis. In addition, there is typically some

proportion of sequenced reads that do not get aligned and are hence not quantified;

reasons for this include the filtering of reads that do not pass quality control, am-

biguously mapping reads, or reads from artifacts such as rRNA rather than genomic

features of interest. Let pseq denote the sequencing efficiency, so that D × pseq is the
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amount of sequenced reads that align successfully and thus quantified. The following

cost function incorporates these adjustments.

cost = (ccell ×N) + (cplate × �N/96 × pcapture�) (2.19)

+ (clane × �ND/max× psample × pseq� + cfixed

The costs of cell, plate, and lane may be chosen with real experiments as a guide.

Table 2.3 presents some typical costs associated with various stages of the scRNA-seq

workflow, from cell capture to sequencing; these numbers are based on the actual

costs of the prostate data described in Section 2.2. Per-cell costs may include kits for

cDNA dilution and library prep; per-plate costs may cover plate reagents as well as

the plate itself; per-lane costs comprise the costs of the sequencing itself, depending

on read length and paired- or single-end sequencing; and fixed costs may include

items such as assay tubes, viability kits, and labor. The scDesign tool allows for

the specification of the following default parameters: costs per cell, plate, and lane

are respectively $1200, $20, and $2000; fixed costs per experiment are $1200; and the

maximum number of reads per lane is 96 million. Again, these values are based on

the observed costs of the prostate dataset in particular, but may vary widely across

different cell types, experimental platforms, and sample preparation protocols.

2.4.3 Pilot Data

Researchers often elect to first sequence a handful of replicates at a lower depth

to get a sense of their data before committing to an expensive full experiment. The

utility of our tool is that it requires only the pilot data to estimate what the statistical

power would be in a full imagined experiment; it does so by taking parameters learned

from the pilot dataset to extrapolate the data to “full” size, and using the full data

as a basis for calculations. A natural question might be what is the effect of the size

of the pilot data on the ability of the extrapolations to accurately recover properties

of the full dataset.
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Table 2.3
Some typical costs associated with various stages of the scRNA-seq work-
flow, from cell capture to sequencing; these numbers are based on the
actual costs of the prostate data described in Section 2.2.

Item Cost

Cell Isolation

96-well plates $700/ea

Instrument reagents $440/plate

Viability kit $400

Library Prep
Library prep kit $12.50/cell

Other (reagents, tubes) $305

Sequencing
HiSeq Rapid PE 100bp $1990/lane

Multiplexing $300/two lanes

To investigate this, a full-size dataset was simulated with the approach described

in Section 2.2, and relying on parameters taken from the prostate scRNA-seq data.

The experimental design of these full data consist of two hundred replicates per

group at depths of two million. There are ten thousand genes, one thousand of which

exhibit true differential expression. edgeR was applied to detect DE genes, with

results serving as a baseline for comparison in later analyses of pilot datasets; 647

genes were detected as DE, with a true positive rate (TPR) of 0.625 and false positive

rate (FPR) of 0.002.

Pilot datasets were obtained from the full-sized dataset, by down-sampling to a

range of smaller experimental designs in a similar fashion as Section 2.2. Specifically,

the number of replicates per treatment group considered are N = {5, 10, 25, 50, 10, 150,

200}, and the depths considered are D = {0.1, 0.25, 0.5, 1, 1.5, 2} million reads. 20

datasets were generated for each combination of N × D. To extrapolate each pilot

dataset back to full size while keeping any original differential expression patterns,

the simulation procedure of Section 2.2 was adapted to allow the estimation of group-
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depth, show how accurately extrapolations from pilot datasets of each size recover

the true DE genes simulated in the full dataset. As expected, extrapolations perform

much better for pilot datasets with higher replication levels, without much difference

between depths.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

# Reads (M)

0.1

0.25

0.5

1

1.5

2

ROC Curve for 5 Replicates

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

# Reads (M)

0.1

0.25

0.5

1

1.5

2

ROC Curve for 10 Replicates

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

# Reads (M)

0.1

0.25

0.5

1

1.5

2

ROC Curve for 25 Replicates

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve for 100 Replicates

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve for 150 Replicates

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve for 200 Replicates

Figure 2.10. ROC plots, one for each replication level with lines repre-
senting sequencing depth, show how accurately extrapolations from pi-
lot datasets of each size recover the true DE genes simulated in the full
dataset.

Concordance plots shown in Figure 2.11 depict the fraction of matching genes in

a list of top k genes, identified in the extrapolated datasets as compared to the full

dataset, with k from 1 to 100. Each plot shows results for one depth setting, with
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Figure 2.11. Concordance plots depict the fraction of matching genes
in a list of top k ranking genes, identified in the extrapolated datasets
as compared to the full dataset. Each plot shows results for one depth
setting, with lines representing the numbers of replicates per group.

lines representing the numbers of replicates per group. The interpretation of this

plot is that the higher the concordance, the better the extrapolated dataset was at

reproducing the top gene rankings of the full dataset. Notice the clear separation

between the abilities of replication levels above 100 as compared to lower levels,
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with respect to recovering the “true” differential expression patterns of the full data;

this effect is apparent in both the ROC and concordance plots, but is more striking

in the latter. Sequencing depth plays a lesser role in this regard, although it is

observed that higher sequencing depths compensate somewhat for lower replication

levels. For example, the concordance plots show that datasets with 50 replicates

per group may achieve greater concordance with true gene rankings when depths are

above one million as compared to lower.

Based on these results, a recommendation can be made that, when submitting

pilot data to serve as the basis for extrapolation-based statistical power calculations,

researchers should strive to provide data that have a moderately high number of

replicates, even if this requires sacrificing sequencing depth. The accuracy of sta-

tistical power calculations may be substantially improved by increasing the number

of replicates in the pilot data, but only marginally affected by increasing sequencing

depth.
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3. MODELING DIFFERENTIAL GENE EXPRESSION FROM

SCRNA-SEQ DATA

Statistical analyses of scRNA-seq data up to this point have been largely limited to

exploratory data analysis tools such as principal component analysis (PCA) and hier-

archical clustering. Preliminary investigations into the capabilities of scRNA-seq have

tended to favor such methods in large part for offering interpretable visualizations of

the patterns and underlying structures among collections of individual cells, without

any a priori assumptions or expectations. This kind of bottom-up approach, which

characterizes exploratory data analysis, is par for the course in the early stages of new

technologies. For example, after microarrays were invented in the 1990s, enabling the

first gene expression profiling experiments on a genomic scale [Schena et al., 1995,

Brown and Botstein, 1999], clustering analyses dominated the results sections of early

manuscripts [Quackenbush, 2001]. In similar fashion, PCA and clustering are now

regularly applied to single-cell gene expression profiles to, for example, detect how a

population of cells may be separated into subpopulations of distinct cell types [Shalek

et al., 2013, Dalerba et al., 2011, Islam et al., 2011].

Certainly, exploratory data analysis has an important place in the scientific proce-

dure [Tukey, 1977]. However, it is classically understood that to be truly comprehen-

sive, statistical analyses of experiments must iterate between preliminary investiga-

tions involving exploratory tools and confirmatory tests of concrete hypotheses; it is

from the latter that scientific conclusions and predictions can be made. For example,

a major goal of statistical inference for bulk RNA-seq data over the past decade has

been the identification of genes whose levels of expression differ between phenotypes

or experimental conditions. The objective of these experiments is to test, for each

given gene, whether an observed difference in read counts between groups is statisti-
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cally significant in the presence of biological and experimental variation. There are

many reasons to expect scRNA-seq studies to rapidly move forward into similarly

targeted tests of concrete hypotheses, by way of controlling well-defined conditions

for different groups of single cells. For example, drug testing applications are often

interested in the response of different cell types to varying drug treatments; cancer

researchers may like to investigate the effect of knocking out an oncogene on the

rest of the transcriptome; others may want to detect the most important genes that

drive the transcriptional changes between cells at separate stages of differentiation.

Applications such as these abound in the scRNA-seq literature, but presently remain

largely caught in the realm of clustering and hypothesis generation.

3.1 The Stochastic Nature of Gene Expression

Most of the existing scRNA-seq studies that attempt to formally test for dif-

ferential expression between experimental conditions have simply adopted standard

methods developed in the context of bulk cell RNA-seq. Unfortunately, there are

caveats to be raised regarding the rote application of bulk tools to single-cell data

in a one-size-fits-all fashion. Bulk RNA-seq aggregates gene expression across whole

populations of cells (Figure 1.1), obscuring some unique features that only manifest

at the cellular level. In particular, gene expression in individual cells is inherently a

dynamic process with unknown rates of activity [Elowitz et al., 2002, Raj and van

Oudenaarden, 2008, McAdams and Arkin, 1997]. This phenomenon, dubbed ‘stochas-

ticity’ in scientific jargon, refers to how transcription occurs not uniformly, but often

in bursts of individual genes or of coordinated gene networks [Kaufmann and van

Oudenaarden, 2007, Marinov et al., 2014, Munsky et al., 2012, Sanchez and Gold-

ing, 2013, Wills et al., 2013]. Rather than exhibit constant gene expression, levels of

mRNA molecules monitored in real time have been found to fluctuate as if the genes

themselves were randomly and unpredictably switching back and forth between active

and inactive states [Golding et al., 2005]. Single cells that are captured for sequenc-
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ing are invariably a snapshot of these stochastic fluctuations. As a result, scRNA-seq

data are frequently seen to exhibit genes that may have moderate to strong expres-

sion in some cells, but very little to no expression in other cells (Figure 3.1). This

feature has been previously referred to as ‘dropout events’ [Kharchenko et al., 2014]

or ‘bimodal expression’ [Shalek et al., 2013].

In addition to gene expression stochasticity driving observed bimodality in the

data, there is also a technical component contributing to the effect. Single cells offer

tens of thousands of times less input RNA than bulk tissue samples, often in the

range of picograms rather than the usual nanograms or micrograms. These minimal

amounts of starting RNA can lead to transcripts either being missed in the reverse-

transcription stages of sample preparation, or not being present in sufficient quantity

to be detected by the sequencing machine. In addition, extremely low levels of input

material result in samples being much more likely to degrade or to be perturbed

by any of the many stages of the experimental process, from sample preparation to

sequencing. Altogether, the effect of both biological stochasticity and of technical

challenges is that many genes, while potentially expressed in truth, do not become

represented in the data in expected quantities.

A second important feature that becomes manifest in single cell data is the effect

of the cell cycle, defined as a series of steps that define the life span of the cell.

These steps are defined by the following phases: the first and longest growth phase

(G1) when cells grow larger and increase their production of proteins and ribosomes

in preparation for DNA synthesis; the synthesis phase (S) when cells replicate a

complete copy of their DNA; the second growth phase (G2) when cells continue to

prepare metabolically for mitosis; and finally, mitosis (M) during which active cell

division occurs (Figure 3.2). Given the highly regulated and controlled nature of

this process, the cell cycle stage is known to affect the transcriptional activity of

cells in global, non-trivial ways. The impact this has on observed gene expression in

captured cells may pose a substantial confounding effect when testing other factors

of interest. There is evidence that the high variability found in mRNA levels of single
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Figure 3.1. Violin plots of log counts for five randomly selected genes
across 399 human prostate cells demonstrate the bimodality, or ‘dropout
events’, commonly seen in scRNA-seq data. This bimodality may arise
from both biological as well as technical sources. Each point represents
a cell’s expression value for a given gene, with a vertical jitter added for
visual clarity. The lines display a smoothed kernel density for visualizing
the overall distribution of expression values.

yeast cells is driven not only by stochastic bursts of gene expression, but in no small

part also by transcriptional differences between phases [Zopf et al., 2013]. Deliberate

perturbations of the cell cycle by inhibition of cell cycle regulator proteins have been

observed to substantially affect phenotypes such as nuclear and cell morphology [Chen
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et al., 2013]. Moreover, cell cycle has been linked to fundamental biological processes

such as differentiation [Singh et al., 2013, Pauklin and Vallier, 2013] and oncogenesis

[Bar-Joseph et al., 2008, Kastan and Bartek, 2004]. Altogether, cell cycle is a key

driver of cell-to-cell heterogeneity.

Figure 3.2. The cell cycle is a series of steps that define the life span of the
cell, and are divided into the following phases: the first and longest growth
phase (G1) when cells grow larger and increase their production of proteins
and ribosomes in preparation for DNA synthesis; the synthesis phase (S)
when cells replicate a complete copy of their DNA; the second growth
phase (G2) when cells continue to prepare metabolically for mitosis; and
finally, mitosis (M) during which active cell division occurs.

3.2 Existing Methods for Bulk RNA-Seq Data

The differential expression analysis of tissue-level RNA-seq data has proliferated

in the scientific literature, and is now a routine procedure applied to a wide variety of
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organisms for the purpose of testing a large range of biological and experimental ef-

fects. In large part, the ubiquity of these analyses is owed to the success and useability

of several well-established statistical methods for testing differential gene expression;

the most notable of these are implemented in the R packages edgeR [Robinson et al.,

2010] and DESeq [Anders and Huber, 2010].

The statistical methods that comprise edgeR were originally presented in Robin-

son and Smyth [2008]. The authors model the read counts of each gene across multiple

samples using a negative binomial distribution, a departure from previously used Pois-

son models which fail to account for the increased variance observed with RNA-seq

data. The negative binomial dispersion parameter is estimated using a modification

to the conditional maximum likelihood (CML) method, based on an adjustment of

the data to being of equal library sizes. This adjustment allows the CML machinery

to be used for dipersion estimation, and also affords a test for differential expression

between experimental conditions using an exact test. Robinson and Smyth [2007]

build on this by allowing for both a global estimation of a common dispersion across

all genes, as well as a per-gene disperison estimation using conditional weighted like-

lihood to shrink each individual dispersion towards the global value. McCarthy et al.

[2012] extends these negative binomial methods for differential expression to gener-

alized linear models (GLMs), allowing for the testing of more complex experimental

designs.

Anders and Huber [2010], the authors of DESeq, also model the counts of each

gene via a negative binomial distribution; however, they take a different approach

to estimating the dispersion parameter. Rather than assuming the typical variance-

mean relationship of the negative binomial distribution, as σ2 = μ + φμ2 where φ is

the dispersion parameter (as done in edgeR), the authors take a data-driven approach

to link the variance and mean. Specifically, the variance and mean are instead linked

by a smooth local regression. Differential expression testing proceeds via an exact

test, similar to that of Robinson and Smyth [2008]. The methods are updated in Love
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et al. [2014] to include shrinkage estimation using empirical Bayes priors as well as a

GLM framework, and implemented in the R package DESeq2.

3.3 Accounting for Bimodality

Regardless of the source of bimodality in single-cell gene expression measurements,

whether technical or biological, it is important to account for this structure of the

data when testing for differential expression. Previously, Kharchenko et al. [2014]

developed a three-component mixture model to describe the dropout prevalence of

scRNA-seq data, and then employed a Bayesian approach to test for differential ex-

pression. However, this method is limited to testing between two groups, restricting

its applicability to more complex designs or experiments with multiple conditions.

McDavid et al. [2013] accounted for bimodality also by using a mixture model, this

time in a GLM framework, but the model was developed for the continuous measure-

ments generated from single-cell quantitative PCR expression measurements, and do

not extend to the count data of scRNA-seq.

The approach proposed here is to employ a zero-inflated negative binomial (ZINB)

model to account for the salient features of scRNA-seq data while testing for differen-

tial gene expression. In particular, the zero-inflated component attempts to capture

the bimodality of scRNA-seq data which often manifests as a prevalence of excess

zeros. The remaining observations are modeled as a separate component using the

negative binomial distribution, appropriate for RNA-seq count data. Finally, the

GLM testing framework allows for the testing of covariates and hence can accommo-

date complex experimental designs.

As depicted in Table 1.1, RNA-seq data are represented as a matrix of read counts,

and are frequently modeled using a negative binomial (NB) distribution. The NB

model appropriately accommodates the overdispersion typically seen in count data

from biological applications, in which the observed variation is greater than would be
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expected under a more restrictive Poisson model. One common parametrization of

the NB probability mass function is

f(y;μ, φ) = P (Y = y) =
Γ(y + φ−1)

Γ(φ−1)Γ(y + 1)

(
1

1 + μφ

)φ−1 (
μ

φ−1 + μ

)y

, (3.1)

where φ is the dispersion parameter, E[Y ] = μ, and Var[Y ] = μ + φμ2. Notice

that when φ = 0, this reduces to the Poisson distribution. In the specific context of

RNA-seq, this distribution is used to model the counts ygi of a single gene g across n

samples as

ygi ∼ NB(μgi = miλgi, φg), i = 1, ..., n. (3.2)

The mean parameter μgi is a product of mi, the total number of reads mapped to

sample i (the library size), and λgi, the fraction of all reads from sample i that

originate from gene g.

In experimental contexts with non-normally distributed response data, it is useful

to use generalized linear models (GLMs) to model the dependence of the observed

data on a vector of covariates [Nelder and Wedderburn, 1972, McCullagh and Nelder,

1989]. This dependence is described via the log-linear model

log(μgi) = xT
i βg + log(mi), (3.3)

where xi is the covariate vector for the ith sample, βg is the vector of regression

coefficients for gene g, and the library size mi is used as an offset.

The previously described bimodality seen in scRNA-seq data manifests itself as

an excess of zeros which cannot be fully explained by the NB distribution alone,

even with the sophisticated dispersion estimation methods of edgeR and DESeq. The

proposed alternative is to employ a zero-inflated count model [Lambert, 1992], which

specifies two components which may give rise to zero observations: a point mass

of zeros arising with probability π, and a count distribution fc(y) by which zeros

may also be observed. fc(y) is NB for these purposes but in general may be any
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count distribution such as Poisson or binomial. The zero-inflated count model with

regressors may be written as a mixture model of the form

f(y; x, β) = π · I{0}(y) + (1 − π) · fc(y; x, β), (3.4)

where I{0}(y) is an indicator of a zero observation. The corresponding mean of these

observations is

E[f(y; x, β)] = π · 0 + (1 − π) · E[fc(y; x, β)]

= (1 − π) · exp(xTβ), (3.5)

using the canonical log-link of the count component GLM. Model (3.4) may equiv-

alently be written in the following form, which more clearly demonstrates the two

possible sources of zeros:

f(y; x, β) =

⎧⎨
⎩

π + (1 − π) · fc(0; x, β) if y = 0

(1 − π) · fc(y; x, β) if y > 0.

The probability of the zero component π may be either set as a constant, or modeled

with its own GLM g(π) = wTγ, most often with a logit link. The covariates w for

the zero component are not necessarily distinct from the covariates β of the count

component, and in the simplest case consists of only an intercept.

Note that the zero-inflated count model is not the same as the hurdle model orig-

inally proposed by Mullahy [1986], though they may appear similar at first glance.

The hurdle model also consists of two components, but in this case, the zero compo-

nent is used to model all the zeros, leaving a truncated count component to describe

the rest of the positive observations. Thus, the distinction lies in the interpretation of

how zeros are generated. While the zero-inflated model allows for a both a ‘structural’

source as well as a “sampling” source of zeros, the hurdle model assumes all the zero

observations to originate from a ‘structural’ source and that the remaining ‘sampling’

process is strictly positive. The nature of scRNA-seq data favors the interpretation

of the zero-inflated model; hence, this is the method of choice.



50

To set up the log-likelihood function for gene g, first define zgi as an indicator of

a zero count for sample i. That is,

zgi =

⎧⎨
⎩

1 if ygi = 0

0 if ygi > 0.

The likelihood of a single observation ygi may be written

f(ygi) = [πg + (1 − πg)fc(0)](1−zgi) × [(1 − πg)fc(ygi)]
zgi . (3.6)

Given regression parameters γg and βg for the zero and count components, respec-

tively, such that π = π(xi,γg) and fc(ygi) = fc(ygi;xi,βg), the log-likelihood is

L(γg,βg) =
n∑

i=1

(1 − zgi) · log [πg(xi,γg) + (1 − π(xi,γg)) f2(0;xi,βg)]

+
n∑

i=1

zgi · log [(1 − π(xi,γg))f2(ygi;xi,βg)] . (3.7)

For the purposes presented here of testing differential gene expression, the zero com-

ponent π(xi,γg) is modeled as intercept-only, and the count component fc(ygi;xi,βg)

is taken to be a negative binomial regression model with single covariate βg corre-

sponding to the treatment group. For a particular gene g, the hypothesis of interest

is

H0 : βg = 0 (3.8)

Ha : βg �= 0.

All parameters are estimated by maximum likelihood using numerical optimization

methods such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [Broyden,

1970]. Significance tests for each parameter may be carried out using the Wald test,

or for nested models using a likelihood ratio test [McCullagh and Nelder, 1989]. Given

the tens of thousands of individual gene tests for a complete gene expression dataset,

false discovery rate (FDR) is controlled using the Benjamini Hochberg (BH) procedure

[Benjamini and Hochberg, 1995].
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3.4 Accounting for Unmeasured Cell Cycle Effects

One major challenge in characterizing the effect of cell cycle on observed gene

expression is that of measuring the cell cycle stage itself. Experimental approaches

to accomplish this are varied. One method is to induce cell-cycle arrest, either by

depleting factors driving progression between stages, by chemical treatments, or by

inhibiting key pathways [Meijer, 1996]. Other techniques include using centrifugation

to stratify cells by size (and by proxy, their stage) [Ly et al., 2014], or using flow

cytometry to measure DNA content based on retention of a dye [Nunez, 2001]. Major

drawbacks to these approaches include the labor intensiveness of the procedures, as

well as potential side effects that could disrupt the biological system in undesirable

ways. For these reasons, most single-cell gene expression datasets that do not directly

aim to study the cell cycle are generally not accompanied by cell cycle stage anno-

tations; that is, it is still uncommon for experimenters to annotate cell cycle stages

as a matter of course. Consequently, though it is generally recognized that cell cycle

effects exist and may be substantial, the magnitude of cell-cycle distortions to gene

expression has not been precisely characterized, nor is it well-understood which genes

are affected. The drawbacks of experimental approaches to cell cycle characterization

motivate the application of statistical tools that can achieve the same goals.

One apparent approach to inferring cell cycle information is by using unsuper-

vised classification methods to explicitly predict the unobserved cell cycle stage on

the basis of the cells transcriptome profile. To evaluate the effectiveness of a range of

established methods toward this objective, Scialdone et al. [2015] applied each cho-

sen method to the same scRNA-seq training dataset in which the cell cycle stages

were known, and assessed their predictive performance on a variety of labeled test

datasets. The methods evaluated include the following: a random forest classifier;

logistic regression, both with and without a lasso penalty; support vector machines;

PCA-based classification; and a custom algorithm based on the idea of selecting pairs

of genes whose relative expression changes signs across cell-cycle stages. Rather than
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building the algorithms using the full transcriptome consisting of all the genes, the

authors construct a set of cell cycle marker genes whose variation in the training

dataset exceed an established threshold of technical noise. The idea is that by using

only the expression levels of the selected cell cycle marker genes as training data,

the algorithms are built in a way that is informed primarily by the cell cycle rather

than other artifacts. The results of Scialdone et al. [2015] could ostensibly be used to

inform the choice of how best to assign cell cycle stages to each cell.

3.4.1 Methods Employing Control Genes

Often, however, the cell cycle itself is of no interest and is considered primarily a

nuisance factor. In these cases, rather than explicitly assign cell cycle stages to cells,

an alternative might be to estimate and then remove the effect of cell cycle variation

from the data altogether. This approach was first proposed by Gagnon-Bartsch and

Speed [2012] to correct for hidden factors present in microarray data, such as batch

effects from sample processing or unwanted biological variation. The correction of

these factors is presented as a means to more clearly identify differential expression

signatures from a primary factor of interest, such as experimental conditions or bio-

logical groups. Crucially, the authors make use of negative control genes, which are

defined as genes that are both uninfluenced by the primary factor of interest, while

also being positively influenced by the unwanted factor(s). With this definition, it

may be assumed that variation observed in the negative control genes is attributed

to the unwanted factor, rather than the factor of interest.

Briefly, the method of Gagnon-Bartsch and Speed [2012] involves modeling the

expression data Y as

Y = Xβ + Zγ + Wα + ε, (3.9)

where X, Z, and W are matrices whose columns represent the factors of interest, the

(optional) observed covariates, and the unobserved covariates, respectively. When

the estimation is restricted to the set of negative control genes, selected a priori on
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the basis of being uninfluenced by the factors of interest X, the coefficients for β are

by definition equal to zero and the corresponding term goes away. With or without

Z, factor analysis is used to produce an estimate Ŵ for W , which may then be

substituted back into the full model in order to estimate coefficients β for X.

The method of Gagnon-Bartsch and Speed [2012] is specifically designed for the

purposes of differential expression testing in a microarray regression context. Along

with that, the authors strongly recommend against using it naively towards a global

adjustment of expression values. This latter goal has been addressed recently in

Buettner et al. [2015], who draw on the idea in Gagnon-Bartsch and Speed [2012] of

using negative control genes, but with the intent of explicitly recovering a corrected

gene expression matrix free of unwanted variation. Most relevant for the purposes

here, the method in Buettner et al. [2015] was developed to deal in particular with

the presence of confounding cell cycle effects arising from single-cell gene expression

data.

Specifically, in the first step of Buettner et al. [2015], the expression profiles of a

set of annotated cell cycle genes are used to recover a covariance matrix Σ, which can

be said to describe the cell-to-cell variation attributed to the cell cycle. In the second

step, a linear mixed model (3.10) is fit to the expression values of each gene, break-

ing down sources of expression variance attributed to technical noise (δ2g), biological

variability (v2g), and the unwanted factor(s) under consideration (σ2
g ; i.e. cell cycle).

yg ∼ N(μg, σ
2
gΣh + v2g + δ2g). (3.10)

Under this variance component model, a residual expression dataset with the effect of

the unwanted cell cycle factor removed may be obtained by employing the predictive

distribution of the cell cycle component with mean ŷi; residual expression values are

defined as y∗i = yi − ŷi. The suggested use of this corrected gene expression dataset

is as an input to existing statistical methods for clustering, dimension reduction, and

visualization.
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A major caveat exists with the use of negative control genes in the previously

described methods. That is, the validity of these strategies is entirely predicated

on the negative control genes being both uninfluenced by the primary factor(s) of

interest, a well as being indeed influenced by the unwanted factor. If the negative

control genes are in fact influenced by the primary factor, their removal will result

in an effect of “throwing the baby out with the bathwater”; that is, variation due to

the primary factor would be removed along with the unwanted factor. Conversely, if

the negative controls do not in fact exhibit the unwanted variation assumed of them,

methods to detect that variation break down. In addition, even if the expression

variance of a control gene is owed to the unwanted variation under consideration,

there is no way to know if it is also influenced by other, non-cell-cycle effects. In

practice, both of these conditions are difficult, if not impossible, to confidently verify,

rendering these methods hazardous to use.

3.4.2 Surrogate Variable Analysis

Given the shortcomings of the previously discussed approaches and the need to

account for cell cycle effects, we settle on a method called surrogate variable anal-

ysis (SVA), originally developed in Leek and Storey [2007] for microarray data and

updated in Leek [2014] to accommodate RNA-seq count data. SVA identifies and

estimates the unwanted effects of all unmeasured confounding factors directly from

the data, and subsequently incorporates these “surrogate variables” into expression

analyses. SVA differs from Gagnon-Bartsch and Speed [2012] and Buettner et al.

[2015] in that it does not attempt to estimate effects from specific unwanted factors

such as cell cycle, but from all unmeasured factors that exhibit substantial patterns

of variation. Hence, control genes do not need to be specified and the associated

challenges of their use are avoided as a result. In addition, the method is able to

more flexibly pick up unwanted factors that haven’t been considered. SVA is also

unlike Buettner et al. [2015] in that it does not try to remove unwanted effects from
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the expression data; rather, the estimated effects from unmeasured variables may be

employed as covariates in gene-wise models. This allows the explicit quantification of

the different effects that detected surrogate variables may have on different genes.

The SVA method may be broken down into three steps. First, the method begins

by fitting a simple model containing only the measured variable of interest, given by

yij = μi + fi(xj) + eij, (3.11)

where μi is the baseline expression level of gene i, fi(xj) is a function describing the

relationship between the primary variable and the outcome, and eij is the random

error term. In practice, fi(xj) may often be taken as βixj, where βj is the linear

regression parameter for the primary factor of interest xj. The residual expression

matrix R, with values rij = yij − μ̂i − f̂i(xj), represents the variation that is left over

after accounting for the primary variable. A singular value decomposition is applied

to R to identify signatures of variation due to any unmodeled factors, in the form of

singular vectors. By definition, these signatures are independent of the signal due to

the primary variable, as they are derived from the residual matrix with the primary

effect removed. A permutation test is used to determine which of these singular

vectors exhibit significantly more variation than would be expected by chance. These

are said to be significant signatures of residual unmodeled variation.

Next, for each significant signature, a list is obtained of genes that are each signifi-

cantly associated with that signature. These subsets of genes are interpreted to be the

drivers of the expression variability arising from that signature. Third, the original

expression matrix is subset to the list of genes for each signature under consideration.

This reduced expression matrix represents the expression of those genes estimated to

contain the signature of expression heterogeneity. Another singular value decomposi-

tion on this reduced expression matrix returns an estimate of the surrogate variable

for that signature.
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Finally, all significant surrogate variables may be included as covariates into down-

stream regression models in the following manner:

yij = μi + fi(xj) +
K∑
k=1

λkiĥkj + e∗ij, (3.12)

where ĥ are the surrogate variables detected, with associated coefficients λki.

3.5 Simulations

A simulation study was constructed to demonstrate how SVA may be applied in

conjunction with ZINB to account for cell cycle effects and zero-inflation when testing

differential gene expression in scRNA-seq data.

Data were generated to mimic scRNA-seq data using the method described in

Section 2.2. As before, the distributions from which the count data were drawn are

based on parameters sampled empirically from the real human prostate cancer cell

dataset. The data were simulated to exhibit effects arising from a group factor of

primary interest for testing differential expression, as well as a confounding factor,

called the cell cycle factor for the purposes here. Genewise coefficients for both group

and cell cycle effects were drawn as βG
g , β

C
g ∼ logNormal(2, 1) for DE genes, while

coefficients for non-DE genes were set to 0. The dataset of 10,000 genes consisted of

4000 (40%) genes with a non-zero group effect, and 4000 genes with a non-zero cell

cycle effect. Each cell was randomly assigned to one of two levels of the group factor

and one of three levels of the cell cycle factor. Groups and cell cycles were assigned

such that these variables exhibited a specified amount of correlation, specifically ρ =

{0, 0.25, 0.5, 0.8}. Datasets with ρ = 0, for example, exhibit independent assignment

of group and cell cycle levels to samples, whereas a high correlation of ρ = 0.8

indicate greater challenges in differentiating between group and cell cycle effects in

the testing stage. The number of replicates per treatment group considered are N =

{5, 10, 25, 50, 100, 200}. Five datasets were generated for each combination of N × ρ.

From each dataset, genes whose average count is less than five were filtered out.
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SVA was applied to each dataset to produce estimates for the cell cycle of each

sample. Figure 3.3 depicts the SVA estimates of cell cycle across correlation settings,

for selected replication levels of 25 and 200 replicates per group. When the cell cycle

and group variables are uncorrelated, SVA estimates are able to clearly separate the

true cell cycle levels. This becomes more difficult as the correlation between vari-

ables increase, although the estimates still remain fairly accurate. Even for relatively

small sample sizes such as 25 replicates per group and for high correlations between

variables, SVA performs relatively well.

To test for differential expression between levels of the primary group factor, edgeR

and ZINB were applied to each dataset, both with and without SVA estimates of cell

cycle incorporated into the design matrix. The methods of DESeq2 and SCDE were

also attempted, but these methods were found to be so computationally intensive as

to be practically intractable for larger replicate sizes; hence, these comparisons were

left out of the analysis.

3.5.1 Simulation Results

Figure 3.4 depicts ROC plots comparing the performance of edgeR and ZINB,

with and without SVA adjustment. For higher levels of replication, 100 and above

in the simulations, the methods are virtually indiscernible; however, for lower levels

of replication, both variations of ZINB outperform both variations of edgeR. This

suggests an advantage that ZINB has over edgeR, in that it explicitly accounts for

the high prevalence of zeros that are characteristic of scRNA-seq data. As mentioned

previously, the genes in these simulated data exhibit the same proportion of zeros as

the real scRNA-seq dataset on which its distributional parameters were based. More

replicates ostensibly compensate for zero-inflation, thus erasing the advantage from

ZINB for larger sample sizes. With regards to the SVA adjustment, as correlations

between the group and cell cycle variables increase, the SVA versions of both methods

outperform their non-SVA counterparts. Higher correlations between group and cell



58

25 Reps per Group

Sample

S
V

A
 E

st
im

at
e 

of
 C

el
l C

yc
le

−0.25

0.00

0.25

0 10 20 30 40 50

Cor 0.5 Cor 0.8

Cor 0

0 10 20 30 40 50

−0.25

0.00

0.25
Cor 0.25

Cell Cycle
1
2
3

200 Reps per Group

Sample

S
V

A
 E

st
im

at
e 

of
 C

el
l C

yc
le

0.00

0 100 200 300 400

Cor 0.5 Cor 0.8

Cor 0

0 100 200 300 400

0.00

Cor 0.25

Cell Cycle
1
2
3

Figure 3.3. SVA estimates of cell cycle across correlation settings, for
selected replication levels of 25 and 200 replicates per group. Each point
represents the SVA estimate of a cell, and is colored by the true cell cycle.

cycles imply greater confounding between the effects of these variables. In turn, this

leads to greater challenges in detecting differential expression with respect to the

group factor of primary interest. Incorporating the SVA estimates into GLM-based

methods such as edgeR and ZINB offers a way to adjust for these confounding effects

in a way that improves the statistical power of the primary analysis. The concordance
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plots of Figure 3.5 show results that are consistent with the ROC plots of Figure 3.4.

That is, the advantages of ZINB are most clearly seen in lower replicate numbers,

and the advantages of SVA are more apparent with high levels of correlation between

group and cell cycle variables.
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3.6 Experimental Data

The performance of ZINB with a surrogate variable cell-cycle adjustment was

tested on real scRNA-seq datasets. While ideally it would be preferable to apply

the developed methods on datasets that have cell cycles annotated, in addition to

another biological factor of interest to be tested for differential expression, such a

dataset was not available at time of writing. This reflects the novelty in the scRNA-

seq literature of formally testing differential expression between experimental groups,

much less treating cell cycle as an explicit covariate when doing so. As an alternative,

two datasets are employed, Sasagawa et al. [2013] and Buettner et al. [2015], both

of which have cell cycles measured and annotated, and an artificial primary factor

establishing differential expression between two groups in silico was simulated.

3.6.1 Dataset Descriptions

Sasagawa et al. 2013

The Sasagawa et al. [2013] dataset is comprised of 35 mouse embryonic stem

cells (mESCs) whose cell cycles were sorted by DNA content using Hoechst staining,

which enriches the cells in different stages of the cell cycle. This resulted in the

identification of 20 cells in the G1 cycle, 7 in the S cycle, and 8 in the G2/M cycle. The

original experiment also involved 12 primitive endoderm (PrE) cells that are directly

differentiated from the embryonic stem cells. However, these belong exclusively to

the G1 cycle, so were excluded in order to avoid unnecessary confounding with the

mESC cell type. Each cell was prepared as a paired-end sequencing library, and all

were sequenced in parallel using the Illumina HiSeq 2000 instrument.

Both the raw and processed data files are available on the public genomics data

repository Gene Expression Omnibus (GEO), under accession code GSE42268. How-

ever, the only processed data that the authors provide had been normalized to FPKM

(fragments per kilobase million) expression values, which are inappropriate for the
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count data methods that would be applied. As it is not valid to simply convert

FPKM values to count values, the raw sequencing files were obtained and the data

processed into expression values. This entailed aligning raw sequencing reads to the

Mus musculus reference genome using the command line tool bowtie2, sorting and

indexing the aligned reads using the samtools utilities, and finally expression quantifi-

cation using the summarizeOverlaps function in the R package GenomicAlignments.

The resulting dataset consisted of count expression values of 22,421 genes in 35 cells.

After filtering out genes with average counts of less than 5 across all cells, 13,095

genes remain for analysis.

Buettner et al. 2015

The Buettner et al. [2015] dataset is comprised of 288 mESCs, with 96 cells each

from the G1, S, and G2/M cell cycle stages. Cell cycles were identified by Hoescht-

staining and subsequently sorted using flow cytometry. Single-cell library preparation

was performed using the Fluidigm C1 system, paired-end libraries generated using the

Illumina Nextera XT kit, and the libraries were sequenced using the Illumina HiSeq

2000 sequencer. Mapping of raw reads was done using the GSNAP/GMAP program, to a

custom mouse genome (mm10; Ensembl GRCm38.pl); mapped reads were quantified

using the python package HTSeq. The resulting count data are publicly available at

the ArrayExpress archive of functional genomics data, under accession code E-MTB-

2805. The original count expression matrix consisted of 38,390 genes in 288 cells.

Filtering out genes whose average counts across all cells were less than 5 resulted in

12,938 remaining for analysis.

3.6.2 Data Analysis

The experiments of both Sasagawa et al. [2013] and Buettner et al. [2015] are

focused primarily on demonstrating experimental methods with respect to cell cycle

specifically; Sasagawa et al. [2013] seeks to demonstrate the ability of their scRNA-
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seq method Quartz-Seq to differentiate cell cycle phases, and Buettner et al. [2015]

are concerned with removing effects of the cell cycle from the expression data to

more robustly identify true cell subpopulations. Hence, the count data obtained

from these experiments exhibit labels only for cell cycle, and not for any other ex-

perimental groups towards which tests for differential expression could be applied.

To remedy this, artificial experimental groups are created by imposing differential

expression in silico. Specifically, for each dataset, the cells are randomly divided

into two experimental groups, and for 20% of the genes, a fold-change value drawn

from a N(μ = 2, σ = 1) distribution is generated. This lends the specification of

“true” differentially expressed genes, while keeping all other properties of the original

scRNA-seq dataset intact, notably any potential cell cycle effects. SVA was applied

to each dataset to produce estimates for the cell cycle of each cell. To test for dif-

ferential expression between the artificial experimental groups, edgeR and ZINB are

applied, both with and without SVA estimates of cell cycle incorporated into the

design matrix.

3.6.3 Sasagawa et al. (2013) Results

Figure 3.6 shows the SVA estimates for each cell in the Sasagawa data, colored

by the true cell cycle stage. There is some separation seen between G2M and the

other stages, but the G1 and S cycles are not cleanly differentiated. This could be

partly due to the fact that the SVA method does not look for latent variables due to

a specific, defined factor; that is, the estimates may not be describing cell cycle at

all, but other artifacts in the data. Hence, a clear separation of SVA estimates on the

basis of cell cycle is not to be immediately expected in the real data, and in truth, it

is unknown whether cell cycle effects are present at all.
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Figure 3.6. SVA estimates for each cell in the Sasagawa et al. (2013) data,
colored by true cell cycle. See Figure 3.2 for cell cycle descriptions.

A ROC plot is shown in Figure 3.7, comparing the ability of edgeR and ZINB, with

and without adjustment using the SVA variable, to detect the differential expression

that were imposed onto the data. Both versions of ZINB perform better than both

versions of edgeR, a result that is consistent with the simulations of Section 3.5 which

suggest that ZINB exhibits more statistical power in datasets of smaller replicates per

group when there are confounding variables present. SVA improves the performance of

both edgeR and ZINB, though the advantage is slight for the latter. The concordance

plot of Figure 3.8 shows similar conclusions; that is, the ranking of genes found by

ZINB variations have higher fidelity with the true gene rankings than those found by

variations on edgeR.
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Figure 3.7. Sasagawa et al.(2013) results. ROC plot for detecting differ-
ential expression between experimental conditions.
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Figure 3.8. Sasagawa et al. (2013) results. Concordance plot depicting
the similarity in gene rankings between each method and the true gene
ranks.
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3.6.4 Buetter et al. (2015) Results

Figure 3.9 shows the SVA estimates for each cell in the Buettner data, colored by

the true cell cycle stage. For these data, the SVA estimates did not seem to detect

the cell cycle at all. As with the Sasagawa et al.(2013) data, the most apparent

explanation is that the cell cycle specifically is not the most influential driver of

unwanted variation in the data. In fact, given the small values of the SVA estimates

(mostly ranging from -0.1 to 0.1), it may well be that there do not exist systematic

confounding variables with large enough effects to be picked up by SVA at all. This

interpretation is consistent with the ROC curves (Figure 3.10) and concordance plot

(Figure 3.11) of the Buettner et al. (2015) data, which do not display added benefits

of adding the SVA adjustment to either method. Once again, however, both plots

depict better performance of ZINB variations than edgeR variations, though the ZINB

advantage is smaller here than in the Sasagawa data. This is likely due to the larger

replicate sizes, an effect similarly observed in the simulations of Section 3.5.
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Figure 3.9. SVA estimates for each cell in the Buettner et al. (2015) data,
colored by true cell cycle.
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Figure 3.10. Buettner et al. (2015) results. ROC plot for detecting
differential expression between experimental conditions.

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

Rank

C
on
co
rd
an
ce

edgeR
edgeR+SVA
ZINB
ZINB+SVA

Figure 3.11. Buettner et al. (2015) results. Concordance plot depicting
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3.7 Discussion

Single-cell RNA-seq data has been shown to be fundamentally distinct from tissue-

level RNA-seq data in two important respects: highly zero-inflated expression values,

and the confounding presence of cell cycle stage. Statistical methods for the detec-

tion of differential gene expression in scRNA-seq data is underdeveloped. Existing

methods originally developed for tissue-level RNA-seq data fail to account for these

anomalies, and their rote application to single-cell data consequently fall short. The

two strategies posed here work in tandem to address these special features. Surrogate

variables are estimated directly from the data, and serve as covariates that account

for the unwanted variation from latent factors (i.e. cell cycle). Subsequent inclusion

of these surrogate variables into a zero-inflated negative binomial model is used to

estimate and test for differential gene expression, in light of both the excess of zero

counts as well as the unwanted effects from factors such as cell cycle.

Through simulations, ZINB has been shown to outperform the standard bulk tis-

sue method of edgeR when replicate sizes are lower, presumably as higher replication

levels are able to compensate somewhat for zero-inflation. Furthermore, the incorpo-

ration of SVA into ZINB and edgeR models improves detection capabilities of both

methods. This is particularly true when there is a high correlation between cell cy-

cle stage and the primary group factor, a situation which otherwise poses distinct

challenges to testing differential gene expression by confounding the primary signal

of interest. It is to be noted that in these simulations, edgeR was chosen as the only

competitor to ZINB, due to significant computational difficulties of existing methods

that attempt to achieve the same goal, namely DESeq and SCDE, when replication

levels are even moderately high. Hence, ZINB with the addition of SVA may be seen

as a suitable alternative to existing bulk methods when analyzing scRNA-seq data.
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4. SUMMARY

4.1 Summary of Work

Single-cell RNA-sequencing is a revolutionary new frontier, both for biologists

as well as statisticians. For well over a decade, the measurement of genome-wide

transcription information (RNA-seq) of populations of cells has driven an important

part of genomic research. Today, RNA-sequencing of bulk tissues is increasingly

affordable and ubiquitous, even routine, and enjoys a level of standardization that

continues to push the rate and reproducibility of these experiments. The emerging

ability to ask questions of individual cells has already shown tremendous promise

in extracting new biological information that eluded scientists even just a few years

ago. However, despite the recent surge in research investigations aiming to profile

the molecular content of single cells, the field has yet to mature in many important

aspects. The purpose of this dissertation is to shed light on critical issues in the

design and statistical analysis of single-cell RNA-sequencing experiments, and to offer

guidelines and strategies on how to proceed on both fronts.

4.1.1 Design of scRNA-Seq Experiments

Currently, no clear guidelines exist for the design of scRNA-seq experiments,

specifically as it pertains to the choice of sequencing depth and replication levels.

In Chapter 2, it is explained how the depth at which a sample is sequenced impacts

the robustness of its gene expression quantification. Higher sequencing depths com-

pensate for inadequacies of the technology and ensure that an adequate number of

molecules are represented in the sequencing library. Despite these benefits, however,

researchers would be remiss to simply sequence as much as possible. There exists a
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point at which the gains from sequencing more deeply begin to taper off, as more

reads fail to yield substantially more genomic information. In addition, there is a

practical tradeoff between the number of biological replicates to include in an experi-

ment and how deeply to sequence those replicates; that is, a choice must be made as

to whether to sacrifice sequencing depth in favor of including more replicates, or vice

versa. Simulations were carried out to shed light on this question, by investigating

the effect of different combinations of sequencing depths and replication levels on the

detection of differential gene expression. The simulations were carried out in two

ways: down-sampling from a real scRNA-seq dataset consisting of two experimental

groups, and generating fully simulated data to investigate the effects of larger sam-

ple sizes than were available from the real data. In both cases, it was found that

increasing the number of replicates substantially and consistently increases statistical

power; by contrast, increasing the sequencing depth has only a marginally positive

effect beyond the lowest depths.

While these results offer general guidelines, also presented in Chapter 2 is an

interactive tool, called scDesign, that makes experiment-specific recommendations

that are informed by user-submitted pilot data. These pilot data may be either a

small-scale portion of a planned experiment or related prototype data from similar

existing experiments. In either case, the recommendation is for researchers to provide

pilot data that contain a moderately high number of replicates to ensure that features

of the data may be adequately captured, even if this requires sacrificing sequencing

depth. For each of a range of experimental designs characterized by a sequencing

depth and a replication level, scDesign estimates the experiment-wide statistical

power in one of two ways: a theoretical procedure based on that of Bi and Liu [2016],

and a simulation-based empirical calculation. In addition, the projected cost of each

experimental design will be calculated, based on a cost function with parameters

guided by real experiments. This tool is available both as the R package mentioned,

and is also implemented for interactive use as a Shiny application, located at https:

//github.com/fayezor/scDesignApp.
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4.1.2 Modeling Differential Gene Expression from scRNA-Seq Data

While the RNA-seq data of bulk tissue and single cells look structurally the same -

that is, they both contain the expression measurements of tens of thousands of mRNA

transcripts obtained across a number of biological replicates - the similarity proves

superficial upon closer examination. In Chapter 3, several important ways in which

single cell expression data differ from bulk expression measurements on populations

of cells are detailed. First, single cells that are captured for sequencing are invariably

snapshots of “stochastic” fluctuations in transcription. This phenomenon is masked

in bulk data, but manifests itself as an abundance of zeros in single-cell data, where

many genes exhibit moderate to strong expression in some cells, but drop out in

other cells. Contributing to the observed zero-inflation is also a technical component:

minimal amounts of starting mRNA in single cells can lead to transcripts being missed

in sample preparation or undetected in the sequencing process. A second important

feature that presents itself at the single-cell level is the effect of the cell cycle, which

has been known to affect the transcriptional activity of cells in global, non-trivial

ways.

The approach proposed in Chapter 3 is to employ a zero-inflated negative bino-

mial distribution for the purpose of modeling differential gene expression in scRNA-

seq data. The zero-inflated component would capture the prevalence of excess zeros,

while the negative binomial component would model the remaining counts with a dis-

tribution appropriate for RNA-seq count data. To account for the unmeasured effects

of cell cycle stage on gene expression, an application of surrogate variable analysis

[Leek and Storey, 2007] was proposed. SVA is capable of estimating the effects from

unwanted factors directly from the data, avoiding the risk inherent in specifying con-

trol genes, and allows the incorporation of estimated effects directly as covariates in

subsequent models. A simulation study was performed to demonstrate how SVA may

be applied in conjunction with ZINB to improve the detection of differential gene

expression in data simulated to display the features in question. It was observed that
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when the cell cycle is correlated with the group factor of primary interest, SVA esti-

mates are able to clearly distinguish true cell cycles. Accordingly, the incorporation

of SVA covariates into subsequent models improves differential expression detection

capabilities over corresponding models without SVA adjustment. Both variations of

ZINB, with and without SVA, outperform both variations of the accepted standard

method of edgeR. However, this advantage disappears for higher levels of replication,

presumably because larger samples are able to compensate for loss of statistical power

due to zero-inflation.

4.2 Future Work

Experiments involving thousands, even tens of thousands, of cellular replicates

will soon be the norm in the single-cell field, as technologies become ever more mas-

sively parallel and platforms find ways to exploit economies of scale. 96-well plates

for the isolation and processing of cells is the current standard, but 800-well systems

are already making their way into cutting edge facilities. Chapter 2 was focused on

experimental design specifically as it pertains to the choice of sequencing depth and

replicate number, parameters which impact the ability to extract genomic informa-

tion from sequence data. These questions are necessary for establishing experimental

standards for the budding technology, and to encourage thoughtful planning for re-

searchers who face limits to their resources. However, as costs continue to plummet

and scientists may be freed to think beyond the constraints of cellular replicates

and sequencing depths, these considerations will give way in immediate importance

to more foundational notions of experimental design. For example, the necessity of

replication is driven by the presence of biological variability, which exists not just from

cell to cell, but also from organism to organism and tissue to tissue. Currently, the

unit of direct interest is limited to the individual cell, while other layers of biological

variability, originating from the tissues and whole organisms from which those cells

are selected, are routinely neglected. The most commonly reported experiments are
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performed on samples of cellular replicates with no information on tissue or organ-

ism replicates; that is, the cells may as well originate from a single tissue in a single

organism. As long as experimenters seek to characterize cells in reproducible ways,

deliberate replication in these other layers is essential.

Throughout this work, the target task of statistical inference was the detection of

genes that exhibit differential expression across experimental groups. The intended

focus was on improving tests of specific hypotheses, contrasting these with the unsu-

pervised exploratory data analysis procedures that are currently much more prevalent

in the literature. However, the goals of identifying subpopulations of cells, currently

accomplished through tools such as clustering and PCA, deserve to be revisited in

their own right in order to accommodate them to the unique features of single cell

data. Indeed, it should be recognized that there are pertinent biological questions

that would treat the characterization of cell subpopulations as an end goal, rather

than simply a middle step towards confirmatory statistical tests. Single cell data also

provide unique opportunities to understand cell differentiation processes that could

elucidate mechanisms behind cell renewal, disease development, and tissue genera-

tion. Current data collection methods can be thought of as providing snapshots of

cells frozen in time, which is sufficient for singular characterizations but does not lend

itself well to tracing differentiation behaviors over time. An open statistical problem

is the question of how to make powerful inferences both across and within time points,

and how to identify subsets of genes that follow similar differentiation patterns.

Aside from these opening questions, there will be continued clarification of bio-

logical goals as the field develops. Looking to the future, single-cell experimentation

will inevitably continue to involve more cells from more tissues from more organ-

isms, as well as more kinds of data that beg to be integrated. Needless to say, the

computational weight will continue to rise. For cells easily numbering in the thou-

sands, one must generate easily accessible raw data from the sequencing machines,

process the raw data into sequence information using bioinformatics tools, and infer

some knowledge about the biological property using appropriately developed statis-
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tical methodology. Current data analysis pipelines meant for bulk tissues may not

adequately account for the new errors, biases, and sources of variation that single-

cell technologies will carry. Carefully characterizing the issues specific to single-cell

experimentation is an important goal in future statistical analyses of these data.
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