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ABSTRACT

Zhang, Ru Ph.D., Purdue University, August 2016. Selective Influences, Mental
Architectures, and Contextuality. Major Professor: Ehtibar N. Dzhafarov.

Given a system with say two external factors α and β and two random outputs A

and B in response to the external factors. α forms the context of A and β forms the

context of B. When the marginal distribution of A is not affected by the change of β

and the marginal distribution of B is not affected by the change of α, we say marginal

selectivity present in the system. Can we say there is no context effect then? Our

answer is “not yet for interdependent A and B”. If in addition, one can find a hidden

variable R, so that A can be written as a function of α and R, and B can be written

as a function of β and R, selective influences are established (Dzhafarov, 2003) and

one speaks of “no context effect”.

Perceptual separability understands if different stimulus attributes are perceived,

evaluated, and responded in a separable fashion. Selective influences provide a new

definition of perceptual separability. To realize the approach, we developed psy-

chophysical matching experiments in which the responses A and B were extracted

from an observer’s choice of a stimulus that was adjusted to match the fixed stimu-

lus with attributes α and β. We used α and β (also A and B) as simple geometric

properties of dots or lines. α and β are considered perceptually separable if selective

influences of α and β on A and B are established.

A mental architecture is a hypothetical network of underlying cognitive processes

when a subject is performing a task. It is usually assumed that the durations of

processes involved in the network are selectively influenced by different experimental

factors. Usually the overall duration is observable but the duration components are

not. One way to characterize different types of mental architectures, e.g. the parallel
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vs. the serial is to compute the interaction contrast of the distribution functions of

the overall durations (Townsend & Nozawa, 1995). Note that for any given value of

R, the duration components and the overall duration become deterministic quantities

(Zhang & Dzhafarov, 2015). Consequently, one can easily compute the interaction

contrast as the probabilistic problem is reduced to simple numerical combinatorics.

Our work provides a simpler method than the previously used ones to investigate

theories of mental architectures.

In the behavioral systems, it is very likely that marginal selectivity is absent in

a system. According to the contextuality-by-default theory (Dzhafarov & Kujala,

2014a, 2014b, 2014c; Dzhafarov, Kujala, & Cervantes, 2016; Dzhafarov, Kujala, &

Larsson, 2015; Kujala & Dzhafarov, 2015, 2016; Kujala, Dzhafarov, & Larsson, 2015),

if the covariance between A and B can be entirely attributed to α and β, and a hidden

variable R, the system is not contextual. Otherwise it is contextual. Note that when

marginal selectivity is present in a system, the framework of contextuality-by-default

reduces to the framework of selective influences. Contextuality is tested for cyclic

systems of ranks N = 4, 6, 8 using the psychophysical matching data.
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INTRODUCTION

Let us consider a system that contains external factors and outputs that depend

on these external factors. In behavioral sciences, one can use physical luminance

and physical size of an object as the two external factors (denoted as α and β) and

the perception of the luminance and the perception of the size as the two random

outputs (denoted as A and B). The perception of luminance, of course, depends on

the physical luminance. But the perception of luminance can also depend on the size

of the object (that forms a context for the perception of luminance), and it generally

covaries with the perception of the size. Similarly, the perception of the size depends

on the size of the object, but it can also depend on the luminance of the object

(that forms a context for the perception of size), and it generally covaries with the

perception of the luminance. In this dissertation, three theoretical frameworks that

relate to contextual effects will be discussed. The framework of selective influences is

the basis for the other two. Selective influences define the “no context effect” for a

system in the presence of marginal selectivity. The technique of interaction contrast

requires selective influences present in order to characterize the mental architectures.

Noncontextuality is the generalized version of selective influences, including the cases

when marginal selectivity is breached.

In the (α, β,A,B) system, β forms the context of A, and α forms the context of B.

If manipulating β does not change the marginal distribution of A and manipulating α

does not change the marginal distribution of B, then we say that marginal selectivity

is present in the (α, β,A,B) system. Now the question arises: Is marginal selectivity

equivalent to “no context effect”? Our answer is: only if A and B are stochastically
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independent for all possible α and β. However, A and B are usually stochastically

interdependent for some if not all values of α and β, and then using marginal selec-

tivity to define “no context effect” is not satisfactory. The interdependence between

A and B may be attributed to some hidden variable, whose distribution does not

depend on α and β. If one can find a hidden variable, denoted as R, so that A can

be written as a function of α and R, and B can be written as a function of β and R,

then selective influences are established, and one speak of “no context effect.” The

definition of selective influences was formulated for a finite set of random variables

by Dzhafarov (2003) and further characterized by Dzhafarov and Gluhovsky (2006).

The cosphericity test (Kujala & Dzhafarov, 2008) was developed to test selectiveness,

and it is a sufficient and necessary condition for selective influences if confining the

system to a 2×2 factorial design and the two output variables are bivariate normally

distributed. Selective influences can also be defined by the joint distribution crite-

rion (Dzhafarov & Kujala, 2010). The Linear Feasibility Test (Dzhafarov & Kujala,

2012b) is a direct use of the joint distribution criterion, and it is a powerful tool to

establish selective influences for finite number of external factors and outputs. The

Bell-CHSH-Fine inequality test (Dzhafarov & Kujala, 2012a) is a special case of the

Linear Feasibility Test, and it can be used in a 2 × 2 factorial system in which the

two output variables are binary, or discretized to be binary.

Mental architectures are the arrangements of mental processes underlying a sub-

ject’s performance. Suppose there are two underlying mental processes that process

the information on the external factors (α, β), respectively. Let (Tα, T β) be the du-

rations of the two processes. The overall duration T can be considered a function

of the duration components Tα and T β. Three fundamental architectures are of the

greatest traditional interest: T = Tα + T β, T = min(Tα, T β), and T = max(Tα, T β)

(Townsend, Yang, & Burns, 2011). They are named serial, minimum parallel, and
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maximum parallel, respectively. In behavioral sciences, usually the overall duration

can be measured by recording the response time (RT) but the durations of the under-

lying processes are not observable. Fortunately, one can characterize the architecture

by analyzing the pattern of a linear combination (interaction contrast) of the dis-

tributions of RT in a factorial experiment (Townsend & Nozawa, 1995). Selective

influences play a role as the “pre-assumption” for this technique. It assumes that

(Tα, T β) are selectively influenced by (α, β), respectively. With this assumption, as

one manipulates the external factors, the duration components influenced by those

factors vary and consequently the overall duration is changed as well. With these fac-

torial manipulations, each mental architecture has a distributional pattern of RT that

differentiates it from other architectures. The applicability of the distributional ap-

proach has been extended to general architectures (Dzhafarov, Schweickert, & Sung,

2004; Schweickert, Giorgini, & Dzhafarov, 2000), which contain the fundamental two-

process architectures as subsystems, and to the architectures composed by multiple

serial, minimum parallel, or maximum parallel processes (Yang, Fific, & Townsend,

2014).

It is very likely that marginal selectivity is absent, especially in the systems of

behavioral sciences. That is, β affects the distribution of A, and α affect the distri-

bution of B. There is nothing wrong to name the violation of marginal selectivity

“contextual”. However, the amount of violation of marginal selectivity may or may

not account for all the possible context effects. In the contextuality-by-default theory

(Dzhafarov & Kujala, 2014a, 2014b, 2014c; Dzhafarov et al., 2016; Dzhafarov et al.,

2015; Kujala & Dzhafarov, 2015, 2016; Kujala et al., 2015), when marginal selectivity

is breached, if the covariance between A and B can be entirely attributed to α, β,

and a hidden variable, the system is not contextual. Otherwise it is
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contextual. Note that when marginal selectivity is present in a system, the framework

of contextuality-by-default reduces to the framework of selective influences.

In this dissertation, I will introduce the theories of selective influences, mental

architectures, and contextuality-by-default. I will focus on my contribution to the

three topics: (1) the theoretical development of mental architectures including simple

serial-parallel mental architectures of size 2 and size n and two and more processes in

arbitrary serial-parallel mental architectures; (2) the empirical application of the three

frameworks: Psychophysical experiments were conducted to understand if selective

influences or noncontextuality exists in human behavior. I also used the psychophys-

ical experiments to investigate which mental architecure was used when the unfixed

geometric stimuli were moved or modified to match the target ones.
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SELECTIVE INFLUENCES AND APPLICATIONS

A Brief Theoretical Review of Selective Influences

The mathematical framework of selective influences was primarily developed by

Dzhafarov and Kujala (Dzhafarov, 2003; Dzhafarov & Kujala, 2010, 2012a, 2012b;

Kujala & Dzhafarov, 2008). In this section, I will briefly review the definitions,

theorems, and tests of selective influences.

Given a system of size n, let us denote the external factors (λ1, . . . , λn). Their

values belong to nonempty sets (Λ1, . . . ,Λn), respectively, where Λk = {λk1, . . . , λkmk
},

k ∈ {1, . . . , n}. A nonempty vector φ =
(
λ1
i1
, . . . , λnin

)
is called a treatment when

λ1
i1
∈ Λ1, . . . , λnin ∈ Λn.

(
X1
φ,. . ., Xn

φ

)
denotes the random variables jointly distributed

for a given φ.

Definitions

There are three equivalent definitions of selective influences.

Definition 1. A vector of random variables (X1, . . . , Xn) is selectively influenced by

(λ1, . . . , λn):

(X1, . . . , Xn) " (λ1, . . . , λn), (1)

if for any treatment φ,

(X1
φ, . . . , X

n
φ ) ∼ (f1(λ1

i1
, S1,Θ), . . . , fn(λnin , S

n,Θ)), (2)
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where Θ is a common source of randomness for (X1, . . . , Xn), (S1, . . . , Sn) are spe-

cific sources of randomness for (X1, . . . , Xn), respectively, and (f1, . . . , fn) are some

measurable functions. (Θ, S1, . . . , Sn) have a joint distribution that does not depend

on (λ1, . . . , λn).

Definition 2. A vector of random variables (X1, . . . , Xn) is selectively influenced by

(λ1, . . . , λn):

(X1, . . . , Xn) " (λ1, . . . , λn),

if for any treatment φ,

(X1
φ, . . . , X

n
φ ) ∼ (g1(λ1

i1
, R), . . . , gn(λnin , R)), (3)

where R is some random variable that is independent of (λ1, . . . , λn), and (g1, . . . , gn)

are some measurable functions.

Definition 3. A vector of random variables (X1, . . . , Xn) is selectively influenced by

(λ1, . . . , λn) if and only if there exists a vector of jointly distributed random variables

H =

 for λ1︷ ︸︸ ︷
Hλ11

, . . . , Hλ1m1
, . . . ,

for λn︷ ︸︸ ︷
Hλn1

, . . . , Hλnmn

 , (4)

one random variable for each factor point, such that for any treatment φ,

(
Hλ1i1

, . . . , Hλnin

)
∼ (X1

φ, . . . , X
n
φ ). (5)

There are two tests that can establish or falsify selective influences. I will discuss

them in detail.
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Cosphericity Test

The cosphericity test can be used to establish selective influences in a system

containing two factors (λ1, λ2). Each factor has two levels: λ1 ∈ {λ1
1, λ

1
2}, λ2 ∈

{λ2
1, λ

2
2}. Let random variables (X1

i1i2
, X2

i1i2
), depending on the allowable treatment

φ =
(
λ1
i1
, λ2

i2

)
, i1, i2 ∈ {1, 2}, be bivariate normally distributed:

N2


 µi1

µi2

 ,
 σ2

i1
σi1σi2ρi1i2

σi1σi2ρi1i2 σ2
i2


 , (6)

where µi1 and σ2
i1

are the mean and variance of X1
i1i2

, µi2 and σ2
i2

are the mean

and variance of X2
i1i2

, and ρij is the correlation of X1
i1i2

and X2
i1i2

. The parameters

µi1 , σi1 , µi2 , σi2 , and ρi1i2 generally depend on λ1 and λ2. If marginal selectivity is

present, i.e., µi1 and σi1 are independent of λ2
i2

, and µi2 and σi2 are independent of

λ1
i1

, then (X1, X2) are selectively influenced by (λ1, λ2) on {λ1
1, λ

1
2} × {λ2

1, λ
2
2} if and

only if

|ρ11ρ21 − ρ12ρ22| ≤
√

(1− ρ2
11)(1− ρ2

21) +
√

(1− ρ2
12)(1− ρ2

22). (7)

If the distributions of (X1
i1i2
, X2

i1i2
) are not bivariate normal, then the inequality above

is a necessary but not sufficient condition for selective influences.

Linear Feasibility Test

The Linear Feasibility test (LFT) is a direct application of Definition 3. It can

be used in a system with arbitrarily finite number of input variables and output

variables, provided each variable in this system has arbitrarily finite number of values.

Let us assume that the random variable Xk, k ∈ {1, . . . , n}, has lk possible values:
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{xk1, . . . , xklk}. Let xkξkik
∈ {xk1, . . . , xklk}, ik ∈ {1, . . . ,mk}. Let us write the joint

probability for the vector H as

Pr


Hλ11

= x1
ξ11
, . . . , Hλ1m1

= x1
ξ1m1

, . . . ,

Hλn1
= xnξn1

, . . . , Hλnmn
= xnξnmn

 = Q

 for X1︷ ︸︸ ︷
ξ11, . . . , ξ1m1 , . . . ,

for Xn︷ ︸︸ ︷
ξn1, . . . , ξnmn

 .

Theorem 4. Selective influences of (λ1, . . . , λn) on (X1, . . . , Xn) are established if

and only if the lm1
1 ×, . . . ,×lmn

n Q-probabilities are nonnegative,

Q

 for X1︷ ︸︸ ︷
ξ11, . . . , ξ1m1 , . . . ,

for Xn︷ ︸︸ ︷
ξn1, . . . , ξnmn

 ≥ 0, (8)

and these Q-probabilities are restrained by l1×, . . . ,×ln ×m1×, . . . ,×mn equations:

∑
Q

 for X1︷ ︸︸ ︷
ξ11, . . . , ξ1m1 , . . . ,

for Xn︷ ︸︸ ︷
ξn1, . . . , ξnmn


= Pr[(X1 = x1

ξ1i1
, . . . , Xn = xnξnin

) | φ =
(
λ1
i1
, . . . , λnin

)
], (9)

where
∑

sums over all possible values of x1
ξ11
, . . . , x1

ξ1m1
, . . . , xnξn1

, . . . , xnξnmn
except

x1
ξ1i1
, . . . , xnξnin

, which are fixed.

Note that (9) implies marginal selectivity. If marginal selectivity is violated, non-

negative solutions for (9) do not exist.

Table 1 gives an example of joint probabilities Pr[(X1 = x1
ξ1i1
, . . . , Xn = xnξnin

) |

φ =
(
λ1
i1
, . . . , λnin

)
], where n = 2, i1, i2 ∈ {1, 2}, and l1 = l2 = 2. The numbers outside

the grids are marginal probabilities.
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Table 1

An Example of Joint Probabilities of (X1
i1i2
, X2

i1i2
) Given Treatments φ =

(
λ1
i1
, λ2

i2

)
,

i1, i2 ∈ {1, 2}

(λ1
1, λ

2
1) X2

11 = x2
1 X2

11 = x2
2

X1
11 = x1

1 .2 .2 .4

X1
11 = x1

2 .1 .5 .6

.3 .7

(λ1
1, λ

2
2) X2

12 = x2
1 X2

12 = x2
2

X1
12 = x1

1 .3 .1 .4

X1
12 = x1

2 .4 .2 .6

.7 .3

(λ1
2, λ

2
1) X2

21 = x2
1 X2

21 = x2
2

X1
21 = x1

1 .1 .5 .6

X1
21 = x1

2 .2 .2 .4

.3 .7

(λ1
2, λ

2
2) X2

22 = x2
1 X2

22 = x2
2

X1
22 = x1

1 .4 .2 .6

X1
22 = x1

2 .3 .1 .4

.7 .3

This example satisfies marginal selectivity since the distributions of X1
11, X1

12, X1
21,

and X1
22 meet the conditions below:

P (X1
11) = P (X1

12), P (X1
21) = P (X1

22), (10)

P (X2
11) = P (X2

21), P (X2
12) = P (X2

22).

Substituting the joint probabilities in Table 1 into (9),
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1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1





Q(1, 1, 1, 1)

Q(1, 1, 1, 2)

Q(1, 1, 2, 1)

Q(1, 1, 2, 2)

Q(1, 2, 1, 1)

Q(1, 2, 1, 2)

Q(1, 2, 2, 1)

Q(1, 2, 2, 2)

Q(2, 1, 1, 1)

Q(2, 1, 1, 2)

Q(2, 1, 2, 1)

Q(2, 1, 2, 2)

Q(2, 2, 1, 1)

Q(2, 2, 1, 2)

Q(2, 2, 2, 1)

Q(2, 2, 2, 2)



=



.2

.2

.1

.5

.3

.1

.4

.2

.1

.5

.2

.2

.4

.2

.2

.2



,

the nonnegative solution

(Q(1, 1, 1, 1), Q(1, 1, 1, 2), . . . , Q(2, 2, 2, 2))T

= (0, 0, 0, 0, .1, .1, .2, 0, 0, .1, .4, .1, 0, 0, 0, 0)T

establishes selective influences in this example.

Bell-CHSH-Fine inequalities. The Bell-CHSH-Fine inequalities are a special

case of the LFT. They are equivalent when dealing with a 2× 2 factorial design and

each of the two output variables has two possible distinct values. The inequalities
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were first proposed to investigate the problem of quantum entanglement (Bell, 1964;

Clauser, Horne, Shimony, & Holt, 1969; Fine, 1982a, 1982b). If the inequality test

is passed, the entanglement phenomenon can be described by a local hidden variable

theory (Bohm & Aharonov, 1957; Einstein, Podolski, & Rosen, 1935). In our termi-

nology, if the test is passed, it indicates the outcome of the measurement of particle

1 (X1) is selectively influenced by the measurement of particle 1 (λ1) and the out-

come of the measurement settings for particle 2 (X2) is selectively influenced by the

measurement settings for particle 2 (λ2).

In a typical quantum entanglement experiment, the spins of two entangled par-

ticles are measured simultaneously at different physical locations. Particle 1 is mea-

sured along one of two possible axes: {λ1
1, λ

1
2}, and simultaneously particle 2 is mea-

sured along one of two possible axes: {λ2
1, λ

2
2}. If the particles are spin-1/2 ones (e.g.,

electrons), the outcome of measurement of each particle has two possible values: {spin

up, spin down}. Let us denote the two possible outcomes as {x1
1, x

1
2} for particle 1 and

{x2
1, x

2
2} for particle 2. Then this system can be represented by Table 2. The symbols

in the grids are the joint probabilities of particular outcomes. For instance, η11 is the

joint probability of (X1
11 = x1

1, X
2
11 = x2

1) given the treatment (λ1
1, λ

2
1). The numbers

outside the grids are the marginal probabilities. Marginal selectivity is usually auto-

matically secured in quantum physics, in our description by a space-like separation

between the particles (i.e., by the fact that the two measurements are simultaneous).

The Bell-CHSH-Fine inequalities are

−1 ≤ −η11 + η12 + η21 + η22 − b− d ≤ 0,

−1 ≤ η11 − η12 + η21 + η22 − b− c ≤ 0,

−1 ≤ η11 + η12 − η21 + η22 − a− d ≤ 0,

−1 ≤ η11 + η12 + η21 − η22 − a− c ≤ 0. (11)
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Table 2

A Representation of the Outcomes of Measurements of Two Entangled Particles

(λ1
1, λ

2
1) X2

11 = ↑ X2
11 = ↓

X1
11 = ↑ η11 a− η11 a

X1
11 = ↓ c− η11 1− c− a+ η11 1− a

c 1− c

(λ1
1, λ

2
2) X2

12 = ↑ X2
12 = ↓

X1
12 = ↑ η12 a− η12 a

X1
12 = ↓ d− η12 1− a− d+ η12 1− a

d 1− d

(λ1
2, λ

2
1) X2

21 = ↑ X2
21 = ↓

X1
21 = ↑ η21 b− η21 b

X1
21 = ↓ c− η21 1− b− c+ η21 1− b

c 1− c

(λ1
2, λ

2
2) X2

22 = ↑ X2
22 = ↓

X1
22 = ↑ η22 b− η22 b

X1
22 = ↓ d− η22 1− b− d+ η22 1− b

d 1− d

For our purpose, the Bell-CHSH-Fine inequalities are used to test selective influences.

By substituting the values in Table 1 into (11), one has

−1 ≤ −.2 + .3 + .1 + .4− .6− .7 ≤ 0,

−1 ≤ .2− .3 + .1 + .4− .6− .3 ≤ 0,

−1 ≤ .2 + .3− .1 + .4− .4− .7 ≤ 0,

−1 ≤ .2 + .3 + .1− .4− .4− .3 ≤ 0.

Therefore selective influences are confirmed in this example.

Applying Selective Influences to Perceptual Separability

Stimuli usually contain multiple attributes. These attributes may be perceived,

evaluated, or responded to in a separable fashion. Let us consider again an object

that varies in luminance α and size β. Intuitively, α and β are considered perceptually

separable if the attribute α is perceived without regard to the attribute β and the
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attribute β is perceived without regard to the attribute α. On the other hand, it may

be that different attributes are “integral.”

Garner (1974) pointed out that if the stimulus attributes are integral, they are not

perceived as attributes at all. Attributes exist for the researcher but the immediate

perceptual experience of the participant is a seamless gestalt. This implies that if

(α, β) are perceived integrally, α “looks differently” for β1 than for β2, or/and β

“looks differently” for α1 than for α2.

Understanding how different stimulus attributes are perceived is of fundamental

importance in the study of perception and cognition. Several approaches were utilized

to make the distinction between separable and integral stimuli operationally and

mathematically rigorous, e.g., the General Recognition Theory (Ashby & Townsend,

1986), the framework of multidimensional scaling (Shepard, 1987), and the generalized

Fechnerian Scaling (Dzhafarov, 2002, 2004).

The General Recognition Theory (GRT) is applied to the so-called feature-complete

factorial design, in which stimuli consist of the factorial combination of each level on

each stimulus attribute of interest. To give an example, let us consider a stimulus

(αi1 , βi2) constructed from a physical attribute α at level i1 and another attribute

β at level i2, where i1 ∈ {1, 2, . . . , I1} and i2 ∈ {1, 2, . . . , I2}. Let us denote by

A the perceptual dimension associated with α and by B the perceptual dimension

associated with β. Let P (Ai1i2) and P (Bi1i2) be the marginal distributions of percep-

tual effects on the perceptual dimensions A and B, respectively, given the stimulus

(αi1 , βi2). In the theory of GRT, perceptual separability occurs if and only if the

marginal perceptual effect of one attribute is the same across all levels of the other

attribute:

P (Ai11) = P (Ai12) = . . . = P (Ai1I2)
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and

P (B1i2) = P (B2i2) = . . . = P (BI1i2).

Note that it is logically possible for perceptual separability in the theory of GRT

to hold for one level of one attribute while failing for another level of the same

attribute. So far numerous publications have successfully applied GRT to understand

various types of perceptual phenomena, including visual perception (Blaha, Silbert,

& Townsend, 2011; Thomas, 2001; Wenger & Ingvalson, 2002), auditory perception

(Silbert, 2012; Silbert, Townsend, & Lentz, 2009), and haptic perception (Giordano

et al., 2012; Louw, Kappers, & Koenderink, 2002; Oberle & Amazeen, 2003).

Shepard (1987) made an attempt to study perceptual separability within the

framework of multidimensional scaling (MDS). According to his theory, stimuli p

and q can be represented as points (p1, p2, . . . , pN) and (q1, q2, . . . , qN) in the N -

dimensional perceptual space coordinates, respectively. The points in this perceptual

space are separated by the distance dpq, negative-exponentially related to some mea-

sure of the perceived similarity between the stimuli. This inter-stimulus distance

forms a Minkowskian metric:

dpq = (|p1 − q1|w + |p2 − q2|w + . . .+ |pN − qN |w)1/w , w ≥ 1.

Shepard suggested that the exponent w equals 1 (city-block metric) if the N dimen-

sions of the perceptual space are separable, and it equals 2 (Euclidean metric) if they

are integral. Despite being widely used, MDS has been criticized for several issues

that may produce misleading conclusions from the data. First, whether w = 1 or

not can depend on the choice of dimensions of the perceptual space, rather than the

inherent property of the stimulus. Second, city-block metric may be misidentified as
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Euclidean metric because of various reasons such as the presence of noise (Shepard,

1986), low discriminability (Nosofsky, 1985; Tversky & Gati, 1982), and instability

(Eisler & Knöppel, 1970).

Dzhafarov’s (2002, 2004) approach to perceptual separability of stimulus attributes

is based on the theory of Multidimensional Fechnerian Scaling (MDFS). He proposed

that the attributes α and β are perceptually separable if the two conditions are sat-

isfied: (a) the probability for a stimulus (αi1 , βi1) to be discriminated from a nearby

stimulus (αi2 , βi2) can be computed from the probabilities that (αi1 , βi1) is discrimi-

nated from (αi2 , βi1) and from (αi1 , βi2); (b) the difference between the probability for

the stimulus (αi1 , βi1) to be discriminated from a nearby stimulus (αi2 , βi1) and the

probability for the stimulus (αi1 , βi1) to be discriminated from itself does not depend

on the value of βi1 ; and analogously for the stimulus (αi1 , βi1) and the nearby stimulus

(αi1 , βi2).

The framework of selective influences is a new approach to define perceptual sepa-

rability. In this approach, perceptual separability is defined as a term relating certain

responses A and B to certain stimulus attributes α and β: We have α and β per-

ceptually separable with respect to responses A and B if (A,B) " (α, β). To realize

the approach of selective influences, we have developed an experimental procedure in

which the responses (A,B) are extracted from an observer’s choice of a stimulus that

is adjusted to match a fixed stimulus with attributes (α, β). The choices of (α, β) and

(A,B) are flexible and unknown to the participants. Below we report the results of

the experiments using α and β (also A and B) as simple geometric properties of dots

or lines.

Experiments

Participants. All the participants were students at Purdue University. Three

unpaid volunteers (P1, P2, & P3) attended Experiments 1(a) and 2(a). Two paid
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participants (P4 & P5) and one unpaid participant (P3) attended Experiments 1(b),

2(b), 2(c), 3(a), and 3(b). The author of this proposal, labeled as P3, participated

in all the experiments. All participants were aged around 25 and had normal or

corrected to normal vision.

Stimuli and procedure. In each experiment, dots and closed curves were pre-

sented on a flat-panel monitor. These geometric stimuli were grayish-white on a black

background, of a comfortably low fixed luminance. The diameter of the dots and the

width of the curves was 5 pixels (px). The participants viewed the stimuli in darkness

using a chin rest with a forehead support from the distance of 90 cm, making 1 screen

pixel approximately 62 sec arc. In each trial the participants were asked to match a

given stimulus by adjusting a variable stimulus as accurately as possible by rotating

a trackball using their dominant hand. The program allowed the participants to view

the instantaneous movement of the dots and the change of the curves on the screen.

Once a response was made to the participants’ satisfaction, they clicked a button on

the trackball device to terminate this trial, and a new stimulus appeared .5 second

later. Each experiment included several sessions. We ran one session per day. Each

session consisted of about 200 trials with a 10-min break in the middle; each session

was preceded by a practice series of 10 trials (which were not recorded).

Experiment 1(a). Each trial began with presenting two circles with a dot

in the first quadrant of each circle (exemplified in Figure 1(a)). The radius of each

circle was 160 px. The circles’ centers were located respectively at (-125 px, 200 px)

and (125 px, -150 px), relative to the center of the screen. The dot in the bottom

right circle was movable. It appeared randomly in the first quadrant. The dot in the

left upper circle was fixed. Its location was randomly chosen from six possibilities.

The six possibilities, if using the center of its circle as the origin, can be represented

equivalently using the rectangular coordinates: {(24 px, 48 px), (32 px, 32 px), (32
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px, 64 px), (48 px, 24 px), (64 px, 32 px), (64 px, 64 px)} or the polar coordinates:

{(53.67 px, 63.43 deg), (45.25 px, 45 deg), (71.55 px, 63.43 deg), (53.67 px, 26.57

deg), (71.55 px, 26.56 deg), (90.51 px, 45 deg)}. Hence the experiment contained a

rectangular subdesign {32 px, 64 px}×{32 px, 64 px} and a polar subdesign {53.67

px, 71.55 px}×{63.43 deg, 26.57 deg}.

The participants were asked to move the movable dot until its location matched

that of the fixed one. Once a response was made, the program recorded the locations

of the given dot and the reproduced dot in both rectangular coordinates and polar

coordinates using the center of each circle as the origin. There were 1200 trials overall

with approximately 200 trials per treatment.

Experiment 1(b). Experiment 1(b) was identical to Experiment 1(a) except

that in Experiment 1(b) the horizontal coordinate and vertical coordinate of each

immovable dot were random integers drawn from the rectangular [20 px, 80 px) × [20

px, 80 px). This experiment included 1800 trials overall. If the dots were represented

in the polar coordinates, a subdesign in which the dots’ radial coordinates varied

within the interval [40 px, 90 px) and angular coordinates varied within the interval

[30 deg, 60 deg), was included in this experiment. The polar subdesign contained

about 900 trials.

Experiment 2(a). The stimuli presented in each trial are exemplified in Figure

1(b). In each trial, concentric circles together with their center appeared on the left

part of the screen. The radii of circle 1 and circle 2 were randomly chosen from the

sets {16 px, 56 px, 64 px} and {48 px, 72 px, 80 px}, respectively. Therefore a 3× 3

factorial design was formed. On the right part of the screen there was an immovable

dot, located at (250 px, 0 px) relative to the center of the concentric circles.

The participants aimed to reproduce the concentric circles. The program auto-

matically made the right dot as the center of the reproduced circles. The two circles
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Figure 1. (a) Examples of stimuli used in Experiment 1. (b) Examples of stimuli

used in Experiment 2. (c) Examples of stimuli used in Experiment 3.
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were drawn successively and their sizes were controlled by rotating the trackball.

Once the first matching circle was produced, the participants clicked a button on the

trackball to stabilize this circle and then the program automatically enabled the user

to draw the other. After the second response was made, the trial was terminated by

clicking the same button on the trackball. The participants had the freedom to draw

the inner circle first then the outer circle or vice versa. The program recorded the

radii of the given and reproduced concentric circles in each trial. There were 1800

trials overall, approximately 200 trials per treatment.

Experiment 2(b). Experiment 2(b) was identical to Experiment 2(a) except

that in each trial the radii of the given circle 1 and circle 2 were randomly chosen

from four possibilities: {12 px, 24 px}×{18 px, 30 px}. Besides, there were 1600

trials overall, about 400 trials per treatment.

Experiment 2(c). Experiment 2(c) was identical to Experiment 2(a) except

that in each trial the radius of the given circle 1 was an integer randomly chosen

from the interval [18 px, 48 px) and the radius of the given circle 2 was an integer

randomly chosen from the interval [56 px, 86 px). In addition, the duration from the

appearance of the stimuli to the terminating trial button click in each trial was also

recorded. There were 1800 trials overall.

Experiment 3(a). Two floral shapes together with their centers are exempli-

fied in Figure 1(c). Two such configurations were present simultaneously in each trial.

One was on the left part of the screen and the other was on the right. The floral

shape was generated using this function:

x = cos(.02π∆)[70 + αcos(.06π∆) + βcos(.1π∆)], (12)

y = sin(.02π∆)[70 + αcos(.06π∆) + βcos(.1π∆)].
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In each trial, amplitude 1 (α) and amplitude 2 (β) of the left floral shape were

randomly chosen from the sets {-18 px, 10 px, 14 px} and {-16 px, -12 px, 20 px},

respectively. ∆ were integers from 0 to 99. For each value of ∆, a point represented

by the rectangular coordinates (x, y) was drawn to the screen and the floral shape was

composed of 100 such points. The left shape was fixed. The shape on the right was

modifiable by rotating the trackball, whose amplitudes were initialized by randomly

selecting two numbers from the interval [-35 px, 35 px).

The participants were asked to reproduce the left shape by modifying the right

shape. After each trial the program recorded the amplitudes of the left shape and

the amplitudes of the reproduced shape. Since the computer can only record the

horizontal move and the vertical move of the trackball, a transformation function

that converts the trackball move to the amplitude move was imposed:

Anew = Acurrent +
sign(4x)

100
(70− Acurrent − |Bcurrent|), (13)

Bnew = Bcurrent +
sign(4y)

100
(70− |Acurrent| −Bcurrent).

Here Acurrent and Bcurrent are amplitude 1 and amplitude 2 of the being reproduced

shape. 4x is the horizontal move of the trackball and 4y is the vertical move of the

trackball. 4x and 4y can be 1 px, 0 px, or -1 px. The sign function returns the sign

of 4x or 4y. Once 4x (or 4y) =±1, the amplitude, labeled as Anew (or Bnew), is

updated accordingly. Once the participant was satisfied with the shape that he/she

produced, he/she terminated the trial and the program recorded the instant Anew

and Bnew as the final values of amplitudes of the reproduced shape.

The program recorded the amplitudes of the given and reproduced shapes in each

trial. There were 1800 trials overall, about 200 trials per treatment.
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Experiment 3(b). Experiment 3(b) was identical to Experiment 3(a) except

that the two amplitudes of the left shape were randomly chosen from the interval

[-30 px, 30 px). In addition, the duration from the appearance of the stimuli to the

terminating trial button click in each trial was also recorded.

Speculations

There were three different types of tasks: dot position reproduction (Experiments

1(a) & 1(b)), concentric circle reproduction (Experiments 2(a), 2(b), & 2(c)), and

floral shape reproduction (Experiments 3(a) & 3(b)). Table 3 presents what the

external factors (α, β) and the random outputs (A,B) stand for in the three types of

tasks.

In the concentric circle reproduction task, the two circles in each trial were repro-

duced successively. The first reproduced circle reflected the perception of correspond-

ing given circle in the context of the given concentric circles. It is well documented

as Delboeuf illusion that the size of a circle looks different when presented alone and

when it is surrounded by another circle or a smaller circle is drawn inside it. In addi-

tion, the apparent size of that circle varies when the distance between the concentric

circles varies (Pressey, 1977). Therefore the size of the first reproduced circle in each

trial, say the inner circle, would be influenced by the size of the given outer circle.

Due to the Delboeuf illusion, marginal selectivity, consequently selective influences,

was expected to be violated in Experiments 2(a), 2(b), and 2(c).

The following speculation can be offered for the dot position reproduction task and

the floral shape reproduction task. In Experiments 1(a) and 3(a), the participants

may gradually realize there were only several distinct stimuli presented repeatedly.

With just a few stimuli presented in more than 1,000 trials in each experiment could

class their percepts into several categories. It can be expected that they gradually

formed an automatic manner to respond to each of these categories. Therefore each
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Table 3

The External Factors (α, β) and the Random Outputs (A,B) for the Three Types of

Tasks

Task α β A B

Dot position Horizontal Vertical Horizontal Vertical

reproduction coordinate coordinate coordinate of coordinate of

(rectangular of the of the the reproduced the reproduced

coordinates) given dot given dot dot dot

Dot position Radial Angular Radial Angular

reproduction coordinate coordinate coordinate of coordinate of

(polar of the of the the reproduced the reproduced

coordinates) given dot given dot dot dot

Concentric Radius of Radius of Radius of Radius of

circle the given the given the reproduced the reproduced

reproduction circle 1 circle 2 circle 1 circle 2

Floral shape Amplitude 1 Amplitude 2 Amplitude 1 Amplitude 2

reproduction of the of the of the of the

given shape given shape reproduced reproduced

shape shape

stimulus was perceived as a whole rather than by its attributes, resulting in viola-

tions of selective influences. By contrast, the participants were presented with more

than one thousand distinct stimuli in Experiments 1(b) and 3(b). They had to de-

liberately observe the details of each stimulus before making response. Therefore, in
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Experiments 1(b) and 3(b), the stimulus attributes were more likely to be perceived

separably.

In addition, we were also interested in violation of selective influences when the

presence of marginal selectivity is artificially imposed. By appropriately chosen trans-

formations of the data sets for (A,B), marginal selectivity can be secured in the three

tasks (I will discuss the transformations in detail in the next section.). By inspecting

(7), if three of the four correlations have the same sign with their absolute values

close to one and the other correlation value has the absolute value close to zero,

the cosphericity test, as well as LFT (therefore Bell-CHSH-Fine inequalities), are all

likely to be violated. Experiment 2(b) had four treatments: (16 px, 24 px), (16 px,

40 px), (32 px, 24 px), and (32 px, 40 px). Among the four concentric circles, one

had two distant circles and the other three were composed of two extremely close

circles. It was expected that the correlations of (A,B) corresponding to the three

close concentric circles would be close to one and the other correlation value would

be close to zero, resulting in failure of the tests of selective influences.

Results

Experiments with discrete factor points. Table 4 lists all possible treat-

ments for the experimental designs with discrete factor points. The data are presented

in Figure 2 (the rectangular subdesign of Experiment 1(a)), Figure 3 (the polar sub-

design of Experiment 1(a)), Figure 4 (Experiment 2(a)), Figure 5 (Experiment 2(b)),

and Figure 6 (Experiment 3(a)). The data points obviously falling far outside the

cluster of the other data points were considered outliers and several outliers were

removed in each experiment. Each panel contains approximately 200 data points.

The mean and standard deviation of (Ai1i2 , Bi1i2) for each treatment (αi1 , βi2), where

1 ≤ i1 ≤ the number of levels of α, and 1 ≤ i2 ≤ the number of levels of β, are also
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included in Figures 2-6. We then used these data to test selective influences. If the

tests are passed, then α and β are considered perceptually separable.

Table 4

Possible Treatments in Experiments 1(a), 2(a), 2(b), and 3(a)

Experiment Possible treatments

Rectangular subdesign
{32 px, 64 px}×{32 px, 64 px}

of Experiment 1(a)

Polar subdesign
{53.67 px, 71.55 px}×{63.43 deg, 26.57 deg}

of Experiment 1(a)

Experiment 2(a) {16 px, 56 px, 64 px}×{48 px, 72 px, 80 px}

Experiment 2(b) {12 px, 24 px}×{18 px, 30 px}

Experiment 3(a) {-18 px, 10 px, 14 px}×{ -16 px, -12 px, 20 px}

Testing the original data. Two external factors (α, β) and two random out-

puts (A,B) were involved in the experiments. Marginal selectivity is satisfied if

marginal distribution of A is independent of β and the marginal distribution of B

is independent of α. We compared the distributions of Ai1i2 across all levels of i2

and compared the distributions of Bi1i2 across all levels of i1. If all the comparisons

demonstrate nonsignificant differences (p ≥ .05), then it is considered that marginal

selectivity is obtained. The K-S test for 2-independent samples was used for paired

comparisons. ANOVA was applied for multiple comparisons. The number in each

cell represents the p value obtained from the K-S test (Table 5 & Table 7) or ANOVA

(Table 6 & Table 8) for each comparison. The statistical results rejected marginal

selectivity for each participant in the two 2 × 2 subdesigns of Experiment 1(a), the
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Participant P1

Participant P2

Participant P3

Figure 2. Rectangular coordinate responses to the rectangular subdesign in Experi-

ment 1(a).
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Participant P1

Participant P2

Participant P3

Figure 3. Polar coordinate responses to the polar subdesign in Experiment 1(a).
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Participant P3

Participant P4

Participant P5

Figure 5. Radii of the reproduced circles in Experiment 2(b).
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3 × 3 factorial design of Experiment 2(a), Experiment 2(b), and the 3 × 3 factorial

design of Experiment 3(a).

Table 5

K-S Tests of Marginal Selectivity for Experiment 1(a)

Participant

P1 P2 P3

Rect- A11, A12 .000 .000 .000

angular A21, A22 .000 .000 .000

subdesign B11, B21 .000 .000 .008

B12, B22 .000 .141 .001

Polar A11, A12 .000 .000 .000

subdesign A21, A22 .000 .000 .006

B11, B21 .000 .003 .000

B12, B22 .001 .123 .018

In addition, marginal selectivity was not present in all the 3× 2, 2× 3, and 2× 2

subdesigns of Experiment 2(a) and Experiment 3(a) except three 2 × 2 subdesigns:

{-18 px, 10 px}×{-16 px, -12 px}, {-18 px, 14 px}×{-16 px, -12 px}, and {10 px, 14

px}×{-16 px, -12 px} for participant P5 in Experiment 3(a).

Testing the transformed data. It was pointless to perform the cosphericity

test, LFT, and Bell-CHSH-Fine inequalities on the original data in the two 2×2 sub-

designs of Experiment 1(a), the 3×3 factorial designs of Experiment 2(a), Experiment

2(b), and the 3×3 factorial design of Experiment 3(a) due to the absence of marginal

selectivity. However, for mathematical and practical interests, one can transform the

original data to their percentile ranks, followed by an inverse Z-transformation as
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Table 6

ANOVA Tests of Marginal Selectivity for Experiment 2(a)

Participant P1 Participant P2 Participant P3

A11, A12, A13 .000 .000 .218

A21, A22, A23 .000 .000 .000

A31, A32, A33 .000 .000 .000

B11, B21, B31 .000 .000 .000

B12, B22, B32 .000 .000 .000

B13, B23, B33 .000 .000 .000

Table 7

K-S Tests of Marginal Selectivity for Experiment 2(b)

Participant P3 Participant P4 Participant P5

A11, A12 .000 .000 .000

A21, A22 .000 .000 .000

B11, B21 .000 .000 .000

B12, B22 .034 .000 .000

illustrated in Figure 7. Let us name this two-step transformation Type N transfor-

mation. After the Type N transformation the data are bivariate normally distributed

and marginal selectivity is automatically secured (standard normal distributions for

all marginals).
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Figure 7. An illustration of transforming from (a) the original data to (b) the per-

centile ranks to (c) the inverse Z-scores.
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Table 8

ANOVA Tests of Marginal Selectivity for Experiment 3(a)

Participant P3 Participant P4 Participant P5

A11, A12, A13 .000 .000 .029

A21, A22, A23 .000 .450 .000

A31, A32, A33 .000 .000 .053

B11, B21, B31 .000 .076 .022

B12, B22, B32 .000 .433 .581

B13, B23, B33 .005 .000 .012

Now the cosphericity test (7) becomes a sufficient and necessary condition for

selective influences in each 2 × 2 design. The correlations between the transformed

responses for Experiments 1(a), 2(a), 2(b), and 3(a) are given in Tables 9-12. As

mentioned earlier, the correlation values in Table 11 (Experiment 2(b)) were expected

more likely to fail the test than the others. However, it was found the test was passed

in the two 2×2 factorial subdesigns of Experiment 1, all the 2×2 subsets of Experiment

2(a), all the 2× 2 subsets of Experiment 3(a), and also Experiment 2(b). Therefore

selective influences were established for the Type N transformed data in all the 2× 2

sets in the experiments with discrete factor points. Here I show how the correlations

in the second row of Table 9 passed the cosphericity test as an example:

|(−.105)(−.318)− (−.264)(−.466)|

≤
√

[1− (−.105)2][1− (−.318)2] +
√

[1− (−.264)2][1− (−.466)2].
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Table 9

Correlations of Transformed Responses in Experiment 1(a)

Rectangular subdesign

Participant P1 ρ11 = −.105 ρ12 = −.264 ρ21 = −.318 ρ22 = −.466

Participant P2 ρ11 = −.355 ρ12 = −.320 ρ21 = −.046 ρ22 = .018

Participant P3 ρ11 = .107 ρ12 = −.165 ρ21 = −.206 ρ22 = −.390

Polar subdesign

Participant P1 ρ11 = .297 ρ12 = −.236 ρ21 = .150 ρ22 = −.020

Participant P2 ρ11 = .263 ρ12 = −.213 ρ21 = .280 ρ22 = −.190

Participant P3 ρ11 = .100 ρ12 = .013 ρ21 = .041 ρ22 = −.079

The Linear Feasibility Test is used in a system that contains arbitrary finite num-

ber of inputs and outputs, each variable having arbitrary finite number of values.

Therefore the output variables collected from Experiments 1(a), 2(a), 2(b), and 3(a)

have to be discretized in order to apply this test. There are infinitely many ways

to perform the discretization. However, if marginal selectivity is violated after just

one of the discretizations, the test fails definitely. To avoid it, Ai1i2 and Bi1i2 can be

discretized by some percentile ranks. For example, we can dichotomize the data set

of Ai1i2 by its median and discretize the data set of Bi1i2 by the first quartile, the

median, and the third quartile. Now there are two possible discrete values for Ai1i2 :

{below the median, above the median} and four possible discrete values for Bi1i2 :

{below the first quartile, above the first quartile and below the median, above the

median and below the third quartile, above the third quartile}. Then the marginal

distribution of A is independent of β and the marginal distribution of B is
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Table 10

Correlations of Transformed Responses in Experiment 2(a)

Participant P1

ρ11 = .146 ρ12 = −.020 ρ13 = .162

ρ21 = .717 ρ22 = .558 ρ23 = .559

ρ31 = .655 ρ32 = .715 ρ33 = .694

Participant P2

ρ11 = .253 ρ12 = .216 ρ13 = .091

ρ21 = .771 ρ22 = .643 ρ23 = .479

ρ31 = .663 ρ32 = .797 ρ33 = .653

Participant P3

ρ11 = .317 ρ12 = .233 ρ13 = .234

ρ21 = .914 ρ22 = .716 ρ23 = .625

ρ31 = .810 ρ32 = .878 ρ33 = .800

Table 11

Correlations of Transformed Responses in Experiment 2(b)

Participant P3 ρ11 = .807 ρ12 = .341 ρ21 = .845 ρ22 = .852

Participant P4 ρ11 = .623 ρ12 = .365 ρ21 = .789 ρ22 = .826

Participant P5 ρ11 = .730 ρ12 = .331 ρ21 = .731 ρ22 = .726

independent of α. Therefore, with this percentile-rank-discretization, marginal selec-

tivity is guaranteed.
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Table 12

Correlations of Transformed Responses in Experiment 3(a)

Participant P3

ρ11 = .359 ρ12 = .363 ρ13 = .120

ρ21 = .009 ρ22 = −.015 ρ23 = .217

ρ31 = .164 ρ32 = −.084 ρ33 = .190

Participant P4

ρ11 = .106 ρ12 = .333 ρ13 = -.147

ρ21 = -.086 ρ22 = -.105 ρ23 = .009

ρ31 = -.057 ρ32 = -.259 ρ33 = .035

Participant P5

ρ11 = −.001 ρ12 = .041 ρ13 = .019

ρ21 = .072 ρ22 = −.063 ρ23 = −.312

ρ31 = .070 ρ32 = −.027 ρ33 = −.303

The Bell-CHSH-Fine inequalities require a 2× 2 factorial design and each output

variable should have two possible distinct values. Marginal selectivity also needs to be

satisfied beforehand. One can dichotomize the output variables by percentile ranks,

so that the test is applicable.

Let us name discretizing data according to percentile ranks Type D transforma-

tion. Tables 13-16 present joint probabilities of (Ai1i2 , Bi1i2) for each participant in

Experiments 1(a), 2(a), 2(b), and 3(a) discretized by the medians. Marginal selectiv-

ity is automatically secured. Each number in the tables represents the joint probabil-

ity Pr(Ai1i2 ≤ MAi1i2
, Bi1i2 ≤ MBi1i2

), where MAi1i2
denotes the median of Ai1i2 and
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MBi1i2
denotes the median of Bi1i2 . Knowing the value of Pr(Ai1i2 ≤ MAi1i2

, Bi1i2 ≤

MBi1i2
), the other three joint probabilities can be computed easily:

Pr(Ai1i2 ≤MAi1i2
, Bi1i2 > MBi1i2

) = .5− Pr(Ai1i2 ≤MAi1i2
, Bi1i2 ≤MBi1i2

),

Pr(Ai1i2 > MAi1i2
, Bi1i2 ≤MBi1i2

) = .5− Pr(Ai1i2 ≤MAi1i2
, Bi1i2 ≤MBi1i2

),

Pr(Ai1i2 > MAi1i2
, Bi1i2 > MBi1i2

) = Pr(Ai1i2 ≤MAi1i2
, Bi1i2 ≤MBi1i2

).

(14)

Table 13

Joint Probabilities of (Ai1i2 , Bi1i2), i1, i2 ∈ {1, 2}, Discretized by the Medians, Experi-

ment 1(a)

Rectangular subdesign Polar subdesign

P1 P2 P3 P1 P2 P3

Pr(A11 ≤MA11 , B11 ≤MB11) .269 .209 .292 .208 .218 .240

Pr(A12 ≤MA12 , B12 ≤MB12) .243 .199 .246 .333 .300 .267

Pr(A21 ≤MA21 , B21 ≤MB21) .226 .231 .237 .240 .202 .237

Pr(A22 ≤MA22 , B22 ≤MB22) .177 .291 .191 .259 .296 .256

The Bell-CHSH-Fine inequalities cannot be used in the 3× 3 sets of Experiment

2(a) (Table 14) and Experiment 3(a) (Table 16), but they can be used in their nine

2×2 subsets. After substituting the joint probabilities in Table 13 and Table 15, and

the nine 2× 2 subsets of Table 14 and Table 16 into (11), it was found that the test
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Table 14

Joint Probabilities of (Ai1i2 , Bi1i2), i1, i2 ∈ {1, 2, 3}, Discretized by the Medians, Ex-

periment 2(a)

Participant

P1 P2 P3

Pr(A11 ≤MA11 , B11 ≤MB11) .285 .275 .276

Pr(A12 ≤MA12 , B12 ≤MB12) .273 .283 .290

Pr(A13 ≤MA13 , B13 ≤MB13) .288 .284 .284

Pr(A21 ≤MA21 , B21 ≤MB21) .376 .427 .461

Pr(A22 ≤MA22 , B22 ≤MB22) .372 .387 .375

Pr(A23 ≤MA23 , B23 ≤MB23) .375 .338 .384

Pr(A31 ≤MA31 , B31 ≤MB31) .359 .377 .400

Pr(A32 ≤MA32 , B32 ≤MB32) .374 .417 .439

Pr(A33 ≤MA33 , B33 ≤MB33) .363 .365 .409

was passed in all the cases. Here I show how the numbers in a 2× 2 set in the second

column of Table 13 passed the test as an example:

−1 ≤ −.269 + .243 + .226 + .177− .5− .5 ≤ 0,

−1 ≤ .269− .243 + .226 + .177− .5− .5 ≤ 0,

−1 ≤ .269 + .243− .226 + .177− .5− .5 ≤ 0,

−1 ≤ .269 + .243 + .226− .177− .5− .5 ≤ 0.

We also tested the Bell-CHSH-Fine inequalities using the data dichotomized by

other percentile ranks. In each 2× 2 set, there are four percentile values that can be
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Table 15

Joint Probabilities of (Ai1i2 , Bi1i2), i1, i2 ∈ {1, 2}, Discretized by the Medians, Experi-

ment 2(b)

Participant

P3 P4 P5

Pr(A11 ≤MA11 , B11 ≤MB11) .429 .378 .453

Pr(A12 ≤MA12 , B12 ≤MB12) .338 .357 .354

Pr(A21 ≤MA21 , B21 ≤MB12) .436 .431 .402

Pr(A22 ≤MA22 , B22 ≤MB22) .408 .427 .389

chosen. They are a, b, c, and d in (11). Each value was varied from the 5th percentile

to the 95th percentile with increments of 5 percentile points. Therefore we ran the

Bell-CHSH-Fine inequality test 194 times for each 2× 2 set. It turned out that there

was no violation in all the 2× 2 sets except participant P3 in Experiment 2(b). 390

violations out of 194 trials were detected and the largest excess of boundaries of the

inequalities was .056. In order to evaluate whether the violations were true or just

statistical fluctuations, the data of this participant were divided into two groups. The

first four experimental sections formed group 1 and the second four sections formed

group 2. Therefore each of the four treatments in each group contained about 200 data

points. Then the Bell-CHSH-Fine inequality test was run 194 times in each group. We

were interested in whether the two groups shared the same values of (a, b, c, d), where

the violations occurred, among the overall 194 trials. 46 such quadruples were found

and the largest excess of the boundaries was smaller than .05. The violations seemed

to occur at random positions for participant P3 and the extent of the violations did
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Table 16

Joint Probabilities of (Ai1i2 , Bi1i2), i1, i2 ∈ {1, 2, 3}, Discretized by the Medians, Ex-

periment 3(a)

Participant

P3 P4 P5

Pr(A11 ≤MA11 , B11 ≤MB11) .333 .252 .258

Pr(A12 ≤MA12 , B12 ≤MB12) .292 .322 .301

Pr(A13 ≤MA13 , B13 ≤MB13) .283 .224 .271

Pr(A21 ≤MA21 , B21 ≤MB21) .245 .196 .256

Pr(A22 ≤MA22 , B22 ≤MB22) .217 .224 .255

Pr(A23 ≤MA23 , B23 ≤MB23) .289 .244 .185

Pr(A31 ≤MA31 , B31 ≤MB31) .290 .219 .245

Pr(A32 ≤MA32 , B32 ≤MB32) .262 .198 .236

Pr(A33 ≤MA33 , B33 ≤MB33) .314 .204 .198

not seem to be significant either. Hence, it was considered that the Bell-CHSH-Fine

inequalities did not fail in Experiment 2(b).

The LFT, of course, produced the same conclusion as the Bell-CHSH-Fine inequal-

ities when (A,B) were dichotomized. As discussed earlier, the LFT can be used to

test selective influences when each of the output variables has arbitrarily finite number

of discrete values. We performed the LFT using multiple percentile-rank-discretized

data in all the 2×2 sets, 2×3 sets, 3×2 sets, and 3×3 sets of Experiments 1(a), 2(a),

2(b), and 3(a), nonnegative solutions always existed for all the multiple discretized

data we tried except Experiment 2(b). However, there was no evidence that those
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violations in Experiment 2(b) were significant. Therefore, selective influences were

considered established for all those conditions.

Tables 17-20 present the solutions to the LFT using the joint probabilities given

in Tables 13-16.

Table 17

Solutions to the LFT for the Median-Discretized Data in Experiment 1(a)

Participant (Q1111, Q1112, . . . , Q2222)T

Rectangular subdesign

P1 (0, .075, 0, .005, .018, .177, .225, 0, 0, .151, .177, .093, .080, 0, 0, 0)T

P2 (0, 0, .050, .010, 0, .209, .149, .082, .032, .200, .209, 0, .060, 0, 0, 0)T

P3 (.029, 0, 0, .062, .072, .191, .145, 0, 0, .208, .162, .038, 0, 0, .091, 0)T

Polar subdesign

P1 (.041, 0, .052, 0, .001, .167, .240, 0, 0, .200, .167, .041, 0, .093, 0, 0)T

P2 (.016, 0, .080, 0, .002, .2, .202, 0, 0, .186, .200, .017, 0, .096, 0, 0)T

P3 (.000, 0, .023, 0, .007, .233, .237, 0, 0, .237, .233, .007, 0, .023, 0, 0)T

Experiments with continuous factor points. Experiments 1(b), 2(c), and

3(b) have external factors that vary within specific intervals. We computed (α − A)

and (β−B) for each trial and took large deviations indicators of outliers. There were

less than one percent outliers in each experiment and they were removed from further

analysis. In order to perform the tests of selective influences, one has to convert the

continuous factor points to discrete factor points. For example, one can create two

levels for each factor according to the middle point of its confined interval. Then each

experiment has four distinct treatments, denoted as (αi1 , βi2) , i1, i2 ∈ {1, 2}. Tables
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Table 18

Solutions to the LFT for the Median-Discretized Data in Experiment 2(a)

Participant (Q111111, Q111112, . . . , Q222222)T

P1

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, .018, 0, .006, .021, .267, .188, 0, 0, 0, 0, 0, 0, 0, 0,

.047, 0, 0, .066, 0, .058, .061, 0, .030, 0, 0, .061, 0,

.076,.065, 0, 0, 0, 0, .010, 0, .015, .009, 0)T

P2

(.274, 0, 0, 0, 0, .004, 0, .003, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .004, .009, .205, .053, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, .099, 0, .056, .010, 0, .003, 0,

0, .046, 0, .082, .034, 0, .023, 0, 0, 0, 0, 0, .093, 0)T

P3

(.276, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, .014, .009, .201, .098, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, .087, 0, .001, .008, .030, 0, 0, 0, .026, 0, .

.065, .035, 0, 0, 0, 0, .013, 0, .046, .075, .016)T

Table 19

Solutions to the LFT for the Median-Discretized Data in Experiment 2(b)

Participant (Q1111, Q1112, . . . , Q2222)T

P3 (.338, .027, 0, 0, 0, .064, 0, .071, .006, .065, .064, 0, 0, 0, .092, .273)T

P4 (.356, 0, 0, 0, 0, .022, 0, .122, .001, .073, .069, 0, 0, .048, .073, .24)T

P5 (.354, .001, 0, 0, 0, .098, 0, .047, 0, .047, .035, .063, 0, 0, .111, .244)T
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Table 20

Solutions to the LFT for the Median-Discretized Data in Experiment 3(a)

Participant (Q111111, Q111112, . . . , Q222222)T

P3

(.135, 0, .049, 0, 0, 0, .009, .057, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .073, 0, 0, .077, 0, .083,

.017, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .061, 0, .082, .096,

.012, .052, 0, 0, .054, 0, .075, 0.069, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

P4

(.123, 0, 0, 0, .002, .036, 0, .128, .021, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .067, 0, 0, .040, 0, .072,

.010, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .051, 0, .041, .097,

0, 0, 0, 0, .095, 0, .036, .079, 0, .101, 0, 0, 0, 0, 0, 0, 0)T

P5

(.116, .052, 0, 0, 0, .016, 0, .104, .008, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .067, 0, 0, .0150, 0, .041,

.080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, .080, 0, .062, .061,

0, 0, 0, 0, .077, 0, .052, .083, 0, .085, 0, 0, 0, 0, 0, 0, 0)T

21-23 present the mean and standard deviation of (Ai1i2 , Bi1i2) for each treatment

(αi1 , βi2) in Experiments 1(b), 2(c), and 3(b), respectively. α and β are considered

perceptually separable if the data for the discretized factors pass the tests of selective

influences.

Marginal selectivity needs to be tested firstly. We compared the distributions

of Ai11 with Ai12 and compared the distributions of B1i2 with B2i2 . The K-S test

for 2-independent samples was used to make the four paired comparisons for each

participant in each experiment. If one of the four paired comparisons was significant

(p < .05), it was considered as an absence of marginal selectivity. Tables 24-26 present



44

T
ab

le
21

M
ea

n
s

an
d

S
ta

n
da

rd
D

ev
ia

ti
on

s
of

(A
i 1
i 2
,B

i 1
i 2

),
i 1
,i

2
∈
{1
,2
}

in
E

xp
er

im
en

t
1(

b)

R
ec

ta
n
gu

la
r

d
es

ig
n

i 1
i 2

α
i 1

(p
x
)

β
i 2

(p
x
)

A
i 1
i 2

(p
x
)

B
i 1
i 2

(p
x
)

A
i 1
i 2

(p
x
)

B
i 1
i 2

(p
x
)

A
i 1
i 2

(p
x
)

B
i 1
i 2

(p
x
)

P
ar

ti
ci

p
an

t
P

3
P

ar
ti

ci
p
an

t
P

4
P

ar
ti

ci
p
an

t
P

5

1
1

[2
0,

50
)

[2
0,

50
)

44
.0

9±
11

.9
0

37
.5

8±
11

.1
5

38
.4

6±
10

.7
4

34
.1

4±
12

.4
2

37
.0

0±
10

.2
5

31
.9

9±
10

.5
2

1
2

[2
0,

50
)

[5
0,

80
)

39
.6

9±
10

.2
4

68
.9

9±
9.

12
34

.2
1±

10
.4

0
64

.8
9±

10
.9

9
37

.4
9±

11
.3

4
60

.9
2±

10
.7

2

2
1

[5
0,

80
)

[2
0,

50
)

71
.8

9±
8.

23
37

.3
7±

11
.4

7
63

.3
9±

10
.6

2
38

.5
0±

12
.1

0
64

.8
7±

9.
87

30
.7

8±
10

.8
2

2
2

[5
0,

80
)

[5
0,

80
)

67
.3

2±
9.

09
67

.6
2±

9.
60

59
.4

7±
10

.2
6

67
.9

6±
12

.4
2

65
.8

5±
11

.1
2

60
.3

3±
11

.0
7

P
ol

ar
su

b
d
es

ig
n

i 1
i 2

α
i 1

(p
x
)

β
i 2

(d
eg

)
A
i 1
i 2

(p
x
)

B
i 1
i 2

(d
eg

)
A
i 1
i 2

(p
x
)

B
i 1
i 2

(d
eg

)
A
i 1
i 2

(p
x
)

B
i 1
i 2

(d
eg

)

P
ar

ti
ci

p
an

t
P

3
P

ar
ti

ci
p
an

t
P

4
P

ar
ti

ci
p
an

t
P

5

1
1

[4
0,

65
)

[3
0,

45
)

63
.8

6±
8.

70
32

.9
9±

7.
20

56
.7

6±
9.

53
36

.3
6±

10
.4

1
53

.4
4±

8.
26

33
.2

7±
8.

92

1
2

[4
0,

65
)

[4
5,

60
)

61
.3

0±
9.

61
50

.2
5±

6.
51

55
.5

3±
9.

49
49

.5
7±

10
.0

5
54

.4
4±

7.
94

48
.8

3±
8.

45

2
1

[6
5,

90
)

[3
0,

45
)

84
.3

4±
7.

00
35

.9
5±

6.
34

77
.9

7±
9.

14
40

.7
0±

8.
19

76
.5

5±
7.

83
34

.8
6±

8.
36

2
2

[6
5,

90
)

[4
5,

60
)

84
.4

3±
7.

50
52

.5
6±

5.
80

77
.9

1±
9.

07
54

.2
1±

8.
12

76
.4

8±
9.

09
50

.1
6±

7.
72



45

Table 22

Means and Standard Deviations of (Ai1i2 , Bi1i2),i1, i2 ∈ {1, 2} in Experiment 2(c)

i1 i2 αi1 (px) βi2 (px) Ai1i2 (px) Bi1i2 (px)

Participant P3

1 1 [18, 33) [56, 71) 24.15±4.17 58.47±4.66

1 2 [18, 33) [71, 86) 24.41±4.23 73.31±4.64

2 1 [33, 48) [56, 71) 38.86±4.44 60.28±4.45

2 2 [33, 48) [71, 86) 38.45±4.71 74.03±4.71

Participant P4

1 1 [18, 33) [56, 71) 25.29±4.54 62.76±4.96

1 2 [18, 33) [71, 86) 24.98±4.58 77.81±4.89

2 1 [33, 48) [56, 71) 39.34±4.45 61.59±4.83

2 2 [33, 48) [71, 86) 39.47±4.61 77.32±5.46

Participant P5

1 1 [18, 33) [56, 71) 25.81±4.66 64.49±4.75

1 2 [18, 33) [71, 86) 25.19±4.15 78.25±4.74

2 1 [33, 48) [56, 71) 39.81±4.35 63.49±4.87

2 2 [33, 48) [71, 86) 38.81±4.80 77.44±4.87

the p values for the comparisons of responses to the corresponding given factor point

across the levels of the other factor. For Experiment 1(b) participant P5 passed the

tests of marginal selectivity in both rectangular design and polar subdesign. The

other participants failed the tests in both designs. Experiment 2(c) failed the tests

for all the participants. Experiment 3(b) passed the tests for all the participants.
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Table 23

Means and Standard Deviations of (Ai1i2 , Bi1i2),i1, i2 ∈ {1, 2} in Experiment 3(b)

i1 i2 αi1 (px) βi2 (px) Ai1i2 (px) Bi1i2 (px)

Participant P3

1 1 [−30, 0) [−30, 0) -14.55±8.53 -15.03±8.10

1 2 [−30, 0) [0, 30) -14.33±8.78 15.21±8.44

2 1 [0, 30) [−30, 0) 14.41±8.43 -14.94±8.59

2 2 [0, 30) [0, 30) 14.91±8.06 15.48±8.71

Participant P4

1 1 [−30, 0) [−30, 0) -14.68±9.50 -15.30±9.07

1 2 [−30, 0) [0, 30) -14.69±8.99 15.00±9.60

2 1 [0, 30) [−30, 0) 14.39±8.99 -15.74±9.24

2 2 [0, 30) [0, 30) 15.69±8.94 15.86±8.93

Participant P5

1 1 [−30, 0) [−30, 0) -15.94±8.78 -15.52±8.72

1 2 [−30, 0) [0, 30) -14.92±9.29 14.11±8.22

2 1 [0, 30) [−30, 0) 14.66±9.01 -15.26±8.48

2 2 [0, 30) [0, 30) 14.39±9.39 13.81±8.72

The cosphericity test and LFT (of course Bell-CHSH-Fine inequalities) confirmed

selective influences present in the data collected from participant P5 in Experiment

1(b) and all the participants in Experiment 3(b). Here I present the results of these

tests for Experiment 3(b).

Correlations ρi1i2 in Experiment 3(b) are given in Table 27. The cosphericity test

was passed for all the participants.
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Table 24

Tests of Marginal Selectivity for Experiment 1(b)

Participant

P3 P4 P5

Rect- A11, A12 .000 .000 .332

angular A21, A22 .000 .000 .122

design B11, B21 .758 .000 .329

B12, B22 .289 .002 .621

Polar A11, A12 .475 .283 .616

design A21, A22 .854 .393 .122

B11, B21 .000 .000 .394

B12, B22 .003 .000 .306

Table 25

Tests of Marginal Selectivity for Experiment 2(c)

Participant P3 Participant P4 Participant P5

A11, A12 .352 .696 .031

A21, A22 .427 .198 .011

B11, B21 .000 .003 .009

B12, B22 .010 .122 .030

The cosphericity test was only a necessary condition for selective influences in

Experiment 3(b) as each (Ai1i2 , Bi1i2) was not bivariate normally distributed.. Since

marginal selectivity was satisfied, I then used Ai1 to represent Ai11 and Ai12, and Bi2
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Table 26

Tests of Marginal Selectivity for Experiment 3(b)

Participant P3 Participant P4 Participant P5

A11, A12 .950 .728 .106

A21, A22 .610 .230 .338

B11, B21 .838 .187 .876

B12, B22 .496 .069 .295

Table 27

Correlations of (A,B) in Experiment 3(b)

Participant P3 ρ11 = −.139 ρ12 = −.073 ρ21 = .153 ρ22 = −.104

Participant P4 ρ11 = .012 ρ12 = .099 ρ21 = .070 ρ22 = .045

Participant P5 ρ11 = .002 ρ12 = .010 ρ21 = .095 ρ22 = .019

to represent B1i2 and B2i2 . In order to apply Bell-CHSH-Fine inequalities, the output

variables have to be dichotomized and marginal selectivity has to be conserved after

that. One can discretize A1, A2, B1, and B2 according to particular values in px. To

give an example, I created two levels for A1 and A2: {smaller than or equal to -15 px,

larger than -15 px}, labeled as {a1, a2}, and two levels for B1 and B2: {smaller than

or equal to 15 px, larger than 15 px}, labeled as {b1, b2}. The joint probabilities and

marginal probabilities are presented in Table 28.
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Table 28

Joint Distributions of the Discretized (Ai1i2 , Bi1i2), i1, i2 ∈ {1, 2} in Experiment

3(b)

Participant P3

(α1, β1) B11=b1 B11=b2 (α1, β2) B12=b1 B12=b2

A11=a1 .526 0 .526 A12=a1 .222 .294 .516

A11=a2 .474 0 .474 A12=a2 .237 .247 .484

1 0 .459 .541

(α2, β1) B21=b1 B21=b2 (α2, β2) B22=b1 B22=b2

A21=a1 0 0 0 A22=a1 0 0 0

A21=a2 1 0 1 A22=a2 .459 .541 1

1 0 .459 .541

Participant P4

(α1, β1) B11=b1 B11=b2 (α1, β2) B12=b1 B12=b2

A11=a1 .509 0 .509 A12=a1 .254 .272 .526

A11=a2 .491 0 .491 A12=a2 .226 .249 .475

1 0 .480 .521

(α2, β1) B21=b1 B21=b2 (α2, β2) B22=b1 B22=b2

A21=a1 0 0 0 A22=a1 0 0 0

A21=a2 1 0 1 A22=a2 .460 .540 1

1 0 .460 .540

(table continues)
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Participant P5

(α1, β1) B11=b1 B11=b2 (α1, β2) B12=b1 B12=b2

A11=a1 .577 0 .577 A12=a1 .277 .246 .523

A11=a2 .423 0 .423 A12=a2 .246 .232 .478

1 0 .523 .478

(α2, β1) B21=b1 B21=b2 (α2, β2) B22=b1 B22=b2

A21=a1 0 0 0 A22=a1 0 0 0

A21=a2 1 0 1 A22=a2 .552 .448 1

1 0 .552 .448

In this Table, it is not always exact that

P (A11) = P (A12), P (A21) = P (A22),

P (B11) = P (B21), P (B12) = P (B22).

However equalities were still considered satisfied since marginal selectivity was previ-

ously established. In order to conduct the Bell-CHSH-Fine inequalities, let (a, b, c, d)

in (11) be

([P (A11 = a1) + P (A12 = a1)]/2, [P (A21 = a1) + P (A22 = a1)]/2,

[P (B11 = b1) + P (B21 = b1)]/2, [P (B12 = b1) + P (B22) = b1]/2),

for each participant in this example. After substituting those values and joint prob-

abilities in Table 28 into (11), Bell-CHSH-Fine inequalities were found not violated

for all the participants.
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We also tested the Bell-CHSH-Fine inequalities using A1, A2, B1, andB2 dichotom-

ized by other values in px. Four integers were generated from -40 px to 40 px with

an increment of 1 px per trial. So 814 distinct quadruples were created. We then

used each of them to discretize the (A1, A2, B1, B2) and computed the corresponding

joint probabilities and marginal probabilities (a, b, c, d). The test was passed for all

the 814 systems. Therefore, selective influences on (A,B) by the midpoint-discretized

(α, β) were certain in Experiment 3(b). Consequently, the two given amplitudes in

Experiment 3(b) were considered perceptually separable for all the three participants.

The LFT, of course, produced the same conclusion as the Bell-CHSH-Fine in-

equalities when (A,B) in Experiment 3(b) were dichotomized. Table 29 presents the

nonnegative solutions to the joint probabilities given in Table 28. The LFT is also ap-

plicable for multiply discretized (A,B). The test was passed for all the discretizations

that we tried.

Table 29

Solutions to the LFT for Experiment 3(b)

Participant (Q1111, Q1112, . . . , Q2222)T

P3 (0, 0, 0, 0, .225, .296, 0, 0, 0, 0, 0, 0, .234, .245, 0, 0)T

P4 (0, 0, 0, 0, .244, .273, 0, 0, 0, 0, 0, 0, .226, .257, 0, 0)T

P5 (0, 0, 0, 0, .291, .259, 0, 0, 0, 0, 0, 0, .246, .204, 0, 0)T

Conclusions

Selective influences were demonstrated verifiable and falsifiable by performing the

cosphericity test, LFT, and Bell-CHSH-Fine inequalities using the empirical data.
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The failure to detect marginal selectivity in Experiments 2(a), 2(b) and 2(c) con-

firmed that perceptual separability absent in the Delboeuf illusion phenomenon. The

participants’ performance in the dot position reproduction task and the floral shape

reproduction task was not exact within the expectation. The results from the dot po-

sition reproduction task indicated that selective influences were absent in Experiment

1(a) but detected for participant P5 in Experiment 1(b) for both rectangular design

and polar subdesign. For the floral reproduction task, selective influences were indeed

violated for all the participants (except some 2× 2 subdesigns for participant P5) in

Experiment 3(a) but supported in Experiment 3(b) for all the participants. It was

found, consistently in the three types of tasks, selective influences were more likely

to exist in the designs with continuous factor points than the designs with several

discrete factor points, supporting the speculation that responding to each stimulus

deliberately rather than automatically has a higher chance to result in processing

stimulus attributes separably. Nevertheless, it may not be complete to attribute the

presence of selective influences in Experiment 3(b) to this reason only. We speculated

that different levels of awareness of the two factors were involved in the three tasks.

In the concentric circle reproduction task, the participants were at the highest level

of awareness of the two factors. It was apparent that the two factors were the sizes of

circle one and circle two. In the dot position reproduction task, the participants were

at the middle level of awareness. They were asked to move the dot to the “correct”

location. Whether the two factors were represented in the rectangular coordinates

or the polar coordinates, they should realize that if they moved the trackball to the

right or up, the dot was further from the center of the circle. So they sensed that

there were two factors involved to some extent. In the floral shape reproduction task,

it was believed that the participants had no way to consciously know there were two

factors. In the dot position reproduction task and the concentric circle reproduction
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task, selective influences were rarely present, probably because once people realized

two distinct factors were involved, the responses to one factor tended to be influenced

by the other factor, resulting in the failure of marginal selectivity. However, selective

influences for the amplitudes in the floral shape reproduction task stood a better

chance to be detected because the participants had no clue if there were distinct fac-

tors and how many of them were used. This speculation seems counterintuitive but

was supported by the results from the experiments.

It was theoretically proved that the chance to violate selective influences is rela-

tively low in the presence of marginal selectivity (Dzhafarov & Kujala, 2011): If the

marginal probabilities are constrained to .5 in a 2× 2 factorial design and the values

of Pr(Ai1i2 ≤ MAi1i2
, Bi1i2 ≤ MBi1i2

), i1, i2 ∈ {1, 2} are randomly picked up from

four independent uniform distributions from 0 to .5, the chance to sustain selective

influences is .67. Therefore it was not a surprise that in Experiments 1(a), 2(a), 2(b),

and 3(a), no violation of selective influences was found with the artificially imposed

marginal selectivity. In Experiment 2(b), three correlations of Type N transformed

(A,B) were as high as about .8 and the other correlation was about .3. But the

cosphericity test did not fail. Besides the LFT for Type D transformed (A,B) were

passed except for a few particular discretizations of the data set. These violations

were attributed to statistical fluctuations. We are not sure if there exists such an

empirical paradigm in which selective influences are violated but marginal selectiv-

ity is present. If the answer is no, it may imply that in humans behavior selective

influences are essentially synonymous to marginal selectivity.
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MENTAL ARCHITECTURES AND APPLICATIONS

A Historical Review of Mental Architectures

As mentioned earlier, a mental architecture is a hypothetical network of processes

carried in the mind when the task is being performed. One way of understanding the

arrangement of the processes is to investigate the distribution functions of the overall

processing time in different experimental conditions and compute a linear combina-

tion of them. It is assumed that the durations of the processes in the network are

selectively influenced by different external factors. Let us consider only two processes

Xα and Xβ, selectively responding to external factors α and β, respectively. Let us

denote durations of processes Xα and Xβ as Tα and T β, respectively. There are in-

finitely many possible architectures even if only two processes are considered. Three

elementary schemes (Figure 8) are of the greatest traditional interest:

(a) Minimum parallel (T = min(Tα, T β)),

(b) Maximum parallel (T = max(Tα, T β)),

(c) Serial (T = Tα + T β).

The study of serial and parallel processing of selective influenced components can

be traced back to Sternberg (1969). His Additive Factor Method was used in a 2× 2

factorial design. Let Ti1i2 denote the time to complete the task given the treatment

φ = (αi1 , βi2) , i1, i2 ∈ {1, 2} . He suggested that if the processes are serial and the

process durations are pairwise independent, then the mean interaction contrast (C)

presented below equals zero:
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Figure 8. Three elementary schemes: (a) minimum parallel, (b) maximum parallel,

and (c) serial.
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C = T 11 − T 12 − T 21 + T 22,

where T i1i2 is the mean value of Ti1i2 .

The use of C was later extended to architectures other than serial processing

(Schweickert, 1978, 1982; Schweickert & Townsend, 1989; Townsend & Schweickert,

1989). However, C is only a rough summary of response times. The complete in-

formation of the response time is carried in its distribution function. Townsend and

Nozawa (1995) constructed the interaction contrast of survivor functions for response

time to provide an insight of the underlying mental architecture operating in a given

psychological task. It can be equivalently expressed as the linear combination of the

distribution functions:

C (t) = Pr (T11 ≤ t)− Pr (T12 ≤ t)− Pr (T21 ≤ t) + Pr (T22 ≤ t) . (15)

Let us denote Tαi1 the duration to process the factor αi1 and T βi2 the duration to

process the factor βi2 . By imposing the assumption of stochastic dominance to the

distribution functions of durations,

Pr(Tα1 ≤ t) ≥ Pr(Tα2 ≤ t),Pr(T β1 ≤ t) ≥ Pr(T β2 ≤ t), (16)

they found that C is positive and C(t) always nonpositive for the minimum parallel

model, and C is negative and C(t) always nonnegative for the maximum parallel

model. For the serial model, C(t) is positive for small times t and later becomes

negative, while C is zero.

The assumption of selective influences is critical for the technique of interaction

contrast. Townsend and Thomas (1994) proved that if selectivity does not hold for the
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interdependent Tα and T β, the characteristic patterns associated with the minimum

parallel, maximum parallel, and serial models are distorted: C(t) can be negative,

zero, and positive in each of the three models. Therefore, without presence of selective

influences, one architecture is indistinguishable from the others.

In this dissertation, I will use X ∧ Y or ∧(X, Y ) to denote min(X, Y ), and X ∨ Y

or ∨(X, Y ) to denote max(X, Y ) for convenience. The pairwise serial and parallel

processes are the fundamental units of an serial-parallel (SP) mental architecture.

An SP mental architecture is a network defined by the three arguments.

Definition 5. (1) A single process is an SP mental architecture. (2) If X and Y

are SP mental architectures that do not share components, then X ∧ Y , X ∨ Y , and

X + Y are SP mental architectures. (3) There are no other SP mental architectures

than those construable by rules 1 and 2.

Definition 6. An SP mental architecture is homogeneous if it does not contain both

∧ and ∨ in one network. Those constructed of plus and min are SP∧ mental archi-

tectures. Those constructed of plus and max are SP∨ mental architectures.

Definition 7. An SP mental architecture is simple if it contains only one particular

operation.

Figure 9(a) is an example of an SP mental architecture but it is not homogeneous.

Figure 9(b) is a homogeneous SP mental architecture. Figure 9(c) is a simple SP

mental architecture.

Most of the results previously obtained for mental networks are confined to homo-

geneous SP mental architectures. Schweickert et al. (2000) studied the three pairwise

operations-minimum parallel, maximum parallel, and serial, in homogeneous SP men-

tal architectures assuming Tα and T β are stochastically independent. They demon-

strated that the three operations are distinguishable as they have distinct patterns
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Figure 9. Examples of (a) an SP mental architecture, (b) a homogeneous SP mental

architecture, and (c) a simple SP mental architecture.
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of C(t). Dzhafarov et al. (2004) generalized the results to interdependent Tα and T β

and found the patterns preserve in the interdependent cases. By setting the common

randomness Θ in Definition 1 to a particular value θ, interdependent Tα and T β be-

come conditionally independent. Then the corresponding interaction contrast C(t) is

identical to that developed by Schweickert et al. (2000). The interaction contrast for

the interdependent processes can be obtained by integrating the C(t) conditional on

Θ = θ over the measure space of Θ.

Despite the success of earlier work in classifying mental architectures, those ap-

proaches are limited by several “auxiliary” assumptions (e.g., existence and certain

properties of probability density functions). Zhang and Dzhafarov (2015) reduced the

interaction contrast (15) to a linear combination of deterministic numbers by condi-

tioning all random variables involved on a particular value r of the hidden variable R

in Definition 2. This method requires fewer assumptions and reduces the probabilis-

tic problem to simple numerical combinatorics. In addition, the consideration is not

constrained to homogenous SP mental architectures: it can be extended to general

SP mental architectures. Below I present the theoretical work that we have done and

the results of some empirical studies guided by the the theory of mental architectures.

Note that SP mental architectures do not span the entire range of possible con-

figurations of mental architectures. There is significant theoretical work on more

general architectures, in which the operations are only assumed to be commutative

and associative (Cortese & Dzhafarov, 1996; Dzhafarov & Cortese, 1996; Dzhafarov

& Schweickert, 1995). They are outside the scope of the discussion here.
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Theoretical Achievement of SP Mental Architectures

Simple SP Mental Architectures of Size 2

Let us consider a system of only two processes Xα and Xβ, responding to the

external factors α and β, respectively. Let us denote the durations of the two processes

Tα and T β, respectively. Suppose Tα and T β are selectively influenced by α and β:

(Tα, T β) " (α, β). Let each factor have two levels: α ∈ {α1, α2} and β ∈ {β1, β2}.

Ti1i2 , T
α
i1i2

, and T βi1i2 denote, respectively, the overall duration, duration of a response

to α, and duration of a response to β, given the treatment (αi1 , βi2), i1, i2 ∈ {1, 2}.

According to the assumption of selective influences, Tαi1i2 is the same for all values of

i2 and T βi1i2 is the same for all values of i1. I therefore write Tαi1i2 = Tαi1 = fα (i1, R)

and T βi1i2 = T βi2 = fβ (i2, R) for convenience. Ti1i2 , T
α
i1

, and T βi2 for each treatment

become deterministic when R defined in Definition 2 is fixed to some value r. These

deterministic quantities are denoted as Ti1i2r, T
α
i1r

, and T βi2r. The distribution function

Pr(Ti1i2 ≤ t) conditioned on R = r is reduced to a (shifted) Heaviside step function:

Hi1i2r (t) =

 0, if t < Ti1i2r

1, if t ≥ Ti1i2r

.

The distribution function for the unconditional Ti1i2 is

Hi1i2 (t) =

∫
R
Hi1i2r (t) dµr,

where R is the set of all possible values of R, and µr is its probability measure. When

conditioned on R = r, the interaction contrast C(t) (15) is reduced to:

Cr (t) = H11r (t)−H12r (t)−H21r (t) +H22r (t) .
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Hence the unconditional C(t) can be expressed as

C(t) =

∫
R
Cr (t) dµr

=

∫
R

[H11r (t)−H12r (t)−H21r (t) +H22r (t)] dµr.

=H11 (t)−H12 (t)−H21 (t) +H22 (t)

We have to make one auxiliary assumption: the prolongation assumption, which

is the deterministic version of the stochastic dominance assumption (16). For any

choice R = r,

Tα1r ≤ Tα2r, T
β
1r ≤ T β2r. (17)

The graphical representation of Cr(t) with the prolongation assumption is displayed

below (with the possibility that some of the points on the time axis may coincide).

It is easy to see that if T12r ∧ T21r = T11r, then Cr(t) ≤ 0; if T12r ∨ T21r = T22r, then

Cr(t) ≥ 0.

We also define two cumulative interaction contrasts conditioned on R = r:

Cr (0, t) =

∫ t

0

Cr(t)dt, (18)

Cr (t,∞) =

∫ ∞
t

Cr (t) dt = lim
u→∞

∫ u

t

Cr (t) dt. (19)

The corresponding unconditional cumulative interaction contrasts are
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• • 1

•
T11r

•
T12r∧T21r

•
T12r∨T21r

•
T22r time

// 0

• • −1

Figure 10. The graphical representation of Cr(t).
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C (0, t) =

∫
R
Cr (0, t) dµr

=

∫
R

(∫ t

0

Cr (t) dt

)
dµr

=

∫ t

0

(∫
R
Cr (t) dµr

)
dt

=

∫ t

0

C (t) dt, (20)

C (t,∞) =

∫
R
Cr (t,∞) dµr

=

∫
R

(∫ ∞
t

Cr (t) dt

)
dµr

=

∫ ∞
t

(∫
R
Cr (t) dµr

)
dt

=

∫ ∞
t

C (t) dt. (21)

Theorem 8 below states that the three two-process simple mental architectures

have distinct patterns for the conditional interaction contrast or for the conditional

cumulative interaction contrast.

Theorem 8. (i) For T = Tα ∧ T β, Cr (t) ≤ 0 for any r, t; (ii) for T = Tα ∨ T β,

Cr (t) ≥ 0 for any r, t; (iii) for T = Tα + T β, Cr(0, t) ≥ 0 and Cr(t,∞) ≤ 0 for any

r, t; moreover, limt→∞Cr(0, t) = limt→0Cr(t,∞) = 0.

Proof. (i) If T = Tα ∧ T β, we have, for any r,

T11r = Tα1r ∧ T
β
1r,

T12r = Tα1r ∧ T
β
2r,

T21r = Tα2r ∧ T
β
1r.
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With the prolongation assumption (17), it follows that

T12r ∧ T21r = Tα1r ∧ T
β
2r ∧ Tα2r ∧ T

β
1r = Tα1r ∧ T

β
1r = T11r.

By observing Figure 10, Cr (t) ≤ 0 is apparent.

(ii) The proof is analogous if T = Tα ∨ T β.

(iii) If T = Tα + T β,

T11r = Tα1r + T β1r,

T12r = Tα1r + T β2r,

T21r = Tα2r + T β1r,

T22r = Tα2r + T β2r.

Hence,

T12r ∧ T21r − T11r = ∧(Tα1r + T β2r, T
α
2r + T β1r)− (Tα1r + T β1r),

T22r − T12r ∨ T21r = (Tα2r + T β2r)− ∨(Tα1r + T β2r, T
α
2r + T β1r).

Without loss of generality, let Tα1r + T β2r ≤ Tα2r + T β1r. Then

T12r ∧ T21r − T11r = (Tα1r + T β2r)− (Tα1r + T β1r) = T β2r − T
β
1r,

T22r − T12r ∨ T21r = (Tα2r + T β2r)− (Tα2r + T β1r) = T β2r − T
β
1r.

So we have

T12r ∧ T21r − T11r = T22r − T12r ∨ T21r.

By observing Figure 10, the statement follows.
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Corollary 9 below follows from Theorem 8 immediately. The unconditional C(t) is

the result of integrating Cr(t) over the measure space of R. The integral preserves the

sign of Cr(t), therefore the pattern of C(t) is preserved in the unconditional condition.

Corollary 9. (i) For T = Tα ∧ T β, C (t) ≤ 0 for any t; (ii) for T = Tα ∨ T β,

C (t) ≥ 0 for any t; (iii) for T = Tα + T β, C(0, t) ≥ 0 and C(t,∞) ≤ 0 for any t;

moreover, limt→∞C(0, t) = limt→0C(t,∞) = 0.

Two Processes in an Arbitrary SP Mental Architecture

The technique of interaction contrast is still applicable to characterize two pro-

cesses arranged in parallel or in sequence in an SP network. Let us, as before, write

Tα the duration of the response to α and T β the duration of the response to β. The

overall duration T of this SP mental architecture can be considered a function of

Tα, T β and other components of SP: T = SP(Tα, T β, . . .). We assume that Tα, T β

and all other components are selectively influenced by α, β, and empty set, respec-

tively: (Tα, T β, . . .) " (α, β, ∅). Using the same notation as in the previous section,

Ti1i2 , T
α
i1

, and T βi2 denote the overall duration of the entire SP mental architecture,

the duration in response to α, and the duration in response to β, given the treatment

(αi1 , βi2), i1, i2 ∈ {1, 2}. The prolongation assumption (17) is imposed on the system.

Definition 10. Two durations Tα, T β in an SP mental architecture are minimum

parallel if there is a subnetwork of the form SP1 (Tα, . . .) ∧ SP2
(
T β, . . .

)
; they are

maximum parallel if there is a subnetwork of the form SP1 (Tα, . . .) ∨ SP2
(
T β, . . .

)
;

they are serial (or sequential) if there is a subnetwork SP1 (Tα, . . .) + SP2
(
T β, . . .

)
.

Lemma 11. If Tα and T β are arranged in a minimum parallel way in an SP mental

architecture, then SP(Tα, T β, . . .) can be represented as SP1 (Tα, . . .) ∧ SP2
(
T β, . . .

)
;

if they are arranged in maximum parallel, then SP(Tα, T β, . . .) can be represented as

SP1 (Tα, . . .) ∨ SP2
(
T β, . . .

)
.
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Proof. Let ♦ denote either ∧ or ∨. According to Definition 5 and Definition 10,

if Tα, T β are minimum parallel, then SP(Tα, T β, . . .) can be presented either as

(i) SP1(Tα, . . .) ∧ SP2(T β, . . .) or (ii)
(
SP1(Tα, . . .) ∧ SP2(T β, . . .) + T ′

)
♦T ′′ or (iii)(

SP1(Tα, . . .) ∧ SP2(T β, . . .)♦T ′
)

+ T ′′, where T β does not enter in SP1, Tα does not

enter in SP2, and T ′ and T ′′ are durations of certain subnetworks. Now we only

need to observe that (ii) and (iii) can be written in the form of SP1 (Tα, . . .) ∧

SP2
(
T β, . . .

)
: (ii) =

(
SP1(Tα, . . .) + T ′

)
∧
((

SP2(T β, . . .) + T ′
)
♦T ′′

)
and (iii) =(

SP1(A, . . .) + T ′′
)
∧
(
SP2(B, . . .)♦T ′ + T ′′

)
. The proof for the maximum parallel

case is analogous.

Note that if Tα and T β are arranged in a sequence in an SP mental architecture,

SP(Tα, T β, . . .) cannot be represented as SP1 (Tα, . . .) + SP2
(
T β, . . .

)
in many cases.

Figure 9(b) is an example for it.

Lemma 12. If Tα and T β are arranged in parallel or in sequence in an SP mental

architecture, then
(
SP1 (Tα, . . .) , SP2

(
T β, . . .

))
" (α, β), and for any fixed R = r, the

following version of the prolongation assumption holds: SP1 (Tα1r, . . .) ≤ SP1 (Tα2r, . . .),

SP2
(
T β1r, . . .

)
≤ SP2

(
T β2r, . . .

)
.

Proof. According to Definition 10,
(
SP1 (Tα, . . .) , SP2

(
T β, . . .

))
" (α, β) is obvi-

ous. Fixing R = r, by the prolongation assumption (17) and (nonstrict) monotonic-

ity of SP mental architectures, SP1 (Tα1r, . . .) ≤ SP1 (Tα2r, . . .) and SP2
(
T β1r, . . .

)
≤

SP2
(
T β2r, . . .

)
is apparent.

Lemma 13. In any SP mental architecture, for any r,

T11r ≤ T12r ∧ T21r ≤ T12r ∨ T21r ≤ T22r.

Proof. Follows from Lemma 12 and the property of the (nonstrict) monotonicity of

an SP mental architecture.
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According to Lemma 12, it is not hard to see that Figure 10 is also the graphical

representation of the conditional interaction contrast Cr(t) for two processes in an

arbitrary SP mental architecture.

Lemma 14. In any SP mental architecture, for any r,

Cr (t) =


1− 0− 0 + 0 > 0,

1− 1− 1 + 0 < 0,

0,

if T11r ≤ t < T12r ∧ T21r

if T12r ∨ T21r ≤ t < T22r

otherwise

.

Proof. By direct computation.

Lemma 15. In any SP mental architecture, for any r, t, Cr (t) ≤ 0 if and only if

T11r = T12r ∧ T21r; Cr (t) ≥ 0 if and only if T12r ∨ T21r = T22r.

Proof. Immediately follows from Lemma 13.

Lemma 16. In any SP mental architecture, for any r, t,

(i) Cr (0, t) ≥ 0 if and only if −T11r + T12r + T21r − T22r ≥ 0, and

(ii) Cr (t,∞) ≤ 0 if and only if −T11r + T12r + T21r − T22r ≤ 0.

Proof. By observing Figure 10, it is immediate that Cr (0, t) ≥ 0 for any t if and only

if T12r ∧ T21r − T11r ≥ T22r − T12r ∨ T21r =⇒ −T11r + T12r + T21r − T22r ≥ 0. Therefore

statement (i) is proved. The proof for (ii) is analogous.

Theorem 17. (i) If Tα and T β in an SP mental architecture are minimum parallel,

then Cr (t) ≤ 0 for any r, t; (ii) if Tα and T β in an SP mental architecture are

maximum parallel, then Cr (t) ≥ 0 for any r, t; (iii) if Tα and T β in an SP mental

architecture are serial, then either Cr (0, t) ≥ 0 for any r, t, or Cr (t,∞) ≤ 0 for any

r, t.
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Proof. (i) If Tα, T β in an SP mental architecture are minimum parallel, then according

to Lemma 11, the overall duration is T = SP1 (Tα, . . .)∧SP2
(
T β, . . .

)
. In addition, ac-

cording to Lemma 12, SP1 (Tα1r, . . .) ≤ SP2 (Tα2r, . . .), SP2
(
T β1r, . . .

)
≤ SP1

(
T β2r, . . .

)
,

Cr (0, t) ≤ 0 can be obtained by replacing Tαr and T βr in the proof of Theorem 8 with

SP1 (Tαr , . . .) and SP2
(
T βr , . . .

)
, respectively.

(ii) The proof for the maximum parallel case is analogous.

(iii) According to Definition 10, if Tα, T β are serial in an SP mental architecture,

there is a subnetwork of the form SP1 (Tα, . . .) + SP2
(
T β, . . .

)
. Let us denote the

overall duration for this subnetwork T s. We have

− T s11r + T s12r + T s21r − T s22r = −
(

SP1 (Tα1r, . . .) + SP2
(
T β1r, . . .

))
+
(

SP1 (Tα1r, . . .) + SP2
(
T β2r, . . .

))
+
(

SP1 (Tα2r, . . .) + SP2
(
T β1r, . . .

))
−
(

SP1 (Tα2r, . . .) + SP2
(
T β2r, . . .

))
= 0.

The entire SP mental architecture SP
(
Tα, T β, . . .

)
can be represented as either

(
SP1(Tα, . . .) + SP2(T β, . . .)

)
∧ T ′ + T ′′ (22)

or

(
SP1(Tα, . . .) + SP2(T β, . . .)

)
∨ T ′ + T ′′. (23)

The overall duration for the entire SP mental architecture is T = T s ∧ T ′ + T ′′ for

case (22). We have for this case

− T11r + T12r + T21r − T22r = −T s11r ∧ T ′ + T s12r ∧ T ′ + T s21r ∧ T ′ − T s22r ∧ T ′.
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Without loss of generality, assuming T s12r ≤ T s21r, the above expression equals

0 if T ′ < T s11r

−T s11r + T ′ if T s11r ≤ T ′ < T s12r

−T s11r + T s12r if T s12r ≤ T ′ < T s21r

−T s11r + T s12r + T s21r − T ′ if T s21r ≤ T ′ < T s22r

−T s11r + T s12r + T s21r − T s22r if T ′ ≥ T s22r.

The nonnegativity of the first three expressions is obvious, the fifth one is zero, and

the fourth expression is larger than the fifth because T ′ < T s22r. Hence −T11r +T12r +

T21r − T22r ≥ 0. By Lemma 16, Cr (0, t) ≥ 0 for any t for case (22). The proof for

Cr (t,∞) ≤ 0 for case (23) is analogous.

Corollary 18. (i) If Tα and T β in an SP mental architecture are minimum parallel,

then C (t) ≤ 0 for any t; (ii) if Tα and T β in an SP mental architecture are maximum

parallel, then C (t) ≥ 0 for any t; (iii) if Tα and T β in an SP mental architecture are

serial, then either C (0, t) ≥ 0 for any t, or C (t,∞) ≤ 0 for any t.

If the serial Tα, T β are in an homogeneous SP mental architecture, the statement

of theorem can be made more specific.

Theorem 19. If Tα and T β are serial in an SP∧ mental architecture, then C (0, t) ≥ 0

for any t; if Tα and T β are serial in an SP∨ mental architecture, then C (t,∞) ≤ 0

for any t.

Simple SP Mental Architectures of Size n

Now let us consider simple SP mental architectures of n processes X1, . . . , Xn,

whose durations are T 1, . . . , T n. The overall duration of this architecture T can be

considered a function of T 1, . . . , T n. Suppose T 1, . . . , T n are selectively influenced by
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the external factors λ1, . . . , λn, respectively: (T 1, . . . , T n) " (λ1, . . . , λn). Suppose

in addition each factor has two levels: λk ∈ {λk1, λk2}, k ∈ {1, . . . , n}. Denote Ti1...in

and T ki1...in the overall duration for the entire mental architecture and the duration

for process Xk, respectively, given the treatment (λ1
i1
, . . . , λnin), i1, . . . , in ∈ {1, 2}.

According to the assumption of selective influences, T ki1...in is independent of factors

other than λkik . We therefore can write T ki1...in = T kik .

Yang et al. (2014) generalized the 2nd order interaction contrast (15) to the n-th

order interaction contrast. It can be expressed as

C(n) (t) =
∑
i1,...,in

(−1)n+
∑n

k=1 ik Pr (Ti1...in ≤ t) . (24)

They used the idea similar to that proposed by Dzhafarov et al. (2004): By setting the

common randomness Θ in Definition 1 to a particular value θ, (T 1, . . . , T n) become

independent and the patterns of C(n) (t) conditioned on Θ = θ for the three simple

SP mental architectures ∧(T 1, . . . , T n), ∨(T 1, . . . , T n), and T 1 + . . .+T n were proved

distinct. The patterns still hold in the unconditional case.

However, as mentioned earlier, this approach is limited by certain auxiliary as-

sumptions. Similarly to what was discussed in the previous sections, Zhang and

Dzhafarov (2015) fixed the random entity R = r, then T 1
i1
, . . . , T nin and Ti1...in re-

duce to numbers, written as T 1
i1r
, . . . , T ninr and Ti1...inr. Consequently the distribution

function Pr(Ti1...in ≤ t) is a (shifted) Heaviside step function:

Hi1...inr (t) =

 0, if t < Ti1...inr

1, if t ≥ Ti1...inr

.
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The distribution function for the unconditional Ti1...in is

Hi1...in (t) =

∫
R
Hi1...inr (t) dµr.

The n-th order C(n)(t) conditioned on R = r can be written as:

C(n)
r (t) =

∑
i1,...,in

(−1)n+
∑n

k=1 ik Hi1...inr (t) .

Thus,

C(1)
r (t) =

∑
i1

(−1)1+i1 Hi1r (t) = H1r (t)−H2r (t) ,

C(2)
r (t) =

∑
i1,i2

(−1)2+i1+i2 Hi1i2r (t)

= H11r (t)−H12r (t)−H21r (t) +H22r (t) ,

C(3)
r (t) =

∑
i1,i2,i3

(−1)3+i1+i2+i3 Hi1i2i3r (t)

= H111r (t)−H112r (t)−H121r (t)−H211r (t)

+H122r (t) +H212r (t) +H221r (t)−H222r (t) ,

etc. Hence C(n)(t) (24) can be written as

C(n) (t) =

∫
R
C(n)
r (t) dµr

=

∫
R

∑
i1,...,in

(−1)n+
∑n

k=1 ik Hi1...inr (t) dµr

=
∑
i1,...,in

(−1)n+
∑n

k=1 ik Hi1...in (t)
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We define the n-th order cumulative contrast conditioned on R = r:

C [n]
r (0, t) =

∫ t

0

(∫ t1

0

. . .

∫ tn−2

0

C(n)
r (tn−1) dtn−1 . . . dt2

)
dt1,

C [n]
r (t,∞) =

∫ ∞
t

(∫ ∞
t1

. . .

∫ ∞
tn−2

C(n)
r (tn−1) dtn−1 . . . dt2

)
dt1.

Thus,

C [1]
r (0, t) = C [1]

r (t,∞) = H1r (t)−H2r (t) ,

C [2]
r (0, t) =

∫ t

0

C(2)
r (t1) dt1,

C [2]
r (t,∞) =

∫ ∞
t

C(2)
r (t1) dt1,

C [3]
r (0, t) =

∫ t

0

∫ t1

0

C(3)
r (t2) dt2dt1,

C [3]
r (t,∞) =

∫ ∞
t

∫ ∞
t1

C(3)
r (t2) dt2dt1,

etc. Hence the n-th order unconditional cumulative interaction contrast is written as

C [n] (0, t) =

∫ t

0

C [n]
r (0, t) dµr,

C [n] (t,∞) =

∫ ∞
t

C [n]
r (t,∞) dµr.
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We also denote

C
(n−1)
iwr

(t) =
∑

i1,...,iw−1,iw+1,...,in

(−1)n−1−iw+
∑n

k=1 ik Hi1...iw−1iwiw+1...inr (t) , (25)

where w ∈ {1, . . . , n} and iw is fixed at 1 or 2. We then can write

C [1]
r (0, t) = C [1]

r (t,∞) = H1r (t)−H2r (t) , (26)

C [2]
r (0, t) =

∫ t

0

C(2)
r (t1) dt1

=

∫ t

0

(H11r (t1)−H12r (t1)−H21r (t1) +H22r (t1)) dt1

=

∫ t

0

[
C

[1]
iw=1,r (t1)− C [1]

iw=2,r (t1)
]
dt1,

C [2]
r (t,∞) =

∫ ∞
t

C(2)
r (t1) dt1

=

∫ ∞
t

(H11r (t1)−H12r (t1)−H21r (t1) +H22r (t1)) dt1

=

∫ ∞
t

[
C

[1]
iw=1,r (t1)− C [1]

iw=2,r (t1)
]
dt1,

C [3]
r (0, t) =

∫ t

0

∫ t1

0

C(3)
r (t2) dt2dt1

=

∫ t

0

∫ t1

0

[
C

(2)
iw=1,r (t2)− C(2)

iw=2,r (t2)
]
dt2dt1

=

∫ t

0

[∫ t1

0

C
(2)
iw=1,r (t2) dt2 −

∫ t1

0

C
(2)
iw=2,r (t2) dt2

]
dt1

=

∫ t

0

[
C

[2]
iw=1,r (0, t1)− C [2]

iw=2,r (0, t1)
]
dt1,
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C [3]
r (t,∞) =

∫ ∞
t

∫ ∞
t1

C(3)
r (t2) dt2dt1

=

∫ ∞
t

∫ ∞
t1

[
C

(2)
iw=1,r (t2)− C(2)

iw=2,r (t2)
]
dt2dt1

=

∫ ∞
t

[∫ ∞
t1

C
(2)
iw=1,r (t2) dt2 −

∫ ∞
t1

C
(2)
iw=2,r (t2) dt2

]
dt1

=

∫ ∞
t

[
C

[2]
iw=1,r (t1,∞)− C [2]

iw=2,r (t1,∞)
]
dt1,

and generally, the n-th order cumulative interaction contrast conditioned on R = r

can be written as,

C [n]
r (0, t) =

∫ t

0

C
[n−1]
iw=1,r (0, t) dt−

∫ t

0

C
[n−1]
iw=2,r (0, t) dt, (27)

C [n]
r (t,∞) =

∫ ∞
t

C
[n−1]
iw=1,r (t,∞) dt−

∫ ∞
t

C
[n−1]
iw=2,r (t,∞) dt. (28)

The conditional prolongation assumption is again made: For any choice R = r,

T k1r ≤ T k2r. (29)

Theorem 20. (i) If T = T 1 ∧ . . . ∧ T n, C
(n)
r (t) ≤ 0 if n is even and C

(n)
r (t) ≥ 0

if n is odd; (ii) if T = T 1 ∨ . . . ∨ T n, C
(n)
r (t) ≥ 0; (iii) if T = T 1 + . . . + T n,

C
[n]
r (0, t) ≥ 0, and C

[n]
r (t,∞) ≤ 0 if n is even and C

[n]
r (t,∞) ≥ 0 if n is odd;

additionally, limt→∞C
[n]
r (0, t) = limt→0C

[n]
r (t,∞) = 0.

Proof. (i) By induction on n, the statement for T = T 1 ∧ . . .∧ T n is true when n = 1

according to the prolongation assumption (29):

C(1)
r (t) = H1r (t)−H2r (t) ≥ 0.
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Let the statement be true up to C
(n−1)
r (t), n− 1 ≥ 1. Let

T 1
1r ∧ T 2

1r ∧ . . . ∧ T n1r = T v1r,

where 1 ≤ v ≤ n. We then have for any values of i1...iv−1, iv+1 . . . in,

Ti1...iv−11iv+1...inr = T 1
1r ∧ . . . ∧ T v−1

iv−1r
∧ T v1r ∧ T v+1

iv+1r
∧ . . . ∧ T ninr = T v1r.

Consequently

Hi1i2...iv−11iv+1...inr (t) =

 0, if t < T v1r

1, if t ≥ T v1r

.

Therefore C
(n−1)
iv=1,r (t) = 0, and

C(n)
r (t) = C

(n−1)
iv=1,r (t)− C(n−1)

iv=2,r (t) = −C(n−1)
iv=2,r (t) =

 ≤ 0, if n is even

≥ 0, if n is odd
.

(ii) For T = T 1 ∨ . . . ∨ T n, by induction on n, the case n = 1 is true by the

prolongation assumption:

C(1)
r (t) = H1r (t)−H2r (t) ≥ 0.

Let the statement be true up to C
(n−1)
r (t), where n− 1 ≥ 1. Let

T 1
2r ∨ T 2

2r ∨ . . . ∨ T n2r = Tm2r ,
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where 1 ≤ m ≤ n. We then have

Ti1i2...im−12im+1...inr = Tm2r ,

and

Hi1...im−12im+1...inr(t) =

 0, if t < Tm2r

1, if t ≥ Tm2r

,

for any i1...im−1, im+1...in. Then C
(n−1)
im=2,r (t) = 0, and

C(n)
r (t) = C

(n−1)
im=1,r (t)− C(n−1)

im=2,r (t) = C
(n−1)
im=1,r (t) ≥ 0.

(iii) For T = T 1 + . . . + T n, by induction on n, the case n = 1 is true by the

prolongation assumption:

C [1]
r (0, t) = C [1]

r (t,∞) = H1r (t)−H2r (t) ≥ 0,

and

lim
t→∞

C [1]
r (0, t) = lim

t→0
C [1]
r (t,∞) = 0.

Let the statement be true up to n− 1 ≥ 1. We have
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C [n]
r (0, t) =

∫ t

0

C
[n−1]
iw=1,r (0, t) dt−

∫ t

0

C
[n−1]
iw=2,r (0, t) dt

=

∫ t−Tw
1r

0

C [n−1]
r (0, t) dt−

∫ t−Tw
2r

0

C [n−1]
r (0, t) dt

=

∫ t−Tw
1r

t−Tw
2r

C [n−1]
r (0, t) dt, (30)

which is ≥ 0 since C
[n−1]
r (0, t) ≥ 0 and t− Tw2r ≤ t− Tw1 . Analogously,

C
[n]
t (t,∞) =

∫ ∞
t

C
[n−1]
iw=1,r (t,∞) dt−

∫ ∞
t

C
[n−1]
iw=2,r (t,∞) dt

=

∫ ∞
t−Tw

1r

C [n−1]
r (t,∞) dt−

∫ ∞
t−Tw

2r

C [n−1]
r (t,∞) dt

= −
∫ t−Tw

1r

t−Tw
2r

C [n−1]
r (t,∞) dt, (31)

which is ≤ 0 if n is even and ≥ 0 if n is odd. Applying the mean value theorem to

the results of (30) and (31), we get, for some t− Tw2r < t′, t′′ < t− Tw1r

lim
t→∞

∫ t−Tw
1r

t−Tw
2r

C [n−1]
r (0, t) dt = lim

t→∞
C [n−1]
r (0, t′) (−Tw1r + Tw2r) ,

lim
t→0

∫ t−Tw
1r

t−Tw
2r

C [n−1]
r (t,∞) dt = lim

t→0
C [n−1]
r (t′′,∞) (−Tw1r + Tw2r) .

t→∞ implies t′ →∞ and t→ 0 implies t′′ → 0. Both expressions tend to zero since

C
[n−1]
r (0,∞) = 0

Corollary 21. (i) If T = T 1 ∧ . . . ∧ T n, C(n) (t) ≤ 0 if n is even and C(n) (t) ≥ 0

if n is odd; (ii) if T = T 1 ∨ . . . ∨ T n, C(n) (t) ≥ 0; (iii) if T = T 1 + . . . + T n,
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C [n] (0, t) ≥ 0, and C [n] (t,∞) ≤ 0 if n is even and C [n] (t,∞) ≥ 0 if n is odd;

additionally, limt→∞C
[n](0, t) = limt→0C

[n] (t,∞) = 0.

Multiple Processes in an Arbitrary SP Network

Now let us consider multiple processes X1, . . . , Xn in an arbitrary SP mental

architecture. The overall duration of this SP architecture T can be considered a

function of the durations of processes T 1, . . . , T n and other duration components,

written as T = SP(T 1, . . . , T n, . . .). Suppose T 1, . . . , T n and other components are

selectively influenced by the external factors λ1, . . . , λn and the empty set, respec-

tively: (T 1, . . . , T n, ...) " (λ1, . . . , λn, ∅). Using the same notation as in the previous

section, Ti1...in and T kik , k ∈ {1, . . . , n} denote the overall duration and the duration

of process Xk, respectively, given the treatment (λ1
i1
, . . . , λnin), i1, . . . , in ∈ {1, 2}. The

prolongation assumption (29) is imposed in the system as well.

Definition 22. T 1, . . . , T n in an SP mental architecture are minimum parallel if there

is a subnetwork of the form SP1 (T 1, . . .) ∧ . . . ∧ SPn (T n, . . .) or maximum parallel if

there is a subnetwork of the form SP1 (T 1, . . .) ∨ . . . ∨ SPn (T n, . . .) or serial if there

is a subnetwork of the form SP1 (T 1, . . .) + . . .+ SPn (T n, . . .).

Lemma 23. If T 1, . . . , T n are all minimum parallel in an SP mental architecture,

then this architecture can be represented as SP(T 1, . . . , T n, . . .) = SP1 (T 1, . . .) ∧

. . . ∧ SPn (T n, . . .); if they are arranged in a maximum parallel way, then SP(T 1, . . . ,

T n, . . .) = SP1 (T 1, . . .) ∨ . . . ∨ SPn (T n, . . .).

Proof. For the minimum parallel case, similar to the proof in Lemma 11, we write the

SP mental architecture as (i) SP1(T 1, . . .)∧SP2(T 2, . . . , T n, . . .) or (ii) (SP1(T 1, . . .)∧

SP2(T 2, . . . , T n, . . .) + T ′)♦T ′′ or (iii) (SP1(T 1, . . .) ∧ SP2(T 2, . . . , T n, . . .)♦T ′) + T ′′,

where T ′ and T ′′ are durations of certain subnetworks. We observe that (ii) and (iii)

can be rewritten as the form of (i): (ii) =
(
SP1(T 1, . . .) + T ′

)
∧((SP2(T 2, . . . , T n, . . .)+
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T ′)♦T ′′) and (iii) = (SP1(T 1, . . .) + T ′′) ∧ (SP2(T 2, . . . , T n, . . .)♦T ′ + T ′′). We then

decompose SP2(T 2, . . . , T n, . . .) achieving SP1(T 1, . . .)∧SP2(T 2, . . .)∧SP3(T 3, . . . , T n,

. . .) and carry on this manner until the required SP1 (T 1, . . .) ∧ . . . ∧ SPn (T n, . . .) is

obtained. The proof for the maximum parallel case is analogous.

Observe that if multiple durations T 1, . . . , T n are arranged in a sequence in SP(T 1,

. . . , T n, . . .), this SP mental architecture generally cannot be represented as SP1(T 1,

. . .) + . . .+ SPn (T n, . . .).

Lemma 24. If T 1, . . . , T n are arranged in parallel or in a sequence in an SP men-

tal architecture,
(
SP1 (T 1, . . .) , . . . , SPn (T n, . . .)

)
" (λ1, . . . , λn) and, for any fixed

R = r, the following version of the prolongation assumption holds: SPk
(
T k1r, . . .

)
≤

SPk
(
T k2r, . . .

)
, k ∈ {1, . . . , n}.

Proof. According to Definition 22,
(
SP1 (T 1, . . .) , . . . , SPn (T n, . . .)

)
" (λ1, . . . , λn)

is obvious. Fixing R = r, by the prolongation assumption (29) and (nonstrict)

monotonicity of SP mental architectures, SPk
(
T k1r, . . .

)
≤ SPk

(
T k2r, . . .

)
, k ∈ {1, . . . ,

n} is apparent.

The statement of Theorem 20 can be generalized to multiple parallel processes in

an SP mental architecture but there is no extension for the multiple serial processes.

Theorem 25. If T 1, . . . , T n are minimum parallel in an SP mental architecture, then

for any r, t, C
(n)
r (t) ≤ 0 if n is even and C

(n)
r (t) ≥ 0 if n is odd; if T 1, . . . , T n are

maximum parallel in an SP mental architecture, then for any r, t, C
(n)
r (t) ≥ 0.

Proof. Follows from Lemma 23, 24 and statements (i), (ii) of Theorem 20.

Corollary 26. If T 1, . . . , T n are minimum parallel in an SP mental architecture,

then for any t, C(n) (t) ≤ 0 if n is even and C(n) (t) ≥ 0 if n is odd; if T 1, . . . , T n are

maximum parallel in an SP mental architecture, then for any r, t, C(n) (t) ≥ 0.



80

Conclusions

We have demonstrated a new way to characterize different types of mental ar-

chitectures. According to the assumption of selective influences, one can reduce the

components in the network from random variables to deterministic values by condi-

tioning the common source of randomness R on a fixed value. The interaction contrast

of distribution functions is then equivalent to a linear combination of shifted Heaviside

functions that involve only 0’s and 1’s at every time moment. This method simplifies

the arithmetic compared to the traditional approach. By using this method we pre-

sented the proofs of the known results for two-process and multiple-process mental

architectures. We also characterized two processes and multiple processes in the SP

mental architectures. We expect that this method can be extended to investigate

more complex networks.

Diagnosing Mental Architectures Implemented in Psychophysical

Experiments

The interaction contrast has been widely used to investigate mental architectures

implemented in various cognitive tasks, such as the simple detection task (Townsend

& Nozawa, 1995), Stroop task (Eidels, Townsend, & Algom, 2010), Gestalt principles

(Eidels, Townsend, & Pomerantz, 2008), visual search (Fific, Townsend, & Eidels,

2008; Sung, 2008), short term memory search (Townsend & Fific, 2004), face percep-

tion (Fific & Townsend, 2010; Wenger & Townsend, 2001), and even in the clinical

domain (Johnson, Blaha, Houpt, & Townsend, 2010). As explained above, however,

one has to impose several assumptions on the system when using the technique of

interaction contrast to investigate mental architectures. Some of these assumptions

are untestable when separately taken.
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Assumptions

Assumption 1: selective influences. If one considers only two processes,

it is assumed that Tα is selectively influenced by the factor α and T β is selectively

influenced by the factor β:

(Tα, T β) " (α, β). (32)

To establish selective influences of α and β on Tα and T β, one has to know the

distributions of Tα and T β. In psychological research, usually the overall duration T

can be measured but Tα and T β are unobservable. So as a rule the assumption of

selective influences separately taken cannot be tested.

Assumption 2: stochastic dominance. The assumption of stochastic domi-

nance (16) states that the distribution of Tα at level one dominates that of level two

and the distribution of T β at level one dominates that of level two. It follows from

the prolongation assumption (17) in our treatment. With the assumption of selective

influences (32), stochastic dominance implies the four inequalities:

Pr(T11 ≤ t) ≥ Pr(T12 ≤ t),

Pr(T11 ≤ t) ≥ Pr(T21 ≤ t),

Pr(T12 ≤ t) ≥ Pr(T22 ≤ t),

Pr(T21 ≤ t) ≥ Pr(T22 ≤ t). (33)

The inequalities state that the distribution of T11 dominates that of T12 and T21.

The distributions of T22 is dominated by T12 and T21. These four distributions are

observable.
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Note that the conjunction of (16) and (32) is a sufficient but not necessary con-

dition for (33). If (33) is confirmed, it corroborates (16) and (32) but does not

guaranteed them. If (33) is violated, then either (16) or (32), or both, are violated.

Assumption 3: only a single type of mental architecture used from trial

to trial. Though this assumption is not explicitly stated in the literature, it is

implicitly imposed on the investigated systems. This assumption could be invalid

since a person may implement a maximum parallel arrangement in one experimental

trial and switch to a serial one in another trial. In psychological research, it is usually

impossible to track the mental architectures in each trial. So this assumption is again

not testable when taken separately.

In addition to using these untestable assumptions, all the earlier studies on mental

architectures focused on the tasks with short response times: the participants made a

response within one second or so. In our study, it took the participants several seconds

to make a response. Therefore the current study investigated mental architectures in

a more complex situation, which broadens the application of mental architectures.

The study conducted in our lab involved two psychophysical tasks: the dot posi-

tion reproduction task and the floral shape reproduction task (with minor modifica-

tions as compared to the experiments reported in Chapter 1). Here we are using the

same notation as in Chapter 1: α and β denote the coordinates of the target dots

or the amplitudes of the target shapes. A and B represent the eventual responses to

α and β, that is, the coordinates of the reproduced dots or the amplitudes of of the

reporduced shapes. We label Tα the time to produce A and T β the time to produce

B. Factorial subdesigns were extracted from the experiments, so that the interaction

contrasts could be computed. We investigated the manner of the trackball movement

(parallel or serial) when the geometric stimuli were being reproduced. This
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experimental paradigm allows us to test the assumptions about processes that are

usually unobservable in other paradigms.

Experiments

Three paid volunteers (P6, P7, and P8) participated in Experiment 1(c) and Ex-

periment 3(c). All the participants were students at Purdue University, aged around

30 with normal or corrected to normal vision.

Experiment 1(c). The stimuli and procedure were identical to Experiment

1(b) except that the movable dot on the bottom right located initially in the center

of the circle and the program tracked the movement of the trackball by recording the

rectangular coordinates and the polar coordinates of the moving dot every 10 ms in

every trial.

Experiment 3(c). The stimuli and procedure were identical to Experiment

3(b) except that the program tracked the movement of the trackball by recording the

amplitudes of the changing floral shape every 10 ms in every trial.

Results

By using the computations of interaction contrasts, one can investigate whether

the processes are arranged in parallel or in a sequence in the experiments. In our

experiment, in addition, one can directly learn the process arrangements by plotting

and analyzing the trackball movement data. It was expected that the conclusions

from these two lines of analysis would agree with each other. We also expected that

the minimum parallel arrangement was not chosen by any participant in the tasks

since in order to match a given stimuli both coordinates or both amplitudes had to

be set at “correct” values, not just one of them.

Analysis of the typical trackball movements.

Experiment 1(c). Figure 11 plots the trackball movements in a typical trial

for each participant in Experiment 1(c). The positions of the moving dot are plotted
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every 50 ms. The upper figure shows a trackball movement in rectangular coordinates,

and the bottom one is the same movement represented by the polar coordinates. The

red dot represents the position of the fixed target dot. The movement started from (0

px, 0 px) or (0 px, 0 deg) and proceeded toward the target position. The final position

of the dot was very close to the target position. The movement formally confirms

the obvious expectation that the minimum parallel arrangement could not be used

by the participants, otherwise the final position of the dot would be close to the

target with respect to one coordinate but far with respect to the other coordinate.

By observing the trajectory, the horizontal coordinate and the vertical coordinate

changed together, in parallel, in most steps in the upper figure. This fact suggests that

the horizontal movements and the vertical movements were not arranged in a serial

manner. When representing the movement using the polar coordinates, we observe

the same parallel changes in the most steps, again excluding a serial arrangement.

The trackball movement plots suggests that the maximum parallel arrangement was

used by Participants P6, P7, and P8.

Experiment 3(c). Figure 12 plots the trackball movement in a typical trial

of Experiment 3(c). The red dot represents the amplitudes of the fixed target shape.

After a complex sequence of moves, eventually a shape close to the given shape was

reproduced. This plot confirms the obvious expectation that the minimum parallel

arrangement could not be used to accomplish the task. It also suggests that a serial

arrangement was not used by Participants P6, P7, and P8, as in most steps the two

coordinates changed together.

In addition, in both experiments the trackball movement data confirmed Assump-

tion 3 that the participants maintained a stable manner to perform the tasks from

trial to trial.
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Figure 11. The trackball movement in a typical trial in Experiment 1(c), represented

by the rectangular coordinates (upper) and the polar coordinates (bottom).
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Figure 12. The trackball movement in a typical trial in Experiment 3(c).
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Testing selective influences of α and β on Tα and T β . Selective influences

of α and β on Tα and T β have ideally to be tested before the interaction contrasts

are computed. In our experimental paradigm, the two processes were characterized

by two properties. One was the physical parameters of the eventual responses, i.e.,

A and B, and the other was the durations for the processes, i.e., Tα and T β. We

speculated that (A,B) " (α, β) is a sufficient (and perhaps also necessary) condition

for (Tα, T β) " (α, β). In other words, we find it unlikely that (Tα, T β) " (α, β)

but nevertheless the final outcomes of the two processes, A and B are not selectively

influenced by the same factors (and perhaps this is also true in the opposite direction).

If this speculation is accepted, we can test (Tα, T β) " (α, β) by inspecting whether

(A,B) " (α, β).

Experiment 1(c). Two 2×2 factorial subdesigns were extracted from Experi-

ment 1(c). Each subdesign contained about 800 data points. One was the rectangular

subdesign, in which α and β denote the horizontal coordinate and the vertical coor-

dinate of the given immovable dot:

α = {α1, α2} = {[60 px, 80 px] , [20 px, 40 px]} ,

β = {β1, β2} = {[60 px, 80 px] , [20 px, 40 px]} .

The other was the polar subdesign, in which α and β denote the radial coordinate

and the angular coordinate of the given immovable dot:

α = {α1, α2} = {[65 px, 90 px] , [40 px, 65 px]} ,

β = {β1, β2} = {[45 deg, 60 deg] , [30 deg, 45 deg]} .

For the rectangular subdesign, A and B denote the horizontal coordinate and

the vertical coordinate of the reproduced dot. For the polar subdesign, A and B
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denote the radial coordinate and the angular coordinate of the reproduced dot. We

computed (α−A) and (β−B) for each trial and took large deviations as indicators of

outliers. There were less than one percent outliers in each experiment and they were

removed. Ai1i2 and Bi1i2 denote the coordinates of the reproduced dot for treatment

(αi1 , βi2), i1, i2 ∈ {1, 2}.

Marginal selectivity needs to be tested first. We compared the distributions of Ai11

with Ai12 and compared the distributions of B1i2 with B2i2 . The K-S test for 2 inde-

pendent samples was used to make the four paired comparisons for each participant.

If one of the four paired comparisons was significant (p < .05), it was considered an

absence of marginal selectivity. Table 30 presents the p values for the paired compar-

isons. Participant P6 passed the tests of marginal selectivity in both the rectangular

subdesign and the polar subdesign (p ≥ .05). The other participants failed the tests

in both designs. The Linear Feasibility Test was then performed on Participant P6.

The result supported selective influences of α and β on A and B for this participant.

We consider this an indication that selective influences of α and β on Tα and T β are

established for this participant.

Experiments 3(b) and 3(c). A 2× 2 subdesign was extracted from Experi-

ment 3(c). Each treatment contained about 450 data points.

α = {α1, α2} = {[−30 px, 0 px] , [0 px, 30 px]} ,

β = {β1, β2} = {[−30 px, 0 px] , [0 px, 30 px]} .

Table 31 presents the test results for marginal selectivity (the outliers were removed

in the same way as in Experiment 1(c)). Only Participant P6 passed the test. The

Linear Feasibility Test confirmed selective influences of α and β on A and B for this

participant. The external factors of Experiment 3(b) was also discretized in the same
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Table 30

p Values of the Two Sample K-S Tests for Marginal Selectivity, Experiment 1(c)

Participant

P6 P7 P8

Rect- A11, A12 .365 .001 .560

angular A21, A22 .206 .000 .364

subdesign B11, B21 .120 .000 .002

B12, B22 .582 .061 .287

Polar A11, A12 .570 .039 .641

subdesign A21, A22 .331 .327 .388

B11, B21 .393 .232 .002

B12, B22 .204 .343 .004

way and all three participants (P3, P4, and P5) passed the test of selective influences

on A and B (see Tables 26, 28, and 29). Therefore we consider selective influences

of α and β on Tα and T β established for Participants P3, P4, and P5 in Experiment

3(b) and for Participant P6 in Experiment 3(c).

Testing stochastic dominance.

Experiment 1(c). The assumption of stochastic dominance was tested using

the inequalities (33) for participant P6. The trials with response time that obviously

fell outside the cluster of the other data points were considered outliers and were

removed from the test. Two one tail K-S tests were performed for each pair of

variables. For instance, in order to test the first equation in (33), we required

max (Pr(T11 ≤ t)− Pr(T12 ≤ t)) ≥ 0, (34)
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Table 31

p Values of the Two Sample K-S Tests for Marginal Selectivity, Experiment 3(c)

Pair Participant P6 Participant P7 Participant P8

A11, A12 .191 .003 .023

A21, A22 .442 .476 .032

B11, B21 .388 .142 .351

B12, B22 .927 .336 .522

and

max (Pr(T12 ≤ t)− Pr(T11 ≤ t)) = 0. (35)

Table 32 lists the p values of the one tail K-S tests for Participant P6. The upper

number in each cell, for instance .013, is the p value for (34). The bottom number,

for instance .995, is the p value for (35). This table indicates that the stochastic

dominance assumption held for both designs for this person since the p values in each

bottom line were not significant.

Experiments 3(b) and 3(c). Again, trials with outliers were removed from

the test. Table 33 shows Participants P3, P4, and P5 in Experiment 3(b) and

Participant P6 in Experiment 3(c) passed the stochastic dominance test (Participant

P6 passed the test marginally as p = .011 for max(Pr(T22 ≤ t)− Pr(T12 ≤ t)).

Plotting interaction contrasts.

Experiment 1(c). With the confirmation of the three assumptions, the inter-

action contrasts (15) were plotted (Figure 13).
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Figure 13. The empirical interaction contrast patterns for the rectangular subdesign

(left) and polar subdesign (right) of Experiment 1(c), Participant P6.
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Table 32

p Values of the One Tail K-S Tests for Stochastic Dominance in Experiment 1(c),

Participant P6

Experimental design T11, T12 T11, T21 T12, T22 T21, T22

Rectangular .013 .065 .702 .040

subdesign .995 .773 .467 .536

Polar .123 .023 .580 .881

subdesign .330 .771 .786 .454

Table 33

p Values of the One Tail K-S Tests for Stochastic Dominance in Experiment 3(b) and

3(c)

Participant T11, T12 T11, T21 T12, T22 T21, T22

P3 .000 .027 .496 .005

.990 .961 .843 .961

P4 .000 .000 .223 .290

.997 1 .070 .354

P5 .000 .016 .056 .000

.979 .991 .176 .841

P6 .000 .000 .721 .208

.991 .959 .011 .465
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The maximum parallel model for both the rectangular subdesign and polar sub-

design was confirmed since C(t) ≥ 0. This conclusion was consistent with that drawn

from the trackball movement data.

Experiments 3(b) and 3(c). Figure 14 plots the interaction contrasts for

P3, P4, and P5 in Experiment 3(b) and Participant P6 in Experiment 3(c). The

patterns indicate that the participants reproduced amplitude one and amplitude two

of the floral shape in the maximum parallel manner, except for Participant P5. The

interaction contrast pattern of this participant was not consistent with any of the

three mental architectures that we considered. The negative part was greater than the

positive part indicating that he/she may use the coactive manner to make responses.

The coactive arrangement (Townsend & Nozawa, 1995) is a type of parallel processing,

which takes the sum of the two parallel processes and a response is made if the sum

exceeds some criterion. The four figures confirmed that no one implemented the

minimum parallel arrangement, as expected.

Testing stochastic dominance in the absence of (A,B) " (α, β). Partic-

ipants P7 and P8 in Experiments 1(c) and 3(c) have violated (A,B) " (α, β). We

then tested the stochastic dominance assumption for these two persons and plotted

the interaction contrast if the test of stochastic dominance was passed. If the test of

stochastic dominance is failed or the pattern of interaction contrast is misleading, it

further validates the idea that (Tα, T β) " (α, β) can be tested by inspecting whether

(A,B) " (α, β).

Experiment 1(c). The K-S test (Table 34) indicates that the ordering of re-

sponse time in Experiment 1(c) passed the test of stochastic dominance for Partici-

pants P7 and P8 (P7 in polar subdesign passed the test marginally as p = .014 for

max(Pr(T22 ≤ t)− Pr(T21 ≤ t)).



94

Participant P3 Participant P4

Participant P5 Participant P6

Figure 14. The empirical interaction contrast patterns for Participants P3, P4, and

P5 in Experiment 3(b) and Participant P6 in Experiment 3(c).
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Table 34

p Values of the One Tail K-S Tests for Stochastic Dominance for Participants P7 and

P8, Experiment 1(c)

Participant T11, T12 T11, T21 T12, T22 T21, T22

P7

Rectangular .796 .549 0 0

subdesign .065 .345 .994 1

Polar .563 0 .003 1.000

subdesign .312 1.0 .982 .014

P8

Rectangular 0 .066 .168 .002

subdesign .988 1.000 .981 .884

Polar .593 .377 .046 .006

subdesign .505 .201 .942 .451

Some of the interaction contrast patterns in Figure 15 were misleading as C(t) ≤ 0.

Our interpretation is that the misleading patterns are caused by the violations of

(Tα, T β) " (α, β).

Experiment 3(c). Participants P7 and P8 in Experiment 3(c) violated (33):

Some of the p values in each bottom line of Table 35 were extremely low.

Conclusions

Mental architectures are hypothetical networks that are usually impossible to be

observed directly. In the psychophysical experiments developed in our lab, we were

able to directly see the process arrangements by tracking changes of the physical pa-

rameters of the reproduced stimuli. We also showed that the patterns of interaction

contrast resulted in the same diagnosis of process arrangements as the direct
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Participant P7

Participant P8

Figure 15. The empirical interaction contrast patterns for Participants P7 and P8

for the rectangular subdesign (left) and polar subdesign (right), Experiment 1(c).
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Table 35

p Values of the One Tail K-S Tests for Stochastic Dominance for Participants P7 and

P8, Experiment 3(c)

Participant T11, T12 T11, T21 T12, T22 T21, T22

P7 .000 .000 .829 .558

1 1 .001 .000

P8 .364 .962 .055 .000

.071 0 .993 .968

observation of the trackball movements. This experimental paradigm provides sup-

port for the view that mental architectures are indeed real rather than imaginary.

Our work demonstrated that the framework of mental architectures can be applied

in the tasks that consume longer reaction times than in the traditional experimental

paradigms. This allowed us to observe greater complexity of performance than is

usually assumed. For instance, in Experiment 1(c), the participants tended to move

the dots in the maximum parallel manner in most steps, but it seems that in the

final several steps they applied several micro adjustments to the positions of the

moving dot in the serial manner. Strictly speaking, the participants implemented

both maximum parallel and serial arrangements in a combined fashion in most trials.

The exact pattern of the combined arrangement in theory is unclear and further

investigation is needed. However, it was generally true that the participants used the

maximum parallel arrangement most of the time. This observation was supported by

the observed pattern of the interaction contrast. We were concerned in the beginning

of our study that the participants may switch the manner of process arrangements
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from one trial to another. However, it was found that the participants generally

maintained a stable way to perform the tasks. If people tend to stay with the same

manner to make responses in cognitive tasks, then assumption 3 is justified.

I think that our new experimental design improves the reliability of the technique

of interaction contrast. It provides a direct way to examine selective influences of the

external factors on the duration components. This direct method was confirmed by

observing that when (A,B) " (α, β) was established, the test of stochastic domi-

nance (33) was passed and the patterns of interaction contrast behaved as expected;

whereas when (A,B) " (α, β) was violated, (33) was violated (Table 35) too, or the

patterns of interaction contrast could be misleading (Figure 15). Our analysis also

demonstrated that taking (33) as a confirmation of (Tα, T β) " (α, β) is risky as a

misleading interaction contrast patterns can be obtained even when (33) is satisfied.

(A,B) " (α, β) seems to be a better indicator of (Tα, T β) " (α, β) than examining

the inequalities (33) only.

This method may have broad applications. For instance, one can design similar

paradigms to study the process architectures underlying the eye movement tasks or

body movement tasks. Of course this method has its limitations: One cannot record

physical parameters of mental responses in every experimental paradigm.
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CONTEXTUALITY AND APPLICATIONS

A Brief Theoretical Review of Contextuality-by-Default

Recall the system of external factors (λ1, . . . , λn) and the random outputs (X1, . . . ,

Xn). Denote φ =
(
λ1
i1
, . . . , λnin

)
a treatment. The entities in φ belong to nonempty

sets (Λ1, . . . ,Λn), respectively, where Λk = {λk1, . . . , λkmk
}, k ∈ {1, . . . , n}. Given a

treatment φ, the random outputs are written as (X1
φ, . . . , X

n
φ ). We denote the collec-

tion of treatments {(λ1
1, . . . , λ

n
1 ) , . . . ,

(
λ1
m1
, . . . , λnmn

)
} as a set Φ.

The Definition of Contextuality

The formal definition of contextuality is formed according to the idea of “all-

possible-couplings” (Dzhafarov & Kujala, 2014a, 2014b, 2014c; Dzhafarov et al., 2016;

Dzhafarov, et al., 2015; Kujala & Dzhafarov, 2015, 2016; Kujala, et al., 2015). Let

us start with notations. Recall that Xk
φ denotes the measurement outcome of the

external factor λk given treatment φ. Suppose each random variable Xk
φ is discrete.

We call
{
Xk
φ

}
λkik
∈φ for every φ ∈ Φ a bunch, and we say that the variables belong to

the same bunch share a context. The joint distribution of the random variables within

each bunch is observable. If λkik ∈ φ, λlil ∈ φ
′, and φ 6= φ′, then the joint distribution

of the corresponding random variables Xk
φ and X l

φ′ does not exist empirically. We say

that they are stochastically unrelated.

Now we consider the union of all bunches:

X = ∪
φ∈Φ

Xφ = ∪
φ∈Φ

{
Xk
φ

}
λkik
∈φ .
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X is a set rather than a multi-component random variable. The elements in X are

not jointly distributed except when they are within the same bunch.

Let us collect the treatments that contain the external factor point λkik and denote

this set Φk
ik

. Let us consider all random variables measuring this external factor point

in different treatments:

Xk
ik

=
{
Xk
φ

}
φ∈Φk

ik

.

We call this set a connection for λkik . For every external factor point and any two

treatments φ, φ′ containing that factor point, if Xk
φ ∼ Xk

φ′ we call this system con-

sistently connected. The term is synonymous with marginal selectivity within the

framework of selective influences. If Xk
φ � Xk

φ′ , for some φ, φ′, the system is called

inconsistently connected.

In contextuality analysis we are interested in whether and how one could impose a

joint distribution on X. This means to find a collection of jointly distributed random

variables M = {Mφ}φ∈Φ =
{
Mk

φ

}
λkik
∈φ∈Φ

, such that for every φ ∈ Φ,

Mφ =
{
Mk

φ

}
λkik
∈φ ∼

{
Xk
φ

}
λkik
∈φ = Xφ. (36)

M and Mφ are multi-component random variables, and Mk
φ is a single-component

random variable. In probability theory M is called a coupling for X. Note that one

can always find a coupling M for X, such that (36) is satisfied.

Any subset of the components of M is its marginal. Every coupling M for X has

a marginal Mk
ik

=
{
Mk

φ

}
φ∈Φk

ik

that forms a coupling for the connection Xk
ik

. Since

Φk
ik

=
{(
λ1

1, . . . , λ
k
ik
, . . . , λn1

)
, . . . ,

(
λ1
m1
, . . . , λkik , . . . , λ

n
mn

)}
, the probability that all

the components in Mk
ik

share the same values can be written as
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couple(Mk
ik

) = Pr

[
Mk(

λ11,...,λ
k
ik
,...,λn1

) = . . . = Mk(
λ1m1

,...,λkik
,...,λnmn

)] .
Also denote

couple(M) =
∑
k

∑
ik

couple(Mk
ik

).

Among all possible couplings for X, we are interested in the maximum of couple(M):

max(M) = max
all possible couplingsM

couple(M).

Let us take the connection Xk
ik

for λkik in isolation and consider a coupling for the

connection Gk
ik

=
{
Gk
φ

}
φ∈Φk

ik

, such that

Gk
φ ∼ Xk

φ . (37)

Gk
ik

is a multi-component random variables and Gk
φ is a single-component random

variable. Also we define

couple(Gk
ik

) = Pr

[
Gk(

λ11,...,λ
k
ik
,...,λn1

) = . . . = Gk(
λ1m1

,...,λkik
,...,λnmn

)] ,

couple(G) =
∑
k

∑
ik

couple(Gk
ik

),

max(G) = max
all possible couplingsG

couple(G).
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Every subcoupling of M corresponding to a connection is a coupling for this

connection. So it is easy to see that max(M) ≤ max(G).

Definition 27. If max(M) = max(G), the system X is maximally coupled.

Definition 28. The system X is noncontextual if it is maximally coupled. Otherwise,

it is contextual.

If in a particular X system

max(G) =
∑
k

∑
ik

1,

then Definition 28 reduces to Definition 3. That is, selective influences is a special

case of noncontextuality.

An example. Here I present an example to help the readers to understand the

definition of contextuality. Let us assume α has two levels α1 and α2 and β has two

levels β1 and β2. There are four treatments

(α1, β1), (α1, β2), (α2, β1), (α2, β2). (38)

Let us denote the responses to the four treatments

(A11, B11), (A12, B12), (A21, B21), (A22, B22).

Each pair of (Ai1i2 , Bi1i2), i1, i2 ∈ {1, 2} forms a bunch. In this 2 × 2 system, there

are eight random variables,

{A11, B11, A12, B12, A21, B21, A22, B22}. (39)

Some of these variables, for instance A11 and B11, have observable joint distributions;

others do not have such joint distributions because they do not coexist in the same
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context. Random variables, say A11 and A12, are stochastically unrelated as they

cannot be observed in the same context. There are four connections in this paradigm:

{A11, A12}, {A21, A22}, {B11, B21}, and {B12, B22}.

One can impose a coupling on the entire system, which consists of eight jointly

distributed variables

(A∗11, B
∗
11, A

∗
12, B

∗
12, A

∗
21, B

∗
21, A

∗
22, B

∗
22), (40)

such that

(A∗11, B
∗
11) ∼ (A11, B11),

(A∗12, B
∗
12) ∼ (A12, B12),

(A∗21, B
∗
21) ∼ (A21, B21),

(A∗22, B
∗
22) ∼ (A22, B22).

One can also impose couplings on the connections separately taken,

(A′11, A
′
12), (A′21, A

′
22), (B′11, B

′
21), (B′12, B

′
22), (41)

such that

A′i1i2 ∼ Ai1i2 ,

B′i1i2 ∼ Bi1i2 .

The choice of these couplings is not unique. Among all possible choices for cou-

plings (40), there is one choice that maximizes

Pr(A∗11 = A∗12) + Pr(A∗21 = A∗22) + Pr(B∗11 = B∗21) + Pr(B∗12 = B∗22). (42)
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Similarly, among all the choices for couplings (41), there is also one choice that

achieves the maximum of

Pr(A′11 = A′12) + Pr(A′21 = A′22) + Pr(B′11 = B′21) + Pr(B′12 = B′22). (43)

Let us denote the maximum of (42) M∗ and maximum of (43) M ′. It is always

true that M ′ ≥M∗. If M ′ = M∗, this system is noncontextual. Otherwise the system

is contextual.

It is mathematically possible that M ′ = 1 + 1 + 1 + 1 = 4. It implies that the

distributions of the responses to the same factor point in different treatments are

identical: marginal selectivity (or consistent connectedness) is present in the system.

If in addition M∗ = 4, we say selective influences are satisfied in the system, and the

system is noncontextual.

Testing Contextuality in a Cyclic System

Recall that for selective influences, the Linear Feasibility Test should be applied to

a system that contains finite number of inputs and outputs, in which each input and

output have multiple levels. Consider the case when each treatment contains exactly

two deterministic factors and these treatments form a cycle in the sense that every

entity enters exactly two treatments (Dzhafarov, Kujala, & Larsson, 2015; Kujala &

Dzhafarov, 2016; Kujala et al., 2015):

Treatment 1, Treatment 2, . . . , TreatmentN − 1, TreatmentN

(q1, q2), (q2, q3), . . . , (qN−1, qN), (qN , q1).
(44)

Here N is said to be the rank of this cyclic system. We assume in addition that each

random output is binary: {−1,+1} . Let us denote by Zk
c the response to the external
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factor qk given the treatment indexed by c, where 1 ≤ c, k ≤ N and k = c or c⊕ 1. So

the random outputs corresponding to (44) are written as

(Z1
1 , Z

2
1), (Z2

2 , Z
3
2), . . . , (ZN−1

N−1 , Z
N
N−1), (ZN

N , Z
1
N).

It was proved (Dzhafarov, Kujala, & Larsson, 2015; Kujala & Dzhafarov, 2016;

Kujala et al., 2015) that this system is noncontextual if and only if the following

inequality is satisfied:

∆C = s1

(〈
Z1

1Z
2
1

〉
, . . . ,

〈
ZN−1
N−1Z

N
N−1

〉
,
〈
ZN
NZ

1
N

〉)
− (N − 2)

−
N∑
k=1

∣∣〈Zk
k	1

〉
−
〈
Zk
k

〉∣∣ ≤ 0, (45)

where 〈·〉 denotes the expected value, and s1 is the maximum of all linear combinations

±〈Z1
1Z

2
1〉 ± . . .±

〈
ZN−1
N−1Z

N
N−1

〉
±
〈
ZN
NZ

1
N

〉
with odd number of minuses.

An example. The 2×2 system discussed earlier (38) can be written as a cyclic

system:

Treatment 1, Treatment 2, Treatment 3, Treatment 4

(α1, β1), (β1, α2), (α2, β2), (β2, α1).
(46)

Correspondingly, the random outputs are

(A11, B11), (B21, A21), (A22, B22), (B12, A12).

Consequently, ∆C is expressed as

∆C = s1 (〈A11B11〉 , 〈B21A21〉 , 〈A22B22〉 , 〈B12A12〉)− 2

− |〈A11〉 − 〈A12〉| − |〈B11〉 − 〈B21〉| − |〈A21〉 − 〈A22〉| − |〈B12〉 − 〈B22〉| , (47)
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where

s1 (γ1, γ2, γ3, γ4) = max(|γ1 + γ2 + γ3 − γ4| , |γ1 + γ2 − γ3 + γ4| ,

|γ1 − γ2 + γ3 + γ4| , |−γ1 + γ2 + γ3 + γ4|).

Theoretical physicists studied contextuality without considering the violation of

consistent connectedness. Given a sequence of measurements on the space-like sepa-

rated entangled particles, the measurement set-up chosen in one particle is irrelevant

for the measurement results on the other particle. In other words, marginal selectivity,

or consistent connectedness, is expected to be preserved in quantum entanglement.

In such cases, the term of
∑N

k=1

∣∣〈Zk
k	1

〉
−
〈
Zk
k

〉∣∣ in (45) is zero. (45) then reduces

to the so-called Leggett-Garg inequality when N = 3 (Suppes & Zanotti, 1981), the

Bell-CHSH-Fine inequality when N = 4 (Clauser et al., 1969), and the so-called

KCBS inequality when N = 5 (Klyachko, Can, Binicioǧlu, & Shumovsky, 2008). By

testing these inequalities, experimental physicists demonstrated that the correspond-

ing systems are contextual. However, marginal selectivity can be violated in these

experiments due to signaling or measurement errors. They are usually dealt with by

using some correction techniques, or even ignored. Instead of working around it, the

framework of “contextuality-by-default” allows testing contextuality on top of incon-

sistent connectedness. By using the test (45), one can detect the “context-dependent”

behaviors of the inconsistently connected quantum physics system (for N = 5, see

discussion in Kujala et al., 2015).

In contrast to quantum physics, Dzhafarov, Zhang, and Kujala (2015) showed that

evidence of contextuality cannot be found in various social and behavioral data sets,

from polls of public opinion to visual illusions to conjoint choices to word combinations

to psychophysical matching. These studies were confined to systems of lower ranks
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(N ≤ 4). Below I report results of the analyses for cyclc systems of ranks N = 4, 6, 8

using the psychophysical matching data.

Testing Contextuality on the Psychophysical Data

For the experimental details of the psychophysical matching task, see Experiments

1-3 in Chapter 1.

Testing Contextuality for Rank 4

In order to test contextuality using inequality (45), one has to form a cyclic system.

In the “rectangular” subdesign of Experiment 1(a), the four treatments, represented

in the rectangular coordinates were (α1, β1), (α1, β2), (α2, β1), and (α2, β2), where

α1 = 32 px, α2 = 64 px, β1 = 32 px, and β2 = 64 px. A cyclic system is formed with

(45) applicable in the form (46).

“Polar” subdesign of Experiment 1(a) and Experiment 2(b) also had 2 × 2 treat-

ments that can also be represented in the cyclic manner of rank 4. Experiment 2(a) or

Experiment 3(a) were 3× 3 designs. 9 cyclic systems of rank 4 are contained in each

of them. “Rectangular” design of Experiment 1(b), “Polar” subdesign of Experiment

1(b), Experiment 2(c), and Experiment 3(b) had external factors spanning certain

intervals. In order to have a cyclic system of rank 4, each interval was dichotomized

into two subintervals. For instance, two factor levels for the interval [20 px, 80 px) in

the “rectangular” design of Experiment 1(b) was created according to the midpoint.

Four treatments (α1, β1), (α1, β2), (α2, β1), and (α2, β2) were then formed, where

α1 = [20 px, 50 px), α2 = [50 px, 80 px), β1 = [20 px, 50 px), and β2 = [50 px, 80 px).

Of course other points can be chosen to dichotomize the intervals. In this dissertation,

I only report the results from the midpoint-dichotomized treatments.
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In addition, the random outputs should each be dichotomized. The two levels

were defined according to a value ai1 and a value bi2 , 1 ≤ i1, i2 ≤ 2:

A1i2 =

 +1 if A1i2 > a1

−1 if A1i2 ≤ a1

, A2i2 =

 +1 if A2i2 > a2

−1 if A2i2 ≤ a2

,

Bi11 =

 +1 if Bi11 > b1

−1 if Bi11 ≤ b1

, Bi12 =

 +1 if Bi12 > b2

−1 if Bi12 ≤ b2

.

The values of (a1, a2, b1, b2) can be chosen in various ways. We chose a value a1 as

any integer (in pixels) between max(minA11, minA12) and min(maxA11, maxA12), b1

as any integer (in pixels or degrees) between max(minB11, minB21) and min(maxB11,

maxB21), and analogously for a2 and b2. For each choice of the quadruple, we ap-

plied the test (47) to the distributions of the obtained A and B variables. 3024

to 11,663,568 tests were run for the systems we investigated. No positive 4C was

observed, indicating the absence of contextuality for rank 4 in all the experiments.

Here we present an example to illustrate how the test of (non)contextuality was

conducted. For participant P3 in the “polar” subdesign of Experiment 1(a), one choice

of the quadruple is (a1, a2, b1, b2) = (72 px, 67 px, 60 deg, 23 deg). The distributions

of the random outputs for the four treatments (indexed as (46)) are presented in

Table 36 (Tr abbreviates Treatment).

Given

〈XY 〉 = (+1)(+1)Pr(X = 1, Y = 1) + (+1)(−1)Pr(X = 1, Y = −1)

+ (−1)(+1)Pr(X = −1, Y = 1) + (−1)(−1)Pr(X = −1, Y = −1)
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Table 36

Distributions of the Random Outputs for the Cyclic System of Rank 4, P3 in the

“Polar” Subdesign of Experiment 1(a)

Tr 1 B11 > b1 B11 ≤ b1

A11 > a1 .0056 0 .0056

A11 ≤ a1 .3944 .6 .9944

.4 .6

Tr 2 B21 > b1 B21 ≤ b1

A21 > a2 .6403 .3399 .9802

A21 ≤ a2 .0099 .0099 .0198

.6502 .3498

Tr 3 B22 > b2 B22 ≤ b2

A22 > a2 .5789 .4167 .9956

A22 ≤ a2 .0044 0 .0044

.5833 .4167

Tr 4 B12 > b2 B12 ≤ b2

A12 > a1 .0273 .0219 .0492

A12 ≤ a1 .4699 .4809 .9508

.4972 .5028

and

〈X〉 = (+1)Pr(X = 1) + (−1)Pr(X = −1),

we have

∆C = s1 (〈A11B11〉 , 〈B21A21〉 , 〈A22B22〉 , 〈B12A12〉)− 2

− |〈A11〉 − 〈A12〉| − |〈B11〉 − 〈B21〉| − |〈A21〉 − 〈A22〉| − |〈B12〉 − 〈B22〉| ,

= s1 (.2112, .3004, .1578, .0164)− 2− |(−.9016)− (−.9888)| − |(−.2)− .3004|

− |.9604− .9912| − |.1666− .0056|

= −2.1376
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Testing Contextuality for Rank 6

Both Experiment 2(a) and Experiment 3(a) had 3×3 designs, {α1, α2, α3} ×

{β1, β2, β3}. Each of these designs included a cyclic system of rank 6:

Treatment 1, Treatment 2, Treatment 3,

(α1, β1), (β1, α2), (α2, β2),

Treatment 4, Treatment 5, Treatment 6,

(β2, α3), (α3, β3), (β3, α1).
(48)

The corresponding outputs are

(A11, B11), (B21, A21), (A22, B22),

(B32, A32), (A33, B33), (B13, A13).

“Rectangular” design of Experiment 1(b), “polar” subdesign of Experiment 1(b),

Experiment 2(c), and Experiment 3(b) are the systems with quasi-continuous factors.

These factors were discretized into three levels. Two points should be chosen to make

this discretization. There are infinitely many such choices. The data collected from

the experiments with the quasi continuous factors were analyzed based on selecting

the one-third point and the two-third point of each interval. For instance, a 3×3

design was formed in the “Rectangular” design of Experiment 1(b) according to this

rule: α1 = [20 px, 40 px), α2 = [40 px, 60 px), α3 = [60 px, 80 px), β1 = [20 px, 40 px),

β2 = [40 px, 60 px), and β3 = [60 px, 80 px).

Again, each of the random outputs should be dichotomized. We chose a value ai1

and a value bi2 , 1 ≤ i1, i2 ≤ 3, and define
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A1i2 =

 +1 if A1i2 > a1

−1 if A1i2 ≤ a1

, A2i2 =

 +1 if A2i2 > a2

−1 if A2i2 ≤ a2

,

A3i2 =

 +1 if A3i2 > a3

−1 if A3i2 ≤ a3

, Bi11 =

 +1 if Bi11 > b1

−1 if Bi11 ≤ b1

,

Bi12 =

 +1 if Bi12 > b2

−1 if Bi12 ≤ b2

, Bi13 =

 +1 if Bi13 > b3

−1 if Bi13 ≤ b3

.

For each rank 6 cyclic system, we chose a value a1 as any integer between max(minA11,

minA13) and min(maxA11, maxA13), we chose b1 as any integer between max(minB11,

minB21) and min(maxB11, maxB21), and analogously for a2, a3, b2, and b3. For each

such choice of the sextuple (a1, a2, a3, b1, b2, b3), we conducted the test (45). Using

the obtained A and B variables, (45) can be equivalently represented as

∆C = s1 (〈A11B11〉 , 〈B21A21〉 , 〈A22B22〉 , 〈B32A32〉 , 〈A33B33〉 , 〈B13A13〉)− 4

− |〈A13〉 − 〈A11〉| − |〈B11〉 − 〈B21〉| − |〈A22〉 − 〈A21〉| − |〈B22〉 − 〈B32〉|

− |〈A32〉 − 〈A33〉| − |〈B33〉 − 〈B13〉| , (49)

Here we present an example to show how the test (49) was conducted. For par-

ticipant P1 in Experiment 2(a), in which {α1, α2, α3} × {β1, β2, β3} = {16 px, 56 px,

64 px} × {48 px, 72 px, 80 px}, one choice of the sextuple is (a1, a2, a3, b1, b2, b3) =

(16 px, 56 px, 64 px, 48 px, 72 px, 80 px). The distributions of the random outputs

for the six treatments (indexed as (48)) are presented in Table 37:
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Table 37

Distributions of the Random Outputs for the Cyclic System of Rank 6, P1 in Experi-

ment 2(a)

Tr 1 B11 > b1 B11 ≤ b1

A11 > a1 .2124 .2487 .4611

A11 ≤ a1 .1917 .3472 .5389

.4041 .5959

Tr 2 B21 > b1 B21 ≤ b1

A21 > a2 .2353 .1041 .3394

A21 ≤ a2 .1538 .5068 .6606

.3891 .6109

Tr 3 B22 > b2 B22 ≤ b2

A22 > a2 .1221 .0814 .2035

A22 ≤ a2 .1628 .6337 .7965

.2849 .7151

Tr 4 B32 > b2 B32 ≤ b2

A32 > a3 .2703 .0586 .3288

A32 ≤ a3 .1982 .4730 .6712

.4685 .5316

Tr 5 B33 > b3 B33 ≤ b3

A33 > a3 .0702 .0468 .1170

A33 ≤ a3 .0409 .8421 .8830

.1111 .8889

Tr 6 B13 > b3 B13 ≤ b3

A13 > a1 .1321 .1981 .3302

A13 ≤ a1 .1651 .5047 .6698

.2972 .7028

Then we have

∆C = s1 (.1192, .4842, .5116, .4865, .8246, .2736)− 4

− |−.0778 + .3396| − |−.1918 + .2218| − |−.3212 + .593| − |−.4302 + .0632|

− |−.3424 + .7660| − |−.7778 + .4056|

= −3.2651.

No positive 4C was observed for the systems of rank 6 extracted from “rectangular”

design of Experiment 1(b), “polar” subdesign of Experiment 1(b), Experiment 2(a),
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Experiment 2(c), Experiment 3(a), and Experiment 3(b). We concluded that there

was no contextuality in all the investigated cyclic systems of rank 6.

Testing Contextuality for Rank 8

“Rectangular” design of Experiment 1(b), “polar” subdesign of Experiment 1(b),

Experiment 2(c), and Experiment 3(b) have quasi-continuous factors. These fac-

tors were discretized into four discrete levels in order to form the rank 8 cyclic sys-

tems. Three points should be chosen for each factor to make this discretization.

One choice could be the first quartile point, the second quartile (median) point, and

the third quartile point of each interval. For instance, a 4×4 design was formed

in Experiment 3(b): α1 = [−30 px,−15 px), α2 = [−15 px, 0 px), α3 = [0 px, 15 px),

α4 = [15 px, 30 px), β1 = [−30 px,−15 px), β2 = [−15 px, 0 px), β3 = [0 px, 15 px),

and β4 = [15 px, 30 px). The data were analyzed based on this particular type of

discretization. Each cyclic system of rank 8 extracted from the experiment should be

written as

Treatment 1, Treatment 2, Treatment 3, Treatment 4,

(α1, β1), (β1, α2), (α2, β2), (β2, α3),

Treatment 5, Treatment 6, Treatment 7, Treatment 8,

(α3, β3), (β3, α4), (α4, β4), (β4, α1).
(50)

The corresponding outputs are

(A11, B11), (B21, A21), (A22, B22), (B32, A32),

(A33, B33), (B43, A43), (A44, B44), (B14, A14).
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We chose a value ai1 and a value bi2 , 1 ≤ i1, i2 ≤ 4 and define

A1i2 =

 +1 if A1i2 > a1

−1 if A1i2 ≤ a1

, A2i2 =

 +1 if A2i2 > a2

−1 if A2i2 ≤ a2

,

A3i2 =

 +1 if A3i2 > a3

−1 if A3i2 ≤ a3

, A4i2 =

 +1 if A4i2 > a4

−1 if A4i2 ≤ a4

,

Bi11 =

 +1 if Bi11 > b1

−1 if Bi11 ≤ b1

, Bi12 =

 +1 if Bi12 > b2

−1 if Bi12 ≤ b2

,

Bi13 =

 +1 if Bi13 > b3

−1 if Bi13 ≤ b3

, Bi14 =

 +1 if Bi14 > b4

−1 if Bi14 ≤ b4

.

For each rank 8 cyclic system, we chose a value a1 as any integer between max(minA11,

minA14) and min(maxA11, maxA14), we chose b1 as any integer between max(minB11,

minB21) and min(maxB11, maxB21), and analogously for a2, a3, a4, b2, b3, and b4.

For each choice we conducted the test (45). Using the obtained A and B variables,

(45) can be equivalently represented as

∆C = s1(〈A11B11〉 , 〈B21A21〉 , 〈A22B22〉 , 〈B32A32〉 , 〈A33B33〉 , 〈B43A43〉 ,

〈A44B44〉 , 〈B14A14〉)− 6− |〈A11〉 − 〈A14〉| − |〈B11〉 − 〈B21〉| − |〈A22〉 − 〈A21〉|

− |〈B22〉 − 〈B32〉| − |〈A33〉 − 〈A32〉| − |〈B43〉 − 〈B33〉| − |〈A44〉 − 〈A43〉|

− |〈B14〉 − 〈B44〉| .
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To give an example, for participant P4 in Experiment 3(b), one choice of the

octuple is (a1, a2, a3, a4, b1, b2, b3, b4) = (-21 px, -6 px, 6 px, 21 px, -21 px, -9 px, 9 px,

21 px). The distributions of the random outputs for the eight treatments (indexed as

(50)) are presented in Table 38:

Table 38

Distributions of the Random Outputs for the Cyclic System of Rank 8, P4 in Experi-

ment 3(b)

Tr 1 B11 > b1 B11 ≤ b1

A11 > a1 .1532 .2823 .4355

A11 ≤ a1 .1855 .3790 .5645

.3387 .6613

Tr 2 B21 > b1 B21 ≤ b1

A21 > a2 .1619 .2667 .4286

A21 ≤ a2 .1905 .3810 .5715

.3524 .6477

Tr 3 B22 > b2 B22 ≤ b2

A22 > a2 .2759 .2155 .4914

A22 ≤ a2 .2586 .2500 .5086

.5345 .4655

Tr 4 B32 > b2 B32 ≤ b2

A32 > a3 .4130 .1739 .5869

A32 ≤ a3 .1957 .2174 .4131

.6087 .3913

Tr 5 B33 > b3 B33 ≤ b3

A33 > a3 .2736 .3208 .5944

A33 ≤ a3 .1604 .2453 .4057

.4340 .5661

Tr 6 B43 > b3 B43 ≤ b3

A43 > a4 .2460 .3095 .5555

A43 ≤ a4 .1667 .2778 .4445

.4127 .5873

Tr 7 B44 > b4 B44 ≤ b4

A44 > a4 .3209 .3134 .6343

A44 ≤ a4 .1493 .2164 .3657

.4702 .5298

Tr 8 B14 > b4 B14 ≤ b4

A14 > a1 .1619 .2571 .4190

A14 ≤ a1 .2381 .3429 .5810

.4 .6
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We have

∆C = s1 (.0644,.0857, .0518, .2608, .0377, .0476, .0746, .0096)− 6− .6902

=− 6.0772

No positive 4C was observed. When testing the “polar” subdesign of Experiment

1(b), each treatment contained only about 50 data points. Even with such small

sample sizes, no positive 4C was observed for a single case. We concluded that there

was no contextuality in all the investigated cyclic systems of rank 8.

Conclusions

Contextuality-by-default is a mathematical framework that differentiates contex-

tual systems and noncontextual systems. The empirical data suggest that the non-

contextuality boundaries are generally breached in quantum physics. Experimental

physicists showed that with the assumption of marginal selectivity, 4C ≥ 0 for

cyclic systems of ranks N = 3, 4, 5. Sometimes marginal selectivity is not satisfied

in quantum physics. By admitting this fact and analyzing the quantum physics data

using the contextuality test (45), one concludes that the quantum systems are still

contextual, even when inconsistently connected.

Dzhafarov, Zhang, and Kujala (2015) reviewed several behavioral scenarios, and

none of them provided any evidence for contextuality. By examining the psychophys-

ical data collected in our lab, we did not find contextuality across cyclic systems of

different ranks (N = 4, 6, 8). With marginal selectivity imposed on the same dataset

(recall the discussion of selective influences in Chapter 1), we did not find contextu-

ality either. Though it is not conclusive yet, we suspect that it may be generally true

that human and social behaviors are not contextual.
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SUMMARY

In the (α, β,A,B) system, if A depends on β and B depends on α, we say that

marginal selectivity, or consistent connectedness, are not satisfied in the system. If

A and B are stochastically interdependent, then one has to inquire about the origin

of the interdependence. If A and B have the inherent interaction that cannot be

attributed to α, β, or any hidden variable, then the system is contextual. Otherwise

it is noncontextual.

Usually the behavioral systems are inconsistently connected. The psychophysi-

cal paradigms used in our lab all resulted in inconsistently connected systems. By

imposing appropriate transformations, we obtained artificial consistently connected

datasets. The contextual effects were then evaluated under the framework of se-

lective influences. Once selective influences are established, we consider perceptual

separability is confirmed as well. The Linear Feasibility Test (and therefore the Bell-

CHSH-Fine inequalities) was not failed indicating a lack of contextual effects. Hence

selective influences (and therefore perceptual separability) were established for the

transformed datasets.

If the datasets were analyzed under the framework of contextuality-by-default

without any transformations, the results of the contextuality test (45) also confirmed

noncontextuality for cyclic systems of various ranks. The behavioral systems we have

examined were shown to be different from the contextual quantum entanglement

systems. Though it is still open to question, we suspect that human and social

behaviors are noncontextual in general.
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Mental architectures can be characterized according to the pattern of the inter-

action contrast, which is a linear combination of distributions of response times in

a factorial experiment. Selective influences are assumed to hold in the investigated

systems to ensure that the factorial manipulations influence the durations of the tar-

get processes only. Otherwise patterns of the interaction contrast for different types

of mental architectures can mimic each other. By conditioning R in Definition 2 of

selective influences on some value, we reduced the interaction contrast of distribution

functions to simple arithmetic of 0’s and 1’s at every time moment.

The technique of interaction contrast was applied to empirical studies. We in-

vestigated how the subjects moved the trackball to match a target stimuli in psy-

chophysical experiments. We tested the assumption of selective influences for the

duration components by inspecting selective influences for the physical parameters of

the reproduced stimuli. This seems to be a better way to examine selective influences

of the experimental factors on the duration components than testing stochastic domi-

nance alone. More importantly, we were able to investigate the process arrangements

through directly observing the trackball movements. The analysis of the trackball

movements led to the same conclusion as the computational results of the interaction

contrast.
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types of quantum-mechanical systems. Foundations of Physics , 7 , 762-782.

Dzhafarov, E. N., & Schweickert, R. (1995). Decompositions of response times: An

almost general theory. Journal of Mathematical Psychology , 39 , 285-314.

Dzhafarov, E. N., Schweickert, R., & Sung, K. (2004). Mental architectures with

selectively influenced but stochastically interdependent components. Journal of

Mathematical Psychology , 48 , 51-64.

Dzhafarov, E. N., Zhang, R., & Kujala, J. V. (2015). Is there contextuality in

behavioral and social systems? Philosophical Transactions of the Royal Society

A, 374 , 20150099.

Eidels, A., Townsend, J. T., & Algom, D. (2010). Comparing perception of stroop

stimuli in focused versus divided attention paradigms: Evidence for dramatic

processing differences. Cognition, 114 , 129-150.

Eidels, A., Townsend, J. T., & Pomerantz, J. R. (2008). Where similarity beats

redundancy: The importance of context, higher order similarity, and response

assignment. Journal of Experimental Psychology: Human Perception and

Performance, 34 , 1441-1463.

Einstein, A., Podolski, B., & Rosen, N. (1935). Can quantum mechanical description

of physical reality be considered complete? Physcal Review , 47 , 777.
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