Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

12-8-2017

Fibrous Material Microstructure Design for Optimal Damping Performance

Yutong Xue Purdue University, xue46@purdue.edu

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

Xue, Yutong and Bolton, J Stuart, "Fibrous Material Microstructure Design for Optimal Damping Performance" (2017). *Publications of the Ray W. Herrick Laboratories*. Paper 168. http://docs.lib.purdue.edu/herrick/168

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

5th Symposium on the Acoustics of Poro-Elastic Materials (SAPEM) December 6th – 8th, 2017 Le Mans, France

FIBROUS MATERIAL MICROSTRUCTURE DESIGN FOR OPTIMAL DAMPING PERFORMANCE

Yutong (Tony) Xue, J. Stuart Bolton

Ray W. Herrick Laboratories Purdue University West Lafayette, IN, USA

Presentation available at Herrick E-Pubs: http://docs.lib.purdue.edu/herrick/

RAY W. HERRICK

Xue

eux

Je suis heureux d'être ici!

Je suis heureux d'être ici!

5th Symposium on the Acoustics of Poro-Elastic Materials (SAPEM) December 6th – 8th, 2017 Le Mans, France

FIBROUS MATERIAL MICROSTRUCTURE DESIGN FOR OPTIMAL DAMPING PERFORMANCE

Yutong (Tony) Xue, J. Stuart Bolton

Ray W. Herrick Laboratories Purdue University West Lafayette, IN, USA

Presentation available at Herrick E-Pubs: http://docs.lib.purdue.edu/herrick/

RAY W. HERRICK

• Traditional Damping Treatments – Visco-elastic Core with Metal Skins

Traditional Damping Material^[1]

Structure of a Traditional Damper^[2]

• Traditional Damping Treatments – Visco-elastic Core with Metal Skins

Traditional Damping Material^[1]

Structure of a Traditional Damper^[2]

• Fibrous Damping Treatments – Target Material of this Study

Fibrous Damping Material^[3]

Test on Fibrous Dampers^[4]

- Literature Review
- > Bruer & Bolton, AIAA 1987^[5] Analysis of different waves propagating in the layered damping structures
- Wahl & Bolton, JASA 1992^[6] Analysis by Inverse Discrete Fourier Transform (IDFT) on the spatial / temporal response of the layered damping system under line-driven force
- Lai & Bolton, Noise-Con 1998^[7] Modeling to prove reasonable structural damping effect from the light fibrous materials through dissipating nearfield energy
- Gerdes et al., Noise-Con 1998^[8] Numerical modeling of the structural damping effect from the light fibrous materials by evaluating the in-plane direction particle velocity
- S. Nadeau et al., Journal of Aircraft 1999^[9] Tests of aircraft fuselage damping treatment by soundabsorbing blankets and related layered structures
- Gerdes et al., Noise-Con 2001^[4] Numerical modeling of the structural damping effect from three different visco-elastic dampers compared with fibrous dampers
- Y. Xue and J. S. Bolton, Inter-Noise 2017^[10] Fibrous material airflow resistivity prediction based on accurate microstructure properties

- Literature Review
- > Bruer & Bolton, AIAA 1987^[5] Analysis of different waves propagating in the layered damping structures
- Wahl & Bolton, JASA 1992^[6] Analysis by Inverse Discrete Fourier Transform (IDFT) on the spatial / temporal response of the layered damping system under line-driven force
- Lai & Bolton, Noise-Con 1998^[7] Modeling to prove reasonable structural damping effect from the light fibrous materials through dissipating nearfield energy
- Gerdes et al., Noise-Con 1998^[8] Numerical modeling of the structural damping effect from the light fibrous materials by evaluating the in-plane direction particle velocity
- S. Nadeau et al., Journal of Aircraft 1999^[9] Tests of aircraft fuselage damping treatment by soundabsorbing blankets and related layered structures
- Gerdes et al., Noise-Con 2001^[4] Numerical modeling of the structural damping effect from three different visco-elastic dampers compared with fibrous dampers
- Y. Xue and J. S. Bolton, Inter-Noise 2017^[10] Fibrous material airflow resistivity prediction based on accurate microstructure properties

Layered Structures Shown in the Literature

- Literature Review
- > Bruer & Bolton, AIAA 1987^[5] Analysis of different waves propagating in the layered damping structures
- Wahl & Bolton, JASA 1992^[6] Analysis by Inverse Discrete Fourier Transform (IDFT) on the spatial / temporal response of the layered damping system under line-driven force
- Lai & Bolton, Noise-Con 1998^[7] Modeling to prove reasonable structural damping effect from the light fibrous materials through dissipating nearfield energy
- Gerdes et al., Noise-Con 1998^[8] Numerical modeling of the structural damping effect from the light fibrous materials by evaluating the in-plane direction particle velocity
- S. Nadeau et al., Journal of Aircraft 1999^[9] Tests of aircraft fuselage damping treatment by soundabsorbing blankets and related layered structures
- Gerdes et al., Noise-Con 2001^[4] Numerical modeling of the structural damping effect from three different visco-elastic dampers compared with fibrous dampers
- Y. Xue and J. S. Bolton, Inter-Noise 2017^[10] Fibrous material airflow resistivity prediction based on accurate microstructure properties

Layered Structures Shown in the Literature

Target Structure of this Study

Acoustical / Damping Performance Prediction Process

• Acoustical / Damping Performance Prediction Process

Noise Control Materials Microstructure Design Process

• Acoustical / Damping Performance Prediction Process

Noise Control Materials Microstructure Design Process

- Objectives of this Study
 - Identify the airflow resistivity providing optimal damping performance given panel structure and frequency range of interest
 - Translate the optimal airflow resistivity into optimal fiber sizes for fibrous material microstructure design

• Modeling Process^{[6], [10]}

RAY W. HERRICK

• Modeling Process^{[6], [10]}

• Modeling Process^{[6], [10]}

• Modeling Process^{[6], [10]}

SAPEM 2017, Le Mans, France

Modeling Key Points

• Modeling Process^{[6], [10]}

SAPEM 2017, Le Mans, France

Results Observations

- Choice of IDFT sampling rate γ_s and sampling points number N
- Target of the NFD model: calculate spatial responses for wide frequency range
- Key point: for each frequency input, choosing proper γ_s and N to ensure accurate IDFT results over a large enough spatial span for observation

- Choice of IDFT sampling rate γ_s and sampling points number N
- Target of the NFD model: calculate spatial responses for wide frequency range
- Key point: for each frequency input, choosing proper γ_s and N to ensure accurate IDFT results over a large enough spatial span for observation

• Step 1: evaluate the wave number domain response of the panel

- Choice of IDFT sampling rate γ_s and sampling points number N
- > Target of the NFD model: calculate spatial responses for wide frequency range
- Key point: for each frequency input, choosing proper γ_s and N to ensure accurate IDFT results over a large enough spatial span for observation

• Step 2: decide a proper cutoff level to avoid windowing/truncation effect

- Choice of IDFT sampling rate γ_s and sampling points number N
- > Target of the NFD model: calculate spatial responses for wide frequency range
- Key point: for each frequency input, choosing proper γ_s and N to ensure accurate IDFT results over a large enough spatial span for observation

• Step 3: find the proper sampling rate γ_s for each input frequency

- Choice of IDFT sampling rate γ_s and sampling points number N
- Target of the NFD model: calculate spatial responses for wide frequency range
- Key point: for each frequency input, choosing proper γ_s and N to ensure accurate IDFT results over a large enough spatial span for observation

• Step 4: identify the critical frequency f_c

SEM of the target fibrous medium

Fibrous medium micro-CT scanning

- > Step 1: C calculation based on $\rho_b, X_1, X_2, \rho_1, \rho_2$
- > Step 2: b^2 calculation based on r_1, r_2 , distribution parameters and C
- > Step 3: σ calculation base on C and b^2

Inputs

Fibrous medium verified microstructure inputs

Output

Airflow Resistivity Prediction

Inputs

Fibrous medium verified microstructure inputs

Output

Airflow Resistivity Prediction

Fiber Microstructure Design for Optimal Damping Performance

Spatial Velocity Level (dB)

• Spatial Velocity Level (dB)

Total points N = 16384. Wave# sampling rate γ_s = 66-383rad/m. Frequency range = 10-10000Hz Panel Thickness = 3 mm. Panel Loss Factor = 0.003. Air Loss Factor = 0.0005

• Spatial resonance in supersonic region above the critical frequency

• Spatial Velocity Level (dB)

Total points N = 16384. Wave# sampling rate γ_s = 66-383 rad/m. Frequency range = 10-10000 Hz Panel Thickness = 3 mm. Panel Loss Factor = 0.003. Air Loss Factor = 0.0005 Porous Layer Thickness = 3 cm. AFR = 20000 Rayls/m. Bulk Density = 10 kg/m³

- Spatial Velocity Level (dB)
 - Bare panel case minus Panel + fibers case

Significant attenuation in subsonic region below critical frequency

- Spatial Velocity Level (dB)
 - Bare panel case minus Panel + fibers case

Power Distribution – panel + half-space air

• Power Distribution – adding limp porous layer

SAPEM 2017, Le Mans, France Subsonic region attenuation due to power dissipation within the layer

• Limp Porous Layer Airflow Resistivity Effect on Power Dissipation

• Limp Porous Layer Airflow Resistivity Effect on Power Dissipation

Limp Porous Layer Airflow Resistivity Effect on Power Dissipation

• Limp Porous Layer Airflow Resistivity Effect on Power Dissipation

 Optimal damping corresponds to different optimal AFRs at different frequencies

• Finding Optimal Fiber Size for Optimal Damping – identifying optimal AFRs

- Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
- Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%

Finding Optimal Fiber Size for Optimal Damping – least square fitting AFRs

- Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
- Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
- → Fiber inputs: $\rho_1 = 910 \text{ kg/m}^3$; $\rho_2 = 1380 \text{ kg/m}^3$; $X_1 = X_2 = 50\%$; $r_2 = 13 \mu\text{m}$; $r_1 \rightarrow \text{design target}$

- Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
- Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
- → Fiber inputs: $\rho_1 = 910 \text{ kg/m}^3$; $\rho_2 = 1380 \text{ kg/m}^3$; $X_1 = X_2 = 50\%$; $r_2 = 13 \mu\text{m}$; $r_1 \rightarrow \text{design target}$

- Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
- Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
- → Fiber inputs: $\rho_1 = 910 \text{ kg/m}^3$; $\rho_2 = 1380 \text{ kg/m}^3$; $X_1 = X_2 = 50\%$; $r_2 = 13 \mu\text{m}$; $r_1 \rightarrow \text{design target}$

- Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
- Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
- → Fiber inputs: $\rho_1 = 910 \text{ kg/m}^3$; $\rho_2 = 1380 \text{ kg/m}^3$; $X_1 = X_2 = 50\%$; $r_2 = 13 \mu\text{m}$; $r_1 \rightarrow \text{design target}$

- Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
- Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
- → Fiber inputs: $\rho_1 = 910 \text{ kg/m}^3$; $\rho_2 = 1380 \text{ kg/m}^3$; $X_1 = X_2 = 50\%$; $r_2 = 13 \mu\text{m}$; $r_1 \rightarrow \text{design target}$

- Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
- Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
- → Fiber inputs: $\rho_1 = 910 \text{ kg/m}^3$; $\rho_2 = 1380 \text{ kg/m}^3$; $X_1 = X_2 = 50\%$; $r_2 = 13 \mu\text{m}$; $r_1 \rightarrow \text{design target}$

- Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005
- Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
- → Fiber inputs: $\rho_1 = 910 \text{ kg/m}^3$; $\rho_2 = 1380 \text{ kg/m}^3$; $X_1 = X_2 = 50\%$; $r_2 = 13 \mu\text{m}$; $r_1 \rightarrow \text{design target}$

CONCLUSIONS

- Transfer Matrix Method (TMM) and Near-field Damping (NFD) model based on Inverse Discrete Fourier Transform (IDFT) provide a powerful tool connecting fibrous materials' airflow resistivity with their damping performance
- Modified Airflow Resistivity (AFR) model connects fibrous materials' airflow resistivity with their microstructure (*i.e.*, various fiber sizes)
- For a limp porous layer attached to a stiff panel, an optimal airflow resistivity can be found to provide optimal damping performance (subsonic region power dissipation within the fibrous layer) under each frequency based on TMM and NFD
- Corresponding to the optimal airflow resistivity, an optimal fiber size then can be found to provide optimal damping performance under each frequency based on AFR and numerical optimization method
- Relatively large fibers are effective at damping low frequency vibration

• Other cases that have been built by the "TMM + NFD + AFR" model

We sincerely thank 3M for their financial support, and for the technical support from Jonathan Alexander, Myles Brostrom, Ronald Gerdes, Tom Hanschen, Thomas Herdtle, Seungkyu Lee and Taewook Yoo.

[1] <u>https://www.3m.com/3M/en_US/company-us/all-3m-products/~/3M-Damping-Aluminum-Foam-Sheets-</u>4014?N=5002385+3293241431&rt=rud

[2] http://www.noisedamp.com/

[3] http://multimedia.3m.com/mws/media/1055323O/3m-thinsulate-acoustic-insulation-tc3403-datasheet.pdf

[4] R. W. Gerdes, J. H. Alexander, J. S. Bolton, B. K. Gardner and H.-Y. Lai, "Numerical modeling of the damping effect of fibrous acoustical treatments," *Proceedings of the 2001 SAE Noise and Vibration Conference*, (01NVC-71), 7 pages, Traverse City, Michigan, May 2001.

[5] C. Bruer, J. S. Bolton, "Vibro-Acoustic Damping of Extended Vibrating Systems," *11th Aeroacoustics Conference*, AIAA-87-2661, 7 pages, Palo Alto, California, October 1987.

[6] T. J. Wahl and J. S. Bolton, "The Use of the Discrete Fourier Transform to Calculate the Spatial and Temporal Response of Line-Driven, Layer-wise Homogeneous Acoustically Loaded Panels," *Journal of the Acoustical Society of America*, Vol. 92, pp. 1473-1488, 1992.

[7] H.-Y. Lai, J. S. Bolton, "Structural Damping by the Use of Fibrous Blankets," *Proceedings of the 1998 Noise and Vibration Conference, Session* 47.3 Vibration and Shack, pp. 403-408, Ypsilanti, Michigan, April 1998.

[8] R. W. Gerdes, J. H. Alexander, J. S. Bolton, B. K. Gardner and H.Y. Lai, "The Use of Poro-elastic Finite Elements to Model the Structural Damping effect of Fibrous Acoustical Treatments," *Proceedings of the 1998 Noise Conference, Session* 47.3 Vibration and Shack, pp. 409-414, Ypsilanti, Michigan, April 1998.

[9] S. Nadeau, Y. Champoux and L. Mongeau, "Trim and Floor Influence on Vibrational Response of an Aircraft Model," *Journal of Aircraft*, Vol. 36, No. 3, pp. 591-595, May-June 1999

[10] Yutong Xue, J. S. Bolton, Ronald Gerdes, Seungkyu Lee and Thomas Herdtle, "Prediction of airflow resistivity of fibrous acoustical media having double fiber components and a distribution of fiber radii," *Proceedings of Inter-Noise 2017*, pp. 5649-5657, Hong Kong, August 2017.