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INTRODUCTION

• Fibrous Damping Treatments – Target Material of this Study

Structure of a Traditional Damper[2]

Test on Fibrous Dampers[4]Fibrous Damping Material[3]

Traditional Damping Material[1]
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• Layered Structures Shown in the Literature

INTRODUCTION

Force

• The panel damping mostly arises because of the viscous interaction 

of the fibrous medium and the evanescent near-field of the panel 

associate with subsonic panel motion
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• Acoustical / Damping Performance Prediction Process

• Noise Control Materials Microstructure Design Process

• Objectives of this Study

➢ Identify the airflow resistivity providing optimal damping performance

given panel structure and frequency range of interest

➢ Translate the optimal airflow resistivity into optimal fiber sizes for

fibrous material microstructure design

INTRODUCTION
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• Modeling Process[6], [10]

• Modeling Key Points
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• Modeling Process[6], [10]

• Results Observations
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MODELING – KEY POINT 1

• Choice of IDFT sampling rate 𝛾𝑠 and sampling points number 𝑁

➢ Target of the NFD model: calculate spatial responses for wide frequency range

➢ Key point: for each frequency input, choosing proper 𝛾𝑠 and 𝑁 to ensure accurate IDFT 

results over a large enough spatial span for observation
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MODELING – KEY POINT 1

• Choice of IDFT sampling rate 𝛾𝑠 and sampling points number 𝑁

➢ Target of the NFD model: calculate spatial responses for wide frequency range

➢ Key point: for each frequency input, choosing proper 𝛾𝑠 and 𝑁 to ensure accurate IDFT 

results over a large enough spatial span for observation

• Step 1: evaluate the wave number domain response of the panel
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MODELING – KEY POINT 1

• Choice of IDFT sampling rate 𝛾𝑠 and sampling points number 𝑁

➢ Target of the NFD model: calculate spatial responses for wide frequency range

➢ Key point: for each frequency input, choosing proper 𝛾𝑠 and 𝑁 to ensure accurate IDFT 

results over a large enough spatial span for observation

• Step 2: decide a proper cutoff level to avoid windowing/truncation effect
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MODELING – KEY POINT 1

• Choice of IDFT sampling rate 𝛾𝑠 and sampling points number 𝑁

➢ Target of the NFD model: calculate spatial responses for wide frequency range

➢ Key point: for each frequency input, choosing proper 𝛾𝑠 and 𝑁 to ensure accurate IDFT 

results over a large enough spatial span for observation

𝛾𝑠
2

−
𝛾𝑠
2

• Step 3: find the proper sampling rate 𝛾𝑠 for each input frequency

• 𝑁 should 

be large 

enough to 

avoid bias

At certain 

frequency
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MODELING – KEY POINT 1

• Choice of IDFT sampling rate 𝛾𝑠 and sampling points number 𝑁

➢ Target of the NFD model: calculate spatial responses for wide frequency range

➢ Key point: for each frequency input, choosing proper 𝛾𝑠 and 𝑁 to ensure accurate IDFT 

results over a large enough spatial span for observation

• Step 4: identify the critical frequency 𝑓𝑐

𝑓𝑐

Speed of 

sound

Subsonic 

components

Supersonic

components
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• Fibrous Medium Airflow Resistivity Prediction[7]

SEM of the target fibrous medium Fibrous medium micro-CT scanning

Micro-CT scanned fiber radii distribution of the fibrous medium 

7

Fiber 1
Fiber 2
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MODELING – KEY POINT 2

• Fibrous Medium Airflow Resistivity Prediction[7]

In
p

u
ts

Fiber mean radii: 𝒓𝟏, 𝒓𝟐, 

distribution parameters

Fiber bulk density: 𝝆𝒃

Component weight fractions: 𝑿𝟏, 𝑿𝟐

Solid material densities: 𝝆𝟏, 𝝆𝟐

Solidity: 

𝑪 = 𝑿𝟏

𝝆𝒃
𝝆𝟏

+ 𝑿𝟐

𝝆𝒃
𝝆𝟐

Fiber mean spacing: 

𝒃𝟐 =
𝝅

𝑪

(σ𝒑=𝟏
𝒋

𝒏𝟏,𝒑𝒓𝟏,𝒑
𝟐 + σ𝒒=𝟏

𝒌 𝒏𝟐,𝒒𝒓𝟐,𝒒
𝟐 )

(σ𝒑=𝟏
𝒋

𝒏𝟏,𝒑 + σ𝒒=𝟏
𝒌 𝒏𝟐,𝒒)

2

1

3

Output Airflow Resistivity: 𝝈 =
𝟒𝝅𝜼

𝒃𝟐[𝟎.𝟔𝟒𝟎 𝐥𝐧
𝟏

𝑪
+𝑪−𝟎.𝟕𝟑𝟕]

➢ Step 3: 𝝈 calculation base on 𝑪 and 𝒃𝟐

➢ Step 1: 𝑪 calculation based on 𝝆𝒃, 𝑿𝟏, 𝑿𝟐, 𝝆𝟏, 𝝆𝟐

➢ Step 2: 𝒃𝟐 calculation based on 𝒓𝟏, 𝒓𝟐, distribution parameters and 𝑪
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• Fibrous Medium Airflow Resistivity Prediction[7]

Inputs

Fibrous medium verified 

microstructure inputs
Airflow Resistivity Prediction

7

AFR Output
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• Fibrous Medium Airflow Resistivity Prediction[7]

Inputs

Fibrous medium verified 

microstructure inputs
Airflow Resistivity Prediction

7

• Fiber Microstructure Design for Optimal Damping Performance

AFR

AFR

Range of damping 

properties (power 

dissipation from the 

limp fibrous layer)

TMM & NFD

Select 

peak 

value
Optimal damping and 

corresponding optimal 

airflow resistivity

Range of 

Airflow 

Resistivity

Inputs

Optimal fiber size

Output

Output

Numerical optimization

by least square fitting
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• Spatial Velocity Level (dB)

Force

𝑥 = 0

Porous layer

Force

Half-space air

Half-space air

VS.



RESULTS – OBSERVATION 1

SAPEM 2017, Le Mans, France
8

• Spatial Velocity Level (dB)

Force

Half-space air

• Spatial resonance in supersonic region above the critical frequency
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• Spatial Velocity Level (dB)

Porous layer

Force

𝑥 = 0

Half-space air
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• Spatial Velocity Level (dB) 

➢ Bare panel case minus Panel + fibers case

• Significant attenuation in subsonic region below critical frequency
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• Spatial Velocity Level (dB) 

➢ Bare panel case minus Panel + fibers case

• Significant attenuation in subsonic region below critical frequency
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• Power Distribution – panel + half-space air

Power input by the driving force

Power staying in the panel

Power radiating into the air (the 

difference between upper two)

Power 

input

Power radiating 

to the air

Power 

staying 

in the 

panel
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• Power Distribution – adding limp porous layer

Power input by the driving force

Power staying in the panel

𝑷𝟏: Power radiating into the layer 

(the difference between upper two)

𝑷𝒅: Power dissipation within the 

layer (mainly due to the damping 

of the near-field motion)

𝑷𝟐: Power radiating into the air

Power 

input

Power radiating 

to the layer

Power radiating 

to the air

Power 

staying 

in the 

panel

Power 

dissipation

• Subsonic region attenuation due to power dissipation within the layer 
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• Limp Porous Layer Airflow Resistivity Effect on Power Dissipation

Normalized 𝑷𝒅

Normalized 𝑷𝒊𝒏𝒑𝒖𝒕

Normalized 𝑷𝟏

Normalized 𝑷𝟐
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• Limp Porous Layer Airflow Resistivity Effect on Power Dissipation

• Optimal damping corresponds to different optimal

AFRs at different frequencies

Frequency range

of interest
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• Finding Optimal Fiber Size for Optimal Damping – identifying optimal AFRs

➢ Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005

➢ Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%
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• Finding Optimal Fiber Size for Optimal Damping – least square fitting AFRs

➢ Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005

➢ Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%

➢ Fiber inputs: 𝝆𝟏 = 𝟗𝟏𝟎 𝐤𝐠/𝐦𝟑; 𝝆𝟐 = 𝟏𝟑𝟖𝟎 𝐤𝐠/𝐦𝟑; 𝑿𝟏 = 𝑿𝟐 = 𝟓𝟎%; 𝒓𝟐 = 𝟏𝟑 𝛍𝐦; 𝒓𝟏  design target
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• Finding Optimal Fiber Size for Optimal Damping – translating into optimal fiber sizes
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• Finding Optimal Fiber Size for Optimal Damping – translating into optimal fiber sizes

➢ Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005

➢ Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%

➢ Fiber inputs: 𝝆𝟏 = 𝟗𝟏𝟎 𝐤𝐠/𝐦𝟑; 𝝆𝟐 = 𝟏𝟑𝟖𝟎 𝐤𝐠/𝐦𝟑; 𝑿𝟏 = 𝑿𝟐 = 𝟓𝟎%; 𝒓𝟐 = 𝟏𝟑 𝛍𝐦; 𝒓𝟏  design target



RESULTS – OBSERVATION 4

SAPEM 2017, Le Mans, France
11

• Finding Optimal Fiber Size for Optimal Damping – translating into optimal fiber sizes

➢ Aluminum panel thickness = 3 mm; Loss factor = 0.003; Air loss factor = 0.0005

➢ Polymer fibrous layer thickness = 3 cm; Bulk density= 10 kg/m^3; Tortuosity = 1.2; Porosity = 99%

➢ Fiber inputs: 𝝆𝟏 = 𝟗𝟏𝟎 𝐤𝐠/𝐦𝟑; 𝝆𝟐 = 𝟏𝟑𝟖𝟎 𝐤𝐠/𝐦𝟑; 𝑿𝟏 = 𝑿𝟐 = 𝟓𝟎%; 𝒓𝟐 = 𝟏𝟑 𝛍𝐦; 𝒓𝟏  design target

• Relatively large fibers effective at 

damping low frequency vibration
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• Transfer Matrix Method (TMM) and Near-field Damping (NFD) model based on

Inverse Discrete Fourier Transform (IDFT) provide a powerful tool connecting

fibrous materials’ airflow resistivity with their damping performance

• Modified Airflow Resistivity (AFR) model connects fibrous materials’ airflow

resistivity with their microstructure (i.e., various fiber sizes)

• For a limp porous layer attached to a stiff panel, an optimal airflow resistivity can

be found to provide optimal damping performance (subsonic region power

dissipation within the fibrous layer) under each frequency based on TMM and NFD

• Corresponding to the optimal airflow resistivity, an optimal fiber size then can be

found to provide optimal damping performance under each frequency based on

AFR and numerical optimization method

• Relatively large fibers are effective at damping low frequency vibration
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Limp porous layer

Half-space air

Force

Panel
Limp porous layer

Panel

Perforated skin
Half-space air

Force

Visco-elastic layer modeled as elastic solid

Half-space air

Force
Panel

Bonded

Bonded
Metal skin

Poro-elastic layer

Half-space air

Force
Panel

Bonded

Bonded
Metal skin

Poro-elastic layer

Half-space air

Force
Panel

Bonded

Poro-elastic layer

Half-space air

Force
Panel

Bonded
Adhesives modeled as elastic solid

Bonded

• Other cases that have been built by the “TMM + NFD + AFR” model

constraint constraint
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