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ABSTRACT

Su-Ju Wang Ph.D., Purdue University, August 2016. Ultracold Quantum Scattering
in the Presence of Synthetic Spin-Orbit Coupling. Major Professor: Chris H. Greene.

Two-body scattering constitutes one of the most fundamental processes in various

physical systems ranging from ultracold dilute quantum gases to energetic quark-

gluon plasmas. In this dissertation, we study the low-energy atomic collision physics in

the presence of synthetic gauge fields, which are generated by atom-light interaction.

One category of synthetic gauge fields is the artificial spin-orbit coupling. We discuss

three di↵erent aspects in scattering theory: ultracold collision, scattering resonance,

and bound state formation from a few-body perspective when the atomic spin states

are coupled with their center-of-mass motion. The understanding of the spin-orbit

e↵ects on the modification of the scattering processes not only builds the foundation

of collision physics in the presence of non-abelian gauge fields but also paves the way

towards unraveling the few-body correlations in many-body systems.
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1. INTRODUCTION

The purpose of the introductory chapter is to give the readers a basic understanding

towards the two topics: (1) synthetic gauge fields in neutral atoms, and (2) quantum

scattering theory, especially in the low-temperature limit. In Sec. 1.1, we explain

di↵erent methods which physicists have managed to make a neutral atom to behave

like in an external electromagnetic field with a focus on the realization of synthetic

gauge fields via atom-light interactions. In Sec. 1.2, we discuss the fundamental

aspects of collision theory. Important concepts in cold collisions, such as partial

waves and scattering length, will be introduced. These two ideas are essential to

understand the work in the dissertation. An outline at the end of the chapter is

provided as a preview of the thesis.

1.1 Overview of synthetic gauge fields for neutral atoms

Since the first observation of Bose-Einstein condensates and degenerate Fermi

gases [1][2][3], ultracold atomic systems have emerged as a new class of highly control-

lable systems that can serve as quantum simulators [4] of traditional condensed-matter

systems. The flexibility of cold atomic systems is reflected in several aspects. First

of all, the atomic gases can be bosonic, fermionic or mixtures of both. This extends

our interests beyond the traditional solid state systems, which are always fermionic.

Secondly, the environment of ultracold gases is variable and can be created by adding

laser light to the system. Strong confinements create e↵ective low-dimensional sys-

tems, where new phases could occur [5][6]. For another instance, one set (three sets)

of two counter-propagating laser fields of same wavelengths are used to create 1D

(3D) optical lattices to simulate crystalline systems. Thirdly, interatomic interac-

tions are tunable by Feshbach resonances [7]. The inverse scattering length (1/as)
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can be tuned from negative infinity to zero and then to positive infinity, causing the

famous BCS-BEC crossover in degenerate Fermi gases [8]. Thanks to the tunability of

interatomic interaction, it also allows us to study the strongly correlated systems with

dilute quantum gases. The properties of unitary quantum gases have been a popular

topic in recent years, where the only length scale that matters is the interparticle

distance (or density) when the scattering length diverges.

Since an atom is charge neutral, its center of mass motion cannot be coupled

to external electromagnetic fields. Therefore, the development of a way to create

synthetic gauge fields in neutral cold-atom systems has become an important research

direction. The capability of realizing synthetic gauge potentials in neutral atomic

systems will open many new avenues to quantum simulations involving gauge fields,

e.g. the quantum Hall e↵ect and its families. Another important example would be

topological insulators [9][10], which need a special kind of synthetic gauge potential:

spin-orbit coupling. Being able to simulate these quantum systems not only allows

us to study many fundamental and important questions in many-body physics from

a di↵erent approach but also helps us to study questions that are inaccessible in solid

state systems.

So far, there have been several ideas being proposed to realize synthetic gauge

fields in cold gases. One way is through rotating atomic gases [11]. The Coriolis

force in the rotating frame on the neutral atoms behaves exactly the same way as

the Lorentz force on a charged particle in an external magnetic field. Assuming the

rotation is along z axis, the e↵ective magnetic field will point along the z axis with the

strength proportional to the rotation frequency, ⌦. Vortices generated as a response to

the magnetic field have been observed experimentally [12][13]. However, this method

experiences some disadvantages. For instance, the extra centrifugal force from the

rotation will create an anti-trapping potential and compensate the confining potential

in the transverse direction (i.e. the x and y direction). This imposes an upper limit

to the rotation rate: ⌦  !x = !y, and to the strength of the e↵ective magnetic field.



3

This, for instance, will inhibit systems from entering the more intriguing fractional

quantum Hall regime.

Another way to create synthetic gauge fields is through atom-light interaction.

This method is not constrained by the transversally isotropic trapping condition men-

tioned above. By forcing atoms to move in a properly designed laser field, the center

of mass motion of the atoms will mimic the motion of charged particles in a magnetic

field. The idea of using the light-atom interaction to create artificial magnetism is

based on the understanding that the magnetism can be interpreted as the Aharonov-

Bohm phase acquired by the particle when it travels around a closed contour. The

phase the particle obtains after traveling around the closed loop is proportional to the

magnetic flux that the loop has encircled. Therefore, to create an artificial magnetic

field, we need a method in which a neutral particle can achieve a geometric phase after

it moves around a closed contour. One classic example of geometric phases is Berry’s

phase. When a magnetic dipole moment in the presence of an external magnetic

field moves slowly enough to follow the adiabatic eigenstate of the local field, the ex-

tra phase the dipole acquires after it completes a closed contour is the Berry’s phase,

which solely depends only on the geometry. Adapting this idea to neutral matter, adi-

abatically following the eigenstate of light-atom interaction, or the dressed state, will

create a geometric phase, which contributes to the orbital magnetism we are looking

for. In Subsection 1.1.1, we will review a two-level toy model [14] to demonstrate the

above idea. In the Subsection 1.1.2, we extend our discussions to a multi-level system,

where the adiabatic following of a dark state is used to create synthetic gauge fields.

The challenges with this dressed state approach are heating and atom loss caused by

spontaneous emission.

It is worth pointing out that the idea of adiabatic following of dressed states

can also be used to generate non-Abelian gauge potentials when there are multiple

degenerate internal states of atoms. The generations of Rashba spin-orbit coupling

and the non-Abelian Aharonov-Bohm e↵ect are possible in such non-Abelian gauge
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potentials. More discussions about synthetic spin-orbit coupling will be provided in

later chapters.

One last method is through pure magnetic field scheme. This method is mainly

proposed to generate 2D or 3D synthetic spin-orbit coupling for cold atoms [15] [16].

It avoids the heating problem in the above laser-dressed scheme. The idea of us-

ing inhomogeneous magnetic pulses to generate higher-dimensional SOCs lies in the

heart of quantum mechanics. When we are solving quantum dynamics in a system’s

Hamiltonian involving two non-commuting operators, the propagator in general can-

not be split directly into the product of propagators of those two operators. However,

to lowest approximation, it is numerically allowed to do so. For instance, in the

simplest simple harmonic oscillator case, H = p2
x/2m + m!2x2/2, the propagator is

approximated as

e�iH �t

~ ⇠ e�i
p

2

x

2m

�t

~ e�im!

2

x

2

2

�t

~ . (1.1)

The commutator term is neglected after application of the Baker-Campbell-Hausdor↵

formula to the original propagator. The inverse process is proposed to create an e↵ec-

tive dynamics with a Hamiltonian involving at least two non-commuting operators.

In the following, we will take the Rashba spin-orbit coupling as an example, in which

[px�x, py�y] 6= 0. The time evolution operator for a single cycle is given by

U(T, 0)

=
⇥
Uy(�t

0)e�i ~
2

~

k

2

2m

�t

~ U †
y(�t

0)
⇤
⇥
⇥
Ux(�t

0)e�i ~
2

~

k

2

2m

�t

~ U †
x(�t

0)
⇤

(1.2)

= exp
�

� i
~2

2m

⇥
k2
x + (ky + kSOFy)

2
⇤�t

~
 

exp
�

� i
~2

2m

⇥
k2
y + (kx + kSOFx)

2
⇤�t

~
 

(1.3)

' exp

⇢
� i

⇥ ~2

2m
(k2

x + k2
y) +

~2kSO

2m
(kxFx + kyFy) +

~2k2
SO

4m
(F 2

x + F 2
y )
⇤
2
�t

~

�
exp[O(�t2)],

(1.4)

where Fx,y,z are the Pauli matrices for a spin-F particle, �t0 is the magnetic impulse

duration and U✏(�t0) = exp[�iE 0
✏✏F✏�t0/~] for ✏ = x, y. E 0

✏ is proportional to the

magnetic field gradient, B0
✏. From Eq. (1.2) to Eq. (1.3), we have assumed E 0

x =

E 0
y = E 0, ~kSO = E 0�t0 and T = 2�t. The magnetic field gradient needs to be large
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enough to ensure the validity of the negligible pulse duration. The e↵ective Rashba

spin-orbit coupled Hamiltonian is realized by enforcing the error term, O(�t2), to be

much smaller than 1. With this method, an arbitrary combination of Rashba and

Dresselhaus spin-orbit coupled Hamiltonian can be created.

So far, our discussions have limited to the generation of gauge fields for atoms in

the continuum. There are also lots of e↵orts put on creating gauge fields for atoms in

optical-lattice systems, where interesting physics, such as the Hofstadter spectrum,

could be emulated. Quantum mechanically speaking, the e↵ect of a magnetic field

on the motion of a charged particle is to imprint a Peierls phase onto the particle’s

wave function when the particle hopes between di↵erent lattice sites. The total phase

accumulated after the particle moves a closed loop is proportional to the magnetic flux

passing through the area enclosed by the loop. Therefore, to resemble the magnetic

field, we need to come up with a method to create complex hopping amplitudes,

J = |J |ei✓, where ✓ is the Peierls phase. Using a time-periodic driving of the lattice

potential has resulted in a e↵ective time-average Hamiltonian with non-trivial gauge

potentials [17]. Another group has added a radio-frequency field together with the

Raman field to reach a similar goal [18]. Two years later, the first research team has

proposed to drive the lattice in a spin-dependent way such that synthetic spin-orbit

coupling could be emulated in a time-binding lattice [19]. A spin-orbit coupled BEC

in a translational lattice has been experimentally verified [20].

1.1.1 Two-level systems: adiabatic following of a dressed state

Assume we have a two-level atom with ground and excited states |gi and |ei in a

light field. The general Hamiltonian of the atom in a laser field can be written as

H = (
~P 2

2M
+ V )Î + U, (1.5)

where M is the atomic mass, the momentum operator ~P = �i~r, Î is the 2⇥2 unit

matrix in the internal 2D Hilbert space, and the potential V is independent of any
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internal degree of freedom of the atoms. U is the interaction Hamiltonian between

the atom and the light field, which can be expressed in the basis set, {|gi, |ei}, as

U =
~⌦
2

0

@ cos ✓ e�i� sin ✓

ei� sin ✓ � cos ✓

1

A , (1.6)

where ⌦ is the generalized Rabi frequency, � is the phase angle, and ✓ is the mixing

angle. For a two-level atom in a monochromatic laser field, the physical meaning of �

is simply the phase of the laser field. As for the mixing angle, it contains two pieces

of information: ⌦ sin ✓ is the strength of the atom-light coupling and ⌦ cos ✓ is the

detuning. The derivation of the atom-field interaction Hamiltonian U is provided in

Appendix A and the angles � and ✓ are expressed in a physically transparent form

there. Diagonalizing the matrix U , we find that the eigenstates of the atom-light

interaction Hamiltonian are

|�1i =

0

@ cos ✓
2

ei� sin ✓
2

1

A (1.7)

|�2i =

0

@�e�i� sin ✓
2

cos ✓
2

1

A , (1.8)

with the corresponding eigenenergies ~⌦/2 and �~⌦/2. These two eigenstates are

called dressed states. Note that these two dressed states form a complete set in a two

dimensional Hilbert space, so we can use |�1i and |�2i to expand the full state vector

| (~r, t)i of the total Hamiltonian, that is,

| (~r, t)i =
X

j=1,2

 j(~r, t)|�j(~r)i. (1.9)

Next, we will show that the e↵ective Hamiltonian of the center of mass of an atom

is identical to that of a charged particle in a magnetic field when the internal state

of the atom follows adiabatically one of its dressed states. Thus, a neutral object

moving in a properly designed laser field behaves similarly to a charged particle in a

magnetic field.

Suppose the atom is initially in one of the dressed states, say |�1i. If the atom does

not change its motion significantly, then the internal state of the atom will remain
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proportional to the initial internal dressed state, |�1i. This is possible if the absorp-

tion or emission of a photon by an atom involves only a small momentum change,

�k ⇠ kR, where kR is the recoil momentum. To apply the adiabatic approximation,

we require the recoil energy to be much less than the energy di↵erence of the two

levels.

Due to the adiabatic assumption we make above, the atomic population in the

other internal state, |�2i is almost zero. Next we will derive the equation of motion

for  1(~r, t) by assuming that  2(~r, t) = 0. Plugging Eq. (1.9) into the time-dependent

Schrödinger Equation, i~ @
@t

| (~r, t)i = H| (~r, t)i, we get

i~ @
@t

| (~r, t)i =(
~P 2

2M
+ V + U)| (~r, t)i

=
~P

2M
·
X

l=1,2

⇥
(~P l)|�li +  l(~P |�li)

⇤
+ V | (~r, t)i +

~⌦
2

X

j=1,2

 j|�ji

=
~P

2M
·
X

j,l=1,2

⇥
(�j,l ~P � ~Ajl) l

⇤
|�ji + V | (~r, t)i +

~⌦
2

X

j=1,2

 j|�ji

=
X

j,l=1,2

�j,l
⇣ P 2

2M
 l

⌘
|�ji �

X

j,l,m=1,2

�j,l ~Amj ·
⇣ ~P

2M
 l

⌘
|�mi

� 1

2M

X

j,l=1,2

⇥
(~P · ~Ajl) l

⇤
|�ji +

1

2M

X

j,l,m=1,2

⇥
~Amj · ( ~Ajl l)

⇤
|�mi

+ V | (~r, t)i +
~⌦
2

X

j=1,2

 j|�ji, (1.10)

where ~Ajl ⌘ i~h�j|r�li. Notice that from the second equality to the third one,

we have inserted an identity operator, Î =
P

j |�jih�j|. Letting  2=0, Eq.(1.10) is

simplified to be

i~ ̇1|�1i

=

⇢⇥ P 2

2M
� ~A11 · ~P � ~P · ~A11 + ~A2

11

⇤
 1

�
|�1i +

~A12 · ~A21

2M
 1|�1i +

⇣
V +

~⌦
2

⌘
 1|�1i.

(1.11)
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Projecting Eq.(1.11) onto the internal state |�1i, we get

i~ @
@t
 1(~r, t) =

(~P � ~A11)2

2M
 1 +

~A21 · ~A12

2M
 1 + V  1 +

~⌦
2
 1 (1.12)

=


(~P � ~A11)2

2M
+ V +

~⌦
2

+
~A21 · ~A12

2M

�
 1 (1.13)

⌘

(~P � ~A)2

2M
+ V +

~⌦
2

+ W

�
 1, (1.14)

where

~A ⌘ ~A11 = i~h�1|r�1i = ~/2(cos ✓ � 1)r� (1.15)

W ⌘ ~A12 · ~A21/2M = ~2/2M |h�2|r�1i|2 = ~2/8M [(r✓)2 + sin2 ✓(r�)2]. (1.16)

Potentials ~A and W are independent of the coupling strength ⌦ and dependent on

the position the particle follows, so they can be characterized as geometric potentials.

These two geometric potentials appear on the e↵ective center-of-mass equation of

motion after the adiabatic elimination of the other dressed state. Eq.(1.14) bears a

striking resemblance to the equation of motion for a charged particle in an external

field. The geometric potential ~A behaves as the vector gauge potential, and the

potential W is the scalar gauge potential after we set the e↵ective charge to be 1.

If the curl of the vector potential is nonzero, then it is impossible to gauge away ~A

by a simple gauge transformation. The artificial magnetic field in the atomic system

is then

~B = r ⇥ ~A =
~
2
r(cos ✓) ⇥ r�. (1.17)

A nonzero magnetic field exists when r(cos ✓) ⇥ r� 6= 0, which implies the phase

angle of the light field and the mixing angle should both be space-dependent and their

gradients should not align along the same direction. The spatial dependence of the

phase angle comes naturally. For example, for light propagating in the x direction,

� = kx, so r� = kx̂. As for a nonzero value for r cos ✓, two di↵erent configurations

can achieve that. The first one is uses a spatial dependance of the coupling strength

of the atom-laser interaction. The other possibility is to have a spatially-dependent

detuning. The main concern with this single laser method is the lifetime of the excited
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state. Only atoms with a long radiative lifetime can be adapted to this configuration,

for example, the alkaline-earth species are good candidates. For those atoms, the life

time of the excited state could be in the order of seconds.

1.1.2 Multiple-level systems: dark state scheme

To apply the light-dressed approach to a large class of atoms, like the widely used

alkali atoms, schemes involving more than one laser beam to couple the multiple

atomic levels are proposed. Making use of quasi-degeneracy of the energy levels,

dressed states, which are purely linear combinations of the ground states, |gii, is

desirable since the short lifetime problem of excited states for some species of atoms

are cleverly avoided. These special dressed states are called dark states. They have

plenty of applications such as electromagnetically induced transparency (EIT) and

stimulated Raman adiabatic passage (STIRAP). Preparing atoms in such a dressed

state and adiabatically following it will generate artificial gauge potentials on the

atoms. We will illustrate one example of making use of the dark state through a

tripod scheme to generate an artificial magnetic field in the following.

Consider a ⇤-type atom with two almost degenerate ground states (|g1i and |g2i)

and one excited state (|ei). Applying two lasers to couple the ground state to exited

state transition, (|g1i to |ei and |g2i to |ei), the Hamiltonian describing the system

can be written as

U =
~
2

0

BBB@

�2� ⇤1 0

1 0 2

0 ⇤2 2�

1

CCCA
, (1.18)

where 1 and 2 are the Rabi frequencies and � is the detuning of the laser frequency

with respect to the ground-excited transition. For simplicity, the two lasers here are

tuned symmetric with respect to the average of the g1 � e and g2 � e transition fre-

quencies, see Fig. 1.1. Assuming that the two-photon transition is resonant with the
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So far we have restricted our discussion to the case of a
single laser traveling wave and the spatial scale of variation for
the mixing angle ! is thus the beam waistw. It is interesting to
also consider the case where several traveling waves irradiate
the atom at different angles, so that interference phenomena
can introduce a much shorter length scale for !, typically
"=ð2#Þ. For simplicity we restrict ourselves to the case of
two waves and we choose the corresponding wave vectors

equal to k# ¼ kðex # eyÞ=
ffiffiffi
2

p
. The resulting light field still

has a spatially varying phase $ ¼ kx=
ffiffiffi
2

p
, and it presents an

interference pattern along the y direction with a spatial period
"=

ffiffiffi
2

p
. Hence jr$j% jr!j% k=

ffiffiffi
2

p
, and we find using Eq. (8)

that the maximal modulus of the artificial magnetic field is
jBj% 0:1ℏk2%ð0Þ=!. This field is directed along the z axis and
is a periodic function of ywith changes of sign every "=ð2

ffiffiffi
2

p
Þ.

The same reasoning as above shows that one can marginally
localize one quantum of circulation in each disk of area k&2

over which the field is approximately uniform. In order to
obtain a circulation ' 2#, one needs to rectify this spatially
alternating field. Practical solutions will be detailed in Sec. V
devoted to artificial gauge fields in optical lattices.

III. GAUGE POTENTIALS FOR MULTILEVEL SYSTEMS

In the model discussed in Sec. II, the internal state of the
atom is at any place a linear combination of ground and
excited states, and each of these two states must have a
relatively large weight in order to obtain a non-negligible
artificial gauge potential. Therefore, this configuration can be
used only if the excited electronic state has a very long
radiative lifetime, as is the case for alkaline-earth species.
In order to address a larger class of atoms (including the more
widely used alkali atoms), we now turn to schemes that take
advantage of the (quasi)degeneracy of the electronic ground
level. Denoting fjgji; j ¼ 1; . . . ; Ng a basis set of the ground

state manifold, we look for configurations where some
dressed states are linear combinations of the jgji states,

with a negligible contribution of the excited state manifolds,
j&i ( P

j'jjgji. As we will see, this can be obtained by

taking benefit of a so-called dark state (Arimondo, 1996),
or by choosing a laser frequency that is strongly detuned with
respect to the atomic resonance lines. If the atom is prepared
in such a dressed state and moves sufficiently slowly to follow
it adiabatically, geometrical gauge potentials show up as in
Sec. II.B (Dum and Olshanii, 1996). Since we use laser beams
to provide the relevant stimulated Raman couplings between
the states jgji, the 'j coefficients can vary significantly on a

short length scale, typically an optical wavelength. One can
thus produce geometrical fields with comparable amplitudes
to those found in Sec. II, while avoiding the strong heating
that would be caused by spontaneous emission processes.

In this section we first consider the dark state case, which
occurs for a "-level scheme, where two sublevels of the
electronic ground states jg1i and jg2i are coupled to a single
excited state jei by two laser beams. The dark state is an
eigenstate of the atom-laser coupling that is a linear combi-
nation of jg1i and jg2i with a strictly zero contribution of the
excited state. We then discuss two possible practical imple-
mentations of this dark state scheme, first using laser beams

carrying orbital angular momentum, and then using counter-
propagating Gaussian beams with a spatial shift of their axis.
Finally we describe an alternative scheme involving a
position-dependent detuning. This scheme that is not relying
on dark states but on a large detuning has led to the first
experimental observation by Lin, Compton, Jiménez-Garcı́a
et al. (2009) of a geometric magnetic field in the context of
cold atom physics.

A. Artificial magnetic field in a ! scheme

We consider the "-type atomic level structure represented
in Fig. 2, where two laser beams couple the atomic states jg1i
and jg2i to the third one jei. The lasers are tuned symmetric
with respect to the average of the frequencies of the g1 & e
and g2 & e transitions. The full atomic Hamiltonian is given
in Eq. (1), and the coupling operator between the light and the
atom written in the fjg1i; jei; jg2ig basis reads using the
rotating wave approximation

U ¼ ℏ
2

&2( %)
1 0

%1 0 %2

0 %)
2 2(

0
BB@

1
CCA: (24)

Here %1;2 are the complex, space-dependent Rabi frequencies,
which include the spatially varying phases of the laser beams
as in Sec. II.B. The frequency 2( is the detuning of the two-
photon excitation with respect to the Raman resonance
between g1 and g2.

Suppose that the two-photon (Raman) excitation is reso-
nant (( ¼ 0). In this case the coupling matrix U possesses an
eigenstate with zero energy called dark (or uncoupled). This
state contains no contribution from the excited state jei and
reads

jDi ¼ ð%2jg1i& %1jg2iÞ=%; (25)

where % ¼ ðj%1j2 þ j%2j2Þ1=2. The two other eigenstates

of U have the eigenenergies #ℏ%=2, and read j#i ¼ ðjBi#
jeiÞ=

ffiffiffi
2

p
, where jBi is the bright (coupled) state

jBi ¼ ð%)
1jg1iþ %)

2jg2iÞ=%: (26)

Dark states are frequently encountered in quantum optics
applications such as subrecoil cooling (Aspect et al., 1988),
electromagnetically induced transparency (Arimondo, 1996;
Harris, 1997; Lukin, 2003; Fleischhauer, Imamoglu, and

FIG. 2. Atomic "-level structure providing a dark state that
depends parametrically on the Rabi frequencies %1 and %2.

Dalibard et al.: Colloquium: Artificial gauge potentials for . . . 1529

Rev. Mod. Phys., Vol. 83, No. 4, October–December 2011

Figure 1.1.: ⇤-type atoms. This figure is taken from Ref. [14].

transition between two ground states, that is, 2� = 0. Diagonalizing the Hamiltonian

in Eq. (1.18), we get the three dressed states:

|Di =
1p

|1|2 + |2|2
(2|g1i � 1|g2i) (1.19)

|±i =
1p
2

✓
1p

|1|2 + |2|2
(⇤1|g1i + ⇤2|g2i) ± |ei

◆
⌘ 1p

2
(|Bi ± |ei), (1.20)

where the dark state, |Di, is decoupled from the excited state as opposed to the bright

state, |Bi. Notice that hB|Di = hD|Bi = 0. The dressed state energies for |Di and

|±i are 0 and ±~
2

p
|1|2 + |2|2 respectively.

Following a similar procedure as in subsection 1.1.1, we expand the state vector

in terms of the complete set formed by the three dressed states,

| (~r)i =
X

X=D,±

 X(~r)|X(~r)i, (1.21)

and assume that the atom moves adiabatically so that it keeps staying in the dark

state, therefore, we can approximate the state vector with | (~r)i ⇡  D(~r)|D(~r)i.

After projecting out the dark state, we get the e↵ective equation of motion for the

center of mass of the ⇤-type atom,

i~@ D(~r, t)

@t
=


(~P � ~A)2

2M
+ V (~r) + W (~r)

�
 D(~r, t), (1.22)

where the e↵ective vector potential ~A = i~hD|rDi and the e↵ective scalar potential

W = ~2

2M
|hB|rDi|2. This result is very similar to the one we get in the two-level
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atom case if we relate the dressed state |Di (|Bi) to |�1i (|�2i). Comparing the

vector potential and scalar potential for tripod scheme with the two-level scheme in

Eq.(1.15) and Eq. (1.16), we see that the phase angle, �, now is replaced by the phase

di↵erence of the Raman lasers �1 � �2 and the mixing angle ✓ now is related to the

ratio of the two Raman couplings by tan( ✓
2
) = �|1|/|2| ⌘ �

p
⇣. Accordingly, we

can derive the formula for the e↵ective magnetic field,

~B = r ⇥ ~A = ~r�⇥ r⇣
(1 + ⇣)2

. (1.23)

Similar to the two-level case, to have a non-zero magnetic field, an inhomogeneous

phase angle and mixing angle are required and the gradients of them cannot be

parallel to each other. This can be implemented with the usage of lasers carrying

orbital angular-momentum [21]. This can be made possible by preparing the laser

beams in Laguerre-Gauss modes. Another configuration being proposed to realize an

artificial magnetic field is through two counter-propagating laser beams with shifted

center [22]. The first realization of synthetic gauge fields at NIST with the dressed

atom approach is also based on the adiabatic idea we have discussed so far (although

they are not using a dark state). We will discuss it more in later chapters. Please

refer to chapter 2 for details.

1.2 Overview of scattering theory

Many branches of physics reply on scattering theory to explain scattering exper-

iments that convey important information about the projectile, the target and the

force between them. It shapes our understanding to the physical world. For instance,

in atomic physics, the famous Rutherford’s experiment has led to the discovery of

nucleus by scattering an alpha particle o↵ a gold foil. In particle physics, the collision

experiments of a photon with a neutron have taught us that a neutron has an internal

structure and composes of three quarks with fractional charges (0e = 2
3
e � 1

3
e � 1

3
e).

Scattering theory is such an extensive subject that a complete review would be very

involved. However, it is helpful at least to have a categorical understanding of it.
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Depending on the incident particles’ speed, there are relativistic and non-relativistic

scattering theories. From the number of possible final configurations, there are single-

channel and multi-channel scattering theories. Another devision of scattering theory

is whether it is time-dependent or time-independent. Although there are a lot of

varieties in collision theory, the essential features are similar. Basically we want to

answer how the interaction between the projectile and the target changes the ini-

tial freely-propagating state to another asymptotically free final state. The operator

connecting the initial state to the final state is defined as the scattering operator, S.

| outi = Ŝ| ini, (1.24)

where the scattering operator, S, contains all the information of experimental rele-

vance. One important goal in scattering calculations is then directed to find the S

matrix.

In subsection 1.2.1, we illustrate the one-body scattering formalism can still be

applied in two-body scattering when we move to the center-of-mass frame when the

system is separable. In subsection 1.2.2, we discuss the scattering theory for a finite-

range local potential and then focus on spherically-symmetric potentials in subsec-

tion 1.2.3. The idea of partial waves and scattering phase shifts will be explained.

In subsection 1.2.4, we consider the ultracold scattering, in which the experimental

breakthroughs in the atom cooling and trapping have revived the interests. The most

important concept, the scattering length, in ultracold collisions will be elaborated.

1.2.1 The two-body problem

In quantum mechanics, we have learned many counterintuitive physical phenom-

ena about one-particle scattering o↵ di↵erent types of static potentials. In two-body

scattering, the degree of freedom in the system increases to six in three spatial di-

mensions. Rather than working in the two separate particle coordinates, physicists
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use instead the center-of-mass coordinates and the relative coordinates to describe

the two-body scattering.

Ĥ2b = Ĥ1 + Ĥ2 =
~p2

1

2m1

+
~p2

2

2m2

+ V (~r1 � ~r2) (1.25)

= Hcom + Hrel =
~P 2

2M
+
~p2

2µ
+ V (~r), (1.26)

where M = m1 + m2, µ = m
1

m
2

m
1

+m
2

, ~P = ~p1 + ~p2, ~R = m
1

~r
1

+m
2

~r
2

m
1

+m
2

, ~p = m
2

~p
1

�m
1

~p
2

m
1

+m
2

, and

~r = ~r1 � ~r2. Notice that the new operators satisfy the usual commutation relations.

[~Rj, ~Pk] = i~�j,k for j, k = x, y, z (1.27)

[~rj, ~pk] = i~�j,k for j, k = x, y, z (1.28)

[~Rj, ~pk] = 0 for j, k = x, y, z (1.29)

[~rj, ~Pk] = 0 for j, k = x, y, z (1.30)

The advantage of adopting this new set of coordinates is based on the following

argument. The Newton’s third law tells us that two massive particles exert equal

and opposite forces on each other. Since the two particles interact and respond to

each other, the two-body interaction should depend only on their relative coordinate,

see Eq. (1.25). This tells us that the center-of-mass motion is a simple free-particle

motion. Therefore, in the two-body problem, what we are solving is the relative

motion, and thus only involves three spatial degrees of freedom instead of six.

However, in some cases, the center-of-mass motion cannot be decoupled from the

relative motion due to the existence of some special single-particle potentials on each

particle. In those cases, we can only solve the problem with the full degree of freedom.

For instance, as the reader will see in the later chapter, when the spin-orbit coupling

exists in the two-body system, the center-of-mass motion is in general coupled to the

relative motion unless we consider the case of a zero center-of-mass momentum. For

another instance, for two trapped particles, if the trapping frequencies of these two

particles are di↵erent, then the center-of-mass motion is coupled to the relative one.

We often call these cases nonseparable.
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1.2.2 The scattering amplitude and the cross sections

Considering a separable two-body collision in 3D, the problem we are solving

is reduced to a relative particle with mass µ in an external potential V (~r). The

Schrödinger equation governing the motion of the relative particle is expressed as

✓
~p2

2µ
+ V (~r)

◆
 (~r) = E (~r), (1.31)

where V (~r) is assumed to be a finite-range local potential, meaning the potential

operator is diagonal in the position representation

h~r 0|V̂ | r i = V (~r)�(~r � ~r 0). (1.32)

A scattering solution satisfying Eq. (1.31) can be expressed as a superposition state

of the incoming plane wave and the outgoing spherical wave at |~r| ! 1. The large

distance limit allows us to ignore the finite distribution of the short-range potential

at the detector. Thus,

 =  inc +  sc = ei
~k·~r + f(~k, ~k0)

eikr

r
at |~r| ! 1 (1.33)

= ei
~k·~r + f(k, n̂, n̂0)

eikr

r
at |~r| ! 1. (1.34)

The first term describes the incoming plane wave with a fixed momentum ~k pointing

along the direction, n̂ ⌘ k̂/|~k|. The convention is in the z direction. The vector k̂0

represents the propagating vector of for waves arriving at the observation point, ~r, so

the direction of ~k0 is defined as n̂0 ⌘ ~r/|~r|. Since we are dealing with a single-channel

elastic scattering, ~k and ~k0 di↵er only in the direction (from n̂ to n̂0) with an equal

magnitude |~k| = |~k0| ⌘ k. The second term represents an outgoing spherical wave

with a coe�cient f(~k, ~k0), which is determined by the scattering potential, V (r). The

coe�cient, f , is named as the scattering amplitude. If f = 0, it means the incoming

wave passes through the potential as if there is no any obstacle at all. E↵ectively,

there is no scattering at all. The scattering amplitude is one of the most important
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properties to characterize the scattering process, since it is directly related to the

experimentally measurable quantities, cross sections.

d�

d⌦
= |f(~k, ~k0)|2 (1.35)

� =

Z
d�

d⌦
d⌦ =

Z
|f(~k, ~k0)|2d⌦ (1.36)

Eq. (1.35) stands for the di↵erential cross section and Eq. (1.36) states the total cross

section after integrating over the solid angle in Eq. (1.35). At subsection 1.2.3, we will

see the close connection of the scattering amplitude, f , and the scattering operator, S.

What we have presented so far is the scattering theory for two spinless particles

in a single-channel case. In general, particles can carry spins and can have multiple

channels to be scattered from and to. Also, if the two scattered particles are identical,

we need to carefully perform symmetrization or anti-symmetrization of the wave

function. John Taylor’s book on scattering theory [23] gives a very thorough analysis

to all kinds of scattering problems. We refer readers to his book for further details.

1.2.3 Partial-wave expansion

In this subsection, we focus our discussions on the short-range spherically-symmetric

interactions to gain more insights into the scattering amplitude. By spherical sym-

metric interactions, we mean the potential is invariant under any rotation in 3D,

so V (~r) = V (r) in Eq. (1.31). By short-range interaction, we mean the potential

goes to zero as r ! 1. It guarantees that the relative particle propagates freely at

asymptotic regimes. The condition ensuring that is generally very complicated. For

spherical potentials, the potential should satisfy the following three properties [23]:

(I) V (r) = O(r�3�✏) as r ! 1 (with ✏ > 0)

(II) V (r) = O(r�2+✏) as r ! 0 (with ✏ > 0)

(III) V (r) is continuous for 0 < r < 1.

The first two conditions require that the short-range potential to decay faster than

1/r3 at infinity and behave less singularly than 1/r2 as r ! 0. Thus, the first con-
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dition excludes the Coulomb interaction (⇠ 1/r) and the dipole-dipole interaction

(⇠ 1/r3). Some refer them as long-range interactions in this context.

Since the potential is spherically symmetric, the scattering outcome should depend

only on the angle between the incident wave direction and the observation direction.

Defining cos ✓ = n̂ · n̂0, the scattering amplitude is reduced to

f(k, n̂, n̂0) = f(k, ✓) for V (~r) = V (r). (1.37)

One convenient convention is to assume the incident wave comes in the z direction,

so the detector position is ~r = {r, ✓,�} in the familiar 3D spherical coordinate. The

scattering amplitude can be found by first expanding the scattering solution in terms

of the spherical harmonics, Y m
l (✓,�). The angular momentum basis is perfect for

the case here since the rotational invariance of the scattering potential assures the

angular momentum conservation. Therefore, the expansion radial wave function,

uk,l,m(r) does not couple to uk,l0,m0 when l 6= l0 and m 6= m0.

 ~k(~r) =
1X

l=0

lX

m=�l

uk,l,m(r)

r
Y m
l (✓,�), (1.38)

where � is the azimuthal angle with respect to the z direction. Plugging in the ex-

pansion into Eq. (1.31), we simplify the problem from solving a 3D partial di↵erential

equation into a 1D radial di↵erential equation.

�~2

2µ
u00
k,l(r) +

✓
l(l + 1)~2

2µr2
+ V (r)

◆
uk,l(r) = Euk,l(r) (1.39)

where E = ~2k2

2µ
. For a given l, the solutions are identical for all m = �l, ..., l, so we

remove the label of m of the radial function by choosing m = 0 in Eq. (1.39). The

term l(l+1)~2

2µr2
is called the centrifugal potential, which is the source of shape resonances

for l 6= 0.

The plane wave can be expanded as follows with angular momentum algebra.

eikz = eikr cos ✓ =
1X

l=0

il(2l + 1)jl(kr)Pl(cos ✓) (1.40)

�!
kr!1

1

2ik

1X

l=0

(2l + 1)

✓
eikr

r
+ (�1)l+1 e�ikr

r

◆
Pl(cos ✓), (1.41)
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where jl(kr) are the spherical Bessel functions and Pl(cos ✓) are the Legendre polyno-

mials. At very large distances, the plane wave can be viewed as a sum of a superpo-

sition of an incoming wave of e�ikrPl(cos ✓)/r and an outgoing wave, eikrPl(cos ✓)/r,

in each angular momentum, l.

The key point of finding the scattering amplitude is to realize that the scattering

solution at the infinite r should (i) reduce to the free particle wave function with only

some extra phase shifts, �l(k), that is, the solution to Eq. (1.39) at r ! 1 is

uk,l(r) �!
r!1

sin(kr � l⇡/2 + �l(k)), (1.42)

and (ii) carry the same incident wave information as in Eq. (1.41), which are the

boundary conditions we should satisfy. Therefore, we can show that the scattering

solution can be written as

 ~k(r) �!
kr!1

eikz +
1X

l=0

(2l + 1)

✓
e2i�

l � 1

2ik
Pl(cos ✓)

◆
eikr

r
. (1.43)

Thus, the scattering amplitude is

f(✓) =
1X

l=0

(2l + 1)fl(k)Pl(cos ✓), (1.44)

where

fl(k) =
Sl(k) � 1

2ik
with Sl(k) = e2i�

l . (1.45)

The notation Sl in Eq. (1.45) stands for the partial wave S matrix element and �l is

the scattering phase shift for the partial wave of l. Accordingly, we can calculate the

cross sections in each partial waves. The total cross sections are the sum of all partial

wave cross sections since the orthogonality of the Legendre polynomials will cancel

all interference terms between di↵erent angular momenta. Therefore,

� =
X

l

�l with �l =
4⇡

k2
(2l + 1) sin2 �l(k). (1.46)

From the above equation, we see that there is an upper bound for each partial-wave

cross section.

�l < �l,max =
4⇡

k2
(2l + 1), (1.47)
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which is called the unitary bound. It is a direct result of the unitarity of the S matrix.

The unitary limit is reached when �l = n⇡/2 for odd n.

1.2.4 Low-energy scattering

The simplest way to understand ultracold scattering is to explore the solution of

the Schrödinger equation in Eq. (1.39) at E = 0 and l = 0. For r > r0, where r0 is

the range of the potential, the radial wave function satisfies

d2u

dr2
= 0 (1.48)

The answer to Eq. (1.48) is nothing but a straight line with

u(r) = A(r � a), (1.49)

where A and a are constants. One way to interpret the solution is to imagine a free

sinusoidal wave with an infinitely long wavelength. From Eq. (1.42), we know that

lim
k!0

sin(kr + �0) = lim
k!0

sin


k

✓
r +

�0
k

◆�
, (1.50)

so it behaves the same as the solution up to some normalization constants in Eq. (1.49)

when k ! 0. From Eq. (1.49) and Eq. (1.50), we derive

u0

u
= k cot


k

✓
r +

�0
k

◆�
=

1

r � a
for k ! 0 (1.51)

Taking r ! 0, we reach the eqality,

lim
k!0

k cot �0 = �1

a
, (1.52)

where a is known as the s-wave scattering length. From the above identity, we can

show that the s-wave cross section is

�0 = 4⇡|f0|2 = 4⇡
���
e2i�

0 � 1

2ik

���
2

= 4⇡
���
ei�0 sin �0

k

���
2

= 4⇡
���

1

k cot �0 � ik

���
2

�!
k!0

4⇡a2,

(1.53)
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where the factor 4⇡ comes from the solid angle integration. So far, we have seen three

di↵erent ways of understanding the meaning of s-wave scattering length:

(i) the intercept of the radial wave function with the r-axis,

(ii) a physical quantity, which is related to the phase shift by tan �0 = �ka,

(iii) the e↵ective range of scattering occurs in a classical sense.

Later on, we will see that a also characterizes how strong the interaction in ultracold

scattering in the pseudo-potential theory. Also, a scattering length can have energy

dependence if we go to a higher order of accuracy. For our purpose, we don’t discuss

it here. For interested readers, we refer them to the e↵ective-range theory [24].

For partial waves with nonzero value of l, the partial-wave phase shifts can be

shown to be scaled as �l(k) / k2l+1 modulo ⇡. Since

�l 6=0 =
4⇡

k2
(2l + 1) sin2 �l / k4l ! 0 as k ! 0, (1.54)

the cross sections of higher-partial waves go to zero as k ! 0. One intuitive way

to understand that is by noticing that when the collision energy is much lower than

the centrifugal barrier, which exists only for l 6= 0, the particle cannot penetrate the

barrier to probe the potential, and thus gets reflected directly. Therefore, at very low

temperatures, s-wave scattering dominates and the scattering length, a, is almost the

most important quantity in the field of ultracold atomic physics.

1.3 Outline of the thesis

The dissertation is organized as follows: in chapter 2, we first review the first

realization of synthetic gauge fields in ultracold quantum gases with the dressed atom

approach. Spin-orbit coupling, is shown to be a special case of synthetic gauge fields.

Discussions on the novelty of the spin-orbit coupled BECs are given with a focus on

the dynamics. The non-adiabatic dynamics in spin-orbit coupled BECs are studied

and a quantitative agreement with the celebrated Landau-Zener model is reached.

The theoretical calculations are confirmed by the experimental group of Prof. Yong
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P. Chen at Purdue, and the experimental results will be discussed. The breakdown

of the Landau-Zener model is discussed at the end of the chapter.

Chapter 3 presents a generalized low-energy scattering theory for the isotropic

spin-orbit coupling within the pseudo-potential approximation. A systematic method

is introduced to analytically solve a class of coupled di↵erential equations by recasting

the coupled-channel problem as a simple eigenvalue problem. The exact Green’s

matrix in the presence of SOC is found, which readily gives the scattering solutions for

any two identical particles in any total angular momentum subspace having negligible

center-of-mass momentum. Application of this formalism to two spin-1 bosons is

provided. The ubiquitous low-energy threshold behavior for systems with isotropic

SOC is calculated and the relevant physics is discussed. Additionally, by searching for

the poles of the S matrix, a two-body bound state is found for any arbitrarily small

and negative scattering length due to the huge degeneracy provided by the isotropic

spin-orbit coupling.

In Chapter 4, we calculate the reflection and transmission amplitudes in a one-

dimensional Fermi gas with an equal mixing of the Rashba and Dresselhaus spin-

orbit coupling (RD-SOC) under an external Raman laser field for all energy range

within the pseudo-potential approximation. We show that the presence of RD-SOC

together with the Raman field fundamentally change the scattering behavior and

can be used to realize very di↵erent one-dimensional theoretical models in a single

experimental setup. A realistic estimation of experimental parameters is provided

with the assistance of confinement-induced resonances (CIRs).

The last chapter summarizes the studies done in the thesis and discusses also

possible relevant future work. A focus will be given to the Efimov physics. Since

SOC introduces a new scale into the thee-body system, it would be very interesting

to study whether there still exists universal three-body bound states, if the answer is

yes, and then how the new scale is incorporated into the universal scaling law. The

other interesting direction is to explore the interplay of SOC and the higher-partial

waves. A general treatment to any types of short-range potential is introduced there



21

to be able to incorporate contributions from higher-partial waves. Other possible

extensions will be discussed as well.
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2. NON-ADIABATIC DYNAMICS OF A DRIVEN

SPIN-ORBIT COUPLED BEC

When BECs were first achieved, physicists were trying to study this new form of

matter (although predicted long time ago by Satyendra Nath Bose and Albert Ein-

stein in 1924-1925) by poking it in di↵erent ways. Releasing two condensates from

a double-well potential and allowing them to expand freely, Ketterle’s group has ob-

served an interference pattern in the overlapping region, where they met [25]. This

demonstrates the phase coherence feature of a condensate when all the atoms occupy

the same ground state. By time-modulating the magnetic trapping potential, the

shape oscillation is observed [26]. The condensate changes its lengths and aspect ra-

tios periodically with a frequency of the order of the trapping frequency as a response

to the modulation. Study of collective excitations of tapped condensates as a many-

body system has been an important probe to explain the properties of BECs. Similar

explorations of spin-orbit coupled BECs have happened since their first realization

in 2011 [27]. Di↵erent experiments show di↵erent interesting aspects of spin-orbit

coupled BECs. Here, we will mainly focus on three topics: phase diagrams, elemen-

tary excitations, and dynamics. Through reviewing recent research studies, the novel

features of spin-orbit coupled BECs will be depicted. After that, we focus mostly on

the non-adiabatic dynamics of SO-coupled BECs.

This chapter is written based on the publication in Phys. Rev. A, 90, 013616

(2014) and is organized as follows. In Sec. 2.1, we first review the realization of spin-

orbit coupled BECs in NIST experiments and then discuss properties of SO-coupled

BECs through a series of theoretical and experimental works after that. Later in

Sec. 2.2.1, we talk about the classic model studying the non-adiabatic dynamics:

the Landau-Zener model. Motivations for studying non-adiabatic dynamics in cold
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atom systems will be described. In Sec. 2.2.3 and 2.2.4, we show that the driven

dynamics in spin-orbit coupled BECs matches very well with the predictions given

by the Landau-Zener model for both numerical simulations and experiments in the

semi-classical limit [28]. Discussions about the breakdown of Landau-Zener model in

certain parameter space will be provided. This point has been addressed in a follow-

up paper by Bo Xiong et al. [29]. Interesting predictions given there considering the

multichannel e↵ect will be sketched too.

2.1 Light-induced gauge potentials: NIST Experiments

Yu-Ju Lin et al. first generated a constant vector gauge potential in a Bose-

Einstein condensate of 87Rb through atom-light interaction in 2009 [30]. The three

Zeeman-split F=1 hyperfine states in Rb atoms are coupled through two-photon tran-

sitions by applying two counter-propagating lasers with perpendicular linear polariza-

tions (ẑ and ŷ) and a small frequency shift (!L and !L +�!L) along the x direction.

Under the rotating wave approximation, the Hamiltonian describing the system in the

frame rotating at �!L can be written, in the internal basis states: |F, mF i = |1, �1i,

|1, 0i, and |1, 1i, as

H =

0

BBB@

p2

x

2m
� ~� ~⌦

2
e2ik

L

x 0

~⌦
2

e�2ik
L

x p2

x

2m
� ~✏ ~⌦

2
e2ik

L

x

0 ~⌦
2

e�2ik
L

x p2

x

2m
+ ~�

1

CCCA
, (2.1)

where kL = 2⇡/�, � is the laser wavelength, � = �!L � !Z is the detuning, ⌦

is the Raman frequency and ✏ is the second-order Zeeman shift. Applying a unitary

transformation, U , to the Hamiltonian in Eq. (2.1), we arrive at the following e↵ective

Hamiltonian,

He↵ = UHU † =

0

BBB@

(p
x

+2~k
L

)2

2m
� ~� ~⌦

2
0

~⌦
2

p2

x

2m
� ~✏ ~⌦

2

0 ~⌦
2

(p
x

�2~k
L

)2

2m
+ ~�

1

CCCA
, (2.2)
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@
2m ð~kx þ 2krÞ2 $ ! !R=2 0

!R=2
@
2m

~k2x $ " !R=2

0 !R=2
@
2m ð~kx $ 2krÞ2 þ !

0
B@

1
CA:

Here ! ¼ ð"!L $!ZÞ is the detuning from Raman reso-
nance, !R is the resonant Raman Rabi frequency, and "
accounts for a small quadratic Zeeman shift [Fig. 1(b)]. For
each ~kx, diagonalizing H 1 gives three energy eigenvalues
Ejð~kxÞ (j ¼ 1, 2, 3). For dressed atoms in state j, Ejð~kxÞ is
the effective dispersion relation, which depends on experi-
mental parameters, !,!R, and " (left panels of Fig. 2). The
number of energy minima (from one to three) and their
positions ~kmin are thus experimentally tunable. Around
each ~kmin, the dispersion can be expanded as Eð~kxÞ &@2ð~kx $ ~kminÞ2=2m', where m' is an effective mass. In this
expansion, we identify ~kmin with the light-induced vector
gauge potential, in analogy to the Hamiltonian for a parti-

cle of charge q in the usual magnetic vector potential ~A:

ð ~p$ q ~AÞ2=2m. In our experiment, we load a trapped BEC
into the lowest energy, j ¼ 1, dressed state, and measure its
quasimomentum, equal to @~kmin for adiabatic loading.

Our experiment starts with a 3D 87Rb BEC in a com-
bined magnetic-quadrupole plus optical trap [12]. We
transfer the atoms to a crossed dipole trap, formed by
two 1550 nm beams, which are aligned along x̂-ŷ (hori-
zontal beam) and (10) from ẑ (vertical beam). A uniform
bias field along ŷ gives a linear Zeeman shift !Z=2# ’
3:25 MHz and a quadratic shift "=2# ¼ 1:55 kHz. The
BEC has N & 2:5* 105 atoms in jmF ¼ $1; kx ¼ 0i,
with trap frequencies of &30 Hz parallel to, and &95 Hz
perpendicular to the horizontal beam.

To Raman couple states differing in mF by +1, the $ ¼
804:3 nm Raman beams are linearly polarized along ŷ and
ẑ, corresponding to # and % relative to the quantization
axis ŷ. The beams have 1=e2 radii of 180ð20Þ &m [13],
larger than the 20 &m BEC. These beams give a scalar
light shift up to 60Er, where Er ¼ h* 3:55 kHz, and

contribute an additional harmonic potential with frequency
up to 50 Hz along ŷ and ẑ. The differential light shift
between adjacent mF states arising from the combination
of misalignment and imperfect polarization is estimated to
be smaller than 0:2Er. We determine !R by observing
population oscillations driven by the Raman beams and
fitting to the expected behavior [Fig. 1(c)].
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FIG. 1 (color online). (a) The 87Rb BEC in a dipole trap created by two 1550 nm crossed beams in a bias field B0ŷ (gravity is along
$ẑ). The two Raman laser beams are counterpropagating along x̂, with frequencies !L and (!L þ"!L), linearly polarized along ẑ
and ŷ, respectively. (b) Level diagram of Raman coupling within the F ¼ 1 ground state. The linear and quadratic Zeeman shifts are
!Z and ", and ! is the Raman detuning. (c) As a function of Raman pulse time, we show the fraction of atoms in jmF ¼ $1; kx ¼ 0i
(solid circles), j0;$2kri (open squares), and jþ1;$4kri (crosses), the states comprising the #ð~kx ¼ $2krÞ family. The atoms start in
j$1; kx ¼ 0i, and are nearly resonant for the j$1; 0i ! j0;$2kri transition at @! ¼ $4:22Er. We determine @!R ¼ 6:63ð4ÞEr by a
global fit (solid lines) to the populations in #ð$2krÞ.
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FIG. 2 (color online). Left panels: Energy-momentum disper-
sion curves Eð~kxÞ for @" ¼ 0:44Er and detuning @! ¼ 0 in (a)
and @! ¼ $2Er in (b). The thin solid curves denote the states
j$1; ~kx þ 2kri, j0; ~kxi, jþ1; ~kx $ 2kri absent Raman coupling;
the thick solid, dotted and dash-dotted curves indicate dressed
states at Raman coupling @!R ¼ 4:85Er. The arrows indicate
~kx ¼ ~kmin in the j ¼ 1 dressed state. Right panels: Time-of-flight
images of the Raman-dressed state at @!R ¼ 4:85ð35ÞEr, for@! ¼ 0 in (a) and @! ¼ $2Er in (b). The Raman beams are
along x̂, and the three spin and momentum components,
j$1; ~kmin þ 2kri, j0; ~kmini, and jþ1; ~kmin $ 2kri, are separated
along ŷ (after a small shear in the image realigning the Stern-
Gerlach gradient direction along ŷ).
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Figure 2.1.: (a)The experimental setup in Spielman’s group. !L and !L + �!L are

the two Raman laser frequencies. B0 is the bias magnetic field to split the three

hyperfine levels in Rb atoms. (b) The three F=1 hyperfine states of Rb atoms. The

|1, �1i (|1, 0i) state is coupled to the |1, 0i (|1, 1i) state by a two-photon transition.

!Z is the linear Zeeman shift, � is the detuning, and ✏ is the quadratic Zeeman shift.

The figure is taken from Ref. [30].

with the unitary matrix

U =

0

BBB@

e�2ik
L

x 0 0

0 1 0

0 0 e2ik
L

x

1

CCCA
. (2.3)

Notice that the terms ±2~kL in Eq. (2.2) come from the nontrivial commutation

relation between the kinetic energy operator and the position operator in the matrix,

U . After the unitary transformation, px in Eq. (2.2) stands for quasi-momentum. This

term quasi-momentum is borrowed from the Bloch’s theorem stating that the wave

function of an electron in a periodic potential is a plane wave with quasi-momentum

(or crystal momentum) as its wave vector multiplied by a periodic function with

the lattice periodicity. In the absence of Raman coupling, the e↵ective Hamiltonian

represents three quadratic bands centered separately at quasi-momenta px = �2~kL,

0, and 2~kL, see the black dashed curves in Fig. 2.2. The hyperfine spin index is not
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enough to label the three dressed states for each kx now. We need to introduce another

quantum number to label these three unitarily transformed states: |�1, kx + 2kLi,

|0, kxi, and |1, kx � 2kLi. The Raman coupling couples these three states through

two-photon transitions. Every time when the atom absorbs one photon from one

laser and emits a stimulated photon into the other laser beam, it will obtain a 2kL

momentum kick with a spin change simultaneously.

Since the quasi-momentum is a good quantum number (in the absence of any

trapping potential), diagonalizing the e↵ective Hamiltonian in Eq. (2.2) for each

kx = px/~ gives three eigenenergies, Ei(kx) for i = 1, 2, 3. The energy dispersion

relations depend on the three experimentally tunable parameters, �, ⌦ and ✏. The

parameter � controls the overall tilting of the energy bands and the Raman coupling

⌦ determines the size of gaps opened at the crossing points of the bare bands. We

have plotted the three energy bands with di↵erent parameters in Fig. 2.2, 2.3 and

2.4. When the parameter is appropriately chosen, the lowest band can have only

one single minimum at a nonzero quasi momentum, kx = kmin, see Fig. 2.3. In the

case, expanding the lowest energy dispersion around its minimum, we get the e↵ective

energy dispersion relation: E1(kx) ⇡ ~2(kx � kmin)2/2m⇤, where m⇤ is the e↵ective

mass depending on the curvature of the energy band. The e↵ective Hamiltonian

describing the lowest energy band mimics the Hamiltonian of a charged particle in a

magnetic field, i.e. H = (~p�q ~A)2/2m. We can interpret the kmin as the light-induced

vector gauge potential with the e↵ective charge q = 1.

Although the vector gauge potential created in the first experiment is constant in

space and time, which corresponds to zero electric and magnetic fields, Spielman’s

group later has created a synthetic magnetic field [31] for neutral atoms by inducing a

detuning gradient, which equivalently adds spatial dependence to the vector potential.

They demonstrated the existence of vortices inside a Bose-Einstein condensate as one

evidence of the artificial magnetic field. In 2011, they have also successfully generated

a synthetic electric field [32] by adding time dependence to the vector potential. These

experiments were all done with a similar experimental setup shown in Fig. 2.1.
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Figure 2.2.: The three e↵ective energy dispersion relations. The red solid curves are

for ~⌦ = 4.85EL, ~✏ = 0.44EL and ~� = 0, where EL = ~2k2
L/2m. The black dashed

curves are the bare energy dispersion curves in the absence of Raman coupling, ⌦.

In 2012, Pengjun Wang et al. and Lawrence W. Cheuk et al. have realized

an equal mixing of Rashba and Dresselhaus spin-orbit coupling in degenerate Fermi

gases of 40K [33] and of 6Li respectively [34]. The unique dispersion relation was

mapped out by using momentum-resolved radio-frequency spectroscopy and spin-

Injection spectroscopy separately. This realization fuels many studies for spin-orbit

coupled Fermi gases. From Wang’s agreement between the experimental observation

of the fermion population change in di↵erent energy dispersion branches and a finite

temperature calculation, they expect to see a Lifshitz transition of the change in the

Fermi surface topology by further cooling down the system. By further confining the

system in one-dimensional geometry, they predict to see Majorana fermion modes at

the phase boundaries when the Fermi surface topology changes.

2.1.1 Equal Rashba-Dresselhaus-type spin-orbit coupling

At a special parameter regime, ✏ ⇡ � > ⌦, the third state will be far away from

the other roughly degenerate states, the three-level system can be reduced into one
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Figure 2.3.: Energy dispersions in the single minimum regime. The red solid curves

are for ~⌦ = 4.85EL, ~✏ = 0.44EL and ~� = �2EL. The black dashed curves are the

bare energy dispersion curves with ⌦ = 0. The lowest energy dispersion has a single

nonzero minima near kx ⇠ 2kL, which is the signature of the vector gauge potential.
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Figure 2.4.: Energy dispersion relations in the spin-orbit coupled regime. The red

solid curves are for ~⌦ = 1.8EL, ~✏ = 3.55EL and ~� = 3.55EL. The black dashed

curves are the bare energy dispersion curves in the absence of Raman coupling. The

third state is negligible since it is far enough from the region of interest. The two

e↵ective energy bands in the lower-energy regime capture the spin-orbit coupling for

an e↵ective spin-1
2

system.
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e↵ective spin-1/2 system with the characteristic double-minimum energy dispersions,

see Fig. 2.4, which is captured by the following Hamiltonian,

He↵ =

0

@
(p

x

+~k
L

)2

2m
� ~�

2
~⌦
2

~⌦
2

(p
x

�~k
L

)2

2m
+ ~�

2

1

A , (2.4)

=
~2k2

x

2m
I2⇥2 +

~2kLkx

m
�z +

~⌦
2
�x � ~�

2
�z, (2.5)

where �x,y,z are the Pauli matrices and I2⇥2 is the identity matrix. Rewriting Eq.(2.4)

in terms of Pauli matrices, a whole new interpretation of this Hamiltonian in Eq.

(2.5) is achieved. The second term states that the particle’s spin is linked to its

linear momentum, which is the famous spin-orbit coupling. In solids, the Rashba

spin-orbit coupling shows up due to inversion symmetry breaking. An intuitive way

to understand the Rashba spin-orbit coupling is to imagine an electron moving with

a velocity, ~v, in an electric field, ~E, which causes the inversion symmetry breaking.

The electron will experience a velocity-dependent magnetic field in its rest frame,

~B = �~v ⇥ ~E/c2, (2.6)

where c is the speed of light and � = 1/
p

1 � v2/c2 ⇡ 1. The electron’s spin will

couple to this magnetic field and lead to the spin-dependent Hamiltonian,

HSOC =
µB

2c2
~v ⇥ ~E · ~�, (2.7)

where ~µe = �gµB~�/2 = �µB~� is the electron’s magnetic moment. The 1/2 factor is

the Thomas correction. If the electric field is pointing in the z direction, the Rashba

spin-orbit term can be expressed as HSOC = ↵(~� ⇥ ~p) · ẑ = ↵(�xpy � �ypx) with

↵ = µBE/2mc2. A similar type interaction, Dresselhaus spin-orbit coupling, apears

in systems with lack of an inversion center. The Dresselhaus spin-orbit coupling is

often written as HD = �(�xpx��ypy). Up to a spin rotation, HSOC = ↵(�xpx+�ypy).

It is clear to see that the e↵ective spin-orbit Hamiltonian generated in Eq. (2.5) is

an equal mixing of Rashba and Dresselhaus spin-orbit coupling.

The spin-orbit coupling has a unique energy dispersion. The Mexican-hat like

energy dispersion relation in spin-orbit coupled BECs brings an extra ground state
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Figure 1. The phase diagrams of 87Rb (a) and 23Na (b). The two pseudo-spin states are m = 0, −1 states of F = 1 hyperfine states. On the
right of the red dashed line, the single-particle spectrum has one local minimum, and there is only one plane-wave phase (PW3). On the left
of the red dashed line, the single-particle spectrum has two local minima, and the horizontal blue line separates two plane-wave condensates
at different momenta (PW1 and PW2). Within the region rounded by two blue lines it is the stripe phase, in which the condensate coherently
occupies two different momenta. Here Er = 2π × 2.2 kHz and 2π × 8.35 kHz for 87Rb and 23Na, respectively.

phase is not favoured by the density interaction part
(g/2)

∫
d3r(n↑(r) + n↓(r))2. In other words, if the

interaction is SU (2) invariant, the stripe phase will not
exist in this system. The difference in g↑↑, g↓↓ and g↑↓ is
necessary for stabilizing the stripe phase. Moreover, since
the non-uniform term in the total density increases as "

increases, the stripe phase, if it exists, should be found in
the small " regime of the phase diagram.

(4) Consider the limit " = 0, if g↑↑g↓↓ − g2
↑↓ > 0, a

homogeneous mixture of two components is stable against
local density fluctuations, and there will be a mixed phase
within a certain detuning window. Such a mixed phase
will turn into the stripe phase once " becomes non-zero,
for instance, for the 87Rb case as shown in figure 1(a).
While if g↑↑g↓↓ − g2

↑↓ < 0, the mixed phase is not stable
against phase separation even for zero ", and there will
be no stripe phase in the phase diagram, for instance, for
the 23Na case in figure 1(b).

Hereafter, we should focus only on the SU (2)-invariant
interaction. This is relevant for the experiment with Rb or
Na, because the difference in g↑↑, g↓↓ and g↑↓ is smaller
than 1%. The generalization to the non-SU (2) interaction is
straightforward. Besides, we only consider the plane-wave
phase, because in these systems, the stripe phase either
occupies a very small regime of the phase diagram or does
not exist.

2.3. Zero-detuning case

In this work, we will particularly focus on the case with δ = 0
for the following two reasons.

(1) Density-of-state effect. When " < 4Er, ϵ−(kx) has two

minima at k± = ±kr

√
1 −

(
"

4Er

)2
, and when " > 4Er,

ϵ−(kx) has one single minimum at kx = 0. Expanding the

dispersion around its minimum, one obtains the effective
mass in the x direction as

m∗ =

⎧
⎨

⎩
m

(
1 − "2

16E2
r

)−1
" < 4Er

m
(
1 − 4Er

"

)−1
" > 4Er.

(11)

Hence, the low-energy DoS increases with " when " <

4Er and decreases with " when " > 4Er, as shown in
figure 2. The most intriguing point is at " = 4Er when the
single-particle dispersion behaves as ∼ p4

x at the lowest
order and the low-energy DoS reaches its maximum. As
we shall see in later discussion, this has important physical
effects on the superfluid critical velocity and the BEC
transition temperature.

(2) Z2 symmetry and magnetization. When " < 4Er, bosons
condense into one of the minima, which breaks the
Z2 symmetry, and the Bose condensate will have finite
magnetization, while when " > 4Er, bosons condense at
the zero-momentum state and the Bose condensate is non-
magnetic. Thus, there will be a magnetic phase transition
at " = 4Er associated with the Z2 symmetry breaking,
and a divergent spin susceptibility has been predicted
and experimentally found [4, 15]. We note that such a
transition exists only for δ = 0, since for non-zero δ the
Hamiltonian does not possess the Z2 symmetry, and the
condensate phase is always magnetic.

3. Bogoliubov theory and superfluid critical velocity

3.1. Bogoliubov spectrum

We study the fluctuations around the condensate with
Bogoliubov theory. Considering a plane-wave condensate at
momentum p0 = p0ex, the field operator can be expanded as

ψ̂ (r) = ϕ(r) + δψ̂ (r), (12)

where ϕ(r) is the condensate wavefunction

ϕ(r) = √
n0

(
cos θp0

− sin θp0

)
exp(ip0x) (13)

3

Figure 2.5.: Zero temperature mean-field phase diagram for pseudo-spin 1
2

of 87Rb

(for mF=0 and -1 in F=1). This figure is taken from Ref. [37].

degeneracy. This ground state degeneracy enriches the phase diagram. Minimization

of the energy functional with variational wave function gives the mean-field phase

diagram at zero temperature for pseudo-spin 1
2
, {F = 1, mF = 0, �1}, of 87Rb,

[35][36][37]. The nontrivial stripe phase appears due to the interference of two char-

acteristic momenta when the ground state is degenerate or nearly degenerate. When

detuning is large enough, the condensate will fall into either the right or left well,

leading to the plane wave phases (PW1 and PW2), see Fig. 2.5. When Raman

coupling is large, the energy dispersion is modified to have one energy minimum, so

BECs show again a plane wave phase with a di↵erent momentum (PW3). Exper-

imentally, it is challenging to reach a high-resolution in-situ image to observe the

spatial oscillation of the stripe phase with length scale 1/kL, where kL is the laser

wave vector. However, the finite-temperature phase diagram is mapped out statically

by measuring magnetization many times for points in the parameter space. A finite

temperature transition from a stripe phase to a magnetized phase is seen [38].
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Not only are the static properties of spin-orbit coupled BECs intriguing, but

so also are their collective excitations. The collective dipole oscillation frequency

of spin-orbit coupled BECs inside a harmonic trap has been measured to deviate

from the trap frequency, which is the case for regular BECs. The SOC-modified

frequency is explained well by the e↵ective mass theory [39]. A companion of dipole

oscillation in SO-coupled condensates is the magnetization oscillation. It originates

from the absence of Galilean invariance. In a conventional BEC, the extra term

vkx from the moving a BEC with velocity v along x direction can be gauged away

( ! eimvx ). However, this gauge transformation cannot be gauged away, and would

create a Zeeman-energy-like term, �mvkL�z, in systems without Galilean invariance,

such as the SO-coupled BEC. The dynamical oscillations are used as a powerful tool

to measure static physical quantities like the spin susceptibility. A quantum phase

transition from the magnetic phase to the nonmagnetic one has been observed with

the measurement of susceptibility. The lack of Galilean invariance also causes a richer

superfluid critical velocity behavior in SO-coupled superfluids [37].

The use of SO-coupled BECs to simulate dynamics of relativistic particles subject

to the Dirac equation has been reported [40] [41]. The force-free trembling motion,

named as Zitterbewegung (ZB), of relativistic electrons has been predicted but almost

impossible to be observed due to the large value of light speed. In spin-orbit cou-

pled BECs, the simulated light speed is 1010 smaller, so the oscillating amplitude is

106 times bigger and make the measurements possible. The spin-momentum locking

feature, which causes the simultaneous oscillations in position and velocity accom-

panying the spin oscillation has been observed and distinguishes ZB from the usual

Rabi oscillation.

Due to the simplicity of the NIST experiments, the publication on equal Rashba

and Dresselhaus (RD) type spin-orbit coupled BECs has soared after its first real-

ization [27]. However, the ongoing research is not only confined on the RD-type

spin-orbit coupling. Many papers discuss also about the stereotype of spin-orbit cou-

pling (SOC) in solid-state systems, which is the Rashba SOC. A three-dimensional
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version of Rashba SOC, the Weyl spin-orbit coupling, is widely discussed in the liter-

ature too. However, the last two are limited to theoretical discussions in the current

stage.

2.2 Trap-driven dynamics in spin-orbit coupled BECs

To study dynamics of SO-coupled BECs inside a harmonic trap, two di↵erent

limits can be taken. One is when the Raman coupling, or the energy separation

between the two adiabatic energy levels, dominates the behavior of BECs. This

happens in a shorter time scale when t ⌧ 1/!x (!x is the trap frequency) since the

trapping frequency is taken to be much smaller than the Raman coupling. The e↵ect

of the harmonic trap appears in the longer time-scale dynamics. In this limit, the

dynamics is governed by the trapping potential. It acts like the kinetic energy in

momentum space and controls the motions of BECs. In this section, we will focus on

the dynamics induced by the trap, assuming the interatomic interaction is negligible.

2.2.1 Landau-Zener model

The spin-orbit coupled BEC in a harmonic trap can be described by the following

Hamiltonian,

H = HSO + Vtrap

=

0
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where !x,y,z are the trapping frequencies. Since the spin-orbit coupling lies in the x

direction only, we consider here only the dynamics along the x direction. The motions

in the y and z direction are the ground state of the simple harmonic oscillators. Unless

we introduce the interatomic interaction, the motion in the x direction is decoupled
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from those in the y and z directions. Therefore, the simplification in the spin-orbit

coupled direction is justified.

H = HSO + Vtrap =
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As we have pointed out, the Raman coupling strength, ⌦, determines the gap at

zero quasi-momentum between the two adiabatic energy bands, causing an avoided

crossing. The trapping frequency in experiments is usually much smaller than the

intrinsic energy scale (i.e. the energy di↵erence between two adiabatic energy bands)

of the spinor BEC, so the trap will drive the BEC in an adiabatic way if it is excited

dynamically. Therefore, it is natural to rewrite the Hamiltonian in momentum space

as in Eq. (2.10). At ⌦ = 0, the original kinetic energy term becomes the potential

term in momentum space and the harmonic trap behaves like the kinetic energy

operator, causing the quasi-momentum of the BEC to change adiabatically. However,

the adiabaticity could be shaken if there exist nontrivial avoided crossings created

by diabatic coupling terms in the Hamiltonian, such as the Raman coupling here.

The non-adiabaticity induced by the trap is the focus of this section. In general,

studies of the non-adiabatic dynamics in a many-body system is highly-challenging.

Controllable BECs indeed serve as a very good system to investigate the non-adiabatic

dynamics. The adiabatic to non-adiabatic transition when the system is driven across

the avoided crossing reminds us of the celebrated Landau-Zener model.

The Landau-Zener model is a classic model capturing the transition dynamics

in a quantum two-level system with a level energy separation linearly-varying in

time. The Landau-Zener formula is derived under certain assumptions to quantity

the probability for such a two-level system to start in the ground state at t ! �1 and

end in the higher energy state at t ! 1 after passing through the avoided crossing or

vice versa. Although the formula is named after Landau and Zener, this formula was

actually derived separately by Landau, Zener, Stueckelberg and Majorana in 1932
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[42][43][44][45]. Later, there have been some generalizations to multi-state systems,

which are called multi-state Landau-Zener models. Demkov and Osherov have solved

a system of a series of parallel levels with one additional level intersecting all the

others [46]. The N -level Landau-Zener-type bow-tie model, in which N linear time-

dependent diabatic levels cross at the same point in time, and only one selected state

in them are coupled with the rest (N � 1) states, are analytically solved too[47] [48].

Following Zener’s notation, the Landau-Zener Hamiltonian is written as

H

0

@�1

�2

1

A =

0

@ ✏1 ✏12

✏12 ✏2

1

A

0

@�1

�2

1

A , (2.11)

where {�1,�2} are the two diabatic states, which are time-independent. Several as-

sumptions are made by Zener to derive the final simple expression of transition prob-

abilities. They are separately:

(i) The energy separation between these two levels is linear in time near the crossing

point: ✏1 � ✏2 = ~↵t.

(ii) The coupling between these two diabatic states is time-independent: d✏
12

dt
= 0.

(iii) The crossing velocity is estimated by the semi-classical formula: v = R�R
0

t
, where

R0 is the adiabatic coordinate of the avoided crossing. See Fig. 2.6 (a)(b). Under

these three assumptions, we can show that the non-adiabatic transition probability

is given by

Pna = e�2⇡�, (2.12)

with � = ✏212/↵. In most cases, the energy levels are not explicitly proportional to

time. Instead, there is a adiabatic coordinate, which is going to vary with time when

couplings between these adiabatic states are taken into consideration. In systems with

timescale separations, we can separate the dynamics of the system into fast and slow

dynamics, where the slow dynamics does not change with time dramatically and the

slow physical parameter charactering the slow dynamics is the adiabatic coordinate.

This concept is well illustrated by the Born-Oppenheimer approximation, where the

fast dynamics is that of electrons and the slow one is the nuclear dynamics. Thus,

to apply the Landau-Zener formula in Eq. (2.12), we need to determine the ↵ value
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(a) (b)

Figure 2.6.: The energy levels with avoided crossing drawn by Zener in 1932. R is the

adiabatic parameter. R0 locates the position of the avoided crossing. Figure taken

from [25].

Figure 2.6.: (a) The realistic energy levels with avoided crossing drawn by Zener. R

is the adiabatic parameter. R0 locates the position of the avoided crossing. (b) The

ideal two energy levels, which are varying linear in time. These figures are taken from

Ref. [43].

for it. Applying the model to our spin-orbit coupled case, we first map our physical

quantities to the Landau-Zener model, see Table 2.1.

i~ @
@t

0

@�1

�2

1

A = i~ @

@kx

@kx

@t

0

@�1

�2

1

A = i~v
@

@kx

0

@�1

�2

1

A (2.13)

=

0

@
~2

2m
(kx + kL)2 � ~�

2
~⌦
2

~⌦
2

~2

2m
(kx � kL)2 + ~�

2

1

A

0

@�1

�2

1

A (2.14)

⇡

0

@↵1(kx � kcr) + ✏cr
~⌦
2

~⌦
2

↵2(kx � kcr) + ✏cr

1

A

0

@�1

�2

1

A , (2.15)

where velocity v ⌘ @k
x

@t
, kcr is the quasi-momentum of the diabatic level crossing

point, and ✏cr is the energy at that point. The last equality holds when kx is near

kcr. Comparing Eq. (2.15) to Eq. (2.11), we find the mapping (↵1 � ↵2)/v = ↵ and

⌦/(2v) = ✏12. Linearization near the crossing point gives the parameters of ↵1 and

↵2. As for the velocity, we estimate it in a classical way: v =
p

2(E � u(kcr))/me↵,
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where me↵ = 1
m!2

x

and u(kcr) is the adiabatic potential energy at crossing point, see

Fig. (2.7). Finally, the non-adiabatic transition probability is found to be

Pna = e�2⇡( ⌦

2v

)2/|↵

1

�↵

2

v

|. (2.16)

It is clear to see that when the velocity v ! 0, the non-adiabatic probability Pna ⇠ 0.

We return back to the prediction given by the adiabatic theorem, which states that

an infinitely-slow change in some parameter of a system will leave more than enough

time for the system to adapt itself very well to its instantaneous eigenstates.

Real space Momentum space

Adiabatic parameter x kx

E↵ective mass m 1
m!2

x

Velocity dx
dt

dk
x

dt

Kinetic energy � 1
2m

x

@2

@x2

� 1
2m

e↵

@2

@k2

x

Table 2.1: Transformation of physical quantities between coordinate space and mo-

mentum space.

2.2.2 Validity of Landau-Zener model

Reading the Landau-Zener parameter, ↵ defined in the assumption (i) below Eq.

(2.11), from adiabatic potentials is sometimes ambiguous. It is not clear to what ex-

tent the model will still approximate a real avoided crossing accurately we encounter.

One method developed by Clark [49] is illustrated with our example in the following.
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Figure 2.7.: Linearization near the crossing point (kcr = 0) of the two energy bands

with ⌦ = 0 (in green). The blue curves show the adiabatic energy potential curves

with ⌦ = 1.7EL. Zero detuning (� = 0) are used in both blue and green curves.

Definition of P and Q matrices

Diagonalizing the spin-orbit Hamiltonian, we get the adiabatic potentials, u1(kx)

and u2(kx), and adiabatic eigenstates, |�1i and |�2i. They both depend on kx para-

metrically. The adiabatic eigenstates are

|�1(kx)i =

0

@cos ✓(kx)

sin ✓(kx)

1

A , (2.17)

|�2(kx)i =

0

@ sin ✓(kx)

� cos ✓(kx)

1

A , (2.18)

where

tan ✓(kx) =
~⌦

2~2kLkx/m � ~� �
p

(2~2kLkx/m � ~�)2 + ~2⌦2
. (2.19)

The corresponding energies respectively are

u1/2(kx) =
~2

2m
(k2

x + k2
L) ⌥ 1

2

p
(2~2kxkL/m � ~�)2 + ~2⌦2. (2.20)
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Using the complete eigenbasis, we expand the wave function of the total Hamil-

tonian in Eq. (2.10) as

 (kx) =
X

i=1,2

fi(kx)|�ii. (2.21)

Inserting Eq.(2.21) into the time-independent Schrödinger equation, we get

�~2

2
m!2

x

@2

@k2
x

fi + (ui � E)fi +
~2

2
m!2

x

X

j=1,2

✓
h�i|

@2

@k2
x

|�jifj + 2h�i|
@

@kx

|�ji
@

@kx

fi

◆
= 0,

(2.22)

for i = 1, 2. The P matrix is defined as Pij = h�i| @
@k

x

|�ji and the Q matrix as

Qij = h�i| @2

@k2

x

|�ji. It can be shown that the P matrix is an anti-symmetric matrix

with no diagonal matrix elements.

The adiabatic formalism based on the spirit of the Born-Oppenheimer approxima-

tion introduced above has wide applications. We will come back to it in later chapter

when we introduce the hyperspherical coordinate to solve few-body scattering/bound

state problems. The adiabatic parameter there is an useful physical quantity for

charactering the system size.

The message hidden in the P matrix

We have mentioned in subsection 2.2.1 that the linearization of the Hamiltonian

around the crossing point will help us determine the coe�cient ↵ when calculating

the Landau-Zener probability, Pna. In fact, we don’t have to do that to find the Pna.

The information can actually be extracted from the P matrix that we already defined

in the last sub-subsection.

The Hamiltonian in Eq. (2.11) can be recast into the adiabatic form. Diagonal-

izing the Hamiltonian in Eq. (2.11) at fixed t, we get H(t)�±(t) = ✏±(t)�±(t), where

the eigenstates �± are

�� = cos ✓�1 + sin ✓�2, (2.23)

�+ = sin ✓�1 � cos ✓�2, (2.24)
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and the eigenenergies ✏± are

✏± =
1

2
(✏1 + ✏2) ± [

1

4
(✏1 � ✏2)

2 + ✏212]
1/2 (2.25)

with cot ✓ = [(✏1�✏2)/2�
p
✏212 + (✏1 � ✏2)2/4]/✏12. The o↵-diagonal term of P matrix

can be derived as

P12 = �P21 = h��| d

dt
|�+i =

h��|dH
dt

|�+i
✏+ � ✏�

=
↵ sin ✓ cos ✓

✏+ � ✏�
=

(↵/2) sin 2✓

✏+ � ✏�

=
↵ tan ✓/(1 + tan2 ✓)

✏+ � ✏�
= ↵

✏12/
p

4✏212 + (✏1 � ✏2)2

[(✏1 � ✏2)2 + 4✏212]
1/2

=
↵✏12

4✏212 + (✏1 � ✏2)2

=
↵✏12

4✏212 + ↵2t2
=

1/2(↵/�)

1 + (↵/�)2t2
, (2.26)

where � = 2✏12 is the minimum energy di↵erence between these two adiabatic bands.

From the above derivation, we see that P12 depends only on the ratio of ↵/�, and

has a Lorentzian shape in the parameter t. This is a good check to see if the Landau-

Zener model can be applied in our case. Also, we find that the full width of P12

at half maximum (FWHM) is equal to the inverse of its maximum height, that is,

FWHM= 2/(↵/�) = |P12,max|�1 = (↵/(2�))�1. In most cases, we can calculate the

P matrix analytically, so it is a simple task to find out the parameter ↵/� simply

from finding the maximum value of |P12|. Making use of this advantage, we rewrite

the non-adiabatic transition probability in this way,

PLZ = e�2⇡�, (2.27)

with � = ✏212/↵ = (�/2)2/↵ = (�/4)/(↵/�) = (�/8)|P12,max|�1. Mapping to our

case,

� = (
✏12

v
)2/(

↵

v
) = (1/v)✏212/↵ = (1/v)(�/8)|P12,max|�1, (2.28)

where � is the minimum separation between the two adiabatic SO-coupled bands (u1

and u2 in Eq. (2.20)) and P12,max is the maximum value (in magnitude) of the matrix

element P12 = h�1|@k
x

|�2i. We have verified the validity of the Landau-Zener model

in our system in Fig. (2.8). The P matrix represents a perfect Lorentzian shape

distribution.
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Figure 2.8.: The o↵-diagonal term, P12, in the P matrix is drawn in green. The blue

dashed curve on top of the green curve is a Lorentzian fit to the P12 curve. The

fitting parameter is ↵/� = 2.35. Parameters used for the P matrix are ⌦ = 1.7EL

and � = 0EL.

2.2.3 Direct numerical simulation: Chebychev propagation method

Within the mean-field theory, Bose-Einstein condensates can be described well

by the Gross-Pitaevskii equation, also known as the non-linear Schrödinger equation

based on the assumption that the all the atoms in the condensate occupy the same

orbital state and interact through the zero-range potential.

i~ @
@t
 (~r, t) =

✓
� ~2r2

2m
+ V (~r) + U0| (~r, t)|2

◆
 (~r, t), (2.29)

where V (~r) is any single-particle potential and the non-linear term, U0| |2, accounts

for the inter-particle interaction. In our discussion below, we disregard the interatomic

interaction, and emphasize the e↵ect induced by trap.

To solve the one-dimensional time-dependent Schrödinger equation for the trapped

spin-orbit coupled BEC, we apply the Chebychev propagation method [50].

i~ ̇(q, t) = Ĥ (q, t) =


�1

2
m!2

y

@2

@q2
+

0

@
~2

2m
(q + kr)2 � �

2
⌦

R

2

⌦
R

2
~2

2m
(q � kr)2 + �

2

1

A
�
 (q, t),

(2.30)
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where  (q, t) = { "(q, t), #(q, t)}T is a two-component column vector written in

the bare state basis ({|mF = 0i, |mF = �1i}). Notice that in this and the following

subsections, we will adopt the same notation as we use in [28]. The recoil momentum,

kr = 2⇡/�, and the recoil energy, Er = ~2k2

r

2m
, are used. The counter-propagating setup

ensures the equivalence of the recoil momentum, kr, and the laser wave vector, kL.

We will sometimes use them interchangeably. In general, they are not equal if the

laser beams are aligned with a angle. Also the ~⌦/~� are replaced by ⌦R/� with

the unit of energy. Expanding the evolution operator, Û , in terms of the Chebychev

polynomials with a renormalization of the Hamiltonian H whose eigenvalue ranges

from [�min,�max], we arrive at

Û(dt) = e�iĤdt/~ =
1X

n=0

an�n(�iĤnorm) =
1X

n=0

an�n

✓
�iĤ + i(�max + �min)/2

(�max � �min)/2

◆
,

(2.31)

where �n(x) is the complex Chebychev polynomial of order n. The expansion coe�-

cients are

an = ei(�max

+�
min

)dt/2~CnJn

✓
(�max � �min)dt

2~

◆
, (2.32)

with C0 = 1 and Cn 6=0 = 2. Jn(x) is the Bessel function of order n. We obtain the

wave function at any time by applying the evolution operator to an given initial wave

function:  (q, dt) = Û(dt) (q, t = 0). To perform the Hamiltonian operation, we

represent our wave functions and operators in the Fourier discrete variable represen-

tation (Fourier-DVR) [51]. We have chosen equally-spaced grids in our calculations,

for instance, for q 2 [qmin, qmax], qi = qmin + i(qmax � qmin)/(N + 1) for i = 1, 2, ..., N .

We have taken {qmin, qmax} = {�6kR, 6kR}, and N = 500. To converge the series

expansion, we require the degree of the expansion in Eq. (2.31) to be larger than

R = (�max � �min)dt/2~. In our simulation, we choose the degree to be the least

integer greater than or equal to 1.5R. Since the parameter R depends on dt, the

e�ciency can be greatly improved by appropriately choosing a suitable time step

(dt = 0.01~/ER) for each time propagation.
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To best describe what happens in experiments, in our simulations, we use a Gaus-

sian wave packet with its width derived from experiments as our initial wave function.

The initial state is prepared in one of the adiabatic states. Note that the adiabatic

states ({|+i, |�i}) are related to the bare states by a unitary transformation and if

the initial wave function is far away from the avoided crossing, the adiabatic states

are basically the uncoupled bare states. With Chebychev propagation method, we

can evolve our system to any later time to study non-adiabatic inter-band transitions.

Defining the probability for a BEC to stay in |±i as

P±(t) =
NX

i=1

| ±(qi, t)|2, (2.33)

we extract the asymptotic values of the probability for the atom to be in the other

adiabatic state after the wave packet passes the avoided crossing. This defines the

non-adiabatic transition probability.

We have simulated Landau-Zener probabilities as a function of the Raman cou-

pling strength for several di↵erent crossing velocities, see Fig. 2.9. The result in-

deed shows that the simple LZ formula gives a very good approximation to the

non-adiabatic inter-band transition probability in spin-orbit coupled BECs for the

parameter space we have investigated.

2.2.4 Experimental confirmation

Tunable Landau-Zener transitions have been observed experimentally in a spin-

orbit coupled BEC [28] by Olson et al.. They have used a configuration to generate

an equal Rashba and Dresselhaus spin-orbit coupling in 87Rb BEC which is similar

to the NIST scheme, see Fig. 2.10 (a) and (b). One minor di↵erence is that the laser

beams are counter-propagating in the y direction, so the 1D spin-orbit coupling is

along the y direction.

The non-adiabatic dynamics through the avoided crossing gapped by the Raman

coupling is studied. Two di↵erent driving sources are used to study the non-adiabatic

transition in SO-coupled BECs due to the non-commutativity of momentum and its
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Figure 2.9.: Comparison of the exact numerical solution with Chebychev propagation

method (shaped symbols) and the Landau-Zener formula (solid curves) for the non-

adiabatic transition probability as a function of the Raman coupling ⌦R . Di↵erent

colors correspond to di↵erent velocities at the crossing point. Taken from Ref. [28].

canonical conjugate. One uses the harmonic trap, Htrap = �m!2

y

2
d2

dq2
, and the other

uses gravity, img d
dq

, as is indicated on Fig. 2.10(c). Measurements of the Landau-

Zener transition probability, PLZ, were performed by first preparing the BEC in either

the upper or lower SO energy level, then driving the BEC across the avoided crossing,

and when the BEC was su�ciently far from the crossing, absorption images after

time-of-flight were taken to determine the bare spin population so the PLZ.

The dependence of non-adiabatic transition probabilities on Raman coupling, ⌦R,

on the di↵erence in the slope of linear energy bands near the crossing, and on the

crossing velocity are carefully measured and independently tested, see Fig. 2.11. A

bigger Raman coupling strength causes a wider energy separation between the adia-

batic energy bands, so a smaller transition probability. Calculations have shown that

when ⌦R > 1.2ER, the non-adiabatic transition probability is negligible, so we have

chosen ⌦R from 0 ER up to 1.2ER. The dependence on velocity confirms the adiabatic

limit in the zero velocity limit, while it becomes fully diabatic when v � 1kR/ms. For

fixed Raman coupling, the di↵erence in the slope of the energy bands is shown to be
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independent of detuning. The insensitivity of PLZ to detuning is verified too. All the

measurements have shown good quantitative agreement with the predictions provided

by the Landau-Zener model in Subsection 2.2.1 and direct numerical simulations in

Subsection 2.2.3. Possible applications on spin-dependent atomtronic transistors are

pointed out. In there, the Raman coupling acts as the gate voltage, the BEC spin

polarization acts as the current, and the “drift velocity” is induced by the force that

acts as the source-drain voltage. A Stern-Gerlach field is then used in the readout.

� kr Er
!

x

2⇡

!
y

2⇡
!

z

2⇡

782.26 nm 2⇡
�

2⇡~ 3.75 kHz 50-90 Hz 180-450 Hz 180-450 Hz

Table 2.2: Relevant energy scales in experiments.

qi

qi

qc

(a) Experiment setup

BBias
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(c) Acceleration methods

(i)

(ii)ΔωL

ΔωL
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Δ

(b) Energy Levels
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|0>|-1>

q/kr

E
(q

)/E
r

E
(q

)/E
r

Figure 2.10.: (a) Experimental setup in Chen’s group at Purdue. This is very similar

to Spielman’s setup. However, the spin-orbit coupling is in y direction, instead of

x. (b) Three Zeeman-split F=1 levels of Rb atoms coupled by two-photon Raman

transitions. (c) Two driving mechanism used to study Landau-Zener transitions: (i)

the acceleration induced by the trapping potential drives transitions from the upper

to lower dressed eigenlevel, and (ii) the acceleration induced by the gravitational force

drives transitions from the lower to upper dressed eigenlevel. Notice that the gravity

is along �y direction. This figure is taken from Ref.[28].
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Figure 2.11.: The Landau-Zener transition probability as a function of (a) Raman

coupling (b) velocity (c) detuning. This figure is taken from Ref.[28].
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2.2.5 Breakdown of the Landau-Zener model in spin-orbit coupled BECs

In the energy regime under discussion so far, where the initial kinetic energy of

the condensate is larger than the Raman coupling, ⌦, the dynamics in momentum

space can be well described by the Landau-Zener model. In another limit, where the

coupling is stronger than the initial kinetic energy of the condensate, Bo Xiong et al.

[29] have pointed out that the multichannel interference e↵ect should be considered

to describe the non-adiabatic dynamics in spin-orbit coupled BECs. The deviation

from the standard Landau-Zener is found to be around 10%, see Fig. 2.12.

5

(i) We can find that the multichannel quantum inter-
ference e�ects can also lead to a “decay” with an os-
cillating amplitude, which is a special feature of SO cou-
pled condensate due to the momentum dependence of the
Rabi oscillation frequency, ⌦k. (ii) The saturated value,
P+(1) = 1 � �

8 tan�1
�

4
�

�
, approaches 1/2 as expected

for a single mode Rabi oscillation if EF ⌧ ⌦ (� ! 0).
On the other hand, it reaches P+(0) = 1 if EF � ⌦
(� ! 0), showing that the energy band width (uncer-
tainty in energy) can reduce the many-body quantum
tunneling through interference e�ects. (iii) These results
also apply to noninteracting fermions, since Pauli exclu-
sion principle requires �+(k, 0) = 1 for |k|  kF and the
sign of wavefunction exchange should not a�ect the prob-
ability to find a particle in any spin channel. (iv) For a
general initial wavefunction, �+(k, t), the long-time be-
havior of P+(t) can be still applied except one can use
� as a fitting parameter, characterizing the energy un-
certainty of the initial wavefunction in the momentum
space. In Fig. 4, we show the time dependence of the
survival probability, P+(t), as a function of time for both
uniform distribution and a Gaussian distribution in the
initial wavefunction. Results from the analytic expres-
sion (Eq.(9)) are also shown together (the value of � for
the Gaussian distribution is given by single parameter
fitting). They both agree with the numerical results very
well as t > ⌦�1.

IV. CLASSICAL LIMIT: LANDAU-ZENER
TUNNELING

Now we consider another region in which the “kinetic
energy” arisen from the external trapping potential dom-
inates the nonadiabatic dynamics. Here we will employ
a semi-classical approach in this region and show its con-
nection with the well-known Landau-Zener e�ect. In the
semi-classical limit, one can treat the center-of-mass posi-
tion, x(t), and momentum, k(t), as a classical particle at
time t, and neglect the spatial or momentum distribution
induced by the condensate wavefunction. As a result, the
system dynamics can be described by a two-component
state, [�+(t), ��(t)]T , which is controlled by the Hamil-
tonian as Eq.(1) in the moving frame of a momentum
k(t):

i�t


�+

��

�
=

�
(k(t)�kr)2

2m ⌦/2

⌦/2 (k(t)+kr)2

2m

�
�+

��

�
, (10)

where the “quasi-momentum” k(t) becomes a time-
dependent external parameter, controlling the time-
dependence of the single-particle energies as a typical
LZ-type problem. If the condensate is initially prepared
in momentum state k(0) = �k0 < 0 of the |+i state
(see Fig. 1(b)), the time-dependence of k(t) in the semi-
classical approximation fulfills k(t) = �(k0+kr) cos(�t)+
kr in a harmonic potential well.

Following the standard treatment of LZ tunneling,
we perform the time variation of k(t) approximately

as a linear function of t when the condensate is at
k = 0 (t = tc) point. From k(tc) = 0 we can have
cos(�tc) = kr/(kr + k0). The probability for such a par-
ticle to be transferred into the |�i state after a long time

has the form, PLZ(1) = exp
�
� 2�(�/2)2

|(dE+(k)�dE�(k))/dt|k=0

�
,

where E±(k) = (k�kr)2

2m and thus
���d[E+(k)�E�(k)]

dt

���
k=0

=
2kr
m

��dk
dt

��
t=tc

. Since
��dk

dt

��
t=tc

= �
p

(kr + k0)2 � k2
r , we

have

PLZ(1) = exp

�
� �⌦2

8�Er

p
(k0/kr)2 + 2(k0/kr)

�
.(11)

It is explicitly shown that the results of LZ in the semi-
classical limit has totally di�erent dependence of Raman
coupling strength from the one derived in Eq.(9) in the
quantum limit.

FIG. 5. Comparison of numerics and semiclassical analy-
sis. The result evaluated for the classical Landau-Zener for-
mula, c.f., Eq.(11), according to our system parameters (black
solid line) is compared with full quantum mechanics calcu-
lations for noninteracting (red dashed line) and interacting
(blue dotted line) SO coupled BEC. The initial nonequilib-
rium state is chosen to be �

+

(k, 0) � exp
�
�(k + k

0

)2/(4�2)
�

where k
0

= k
r

and � = 0.2k
r

. The other identical parameters
are � = 0.08E

r

/~ and N = 1000.

Fig. 5 shows typical results of P+(1) from numerically
solving Eq.(12) and compare with the semiclassical anal-
ysis derived above. Our results show that the LZ formula
matches the full numerical results very well in the small
coupling regime, while it becomes deviated in the large ⌦
limit. This might be because, when ⌦ is comparable to
the recoil energy, Er , the assumption of a linear time de-
pendence of k(t) at the avoid crossing point k = 0(t = tc)
fails seriously by touching the bottom of the energy band
(see Fig. 1(b)).

V. INTERACTING SPIN-ORBIT COUPLED
BEC

Now we explore the interaction e�ects on the nonadia-
batic dynamics. Following the standard approach by as-
suming all particles condensate in a single particle wave-

Figure 2.12.: The non-adiabatic transition probabilities calculated from di↵erent mod-

els. The black curve is from the Landau-Zener formula. The red dashed and blue

dotted curves are the full numerical simulations without and with interaction. This

figure is taken from Ref. [29].

The multichannel interference comes from the finite momentum distribution of

BECs. The momentum-dependent dressed states cause the Rabi frequency to carry

momentum dependence as well. This dependence gives the Fresnel interference pat-

tern in the momentum space wave functions and causes a universal oscillating power-

law decay in the longer time scale.
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The multichannel e↵ect can be seen best when we also take the two-body interac-

tion e↵ect into account. The inter-particle interaction scatters particles between dif-

ferent momentum channels and hence enhances the multichannel e↵ect. The momen-

tum density distribution of the condensate becomes highly-distorted after it passes

the avoided crossing, see Fig. 2.13. Since the interaction causes a broadening of the

condensate wave function, the velocity of the front part of the wave packet moves

faster the the end part. Therefore, more tunneling is observed in the front part due

to the higher velocity.
7

FIG. 7. Illustration of the influence of contact interaction on
multichannel tunneling by means of measuring the survival
probability, P

+

(t), for the uniform distribution of initial wave
function in momentum distribution (k

F

= 0.2k
r

). g� = g? =
0 for the black solid line, g� = g? = 0.0002/k

r

for the red
dots, g� = g? = 0.0008/k

r

for the blue cross, and g� = g? =
0.001/k

r

for the green dashed line. The other parameters are
identical to Fig. 4. The points at time t = �/� and 2�/� are
labeled by the lower left and upper right arrows, respectively.

than high-momentum regime results in a low-density re-
gion around k = 0 (see the valley of |�+(k, t)|2 shown in
Fig. 2 (c)), while the interaction prefers to scatter atoms
into low-density region. Consequently, the repulsive in-
teraction enhances the whole tunneling of the system,
and P+(t) for interacting case is always smaller than for
noninteracting case for t > 2�/⌦, as shown in Fig. 7.

C. Interaction e�ect in classical limit

In this part, we explore the interaction e�ects on a
general driven SO coupled BEC. As shown above, there
are two fundamentally distinct mechanism for the nona-
diabatic dynamics: the multichannel interference in the
quantum limit and the LZ e�ects in the semi-classical
(single channel) regime. In the later, one treats the whole
condensate as a classical particle with definite position
and momentum at the same time, so that the quantum
oscillation e�ects are neglected. However, in any realis-
tic situation, the condensate always has a finite distri-
bution in momentum space, and hence the inter-particle
interaction can still scatter particles between momentum
channels and hence mix these two mechanisms. Since
such complicated dynamics cannot be readily studied by
analytic approach, here we show the numerically simu-
lating results by solving the full GP equations within the
meanfield approximation.

In Fig. 8, we show a typical tunneling dynamics of an
interacting driven condensate with SO coupling. As we
can see, when the condensate wavefunction approach the
anti-cross point (i.e., k = 0), particles start tunneling to
the |�i state. For the noninteracting case, the original
Gaussian shape in both |+i and |�i channels is basically
kept, because the noninteracting Hamiltonian (see Eq.

FIG. 8. Temporal momentum density distribution of a con-
densate driven by external potential with an initial momen-
tum, k

0

= �k
r

. Red dashed and black solid lines display the
density distribution for |+� and |�� states, respectively, at
time tE

r

= 0 (a), 2.4 (b), 12 (c), and 19.6 (d). The associ-
ated parameters are �/E

r

= 1.6, g� = g? = 0.001E
r

/k
r

, and
N = 1000. For comparison, the inserts in (a), (b), (c), and
(d) are the momentum distribution at the same time under
identical parameters but without interaction.

(1)) is just like a particle moving a simple harmonic po-
tential in momentum space as (k ± kr)/2m � ⌦ in the
long time limit, making each component of a condensate
oscillating with the same frequency. This is true even
when part of the condensate are split into the other spin
state through SO coupling.

However, in comparison with the noninteracting con-
densate, the density profile of the condensate with a fi-
nite interaction strength displays in di�erent way as it
passes the critical point. When the interaction is in-
creased from zero, the condensate density distribution
becomes highly distorted after passing through the crit-
ical point: the head of the condensate is compressed to
be much narrower peak, while the tail is destroyed with-
out any smooth profile. Such results can be understand
from the scattering between multichannel momenta: the
condensate is broadened from its initial profile by the
repulsive interaction during the motion (note that the
condensate profile is not broaden in momentum space if
no interaction), so that the “velocity” of the wave head is
faster than the “velocity” of the wave tail, making much
more particles tunneling into the |+i state in the tail
part. The small density oscillation shows the interfer-
ence e�ect of such two “velocity” in momentum space.
We propose that this special feature of the condensate
distortion can be a feature of many-body e�ects and can
be also observed in current experiment setup [4, 13].

Figure 2.13.: Time evolution of density profiles of the spinor BEC at tEr = (a) 0,

(b) 2.4, (c) 12, and (d) 19.6 with the consideration of the two-body interaction. The

panels inside each figure are the non-interacting results. Figures taken from Ref.[29].

2.3 Conclusions

In this chapter, the transition dynamics in the spin-orbit coupled BEC is studied,

and the high tunability in the cold atomic system provides us an excellent way to
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control the crossover from the adiabatic dynamics to the nonadiabatic one. The un-

derstanding of the non-adiabatic behavior provides a good indicator to study related

physics when adiabaticity is needed. The good control over the dynamics of atoms

also suggests a possibility of using a spin-orbit coupled atom as an ”atomtronic”

device.
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3. ULTRACOLD SCATTERING IN THE PRESENCE OF

WEYL SPIN-ORBIT COUPLING

Spin-orbit coupling is characterized by its unusual energy dispersion relations. Early

on, the double minimum energy dispersion was proposed to generate macroscopic

quantum superposition states with repulsive interatomic interactions [52]. The non-

quadratic energy dispersion relation modifies the density of states, and has been

shown to significantly change the bound state spectrum [53, 54, 55]. For example, it

has been proved theoretically that bound states for two spin-1/2 fermions exist for

an arbitrarily weak attraction in the presence of Weyl (or 3D isotropic) spin-orbit

coupling [54]. Not only the two-body bound state spectrum but also the scattering

formalism becomes modified since SOC exists to infinite distance and this will be the

main topic in this chapter.

Duan et al. [56] have first treated the scattering problem of two spin-1/2 fermions

with zero total angular momentum in the presence of isotropic SOC. We have gener-

alized their treatment so now our formulation applies to any two identical bosons or

fermions of arbitrary spin, for arbitrary values of the total angular momentum of the

system. An advantage to the choice of isotropic SOC, which is a 3D analog of Rashba

SOC, is that it has higher symmetry than other types of SOC, and is more closely

related to some cases in condensed matter physics [57, 58]. The conservation of total

angular momentum allows us to develop a fully analytical treatment of scattering the-

ory in the presence of SOC. The generalization of two-body scattering to higher spin

atoms can extend our understanding to higher spin physics having no counterparts in

condensed matter systems. For instance, a system of spin-3/2 fermions with contact

potential interactions has been shown to have exact SO(5) symmetry, and a novel

quartetting order (a four-fermion version of Cooper pairing) has been proposed [59].
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Understanding the two-body physics also paves the way to more interesting varieties

of universal Efimov physics [60, 61, 62]. Although Rashba-type SOC has not yet been

realized experimentally, proposals have been made that are based on adding more

laser fields [63] or else by applying magnetic pulses [15, 16] to imprint an engineered

phase onto the atoms.

This chapter is written based on mostly the publication in Phys. Rev. A, 91,

022706 (2015) and is organized as follows: Sec. 3.1 presents a systematic way to

formulate the multichannel 2-body scattering problem with SOC present, and outlines

the route to extract the scattering information. The analytical expression for the free

Green’s matrix with SOC is derived in Sec. 3.2. When the atoms interact through

a regularized s-wave interaction, which is an excellent assumption in the ultracold

regime, the Lippmann-Schwinger equation can then be cast into a simple form having

a closed form solution as shown in Sec. 3.3. Utilization of the Green’s matrix and

the Lippmann-Schwinger equation enables the analytical scattering wave functions to

be found, and the scattering properties extracted. Sec. 3.4 applies our methodology

to a system of two identical spin-1 bosonic atoms, and derives the scattering cross

sections. An unusual type of threshold behavior is seen to emerge in the low energy

scattering cross section. Sec. 3.4 confirms the spontaneous emergence of handedness

in this type of system having no parity symmetry. Discussion about two-body bound

states is included too. Finally, Sec. 3.5 discusses our conclusions.

3.1 Model

For identical particles interacting with each other in the presence of isotropic 3D

spin-orbit coupling, the two-body Hamiltonian is expressed as

H2b =
~2~k2

1

2m
+

~2�

m
~k1 · ~s1 +

~2~k2
2

2m
+

~2�

m
~k2 · ~s2 + V (~r1 � ~r2), (3.1)

where m is the atomic mass, � is the strength of the spin-orbit coupling and V (~r1�~r2)

is the interatomic interaction. The operator ~s1 and ~s2 are the hyperfine spin operators

for atom 1 and atom 2; hereafter these are referred to simply as spin. Since the total
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momentum in the system is conserved, the center of mass motion and the relative

motion can be decoupled. The two-body Hamiltonian can be rewritten as usual using

the center of mass momentum operator ~P = ~p1 + ~p2, and the relative momentum

operator ~p = (~p1 � ~p2)/2. The two-body Hamiltonian then becomes

H2b =Hcom + Hrel =
~P 2

4m
+

~�
2m

~P · (~s1 + ~s2) +
~p2

m
+

~�
m
~p · (~s1 � ~s2) + V (~r1 � ~r2).

(3.2)

Although the center of mass momentum and the relative motion can be separated

out, the relative motion is generally coupled to the center of mass motion via the spin

degrees of freedom. To simplify the present calculation, the remainder of this paper

is formulated within the center of mass frame and we focus on the case of ~P = 0.

(Note also that the orbital angular momentum of center of mass is L~R = 0); thus,

H2b = Hrel + V (~r1 �~r2). When the center of mass momentum is nonzero, this breaks

the continuous rotational invariance of relative energy spectra and degeneracies of

relative band energies are lifted, although we do not discuss it here in detail.

A key first step is to solve the relative Schrödinger equation in the absence of in-

teractions. Since the relative momentum commutes with the non-interacting Hamil-

tonian, it is advantageous to solve it in momentum space and then Fourier transform

the solution back to position space. Taking spin-1 bosons as an example, the non-

interacting two-body states are:

h~r|⇣, ⇠;~ki =
1p
2

�
|⇣, k̂i1 |⇠, �k̂i2 ei

~k·~r + |⇠, �k̂i1 |⇣, k̂i2 e�i~k·~r�, (3.3)
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where |⇣, k̂i and |⇠, k̂i are one of the following single-particle states:

|�, k̂i =

0

BBB@

e�i�
~

k

(1�cos ✓
~

k

)

2

� sin ✓
~

kp
2

ei�~

k

(1+cos ✓
~

k

)

2

1

CCCA
, E� =

~2k2

2m
� ~2�k

m
(3.4)

|0, k̂i =

0

BBB@

�e�i�
~

k

sin ✓
~

kp
2

cos ✓~k

ei�~

k

sin ✓
~

kp
2

1

CCCA
, E0 =

~2k2

2m
(3.5)

|+, k̂i =

0

BBB@

e�i�
~

k

(1+cos ✓
~

k

)

2

sin ✓
~

kp
2

ei�~

k

(1�cos ✓
~

k

)

2

1

CCCA
, E+ =

~2k2

2m
+

~2�k

m
(3.6)

where ✓~k and �~k describe the direction of the particle’s motion along k̂. The eigen-

states are expressed in the basis of {|1, 1i , |1, 0i , |1, �1i}, which are the eigenstates of

the sz operator for each atom. The three states in Eq.(3.4)⇠(3.6) are also eigenstates

of the helicity operator, h = ~p · ~s/p, with eigenvalues -1, 0, and 1. In general, the

eigenvalues range from �s, �s + 1, ... to s for spin ~s. The helicity states can be

pictured in an intuitive way as follows: when a spin, ~s, moves along direction k̂, there

are (2s + 1) possible spin configurations. See Fig. 3.1 for an example. The maximum

(minimum) helicity state represents the state when the particle’s spin is in parallel

(antiparallel) to the direction of its motion. For the same canonical momentum, when

spin is aligned with its momentum, the state has the highest eigenvalue. In the fol-

lowing, we will mainly discuss how the particles with definite helicity are going to be

scattered to di↵erent helicity states through a helicity non-conserving interaction.

�S �p �S�p

Figure 3.1.: Two di↵erent helicity states for a spin-1
2

particle.
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Figure 3.2.: The relative energy-momentum dispersion relation for the spin-1 bosons

is depicted. There are 9 bands in total. However, bands with the same resultant spin

component along the direction of the relative motion are degenerate. The degeneracies

from left to right are 1, 2, 3, 2, and 1. The allowed relative canonical momenta (in

blue bands) at E ⌘ ~2k2
0/m > 0, for |J = 0i subspace, are labeled by k1 = k0,

k2 =
p

k2
0 + �2 + � and k3 =

p
k2

0 + �2 � �. The unlabeled momenta crossed by

black bands are important only when we move to a higher J subspace. The lowest

scattering threshold energy occurs at k2 = �. Taken from Ref. [64].

The methodology to solve the two-body scattering problem is sketched below: we

first calculate the regular and irregular solutions of the non-interacting system that

satisfy the correct boundary conditions, and then use those solutions to construct the

free-particle Green’s matrix with isotropic spin-orbit coupling. The Green’s matrix

is then used in the Lippmann-Schwinger equation to solve for the scattered wave

functions.

3.2 Green’s matrix with spin-orbit coupling

The crucial symmetry in this isotropic spin-orbit system is the conservation of

total angular momentum. This allows us to expand the solutions in a complete
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basis set having a fixed value of the total angular momentum quantum number, J .

Because both the orbital angular momentum and the spin angular momentum would

be conserved in the absence of spin-orbit coupling, tensor spherical harmonics [65]

are adopted as the basis set. These are simultaneous eigenstates of { ~J2, Jz, ~L2, ~S2},

where ~L is the (relative) orbital angular momentum and ~S = ~s1 + ~s2 is the total

spin angular momentum. In terms of this basis set, spin-orbit coupling simply mixes

states with di↵erent {L, S}-values, which label these basis functions. Consequently

the Hamiltonian matrix elements in this basis set have nonzero o↵-diagonal elements.

The tensor spherical harmonics are defined as

Y LS
JM(✓,�) =

X

m
L

,m
S

CJM
Lm

L

,Sm
S

YLm
L

(✓,�)�(S, mS) (3.7)

where CJM
Lm

L

,Sm
S

is the Clebsch-Gordan coe�cient, YLm
L

(✓,�) is the spherical har-

monics, and �(S, mS) is the spin state for total spin S. Any wave function can be

expanded in this tensor spherical harmonics basis set,

 JM
⌘ (r, ✓,�) =

X

{L,S}

uJM
{L,S},⌘(r)

r
⇥ Y LS

JM(✓,�), (3.8)

where u(r) is the reduced radial wave function and the index ⌘ represents di↵erent

independent solutions. The matrix element of the kinetic energy operator is easily

evaluated, and the result is familiar:

h(L0, S 0)J 0M 0|~p
2

m
|(L, S)JMi = (�~2

m

d2

dr2
+

L(L + 1)~2

mr2
)�J,J 0�M,M 0�L,L0�S,S0 . (3.9)

Matrix elements of the spin-orbit coupling term are evaluated using the Wigner-Eckart

theorem in the convention of Ref. [65]:

h(L0, S 0)J 0M 0|~p · (~s1 � ~s2)|(L, S)JMi

= (�1)J+L+S0 ⇥ �JJ 0�MM 0hL0kp(1)kLihS 0ks(1)
1 � s(1)

2 kSi

8
<

:
L0 L 1

S S 0 J

9
=

; , (3.10)
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where the curly bracket denotes the 6j symbol and the double bars stand for reduced

matrix elements, which are defined by

hL0kp(1)kLi =
hL0m0

L|p(1)
q |LmLi

C
L0m0

L

Lm
L

,1q

p
2L0 + 1, (3.11)

hS 0ks(1)kSi =
hS 0m0

S|s(1)
q |SmSi

C
S0m0

S

Sm
S

,1q

p
2S 0 + 1, (3.12)

where the superscript inside the parentheses is the rank of the operator and the

subscript means the qth component of that tensor operator. All the dependence on

magnetic quantum numbers occur now in the Clebsch-Gordan coe�cients, in the usual

spirit of the Wigner-Eckart theorem. Application of some straightforward angular

momentum algebra yields the matrix element of ~p · (~s1 � ~s2),

h(L0, S 0)J 0M 0|~p · (~s1 � ~s2)|(L, S)JMi

= �JJ 0�MM 0
p

(2S + 1)(2S 0 + 1)

8
<

:
L0 L 1

S S 0 J

9
=

; (�1)J+L+S0+s
1

+s
2

⇥


� (�1)S
p

s1(s1 + 1)(2s1 + 1)

8
<

:
s1 s2 S

S 0 1 s1

9
=

;+ (�1)S
0p

s2(s2 + 1)(2s2 + 1)

8
<

:
S S 0 1

s2 s2 s1

9
=

;

�

⇥

8
<

:
�i~( d

dr
� L

r
)
p

(L + 1) if L0 = L + 1

i~( d
dr

+ L+1
r

)
p

L if L0 = L � 1
(3.13)

The spin-orbit interaction couples states with orbital angular momentum di↵ering

by one, which reflects the fact that the rank of the momentum operator is one. The

above matrix elements enable the n-coupled radial di↵erential equations to be written

for any two spins with any total angular momentum J in their center of mass frame.

The number n represents the total number of basis functions in |Ji subspace. To
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solve the coupled di↵erential equations, we make an ansatz that the regular solutions

take the form,

f
⌘
(r) =

0

BBBBBB@

c1k⌘rjL
1

(k⌘r)

c2k⌘rjL
2

(k⌘r)

c3k⌘rjL
3

(k⌘r)
...

1

CCCCCCA
, (3.14)

where jL
i

(k⌘r) is the spherical Bessel function, L1, L2 and so on are the allowed L

values from the basis functions of n = 1, n = 2, ..., and k⌘ is the canonical momentum

for the ⌘th independent solution at a fixed incident energy, E. The total number

of the independent solutions, ⌘, is equal to the total number of the basis functions,

n. For non-zero J , degeneracies of bands become important and the total number of

di↵erent k⌘ may be less than the total number of basis functions concerned. However,

this does not a↵ect the form of solution given in Eq. (3.14).

Plugging in this ansatz into the coupled di↵erential equations, the di↵erential

equations reduce to an eigenvalue problem, H̃  ̃ = Ẽ ̃, where H̃ is given by

hL0, S 0|H̃|L, Si = (�1)J+L+S0+s
1

+s
2

p
(2S + 1)(2S 0 + 1)

⇥


� (�1)S

8
<

:
s1 s2 S

S 0 1 s1

9
=

;⇥
p

s1(s1 + 1)(2s1 + 1)

+ (�1)S
0

8
<

:
S S 0 1

s2 s2 s1

9
=

;⇥
p

s2(s2 + 1)(2s2 + 1)

�

⇥ i~2�k

m

8
<

:
L0 L 1

S S 0 J

9
=

;

8
<

:

p
(L + 1) if L0 = L + 1

p
L if L0 = L � 1,

(3.15)

and

 ̃ = {c1, c2, c3, ...}T . (3.16)

The eigenvalues of the matrix H̃ will solve for canonical momenta for fixed energy

E = Ẽ + ~2k2
⌘/m. With the standard technique of diagonalization, the solutions of

{c1, c2, . . . } can be found, so are the regular solutions. The solutions irregular at the
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origin are obtained by replacing the spherical Bessel functions by spherical Neumann

functions, yL
i

(k⌘r),

g
⌘
(r) =

0

BBBBBB@

c1k⌘ryL
1

(k⌘r)

c2k⌘ryL
2

(k⌘r)

c3k⌘ryL
3

(k⌘r)
...

1

CCCCCCA
. (3.17)

The above solutions in Eq. (3.14) and Eq. (3.17) will be properly energy normalized

for an appropriate choice of the momentum-dependent constants, as is carried out

below. The reduced radial Green’s matrix is shown in Appendix B to be

G (r, r0) =

8
><

>:

⇡f(r)g†(r0) for r < r0,

⇡g(r)f †(r0) for r > r0.
(3.18)

The factor ⇡ appears because of our choice of normalization. More details about

energy normalization are also given in appendix A.

3.3 Lippmann-Schwinger equation

To solve the scattering wave function for two atoms with isotropic spin-orbit cou-

pling, we apply the Lippmann-Schwinger equation, which is the integral form of the

Schrödinger equation.

 (~r) =  0(~r) +

Z
G(~r,~r0)V (~r0) (~r0)d~r0, (3.19)

where  0(~r) is the non-interacting solution, G(~r,~r0) is the free Green’s function with-

out 2-body interaction, V (~r0). To compute the wave function that describes scat-

tering processes, we must in general solve the 3-dimensional integral equation in a

self-consistent way, which for an arbitrary two-body potential relies on numerics.

However, for low energy scattering, the interatomic interaction is well described by

the regularized s-wave Fermi pseudo potential, V (~r) = 4⇡~2a
s

m
�(~r) @

@r
(r), where as is

the s-wave scattering length. It can be shown that the 3D integral equation can be
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reduced to a 1D radial integral equation, and the scattered wave functions can be

obtained in a closed form solution,

R(r) = R0(r) +

Z 1

0

G(r, r0)V (r0)R(r0)r02dr0. (3.20)

Here R0(r) is the free radial two-body wave function. To better illustrate the idea,

consider the case of zero total angular momentum, since in this subspace, the s-wave

channel is always present.

For any two identical particles with spins having zero total angular momentum,

the channel structure is {L, S} = {0, 0}, {1, 1}, {2, 2}, . . . , and {2s1, 2s1} since from

spin statistics L + S has be to even to incorporate the symmetry of identical bosons

or fermions. There are (2s1 + 1) channels in total. The regularized s-wave contact

potential is

V (r) =

0

BBB@

g �(r)
4⇡r2

@
@r

r 0 . . .

0 0 . . .
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...
. . .

1

CCCA

(2s
1

+1)⇥(2s
1

+1)

, (3.21)

where g = 4⇡~2as/m = 4⇡g̃. After applying the operation,
R1

0
drg̃�(r) @

@r
(r), to

both sides of Eq. (3.20), the scattering solutions have the following closed form

representation:
0

BBBBBB@

R1⌘(r)
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R3⌘(r)
...

1

CCCCCCA
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0

BBBBBB@

R0,1⌘(r) + G11(r, 0) g̃
1�g̃Greg

11

(0,0)
Rreg

0,1⌘(0)

R0,2⌘(r) + G21(r, 0) g̃
1�g̃Greg

11

(0,0)
Rreg

0,1⌘(0)

R0,3⌘(r) + G31(r, 0) g̃
1�g̃Greg

11

(0,0)
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0,1⌘(0)
...

1

CCCCCCA
, (3.22)

where ⌘(= 1, 2, 3, . . . , 2s1 + 1) labels solutions with di↵erent canonical momenta,

regularized functions f reg(0) ⌘ @
@r

(rf(r))|r!0, and f reg(0, 0) ⌘ @
@r

(rf(r, 0))|r!0.

For systems with nonzero total angular momentum, the algebra can become

slightly more involved. The complexity mainly comes from the fact that there are

more than one basis function with the same orbital angular momentum but di↵er-

ent total spin angular momentum. Degeneracies appear for the two-particle states
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within some non-zero total angular momentum subspace. This is expected as was

already seen in the discussion of Sec. 3.1. Nevertheless, even in this situation, the

same methodology can be applied to reduce the coupled di↵erential equations to an

eigenvalue problem.

3.4 Another example: two spin-1 bosons

The formalism presented above has been verified to reproduce the results pre-

sented by Duan et al. for two identical spin-1/2 fermions. The following applies our

methodology to the system of two identical spin-1 bosons as a concrete example. One

thing worth pointing out is that the normalization factors of the regular/irregular so-

lutions were not written out explicitly in the Duan et al. study, presumably because

the factors could be taken to be identical for all the independent solutions. But in

the present generalized treatment, it is necessary to keep track of them to ensure flux

conservation.

For two spin-1 bosons with J = 0, there are only three relevant channels with

{L, S} = {0, 0}, {1, 1} and {2, 2}. The coupled reduced radial di↵erential equations

are
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The tridiagonal structure signatures the existence of the spin-orbit coupling. Assum-

ing the regular solution has this form,

{u00
00(r), u

00
11(r), u

00
22(r)}T = {c1krj0(kr), c2krj1(kr), c3krj2(kr)}T , (3.24)

the following eigenvalue problem is obtained.
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Diagonalization of Eq. (3.25) yields the eigenvalues and eigenvectors.
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The eigenstates are orthonormal. Moreover, the same energy dispersion relations

between the relative energy E and the relative momentum k are obtained by directly

diagonalizing the non-interacting Hamiltonian in momentum space. The three thick

blue curves plotted in Fig. 3.2 display the energy dispersions from Eq. 3.26 to Eq.

3.28. After writing the incident energy in the notation E ⌘ ~2k2
0/m, the canonical

momenta for channel 1 to 3 are found to be k1 = k0, k2 = � +
p
�2 + k2

0, and k3 =

��+
p
�2 + k2

0. The set of regular solutions are
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The above solution can also be confirmed by projecting the plane wave solution in

Eq. (3.3) onto the |J = 0i subspace. That is, the column vector |↵i of Eq. (3.29) la-

beled by k↵ has one-to-one correspondence with the |J = 0i part of the helicity states

in Eq. (3.3). The normalization factors {N1, N2, N3} =
q

2µ
⇡~2

{
q

1
k
1

,
q

1
k
2

��
,
q

1
k
3

+�
}

to each independent solution are added to ensure that their Wronskians with the

irregular solutions (see appendix A) are identical, which in turn guarantees that the

computed interaction K-matrix will be symmetric. This step is in fact equivalent



61

to enforcing energy normalization of wave function in the case without spin-orbit

coupling.

The multichannel scattering formalism presented here is di↵erent from previous

treatments when there is no single-particle potential existing even at large distances.

In previous studies, one often chooses the asymptotically free states as the base pair of

independent solutions to define phaseshifts or reaction matrices and then study how

short range interaction mixes di↵erent channels and causes particles to be scattered

among those channels prior to being detected at large distances. And the incoming

basis states expanded in the usual formulations of scattering theory having no long

range channel coupling are diagonal solution matrices, which is not the case here as

in Eq. (3.29).

After plugging in the free Green’s matrix G(r, r0) = G (r, r0)/(rr0) from Eq. (3.18)

and the free radial wave function R0(r) = f(r)/r from Eq. (3.29), we obtain the scat-

tering solutions. The reaction matrix K is determined through the correct asymptotic

solution:

R(r)|r!1 ⇠
f(r)

r
�

g(r)

r
K, (3.30)

where we find

K =
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From the K matrix, the S matrix is determined by the usual relation, S = (I+iK)(I�

iK)�1. The unitarity of the S matrix is guaranteed by the real and symmetric reaction

K matrix as it is in Eq. (3.31).
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The scattered solutions defining the S matrix can be expressed as in Eq. (3.30),
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where the basis |⇣⇠, r̂i ⌘ |⇣, r̂i |⇠, �r̂i. From Eq. (3.3) and Eq. (3.32)⇠(3.40), the

incoming and outgoing current fluxes are determined by the velocity operator, ~v =

~p/µ+~�(~s1�~s2)/m. The flux densities for the three possible incoming states at energy

E = ~2k2
0/µ can be calculated to be ~j1 = (~k0/µ)k̂1 and ~j2/3 = (~

p
k2

0 + �2/µ)k̂2/3.

The flux di↵erence in di↵erent channels is incorporated in a way to ensure flux con-

servation as we have seen in the nontrivial fore factors of scattered wave functions

from Eq. (3.32) to Eq. (3.40). The integrated partial cross sections are found by

integrating the flux ratio over all solid angles. The total cross section for particles

incident in channel ↵ with some helicity to be scattered into channel � of another

helicity is

�↵� =
2⇡

k2
↵

|S↵� � �↵�|2, (3.41)

where k↵ is the canonical momentum in the incoming state and is determined by the

energy, say E ⌘ ~2k2
0/m, and the SOC strength, �. From now on, we will simply

denote k0 by k. For example, all the x axes of graphs plotting cross sections are k0 ⌘ k
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Figure 3.3.: The dimensionless rescaled cross sections to go from the incoming state

|00,~k1i to the outgoing state |00, r̂i for di↵erent values of �as as functions of the

dimensionless quantity k/�. Taken from Ref. [64].

for simplicity. Using the SOC strength as the unit of the momentum, the cross section

can be rescaled as a function of the dimensionless quantity, �as, by choosing the unit

of cross section as 1/�2. From the estimation in [15][16], a realistic achievable value

of the SOC strength � ' 1 � 10/µm, and this guides our chosen values of �as in the

plots shown for the cross sections.

Turning o↵ the spin-orbit coupling, all of the cross sections display the well-known

Wigner threshold law [66]: insensitive to energy in the low k limit (or lower E limit)

and proportional to k�2 in the higher k limit. This transition happens when k ⇠ 1
a

s

.

The unusual factor, 8/9, is due to the choice of the helicity basis.

�ij =
8⇡a2

s

9 + 9a2
sk

2
⇡

8
><

>:

8⇡a2

s

9
k ⌧ 1

a
s

8⇡
9k2

k � 1
a

s

8 i, j. (3.42)

In the limit of high k (but still low energy) scattering, the scattering cross section

becomes insensitive to the existence of spin-orbit coupling. This is expected since at

small distance, the short-range interaction dominates and the physics of SOC becomes
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insignificant. All cross sections are combined into the same curve in this limit, namely

�ij ⇠ 8⇡/(9k2) as in the high energy limit of non-SOC cases.

The e↵ect of spin-orbit coupling becomes important as energy decreases below

the energy scale set by SOC. This explains why there exists a transitional plateau

when � < k < 1/as. This is of course possible only when the interatomic interaction

is weaker than SOC. The cross sections in the low k limit are no longer energy

independent and show some unusual features. The cross sections in di↵erent channels

are characterized by di↵erent power laws at very low temperatures. Scattering is

enhanced or suppressed depending on which outgoing channels are taken. The scaling

laws are summarized as follows in terms of the appropriate k↵ for ↵ = 1, 2, 3, which

are the wavenumbers that vanish at the relevant threshold. Since k1 and k3 both

go to zero with di↵erent power laws at the threshold energy E = ~2k2/m ! 0,

where k3 / k2
1, we will express those relevant cross sections in terms of k1 ⌘ k for

consistency.

�11 ⇡ 8⇡a2
s

9 + 16(�as)2
for k ⌧ � (3.43)

�21 ⇡ 8⇡a2
s

9 + 16(�as)2

k

�
for k ⌧ � (3.44)

�12 ⇡ 32⇡a2
s

9 + 16(�as)2

✓
k

�

◆�1

for k ⌧ � (3.45)

�22 ⇡ 32⇡a2
s

9 + 16(�as)2
for k ⌧ � (3.46)

�13 ⇡ 2⇡a2
s

9 + 16(�as)2

✓
k

�

◆3

for k ⌧ � (3.47)

�23 ⇡ 2⇡a2
s

9 + 16(�as)2

✓
k

�

◆4

for k ⌧ � (3.48)

Notice that for the channel �22, the appropriate scaling momentum is k2 ! 0. How-

ever, in this case, channel 1 and 3 should be included as closed channels since energy

E < 0, which is beyond the scope of our discussion here. We will simply consider the

scaling law of �22 as E ! 0 (or k ! 0). The cross sections in Eq. (3.43)�Eq. (3.46)

are all consistent with the expected Wigner threshold law behavior, but �13 and �23

deviate, which is one notable e↵ect of the spin-orbit interaction in this system.
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Although we have only included the short-range interaction, the modification of

threshold laws is expected since the SOC exists to an infinitely large distance. The

new scaling laws indeed show up as a result of the unusual energy dispersion relation

in the presence of SOC. The energy bands generate di↵erent canonical momenta as

well as di↵erent velocities (or flux densities) in di↵erent channels. The di↵erence in

flux densities needs to be considered carefully also in the threshold laws. The original

Wigner’s theory has been modified to incorporate the e↵ect from SOC. Inspection

of Eq. (3.31) shows that each element of the reaction matrix K↵� is proportional

to K↵� / k↵k�/
q

k̃↵k̃� where k̃↵ = k1 for ↵ =1 and (k2 + k3) for ↵ = 2 or 3.

Thus, the cross section at low energy scales like �↵� / k2
�/(k̃↵k̃�). For example, the

channel �12 ⇠ k2
2/(k1(k2 + k3)) ⇠ �/k. The divergence of �12 with only short range

interaction might seem unnatural, but the divergence of superelastic cross sections

does occur in ordinary non-SOC scattering since the atoms are scattered into a larger

final momentum state. This is true for the familiar Wigner laws already [66].

Even when the cross sections in some channels (�11, �22, and �32) at low temper-

atures in the presence of SOC are insensitive to energy, the e↵ect of SOC can still be

seen by studying the threshold values. When �as . 1 (�as & 1), the cross section

�22 or �32 is increased (decreased) from the non-SOC case. For the particular channel

in �11, the cross section is smaller than the non-SOC case until �as reaches 1 from

above. Therefore, the e↵ect of SOC cannot be di↵erentiated even in the very low

energy limit when �as . 1 in the |00, r̂i ! |00, r̂i channel.

From Fig. 3.3 to Fig. 3.8, processes where particles transfer to the lowest helicity

state labeled by k2 are enhanced compared to the non-SOC case. Moreover, particles

are preferentially scattered into the k2 channel where the particle’s momentum is

antiparallel to its spin direction, regardless of their incidence channel. Fig. (3.9)

shows that the k2 channel will dominate among all helicity states, as can be seen by

comparing the ratios of the di↵erent scattering cross sections.

�↵�
��↵

=

✓
k�

k↵

◆2

. (3.49)
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Taken from Ref. [64].

We think the SOC system, which can also be interpreted as spins in a momentum-

dependent B field, is an analog to an antiferromagnetic system. The magnetic poten-

tial energy is minimized when spin is antiparallel to the direction of field. Similarly,

particles would like to stay in their lowest helicity states when the particle’s spin has

a reverse direction to its momentum. The spontaneous handedness appears in parity-

breaking systems when interaction can cause fluctuation among system’s eigenstates.

The bound state information can also be predicted by searching for the poles of

S matrix. The scattering threshold energy here is ET = �~2�2/2µ, see Fig. 3.2. For

energy E < ET , all channels are closed. We take the following analytical continuation:

k1 = i (3.50)

k2 = i
p
2 � �2 + � (3.51)

k3 = i
p
2 � �2 � �, (3.52)
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where  is chosen to be positive so the exponentially growing part in the incoming

scattering wave functions is killed. The bound state wave function can be found by

plugging the continuation into the outgoing wave functions. The new feature brought

into the bound state wave function by SOC is that the function is now decaying

exponentially with an spatial oscillation whose frequency is set by �. The binding

energy for the bound pair is given by Eb = ET + ~22/2µ > 0, where  is found by

solving Det(I �iK) = 0. The binding energy returns to the usual case with an overall

constant shift, depending on the strength of SOC, when as is approaching zero from

the positive side.

Eb =

8
>>>>><

>>>>>:

~2

2µa2

s

+ ~2�2

2µ
1

�a
s

! +1
(9�

p
33)~2�2

12µ
+ 4

q
2
11

� 1p
33

~2�
µa

s

1
�a

s

! 0

2~2�4a2

s

9µ
1

�a
s

! �1.

(3.53)

One interesting e↵ect from SOC shows up in the small and negative as limit. The

binding energy scales algebraically as �4a2
s, which indicates that the existence of a

two-body bound state no matter how small and attractive the scattering length is as

long as SOC exists [54, 63]. The two-body bound state information paves the way to

more complex trimer systems.

3.5 Conclusions

The very existence of the spin-orbit coupling to the infinite distance changes the

two-body scattering in a fundamental way, for instance, the parity symmetry is broken

and the coupling of spin and the translational motion of an atom has reduced the

symmetry of the system to only the conservation of total angular momentum. In this

chapter, we develop a more general treatment of ultracold scattering in the presence of

isotropic spin-orbit coupling based on the previous study in Ref. [56]. The formulation

can now be applied to any two identical particles with arbitrary spin, in any total

angular momentum subspace. This should enable a deeper understanding of low
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Figure 3.10.: The two-body binding energy for two spin-1 bosons in the presence (red
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from Ref. [64].

energy scattering (or two-body bound states) in the presence of an artificial gauge

field, especially those which are non-abelian.
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4. SCATTERING IN THE PRESENCE OF

RASHBA-DRESSELHAUS SPIN-ORBIT COUPLING IN A

REDUCED DIMENSIONALITY

Two-body scattering constitutes the fundamental process in various physical systems

ranging from ultracold dilute gases to energetic quark-gluon plasmas. Many interest-

ing phenomena are found already in one-dimensional quantum scattering processes.

For instance, when a low-energy particle incidents on a potential well, a transmission

resonance could happens when a total destructive interference occurs between the

wave reflected on the left wall and all the waves reflected on the right wall. This is

exactly the principle for Fabry-Perot interferometers in optics. For another instance,

a quantum particle can tunnel through a double-barrier structure as if no potential

exists when the particle’s energy (even if it is lower than the potential height) is

resonant with the quasi-bound state supported by the potential.

In Sec. 4.1, we calculate the transmission and reflection coe�cients in 1D ultra-

cold Fermi gases in the presence of an equal-mixing of Rashba-Dresselhaus spin-orbit

coupling (RDSOC). Scattering resonances are found whenever the incident energy ap-

proaches a scattering threshold or a quasi-bound state. Next, in Sec. 4.2, we propose

to observe these 1D scattering resonances with the assistance of confinement-induced

resonances (CIRs), where the e↵ective 1D interaction strength could be tuned by

changing the ratio of the two length scales set by the background scattering length

and the transverse trapping size. The modification of the CIR position by the Raman

field will be calculated. Possibilities of using Raman-dressed atomic gases to realize

1D theoretical models with infinitely-repulsive gases or infinitely-attractive gases are

discussed at the end of the chapter.
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4.1 Scattering resonances in a 1D Rashba-Dresselhaus spin-orbit coupled

Fermi gas

We begin by considering the binary collision in the experimental protocol in

Zhang’s group [33], where they have realized the Rashba-Dresselhaus SOC in a spin-

1/2 degenerate Fermi gas with 40K atoms. Since the SOC is in one dimension, we

consider only the Hamiltonian associated with the direction of the spin-orbit coupling.

The Hamiltonian describing the system is

H1D =H(1)
1D + H(2)

1D + V (x) (4.1)

=
~2k2

1

2m
+

~2�

m
k1�1x +

~⌦
2
�1z +

~�
2
�1x+

~2k2
2

2m
+

~2�

m
k2�2x +

~⌦
2
�2z +

~�
2
�2x + V (x), (4.2)

where �i=x,y,z are Pauli matrices for spin-1/2 particles, � is the SOC strength, ⌦ is the

Raman coupling strength, � is the two-photon detuning, and V (x) is the interparticle

interaction, where x is the relative coordinate. Without the Raman coupling term,

the 1D Rashba-Dresselhaus spin-orbit coupling can be gauged away, so the existence

of the Raman field is essential in our discussions below. This is very di↵erent from the

Rashba SOC in 2D or the Weyl SOC in 3D, where the non-abelian nature alone makes

their e↵ects nontrivial already. Chapter 3 has given a nice example. The coexistence

of the SOC and the Raman field modifies the energy dispersions in a nontrivial way.

The SOC shifts the quadratic energy bands sideway, and the Raman field, which

is orthogonal to the SOC direction, opens a gap at the band crossings, please see

Fig. 4.1. The gap is called a spin-orbit gap, which has been used in experiments to

show the existing of spin-orbit coupling in a 1D quantum wire [67]. For large enough

⌦, two energy minima will merge into a single minimum in the lowest energy band of

the dispersion relation, please see Fig. 4.2. Defining the relative momentum and the
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Figure 4.1.: The relative energy dispersions are color-coded with the transmission

(reflection) coe�cients at the quasi-momenta with positive (negative) group velocities

assuming the incoming waves are selected to be the right-going waves. The parameters

used here are ~⌦ = 1 ⇥ (2Er), � =
p

2 ⇥ (kr), g1D = �1 ⇥ (2Er/(~kr)), and ~� =

0 ⇥ (2Er) in the unit system of ~ = 1, m = 1, and kr = 1. With the definition, the

energy unit is 2Er.
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Figure 4.2.: The relative energy dispersions are color-coded with the transmission

(reflection) coe�cients on the positive (negative) k side. The parameters used here

are ⌦ = 4 ⇥ (2Er), � = 1kr, g1D = �1 ⇥ (2Er/(~kr)), and � = 0Er in the unit system

of ~ = 1, m = 1, and kr = 1.
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total momentum as k = (k2 � k1)/2 and K = k1 + k2, we can recast the Hamiltonian

in Eq. (4.2) into the following expression,

H1D =
~2K2

2M
+

~2k2

2µ
+

0

BBBBBB@

0 ~2

p
2k�

m
�~2

p
2k�

m
0

~2

p
2k�

m
~⌦ 0 ~2K�p

2m
+ ~�p

2

�~2

p
2k�

m
0 �~⌦ ~2K�p

2m
+ ~�p

2

0 ~2K�p
2m

+ ~�p
2

~2K�p
2m

+ ~�p
2

0

1

CCCCCCA
+ V (x),

(4.3)

where the matrix is written in the singlet and triplet basis, which are defined as

{|Si, |T1i, |T2i,|T3i}={(| "#i � | #"i)/
p

2, | ""i, | ##i,(| "#i + | #"i)/
p

2}. Also, re-

member that M = 2m and µ = m/2. These vectors form a complete basis for the

Hilbert space of two spin-1/2 particles. However, if we move into the center of mass

frame of the two colliding atoms (i.e. K = 0), the triplet channel, |T3i, could be

decoupled from the rest three states in the zero detuning case. That is achieved by

technically orthogonalizing the two degenerate two-body states, in which one atom

locates in the bottom band and the other in the upper band of the one-body dis-

persion. Therefore, the dimension of the spin Hilbert space is nicely decreased into

three.

Restricting ourselves to this subspace, the 1D Hamiltonian is simplified to be

H1D =
~2k2

2µ
+

0

BBB@

0 ~2

p
2k�

m
�~2

p
2k�

m

~2

p
2k�

m
~⌦ 0

�~2

p
2k�

m
0 �~⌦

1

CCCA
+ V (x). (4.4)

To help our calculations later, we list the non-interacting solution of the Hamiltonian

in Eq. (4.4) here.

 1(x) =
1

2
p

k2 +�2

0

BBB@

�
p

2k

�(
p

k2 +�2 +�)
p

k2 +�2 ��

1

CCCA
eikx (4.5)
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 2(x) =
1p

2(k2 +�2)

0

BBB@

�
p

2�

k

k

1

CCCA
eikx (4.6)

 3(x) =
1

2
p

k2 +�2

0

BBB@

p
2k

�(
p

k2 +�2 ��)
p

k2 +�2 +�

1

CCCA
eikx, (4.7)

where � = ⌦/(2�). The corresponding eigenenergies are

E1 = ~2(k2 +
p

4k2�2 + m2⌦2/~2)/m, (4.8)

E2 = ~2k2/m (4.9)

E3 = ~2(k2 �
p

4k2�2 + m2⌦2/~2)/m. (4.10)

Notice that the spinor parts of the full wave functions in Eq. (4.5)-(4.7) are orthogonal

only at the same wave vector, k. For fixed energy, E, the spinors are not orthogonal.

The orthogonality of the total wave function in di↵erent channels is brought back

after a spatial integral of the plane wave function givening that
Z 1

�1
dxei(k1

�k
2

)x = 2⇡�(k1 � k2). (4.11)

The channel structure of the multichannel scattering in the presence of RD spin-

orbit coupling and the Raman field is determined by (i) the relative incoming scat-

tering energy, E, and (ii) the relative strength between (~k/m)� and ⌦. When the

Raman coupling strength is stronger than ⌦c = 2~�2/m, the energy bands are in

the single-minimum regime. In this regime, for �~⌦ < E < 0, there are one open

channel and two closed channels. For 0 < E < ~⌦, there are two open channels and

one closed channel. For E > ~⌦, all channels are open.

The channel structure becomes slightly more complex when the Raman strength

is weaker than ⌦c (or it is equivalent to say when the RDSOC strength is significant).

In this double-minimum regime, the channel structure is the same as in the single-

minimum regime for E > �~⌦. However, the double-minimum scattering threshold,
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EDM
t = �~2�2

m
� m⌦2

4�2

, moves below the single minimum threshold, ESM
t = �~⌦.

Therefore, when EDM
t < E < �~⌦, the double-minimum structure increases the

number of open channels into two. The extra open channel indeed comes from the

nonexistence of any solution of the upper band. The combined fourth-order equation

of the most upper and lowest band always gives four algebraic solutions at any given

real energy. It then becomes a matter of how these four solutions are distributed

among these two bands.

In a 1D low-energy collision, the binary interaction can be well approximated by

a contact delta potential with an e↵ective coupling strength g1D. Assuming a 1D

pseudo-potential, V (x) = g1D�(x)|SihS|, where S stands for the singlet state, the

scattering amplitudes can be solved analytically by matching the solutions to the

proper boundary conditions with the given channel structures plus the condition of

the continuity of the wave function and its derivative except in the singlet component.

The singlet component of the wave function experiences a first derivative discontinuity

due to a delta-type potential.

For our calculation below, we consider the following initial condition, where there

is only a single incident channel coming from the side of the negative infinity. Depend-

ing on the incoming energy, we might have multiple choices of the incoming (outgoing)

channels, and this a↵ects our definitions of the reflectivity and the transmitivity.

For single-channel scattering, the reflectivity, R, is defined as the ratio of the

reflective flux to the incoming flux, R = jR/ji. In multi-channel scattering, R is

found by summing over all (open) final states and averaging over all (open) initial

states given multiple choices.

R ⌘ h
X

f2open

jR,f

ji
ii. (4.12)

where i stands for initial and f for final. The transmitivity, T , has a similar definition

by simply changing the reflective flux into the transmitted flux. One can verify that

R+T = 1, which is guaranteed by the flux conservation. Since the spin-orbit coupling

can be viewed as a spin-dependent vector potential, the current flux involves a term
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associated with the vector potential. The current flux for the states in Eq. (4.5)-(4.7)

are

j1 =
~
m

�
2k +

4k�2

p
4k2�2 + m2⌦2/~2

�
(4.13)

j2 =
~
m

2k (4.14)

j3 =
~
m

�
2k � 4k�2

p
4k2�2 + m2⌦2/~2

�
. (4.15)

Noticing that the middle band has the usual quadratic dispersion relation, we simply

get the familiar formula of the current flux for the free particle with a reduced mass,

µ = m/2.

In Fig. 4.3 and Fig. 4.9, the reflectivity is plotted against the scattering energy

in the single-minimum (SM) and double-minimum (DM) regimes respectively. Rich

scattering resonance structures are found when we scan over the real energy axis. At

zero energy, there is a total reflection in both SM and DM cases. This is expected as

in the usual scattering without SOC since the incident energy is too weak for particles

to pass through (matches our classical intuition). The more interesting resonances

happen when the incident energy is below zero. Therefore, we extract the peak

positions of the total reflection as a function of the 1D interaction strength, g1D, in

the energy range between [�⌦, 0] in Fig. 4.8(a) and Fig. 4.12(a). The total reflection

shows up as a result of a resonance when the scattering state energy coincides with the

energy of the quasi-bound state splitting o↵ from the higher close bands. For some

parameter range, there may exist simultaneously two quasi-bound states since two of

the higher closed bands all have the singlet component except the middle branch at

k = 0, see Fig. 4.4. Recall that the SOC has no e↵ect at k = 0, the three stationary

states from the highest to the lowest band are |T1i, |Si and |T2i respectively.

For the discussion below, we choose the unit system with ~ ⌘ 1, m ⌘ 1, and the

recoil momentum kr = 2⇡/�Laser ⌘ 1. Therefore, the energy unit is 2Er, where Er =

~2k2
r/2m is the recoil energy. For instance, when we say ⌦ = 2, what it means is ⌦ =

4Er. From the conventional wisdom, we know that no matter how weak the attraction

is, there is always a bound state in 1D. This explains the existence of a resonance
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Figure 4.3.: The reflection coe�cient plot as a function of the two-body relative

energy for g = �1, ⌦ = 4 and � = 1 with ~ = 1 and m = 1. The region with the

green (blue,red) curve stands for the case with only one (two,three) open channel(s).
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Figure 4.4.: The reflection coe�cient plot as a function of the two-body relative

energy for g = �3, ⌦ = 4, � = 1 with ~ = 1 and m = 1. The region with the green

(blue,red) curve stands for the case with only one (two,three) open channel(s).

in Fig. 4.8(a) for the weakly-interacting region. For instance, it is located between

�2.7 < g1D < 0 in the case of ⌦ = 4. As we keep increasing g1D, the second resonance

peak appears when �3.2 < g1D < �2.7 for ⌦ = 4 (PS: check what the accurate

number is). The second resonance peak is due to the quasi-bound state formed by

the upper most band with a non-quadratic dispersion relation. This deviation from

the usual quadratic band makes the quasi-bound state behave abnormally. First of

all, it shows up only when the attraction is strong enough and the Raman coupling is
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Figure 4.5.: The reflection coe�cient plot as a function of the two-body relative

energy for g = �5, ⌦ = 4, and � = 1 with ~ = 1 and m = 1. The region with the

green (blue,red) curve stands for the case with only one (two,three) open channel(s).
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Figure 4.6.: The reflection coe�cient plot as a function of the two-body relative

energy for g = �10, ⌦ = 4, and � = 1 with ~ = 1 and m = 1. The region with the

green (blue,red) curve stands for the case with only one (two,three) open channel(s).

not too strong. When ⌦ is too big, the second resonance disappears, see the purple

line in Fig. 4.8(b). Secondly, the stronger attraction indeed leads to a weaker quasi-

bound state in the upper band. Moving to the double-minimum regime, we find very

di↵erent physics. In Fig. 4.12(a), we see that there is always only a resonance peak

and the peak position is never asymptotically approaching E = �⌦ no matter how

strong the attraction is. Our understanding to it is because the upper band does not

have a solution (or become transparent) when energy goes below E24 = �m⌦2/(4�),
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Figure 4.7.: The reflection coe�cient plot as a function of the two-body relative

energy for g = �100, ⌦ = 4, and � = 1 with ~ = 1 and m = 1. The region with the

green (blue,red) curve stands for the case with only one (two,three) open channel(s).
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Figure 4.8.: The positions of the energy, where total reflection occurs, is shown as a

function of the 1D interaction strength in the single-minimum regime.

in which four out of six solutions in k come from the lowest band. Thus, before

the interaction is attractive enough to support a bound state, the upper band has

become transparent already. Therefore, no two resonance peaks at the same g1D could

be found simultaneously in the DM regime.

Comparing the scattering behaviors when the incident energy is at the lowest

scattering threshold in the SM and DM cases, a striking di↵erence is found. For

the SM case, there is total transmission; however, for the DM case, there is a total
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Figure 4.9.: The reflection coe�cient plot as a function of the two-body relative

energy for g = �1, ⌦ = 1, and � =
p

2 with ~ = 1 and m = 1. The region with the

red (purple, green, blue) curve stands for the case with only two (one, two, three)

open channel(s).
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Figure 4.10.: The reflection coe�cient plot as a function of the two-body relative

energy for g = �3, ⌦ = 1, and � =
p

2 with ~ = 1 and m = 1. The region with the

red (purple, green, blue) curve stands for the case with only two (one, two, three)

open channel(s).

reflection. We think this is related with the fact that we need a minimum attraction

to form a true two-body bound state in the SM regime, but not in the DM regime,

see Fig. 4.13(a) and 4.13(b).
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Figure 4.11.: The reflection coe�cient plot as a function of the two-body relative

energy for g = �5, ⌦ = 1, and � =
p

2 with ~ = 1 and m = 1. The region with the

red (purple, green, blue) curve stands for the case with only two (one, two, three)

open channel(s).
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Figure 4.12.: The positions of the total reflection as a function the 1D interaction

strength in (a) the double-minimum regime and (b) the critical ⌦ value with the

quartic dispersion.

4.2 Confinement-induced resonance in RD SOC BECs

We derive the e↵ective 1D interaction strength (g1D) under a strong transverse

confinement in the presence of SOC and Raman fields. We first derive the Green’s

function and then derive g1D by integrating out the excited transverse states. The

derivation in this section is based on the literature [68].
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Figure 4.13.: Plots of bound state energies as a function of the 1D interaction strength

in di↵erent regimes.

4.2.1 Quasi-one-dimensional scattering length

Atom-atom interactions are strongly a↵ected by the external condition. BECs and

DFGs are usually confined in trapping potentials, which could be either of magnetic

origin or of optical origin. If the harmonic confinements are much stronger in two

spatial dimensions (the transverse direction or ⇢̂) than in the third dimension (the

longitudinal direction, or x̂), we create an e↵ective one-dimensional system in the

direction of the weak confinement if the temperature/chemical potential of the system

is low enough not to excite any transverse motions, i.e. Ex < 2~!?.

Under such conditions, if two atoms collide, they would behave like in one di-

mension kinematically. The e↵ective 1D scattering length could be derived by first

assuming the transverse state stay in the ground state of the transverse harmonic

trap and then integrating out the transverse motion. Expressing the Hamiltonian as

H = Hcom � ~2

2µ
(
@2

@x2
+

@2

@⇢2
) +

1

2
µ!2

?⇢
2 + V (x, y, z), (4.16)

where the reduced mass µ = (1/m1 + 1/m2)�1 = m/2 and !? is the transverse

trapping (angular) frequency. A good ansatz to the solution of the 3D Schrödinger

equation in Eq. (4.16) is  (x, y, z) =  (x)�0,0(⇢), where �0,0(⇢) is the ground state of

the 2D harmonic oscillator with energy E? = ~!?. The subscripts label the quantum



86

numbers, ny and nz (or equivalently n and mz depending on the choice of coordinates).

Plug in the ansatz, and sandwich from the left-hand side with the conjugate wave

function of �0,0(⇢), we get

� ~2

2µ

@2

@x2
 (x) + g1D�(x) (x) = (E � E?) (x), (4.17)

where g1D = g3D|�0,0(0)|2 = g3D/(⇡a2
?) with the 3D interaction strength g3D = 2⇡~2a

s

µ
.

From the above argument, we would intuitively think the e↵ective 1D interaction

strength is merely modified by a constant determined by the the transverse ground

state wave function. This is true only when we are away from resonances. If the higher

transverse modes can hold a quasi-bound state in the system, then it would cause

a resonance phenomenon in the 1D interaction strength when the scattering energy

is close to the energy of the quasi-bound state supported by the higher transverse

modes. This is called confinement-induced resonance (CIR). We would simply write

down the e↵ective 1D interaction strength formula here without deriving it. For

interested readers, we appoint them to the following references [69] [70].

g1D =
2~2as

µa2
?

1

1 � Cas/a?
, (4.18)

where C ⇡ 1.4603 and a? =
q

~
µ!?

(as is the 3D background scattering length). g1D

diverges as as/a? = 1/C ⇡ 0.68. The tunability of 1D interaction strength to positive

infinity (g1D ! 1) opens the possibility to realize the 1D impenetrable boson gas, or

the Tonks-Girardeau (TG) gas [71]. In the opposite site, g1D ! �1 contributes to

the realization of a super Tonks-Girardeau (s-TG) gas [72][73].

4.2.2 Free 3D Green’s function

In this subsection, we are going to derive the e↵ective 1D interaction strength un-

der the condition of a strong transverse confinement. The assumptions we make here

are (i) the two-body interaction is captured by the regularized s-wave Fermi pseudo-

potential V (r) = |sihs|4⇡~2a
s

m
�(~r) @

@r
(r) ⌘ |sihs|g3D�(~r)

@
@r

(r), and (ii) the transverse
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Figure 4.14.: E↵ective 1D interaction strength as a function of the 3D background

scattering length. The dashed pink line labels the position of CIR, whose value is

around 1/C ⇡ 0.68. The dotted green line depicts g1D in the absence of resonance,

which is linearly proportional to as as expected.

motion is in its ground state. To satisfy condition (ii), it is required that the ki-

netic energy in the longitudinal direction cannot exceed the energy gap between the

transverse ground state and the first excited state, which is 2~!?.

In the following, we will start from the 3D Lippmann-Schwinger equation and

derive an e↵ective 1D solution from that. The e↵ective 1D interaction strength could

be extracted out by comparing the e↵ective 1D solution with the true 1D solution.

Since we don’t have any good quantum number in the free RD-SOC Hamiltonian

except the center-of-mass momentum and the relative momentum, we would not go

to the subspace of the total angular momentum like we do when dealing with the Weyl

SOC in Ch. 3. Here, it is more advantageous to tackle the problem in the momentum

space and then Fourier transform the solution back to the real space. Also, due to the

translational invariance, the Green’s function satisfies G3D(✏,~r,~r 0) = G3D(✏,~r � ~r 0),
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so we can simply take ~r 0 = 0 in our derivations. The three-dimensional free Green’s

function describing the RD-SOC system is

G3D(✏, x, y = 0, z = 0) = hx, 0, 0| 1

✏� Ĥ + i⌘
|0, 0, 0i. (4.19)

Notice that the motion in the y and z direction remain the same, we could choose y

and z coordinates to be zero without loss of generosity. Separating the non-interacting

Hamiltonian into two parts: H = H0 + H?,

G3D(✏, x, y = 0, z = 0) = hx, 0, 0| 1

✏� (Ĥ0 + Ĥ?) + i⌘
|0, 0, 0i. (4.20)

Inserting a complete set into Eq. (4.20),

G3D(✏, x, y = 0, z = 0)

=
X

m,k,n
y

,n
z

hx, 0, 0|m, k, ny, nzihm, k, ny, nz|
1

✏� (Ĥ0 + Ĥ?) + i⌘
|m, k, ny, nzihm, k, ny, nz|0, 0, 0i

=
X

m,k,n
y

,n
z

hx, 0, 0|m, k, ny, nzi
1

✏� [Em(k) + (nx + ny + 1)~!?] + i⌘
hm, k, ny, nz|0, 0, 0i

(4.21)

where |m, k, ny, nzi ⌘ |m, ki|ny, nzi with |m, ki (Em(k)) the eigenstates (eigenener-

gies) of the 1D RD-SOC Hamiltonian (see Eq. (4.5)-(4.7)) and |ny, nzi the solution

of a 2D harmonic oscillator. This complete set is a solution of the non-interacting

Hamiltonian in momentum space, so it reduces the inverse operator into a regular

expression of a function.

Next, we separate the Green’s function into two parts: one with the transverse

motion in its ground state and the other one carries the rest higher energy states. The

second part actually captures all the virtual transitions during the collision processes,

in which the excited states could be accessed via two-body collisions. Therefore, we

expect the resonance condition to come form G3D,2.

G3D(✏, x, y = 0, z = 0) = G3D,1(✏, x, y = 0, z = 0) + G3D,2(✏, x, y = 0, z = 0), (4.22)



89

with

G3D,1(✏, x, y = 0, z = 0) =
X

m,k

hx, 0, 0|m, k, 0, 0i 1

✏� (Em(k) + ~!?) + i⌘
hm, k, 0, 0|0, 0, 0i, and (4.23)

G3D,2(✏, x, y = 0, z = 0) =
X

m,k
n

y

,n
z

6=0

hx, 0, 0|m, k, ny, nzi
1

✏� [Em(k) + (nx + ny + 1)~!?] + i⌘
hm, k, ny, nz|0, 0, 0i.

(4.24)

The solutions of a 1D harmonic oscillator are well-known results, which are

hy|nyi = �n
y

(y) =

✓
µ!?

⇡~22n
y(ny!)2

◆1/4

exp
⇣

� µ!?y2

2~

⌘
Hn

y


(
µ!?

~ )1/2y

�
(4.25)

with Ey = (ny +
1

2
)~!?, (4.26)

where Hn(y) are the Hermite polynomials. The length scale of the transverse trapping

potential is conveniently defined as a? = ( ~
µ!?

)1/2. Rewriting the harmonic solution

in terms of the trap length scale,

hy|nyi = �n
y

(y) =

✓
1p

⇡2nyny!a?

◆1/2

exp
⇣

� y2

2a2
?

⌘
Hn

y

(y/a?). (4.27)

The solution, �n
z

(z), can be found by replacing y with z. Plug into Eq. (4.23) and

Eq. (4.24), we simplify G3D,1 and G3D,2 into

G3D,1(✏, x, 0, 0) =
X

m,k

|�0(0)|4 hx|m, kihm, k|0i
✏� (Em(k) + ~!?) + i⌘

and (4.28)

G3D,2(✏, x, 0, 0) =
X

m,k
n

y

,n
z

6=0

|�n
y

(0)|2|�n
z

(0)|2 hx|m, kihm, k|0i
✏� (Em(k) + (nx + ny + 1)~!?) + i⌘

(4.29)

From Eq. (4.28), we see that the function G3D,1 is simply the one-dimensional Green’s

function for H0 multiplied by a constant, |�0(0)|4, with a shifted energy origin by ~!?.
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For convenience, we would redefine our energy origin by shifting ✏ ! (✏ � ~!?). By

doing that, the zero of the energy, ✏, agrees with the zero of the 1D system described

by H0.

Calculations of G3D,2 require more attentions. Using the identity,

1

n
=

Z 1

0

dt exp(�nt) for n > 0 (4.30)

we transform the denominator into the exponent of an exponential function. For

convenience, we use the trap energy as the energy unit, and rewrite the integral in

the dimensionless format,

G3D,2(✏̃, x, y = 0, z = 0) =

�
X

m,k,n
y

6=0,n
z

6=0

Z 1

0

dt

~!?
|�n

y

(0)|2|�n
z

(0)|2e�(Ẽ
m

(k)+n
y

+n
z

�✏̃)thx|m, kihm, k|0i, (4.31)

where the notation, ⇠, denotes that variables are scaled to the trap unit. The sum-

mation over ny and nz can be performed with the assistance of the completeness

identity of Hermite polynomials,

1X

n=0

1

n!

� t

2

�n
Hn(y)Hn(z) = (1 � t2)�1/2 exp


2yzt � (y2 + z2)t2

1 � t2

�
. (4.32)

To use the identity, we first complete the summation with missing terms from ny = 0

and nz = 0, applying the identity, and then subtract back the ny = 0 and nz = 0

terms, then we arrive at

G3D,2(✏, x, y = 0, z = 0)

= �
X

m,k

Z 1

0

dt

~!?
e�(E

m

(k)�✏)t

✓
1p
⇡a?

◆2✓ 1p
1 � e�2t

◆2

� 1

�
hx|m, kihm, k|0i

= � 1

⇡a2
?

X

m,k

Z 1

0

dt

~!?
e�(E

m

(k)�✏)t

✓
1

e2t � 1

◆
hx|m, kihm, k|0i (4.33)

Starting from Eq. (4.33), we will omit the notation, ⇠, for simplicity. Keep in mind

that the dimensionless numbers are scaled to the trap unit. As we have already seen in

Sec. 3.3 or will see in the next subsection, the interacting wave function depends only
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on the {1,1} component of the free Green’s function under the s-wave assumption.

Thus, only (G3D,2)11 is calculated below.

(G3D,2)11(✏, x, y = 0, z = 0)

= � 1

2⇡a2
?

Z 1

0

dt

~!?

Z 1

�1

dk

2⇡ a?p
2

eikx
e�

k

2

t

2 e
✏t

2

et � 1

✓
�2

k2 +�2
+

k2

k2 +�2
cosh(�

p
k2 +�2t)

◆

⌘ �1 + �2 (4.34)

with

�1 = �
p

2⇡

2
p

2⇡2a3
?~!?

Z 1

0

dte✏t/2
1p

t(et � 1)
and (4.35)

�2 = � 1

2
p

2⇡2a3
?~!?

Z 1

0

dt
e✏t/2

et � 1

Z 1

�1
dkeikx

k2

k2 +�2

✓
cosh(�

p
k2 +�2t) � 1

◆
e�k2t/2.

(4.36)

Notice that in Eq. (4.34), the momentum k is scaled to the trap unit, (a?/
p

2)�1. Any

other matrix elements of the free Green’s function could be calculated in a similar

way.

4.2.3 E↵ective 1D interaction strength

Following the same procedures in Sec. 3.3, the 3D interacting solution with the

regularized s-wave pseudo potential could be found as follows.

 3D(x, y, z) =  3D,0(x, y, z) +
g3D( 3D,0(0, 0, 0))11

1 � g3D(G3D(0, 0, 0))r,11

0

BBB@

(G3D(x, 0, 0))11

(G3D(x, 0, 0))21

(G3D(x, 0, 0))31

1

CCCA
, (4.37)

where the reduced function is defined as G3D,0(0, 0, 0)r ⌘ limr!0@r(rG3D,0(x, y, z).

Under the strong transverse confinement, it is reasonable to postulate  3D(x, y, z) =
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 (x)�0(y)�0(z). So the quasi-one-dimensional (Q1D) interacting solution derived

from Eq. (4.37) can be expressed as

 Q1D(x) =  Q1D,0(x) +
g3D( Q1D,0(0))11

1 � g3D(G3D(0, 0, 0))r,11

0

BBB@

(G3D(x, 0, 0))11

(G3D(x, 0, 0))21

(G3D(x, 0, 0))31

1

CCCA
, (4.38)

where  Q1D(x) ⌘  3D(x)/(�0(y)�0(z)). Comparing it with the true interacting 1D

solution,

 1D(x) =  1D,0(x) +
g1D( 1D,0(0))11

1 � g1D(G1D(0))r,11

0

BBB@

(G1D(x))11

(G1D(x))21

(G1D(x))31

1

CCCA
, (4.39)

the e↵ective 1D interacting strength can be extracted out from the equality

g3D( Q1D,0(0))11

1 � g3D(G3D(0, 0, 0))r,11

⇡ g1D( 1D,0(0))11

1 � g1D(G1D(0))r,11

|�0(0)|4. (4.40)

Remember that the 3D Green’s function at x ! 1 is di↵ered from the 1D Green’s

function by the function |�0(0)|4. Therefore,

g1D =
g3D|�0(0)|4

1 � g3D(�1,r(0) + �2(0))
, (4.41)

where the subscript, r, in �1r stands for reduced, in which the divergent part has been

subtracted out from the integral.

�1r = �
p

2⇡

2
p

2⇡2a3
?~!?

Z 1

0

dt

✓
e✏t/2p

t(et � 1)
� 1

t3/2

◆
, (4.42)

where the integral part of �1r is related with the integral representation of the Hurwitz

zeta function, -⇣(1/2, 1 � ✏/2) [cite]. To best compare the formula modified by SOC

with the old one, we rewrite the formula of g1D in two dimensionless integrals, C1 and

C2. Therefore,

g1D =
2~2as

µa2
?

1

1 � (C1 + C2)as/a?
, (4.43)
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Figure 4.15.: The e↵ective 1D interaction strength under the influence of the RD-

SOC. The parameter used is ⌦ = 4~!?. The blue curve denotes g1D at the lowest

scattering energy (E = �4~!?). The red curve depicts g1D at the highest possible

scattering energy (E = �2~!?) to ensure the assumption of the strong transverse

confinement. The green dashed line labels the position of conventional CIR position

(as/a? = 0.68). We see the existence of Raman lasers modifies the CIR position.

where

C1 = � 1p
⇡

Z 1

0

dt

✓
e✏t/2p

t(et � 1)
� 1

t3/2

◆
= �⇣(1

2
, 1 � ✏

2
) and (4.44)

C2 = � 1p
2⇡

Z 1

0

dt
e✏t/2

et � 1

Z 1

�1
dk

k2

k2 +�2

✓
cosh(�

p
k2 +�2t) � 1

◆
e�k2t/2. (4.45)

A quick check on the validity of the above formula is by taking � ! 0. In this case,

C2 = 0 and C1 ⇡ 1.4603 at the lowest threshold energy, ✏ = 0, which returns back to

Olshanii’s result [69].

Fig. 4.15 shows the e↵ective 1D interaction strength as a function of the 3D

background scattering length. We observe that the existence of the Raman lasers

shifts the resonance position to the left at the lowest scattering threshold. This is

encouraging from the experimental point of view. Since it means that for the same

as we need less stronger trapping frequencies to reach resonance. Furthermore, we
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plot how the resonance position changes as a function of ⌦ in Fig. 4.16. It shows

that by increasing the value of Raman coupling strengths, we significantly reduce

the requirement in the trapping frequency. However, increasing the Raman coupling

strength causes heating problems.

One comment on Fig. 4.16 is that when ⌦ = 0, as/a? = 0.68, which is the normal

CIR position. This is because when the Raman laser is o↵, the RD-SOC in the

e↵ective 1D system could be gauged away by a unitary transformation. So we don’t

expect any change in the resonance position.
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Figure 4.16.: The e↵ective 1D interaction strength as a function of the Raman cou-

pling strength at di↵erent RD-SOC strengths. When ⌦ = 0, we return back to the

normal CIR case, which is marked by the gray dashed line.

4.3 Estimation of experimental parameters

In this section, we estimate the parameter necessary for the experiments with

potassium-40, which is one common example used for spin-1/2 fermionic gases. 40K

has a background scattering length, as ⇡ 9 nm. From [33], we learn that the spin-orbit

strength is around the order of
p

~m!?, whose prediction is provided by the green
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curve in Fig. 4.16. The corresponding value of as/a? at a fixed ⌦ can be found once

the transverse trap frequency is given. If we use !? ⇡ 70 kHz, which is the number

being realized in 2D optical lattice experiments [5], we find CIR position occurs at

as/a? = 0.11, and it could be approached by increasing the Raman intensity to

2.8 MHz. So far, the maximum Raman intensity that being explored in experiments

[74] is around 40⇥3.7 kHz=148 kHz. The potential issue with a large Raman laser

intensity is heating from spontaneous emission. The spontaneous emission rate scales

as W�/�2, where W is the laser intensity, � is the linewidth of the excited states, and

� is the detuning, please see Fig. 4.17. Also remember that the spin-flipped Raman

process is proportional to W�FS/�2, where �FS is the fine structure splitting, please

refer to Fig. 4.17 again. So a smaller ratio of �/�FS would help decrease the heating

rate. This ratio is often larger for lighter elements, so choosing atomic species properly

would help reduce the problem. For instance, comparing the three atomic species,

which have been used in experiments, rubidium-87 is more favorable than potassium-

40, and potassium-40 is more advantageous than lithium-6. More details can be found

in [75] and the supplementary material in [76].
Review Article 

2

the first physical realization of a SO coupled boson system 
and therefore many new issues arise: for instance, how does 
SO coupling affect the behaviour of a boson superfluid? 
This also opens a new avenue where many new quantum 
states and novel quantum phenomena will emerge.

tunability, on one hand, we can study physics like topo-
logical insulators and superconductors in a more flexible 
and disorder- free setting. On the other hand, we can reach 
certain parameter regimes that are not easy to access with 
conventional solid state materials, for instance, tuning 
the strength of SO coupling so that it is comparable with 
Fermi energy, where novel effects will be expected.

the interplay between SO coupling and these features 
leads to many intriguing phenomena. For example, using 
Feshbach resonance, one can reach a strongly interacting 

How does SO coupling affect those properties of ‘uni-

How does SO coupling manifest its effect in these high 
spin systems?

In this review, I shall illustrate the above three points with 
examples from recent studies and hopefully it will stimulate 
more efforts in this direction.

In this review, two types of SO coupling will be discussed. 
For the first type, spin is only coupled to the motion of atoms 
along one spatial direction which is induced by two contour-

-
ments for both bosonic and fermionic atoms [1– ] and in this 

-
metry. Although it has not yet been realized experimentally, 
there are many theoretical proposals on how to realize it and 
extensive theoretical studies have been made of this type of 
SO coupling. These two types of SO coupling will be dis-
cussed separately in this review because of the difference in 
their microscopic details. Nevertheless, we will emphasize 
that there are quite a few common features between the dif-
ferent types of SO coupling, which yield similar properties in 
many-body systems in various aspects.

There are already several reviews on this subject thus 
et al focuses on 

the general idea and on various schemes of how to create a 
synthetic gauge field in a cold atom system [4] and the non-
abelian gauge field that generates the effect of SO coupling. 

body physics of ultracold atom gases with SO coupling [ ]. 

Nature which focuses on experimental realization of SO cou-
pling in cold atom systems and its connection to condensed 
matter physics [ ]. Goldman et al give a comprehensive 
review of the various realizations of synthetic gauge fields so 
far, as well as interesting many-body physics for both bosonic 
and fermionic gases with gauge fields [7]. In this review, we 

shall try to minimize the overlap with the content already dis-
cussed in the above review articles and will refer readers to 
the corresponding parts of these articles for the overlapping 
parts. This review will also be restricted to the SO coupling 
effect and will not discuss some other developments in a more 
general framework of synthetic gauge fields with cold atoms, 
including trying to realize large synthetic magnetic fields or 
dynamical gauge fields.

2. Realization of spin–orbit coupling

In this section, we shall first of all introduce the two types of 
SO coupling most frequently discussed in current literature.

2.1. Raman-induced SO coupling

been discussed by serval earlier works [8–10] and was first 
experimentally realized in [1]. First, we consider alkali atoms 
like 87 40K, whose ground state electronic structure is 
2S . The spin of these atoms F is the sum of the electron spin 
S and the nuclear spin I. For instance, for 87 S
I -
fine coupling into two manifolds with F = 1 and F = 2, respec-
tively1. All spin states are labelled by ∣F, Fm〉. In this type of 
experiment, we usually take a mixture of two spin states ∣F, 
Fm〉 and ∣F, Fm − 1〉
For 87 ∣1, 0〉 and ∣1, −1〉 [1].

As shown in figure  1(a), this type of SO coupling is 

̂x . A magnetic field along ̂z  sets the spin quantization axes. 
One of the laser beams is π polarized along ̂z  and the other is 
linearly polarized along ̂y  and the later can be decomposed as 
σ+ and σ−. In the presence of these two laser beams, the atom 
will undergo a two-photon process, i.e. first it will be excited 
to an intermediate excited state 2P  or 2P  by absorbing a 
π (or σ ) light and then it will come back to the ground state 
spin manifold by emitting a σ  (or π) light, as shown in fig-
ure 1(b). This two-photon process is mathematically described 
by a rank-2 tensor which can be decomposed as a sum as an 
irreducible scalar part, a vector part and a tensor part. The 
detailed derivation of this decomposition is nicely summarized 

Figure 1. (a b) Atomic 

1 For detailed discussion of atomic spin structure, see [11]. 

Rep. Prog. Phys. 78 (2015) 026001

Figure 4.17.: (a) Typical Raman coupling scheme to generate spin-orbit coupling in

ultracold atoms. (b)The atomic energy levels for the a two-photon Raman transition

in alkali atoms. Pictures taken from [77].
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To probe the resonance above the lowest scattering threshold but still under the

limit set by the quasi-1D approximation, we need to apply a even higher trap fre-

quency. The upper limit of a potentially achievable trap frequency in magnetic chip

traps or optical dipole traps is predicted to be around the order of several MHz [78],

which is promising.

4.4 Conclusions

In this chapter, we have studied the scattering processes in spin-orbit coupled

systems with reduced dimensionalities. Scattering resonances are found whenever the

scattering energies match either scattering thresholds or quasi-bound states supported

by upper closed bands. Estimation of the experimental parameters are provided to

assist the observation of these resonances. The capability of realizing either a perfect

reflection or a perfect opaqueness at the lowest scattering threshold by simply tuning

the Raman laser intensity provides us a new dimension of controlling the cold atom

experiments.

Realizations of 1D theoretical models, such as Tonks-Girardeau gases and Lut-

tinger liquids, are made possible with confinement-induced resonances. The extra

Raman coupling reduces the harsh requirement in the trap frequencies, however,

with the potential issue in heating.



97

5. SUMMARY AND OUTLOOK

Spin-orbit coupling in cold atoms has generated much excitement. The new properties

of spin-orbit coupled quantum degenerate gases have been widely explored not only

from the many-body perspectives but also the few-body viewpoints. In this thesis

work, we have studied the spin-orbit coupled quantum gases mainly from the the-

oretical few-body perspectives in the following three aspects: scattering, resonance,

and bound state formation. In chapter three, we have seen that the existence of spin-

orbit coupling changes the scattering behaviors in a fundamental way, which gives

new scattering threshold laws and leads to the spontaneous handedness in spin-orbit

coupled systems. In Chapter four, we have explored scattering resonances in the

multichannel scattering in the presence of equal Rashba and Dresselhaus spin-orbit

coupling. We find that whenever, the scattering energy of the incoming state, which

is located between di↵erent scattering threshold in di↵erent channels, hits a quasi-

bound state energy state supported by the closed channels, the resonance between

the scattering state and the quasi-bound state leads to a total reflection. At threshold

energies, the abnormal scattering behaviors show up due to the abnormal dispersion

relations of a square root dependence in energy. The above conclusions have been

reached in Chapter 4. With regards to the bound state formation, if the presence

of spin-orbit coupling enhances the energy density of state, the atoms will form a

bound state easier compared to the usual cases of a quadratic dispersion with spin

degeneracies. For instance, the 3D Weyl spin-orbit coupling has a huge degeneracy

due to the spherical symmetry of the constant energy surfaces, two Weyl spin-orbit

coupled atoms could form a bound state even in the regime with a negative scattering

length in three spatial dimension. If the energy dependence of the density of states

does not vary from the usual cases, then the condition of bound state formation re-

main the same. This is verified in the double-minimum regime with an equal mixing
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of Rashba-Dresselhaus spin-orbit coupling in Chapter 4. The in-detail conclusions

could be found at the end of each chapter.

In the following sections, we discuss several possible extensions suggested by the

studies so far. One interesting study would be to include the p-wave interaction.

Since spin-orbit coupling mixes di↵erent partial waves, it would be interesting to

explore the interplay of spin-orbit coupling and the simultaneous existence of the s-

and p-wave interactions. We discuss the partial wave interference due to spin-orbit

coupling in Sec. 5.1. In Sec. 5.2, we adapt the hyperspherical coordinate framework

to three-body systems in the presence of spin-orbit coupling with the motivation to

investigate how the new length scale of spin-orbit coupling a↵ects the universality in

ultracold atomic systems. In the last section, we will briefly discuss other interesting

potential directions of studying synthetic gauge fields in ultracold atomic systems to

conclude the dissertation.

5.1 SOC-induced partial wave interferences in the ultracold scattering

In this section, we set up the scattering formalism to cope with any type of

short-range potential with the method of the Harmin-Fano local frame transformation

[79, 80, 81, 82] under the assumption of the length scale separation. We acknowledge

the contribution from Panos Giannakeas in the derivations here. The method we

develop here would be very useful to explore the importance of the contribution of

the higher-partial waves when SOC exists. Also, the method goes beyond the pseudo-

potential approximation, so a realistic two-body interaction, such as a Lennard-Jones

potential, may be included easily.

5.1.1 Application of the local frame transformation

The original idea of the local frame transformation is based on the fact that a

system is separable in di↵erent coordinate systems in two di↵erent regions of the

configuration space. Therefore, the full solution can be derived by propagating the
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wave functions in the inner region with a symmetry there to the outer region with

another di↵erent symmetry through a local non-unitary frame transformation. The

validity of the treatment is based on the assumption of length scale separation.

Since the spin-orbit coupling couples di↵erent partial waves, our treatment ele-

gantly deals with the crucial feature of spin-orbit coupling by matching the short-

range solution under the influence of the two-body interaction to the asymptotic

solutions a↵ected only by spin-orbit coupling. The validity of the treatment is based

on the assumption of a length scale separation, see Fig. 5.1. If the length scale deter-

mined by spin-orbit coupling, ��1 (we adopt the same notation from the preceding

chapter), is much longer than the potential range controlled by the two-body interac-

tion, then we can solve the two-body scattering problem in the presence of spin-orbit

coupling by knowing only the non-interacting two-body solutions with spin-orbit cou-

pling and their connections to the interacting two-body solutions in the absence of

spin-orbit coupling.

r
��1

//

R6R10

Local Frame Transformation

Figure 5.1.: The length scale separation in spin-orbit coupled systems. The parame-

ter, �, is the SOC strength with the unit of momentum/~. Rn is the length scale for

�Cn/rn type of potentials. R6 is the length scale for the van der Waals potential.

Chapter 3 shows that the scattering solution with the Weyl spin-orbit coupling is

given by

 SOC(r) =
f(r)

r
�

g(r)

r
KSO, (5.1)
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where

k1 = k (5.3)

k2 =
p

k2 + �2 + � (5.4)

k3 =
p

k2 + �2 � �, (5.5)

Notice that the overall factor
q

2µ
⇡~2

is removed in Eq. (5.2) compared to the result in

Ch. 3. The irregular solution, g(r), can be obtained by replacing j`(kir) with y`(kir)

for i 2 {1, 2, 3}. The scattering energy, E = ~2k2/m, is determined by the wave

number k1 = k. These three di↵erent wave numbers are related with each other. The

following relations will be useful later.

k2 � � = k3 + � (5.6)

k2
1 = k2k3. (5.7)

In the short-range region, r ⌧ 1/�, the e↵ect of SOC is negligible. Therefore, the

free 3D scattering solution describes the solution in this region very well.

 3D(r) = F (r) � G(r)K3D, (5.8)

where the regular solution is

F (r) =
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and the irregular solution is

G(r) =

0
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k1y0(k1r) 0 0

0
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0 0
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. (5.10)
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Now we want to find the connection between the two sets of solution in the short-

range and long-range regions. The multiplication theorem [83] is used to relate the

solutions.

j`(kjr) = (
kj

k1

)`
1X

n=0

1

n!


1 � (kj/k1)2

2

�n
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Assuming the scattering energy is low, the first term in the infinite sums of Eq. (5.11)

and Eq. (5.12) su�ces. Therefore,

j`(kjr) ⇡
✓
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j`(k1r), (5.13)

y`(kjr) ⇡
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y`(k1r). (5.14)

Therefore, the regular solution with SOC in Eq. (5.2) can be rewritten in terms of

the 3D free regular solution in Eq. (5.9) as follows:
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j2(k2r) � 1p
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k
3p

k
3

+�
j2(k3r)

1

CCCA

=

0

BBB@

p
k1j0(k1r) 0 0

0
p

k1j1(k1r) 0

0 0
p

k1j2(k1r)

1

CCCA

0
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1p
3

1p
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k
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1

1p
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+�
k
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� 1p
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2

��

k3

2

k3

1

� 1p
6

q
k
1

k
3

+�

k3

3

k3

1

1

CCCA

| {z }
U

(5.15)

⌘ F (r)U, (5.16)
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where U is the frame transformation matrix. Similarly, we can relate the irregular

solutions in these two regions with the transformation matrix of V .

g(r)

r
=

0

BBB@

1p
3

k
1p
k
1

y0(k1r)
1p
3

k
2p

k
2

��
y0(k2r)

1p
3

k
3p

k
3

+�
y0(k3r)

0 ip
2

k
2p

k
2

��
y1(k2r) � ip

2
k
3p

k
3

+�
y1(k3r)

p
2p
3

k
1p
k
1

y2(k1r) � 1p
6

k
2p

k
2

��
y2(k2r) � 1p

6
k
3p

k
3

+�
y2(k3r)

1

CCCA

=

0

BBB@

p
k1y0(k1r) 0 0

0
p

k1y1(k1r) 0

0 0
p

k1y2(k1r)

1

CCCA

0

BBB@

1p
3

1p
3

q
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1

k
2

��
1p
3

q
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1
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3

+�

0 ip
2

q
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1
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2

��
k
1

k
2

� ip
2

q
k
1
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3

+�
k
1
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3

p
2p
3

� 1p
6

q
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1
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2

��

k2

1

k2

2

� 1p
6

q
k
1

k
3

+�

k2

1

k2

3

1

CCCA

| {z }
V

(5.17)

⌘ G(r)V, (5.18)

With the matrices, U and V , we can derive the K matrix in the presence of the 3D

isotropic SOC in terms of the K matrix in the absence of SOC. Since

 3DU = (F � GK3D)U =
f(r)

r
� g(r)

r
V �1K3DU, (5.19)

we get

 SOC =
f(r)

r
� g(r)

r
KSOC ⌘  3DU =

f(r)

r
� g(r)

r
(V �1K3DU). (5.20)

Therefore,

KSOC = V �1K3DU. (5.21)

The above equation tells us that we can find the scattering solution in the presence

of SOC by only knowing the non-interacting stationary solution with SOC given that

the scattering solution with the same short-range potential is known! The matrix

K3D is defined in the usual sense,

K3D =

0

BBB@

tan �0 0 0

0 tan �1 0

0 0 tan �2

1

CCCA
, (5.22)
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where �` are the `-wave phase shifts. They are determined by the two-body inter-

action. Plenty of research on finding the scattering phase shifts [84][cite more] are

available and could be immediately applied in our spin-orbit coupled systems.

As a sanity test of our result, we now apply the local frame transformation method

to the scattering problem in Chapter 3, where we consider only the s-wave interaction.

When we include only the lowest partial wave interaction, the 3D K matrix is reduced

to

K3D =

0

BBB@

tan �0 0 0

0 0 0

0 0 0

1

CCCA
. (5.23)

In the low-energy scattering, tan �0 = �kas, where as is s-wave scattering length.

Plugging Eq. (5.23) into Eq. (5.21), we get

KSOC = V �1K3DU =
�2as

3(k2 + k3)

0

BBB@
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+k
3

)
2

k2

q
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1
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+k
3

)
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k3

q
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(k
2

+k
3

)
2

k2

q
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1

(k
2

+k
3

)
2

k2
2 k2k3

k3

q
k
1

(k
2

+k
3

)
2

k3k2 k2
3

1

CCCA
,

(5.24)

which is equivalent to the K matrix we have derived in Eq. (3.31). It can be shown

easily with the identities listed in Eq. (5.6) and Eq. (5.7).

When evaluating the K matrix with SOC, we use the following identity to avoid

performing matrix inversions, which are more time-consuming than finding conjugate

transpose of matrices.

KSOC = V �1K3DU = U †K3DU. (5.25)

Eq. (5.25) is the key result of our derivations here. It could be used to explore the

interplay of di↵erent type interaction, such as Lennard-Jones interactions or dipolar

interactions and the spin-orbit coupling. Even more interestingly, because of the

mixing of partital waves, the synthetic spin-orbit coupling could potentially provide

a new way to engineer p-wave interaction [85], which contributes to realizations of

fractional quantum hall states [86][87] and p-wave superfluidity [88][89].
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5.2 Three-body physics with synthetic spin-orbit coupling

One central theme in various branches of physics is the universality, and few-body

systems are wonderful places to observe this phenomenon. When a few particles are

interacting through short-range interactions with divergent scattering length, their

properties exhibit universality. From the Efimov trimers [90][91] in nuclear physics to

the ultracold atomic clusters in quantum gases, their binding energies in the unitary

limit are all found to follow the same discrete scaling laws despite the very di↵erent

details in the separate systems. These remarkable theoretical predictions have been

experimentally verified [92] thanks to the advances of the experimental techniques in

atom trapping/cooling [93] and the capability of tuning scattering length via external

fields, which is known as Feshbach resonances [7]. Investigation of few-body physics

not only brings us astonishing physics, like universality [94], but also provides practical

purposes in controlling the stability of quantum gases [95]. Furthermore, it helps us

to bridge the gap between few-body physics and many-body physics by identifying

the key aspects of macroscopic properties of a many-body system through few-body

solutions.

In this section, we construct the foundation to prepare us to study the three-body

physics in the presence of spin-orbit coupling with the aim to understand how the new

length scale introduced by SOC a↵ects the universality in few-body worlds. We first

re-express the three-body Hamiltonian in the presence of isotropic spin-orbit coupling

(SOC) in terms of the hyperspherical coordinate. The traditional three-body Hamil-

tonian without spin-orbit coupling is well studied, so the crucial part is how one can

write the linear momentum operator in the hyperspherical coordinate, which couples

to spin causing the SOC. Here, we follow a similar procedure as in Kuppermann’s

work [96] to derive the matrix gradient operator and then obtain the kinetic energy

operator and the SOC operator from there. With those, the full Hamiltonian describ-

ing the spin-orbit coupled system in hyperspherical coordinate is achieved, which is
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a starting point to explore the multi-particle physics in the presence of synthetic

spin-orbit coupling.

5.2.1 Mass-scaled Jacobi coordinates

The full Hamiltonian for three spins with isotropic spin-orbit coupling:

H3b =
~p2

1

2m1

+
~p2

2

2m2

+
~p2

3

2m3

+
~�
m1

~p1 ·~�1 +
~�
m2

~p2 ·~�2 +
~�
m3

~p3 ·~�3 +V (r12, r23, r31), (5.26)

where ~pi = �i~r~r
i

with commutation relations, [xi, pi,x] = [yi, pi,y] = [zi, pi,z] = i~

(i = 1, 2, 3). In the following, we are going to rewrite the Hamiltonian in terms of

mass-scaled Jacobi coordinates and then separate the center of mass coordinate from

the relative coordinates. The Jacobi coordinates, {~⇢0i|i = 1, ..., N}, for a system of

size N are defined as the set of the N � 1 relative coordinates plus the center of

mass coordinate. The ith relative coordinate is the vector pointing from the center

of mass of the first i particles to the (i + 1)th particle for i = 1, 2, ..., N � 1. The

Nth Jacobi coordinate, which connects the center of mass of the first N � 1 particles

to the last particle, is exactly the c.o.m. coordinate of the full system. It is a useful

coordinate system to describe any physical system with global translational invariance

([
P

i ~pi, Ĥ] = 0) since the last coordinate (or the center of mass coordinate) can

be separated from the other (N � 1) relative coordinates. The mass-scaled Jacobi

coordinates for any number of particle sets (N) are defined as follows:

~⇢j =

r
µj

µ
~⇢0j, (5.27)

where µj = (
Pj

i=1 mi ⇥ mj+1)/
Pj+1

i=1 mi and µ = (⇧N
i=1mi/

PN
i=1 mi)1/(N�1). The

reason for mass scaling the Jacobi coordinates will become clear later when we write

down the kinetic energy operator. For a triatomic system, the first Jacobi coordinate

is the vector pointing from particle 1 to particle 2, and the second Jacobi coordinate

is the vector pointing from the c.o.m. of the first two particles to the third particle.



106
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Figure 5.2.: The Jacobi coordinates (without mass scaling) for the three-body system.

The first Jacobi vector connect the first two particles, and the second Jacobi vector

connects the center of mass of the first two particles with the third particle. We

could imagine an imaginary particle with mass equal to (m1 + m2) standing in the

spot of the center of mass of the first two particles. So the second Jacobi vector

simply connects the imaginary particle we cook up and the third particle. The center

of mass of the imaginary particle and the third particle is exactly the center of mass

of the whole system. So the vector pointing from the origin to the system’s c.o.m.

is the third Jacobi vector or the c.o.m. vector of the three-body system. This logic

applies to any system of size N , which is a nonzero positive integer.

Please refer to Fig. 5.2 for a pictorial explanation. The mass-scaled Jacobi coordinates

for a three-body system are:

~⇢1 = (~r1 � ~r2)/d (5.28)

~⇢2 = (
m1~r1 + m2~r2

m1 + m2

� ~r3)d (5.29)

~⇢3 =

P
i=1,2,3 mi~ri

M
, (5.30)

where d2 = µ/µ1 = µ2/µ = (m3/µ)(1 � m3/M), µ2 = m1m2m3/M with M =

m1 + m2 + m3. The corresponding canonical momenta for the above three Jacobi
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coordinates are

~⇡1 =
µ

d

� ~p1

m1

� ~p2

m2

�
(5.31)

~⇡2 = µd
� ~p1 + ~p2

m1 + m2

� ~p3

m3

�
(5.32)

~⇡3 = ~p1 + ~p2 + ~p3. (5.33)

They satisfy the commutation relations, [⇢̂1j, ⇡̂1k] = [⇢̂2j, ⇡̂2k] = [⇢̂3j, ⇡̂3k] = i~�j,k for

{j, k} = {1, 2, 3}. The inverse transformation is

~p1 =
dµ1,2

µ
~⇡1 +

m1m3

dµM
~⇡2 +

m1

M
~⇡3 (5.34)

~p2 = �dµ1,2

µ
~⇡1 +

m2m3

dµM
~⇡2 +

m2

M
~⇡3 (5.35)

~p3 = �µ12,3

dµ
~⇡2 +

m3

M
~⇡3, (5.36)

where µ1,2 = µ1 = m1m2/(m1 + m2) and µ12,3 = µ2 = (m1 + m2)m3/(m1 + m2 + m3).

So the new Hamiltonian in Jacobi coordinates is

H3b =
~⇡2

1

2µ
+
~⇡2

2

2µ
+

~�dµ1,2

µ


~⇡1 · (

~�1

m1

� ~�2

m2

)

�
+

~�
dµ
~⇡2 ·


m3

M
(~�1 + ~�2) � µ12,3

m3

~�3

�

+


~⇡2

3

2M
+

~�
M
~⇡3 · (~�1 + ~�2 + ~�3)

�
+ V (r12, r23, r31). (5.37)

Here we see the advantage of applying the ”mass-scaled” Jacobi coordinates. The

canonical momenta except the c.o.m. one will share the same e↵ective mass, µ.

Considering the case of zero c.o.m. momentum (~⇡3 = 0), the relative Hamiltonian

becomes

Hrel
3b =

~⇡2
1

2µ
+
~⇡2

2

2µ
+

~�dµ1,2

µ
~⇡1·(

~�1

m1

� ~�2

m2

)+
~�
dµ
~⇡2·


m3

M
(~�1+~�2)�

µ12,3

m3

~�3

�
+V (r12, r23, r31),

(5.38)

where ~⇡1 = �i~r~⇢
1

and ~⇡2 = �i~r~⇢
2

. The interaction Hamiltonian can also be

expressed in terms of ~⇢1 and ~⇢2 only with

V (r12, r23, r31) = V (|d~⇢1|, |d~⇢1/2 � ~⇢2/d|, |d~⇢1/2 + ~⇢2/d|). (5.39)
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5.2.2 The hyperspherical coordinates

In the section, we are going to write the two 3-dimensional Cartesian Jacobi vec-

tors in a 6-dimensional hyperspherical coordinate. There are several ways of defining

hyperspherical coordinates. One way to categorize di↵erent hyperspherical coordi-

nates is whether the coordinate is a space-fixed coordinate or a body-fixed one. Here,

we define them in the body-fixed frame of reference. In this frame, the six Jacobi

coordinates are expressed in terms of three internal coordinates, {⇢, ✓, �}, which de-

termine the overall size and shape, and three Euler angles, {↵, �,�}, which determine

the orientation of this triangular plane formed by three particles.

⇢sf =
⇣
~⇢N�1, ... ~⇢2, ~⇢1

⌘
=

0

BBB@

xN�1 ... x2 x1

yN�1 ... y2 y1

zN�1 ... z2 z1

1

CCCA
= RT (↵, �, �)⇢N(✓)Q(�),

(5.40)

where the three Euler angles rotate the space-fixed coordinate frame to the body-fixed

principal-axes-of-inertia frame (passive rotation). Here, we apply the z-y-z conven-

tion.

R(↵, �, �) = M1(�)M2(�)M1(↵) (5.41)

where M1 and M2 are

M1(!) =

0

BBB@

cos! sin! 0

� sin! cos! 0

0 0 1

1

CCCA
(5.42)

M2(!) =

0

BBB@

cos! 0 � sin!

0 1 0

sin! 0 cos!

1

CCCA
(5.43)

The matrix N and Q separately are

N(✓) =

0

BBB@

cos ✓ 0 0

0 sin ✓ 0

0 0 0

1

CCCA
and Q(�) =

0

BBB@

cos � sin �

� sin � cos �

0 0

1

CCCA
. (5.44)
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The matrix Q is a row-orthogonal but not a row-orthonormal matrix since

QQT =

0

BBB@

1 0 0

0 1 0

0 0 0

1

CCCA
, (5.45)

which is not an identity matrix. Before we perform the Euler rotations, the two

relative Jacobi coordinates describe the three particles lying in the body-frame x � y

plane with their z components being zero. The angles ✓ and � are the internal angles

that characterize the principal-axes moment of inertia of the system and the rotational

freedom around the z-axis away from the principal-axes-of-inertia coordinate.

⇢N(✓)Q(�) =

0

BBB@

⇢ cos ✓ cos � ⇢ cos ✓ sin �

�⇢ sin ✓ sin � ⇢ sin ✓ cos �

0 0

1

CCCA
(5.46)

The fact that only one angle, ✓, characterizes the principal axes moment of inertia

is because for a triatomic system, two principal axes must lie in the plane and the

third one (here, the z axis) must be perpendicular to the plane. Thus, the moment

of inertia for the perpendicular axis is the sum of that of the other two. In general,

we need two angles to specify the moment of inertia of the principal axes. For system

size N � 4, please consult Kuppermann’s papers [97][98] for a rather straightforward

generalization.

5.2.3 The matrix gradient operator

We define the matrix gradient operator r by

r =

0

BBB@

@/@x1 @/@x2

@/@y1 @/@y2

@/@z1 @/@z2

1

CCCA
. (5.47)

The kinetic energy operator can be written in a concise form as

T = � ~2

2µ
tr(rrT ). (5.48)
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The matrix gradient operator is composed of the coe�cients of the expansion of the

total derivative operator in 6D Cartesian coordinates formed by two relative Jacobi

coordinates,

d̂ =
2X

j=1


dxj

@

@xj

+ dyj
@

@yj
+ dzj

@

@zj

�
. (5.49)

Another way to express the same operator would be to express it in terms of the six

coordinates in the hyperspherical coordinate.

d̂ =

✓
d↵

@

@↵
+ d�

@

@�
+ d�

@

@�

◆
+

✓
d⇢

@

@⇢
+ d✓

@

@✓

◆
+ d�

@

@�
⌘ d̂1 + d̂2 + d̂3. (5.50)

By comparing these two expressions, we are able to extract the expressions for the

matrix gradient operator, which summarizes what we do in the following.

The derivatives of the Euler angles are related with the orbital angular momentum

operator ~̂L in the body-fixed frame by
0

BBB@

@
@↵

@
@�

@
@�

1

CCCA
=

i

~

0

BBB@

� sin � cos � sin � sin � cos �

sin � cos � 0

0 0 1

1

CCCA

0

BBB@

L̂x

L̂y

L̂z

1

CCCA
. (5.51)

So the operator d̂1 is re-expressed as

d̂1 =
i

~
⇥
(� sin � cos �d↵+sin �d�)L̂x+(sin � sin �d↵+cos �d�)L̂y+(cos �d↵+d�)L̂z

⇤
.

(5.52)

It can be shown easily that the above expression is equivalent to

d̂1 = � i

2~

3X

i,j=1


✏ij1(RdRT )ijL̂x + ✏ij2(RdRT )ijL̂y + ✏ij3(RdRT )ijL̂z

�
, (5.53)

where ✏ijk is the Levi-Civita density tensor.

Next we want to express the d̂2 and d̂3 operator in a more useful form. Starting

with Eq. (5.40), and take the di↵erential of it, we get

d⇢sf = (dRT )⇢NQ + RTd(⇢N)Q + RT⇢NdQ. (5.54)

Multiplying the matrix R from the left and the matrix QT from the right, we get

Rd⇢sfQT = R(dRT )⇢N + d(⇢N) + ⇢N(dQ)QT , (5.55)
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where we have used the orthogonality of the matrix Q so that N(QQT ) = N. Also

due to that, we matrix R(dRT ) and (dQ)QT are anti-symmetric matrices, and all

the diagonal matrix elements are zero. Knowing that the matrix N and its derivative

dN are both diagonal matrices, a advantageous way to express the relevant matri-

ces of di↵erentials in Eq.(5.55) are to express them in terms of this useful matrix,

R(d⇢sf)QT , which is going to appear in several places.

d(⇢N) = Nd⇢+ ⇢N0d✓ = diag[R(d⇢sf)QT ] (5.56)

R(dRT )⇢N + ⇢N(dQ)QT = o↵-diagonal[R(d⇢sf)QT ], (5.57)

where

N0 =

0

BBB@

� sin ✓ 0 0

0 cos ✓ 0

0 0 0

1

CCCA
. (5.58)

Left multiplying Eq. (5.56) by N and taking trace of it, we get the expression for d⇢,

d⇢ =
3X

i=1

Nii(R(d⇢sf)QT )ii =
3X

i,j=1

Nij(R(d⇢sf)QT )ij. (5.59)

Similarly, we can find d✓ by left multiplying Eq.(5.56) by N0 and taking traces of

both sides,

d✓ =
1

⇢

3X

i,j=1

N0
ij(R(d⇢sf)QT )ij. (5.60)

Therefore, the operator d̂2 is

d̂2 =
3X

i,j=1

(R(d⇢sf)QT )ij

✓
Nij

@

@⇢
+

1

⇢
N0

ij

@

@✓

◆
. (5.61)

Now considering the Eq. (5.57), knowing that the third column of (R(d⇢sf)QT )

vanishes, we get

(R(dRT ))ij⇢Njj + ⇢Nii[(dQ)QT ]ij = [R(d⇢sf)QT ]ij for i 6= j (5.62)

Interchanging the indices i and j, we get

(R(dRT ))ij⇢Nii + ⇢Njj[(dQ)QT ]ij = �[R(d⇢sf)QT ]ji for i 6= j, (5.63)
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where the skew-symmetry of R(dRT ) and (dQ)QT is applied. From Eq. (5.62)

and (5.63), we can show that for i 6= j, the matrices R(dRT ) and (dQ)QT can be

expressed, again, in terms of the useful matrix R(d⇢sf)QT as

R(dRT )ij =
⇢Njj

⇥
R(d⇢sf)QT

⇤
ij

+ ⇢Nii

⇥
R(d⇢sf)QT

⇤
ji

(⇢Njj)2 � (⇢Nii)2
(5.64)

dQ(QT )ij = �
⇢Nii

⇥
R(d⇢sf)QT

⇤
ij

+ ⇢Njj

⇥
R(d⇢sf)QT

⇤
ji

(⇢Njj)2 � (⇢Nii)2
. (5.65)

Don’t forget that, for i = j, their matrix elements are all zero. The first equation is

going to help us simplify the operator d̂1, which is written in terms of R(dRT ) in Eq.

(5.53). The operator d̂3 can be expressed as follows,

d̂3 = � i

2~

3X

i,j=1

✏i3j[dQQT ]ijL̂�, (5.66)

where

L̂� =
~
i

@

@�
. (5.67)

The operator d̂3 can be further simplify with the help of Eq. (5.65).

Now gathering all the pieces for the total di↵erential, d̂, we can express it as

follows,

d̂ =
3X

i,j=1

[R(d⇢sf)QT ]ij


� i

~
⇢Njj

(⇢Njj)2 � (⇢Nii)2
⇥ (✏ij1L̂x + ✏ij2L̂y + ✏ij3L̂z)

+Nij
@

@⇢
+

1

⇢
N0

ij

@

@✓
+

i

~
✏i3j⇢Nii

(⇢Njj)2 � (⇢Nii)2
L̂�

�
. (5.68)

We have use the equality,
P

ij Njj(R(d⇢sf)QT )ij =
P

ij Nii(R(d⇢sf)QT )ji. The ma-

trix elements of R(d⇢sf)QT are expressed as

[R(d⇢sf)QT ]ij = dx2Ri1Qj1+dy2Ri2Qj1+dz2Ri3Qj1+dx1Ri1Qj2+dy1Ri2Qj2+dz1Ri3Qj2.

(5.69)

Plugging Eq. (5.69) into Eq. (5.68), and comparing it with Eq. (5.49), we can extract

the information about the matrix gradient operator by matching the coe�cients in
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front of the di↵erentials, {dx1, dy1, dz1, dx2, dy2, dz2}. With a little algebra, we show

that

r = RT (↵, �, �)ÂQ(�) + F̂ � Ĝ, (5.70)

where the matrix operator Â is defined by

Â = N
@

@⇢
+

1

⇢
N0 @

@✓
. (5.71)

The operator F̂ and Ĝ are both 3 ⇥ 2 matrix operators, and are defined as follows,

F̂ij = � i

~

3X

l,m=1

⇢Nmm

(⇢Nmm)2 � (⇢Nll)2
⇥ RliQmj(✏ij1L̂x + ✏ij2L̂y + ✏ij3L̂z) (5.72)

Ĝij = � i

~

 3X

l,m=1

✏l3m
⇢Nll

(⇢Nmm)2 � (⇢Nll)2
⇥ RliQmj

�
L̂�. (5.73)

5.2.4 Kinetic energy operator

With the expression in Eq. (5.70), we immediately can write down any momentum-

dependent operator, such as the spin-orbit interaction, in the hyperspherical coordi-

nates. As a check, we test the formula in Eq. (5.70) with the kinetic energy operator,

whose expression is well-known and has been derived with several di↵erent methods.

T̂ = � ~2

2µ
tr(rrT ) (5.74)

= � ~2

2µ

✓
@2

@⇢2
+

5

⇢

@

@⇢

◆
+

⇤̂2

2µ⇢2
, (5.75)

where

⇤̂2 =

= �~2 @
2

@✓2
� 4~2 cot 4✓

@

@✓
� ~2

cos2 2✓

@2

@�2
� 2~2 tan 2✓

cos 2✓

@2

@�@�
+

L̂x

2

sin2 ✓
+

L̂y

2

cos2 ✓
+

L̂z

2

cos2 2✓

= K̂2 � 4i~ cot 4✓K̂ +
1

cos2 2✓
L̂2
� +

2 tan 2✓

cos 2✓
L̂�L̂z +

L̂x
2

sin2 ✓
+

L̂y
2

cos2 ✓
+

L̂z
2

cos2 2✓
,

(5.76)
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with the notation K̂ = �i~@/@✓. ⇤̂ is named as the grand angular momentum

operator. Redefining the hyper spherical angles with

✓ ! ✓/2 � ⇡/4, (5.77)

� ! �/2 + ⇡/6, (5.78)

we rewrite the kinetic energy operator as

T̂ = � ~2

2µ

⇢
@2

@⇢2
+

5

⇢

@

@⇢

�
+

⇤2

2µ⇢2
, (5.79)

= � ~2

2µ

⇢
@2

@⇢2
+

5

⇢

@

@⇢

�
+ T✓ + T�C + Tr, (5.80)

where

T✓ = � 2~2

µ⇢2 sin 2✓

@

@✓
sin 2✓

@

@✓
, (5.81)

T�C =
2~2

µ⇢2 sin2 ✓

�
i
@

@�
+ cos ✓

Lz

2

�2
, (5.82)

Tr =
1

µ⇢2(1 � sin ✓)
L2
x +

1

µ⇢2(1 + sin ✓)
L2
y +

1

2µ⇢2
L2
z. (5.83)

We arrive at the familiar expression for the kinetic energy operator of a three-particle

system.

So far, there are only two theoretical works [99][100][101] towards the understand-

ing of few-body physics in the presence of spin-orbit coupling. In references [99] and

[101], they have studied three-body system (a-a-b̃) with two di↵erent species of atoms

so that only one spin-1/2 atom (b̃) inside is subjected to an isotropic spin-orbit cou-

pling with total angular momentum J = 3/2 and J = 1/2 respectively. Another

assumption they have made is that the interatomic interactions are s-wave contact

potentials and are among di↵erent species of atoms only. They find that SOC can

induce universal three-body bound states with a negative s-wave scattering length at

a smaller mass ratio compared to the usual cases without SOC. In [100], they have

applied a similar theoretical tool to calculate the bound states for a Fermi-Fermi mix-

ture (ã-ã-b type), in which two fermions (ã) have Rashba spin-orbit coupling. They

claimed to find the symmetry-selective Borromean binding, which is independent of
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the details of short-range interactions and thus universal. The formalism introduced

in this section can deal with a more general case than the previous studies by con-

sidering three identical particles with a realistic interaction among all of them. We

are excited to pursue the few-body physics in the presence of synthetic spin-orbit

coupling with the hyperspherical methods in the future.

5.3 Other future directions

One goal of the cold-atom research is to be able to simulate phenomena in the

condensed matter physics with highly-controllable ultracold atomic systems. One in-

teresting direction is to study the e↵ect of SOC by adding a lattice potential. Since

the optical lattices strongly enhance the interaction energy of atoms, which are lo-

calized in the minimum of the periodic potential, it would be an intriguing direction

to explore the interplay of SOC with the strongly correlated phases in the optical

lattices.

Besides the big goal of quantum simulation, ultracold atomic systems are places to

study unique physics on its own. The fact that atoms can carry (pseudo-) spins higher

than 1/2 extends the versatility of ultracold atomic systems to a wider scope which

is not covered by electron-based materials. We think studying high spin physics in

ultracold quantum gases in the presence of synthetic gauge fields, in particular, spin-

orbit couplings, is promising to find new physics. The large spin fluctuation, ±2S

for an spin-S atom, assures us that we don’t simply approach the classical limits by

increasing spins [102]. One potential topic is to study bound state structures of high

spin atoms. In our previous studies, we have shown that two spin-1/2 atoms under

3D isotropic spin-orbit coupling can form two-body bound states with finite binding

energy no matter how weak and negative the s-wave contact interaction is at zero

center of mass momentum [54][63]. This new bound state right below the scattering

threshold was very di↵erent from the usual bound state without gauge fields. In the

latter case, the state had zero binding energy and was in spin singlet state. The
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bound state wave function for spin-1/2 atoms in the presence of gauge fields was

found to have a spin nematic structure and contained a spin triplet component [54].

It motivates us to study the spin composition in bound state formations for atoms with

higher spins based on the method we have developed [64]. The bound state structures

are of value since they provide the information about molecular condensates formed

by the tightly bound atoms. An intriguing crossover from a usual Bardeen-Cooper-

Schrie↵er (BCS) superfluid state to a Bose condensate formed by these predicted

high-spin bound states could be found by tuning the strength of the non-abelian

fields at even weak scattering lengths [103][104].

The new opportunities opened by synthetic gauge fields are fascinating. In addi-

tion to the quantum simulation and the high-spin physics we have discussed above,

there are many more to be discovered. I will briefly mention four aspects in the

following. First, interplay of trapping potentials with non-abelian gauge fields will

create novel Hamiltonians like the quantum Hall Hamiltonian in spherical geometry

[105] and produce lattice structures without lattice potentials [106][107]. By going

down to lower dimensions, it is intriguing to see physics that needs only small SOC

strength with minimal heating problems [108]. For another instance, SOC-induced

coupling of center of mass motion with relative motion can also bring new interesting

phenomena, like center of mass momentum dependent Feshbach resonances [109] or

inhibition of two-body bound state formation [110]. Finally, combining spin-orbit

coupled BECs with cavity [28-29] is another interesting topic. The high tunability

of ultracold atomic systems is unique among all physical systems and it can lead to

many new quantum phenomena with the new development in synthetic gauge fields.
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Appendix A: Derivation of atom-light interaction Hamiltonian

Consider a two-level atomic system with ground state |gi and excited state |ei.

By suitably defining the zero energy level, the energies of these two states can be

chosen to be �~!A/2 and ~!A/2. The energy di↵erence between them is ~!A. The

unperturbed Hamiltonian is

H0 = �~!A/2|gihg| + ~!A/2|eihe|. (A.1)

To the lowest approximation, we assume the atom behaves like a dipole moment

when interacting with the electromagnetic field. Therefore, the interaction Hamilto-

nian under the dipole approximation is

H1 = �~d · ~E, (A.2)

where the classical electric field ~E(~r, t) = ~E0 cos(��!Lt) = 1
2
~E0(ei��i!

L

t + e�i�+i!
L

t).

If the laser field is traveling along x direction, then the phase angle � = kx. Writing

the dipole moment in the basis set, |gi and |ei, we get

~d = ~deg(|eihg| + |gihe|), (A.3)

where ~deg ⌘ he|~d|gi. Note that we don’t have diagonal terms because the dipole

moment in the eigenstate is zero due to parity symmetry. Therefore,

H1 = �~d · ~E

= �(~deg|eihg| + ~deg|gihe|) ·
~E0

2
(ei��i!

L

t + e�i�+i!
L

t)

= �1

2
(~deg · ~E0e

i��i!
L

t + ~deg · ~E0e
�i�+i!

L

t)|eihg| � c.c.

= �1

2
(~⌦0e

i��i!
L

t + ~⌦0e
�i�+i!

L

t)|eihg| � c.c. (A.4)
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where ~⌦0 ⌘ ~deg · ~E0 and c.c. stands for the complex conjugate term. Next, we rewrite

the interaction Hamiltonian in the interacting picture. The unitary operator we need

is

Ô = exp(iH0t/~) = 1 + iH0t/~ +
1

2!
(
iH0t

~ )2 + · · ·

= 1 + i(�~!A/2|gihg| + ~!A/2|eihe|)t/~ � t2

2!~2
(�~!A/2|gihg| + ~!A/2|eihe|)2 + · · ·

=
⇥
1 � i!At/2 +

(�i!At)2

2!
+ · · ·

⇤
|gihg| +

⇥
1 + i!A/2 +

(i!At)2

2!
+ · · ·

⇤
|eihe|

= e�i!
A

t/2|gihg| + ei!A

t/2|eihe|. (A.5)

After the unitary transformation, the interaction Hamiltonian becomes

H1,int = eiH0

t/~Ue�iH
0

t/~

= �~
2
e�i!

A

t(⌦0e
i��i!

L

t + ⌦0e
�i�+i!

L

t)|gihe| � c.c.

= �~⌦0

2
(ei�e�i(!

L

+!
A

)t + e�i�ei(!L

�!
A

)t)|gihe| � c.c.

⇡ �~⌦0

2
e�i�ei(!L

�!
A

)t|gihe| � c.c. (A.6)

In the last line, we have neglected the fast oscillating terms with frequency (!L +

!A). This is the so-called the rotating-wave approximation. Now we transform the

interaction Hamiltonian back to the Schrödinger picture.

H1 = O†H1,intO = �~⌦0

2
e�i�ei!L

t|gihe| � ~⌦0

2
ei�e�i!

L

t|eihg|. (A.7)

If we are in the reference frame rotating at the frequency !L, then the light field

becomes time-independent and the atom-field interaction Hamiltonian can be written

as

H1 = �~⌦0

2
e�i�|gihe| � ~⌦0

2
ei�|eihg|. (A.8)

In the matrix representation,

H1 =

0

@ 0 �~⌦
0

2
e�i�

�~⌦
0

2
ei� 0

1

A . (A.9)
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Combining Eq. (A.1) and (A.9), we get the matrix U ,

U =

0

@�~(!A � !L)/2 �~⌦0/2e�i�

�~⌦0/2ei� ~(!A � !L)/2

1

A . (A.10)

Note that the matrix H0 won’t be changed under the same unitary transformation U

and the frequency !A is shifted by !L in the rotating frame.

U =
~
2

0

@�(!A � !L) �⌦0e�i�

�⌦0ei� (!A � !L)

1

A =
~⌦
2

0

@ cos ✓ sin ✓e�i�

sin ✓ei� � cos ✓

1

A , (A.11)

where tan ✓ = ⌦0/(!A � !L) and ⌦ =
p

(!A � !L)2 + ⌦2
0. !A �!L is the detuning of

the laser frequency and the natural transition frequency in the atomic system.

Appendix B: Derivation of radial Green’s matrix

The reduced radial Green’s matrix satisfies the following coupled di↵erential equa-

tion: ✓
� ~2

2µ

d2

dr2
�ij + iAij

d

dr
+ Bij

◆
Gjk(r, r

0) = ��ik�(r � r0), (B.1)

where A is a real and symmetric matrix and B is a hermitian matrix without involv-

ing any derivative. The index {i, j, k} run from 1 to n. Summation over j is implied.

Although we study this particular type of coupled equations in Eq. (B.1), the pro-

cedures provided below is general and be applied to any type of coupled equations.

The Green’s matrix is used to emphasize the nature of coupled di↵erential equations.

If there is only one equation, the Green’s matrix has only one component, so returns

to the commonly termed Green’s function.

The Green’s matrix is constructed with the assistance of n regular and n irregular

solutions of the homogenous equations,

✓
� ~2

2µ

d2

dr2
�ij + iAij

d

dr
+ Bij

◆
fj↵(r) = 0 (B.2)

✓
� ~2

2µ

d2

dr2
�ij + iAij

d

dr
+ Bij

◆
gj↵(r) = 0. (B.3)
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Each column of f and g correspond to one independent regular/irregular solutions.

For convenience, the notation f
↵

and g
↵

(↵ = 1, 2, ..., n) for each independent regular

and irregular solution will be used. The regular solution has to satisfy

f
↵
(r = 0) = 0. (B.4)

The boundary condition for the irregular function is satisfied by requiring a ⇡/2 phase

lag to the regular solution at very large distance, r ! 1.

Knowing that the regular and irregular solutions of the homogenous di↵erential

equation, we make the ansatz for the reduced Green’s matrix:

G (r, r0) =

8
><

>:

f(r)S(r0) for r < r0,

g(r)T (r0) for r > r0.
(B.5)

The next step is to match the expressions for the reduced Green’s matrices at r = r0

and to apply the appropriate derivative discontinuity,

f(r0)S(r0) = g(r0)T (r0) (B.6)

lim
✏!0

d

dr
G (r, r0)|r0+✏

r0�✏ =
2µ

~2
I. (B.7)

From Eq. (B.6), the matrix S(r0) can be rewritten in terms of T (r0) as

S(r0) = f�1(r0)g(r0)T (r0). (B.8)

Application of Eq. (B.8) to Eq. (B.5) reduces Eq. (B.7) into an algebraic equation for

the matrix T (r0),
✓

dg(r0)

dr0
�

df(r0)

dr0
f�1(r0)g(r0)

◆
T (r0) =

2µ

~2
I (B.9)

Therefore,

T (r0) =
2µ

~2
[g0(r0) � f 0(r0)f�1(r0)g(r0)]�1. (B.10)

Combining Eq. (B.8) and (B.10), the matrices S and T are found to be

S =
2µ

~2
⇥ f�1(g0g�1 � f 0f�1)�1 (B.11)

T =
2µ

~2
⇥ g�1(g0g�1 � f 0f�1)�1. (B.12)
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It can be shown further that the Green’s matrix in Eq. (B.5) with Eq. (B.11) and

Eq. (B.12) indeed returns to the familiar form.

G (r, r0) =

8
><

>:

⇡f(r)g†(r0) for r < r0,

⇡g(r)f †(r0) for r > r0.
(B.13)

Before we do that, we need first to prove that the analogues of the Wronskian for

Eq. (B.1) are

~2

2µ
(g0†f � g†f 0) + ig†Af = C (B.14)

~2

2µ
(f 0†f � f †f 0) + if †Af = 0 (B.15)

~2

2µ
(g0†g � g†g0) + ig†Ag = 0, (B.16)

where C is a r-independent constant matrix and will be determined later by the

requirement of energy normalization, and 0 is a zero matrix. The above set of Wron-

skians is shown below. Application of g†
�

to Eq. (B.2) and f †
↵

to Eq. (B.3) separately

yields

� g†
�

~2

2µ
f 00
↵

+ ig†
�
Af 0

↵
+ g†

�
Bf

↵
= 0 (B.17)

� f †
↵

~2

2µ
g00
� + if †

↵
Ag0

�
+ f †

↵
Bg

�
= 0, (B.18)

Subtracting the complex conjugate of Eq. (B.18) from Eq. (B.17) gives the following

equality,

X

j

�~2

2µ
(g⇤

j�f
00
j↵ � fj↵g

⇤00
j�) + i

X

j,k

(f 0
j↵g

⇤
k� + fj↵g

⇤0
k�)Ajk = 0. (B.19)

All the matrices are expressed in terms of their matrix elements. The properties of

the matrices A and B are used to derive the above identity. After integration of both

sides of Eq. (B.19) over r from a to b, one has

X

j

~2

2µ
(fj↵g

⇤0
j� � f 0

j↵g
⇤
j�)

��b
a
+ i

X

j,k

fj↵Ajkg
⇤
k�

��b
a

= 0. (B.20)
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The above formula is of course true for any range [a, b], so we know that in matrix

notation the following expression should be a constant, which is position-independent.

~2

2µ
(g0†

�
f
↵

� g†
�
f 0
↵
) + ig†

�
Af

↵
= c�↵�. (B.21)

Combining all the independent regular and irregular solutions, the “modified” Wron-

skian in Eq. (B.14) is derived. The other two Wronskians in Eq. (B.15) and Eq. (B.16)

can be proved in a similar way. Noticing that the matrix A is proportional to the

spin-orbit coupling strength, removal of the second term on the left hand side of

Eq. (B.14)⇠(B.16) reduce to the familiar formula. The constant matrix C is deter-

mined by energy normalization. Application of energy normalization is important to

guarantee unitarity of the scattering S matrix, which reflects flux conservation. The

proper energy normalization gives C = 1
⇡
I.

The missing piece connecting Eq. (B.11) and Eq. (B.12) to Eq. (B.13) can be put

together now. Taking the conjugate transpose of Eq. (B.14), we find

~2

2µ
(f †g0 � f 0†g) � if †Ag =

1

⇡
I (B.22)

Applying (f †)�1 to the left-hand side of Eq. (B.22) and g�1 to the right-hand side

reduces the above equation into the following

~2

2µ
g0g�1 � (

~2

2µ
f 0f�1 � iA)† =

1

⇡
(f †)�1g�1. (B.23)

Also from Eq. (B.15) the relation can be derived,

~2

2µ
f 0f�1 = (

~2

2µ
f 0f�1 � iA)†. (B.24)

Therefore, Eq. (B.23) is further simplified to be

g0g�1 � f 0f�1 =
2µ

~2⇡
(f †)�1g�1. (B.25)

Plugging Eq. (B.25) into Eq. (B.12), it is straightforward to see that T = ⇡f †. Simi-

larly, the matrix S is proved to be S = ⇡g†.
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Synthetic magnetic fields for ultracold neutral atoms. Nature, 462:628–632,

December 2009.
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