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ABSTRACT

Swaminathan, Shrikant Ph.D., Purdue University, August 2016. Modeling Picking on
Pharmaceutical Tablets. Major Professor: Carl R. Wassgren, School of Mechanical
Engineering.

Tablets are the most popular solid dosage form in the pharmaceutical industry

because they are cheap to manufacture, chemically and mechanically stable and easy

to transport and fairly easy to control dosage. Pharmaceutical tableting operations

have been around for decades however the process is still not well understood. One

of the common problems faced during the production of pharmaceutical tablets by

powder compaction is sticking of powder to the punch face, This is known as ‘sticking’.

A more specialized case of sticking is picking when the powder is pulled away form

the compact in the vicinity of debossed features. In the pharmaceutical industry,

picking is solved by trial and error which is an expensive, labor intensive and time

consuming affair.

The objective of this work was to develop, validate, and implement a modeling

framework for predicting picking in powder compacts. The model was developed in

AbaqusTM a commercially available finite element package. The resulting model was

used to investigate the influence of debossed feature geometry viz. the stroke angle

and degree of pre-pick, and, influence of lubricant on picking.

An important factor vital to the success of finite element modeling (FEM) used

in this work is the constitutive relationship used to model the mechanical response of

the powders compact when subjected to external loads. In this work, the modified

Drucker-Prager Cap (DPC) constitutive relation was used to model the powder com-

pact. The DPC model parameters were calibrated experimentally. The experimental

procedure for measuring the (modified) Drucker-Prager Cap parameters is described

in this work.
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Additionally, the picking propensity of tablet depends on the adhesive interaction

between the powder compact and punch face. An instrumented punch was developed

in-house to characterize the adhesive force between a punch face and powder as a part

of this work. The influence of the compact solid fraction and blend lubrication on the

adhesive interaction was studied. The adhesive traction-displacement data was used

as an input for the finite element model.

The picking behavior in the pharmaceutical compact was modeled using a fracture

mechanics approach in the FEM model. This model was calibrated using the fracture

toughness measurements of the powder. The experimental procedure to determine the

fracture toughness using single edge notch bend test and ‘inverse FEM’is described.

Experimental validation of the FEM simulation was performed by making tablets

with debossed features and imagining the compact using x-ray computed micro to-

mography (XRCT). The density distribution in the compact and the dimensions of the

debossed features in the experimentally produced tablets were compared to the FEM

simulations. The post processing algorithms used for the experimental validation of

the FEM results have also been discussed in this dissertation.

Lastly, a parametric study was performed to understand the impact of debossed

feature dimensions and blend lubrication on picking behavior.
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1. INTRODUCTION

1.1 Picking in Pharmaceutical Compacts

Solid oral dosage is the preferred pharmaceutical drug delivery format with over

90% of the drugs developed being administered orally [1]. Tablets and capsules are the

two most common types of solid dosage forms. According to Lachman et al., (1986)

tablets are cheap and easy to manufacture, mechanically and chemically stable, deliver

a drug with a high degree of accuracy and are compact which makes them easy to

transport and store. From the patients perspective tablets are very convenient to use

which results in improved patient compliance [2].

Powder compaction is a common manufacturing process used in the production

of pharmaceutical tablets. In this process, loose powder particles are compressed in

a die cavity by the application of pressure to form a solid green part of relatively

high density that conforms to the shape of the cavity and the tooling used [3, 4]. A

schematic of the tableting process is shown in Figure 1.1. The objective of any powder

compaction process is to prepare compacts with desirable mechanical strength, min-

imal density gradients, shape within specified dimensional tolerances, minimal flaws

or cracks and predictable and reproducible disintegration characteristics to ensure

drug release to attain adequate bio-availability [5–8]. To achieve this objective, the

overall powder compaction process is frequently optimized to specify a formulation,

i.e., a mixture of powders, and the tooling and process parameters that result in a

desirable compaction performance. In this work, pharmaceutical tablet compaction

is the application of interest.

One of the many difficulties faced during the production of pharmaceutical tablets

is powder sticking to punch faces during compaction [9]. Sticking occurs when the

adhesive stresses between the punch face and powder exceeds the cohesive stresses
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(a) (b) (c) (d) (e)

Die Filling Compression and Decompression Ejection

Figure 1.1. Schematic of the tableting process (a) die filling, (b)
particle re-arrangement, (c) particle fragmentation and plastic defor-
mation, (d) decompression, (e) ejection.

within the tablet. In prior studies, it has been shown that the cohesive stresses within

the tablet is a function of the tablet formulation and process parameters [9,10]. For a

commercial tableting operation in which tablets are formed in rapid succession, pick-

ing and sticking can be particularly problematic as powder accumulates on the punch

face which is then repeatedly compressed [2]. In a worst case scenario, this compressed

powder can damage the tooling and/or the tablet press. Pharmaceutical tablets are

frequently formed with debossed surface features (Figure 1.2) in order to identify the

product, detect counterfeit and in some cases to facilitate tablet splitting with scoring

line/lines [11, 12]. Debossing is one of the preferred methods for imprinting tablets

as debossing can be easily incorporated into the manufacturing process by embossing

the punches used to create the tablets. In addition to sticking, powder-punch adhe-

sion can also lead to picking. Picking which is a special case of sticking occurs when

powder is pulled away from the powder compact in the vicinity of debossed features

on the tablet face such as letters, numbers, symbols, and scoring lines. Picking and
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sticking leads to poor tablet quality and incomplete or missing identification features

on the tablets, potentially leading to rejection of those tablets [12]. The only way to

reduce picking and sticking problems is to periodically clean the tablet press tooling

after a set number of compaction cycles before the tableting process can be resumed.

This process is both time consuming and expensive.

Figure 1.2. An example of debossed features on tablets used to detect
counterfeiting.

In most cases, picking and sticking problems are addressed using a trial and error

approach. However, these methods fail to capture the physics of the entire powder

compaction process such as influence of tool geometry, compression, decompression

and ejection. With the Food and Drug Administration (FDA) advocating Process

Analytical Technology (PAT) and Quality by Design (QbD) initiatives to better un-

derstand the design and control of pharmaceutical manufacturing processes, there is
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a need to develop and apply predictive tools that can accurately describe the pow-

der motion, stresses, and densification and provide an in-depth understanding of the

powder compaction process. One approach that has been particularly effective in

predicting these quantities is the finite element method (FEM) [13–16].

The FEM algorithm consists of dividing the powder into a number of continuously

distributed elements and prescribing application-specific dynamic and/or kinematic

boundary conditions [17]. The resulting element stresses and deformations (strains)

are then numerically computed using an appropriate phenomenological constitutive

relation subject to the constraints of linear momentum, conservation of mass, con-

servation of energy and kinematic comparability. The success of any FEM model

depends on the constitutive model used to describe the deformation behavior of the

powder and the interaction properties used to describe powder-tooling interaction

and process parameters used in the simulation. At present, there are no constitutive

models based on first principle to capture the effect of particle shape, size, packing

and inter-particle interaction to describe the deformation behavior of particulate sys-

tems. The lack of a constitutive model is mainly due to poor understanding of all

the effects of particulate level process on the bulk level constitutive response of the

powder [5]. Thus, current FEM approaches use a phenomenological model to capture

the constitutive response of the powder at a macroscopic level. The Drucker-Prager

Cap model is one such model. Application of this algorithm to simulate powder

roll compaction [13, 14, 18–21] and tablet compaction [22–25] has been implemented

successfully to investigate the influence of formulation and process parameters.

However, in our study we found that a constitutive model which captures the de-

formation mechanics of the powder bed alone is insufficient to describe the initiation

and propagation of cracks in the powder compact which we hypothesize results in

picking and sticking of the powder compact. This requires additional detailed mod-

eling of the interaction behavior between the punches and dies (collectively known

as tooling) and, the powder bed undergoing compaction. Additionally, a separate

model is needed to describe the the growth of cracks in the powder compact during
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the decompression or relaxation phase of the compaction process. Thus, in this work

a computational framework using FEM was developed to study picking in pharma-

ceutical powder compacts.

The success of a phenomenological constitutive model is heavily dependent on

the material calibration experiments used to capture the mechanical response of the

powder bed [26, 27]. Thus the model calibration protocol is discussed in depth in

this dissertation. In this framework, the modified-DPC model was used to to model

the powder as a continuum, an adhesive traction separation law was used to model

the interaction between the powder compact and tooling and, finally a cohesion zone

modeling approach based on fracture mechanics was used to model the initiation and

growth of cracks in the powder compact during the decompression phase. In this

dissertation an attempt was made to use the FEM modeling technique to quantita-

tively predict the post-compaction geometric dimensions and local solid fraction in

the vicinity of debossed surface features on the tablet which I hypothesize is key to

predicting picking. The results of the FEM simulation were validated experimentally

using X-ray computed tomography (XRCT) and image-processing. In addition, a

parametric studies was performed to investigate what elements of the embossed ge-

ometry increase or decrease the likelihood of picking. Specific thesis objectives and

goals are stated in Section 2.2. The outcome of this study provided incite into the

factors that cause picking in pharmaceutical tablets. The findings of this work can

be used to better design formulation and powder compaction tooling.

1.2 Organization of Thesis

In Chapter 2 the approaches used to quatify and/or reduce picking in prior studies

is presented. Additionally, the specific research goals and objectives are explicitly

listed. Individual objectives of the thesis are addressed in Chapters 3 through 7. The

theory and calibration of the DPC model parameters is presented in Chapter 3. In

Chapter 4 a detailed description of the apparatus used to measure the powder punch
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face adhesion and the methodology used for the adhesion measurement is presented.

In Chapter 5 the protocol to measure the fracture toughness of the powder compact

is discussed. The fracture toughness was used to model the crack initiation and

propagation process in the compact. The FEM modeling framework used in this

study is described in Chapter 6. To validate the FEM simulations experimentally

compacts with debossed features were made and imaged using x-ray computed micro

tomography (XRCT). The methodology to measure the density distribution within

the debossed compact and The specific dimensions of the debossed features on the

compact measured by image processing of the XRCT images is discussed in Chapter 7.

The results of the FEM parametric study and experimental validation of the FEM

simulations are presented in Chapter 8. Finally, concluding remarks are provided in

Chapter 9 and recommendations for future work are suggested in Chapter 10.
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2. BACKGROUND AND APPROACH

In this chapter the techniques used in prior studies by other researchers to quantify

and/or reduce picking and sticking in pharmaceutical compacts is presented. Addi-

tionally, the thesis objectives are listed.

2.1 Picking Literature

The Tablet Specification Manual of the American Pharmaceutical Association [28]

provides recommendations, presumably found through experience, to reduce some of

the problems associated with tablet debossing. These include keeping the stroke an-

gle, i.e., the angle of the debossed valley walls with respect to the vertical, within a

specified range, making the area of confined features, such as the interior regions of

an “A”or “8”as large as possible, and avoiding sharp corners, such as those found on

the letters “W”and “Y”. A commonly used qualitative assessment tool that is used in

the pharmaceutical industry to evaluate the propensity of a formulation to pick, is an

embossed punch with a combination of letters and numbers like ‘A6W8’ (Figure 2.1)

which are anecdotally know to cause problems and produce a batch of debossed com-

pacts. If a predefined number of tablets in the batch exhibit picking the formulation

is rejected.

There are very few prior studies that have examined picking . However, many

researchers have examined sticking (picking is a subset of sticking) , which is when

material adheres to the punch away from debossed features. From prior studies the

key factors that lead to picking and sticking on pharmaceutical powder compacts are:

• poorly designed tooling leading to stress concentrations at concave debossed

features such as interior corners and valleys [29–31],
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Figure 2.1. An embossed punch with the letters ‘A6W8’ commonly
used as a qualitative assessment tool to evaluate the propensity of a
formulation to pick and stick in the pharmaceutical industry.

• selection of tooling material, punch-tip coatings and surface roughness [32–36]

and

• formulation properties and tabletting process parameters [37–42].

2.1.1 Literature Focused on Tooling Design

Waimer et al. [29] investigated the influence of engraving features using small

conical debossing shear cones on the punchs surface (Figure 2.2). This study showed

that the shear cones on the punch face modified the shear stress distribution within

the tablet. Increasing the shear cone angle ε, corresponding to decreasing the stroke

angle, resulted in decreasing adhesion forces.

Roberts et al. [30] investigated the influence of punch tip geometry and emboss-

ment on sticking for a lactose-ibuprofen formulation. The study showed that increas-

ing the concavity of the punch from flat face to a concave punch increased sticking.

Increasing the punch diameter from 10 mm to 12 mm did not significantly impact
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Punch

Shear Coneε

Figure 2.2. Schematic of a shear cone used by Waimer et al. [29].
The angle of the shear cone is ε.

sticking behavior. However, the presence of punch embossment significantly increased

the sticking. The author hypothesized that the increase in sticking could be due to

increase in shear force at the lateral face of the embossment (stress concentration).

Laity [31] studied the effect of embossed punch features on the compaction behav-

ior of micro-crystalline cellulose (MCC). Cylindrical compacts were produced with

single and double furrows Figure 2.3 across the compacts top face. Using a small

angle x-ray scattering technique, this study demonstrated that large changes in rel-

ative density occur in the vicinity of the furrows (debossed feature), with smaller

relative densities near the furrows flanks and larger relative densities at the furrow

base. In addition, smaller density regions around the furrows were prone to cracking

and flaking, especially in the region between the double furrows.

2.1.2 Literature Focused on Tooling Material and Punch Tip Coating

Tsiftsoglou and Mendes [35] found that boron alloy coated tools required smaller

ejection forces and, consequently, sticking propensity to the tooling was reduced for

ibuprofen tablets. However Shah et al. [43] reported that boron-alloy coating in-

creased ejection and adhesion forces for acetaminophen tablets [43]. A study by

Schumann and Searle [36] concluded that chromium nitrite ion bombardment treat-
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Furrows

(a) (b)

Figure 2.3. Schematic of the cylindrical MCC compacts produced by
Laity [31]. (a) A compact with a single furrow across the compacts
top face. (b) A compact with a double furrow.

ment of the punch surface eliminated sticking behavior but chrome electro-plating

of the tools did not cause any noticeable change in sticking behavior over uncoated

tools for ibuprofen tablets. Roberts et al. [44] showed that chrome plating the punch

tip did not alleviate picking and sticking problems and smoother tooling surfaces

did not necessarily correspond to a reduction in sticking. In contrast, Pedersen et

al. [45] found that chrome plating of tooling surfaces decreased sticking behavior for

acetaminophen tablets. To summarize, there is no clear consensus on the effective-

ness of punch tip coatings in literature. The efficacy of punch-tip coating should be

evaluated on a case to case basis based on the formulation and process parameters.

2.1.3 Literature Focused on Formulation Properties and Tableting Pro-

cess Parameters

Mullarney et al. [46] and Strickland et al. [37] showed that addition of magnesium

stearate to most formulation in limited quantities (< 1%) reduced sticking behavior.

However Mullarney et al. noted that, addition of magnesium stearate to a formu-

lation containing ibuprofen exacerbated sticking. Addition of magnesium stearate

is also know to cause other tableting problems like capping and edge chipping due
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Figure 2.4. Compaction tooling with titanium and tungsten carbide
punch tip coating.

to poor mechanical strength of the resulting tablet [47–49]. Increasing the active

pharmaceutical ingredient (API) percentage worsened sticking behavior.

Mullarney et al., Waimer et al. [9] and Wang et al. [39] noted that increasing the

compaction force increased the propensity to stick for very cohesive powders [50] like

sorbitrol, ibuprofen (IBU) and acetaminophen. However Roberts et al. [32] reported

that increasing the compression force decreases sticking propensity for acetylsalicylic

acid (ASA) and ibuprofen while increasing the compression force increased sticking

propensity for lactose.

Goodhart et al. [51] studied the effect of granulation on sticking. They reported

that the sticking propensity was lower for granulated mannitol produced by spray

dried granulation in comparison to powdered mannitol.

It should be noted that prior studies have tried to correlate many other parame-

ters with sticking like ejection force, moisture content, punch surface hydrophobicity,

residual wall stress, temperature, etc. It can be argued that some of the results ob-

tained is an artifact of the evaluation technique used to quantify sticking. A detailed

discussion of some of the methods used by researchers in the past to quantify sticking

is presented in Chapter 4.
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2.2 Research Goal and Objectives

The goal of the proposed thesis work is to develop a better understanding of

picking on pharmaceutical powder compacts so as to develop a predictive tool to

minimize this problem.The specific objectives of the proposed research are:

1. Develop FEM computational models for predicting if picking will occur during

tableting. Picking is assumed to occur if the adhesive load between the powder

and a boundary on an FEM element is greater than the cohesive load between

neighboring elements.

2. Develop image processing algorithms for measuring various features of debossed

tablets produced in FEM simulations and experiments. These features include

stroke angle, stroke depth, debossed volume, and relative density field. The

images for experimental tablets will be generated using x-ray micro computed

tomography (XRCT).

3. Validate the FEM model by comparing the geometric and relative density fea-

tures in a debossed tablet to XRCT measurements of a tablet produced in

experiments under the same conditions. The image processing algorithms de-

scribed in Objective 2 will be used.

4. Develop an experimental technique to measure adhesion properties between a

powder and a punch surface.

5. Develop an experimental technique to measure the fracture toughness of the

compact.

6. Incorporate an adhesion and cohesion model in the FEM/DPC framework. The

properties from Objective 4 and 5 respectively will be used in the model.

7. Validate the computational model developed in Objective 6 against experimen-

tal measurements using the same techniques as described in Objectives 2 and

Objective 3.
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8. Perform a parametric study to examine the influence of debossed feature pa-

rameters (stroke depth, stroke angle, and pre-pick) and formulation properties

on the propensity to pick.
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3. DRUCKER-PRAGER CAP CONSTITUTIVE MODEL

3.1 Introduction

Fundamental to the FEM method is the constitutive model relating the applied

traction to the resulting stress and strain (and/or strain rates) for the material being

modeled. In this chapter the modified DPC model is described in detail. Addition-

ally the experimental procedures used to determine the model parameters are also

presented.

3.2 Background

The continuum approach to model tablet compaction has been adopted from soil

mechanics. A number of critical state models have been proposed to describe the den-

sification behavior of powder, such as those proposed by Drucker [52], Schofield [53],

Green [54], DiMaggio and Sandler [55], and Gurson [56]. The term “critical state”refers

to the response of the material while it is yielding. These early models included a

elliptical cap i.e. a critical state model governed yielding and plastic flow due to mate-

rial densification. The Drucker-Prager Cap (DPC) model [57,58] improved upon these

prior models by including shearing behavior in addition to elliptical cap to capture the

material behavior in the decompression and ejection phase. A further improvement

to the DPC model, known as the modified-DPC model, includes the dependence of

the DPC yielding behavior on the powders instantaneous solid fraction [20].

3.2.1 Description of the Modified-Drucker-Prager/Cap (DPC) Model

A constitutive model that is used to define the behavior of an elastic-plastic ma-

terial has three major aspects:
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• a yielding criterion,

• a flow rule and

• a hardening criteria

The hardening crietia describes the evolution of the cap (work hardening) as a function

of the volumetric plastic strain. In the case of an isotropic material this definition

can be simplified using stress invariants.The DPC models yield functions and flow

rules are functions of two stress invariants: the hydrostatic stress, p, and the Mises

equivalent stress, q. The hydrostatic stress is defined as the trace of the stress tensor

σij,

p = −1

3
σii . (3.1)

The Mises equivalent stress is proportional to the magnitude of the inner product of

the deviatoric stress tensor, Sij = σij− pδij , where the quantity δij is the Dirac delta

operator,

q =

√
3

2
SijSij . (3.2)

The DPC models yield functions appear as three curves in the p-q plane: a shear line

Fs, an elliptical cap Fc, and a transition curve Ft. Each of these curves is described

in the following paragraphs and are depicted graphically in Figure 3.1.

The shear yield line is described by the powder compacts cohesion d and internal

friction angle β according to the relation,

Fs(p, q) = q − p tan β − d = 0 . (3.3)

An applied stress state located below the line results in only elastic distortion of the

powder compact. A stress state located on the shear yield line indicates volumetric

dilation and fracture of the powder compact. Note that for the modified-DPC model,

the values for d and β may change, depending on the powder compacts instantaneous

solid fraction. The elliptical cap Fc is given in the DPC model as,

Fc(p, q) =

(p− pa)2 +

(
Rq

1 + α + α/cos β

)2


1/2

−R(d+ pa tan β) = 0 , (3.4)
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Figure 3.1. A plot illustrating the DPC yield envelopes at a fixed
solid fraction. Note that for the modified-DPC model, yield envelopes
can shift for each solid fraction.

where pa is known as the stress evolution parameter, R is the eccentricity, or aspect

ratio, of the elliptical cap, and α (0.05 ≤ α ≤ 0.1) is a constant used to smoothly

transition between the cap and the transition curve, which is discussed in the following

paragraph. A stress state falling on the cap represents densification of the powder.

The transition curve Ft is included in numerical implementations of the DPC

model in order to provide numerical stability when stress states transition between

the cap and shear envelopes. This transition curve is given by,

Ft(p, q) =

{
(p− pa)2 +

[
q −

(
1− α

cos β

)
(d+ pa tan β)2

]}1/2

− α (d+ pa tan β) = 0 .

(3.5)
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The curves Fs, Fc, and Ft only identify when yielding of the material occurs; they

do not provide information on the powders resulting deformation. This information

is described in terms of material (differential) strains,

dεij = dεeij + dεpij , (3.6)

where εij is the total strain,εeij is the (recoverable) elastic strain, and εpij is the (unre-

coverable) plastic strain. The elastic strain is given by,

dεeij =
(1− ν)

E
dσij −

ν

E
dσkkδij (3.7)

where linearly elastic, isotropic material behavior is assumed, with E and ν being the

materials elastic modulus and Poissons ratio, respectively.

The plastic strain is calculated using a plastic potential g, defined such that,

dεpij = dλ
∂g

∂σij
, (3.8)

where, dλ is a stress increment dependent positive scalar [59]. In the DPC model, it is

assumed and shown experimentally by Sinka et al. [60,60] that a normality condition

holds on the cap and transition yield curves, known as associated flow, such that at

the cap curve,

g = Fc(p, q) , (3.9)

and at the transition curve,

g = Ft(p, q) , (3.10)

The associated flow rule relates the radial and axial strains and stresses during tablet

compaction to the slope of the elliptical cap in Figure 3.1. On the shearing line,

however, the flow is assumed to be non-associative (g 6= Fs(p, q)). On this line the

plastic potential is given by,

g =
{

[(p− pa) tan β]2 + q2
}1/2 . (3.11)

The strains on the shear yield line use this plastic flow potential in conjunction with

Equation 3.8. Equations 3.3 - 3.7 show that use of the DPC model requires knowledge
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of seven parameters: d, β, pa, R, α, E, and ν. The transition constant is typically set

arbitrarily to a value in the range 0.05 ≤ α ≤ 0.1 so that the numerical computations

are stable. Thus, there are actually only six parameters that must be determined

through material characterization experiments. For the modified-DPC model, these

six parameters must be determined as a function of the solid fraction. The following

section provides the theoretical foundation for how the six parameters are determined

from three independent tests, each performed as a function of powder compact solid

fraction.

3.3 Materials

The modified DPC parameters for two powder formulations were characterized

in the current work. The compositions of these formulations are provided in Ta-

ble 3.1. These particular formulations were chosen based on the recommendation of

the projects industrial sponsor. The formulation without magnesium stearate (MgSt)

is anticipated to result in a larger degree of picking as compared to the one with mag-

nesium stearate.

3.4 Experimental Calibration of Modified-DPC Material Parameter

The mechanical tests used to determine DPC parameters were performed on cylin-

drical compacts produced using a uniaxial punch and die system installed on a univer-

sal material testing machine (MTS model C43.504). A computer-aided design (CAD)

model of the system is shown in Figure 3.2(a). A 10 mm diameter, 22.2 mm tall

die was used with flat-faced upper and lower punches. The lower punch remained

fixed throughout the experiments. Load cells (MTS model 661.20F-03; Interface

model LBM-50K) were mounted on the punches to record upper and lower uniaxial

compression forces. A servo encoder on the MTS measured the upper punch’s axial

displacement. A piezoelectric pressure sensor (Kistler, model 6183) was installed radi-

ally in the die so that its tip made direct contact with the powder in order to measure
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Table 3.1. The powder formulations characterized and modeled in
the present work.

Components
Brand Name

(Manufacturer)

Composition (% w/w)

Blend w/o MgSt Blend w MgSt

Microcrystalline

cellulose

Avicel PH200

(FMC Corp.)
62.16 61.54

Mannitol
Pearlitol SD 200

(Roquette Pharma.)
31.08 30.77

Croscarmellose

sodium

Carboxymethylcellulose

Sodium Type A

(DFE Pharma.)

6.76 6.69

Magnesium

stearate

Magnesium Stearate

Vegetable Source

(Bioconvergence LLC.)

0 1

the radial stress during compression of the compacts. The lower punch location was

adjusted so the pressure sensor was located approximately at the mid-height of the

compacts at maximum compression (Figure 3.2(b)). The die walls and punch faces

were coated with a thin layer of magnesium stearate prior to all compact manufac-

turing and testing steps in order to approximate frictionless boundary surfaces. This

coating was produced by compressing and discarding a slug of magnesium stearate

before every compaction run. All compacts were produced at a loading and unload-

ing strain rate of approximately 5 mm/min in order to maintain quasi-static loading

conditions. The dwell time was zero in all cases. The MTS TestWorksTM software

and an NI BNC-2110 data acquisition board were used to acquire sensor data at a

rate of 1000 Hz. Changes in relative humidity have been shown to have an influ-

ence on powder properties [61, 62]. The measurements performed in these studies

were performed in typical room conditions. Measurements of the room temperature



20

Upper Punch

Die

Lower Punch

Load Cell

(a)

Radial Pressure Sensor 
on the Side of the Die

(b)

Figure 3.2. (a) A schematic of the punch and die system used to
create and test powder compacts used for material characterization.
(b) A schematic showing the location of the radial pressure sensor.

showed that it varied by 5.2 ◦C (17.6 ◦C to 22.8 ◦C) while the relative humidity var-

ied by 14% (45% RH to 59% RH). The influence of humidity on powder properties

is very powder specific. For both mannitol and microcrystalline cellulose, increasing

the moisture content in the powder increases the cohesion and friction angle of the

powders [63,64].

Determination of the six DPC parameters at a single solid fraction involved three

tests. The first two were used to measure a compacts strength, from which the shear

yield parameters d (cohesion) and β (internal friction angle) were obtained. The third

test was a confined uniaxial compression test, in which the axial and radial stresses

were measured as a function of axial strain during both compression and decom-

pression of the powder. Data obtained from this third test were used to obtain the

elliptical cap surface parameters R (cap eccentricity) and pa (stress evolution param-

eter), as well as the elastic parameters E (elastic modulus) and ν (Poissons ratio).

Since the modified DPC model parameters vary with the solid fraction, the three tests
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were performed over the range of relative densities expected in the FEM simulations,

which in the present case ranges from 0.3 to 0.95. The theory and procedures for

calculating these parameters from measured data are described in the following para-

graphs. The shear line parameters d and β at a given solid fraction were found using

(a) (b)

Figure 3.3. Photographs from (a) a diametrical compression failure
test for a D/h > 1 compact, and (b) a uniaxial compression failure
test for a D/h < 1 compact.

a method adapted from Procopio [65]. Two cylindrical compacts at the same post-

ejection solid fraction were produced. The two compacts had different aspect ratios:

D/h > 1 and D/h < 1, where D was the compact diameter and h was its height.

In the present work, 1100 mg of powder was used to produce a large aspect ratio

compact while 250 mg of powder was used to create a smaller aspect ratio compact.

Both compacts were loaded until failure, with the D/h > 1 compact loaded uniaxi-

ally and the D/h < 1 compact loaded diametrically using curved platens (Figure 3.4).

The loading rate during these compact failure tests was maintained at 5 mm/min,

identical to the rate used to create the compacts. Because the aspect ratios of the

compacts vary, there is the potential for bias in the measurements. However, care was

taken to ensure the uniaxial test sample aspect ratios were greater than one and the

aspect ratios for the diametrical test samples were less than one, as assumed in the

theoretical analysis models. Note that these loading tests were performed soon after
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the creation of the compact in order to avoid significant post-compaction changes in

compact solid fraction due to creep. Caliper measurements of the compact dimensions

showed that little post-compaction deformation occurred between compact creation

and failure testing.

For uniaxial compression, given by the subscript “u”, the hydrostatic stress pu

and Mises stress qu at failure are,

pu = 1
3
σu , (3.12)

qu = −σu , (3.13)

where,

σu =
4Fu
πD2

. (3.14)

is the stress in the uniaxial direction. The parameter Fu is the uniaxial load at

failure. For the diametrical loading case, given by the subscript “d”, the stress state

is a modified Hertz solution for curved anvils proposed by Awaji and Sato [66],

pd = 2
3
σd , (3.15)

qd =
√

13σd , (3.16)

assuming D/h > 1, where,

σd =

{
1− 1.15

(
b

R

)2

+ 0.22

(
b

R

)3
}

2Fd
πDt

. (3.17)

is the stress at the failure location (at the tablets center). The parameter Fd is the

applied diametrical force at failure, t is the compact thickness, b is the contact half

width, and R is the radius of the anvils.

As shown in Procopio [65], both (pu, qu) and (pd, qd) lie on the shear yield line.

Using these parameters, the powder cohesion d and internal friction angle β can be

expressed as,

d =
σuσd

(√
13− 2

)
σu − 2σd

, (3.18)

and,

β = tan−1
[

3 (σu − d)

σu

]
. (3.19)
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Note that although uniaxial and diametrical compression tests were performed in

the current work, other tests could also have been used to provide the shear yield line

parameters. For example, the cohesion and internal friction angle could have been

determined using simple tension or pure shear tests. The uniaxial and diametrical

compression tests were used here due to their simplicity and equipment availability.

The elliptical cap hardening parameters pa and R were found using a confined

uniaxial compression test, signified using a subscript “c”. This test was performed

with the powder located within the die. In contrast to the compact failure tests, the

confined uniaxial tests were performed with varying amounts of powder so that the

distance between the punches at maximum compression was h = 7.5 mm, regardless

of the powders solid fraction. The mass of powder, m, for a target solid fraction of η

is,

m = ηρtrue
πD2

4
h , (3.20)

where ‘ρtrue’ is the true density of powder. The true density, which is the chemical

density of the material, was assumed to equal the powders apparent density, which

includes the volume of inaccessible pores within particles. The apparent densities of

the blends with and without magnesium stearate were measured via helium pycnom-

etry (Micromeritics AccuPyc II 1340, n = 10 measurements each) and found to be

1.553 ± 0.005 and 1.529 ± 0.008 g/cm3 respectively. In comparison, the calculated

true densities were found to be 1.535 (with MgSt) and 1.542 (without Mgst), respec-

tively. The true density values are closer to each other and in the opposite rank order

as compared to the measured values. However, additional investigation also revealed

a significant difference in moisture contents of the two blends (2.97-3.21% and 7.21-

9.45% for with and without blends, respectively). The apparent density was used for

the calculations in this work since this measurement includes any moisture that may

have been absorbed during storage of the materials.

Assuming frictionless die walls, which are approximated in practice by applying

magnesium stearate to the die walls prior to testing, measurements were made of
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the radial σr,c and axial σz,c stresses at the instant when the powder densified to the

target solid fraction η. The corresponding hydrostatic and Mises stresses are,

pc = −1

3
(σz,c + 2σr,c) , (3.21)

and,

qc = |σz,c − σr,c| . (3.22)

Furthermore, assuming that the die perfectly rigid, i.e., there is no elastic or plastic

deformation in the radial direction,

dεpij
∣∣
c

= dλ
∂g

∂σr

∣∣∣∣
c

= 0 . (3.23)

Substituting Equation (3.4) into Equation (3.23) yields,

R =

√
2

3q
(pc − pa) . (3.24)

Substituting Equation (3.24) into Equation (3.5) gives a closed form solution for pa,

pa =
−3qc − 4d tan (β)

4(tan (β))2
+

√
9q2c + 24d(tan (β))2pcqc + 16(tan (β))2q2c

4(tan (β))2
. (3.25)

With the stress evolution parameter pa and cap eccentricity R known, the hydrostatic

yield stress (pb in Figure 3.1) can also be computed,

pb = pa (1 +R tan β) +Rd . (3.26)

It is often of interest to report pb as a function of the plastic volumetric strain εpvol since

this relation is used in ABAQUS for calculation of the current stress state. In turn,

the plastic volumetric strain may be related to the powders solid fraction according

to the relation proposed by Gurson [56],

η = η0 exp (−εpvol) , (3.27)

where n0 is the materials solid fraction that corresponds to zero volumetric plastic

strain. The solid fraction at zero volumetric plastic strain is typically taken as the
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(a) Uniaxial Breakage Test.
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(b) Diametrical Breakage Test.

Figure 3.4. Typical data from the breakage test. The peak value of
the force was used to determine the uniaxial and diametrical breakage
stress.

powders poured bulk solid fraction [20]. The remaining DPC parameters are elastic

parameters that can be determined from the materials elastic recovery during the

decompression phase of the confined uniaxial compression test. Assuming a rigid

die and isotropic, homogeneous behavior, the generalized Hookes law reduces to the

following closed form solutions for the Poisson’s ratio, ν, and Young’s modulus, E,

v =

dσrr
dεezz

dσrr
dεezz

+ dσzz
dεezz

, (3.28)

E =
dσzz
dεezz

− 2v
dσrr
dεezz

. (3.29)

In Equaion (3.28) and Equation (3.29), dσrr/dε
e
zz and dσzz/dε

e
zz are the slopes of the

stress-axial strain curves in the radial and axial directions, respectively, during the

materials elastic recovery. Since the DPC model parameters vary with the powder

density, the three previously described tests were performed at different solid fraction

in order to fully describe the compaction behavior of the powder. The next few

paragraphs discuss how to post process the stress and strain data to obtain the

DPC parameters. Typical results from the uniaxial and diametrical loading tests are

shown in Figure 3.4(a) and Figure 3.4(b) respectively. Here, the force measured by the

MTS CriterionTM load cell was plotted against the instruments upper punch position.
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Initially, prior to the upper punch making contact with the compact, the measured

force was zero. Upon contact with the compact, an increase in measured force was

observed. The force continually increases until a maximum is reached, beyond which

a decrease was observed, indicating failure of the powder compact. The maximum

force values reported in the uniaxial and diametrical loading test were used in the

calculation of cohesion and friction angle. Typical data from the die compaction
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(a) Axial stress as a function of axial strain.
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(b) Radial stress as a function of axial strain.

Figure 3.5. Typical data from a compression test. The portion of the
data used in the calculation of ‘E’ and ‘ν’ is highlighted with a black
dashed line.

test are shown in Figure 3.5(a) and Figure 3.5(b). In Figure 3.5(a), the force during

compaction was obtained by averaging the force recorded by the load cell on the upper

and lower punches was converted to axial stress and plotted against the axial strain.

In Figure 3.5(b), the radial stress was measured by the radial pressure sensor is plotted

against the axial strain. The axial strain is computed from the punch displacement

data knowing the initial fill height of the powder. The slope of the unloading curves

from Figure 3.5(a) and Figure 3.5(b) are used to compute the elastic modulus E and

Poissons ratio ν. The elastic modulus and Poissons ratio should be evaluated at the

onset of unloading before the upper and lower punch lose contact with the compact.

The influence of the sampling region on the elastic parameters has been discussed by

Han et al. [67]. Note that the slopes vary during unloading [67], so it is critical to

ensure that only the linear part of the unloading slope is used in the calculation of
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the elastic parameters. In this work only the first 1000 points of an unloading curve

were used to calculate these slopes, corresponding to a punch displacement of 83 µm.

These points have been highlighted in black in Figure 3.5(a) and Figure 3.5(b).

3.5 Results

The modified DPC parameters for two powder formulations were characterized in

the current work. The compositions of these formulations are provided in Table 3.1.

The modified DPC material parameters for the formulations were measured using

the procedures described in Section 3.4. The six DPC parameters are plotted in

Figure 3.5 as functions of the solid fraction. Because the largest component by weight

in the blends is Avicel PH200, DPC parameters measured for pure Avicel PH200 are

included in the plots as a point of comparison. Note that modified DPC parameters

for Avicel PH102 have been reported previously in the literature [20, 68] and have

quantitative values similar to the Avicel PH200 values tested here.

The difference in the with- and without-MgSt formulation mechanical properties is

typical of blends with small amounts of lubrication as reported in the literature [69,70].

The blend with magnesium stearate has larger cohesion, but both blends have similar

elastic stiffness. Usually the addition of a lubricant results in decreased compact

strength [40, 49, 71]. Thus, additional measurements were performed on both blends

to verify the observed trends. Further discussion on these trends is presented in the

conclusions section. Blends with large cohesion have been reported to have larger

strength [72]. An internal friction angle of 70 degrees is consistent with the behavior

of pharmaceutical and metal powders [58, 67]. The hydrostatic yield strength for

the blend without MgSt is slightly larger than the one with MgSt, which means

that a larger punch force would be necessary to compact the without-blend to a

given relative density as compared to the blend with MgSt [72]. The addition of

a lubricant facilitates particle re-arrangement during compaction and thus a larger

relative density is achieved at a smaller punch force.
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Figure 3.6. DPC material parameters for the formulations used in the
present study. Data for Avicel PH200 are included for comparison.
The scatter bars on the data points correspond to error propagation
in the measurement of individual components used to calculate each
parameter.

3.6 Summary

This chapter describes a methodology for measuring powder DPC properties. The

DPC material parameters can be used as a tool for material assessment. However,
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it must be noted that in this study the strength of the blend containing magnesium

stearate was stronger than the blend without magnesium stearate, which is contrary

to what is normally observed [40,49,71]. These blends were stored in an environment

in which the humidity was not controlled beyond typically building conditions. A frac-

tion of the same blends, having lower moisture content stored at a different facility

showed the opposite trend; the with-MgSt blend was weaker than the without-MgSt

blend. Imaging of the different blends showed that the blends with higher mois-

ture content were more agglomerated than the blends with lower moisture content.

The apparent densities of the blends with lower moisture content were also different

(1.541±0.009 for the without-MgSt blend, 1.539±0.007 for the with-MgSt blend) and

closer to the true density values than the blends with higher moisture content. These

results suggest that absorbed moisture has an influence on the blends DPC proper-

ties. Hence, the influence of the lubricant observed in this work may not be typical.

In the next chapter we describe the methodology to obtain the adhesive interaction

parameters between the tooling and the powder compaction using an instrumented

punch for these blends.
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4. CALIBRATION OF ADHESION MODEL

4.1 Introduction

The powder-punch face adhesive surface interaction model in the FEM simulation

was calibrated using an instrumented punch that can measure the adhesive force

between the powder and the punch. This chapter begins with a brief review of

the phenomena that can lead to powder-punch adhesion. Further sections in this

chapter discuss the construction and working of the adhesion punch developed in-

house,measurements of adhesive properties for the formulations used in this work.

4.2 Mechanisms Leading to Adhesion

The adhesive force between a punch face and powder is a result of several differ-

ent mechanisms including van der Waals forces, electrical forces, electrostatic forces,

capillary forces, and contact melting [2, 39, 73]. The forces resulting from perma-

nent or instantaneous dipole moments between molecules are collectively known as

‘van der Waals forces’. van der Waals forces occur between all materials and are

most significant when surfaces are in close proximity, less than 100 nm [74]. Capil-

lary forces arise from liquid bridges in the gap between contacting bodies. In dry,

cold compacted powders, liquid bridging can be neglected as a significant source of

adhesion [75]. Electrical forces arise from differences in the contact potential for

a particle-surface contact in a dry environment and are only relevant for particles

smaller than 5 µm [76]. Electrostatic forces arise from an accumulation or depletion

of charge on materials. Tribocharging of materials, especially non-conductive ones in

low humidity environments, is a common source of charge transfer [77]. This force is

most relevant for particles between 5 µm to 100 µm [76,78]. Contact melting occurs

for materials that have a low melting point. The heat generated during powder com-
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paction can partially melt particles onto a punch face resulting in adhesion. Clearly,

the mechanisms leading to adhesion are quite complex and require equally complex

techniques to measure them. Some of the adhesion force measurement techniques

used in the pharmaceutical industry are discussed in the next sub-section.

4.3 Techniques for Measuring Adhesion

The adhesive interaction between a punch face and powder may be characterized

by measuring the maximum adhesive force, Fadhesion, the work required to separate two

adhered surfaces, Wadhesion, or the mass of powder adhered to a punch face, Madhered.

These quantities can be measured at the particle or bulk levels. In general, the

techniques used to measure the force at the particle level require advanced technique

in comparison to methods used to measure the force at the bulk level. Several of

the important experimental measurement techniques used to characterize powder-

punch face adhesive interactions are discussed in this section. A more comprehensive

discussion of the different measurement techniques may be found in Podczeck [79].

4.3.1 Characterization of Adhesion by Particle-level Measurements

Two common measurement techniques used to characterize the adhesive interac-

tion at the particle-level are force microscopy techniques and centrifuging techniques.

Force microscopy involves the measurement of the interaction force between a sample

and a probe as a function of their mutual separation distance. The interaction force

is measured using a calibrated spring or, more recently, a piezo-electric crystal, which

provides a more accurate measurement of the adhesive force. The separation dis-

tance between the two surfaces is monitored using an optical technique such as light

interferometry. The Surface Force Apparatus (SFA) was the first technique based

on force microscopy [80]. Force microscopy techniques have been improved to create

more specialized techniques such as atomic force microscopy (AFM), lateral/frictional

force microscopy (LFM), and ultra high vacuum atomic force microscopy (UHV-
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AFM) [81–84]. A comprehensive discussion on force microscopy techniques may be

found in Wang et al. [2] and Podczeck [79]. Force microscopy is becoming a standard

technique for particle-level adhesion measurements since it allows for precise measure-

ment of contact force and separation distance. However, these techniques are time

consuming and require specialized equipment.

A popular technique used in the pharmaceutical industry to measure adhesion

forces for individual particles is centrifuging [85]. In this technique, particles are

adhered to an outward facing surface and subject to rotation, for example in a cen-

trifuge. The particle will leave the surface when the centrifugal force on the particle

equals the adhesion force,

Fadhesion = mω2R , (4.1)

where ‘m’ is the particle mass, ‘ω’ is rotation speed, and ‘R’ is the distance between

the particle and the axis of rotation. This technique is much simpler and easier to

perform than force microscopy methods; however, information on the adhesion force

as a function of surface separation distance is unavailable.

These particle-level techniques have two significant limitations. First, a large num-

ber of particle-level measurements are needed for statistical significance, especially

since irregularly shaped particles may have different adhesive force profiles depending

on their orientation. And second, these particle-level techniques are not typically per-

formed for particles undergo significant plastic deformation or fracture, which would

be the case during a compaction process. Hence, powder adhesion is also studied at

the bulk level [9, 29,46,75,86–88].

4.3.2 Characterization of Adhesion by Bulk-level Measurements

There have been several methods described in the literature for characterizing the

adhesive force during the detachment phase of tablet compaction [9,46,86,87]. Naito

and Nakamichi [86] measured the ”slipping force” between an upper punch face and

a tablet, which was defined as the force applied at a given radius required to twist
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the upper punch off the tablet surface. Tablets were made in a single station tablet

press fitted with a modified upper punch and split die assembly. After the tablet was

compressed, the upper punch was not retracted from the die and instead the punch

and die assembly was transferred to a separate device to measure the slipping force.

This slipping force was measured three times. If sticking occurred, then a larger force

value was measured during the first punch rotation. The force measured in the second

and third rotations was due to friction as opposed to adhesion. A challenge with this

method is that the measured force is dependent on the fidelity of the transfer to

the slipping force assembly. If the equipment is jostled, then it is possible that the

adhesive bond between the powder and punch face may change. More significantly,

the torque required to twist a compact from a punch surface is not a measure of the

force required to pull a tablet off the punch surface in a perpendicular direction, as

would be the case in a tableting operation.

An alternate approach to measuring the adhesion force was devised by Mitrevej

and Augsburger [87]. These authors measured the sweep-off force between the lower

punch and the tablet, and thus characterized adhesion between the tablet and lower

punch surface. As with the previously described measurement method, there are

practical concerns with this technique. First, the measured force is a combination of

the adhesion force and the inertial force required to sweep the tablet off the punch

(the sweeping action occurs rapidly). Second, the adhesion force is measured after

ejection from the die. Frictional interactions with the die wall during ejection and

elastic rebound of the tablet after the upper punch retracts, and especially upon

leaving the die may cause changes to the stress state at the lower punch-compact

interface. Lastly, as with the ”slipping force” technique described previously, the

sweep-off technique is not a direct measure of the perpendicular pull off force, but

instead is a shear force measure.

Macdonald et al. [46] used a punch with a detachable face in a rotary tablet

press. The mass of powder stuck to the punch surface was measured periodically

during a tableting operation to determine sticking tendency. Although measuring the
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mass of the powder stuck to the punch can give a good estimate of sticking tendency

in practice, it does not provide adhesion force information that can be used in a

predictive manner such as in a finite element method model.

Waimer et al. [9] developed a punch with a central bore to accommodate an in-

strumented pipe for measuring the adhesion force in a single station tablet press. The

instrumented pipe contained strain gauges capable of measuring very small strains.

A steel disk was attached to the end of the central, instrumented pipe and a thin steel

membrane was welded to the punch face forming a seal. A schematic of the punch is

shown in Figure 4.1. During the compression phase of tableting, the compression load

is transferred from the steel disk to the metal body of the punch and no load is felt

by the instrumented pipe. During the unloading phase, the membrane adheres to the

compact, thus stretching the instrumented pipe. The degree of strain is monitored by

the strain gauges and converted to a stress value. This device provides in-die adhesion

force measurements in the direction perpendicular to the compact face. One of the

drawbacks of the Waimer et al. punch is that a given adhesive load located at the

circumference of the punch will result in a smaller measured strain than the same

adhesive load located at the center of the punch.

Strain Gauge

Central Bore

Instrumented Pipe

Steel Disk

Steel Membrane

Punch Body

Figure 4.1. Schematic of the adhesion punch used by Waimer et al. [9].

The current work describes the design and operation of an adhesion punch similar

to the one described by Waimer et al. This new punch design measures the adhesive

load using a load cell instead of strain gauges and has shielded sensing components,
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thus giving a less noisy signal. The new apparatus also addresses the aforementioned

spatial sensitivity drawback of the Waimer punch. The punch is used to measure the

adhesion load-displacement curves for several pharmaceutical component powders and

blends. The data collected in this study can be used in quantitative mechanics-based

models, such as the finite element method.

4.4 Instrumented Punch Design and Operation

In this section, the design and operation of the new adhesion measurement punch

is described. Calibration of the punch and signal post-processing are also discussed.

4.4.1 Punch Design

A schematic of the instrumented adhesion punch design is shown in Figure 4.2.

The punch assembly consisted of a 22.22 N doughnut load cell (Futek Model No.

FSH00313), a metal sleeve with internal diameter of 4.76 mm and outer diameter

9.97 mm, and an S7-ACG tool steel stepped metal rod with a metal cap that was

screwed onto the stepped metal rod, which together acted as the top punch. The

punch face diameter was 10 mm. The S7-ACG tool steel punch face was wet-lapped

to a mirror finish. The adhesion punch assembly was attached to a machine connector

piece so that it could be fitted onto a universal testing machine (MTS C43.504) to

perform the adhesion measurements. The load cell was connected to a National

InstrumentsTM data acquisition board (Model No. BNC-2110) using an Interface

strain gauge transducer amplifier (Model SGA). The test data was acquired using the

MTS TestworksTM software package at an acquisition rate of 1000 Hz.

4.4.2 Typical Operation Cycle

A typical tableting cycle for the instrumented adhesion punch can be divided

into four zones (Figure 4.3). In this figure, the gold arrow shows the direction of
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Machine Connector

Metal Cap

Measurement Surface

Load Cell

Metal Sleeve

Stepped Rod

Air

Powder Compact

Die

Lower Punch

Figure 4.2. Annotated schematic of the instrumented adhesion punch
(not to scale). Note that the die, powder compact, air, and lower
punch are not part of the instrumented adhesion punch.

punch travel. Zone I is the part of the compaction process before the punch comes

into contact with the loose powder bed. In this zone the metal cap of the punch

(highlighted with the color purple in Figure 4.3(a)) is in contact with the measuring

surface of the load cell (highlighted with the color blue in Figure 4.3(a)). Thus, the

signal obtained from the adhesion load cell in this zone of the compaction process is the

weight of the punch and the metal sleeve. In Zone II the punch comes into contact with

the powder bed, resulting in a compressive load on the punch face. This compressive

load causes the metal cap to lose contact with the load cell’s measurement surface.

Thus, any load on the punch greater than 2.51 N (weight of the punch and metal

sleeve) is drained to the body of the load cell through the metal sleeve (highlighted

with the color green in Figure 4.3(b)). During the initial stage of the decompression

process the powder compact undergoes elastic relaxation. This phase of the unloading

is not captured by the adhesion punch. Once the elastic relaxation is complete, the
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punch experiences a tensile load due to the adhesive interaction between the punch

and the powder compact (Zone III). As a result of this tensile force on the punch face,

the metal cap contacts the measurement surface of the load cell (Figure 4.3(c)). The

load measured by the load cell is equal to the sum of the weight of the punch, the

sleeve, and the adhesive interaction force between the compact and punch face. Once

the adhesive interaction is terminated, the load measured in the post compression

phase (Zone IV) returns to the weight of the punch and metal sleeve (Figure 4.3(d)).

Zone I
Pre-compression

(a)

Zone II
Compression/

Decompression

(b)

Zone III
Adhesive Interaction 

(c)

Zone IV
Post-Compression

(d)

Figure 4.3. The typical operating cycle for the instrumented adhesion
punch. The gold arrow indicates the direction of punch travel. In
Zone II the punch first travels downwards to compress the powder to
the specified solid fraction and then retracts.

4.4.3 Calibration

The instrumented punch was calibrated by applying forces on the punch from

2.5N N to 20.0 N in steps of 2.5 N using an MTS LSB.502 50.0 N load cell. The in-

strumented adhesion punch assembly was connected to the load cell using a hardened
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steel bolt. The eight independent load measurements were fitted to a linear regression

function with a regression coefficient of 0.9999.

4.4.4 Signal Post-processing

A typical force versus time output signal obtained from the adhesion punch is

shown in Figure 4.4(a). This data, which was acquired during the compression of

acetaminophen (APAP) powder to a relative density of 0.8, is representative of the

output obtained from all of the tests. Data acquisition started when the top punch

face enters the die. Thus, in this figure, zero time represents when the punch face

is level with the top face of the die. As mentioned in Section 4.4.2, the force data

acquired during powder compaction can be divided in four zones. These zones are

clearly demarcated in Figure 4.4(a). Zone I is the pre-compaction zone when the

punch is inside the die, but has not yet come in contact with the powder bed. The

force value recorded by the load cell in this zone is the weight of the punch and metal

sleeve, which for this case is 2.51 N. The weight of the punch assembly was verified

independently using a mass balance. Zone II is the powder compaction zone and

subsequent relaxation of the powder compact. During this phase the load recorded

by the adhesion punch is zero because the metal cap of the adhesion punch is not in

contact with load cell’s measurement surface. The random, small load values recorded

in this phase are noise, which is typical of any measurement device. The adhesive

interaction between the punch face and the powder compact occurs in Zone III and

is the region of interest for the experiments in this paper. Finally, Zone IV shows the

loads recorded by the adhesion punch once the adhesive interaction has terminated.

The load recorded in this zone is the weight of the adhesion punch and the metal

sleeve.

MatlabTM is used to post-process the raw data. The post-processed signals are

overlayed on the raw data in Figures 4.4(b) and 4.4(c). The raw data are first

separated into the aforementioned four zones and only data from Zone III is post-
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processed. The raw signal is passed through a Savitsky-Golay [89] filter to reduce the

noise. Next, the weight of the punch and metal sleeve is subtracted from the load

signal to isolate the adhesion information. The signal is then divided into adhesive

loading and unloading regions, which are different from the compression and decom-

pression phases of the powder compaction process, using the location of the peak

force and fitting straight lines (Matlab function: polyfit()) to the different parts. The

time t′ = 0 corresponds to start of the adhesive loading signal. A plot of the post-

processed force versus time curve is shown in Figure 4.4(b). The blue lines are for the

loading portion while the red lines are for unloading. The translucent solid line is the

raw data and the dashed line is the curve fit. The force-time curve is converted to

a traction-displacement curve by multiplying the force with the cross-sectional area

of the punch face and the time with the speed of the punch. The information in this

form is useful in defining a traction-displacement relation for use in finite element

method models.

It should be noted that during post-processing of the adhesion data, it was ob-

served that for a small number of cases (less than 15%) that the force in the unloading

part would not return to the punch and metal sleeve weight at the end of the adhesive

interaction zone while the punch was still in the die (Zone IV). Further investigation of

this phenomenon revealed that this behavior was caused by powder trapped between

the punch circumference and the die wall. The data sets where this phenomenon was

observed were discarded.
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Zone I Zone II  

Zone IV  

Weight of Adhesion Punch

Zone III  

(a) Adhesion punch force plotted as a function of time during a typical compression

cycle. The loading and unloading portions of the adhesion signal are plotted using

blue and red colors, respectively. The black dotted line demarcate the different zones

in the force signal. The green dotted line represents the weight of the punch and

metal sleeve, which is subsequently subtracted from the signal.
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(b) The processed force signal plotted

against time. The adhesive loading

and unloading data are represented with

blue and red lines, respectively. The raw
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solid lines. The smoothened force signal

is overlayed on raw data with a dashed

line.
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(c) The processed force signal converted

to a traction-displacement signal. The

adhesive loading and unloading data are

represented with blue and red lines, re-

spectively. The raw signal is repre-

sented using translucent solid lines. The

smoothened signal is overlayed on raw

data with a dashed line.

Figure 4.4. Typical data from the instrumented adhesion punch
before and after post-processing.
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4.5 Material and Methods

In addition to testing model pharmaceutical powders blends described in Table 3.1,

punch adhesion measurements were also made for acetaminophen and microcrystalline

cellulose Avicel PH200. Acetaminophen is very sticky powder [90, 91] and thus was

used for calibration. MCC is a commonly used pharmaceutical powder used as a

non-sticking standard [9]

4.5.1 Sample Preparation

Multiple authors [9,29,73,87,92,93] have reported that the adhesive force between

the punch surface and the powder compact varies with the compression force or solid

fraction of the compact. Thus, the adhesive interaction between the powder and

punch face was measured over a range of solid fractions from 0.3 to 0.9. In the

present work, flat faced cylindrical compacts of diameter D = 10 mm and height h =

7.5 mm were produced. The mass of the compact m was varied to produce compacts

of different solid fraction η,

m = ηρtrue
πD2

4
h. (4.2)

Note that the adhesive force interactions were measured only for those relative densi-

ties where mechanically stable compacts could be produced, i.e., those that remained

intact after being ejected from the die.

4.5.2 Testing Methodology

The adhesion punch tests were performed using a single station uni-axial punch

and die system installed on a universal material testing machine (MTS model C43.504).

A 10 mm diameter, 22.22 mm tall die was used with the instrumented flat faced up-

per punch described in Section 4.4.1 and a standard flat faced B2-type lower punch.

The lower punch remained stationary throughout the experiment. A servo encoder

on the MTS machine recorded the upper punch’s axial displacement. The compliance
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of the punch was accounted for in these measurements. All compacts were produced

at a constant loading and unloading rate of 5 mm/min. The dwell time was zero in

all cases. The die walls were coated with a thin layer of magnesium stearate prior

to producing each compact to facilitate removal of the compact from the die after

the test. It should be noted that the punch face was not coated with lubricant since

this would have interfered with the adhesion measurements. Before the start of each

run, the punch and die were wiped clean with a lint-free dry rag and a lint-free rag

containing iso-propyl alcohol. The die walls were coated with magnesium stearate

between tests using a cotton swab after the alcohol evaporated.

Changes in the relative humidity and moisture content have been shown to influ-

ence the adhesive force between the powder and the punch face [9, 94, 95]. The mea-

surements in this study were performed in typical room conditions. Measurements

of room temperature showed that it varied by 6.2 ◦C (17.1 ◦C to 24.3 ◦C) while the

relative humidity varied by 19% RH ( 45% RH to 64% RH). The temperature and

relative humidity were monitored but not controlled.

4.6 Results and Discussion

In this section the results from the adhesion characterization tests are presented

and discussed. First, the differences in the traction-displacement plots for the blends

are described. The effects of solid fraction, and blend lubrication are presented in

separate subsections.

4.6.1 Differences in Traction Displacement Behavior

Most studies on powder-punch adhesion only report the peak value of the adhesive

force or the mass of powder adhered to the punch face [9,39,46,73,75,88]. This type

of data, however, does not contain the information needed for including adhesion in

a finite element method model that could be used to predict picking and sticking, for

example. A full description of the traction-displacement behavior is required [96,97].



43

One of the simplest traction-displacement models is bi-linear, as shown in Figure 4.5

(refer to Park and Paulinoo [98] for a comprehensive review of traction-displacement

laws). Using this model, the full adhesive interaction is defined by a failure traction τn,

the displacement at which failure initiation occurs δm (the damage initiation point),

and the displacement at which full separation occurs δt (the damage termination

point). The region from 0 ≤ δ < δm is referred to as the “growth zone”while the

region δm ≤ δ ≤ δt is known as the “failure zone”. The traction-displacement laws

for several powders tested are shown in Figure 4.7 for an in-die solid fraction of

0.8. Clearly the bi-linear model is a good representation of the adhesive traction-

displacement behavior between the powder and punch face for the tested materials.To

test for repeatability, three replicates of the traction-displacement measurements were

made for each material. The three replicates for acetaminophen at an in-die solid

fraction of 0.8 are shown in Figure 4.6. The failure stress and damage initiation point

vary little between the replicates, with spread-to-mean values of approximately 5.8%

and 7.2%, respectively. The growth zone slope varies even less, with a variation of

less than 4.2%. The damage termination point and failure zone slope vary much

more, with spread-to-mean values of 20.5% and 12.5%, respectively. Regardless of

the variability, the failure zone slope tends to have a much larger magnitude than the

slope in the growth region, indicating that the bond fails rapidly.

Displacement

Traction

δm δt

τn

Failure Zone

Growth Zone

Figure 4.5. A bi-linear traction-displacement law.
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Figure 4.6. Three repeat measurements of the traction-displacement
curves for acetaminophen at an in-die solid fraction of 0.8.

4.6.2 Influence of Solid Fraction and Blend Lubrication

Traction-displacement curves for acetaminophen as a function of in-die solid frac-

tion are shown in Figure 4.8. The slopes in the growth zone are nearly equal regardless

of solid fraction. Indeed, the growth zone slopes in this figure vary by less than 8.2%

for solid fractions ranging from 0.50 to 0.95. In contrast, the failure stress (τn), and

thus the displacement at which damage initiation begins (δm), increases with increas-

ing solid fraction. Similar observations have been reported in the literature, with the

maximum adhesive force or mass of material adhered to the punch increasing with

increasing compaction stress [9, 46,86–88].

Figure 4.9(a) plots the failure traction (τn) as a function of solid fraction for

all of the powders tested in the current study. Similar to the observations for ac-

etaminophen, the failure stress increases with in-die solid fraction for the other ma-
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Figure 4.7. The traction-displacement behavior for four of the pow-
ders tested. The in-die solid fraction for these tests was 0.8.

terials, except for MCC (Avicel PH200). MCC did not adhere significantly to the

punch face, although a small load was registered. Indeed, MCC is often used as a

non-sticking powder to calibrate adhesion punches [9, 86]. The relationship between

τn and solid fraction is nearly linear for all cases reported in this work, with the

slope and intercept varying depending on the material. The larger compaction forces

corresponding to larger in-die solid fractions increase the contact area between the

particles and punch face as particles elastically and plastically deform and/or fracture.

Additionally, the separation distance between particles and the punch decreases with

increasing compaction force. This combination of effects will result in larger adhesive

van der Waals forces. Other adhesive bonding mechanisms, such as contact melting,

are also expected to increase with increasing compaction force, i.e., solid fraction.

Thus, increasing solid fraction is expected to result in larger adhesive failure traction.
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Figure 4.8. The traction-displacement curves for acetaminophen as a
function of in-die solid fraction. The translucent solid line is the raw
data. The dashed lines are the bi-linear model fit.

The growth zone slopes are plotted in Figure 4.9(b) as a function of solid fraction

for the same materials, excluding MCC. As mentioned previously, these slopes vary

little with solid fraction, but do vary with material. Since the failure traction increases

linearly with solid fraction, the growth zone slope should remain constant with solid

fraction for a bi-linear traction-displacement law.

The failure zone slopes are plotted in Figure 4.9(c). As discussed previously, there

is more variability in these slopes, especially for mannitol and to a lesser degree, lac-

tose. The failure zone slopes for ibuprofen and acetaminophen appear to be nearly

independent of solid fraction, similar to the growth zone slopes. Note that the fail-

ure zone slopes are considerably larger in magnitude than the growth zone slopes

indicating that failure of the adhesive bond occurs abruptly.

The influence of adding magnesium stearate (MgSt), a common pharmaceutical

lubricant, was also examined in this work. As expected adding increasing amounts
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of MgSt reduces the adhesive interaction. Prior studies [46, 99] have shown that

increasing blend lubrication to a sufficiently large value results in a plateau in the

adhesive interaction force. Note that for the blend containing MgSt the compacts

experienced capping. Thus, although increasing blend lubrication helps reduce punch

adhesion, it may also result in weak and damaged tablets.

Data from the literature is not available for making direct comparisons of the

current data. However, Rasenack and Muller [100] reported poor ”tabletability” for

acetaminophen. They state that the poor tabletability was due to a combination

of the strong inter-particle cohesion and strong powder-punch adhesion. Waimer et

al. [9] measured the failure stress for sorbitol and observed that the adhesive force

was larger at larger compaction forces. This essentially translates to higher adhesive

stress at higher solid fractions.

4.7 Summary

In this chapter we discussed the development of an instrumented punch used to

characterize the adhesive force between a punch face and powder. Measurements of

the failure traction, growth zone slope, and failure zone slope were made for several

pure pharmaceutical materials and blends containing a lubricant. The effects of

compact solid fraction and mass fraction of lubricant were investigated.

This information is needed for modeling sticking and picking during tableting

using numerical techniques such as the finite element method. The observations

regarding solid fraction are also useful since they can be used to reduce the number

of experimental measurements required for calibration of adhesion properties.

It is important to note that the data collected here was specifically for a stainless

steel punch. The adhesive properties for other punch surface materials would likely

be different. Measurements of the adhesion properties would need to be made for

each powder-punch material pair. Furthermore, difference in adhesion properties are

also expected for different punch face surface finishes.
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Figure 4.9. The failure traction (τn), growth zone slope, and failure
zone slope plotted as functions of the in-die compact solid fraction for
the tested pure materials. The plot symbols are the mean of three
replicate experiments while the vertical and horizontal bars indicate
the spread in the values and solid fraction, respectively. The open
symbols indicate compacts that capped upon ejection from the die.
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5. CALIBRATION OF COHESION MODEL

5.1 Introduction

In this chapter the methodology to obtain the bulk fracture toughness of the

powder from single edge notch bend (SENB) test is presented. The fracture toughness

was used to calibrate the bulk crack initiation and growth parameters in the finite

element model presented in Chapter 6.

Traditionally, the measurement of fracture toughness is not widely adopted in

the pharmaceutical industry since it requires a large amount of powder which is

seldom available at the initial phase of drug development. Moreover, the fracture

toughness is used in the pharmaceutical industry as an index to compare the strengths

of different powders compacts and not for any kind of predictive modeling. However

a few researches have measured the fracture toughness for a few commonly used

pharmaceutical powders [101–104].

5.2 Theory of Fracture Mechanics

Fracture mechanics is based on the assumption that all materials have inherent

flaws (crack) or develop flaws when subjected to stress [105]. When adequate stress

is applied to a body the crack grows further from the crack tip. The growth of the

crack can be seen as a superposition of three independent movement of the upper and

lower crack surface known as the basic modes of crack propagation (Figure 5.1). The

modes of crack propagation are defined as follows:

• Mode I or Opening mode: In this mode the crack surfaces open symmetrically

w.r.t XZ and XY plane.
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Figure 5.1. The basic modes of crack extension.

• Mode II or Sliding mode: In this mode the crack surfaces slide symmetrically

w.r.t the XZ plane and skew-symmetrically with respect to the XY plane.

• Mode III or (Out of plane) Tearing mode: The crack surfaces slide with respect

to each other skew-symmetrically w.r.t to the xy and xz plane.

The crack growth is accompanied by non-linear effects like crack tip stress singu-

larity and plastic deformation near the crack tip. In some cases, the non-linearities

can be assumed to be small when compared to the characteristic length scale of

the part [106]. In such cases the crack initiation and growth process can be ap-

proximated using linear elastic fracture mechanics (LEFM) [105, 106]. The LEFM

approximation has been reported by multiple authors as a reasonable assumption

for powder compacted material [107, 108]. To model the initiation and crack growth

in FEM softwares using the LEFM assumption a constitutive relationship for crack

initiation and growth must be specified. Typically, the constitutive relationship is

phenomenological in nature due to the absence of physics based first principle models

for crack growth in powder compacts [109]. The parameters to define the crack pro-
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rogation and growth were obtained from the experimental measurement of fracture

toughness [98,110–114].

5.3 Standard Technique for Measuring Bulk Fracture Toughness

One of the common test used to calculate fracture toughness is the single edge

notch beam (SENB) test in three or four point bending. The three point bend test was

used in this work to characterize the bulk fracture toughness of the powder compacts.

In this test a rectangular test specimen is placed between two rigid pins and a third

pin is lowered from above at the center of the beam to induce crack growth in Mode I

(Figure 5.2). The basic concept behind this approach is that for crack initiation and

growth under static loading the stress intensity should be greater than the critical

value to initiate fracture (Stress intensity approach). An alternate way to think about

this phenomenon is that the energy released during crack growth should exceed the

energy needed to form a new surface (Strain energy approach). Assuming plane stress

the stress intensity at the crack tip is related to the energy release rate as [105]:

K2 = E ·G , (5.1)

Where ‘K’is the stress intensity factor, ‘E’is the Young’s modulus and ‘G’is the strain

energy release rate. The crack will grow when the stress and energy release rate reach

a critical value. This is typically designated using the subscript ‘IC’. The KIC

is calculated from the peak load ‘Pfracture’, the notch dimension ‘anotch’and simply

supported length of the beam ‘Lbeam’and the width ‘hbeam’and in plane thickness

‘bbeam’of the beam as,

KIC = 3PfractureLbeam
γ

2
a0.5bbeamh

2
beam , (5.2)

where,

γ = 1.99−2.47

(
anotch
hbeam

)
+12.97

(
anotch
hbeam

)2

−23.17

(
anotch
hbeam

)3

+24.80

(
anotch
hbeam

)4

(5.3)

is the compatibility curve γ which is obtained empirically [115].
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Figure 5.2. Schematic of single edge bend test used to determine
fracture toughness.

Typically, Equation 5.2 is used to obtain the fracture toughness. The compatibility

curve in this equation however is not intended for samples produced by die compaction

since compacts produced by die compaction have an inherent density distribution

because of frictional interaction between the tooling and the powder [20,65,67]. Thus

using the formula will give a conservative estimate of the fracture toughness. In such

cases the fracture toughness is determined by matching the experimentally obtained

load-displacement curve from the three point bending test to load-displacement curve

obtained from finite element simulations for the same loading conditions [116]. This

methodology is presented in Section 5.4.3 and Section 5.4.4.

5.4 Methodology

5.4.1 Material

In addition to testing model pharmaceutical powders blends described in Chap-

ter 3, fracture toughness measurements were also made for Avicel PH200 a commonly
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used pharmaceutical excipient for which fracture toughness values have been reported

in literature [101–104,117].

5.4.2 Sample Preparation

Multiple authors [102–104, 117] have reported that the fracture toughness of the

powder compact varies with the compression force or solid fraction of the compact.

Thus, the fracture toughness of the powder compact was measured over a range of

solid fractions from 0.4 to 0.95. The bulk fracture toughness specimens were made for

the three-point fracture testing was adapted from the ASTM E1820 [118] and E399-

12 [119] standards. In these methods the K1C is measured by ensuring that the plastic

zone accompanying the crack tip is very small relative to the specimen thickness

and the plane strain condition is dominant around the crack tip. Thus, rectangular

parallelepiped compacts 34 mm x 8 mm x 4 mm were prepared for fracture testing on

the MTS C43.504 universal testing machine. Special punches and dies were fabricated

to create the rectangular samples with a V-shaped notched crack (Figure 5.3). A crack

was produced normal to the 4 mm x 34 mm face in the compaction process. The depth

of the notch was 4 mm and the notch angle was 60 degrees. The mass of the compact

‘m’ was varied to produce compacts of different solid fraction ‘η’,

m = ηρtrueLbeambbeamhbeam. (5.4)

To decrease the density gradients in the compact as a result of powder tooling friction,

the tooling was cleaned with iso-propyl alcohol before each trail. After the cleaning

step the punch and die were lubricated by compressing a MgSt compact. Note that

the punch speed for sample preparation was maintained at 5 mm/min.
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Figure 5.3. Tooling used to make compacts with v-notch for SENB
fracture testing.
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(a) Single edge notch test experimental setup. (b) Typical test data obtained from SENB test.

Figure 5.4. Experimental determination of fracture toughness from SENB test.

5.4.3 Load Displacement Curve from Single Edge Notch Bending Exper-

iments

The load displacement curve needed to measure the fracture toughness was gen-

erated on a MTS C43.504 universal testing machine using the three point bending

fixture. The test specimen was placed on two supporting pins at a distance of 32mm

and a third pin was lowered from above at a constant rate of 5 mm/min until failure.

The test terminated automatically when a break event was which was indicated by a

sudden drop in the force signal. The test setup is shown in Figure 5.4(a) and sample

data from the test is shown in Figure 5.4(b).

5.4.4 Fracture Toughness by FEM Back-fitting

The FEM simulations needed to calculate the fracture toughness was performed

in AbaqusTM a commercially available finite element program. A 2-D simulation was

performed with a rectangular compact. The compact dimensions were identical to

the compact used in the experimental 3-point bending test (Fig 5.5). The initial solid

fraction of the FEM compact used in the 3-point bending simulation was defined using
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a sub-modeling approach in Abaqus. In a sub-modeling approach the initial solid

fraction and stress state of the FEM compact used for the 3-point bend simulation

is obtained from a independent FEM simulation where a rectangular compact is

produced by uniaxial compaction similar to the experiment.

(a) FEM model setup of SENB test.

(b) Sample result from FEM model of SENB test.

Figure 5.5. FEM model to obtain compliance curve for SENB test.

The powder compact was represented with quad-dominated plane stress element

with modified-DPC material properties. Simply supported condition is defined as the

boundary condition and a seam crack is defined at the center of the beam. The model

definition is completed by defining the crack tip and the crack propagation vector. The

load is applied with a displacement controlled boundary condition to match the load-
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ing conditions of the experiment. The simulation is solved using an implicit scheme

and thus can be treated as a monotonic quasi-static loading condition similar to the

experiment. The experimentally obtained load displacement curve was overlayed on

the experimental FEM curve such that the peak load and crack extension from the

experiment and simulation were within 5% of each-other (Figure 5.6). The fracture

toughness is directly obtained as an output field from the AbaqusTM simulation. It

should be noted that the shape of the load displacement curve obtained in FEM is

different from the experimentally obtained load-displacement curve. Although the

exact reason for the mismatch is unclear the mismatch may be attributed to the fail-

ure of the FEM model in capturing all the non-linearities during the experimental

crack extension process.

5.5 Results

Figure 5.7 plots the stress intensity factor (KIC) as a function of solid fraction for

all of the powders tested in the current study. Similar to the observations by Roberts,

1991 [103], the stress intensity factor increases with in-die solid fraction. Stress in-

tensity factor data for Avicel MCC PH200 reported in this study were ∼10% higher

when compared with values reported in prior studies. The cause of the difference

could be the use of the ‘inverse-FEM’technique used to determine fracture toughness

rather than direct application of the Equation 5.2 as described in the ASTM stan-

dard. The use of inverse-FEM accounts for softening of the material as a result of

crack propagation which could be the reason for the higher values. The relationship

between KIC and solid fraction is exponential for all powders tested which is consis-

tent with prior work [102–104, 117]. The larger compaction forces corresponding to

larger in-die solid fraction increases the cohesive bonding between the particles due

to elastic and plastic deformation and/or fracture. Thus increasing the strength of

the fracture specimen.
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Pre-Break

Post-Break

FEM

Experiment

Figure 5.6. Comparison of experiment and FEM model results for
determination of fracture toughness.

The influence of adding magnesium stearate (MgSt), a common pharmaceutical

lubricant, was also examined in this work. As expected adding increasing amounts of

MgSt reduces the fracture toughness which is consistent with prior studies [102–104,

117].
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Figure 5.7. Stress Intensity factor as a function of solid fraction.

5.6 Summary

In this chapter the methodology for measurement of stress intensity factor using

single edge notch bend test is discussed. The effects of compact solid fraction and

mass fraction of lubricant were investigated.

This information is needed for modeling sticking and picking during tableting

using numerical techniques such as the finite element method. The observations

regarding solid fraction are also useful since they can be used to reduce the number

of experimental measurements required for calibration of fracture toughness.



60

6. FINITE ELEMENT MODEL DEFINITION

6.1 Introduction

In this chapter the FEM framework used to model picking in powder compacts

is presented. The DPC model parameters from Chapter 3, the adhesion parameters

from Chapter 4 and the cohesion parameters from Chapter 5 are used in the definition

of the finite element model.

Prior studies have shown that the modified-DPC model is a powerful tool to study

powder compaction. Sinka et al. [15] and Han et al. [10] have shown that there is a

density distribution within the powder compact as a result of the frictional interaction

between the powder and tooling. Sinha et al. [5] investigated the sensitivity of the

FEM model to fixed and density dependent material properties and showed that using

density dependent properties gave a more accurate prediction of local solid fraction

in the powder compact. However, these studies have assumed no adhesive interaction

between the powder and punch surface which is essential to model picking behavior.

In this chapter the FEM framework used to model the picking behavior is presented.

One of the objectives of this study was to understand the influence of the debossed

feature geometry on picking behavior. Thus, a parametric study was performed in

which the geometric parameters of the debossed feature were varied. In this study

the letter ‘O’ was produced on the top face of a cylindrical compacts a rather simple

geometry. Due to the axis-symmetric nature of the problem a 2D-slice of the cylin-

drical compact was simulated (Figure 6.1). This was also used an effective way to

reduce computational cost.

A debossing feature is defined using five parameters [28] as shown in Fig 6.1: the

stroke angle, stroke width, break radius, stroke radius, and degree of pre-pick. The

degree of pre-pick is expressed as a percentage of the stroke depth. In this work the
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Figure 6.1. The 2D FEM simulation with the debossed feature over-
layed on a 3D CAD model produced by revolving the 2D profile about
the axis of symmetry.

stroke width was kept constant and the feature appearance was varied by changing

the pre-pick and stroke angle. The stroke depth was a derived quantity of the stroke

width and stroke angle. Because a circular feature is studied in the present work,

the radius of the feature is an additional independent debossing parameter. The

compact radius was set to be six times the stroke width of the feature while the final

compact height was approximately five times the stroke width. This radius and height

were shown through FEM simulations to be sufficiently large so that they had little

influence on the final compact properties near the debossed feature.

As aforementioned the degree of pre-pick and the stroke angle were studied para-

metrically in the present work since anecdotally they are known to significantly influ-

ence picking behavior [28]. The remaining parameters were held constant. The values

of the various debossing and compact geometric parameters are listed in Table 6.1
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Figure 6.2. An illustration showing the definitions of various deboss-
ment parameters.

and are representative of values used in the commercial production of pharmaceutical

tablets.

Table 6.1. The debossment and compact geometric parameter values
used in the FEM studies.

Parameter Value(s)

Stroke Angle [deg] 25, 30, 35, 40, 45

Pre-pick [%] 0, 16.7, 25.0, 33.3, 50.0

Stroke width [in. (mm)] 0.0115 (0.2921)

Break radius [in. (mm)] 0.003 (0.0762)

Stroke radius [in. (mm)] 0.003 (0.0762)

Feature radius [in. (mm)] 0.0115 (0.2921)

Compact width [in. (mm)] 0.157 (4.000)
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The FEM modeling was performed using a sub-modeling approach. In this case

it meant that compression and decompression phase of the tablet compaction process

were simulated in two separate simulation. The stress state and density gradient from

the compression phase simulation served as an input for the decompression phase

simulation. The main reason for using this approach is to improve the computational

efficiency of the overall simulation. The FEM model used for the decompression

phase simulation was seeded with cohesive elements to model the crack initiation and

growth. Additionally, an adhesive interaction property was specified to model the

adhesive interaction between the punch surface and powder compact. Since these

models are not required for the compression phase the sub-modeling approach leads

to significant saving in computational cost.

6.2 Compression Simulation

The FEM simulations were performed in Abaqus/Explicit v6.14. Several assump-

tions are made in the FEM model: (1) negligible air effects, (2) the granular material

stress-strain behavior is modeled by the modified-DPC constitutive relations (Chap-

ter 3), (3) the punch and die are defined as rigid bodies, and (4) the powder compact,

punch, and die system is axisymmetric, allowing for a 2D simulation to represent the

full 3D compression process.

By default, ABAQUS uses only one set of DPC material properties based on the

yield surfaces corresponding to a fixed solid fraction. A Abaqus subroutine (VUSD-

FLD) is used to update the elasto-plastic material properties based on the evolution

of relative density in the compact [5, 13, 20]. A flowchart of the subroutine is shown

in Figure 6.2. At each time-step the subroutine obtained the strain increment and

calculated the local solid fraction for each element in the compact. The subroutine

then updated the elasto-plastic properties of each element based on the local solid

fraction of the element from a table of material properties which was provided during
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the material property definition. The updated material properties were used for the

stress calculation in the subsequent time-step.

Figure 6.3. Flowchart of the user-defined subroutine.

The modeled system, is shown in Figure 6.2. It consists of a deformable powder

contained within a movable upper punch, a fixed lower punch, a fixed die wall on the

right hand side, and an axis of symmetry on the left hand side. The powder started

with a uniform relative density of 0.35 (equal to the poured bulk density of the powder

divided by the true density of the powder) and was flush with the axis of symmetry,

die wall, and lower punch, with a flat upper surface in contact with the upper punch.
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The powder was modelled using two-dimensional, four-node, axi-symmetric, linear

quad, reduced integration elements (CAX4R). A finer mesh was used close to the

upper punch, axi-symmetric, and die wall boundaries in order to better capture the

large deformation gradients expected in those regions. Moreover, an adaptive meshing

algorithm was employed to allow the elements to conform to large deformations. The

mesh is checked and updated every five time steps. The powder was compacted by

moving the upper punch downward until the final relative density of the compact was

0.85, which is typical for commercial pharmaceutical tablets [120].

Figure 6.4. Image showing the initial configuration of the compression
FEM simulations.

The powder-die boundary was modeled as being frictional, with a constant friction

coefficient of µw = 0.0964 for the blend without magnesium stearate and a value of

µw = 0.0786 for the blend with magnesium stearate. This small value is consistent

with what might be expected for precision machined tooling surfaces. These friction

coefficients were calculated independently of the powder characterization measure-

ments in order to measure the coefficients of friction for unlubricated punches and
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dies. These measurements were performed to simulate conditions consistent with in-

dustrial tableting processes where the tooling has no external lubrication. Using the

loads measured at the upper and lower punches, Fupper and Flower, respectively, and

the radial stress, σr. Applying a force balance to the powder compact and re-arranging

to solve for the wall friction coefficient gives,

µw =
Fupper − Flower

πDhσr
, (6.1)

where, it has been assumed that the friction coefficient and radial stress are uniform

over the die wall surface.

In order to ensure the FEM results were independent of the computational mesh,

a mesh refinement study was performed on the 50 degree stroke angle and 0% pre-

pick case. This case was chosen because the mesh deformation is expected to be the

most significant in the parametric studies. The number of elements was increased

from 7500 up to 18250 with the features stroke depth and stroke angle at the end

of decompression used as performance measures (the methods for measuring these

quantities are described in the following section). These quantities are used as per-

formance criteria since they are quantities of interest in the present study. The results

of the mesh refinement study are summarized in Table 6.2. The results show that the

change in stroke depth is less than 3% for the model with the fewest elements com-

pared to the model with most elements, while the change in stroke angle is less than

1%. Hence, the remainder of the simulations were performed with 12350 elements in

order to provide good accuracy while maintaining reasonable computational cost.

Table 6.2. Results from the mesh refinement studies.

Number of Elements Stroke Depth [in] Stroke Angle [deg]

7500 0.18225 48.0025

9000 0.18706 47.9954

12350 0.18706 47.9545

18250 0.18706 47.9545
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6.3 Decompression Simulation

The decompression phase was implemented in Abaqus using the sub-modeling ap-

proach as shown in Figure 6.5(a). In the sub-model the relative density and stress

fields values for each element of the FEM compact was obtained from the end step of

the compression simulation. In this state the powder compact is flush with the axis of

symmetry, die wall, and lower punch just as before. The upper punch is in complete

contact with the powder compact representative of the end of compression phase.

Just as in the loading simulation the powder was modeled using two-dimensional,

four-node, axi-symmetric, linear quad, reduced integration elements (CAX4R). Ad-

ditionally, each integration point (node) is also seeded with two dimensional cohesive

element (COH2D4) to model the crack initiation and growth process. The growth

of the crack within the compact can be seen analogous to unzipping a zipper. The

damage initiation criteria was selected as maximum principal stress. The damage

evolution criteria for the simulation was selected as minimum energy [121]. Note that

the adhesive and cohesive properties in the simulation were defined as a function of

the solid fraction using a field variable. Thus in the unloading simulation the ad-

hesive properties, cohesive properties and the material properties were varied as a

function of the solid fraction with a user-defined subroutine. Identical to the loading

simulation the powder-die boundary was modeled as being frictional with a constant

friction. The powder punch interaction was modeled using the adhesive surface in-

teraction property. The use of cohesion zone model makes the simulation expensive.

The decompression simulation is roughly ∼50 times more computationally expensive

compared to the compression simulation. There are a few underlying assumptions in

the unloading simulation which should be explicitly mentioned. 1)In this approach

the crack growth is not independent on the mesh density [122]. Thus to make the

crack propagation more realistic it is suggested that the element dimension should

represent the characteristic particle size [123–125]. The dimension of individual el-

ements in the decompression simulation is 100µm x 50 µm. The particle size of the
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(a) (b)

Figure 6.5. Input for the decompression model.(a)The final state of
the compression model for the 25% pre-pick 45 degree stroke angle
compact (b) A zoomed view of the corner of the model displaying the
mesh used in the decompression model.

powder in the formulation varied from 34 µm to 200 µm. The particle size was char-

acterized using x-ray diffraction using a Malvern Mastersizer 2000 in conjunction with

the Sirocco dry dispersion attachment. 2) In the current approach the crack will only

travel along the boundary of an element and will propagate through an element. 3)

The time step for the unloading simulation was manually enforced at 1e − 11 s to

ensure convergence. 4) The crack will only extend if the energy exceed at a given

time-step the critical energy to propagate the crack through the entire element. i.e.

partial crack growth along the element boundary was not allowed.
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6.4 Summary

In this chapter the FEM framework developed to study picking behavior in powder

compacts computationally in Abaqus a commercially available finite element package

is discussed. The working of the user-defined subroutine to update material prop-

erties as a function of the local solid-fraction is discussed. The rationale for using

the sub-modeling approach rather than a unified model for the compression and de-

compression phase was explained. The parameters that were varied in the parametric

study was also described. In the next chapter we focus on developing the methodology

for experimental validation of the FEM simulation.
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7. EXPERIMENTAL VALIDATION USING XRCT AND IMAGE-PROCESSING

7.1 Introduction

In this chapter the methodology developed to experimentally validate the FEM

simulations is discussed. X-ray computed tomography imaging was used to map the

outline of an experimentally produced compact with debossed features (Figure 7.1)

and the compacts internal solid fraction field. In this chapter a brief description of

the theory behind XRCT imaging, the limitations of XRCT and the method used

to co-relate the gray intensity of XRCT image to the material density and subse-

quent image-processing of the XRCT image to obtain the dimensions of the debossed

geometry is discussed.

7.2 Theory of XRCT

7.2.1 XRCT Principle

X-ray computed tomography (XRCT) is a the non-destructive technique which

has been successfully used determine the internal structure (pores and defects) of

the powder compact as well as the density distribution in the powder compact [60,

126, 127]. In simple terms XRCT provides cross-sectional images for different planes

through a specimen object [128] which in this case is a powder compact. It uses the

principle of third generation CT imaging illustrated in Fig 7.2. The powder compact

is placed on a servo-controlled precision turn-table in a divergent beam of X-rays.

As the X-ray beam passes through the specimen some portion of the X-ray beam is

absorbed by the specimen. The intensity of the transmitted beam is measured by an

array of detector. Note that the specimen is rotated about its own axis at a controlled

step rate in the X-ray beam. This produces a series of X-ray shadow or projection
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Figure 7.1. Debossed tablets produced for the experimental valida-
tion of the FEM simulation. Picking was observed in some of the
tablets produced experimentally.

images at different orientations. The sample is then translated vertically by a finite

amount to obtain a new series of projections at a new cross sectional plane of the

specimen. This entire set of projection images is used in the three dimensional (3D)

reconstruction of the specimen (called tomograph) using a mathematical algorithm

based on the Beer Lambert’s law of absorption (Equation 7.1)

I = I0e
−µx . (7.1)

Where I is the intensity of the transmitted ray, I0 is the intensity of the incident

ray, µ is the local attenuation coefficient and x is the thickness of the material. The

reconstruction has a spacial volume resolution which is called a voxel. The voxel

size of the tomograph depends on the distance between the specimen and the X-

ray source which defines the magnification, the detector size and vertical step of the
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specimen. In Equation 7.1 the local attenuation coefficient depends on the local

Detector

Turn Table

Sample

Sample Holder

X-ray Source

Figure 7.2. Schematic of X-ray tomography.

material density and the chemical structure of the material [129]. Thus for compacts

made from a given material the intensity is purely a function of the local material

density/ solid fraction. A comprehensive review on the XRCT technique is discussed

in review papers by Stock [130, 131]. While XRCT is a powerful technique there

are several artifacts that can cause errors in calculation of the absorption coefficient

and subsequently in the reconstruction of the specimen. Some of these artifacts are

discussed in the next section.

7.2.2 XRCT Reconstruction Artifacts

Some of the common artifacts observed in XRCT images are ring artifacts, sample

misalignment, streak artifact. A more comprehensive discussion of the various arti-

facts can be found in S. Dale, (2014) [132]. These artifacts can be addressed through

machine calibration, careful specimen preparation and/or post-processing the XRCT

images [132].

Ring artifacts are caused by fluctuations in beam strength, contaminated flat panel

detector or mis-calibrated detector [133–136]. This problem manifest as a sharp ring

in the image a few pixels wide. This problem can be addressed by using appropriate

post-processing algorithms for flat-field correction, and/or re-calibrating the detec-
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tors. Sample misalignment artifact occurs when there is misalignment in the rotating

parts like the sample holder or turn-table. This error can be seen as U-shaped arcs

in the reconstructed images. This error can be eliminated by checking the align-

ment of all the moving parts or by specifying the actual center of rotation before the

reconstruction of the specimen [132]. Streak artifacts occurs due to object motion

during the imaging or by angular under-sampling. This error can be identified by

unexpected high and low absorption near object edges. This error can be eliminated

by increasing the number of projection angles [137]. Most artifacts can be corrected

by diligent selection of process parameters used for the XRCT analysis. In most cases

the optimum parameters XRCT are determined by trial and error. In the next section

we discuss some of the rationale in the section of the parameters used for the XRCT

experimental validation.

7.3 Selection of Process Parameters

Several process variables selected for the imaging process can affect the end quality

of reconstructions. The process variables that can be altered are the initial X-ray

energy, the exposure time per projection, and the number of projections taken per

180◦ rotation. The initial x-ray energy in conjunction with the exposure time per

projection determine the quality of the image. A large exposure time and X-ray

energy can saturate the detector thus reducing the contrast between the image and

the background. However lower than required energy and exposure time will result

in a noisy image. The sampling time and energy must be determined a-priori by trial

and error for optimum image quality. The number of projections taken per 180◦ is

one of the key factors that effects the quality of the reconstructed image. Larger the

number of angular steps will produce a shaprer image but also increase the imaging

and reconstruction time for the image. Similar to the x-ray energy and exposure time

the size of the angular step size is determined by trial and error [129].
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In this study the calibration slugs were imaged using a Scano Medical µCT 40 .

X-rays were produced using a voltage of 55 kVp and a power of 8 W. Three thousand

six hundred x-ray intensity projections were taken per 180O rotation of the cylindrical

slug. The resulting spatial resolution of the imaged slugs was 6.43 µm per voxel side.

An average of two measurements was used to calculate the absorption intensity for

a voxel. An aluminum filter of 1 mm thickness was used to reduce the low energy

x-ray intensity, which can be preferentially absorbed and result in beam hardening

artifacts [39-41]. The x-ray absorption coefficients are converted to a gray intensity

value ranging between 0 and 255, with larger values corresponding to larger absorption

coefficients. A median image filter with a radius of 20 voxels was used to reduce the

noise in the images [39, 41].

7.4 Solid Fraction Calibration for Powder Compacts

Cylindrical compacts of 6 mm diameter, 2.5 mm thickness of a given formulation

were produced for relative densities ranging between 0.60 and 0.95. These slugs

were used to produce a calibration curve relating gray intensity of the image from the

XRCT measurements and powder solid fractions. The slugs were made by keeping the

height constant and varying the powder mass to obtain different relative densities.

The slugs were created using the same compaction fixture and speed described in

Section 3.4. As with the DPC calibration compacts, the die wall and punch surfaces

were lubricated with magnesium stearate in order to minimize the influence of friction.

The use of flat-faced punches, lubrication, and a small aspect ratio helped to produce

slugs with little variation in their internal solid fraction.

Images from several of the calibration slugs are shown in Figure 7.3, with the cor-

responding frequency distributions of gray intensity shown in Figure 7.4. Note that

the frequency distributions include values from approximately ∼108 voxels per slug.

A secondary peak is observed in Figure 7.4 due to voxels containing a combination

of both voids and material. Also observed in the images are larger relative density
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regions near the circumference of the slugs, which is consistent with previous exper-

imental findings [20, 60, 65, 127, 138]. To reduce the influence of wall effects on the

determination of a characteristic gray value for a given relative density, a circumfer-

ential region of 50 µm at the edge of the compact was excluded from the calculation.

(a) ηavg = 0.6 (b) ηavg = 0.8 (c) ηavg = 0.95

Figure 7.3. X-ray gray intensity map for a 6.43 µm thick slice located
in the middle of three calibration slugs, each with a different average
relative density.

The average bulk density of a slug was determined by dividing the measured mass

of powder used to form the slug by the volume of the slug, which was calculated

by assuming a cylindrical shape and measuring the slug diameter and height using

a micrometer. The slugs relative density was calculated by dividing its bulk density

by the true density of the formulation. The true density was assumed to equal the

formulations apparent density, which was measured using helium pycnometry as de-

scribed in Section 3.4. The mode of the gray intensity frequency distribution was

plotted as a function of the average slug relative density as shown in Figure 7.5. The

upper and lower cross bars in the plot correspond to the absorption coefficient values

corresponding to the 25th and 75th percentiles in the cumulative distributions in order

to demonstrate the (small) spread in the slug absorption coefficients. The resulting

data were fit with a curve of the form,
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Figure 7.4. Frequency distributions of the x-ray grayscale corre-
sponding to the three slugs shown in Figure 7.3. These frequency
distributions include gray intensity values from the entire compact
volume.
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gray Intensity = 0.3832 ∗ exp(5.419 ∗ η) + 144.8 (7.2)

which was then used for converting between gray intensities and relative densities for

the given formulation.

Figure 7.5. The calibration curve relating x-ray absorption coeffi-
cient to relative density for one of the formulations. The points in
the figure correspond to the median value from the absorption co-
efficient frequency distribution with the upper and lower cross bars
corresponding to the 25th and 75th percentiles.

The curve fit was then converted into a ‘jet’ (also known as ‘rainbow’ colormap)

such that blue corresponds to low density while red corresponds to high density. The

result from applying the colormap to the calibration slugs are shown in Figure 7.6.

7.5 Measurement of Debossed Feature Geometry by Image-Processing

7.5.1 Overview

In this section the MATLABTM [139] image-processing algorithms used for cal-

culating geometric features of the debossed region of the compact at the end of de-
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(a) ηavg = 0.6 (b) ηavg = 0.8 (c) ηavg = 0.95

Figure 7.6. 2D slices from the calibration slugs colored using the jet
colormap developed using the gray intensity data.

compression are described. In particular, the final debossed volume, feature stroke

angle, and feature stroke depth were measured in order to compare to the correspond-

ing embossed elements on the punch face. Larger differences between debossed and

embossed parameters are undesirable since it means that the debossed features are

further from the desired specifications. Note that the same image-processing algo-

rithm was used to analyze the FEM results and XRCT images in order to ensure

consistency in post-processing.

7.5.2 Image Processing Methodology

A 4096 × 4096 pixel image of the post-decompression state of a compact was ob-

tained, as is shown in Figure 7.5.2(a) for an FEM simulation in order to calculate the

debossed feature volume as indicated by yellow hatching in Figure 7.5.2f. The image

was first converted to a binary, i.e., black and white, representation (Figure 7.5.2(b)),

then the MATLAB edge-detection function [MATLAB command “edge()”] was used

to find the outline of the compact (Figure 7.5.2(c)). The edge-detection algorithm

inverted the color of the image, which was then re-inverted (Figure 7.5.2(d)). A

Standard Hough Transform (SHT) [MATLAB command: “hough()”] was applied to

detect horizontal, vertical, and lines diagonal lines in the image. These straight lines
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were colored based on whether they were horizontal, vertical, or diagonal lines. All

horizontal and vertical lines were colored blue, lines at a small angle to the left of

the debossing feature were colored red, and diagonal lines to the right of the fea-

ture were colored green (Figure 7.5.2(e)). The curved feature was then detected as

any part of the remaining upper edge. Next, the top left point on the compact was

identified so that the debossed volume could be calculated. This point was found at

the intersection of the horizontal line for the top-right edge of the debossed feature

and the vertical line from the bottom left edge of the compact. The vertical cross-

sectional area of the debossed feature was the area shown by the yellow hatching in

Figure 7.5.2(f). The debossed volume was this area integrated around the compacts

axis of symmetry.

The stroke angle and stroke depth were also determined for the features as shown

in Figure 7.5.2(g). For these parameters, a limited angle range Hough transform was

used to identify a straight-line portion along the feature walls. The line segments

identified by the Hough transform are highlighted in red in Figure 7.5.2(g). The

stroke angle was then obtained by applying the MATLAB polyfit function with a

straight-line fit to the contour identified by the Hough transform. To determine the

stroke depth of the debossed feature, the MATLAB “findpeaks()”command was used

to determine the minimum location of the curved feature. The stroke depth was then

calculated by subtracting the vertical location of the minimum for the curved feature

from the vertical location of the top right corner of the compact.

In addition to geometric features, the relative density fields were also examined

for the parametric studies. Regions of large relative density will have larger cohesion

and, thus, are expected to have better mechanical integrity. Conversely, regions of

smaller relative density are anticipated to be regions more likely to be subject to

damage, such as picking.
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Figure 7.7. Steps used in image-processing of the FEM and XRCT results.

7.6 Summary

In summary, a calibration curve was obtained to co-relate the solid fraction of

the compact to the gray intensity obtained from XRCT. The optimum process pa-

rameters for XRCT measurements for the powder compacts was determined. Addi-

tionally post processing algorithms to mitigate some of the reconstruction artifacts

were implemented in MatlabTM. Additionally, the image-processing algorithms used

to post-process the XRCT images to obtain dimensions of the debossed features was
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also discussed. In the next chapter some of the key findings of the current work have

been discussed.
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8. RESULTS AND DISCUSSIONS

8.1 Introduction

The motivation behind developing the FEM model and experimental compacts

with debossed features was to develop an experimentally validated framework to

predict picking in pharmaceutical tablets. Comparisons between the experimental

validation using XRCT and the FEM simulation is presented in Section 8.2. An in-

depth discussion of the debossed feature geometry on density distribution and crack

propagation in the compact feature is presented in Sec 8.3 and Section 8.4. In section

8.5 the effects of adhesive traction separation law on the crack growth is discussed.

8.2 Comparison between FEM and Experiments

(a) (b)

Figure 8.1. A comparison of the FEM compact and experimentally
produced compact. The colormap in the image correspond to local
solid fraction. (a) XRCT image of a debossed feature produced in
the validation experiment (0% pre-pick, 25 degree stroke angle, and
0.2091m̃m. stroke depth) and (b) the corresponding FEM simulation.
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To validate the FEM results, compacts with a 0% pre-pick, 25 degree stroke angle,

and 0.2091 mm. stroke depth feature were made using the blend containing magne-

sium stearate. The tooling in these experiments was not pre-lubricated in order to

better represent an industrial system. The powder-tooling friction coefficients used in

the FEM simulations are given in Section 6.3. The compacts relative density field was

measured using XRCT as presented in Section 7.4 and the feature depth and stroke

angle were obtained by image processing as discussed in Section 7.5. Figure 8.2 shows

the XRCT image in the vicinity of the debossed feature along with the corresponding

FEM prediction. The colors in the images correspond to local relative density. The

current results qualitatively match those recently reported by Laity [31]. He reported

a larger relative density in the valley (furrow in the Laity paper) of the debossed

feature and a smaller relative density near the shoulders (referred to as flanks by

Laity). Laity also reported cracking and flaking in the vicinity of the smaller rela-

tive density regions, which is consistent with the hypothesis that the smaller relative

density regions will be prone to picking. Table 8.1 gives the comparison between the

measurements made on the XRCT image and the predictions from the FEM simu-

lation. Three items of significance can be observed from the table. First, the final

debossed feature geometric measures in both the experiments and simulations are

different than the target values, i.e., the embossing feature values. These differences

are due to the elastic spring back of the material. Second, the FEM predictions are

close to the measured values in all cases. The largest relative difference of 4.9% is for

the minimum relative density. The remaining parameters are different by less than

3%. Lastly, the FEM predictions slightly over-predict all aspects of the geometry

and relative densities. The reason for this trend is not certain. However, an possible

reason could be the use of initial linear part of the unloading curve to derive material

parameters may not be sufficient to capture the elastic relaxation of the compact.

The results in Table 8.1 demonstrate the power of the FEM simulations to aid in the

design of powder compaction tooling where dimensional tolerance are of the utmost

importance. The shape of the tooling can be appropriately altered to account for the
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elastic relaxation observed in the decompression phase of the powder compaction and

provide a high degree of dimensional fidelity.

Table 8.1. Comparisons between the measured and predicted de-
bossed feature geometric measurements and maximum and minimum
relative densities.

Parameter Nominal Value XRCT FEM

Debossed Feature

Volume [in3]
6.835e− 6 6.731e− 6 6.795e− 6

Stroke Angle [deg] 25 23.31± 0.000264 24.475

Stroke Depth [mm] 0.2091 0.1821± 0.00253 0.1897

Max Relative Density [-] N/A 0.935 0.941

Min Relative Density [-] N/A 0.54 0.558

8.3 Influence of Stroke Angle and Pre-Pick

Figures 8.2 and 8.3 plot, respectively, the debossed volume and the stroke depth

from the FEM simulations, each normalized by the target values measured on the

embossing feature, as a function of the degree of pre-pick for different stroke angles

and formulations. Normalized values closer to one are more desirable since it means

that the feature more faithfully reproduces the target geometry and elastic relaxation

is smaller. Large degrees of elastic spring back are also correlated with increased

propensity for compact failure [140]. Increasing the degree of pre-pick results in final

debossed features that have larger normalized values. Indeed, the normalized values

appear to vary linearly with the degree of pre-pick, with the y-axis intercept increasing

and the slope decreasing with increasing stroke angle. Thus, the influence of stroke

angle is smaller as the degree of pre-pick increases. Hence, to decrease elastic spring

back and produce truer features, the degree of pre-pick and stroke angle should be

increased. These results are consistent with the recommendations of the Tableting
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Figure 8.2. FEM predictions of the normalized debossed volume
plotted as a function of the degree of pre-pick. Different symbols
correspond to different embossing stroke angles. The open symbols
correspond to the formulation with MgSt and closed symbols corre-
spond to the formulation without MgSt.

Specification Manual [28], which recommends that in order to reduce the likelihood

of picking, the stroke angle and degree of pre-pick should be increased. The addition

of MgSt also reduces elastic spring back, but this change in the formulation has a

much smaller influence than either stroke angle or degree of pre-pick.

Figures 8.4 and 8.5 show the influence of stroke angle (rows) and pre-pick (columns)

on the relative density distribution in the compact for un-lubricated and lubricated

formulations. The images in these figures have been cropped in a consistent manner

and use identical relative density scales to facilitate comparison. Larger degrees of

pre-pick clearly produce compacts with more uniform relative density, while no obvi-

ous trend is observed for varying stroke angle. In general, regions of smaller relative

density are observed at the shoulders of the features while a larger relative density
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region appears at the base of the feature valley. The regions of small relative density

are anticipated to be weaker and more prone to damage, such as picking, due to

the correspondingly small cohesion in the material. Although not plotted here, the

hydrostatic and Mises stress fields look qualitatively similar to the relative density

fields. The gray areas in these figures represent regions where the solid fraction is

below 0.34 which is equal to the bulk density of the powder. It is expected that there

are the regions most susceptible to picking.
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Figure 8.3. FEM predictions of the normalized stroke depth plotted
as a function of the degree of pre-pick. Different symbols correspond
to different embossing stroke angles. The open symbols correspond
to the formulation with MgSt and closed symbols correspond to the
formulation without MgSt.

Waimer et al. [29] found that for larger stroke angles, slight sticking was observed

with material stuck only to the lateral surfaces of the punch while for smaller stroke

angles, significant sticking behavior was observed. The current FEM results do not

show obvious trends that support or refute these observations. Empirically [28], it is
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know that a larger amount of pre-pick leads to smaller relative density gradients in the

compact, lesser sticking in the compact, which is attributed here to a more uniform

density gradient in the compact. The addition of a small amounts of lubricant has

0 % Pre-pick 25 % Pre-pick 50 % Pre-pick

25o

Stoke
angle

35o

Stoke
angle

45o

Stoke
angle

Figure 8.4. FEM predictions of the relative density fields for different
stroke angles (rows) and degrees of pre-pick (columns). All of these
simulations are for the un-lubricated formulation. Figure shows the
region around the debossed feature and not the entire compact. The
gray spots indicate regions with solid fraction lower than 0.4 which
are prone to picking.

been reported to produce stronger compacts [71,72]. From Figures 8.4 and 8.5 it can

be seen that the relative density distribution of a compact with magnesium stearate

is more uniform when compared to a formulation without lubricant, for the 25% and

50% pre-pick cases. The effect of lubricant for the 0% pre-pick case is less obvious.

Small amounts of lubricant improves particle rearrangement, thus decreasing density

gradients [67]. This behavior can be observed in the DPC material properties. Adding

a small amount of magnesium stearate decreases the hydrostatic yield stress for the

compact at large relative densities.
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The relative density fields were found to vary little in the region of the deboss-

ments as the friction coefficient varied. A region of relative density smaller than the

mean appears in a region at the bottom of the compact near the die wall in all of the

simulations (not seen in Figure 8.4 & 8.5), which is typical of a compact formed via

uniaxial compaction with a stationary bottom punch. The size of this low relative

density region increases as the friction coefficient increases, consistent with the ex-

perimental observations of others, e.g., Sinka et al. [60] and Briscoe and Rough [141].

However, this region did not extend to the debossment region and thus had little

effect on the results discussed previously. FEM simulations were also performed to

0 % Pre-pick 25 % Pre-pick 50 % Pre-pick

25o

Stoke
angle

35o

Stoke
angle

45o

Stoke
angle

Figure 8.5. FEM predictions of relative density fields for different
stroke angles (rows) and degrees of pre-pick (columns). All of these
simulations are for the lubricated formulation. Figure shows the re-
gion around the debossed feature and not the entire compact.

investigate the influence of the powder-tooling friction coefficient. In these simula-

tions, the formulations remained the same, but the powder-tooling friction coefficient

had values of 0.05, 0.1, and 0.2. Recall that the unlubricated tooling in the FEM
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simulations had friction coefficients of 0.0964 and 0.0786 for the unlubricated and

lubricated formulations, respectively.

0 % Pre-pick 25 % Pre-pick 50 % Pre-pick
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Stoke
angle
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Stoke
angle

45o

Stoke
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Figure 8.6. FEM predictions of crack initiation and growth for dif-
ferent stroke angles (rows) and degree of pre-pick (columns). All of
the simulations are for the unlubricated formulation. The yellow line
shows the crack in each figure.

8.4 Crack Initiation and Growth in Powder compacts

Figures 8.6 and 8.7 show the influence of stroke angle (rows) and pre-pick (columns)

on crack initiation and growth in the compact for un-lubricated and lubricated for-

mulations respectively. The images in these figures have been cropped in a consistent

manner to facilitate comparison. In these images the yellow line represents the crack.

Larger degrees of pre-pick and larger stroke angle clearly produce compacts with

smaller crack. In general, cracks originate in the shoulders of the feature or the re-
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Figure 8.7. FEM predictions of crack initiation and growth for differ-
ent stroke angles (rows) and degree of pre-pick (columns). All of the
simulations are for the lubricated formulation. The yellow line shows
the crack in each figure.

gions of smaller relative density and propagate towards the top of the compact. It is

interesting to note that length of the crack for the compacts with MgSt or lubricated

formulation compacts are always smaller than the unlubricated cases. This can be

explained by the smaller values of the adhesive interaction force between the punch

face and the powder bed for the lubricated formulation. As aforementioned earlier

the length of the crack in the compact will depend on the mesh density and thus

quantitative comparisons of the crack length with experimental compacts should be

done cautiously. However if the mesh density is the same (as in this case) for all the

cases examined then the crack length could be used for qualitative comparisons. Note

that the crack initiation and growth only occurred when the adhesive interaction be-

tween the punch face and powder compact was specified. Thus modeling the adhesion
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behavior between tooling and powder compact is a vital component for modeling the

picking behavior. However this could also be seen as a limitation of this approach.

8.5 The Effect of the Adhesive Traction on Crack Growth

Unlubricated4
(w/o4MgSt)

Lubricated4
(with4MgSt)

Experimentally4
Measured
Adhesion

24x4Experimentally4
Measured
Adhesion

44x4Experimentally4
Measured
Adhesion

Figure 8.8. The effect of increasing the peak adhesive traction on
crack growth for the lubricated and unlubricated formulations. The
yellow line in the figure represents the crack.

One of the drawbacks with the adhesion punch developed in this work is that the

actual area of contact between the adhesion punch and powder compact is unknown.

Thus, one of the assumptions made in the current work is that the entire compact
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(a) Perfectly transferred debossed feature. (b) Picked debossed feature.

Figure 8.9. 3D model rendered for the 0% pre-pick and 25 degree
stroke angle debossed feature.

is in contact with the punch face during the detachment phase (failure zone) of the

adhesion punch (Figure 4.5). However, from past experiences this is known to be

inaccurate. In reality the area of contact would change in the failure zone as the com-

pact detaches from the punch face. As a result, the adhesive traction experienced by

the punch would be larger that the value used in the FEM simulations. Furthermore,

picking behavior was observed in the 0% prepick and 25 degree stroke angle experi-

mentally produced compacts for the unlubricated blend as seen in Figure 7.1 which

was not observed in the simulation since the cracks in the simulation propagated into

the bulk of the compact and not towards an edge. A exploratory study was performed

to see if picking would be observed for a larger values of adhesive traction. In the

FEM simulations the peak adhesive traction was increased by a factor for all the solid

fraction. Note that the growth and failure displacements were not altered and kept

same as the experimentally measured displacement for all the cases. The results of

this study are shown in Figure 8.8. for the lubricated and unlubricated blends. The

analysis was performed for the 0% pre-pick and 25O debossed geometry. The crack

in Figure 8.8 is shown using a yellow solid line. It is clear that the crack propa-



93

gation is greater for the unlubricated blend in comparison to the lubricated blend.

Thus, the addition of small amounts of lubricant in the form of MgSt was effective in

inhibiting crack growth for the formulation considered in this study. When the ad-

hesive traction is increased to 400% the experimentally measured adhesion the crack

starts at the shoulder of the debossed feature and propagates back to the top edge of

the compact. It would be fair to conclude from this simulation that the area of the

compact bound between the top edge of the compact, the shoulder of the debossed

feature and the crack would be the area that would undergo “picking”. To better

visualize the picked region 3D CAD models of the expected and picked debossed

feature were rendered (Figure 8.9). The 3D model of the debossed for with picking

was rendered by revolving the output of the 2D slice from the ‘4 × experimentally

measured adhesion’ simulations.

8.6 Summary

A methodology has been presented to predict picking in tablet compacts. The first

study verifies the framework by comparing the results from the FEM simulation to

experiments. The parametric study helped recognize the regions of the compact most

susceptible to picking. The simulations verified an anecdotally known fact that the

shoulders of the debossed feature were most susceptible to picking. The parametric

study also demonstrated the power of the FEM simulation by predicting the residual

stress in the vicinity of the debossed feature which is extremely difficult to determine

experimentally. The FEM simulations could thus be used to design better powder

compaction tooling to minimize residual stresses. Further it was show that the FEM

simulations in conjunction with CAD modeling could be used to better visualize the

geometry of the debossed feature on the compact.
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9. CONCLUSIONS

9.1 Summary of Results

The primary objective of this work was to develop a framework to predict pick-

ing behavior in powder compacts. As a part of this work a efficient computational

approach with FEM was developed to model picking as an alternative to performing

labor intensive and time consuming experiments. The model was validated against

several experimental measurements of a debossed feature, including the features stroke

angle and stroke depth, as well as the extents of the relative density distribution.

This dissertation work required the measurement of the modified-DPC material

parameters to calibrate the FEM model which led to the development of the Purdue

in-house compaction simulator (PICS). The details of the construction and measure-

ment protocol for the simulator are given in Chapter 3. Material parameter data

obtained from PICS were validated against data from prior studies. The scripts used

Figure 9.1. Graphical summary of the dissertation.
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to extract the modified-DPC parameters from the experimental data have been pro-

vided in the appendix.

To model the picking in powder tablets it was essential to quantitatively under-

stand the adhesive interaction between the punch face and the powder compact. A

novel adhesion punch was developed in this study to characterize the adhesive interac-

tion. The adhesive punch provided detailed traction displacement information of the

adhesive interaction phenomenon and provided incite about the effect of lubrication

on the adhesive interaction. The dependence of the adhesive interaction on the solid

fraction of the compact was also examined in this work. An brief description of the

design and construction of the adhesion punch as well as the measurement protocol

is provided in Chapter 4.

The crack initiation and growth in the FEM model which leads to picking was

modeled using a fracture mechanics approach. The 3-point single edge notch bend

test in conjunction with FEM back-fitting (also known as ‘inverse FEM’) was used

to determine the fracture toughness of the powder compacts. The fracture toughness

of the compact was measured for a range of solid fractions. The rationale behind

using FEM sub-modeling and FEM back-fitting to determine the fracture toughness

is provided in Chapter 5

The FEM modeling framework used in this work is discussed in-depth in Chap-

ter 6. The FEM model used in this work was divided in two parts with one model

for to define the loading simulation and a sub-model for the unloading simulation.

The material properties from Chapters 3 and 5 and interaction parameters from 4

were used to define the FEM model. Note that all these properties were measured

in-house experimentally. A parametric study was performed in FEM to understand

the effects of debossed feature geometry and blend lubrication on picking. The results

of the parametric study are presented in Chapter 8. The parametric studies using the

FEM model showed that the stroke angle, degree of pre-pick and blend lubrication

significantly influenced picking behavior. The cracks always formed in the shoulder

of the debossed compact in the low density regions. The crack growth was always
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smaller in the lubricated blends. It was observed that the crack initiation and growth

did not occur in the absence of the adhesive surface interaction model. This can be

seen as a limitation of the model.

The parametric studies also revealed that the stroke angle and pre-pick also af-

fected the debossed feature dimensions, with larger degrees of pre-pick and stroke

angles giving debossed features that more closely match the target (embossment)

values while lubrication plays a much weaker role, at least for the formulations con-

sidered here, but did improve the fidelity of the debossed feature slightly. Differences

between the debossed and target feature dimensions are due to elastic spring back of

the material. The FEM model also shows that the relative density is smallest at the

shoulders of the debossed feature and largest at the base of the valley. Although the

relative density fields show no obvious trends with stroke angle, the fields are clearly

more uniform as the degree of pre-pick increases. The addition of lubricant to the

formulation also improves the relative density field uniformity, at least for larger de-

grees of pre-pick. These results suggest that to improve feature fidelity and decrease

the likelihood of damage, larger pre-picks, larger stroke angles, and the addition of a

formulation lubricant should be used.

To experimentally validate the FEM results XRCT followed by image-processing

was used in this work. The calibration protocol for the XRCT to get the local solid

fraction in the compact is provided in Chapter 7. Although XRCT provided quali-

tative validation of the FEM simulations it was of interest to do some quantitative

comparisons for debossed feature dimensions. This quantitative validation was done

using image-processing. Results of the qualitative and quantitative comparison as

presented in Section 8.2.

In conclusion the FEM simulation is able to provide accurate information of de-

bossed feature geometry even without a fracture model. In conjunction with a fracture

model the FEM simulations can provide incite into crack initialization and growth.

This could be used as a tool in improving the formulation to alleviate picking prob-

lems. It can also be used to design and develop better powder compaction tooling.
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In the next section we highlight some of the key contributions of this work.

9.2 Thesis Contributions

The key contributions of the current work can be summarized as follows

• Development of Purdue in-house compaction simulator to measure the DPC

material properties.

• Developed a novel methodology to measure the adhesive interaction between

the powder bed and tablet.

• Developed a protocol to get the fracture toughness of the powder compacts

using inverse FEM and 3-point single edge notch bend test.

• Developed a novel framework in FEM to model picking in pharmaceutical com-

pacts.

• Development of XRCT and image-processing tools to experimentally validate

the FEM model results.
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10. RECOMMENDATIONS FOR FUTURE WORK

10.1 Improvements to the Adhesion Punch

The adhesive punch in the current study did not characterize the contact area

during the detachment phase of the adhesive contact. Thus, the powder was assumed

to be in contact with the complete punch face till detachment. In reality the punch

powder contact area would change in the detachment phase. Thus the value of ad-

hesive traction used in this study could be an under-estimation. In future works it

may be useful to develop an adhesion punch capable of mapping the exact contact

area between the punch face and powder bed. This could be accomplished with some

image based technique with a transparent punch made or by using a pressure sen-

sitive punch face that capable of measuring local loads on the punch face to get a

better idea of the area of contact between the punch face and powder compact. In

the current design of the adhesion punch the size of the punch face is fixed at 10

mm. It would be useful to have a detachable punch face to study the influence of the

contact area on the adhesive interaction. In the current work the pull out force was

measured for a maximum of five compression cycles. However, it is well know that

picking is a phenomenon that exacerbates over time. It would be of interest to study

the adhesive interaction between the punch face and the powder compact for large

number of compression cycles.

10.2 Improvements to the FEM Model

The constitutive relations used in this approach are phenomenological in nature

which require complex time consuming experiments to characterize the material be-

havior. The effect of particle size, shape, density on compaction is not well understood

since there are no first principle physics models for powder compaction of granular
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materials. Similarly the models used for the adhesive interaction between the powder

compact and punch face and also phenomenological in nature. This could be a value

area for future contributions.

In the current study we use a constant velocity profile with no dwell. The DPC

constitute model used in the current work is a quasi-static model. Thus it cannot

capture the effects of the compression profile on the tablet compaction process. It

would be interest to extend the DPC model to be able to capture strain-rate effects.

A constitutive model that can capture the strain rate effects can be used to study the

effect of the compression velocity profile, dwell time on picking and sticking. Some

of the compression profiles commonly used in industry are sinusoidal compression

profile, constant density reduction compression profile, saw tooth profile.

The current has demonstrated that FEM is a useful tool to model pricking be-

havior in powder compacts. The FEM model can accurately capture the compaction

process to provide debossed feature dimensions. The FEM parametric studies showed

the importance of formulation as well as process parameters. I would be useful to

develop a tool which could optimize the punch design to mitigate picking problems

and/or provide better dimensional fidelity based on the application. An effective ap-

proach would be to use the optimization module in Abaqus to improve the design of

the debossed features on the punch face iteratively.

The current study was also restricted to cylindrical flat faced tablets. In reality

most pharmaceutical tablets have complex shapes like biconvex, almond shape, cap-

sule shape etc. 3D simulation for these complex shapes with debossed feature can

provide incite on the influence of debossed feature location on picking. It would be

interesting to vary the location of the debossed feature on the surface of a biconvex

tablet while simultaneously varying the curvature of the tablet.

The present work was restricted to 2D simulations due to computational limita-

tions. Although valuable insight can be gained from 2D simulations the mechanics

of crack growth in 3D would be much more complex. This may also require the

alteration of some of the fracture mechanical assumptions used in the FEM model.
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With computational resources constantly improving it could be possible to model

the compaction process using multi-particle FEM (MPFEM) approach. MPFEM

provides greater flexibility in modeling powder mixtures instead of using a lumped

approach as chosen in the current work. The use of fracture models in the MPFEM

framework may provide better understanding of crack initiation and growth in phar-

maceutical tablets. Another feasible approach to model the compaction of multi-

component powder mixtures would be using discrete element method with non-local

contact force models to account for the large deformations. This approach is currently

extremely computationally expensive and only practical for static or quasi-static sys-

tems.

10.3 Experimental Validation of Crack initiation and Growth in Phar-

maceutical Tablets

In this work the crack initiation and growth predicted using FEM were not val-

idated. It would be useful to develop techniques that could visualize the initiation

and growth of the cracks real-time in or on the powder compact. This would also aid

in selection of appropriate crack initiation and growth criteria in the FEM model.

In this work the temperature and humidity were measured but not controlled. It

would be useful to do a rigorous analysis on the effects of temperature and humidity

on the powder compaction process as a whole as well as its effects on individual

material and interaction parameters.

To summarize, the avenues for immediate future work are:

• Development of first principle physics model to better understand powder com-

paction for granular material.

• Use the optimization tools (iSight) in Abaqus to improve tooling design and

debossed feature geometry.
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• Use the optimization tools in Abaqus to find the best location for the debossed

feature on the pharmaceutical tablet.

• Extend the simulation framework to 3D to model complex tablet shapes.

• Experimental validation of crack initiation and growth in the powder compacts.

• Looking at the effect of compression velocity profiles on the picking and sticking

phenomenon.
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