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ABSTRACT

Rehrauer, Owen G. Ph.D., Purdue University, August 2016. Multivariate Statistical
Methods that Enable Fast Raman Spectroscopy. Major Professor: Dor Ben-Amotz.

Raman spectroscopy is a useful tool in investigating inter- and intra-molecular

interactions as well as classifying and quantifying chemical species in a sample. Many

materials of societal interest, such as proteins and pharmaceuticals, have distinctive

Raman spectra with sharp features. However, the adoption of Raman spectra has

been hindered by the low rate of Raman scattering, interference from fluorescence,

and high spectrometer costs. This work demonstrates multivariate stastical methods

that enable fast Raman measurements, despite the low rate of Raman scattering.

These methods include a novel type of spectrometer, that uses computer-controlled

optical filters to efficiently capture Raman photons and multiplex them onto either

one or two photon counting detector(s). This method, referred to as optimal-binary

compressive detection (OB-CD), allows for the collection of chemical information

in 10’s of microseconds, rather than milliseconds as might be common for Raman

spectroscopy performed using a multichannel detector. A method for orthogonalizing

moderate amounts of fluorescence from Raman signal in OB-CD is presented. Fast

imaging, with speeds as high as 2.5 frames-per-second, is demonstrated and algorithms

for image denoising are discussed. Lastly, methods that enables Raman classification

using minimal computation time and a technique for accurately processing Raman

thermometry data are presented.
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1. INTRODUCTION

This work describes multivariate statistical methods that either enable microsec-

ond Raman spectroscopic measurements or efficiently convert Raman spectra into

low-dimensional chemical information. While this will, necessarily, require a discus-

sion of the mathematics needed to perform such tasks, an emphasis will also be given

to concerns more familiar to an analytical chemist. These include: applications to

chemical problems, effects of instrumentation, and practical concerns when handling

samples. It is my hope that this document can be a “starting-off point” for aspiring

chemometricians in the Ben-Amotz lab. While this text will avoid adding rigor-

ous descriptions of common spectral unmixing techniques; for instance, multivariate

curve resolution, it is hoped that seeing the application of such methods will inspire

graduate students to learn more about this exciting field. I highly recommend that

such students consult the book “Introduction to Multivariate Statistical Analysis in

Chemometrics” by Varmuza and Filzmoser as a reference on chemometrics. Readers

already familiar with such methods will hopefully be able to use this as a quick ref-

erence for my work in Raman spectral unmixing, classification, and optimal-binary

compressive detection filter generation.
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2. OPTIMAL-BINARY COMPRESSIVE DETECTION - OVERVIEW OF
ALGORITHM AND DESCRIPTION OF INSTRUMENTATION

2.1 Abstract

This chapter provides an summary of the optimal-binary compressive detection (OB-

CD) filter generation algorithm used to generate the binary filters used in OB-CD

Raman spectroscopy. Additionally, the spectrometers used to make OB-CD Raman

measurements in future chapters are described. The objective of this chapter is to

provide readers with a straight-forward description of the generation of OB-CD filters,

while referencing papers that provide a more in-depth discussion of this material.

2.2 Background

Raman scattering is a low-rate process when compared to other optical processes

such as fluorescence emission or infrared adsorption. As a consequence of this, it

can takes on the order of milliseconds (if not seconds) to collect Raman spectra of

signal-to-noise ratios (SNR) needed for many applications. This limitation hinders the

use of Raman spectroscopy in hyperspectral imaging and hinders the use of Raman

spectroscopy in applications where temporal resolution greater 1 ms in required (e.g.,

reaction kinetics monitoring). Fundamentally, this is due to the low SNR of fast

Raman measurements, which can be attributed to the low-rate of Raman scattering

(signal) and to the read noise of multichannel detectors (noise), typically a charged

couple device (CCD) camera or a complimentary metal-oxide semiconductor (CMOS)

camera. Other strategies to improve the SNR of fast Raman measurements include

increasing the rate of Raman scattering, such as by using surface-enhanced Raman

scattering (SERS) substrates. Unfortunately, many analysis types are not amenable
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to use of SERS particles (such as the real-time monitoring of pharmaceuticals), finding

an appropriate SERS particle for an analyte can prove difficult, and, empirically, the

SERS effect can prove difficult to repeatably implement (as per anecdotes in the Ben-

Amotz lab). Other strategies for increasing signal include using a high power laser,

which can prove troublesome for samples that are sensitive to heating or burning,

and the use of an excitation laser with a visible wavelength (since Raman scattering

scales with the reciprocal of λ4), which unfortunately causes many samples to exhibit

fluorescent emission.

This then leads one to consider ways to reduce detector read noise. One method

to reduce detector read noise is cooling the CCD or CMOS chip. This, unfortu-

nately, is already factored into the 1 ms minimum integration time considered above.

Moreover, CCD cameras have a read noise that increases with increased read times.

Electronic delays in commercial CCD cameras also limit the speed at which signal can

be collected from a CCD chip (in the experience of the Ben-Amotz lab, to hundreds

of microseconds). While CMOS cameras can be read quite quickly (and do not suffer

a read-speed dependent noise), they have low quantum efficiencies in the red and NIR

wavelengths. As a result, use of CMOS cameras are limited to the to applications

where an excitation laser with a visible wavelength can be used. As noted, the use

of such an excitation laser can lead to more frequently observing fluorescence in a

sample. If one considers fluorescence to be a source of noise (or a nuisance signal),

then avoiding visible excitation is necessary for many applications (as will be further

discussed in Chapter 3).

Given the above, an alternative, fast, low-noise Raman photon detection strategy

was developed. A summary of this strategy, referred to as OB-CD, is described below.

2.3 Overview of OB-CD Raman Spectroscopy

This section summarizes previous work [1], [2], [3] done by a variety of graduate

students in the Ben-Amotz lab, notably David Wilcox, in collaboration with Brad
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Lucier and Gregory Buzzard. This section is intended to familiarize readers with the

OB-CD filter generation algorithm; please see the cited references for a more thorough

description and validation of OB-CD.

2.3.1 Model for Filter Generation

Assume that a Raman spectral analysis is performed where the identity (and

spectra) of all potential n chemicals is known. Let P be an i by j matrix, with each

column containing the area-normalized spectra of some n = 1...j number of known

chemicals, such that Pij represents the probability of a photon from chemical j falling

in energy bin i. Let Λ̄ be a j by 1 column-vector containing the scattering rate (in

photons per seconds) for a given measurement. Thus, any spectra in the sample under

analysis can be represented as P Λ̄.

The objective of the OB-CD algorithm is to build an i by j matrix of filters,

F , where Fij is the probability of a photon from chemical j landing on energy bin

i being transmitted to a single channel detector (here, we’ll assume that we will

build a number of filters equal to n, the number of chemical species in the system

under analysis). We, explicitly, do not assume that each filter in F will be applied

for an equal portion of the total measurement time, τ . Instead, the percentage of

measurement time each filter is applied for is represented as a matrix, T , where the

diagonal, Tjj, represents the portion of the measurement time each filter is applied (all

other components in T are 0). Making the assumption that the OB-CD spectrometer

will utilize a noise-free photon-counting detector, the Raman scattering rates for each

chemical in the system, Λ̂ are estimated from the number of photon counts through

each filter, x̂, in measurement time τ , using the following relationship:

Λ̂ = (F TP )−1τ−1T−1x̂
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For simplicity, let A = (F TP )−1 and BA = I, which makes it possible to rewrite

the above as:

Λ̂ = Bτ−1T−1x̂

To build “optimal” filters, the goal of the OB-CD filter generation algorithm is

build filters that minimize the error in the estimate of Λ̄. Explicitly, this corresponds

to a minimization of the following quantity:

E ‖ Λ̂− Bτ−1T−1x̂ ‖ 2

Minimizing the square of this quantity over all F is not computationally efficient.

Instead, this formula is manipulated into a more computationally tractable form.

Let ej denote a column vector whose jth entry is 1 and whose remaining entries

are 0. The jth component of x̂, xj = eTj x̂, can be shown to have a mean (and variance,

as it is a Poisson variable) of:

Tjje
T
j P Λ̄ = Tjj(AΛ̄)j

We then define the variable ε for the jth chemical under analysis to be:

εj =
xj

Tjj

− (AΛ̄)j

Thus, ε can be defined as:

ε = T−1x̂− AΛ̄
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Here, each jth entry of ε has a mean of 0 and a variance of T−1jj (AΛ̄)j. After some

rearrangement and with the relationship BA = I in mind, it can be shown that:

Bε = BT−1x̂− Λ̄

Where the ith entry in Bε,
∑

j bijεj, has a mean of 0 and and a variance of:

∑
i

b2ijV ar(εj) =
∑
j

b2ijT
−1
j j(AΛ̄)j

This equation describes the variance of a Poisson count variable, x̂, and is equal to

the square error in the estimate of Λ̄ that we’re trying to minimize. While this is very

useful in its own right, its also worth noting that this minimization can be performed

over some limited set of n. This is a fact that will be exploited when minimizing

the error in the estimates of a subset of chemicals in the training set, P , as further

described in Chapter 3.

Taking the equation above, setting it equal to E ‖ Λ̂−Bτ−1T−1x̂ ‖ 2, and summing

over all i nets the following relationship:

E ‖ Λ̂− Bτ−1T−1x̂ ‖ 2 =
∑
i

∑
j

b2ijT
−1
j j(AΛ̄)j

∑
i

∑
j

b2ijT
−1
j j(AΛ̄)j =

∑
j

T−1j j(AΛ̄)j
∑
i

b2ij =
∑
j

1

Tjj

(AΛ̄)j‖Bej‖2

Note that this equation depends on both B and T , both of which are matrices

that need to be solved for. For a fixed B and Λ̄, T can be solved for using the Cauchy-

Schwarz inequality. This is done by solving for a scaling factor, a, that solves for the
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equality of spaces. This method is much further expanded on in previous work by

Buzzard and Lucier [3]. Using this equality, it can be shown:

Tii =
‖Bei‖

√
(AΛ̄)i∑

j‖Bej‖
√

(AΛ̄)j

Given this definition of T , it possible to make an initial “guess” of T for a fixed

B. To do so, F is assumed to initially be equal to P . This allows T , and therefor B,

to be solved for. However, once a B (and therefor, F ) is solved for, T will again be

calculated.

To solve for B, we use the definition of Tii above as well as the equality E ‖ Λ̂−
Bτ−1T−1x̂ ‖ 2 =

∑
j

1
Tjj

(AΛ̄)j‖Bej‖2 to find that:

E ‖ Λ̂− Bτ−1T−1x̂ ‖ 2 = (
∑
i

‖Bei‖
√

(AΛ̄)i)
2

Note that objective of this algorithm is to solve for the minimum of both sides

of the equality. Since the right side of the equality is going to be solved for and we

assume non-negativity in F , P , and Λ̄, it is possible to solve for the value itself rather

than its square.

As demonstrated in [3], minimizing this quantity results in optimal filters that can

be expressed as binary, or nearly-binary, with at most n − 1 non-binary entries. In

practice, the non-binary entries are rounded to be binary. Hence, the filters generated

are described as optimal (or nearly-optimal) binary compressive filters.

Minimizing this quantity is done by scaling rows of A, rather than empirically

solving over all F . While this problem should be computationally difficult to solve

for a number of reasons (e.g., it is non-linear and non-convex), it has been empirically

found that this quantity can be minimized in seconds to minutes (depending on the

value of n) algorithmically using a linear programming function for n ≤ 20.
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Once A (and therefor, F ) have been solved for, B is calculated using generalized

least squares (GLS). If D is defined as the diagonal entries of AΛ, then an optimal B

can be solved for as:

B = (ATD−1TA)−1ATD−1

Once this B is solved for, T is recalculated, followed by Boptmal (in other words,

the GLS for B is rerun, not the entire algorithm). All of this calculations have been

written as Matlab script, as described in [1].

2.4 OB-CD Raman Spectrometers

The OB-CD spectrometers used in Chapter 3 are described here. Each system

is described further detail in [2] (for the system with the 785 nm excitation laser)

and [4] (for the system with the 514 nm excitation laser).

2.4.1 OB-CD Spectrometer with 785 nm Excitation Laser

An OB-CD spectrometer using a 785 nm laser for excitation whose schematic is

shown in Fig. 1 is shown below. Note that this schematic is not drawn to optical

scale. This microscope is configured to collect the backscattered Raman signal with

the same objective lens that is used to focus the laser (Innovative Photonic Solu-

tions 100 mW) onto the sample. The laser passes through a laser-line bandpass filer

(Semrock LL01-785-12.5) before it is focused onto the sample using a microscope

objective (Olympus, LMPlan, IR, 20x, 0.4 NA), and unless indicated otherwise the

laser power at the sample was about 85 mW.. The backscattered light is collected and

then separated from the laser Rayleigh scattering using a dichroic mirror (Semrock

LPD01-785RS-25) and a 785 nm notch filter (Semrock, NF03-785E-25). Then, the

Raman scattered light is sent to the spectrometer (right portion of Fig. 1), where
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it is filtered first using a 900 nm shortpass filter (Thorlabs, FES0900), followed by

passing through a volume holographic grating (Edmund Optics, ∼1200 lines mm
−1,

center wavelength 830 nm). This light is then dispersed onto the DMD (Texas In-

struments, DLP D400, 1080 × 1920 mirror array with 13.4 μm mirror pitch). The

spectral window in this system is ∼200–1700 cm−1. For all data collected in this

paper, we binned fifteen columns of adjacent DMD mirrors together, yielding a to-

tal of 128 “bins” with each energy bin corresponding to ∼30 cm−1. Light from the

DMD is then focused onto a photon-counting avalanche photodiode (APD) module

(PerkinElmer, SPCMD2969PE) with a dark count rate of ∼200 photons s−1. TTL

pulses from the APD are counted using a USB data acquisition (DAQ) card (Na-

tional Instruments, USB-6212BNC). The system is controlled with interface software

written in Labview 2013. Binary filter generation is performed as described above in

algorithm written in Matlab (Matlab 7.13 R2011b).

2.4.2 OB-CD Spectrometer with 514 nm Excitation Laser

An OB-CD spectrometer using a 514 nm laser for excitation whose schematic is

shown in Fig. 2 is shown below. Much like the previously described system, our micro-

scope is configured to collect the backscattered Raman signal with the same objective

lens that is used to focus the argon ion laser (Modu Laser Stellar Pro L 100 mW)

onto the sample. The laser passes through a laser-line bandpass filer (Semrock Ra-

zorEdge) before it is focused onto the sample using a microscope objective (Nikon

MPlan, 20x, 0.4 NA), and unless indicated otherwise the laser power at the sample

was about 12 mW. The backscattered light is collected and then separated from the

laser Rayleigh scattering using a dichroic mirror (Semrock RazorEdge). Then, the

Raman scattered light is sent to the spectrometer (right portion of Fig. 2), where it

is filtered first using a long pass (edge) filter (Semrock RazorEdge), followed by pass-

ing through a volume holographic grating (Wasatch Photonics, ∼1000 lines mm
−1).
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Figure 2.1. Schematic of the OB-CD Raman system based upon a
785 nm laser excitation source.

This light is then dispersed onto the DMD (Texas Instruments, DLP3000, 608× 684

mirror array with 10.8 μm mirror pitch). The spectral window in this system is ∼200–
4100 cm−1. For all data collected in this paper, we binned two columns of adjacent

DMD mirrors together, yielding a total of 342 “bins” with each energy bin corre-

sponding to ∼12 cm−1. Light from the DMD is then focused onto a photon-counting

photomultiplier tube (PMT) (Hamamatsu model #H10682-01) with a dark count rate

of ∼500 photons s−1. TTL pulses from the PMT are counted using a USB data acqui-

sition (DAQ) card (National Instruments, USB-6212BNC). The system is controlled

with interface software written in Labview 2013. As above, binary filter generation

is performed as described above in algorithm written in Matlab (Matlab 7.13 R2011b).
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Figure 2.2. Schematic of the OB-CD Raman system based upon a
514 nm laser excitation source.

2.5 Conclusion

This chapter provides an overview of the OB-CD filter generation algorithm and

a summary of the OB-CD spectrometers used to generate data in future chapters.

While not exhaustive, this chapter also provides readers references for more thorough

descriptions of the OB-CD algorithm and spectrometers.
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3. FLUORESCENCE MITIGATION IN OB-CD

3.1 Abstract

The recently-developed optimized binary compressive detection (OB-CD) strategy

has been shown to be capable of using Raman spectral signatures to rapidly classify

and quantify liquid samples and to image solid samples. Here I demonstrate that

OB-CD can also be used to quantitatively separate Raman and fluorescence features,

and thus facilitate Raman-based chemical analyses in the presence of fluorescence

background. I describe a general strategy for fitting and suppressing fluorescence

background using OB-CD filters trained on third-degree Bernstein polynomials. I

present results that demonstrate the utility of this strategy by comparing classifi-

cation and quantitation results obtained from liquids and powdered mixtures, both

with and without fluorescence. These results demonstrate high-speed Raman-based

quantitation in the presence of moderate fluorescence. Moreover, I show that this

OB-CD based method is effective in suppressing fluorescence of variable shape, as

well as fluorescence that changes during the measurement process, as a result of pho-

tobleaching.

3.2 Background

Current spectroscopic chemical analysis instruments are capable of generating

very large data sets. However, to derive information from this data, it is often nec-

essary to transform the data to a lower-dimensional space, using methods such as

principal component analysis (PCA) [5] or partial-least squares (PLS) [6] to facilitate

subsequent chemical classification and quantitation. Moreover, because the collection

of high-dimensional data is often the slowest step in the process, a number of com-



13

pressive detection strategies [7–11] have been introduced with the goal of increasing

data collection speed by making measurements only in the low-dimensional space

containing the information of interest. One such method is the previously described

optimized binary compressive detection (OB-CD) strategy, in which OB filters are

applied to a digital mirror microarray (DMD) to redirect or collect photons of (mul-

tiple) selected colors, for detection using a single channel detector, such as a photon

counting photomultiplier tube (PMT) or an avalanche photodiode (APD) [1, 2].

Previously [1–3], it was demonstrated that the OB-CD strategy enabled high-speed

chemical classification, quantitation, and imaging. Here I demonstrate an extension

of the OB-CD method that facilitates Raman classification and quantitation in the

presence of a fluorescence background. The key advantages of this method, relative

to conventional fluorescence subtraction strategies [12–17], include its compatibility

with automated high-speed chemical analysis in the presence of variable fluorescence

backgrounds and compatibility with OB-CD spectroscopic instrumentation. Here

I show that fluorescence backgrounds may be quantified and subtracted on-the-fly

by including Bernstein polynomial spectral functions in the OB-CD training set,

along with Raman spectra of the components of interest. In other words, I augment

the Raman spectral training set with Bernstein polynomial spectral shapes to model

fluorescence and thus obtain OB-CD filters that are used to quantify both the chemical

components of interest and the fluorescence background spectra.

3.2.1 Nuisance Parameters

It often happens that the photon emission rates of some chemical species are

of more interest than others. One might have a contaminant with a broad (known)

spectrum; while this may be one of the chemical species Sj, the accuracy of estimation

of that particular Λj is unimportant. In the field of Optimal Design of Experiments,

such variables Λj are known as nuisance parameters: They are a necessary part of the
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model, but the accuracy of their estimates is unimportant except insofar as it affects

the estimates of the other variables [18].

It is assumed that there are only n′ < n chemical species whose photon emission

rates are of interest. For such systems, the variances of the estimates of Λj for

n′ < j ≤ n are not of interest and so instead of performing the minimization shown

in Chapter 2, the sum of the variances of the estimates of only the first n′ emission

rates are minimized:

n′∑
j=1

E
(|(BT−1x̂)j − Λ̄j|2

)
=

n′∑
j=1

m∑
k=1

b2jkT
−1
kk (F

TP Λ̄)k

In effect, Λj is estimated for n′ < j ≤ n only well enough to minimize the error of

the sum of variances of the first n′ emission rates.

3.2.2 Estimating Fluorescence Using Bernstein Polynomials

A fluorescent spectrum is generally smooth and broad, in contrast to the narrow

peaks found in Raman spectra; it may vary from one sample to another, or from time

to time for the same sample.

One can reduce the amount of fluorescence in a sample by photobleaching the

sample prior to analysis [19]. Another commonly-used procedures for subtracting

such fluorescence backgrounds from Raman spectra is to fit the fluorescent spectrum

to a polynomial [12,13]; in effect, this amounts to using a fixed polynomial of specified

degree to model a fluorescent spectrum. This may work well if in a set of samples the

fluorescence doesn’t vary over space or time; this is often not the case, however, in

Raman (and particularly Raman imaging) applications, for which one must estimate

the shape of the fluorescence dynamically.

Instead of somehow applying conventional fluorescence fitting and subtraction

strategies to OB-CD measurements, I use OB-CD filters that are derived using either
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actual fluorescence spectra of known shape or a family of polynomials that models

general fluorescence spectra.

More specifically, if the sample of interest contains a fixed fluorescent signal of

known shape, the fluorescence spectrum is simply added as an extra column of P

with associated rate variable Λj, and then treat Λj as a nuisance parameter, not

adding its variance to the sum of variances being minimized.

If the fluorescence has a spectrum that varies over space or time, however, the

previous procedure cannot be applied and must model the fluorescence dynamically,

as follows.

Since fluorescence backgrounds can often be fit reasonably well by a cubic poly-

nomial, there should be a polynomial basis for cubic polynomials such that (1) all

basis elements are nonnegative on [0, 1] and (2) every nonnegative polynomial can be

written as a linear combination of the basis elements with nonnegative coefficients.

Note that negative coefficients, which are supposed to model rates, are nonphysical

and increase the variance of our estimates. Unfortunately, for r > 1, no such basis

exists.

Of interest, however, is the Bernstein basis [18, 20] of polynomials of degree r,

given by:

Bν,r(x) =

(
r

ν

)
xν(1− x)r−ν , ν = 0, 1, . . . , r,

These polynomials are nonnegative on [0, 1] (so any linear combination of them

with nonnegative coefficients is nonnegative on [0, 1]). They have other nice proper-

ties: They form a basis for the space of polynomials of degree r; they have optimal

stability is some sense [18]; and “many” if not “most” nonnegative polynomials that

come up in practice as models for fluorescent spectra have nonnegative coefficients in

the Bernstein basis (or at least, any negative coefficients are not “overly” large). The

Bernstein polynomials even resemble single-peak spectra.
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In the specific case r = 3 the Bernstein polynomials appear as B0,3(x) = (1− x)3,

B1,3(x) = 3x(1 − x)2, B2,3(x) = 3x2(1 − x), B3,3(x) = x3. These polynomials are

shown in Fig. 1.
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Figure 3.1. Plot of the four degree-three Bernstein polynomials as a
function of wavelength channel (scaled to be over the interval [0, 1].)
The colors denote the various polynomials: black, B3,0(x); blue,
B3,1(x); green, B3,2(x); and red, B3,3(x).

In this work, fluorescence in Raman spectra is modeled with linear combinations

of Bν,3(x), ν = 0, 1, 2, 3, and the Bernstein coefficients are often treated as nuisance

parameters. Because fluorescent spectra are not precisely polynomials, this introduces

model error, which I discuss in the Results and Discussion section. We have also found

that for some purposes using quartic polynomials (r = 4) gives more accurate results.

3.3 Methods and Materials

The following sections describes the methods and materials used in these experi-

ments.
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3.3.1 OB-CD Spectrometers

The instruments used in this work are described in Chapter 2. Note that the data

from these instruments was further processed using Igor Pro version 6.04.

3.3.2 Chemicals Used in Classification/Quantitation

Acetone and benzene were purchased from Macron (batch #0000070736) and Om-

niSolv (lot #42282), respectively. Hexanes were acquired from Baxter (lot #901141).

Methylcyclohexane was acquired from Mallinckroft (lot #1906 KCBN). Aniline and

toluene were acquired from Aldrich (batch #05925CB) and Mallinckroft (lot #8608

X14752), respectively. Aniline was purified via distillation by heating aniline to 190◦ C

in a round bottom flask, which was connected to a chilled condenser. Ethanol was ac-

quired from Koptec (200 Proof, lot #225411) and water was ultra-purified in our lab

(Milli-Q UF Plus, 18.2 mΩ cm, Millipore). The overhead transparency was 3M brand

(model #PP2500).

3.4 Results and Discussion

Here I demonstrate how the OB-CD detection strategy is influenced by whether

the photon emission rates of some of the spectra used for training OB-CD filters

are treated as nuisance parameters. Such spectra are designated as nuisance spectra.

To show this, I generated an OB-CD training set containing the spectra of hexane,

methylcyclohexane, a spectral feature arising from the NIR objective in the 785 nm

OB-CD system, and the four Bernstein polynomials shown in Fig. 1. Using this

training set, I calculated two sets of OB-CD filters (explicitly, both the matrix of

binary filters, F , the measurement time matrix, T , and the the left-inverse of dot

product of the normalized spectra, P , and the transpose of F , which is designated

B). One set of filters was generated in which no spectral features were considered to

be nuisance spectra and a second set of filters was generated in which the spectral

feature arising from the NIR objective and the Bernstein polynomials were considered
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to be nuisance spectra. The binary filters turned out to be identical in both cases

(although that need not in general be the case), while the measurement time matrices,

T , were quite different as shown in Fig. 2. Notice that the binary filters with significant

overlap with the NIR objective and the Bernstein polynomials peaks trained assuming

no spectra are nuisance spectra are turned on for longer percentages of the total

measurement time relative to OB-CD filters for the same spectral components when

no portion of the training set is considered a nuisance spectra.

One might expect that additional time spent measuring the non-nuisance spectra

would result in lower variance in the recovered Raman rates for these components. To

test this, the two sets of OB-CD filters (and the associated measurement time matri-

ces) shown in Fig. 2 were used to classify hexane and methylcyclohexane (explicitly,

there was no added fluorescence in these samples despite including Bernstein polyno-

mials in both OB-CD training sets). Each chemical was measured using each of the

sets of OB-CD filters for 1,000 measurement with 10 ms total integration time. The

results of these measurements, shown in Fig. 3, clearly reveal the reduced variance

(smaller 95% confidence bands) obtained when treating only the two components of

interest as non-nuisance spectra. Note that the mean recovered Raman rates for hex-

ane and methylcyclohexane (the centers of the ellipses in Fig 3) generated from both

sets of OB-CD filters differed very little.

3.4.1 Validation of Bernstein Polynomials

To test and validate this OB-CD fluorescence suppression strategy, I used both a

white light source to simulate fluorescence and samples containing fluorescent com-

ponents. The results described in the section below were obtained using a white light

illuminator as a convenient fluorescence mimic, as its intensity can readily be var-

ied, and its shape resembles typical fluorescence backgrounds. It also has a different

shape in the 514 nm and 785 nm spectral region, which is useful in confirming our

fluorescence mitigation strategy is appropriate for multiple fluorescent peak shapes.
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Figure 3.2. The colored curves are training spectra (each normalized
to unit area) and the gray bands indicate regions in which the OB-
CD filters are on (i.e., direct light towards the detector). The Raman
spectra were obtained with a spectral resolution of 30 cm−1. The
lines labeled Tkk correspond to the fraction of the total measurement
time that data is collected using the filter associated with each spec-
tral component (denoted by color). The OB-CD filter and Tkk results
on the left were obtained without considering any components to be
nuisance spectra, while those on the right were obtained when con-
sidering the NIR objective and Bernstein polynomials to be nuisance
spectra.

In subsequent subsections, I describe results obtained using samples with fluorescent

impurities, rather than white light, to validate our OB-CD strategy. Here I produced

OB-CD filters by training using Bernstein polynomials as well as the Raman spectra

of n-hexane and methycyclohexane (and a spectral component arising from the NIR
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Figure 3.3. Recovered Raman rates for hexane (blue) and methyly-
clohexane (red) generated using OB-CD filters that considered com-
ponents of the training set to be nuisance spectra (dark blue and dark
red) and OB-CD filters that considered the spectral component aris-
ing from the NIR objective and the four Bernstein polynomials to be
nuisance spectra (light blue and light red). In all cases, 1,000 OB-
CD measurements were taken with a total integration time of 10 ms.
The ellipses represent the 95% confidence interval of the recovered
Rates for each sample. The large markers in the center of each ellipse
represent the mean recovered Raman rates.

objective for the 785 nm system). I treat the coefficients of the Bernstein polynomials

and the spectral component arising from the NIR objective for the 785 nm system as

nuisance parameters. The resulting filters and training spectra from the 785 nm sys-

tem are virtually identical to those shown in Fig. 2 (and are provided in the Appendix

1, along with the filters generated for the 514 nm OB-CD system).

The following results were obtained by holding the white light at constant inten-

sity (of about 4 million counts per second) such that the total Raman/fluorescence

signal intensity never exceeds 5 million counts per second (the limit of linearity for

the APD in the 785 nm excitation system). Then, I varied the Raman excitation laser

intensity (using neutral density filters) in order to vary the relative amount of Raman
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and fluorescence in the measured spectra and OB-CD signals, and thus determine

how the relative fluorescence background to Raman intensity ratio influenced our the

recovery of apparent Raman rates using OB-CD.
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Figure 3.4. Plot of hexane (blue) and methylcyclohexane (red) recov-
ered Raman rates measured without added white light versus recov-
ered Raman rates measured with added white light on the (a) 785 nm
laser excitation system and (b) 514 nm laser excitation system. Rates
have each been corrected by removing a small constant vertical offset
(modeling error) whose magnitude was determined by measuring the
apparent recovered Raman rates obtained in measurements performed
on white light without Raman. The magnitude of this correction is
represented by the colored bars in the upper left of each plot. Each
point represents the means of 1,000 measurements (each obtained us-
ing a 30 ms total integration time) with error bars representing 1
standard deviation. Top axis denotes the ratio of the total (inte-
grated) number of the white light/Raman photons. The inset spectra
were obtained from hexane with and without added white light with
∼1 OD neutral density filter and correspond to measurements made
at the points denoted by the arrows.

At each Raman signal intensity, estimated Raman scattering rates were recovered

using from OB-CD measurements as described in Chapter 2, both with and without

the white light background. This allowed for the determination of the error in recov-

ered Raman rates as a result of adding fluorescent (white light) background. Fig. 4
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compares the Raman rates recovered with (y-axis) and without (x-axis) added white

light when using 30 ms total integration time for each measurement. The number

at the top indicates the ratio of the integrated area of the fluorescence and Raman

signals and the error bars represent the standard deviations of the Raman rates for

each component.

If the fluorescence is not perfectly modeled, then the recovered Raman rates can

contain a systematic modeling error whose magnitude increases with fluorescent inten-

sity. When using a constant intensity white light to model fluorescence such modeling

error introduces an approximately constant offset to the recovered Raman rates. The

magnitude of this offset can be determined by measuring the apparent recovered rates

of the Raman components obtained when measuring only white light (containing no

Raman photons). For the measurements shown in Fig. 4, these modeling errors were

relatively small and have magnitudes indicated by the bars in the upper left of each

plot. These modeling errors have been subtracted from each of the points in Fig. 4.

In other words, before correcting for this modeling error, all of the recovered Raman

rates were slightly offset from the dashed diagonal line (of slope 1).

If the spectrum of white light was modeled perfectly by a degree-three polynomial

(or was corrected for modeling error, as described above), the mean recovered Raman

rates for samples with added white light would be expected to not significantly differ

from the mean recovered Raman scattering rates without added white light. In other

words, it would be expected that the points would lie on a line with slope one, which

are indicated by the dashed lines in Fig. 4. The agreement between the points and

dashed line in Fig. 4 clearly demonstrate that Raman components can be quantified

accurately in the presence of fluorescence backgrounds whose integrated intensity is

up to 20 times that of the Raman component of interest. Note that the factor of 20 is

obtained from the results shown in Fig. 4, as this is when the Raman signal-to-noise

approaches 1:1.

Samples with larger fluorescence/Raman intensity ratios can in principle be ac-

curately analyzed using OB-CD with longer measurement times. However, when the
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integration time approaches one second it may be appropriate to use conventional

full spectral measurements and fluorescence subtraction procedures as the OB-CD

strategy is primarily advantageous for performing high speed (or low light level) mea-

surements that are not compatible with CCD detection. Additionally, performing

OB-CD measurements on samples in which fluorescence is more than 20 times as in-

tense as the Raman signal of interest would require careful modeling error correction

(as the modeling error would become large relative to the Raman intensities). These

results demonstrate the accuracy with which high speed OB-CD Raman classification

and quantitative measurements may be performed without correcting for model error

so long as the fluorescence background intensity does not exceed 20 times the Raman

signal intensity.

3.4.2 Raman Quantitation and Classification of Fluorescent Samples

3.4.2.1 Toluene and Fluorescent Aniline

The following results were obtained using liquid mixtures of toluene and an

aniline sample that was partially oxidized and, as a result, developed a fluorescent

impurity that could be removed by distillation. We selected these two liquids because

of their significant spectral overlap (the dot product of the two normalized spectral

vectors is 0.91) and thus successful classification of aniline/toluene mixtures may be

used to demonstrate that our fluorescent mitigation strategy is compatible with the

Raman-based quantification of mixtures of spectrally similar chemicals.

I trained OB-CD filters using 785 nm spectra obtained from distilled aniline,

toluene, the NIR objective spectrum describe above, as well as the four Bernstein

polynomials shown in Fig. 1 (all of the resulting spectra and OB-CD filter functions

are given in the Appendix 1). For this experiment, the spectral component arising

from the NIR objective and the four Bernstein polynomials are treated as nuisance

spectra. We used OB-CD to recover Raman rates for toluene, distilled aniline, fluores-
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cent aniline, and mixtures of both types of aniline and toluene. Using these recovered

Raman rates, I calculated apparent volume fractions of aniline and toluene as follows:

χi =
wiΛ̂i∑
i wiΛ̂i

,

where wi is equal to Mi/Λ̂
Max
i , Mi is equal to molarity of the ith pure liquid, and

Λ̂Max
i is equal to the mean recovered Raman scattering rate for the ith pure liquid

as previously reported [2]. I then estimated the apparent volume fraction, (Φ), for

aniline and toluene in each sample. We did this by dividing the apparent mole fraction

(for either aniline or toluene) by the molarity of each pure liquid as follows:

Φi =
Miχi∑
i Miχi

.

Fig. 5 plots the resulting apparent volume fractions of toluene and aniline as well

as mixtures of the two. The results in Fig. 5 demonstrate that the mean recovered

Raman rates are insensitive to the fluorescence arising from the impure aniline sam-

ple. The variance of the measurements without fluorescence, however, is less than

the variance of samples with fluorescence (as a result of additional shot noise in the

latter measurements).

3.4.2.2 Aqueous Ethanol and Fluorescent Tequila

Previous work [21, 22] has demonstrated that Raman spectroscopy can be used

to quantify the volume percentage of ethanol in tequila samples and qualitatively

distinguish distilled (“silver”) and highly fluorescent, aged (or “golden”) tequilas,

even in the presence of fluorescence, which is more common in aged, so-called “golden”

tequila. Here I show that our OB-CD fluorescence mitigation strategy can be used
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Figure 3.5. (a) Spectra of distilled aniline (orange), toluene (ma-
genta), fluorescent aniline (green), a 47:53 volume-by-volume mixture
of distilled aniline and toluene (dark green), and a 52:48 mixture of
fluorescent aniline and toluene (cyan) measured on the 785 nm OB-
CD system. (b) Apparent volume fractions of distilled aniline (or-
ange), toluene (magenta), fluorescent aniline (green), a 47:53 volume-
by-volume mixture of distilled aniline and toluene (dark green), and
a 52:48 mixture of fluorescent aniline and toluene (cyan). Each chem-
ical was sampled 1,000 times at 20 ms per experiment. Ellipses cor-
respond to the 95% confidence interval of the recovered rates for each
sample. The large squares with black borders in the center of each
ellipse represent the mean of each sample.

to quantify the volume percentage of ethanol in tequila, even for “golden” tequila

samples at speeds much greater than those previously reported for this application.

I used the 514 nm laser-based OB-CD system for these studies as the C-H and O-H

stretch vibrational bands are not readily detectable using the 785 nm system. Spectra

were collected and OB-CD filters were trained using ethanol, water, and Bernstein

polynomials (as shown in the Appendix 1). Note that the four Bernstein polynomials

were treated as nuisance spectra for OB-CD filter generation. After this, OB-CD

was used to recover Raman scattering rates for ethanol and water in a silver tequila

(“Arandas” brand) and a golden tequila (“Casamigos” brand). The corresponding

apparent volume fractions were obtained from the recovered rates as shown in Fig. 6.
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In order to keep the fluorescence photon rates within the linear regime of the PMT

detector (below 5 million counts per second), the laser intensity at the sample was

reduced to ∼2 mW using a neutral density filter placed in front of excitation laser

and the integration time per sample was increased to 100 ms.
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Figure 3.6. (a) Spectra of water (blue), ethanol (red), Arandas brand
silver tequila (gray), and Casamigos brand golden tequila (dark yel-
low) measured on the 514 nm OB-CD system (b) Apparent volume
fractions of water (blue), ethanol (red), silver tequila (gray), and
golden tequila (dark yellow) are compared with the nominal volume
fractions (as obtained from the label on the tequila bottles). Each
chemical was sampled 1,000 times at 100 ms per OB-CD measure-
ment. Ellipses correspond to the 95% confidence interval of the recov-
ered rates for each sample. Large squares with black borders represent
the mean of each sample. The dashed line corresponds to line with
slope −1. Inset table reports the mean apparent volume fraction of
ethanol (plus/minus 1 standard deviation) for each sample and then,
parenthetically, the label ethanol volume percentage for each sample.

The inset table in Fig. 6(b) shows the mean apparent ethanol volume fractions

obtained in a measurement times of 100 ms and, parenthetically, the label volume

percent ethanol for each sample. As can be seen, our predicted volume percentages

of ethanol very nearly match the label percentage. However, the variance of the
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fluorescent “golden” tequila measurements is much greater than that of the “silver”

tequila measurements due to the increased shot noise resulting from the fluorescent

background. In spite of this, it should be noted that by using OB-CD, it is possible

to accurately predict the volume percentage of ethanol in tequila samples even when

the integrated intensity of the fluorescence of the sample is 20 times larger than the

integrated Raman signal. Since the signal-to-noise of such measurements is typically

limited by photon (shot) noise rather than read noise, the total time required to

obtain a given precision depends on the available laser power and thus is expected

to be comparable to that obtained using full spectral measurements (under otherwise

identical conditions).

3.4.2.3 Fluorescent Plastic Film Photobleaching

Here I show an imaging application of our OB-CD fluorescence modeling tech-

nique to demonstrate that the recovery of Raman scattering rates is unaffected by

fluorescence photobleaching. For this purpose, I used a clear, overhead transparency

(a type of plastic film) of ∼1.7 mm thickness. This sample was chosen as it was

found to contain both Raman and fluorescence signals when excited at 785 nm and

the fluorescence could be very quickly photobleached by exposure to the excitation

laser at full power. Additionally, the film exhibited fluorescence with an integrated

intensity 10 times that of the integrated intensity Raman features.

While photobleaching decreased the fluorescence background intensity of the sam-

ple by ∼50%, the remaining fluorescence could not readily be further photobleached.

Thus, for OB-CD training purposes, I generated a Raman spectrum of the plastic

by manually performing a polynomial background subtraction from a spectrum of

photobleached plastic in the 328 nm−1 to 2057 nm−1 region. More specifically, the

polynomial subtraction was performed using the “backcor” MATLAB algorithm (Vin-

cent Mazet, 2010), using an Asymmetric Huber cost function, a threshold of 0.01, and

four third-degree Bernstein polynomials as a basis. The resulting background sub-
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tracted Raman spectrum, as well as the spectra of the overhead transparency before

and after photobleaching are shown in Fig. 7.
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Figure 3.7. The measured spectra of a cellulose acetate overhead
transparency are plotted before photobleaching (red) and after 20
minutes of photobleaching (green). The output of the polynomial
baseline subtraction is also plotted (blue).

Next, OB-CD filters were calculated by training on the fluorescence-subtracted

Raman features of the plastic film, the spectral component arising from the NIR

objective, and the four third-degree Bernstein polynomials (and the resulting training

spectra are provided in Appendix 1). Note that unlike the filters constructed for

previous examples, no components were considered nuisance spectra when calculating

OB-CD filters, as I wanted to accurately estimate the intensity of the fluorescence

before and after photobleaching. Using these filters, a 200 pixel× 200 pixel region of

the plastic film (approximately 1 mm× 1 mm) was imaged with an integration time

of 10 ms per pixel. Once this image was collected, two lines were photobleached in

the transparency to form a photobleached “+” pattern near the center of the field of

view (as shown in Fig. 10). Each line, consisting of 50 pixels, was photobleached for

10 minutes by scanning the laser repeatedly over the “+” pattern at a rate of 1 second
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per pixel. After photobleaching, the same field of view was reimaged and OB-CD was

used to recover the Raman and fluorescence rates. Images were generated using the

recovered rates using a method that was previously described [2]. The fluorescence

intensity in this image, was determined from the sum of the recovered rates for all

four Bernstein polynomials. Note that several spots on the plastic film were highly

fluorescent (likely due to a fluorescent impurity, or dust particle, in the film), with

counts well outside the linear region of the PMT and a fluorescence background

intensity much greater than 20 times the average Raman signal. These pixels also

had unusually high recovered apparent Raman rates, which I attributed to model

error. These points were removed from the image, as indicated by black dots in the

images shown in Fig. 8.

The upper two panels in Fig. 8 show the apparent recovered Raman rates before

(left) and after (right) photobleaching, while the lower two panels show the corre-

sponding apparent recovered fluorescence rates. Note that there is no evidence of

a “+” pattern in the upper right panel; this indicates that photobleaching did not

alter the apparent recovered Raman rates obtained from the film. There was a small

(∼10%) decrease in average fluorescence intensity after photobleaching. I attributed

this to the photobleaching that occurred while scanning the laser over the entire re-

gion during the OB-CD measurement. The similarity of the two upper images in

Fig. 9 clearly demonstrates that it possible to obtain high-speed Raman intensity

measurements using OB-CD filters in the presence of a fluorescent background with

variable intensity.
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Figure 3.8. Images showing the recovered Raman (yellow) and fluores-
cence (cyan) rates of a cellulose acetate overhead transparency before
(images on the left) and after (images on the right) photobleaching
a “+” pattern into the center of the imaged area. All images were
collected with an integration time of 10 ms per pixel. The circular
nature of these images arises from the field of view of the objective,
as the images were obtained by raster-scanning the angle of the laser
as it enters the back of the objective (while remaining centered in the
objective).

3.5 Conclusion

I have demonstrated an OB-CD fluorescence mitigation strategy that can be used

to accurately recover Raman rates from samples with moderate fluorescence inten-

sity (that is, up to 20 times more intense than that of the integrated Raman signal).
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These results were achieved by quantifying fluorescence using OB-CD filters trained

on cubic Bernstein polynomials. I have validated this strategy using both white light

as a fluorescence mimic, as well as using fluorescent liquid and solid samples. The

present results demonstrate the feasibility of fast (sub-second) OB-CD based Raman

classification and quantitation of moderately fluorescent samples. This approach can

be extended to systems with a fluorescence/Raman intensity ratios greater than 20:1,

but would likely require turning down the laser intensity (to avoid detector satura-

tion) and using much longer integration times. Thus, the presented OB-CD strategy

is expected to be most useful in applications requiring fast analysis of liquid and

solid samples whose fluorescence does not overwhelm the underlying Raman chem-

ical fingerprints. This is consistent with previous results [3], which indicated that

the trade-off between higher read-noise and higher spectral information content of

full-spectral CCD measurements relative to the OB-CD detection strategy would in-

dicate that OB-CD is most advantageous (relative to CCD measurements) in fast

(low-signal) applications that unaccessible to CCD-based measurements.
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4. BINARY-COMPLIMENTARY COMPRESSIVE FILTERS FOR RAMAN
SPECTROSCOPY

4.1 Abstract

The previously described optimal-binary compressive detection strategy has been

shown to enable fast Raman spectroscopic measurements for systems containing a

small number of chemical components. However, during data collection, only a frac-

tion of the scattered photons are transmitted through each OB-CD filter. Thus, a

large percentage of photons are not detected during the OB-CD measurement process.

Here I show an alternative binary compressive filter strategy and a novel compressive

spectrometer, wherein binary filters are generated in pairs, such that when one OB-

CD filter is applied to a digital micromirror device (DMD), the exact complement

of that of that filter is, itself, also a filter. As a result, all scattered photons are ei-

ther reflected positive 12 degrees or negative 12 degrees relative to the surface of the

DMD, where these photons are then detected by photon counting detectors. Using

this new spectrometer and filtering strategy, all of the scattered Raman photons are

measured for the entirety of the total measurement time. This new filtering strategy,

henceforth referred to as “OB-CD2”, is shown to result in approximately
√
2 lower

variance in the estimate of Raman scattering rates of chemicals when compared to

the original optimal-binary compressive detection strategy. Using OB-CD2, chemical

classification at speeds up to 3 μs per measurement and Raman imaging as fast 2.5

frames-per-second are demonstrated.
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4.2 Background

Raman spectroscopy takes advantage of the unique energies at which different

chemicals inelastically scatter light. This method can be useful in chemical classifi-

cation and quantitation. However, Raman spectroscopy is a relatively low scattering

rate process and, as a result, collecting a Raman spectra at an adequate signal-to-

noise takes seconds to minutes. As a result, it is difficult-to-impossible to extend Ra-

man spectroscopy to applications that require measurement times on the microsecond

time scale, such as chemical imaging or monitoring reaction kinetics. One strategy

that enables fast Raman measurements is multivariate optical filtering. These meth-

ods utilize a computer-controlled optical filter, such as a digital micromirror device

(DMD) [1] or liquid-crystal tunable filter (LCT) [23], to multiplex photons onto a

single channel detector. This is advantageous owing to the fast read times, low read

noise of single channel detectors when compared to multichannel detectors, such as

a charge-coupled device (CCD) camera. The previously described optimal-binary

compressive detection (OB-CD) photon collection strategy [1–4] is one example of a

multivariate optical filtering method.

OB-CD has been shown to enable fast Raman measurements for applications such

as fast liquid classification and fast imaging of mixtures of powders. It should be noted

that OB-CD is similar to a number of other previously described methods [7–11] in

that it utilizes a DMD to multiplex photons from different bins onto a single photon

counting detector. Where OB-CD differs from these other strategies is how the OB-

CD algorithm selects energy bins to multiplex, or in other words, how OB-CD optical

filters are generated. It has been previously shown that OB-CD filters outperform

filters built using total least squares (TLS) [1] and that OB-CD filters can be used to

classify ternary mixtures of xylenes at speeds up to 100 times faster than previously

described methods using a similar spectrometer design [2].

However, the OB-CD detection strategy may have difficulty operating at integra-

tion times on the order of microseconds. This is due to an optical inefficiency of

the OB-CD spectrometer: while Raman photons transmitted by an OB-CD filter are
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being measured, all other Raman photons are being sent to a photodump and, as a

result, are not detected. This is in contrast with a multichannel detector, such as a

charge-coupled device (CCD) camera, where all Raman photons would be measured

for the entirety of the total measurement time. To overcome this inefficiency, here I

present an alternative OB-CD filter generation algorithm. This new algorithm gen-

erates pairs of complimentary binary filters, such that when one filter is applied to

the DMD, its binary compliment is also a filter (and thus also applied to the DMD).

Photons transmitted by one filter can be collected by a photon-counting photodiode

as in OB-CD, while the photons that would be normally sent to a photodump are

instead collected by a second photon-counting photodiode as they also correspond to

photons transmitted through another filter. I refer to this filter generation strategy

as “OB-CD2”, which reflects that measurements are now being made on two photon-

counting photodiodes. Accordingly, a second photon-counting detector was installed

in an OB-CD spectrometer, which is described in Section 4.3.1.

4.2.1 Model for Binary-Complimentary Filter Generation

OB-CD2 is a derivative on OB-CD and, as a result, many of the assumptions

made in OB-CD filter generation hold true for OB-CD2. For a review of OB-CD

filter generation, please refer to Chapter 2. Here we will note assumptions made that

are shared in OB-CD and OB-CD2, though in limited detail, and highlight differences

between OB-CD and OB-CD2.

Let P be a matrix with each column containing the area-normalized spectra of

some n known chemicals and Λ̄ be a (column) vector of mean photon emission rates

of all chemical species under consideration. We assume that m independent mea-

surements are made and that in the kth measurement, the probability of detecting a

photon with energy falling in the ith bin is given by Fik, the ik-entry of the matrix of

filters F .
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As with OBCD, given the vector x̂ containing the empirical photon counts trans-

mitted through each filter in F , we estimate Λ̄ by the unbiased estimator Λ̂ =

Bτ−1T−1x̂, where T is a matrix whose diagonal is the percentage of the total measure-

ment each filter in F is applied, τ is the total measurement time, and B = (F TP )−1.

The objective of the OB-CD2 is to construct a matrix of filters that allows for the

estimation of Λ̄ by minimizing the determinant of the variance-covariance matrix of

Λ̂:

Q(B, T, F, Λ̄) = det(Bτ−1T−1diag(TF TP Λ̄)T−1τ−1BT )

Moreover, we also want to constrain F to consist of pairs of binary-complementary

filters, that is, the absolute difference between each entry in a pair of filters is 1 and

each entry in Fij is either 0 or 1. This formulation (for OB-CD2) corresponds to the

D-optimality criteria of experimental design, in contrast to the E-optimality criteria

considered in the setting of OB-CD, which minimizes the summation of eigenvalues

of the variance-covariance matrix. For more discussions about the comparison of

D-optimality and E-optimality criteria, see Pukelsheim [24].

The formulation of complementary binary filters also relaxes the constraint that

the number of filters should be equal to the number of chemicals under analysis (n).

Instead, we build m = (n − 1) pairs of filters (that is, 2m filters in total), as this

ensures that there are even number of filters constructed and that enough filters are

generated to successfully classify/quantify the chemicals of interest.

The construction of the OB-CD2 optimal filter design is supported by the following

observations. First, we note that, as with OB-CD, the value of Q obtained by taking

Λ̄ = Λ0, the vector of the form (1, . . . , 1) of length n, provides a reasonable bound

for any value of Λ̄. Second, while optimizing Q over all variables is difficult, this

problem can be solved efficiently when certain dependencies between the variables

are imposed. Specifically, for fixed values of T and A = F TP , the unique optimal

design matrix B is given by B = (ATTD−1TA)−1ATTD−1T where D = diag(TiAΛ0).
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Similarly, for a fixed value of F , if B depends on A and T as described above, then

the unique normalized time matrix T ∗ satisfies T ∗kk = (1/n)[AB]kk.

This enables us to propose the following procedure to construct the optimal filter

design and implement it in Matlab. For a fixed matrix of filters F , characterized by

m base filters and m corresponding complementary filters (calculated by 1 minus the

value of the base filters), we compute the optimal normalized time matrix TF and

design matrix BF by iterating their values, starting at the initial guess T0 = diag(1/n),

using the formula

[Ti+1]kk =
1

2
([ABi]kk + [ABi]k′k′)

where A = F TP , k′ = 2m− k, Λ0 is the vector of the form (1, . . . , 1) of length n,

D = diag(TiAΛ0) and

Bi = (ATTiD
−1TiA)

−1ATTiD
−1Ti

The values of Ti+1 are then normalized to ensure that the summation of its com-

ponents is equal to 1. This routine is iterated for N = 100 steps to obtain the optimal

values of TF and BF . We note that at every step of this procedure, the value of the

time matrix for the kth-filter mirrors that of the (2m − k)th-filter to ensure equal

integration times on pairs complementary filters.

Finally, the function Q(BF , TF , F ) is then optimized over all possible values of the

matrix of filters F . This is done by using a linear programming algorithm, similar

to the algorithm used in OB-CD, which allows the optimal matrix of filters F ∗ to

admit non-binary values. As with OB-CD, the optimal non-binary matrix of filters

are nearly binary, in the sense that few entries of F ∗ are strictly between 0 and 1.

A correction step is then performed to produce the optimal binary matrix (as with
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OB-CD, this consists of rounding non-binary values to 0 or 1) of filters F ∗ and the

corresponding optimal normalized time matrix T ∗ and design matrix B∗.

4.3 Materials and Methods

This section describes an OB-CD2 spectrometer built in conjunction with Laser-

labs, LLC as well as the chemicals used to perform the work performed in section

4.4. Note the description of the OB-CD2 spectrometer will be described more fully

(particularly with regards to optical design considerations) in a manuscript by Bharat

Mankani that is currently in preparation.

4.3.1 OB-CD Spectrometer with 532 nm Excitation Laser

An OB-CD spectrometer using a 532 nm laser for excitation whose schematic is

shown in Fig. 1 is shown below. Much like the previously described system, our

microscope is configured to collect the backscattered Raman signal with the same

objective lens that is used to focus the argon ion laser (Sapphire SD 532–150 CDRH

Laser, 150 mW) onto the sample. The laser passes through a laser-line bandpass

filer (Semrock RazorEdge LWP Filter, U–grade-25 mm) before it is focused onto

the sample using a microscope objective (Olympus MPlan, 20x, 0.4 NA), and unless

indicated otherwise the laser power at the sample was about 15 mW. The backscat-

tered light is collected and then separated from the laser Rayleigh scattering using a

dichroic mirror. Then, the Raman scattered light is sent to the spectrometer (right

portion of Fig. 2), where it is filtered first using a long pass (edge) filter (Semrock

RazorEdge, S–grade-12.5 mm), followed by passing through a volume holographic

grating (Wasatch Photonics, ∼600 lines mm
−1). This light is then dispersed onto the

DMD (Texas Instruments, DLP3000, 608 × 684 mirror array with 10.8 μm mirror

pitch). The spectral window in this system is ∼200–4100 cm−1. For all data collected

in this paper, we binned two columns of adjacent DMD mirrors together, yielding a

total of 342 “bins” with each energy bin corresponding to ∼12 cm−1. Light from the
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DMD is then focused onto a photon-counting photomultiplier tube (PMT) (Hama-

matsu model #H10682-01) with a dark count rate of ∼500 photons s−1. TTL pulses

from the PMT are counted using a USB data acquisition (DAQ) card (National In-

struments, USB-6212BNC). The system is controlled with interface software written

in Labview 2013. As above, binary filter generation is performed as described above

in algorithm written in Matlab (Matlab 7.13 R2011b).
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Figure 4.1. Schematic of the OB-CD2 Raman system based upon a
532 nm laser excitation source. Note that the system includes a CCD
camera, though this was not used in this work.

4.3.2 Chemicals Used in Classification/Quantitation

Acetone and benzene were purchased from Macron (batch #0000070736) and Om-

niSolv (lot #42282), respectively. Hexanes were acquired from Baxter (lot #901141).

Methylcyclohexane was acquired from Mallinckroft (lot #1906 KCBN). Benzoic Acid



39

and acetaminophen were obtained from Sigma (lot #26115MA and lot #SLBC6391V,

respectively). The benzoic acid was recrystallized in methanol overnight to produce

large crystals and to remove a fluorescent impurity.

4.4 Results and Discussions

The following section summarizes the differences between estimated Raman scat-

tering rates obtaining from OB-CD and OB-CD2. Additionally, examples of fast

Raman imaging of solids enabled by OB-CD2 are provided.

4.4.1 Comparison to OB-CD for Binary Classifications

In previous work [1], acetone and benzene were classified in 30 μs using OB-CD

Raman spectroscopy. Here I show the classification of acetone and benzene using the

OB-CD2 spectrometer described above, using filters trained using either OB-CD or

OB-CD2. Fig 2 shows the training spectra with the resulting OB-CD (left) or the

OB-CD2 (right) filters overlaid over them. These spectra, and the resulting recovered

rates, were collected using 65 mW of laser power at the sample. In the bottom portion

of Fig 2, I show the resulting Raman scattering rate estimates for pure acetone and

pure benzene at a 3 μs total integration time using either OB-CD or OB-CD2. Note

that the resulting 95 % confidence interval ellipses for acetone and benzene are sig-

nificantly overlapped for the OB-CD recovered rates, but not overlapped in the case

of the OB-CD2 recovered rates. This demonstrates that at a given total integration

time, Raman scattering rates recovered through OB-CD2 filters have lower variance,

as all of the Raman photons are measured for the entirety of the filter measurement

process. If the T matrix for both samples were identical, we would expect the OB-

CD2 filters to give recovered rates with approximately a factor of
√
2 lower variance

than the recovered rates (for the same chemicals measured at the same total integra-

tion time) determined using OB-CD. Here, the estimated Raman scattering rates for

acetone and benzene recovered using OB-CD2 filters have a 35 % (or, in other words,
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on the order of a factor of a
√
2 reduction) lower variance than the OB-CD recovered

rates.

(a) (b) 

(c) (d) 

Figure 4.2. Comparison of a the recovered Raman scattering rates of
acetone (red) and benzene (blue) estimated using (a) OB-CD and (b)
OB-CD2. The two OB-CD or OB-CD2 filters are shown in plots above
each rate scatterplot overlaid over the spectra of acetone and benzene.
The 95 % confidence intervals of the recovered Raman scattering rates
for each sample were calculated and are plotted as the ellipses in both
(a) and (b). Note that the percent of the total measurement time for
the OB-CD filters was 52 % for the filter shown in red and 48 % for
filter shown in blue. Each OB-CD2 filter was applied for 50 % of the
total measurement time.

4.4.2 Comparison to OB-CD for Ternary and Quaternary Classifications

Here I compare the recovered Raman scattering rates estimated using OB-CD and

OB-CD2 filters trained using chemicals (n = 3): benzene, hexane, and methylcyclo-

hexane. Note that for training sets with n = 2 chemicals, OB-CD2 produces the same

number of filters as there are chemicals. However, for system with n ≥ 3 chemicals,
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OB-CD2 produces more filters than chemicals in the training set (as noted above,

2(n − 1)). Fig 3a shows the training spectra and resulting OB-CD filters as a heat

map, where the inner product between each filter vector and each normalized spectra

is represented using a color (as denoted by the colorbars). Fig 3b shows the OB-CD2

filters for the same spectral training set. Note that for this work, the laser power at

the sample was 25 mW.

(a) (b) 

Figure 4.3. (a) Heat map of the overlap between OB-CD filters and
the spectra used to train said OB-CD filters. The red trace is the
spectra of benzene, the green trace is hexane, and the blue trace is
the spectra of methylcyclohexane. A color bar is presented to the
right of the heat map. Note that the diagonal contains the largest
overlap values for each filter, though not the largest absolute overlap
values (which are found for all spectra with the second filter). The
measurement time for each filter was 16.4 %, 22.6 %, and 60.9 %,
respectively. (b) Heat map of the overlap between OB-CD2 filters
and the spectra used to train said OB-CD2 filters. A color bar is
presented to the right of the heat map. The measurement time for
each pair of filters was 50 % of the total time.

Once filters were calculated, the Raman scattering rates of pure benzene, hexane,

and methylcyclohexane were estimated using OB-CD and OB-CD2 filters, with a total

integration time of 1 ms. Fig 4 summarizes these results using a scatter plot matrix.
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As seen in Fig 4, the size of the recovered Raman scattering rate ellipses for OB-CD2

are smaller than those in OB-CD. Note that the shape of the recovered Raman rate

ellipses is often similar, as seen in the shape of the hexane and methylcyclohexane

recovered Raman scattering rate distributions, but can differ significantly, as seen in

the difference between the shape of the 95 % confidence intervals for benzene. This

has been attributed to the difference in the minimization performed in OB-CD versus

OB-CD2. In OB-CD, the filter generation algorithm minimizes the sum of the squares

of all directions of the recovered Raman scattering rate ellipses, whereas in OB-CD2,

the algorithm minimizes the area of the recovered Raman scattering rate ellipses.

Table 1 summarizes the variance of the estimated recovered Raman scattering

rates for each sample. Note that the total variance for OB-CD is approximately 35 %

larger than the of OB-CD2. This result was attributed to more light being measured

during the same experiment time in OB-CD2 when compared to OB-CD.

Table 4.1.
Variance of Recovered Raman Scattering Rates for Ternary Classifications

Sample OB-CD (109 counts/s) OB-CD2 (109 counts/s)
Benzene 9.34 6.92
Hexane 4.64 3.87

Methylcyclohexane 13.9 6.84
Total 27.7 17.6

In addition this, OB-CD and OB-CD2 filters were trained on a set of four chem-

icals (acetone, benzene, hexane, and methylcyclohexane). The training spectra and

filters are summarized in Fig 5. Note that, as with the classifications performed

above, the laser power at the sample for this work was 25 mW. However, the total

integration time was increased to 10 ms for all measurements.
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(a) 

(b) (c) 

(d) 

Figure 4.4. (a–c) Scatter-plot histograms of the OB-CD (lighter col-
ors) and OB-CD2 (darker colors) recovered Raman scattering rates
for samples of benzene (red), hexane (blue), and methylcyclohexane
(green) estimated using a total measurement time of 1 ms in both
cases. The ellipses shown correspond to the 95 % confidence inter-
vals for the recovered Raman scattering rates of each sample. Note
that each scatter-plot shows two-dimensions in the three-dimensional
classification space. For example, in (b), the scatter-plot shows the re-
covered Raman scattering rates for benzene and methylcyclohexane.
Note that the benzene and methylcyclohexane samples have mean
non-zero rates in one dimension and near mean zero recovered rates
in another dimension. The samples of hexane, however, have near
mean-zero recovered rates for both methylcyclohexane and benzene,
as would be expected for a sample of pure hexane (which should only
have position, non-zero recovered rates in the hexane dimension). (d)
A three dimensional scatter-plot of the same OB-CD2 recovered Ra-
man scattering rates shown in a–c.
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(a) (b) 

Figure 4.5. (a) Heat map of the overlap between OB-CD filters and
the spectra used to train said OB-CD filters. The purple trace is the
spectra of acetone, the red trace is the spectra of benzene, the green
trace is hexane, and the blue trace is the spectra of methylcyclohex-
ane. A color bar is presented to the right of each heat map. Note
that the diagonal contains the largest overlap values for each filter,
though not the largest absolute overlap values (which are found for all
spectra with the second filter). The measurement time for each filter
was 28.0 %, 11.4 %, 24.9 %, and 35.7 %, respectively. (b) Heat map
of the overlap between OB-CD2 filters and the spectra used to train
said OB-CD2 filters. A color bar is presented to the right of the heat
map. The measurement time for each pair of filters was 33.333 % of
the total time.

The resulting Raman scattering rates estimated using OB-CD and OB-CD2 are

summarized as scatter plot matrix in Fig 6. Note that, as with the ternary classifica-

tion, the recovered Raman scattering rate ellipses were generally smaller for OB-CD2

than OB-CD. The variances of the recovered Raman scattering rates are summa-

rized in Table 2. The total variance, as well as the variance of acetone, hexane, and

methylcyclohexane, is reduced in the recovered OB-CD2 rates when compared to the

recovered OB-CD rates. However, the benzene recovered Raman scattering rates in

OB-CD and OB-CD2 are almost identical. While it is difficult to definitely assign a

cause to this, it is my suspicion that this is a result of the comparatively high scatter-

ing rate of benzene relative to all other compounds in the training set (nearly double
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the other chemicals, per Fig 6). As a result of this high scattering rate, which is also

mostly in two energy bins (the two large peaks of benzene, as seen in the red spectra

in Fig 5), there are a large number of photons associated with benzene measured in

each pair of OB-CD2 filters. This is a necessity of making complimentary filters. As a

result of this, there is a large shot noise associated with benzene (again, owing to the

higher rates) even through filters not “mostly” measuring benzene. Due to this, it is

possible that, for the benzene sample, the recovered rates not associated with benzene

have great variance owing to the higher shot noise. Future work will investigate this

further.

Table 4.2.
Variance of Recovered Raman Scattering Rates for Quaternary Classifications

Sample OB-CD (109 counts/s) OB-CD2 (109 counts/s)
Acetone 17.9 0.847
Benzene 1.52 1.53
Hexane 1.34 0.875

Methylcyclohexane 2.31 1.42
Total 6.96 4.68

4.4.3 Fast Raman Imaging Using OB-CD2

The objective of the OB-CD2 algorithm is to enable very fast Raman spectroscopic

measurements. One application that would benefit from faster Raman measurement

times is Raman hyperspectral imaging. Here I demonstrate fast Raman imaging of

two pharmaceutical-like compounds.

Large benzoic acid and acetminophen crystals were gently ground into smaller

crystals using a spatula. Then, small piles of these smaller crystals were placed on

a gold microscope slide. These piles were flattened to produce an even surface for
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(a) 

(b) (c) 

(d) (e) (f) 

Figure 4.6. (a–f) Scatter-plot histograms of the OB-CD (lighter col-
ors) and OB-CD2 (darker colors) recovered Raman scattering rates
for samples of acetone (purple), benzene (red), hexane (blue), and
methylcyclohexane (green) estimated using a total measurement time
of 10 ms in both cases. The ellipses shown correspond to the 95 %
confidence intervals for the recovered Raman scattering rates of each
sample. Note that each scatter-plot shows two-dimensions in the four-
dimensional classification space.

imaging. Then, the piles of acetaminophen and benzoic acid were pushed against

each other.

Training spectra were generated by measuring the spectra at six different points

over the surface each pure powder. The mean of these spectra was used for training.

This was done as small differences were observed in the relative intensity of Raman

peaks taken at different points on the surface of pure acetaminophen and benzoic acid.

This was attributed to differences in crystal orientation, resulting in slightly differ-

ent Raman spectra. It has been empirically found that taking the mean of spectra

of such anisotropic crystals yields robust spectra for training OB-CD and OB-CD2
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filters. OB-CD2 filters for the mean spectra of acetaminophen and benzoic acid are

shown in Fig 7.
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Figure 4.7. OB-CD2 filters generated for acetaminophen (yellow) and
benzoic acid (cyan) are shown overlaid over the area normalized spec-
tra of acetaminophen and benzoic acid. Each OB-CD2 filter was
applied for 50 % of the total measurement time. For this work, the
laser power at the sample was set to 25 mW.

Once OB-CD2 filters were trained, a 500 mm by 500 mm area, consisting of 240

by 240 pixels, at the interface between acetaminophen and benzoic acid was imaged

at varying integration times. Two of these images, taken at integration times of

100 μs/pixel and 10 μs/pixel can been seen in Fig 8a. Note that 40 pixels at the

top and left of these images has been truncated in order to minimize a hysteresis in

the raster scanning mirrors when moving at high speeds. These integration times

correspond to a total image time of 5.76 s and 0.576 s, respectively.

The images in Fig 8a associated with a 100 μs/pixel and 10 μs/pixel integration

times are quite noisy. To minimize the visual effect of this noise, these images were

denoised using the following procedure:

The photon counts measured through each filter were assumed to have Poisson

(shot) noise but no other sources of noise. While Poisson denoising is possible, it can
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be computationally expensive. As an alternative, we have transformed the Poisson

data into Gaussian-like data using the Anscombe transform [25], as Gaussian noise is

constant and there are many, freely available, fast algorithms for Gaussian denoising.

Here, we have selected the “BM3D” algorithm [26] and processed the Anscombe-

transformed counts through each filter using a 5-by-5 pixel window. Then, the de-

noised counts are retransformed back to a Poisson distribution using an “optimal”

inverse Anscombe transform (as described by [27]). These denoised counts are then

transformed into recovered Raman scattering rates as described in Chapter 2. The

resulting denoised images are shown in Fig 8b. As can be seen, these images appear

less noisy to the eye.
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(d) 

(c) (a) 

(b) 

Figure 4.8. (a–b) Images of the interface of piles of acetaminophen
(yellow) and benzoic acid (cyan) powders taken at 100 μs (a) and
10 μs total integration time. Note that despite being the same imaged
area, the objects move to the right in the frame. This was attributed
to a hysteresis of the scanning mirrors. (c–d) Images (a) and (b) after
denoising, as described above.

4.5 Conclusion

I have demonstrated a new variant of the previously described OB-CD filtering

strategy that takes advantage of a second photon-counting detector and a new filter

generation algorithm. This new strategy, referred to as OB-CD2, has been shown

to result in lower variance in the recovered Raman scattering rate estimates when

compared to OB-CD performed at the same total integration time. As a result of
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this, OB-CD2 enables faster classifications than OB-CD. Additionally, OB-CD2 may

enable new applications for OB-CD for a more mundane reason: the filter image

applied to the DMD need not be change to apply two different OB-CD2 filters when

n = 2. For the same system, it would not be possible to measure photons through

two filters in OB-CD simultaneously, as they must be applied sequentially on the

DMD. Since the application of the filter to the DMD takes on the order of hundreds

of milliseconds, not needing to change filters in OB-CD2 enables applications that

require constant measurements over a period time, such as determination of kinetic

rate constants. Future work will focus on exploring such applications.
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5. RAMAN THERMOMETRY USING NON-NEGATIVE MATRIX
FACTORIZATION DERIVED FACTORS

5.1 Abstract

Raman thermometry is the practice of using Raman spectral information to pre-

dict temperature of a sample. This technique is useful when monitoring the tem-

perature of systems that would be perturbed by the addition of a thermometer or

thermocouple. Several implementations of Raman thermometry have been previ-

ously described. Of these, techniques that use changes in relative Raman peak areas

to predict temperature are the most commonly used technique for aqueous solu-

tions applications. This is because the OH- stretch relative peak areas of water are

quite sensitive to temperature change. Recent implementations of Raman thermom-

etry reported measurement precision of ±1 ◦ Celsius in a measurement time of ∼1
second. While quite fast, this is still slow compared to other optical thermometry

techniques and limits the applications of Raman thermometry. Here I describe a new

spectral processing method of for obtaining temperature estimates of aqueous solu-

tions. Rather than determining Raman peak area using isosbestic point of water’s

OH- stretch, as many existing methods do, I use non-negative matrix factorization

(NNMF) to derive factors that account for the change in OH- peak shape of water

over a temperature range. I then use a least squares fit to estimate areas for the two

spectral factors, which I then correlate to temperature. Using a calibration curve

based upon a three-term fit, I am able to predict the temperature of aqueous solu-

tions with a ±1 ◦ C precision in 10 ms rather than ∼ 1 second, as previous methods

have reported. I demonstrate this approach is appropriate for aqueous solutions with

different types of spectral interference, such as fluorescence and spectral overlap from
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CH- stretch peaks, and I demonstrate it is possible to obtain temperature precision

similar to that of water in the same integration time.

5.2 Background

Optical thermometry is a family of techniques wherein the temperature a sample

is estimated by correlating temperature to changes in sample’s optical properties.

Raman thermometry is the process of using temperature-dependent changes in Raman

scattering to predict temperature [28–33]. Raman thermometry has the advantage of

being appropriate for use on a variety of materials and being applicable to micron-

scale systems [34]. However, Raman thermometry has the disadvantage of being slow

compared to other optical thermometry techniques (assuming the same measurement

precision is desired) [35], as it typically needs seconds of acquisition time to generate

temperature predictions with a precision of ± 1 ◦ C.

Several different methods of performing Raman thermometric have been reported;

for instance: the use of the ratio of Stokes vs. anti-Stokes peaks [36], peak shifts

[31], and relative changes in peak area [29, 33]. Of these, the technique that utilizes

changes in relative peaks areas has most commonly been used for aqueous solutions,

as the OH- bands of water have noticeable temperature-dependent changes. This

technique, originally described by d’Ararigo et. al [28], has a precision of about ±
1 ◦C with measurement times of approximately 1 second [33]. In this method [28], it

was reported that the OH- bands of water has an isosbestic point at approximately

3400 cm−1. Rather than make assumptions about the shape of the temperature bands,

integration is performed to the left and the to the right of isosbestic point and a ratio

of these peak areas is correlated to temperature as measured by another, calibrated

device (e.g., a thermocouple or thermometer).

The approach described here is an alternative to integration based upon an isos-

bestic point. Instead, I use a spectral unmixing method called non-negative matrix

factorization (NNMF) to extract two factors that, when taken as a linear combination,
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describe the shape of all the spectra measured over a temperature range. Once these

two NNMF factors are calculated, we use least-squares fitting to calculate weights

(areas) for the two factors for each measured spectrum. Then we take the ratio of

the areas of the NNMF factors and correlate the area-ratio to temperature as mea-

sured by a thermocouple in our Raman system. Fig 1a shows the spectra of water at

20–80 ◦C and Fig 1b shows the resulting NNMF-derived factors.
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Figure 5.1. (a) Raman spectra of water from 2883–4073 cm−1 taken
at (purple) 20 ◦C, (blue) 30 ◦C, (cyan) 40 ◦C, (green) 50 ◦C, (yellow)
60 ◦C, (orange) 70 ◦C, and (red) 80 ◦C. The isosbestic point of water
is located at the hashed line. (b) The two NNMF factors derived from
the spectra shown in part (a).

5.3 Materials and Methods

This section describes the Raman microscope used to perform these experiments

as well as the chemicals used in these experiments.
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5.3.1 Raman Microscope

Raman spectra were collected, using a 514 nm excitation laser system that was

previously described( [37,38]). This system has a sample holder that can be set from

-15 ◦C to 100 ◦C using a temperature (to the nearest 0.01 ◦C) controlled spectroscopic

cell holder (LC600, Quantum Northwest), and a home-built Raman instrument (uti-

lizing a 514.5 nm argon ion excitation laser with a power of ∼15 mW at the sample).

5.3.2 Temperature Calibration

The following section describes a method for constructing a temperature calibra-

tion curve and its validation. The Raman spectra of pure Water (Milli-Q UF Plus,

18.2 Mcm, Millipore) was measured using a 100 ms integration time, with 10 accu-

mulations taken, at 10 ◦C increments from 20 ◦C to 80 ◦C, with the temperature

controlled by the Raman system as described above. The temperature of the sample

was allowed to equilibrate for 15 minutes prior to collecting its Raman spectrum. Ten

replicates were taken at each temperature.

Once collected, these spectra were loaded into Matlab (version R2013b, Math-

works). Once in Matlab, the region of the collected spectra corresponding to the OH-

stretch of water (2883–4073 cm−1) were added, as column vectors, to a matrix D.

This matrix was used as the input for non-negative matrix factorization (NNMF),

using the “nnmf” command in Matlab’s Statistics and Machine Learning Suite with

the number of significant components set to “2”. It was assumed that the spectra of

water can be described by a linear combination of the NNMF derived factors, with

single-value decomposition indicating that two factors were adequate to describe over

95% of the variance of the spectra. To handle any variability in the baseline in-

tensity of non-fluorescent samples, I also included a line (normalized to unit area)

in our least-squares fitting matrix, such that any spectra can be considered a linear

combination of the two NNMF factors and a constant term. This matrix was used

to determine concentrations (areas) for each NNMF factor using a least squares fit.
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Note that the two NNMF derived factors look quite similar to the “hydrogen bond-

ing” and “hydrogen bonding” shapes for water’s OH- as described by d’Arrigo [28],

as seen in Fig 1b. Keeping with notation, we will refer to the NNMF derived factors

as “hydrogen bonding” (red trace in Fig 1b) and “non-hydrogen bonding” (blue trace

in Fig 1b).

To create a calibration curve, the natural log of the mean ratio of the peak areas,

calculated as the ratio of the areanon−hydrogenbonding factor to the areahydrogenbonding

factor (henceforth, “K”), at each temperature were plotted against the reciprocal of

temperature (in Kelvin). These values (ln(K) and 1/T) are then plotted as a so-called

van’t Hoff plot. In a van’t Hoff plot, it is typically assumed that the two populations

of OH- stretches represent a two-state system. Thus, the ratio of the hydrogen and

non-hydrogen bonded peaks areas can be thought of as a equilibrium constant, hence

the use of the symbol “K”. Using the fit of the data points in the van’t Hoff plot,

temperature can be correlated to the log of the ratio of the two water peak areas.

5.3.3 Aqueous Solution Preparation

Aqueous solutions were prepared using ultrapurified water (Milli-Q UF Plus,

18.2 Mcm, Millipore). A 50 % volume-by-volume solution of tert-butanol (TBA)

was prepared using tert-butanol from Sigma-Aldrich (lot # SHBD8139V). A 1 M

sodium chloride (NaCl) solution was prepared using sodium chloride from Mallinck-

rodt (lot # H43615). A 0.25 nM solution of rhodamine 6G was prepared using

rhodamine from Eastman (lot # 11927).

5.3.4 Collection of Spectra of Aqueous Solutions

All solutions discussed in section 5.4 were collected under the following conditions:

100 ms integration time with 10 accumulations and 10 replicates collected and 100 ms

integration time with 1 accumulation and 100 replicates.
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5.4 Results and Discussions

This section presents the results of the experiments described above and puts

them in context of the existing thermometry literature.

5.4.1 Comparison of Different Fit Models

Other authors have demonstrated Raman thermometry of aqueous solutions by

linearly correlating the ratio of non-hydrogen bonded/hydrogen bonded water peaks

with temperature, typically with goodness-of-fit values around R2 = 0.999 [39, 40].

The temperature accuracy as a result of these fits is ±1 ◦C with integration times of

approximately 1 s. Based upon the data generated by our Raman system, I have found

that ln(K) and 1/T do not have an extremely strong linear relationship. Future work

will focus on better understanding the nature of this discrepancy. However, there was

a visibly non-linear relationship between the ln(K) and reciprocal temperature, non-

linear fits were considered. To this end, a quadratic fit was tested. Additionally, based

upon previous work done in the Ben-Amotz lab [41], a linear enthalpy dependence

with temperature would give the following relationship for ln(K) and 1/T:

ln(K) = a+ b/T + c ∗ ln(1/T )

Where a, b, and c are fit constants and b and c describe the dependence of enthalpy

on temperature. To generate a goodness-of-fit value for this fit type, the “polyfit”

Matlab command was used (with a custom fit type). We found the ln(K) values

for water correlated with 1/T in a manner described by the fit above with a R2 =

1.0000. The result of these fits can be seen in Fig 2, where the difference between

the known-true temperature (per the thermocouple) and the predicted value for a

linear and two three-term fit models (quadratic and the model described above) are

compared.
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Figure 5.2. (a) Plot of the natural log of the peak areas of the NNMF
derived factors for water (as seen in Fig 1b) versus the reciprocal of
temperature in Kelvin for water whose Raman spectrum was collected
at 20–80 ◦C (as seen in Fig 1a). The measured data points are pointed
as solid black circles, with three different fits overlaid over this data:
fitting the points to a linear fit (red), a quadratic fit (blue), and the
three-term fit based upon a constant enthalpy described in this section
(green) (b) The difference between the measured temperature values
and the estimated temperature from each fit, for each temperature.
The mean difference between the estimated temperatures calculated
using a linear fit and the thermocouple measured temperature was
0.78 ◦C and the mean difference between the estimated temperatures
calculated using both three term fits and the thermocouple measured
temperature was 0.15 ◦C.
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Note that the peak area values used here were calculated using a least-squares fit to

the NNMF derived factors. The sum of the magnitudes of the difference between the

thermocouple and the predicted value for both fit types is presented in Fig 2b. As can

be seen, the three-term fit models resulted in a significant (factor of 5) improvement

in temperature prediction accuracy.

5.4.2 Comparison of NNMF and Isosbestic Integration

In order to compare these results to those previously reported, I separated factors

that could be attributed to the high signal-to-noise of the Ben-Amotz lab’s Raman

system and factors arising from how I processed Raman spectra (i.e., our fit model).

To do this, I compared our the results of using a least-squares fit using the NNMF

derived factors (henceforth, “NNMF integration”) to the results of using peak area

integration relative to the isosbestic point of the OH- stretch of water to calculate

a peak ratio (henceforth, “isosbestic integration”). To do this, I selected the same

spectral region (2883–4073 cm−1) for both analyses. I identified an isosbestic point

in our data at approximately 3410 cm−1, as seen in Fig 1a. NNMF integration was

performed as described in the subsection 5.3.2. Isosbestic integration was performed

by summing the intensity of the energy bins to the left (in the case of hydrogen

bonding) and to the right (in the case of non-hydrogen bonding) of the isosbestic

point. Note that in both cases, the minimum value of the wavenumber range was

subtracted from each spectra to correct for baseline (to minimize baseline noise in

the isosbestic integration). For these analyses, the three-term fit model described in

subsection 5.4.1 was used for calibration.

These spectra were then processed into a van’t Hoff plot, as described above.

The resulting van’t Hoff plot is in shown in Fig 3a. Fig 3b highlights the difference

between the measured temperature values and the estimated temperature from each

integration method. Note that the mean model error for the isosbestic integration is

qualitatively similar, if marginally worse, than the NNMF integration method. As I
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will demonstrate in the subsection 5.4.3, the NNMF integration method, combined

with the three-term fit described above, can be easily used for a variety of samples,

even samples that might be difficult to use with the isosbestic integration method.

5.4.3 Precision of Temperature Estimate Versus Signal-to-Noise

Here I derive a correlation between signal-to-noise of the OH- stretch in a Raman

spectra of water and the variance of the resulting temperature estimate. Signal-to-

noise was selected as the independent variable for this analysis, rather than integration

time or laser power, as signal-to-noise is applicable to any Raman system. Here signal-

to-noise is calculated as the area of the Water OH- stretch (the sum of the signal from

3025–3800 cm−1) minus the noise of the baseline (calculated at ∼4100-4200 cm−1)

divided by the noise of the baseline. It would be expected that the variance in the

input spectra would linearly correlate with the variance in the temperature estimate.

Since signal-to-noise scaled inversely with the variance of OH- stretch area, it would

be expected that a plot of the inverse of the signal-to-noise of the OH- stretch area

versus the standard deviation of the estimated temperature would be linear. As can

be seen in Fig 4, such a plot is linear.

The plot in Fig 4 was generated by adding Poisson noise to the spectra of water

measured without any laser attenuation and an integration time of 1 s. The addition

of Poisson noise by dividing the initial water spectra by a constant, then running the

“poissrnd” function in Matlab, which adds Poisson noise (of the appropriate mean) to

the input spectra. The spectra of water measured at 1s was divided by increasingly

raised powers of 2, starting at the power of 1 and ending at the power of 13 (i.e.,

ranging from a factor of 2 to a factor 8192).

Using the fit shown in Fig 4, a signal-to-noise ratio of ∼200 corresponds to a

temperature estimate with a precision of ±1 ◦C and a signal-to-noise ratio of ∼30
is need for a temperature estimate with a precision of ±10 ◦C. These signal-to-noise

values correlate with an integration time 10 ms and 1 ms, respectively, using the
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Figure 5.3. (a) Plot of the thermocouple measured temperature for
water versus the estimated temperature of water over the range of
20–80 ◦C. Estimated temperatures calculated using NNMF integra-
tion are shown using inverted red triangles, estimated temperatures
calculated using isosbestic integration are shown using blue triangles,
and a line of slope 1 is plotted in hashed grey. (b) The difference
between the measured temperature values and the estimated temper-
ature values from each integration method at each temperature. The
mean difference between the estimated temperatures calculated us-
ing NNMF integration and the thermocouple measured temperature
was 0.15 ◦C and the mean difference between the estimated temper-
atures calculated using isosbestic integration and the thermocouple
measured temperature was 0.20 ◦C.
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Figure 5.4. Plot of the inverse of the signal-to-noise of the water OH-
stretch versus the standard deviation of the temperature estimate of
the same spectra. This data was generated by corrupting the spectra
of Water, measured at 20 degrees C, by dividing all intensities in the
spectra by a constant and adding Poisson noise (using the “poissrnd”
function in Matlab). The hashed-line is a linear fit (R2 = 0.99) of
the data and the red circles correspond to spectra at varying levels of
added noise.

Raman microscope described above with ∼15 mW of laser power at the sample.

Future work will attempt to compare these values with experimentally derived values.

Careful consideration will be given to issues of baseline correction and detector noise,

which can cause a non-negligible non-linearity in plots like Fig 4.

5.4.4 Results of Aqueous Solution Temperature Prediction

Here I report the accuracy and precision of estimated temperature for a variety of

aqueous solutions. These estimated temperatures were calculated using a calibration

curve calculated using a peak area derived from NNMF integration and the three-

term fit described in subsection 5.4.2. The first system I report is a 50 % volume-

by-volume mixture of water and TBA. This system is notable in so far as it contains
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a significant amount of a chemical containing CH- bonds. Since the CH- stretch

feature overlaps with the OH- stretch in Raman spectra, this sample demonstrates

that NNMF integration can still be used over a limited range of the OH- stretch

spectra (explicitly, the region that does not contain the CH- stretch spectral feature).

The inset in Fig 5b shows the difference between the NNMF derived factors for the

water:TBA mixture and pure water, which look noticeably different. This is not

surprising, as it has been previously demonstrated that the structure of water around

alcohols differs from that of pure water. Even so, using NNMF derived factors, it is

possible to accurately predict the temperature of water:TBA mixtures, as shown in

Fig 5b.

Next, I demonstrate the applicability of the use of NNMF integration to samples

that have perturbed water OH- structure (and therefor, OH- stretch Raman features),

but lack an interfering spectral feature such as a CH- stretch. One example of this

type of aqueous mixture is aqueous sodium chloride, which has perturbed OH- stretch

feature when compared to pure water as seen in the inset of Fig 6a. NNMF derived

factors were calculated using the spectra shown in Fig 6a and used to estimate the

temperature of 1 M NaCl solutions. Despite looking quite similar to the water NNMF

factors, using the NNMF derived from water for NaCl resulted in more error in

temperature estimate than using the NNMF factors derived from NaCl. The resulting

temperature estimated are shown in Fig 6b, which are qualitatively similar, in terms

of accuracy and precision, to the temperature estimates for pure water under similar

conditions. Thus, it has been demonstrated that NNMF is able to derive factors from

aqueous solutions with perturbed OH- stretch features, such as salt solutions.

Fluorescence is a common nuisance component in Raman spectroscopy and I would

be remiss if I did not demonstrate the accuracy and precision of this Raman thermom-

etry model for fluorescent solutions. Fluorescence arising from solutes/impurities in

aqueous solutions is common, but broad spectral features arising from glass in the op-

tically probed volume can be treated similarly (owing to the broadness of glass Raman

spectral features). Raman thermometry is a subject of great interest to the microflu-
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idics applications [34], which cannot easily attach a thermocouple to their systems

without perturbing them. It is not uncommon for the Raman spectra of materi-

als within microfluidic devices to also contain significant glass signal. Thus, I have

demonstrated the applicability of NNMF integration/three-term fitting to systems

that include glass signal. While I have not measured the Raman spectra of aqueous

solutions within a microfluid device, I have collected the spectra of water when the

sample holder on our Raman system was moved to include a significant contribution

of glass signal. To remove the broad glass features, I performed a background sub-

traction on each full spectra, as described in Chapter 3, prior to NNMF integration.

Of note, the inset in Fig 7a shows the difference between NNMF derived factors cal-

culated using the spectra of pure water and NNMF derived factors calculated using

the spectra shown in Fig 7a after baseline subtraction. These NNMF derived fac-

tors looked quite similar and, as a result, the NNMF derived factors for pure water

were used to perform NNMF integration on the baseline-subtracted water-with-glass

spectra. The estimated temperatures resulting from this are shown in Fig 7b. The

accuracy and precision of these results are worse than those of pure water, though

this is not unexpected given the interference in the OH- stretch signal from the glass.

Thus, it has been shown that, by using baseline subtraction, temperatures of aque-

ous solutions containing significant contributions from glass can still be accurately

estimated using NNMF integration.

Lastly, the temperature of a fluorescent sample was estimated. The spectra of an

aqueous 0.25 nM R6G solution over a 60 ◦C temperature range are shown in Fig 8.

As with the spectra containing glass signal, baseline subtraction was performed prior

to NNMF integration. Also, as with the spectra containing glass signal, the NNMF

derived factors for baseline subtracted aqueous R6G looked very similar to those

from pure water, as shown in the inset in Fig 8a. Unlike the spectra shown in

Fig 7a, the aqueous R6G spectra contained a much greater relative contribution

from fluorescence, as can be seen in Fig 8a. Even so, the accuracy and precision

of resulting temperature estimated are not greatly impacted relative to water, as
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shown in Fig 8b. Given the frequency at which fluorescent interference is encountered

in Raman spectrometry, as discussed in Chapter 3, it is advantageous that Raman

thermometry using NNMF integration does not suffer a loss of accuracy or precision

in the presence of fluorescence.



65

����
�

�

�

��
�	

�

�

��

���������������

��������������	��	�������
��

��

����
��

�

��
�	

�

�

��

���������������

��������������	��	�������
��

��

�� �

� �

� �

!
"
�	

#
��

�	
#
��
�!

$
��

�
�
%

��&����������

$����%�!	�'	�����	��()�

���

�*�

Figure 5.5. (a) Plot of the spectra of a 50 % volume-by-volume mix-
ture of water and TBA taken at (purple) 20 ◦C, (blue) 30 ◦C, (cyan)
40 ◦C, (green) 50 ◦C, (yellow) 60 ◦C, (orange) 70 ◦C, and (red) 80 ◦C.
The inset shows the difference between the NNMF derived factors for
pure water (blue) and the water:TBA mixture (red) calculated over
3025–4073 cm−1. (b) The difference between the measured tempera-
ture values and the estimated temperature values from each integra-
tion method at each temperature for 1 s integration (red circles) and
100 ms integration time (blue triangles). The mean difference between
the estimated temperatures calculated at 1 s integration was 0.15 ◦C
and at 100 ms integration time was 0.22 ◦C. The mean standard devi-
ation of the estimated temperatures calculated at 1 s integration was
0.10 ◦C and at 100 ms integration time was 0.31 ◦C.
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Figure 5.6. (a) Plot of the spectra of a 1 M solution of sodium chlo-
ride taken at (purple) 20 ◦C, (blue) 30 ◦C, (cyan) 40 ◦C, (green)
50 ◦C, (yellow) 60 ◦C, (orange) 70 ◦C, and (red) 80 ◦C. The inset
shows the difference between the spectra of pure water (blue) and
the NaCl solution (red) calculated over the same wavenumber region.
(b) The difference between the measured temperature values and the
estimated temperature values from each integration method at each
temperature for 1 s integration (red circles) and 100 ms integration
time (blue triangles). The mean difference between the estimated
temperatures calculated at 1 s integration was 0.15 ◦C and at 100 ms
integration time was 0.15 ◦C. The mean standard deviation of the
estimated temperatures calculated at 1 s integration was 0.09 ◦C and
at 100 ms integration time was 0.24 ◦C.
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Figure 5.7. (a) Plot of the spectra of water with cuvette glass in the
optically probed volume taken at (purple) 20 ◦C, (blue) 30 ◦C, (cyan)
40 ◦C, (green) 50 ◦C, (yellow) 60 ◦C, (orange) 70 ◦C, and (red) 80 ◦C.
The inset shows the difference between the NNMF derived factors for
pure water (blue) and the water with cuvette glass in the optically
probed volume with a polynomial subtraction to remove the glass
signal (hashed grey) calculated over the same wavenumber region.
(b) The difference between the measured temperature values and the
estimated temperature values from each integration method at each
temperature for 1 s integration (red circles) and 100 ms integration
time (blue triangles). The mean difference between the estimated
temperatures calculated at 1 s integration was 0.15 ◦C and at 100 ms
integration time was 0.10 ◦C. The mean standard deviation of the
estimated temperatures calculated at 1 s integration was 0.22 ◦C and
at 100 ms integration time was 0.69 ◦C.
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Figure 5.8. (a) Plot of the spectra of a 0.25 nM R6G solution taken
at (purple) 20 ◦C, (blue) 30 ◦C, (cyan) 40 ◦C, (green) 50 ◦C, (yellow)
60 ◦C, (orange) 70 ◦C, and (red) 80 ◦C. The inset shows the differ-
ence between the NNMF derived factors for pure water (blue) and the
0.25 nM R6G solution with a polynomial subtraction to remove fluo-
rescence (hashed green) calculated over the same wavenumber region.
(b) The difference between the measured temperature values and the
estimated temperature values from each integration method at each
temperature for 1 s integration (red circles) and 100 ms integration
time (blue triangles). The mean difference between the estimated
temperatures calculated at 1 s integration was 0.15 ◦C and at 100 ms
integration time was 0.02 ◦C. The mean standard deviation of the
estimated temperatures calculated at 1 s integration was 0.17 ◦C and
at 100 ms integration time was 0.37 ◦C.
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5.5 Conclusion

A novel model for building a calibration curve for Raman thermometry applied

to aqueous samples has been presented. Using NNMF integration and a three-term

fit for the construction of a van’t Hoff plot, rather than isosbestic integration and a

linear fit, results in an reduction in measurement on the order of a factor of 10 to get

the same level of precision. It should be noted that this improvement strictly comes

from data processing; this method can be immediately applied to existing Raman

thermometry hardware. This method has been shown to be appropriate for a variety

of aqueous solutions, including aqueous alcohol mixtures, saline solutions, fluorescent

samples, and water samples with glass features in their spectra.

It should be noted that there is interest in monitoring the temperature of water

droplets [29, 40, 42], particularly under conditions that result in sub 273 K temper-

atures using Raman thermometry. These experiments measure the temperatures of

water droplets falling in a vacuum while they are rapidly cooling. These experiment

may benefit from the data processing methods described here, as these methods

typically need to signal averaging over many droplets to estimate temperature. Fu-

ture work may explore the application of this Raman thermometric data processing

method on supercooled water droplets.
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6. BINARY SPECTRAL HISTOGRAMS OF SMOOTHED, SECOND
DERIVATIVE RAMAN SPECTRA ENABLE FAST SPECTRAL LIBRARY

LOOK-UP

6.1 Abstract

Identifying a material by matching its Raman spectrum to a spectrum in a library

of known spectra is one of the many applications of Raman spectroscopy. This ap-

plication of spectroscopy, which will be referred to as “library look-up” henceforth,

has recently been extended to previously inaccessible chemical problems as a result

of the advent of low-cost, portable Raman spectrometers. These spectrometers are

typically either hand-held or briefcase-sized and are controlled by low-cost micro-

computers (with minimal computational power) or by cellular phones. As a result,

calculating the spectral distance (typically expressed as a correlation coefficient) be-

tween a measured spectra and each library spectrum can take an undesirably long

time (e.g., many seconds). Here I show a new method for performing Raman spec-

tral library look-up that is optimized for computers with low computational power.

This reduction in required computational resources is achieved by comparing spectra,

appropriately preprocessed, that are then converted to binary spectral histograms.

The Hamming distance between each level in the binary histogram of a measured

spectrum and a library of binary spectral histograms is then computed. This process

is order of magnitudes faster than calculating a correlation coefficient and thus is ap-

propriate for performing library look-up on a portable Raman system. I demonstrate

this by comparing the speed of calculating an R2 to a Hamming distance for a library

of Raman spectra collected using an InnoOptics portable Raman spectrometer.
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6.2 Background

Identifying an unknown sample based upon its Raman spectrum, using a library

of known Raman spectra, is a routine application of Raman spectroscopy in the phar-

maceutical industry [23]. This work flow is also used by law enforcement to identify

substances of interest, such as narcotics [43] and counterfeit products [44]. Both

of these applications have recently adopted hand-held Raman instruments to enable

analysis outside of an analytical laboratory. This has been enabled by the devel-

opment of hand-held, or bench-top portable, Raman spectrometers. These portable

systems are either controlled by an on-board microcomputer or by a laptop/cellular

phone. In either case, the processing power of the computers controlling a portable

Raman system is greatly diminished relative to a desktop computer. As a result, run-

ning moderately computationally expensive algorithms on these Raman systems can

take longer than it would on a desktop computer. One such computation is the calcu-

lation of a correlation coefficient between a measured Raman spectrum, with several

hundred measured wavelengths, and a library of a hundred, or more, previously mea-

sured Raman spectra. While on a desktop, this calculation may take seconds, or less,

it may take tens of seconds on a cellular phone, which is an unacceptably long period

of time for applications like forensics. Thus, computationally inexpensive alternatives

to a correlation coefficient distance metric are desirable.

Several authors have demonstrated the use of dimension-reductions techniques like

principal component analysis (PCA), partial-least squares (PLS), and other meth-

ods [43–45] for classification using portable Raman spectrometers. This is done to

reduce spectra consisting of hundreds-to-thousands of wavelengths to a handful of di-

mensions. The reduced dimensional scores are then stored as a library and a measured

spectrum’s PCA/PLS scores are calculated using (precalculated) loadings. This is a

very efficient way to handle the issue of computational costs, but has limited scal-

ability. Specifically, it is impossible for users to add spectra to a library without

rerunning PCA/PLS, something many end-users may be unfamiliar with or unwilling

to spend the time required to do. Here I show an alternative strategy for reducing the
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computational cost of calculating the spectral distance between a measured spectra

and spectra in a library. This technique is quite similar to a method described by

Fang et. al [46], however differs in its application to Raman spectroscopy and in spec-

tral preprocessing. It also shares similarities with the hyperspctral image processing

methods using in the infrared geophysical image classification [47, 48], though the

spectral preprocessing and histogram generation methods demonstrated here differ

significantly from the cited methods.

6.3 Methods and Materials

The following section describes the Raman spectra and spectral processing meth-

ods used to perform fast Raman spectral library look-up.

6.3.1 Raman Spectra

A library of 157 Raman spectra were provided to the Ben-Amotz lab by Jason

Jiang of InnoOptics. These spectra were collected at an InnoOptics site in China

using a hand-held InnoOptics Raman spectrometer, with a 785 nm excitation wave-

length and a CCD camera with 1024 wavelength channels. Unfortunately, other

critical data acquisition parameters (e.g., integration time, laser power) as well as

compound identity were not provided consistently by InnoOptics, though file names

would indicate that the majority of these spectra were collected using 80 mW laser

power and 200-5000 ms of integration time (varying from sample to sample). At the

request of InnoOptics, I cannot make this library of spectra publicly available; how-

ever, four spectra from the library are shown in Fig 1a. Note that 2 pairs of spectra

in the library were found to be identical and 5 spectra in the library had spectra that

were entirely dominated by fluorescence. These spectra were omitted from the work
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Figure 6.1. (a) Four spectra from the spectral library provided by In-
noOptics. (b) The same spectra shown in (a) after binomial smooth-
ing.

shown here as it was not possible to discriminate between them. Thus, there were

150 spectra in the library used in this work.

Future work in this area will consist of acquiring a library of approximately ∼100
Raman spectra, collected under known acquisition conditions.

6.3.2 Spectral Preprocessing

The spectral library described above was imported into Matlab (R2014a) for fur-

ther manipulation. The spectra were smoothed using a 50 pixel width binomial

smoothing filter with a width of 50. This was done to prevent high-frequency, base-

line noise from affecting spectral distance measurements. The effects of smoothing

are shown in Fig 1b. Next, the second-derivative of each smoothed spectrum was

calculated in order to minimize the effect of broad fluorescence peaks in the Raman

spectrum. Using smooth, second-derivative spectra for classification has previously

been shown to be an effective when the Raman spectra contain fluorescence [16]. Ex-

amples of the spectra shown in Fig 1 processed in this manner are shown in Fig 2a.

After smoothing and taking the second-derivative of each spectra in the library,

the spectra are normalized to area 1 over the range of energy bin 100 - energy bin 740
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Figure 6.2. (a) Second-derivative of the spectra from Fig 1b truncated
to energy bins 100–740 and normalized to unit area. (b) Spectra from
(a) binned to have a total of 64 energy bins.

(unfortunately, a method to convert energy bins to wavenumbers were not provided by

InnoOptics). The range was chosen as all spectra had the same peak below at ∼energy
bin 30, with no characteristic peaks below energy bin 100. Likewise, above energy bin

740, there was almost no spectral information. After this, the normalized, smoothed,

second-derivative spectra were binned into 64 bin spectra. Since the spectra after

truncation to energy bins 100–740 consist of 640 energy bins, this can be thought of

binning each 10 energy bins in the spectra. The effect of this can be seen in Fig 2b.

6.3.3 Binary Histograms

These 64-pixel spectra are then split into 2, 32-pixel spectra (so that 32 bit binary

strings can be generated). These 32-pixel spectra are thresholded at 5 different levels

(five was empirically determined to be an optimal number of thresholds). These

thresholds were selected to be -0.2, -0.4, -0.6, -0.8, -1.0. At each threshold, a 32-bit

binary word was generated, where each bit in the word was set to 0 if the pixel in the

32-bit word did not have signal below the threshold (since these are second-derivative

spectra, more intensity corresponds to a more negative peaks) and set to 1 if the pixel

had intensity below the threshold. This was repeated for both 32-pixel spectra, at
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each threshold, for each spectra in the library. The resulting 10, 32-bit binary strings

generated for each spectra were used as a library of “known spectra”. To validate this

model, Hamming distance between each spectrum’s 10, 32-bit binary strings and the

library of binary strings were calculated. Hamming distance [49] between two binary

strings, A and B, is defined as follows:

HammingDistance =
A ∧ B

A ∨ B

where ∧ is the “AND” operation and ∨ is the “OR” operation. This operation

can be thought of as akin to a correlation coefficient for binary strings. The spectrum

in the library that has the largest sum of Hamming distances, over all levels in the

binary histogram, to a measured spectrum is most the spectra in the library most

likely to correspond to the measured spectrum. In subsection 6.4.1, the accuracy of

this approach will be demonstrated.

Despite the relatively low reduction in overall dimensionality (32∗10 = 320 binary

dimensions versus 1024 in the raw spectra), the Hamming distance is significantly

easier to compute. This is due to the comparatively low computational cost of Boolean

operations on digital numbers compared to algebraic operations using real numbers.

This will be demonstrated in subsection 6.4.2 as a comparison in the computation

time required to perform a correlation coefficient measurement to the binary look-up

routine described above.

6.4 Results and Discussions

The following section describes the accuracy of the new library look-up algorithm

under various condition as well as the comparison of computational costs for this

method versus using a full-spectral correlation coefficient for library look-up
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6.4.1 Accuracy of Binary Histogram Library Look-up

The accuracy of using the binary spectra above, with either a single cut-off or five

cut-offs, for library look-up is discussed below. In addition to using the spectra as

they were provided, Poisson (shot) noise was added to each spectra to simulate shorter

integration times or having limited amount of sample to measure (for instance, find

a single crystal of a compound in a forensic environment). This was done by dividing

each spectra by some value, then adding Poisson noise at every pixel to the spectra

divided by the constant. The effects of adding Poisson noise to the input spectra is

shown in Fig 3.

Table 1 summarizes the results of this testing. The classification accuracy values

reported for the test spectra with added Poisson noise are the means of 10 repeated

classifications. As can be seen, evening reducing the signal by a factor of 100, the li-

brary look-up algorithm remains fairly accurate (90.9% classification accuracy). This

compares to the use of a correlation coefficient on the smoothed, second-derivative, 64

energy bin spectra, which has a correlation coefficient of 66.7 % (though this includes

positive and negative data unlike the binary histograms).

Table 6.1.
Classification Accuracy of Binary Histogram Library Look-up Accuracy

Single Cut-Off Five Cut-Offs 10x Reduction 100x Reduction
100 100% 97.7% 90.9%

To further test robustness, the position of the Raman spectral features were shifted

by ± 1 or ± 2 energy bins to test the robustness of this model under slight system

misalignment. Being robust to small misalignments would be ideal for portable in-

strumentation used by non-expert users, as it might not be treated as gently as

laboratory instrumentation commonly is. Additionally, an algorithm that is robust

to slight misalignments minimized the need to include some sort of spectral standard

(e.g., a Neon light source) for calibration in samples. Table 2 shows the effect of
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Figure 6.3. Spectra from Fig 1a, divided by 100, with added Poisson
noise. Note that when compared to Fig 1a, the blue and green spec-
tra suffer from the most loss of information,as they had the lowest
signal-to-noise of the input spectra. The resulting error propagates to
misclassification, as summarized in Table 1.

shifting spectral features by different amounts. Unfortunately, these results indicate

that the algorithm is more robust to noise (or low-signal) than it is to energy bin

drift. It would be desirable for instruments utilizing this algorithm to minimize the

drift of the location of peaks on its CCD detector.

Table 6.2.
Classification Accuracy of Binary Histogram Algorithm with Peak-
Shifted Input Spectra

+1 bin shift -1 bin shift +2 bin shift -2 bin shift
76.7 82.0% 56.7% 66.0%
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Lastly, I compared the effect of adding Poisson noise to trial spectra divided by a

factor of 100 (as seen in Fig 4) and shifting the Raman spectral features by 1-2 energy

bins (as seen in Table 2). The resulting classification accuracies, for 10 repeated clas-

sifications, are reported in Table 3. The classification accuracy under these conditions

is poor, but it should be noted that the input spectra were significantly corrupted.

Table 6.3.
Classification Accuracy of Binary Histogram Algorithm with Peak-
Shifted, Noisy (100x) Input Spectra

+1 bin shift -1 bin shift +2 bin shift -2 bin shift
73.4 77.1% 55.1% 60.3%

6.4.2 Computational Efficiency

The binary histogram algorithm’s computational cost was compared to that of the

use a full spectral distance metric (correlation coefficient). The computational cost of

performing full spectral library look-up, as well as library look-up using the binned,

smoothed, secondary derivative spectra (BSSD) (as seen in Fig 3), are compared to

the cost of library look-up using the binary histogram algorithm described above.

All of this work was performed on a home-built computer running 64-bit Ubuntu

14.04, a 3.8 GHz AMD FX–4300 Quad-Processor, 8 GB RAM). All computations

were performed in Matlab. Note that the time to run a single threshold level of

the histogram (explicitly, for two of the 32-bit binary strings) is reported below,

rather than the full, 5 level histogram. I have reported the computational costs in

this manner as the number of “cut-offs” in the binary histogram algorithm is user-

controllable (and, explicitly, scales linearly with the number of cut-offs). As the

number of cut-offs increases, so does the robustness of the algorithm. However, users

may wish to weigh the accuracy of their model to its computational costs.
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A comparison of the average time taken to run each algorithm 100 times is re-

ported in Table 4. As can be seen here, using the binary histogram library look-up

method improves library look-up speed by an order of magnitude compared to the full

spectral method and a factor of five compared to BSSD. It should be noted that the

binary histograms with 5 cut-off levels shown in subsection 6.4.1 take approximately

same time run as the BSSD spectra, despite the binary histogram having five times

the dimensionality of the BSSD spectra.

Table 6.4.
Average Time to Compute a Spectral Distance for a Single Level in
a Binary Histogram, Full Spectra, and Binned, Smoothed, Second-
Derivative Spectra (BSSD)

Binary Spectra (ms) Full Spectra (ms) BSSD (ms)
0.25 1.9 1.2

It should be noted that because these algorithms were run in Matlab, the absolute

computational costs may have added costs owing to the computational cost of running

an interpretative language. Even so, it is clear from the results in Table 4 that, relative

to using a full-spectral distance metric, the binary histogram algorithm is significantly

more computationally efficient. This is true even for spectra processed using the same

spectral preprocessing methods. In fact, the time it takes to determine the distance

to a histogram with five cut-offs is equivalent to the time it takes to calculate the

correlation coefficient of the BSSD spectra.

6.5 Conclusions

I have demonstrated a novel, computationally efficient method for classifying Ra-

man spectra using a library of known-spectra. This method takes advantage of the

comparatively low computational costs of bit counting binary strings relative to the

computational costs of performing the algebraic operations necessary to compute a
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correlation coefficient. Spectral preprocessing is performed to minimize the contribu-

tions of (high frequency) noise and fluorescence. Even accounting for the dimensional

reduction performed in the spectral preprocessing of the binary histogram algorithm,

the algorithm demonstrated above is more than 5 times less computationally costly

than a full-spectral library look-up method (as seen in Table 1).

This method has been adopted by InnoOptics in their “Narcotics Inspection APK”

product, which is a commercial product containing the Raman spectra used for library

look-up in the proceeding sections. According to Jason Jiang at InnoOptics, the

binary histogram library look-up method runs in 233 ms on a Samsung T310 Tablet

(Android 4.2.2 Jelly Bean operating system, 1.5GHz Dual Core processing).
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A. APPENDIX

A.1 Appendix 1: Supplemental Figures from Chapter 3

The following section provides additional figures that not included, but referenced

in, Chapter 3.

A.1.1 Training Spectra and Filters

Area-normalized spectra plotted against Raman shift frequency (wavenumber)

shown here pertain to results obtained using a 785 nm and 514 nm excitation laser

as noted above each subfigure. Note that the 785 nm spectra were measured with

a resolution of 30 cm−1 and the 514 nm spectra were measured with a resolution

of 12 cm−1. Unless otherwise noted, the spectral component arising from the NIR

objective and the Bernstein polynomials were always considered nuisance spectra.
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Figure A.1. Spectra and the resulting OB-CD filters for (in order
from top down): n-hexane, methylcyclohexane, the spectral compo-
nent arising from the NIR objective and the four degree-three Bern-
stein polynomials. The fraction of the total measurement time that
each filter was collecting was 0.385, 0.219, 0.055, 0.034, 0.268, 0.031,
and 0.009, respectively.
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Figure A.2. Spectra and the resulting OB-CD filters for (in order from
top down): n-hexane, methylcyclohexane, and the four degree-three
Bernstein polynomials. The fraction of the total measurement time
that each filter was collecting was 0.248, 0.388, 0.010, 0.032, 0.277
and 0.045, respectively.
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Figure A.3. Spectra and the resulting OB-CD filters for (in order
from top down): aniline, toluene, spectral component arising from the
NIR objective, and the four degree-three Bernstein polynomials. The
fraction of the total measurement time that each filter was collecting
was 0.484, 0.265, 0.025, 0.003, 0.154, 0.059 and 0.010, respectively.
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Figure A.4. Spectra and the resulting OB-CD filters for (in order
from top down): ethanol, water, and the four degree-three Bernstein
polynomials. The fraction of the total measurement time that each
filter was collecting was 0.276, 0.261, 0.027, 0.116, 0.232, and 0.088 ,
respectively.
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Figure A.5. Spectra and the resulting OB-CD filters for (in order from
top down): Raman features of the plastic film, the spectral component
arising from the NIR objective, and the four degree-three Bernstein
polynomials. The fraction of the total measurement time that each
filter was collecting was 0.099, 0.210, 0.099, 0.271, 0.212, and 0.109,
respectively. No components were considered nuisance spectra, as I
wanted to accurately estimate the intensity of the fluorescence before
and after photobleaching.
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A.2 Appendix 2: Binary-Complementary Compressive Filter Generation Code

The following section provides the Matlab code used to generate the binary-

complementary filters described in Chapter 4. Comments here (normally denoted by

the % symbol) are instead shown within parentheses in normal facing text, whereas

code is shown in math (italics) text.

A.2.1 Binary-Complementary Optimal Filter Code

function [F, T,B,A, P ] = Make OBCD2 Filters(spectra1, spectra2)

(Step 1. User input: (1) spectra and (2) number of pairs of filters)

[p, pairs] = loadinput(spectra1, spectra2);

(Step 2: Optimal filters)

N = size(p, 1); (length of spectra)

n = size(p, 2); (number of spectra)

f = rand(pairs,N);

x = f ∗ p;
y0 = reshape(x, 1, pairs ∗ n);
f = @(y)− Comp(p, pairs, n, y);

X = [ ];

b = [ ];

Aeq = [ ];

beq = [ ];

lb = zeros(1, pairs ∗ n);
ub = ones(1, pairs ∗ n);
vec = fmincon(f, y0, X, b, Aeq, beq, lb, ub);

val = −f(vec);
[Ades, T, fdes] = FindAT (p, pairs, n, vec);
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Tdes = diag(T );

lambda = (ones(1, n)′)/n;

D = diag(Tdes ∗ Ades ∗ lambda);

Bdes = inv(Ades′ ∗ Tdes ∗ inv(D) ∗ Tdes ∗ Ades) ∗ Ades′ ∗ Tdes ∗ inv(D) ∗ Tdes;

fdes1 = fdes;

fdes1(fdes1 < 1) = 0;

fdes1(fdes1 > 1) = 1;

(Writes the files into the folder)

dlmwrite(′P.txt′, p,′\t′);
dlmwrite(′B.txt′, Bdes,′ \t′);
dlmwrite(′F.txt′, fdes1,′\t′);
dlmwrite(′T.txt′, Tdes,′\t′);

(Convert intermediate variable names to final variable names)

F = fdes1;

P = p;

B = Bdes;

T = Tdes;

A = Ades;

lengthfdes = length(fdes1);

nmirror = 2;

Q = fdes′1;

[nrows, ncol] = size(Q);

Q2 = zeros(nmirror ∗ nrows, ncol);
j = 1;

for k = 1 : ncol;
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for i = 1 : nrows;

Q2(j : j + (nmirror − 1), k) = Q(i, k);

j = j + nmirror;

end

j = 1;

end

Q2 = Q2′;

Q2 = fliplr(Q2);

[n,m] = size(Q2);

for ii = 1 : n;

X = zeros(1,m);

Y = zeros(1,m);

X = Q2(ii, :);

Y = X;

for jj = 1 : 607;

Y = cat(1, X, Y );

end

out = Y ;

imwrite(logical(out), strcat(′F ′, num2str(ii),′ .bmp′));

end

clear X Y n m i j k ii jj Q Q2 nrows ncol nmirror lengthF ;

%%%%%%%%%%%%%%%%%%%%%%%%%

(note: The following code is written for n=2 spectra. Notes are included to modify

for n≥2 spectra.)
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function [q, pairs] = loadinput(spectra1, spectra2)

[m,∼] = size(spectra1);

q = zeros(m, 2); (Change 2 to the number of spectra in the training set)

q(:, 1) = normarea(spectra1);

q(:, 2) = normarea(spectra2);

(Add additional spectra here)

q(q ≤ 0) = 0;

pairs = 1; (Modify to be n-1 pairs)

%%%%%%%%%%%%%%%%%%%%%%%%%

function val =Comp(p, pairs, n, y)

N = size(p, 1);

x = reshape(y, pairs, n);

x1 = 1− x;

x = [x; x1];

m = 2 ∗ pairs;
r = zeros(1,m);

u = zeros(m,n);

A = zeros(m,n);

(Compute A)

for i = 1 : m
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u(i, :) = x(i, :)/norm(x(i, :));

end

f = zeros(m,N);

for i = 1 : m

[r(i)f(i, :)] = OptScale(p, u(i, :));

A(i, :) = f(i, :) ∗ p;
end

(Compute T)

T = ones(1,m)/m;

T = MaxT (A, T, p,m);

(Compute L)

D = zeros(m,m);

for i = 1 : m

D(i, i) = T (i)/sum(A(i, :));

end

L = A′ ∗D ∗ A;
if(abs(det(L)) ≤ 1e− 20)

val = log(abs(det(L)));

else

val = −20;
end

%%%%%%%%%%%%%%%%%%%%%%%%%

function [Aout, Tout, fout] =FindAT(p, pairs, n, y)
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N = size(p, 1);

x = reshape(y, pairs, n);

r = zeros(1, pairs);

x1 = 1− x;

x = [x; x1];

m = 2 ∗ pairs;
u = zeros(pairs, n);

A = zeros(pairs, n);

fori = 1 : pairs

u(i, :) = x(i, :)/norm(x(i, :));

end

f = zeros(pairs,N);

fdes = zeros(pairs,N);

for i = 1 : pairs

[r(i)f(i, :)] = OptScale(p, u(i, :));

fdes(i, :) = round(f(i, :));

A(i, :) = fdes(i, :) ∗ p;
end

fadd = 1− fdes;

Aadd = 1− A;

fout = [fdes; fadd];

Aout = [A;Aadd];

T = ones(1,m)/m;

Tout = MaxT (Aout, T, p,m);
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%%%%%%%%%%%%%%%%%%%%%%%%%

function Tnew =Iter(T,A, p,m)

S = diag(T );

n = size(p, 2);

lambda = ones(1, n)′;

D = diag(S ∗ A ∗ lambda);

pairs = m/2;

Tnew = zeros(1,m);

if (abs(det(D)) ≤ 1e− 20)

tem = A′ ∗ S ∗ inv(D) ∗ S ∗ A;
if (abs(det(tem)) ≤ 1e− 5)

B = inv(A′ ∗ S ∗ inv(D) ∗ S ∗ A) ∗ A′ ∗ S ∗ inv(D) ∗ S;
Snew = A ∗B;

for i = 1 : pairs

Tnew(i) = Snew(i, i) + Snew(pairs+ i, pairs+ i);

end

for i = (pairs+ 1) : m

Tnew(i) = Snew(i, i) + Snew(−pairs+ i,−pairs+ i);

end

Tnew = Tnew/sum(Tnew);

else

Tnew = T ;

end

else

Tnew = T ;

end



98

%%%%%%%%%%%%%%%%%%%%%%%%%

function T =MaxT(A, T, p,m)

for i = 1 : 100

T = Iter(T,A, p,m);

end

%%%%%%%%%%%%%%%%%%%%%%%%%

function [r, f ] =OptScale(p, u)

N = size(p, 1);

n = size(p, 2);

A = [];

b = [];

lb = zeros(1, N);

ub = ones(1, N);

C = null(u);

Aeq = C ′ ∗ p′;
beq = zeros(1, n− 1);

G = −u ∗ p′;
options = optimset(′Display′,′ none′);

f = linprog(G,A, b, Aeq, beq, lb, ub, [], options);

r = −G ∗ f ;
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A.3 Appendix 3: Binary Library Look-up Algorithm

The following section provides the Matlab code used to perform library look-up

on binned smoothed, second-derivative Raman spectra that are then converted to

binary histograms, as described in Chapter 6. Comments here (normally denoted by

the % symbol) are instead shown within parentheses in normal facing text, whereas

code is shown in math (italics) text.

A.3.1 Binary-Complementary Optimal Filter Code

function [CCarray] =BSSG Lookup(TestSpectrum, cI, cP, library64, cutoff)

(cI is a measure of noise)

(cP is a shift amount, simulating would happen if peaks shifted in pixel location on

the CCD.)

(TestSpectrum is, unsurprising, a spectrum to test against the library.)

As = 100; (First pixel in spec library to look-up. Use to remove low-information

regions of spectra.)

Bs = 740; (Last pixel in spec library to look-up. Use to remove low-information

regions of spectra.)

[m,n] = size(TestSpectrum);

if cI == 1

Stest = TestSpectrum;

else

Stest = (TestSpectrum/cI) + poissrnd(TestSpectrum/cI);

Stest(Stest ≤ 0) = 0;

end
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ifcP == 0

Stest = Stest; elseif cP == −1
Stest2(1, 1) = Stest(1, 1);

for a = 2 : m

Stest2(a, 1) = Stest(a− 1, 1);

end

Stest = Stest2;

elseif cP == 1

Stest2(m, 1) = Stest(m, 1);

for a = 1 : m− 1

Stest2(a, 1) = Stest(a+ 1, 1);

end

Stest = Stest2;

elseif cP == −2
Stest2(1 : 2, 1) = Stest(1 : 2, 1);

for a = 3 : m

Stest2(a, 1) = Stest(a− 2, 1);

end

Stest = Stest2;

elseif cP == 2

Stest2(m− 1 : m, 1) = Stest(m− 1 : m, 1);

for a = 1 : m− 2

Stest2(a, 1) = Stest(a+ 2, 1);

end

Stest = Stest2;

end

Bin64 = MakeBinaryTestV ector2(Stest, As,Bs, cutoff);
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[CCarray] = Bin64CC2(Bin64, library64);

clear a

%%%%%%%%%%%%%%%%%%%%%%%%%

function [BinaryWord] =MakeBinaryTestVector2(TestSpectrum,As,Bs, cutoff)

(Take a spectrum, mask from As to Bs, take a SGSD, split into two-halves (32 bits

each), then make a binary word.)

(Step 1: Let’s make TestSpectrum a SGSD spectrum)

[m,n] = size(TestSpectrum);

x = [1 : m]′;

sgspec = Binomial Smoothing(TestSpectrum, 50);

sgspec = Binomial Smoothing(sgspec, 50);

sgspec = Binomial Smoothing(sgspec, 50);

dy = diff(sgspec);

dx = diff(x);

dydx = dy./dx;

dx2 = (dx(1 : end− 1) + dx(2 : end))/2;

s2d = diff(dydx)./dx2;

s2d(1 : As, 1) = 0; (zeros masked values)

s2d(Bs : m, 1) = 0;
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s2d norm = DorsNorm(s2d,As,Bs);

(Step 2: Convert the SGSD spectrum into a 64 pixel SGSD spectrum called s64d)

count10 = 0;

count64 = 0;

s64d = zeros(64, 1);

while count64 ≤ 64

whilecount10 ≤ 10

s64d(count64+1, 1) = s64d(count64+1, 1)+ s2d norm((As+10 ∗ count64+
count10), 1);

count10 = count10 + 1;

end

count10 = 0;

count64 = count64 + 1;

end

BinaryWord = BinaryV ector(s64d, cutoff);

%%%%%%%%%%%%%%%%%%%%%%%%%

function [bin filt] =Binomial Smoothing(input spec, smooth fact)

(Np is the smoothing parameter - assumed to be 20 to match Dor)

[m,∼] = size(input spec);

bin filt = zeros(m, 1);
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Smooth = diag(rot90(pascal((2 ∗ smooth fact) + 1)))′;

Smooth corrected = (Smooth/(4ˆsmooth fact));

for i = 1 : m

if le(i, smooth fact)

bin filt(i, 1) = input spec(i, 1);

elseif ge(i+ smooth fact,m)

bin filt(i, 1) = input spec(i, 1);

else

bin filt(i, 1) = (Smooth corrected ∗ input spec(i − smooth fact : i +

smooth fact, 1));

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%

function [normed fxn] =DorsNorm(fxn,As,Bs)

(As and Bs are the range of rows to normalize over.)

[m,∼] = size(fxn);

product fxn = zeros(m, 1);

for i = 1 : Bs

product fxn(i+ As− 1, 1) = fxn(i+ As− 1, 1) ∗ fxn(i+ As− 1, 1);

end
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Sum product fxn = sum(product fxn(1 : m, 1));

Sum product fxn = sqrt(Sum product fxn);

normed fxn = zeros(m, 1);

for j = 1 : Bs

normed fxn(j + As− 1, 1) = fxn(j + As− 1, 1)/Sum product fxn;

end

%%%%%%%%%%%%%%%%%%%%%%%%%

function [binout] =BinaryVector(Test64spectrum2d, cutoff)

(Converts a 64-bit spectrum into two 32 bit binary words)

(Test64spectrum2d is a 64 bin spectra, usually created in ”MakeBinaryTestVector”)

(cutoff is the cutoff for a 64 bin Savitzky-Golay smoothed second-derivative spectra

(binned in a way described in ”MakeBinaryTestVector”)).

(word is for 32 bit systems. Who even uses those anymore? This is code that I will

probably cut as I’m running this on 64-bit Linux. Dor originally coded this to run in

Igor, which is limited to 32 bits.)

wn = 1;

count64 = 0;

binout = 0;
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whilecount64 < 64

if Test64spectrum2d(wn+ count64, 1) ≤ cutoff

binout = binout+ 2ˆ(count64);

end

count64 = count64 + 1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%

function [CCarray] =Bin64CC2(b64, library64)

(Calculates distance measurements between binary words)

[∼, n] = size(library64); (n=number of spectra in library.)

CCarray = zeros(1, n);

for i = 1 : n

CCarray(1, i) = (bitand(b64, library64(1, i)))/(bitor(b64, library64(1, i)));

end
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and suppressing fluorescence background using OB-CD filters trained on
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1. Introduction

Current spectroscopic chemical analysis instruments are capable of generating data sets that are
so large that they require transforming the data to a lower-dimensional space, using methods
such as principal component analysis (PCA) [1] or partial-least squares (PLS) [2] to facilitate
subsequent automated chemical classification and quantitation. Moreover, because the collec-
tion of high-dimensional data is often the slowest step in the process, a number of compressive
detection strategies [3–7] have been introduced with the goal of increasing data collection speed
by making measurements only in the low-dimensional space containing the information of in-
terest. One such method is our previously described optimized binary compressive detection
(OB-CD) strategy, in which OB filters are applied to a digital mirror microarray (DMD) to
redirect or collect photons of (multiple) selected colors, for detection using a single channel
detector, such as a photon counting photomultiplier tube (PMT) or an avalanche photodiode
(APD) [8, 9].

Previously [8–10], we demonstrated that the OB-CD strategy enabled high-speed chemi-
cal classification, quantitation, and imaging. Here we demonstrate an extension of the OB-CD
method that facilitates Raman classification and quantitation in the presence of fluorescence
background. Key advantages of this method, relative to conventional fluorescence subtraction
strategies [11–16], include its compatibility with automated high-speed chemical analysis in the
presence of variable fluorescence backgrounds. Here we show that fluorescence backgrounds
may be quantified and subtracted on-the-fly by including Bernstein polynomial spectral func-
tions in the OB-CD training set, along with Raman spectra of the components of interest. In
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other words, we augment the Raman spectral training set with Bernstein polynomial spectral
shapes to model fluorescence and thus obtain OB-CD filters that are used to quantify both the
chemical components of interest and the fluorescence background spectra.

2. Theory

We begin by giving a short summary of the OB-CD mathematical framework [8]; some of
the wording is taken from the cited paper and we refer the reader there for more details and
discussion, including our assumption of linear additive spectra, which justifies in part the form
of our model. This framework is based on the subfield of statistics known as “Optimal Design
of Experiments” [17]. We then discuss the notion of nuisance parameters and how this notion
can be exploited to reduce the variance of the estimated photon emission rates pertaining to
the (non-nuisance) components of interest. Finally, we introduce a new strategy for modeling,
quantifying, and suppressing fluorescence background signals in Raman spectra.

2.1. Review of mathematical model

We assume that our chemical sample consists of a mixture of n known chemical species Sj,
j = 1, . . . ,n. In a particular sample, the species S j emits photons at a rate Λ j, so the number of
photons emitted in time t is a Poisson random variable with mean tΛ j; our goal is to estimate
these rates as accurately as possible, in order to quantify the composition of a sample containing
such components.

The wavelength, or energy, of each photon observed in the experiments can be labeled with an
integer i ∈ {1, . . . ,N}. Assume that we know the shape of the spectrum associated with species
S j; denote the probability that a photon from species Sj has label i by Pi j, so ∑N

i=1 Pi j = 1. In
other words, the Pi j, i = 1, . . . ,N, form the spectrum of the jth compound, normalized so that
the sum is 1. Thus the stream of labeled photons emanating from a sample is modeled by a
vector Poisson process with rates PΛ, where Λ = (Λ1, . . . ,Λn)

T , and P = (Pi j)N×n. (Here and
later, superscript T denotes “transpose.”) If we measure the number of photons that arrive in
each energy bin for time t then the number of photons with label i entering our instrument from
all chemical species has a Poisson distribution with mean t(PΛ)i = t ∑n

j=1 Pi jΛ j. We assume
that the number of wavelength channels, N, is greater than the number of chemical species n,
and that the columns of P are linearly independent, i.e., P has full rank. (In other words, we
assume that no spectrum can be written as a linear combination of the other spectra.)

We consider taking m independent measurements with m ≥ n. In the kth measurement, we
set in our optical filter the transmittance of all photons with energy level i to be a number Fik
with 0 ≤ Fik ≤ 1; i.e., the probability that in the kth measurement a photon with energy label
i is counted is Fik. Our observation in the kth measurement is the total photon count, summed
over all energy levels i, from observing the photon stream for time Tkk, which will be a Poisson
random variable with mean

Tkk

N

∑
i=1

Fik

( n

∑
j=1

Pi jΛ j

)
= Tkk

N

∑
i=1

n

∑
j=1

FikPi jΛ j.

(We use a double subscript on Tkk because we will make these numbers the diagonal of a matrix
T .) We refer to the columns of the matrix F = (Fik)N×m as filters, and the entries of F can be
chosen as we wish, since they are parameters of our measuring device. Based on [17] and as
in [8], we choose filters F and corresponding measurement times T to minimize the variance
in estimated rates, subject to a total time constraint expressed as ∑m

k=1 Tkk = 1.
For a DMD, we can choose only Fik = 0 or Fik = 1, while for an analog spatial light modulator

(SLM) we can in principle choose any 0 ≤ Fik ≤ 1. (Moreover, one could use a DMD as an
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analogue filter by varying time for which each individual energy bin in a given filter is turned
on, although we have not done so in the present studies.)

We denote by x our complete observation, a vector of m independent Poisson random vari-
ables with means and variances given by the vector TFT PΛ, where T is the m×m diagonal
matrix with diagonal entries T11, . . . ,Tmm and FT P is an m× n matrix. We assume that F is
chosen so that FT P has rank n (which is possible since P has rank n and m≥ n).

If we denote by x̂ a sample from this random variable, then our estimate Λ̂ of the true
rates Λ is given by Λ̂ = BT−1x̂, where the n×m matrix B = (bik)n×m is a left inverse of
FT P, i.e., B(FT P) = I, the n× n identity matrix. (If n = m then FT P is a square matrix and
B is simply (FT P)−1.) We note that the expected value of Λ̂ satisfies E(Λ̂) = BT−1E(x̂) =
BT−1(TFT PΛ) = Λ, so Λ̂ is an unbiased estimator of Λ.

It was shown earlier [8] that the variance of the estimate Λ̂ j of the jth rate Λ j is given by

E
(|(BT−1x) j−Λ j|2

)
=

m

∑
k=1

b2
jkT

−1
kk (FT PΛ)k.

In the cited paper the variances were summed over all Λ j to derive

E
(‖BT−1x−Λ‖2)= n

∑
j=1

m

∑
k=1

b2
jkT

−1
kk (FT PΛ)k =

m

∑
k=1

((FT P)Λ)k

Tkk
‖Bek‖2. (1)

Here ek is a vector whose components are zero except for a 1 in the kth component and ‖y‖2 =

∑n
j=1 y2

j .
We now deviate a bit from the earlier exposition [8], where it is perhaps not stated clearly

that because the sum of variances (1) depends on the unknown rates Λ, we cannot choose m, F ,
T , and B to minimize (1) for all Λ simultaneously. Therefore we pick a single Λ̄ = (1, . . . ,1)T

and choose m, F , T , and B to minimize

E
(‖BT−1x− Λ̄‖2)= m

∑
k=1

((FT P)Λ̄)k

Tkk
‖Bek‖2 (2)

under the constraints m ≥ n; 0 ≤ Fik ≤ 1, 1 ≤ i ≤ n, 1 ≤ k ≤ m; 0 < Tkk, 1 ≤ k ≤ m, and
∑m

k=1 Tkk = 1; and B(FT P)= I. This choice of Λ̄ has proved useful absent additional information
[8]. Our experience indicates that the resulting filters and measurement times are relatively
insensitive to changing individual coefficients in Λ̄ by up to a factor of 100.

2.2. Nuisance parameters

It often happens that the photon emission rates of some chemical species are of more interest
than others. One might have a contaminant with a broad (known) spectrum; while this may
be one of the chemical species Sj, we don’t really care about the accuracy of estimation of
that particular Λ j. In the field of Optimal Design of Experiments, such variables Λ j are known
as nuisance parameters: They are a necessary part of the model, but we don’t care about the
accuracy of their estimates except insofar as it affects the estimates of the other variables [18].

We assume that we are truly interested in the photon emission rates of only the first n′ < n
chemical species. For such systems, we don’t care about the variances of the estimates of Λ j
for n′ < j ≤ n and so instead of minimizing (2) we minimize the sum of the variances of of the
estimates of only the first n′ emission rates:

n′

∑
j=1

E
(|(BT−1x) j− Λ̄ j|2

)
=

n′

∑
j=1

m

∑
k=1

b2
jkT

−1
kk (FT PΛ̄)k.

In effect, we estimate Λ j for n′ < j ≤ n only well enough to minimize the error of the sum of
variances of the first n′ emission rates.
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2.3. Estimating fluorescence using Bernstein polynomials

A fluorescent spectrum is generally smooth and broad, in contrast to the narrow peaks found
in Raman spectra; it may vary from one sample to another, or from time to time for the same
sample.

One can reduce the amount of fluorescence in a sample by photobleaching the sample prior
to analysis [19]. Another commonly-used procedures for subtracting such fluorescence back-
grounds from Raman spectra is to fit the fluorescent spectrum to a polynomial [11,12]; in effect,
this amounts to using a fixed polynomial of specified degree to model a fluorescent spectrum.
This may work well if in a set of samples the fluorescence doesn’t vary over space or time; this
is often not the case, however, in Raman (and particularly Raman imaging) applications, for
which one must estimate the shape of the fluorescence dynamically.

Instead of somehow applying conventional fluorescence fitting and subtraction strategies to
OB-CD measurements, we use OB-CD filters that are derived using either actual fluorescence
spectra of known shape or a family of polynomials that models general fluorescence spectra.

More specifically, if the sample of interest contains a fixed fluorescent signal of known shape,
we do the following. We simply add the fluorescence spectrum as an extra column of P with
associated rate variable Λ j, and then treat Λ j as a nuisance parameter, not adding its variance
to the sum of variances being minimized.

If the fluorescence has a spectrum that varies over space or time, however, we cannot apply
the previous procedure and must model the fluorescence dynamically, as follows.

Since fluorescence backgrounds can often be fit reasonably well by a cubic polynomial,
we would like to identify a polynomial basis for cubic polynomials such that (1) all basis
elements are nonnegative on [0,1] and (2) every nonnegative polynomial can be written as a
linear combination of the basis elements with nonnegative coefficients. (Negative coefficients,
which are supposed to model rates, are nonphysical and increase the variance of our estimates.)
Unfortunately, for r > 1, no such basis exists.

Of interest, however, is the Bernstein basis [20, 21] of polynomials of degree r, given by

Bν ,r(x) =
(

r
ν

)
xν(1− x)r−ν , ν = 0,1, . . . ,r,

are nonnegative on [0,1] (so any linear combination of them with nonnegative coefficients is
nonnegative on [0,1]). They have other nice properties: They form a basis for the space of
polynomials of degree r; they have optimal stability is some sense [21]; and “many” if not
“most” nonnegative polynomials that come up in practice as models for fluorescent spectra
have nonnegative coefficients in the Bernstein basis (or at least, any negative coefficients are
not “overly” large). The Bernstein polynomials even resemble single-peak spectra.

In the specific case r = 3 we have B0,3(x) = (1−x)3, B1,3(x) = 3x(1−x)2, B2,3(x) = 3x2(1−
x), B3,3(x) = x3. These polynomials are shown in Fig. 1.

In this work we model fluorescent spectra with linear combinations of Bν ,3(x), ν = 0,1,2,3,
and often treat the Bernstein coefficients as nuisance parameters. Because fluorescent spectra
are not precisely polynomials, this introduces model error, which we discuss in the Results
and Discussion section. We have also found that for some purposes using quartic polynomials
(r = 4) gives more accurate results.

3. Methods and materials

3.1. OB-CD spectrometers

We have previously described an OB-CD spectrometer using a 785 nm laser for excitation with
75 mW at the sample [8]. In the present studies we have utilized that spectrometer as well as
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Fig. 1. Plot of the four degree-three Bernstein polynomials as a function of wavelength channel
(scaled to be over the interval [0,1].) The colors denote the various polynomials: black, B3,0(x);
blue, B3,1(x); green, B3,2(x); and red, B3,3(x).

a new OB-CD spectrometer using a 514 nm laser for excitation whose schematic is shown in
Fig. 2 (the 785 nm excitation laser system is similar in design, as previously described in [8]).
Much like the previously described system, our microscope is configured to collect the back-
scattered Raman signal with the same objective lens that is used to focus the argon ion laser
(Modu Laser Stellar Pro L 100 mW) onto the sample. The laser passes through a laser-line
bandpass filer (Semrock RazorEdge) before it is focused onto the sample using a microscope
objective (Nikon MPlan, 20x, 0.4 NA), and unless indicated otherwise the laser power at the
sample was about 12 mW for all experiments described in this paper. The backscattered light is
collected and then separated from the laser Rayleigh scattering using a dichroic mirror (Sem-
rock RazorEdge). Then, the Raman scattered light is sent to the spectrometer (right portion of
Fig. 2), where it is filtered first using a long pass (edge) filter (Semrock RazorEdge), followed
by passing through a volume holographic grating (Wasatch Photonics, ∼1000 lines mm−1).
This light is then dispersed onto the DMD (Texas Instruments, DLP3000, 608× 684 mirror
array with 10.8 μm mirror pitch). The spectral window in this system is ∼200–4100 cm−1.
For all data collected in this paper, we binned two columns of adjacent DMD mirrors together,
yielding a total of 342 “bins” with each energy bin corresponding to ∼12 cm−1. Light from
the DMD is then focused onto a photon-counting photomultiplier tube (PMT) (Hamamatsu
model #H10682-01) with a dark count rate of ∼500 photons s−1. TTL pulses from the PMT
are counted using a USB data acquisition (DAQ) card (National Instruments, USB-6212BNC).
The system is controlled with interface software written in Labview 2013. Binary filter genera-
tion is performed as previously described using Matlab (Matlab 7.13 R2011b) [8]. Data was in
some cases further processed and manipulated using Igor Pro 6.04.

3.2. Chemicals used in classification/quantitation

Acetone and benzene were purchased from Macron (batch #0000070736) and OmniSolv
(lot #42282), respectively. Hexanes were acquired from Baxter (lot #901141). Methylcyclo-
hexane was acquired from Mallinckroft (lot #1906 KCBN). Aniline and toluene were acquired
from Aldrich (batch #05925CB) and Mallinckroft (lot #8608 X14752), respectively. Aniline
was purified via distillation by heating aniline to 190◦ C in a round bottom flask, which was
connected to a chilled condenser. Ethanol was acquired from Koptec (200 Proof, lot #225411)
and water was ultrapurified in our lab (Milli-Q UF Plus, 18.2 mΩ cm, Millipore). The overhead
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Fig. 2. Schematic of the OB-CD Raman system based upon a 514 nm laser excitation source.

transparency was 3M brand (model #PP2500).

4. Results and discussion

4.1. Treatment of nuisance parameters

Here we demonstrate how the OB-CD detection strategy is influenced by whether the photon
emission rates of some of the spectra used for training OB-CD filters are treated as nuisance
parameters; we designate such spectra as nuisance spectra. More specifically, we generated an
OB-CD training set containing the spectra of hexane, methylcyclohexane, a spectral feature
arising from the NIR objective in the 785 nm OB-CD system, and the four Bernstein polynomi-
als shown in Fig. 1. Using this training set, we calculated two sets of OB-CD filters (explicitly,
both the matrix of binary filters, F , and the measurement time matrix, T ): one set for which no
spectral features were considered to be nuisance spectra and a second set for which the spectral
feature arising from the NIR objective and the Bernstein polynomials were considered to be
nuisance spectra. The optimal filters turned out to be identical in both cases (although that need
not in general be the case), while the measurement time matrices, T , were quite different as
shown in Fig. 3. Notice that the OB-CD filters associated with non-nuisance spectra are turned
on for longer percentages of the total measurement time relative to OB-CD filters for the same
spectral components when no portion of the training set is considered a nuisance spectra.

One might expect that additional time spent measuring the non-nuisance spectra would result
in lower variance in the recovered Raman rates for these components. To test this, the two sets
of OB-CD filters (and the associated measurement time matrices) shown in Fig. 3 were used
to classify hexane and methylcyclohexane (explicitly, there was no added fluorescence in these
samples despite including Bernstein polynomials in both OB-CD training sets). Each chemical
was measured using each of the sets of OB-CD filters for 1,000 measurement with 10 ms total
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Fig. 3. The colored curves are training spectra (each normalized to unit area) and the gray bands
indicate regions in which the OB-CD filters are on (i.e., direct light towards the detector). The Raman
spectra were obtained with a spectral resolution of 30 cm−1. The lines labeled Tkk correspond to
the fraction of the total measurement time that data is collected using the filter associated with each
spectral component (denoted by color). The OB-CD filter and Tkk results on the left were obtained
without considering any components to be nuisance spectra, while those on the right were obtained
when considering the NIR objective and Bernstein polynomials to be nuisance spectra.

integration time. The results of these measurements, shown in Fig. 4, clearly reveal the reduced
variance (smaller 95% confidence bands) obtained when treating only the two components of
interest as non-nuisance spectra. Note in particular that the mean recovered Raman rates for
hexane and methylcyclohexane generated from both sets of OB-CD filters differed very little.

4.2. Validation of Bernstein polynomials

To test and validate our OB-CD fluorescence suppression strategy we either used a white light
source to simulate fluorescence or samples containing fluorescent components. The results de-
scribed in this section were obtained using a white light illuminator as a convenient fluorescence
mimic, as its intensity can readily be varied, and its shape resembles typical fluorescence back-
grounds (and has a different shape in the 514 nm and 785 nm spectral region). In subsequent
subsections, we describe results obtained using samples with fluorescent impurities, rather than
white light, to validate our OB-CD strategy. Here we produced OB-CD filters by training using
Bernstein polynomials as well as the Raman spectra of n-hexane and methycyclohexane (and a
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Fig. 4. Recovered Raman rates for hexane (blue) and methylyclohexane (red) generated using OB-
CD filters that considered components of the training set to be nuisance spectra (dark blue and dark
red) and OB-CD filters that considered the spectral component arising from the NIR objective and
the four Bernstein polynomials to be nuisance spectra (light blue and light red). In all cases, 1,000
OB-CD measurements were taken with a total integration time of 10 ms. The ellipses represent the
95% confidence interval of the recovered Rates for each sample. The large markers in the center of
each ellipse represent the mean recovered Raman rates.

spectral component arising from the NIR objective for the 785 nm system). We treat the coeffi-
cients of the Bernstein polynomials and the spectral component arising from the NIR objective
for the 785 nm system as nuisance parameters. The resulting filters and training spectra from
the 785 nm system are virtually identical to those shown in Fig. 3 (and are provided in the
Appendix, along with the filters generated for the 514 nm OB-CD system).

The following results were obtained by holding the white light at constant intensity (of about
4 million counts per second) such that the total Raman/fluorescence signal intensity never ex-
ceeds 5 million counts per second. We then varied the Raman excitation laser intensity (using
neutral density filters) in order to vary the relative amount of Raman and fluorescence in the
measured spectra and OB-CD signals, and thus determine how fluorescence background influ-
enced our the recovery of apparent Raman rates using OB-CD.

At each Raman signal intensity, we recovered Raman rates using the OB-CD filters as de-
scribed in Section 2.1, both with and without the white light background. This allowed us to
determine the error in recovered Raman rates as a result of adding fluorescent (white light)
background. Figure 5 compares the Raman rates recovered with (y-axis) and without (x-axis)
added white light when using 30 ms total integration time for each measurement. The number
at the top indicates the ratio of the integrated area of the fluorescence and Raman signals and
the error bars represent the standard deviations of the Raman rates for each component (see the
figure caption for further details).

If fluorescence is not perfectly modeled, then the recovered Raman rates can contain a sys-
tematic modeling error whose magnitude increases with fluorescent intensity. When using a
constant intensity white light to model fluorescence such modeling error introduces an approx-
imately constant offset to the recovered Raman rates. The magnitude of this offset can be de-
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Fig. 5. Plot of hexane (blue) and methylcyclohexane (red) recovered Raman rates measured with-
out added white light versus recovered Raman rates measured with added white light on the (a)
785 nm laser excitation system and (b) 514 nm laser excitation system. Rates have each been cor-
rected by removing a small constant vertical offset (modeling error) whose magnitude was determined
by measuring the apparent recovered Raman rates obtained in measurements performed on white light
without Raman. The magnitude of this correction is represented by the colored bars in the upper left
of each plot. Each point represents the means of 1,000 measurements (each obtained using a 30 ms
total integration time) with error bars representing 1 standard deviation. Top axis denotes the ratio
of the total (integrated) number of the white light/Raman photons. The inset spectra were obtained
from hexane with and without added white light with ∼1 OD neutral density filter and correspond to
measurements made at the points denoted by the arrows.

termined by measuring the apparent recovered rates of the Raman components obtained when
measuring only white light (containing no Raman photons). For the measurements shown in
Fig. 5, these modeling errors were relatively small and have magnitudes indicated by the bars
in the upper left of each plot. These modeling errors have been subtracted from each of the
points in Fig. 5. In other words, before correcting for this modeling error, all of the recovered
Raman rates were slightly offset from the dashed diagonal line (of slope 1).

If the spectrum of white light was modeled perfectly by a degree-three polynomial (or was
corrected for modeling error, as described above), we would expect that the mean recovered
Raman rates for samples with added white light would not significantly differ from the mean
recovered Raman scattering rates without added white light. In other words, we would expect
the points to lie on a line with slope one as indicated by the dashed lines in Fig. 5. Thus,
the agreement between the points and dashed line in Fig. 5 clearly demonstrate that Raman
components can be quantified accurately in the presence of fluorescence backgrounds whose
integrated intensity is up to 20 times that of the Raman component of interest. Note that the
factor of 20 is obtained from the results shown in Fig. 5, as this is when the Raman signal-to-
noise approaches 1:1.

Samples with larger fluorescence/Raman intensity ratios can in principle be accurately ana-
lyzed using OB-CD with longer measurement times. However, when the integration time ap-
proaches one second it may be appropriate to use conventional full spectral measurements and
fluorescence subtraction procedures as the OB-CD strategy is primarily advantageous for per-
forming high speed (or low light level) measurements that are not compatible with CCD de-
tection. Additionally, performing OB-CD measurements on samples in which fluorescence is
more than 20 times as intense as the Raman signal of interest would require careful modeling
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error correction (as the modeling error would become large relative to the Raman intensities).
The results presented in Section 4.3 demonstrate the accuracy with which high speed OB-CD
Raman classification and quantitative measurements may be performed without correcting for
model error so long as the fluorescence background intensity does not exceed 20 times the
Raman signal intensity.

4.3. Raman quantitation and classification of fluorescent samples

4.3.1. Toluene and fluorescent aniline

The following results were obtained using liquid mixtures of toluene and an aniline sample that
was partially oxidized and, as a result, developed a fluorescent impurity that could be removed
by distillation. We selected these two liquids because of their significant spectral overlap (the
dot product of the two normalized spectral vectors is 0.91) and thus successful classification of
aniline/toluene mixtures may be used to demonstrate that our fluorescent mitigation strategy is
compatible with the Raman-based quantification of such spectrally overlapped mixtures.

We trained OB-CD filters using 785 nm spectra obtained from distilled aniline, toluene, the
NIR objective spectrum describe above, as well as the four Bernstein polynomials shown in
Fig. 1 (all of the resulting spectra and OB-CD filter functions are given in the Appendix). For
this experiment, we treated the spectral component arising from the NIR objective and the four
Bernstein polynomials as nuisance spectra. We used OB-CD to recover Raman rates for toluene,
distilled aniline, fluorescent aniline, and mixtures of both types of aniline and toluene. Using
these recovered Raman rates, we calculated apparent volume fractions of aniline and toluene as
follows:

χi =
wiΛ̂i

∑i wiΛ̂i
,

where wi is equal to Mi/Λ̂Max
i , Mi is equal to molarity of the ith pure liquid, and Λ̂Max

i is equal
to the mean recovered Raman scattering rate for the ith pure liquid as previously reported [9].
We then estimated the apparent volume fraction (Φ) for aniline and toluene in each sample. We
did this by dividing the apparent mole fraction (for either aniline or toluene) by the molarity of
each pure liquid as follows:

Φi =
Miχi

∑i Miχi
.

Figure 6 plots the resulting apparent volume fractions of toluene and aniline as well as mixtures
of the two. The results in Fig. 6 demonstrate that the mean recovered Raman rates are insensitive
to the fluorescence arising from the impure aniline sample. The variance of the measurements
without fluorescence, however, is less than the variance of samples with fluorescence (as a result
of additional shot noise in the latter measurements).

4.3.2. Aqueous ethanol and fluorescent tequila

Previous work [22, 23] has demonstrated that Raman spectroscopy can be used to quantify the
volume percentage of ethanol in tequila samples and qualitatively distinguish distilled (“silver”)
and highly fluorescent, aged (or “golden”) tequilas, even in the presence of fluorescence (more
common in aged, so-called “golden” tequila). Here we show that our OB-CD fluorescence
mitigation strategy can be used to quantify the volume percentage of ethanol in tequila, even
for fluorescent “golden” tequila samples at speeds much greater than those previously reported
for this application.

We used the 514 nm laser-based OB-CD system for these studies, both because there was
more fluorescence produced at this wavelength than when using the 785 nm excitation and be-
cause the C-H and O-H stretch vibrational bands are not readily detectable using the 785 nm
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Fig. 6. (a) Spectra of distilled aniline (orange), toluene (magenta), fluorescent aniline (green), a 47:53
volume-by-volume mixture of distilled aniline and toluene (dark green), and a 52:48 mixture of flu-
orescent aniline and toluene (cyan) measured on the 785 nm OB-CD system. (b) Apparent volume
fractions of distilled aniline (orange), toluene (magenta), fluorescent aniline (green), a 47:53 volume-
by-volume mixture of distilled aniline and toluene (dark green), and a 52:48 mixture of fluorescent
aniline and toluene (cyan). Each chemical was sampled 1,000 times at 20 ms per experiment. Ellipses
correspond to the 95% confidence interval of the recovered rates for each sample. The large squares
with black borders in the center of each ellipse represent the mean of each sample.

system. Spectra were collected and OB-CD filters were trained using ethanol, water, and Bern-
stein polynomials (shown in the Appendix). Note that we treated the four Bernstein polyno-
mials as nuisance spectra for OB-CD filter generation. After this, OB-CD was used to recover
Raman rates for ethanol and water in a silver tequila (“Arandas” brand) and a golden tequila
(“Casamigos” brand). The corresponding apparent volume fractions were obtained from the re-
covered rates as shown in Fig. 7. In order to keep the fluorescence photon rates within the linear
regime of the PMT detector, the laser intensity at the sample was reduced to ∼2 mW using a
neutral density filter placed in front of excitation laser and the integration time per sample was
increased to 100 ms.

The inset table in Fig. 7(b) shows the mean apparent ethanol volume fractions obtained in a
measurement times of 100 ms and, parenthetically, the label volume percent ethanol for each
sample. As can be seen, our predicted volume percentages of ethanol very nearly match the
label percentage. However, the variance of the fluorescent “golden” tequila measurements is
much greater than that of the “silver” tequila measurements due to the increased shot noise
resulting from the fluorescence background. In spite of this, we note that by using OB-CD,
we can accurately predict the volume percentage of ethanol in tequila samples even when the
integrated intensity of the fluorescence of the sample is 20 times larger than the integrated
Raman signal. Since the signal-to-noise of such measurements is typically limited by photon
(shot) noise rather than read noise, the total time required to obtain a given precision depends
on the available laser power and thus is expected to be comparable to that obtained using full
spectral measurements (under otherwise identical conditions).

4.3.3. Fluorescent plastic film photobleaching

Here we show an imaging application of our OB-CD fluorescence modeling technique to
demonstrate that the recovery of Raman scattering rates is unaffected by fluorescence pho-
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Fig. 7. (a) Spectra of water (blue), ethanol (red), Arandas brand silver tequila (gray), and Casamigos
brand golden tequila (dark yellow) measured on the 514 nm OB-CD system (b) Apparent volume
fractions of water (blue), ethanol (red), silver tequila (gray), and golden tequila (dark yellow) are
compared with the nominal volume fractions (as obtained from the label on the tequila bottles). Each
chemical was sampled 1,000 times at 100 ms per OB-CD measurement. Ellipses correspond to the
95% confidence interval of the recovered rates for each sample. Large squares with black borders
represent the mean of each sample. The dashed line corresponds to line with slope −1. Inset table
reports the mean apparent volume fraction of ethanol (plus/minus 1 standard deviation) for each
sample and then, parenthetically, the label ethanol volume percentage for each sample.

tobleaching. For this purpose, we used a plastic film sample consisting of a clear overhead
transparency of ∼1.7 mm thickness. This sample was chosen as it was found to contain both
Raman and fluorescence signals when excited at 785 nm and the fluorescence could be photo-
bleached by exposure to the excitation laser. Additionally, the film exhibited fluorescence with
an integrated intensity 10 times that of the integrated intensity Raman features.

While photobleaching decreased the fluorescence background intensity of the sample by
∼50%, the remaining fluorescence could not readily be further photobleached. Thus, for OB-
CD training purposes, we generated a Raman spectrum of the plastic by manually performing a
polynomial background subtraction from a spectrum of photobleached plastic in the 328 nm−1

to 2057 nm−1 region. More specifically, the polynomial subtraction was performed using the
“backcor” MATLAB algorithm (Vincent Mazet, 2010), using an Asymmetric Huber cost func-
tion, a threshold of 0.01, and four third-degree Bernstein polynomials as a basis. The resulting
background subtracted Raman spectrum, as well as the spectra of the overhead transparency
before and after photobleaching are shown in Fig. 8.

Next, OB-CD filters were calculated by training on the fluorescence-subtracted Raman fea-
tures of the plastic film, the spectral component arising from the NIR objective, and the four
third-degree Bernstein polynomials (and the resulting training spectra are provided in supple-
mentary material). Note that unlike the filters constructed for previous examples, no compo-
nents were considered nuisance spectra when calculating OB-CD filters, as we wanted to ac-
curately estimate the intensity of the fluorescence before and after photobleaching. Using these
filters, a 200 pixel×200 pixel region of the plastic film (approximately 1 mm×1 mm) was im-
aged with an integration time of 10 ms per pixel. Once this image was collected, two lines were
photobleached in the transparency to form a photobleached “+” pattern near the center of the
field of view (as shown in Fig. 10). Each line, consisting of 50 pixels, was photobleached for
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Fig. 8. The measured spectra of a cellulose acetate overhead transparency are plotted before photo-
bleaching (red) and after 20 minutes of photobleaching (green). The output of the polynomial baseline
subtraction is also plotted (blue).

10 minutes by scanning the laser repeatedly over the “+” pattern at a rate of 1 second per pixel.
After photobleaching, the same field of view was reimaged and OB-CD was used to recover
the Raman and fluorescence rates. Images were generated using the recovered rates using a
method we have previously described [9]. The fluorescence intensity in this image, was deter-
mined from the sum of the recovered rates for all four Bernstein polynomials. Note that several
spots on the plastic film were highly fluorescent (likely due to a fluorescent impurity, or dust
particle, in the film), with counts well outside the linear region of the PMT and a fluorescence
background intensity much greater than 20 times the average Raman signal. These pixels also
had unusually high recovered apparent Raman rates, which we attributed to model error. These
points were removed from the image, as indicated by black dots in the images shown in Fig. 9.

The upper two panels in Fig. 9 show the apparent recovered Raman rates before (left) and
after (right) photobleaching, while the lower two panels show the corresponding apparent re-
covered fluorescence rates. Note that there is no evidence of a “+” pattern in the upper right
panel; this indicates that photobleaching did not alter the apparent recovered Raman rates ob-
tained from the film. There was a small (∼10%) decrease in average fluorescence intensity
after photobleaching. We attributed this to the photobleaching that occurred while scanning the
laser over the entire region during the OB-CD measurement. The similarity of the two upper
images in Fig. 9 clearly demonstrates that we are able to obtain high-speed Raman intensity
measurements in the presence of a fluorescent background with variable intensity.

5. Conclusions

We have demonstrated an OB-CD fluorescence mitigation strategy that can be used to accu-
rately recover Raman rates from samples with moderate fluorescence intensity (that is, up to
20 times more intense than that of the integrated Raman signal). These results were achieved
by quantifying fluorescence using OB-CD filters trained on cubic Bernstein polynomials. We
have validated this strategy using both white light as a fluorescence mimic, as well as using
fluorescent liquid and solid samples. Thus, the present results demonstrate the feasibility of fast
(sub-second) OB-CD based Raman classification and quantitation of moderately fluorescent
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Fig. 9. Images showing the recovered Raman (yellow) and fluorescence (cyan) rates of a cellulose
acetate overhead transparency before (images on the left) and after (images on the right) photobleach-
ing a “+” pattern into the center of the imaged area. All images were collected with an integration
time of 10 ms per pixel. The circular nature of these images arises from the field of view of the ob-
jective, as the images were obtained by raster-scanning the angle of the laser as it enters the back of
the objective (while remaining centered in the objective).

samples. This approach can be extended to systems with a fluorescence/Raman intensity ratios
greater than 20:1, but would likely require turning down the laser intensity (to avoid detector
saturation) and using much longer integration times. Thus, the presented OB-CD strategy is
expected to be most useful in applications requiring fast analysis of liquid and solid samples
whose fluorescence does not overwhelm the underlying Raman chemical fingerprints. This is
consistent with previous results [10], which indicated that the trade-off between higher read-
noise and higher spectral information content of full-spectral CCD measurements relative to the
OB-CD detection strategy would indicate that OB-CD is most advantageous (relative to CCD
measurements) in fast (low-signal) applications that unaccessible to CCD-based measurements.
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6. Appendix

Fig. 10 shows the training spectra and calculated OB-CD filters for several of the samples in
this paper.
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(e)

Fig. 10. Area-normalized spectra plotted against Raman shift frequency (wavenumber) shown here
pertain to results obtained using a 785 nm and 514 nm excitation laser as noted above each subfigure.
Note that the 785 nm spectra were measured with a resolution of 30 cm−1 and the 514 nm spectra
were measured with a resolution of 12 cm−1. Unless otherwise noted, the spectral component aris-
ing from the NIR objective and the Bernstein polynomials were always considered nuisance spectra.
(a) Spectra and the resulting OB-CD filters for (in order from top down): n-hexane, methylcyclo-
hexane, the spectral component arising from the NIR objective and the four degree-three Bernstein
polynomials. The fraction of the total measurement time that each filter was collecting was 0.385,
0.219, 0.055, 0.034, 0.268, 0.031, and 0.009, respectively. (b) Spectra and the resulting OB-CD fil-
ters for (in order from top down): n-hexane, methylcyclohexane, and the four degree-three Bernstein
polynomials. The fraction of the total measurement time that each filter was collecting was 0.248,
0.388, 0.010, 0.032, 0.277 and 0.045, respectively. (c) Spectra and the resulting OB-CD filters for (in
order from top down): aniline, toluene, spectral component arising from the NIR objective, and the
four degree-three Bernstein polynomials. The fraction of the total measurement time that each filter
was collecting was 0.484, 0.265, 0.025, 0.003, 0.154, 0.059 and 0.010, respectively. (d) Spectra and
the resulting OB-CD filters for (in order from top down): ethanol, water, and the four degree-three
Bernstein polynomials. The fraction of the total measurement time that each filter was collecting was
0.276, 0.261, 0.027, 0.116, 0.232, and 0.088 , respectively. (e) Spectra and the resulting OB-CD fil-
ters for (in order from top down): Raman features of the plastic film, the spectral component arising
from the NIR objective, and the four degree-three Bernstein polynomials. The fraction of the total
measurement time that each filter was collecting was 0.099, 0.210, 0.099, 0.271, 0.212, and 0.109,
respectively. No components were considered nuisance spectra, as we wanted to accurately estimate
the intensity of the fluorescence before and after photobleaching.
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