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ABSTRACT 

Prabhu Verleker, Akshay N. Ph.D., Purdue University, August 2016. A Therapeutic 
Protocol for Treatment of Brain Metastasis through Optically Stimulated Drug Release. 
Major Professor: Keith Stantz. 
 
 
Purpose: The long-term goal of this research is to determine the feasibility of using near 

infra-red light to stimulate drug release in metastatic lesions within the brain. In this 

work, we focused on developing the tools needed to quantify and verify photon fluence 

distribution in biological tissue. To accomplish this task, an optical dosimetry probe and 

Monte Carlo based simulation code were fabricated, calibrated and developed to 

predict light transport in heterogeneous tissue phantoms of the skull and brain. 

Empirical model (EM) of photon transport using CT images as input were devised to 

provide real-time calculations capable of being translated to preclinical and clinical 

applications. 

 

Methods and Materials:  A GPU based 3D Monte Carlo code was customized to simulate 

the photon transport within head phantoms consisting of skull bone, white and gray 

matter with differing laser beam properties,  including flat, Gaussian, and super-

Gaussian profiles that are converging, parallel, or diverging. From these simulations, the 

local photon fluence and tissue dosimetric distribution was simulated and validated 



xx 

 

through the implementation of a novel titanium-based optical dosimetry probe with an 

isotropic acceptance and 1.5mm diameter. Empirical models (EM) of photon transport 

were devised and calibrated to MC simulated data to provide 3D fluence and optical 

dosimetric maps in real-time developed around on a voxel-based convolution technique 

Optical transmission studies were performed using human skull bone samples to 

determine the optical transmission characteristics of heterogeneous bone structures 

and the effectiveness of the Monte Carlo in simulating this heterogeneity. These tools 

provide the capability to develop and optimize treatment plans for optimal release of 

pharmaceuticals to metastatic breast cancer in the brain. 

 

Results: At the time of these experiments, the voxel-based CUDA MC code implemented 

and further developed in this study had not been validated by measurement. A novel 

optical dosimetry probe was fabricated and calibrated to measure the absolute photon 

fluence (mW/mm2) in phantoms resembling white matter, gray matter and skull bone 

and compared to 3D Monte Carlo simulated data. The TiO2-based dosimetry probe was 

shown to have superior linearity and isotropicity of response to previous Nylon based 

probes, and was better suited to validate the Monte Carlo using localized 3D 

measurement (< 25% systematic error for white matter, gray matter and skull bone 

phantoms along illumination beam axis up to a depth of 2cm in homogeneous tissue 

and 3.8cm in heterogeneous head phantom). Next, the transport parameters of the 

empirical algorithm was calibrated using the 3D Monte Carlo and EMs and validated by 
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optical dosimetry probe measurements (with error of 10.1% for White Matter, 45.1% 

for Gray Matter and 22.1% for Skull Bone phantoms) along illumination beam axis.  

 

Conclusions: The design and validation of the Monte Carlo, the optical dosimetry probe 

and the Empirical algorithm  increases the clinical feasibility of optical therapeutic 

planning to narrow down the complex possibilities of illumination conditions, further 

compounded by the heterogeneous structure of the brain, such as varying skull 

thicknesses and densities. Our ultimate goal is to design a fast Monte Carlo based 

optical therapeutic protocol to treat brain metastasis. The voxelated nature of the MC 

and EM provides the necessary 3D photon distribution to within 25% error to guide 

future clinical studies involving optically triggered drug release.
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1 INTRODUCTION 

1.1 Overview 

The purpose of our research involves the development of optical dosimetry and 

simulation tools to quantify and optimize the delivery of light to brain tissues. We start 

by introducing the concept of optically stimulated drug release for treatment of 

cancerous lesions in the brain. This mode of therapy requires an efficient optical 

planning system to determine the best modes of illumination to target tissues in the 

brain. Such a planning system applies the physics of optical transport to determine the 

photon distribution in complex heterogeneous media characterized by clinical imaging 

methods, such as CT and MRI. Critical is the need to validate these methods in tissue 

phantoms and to determine their accuracy and precision. To realize these ideas into 

planning systems, which require multiple sources and optimization algorithms, require 

fast execution times not afforded by MC codes. An Empirical algorithm can achieve 

these fast simulation speeds. Ultimately, these simulation tools are validated in tissue 

phantoms using a novel optical dosimetry probe with a Titanium Dioxide with a linear 

and isotropic response.
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1.2  Application in Optically Stimulated Drug Release 

To date, brain cancer remains a sanctuary for metastasis. Treatment of Central Nervous 

System (CNS) metastasis poses a critical clinical challenge due to limitations in drug 

uptake in the brain (across the blood brain barrier and blood-cerebrospinal fluid barrier) 

and adverse neurotoxic effects of mainstay therapies, such as whole brain radiation 

therapy (WBRT) and stereotactic radiosurgery [1-8]. Recently, receptor targeted therapy 

aided by improved imaging and localized radiotherapy has shown promise in treating 

cancer within the brain. This is particularly true for HER2+ breast cancer metastasis, 

which have poor median survival rates of 2 to 16 months [1-7]. Therefore, Dr. Susan 

Clare, a Surgeon at Northwestern University Robert H Lurie Medical Research Center, 

devised a method where a patient’s macrophages and monocytes are loaded with a 

drug payload, in this case a lapatinib laden nanoparticle, to actively delivery and target 

the metastatic cancer cells. The ‘Trojan Horse’ concept has shown significant promise in 

targeted drug delivery to the brain, with metastatic cells retaining their sensitivity to the 

drug even after its administration [8, 9]. The use of macrophages as drug carriers has 

been proved to be a potentially effective tool because macrophages have been seen to 

comprise up to 70% of volume in cancerous tumors, such as breast cancer [10-13]. The 

quantification of macrophages in different tumor types can be done using mouse 

monoclonal antibody EBM/11 [14, 15], and is an important process in determining the 

therapeutic accuracy of this potential treatment.  
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This idea was demonstrated by replacing labeling the payload with fluorescent 

molecules and showing uptake and fluorescence in brain metastasis of mice, which was 

published in Cancer Nanotechnology [8, 9]. The long-term goal of this study is to deliver 

lapatinib-gold nanocomplex laden macrophages to brain metastasis and design a 

therapeutic protocol to optically stimulate drug release in target tissues in the brain.  

With the rate and quantity of drug release being directly dependent on the optical 

power delivered, an optical simulation protocol using Monte Carlo simulations can be 

designed to effectively predict the photon distribution and subsequent drug activation 

in the brain tissue. 
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1.3 Applications Requiring Quantification of NIR Light Delivery  

While the primary purpose of this research was to enable the quantification of photon 

propagation in heterogeneous brain tissues, it can be easily applied to NIR based 

imaging techniques such as Photoacoustic Tomography (PCT), Near Infra-Red 

Spectroscopy (NIRS) and in optical stimulation of neurons in the brain. The use of the 

Monte Carlo and the optical dosimetry probe in absolute quantification of photon 

fluence in tissues can provide the necessary corrections and validation to quantify 

molecular concentrations in vivo and to deliver the necessary photon dose to trigger 

therapeutic effects.  

 

Photoacoustic effect involves the absorption of light energy by a molecule, which leads 

to a thermal heating and volumetric expansion. The generated acoustic wave usually in 

the ultrasound frequency range is proportional to the optical energy absorbed or dose, 

and thus a molecule’s concentration such as hemoglobin and injectable dyes.  This has 

led to both clinical and pre-clinical applications such as breast cancer imaging, small 

animal studies, hemoglobin concentration, oxygen saturation, blood perfusion imaging 

etc. [16-20]. The application of optical Monte Carlo based methods in Photoacoustic 

imaging has shown promising results in improving the estimation of photon propagation 

in complex tissues being imaged [21-26].  

 

Another imaging modality which widely used the penetrating ability of NIR light in 

tissues, particularly in the brain, is NIR Spectroscopy. The NIR Spectroscopy uses a 
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source and a detector placed on the surface of the brain. The light gets transmitted 

through the skull and after undergoing multiple absorption, scattering and refraction 

events, gets measured by another detector placed on the skull surface near the source. 

The changes in blood oxygenation in the brain leads to changes in light absorption and 

can be monitored through the signal detected at various stages of brain activation, 

initially reported by Jobsis in 1977 [27]. It uses a modified Beer-Lambert’s law for high 

scattering brain tissues [28, 29]. This technique was initially used to map brain function 

of cortical tissues in animal and human subjects [30, 31], and later in brain functions of 

intact skulls in human adults [32-36]. Various applications include monitoring 

intracellular physiological processes in the brain cells and in measuring Cerebral Blood 

Flow (CBF) and Cerebral Blood Volume (CBV) [37-40]. Hence the use of Monte Carlo 

estimation methods for complex 3D photon propagation along with the optical 

dosimetry methods can improve the accuracy of the fNRIS measurements by providing 

absolute quantification of photon fluence.    

 

NIR neural stimulation is another method which requires knowledge of the optical dose 

in the brain. The use of pulsed infra-red lasers has been shown to trigger the excitation 

of neurons at a certain optical threshold [41]. This effect has been observed to be 

wavelength dependent and is seen by measuring the compound action potential (CAP) 

linked to Ca+2 ions in neural mitochondria [41].  Various studies in tissues samples and 

in-vivo have been carried out to monitor this effect and measure the electrical activity 

of the brain [42-49]. The use of Monte Carlo methods with wavelength dependent 
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absorption simulation techniques can provide the necessary information to correlate 

the electrical activity in brain tissue, such as the cochlea and neuro-prosthesis. 

 

1.4 Light Transport Theory 

The radiative transport equation describes the propagation of light through media and is 

considered to be more accurate as it takes into account the absorption and scattering of 

light in heterogeneous media [50, 51].  

s.�L(r, s) =  �(�� + ��)L(r, s) +  �� � p(s, ��)L(r, ��)d	�
� ,     (1.1) 

where L(r,s) is the radiance (units: W.m-2.sr-1) at position r, in the direction s (unit vector) 

in a medium with an absorption coefficient of �a and scattering coefficient of μs. 

Radiance itself is defined as the radiant flux (Watts/sec) emitted, transmitted or 

received by a surface per unit solid angle, per unit projected area [50, 51]. The total 

attenuation coefficient (μt) is the sum of the absorption (μa) and scattering (μs) 

coefficients (units: m-1). Equation 1.6 describes the change in radiance due to absorption 

and scattering out of or into a volume. The differential solid angle d	� is in the direction 

of s’ and p(s,s’) refers to the phase function, which is the probability of a photon 

travelling in direction s’ being scattered into direction s. or characterized by the 

parameter g (anisotropy factor), the cosine average of the phase function: 

g = � p(s, ��)(s. ��)d	�
� .     (1.2) 

The value of the parameter g describes the scattering, for example forward scatter 

means g=1, isotropic scatter by g=0 and backscatter by g=-1.  
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The radiative transport theory assumes a homogeneous distribution of the scattering 

and absorbing particles in the medium. This assumption and the quantification of the 

scattering and absorption coefficients can help predict the fluence distribution and the 

absorbed energy in the medium. There are several approximations to solving the 

transport equation depending on the type of irradiance (e.g. diffuse or collimated) and 

optical boundary conditions [50, 51]. For depths far from the light source, there are two 

solutions which account for un-scattered transmission and an asymptotic fluence-rate: 

the Beer Lambert’s law and the Diffusion approximation. The Beer Lambert’s law 

describes the transmission of light through a non-scattering medium: 

T = e���,     (1.3) 

where t is the thickness or path-length, T is the fraction of the intensity transmitted 

through the medium and �� is the total attenuation coefficient.  

 

A further modification of the Beer’s Law is made to account for two scattered 

components [51]: 

L(r, s) =  L�(r, s) +  L�(r, s),     (1.4) 

where Lc is the light that did not interaction with tissue while Ld is the part that 

underwent scattering. Thus using this diffuse theory approximation in the RTE equation, 

the fluence can be simplified to [51]: 

�(r) =  	 L�(r, s)d
�� .     (1.5) 
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The diffuse approximation is affected by the ratio of scattering-to-absorption 

coefficients, the tissue distance from the light source, the boundaries and the 

anisotropy factor [52]. A phase function compatible with the diffusion equation is the 

Henyey-Greenstein function (pHG)  [53, 54]:  

���(�, ��) = ( �
��

) 	 (2
 + 1)��
�(�, ��)�
��� ,     (1.6) 

where Pn are the Legendre polynomials. The phase function given by the delta-

Eddington approximation, combines both the diffusion and forward scatter terms, and is 

given by [55]: 

�(�, ��) = ��(� � ��) + (1 � �)��(�, ��),    (1.7) 

where f is the forward scatter amount and p1 are the first two terms of the Legendre 

polynomial. The delta-Eddington phase function makes use of the Henyey-Greenstein 

phase function and is found to be ideal for light propagation in tissues. This is done by 

the following substitutions [53, 55]: 

���
�����

=  g     (1.8) 

��(1 � g��
� ) =  ��

�      (1.9) 

 

Thus, the total fluence rate in a material of finite depth is [56] 

�(z) =   a� exp(kz) + a� exp(�kz) + a�exp (�� z),     (1.10) 

where z is the depth and k is approximately equal to �!"". This condition is valid only if 

the absorption coefficient is significantly lower than the scattering coefficient. As per 

the diffusion theory, the transmittance T and reflectance R are given by [57 - 60]: 
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T = ��������

��	(
��)��
�  (a
ke
� � a�ke
� � a���e����)    (1.11) 

and 

R =  � ���
��	(
��)��

+ h/2(a
k � a�k � a�k).     (1.12) 

 

The optical ���������� ����������� ����������� ��s), � �������� ����������� ��a), anisotropy 

factor (g)) can be calculated using the total reflectance and transmission. The reduced 

scattering coefficient ��s’) �� ��!���" �� �#� ���������� ����������� ��s) as follows [61, 62]: 

�$

 = (1 � g)�$     (1.13) 

 

For complex heterogeneous tissues, the relation between reflectance, transmission and 

the three optical parameters become complicated. A unique computation method used 

to simulate the random walk of photons across complex heterogeneous media is the 

Monte Carlo based on %s, %a, g, n, and p(s,s’) 

 

1.5 A GPU based 3D Monte Carlo for photon transport 

The Monte Carlo model uses a random number generator to simulate the transport of 

photons in optical media [57-60] based on the absorption coefficient (μa), scattering 

coefficient (μs), anisotropy factor (g) and the index of refraction (n). A 3D voxel based 

Monte Carlo allows simulation of complex geometrical boundaries, with each voxel 

having unique optical properties (μa, μs, g, n) [59] A packet of photons is assigned an 

initial weight and direction, and propagate from one voxel to another, while depositing 
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energy in each voxel based on its absorption coefficient. The photons also scatter within 

voxels after travelling a pre-determined distance based on the scattering coefficient of 

the medium. The new direction of the scattered photon is determined by the anisotropy 

factor (g) which is the cosine of the phase function [57]. Finally, when the weight of the 

photon reaches a pre-determined threshold, it is extinguished. The weights deposited 

by all the photons in each voxel are accumulated to determine the energy deposited, 

while the total number of photons passing through the voxel is its fluence rate 

(photons/mm2.s) [61].  

 

Traditional CPU based Monte Carlo models [57, 59] suffer from slow computation 

speeds, which makes them non-viable for application in clinical settings, especially in 

highly scattering tissues, such as white matter. The GPU based 3D Monte Carlo code 

used in these studies was shown to be 300X faster compared to our previous CPU based 

models [61]. The CUDA acceleration provided by this model helps to achieve complete 

brain simulation of a high fluence broad beam source within hours, as compared to days 

of simulation time using CPU based models [61 - 63]. This model also provides a voxel 

based 3D distribution of photon fluence and energy deposited, and can be coregistered 

with different medical imaging modalities (e.g. CT, MR, Ultrasound, etc.), thus improving 

its clinical viability for diagnosis and therapy [62, 63].  
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1.6 An Empirical Photon Propagation Algorithm 

While Monte Carlo is the gold standard for photon propagation, it has long execution 

times even with the acceleration provided by the GPU based models. For high scattering 

tissues, such as white matter and skull bone, the simulation time for a broad beam 

simulation is on the order of several hours (based on beam diameter) in order to 

achieve statistically significant results at depths of more than 2cm [63, 64]. Thus for 

applications involving optical illumination planning for therapy, where multiple 

simulations are required for optimizing light delivery to tissues at 5-8cm in depth with 

complex geometry and heterogeneity, a fast alternate approach is required, particularly 

for protocols requiring multiple beams [63]. We therefore designed an algorithm based 

on an empirical model (EM) that simulates photon propagation in heterogeneous 

voxelated optical media [63, 64]. 

 

The EM algorithm implements a convolution technique where the photon fluence within 

a voxel is the sum of the weighted fluence in neighboring voxels. It simulates photon 

scatter by assigning weights for forward, diagonal, side and back scatter directions [64]. 

The fluence within a voxel is assumed to be made of directional components in the x, y, 

and z directions to emulate the Henyey-Greenstein function. The fluence entering a 

voxel is redistributed into these directional components such that the sum of the 

weights is conserved prior to absorption. The scatter weights are determined by 

comparing the photon fluence distribution with the Monte Carlo under similar 
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illumination and boundary conditions, before being applied to complex heterogeneous 

media [64]. 

 

The Empirical algorithm provides a fast approach to simulate complete 3D simulations 

at a fraction of the time (seconds) compared to the Monte Carlo (hours) in complex 3D 

media (e.g. brain) [63, 64]. This allows us to evaluate multiple illumination conditions for 

an optical therapeutic protocol for optimized light delivery to tissues within clinically 

relevant time frames. The 3D voxel based empirical approach also allows for easy 

integration of the simulated photon energy dose maps with existing imaging modalities,  

e.g., CT, MR, Ultrasound, Photoacoustic Computed Tomography, which improves 

therapeutic planning accuracy [63]. Thus the empirical approach can be used a 

preliminary tool to narrow down the possible illumination conditions, while the Monte 

Carlo can be used to finalize and quantify the estimated fluence for optical therapy. This 

makes the use of optical simulation techniques more attractive in clinical settings by 

reducing the simulation times involved, and is a core purpose of our research.  

 

1.7 A Titanium Dioxide based Optical Dosimetry Probe 

Optical dosimetry involves measuring the localized photon fluence in media such as 

tissues or tissue phantoms. An optical dosimetry probe is a device which consists of a 

bulb of highly scattering material attached to the exposed tip of an optical fiber, with 

the other end of the fiber is connected to a photodiode circuit which is in turn 

connected to an oscilloscope. The light is conducted by the optical fiber to the PIN 
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photodiode where it is converted into an electrical signal. The dosimetry probe is 

preferred over calorimeters due to the smaller size, higher sensitivity, and isotropic 

response of the probe in an aqueous (or liquid) media. In this study, we fabricated an 

optical dosimetry probe with better isotropicity and locality compared to previous 

designs of Nylon based probes. The dosimetry probe was used to validate the fluence 

generated by the Monte Carlo simulation in homogeneous and heterogeneous brain-

tissue phantoms. The optical sensitivity of the probe enabled us to validate extremely 

low fluence in tissue phantoms, unlike the calorimeter.  
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2 SPECIFIC AIMS 

In Chapter 1, quantifying the photon fluence within a heterogeneous tissue is important 

for applications including controlled drug release, neuro-stimulation and therapy, and 

molecular imaging. In each of these applications, quantification of the photon fluence 

and optical dosimetry is critical. Thus, the focus of this research is on the development 

of image-based simulation tools to predict 3D photon distributions within optically 

heterogeneous media and in the advancement of instrumentation to validate these 

techniques. To accomplish these tasks, we propose to:   

 

SA1: Develop, build and test an optical dosimetry probe and advance 3D Monte Carlo 

photon transport code capable of measuring and simulating the local photon fluence 

and dose in optical tissue phantoms; 

 

SA2: Simulate and validate the absolute photon fluence in homogeneous and 

heterogeneous brain tissue phantoms resembling white matter, gray matter, skull bone 

and tumor;
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SA3: Devise an empirical model and algorithms capable of simulating for photon 

propagation in complex heterogeneous tissues in real-time; and 

 

SA4: Investigate the feasibility of using the above tools and methods to optimize optical 

therapeutic protocols n human skull bones using image-guided techniques. 

 

2.1 Specific Aim1: Develop, build and test an optical dosimetry probe and advance 3D 

Monte Carlo photon transport code capable of measuring and simulating the local 

photon fluence and dose in optical tissue phantoms 

The rate and quantity of drug release depends on the optical fluence or laser energy 

delivered to the tissues. To measure the photon fluence being delivered, we have 

designed and calibrated an optical dosimetry probe to measure the localized (1mm3) 

photon fluence in tissues with complex optical heterogeneities at depths in brain tissue 

phantoms consistent with preclinical and clinical applications. Next, CUDA based 3D 

Monte Carlo code was further developed to predictor of light fluence/energy 

distribution in tissues. This software has been developed as an open source project by 

the Dr. Fang’s group at Harvard. We have further modified this software package to 

model and simulate 3D photon beams with Gaussian and super-Gaussian distributions 

consistent with the laser beam in our laboratory, along with modifications to increase 

the computation speed. 
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2.2 Specific Aim2: Simulate and validate the absolute photon fluence in homogenous 

and heterogeneous brain tissue phantoms resembling white matter, gray matter, 

skull bone and tumor. 

In order to be used as a therapy planning tool, the 3D Monte Carlo needs to be validated 

in optical phantoms resembling white matter, gray matter and skull bone. The CUDA 

based MC code was used to generate 3D photon fluence and energy absorption (or 

dosimetry) maps generated and validated by optical dosimetry probe measurements in 

homogeneous and heterogeneous brain tissue phantoms. Since the quantity and energy 

threshold of drug released depends on the optical energy coupled to the tissues, the 

cross validation of the dosimetry and simulation tools is a major step in ensuring 

planning accuracy in clinical setting. 

 

2.3 Specific Aim3: Devise an empirical model and algorithms capable of simulating for 

photon propagation in complex heterogeneous tissues in real-time 

Empirical models of photon transport provide an estimate of the local photon fluence in 

heterogeneous tissues with fast execution times for the optimization of clinical 

applications not afforded by Monte Carlo methods. The GPU based Monte Carlo 

requires many hours of execution time to simulate photon distribution within a human 

brain, which can be a disadvantage when optimizing a treatment plan iterating over 

multiple illumination conditions. A weights-based empirical model approach to photon 

propagation is investigated. It simulates photon scatter by using weights for directional 

scatter of photons between neighboring voxels, and absorption using the Beer-
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Lambert’s law. These weights are determined using the Monte Carlo. The objective is to 

achieve execution times on the order of seconds. Thus the empirical approach provides 

an alternative means of evaluating multiple illumination conditions to reduce treatment 

planning time before using the Monte Carlo for final validation of photon fluence and 

provide real-time imaging corrections. 

 

2.4 Specific Aim4: Investigate the feasibility of using the above tools and methods to 

optimize optical therapeutic protocols in human skull bones using image-guided 

techniques  

While dosimetry and simulation studies using optical phantoms helps us  measure of the 

photon distribution in brain tissues under ideal conditions, it does not take into account 

the heterogeneous composition of the skull bone and the bone-tissue interface, which 

affects the optical transmission and distribution of photon fluence within the soft 

tissues.   Computed Tomographic images will be acquired to map the density and 

composition of the bone along with the boundary conditions and to correlate and 

predict the transmission of NIR light through the skull. Experiments will be performed 

on human skull bone samples by mapping out the photon fluence transmitted through 

the bone using the dosimetry probe and comparing it to the Monte Carlo simulated 

photon distribution.  Previous studies have indicated a wide variance in the optical 

properties of the human skull bone, which can be accounted for by the Monte Carlo 

code and optical dosimetry probe measurements developed in this research. Thus, the 

best set of properties for the skull bone for each individual patient can be planned.  
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3 SPECIFIC AIM1: OPTICAL SIMULATION AND DOSIMETRY TOOLS 

3.1 Introduction 

In order to estimate the amount of drug released in tissues, we need to be able to 

derive the number of photons travelling in each voxel (also known as the “fluence”, 

photons/mm2) and the photon energy absorbed per unit volume (mJ/mm3). The photon 

fluence maps can be converted into their corresponding drug release maps by using a 

threshold determined by in vitro studies. We modified a GPU based 3D Monte Carlo 

(MC) to determine the photon fluence in tissues using different illumination beam 

profiles. The validation of the MC software in tissue phantoms requires localized 

measurements of photon fluence in tissue phantoms implementing an optical dosimetry 

probe with isotropic acceptance. In this chapter, we describe the design, fabrication and 

calibration of the probe and the validation of the Monte Carlo through its use. 

 

3.1.1 Monte Carlo Algorithm 

The Monte Carlo method generates a random number between 0 and 1 with a normal 

distribution [57] to determine the step size and photon scatter direction based on the 

optical properties of the medium [57, 59, 61, 64, 65]. 
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where the raw probability is P(r�, t) at a position defined by r and at time t. Ea/Et is the 

����� �� �	��
� ��
����� �� ��� ����� �	��
� �	 ��� ���� �	������ ������ 
����� �� �� �	�

�a is the absorption coefficient (mm-1) [61]. ��� ��	��� 	����� � 
�	������ ������	 �

and 1 determines the step size or propagation distance of the photon packet between 

�	��������	
�  !� ���������	� ��t) given by [57, 59]: 

S1 =  " ln(#) /$%     (3.2) 

which depends on the total attenuation:  

$% =  $& + $'     (3.3) 

In the above equation, $& is the absorption coefficient (mm-1) and $' is the scattering 

coefficient (mm-1). The weight of the photon packet is absorbed within a voxel through 

which it moves based on the pathlength [57, 59, 61]: 

(w = w()*)+)     (3.4) 

,��� ��� ���
�� ��
� �� ��� -����	 -��.�� ����� �	����� ���
�� �� �
 /� �	� ��� -����	

exiting the voxel now has a weight of w - /�0  

 

The step size is calculated each time a photon enters a new voxel with different optical 

properties. At each interaction site, the new scattering angle (deflection angle) is 

���-���� �
�	
 ��� ��
�	� �� ��� 
�������	
 �	
�� 1 [57] based on the Henyey-

Greenstein scattering function: 

Cos(2) = 3
45 (1 + g4 " 6 3758

375945:;
4

)  if g < 0     (3.5) 

Cos(2) = =# " 1  if g = 0     (3.6) 
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The anisotropy factor g is the cosine of the phase function with values lying in between -

1 to 1 [57], where g=1 indicates forward scatter, g=-1 implies back scatter, and g=0 

means isotropic scatter. The unit vector directions in the x, y and z axis are as follows 

[57]: 

��� =
�����	
	��
��� 	������

���	�� � 	
�
��
      (3.7) 

 

��� =
�����	�	��
��� 	
�����

���	�� � 	��
��
      (3.8) 

 

��� = ������
��
���	�� � 	��
��

      (3.9) 

Where �x, �y, �z are the initial (pre-scatter) directional vectors in the x, y, z directions, 

while ���, ���, ��� are the new or post-scatter directional vectors. Also the azimuthal 

�����  !"����# $ %& '() *�%�"+,��- %.� -/�%%�",�� *,"�/tion and is given by [57]: 

0 = 123     (3.10) 

The Monte Carlo code takes the anisotropy factor along with the values of the index of 

refraction, absorption and scattering coefficients as an input from the user to define the 

optical properties of the medium. The photon energy deposited (or dose) (4567 in 

photons or Joules) in each voxel is given by the product of the photon fluence (F(r8, t) in 

mm-2s or J mm-2s), the absorption coefficient (�9 in mm-1), the photon pulse duration (or 

illumination time) (:;<= in s) and the volume of the voxel (>?@A in mm3): 

4567 =  F(r8, t) �9:;<=>?@A       (3.11) 
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exposed to the TiO2-sphere [63, 68, 69]. This electrical voltage is then read using a 

digital oscilloscope and integrated to obtain a quantifiable measure of the optical 

fluence [63]. 

 

The radiant energy fluence rate at a position “r” is the integral of radiance �(�, �) (units 

Wsr-1m2) over all directions (defined by solid angle "�") and is given by [68]: 

�(r) = � �(�, 	)
�� �     (3.12) 

where the solid angle about the normal vector � is d
. 

The optimal construction of the dosimetry probe is such that the optical fiber is inserted 

a predefined distance within the TiO2 sphere. This prevents a part of the light fluence 

within the probe tip from entering the fiber, thus creating a “blind spot” [68]. This 

requires a correction factor to be applied to the 4� sr solid angle acceptance of an ideal 

dosimetry probe (without a blind spot). The blind spot can be defined in terms of the 

solid angle 
blind. This correction actor Fb in a probe with fiber diameter d and diameter 

D of the TiO2 sphere (with "�"as the arbitrary angles of incidence) is given by [68]: 

�� =  
�������

��������������
=  ��

������  !"#$%&'() (�*)
+ ,- 

=  �
./012 [3402567�*8]

     (3.13) 

Thus, 

�� 9 1 + ,:
�;:     (3.14) 

The fluence passing through the fiber is measured by a flat PIN photodiode, whose 

response Sflat is given by [68]: 
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����� = � �0cos�	
 �� =  
��0 � ��������
�
�
� �� =  ��0     (3.15) 

Similarly, for a dosimetry probe, infinitely small, the response to diffuse isotropic 

fluence is given as [68]: 

������ = � �0��	
 =  4��0 � ����
�
�
� �� =  4��0     (3.16) 

Thus in order to obtain the true fluence rate entering the probe, we multiply the 

response of the PIN photodiode by a factor of 4, given by [68]: 

��� !
�"#$%!

=  
&0

'
&0 
=  ('     (3.17) 

 

Similar to the blind-spot factor, a correction factor accounting for the difference in the 

refractive index of the probe tip and the medium must be applied. The ratio of the 

response of the dosimetry probe in liquids (Fn) relative to air has been studied and 

measured extensively [68] and depends on the difference in the index of refraction 

between the medium and the probe tip. The greater the difference in the refractive 

indices causes a higher fraction of photons to be refracted back into the probe, and 

higher sensitivity, compared to lower differences, e.g. TiO2-epoxy to air versus water. 

The refractive index of the probe (solid) is well above the refractive index of water, thus 

measurements in liquids with higher refractive index gives higher probe sensitivity.      

 

Another potential correction factor, Fi, accounts for inhomogeneity in the construction 

of the spherical probe tip resulting in an anisotropic response [68]. This factor accounts 

for the angular variance in the probe’s response to different incidence angles in the 
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equatorial and azimuthal directions. Excluding the extreme blind spot at oblique angles 

(i.e. from the same direction as where the fiber enters the spherical bulb), the angular 

variance of a well-constructed probe is generally low [63, 70]. In this study, the angular 

response of the dosimetry probes to diffuse incidence fluence was measured to 

determine its isotropicity of response. Thus the reading in air must be corrected to 

obtain the true fluence rate (��) using the following equation [68]:  

�� = ����������     (3.18) 

 

3.2 Materials and Methods 

3.2.1 Monte Carlo Beam Optimization 

The original code of the GPU based 3D Monte Carlo (MC) (by the Fang group [61]) has 

several built-in features to simulate photon sources such as Gaussian, flat beams, pencil 

beams, isotropic point sources, cone beams, etc. The “open source” availability of this 

software and functionality of using random numbers to generate and define photon 

sources allows users to modify the original source code to add additional photon beam 

profiles as used in different optical setups. The CUDA based parallel threading 

functionality also improves the speed of simulation of broad beam sources compared to 

the time consuming nature of simulating multiple pencil beams by calling Monte Carlo 

function separately for each pencil beam. Even though we had used the process of 

generating broad beam profiles, by calling the Monte Carlo serially, in our past studies 

[60]; in this study we have optimized the Monte Carlo to generate broad beams by using 
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the full functionality of the CUDA platform by generating individual pencil beams in 

parallel.  

 

In this study, we modified the original code to simulate a broad beam super-Gaussian 

beam profile emanating from an optical fiberguide, coupled to the output of a Laser-

OPO system (Nd: YAG class 4 laser and a MagicPRISM Optical Parametric Oscillator from 

Opotek Inc., Carlsbad, CA). This profile was measured with a calorimeter (gold standard) 

(Ophir-Spiricon 3A-P-V1) with aperture 12mm, and can be represented with the 

following equation:  

�����������	�
 =  A �  e�.
(��)�     (3.19) 

where: 

r =  z tan�    (3.20) 

In the above equations, A is the maximum or peak incident energy fluence (J/mm2), z is 

the perpendicular distance from the source to a point along the central axis of the beam, 

� is the divergence angle of the laser ����� � is the standard deviation of the super-

Gaussian lateral beam profile, n is the order of the super-Gaussian distribution. The 

broad beam output of the fiberguide was approximated using multiple single sources 

with super-Gaussian outputs. In our experimental setup, a match in beam profile was 

�������� ��� � !"# ��� � $"%. The radius of the fiberguide source is 0.3cm. Besides the 

super-Gaussian beam from the fiberguide, a flat broad beam with radius equal to the 

output port of the integrating sphere (port radius 0.9cm) was used to characterize the 



28 

 

output of the integrating sphere. The beam characteristics were measured using a 

calorimeter (gold standard) and were given as input to the MC code to emulate the 

illumination conditions used in the optical dosimetry setup.  

 

We also added additional functionalities to the Monte Carlo to emit broad beam profiles 

such as converging and diverging beams as emitted when light beams pass through 

convex and concave lenses. This is of particular importance to researchers who wish to 

explore the effect of different beam profiles on photon energy distribution in tissues.  

 

In order to implement the simulation of converging and diverging beams, we allow the 

user to select the beam parameters such as the aperture size (radius) and focal distance, 

e.g., the real or virtual focal length for converging or diverging beams, respectively.  

 

In order to simulate converging and diverging beams, we need to define the angle of the 

photon source vector for each individual pencil beam. We define the emission angle � 

for a beamlet as: 

� =   �����(�
�
)   (3.21) 

where f is the focal depth and r is the radial distance from the center of the aperture of 

the point source (or do you mean beamlet). The parameter r is selected randomly from 

0 to R, where R is the radius of the source aperture. The angle of the photon beamlet 

from this point within the aperture is (	


� �). For a converging beam the initial photon 
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vector is defined by –sin(�) and –cos(�) and for the diverging beam this vector is defined 

by sin(�) and cos(��� ��� ���	
��
	� 	���� ��� 
� �	������ ������ ���� � 
� ��.. The 

photon vector directions are then calculated using equations 3.6, 3.7 and 3.8. 

 

3.2.2 Optical Dosimetry Probe Design and Calibration  

Two models optical dosimetry probes constructed with Nylon and Titanium Dioxide 

spherical tips were fabricated and compared, specifically their sensitivity and 

isotropicity of response. 

 

The Nylon spheres have been widely used for photodynamic therapy and were made of 

NylonTM due to their isotropic response [26]. These were used as the standard of 

reference to compare the performance of Titanium based probes. TiO2 probes are 

made from a mixture titanium dioxide (Du Pont Ti-Pure R-900) and a clear two-part 

epoxy (Tra-Con BA-F114) in a ratio of 9.1 mg TiO2 to 1 ml of the epoxy [28, 29]. Titanium 

dioxide was selected due to its particle size of around 410nm [28], which results in 

optimal scattering at 820nm, the wavelength is approximately twice the particle size [28] 

and in the center of the NIR spectrum (700-920nm). Since the wavelength used in our 

studies is 800nm, the titanium probes have been designed to show a higher sensitivity 

than the Nylon probes. The titanium based probe tips were fabricated using a specially 

designed mold [70]. A fiber optic cable (BFL48-400, 4mm diameter, 0.48 numerical 

aperture) was inserted within the cured spheres at a depth of approximately 1/3 of the 

sphere’s radius [72]. The Nylon based probes were approximately 3.175mm diameter 
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probe is mounted on and rotated by a rotary stepper motor, while keeping the same 

central location of the probe. At each equatorial and azimuthal angle, the probe is 

illuminated by a uniform broad beam of diffuse light formed by laser light (800 nm) 

emanating from an integrating sphere (Melles Griot two port integrating sphere)and its 

response, the output rms voltage, was measured at each angle. The isotropicity is 

measured by calculating the coefficient of variation, the ratio of standard deviation to 

mean of the rms value over all the angles. The range of angles was 0 to 360 degrees for 

equatorial measurements, and 0 to 150 degrees for azimuthal. The angular span for 

Azimuthal measurements was limited due to physical limitations of the setup which 

prevented larger angles due to presence of the integrating sphere. The individual rms 

voltage measured by the probe was normalized to the power measured using a 

calorimeter. 
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Note that the probe voltage signal was filtered using a bandpass Butterworth filter to 

remove high frequency noise in the probe response. The photon fluence is proportional 

to integral of the probe voltage output over the time of the laser pulsed. The probe’s 

integral voltage as well as the calorimeter power was normalized to the exposed surface 

areas of these detectors, where the probe (spherical) surface area is 7.065mm2 and the 

calorimeter (circle) surface area of 113.04mm2. 

 

The linear relationship in equation 3.19, used to quantify the photon dose in air, was 

modified to account for the optical fluence in liquid brain phantoms. The light entering 

the dosimetry probe depends on the ratio of the refractive index of the TiO2-expoxy 

sphere to the medium. The refractive index of probe tip lies between the refractive 

indices of titanium dioxide (approximately 2.73) [29] while that of the epoxy (around 

1.53). Since the refractive index of air is smaller than that of water, the probe response 

in water is smaller as more light will escape the probe when placed in water. The 

reflectance factor is 0.41 for the probe-to-air interface (nprobe/nair is 2.5), and 0.74 for 

the probe-to-water (nprobe/nwater is 1.88) [26]. The difference in the refractive index and 

reflectance between probe-air and probe-water interfaces (water and tissue have 

similar refractive index of 1.329) must be accounted for to quantify photon dose in 

water. In order to determine the calibration factor, we measured the probe response in 

air and water within a cuvette illuminated by a diffuse broad uniform beam emanating 

from an integrating sphere (same setup as figure 3). The probe was placed inside the 

�������� ��	�
 ��

 ��� �������� ����� ��� ��
�� ����
��� ��� 
������� �� ��� ��air) and 
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then measured again by fil���� ��� �	
���� ���� ����
 ��water), without changing the 

position of the probe with respect to the cuvette and the laser source. By accounting for 

the water attenuation (μwater of 0.02cm�1 and a path length of 0.2cm) and the difference 

in the beam spread due to change in refractive index, the calibration factor (CF) was 

determined experimentally to be 1.318, using the following equation:  

CF =  
���� �����������  (

!�"#�$�
!�"#�����

)

�%�&'�
    (3.23) 

  

The difference in the beam spread difference between the cuvette-air setup versus the 

cuvette-water setup is accounted for by multiplying the fluence measured in air with the 

ratio of the measured beam spreads: fwhmair=40mm and fwhmwater=42mm, or a ratio  of 

0.9091.The experimentally derived calibration factor is then used for absolute photon 

quantification by multiplying it to the probe response measured within tissues and 

tissue-like media as follows (from equation 1 and 2):  

()*+,-./0 =  (123�&�445')67.89:;
<:=.>;

    (3.24) 

 

w��
� �absolute is the absolute dose in mW/mm2 ��? �tissue is the probe response 

(mV/mm2), which is proportional to fluence measured in the tissue over the surface 

area of the probe.  
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3.3 Results  

3.3.1 Monte Carlo Optimization 

The Monte Carlo software was modified to simulate a super-Gaussian beam profile by 

generated by laser light passing through an optical fiberguide. Figure 3.5 shows the 

lateral fluence profiles generated by the MC and that measured by the calorimeter. 

Modifications were also done to the original MCX software to simulate converging and 

diverging beams, which are shown in figures 3.6 and 3.7. These were added for future 

analysis of complex beam setups with lenses of specified focal length and numerical 

aperture. 

 

 
Figure 3.5 Super-Gaussian beam generated by the Monte Carlo, compared with the 

optical fluence measured using a calorimeter [63]. 
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Figure 3.6 Images of converging, diverging and flat beams generated by the Monte Carlo.  

 

Figure 3.7 shows an MC simulation of three convex lenses with different focal lengths 

and with an aperture of 5mm. The increase in focal distance leads to a widening of the 

focal spot in the z-direction as expected. 

 

3.3.2 Optical Probe Calibration 

The optical dosimetry probe was designed to quantify the localized fluence distribution 

in tissues with a high degree of accuracy. This design was compared with standard 

probes made from Nylon in order to analyze the advantages in linearity and anisotropy 

of the novel probe model. The probe response was then characterized to quantify the 

absolute photon fluence in tissues. This procedure involved the use of filtering to reduce 

the statistical noise in the probe voltage and the determination of probe characteristics 

in water (with tissue equivalent refractive index) versus those in air.    
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Figure 3.8 Probe Isotropicity of Titanium v/s Nylon probes. The coefficient of variation 

(standard deviation/average rms voltage) was calculated for probes made of Nylon and 
Titanium. The error bars show the minimum and maximum values of variation in 
individual probe response. The Titanium based probes showed a more isotropic 

response in the equatorial and azimuthal directions. A 1.5mm diameter Titanium probe 
was selected for further dosimetric studies. 

 

Figure 3.9 shows the linearity of response of the 1.5mm Titanium based probe. The 

probe response is linear over a dynamic range of 0.01074mW/mm2 to 

0.031316mW/mm2 as measured by the calorimeter. The standard error (Standard 

���������	 
�� ��� 
��������� ����� ��������� �� 
���� ���
���� ��� ���������� ��

measuring multiple probe response in air over distances 10.1 to 18.1cm from the 

fiberguide surface. The error in probe response is 1.695% (standard error = 0.226) and 

the % error in calorimeter readings was 1.1299% (standard error = 0.00495). On the 

other hand, the variation of the laser light emitted from the fiberguide over time was 

approximately 3%. Thus the error due to variation in pulsed optical power of the laser 
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was the major source of error in our measurements. These showed that Titanium 

probes are better suited to optical dosimetry studies, as compared to Nylon probes, and 

were used in brain phantom studies. While Nylon probes have been used before in 

dosimetry studies, this is the first time that titanium probes were designed with a better 

isotropic response. 

 

 
Figure 3.9 Probe linearity: graph of total voltage (area under pulse) (mV/mm2) measured 
by a 1.5mm diameter Titanium probe versus the power measured by a calorimeter per 

unit surface area (mW/mm2). The probe response is linear over a dynamic range of 
1.2mW to 3.5mW as measured by the calorimeter. The error bars represent 3% 

variation in pulsed laser power fluctuation measured by the probe and calorimeter. 

 

The filtering of the probe response reduces the noise in the probe voltage and provides 

a clean signal. The Butterworth filter used can be tuned to optimize the signal to noise 

ratio and removes the high frequency noise in the probe voltage, mainly attributed to 
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electronic noise externally induced in the PIN photodiode circuit. The use of the filtered 

signal also reduces the noise dependency of the measured fluence as we saw that the 

noise variations in the measured signal mainly affected the measured output in the low 

fluence regions, where (S/N) ratio is low. The filtering step (final versus initial signal) is 

shown in figure 3.10. It is clearly seen that the high frequency noise at the periphery of 

the signal is reduced. This can be even reduced further by adjusting the filter 

coefficients, based on the operator’s discretion.  

 

In order to quantify the measured probe voltage, there are several methods which can 

be used. Some commonly measured parameters are the root mean square (RMS) 

voltage, mean voltage and maximum voltage. In our studies we found that the RMS 

voltage is a reliable parameter can be used to quantify the signal. However the RMS 

voltage also depends on the signal noise and can be problematic if the noise level 

changes with photon fluence measured. Thus in order to quantify the photon fluence, 

we used the integral of the voltage (or area under the peak) of the measured signal. This 

quantity can be made independent of the noise level by summing only those voltages 

above a certain noise threshold level. In our studies, we found that a threshold of 5% of 

the maximum value of the measured voltage was sufficiently above the average noise 

variations at the signal periphery. Thus, while RMS value is a quick means to estimate 

the measured fluence, the area under the peak can be a better measure of the absolute 

photon fluence, provided all the necessary calibration factors are calculated. 
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Figure 3.10 Filtering the response using a Butterworth band-pass filter. The signal to 

noise ratio is significantly improved by using the filter. 

 

In order to calculate the absolute photon fluence in tissues and tissue-like media, the 

probe voltage measured within the medium must be multiplied by the calibration factor 

to account for the change in photon loss in the probe-medium interface with respect to 

the probe-air interface, where the calibration was performed. Since the refractive index 

of tissues is nearly same as that of water, the calibration factor obtained for water can 

be used for biological media. The probe calibration factor was determined to be 1.32. 

The technique presented (using equations 3.22, 3.23, 3.24) provides a simple method to 

determine the calibration factor experimentally, and is a novel addition to our research. 

It is important to note that while equation 3.23 remains same for any probe, the 
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equations 3.22 needs to experimentally determined, so as to derive equation 3.24 for 

absolute photon dose quantification. 

 

3.4 Discussion  

The Monte Carlo code was optimized to emit a super-Gaussian beam profile. Its voxel 

based design allows us to clearly define object boundaries and specific optical 

properties of each voxel in the volume to be simulated, generating a photon fluence 

(units: J.mm-2.s-1 or photons.mm-2.s-1) \ and an absorbed energy (units Joules) map. The 

latter is calculated by multiplying the simulated fluence (J.mm-2.s-1) with the absorption 

coefficient (units mm-1) of the voxel, volume (units: mm3) of the voxel and the length of 

the time period (units: seconds). The 3D voxelated output of the Monte Carlo is can be 

conveniently integrated and analyzed with 3D medical imaging modalities such CT, MR, 

Ultrasound, etc. Thus absolute photon quantification using Monte Carlo has the 

potential to be used for image guided therapy. The reduction in simulation times 

(couple of hours) of the CUDA based Monte Carlo also improves its potential to be 

applied in the clinic for calculating the photon dose in optical based therapies.   

 

We designed an optical dosimetry probe with a linear and isotropic response, and with 

superior sensitivity compared to Nylon probes. These dosimetry probes can now be 

used for in vitro and in vivo studies for localized measurement of the absolute photon 

fluence. The calibration of the dosimetry probes allows us to measure its linearity and 

isotropicity and derive the calibration factors necessary to measure the absolute energy 
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fluence in mW/mm2. The calibration factor (1.32) derived in this study accounts for the 

difference in the sensitivity of the probe in air and water. The other calibration factor is 

the isotropic sensitivity of the probe and depends on the probe orientation. This factor 

gives the % error in probe response based on the azimuthal and equatorial orientation 

of the probe. An average error over all the angles is sufficient to understand the 

variations in measurement based on probe orientation, with the goal of having each 

measurement independent of the probe’s absolute position in the media. More studies 

using goniometric measurements may improve the accuracy of the measurements and 

are recommended before using the probe in a clinical setting. Our study has shown the 

advantages of using Titanium Dioxide probe over traditional probes made of Nylon for 

dosimetry studies for NIR wavelengths of around 800nm. More dosimetry probe 

materials can also be researched for better sensitivity at larger infra-red wavelengths if 

necessary. 
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4 SPECIFIC AIM2: VALIDATION OF MONTE CARLO IN TISSUE PHANTOMS 

4.1 Introduction 

In order to be used as a therapeutic tool, the Monte Carlo software needs to be 

validated. The Titanium Dioxide based optical dosimetry probe, described in the 

previous chapter, allows us to accurately measure photon fluence distribution with 

millimeter resolution,  high sensitivity, and negligible orientation dependencies, , 

compared to previous Nylon-based dosimetry probes. In this chapter we describe the 

design of accurate tissue phantoms of white matter, gray matter, and skull bone used to 

validate the Monte Carlo generated photon fluence. In all these studies, the optical 

dosimetry probe serves as a gold standard photon energy fluence and its uncertainty.. 

 

4.1.1 Optical Phantom Characteristics 

The design of optical phantoms requires an accurate and precise measure of the 

absorption coefficient (µa����� �����	
��
 ��	�����	�� ��s���� ��
 
	���	� �����	
��


coefficient µs
1
��� � ��-g) µs����� ����otropy factor (g) and refractive index (n), at a 

���	�	�
���� �� ���	
	�� ��� �� ��	 ���	
���� ��	� �� 
	�
	�	�� ����� ���	� ����	 ��� 

� 

matter. Since tissues are made of molecules which scatter and absorb photons, an optical 

tissue phantom is composed of a combination of scattering (e.g. Intralipid, Titanium 

dioxide, Aluminum Oxide, Polymer Microspheres, Quartz Glass Microspheres) and 
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absorbing materials (e.g. India Ink, Molecular dyes such as Indocyanine Green (ICG), 

Fluorophores), each in varying proportion based on their individual absorption and 

scattering properties [73-77]. These absorbers and scatterers are added to water or agar, 

which provides a stabilizing medium for uniform distribution of the absorber and 

scatterer molecules, and defines the refractive index of the resulting phantom. An optical 

phantom should be designed such that its optical properties closely match those of the 

corresponding tissue at the wavelength of interest. This however is a complex problem 

due to the apparent mismatch between “non-absorption” related properties (µs���� �� �� ��

absorbers and “non-scattering” related properties (µa���� �� �� �� 	
���
�
�	 �
��		

����
�
�� ���
�
����	 ���� One way to reduce this complexity is to select materials that 

have closely matching g and n values to tissue (water and agar), a pure scattering media 

with negligible absorption properties, and a pure absorber with negligible scattering 

properties, while allowing uniform mixing of absorber and scatterer molecules [73].  

 

4.1.2 Spectro-photometer Calibration  

In this study, intralipid was used as a scatter and India ink as an absorber in 

concentrations that resemble the optical properties of white matter, gray matter and skull 

bone. For each tissue type used in the brain phantom, the absorption coefficient of India 

ink and scattering coefficient of intralipid were determined using a spectro-photometer 

which served as the gold standard to measure absorption and scattering properties. While 

absorption properties of India ink (units: %Concentration-1cm-1) vary from batch to batch 

in commercially available samples, the variation in the scattering properties 

(units: %Concentration-1cm-1) of Intralipid are less across different samples. This is 
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For a purely absorbing medium the absorbance measured by the spectrophotometer is 

related to the absorption coefficient of the medium by: 

��(�) =  ����(�)
����(	
)

    (4.2) 

where “loge” is the natural logarithm. Similarly the scattering coefficient of a medium 

with a low concentration of scatterers can also be derived from the absorbance 

measurement of the spectro-photometer:  

��(�) =  ����(�)
����(	
)

    (4.3) 

 

Equation 4.3 is true only if the transmitted light intensity is collimated, does not 

undergo multiple scattering events and if the detector aperture is very small [76]. This 

places restrictions on the range of concentrations across which the scattering properties 

can be measured using the spectro-photometer. In this study we validated the 

scattering properties of the intralipid medium across extremely low concentrations 

using probe measurements as well as by comparing to past studies. Past studies by Van 

Staveren [76] have measured the optical properties of intralipid, which can be derived 

using the equations [76]: 

��(�) =  0.016��
.�    (4.4) 

and 

g(�) =  1.1 � 0.���    (4.5) 

where � is in micrometers (0.4< � <1.1) and the scattering coefficient ��(�) is in mL-

1.L.mm-1. This yields an anisotropy factor of g(�) = 0.636 and a reduced scattering 
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coefficient of 9.95 (%Concentration)-1.cm-1 at � = 800 nm. In this study we have used the 

anisotropy factor derived from equation 4.5 and will compare the scattering properties 

of intralipid to those obtained through equation 4.4.  

 

4.1.3 Probe and Monte Carlo based validation of intralipid  

To further verify the optical properties of intralipid solutions, we did another study using 

the dosimetry probe to measure the extinction coefficient of intralipid solutions. The 

extinction coefficient derived by the probe measurements were then matched by the 

Monte Carlo. The corresponding scattering coefficients which showed the best match to 

data were selected as the true values for that concentration. This additional study cross 

validates the spectro-photometer studies [76] shown by equation 4.4. The reasoning 

behind this study was to be absolutely sure that the scattering coefficient per unit 

volume of the 20% intralipid samples used in our studies were of the same property as 

the 10% intralipid samples used by the Van Staveren study.  

 

4.2 Materials and Methods 

4.2.1 Characterization of Optical Phantoms 

Optical brain phantoms were designed to emulate the absorption and reduced scattering 

coefficients of white matter, gray matter and skull bone at 800nm [79, 80]. Previous 

studies have shown that reliable optical phantoms can be built using India ink (absorber) 

and intralipid (scatterer) [74 – 77] , in addition to the optical absorption by water 

mol������ ��a = 0.02cm	1) [81]. 
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The absorption coefficient of India ink (Higgins non water proof black ink) and the 

scattering coefficient of intralipid (Intralipid 20% from Fresenius Kabi), at 800nm 

wavelength, was determined and validated using a spectro-photometer (Shimadzu 

UVmini 1240 Spectrophotometer), which served as the gold standard to measure 

absorbance. The scattering properties of intralipid can be determined using the 

spectrophotometer for low concentrations and was found to have the average value of 

9.524 cm�1 %Concentration�1, compared to 9.95 cm�1 %Concentration�1 as shown in past 

studies by Van Staveren [76]. Figures 4.2 and 4.3 show the calibration curves of the 

absorbance versus concentration of India ink and Intralipid, and the linear fit was used to 

design optical phantoms that resemble white matter, gray matter and skull bone, similar 

to Van der Zee [79] and Firbank [80]. In Tables 4.1 and 4.2, the measured ex vivo optical 

properties (absorption and scattering coefficients and anisotropy factor) of skull bone, 

gray and white matters and those used in our research studies are shown (the latter 

derived from figures 4.2 and 4.3). 
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phantoms comprised of layers of 1% agar doped with India ink and intralipid to 

represent skull bone and gray matter, and topped with a solution of white matter. The 

agar phantom preparation involved boiling a solution of India ink (with predetermined 

concentration) and 1% agar (Fisher Scientific Laboratory Grade Agar A3600-500) in a 

microwave at 95 degree Celsius and adding intralipid to the solution after being stirred 

and cooled to below 45 degrees Celsius. The scattering properties of agar and 

absorption properties of India ink were also measured using a spectrophotometer for 

each individual sample used in the study, while the scattering properties of intralipid 

were derived from the linear relationship in figure 4.3. 

  

Table 4.1 Optical Properties of Brain Tissues [79, 80] 

Tissue 
Type 

Absorption 
����������� 	
a) 
(cm-1) 

Scattering 
Coefficient 
	
s) (cm-1) 

Anisotropy 
Factor (g) 

Reduced 
Scattering 
Coefficient 
	
�s) (cm-1) 

White 
Matter 

0.05 550 0.85 82.5 

Gray 
Matter 

0.35 700 0.965 24.5 

Skull 
Bone 

0.24 184 0.9 18.4 
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Table 4.2 Phantom Composition [63] 
Phantom 
Type 

Tissue 
Type 

Intra
lipid 
% 

Ink % Absorption 
Coefficient 
��a) (cm-1) 

Scattering 
Coefficient 
��s) (cm-1) 

Anisotropy 
Factor (g) 

Liquid 
Phantom 

White 
Matter 

7.5 0 0.002 197.352 0.636 

Liquid 
Phantom 

Gray 
Matter 

2.36 0.023 0.3792 62.187 0.636 

Liquid 
Phantom 

Skull 
Bone 

1.82 0.0156 0.26 47.922 0.636 

Solid 
Phantom 

Gray 
Matter 

2.56 0.0195 0.35 67.308 0.636 

Solid 
Phantom 

Skull 
Bone 

1.92 0.0134 0.25 50.549 0.636 

 

4.2.2 Validation of 3D Monte Carlo in brain phantoms using Optical dosimetry 

As described in the previous section, liquid optical phantoms, resembling white matter, 

gray matter and skull bone, were designed using predetermined concentrations of India 

ink and Intralipid. The setup for the light dosimetry in the phantoms is shown in figure 

4.4. Two sources of NIR light (an integrating sphere and an optical fiberguide) were used 

to illuminate the phantoms, both of which were connected to the laser source (same 

specifications as used in the calibration process). The dosimetry probe was inserted into 

the phantom and translated using a 3D translation micrometer stage and used to 

measure the optical fluence distribution at various x, y and z locations within the 

phantom. The x, y and z fluence distribution generated by the Monte Carlo was 

compared to the probe measurements to the test the validity and accuracy of the 

Monte Carlo code. The percentage match of the Monte Carlo was calculated relative to 

the probe measurements to estimate the level of confidence of fluence estimation. The % 
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difference between the probe measured fluence and the Monte Carlo was calculated 

both along and perpendicular to the beam axis. 

 

  
Figure 4.4 Setup for Optical dosimetry in a liquid phantom. The optical dosimetry probe 
is translated within a plexiglas cuvette filled with liquid phantom, and illuminated by an 

NIR source. 

 

In order to quantify the photon fluence (�������) in J/cm2, we converted the output of 

the Monte Carlo fluence (�, photons/mm2) as follows: 

������� =  ��	



    (4.6) 

where h is Planck’s constant (6.626e-�� 
���� � ��� � ��� ��� ����� ��� ����������  !

light in the medium. The energy deposited in the tissue is obtained by multiplying the 

photon fluence with the absorption coefficient μa and the volume of the voxel (v): 

�"#��$#�% =  ��	



 &"v    (4.7) 
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4.3 Results 

4.3.1 Optical Dosimetry and Monte Carlo Validation in Homogeneous Phantoms 

The optical fluence measured by the dosimetry probe in white and gray matter phantoms 

was compared to the Monte Carlo generated fluence. The design of optical phantoms is 

crucial for accurately determining the localized distribution of fluence with the probe 

before validating it using Monte Carlo. Figures 4.5 and 4.6 show the comparison between 

the probe measurements and the Monte Carlo in brain phantoms for two different 

illumination profiles, the flat diffuse beam produced by the integrating sphere and the 

super-Gaussian beam emanating from the optical fiberguide. Comparisons were made 

along the central axis of the beam and in the direction perpendicular to the beam axis at 

different depths, as shown in figure 4.7. These plots reveal the energy fluence measured 

by the probe matched Monte Carlo simulations both along and perpendicular to the beam 

direction.  
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Figure 4.5 Optical dosimetry in white and gray matter phantoms. The photon source 

used is an integrating sphere connected to a pulsating laser source. The graphs show the 
exponential decrease of photon fluence along the beam axis in white and gray matter 
mimicking phantoms. The Monte Carlo generated fluence closely matches the fluence 

measured by the probe. 
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Figure 4.6 Optical dosimetry in white matter, gray matter and skull bone phantoms. The 
photon source used is an optical fiberguide (connected to a pulsating laser source) with 

a super-Gaussian beam distribution. The Monte Carlo generated fluence closely 
matches the fluence measured by the probe. This shows that the Monte Carlo beam 
modeling can be reliably used as a reliable estimator of photon energy distribution in 

tissue phantoms. 
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Figure 4.7 Lateral beam profile measurement using optical dosimetry probe and 

validation by Monte Carlo in homogeneous phantoms. (A) Beam profile in air using 
calorimeter. Optical dosimetry measurements validated MC simulated lateral beam 

profiles in phantoms of: (B) white matter, (C) gray matter and (D) skull bone, i.e., 
perpendicular to the beam axis. The measurements were normalized along the 

illumination axis. Cuvette dimensions: 5.3cm x 4.6cm x 3.1cm, thickness = 0.4cm.

A 

B 
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Figure 4.8 Continued 

C 

D 
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The average relative % error of the Monte Carlo relative to the probe measurements is 

11.27% for white matter, 13.25% for gray matter and 11.81% for skull bone along the 

beam axis for a range of 0.2-2cm within the phantom, while perpendicular to the beam 

axis, the % relative error is 9.4%, 12.06%, and 8.91% for white matter, gray matter and 

skull bone phantoms. These systematic errors represent the levels of confidence with 

which the Monte Carlo matches the probe measurements, see tables 4.3 and 4.4. 

 

Table 4.3 % Mismatch Error in Homogeneous Phantom along beam axis (z) 

Phantom Error% 
(0.2-1 cm) 

Error%       
(1-2 cm) 

Average 
error% 

White 
Matter 

12.13 
  

10.5 11.27 

Gray 
Matter 

13.39 
  

30.12 13.25 

Skull 
Bone 

11.39 
  

12.28 11.81 
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Table 4.4 % Mismatch Error in Homogeneous Phantom perpendicular to beam axis (z) 

Phantom Error% 
z=0.2cm 

Error% 
z=0.6cm 

Error% 
z=1.0cm 

Error% 
z=1.4cm 

Average  
error% 

White Matter 

10.34 13.34 9.14 4.79 9.4 
 

 Phantom 
Error% 
z=0.2cm 

Error% 
z=0.4cm 

Error% 
z=0.6cm 

Error%     
z=1cm 

 Average  
error% 

Gray Matter 

13.45 11.52 14.29 8.97 12.06 
 

Phantom 
Error% 
z=0.6cm 

Error% 
z=0.7cm 

Error% 
z=0.8cm   

 Average  
error% 

Skull Bone 

8.41 5.69 12.64   8.91 
 

An analysis of the fluence profile within the skull phantom showed that the super-

Gaussian beam fluence decreases with an effective attenuation coefficient of 4.818cm-1. 

This factor was used to estimate the effectiveness of therapy for different skull 

thicknesses. Based on the validated Monte Carlo method, the power transmitted by the 

fiberguide source for various skull thicknesses are 5.9mW/cm2 (0.4cm thick), 

2.16mW/cm2 (0.6cm thick), 0.83mW/cm2 (0.8cm thick), 0.33mW/cm2 (1cm thick). Thus, 

the % power transmitted in a 1cm thick adult skull is 1.8%, while a pediatric skull of 

0.4cm thickness would allow 33.5% optical power to reach the soft tissue. The thickness 
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of the skull and its density determines the overall attenuation and hence optical 

planning protocols which can be obtain from a CT scan (see chapter 6). 

 

4.3.2 Optical Dosimetry and Monte Carlo Validation in Heterogeneous Brain Phantoms  

Fluence profiles measured in the white matter solution in the layered heterogeneous 

phantom (1.1 cm skull agar phantom, 1.1 cm gray matter agar phantom, 5.9 cm white 

matter liquid phantom in the said order), showed a good degree of match between the 

Monte Carlo simulated data and the probe measurements, see figure 4.8. The 

exponential decrease in fluence along the beam axis is shown on the right side of figure 

4.8 while the lateral beam profiles at different depths above the gray matter agar 

surface is shown on the left side of this figure. The lateral fluence profiles have been 

normalized to the intensity at a depth of 0.2cm above the gray matter agar surface, 

while the fluence profiles along the beam axis were normalized to the fluence at z = 

0.1cm above the gray matter agar surface. The average systematic error (relative % 

error) between the probe and Monte Carlo fluences is 17.71% along beam axis and 

18.04% perpendicular to the beam axis and is shown in tables 4.5 and 4.6. The validation 

of optical dosimetry results in the complex layered phantom validate that the beam 

spread can be estimated correctly by the Monte Carlo if the optical coefficients of the 

phantom are known. 
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Figure 4.9 Validation of Monte Carlo in a heterogeneous phantom (1.1cm skull agar, 

1.1cm gray matter agar and 5.9cm white matter liquid). Lateral profile measurements 
(in the white matter phantom solution) are shown on the left while axial comparison is 
on the right. The depth shown by z is the distance from the gray matter agar surface. 

Cuvette dimensions: 9.4cm x 9.4cm x 10.9cm, thickness = 0.3cm. 

 

Table 4.5 % Mismatch Error in Heterogeneous Phantom along beam axis (z) 

Phantom Error% 
(0.1-1 cm) 

Error%       
(1-2 cm) 

Average 
error% 

White Matter (over Skull and 
Gray Matter layers) 2.11 33.32 17.71 

 

Table 4.6 % Mismatch Error in Heterogeneous Phantom perpendicular to beam axis (z) 

Phantom Error% 
z=0.2cm 

Error% 
z=0.4cm 

Error% 
z=0.6cm 

Error% 
z=1cm 

Average  
error% 

White Matter (over Skull 
and Gray Matter layers) 

18.52 15.09 15.37 23.17 18.04 
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4.4 Discussion 

We validated the 3D Monte Carlo code using the TiO2 based dosimetry probe 

measurements in phantoms resembling white matter, gray matter and skull bone. When 

comparing absolute fluence measurements, the error between MC simulated data and 

measured data was less than 25 percent within these homogeneous tissues. The 

independent characterization of the probes and the optical phantoms using calorimeter 

gold standard and spectrophotometer demonstrated the validity of using the probe as a 

gold standard. Studies were performed for two different types of NIR light sources in 

different optical phantoms, and the ease of photon quantification to absolute dose (in 

mW/mm2 or J/mm2) proves the fidelity of the Monte Carlo as a predictive tool to 

accurately estimate 3D photon energy distribution in complex media. The measurement 

and prediction accuracy can be improved with better instrumentation for probe 

localization and better laser beam positioning setups. The boundary conditions of the 

phantom play a very important role in the Monte Carlo results and need to be simulated 

accurately. This includes the accurate depiction of cuvette/phantom dimensions, 

distance from the source and source dimensions.  

 

This study achieves the first step of designing the tools necessary to validate the NIR 

photon distribution in three dimensions in optical phantoms. By quantifying the energy 

fluence and local deposited dose will allow an accurate depiction of the rate and 

quantity of drug release. Critical to these simulations is the accurate determination of 

the tissue structure and boundaries, which can be determined using imaging modalities 
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such as MRI or CT scan to segment various tissue types and obtain an optical property 

map. This can now be seamlessly input into the Monte Carlo under various illumination 

conditions. 
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5 SPECIFIC AIM3: EMPIRICAL APPROACH TO PHOTON PROPAGATION 

5.1 Introduction 

Translating an optical planning tool into the clinic requires simulations to be performed 

in time frames that are feasible. Monte Carlo simulations takes a few hours of execution 

time to generate statistically significant number of photons for full brain, and this is for a 

single laser source. Obtaining an optimal optical treatment plan requires dose 

calculations for multiple laser sources and iterations to ensure maximal light delivery to 

the target tissues. Hence, even though the CUDA based platform enhances the speed of 

the Monte Carlo by 300X over CPU based models [61], it still would need to be 

significantly accelerated to be provide treatment plans in a clinical setting. This can be 

accomplished by purchasing a cluster of NVIDEA cards (costly). Instead, this motivated 

us to design an empirical model approach to estimate photon propagation in complex 

heterogeneous tissues, which could have a runtime of less than a minute while 

providing a reasonable level of accuracy [64].  

 

A number of analytical solutions are made to the radiative transport equation, also 

known as the Boltzmann transport equation [82]: 

�.��(r,�) + ���(r) + ��(r)��(r,�) = S(r,�) + ��(r) 	 �(r,�
)�� p(�,�
)d�
    (5.1) 
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In the above equation, S(r,�) is source term and describes the power injected into a 

solid angle defined by � within a unit volume at position r; � is the photon propagation 

unit vector; �(r,�) is the radiance energy (units: W.cm�2.sr�1); r is position vector; 

p(�,��) is the phase function and represents the probability of photon scattered from 

direction �� to �.  

 

The fluence,�(r),  is obtained by summing the energy radiance,�(r,�), over all 

directions [82]: 

�(r) = � �(r,�)��	 
 .   (5.2) 

 

Solving the radiative transport equation can be solved using finite difference methods 

under certain approximations [82]. One such method is the DANTSYS (diffusion 

accelerated neutral particle transport code system) [82].  

 

The diffusion approximation (P1 approximation) is the most commonly used analytical 

approximation to the radiation and is used widely to calculate fluence in homogeneous 

and heterogeneous tissues and is given by the equation [82, 83]: 

�
�

�(�,�)

� + ���(r, t) � �. [D��(r, t)] = S(r, t).   (5.3) 

 

The diffusion equation can thus be used to derive the optical fluence in homogeneous 

and heterogeneous tissues by using diffusion synthetic acceleration method (DANTSYS) 
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and employs a corrected diffusion equation to accelerate the convergence of transport 

iterations. The use of the diffusion equation results in under-estimation of fluence in 

media with a high ratio of absorption to scattering coefficients [82, 84]. The Monte Carlo 

method thus remains the only method to accurately simulate photon fluence over a 

wide range of albedos. 

 

In our study, we investigated a voxel-based, nearest neighbor weight based method 

trained using Monte Carlo simulated data. In retrospect, this approach is similar to the 

photon convolution method [85], but uses arbitrary weights to determine photon 

scatter at each location (voxel) in a 3D volume. The absorption of photons in each voxel 

is determined using the Beer Lambert’s law [78] and the optical absorption coefficient. 

The photon dose distribution is simulated in a 3D voxelated format for easy comparison 

and 3D optimization with the Monte Carlo and allows seamless integration with medical 

imaging modalities such CT and MR, used to characterize tissue heterogeneity and 

object boundaries of the medium. The empirical nature of this software can be easily 

adapted to different optical properties and voxel sizes by adjusting the scattering 

weights, while the absorption coefficient remains unchanged. As with the MC code, 

different beam profiles and upstream optics can be seamlessly integrated to improve its 

applicability. Realization into CUDA can provide corrective algorithms on the order of a 

few seconds and real-time applications. 
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5.2 Materials and Methods 

5.2.1 Algorithm Design 

The Empirical approach is based on the assumption that the photon fluence in a voxel in 

a particular layer is a weighted sum of the fluences of neighboring voxels in the previous 

layer [63, 64]. The basic concept and schematic of this algorithm is illustrated in figures 

5.1-5.3. The steps of the algorithm can be summarized as follows: 

1. Assign the incident photon beam distribution (e.g. super-Gaussian beam) to the first 

layer of voxels. In this case, we assume that the direction of photon propagation is in 

the +z direction. 

2. For every voxel in a layer, calculate the directional scatter components. The 

equation 8 represents an example of how the forward scatter component is 

calculated. The coordinates i, j, k denote the x, y and z location of the voxel. The 

arbitrary weights wt1 and wt2 are forward and diagonal weights, which determine 

the percentage of scatter. The sum of all weights is always equal to one (i.e. 

wt1+4*wt2=1), so that the total fluence entering a voxel is equal to the sum of 

fluence absorbed and exiting the voxel. The equations used to calculate the other 

components can be similarly determined. The sum of all the scatter components in a 

voxel equals the total fluence in that voxel (arbitrary units: photons/unit volume). 

3. Calculate absorbed energy (Iabs) using Beer Lambert’s law for a path length dl = voxel 

length, based on the absorption coefficient (μa) of the voxel: 

����(i, j, k) = I(i, j, k)(1 � ���	
�)    (5.4) 
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4. Calculate and accumulate the fluence over all voxels in the current layer and 

increment z to proceed to the next layer. Continue propagation till the fluence exits 

the volume. 

 

An example of the implementation of this algorithm in 3D matrices using nested “for 

loops” is shown in figure 5.3 (A). The purpose of this flowchart is to explain the details of 

the algorithm from the perspective of its implementation. Different iterating loops and 

several different data structures are possible to implement this algorithm based on the 

memory and performance requirements.  

 

We implemented an iterative routine, shown in figure 5.3 (B), in order to ensure that 

residual fluences exit the 3D volume. The rationale behind this step is that some side-

scatter and back-scatter components are significantly high in media with high scattering 

coefficients (e.g. white matter). While the software is implemented in the form of a 

primarily forward propagation direction, it leaves behind residual fluence components 

which do not contribute to the total fluence and which do not exit the volume. Thus in 

order to ensure that all residual photons leave the volume, we implemented an iterative 

routine to propagate photons in the forward (+z) and reverse (-z) directions alternatively. 

This was implemented in an iterative fashion. In the first iteration we propagate the 

photons in the +z direction while in the next iteration the matrices are flipped (along the 

x, y, z planes) such that +z direction now refers to the –z, +x refers to the –y and +x 

refers to the –x directions. In other words the matrix is turned upside down. The 
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empirical code is run again (without any additional input fluence) such that the iteration 

is mainly in a direction opposite to the first iteration. We again flip the matrix to its 

original orientation before running the empirical iteration. This is continued until we 

ensure that most photons have exited the volume and the residual fluences are below a 

certain threshold. In our study we found that 14 iterations were sufficient to ensure that 

most photons have exited the volume. It is important to note that the iterative routine 

mainly ensures a better match with Monte Carlo in the lateral direction (in xy plane) 

away from the beam axis. The number of iterations has less effect on effective 

attenuation at the center of the beam where most of the fluence is contributed to by 

the forward directional fluence vector.  

 

 
Figure 5.1 The Empirical photon propagation [64]: The photons in a voxel is propagated 

to neighboring voxels using scatter weights. 
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Figure 5.2 Integral or accumulation of fluence in a voxel. [64]. The dorectioonal fluences 

such as forward (If), diagonal upwards (Id), diagonal downwards (Idb) and side (Is), 
eneterig a voxel are weighted and summed using forward (wt1) and diagonal weights 

(wt2). Fluence is redistribution conserved by ensuring that (wt1 + 4 x wt2) = 1. 
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scaled to the voxel size and the photons are absorbed before proceeding to the next 

layer.  

 

5.3 Results 

5.3.1 Empirical Optimization results  

In this section we describe the optimization studies performed on the Empirical 

algorithm. Both these studies were performed separately for brain tissues and tissue 

phantoms, mainly due to the difference in their optical anisotropy factors, which leads 

to subtle changes in fluence distributions. Table 5.1 shows the weights derived for brain 

tissue phantoms (composed of India ink and Intralipid), while table 5.2 shows the 

weights for real brain tissues. The optical properties of brain tissues are shown in table 

4.1 while those of the tissue phantoms are shown in table 4.2. The corresponding 

comparison in fluence profiles along the beam axis is shown by figure 5.4 for brain tissue 

phantoms and by figure 5.5 for real brain tissues. The difference in the properties mainly 

arises from the difference in the anisotropy factor between intralipid and the brain 

tissues. Thus while we have achieved a match in the reduced scattering coefficient 

between the phantoms and the real tissues, the photon distribution varies to some 

extent between tissues and phantoms, as seen by Monte Carlo simulations. Hence we 

trained the Empirical algorithm to match the match the Monte Carlo generated fluence 

separately for both brain tissues and tissue phantoms. The different resultant weights 

derived between phantoms and tissues also validates the purpose. 
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We also did a comparison of lateral fluence profiles generated by the Monte Carlo and 

the Empirical and these are shown in figures 5.6 -5.9. While the optimization routine 

used the match in fluence attenuation along the beam axis as the main criteria, we tried 

to see if this translates into a match along the lateral direction at different depths 

(z=2mm, z=5mm, z=10mm, z=15mm) in homogeneous tissues. Our analysis shows that 

the lateral profiles of the Empirical algorithm closely match those of the Monte Carlo 

under similar illumination and boundary conditions.  

 

Table 5.1 Weights derived for Brain Tissue Phantoms [63] 

Tissue 

Phantom 

Voxel Size 

(mm) 

Wt1 Wt2 R-square 

White Matter 0.1 0.949461 0.012635 0. 99999 

Gray Matter 0.1 0.87469 0.031328 0. 999969 

Skull Bone 0.1 0.914828 0.021293 0. 99979 

White Matter 1 0.474876 0.131281 0. 99992 

Gray Matter 1 0.062097 0.234476 0.999828 

Skull Bone 1 0.245949 0.188513 0. 999871 
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Figure 5.10 shows the comparison between the Monte Carlo, Empirical and Probe 

measurements in brain tissues for broad beam simulations in homogeneous phantoms. 

The weights derived for tissue phantoms are different from tissues. For the tissue 

phantoms, the weights used are from table 5.1. The beam simulated in a super-Gaussian 

beam as described in chapter 4. The super-Gaussian beam can be easily simulated using 

the Empirical as it allows us to set the photon distribution at any voxel. The average 

relative % error between the Empirical and Probe measurements is 10.2% for White 

Matter, 45.2% for Gray Matter and 22.1% for Skull Bone phantoms; while the 

comparison between Empirical and MC is 22.6% for White Matter, 35.8% for Gray 

Matter and 21.9% for Skull Bone phantoms. The probe measurements validate the 

Empirical results and the Monte Carlo in homogeneous phantoms. 
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Figure 5.11 Comparison of the Empirical algorithm with Monte Carlo and Probe 

measured fluence in brain phantoms resembling white matter, gray matter and skull 
bone. The illumination source used is a super-Gaussian beam, which is emulated by the 

Monte Carlo and the Empirical algorithm. The empirical approach is a close 
approximation of the Monte Carlo and the probe over the range of optical properties of 

brain tissues.  [63]. 

 

5.3.3 Simulations in Head Phantoms 

We simulated head phantoms to compare the Monte Carlo and Empirical fluence and 

energy distributions. The phantom simulated had the dimensions of a child’s head. The 

simulation studies were done in the presence (figures 5.11 - 5.14) and absence (figures 

5.15 – 5.18) of tumor to study how well the Empirical photon distribution matches the 

Monte Carlo. 2D photon energy maps were also generated and compared. The weights 

used for the simulations were those of real brain tissues as shown in table 5.2. While the 



85 

 

Monte Carlo only generates the fluence map, the energy map is derived from the 

fluence map by multiplying the fluence with the absorption coefficient and the volume 

of the voxel. 

 

In the case of the normal head phantom (without tumor) of 100mm diameter, the 

boundary conditions and tissue dimensions are shown in figure 5.11. The skull thickness 

is 4mm; thickness of gray matter is 10mm, while the center of the head is mainly white 

matter with a diameter of 72mm. The phantom is illuminated with a 20mm diameter 

uniform beam (800nm wavelength). Figure 5.12 shows the comparison plot of the 

energy deposition between the Monte Carlo and the Empirical along the beam axis. The 

first point on the plot starts at the point where the light enters the skull tissue (i.e. 

depth=0 in the plot of figure 5.12 corresponds to z=6 along the beam axis in figure 5.11). 

Similarly, figure 5.13 shows the log normalized fluence plot along the beam axis. Both 

the fluence and the energy plots show that the Empirical fluence and energy simulated 

closely follow those of the Monte Carlo within a certain error. The energy distribution 

maps in 2D are shown in figure 5.14. Note that the Monte Carlo generated map suffers 

from extremely low photon fluence at depths larger than 5cm due to low photon 

statistics (restrained by the time for head simulations), while the Empirical algorithm 

does not suffer from this limitation.  

 

We also studied the performance of the Empirical algorithm in a head phantom in the 

presence of a tumor (astrocytoma) of 5mm diameter. The boundary conditions of other 
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Figure 5.13 Comparison of photon energy distribution between the Empirical algorithm 
and Monte Carlo in a head phantom, along the beam axis. The illumination source used 

is a uniform beam of 2cm diameter. The plot is from the point where light enters the 
skull bone (refer to figure 5.11). 
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Figure 5.14 Comparison of photon fluence distribution between the Empirical algorithm 
and Monte Carlo in a head phantom, along the beam axis. The illumination source used 

is a uniform beam of 2cm diameter. The plot is from the point where light enters the 
skull bone (refer to figure 5.11). 
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Figure 5.18 Comparison of photon fluence distribution between the Empirical algorithm 
and Monte Carlo in a head phantom with tumor, along the beam axis. The illumination 
source used is a uniform beam of 2cm diameter. The plot is from the point where light 

enters the skull bone (refer to figure 5.15). 
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5.3.4 Simulating Fluence Buildup 

The effect of fluence buildup is seen in Monte Carlo simulations near the photon source. 

This effect largely depends on the albedo of the optical medium, where  larger albedos  

enhances this buildup effect compared to smaller values and is significant within 1mm 

from the source in brain tissues. . While the Empirical can closely match the Monte 

Carlo over diffusion region, the existing derived weights were inadequate to simulate 

the fluence build up; therefore, a new set of weights were derived. Plots for the best 

possible match in white matter, gray matter, skull bone, and astrocytoma are shown in 

figures 5.19-5.22, respectively, and their corresponding weights are listed in table 5.3. 

While the Empirical model may not exactly match Monte Carlo simulated data for both 

the diffuse and near-source regions at the same time, it can modified to match the MC 

based on the region of interest. One must note that the problem of fluence build occurs 

within the first millimeter or two, thus a smaller voxel size will be required. 
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Table 5.3 Weights derived to obtain fluence buildup 

Tissue 
Phantom 

Voxel Size 
(mm) 

Wt1 Wt2 R-square 

White Matter 0.1 

0.637486 0.090629 0.995372 
Gray Matter 0.1 0.711962 0.07201 0.999807 
Skull Bone 0.1 0.735052 0.066237 0.994337 
Tumor 
(Astrocytoma) 

 
0.1 0.89585 0.026037 0.955473 

 

5.4 Discussion 

In this specific aim, a reasonable accuracy (R-square of 0.999) was achieved between 

the Empirical and the Monte Carlo for homogeneous and heterogeneous brain 

phantoms and validated using the optical dosimetry probe. Overall, the empirical model 

provides an alternate voxel based approach of estimating photon fluence in 3D 

heterogeneous tissues besides the diffusion approximation and Monte Carlo methods. 

Even though it was less accurate compared to Monte Carlo simulated data, (up to 36%% 

error between probe and empirical), the reduction in computation times (8 hours per 

MC simulation versus 4-12 seconds of Empirical simulation), provides a means for 

clinical and preclinical applications, in particular for large data sets and iterative-based 

optimization routines. Similar to the GPU MC code, it is easily integrated with existing 

imaging modalities such as CT and MR due to its voxelated structure. In order to 

simulate fine structural boundaries of brain tissues, we need a fine resolution of around 

1mm, for which the CT dataset becomes very large. For such large datasets, where the 

Monte Carlo cannot be run iteratively (>24 hours execution time), the empirical 
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algorithm can replace the Monte Carlo for preliminary analysis. More study is required 

to investigate the % match due to difference in the optimization routine and the 

dependence of weights on the scattering properties of the medium. Further research is 

also needed to understand the mismatch at object boundaries, particularly at larger 

depths.
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6 SPECIFIC AIM4: IMAGE-GUIDED OPTICAL TRANSMISSION STUDIES IN HUMAN SKULL 
BONES 

6.1 Introduction 

The skull forms an optical attenuator (absorber and scatterer) in the transmission of 

near-Infra-red light to the brain. The success of any NIR based imaging or therapeutic 

technique involving the brain depends on an accurate and precise determination of the 

optical transmission properties of the skull.  The skull bone consists of osteocytes and 

calcium deposits in various densities and complex geometries based on different 

anatomical locations in the skull.  Previous studies have looked at the optical 

transmission properties of different tissues [93-99] using collimated laser beams with 

powers ranging from 10mW/cm2 to 25mW/cm2 [93, 94]. These studies included NIR 

transmission through human cadaver skulls [94].  In our study, we used an NIR laser 

source (17.64mW/cm2) with a complex super-Gaussian broad beam profile and 

investigated if a relationship between voxel-based HU and optical attenuation exists. 

Simulated Monte Carlo data was compared to measured beam intensity and distribution 

implementing the TiO2-based optical dosimetry probe. This data was used to investigate 

the relationship between the HU from CT images and the optical attenuation by 

measuring the transmitted NIR light through human cadaver skulls Critical to these 

measurements is the ability to quantify low power fluence transmitted through the skull 
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afforded with the TiO2 optical dosimetry probe compared to the calorimeter used in 

previous bone transmission studies [91, 92]. 

 

To date, studies [80, 100-102] have measured the optical properties of the brain tissues, 

have mapped the heterogeneity and inter-sample variations. The comparison of the 

optical properties of skull bone found in these studies [80, 100-102] is shown in table 6.1. 

It shows a wide variation in the optical properties reported for the human skull bone. A 

comprehensive work by Bashkatov et al. [100] mapped these variations in optical 

properties of the skull bone at different wavelengths. Our aim is to further understand 

this complexity caused by variations in the bone density and bone thickness to map out 

an accurate fluence map of the Monte Carlo in the brain. The use of Computed 

Tomography images provides a 3D map of the heterogeneous bone structure and allows 

us to accurately generate the boundary conditions and density maps using the Monte 

Carlo.  

 

Table 6.1 Optical properties of skull bone measured at 800nm wavelength in different 
studies [80, 100-102]. The anisotropy factor (g) is 0.9. 

Study By: Absorption 
Coefficient 
��a) (cm-1) 

Scattering 
Coefficient 
��s) (cm-1) 

Firbank et al. 0.24 18.4 
Bashkatov et al. 0.11 19.48 
Pifferi et al. 0.07 12.5 
Ugryumova et al. 0.25 21 
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6.2 Materials and Methods 

6.2.1 Optical Bone Dosimetry Setup 

10 Different skull bone samples [courtesy: Lisa Hilliard (Medical Laboratory Science 

Program) and Dr. James Walker (Dept. of Basic Medical Sciences)] were used for the 

optical transmission study. The light source consisted of the optical fiberguide (see 

chapter 2) connected to a laser source. The NIR output of the fiberguide was measured 

using a calorimeter to be 19.94mW or (17.64 mW/cm2) at 800nm wavelength. For 

transmission studies, the optical fiberguide was placed against the outer surface of the 

skull bone, such that its aperture was flat against the bone surface, thus providing a 

normal exposure. The fluence transmitted through the bone was measured using the 

TiO2 dosimetry probe by placing it against the inner surface of the skull bone, opposite 

the fiberguide on the other side of the skull, which was ensured by locating the point of 

maximum fluence. The energy fluence for 5 points or locations per skull was acquired, 

and at each location the measurement was repeated three times.  A total of 10 cadaver 

skull bones were measured, which gave a total of 50 measurement data points. The 

setup for these experiments is shown in figures 6.1 and 6.2. 
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Figure 6.2 Skull bone sample (top portion) used in the experiment. The dosimetry probe 

is also seen. 

 

 
Figure 6.3 Optical dosimetry setup for lateral beam profile measurement in skull sample. 
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measurement for optical transmission lies on the inner skull boundary on the line while 

lateral profile is measured at 0.5 cm from the inner skull surface.  

 

In order to identify the source voxel for illumination, another line was drawn tangential 

to the skull surface, passing through the intersection point of the bead and the outer 

skull surface as shown in figure 6.5 (B). The cross product of the illumination vector and 

the source tangential vector is the other vector which also lies tangential to the skull 

surface along the z axis [0 0 1]. The source voxels are then identified as those lying on 

the 3D circle defined by the two tangential vectors. The parametric equation used of a 

3D circular disk [103] can be then used to represent the fiberguide source surface as 

described by the two tangential vectors. Thus one can accurately represent any broad 

source in the Monte Carlo at any arbitrary angle as used in the experimental setup. 
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not used (incomplete CT scan). The optical transmission measurements show a wide 

variation in the optical power transmitted, due to variation in skull thickness and 

(heterogeneity in) bone densities. In order to map the Monte Carlo fluence to the % 

transmission measurements of the probe, we used CT images to determine the optical 

path-length through the bone (i.e. skull thickness in the direction of illumination). The 

skull thicknesses measured using CT images showed different skull thicknesses both 

within and across the skull samples. The measured skull thicknesses from the CT images 

are shown in figure 6.9. We also measured the lateral beam profiles in the skull 

phantoms in air and water as shown in figure 6.10. The measured probe voltage is seen 

to be higher in water compared to air. This is mainly due to the difference in the skull-

medium interface boundary conditions, such as the differences in the refractive indices 

of skull bone and water versus skull bone and air.   
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In order to demonstrate the feasibility of using CT image-guided skull boundaries for 

Monte Carlo simulation, we used the CT images to map the heterogeneity in distribution 

of bone voxels along with the geometry of boundaries. Figure 6.14 shows the 

comparison between the lateral fluence profiles (transmitted through the skull 

immersed in water) measured using the probe versus the Monte Carlo.  The boundary 

conditions derived from the CT images is shown in figure 6.15. The fluence profiles were 

normalized to the maximum value measured at a depth of 5mm from the inner surface 

of the skull bone. The results show a close match between the beam spread simulated 

by the Monte Carlo and measured by the probe. This demonstrates the accuracy with 

which the scattering properties of the bone were modelled, along with the CT image 

enhanced boundary conditions. The CT images of the skull sample also show the 

changing Hounsfield CT numbers across the bone which is the result of varying density 

of the bone structure. Thus compared to previous studies, we have used the CT images 

to account for the different optical path lengths along with boundary conditions. We 

have however, not accounted for the varying densities of the bone, which results in 

differences between the probe and the Monte Carlo fluences.   

 

6.4 Discussion 

The optical transmission study demonstrates the difficulties encountered in optical bone 

transmission studies. The Monte Carlo can accurately simulate photon attenuation in 

the skull only when all the optical properties and boundary conditions are simulated 

correctly. While the skull bone has been measured and modelled as a relatively 
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homogeneous medium in optical simulation studies, the use of CT images shows that it 

is far from homogeneous with wide variations in bone densities at different anatomical 

regions and across subjects. This presents a complicated scenario to model the optical 

propagation of photons through the skull.  

 

We demonstrated the accuracy of boundary conditions determined using CT images by 

comparing the lateral profiles between the Monte Carlo and the dosimetry probe. The 

close match between the profiles shows the accuracy of our simulations. Our study thus 

also reduced the error in measuring skull thicknesses using calipers, which so often goes 

unnoticed in complex tissue structure. For example: an error in correctly measuring the 

skull thickness by a millimeter can result in errors of up to 40% in magnitude (seen from 

our MC data in figures 6.11, 6.12), depending on the boundary and illumination 

conditions. Thus any imaging or therapeutic technique needs to reduce the errors due 

to mismatch in the boundary conditions by using an anatomical imaging technique (such 

as CT) which can map different tissue boundaries. 

 

To improve the match between the Monte Carlo and the measured fluence in skull 

models, we hypothesize that using bone density measurement technique such as 

quantitative CT can significantly improve the localization of high scattering bone voxels 

in the skull bone. The mapping of Hounsfield values of CT number can be directly linked 

to the bone density values by imaging bone density phantoms in the CT scanner. This 

would provide volumetric images of bone densities which can be converted (scaled) to 
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the corresponding scattering absorption coefficients. The optical coefficient scaling will 

also need to be calibrated by measuring the optical properties of bone samples of 

known density. 
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7 DISCUSSION 

7.1 Design and Calibration of Optical Dosimetry Probe 

We designed and calibrated an optical dosimetry probe with a linear and isotropic 

response to input photon fluence. While several designs of the dosimetry probe exist in 

the medical optics market, the application of a specific dosimetry probe for an 

application mainly depends on probe sensitivity to the wavelengths of interest. The 

isotropicity of the dosimetry probes used in past studies is shown in table 7.1. The 

choice of the titanium dioxide for the probe was made to achieve maximum sensitivity 

by maximizing scattering near 800nm wavelength through the use of Titanium Dioxide 

(by Du Pont [71]). We were able to prove that the sensitivity as well as the angular 

response of the TiO2 probe is superior to that of the conventional Nylon based probes. 

The next innovative aspect of our study was the determination of absolute photon 

fluence from the probe response. By using the linear relationship between the probe 

and calorimeter responses, along with the experimental derivation of a calibration 

factor for relating probe response in air to that in water, we were able to derive the 

mathematical relationship to absolutely quantify photon fluence in tissues for in-vitro or 

in-vivo studies in the future. This provides a simple technique to quantify probe 

response experimentally for validation purposes.
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Table 7.1 Optical dosimetry probe composition (diameter<2mm) and % isotropicity 
variation [68, 69]. 

Study By: Probe tip material Isotropicity 
Variation % 

Marijnissen et al ArniteTM 11% 
Marijnissen et al NylonTM 11% 
Van Staveren et al Helioseal (dental sealant) 20% 
Our study TiO2 (best probe) 13% 
Our study NylonTM (best probe) 17% 

 

7.2 Dosimetric Validation of a Monte Carlo based Optical Planning tool 

The Monte Carlo based tool for photon dose estimation was successfully optimized and 

validated, using optical dosimetry probe measurements, to study light dose delivery to 

brain tissue phantoms. Past studies have compared the dosimetry probe measurements 

with simpler models (non voxelated) of the Monte Carlo along illumination axis in 

homogeneous phantoms and tissues for simpler (flat or isotropic) beam profiles (flat 

beams) [104-106]. The long computation times (several hours to days) associated with 

the Monte Carlo prevented any rigorous approach for validation across diverse tissues 

and illuminations. To the best of our knowledge, this is the first study which has sought 

to rigorously validate a 3D voxelated GPU based Monte Carlo using dosimetry probe 

measurements both along and perpendicular to the illumination axis, in homogeneous 

and heterogeneous tissue phantoms with independently derived optical properties, and 

using a complex super-Gaussian beam profile. We also validated the Monte Carlo in a 

diffuse beam generated by an integrating sphere, thus proving the flexibility of the 

Monte Carlo in accurately generating different beam profiles.   
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A past validation study [106] had compared the angular radiance with different viewing 

angles using a flat cleaved probe to the Monte Carlo in tissue phantoms. The measured 

versus Monte Carlo fluence showed a % error variation from 0 to 25% (seen from the 

figure 6 plot in the publication) along the beam axis, mainly due to mismatch in optical 

properties. In another study [105], Monte Carlo validation using dosimetry in a dissected 

Pig Bronchus tissue showed higher % mismatch of around 50% at a 4cm depth, with 

measurement error amounting to 15% variation. The other significant part of the error 

was accounted for by the variation in estimation of the tissue optical properties and 

tissue boundaries. This demonstrates the importance of independent validation of 

optical properties of the medium along with an accurate simulation of boundary 

conditions in the Monte Carlo. In this study, the average % error was well within 25% for 

most of our measurements. The acceleration provided by the GPU platform improves 

the applicability of the Monte Carlo by reducing the development time associated with 

iteratively optimizing the accuracy of the boundary and illumination conditions, which 

was difficult to achieve in the CPU based model.   

 

7.3 An Empirical algorithm for preliminary optical dose planning 

The brain is a highly heterogeneous structure and has complex distribution of tissues 

with varying optical properties. In order to target a metastatic site in the brain we need 

to be able to optimize the light delivery to that region in the brain, which requires us to 

analyze multiple light source positions, orientations as well as source illumination 

profiles; all of which affect the path that photons travel through the brain. Since this 



122 

 

requires iterative techniques, multiple simulations of photon propagation with different 

illumination conditions require a tool which is faster than the Monte Carlo (run time a 

few hours). Hence an alternative Empirical model with a run time of a few seconds was 

designed as a preliminary investigation tool with a reasonable level of accuracy 

compared to the Monte Carlo in heterogeneous tissues.  

 

The Empirical model is based on the photon convolution algorithm and uses weights to 

simulate photon scatter from one voxel to another. Its 3D voxel based design helps us to 

integrate it with the Monte Carlo along with 3D imaging modalities such as CT and MR. 

The empirical algorithm was iteratively optimized with the Monte Carlo and tested in 

optical phantoms resembling a child’s brain with and without a tumor. We found a 

reasonable degree of match between the Monte Carlo and the Empirical in both 

homogeneous and heterogeneous tissues. The lateral profiles in homogeneous 

phantoms were also compared and were found to match between the two models.  

 

The errors in the Empirical model include boundary conditions which the Empirical in 

not able to simulate as well as the Monte Carlo. Further research is necessary to 

investigate and optimize the Empirical algorithm to make it more accurate in complex 

heterogeneous tissues. Due to its reasonable degree of accuracy, the Empirical 

algorithm can be used as a preliminary investigation tool to narrow down the optimal 

illumination conditions while the Monte Carlo can be the Gold standard for the final 

dose calculation. A comparison of various models used in past studies is shown in table 
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7.2. The Empirical approach performs favorably with its moderate level of accuracy and 

fast execution times with respect to Monte Carlo. 

 

Table 7.2 Methods for photon propagation [61, 107-111]. Estimated simulation times 
for a head study. 

Method: Execution 
time  

Advantages Disadvantages 

CPU based Monte 
Carlo [110] 

>24 hours 
(1-3 days) 

Accurate Long execution 
times 

GPU based Monte 
Carlo [61] 

4-8 hours Accurate Moderate execution 
time 

Radiative 
Transport 
Equation (RTE) 
[108] 

Few 
minutes 

Accurate Complex to solve 

Diffusion 
Approximation 
(DE) [107, 111] 

Few 
seconds 

Accurate only at large 
distances from source, at 
g<0.6 and at higher 
albedos (μs/ μs+ μa) 

Errors at short 
distances from 
source, at g>0.6 and 
at lower albedos 
(μs/ μs+ μa) 

Hybrid model (MC 
+ DE) [109] 

1-3 hours Moderate accuracy (1-2 
std dev) 

Moderate accuracy 
(1-2 std dev) 

Empirical Model 
[64] 

4-12 
seconds 

Moderate accuracy Non-analytical 
technique 

 

7.4 Image guided transmission studies in skull bone phantoms 

The NIR transmission study demonstrates the complexities of modelling the optical 

properties of the skull bone. Past studies measuring the NIR transmission through skulls 

had measured the transmission through cadaver skulls with intact soft tissues [93, 94]. 

This resulted in larger uncertainties in the optical properties (with the inclusion of soft 
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tissue). No image based technique was used in these studies to determine the optical 

pathlength through the samples. In this study we measured NIR transmission through 

pure skull bone samples without any soft tissue, and demonstrated the use of image 

guided technique to determine the bone thickness. We also successfully demonstrated 

the close match between the lateral beam profiles measured in water, which shows the 

importance of using image guided techniques to map heterogeneity of the skull. While 

the transmission errors between the Monte Carlo and the probe measurements are 

significant for some measurement points, this study tries to point at the scope for future 

investigation into the heterogeneous density distribution of scatterers in the skull bone. 

There is a need to model the varying optical scattering of the bone based on bone 

density. Methods such as bone densitometry and quantitative CT can be used to 

calculate skull bone densities and can potentially improve the accuracy of the Monte 

Carlo.      
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8 FUTURE WORK 

While this study has looked specifically at building optical dosimetry and photon dose 

simulation tools with an intention of future application in light induced drug activation 

in the brain, we are still some distance away from accurately modelling the drug release 

maps in the brain. This is mainly due to a lack of understanding of the mechanism for 

drug activation. While in vitro experiments as well as in vivo studies in mice have shown 

promising results, the energy threshold for drug release is still uncertain. The drug-

nanocomplex molecule consists of a therapeutic drug molecule (e.g. lapatinib) which is 

complexed with a gold plated silica nanoshell [8]. These nano-complexes are incubated 

in macrophages and monocytes and injected into the blood stream, cross the blood 

brain barrier, and accumulate in the metastatic lesions in the brain [8, 9]. Thus when 

irradiated with an NIR source with sufficiently high power, the high absorption cross-

section of gold nanocomplexes results in heating of the nanoparticles [86, 87] which can 

lead to breakage of bonds binding the drug (or any fluorescent molecule) to the nano-

complex and subsequent release and activation of the drug [8, 9]. The resulting rise in 

temperature has been shown to be around 37.40C as shown in previous studies [86] for 

a power of 4W/cm2. The heating property of the gold nanoshell nano-complex can be 
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tuned by changing the size of the silica nano-shell compared to that of the outer gold 

plated layer [88], which allows us to optimize the drug molecule with respect to the 

wavelength of light delivery.  While this shows significant promise in the mechanism of 

temperature rise leading to drug release, more research needs to be done to 

understand the temperature related dependence of the drug release.  

 

In order to control the rise in temperature in the region surrounding the nanocomplex 

molecules, the instantaneous energy provided to a tissue region can be controlled by 

adjusting the pulse width of the laser beam. The use of pulsed laser beams has been 

shown to improve the instantaneous temperature rise and release in of drug molecules 

tethered to nanoparticles, compared to continuous wave lasers [112]. This will allow 

more instantaneous power to be coupled to the nano-molecules while reducing the 

chances of laser induced adverse tissue heating or denaturing of the drug. The 

maximum energy that can be safely coupled to tissues is limited by the maximum 

permissible exposure (MPE). MPE values are based on the pulse duration and the tissue 

type [113, 114]. For example, if we use a laser beam of 1 ns pulse duration, the MPE to 

the skin is 3.17x107 W cm-2 [113, 114]. Based on our prior Monte Carlo simulations using 

a flat 2cm diameter beam, the amount of power coupled to the soft tissue for 1.1cm 

and 0.2cm thick adult and neonatal skull is 4.3x105 W cm-2 and 1.5x107 W cm-2, 

respectively. Thus, a therapeutic drug molecule needs to be designed such that it can be 

activated at a threshold less than the maximum permissible power coupled to tissues at 

a specific depth. For example, a drug molecule with an energy threshold of 1 Wcm-2 can 
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be released up to a depth of 3.8cm in the white matter of an adult brain (skull thickness 

1.1cm, gray matter thickness 2cm), and up to 4.6cm in a neonatal brain (skull thickness 

0.2cm, gray matter thickness 0.2cm) for a flat beam of 2cm diameter, 1ns temporal 

spread and an input fluence of 3.17x107 W cm-2. This shows that the structure of the 

brain and path lengths through the tissue can significantly impact the fluence coupled 

and the effectiveness of therapy. However, these results demonstrate the feasibility of 

NIR stimulated drug release, in particular for children where 4.6cm is more than half the 

diameter of the brain cavity. 

 

Even though reducing the laser pulse width can enhance drug release without 

denaturing the drug or heating the tissue, it can also significantly impact the 

instantaneous or peak energy fluence within the brain. Multiple scattering in brain 

tissues causes the photons to travel with different optical path-lengths, thus 

simultaneously increasing the pulse width and decreasing the peak power at greater 

depths. Past studies have measured the temporal dispersion of laser beams in scattering 

tissues by using time of flight method with a fast optical detector [115, 116], or by using 

radio frequency (RF) modulated light source by detecting the phase of transmitted light 

[117, 118]. A theoretical basis of calculation of the temporal point spread function is 

also provided by Arridge [115] using the temporal point spread function (TPSF), while 

the TPSF is the “response function (Green’s Function) of the medium to a delta impulse” 

[115]. The Monte Carlo used in this study has the ability to simulate photon pulses with 

user-defined pulse duration. In our MC simulation studies, we calculated the temporal 
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dispersion of a 1ns laser beam by measuring the full width at tenth maximum of the 

laser pulse as it propagated along a circular head phantom (boundary conditions shown 

in figure 5.11). The plot of temporal pulse width to the depth in the tissue is displayed in 

figure 8.1. The pulse width is seen to increase by 4-5 times at depths of 3-5cm. This 

implies a reduction in the fluence per unit time by approximately this same amount. The 

pulse width was measured by calculating the full width at tenth maximum, a quantity 

which determines the pulse duration up to 10% of maximum fluence. Therefore, some 

care must be taken when considering the pulse width in the design of the treatment 

plan. To date, the Monte Carlo can be used to predict this spread to optimize drug 

release. Further temporal convolution methods may need to be added to the empirical 

model. 
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Figure 8.1 MC simulation of temporal pulse width versus depth in a heterogeneous head 
phantom (see figure 5.11) for an input pulse 1ns wide. The pulse width was measured 

by calculating the Full Width at Tenth Maximum (FWTM) to analyze the temporal beam 
spread.  

 

There is a need to quantify the errors due to variability of brain tissue properties, 

particularly the skull bone between different patients. The skull bone thickness and 

density varies across different anatomical regions of the brain [89]. The optical 

properties of the skull bone are also seen to vary across samples [89], which can result 

in differences between the estimation and delivery of photon fluence to metastatic 

tissue in the brain. Hence the need for using a medical imaging system such as 

Computed Tomography (CT) is necessary to segment tissues in the brain, especially the 

bone-brain interface. In our study the average % error in determining bone thickness 
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measured using versus a scale was 30%. Thus modelling the skull heterogeneity using CT 

images has the potential to reduce simulation errors of up to 73% in the fluence coupled 

to soft tissue in adult brains and up to 20% in neonatal brains with respective skull 

thicknesses of 1.1cm and 0.2 cm.   

 

While the bone-brain interface is clearly visible using CT images, better soft tissue 

contrast is necessary to segment different soft tissues such as white matter, gray matter, 

cerebrospinal fluid and metastatic lesions (if any) in the brain. This is best done using 

Magnetic Resonance Images (e.g. T2-weighted), which are also used as the standard 

imaging protocol to segment metastatic lesions in the brain [90]. The MR images 

however cannot be used to image the bone-brain interface, as bone images of the brain 

are generally poor. Hence there is a need to super-impose and co-register CT and MR 

images of patients about to undergo optical therapy. This would provide a significant 

improvement in brain tissue segmentation over CT-only or MR-only based imaging and 

segmentation methods. The co-registration software (e.g. Gamma Plan [91, 92]) used 

needs to be highly accurate to ensure minimal errors in boundary conditions which need 

to be accurately depicted by the Monte Carlo. Phantom studies to determine image 

registration accuracy [92] can be done to quantify any errors related to inaccurate tissue 

boundaries.  
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Appendix A Validating Scattering Coefficient of Intralipid through Probe 

Measurements 

In order to validate the scattering properties of the intralipid solution and further 

validate the results from the spectrophotometer based studies, we used the dosimetry 

probe and Monte Carlo to derive the reduced scattering coefficient of the intralipid 

solution. Different concentrations of intralipid were illuminated in Plexiglas cuvette 

using the diffuse broad beam from the integrating sphere (connected to the laser 

source). The fluence was measured by the dosimetry probe along the beam axis for each 

of the solutions. We then used the Monte Carlo to derive the scattering coefficient at 

which the probe measurements match the Monte Carlo along the beam axis for the 

same illumination and boundary conditions. The absorption coefficient of intralipid was 

assumed to be the same as of water and the anisotropy factor of 0.636 was used in the 

Monte Carlo. The results are close to those obtained by the spectrophotometer method 

and are shown in figure 4.  

 

This form of measurement was an additional validation step to the spectrophotometer 

method. This method however needs to be precisely calibrated as additional errors and 

offsets may be caused due to mismatch in boundary conditions as well as small 

differences in illumination profiles between the MC and probe measurements. 
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