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ABSTRACT 

Plotkowski, Alexander J. Ph.D., Purdue University, August 2016. Modeling Fluid 
Interactions with the Rigid Mush in Alloy Solidification. Major Professor: Matthew Krane. 
 
 

Macrosegregation is a casting defect characterized by long range composition 

differences on the length scale of the ingot. These variations in local composition can lead 

to the development of unwanted phases that are detrimental to mechanical properties. 

Unlike microsegregation, in which compositions vary over the length scale of the dendrite 

arms, macrosegregation cannot be removed by subsequent heat treatment, and so it is 

critical to understand its development during solidification processing. Due to the 

complex nature of the governing physical phenomena, many researchers have turned to 

numerical simulations for these predictions, but properly modeling alloy solidification 

presents a variety of challenges. Among these is the appropriate treatment of the 

interface between the bulk fluid and the rigid mushy zone. In this region, the non-linear 

and coupled behavior of heat transfer, fluid mechanics, solute transport, and alloy 

thermodynamics has a dramatic effect on macrosegregation predictions. This work 

investigates the impact of numerical approximations at this interface in the context of a 

mixture model for alloy solidification.  
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First, the numerical prediction of freckles in columnar solidification is investigated, 

and the predictive ability of the model is evaluated. The model is then extended to 

equiaxed solidification, in which the analogous interface is the transition of free-floating 

solid particles to a rigid dendritic network. Various models for grain attachment are 

investigated, and found to produce significant artifacts caused by the discrete nature of 

their implementation on the numerical grid. To reduce the impact of these artifacts, a 

new continuum grain attachment model is proposed and evaluated. The differences 

between these models are compared using uncertainty quantification, and 

recommendations for future research are presented. 
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CHAPTER 1. INTRODUCTION 

1.1 Macrosegregation during Alloy Solidification 

During alloy solidification, the relative motion of solid and liquid results in long 

range compositional differences called macrosegregation. Unwanted local compositions 

can result in the precipitation of undesirable phases and negative effects on mechanical 

properties and downstream processing [1]. Unfortunately, the length scale of 

macrosegregation is on the order of the ingot, making it time prohibitive to remove 

through subsequent heat treatments due to limited solid state mass diffusivity. The 

development of such defects is the result of the complex and coupled transport 

phenomena and alloy thermodynamics. As a result, the analytical prediction of alloy 

solidification behavior is limited to only the simplest of cases, and complex numerical 

models must be used to understand any application of practical size and complexity.  

 The focus of this work is the prediction of macrosegregation during both columnar 

and equiaxed solidification using numerical models. In both modes of solidification, the 

interaction between bulk convection fluid flow and the edge of the rigid mush plays a 

critical role in macrosegregation development. As this work will show, an accurate 

representation of this interaction is crucial to produce physically meaningful predictions, 

and failures to do so result in numerical artifacts that limit the predictive capabilities of
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 the model. In particular, the development of channel segregation (a sub-class of 

macrosegregation defect) is investigated for both types of solidification, and numerical 

contributions to their formation and propagation are evaluated. Finally, 

recommendations for columnar solidification simulations and new model developments 

for equiaxed solidification are presented. 

 

1.2 Columnar Solidification 

 

1.2.1 Freckles and Freckle Criteria 

Freckles are a type of macrosegregation defect in which a string of equiaxed grains 

form in an otherwise columnar structure [2,3]. Freckles are also enriched in elements with 

a partition coefficients less than one and depleted of elements with partition coefficients 

greater than one. These local inhomogeneities in grain structure and composition result 

in unsatisfactory mechanical properties, and cast components that contain these defects 

must be scrapped. Freckle formation is of primary concern in the production of nickel-

based superalloys [2–4] and specialty steels [5,6], but also affect various other alloy 

systems [7–9] and has been directly observed in aqueous ammonium chloride, a 

transparent alloy analogue [10,11].  

It is now generally accepted that this family of defects arises from flow through 

interdendritic channels driven by solutal buoyancy [12,13]. The advection of enriched 

liquid in the interdendritic region causes a local remelting through the coupling of the 

thermosolutal field with the alloy phase change. The increased permeability in the 
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channel enables additional flow of enriched liquid, and the process becomes a positive 

feedback loop, allowing the channel to propagate into the casting as the solidification 

front moves forward. The direction of channel propagation is determined by the direction 

of the combined solutal and thermal buoyancy forces. In cases where convective flow is 

dominated by the upward buoyancy of lighter alloying elements, as is observed in some 

nickel-based superalloys and high alloy steels, freckles form in an upward direction. In 

cases where the solutal buoyancy is dominated by comparatively dense elements, the 

solutal effect aids the downward thermal buoyancy and freckles are more likely to 

propagate downward. 

Even with an understanding of the mechanism of freckle formation, the accurate 

prediction of these defects has remained an elusive goal. The interaction among the 

buoyancy driving forces, thermodynamics, and mush permeability are complex, and 

further complicated by the influence of any bulk fluid flow near the edge of the mushy 

zone. Much research has sought to develop a criterion for freckle formation. One 

approach casts the criterion as a simple mathematical function of the local temperature 

gradient and solidification rate [5–7,10] generally based on the time available for a 

channel to form within the mushy zone as a function of the alloy properties and cooling 

conditions. While the evaluation of these criteria are relatively simple, the critical value 

to which they are compared is an unclear function of the alloy system and solidification 

geometry, and therefore, generally determined empirically.  

Another set of criteria has been developed from various formulations of the 

Rayleigh number [2,3,14,15], which describes the ratio between buoyancy driving forces 
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and opposing viscous forces. This approach is inspired by the Benard problem, in which a 

critical value of the Rayleigh number predicts the onset of buoyancy-driven fluid motion 

in a horizontal fluid layer uniformly heated from below and cooled from above [16]. This 

configuration is always mechanically unstable due to the lighter fluid below, but the 

upward buoyancy must reach a certain level before flow begins. There is an obvious 

physical analogy with an alloy with a lighter interdendritic liquid, cooled from below and 

growing against gravity. It is expected that a critical Rayleigh number could be found 

which predicts the onset of upward plumes which begin freckle formation. Unfortunately, 

a satisfactory form of the Rayleigh number that includes the effects of the mushy zone 

characteristics and can be applied generally to any alloy or system geometry has not yet 

been formulated. 

The alloys in which freckles have been most studied are nickel-based superalloys 

and steels, in which the rejected solute is much less dense than the nominal liquid and, 

consequently, freckles form in the upward direction. As noted above, much work has 

been done to study the particular case of directional solidification, primarily because it is 

applicable to the casting of turbine blades [2,3,11]. Other system configurations, however, 

may be significantly affected by bulk fluid flow driven by thermosolutal convection. Very 

few studies have attempted to formulate criteria for a range of solidification front angles 

[2,3], but are only applicable to angles near the horizontal directional solidification case. 

They cannot be used for more complex solidification conditions such as those found in 

ingot production for nickel superalloys and specialty steels or even static castings cooled 

from a vertical side-wall. There is still a significant need for a general freckle criterion. It 
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must consider alloys with either positive or negative solutal buoyancy, any arbitrary 

solidification front angle, and the effect of the bulk fluid flow near the edge of the mushy 

zone. Significant future research will be required to formulate such a criterion. 

 

1.2.2 Numerical Predictions of Freckles 

To predict freckle formation and test various criteria, researchers have often turned 

to numerical simulations of alloy solidification in place of expensive and time consuming 

experimentation. Simulations also have the advantage of easy access to system 

information that is difficult to observe or measure experimentally. There are two different 

types of simulations that may be used in this manner. The first models the sharp solid-

liquid interface on the scale of the dendrite arm spacing [17,18]. The computational 

expense of these models due to the fine scale grid required limits their use for casting 

scale predictions. For larger length scales and coarser grids, a more common approach to 

solidification modeling is the continuum formulation [19,20]. These models average the 

solid fraction and other physical parameters over representative control volumes. This 

approach drastically reduces the computational expense and allows for the use of 

standard finite volume or finite element solution techniques.  

A variety of studies have used continuum simulations to predict freckles in 

directional solidification, and several have investigated the effect of grid size or other 

numerical parameters. Frueh et al. [21] found, using a finite element model, that the 

predicted level of segregation and magnitude of convective flow in directional 

solidification was strongly impacted by the chosen domain size, but that the presence of 



6 

 

6
 

freckles was not. In a similar model, Sung et al. [22] performed finite element simulations 

for directional solidification of Rene N5 and found that whether or not freckles appeared 

was dependent on the mesh size used. They suggested that a grid spacing smaller than 

twice the primary dendrite arm spacing be used to achieve the most realistic results. In a 

subsequent study, Sung et al. [23] even used a horizontal element size smaller than the 

dendrite arm spacing. While these simulations appear to predict freckle formation, the 

computational expense of such small grid sizes is not practical for simulations of larger 

castings. Guo and Beckermann [24] evaluated a finite element model for various element 

sizes in a three-dimensional simulation and found that, particularly for the initial stages 

of flow instability, grid independent results were not achieved.  

Finite volume simulations have also been used to predict freckles in directional 

solidification [25] and other solidification configurations [26–28]. However, similar to 

finite element simulations, numerical effects have often been reported. Combeau et al. 

[26] compared freckle formation predicted by several different solidification codes. The 

alloy studied was Pb-18wt.%Sn in a rectangular cavity cooled from the side. They found 

that the number of freckles, their shape, and the level of segregation contained within 

the channels was dependent on the simulation software. Kumar et al. [27] studied the 

effect of the discretization of the mushy zone permeability term in the momentum 

conservation equations and the grid size on freckle appearance for Sn-5wt.%Pb alloy in a 

rectangular cavity cooled from the side (this term represents the drag the solid dendrite 

impart on the liquid moving through the mushy zone). They found that the choice of 

numerical discretization scheme for the permeability had a dramatic effect on the 
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number and severity of channel segregates. The number of freckles was also dependent 

on the mesh size, with more appearing for coarser grids. Li et al. performed finite volume 

simulations of a 2.45 ton ingot of plain carbon steel [29]. They found that decreasing the 

grid spacing resulted in a higher number density of predicted A-segregates. 

Vušanović and Voller [28] examined the mechanism of channel initiation in 

numerical models in order to better understand the origins of their grid dependence. They 

compared a traditional implicit time-stepping scheme for a volume averaged mixture 

formulation of the governing conservation equations for momentum, energy, and species 

to a hybrid technique [30,31] that used an explicit time-stepping scheme for the energy 

and species equations before solving the momentum equations in an implicit manner 

within each time step. Their simulations were uniformly capped at 20 iterations per time 

step, which artificially introduced numerical noise to the system in the form of 

convergence residuals, but because the explicit scheme requires only a single iteration 

per time step, the hybrid method inherently reduced the numerical error in the system. 

For an Al–4.5wt.%Cu alloy in a rectangular cavity cooled from the side, they found the 

hybrid method to be more stable at various time steps and grid sizes due to the reduction 

in noise from convergence residuals. While this study is not applicable to most simulations 

in which strict convergence criteria are achieved, it does suggest a method for studying 

the numerical dependence of freckle formation in the introduction of instabilities from 

excessive convergence residuals. This technique will be used in CHAPTER 3 to exacerbate 

channel segregate phenomena. 
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1.2.3 Columnar Study Objectives 

There are still open questions about the ability of volume averaged solidification 

simulations to accurately predict the formation of freckles. Particularly in the case of 

larger geometries (applicable for many casting processes such as large steel ingots, 

electroslag remelting, and vacuum arc remelting) in which numerical cell sizes on the 

length scale of the dendrite arm spacing is not practical, and for thermal boundary 

conditions that produce solidification fronts very different from directional solidification. 

The objective of the portion of this work pertaining to columnar solidification is primarily 

to understand the mechanism for channel formation and propagation in these 

simulations. To do so, the approach of Vušanović and Voller [28] of limiting the number 

of iterations per time step is employed to exaggerate channel formation in a mixture 

formulation of columnar solidification based on the work of Bennon and Incropera [19,20]. 

The effect of numerical noise in the form of convergence residuals on freckle 

development and grid dependence is discussed and the numerical nature of channel 

initiation is used to evaluate the physical relevance of freckle predictions in macroscale 

process modeling. Finally, recommendations are made for convergence criteria that 

enable stable, representative results. 

 

1.3 Equiaxed Solidification 

In many industrial applications, including direct chill casting of aluminum alloys [32] 

and magnesium processing [33], grain refiner is added to the liquid metal to encourage a 

uniform, equiaxed microstructure. Predicting macrosegregation in equiaxed solidification 
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presents several challenges from a modeling standpoint. Grains initially nucleate in the 

melt on the grain refiner particles, and may be freely advected by the surrounding liquid 

metal before eventually coalescing into a rigid solid structure (Figure 1.1). The motion of 

free-floating particles with respect to the bulk fluid flow, their coalescence into a rigid 

solid structure, and the permeability of the resulting solid network all affect the overall 

macrosegregation distribution and each necessitates careful numerical consideration. In 

particular, the shape of the interface between the slurry (containing free-floating grains) 

and rigid solid regions has a dramatic effect on the local fluid flow due to the damping 

effect of the dendrite permeability. The point at which this transition occurs is often 

measured in terms of the local volume fraction solid at the time of the transition and is 

referred to as the dendrite coherency point or packing fraction. 

 

1.3.1 Dendrite Coherency 

A common assumption among many early models of equiaxed solidification [34,35] 

is that the morphology of the equiaxed grains is spherical. In this case, the packing fraction 

may be taken as 0.637, equal to the density of random close packed spheres [36]. In reality 

however, any deviation from this spherical assumption towards a dendritic morphology 

will result in a decrease in the actual packing fraction (if measured in terms of the volume 

fraction solid). Several experimental studies have sought to determine the packing 

fraction for a variety of alloys and solidification conditions using two different 

experimental approaches. Rheological methods test the shear strength of an alloy  
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Figure 1.1: Schematic showing the different regions of a grain refined casting including 
all-solid, the rigid mush, the slurry region (containing free-floating equiaxed grains) and 

all liquid. 

 

through the freezing range and the coherency point is marked by a sudden change in 

slope [37–40]. Alternatively, thermal analyses measure the temperature difference 

between two points, which exhibits a minimum at coherency due to the increased 

thermal transport in the solid [41,42]. Arnberg and coworkers performed a series of 

studies reporting measured coherency fraction for various aluminum alloys [41,43–45] 

which ranged widely, including very low packing fractions for Si-rich foundry alloys (0.06-

0.10 for alloy B390) to higher values for Zn-rich alloys (0.23-0.34 for alloy 713) and pure 

aluminum (0.53 for 99.99 wt.% Al). This last value, measured in a metal which produces 
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no dendrites, approaches the spherical assumption discussed above. Each result is for a 

particular solidification condition, alloy composition, and level of grain refinement, all of 

which may affect the dendrite morphology and number of equiaxed particles. Generally 

speaking, increased solute content [43] and cooling rate [41] tend to reduce the packing 

fraction by encouraging highly dendritic morphologies, while larger grain refiner additions 

[42] form a more globular microstructure and increase the packing fraction. 

 

1.3.2 Review of Equiaxed Solidification Models 

To give context to the specific model used in this study, a brief review of equiaxed 

solidification models is first presented. The multi-phase and mixture formulations 

represent two distinct approaches to modeling equiaxed solidification, each with 

advantages and disadvantages. 

 

1.3.2.1 Multi-Phase Models 

The general approach of multi-phase formulations is to solve governing 

conservation equations for each phase considered within the system. Ni and Beckermann 

[34] proposed a volume-averaged, two-phase model for transport phenomena in 

solidification processing which was later used to model equiaxed solidification in vertical 

direct chill casting of an Al-Cu alloy by Reddy and Beckermann [35]. The model considers 

the solid and liquid phases separately and couples them using a variety of interfacial 

transfer terms. It also requires some type of nucleation model, or as Reddy and 
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Beckermann assume, some known number density of grains. They further assumed a 

globular grain morphology, and used a uniform and constant packing volume fraction that 

corresponds to the density of random close packed spheres [36], as the criterion for the 

coherency.  

Wang and Beckermann expanded the two-phase model to include the 

interdendritic liquid as a third phase, allowing for modeling of the grain envelope [46,47], 

which includes the solid and the liquid trapped between the dendrite arms. They used a 

set of morphological relationships [48] to determine the fraction solid and solid-liquid 

interfacial area inside the grain envelope. Further relationships were used to govern grain 

nucleation and growth, as well as flow partitioning between the inter- and extradendritic 

liquid. This model used a slight variation on the previous packing criterion in that it was 

applied to the grain volume fraction (including the solid particles and interdendritic liquid) 

rather than the solid volume fraction. The grain envelopes were assumed spherical, and 

packing occurred at a grain volume fraction of 0.637. To treat the transition from free-

floating to rigid solid in these models, Wang et al. [49] developed an interfacial drag term 

for the momentum equations that approaches Stokes’ law for low solid fractions and the 

Blake-Kozeny permeability model above the packing fraction, and varies continuously 

through the transition in between.  

Other models have been developed based on the multi-phase approach of 

Beckermann’s group using as many as five phases [50,51] in which columnar and equiaxed 

grains, the interdendritic liquid in each type of solid structure, and the bulk liquid are 

considered separately in order to model the columnar to equiaxed transition [52,53]. 



13 

 

1
3
 

These multi-phase formulations are very detailed in their inclusion of a wide range 

of relevant physical phenomena, including the ability to better model the mass transfer 

across phase boundaries allowing for the inclusion of detailed thermodynamic models, 

whereas the mixture models are primarily limited to the equilibrium and Scheil 

formulations. However, multi-phase models are also computationally expensive due to 

the need to solve a new set of governing equations for each phase. Additionally, the 

predictive ability that such detailed models in practice is severely limited by uncertainty 

in the correct values of a wide array of input parameters.  

 

1.3.2.2 Mixture Models 

The mixture approach to modeling solidification phenomena improves upon the 

computational expense of the multi-phase formulations by casting the governing 

conservation equations in terms of “mixture” variables, each of which includes 

contributions from the constituent phases. The computational expense is significantly 

reduced by solving only one set of conservation equations, and if necessary, the 

contributions of individual phases are calculated using supplemental relationships. The 

first of these models was formulated by Bennon and Incropera [19,20] for columnar 

growth and was later extended by Ni and Incropera [54,55] and Vreeman et al. [56,57] to 

equiaxed solidification.  

These mixture models treat the transition from free-floating to rigid solid 

differently than the multi-phase models. The differing effects of the two regions (either 
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viscous effects in the slurry of free-floating particles or permeability effects in the rigid 

mush) are modeling using a set of source terms in the momentum conservation equations. 

These terms are turned on or off on a cell-by-cell basis depending on the conditions of a 

given cell, determined by the packing criterion. Commonly, this criterion is simply based 

on the local volume fraction solid and compared against some critical packing fraction. 

Unlike the three-phase models described above, the grain morphology is not modeled 

explicitly. Instead, the selection of the packing fraction implicitly defines the morphology 

for the domain. For highly globular grains, packing fractions approaching that for close 

packed spheres may be used. Alternatively, any lower value represents a continuum of 

“dendritic-ness”. For example, Vreeman et al. used packing fraction between 0.15 and 0.3 

for simulations of vertical direct-chill casting of Al-4.5wt.%Cu and Al-6.0wt.%Mg alloys 

[57]. 

 

1.3.2.3 Grain Attachment Schemes 

The grain attachment (also referred to as packing or dendrite coherency) schemes 

described above for both model types may generally be referred to as constant packing 

fraction (CPF) schemes, in that the critical value at which grain attachment occurs is held 

constant and uniform throughout the domain. This approach is attractive in its simplicity 

and ease of implementation. However, it does not consider the effect of the local velocity 

field on the likelihood of grain attachment. Advection of solid particles indirectly 

influences the packing scheme by affecting the solid fraction field. However, particles are 
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more likely to pack if their velocity is towards a packed interface, and less likely to attach 

when advected away from the interface (Figure 1.2), an effect that is not considered in 

the constant packing fraction model, even in the multiphase cases that consider the local 

grain morphology [48]. Vušanović and Krane [58] introduced a simple rule set to account 

for the velocity field by basing packing not on the condition of the numerical cell of 

interest, but on the condition of a neighboring cell in the downstream direction. They 

implemented this approach in a simulation of horizontal direct chill casting of aluminum 

using the transport model of Vreeman et al. [56], and compared the velocity-based 

method to various constant packing fraction cases. However, they only looked at the new 

model under a single set of conditions. It is necessary to analyze the effects of the velocity-

based model further in order to fully understand its differences from the constant packing 

fraction approach. 

 

1.3.3 Equiaxed Study Objectives 

The objective of this study is first to more closely examine the behavior of two 

velocity-based packing schemes as a function of the various model parameters for a 

mixture model of equiaxed solidification. The packing scheme proposed by Vušanović and 

Krane [58] and a new variant will be compared to the constant packing fraction approach 

used by Vreeman et al. [56] for a static casting of AA7050 (CHAPTER 4). It is found that 

these schemes all produce channel segregates that are similar in appearance to freckles 

found in columnar castings. The mechanism of these defects are examined in detail and 

shown to be numerical artifacts resulting from the discrete nature of the grain attachment  
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(a) (b) 

Figure 1.2: Schematic of a single equiaxed grain being advected (a) towards or (b) away from a rigid interface, demonstrating the 
rationale for a velocity based attachment model.
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models (CHAPTER 5). In response to this finding, a new continuum grain attachment 

model is developed and compared to the discrete models (CHAPTER 6). 

Recommendations are made for future work to further improve grain attachment models 

for equiaxed solidification. 

 

1.4 Uncertainty Quantification in Solidification Modeling 

In order to understand the differences between models or between models and 

experimental results, comparisons within a single case are not sufficient. Instead, it is 

necessary to understand the effects of uncertain inputs on the distribution of outputs. 

For this reason, uncertainty quantification (UQ) has become increasingly common for 

fields such as heat transfer [59] and materials [60] modeling. Unfortunately, to this point, 

UQ has only gained limited adoption in the solidification community [61,62]. In the case 

of the present work, it is of interest to understand the differences between the 

predictions of the various grain attachment models for equiaxed solidification. Essentially, 

if the macrosegregation predictions for each of the attachment models mostly overlap 

over the uncertainty range of the inputs, then the selection of a given model may be made 

for considerations such as numerical stability or efficiency. On the other hand, if the 

predictions are significantly different, then effort should be put towards determining 

which model is most physically accurate.  

This type of uncertainty, which pertains to the lack of knowledge in which model 

best represents the physical system, is referred to as epistemic uncertainty, also called 

reducible uncertainty. It is “reducible” in the sense that improved knowledge of the 
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physical system through careful experimentation would allow for the determination of 

the most appropriate model. However, even with very accurate information of a given 

input parameter, some uncertainty remains due to natural variation of its value and in 

the limitations of the associated measurements technique. This type of uncertainty is 

called aleatoric uncertainty and is irreducible.  

The goal of uncertainty quantification is to determine the distribution of outputs 

that result due to the propagation of uncertain inputs. One way of generating an output 

distribution is the Monte Carlo method which randomly samples from the range of input 

variables to collect the corresponding output values. This method requires a large number 

of samples to produce a converged output distribution, however, which is not feasible 

given the computational expense of solidification models. Thankfully, methods have been 

developed to handle such cases. In this study, the PRISM uncertainty quantification (PUQ) 

framework, developed at Purdue University, is used to examine the effects of various 

input parameters on the predictions from each grain attachment model [63]. PUQ works 

by sampling only a select few points from the computational model, determined using 

the Smolyak sparse grid algorithm, and using generalized polynomial chaos (gPC) to fit a 

lower order surrogate model to the numerical outputs. Monte Carlo sampling is then 

performed on the efficient, lower order model to produce output distributions. 

 

1.4.1 Uncertainty Quantification Study Objectives 

This study has two main objectives related to the epistemic uncertainty of the grain 

attachment models. First, what is the magnitude of the effect of the velocity field on 
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macrosegregation predictions? If the constant packing fraction and velocity-based 

models produce the same outputs, then the inclusion of the solid velocity field in the 

packing criteria may be safely neglected. Alternatively, if the outputs are significantly 

different, then obtaining experimental data to validate the use of the velocity-based 

model becomes a priority.  

Second, does the continuum packing model produce different results than the 

constant packing fraction model? (The continuum packing model is not compared to the 

velocity-based model in this case because the continuum approach is not intended to 

account for the velocity field.) There are several interesting components of this objective. 

First, the continuum scheme is not intended to produce significantly different results from 

the constant packing fraction model, only to eliminate unwanted numerical artifacts. 

Therefore, it is of interest if the outputs are also changed significantly as a result. Second, 

what is the effect of the new parameters introduced with the continuum model that do 

not apply to the discrete models? If the model is very sensitive to these parameters, then 

the overall distribution of the outputs may widen significantly, representing a need for 

new information about the appropriate values of these parameters.  
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CHAPTER 2.  MODEL DESCRIPTION 

2.1 A General Mixture Model for Alloy Solidification 

 

2.1.1 Conservation Equations 

The basis of the finite volume model used for this work is the mixture formulation 

proposed by Vreeman et al. [56,57], written here in cylindrical coordinates. Mass 

continuity may be expressed as 

 

∇ ∙ (ρV⃑⃑ ) = 0, (2.1) 

 

where ρ is the mixture density and 𝑉⃑  is the mixture velocity vector defined as 𝑉⃑ = 𝑓𝑠𝑉⃑ 𝑠 +

𝑓𝑙𝑉⃑ 𝑙 , where 𝑉⃑ 𝑖  are the velocity vectors of the solid and liquid phases and 𝑓𝑖  are the 

corresponding mass fractions. Shrinkage induced flow is not considered in the present 

model, so that 𝜌  is not a function of phase, composition, or temperature, except as 

represented by the Boussinesq approximation, and the mass fractions of solid and liquid 

are equal to the respective volume fractions. However, to maintain generality of the 

model formulation, appropriate uses of the mass and volume fractions will be used 

throughout. Buoyancy forces caused by actual density differences between solid and
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 liquid are considered using a representative density difference, ∆𝜌 ≠ 0, in the relevant 

momentum equations and free-floating solid model. All other properties, unless otherwise noted, 

are assumed to be independent of composition, temperature, and phase.  

The momentum conservation equations originally proposed by Vreeman et al. [56] will first 

be presented in the final form from that work, in which some source terms were neglected based 

on a preliminary scaling analysis. The equations are divided into two pairs, one for the liquid and 

slurry regions, and one for the rigid mush. In the liquid and slurry regions, the solid particles are 

collectively treated as a pseudo-fluid. Here, the axial and radial momentum conservation 

equations, respectively, are  

 

 

𝜕

𝜕𝑡
(𝜌𝑢) + ∇ ∙ (𝜌𝑉⃑ 𝑢)

= ∇ ∙ (𝜇𝑙

𝜌

𝜌𝑙
∇𝑢) − ∇ ∙ (𝜇𝑙

𝜌𝑓𝑠
𝜌𝑙

∇𝑢𝑠) + ∇ ∙ (𝜇̅𝑠𝑔𝑠∇𝑢𝑠) + 𝑔𝑠∆𝜌𝑔 

− ∇ ∙ [
𝜌𝑓𝑠
𝑓𝑙

(𝑉⃑ − 𝑉⃑ 𝑠)(𝑢 − 𝑢𝑠)]

− 𝑔𝑠𝜌𝑠𝑔 [𝛽𝑇,𝑠(𝑇 − 𝑇0) + ∑𝛽𝑆,𝑠
𝑖 (𝐶𝑠

𝑖 − 𝐶0
𝑖)

𝑚

𝑖=1

]

− 𝑔𝑙𝜌𝑙𝑔 [𝛽𝑇,𝑙(𝑇 − 𝑇0) + ∑𝛽𝑆,𝑙
𝑖 (𝐶𝑙

𝑖 − 𝐶0
𝑖)

𝑚

𝑖=1

] −
𝜕𝑝

𝜕𝑧
 

(2.2) 

 

and 
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𝜕

𝜕𝑡
(𝜌𝑣) + ∇ ∙ (𝜌𝑉⃑ 𝑣)

= ∇ ∙ (𝜇𝑙

𝜌

𝜌𝑙
∇𝑣) − 𝜇𝑙

𝜌

𝜌𝑙

𝑣

𝑟2
− ∇ ∙ (𝜇𝑙

𝜌𝑓𝑠
𝜌𝑙

∇𝑣) + 𝜇𝑙

𝜌𝑓𝑠
𝜌𝑙

𝑣

𝑟2
           

+ ∇ ∙ (𝜇̅𝑠𝑔𝑠∇𝑣) − 𝜇̅𝑠𝑔𝑠

𝑣

𝑟2
−

𝜕𝑝

𝜕𝑟
, 

(2.3) 

 

where 𝑡 is time, 𝑢 and 𝑣 the axial and radial velocity components, 𝑔𝑠 and 𝑔𝑙 the solid and 

liquid volume fractions, 𝜇𝑙  the liquid viscosity, 𝜇̅𝑠  the average solid viscosity, 𝑔  the 

acceleration due to gravity, 𝛽𝑇,𝑠  and 𝛽𝑇,𝑙  the solid and liquid thermal expansion 

coefficients, 𝑚  the number of chemical components, 𝛽𝑆,𝑠
𝑖  and 𝛽𝑆,𝑙

𝑖  the solid and liquid 

solutal expansion coefficients of component 𝑖, 𝐶𝑠
𝑖and 𝐶𝑙

𝑖  mass fractions of component 𝑖 

in the solid and liquid, 𝐶0
𝑖  the nominal composition of 𝑖, and 𝑝 the pressure.  

In the packed regions, the momentum equations in the axial and radial directions 

are 

 

𝜕

𝜕𝑡
(𝜌𝑢) + ∇ ∙ (𝜌𝑉⃑ 𝑢)

= ∇ ∙ (𝜇𝑙∇𝑢) −
𝜇𝑙

𝐾
𝑢 − 𝜌𝑙𝑔 [𝛽𝑇,𝑙(𝑇 − 𝑇0) + ∑𝛽𝑆,𝑙

𝑖 (𝐶𝑙
𝑖 − 𝐶0

𝑖)

𝑚

𝑖=1

]

−
𝜕𝑝

𝜕𝑧
 

(2.4) 

 

and 



23 

 

2
3
 

 

 

𝜕

𝜕𝑡
(𝜌𝑣) + ∇ ∙ (𝜌𝑉⃑ 𝑣) = ∇ ∙ (𝜇𝑙∇𝑣) −

𝜇𝑙

𝐾
𝑣 − 𝜇𝑙

𝑣

𝑟2
−

𝜕𝑝

𝜕𝑟
. (2.5) 

 

The primary difference between the two sets of equations is the viscous terms for 

the solid particles and solid buoyancy forces that are included in the slurry region, and 

the permeability of the rigid mush, 𝐾, which affects the rigid solid only, defined using the 

Blake-Kozeny relationship [64–68]: 

 

𝐾 =
𝜆2

180

(1 − 𝑔𝑠)
3

𝑔𝑠
2

, (2.6) 

 

The model for equiaxed solidification works by using the first pair of equations for 

any control volumes that have not yet packed, and the second set for control volumes 

that have. This form of the equations, however, is not convenient for application of all the 

grain attachment models that will be discussed here. Therefore, they have been collapsed 

into a single pair of momentum equations for the axial and radial directions, each of which 

is valid over the entire domain: 

 

𝜕

𝜕𝑡
(𝜌𝑢) + ∇ ∙ (𝜌𝑉⃑ 𝑢) = ∇ ∙ (𝜇𝑙

𝜌

𝜌𝑙
∇𝑢) −

𝜕𝑝

𝜕𝑧
+ (1 − 𝐹)𝑆𝑠𝑙𝑢𝑟𝑟𝑦

𝑧 + 𝐹𝑆𝑟𝑖𝑔𝑖𝑑
𝑧 , (2.7) 
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and  

 

𝜕

𝜕𝑡
(𝜌𝑣) + ∇ ∙ (𝜌𝑉⃑ 𝑣) = ∇ ∙ (𝜇𝑙

𝜌

𝜌𝑙
∇𝑣) − 𝜇𝑙

𝜌

𝜌𝑙

𝑣

𝑟2
−

𝜕𝑝

𝜕𝑟
+ (1 − 𝐹)𝑆𝑠𝑙𝑢𝑟𝑟𝑦

𝑟 + 𝐹𝑆𝑟𝑖𝑔𝑖𝑑
𝑟 . (2.8) 

 

The source terms 𝑆𝑠𝑙𝑢𝑟𝑟𝑦
𝑧 , 𝑆𝑟𝑖𝑔𝑖𝑑

𝑧 , 𝑆𝑠𝑙𝑢𝑟𝑟𝑦
𝑟 , and 𝑆𝑟𝑖𝑔𝑖𝑑

𝑟  are simply collections of source terms from 

Equation (2.2) through (2.5) based on which portion of the domain (slurry or rigid) and which 

direction (𝑧 or 𝑟) they pertain to: 

 

𝑆𝑠𝑙𝑢𝑟𝑟𝑦
𝑧 = −∇ ∙ (𝜇𝑙

𝜌𝑓𝑠
𝜌𝑙

∇𝑢𝑠) + ∇ ∙ (𝜇̅𝑠𝑔𝑠∇𝑢𝑠) + 𝑔𝑠∆𝜌𝑔 − ∇ ∙ [
𝜌𝑓𝑠
𝑓𝑙

(𝑉⃑ − 𝑉⃑ 𝑠)(𝑢 − 𝑢𝑠)]

− 𝑔𝑠𝜌𝑠𝑔 [𝛽𝑇,𝑠(𝑇 − 𝑇0) + ∑𝛽𝑆,𝑠
𝑖 (𝐶𝑠

𝑖 − 𝐶0
𝑖)

𝑛

𝑖=1

]

− 𝑔𝑙𝜌𝑙𝑔 [𝛽𝑇,𝑙(𝑇 − 𝑇0) + ∑𝛽𝑆,𝑙
𝑖 (𝐶𝑙

𝑖 − 𝐶0
𝑖)

𝑛

𝑖=1

], 

(2.9) 

 

𝑆𝑟𝑖𝑔𝑖𝑑
𝑧 = −

𝜇𝑙

𝐾

𝜌

𝜌𝑙
𝑢 − 𝜌𝑙𝑔 [𝛽𝑇,𝑙(𝑇 − 𝑇0) + ∑𝛽𝑆,𝑙

𝑖 (𝐶𝑙
𝑖 − 𝐶0

𝑖)

𝑛

𝑖=1

], (2.10) 

 

𝑆𝑠𝑙𝑢𝑟𝑟𝑦
𝑟 = −∇ ∙ (𝜇𝑙

𝜌𝑓𝑠
𝜌𝑙

∇𝑣) + 𝜇𝑙

𝜌𝑓𝑠
𝜌𝑙 𝑠

𝑣

𝑟2
+ ∇ ∙ (𝜇̅𝑠𝑔𝑠∇𝑣) − 𝜇̅𝑠𝑔𝑠

𝑣

𝑟2
  , (2.11) 

 

and  
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𝑆𝑟𝑖𝑔𝑖𝑑
𝑟 = −

𝜇𝑙

𝐾

𝜌

𝜌𝑙
𝑣. (2.12) 

 

 The weighting function, 𝐹, introduced in Equations (2.7) and (2.8) is used to toggle 

the various source terms depending on the conditions of the particular control volume. 

The value of 𝐹 varies from zero to one, with zero representing the slurry region and one 

the rigid solid region. The weighting function 𝐹 may be written in terms of the packed 

fraction, 𝑃, of a given control volume using any appropriate functional form. Here, in 

order to avoid introducing a large number of new variables, a simple power law form is 

implemented: 

 

𝐹 = 𝑃𝑛, (2.13) 

 

where 𝑛 is called the weighting exponent. The value of 𝑃 is set by the grain attachment 

model as discussed in §2.2.1. The justification for the use of a weighting function is also 

explained in §2.2.1.3. 

 Species conservation for a given alloying element 𝑖 is given by  

 

𝜕

𝜕𝑡
(𝜌𝐶𝑖) + ∇ ∙ (𝜌𝑉⃑ 𝐶𝑖)

= ∇ ∙ (𝜌𝑓𝑙𝐷∇𝐶𝑖) + ∇ ∙ (𝜌𝐷∇(𝐶𝑙
𝑖 − 𝐶𝑖))                                                

− ∇ ∙ (𝜌𝑓𝑠(𝑉⃑ − 𝑉⃑ 𝑠)(𝐶𝑙
𝑖 − 𝐶𝑖)), 

(2.14) 
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where 𝐶𝑖  is the mixture composition with respect to element 𝑖 and 𝐷 is mass diffusivity. 

 Energy conservation is written in terms of temperature [69]: 

 

𝜕

𝜕𝑡
(𝜌𝑐𝑇) + ∇ ∙ (𝜌𝑐𝑇𝑉⃑ )

= ∇ ∙ (𝑘∇𝑇) −
𝜕

𝜕𝑡
(𝜌𝑓𝑙𝐿𝑓) − ∇ ∙ (𝜌𝑉⃑ 𝑓𝑙𝐿𝑓) − ∇ ∙ [𝜌𝑓𝑠𝐿𝑓(𝑉⃑ − 𝑉𝑠⃑⃑⃑  )], 

(2.15) 

 

where 𝑐 is the constant pressure specific heat, 𝐿𝑓  the latent heat of fusion, and 𝑘 is a 

mixture thermal conductivity, calculated using a volume weighted harmonic mean of the 

solid and liquid contributions: 

 

𝑘 =
𝑘𝑠𝑘𝑙

𝑔𝑠𝑘𝑙 + 𝑔𝑙𝑘𝑠
 . (2.16) 

 

 

2.2 Supplemental Relationships 

 

2.2.1 Grain Attachment Models 

The purpose of a grain attachment model is to determine whether the solid within 

a cell is to be treated as free-floating solid particles or as a permeable, rigid structure.  

These models can be generally classified into two types: discrete and continuum. All past 

attachment models for the mixture formulation of the governing conservation equations 

fall into the former category, in which each cell may only be fully packed or fully unpacked, 
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with no states in between. These models are implemented mathematically by only 

allowing the packed fraction of a cell 𝑃  be equal to zero or one. It will be shown in 

CHAPTER 5 that these types of schemes produce significant numerical artifacts. To 

counteract these problems, a continuum model was developed in which the control 

volumes transition smoothly from free-floating to rigid solid, corresponding to values of 

𝑃 that vary continuously from zero to one. For all of the models presented here, grain 

attachment will depend on some critical volume fraction solid, 𝑔𝑠,𝑐. The actual volume 

fraction that a given cell becomes packed at will be called the packing fraction, 𝑔𝑠,𝑝. 

 

2.2.1.1 The Constant Packing Fraction Model 

The first and most common approach for equiaxed solidification, falling into the 

discrete type of grain attachment model, is the constant packing fraction (CPF) scheme, 

which assumes that the packing transition occurs at a critical volume fraction solid, 𝑔𝑠,𝑐. 

Additionally, the CPF model requires that at least one of the neighboring control volumes 

is packed, so that any free-floating solid particles within the cell of interest have a rigid 

interface upon which to attach. Mathematically, this scheme may be written for the value 

of 𝑃 in terms of the volume fractions solid of the cell of interest and the critical value as  

 

𝑃 = {
0, 𝑖𝑓 𝑔𝑠 < 𝑔𝑠,𝑐  𝑜𝑟 ∑𝑃𝑛𝑏 = 0

1, 𝑖𝑓 𝑔𝑠 ≥ 𝑔𝑠,𝑐  𝑎𝑛𝑑 ∑𝑃𝑛𝑏 ≥ 1
 (2.17) 
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where 𝑃𝑛𝑏 is the packed fraction of the neighboring control volumes. 

As Equation (2.17) clearly shows, the CPF model is discrete in that 𝑃 may only take 

on values of zero of one. Furthermore, the packing fraction for each cell is simply equal 

to the critical value: 𝑔𝑠,𝑝 = 𝑔𝑠,𝑐. This protocol is shown schematically in Figure 2.1.  

It should be noted here that columnar solidification is simply a special case of the 

CPF model in which 𝑔𝑠,𝑐 = 𝑔𝑠,𝑝 = 0. The solid velocity is therefore forced to be equal to 

zero throughout the domain (§2.2.2). 

 

  

(a) (b) 

Figure 2.1: Schematic of the constant packing fraction (CPF) approach for (a) a packed 
cell and (b) a cell that remains unpacked. 
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2.2.1.2 Velocity Based Packing Models 

The simplicity of the CPF approach is attractive, and it has been implemented into 

a variety of solidification models. However, it does not consider the effects of the local 

velocity field, which may either push free-floating grains into the rigid interface or carry 

them away. To add consideration of the velocity field, Vušanović and Krane [58] proposed 

a simple velocity-based model. The basis of this model is to determine packing of the cell 

of interest by considering the condition of the cell in the downstream direction. If the 

downstream cell is packed and has a volume fraction solid above a critical value, 𝑔𝑠,𝑐, then 

the cell of interest is considered packed. Mathematically, the value of 𝑃 for the cell of 

interest may be expressed as 

 

𝑃 = {
0, 𝑖𝑓 𝑔𝑠,𝑑𝑠 < 𝑔𝑠,𝑐  𝑜𝑟 𝑃𝑑𝑠 = 0

1, 𝑖𝑓 𝑔𝑠,𝑑𝑠 ≥ 𝑔𝑠,𝑐  𝑎𝑛𝑑 𝑃𝑑𝑠 = 1
 (2.18) 

 

where 𝑔𝑠,𝑑𝑠  is the volume fraction solid of a given downstream control volume with 

corresponding packed fraction 𝑃𝑑𝑠. Again, 𝑃 may only take on values of either zero or one, 

making this a discrete attachment scheme. 

The velocity based approach is shown schematically in Figure 2.2. Because grain 

attachment is dependent on the local solid velocity field, the solid fraction at which a cell 

packs is not equal to the critical solid fraction, as is true for the CPF case, and furthermore, 

varies on a cell-by-cell basis. For the sake of comparison to the other attachment schemes, 
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an average packing fraction, 𝑔̅𝑠,𝑝, will be used to describe the packing in these cases, 

calculated by simply using the arithmetic mean of the packing fractions within the domain. 

 

(a)  

(b)  

Figure 2.2: Schematic of velocity based packing logic in which (a) the cell of interest 
becomes packed and (b) the cell of interest remain unpacked. 

 

 

The packing of free-floating solid particles is tied to the local velocity field through 

the methodology for determining the downstream cell or cells based on the solid velocity 

components that are located on the cell faces. The challenge in doing so is that the solid 

velocity at the interface between the cell of interest and a neighboring packed cell is, by 
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definition, zero. Therefore, some scheme must be used to approximate the velocity of the 

free floating solid within the cell of interest rather than on the staggered velocity grid. 

Vušanović and Krane circumvented this problem by using the arithmetic mean of the solid 

velocities in each direction. The larger magnitude of the two resulting velocity vectors was 

then used to determine the downstream cell. This approach will therefore be termed the 

average velocity method (AVM). 

The AVM scheme is simple to implement, but ignores the existing mixture velocity 

that has already been calculated at the cell faces. A different approach is to calculate an 

apparent solid velocity at each face using the known mixture velocity, and Stokes’ law, for 

the fraction solid in the cell of interest. In this case, because the reduced permeability of 

the interface with a packed control volume will significantly lower the mixture velocity at 

these points, it is best to ignore the magnitudes of the apparent solid velocities. Instead, 

only the direction of the apparent solid velocities is considered and the packing criterion 

shown in Figure 4 is applied to any cell that is downstream from the cell of interest (i.e. 

the corresponding apparent solid velocity flows out of the cell of interest). This approach 

is termed the face velocity method (FVM). The essential difference between these two 

methods is that the AVM tests only the cell downstream from the strongest solid velocity, 

while the FVM tests all downstream cells. 
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These two velocity-based approaches may be summarized as follows: 

 

Average Velocity method (AVM) 

1. Calculate the arithmetic mean across the cell of interest for each of the of 𝑟 and 𝑧 

components of the solid velocity 

2. The larger of the two averaged solid velocity vectors points to the downstream 

cell upon which the packing logic is applied 

 

Face Velocity Method (FVM) 

1. Calculate an apparent solid velocity at each face of the cell of interest from Stokes’ 

law, the face mixture velocity, and 𝑔𝑠 of cell of interest 

2. Apply the packing logic to any cell that is downstream, i.e. has an apparent solid 

velocity flowing into it 

 

Figure 2.3 shows a schematic representation of the two velocity-based methods 

described above. Interactions between unattached particles may still cause dendrite 

coalescence, so the velocity-based methods also require an upper limit to the solid 

fraction of the slurry region to be applied in the same way as the constant packing fraction 

approach. An obvious and practical choice for this upper limit is 𝑔𝑠,𝑐, so that any cell with 

a volume solid fraction high enough to trigger packing of neighboring cells will itself be 

packed, ensuring a smooth movement of the rigid interface through the domain. The 
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consequence of using too high of an upper limit is that the packing of one cell may trigger 

an avalanche of packing among many neighboring cells, creating instability in the model 

and unrealistic results. 

 

2.2.1.3 A Continuum Attachment Model 

The need for a continuum attachment scheme will be clearly demonstrated in 

CHAPTER 5, but the mathematical formulation and some of its details will be presented 

here without motivation. The main concept behind the continuum attachment model is 

that the value of 𝑃 may take on any value between zero and one. Of course, this requires 

some formulation for determining the value of 𝑃. Here, the form selected is a simple 

linear variation over a given range of solid fractions with the upper limit being the critical 

solid fraction and the range controlled by a new parameter, the packing range, ∆𝑔𝑠: 

 

𝑃 =

{
 

 
0, 𝑖𝑓 𝑔𝑠 < 𝑔𝑠,𝑐 − ∆𝑔𝑠

1 −
𝑔𝑠,𝑐 − 𝑔𝑠

∆𝑔𝑠
, 𝑖𝑓 𝑔𝑠,𝑐 − ∆𝑔𝑠 < 𝑔𝑠 < 𝑔𝑠,𝑐

1, 𝑖𝑓 𝑔𝑠 > 𝑔𝑠,𝑐

 (2.19) 

 

The purpose of this attachment scheme is to allow a smooth transition between the 

free-floating and rigid solid regimes. However, while using a linear form for packed 

fraction of a given control volume is reasonable, giving a linear variation in the weighting 

of the source terms in the governing equations for momentum conservation may not be 

realistic due to large differences in the order of magnitude of the different terms.
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Figure 2.3: Schematic representation of the two velocity based packing schemes. The cell of interest is shown in white and the 
downstream cells to which the packing logic (Figure 2.2) will be applied are shown in gray.
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In order to vary the manner in which the terms contribute to the behavior of the cells 

undergoing the transition between the free-floating and rigid regimes, a weighting 

function, 𝐹, is introduced. Because it is not immediately clear what the appropriate form 

of this function should be, a power law form was used, as given in Equation (2.13), as a 

simple way to control the shape of the function without introducing too many new 

parameters. A more detailed analysis of the relative orders of magnitude of the source 

terms and how the weighting exponent 𝑛 affects the system is described in CHAPTER 6. 

 

2.2.2 The Free-Floating Solid Model 

As stated previously, the solid particles in suspension within the liquid metal are 

collectively treated as a pseudo-fluid, with a mixture viscosity based on the recommended 

formulation of Ishii and Zuber [70]: 

 

𝜇𝑚 = 𝜇𝑙 (1 −
𝑔𝑠

𝑔𝑠,𝑐
)

−2.5𝑔𝑠,𝑐

, (2.20) 

 

where the mixture viscosity may also be expressed in terms of the associated volume 

fractions of each phase, 𝜇𝑚 = 𝑔𝑠𝜇𝑠 + 𝑔𝑙𝜇𝑙. The contribution of the solid pseudo-fluid to 

the viscosity is then 

 

𝜇𝑠 =
𝜇𝑙

𝑔𝑠
[(1 −

𝑔𝑠

𝑔𝑠,𝑐
)

−2.5𝑔𝑠,𝑐

− 𝑔𝑙], (2.21) 
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and an average solid viscosity used in the momentum equations may be calculated by 

integrating over the majority of the solid fraction range prior to packing, as recommended 

by Vreeman [71]: 

 

𝜇̅𝑠 =
1

0.7𝑔𝑠,𝑐
∫ 𝜇𝑠𝑑𝑔𝑠

0.7𝑔𝑠,𝑐

0

. (2.22) 

 

 The velocity of the solid particles is modeled using Stokes’ law for spherical 

particles, modified by the packed fraction: 

 

𝑉⃑ 𝑠 = (1 − 𝑃) (
(1 − 𝑔𝑠)

18𝜇𝑚
∆𝜌𝑑2𝑔 + 𝑉⃑ 𝑙), (2.23) 

 

where 𝑑 is a representative particle diameter. The choice of using (1 − 𝑃) as a multiplier 

for Stokes’ law (as opposed to using the weighting function) does not affect the discrete 

attachment models. The impact of this decision on the continuum model will be discussed 

in CHAPTER 6. 

 

2.2.3 The Thermodynamic Model 

The fraction solid and local solid and liquid compositions are determined for a 

given cell using the instantaneous temperature and mixture composition, assuming 
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equilibrium (lever law) thermodynamics. For multicomponent systems (such as that used 

here), an expression for the liquidus surface must be known as a function of the mass 

fraction of each of the alloying elements, as well as the partition coefficients for each. The 

model works by first assuming a mass fraction solid of 0.5 and calculates the local liquid 

composition based on the known mixture composition and the relevant partition 

coefficients (𝐶𝑖 = 𝑓𝑠𝐶𝑠
𝑖 + 𝑓𝑙𝐶𝑙

𝑖  and 𝑘𝑖 = 𝐶𝑠
𝑖 𝐶𝑙

𝑖⁄ ). This liquid composition determines a 

temperature on the liquidus surface which is compared to the actual temperature of the 

control volume. If these values do not match, the guessed fraction solid is adjusted up or 

down appropriately, and the process is repeated until convergence.  

 

2.3 Numerical Methods 

The model is solved using standard finite volume techniques [72] on a uniform, 

rectangular, orthogonal, staggered grid using an implicit time stepping scheme. The 

SIMPLER algorithm is used to solve for the velocity and pressure fields. Advection terms 

are discretized using upwind differencing and the advection-like source terms in the 

species equation are discretized according to the recommendations of Vreeman and 

Incropera [73].  

 

2.3.1 Interpolations for the Staggered Velocity Grids 

In staggering the velocity grids, several important interpolations must be 

performed from the main control volumes onto the relevant grids for the momentum 
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equations. The first of these is the determination of the permeability for the rigid mush. 

In this case, the fraction solid is first interpolated linearly between the main control 

volumes, and permeability for the associated velocity cell is then calculated using this 

interpolated value and Equation (2.6). 

The second issue is in determining the value of 𝑃 in the velocity control volumes 

for the grain attachment models in equiaxed solidification (𝑃 is simply equal to unity at 

all times for columnar solidification). In the discrete models, because 𝑃 may only be equal 

to zero or one, the assumption is that if either of the main control volumes shared by a 

given staggered cell are packed, then the staggered cell itself is packed. In the continuum 

model, since the packed fraction may take on any value between zero and one, it is 

linearly interpolated between the respective main control volumes.  

 

2.3.2 The Transient Latent Heat Source Term 

The highly non-linear nature of the transient latent heat source term in the 

temperature formulation of the energy equation (Equation (2.15)) requires special 

treatment. Here, the linearization scheme proposed by Voller and Swaminathan [74] is 

implemented and extended for multicomponent alloy systems. This method linearizes the 

source term into a form that may be readily incorporated into the standard finite volume 

discretization described by Patankar [72]. The form of the linearized source term is 

 

𝑆 = 𝑆𝑝𝑇𝑝 + 𝑆𝑐 (2.24) 
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And is incorporated into the discretized governing equation: 

 

(𝑎𝑝 − 𝑆𝑝)
𝑘
𝑇𝑝

𝑘+1 = (∑𝑎𝑛𝑏𝑇𝑛𝑏 + 𝑎𝑝
0𝑇𝑝

0 + 𝑆𝑐

𝑛𝑏

)

𝑘

 (2.25) 

 

where 𝑘 + 1 is the current iteration level, 𝑝 denotes the control volume of interest and 

𝑛𝑏  its neighbors, 𝑎  are discretization coefficients, and 0  superscript indicates the 

previous time step. If the solid and liquid specific heats are assumed equal, the 

contributions of the transient latent heat term to the source terms 𝑆𝑝 and 𝑆𝑐 are 

 

𝑆𝑝 = −𝜌𝐿𝑓

𝑑𝜀

𝑑𝑇
𝑉𝑝 (2.26) 

 

and  

 

𝑆𝑐 = 𝜌𝐿𝑓𝑉𝑝 ((𝑓𝑙
0 − 𝑓𝑙

𝑘) +
𝑑𝜀

𝑑𝑇
𝜀−1(𝑓𝑙

𝑘)) (2.27) 

 

where 𝜀 is the function relating the fraction liquid and temperature through the phase 

diagram, and 𝜀−1(𝑓𝑙
𝑘) is the temperature determined by that relationship, evaluated at 

the fraction liquid of the previous iteration. This model calculated the change in fraction 

liquid between temperatures 𝑇𝑘+1  and 𝑇𝑘  and then add this value to 𝑓𝑙
𝑘 . At each 
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iteration, this method decouples the strict relationship between temperature and 

fraction liquid, so that the assumption of equilibrium solidification conditions is not truly 

satisfied until convergence.  

One challenge in implementing this linearization scheme is the determination of 

𝑑𝜀 𝑑𝑇⁄ . For binary alloys this can be determined analytically from the phase diagram. The 

form of 𝜀 for binary alloys is 

 

𝜀 =
𝐶0

𝐴(𝑇 − 𝑇𝑚)
−

1

𝐴𝑚𝑠
 (2.28) 

 

where 𝑇𝑚 is the melting temperature of the pure material, 𝑚𝑙 and 𝑚𝑠 are the slopes of 

the liquidus and solidus lines, respectively, and  

 

𝐴 =
1

𝑚𝑙
−

1

𝑚𝑠
 (2.29) 

 

 The derivative of this relationship with respect to temperature is  

 

𝑑𝜀

𝑑𝑇
=

−𝐶0

𝐴(𝑇 − 𝑇𝑚)2
 (2.30) 
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 For multicomponent alloys, the determination of the fraction liquid is performed 

as described in §2.2.3. In this case, a simple analytical expression for the derivative is not 

forthcoming. Instead, it is approximated numerically: 

 

𝑑𝜀

𝑑𝑇
=

𝜀(𝑇𝑘 + 0.005) − 𝜀𝑇𝑘

0.005
 (2.31) 

 

2.4 System Description 

The alloy used for this work is AA7050, a high-strength aerospace aluminum alloy 

that is commonly cast commercially in a grain refined conditions. Properties used for this 

alloy are shown in Table 2.1. The domain is axisymmetric with dimensions and thermal 

boundary conditions given in Figure 2.4. For the momentum and species equations, the 

outer boundaries were assumed no-slip and impermeable, respectively, with symmetry 

conditions applied at the centerline. 

 

Table 2.1: Properties of AA7050 taken from [71,75–77]. 

Property Value  Property Value 

Initial Comp. Zn, 𝐶0
𝑍𝑛 (wt. fr.) 0.062  Density, 𝜌 (kg/m3) 2515 

Initial Comp. Cu, 𝐶0
𝐶𝑢 (wt. fr.) 0.023  Density Difference, ∆𝜌 (kg/m3) 229.1 

Initial Comp. Mg, 𝐶0
𝑀𝑔

 (wt. fr.) 0.0225  Specific heat, 𝑐 (J/kg-K) 1141 

Liq. solutal exp. coef. Zn, 𝛽𝑆,𝑙
𝑍𝑛 -0.65  Thermal cond. solid, 𝑘𝑠 (W/m-K) 149.4 

Liq. solutal exp. coef. Cu, 𝛽𝑆,𝑙
𝐶𝑢 -0.75  Thermal cond. liquid, 𝑘𝑙 (W/m-K) 83.2 

Liq. solutal exp. coef. Mg, 𝛽𝑆,𝑙
𝑀𝑔

 0.53  Latent heat, 𝐿𝑓 (J/kg) 3.76x105 

Sol. solutal exp. coef. Zn, 𝛽𝑆,𝑠
𝑍𝑛 -1.43  Liquid mass diffusivity, 𝐷 (m2/s) 8.0x10-9 

Sol. solutal exp. coef. Cu, 𝛽𝑆,𝑠
𝐶𝑢 -2.01  Liq. dynamic viscosity, 𝜇𝑙  (kg/m-s) 1.3x10-3 

Sol. solutal exp. coef. Mg, 𝛽𝑆,𝑠
𝑀𝑔

 0.31  𝑘Zn 0.39 

Liq. thermal exp. coef., 𝛽𝑇,𝑙 (K
-1) 2.29x10-5  𝑘Cu 0.09 

Sol. thermal exp. coef., 𝛽𝑇,𝑠 (K-1) 1.5x10-5  𝑘Mg 0.29 



42 

 

4
2
 

 

 

Figure 2.4: System geometry and boundary and initial conditions. 

 

 

Only the three main chemical components of AA7050 (Zn, Cu and Mg) were 

explicitly modeled. The liquidus surface for the quaternary system is described by: 

 

𝑇𝑙𝑖𝑞 = 933.15 + 0.63 − 174.16𝐶𝑙
𝑍𝑛 − 271.55𝐶𝑙

𝐶𝑢 − 494.68𝐶𝑙
𝑀𝑔

, (2.32) 
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where the temperature is in Kelvin, the compositions in weight fraction, the first term is 

the melting temperature of pure aluminum, and the second accounts for the addition of 

elements not tracked by the model (Zr, Fe, Si, Ti, Cr, and Mn). The solid surface is related 

to the liquidus surface by the relevant partition coefficients as give in Table 2.1. Equation 

(2.32) and the partition coefficients were determined with Thermo-calcTM using the TCAL1 

database [78]. While the three primary alloying elements were tracked by the model for 

their contributions to the alloy thermodynamics and solutal buoyancy, results will only be 

presented for Zn because the other elements will show the same trends. 

 

 

2.5 Quantification of Macrosegregation 

In order to quantitatively compare a large number of cases, the three-parameter 

Weibull distribution will be used to describe the final composition fields. Fitting the 

Weibull distribution to the final composition field (done here in terms of Zn) is described 

by Fezi, Plotkowski and Krane [79]. The volume distribution function is given by 

 

𝑉𝐷𝐹𝑤(𝐶) =
𝛼

𝛽
(
𝐶 − 𝛾

𝛽
)
𝛼−1

𝑒𝑥𝑝 (−(
𝐶 − 𝛾

𝛽
)
𝛼

), (2.33) 

 

where 𝛼 is the shape parameter, 𝛽 the scale parameter, and 𝛾 the threshold value. The 

VDF is the derivative of the corresponding cumulative volume distribution function: 
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𝐶𝑉𝐷𝐹𝑊(𝐶) = 1 − 𝑒𝑥𝑝 (− (
𝐶 − 𝛾

𝛽
)
𝛼

). (2.34) 

 

The distribution parameters are calculated by first generating a cumulative 

volume distribution from the final composition field predicted by the simulation. This new 

dataset is calculated by first ordering all of the compositions in the domain from least to 

greatest and recording their corresponding volumes. For each unique composition, the 

corresponding point on the cumulative volume distribution is equal to the sum of the 

volumes of all cells containing a lower composition normalized by the domain volume. 

For a given threshold value, the shape and scale parameters are found from this new data 

set using the least squares method. Possible threshold values are then searched from zero 

to minimum composition using a small increment (e.g. 10-5) to find the value that gives 

the smallest RMS error between the data and the fitted cumulative volume distribution 

function. 

Once the parameters that describe the distribution have been found, the metric 

of interest is the normalized Weibull deviation, 𝑊: 

 

𝑊 =
𝜎𝑊

𝐶0
=

𝛽

𝐶0
[Γ (1 +

2

𝛼
) − Γ2 (1 +

1

𝛼
)]

1/2

, (2.35) 

 

where 𝜎𝑊  is the deviation of the three-parameter Weibull distribution and Γ  is the 

gamma function  
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Γ(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡𝑑𝑡
∞

0

. (2.36) 

 

The normalized Weibull deviation is a measure of the width of the fitted 

distribution for a given alloying element, and therefore, is a useful description of the 

macrosegregation within the casting, where higher values indicate a wider range of 

compositions. This approach is not probabilistic in nature, but the three-parameter 

Weibull distribution is used here simply as a convenient function to which to fit the 

volume weighted collection of compositions within the domain.  
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CHAPTER 3. ON THE NUMERICAL PREDICTION OF FRECKLES IN COLUMNAR 
SOLIDIFICATION 

3.1 Introduction 

Freckles are a type of macrosegregation defect characterized by solute enriched 

streaks of equiaxed grains found in otherwise columnar structures. These defects have a 

detrimental effect on the mechanical properties of the resulting solidified component and 

as a result, as described in §1.2.1, significant effort has been put forth to understand the 

mechanism behind freckle formation and to develop a quantitative criterion to predict 

their occurrence. Unfortunately, to date, a satisfactory criterion that can be used for any 

alloy or system geometry has not been found. One avenue towards better understanding 

the mechanisms for freckle formation and development of improved criteria for their 

prediction is the use of numerical solidification simulations.  

The focus of this chapter is to understand the initiation and propagation of freckles 

specifically in numerical simulations, in order to determine their relevance to physical 

castings, and if necessary, to suppress the formation of erroneous predictions. While the 

mechanisms causing freckle formation and growth in simulations are similar to those 

observed experimentally, it will be shown here that aspects of the numerical methods 

have an unacceptably large influence on these phenomena. Therefore, using predictions 

to establish a quantitative criterion for freckle formation in physical systems is, at best,
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 fraught with uncertainty. This work will argue that the best approach for designing such 

a physical criterion is to couple freckle-free simulations with experimental observation. It 

will be shown that carefully controlling the convergence of these simulations is necessary 

for such an approach, and a recommendation for an appropriate convergence criterion is 

made. 

 

3.2 Grid Dependence of Initial Simulations 

To begin with, the grid dependence of simulations with a strict convergence 

criterion will be examined. In this case, the rate of convergence is controlled by the energy 

equation to which a normalization factor equal to the alloy freezing range and a tolerance 

of 1x10-5 was applied. This convergence scheme is proposed here without rationale, but 

will be discussed in detail in §3.5. The results of these simulations for three different grid 

sizes are shown in Figure 3.1. While freckles are mostly suppressed in coarse grids, some 

begin to develop as the grid is refined, although even at their most severe, the difference 

in composition from the surrounding metal is small relative to total macrosegregation in 

the domain. The freckles shown in Figure 3.1 propagate downwards relative to the motion 

of the solidification front, which proceeds inward from the outer radius and up from the 

bottom. This result is physically realistic considering that the primary alloying element in 

AA7050 is Zn, which is denser than Al. Solutal buoyancy, therefore, will aid the downward 

thermal buoyancy. Downward facing freckles such as these have been reported for Al-Cu 

alloys [7]. Of course, the opposite is often found when upward solutal buoyancy 



48 

 

4
8
 

dominates the combined thermosolutal convection, as is sometimes the case in nickel-

based superalloys and the often studied aqueous ammonium chloride system [11]. The 

trend of increasing channel severity with decreasing grid size is consistent with 

observations of Li et al. [29] who found that A-segregates in a simulation of large ingot 

casting for Fe-0.45wt.%C became more pronounced as the grid was refined. 

 

3.3 The Effect of Iterations on the Mechanism of Freckle Formation 

Figure 3.1 demonstrates the susceptibility of the present system to freckle 

formation and shows their sensitivity to the grid spacing, but the channels in this case are 

not significant relative to the overall segregation of the ingot. In order to study the 

mechanism of their formation more easily, it is necessary to exaggerate their presence. 

This can be done using the strategy of Vušanović and Voller [28] of limiting the number 

of iterations per time step in order to introduce noise to the system in the form of 

convergence residuals that may act to seed channel development. To test this approach, 

the present model was hard-wired to perform various predetermined numbers of 

iterations per time step throughout the process. The final Zn composition plots for 

iteration levels from four to six are shown in Figure 3.2 for an 80x80 numerical grid. Clearly, 

when large amounts of numerical noise are introduced to the system by limiting 

convergence, the result is a significant increase in channel severity. This effect is quickly 

reduced as the number of iterations increases. A larger number of cases are summarized 

in Figure 3.3, which shows the normalized Weibull deviation for the final Zn composition  
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40x40 80x80 120x120 

   

 

Figure 3.1: Final Zn composition fields for the base model at various grid sizes with a convergence criterion for the energy equation 
that uses the alloy freezing range as a normalization factor and a tolerance of 1x10-5.
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field over a range of iterations per time step. At low iteration levels, the overall 

segregation is dominated by freckles, and the distribution of compositions reflects this. 

However, as the number of iterations increases, the freckles are quickly suppressed and 

only the general segregation pattern remains. Further iterations beyond about 20 do not 

significantly change the final composition field. 

One qualification must accompany these results, in that the meaning of an iteration 

is subject to the details of the numerical solver. In the present model, a line-by-line 

tridiagonal matrix algorithm (TDMA) was used to solve the discretized equations. Included 

in the solution procedure are a great number of parameters, such as the sequence of 

sweep directions and use of under-relaxation factors, that may be tuned for optimal 

computation time. The values of these parameters do not affect the converged solution, 

but do change the path to this solution. The number of iterations for each result are 

therefore not necessarily representative of other similar models. However, the general 

trends are not affected by changes in solution procedure, so exact values of these solver 

parameters are not presented further in the interest of keeping the discussion as general 

as possible. The reason for the change in freckle appearance shown in Figure 3.2 is that 

additional iterations improve the accuracy of the solution to the highly non-linear 

governing equations. Using too few iterations leaves behind convergence residuals. These 

residuals are carried to the next time step and likely produce instabilities that, when 

added to by residuals in subsequent time steps, are able to grow into channels with 

significant deviations in the local composition. This mechanism fully explains the findings
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4 Iterations 5 Iterations 6 Iterations 

   

 

Figure 3.2: Final Zn composition fields for simulations with various numbers of iterations per time step. Grid spacing is 80x80 in all 
cases.
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Figure 3.3: Normalized Weibull deviation for the final Zn composition field as a function 
of number of iterations per time step. 

 

by Vušanović and Voller [28], in which the solution was limited to twenty iterations per 

time step in all cases. When using an implicit scheme, this limit might have prevented 

proper convergence in any of the governing equations. In the hybrid scheme, they used 

an explicit time step discretization for the energy and species equations so that they could 

obtain a solution with smaller residuals. This approach means that only the momentum 

equations, which were still solved implicitly, could be prevented from converging while 

the unchanged values of temperature and composition also helped speed convergence. 
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Thus, an increase in stability was observed, although channel formation was not 

eliminated. 

Here, having introduced excessive numerical noise to exacerbate freckle formation, 

the mechanism of the transient channel formation may be investigated. Figure 3.4 shows 

the Zn composition fields and flow patterns for two different numbers of iterations at 

intermediate times during the process. Streamlines were selected to show flow through 

the outer part of the mushy zone, indicated by iso-solid fraction lines (in white) at 0.0025 

and 0.01. Note that for different numbers of iterations, changes in macrosegregation 

impact the solidification time through the coupling between the species equations and 

the thermodynamic model. Therefore, similar times in the process cannot be compared 

directly. Instead, the location of the solidification front has been roughly matched for 

cases with 4 and 10 iterations per time step. 

At four iterations, there are “ripples” in the streamlines that pass through the outer 

edge of the mushy zone, indicating changes in velocity (streamlines that are closer 

together indicate faster flow rates). These ripples appear to be aligned with the 

alternating regions of high and low composition, which in turn, correspond to variations 

in the solid fraction field. At earlier times (120 s), the flow is smoother, but the ripples 

build up over subsequent time steps. When the number of iterations per time step is 

increased to ten, these instabilities in the flow are mostly damped, associated with a 

significant decrease in the level of segregation within the channels. 
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Figure 3.4: Comparison of flow and Zn composition fields (in weight fraction) for simulations with 4 and 10 iterations per time step 
for the portion of the domain where freckles appear. Streamlines are shown in black and are clockwise from 10-4 to 10-3 kg/s, 

selected to show the flow at the edge of the mushy zone, advancing from the right and bottom and shown by the iso-solid fraction 
lines at 0.0025 and 0.02 in white.



55 

 

5
5
 

The mechanism for the development of freckles is shown in greater detail for the 

simulation with only four iterations per time step in Figure 3.5. Channels are initiated by 

some protrusion in the solidification front, as is likely to be present in a solution that is 

not converged. Regions of higher solid fraction have a correspondingly lower permeability 

as described by the Blake-Kozeny permeability model. Fluid flows preferentially around 

areas of low permeability rather than through, resulting in the “rippled” streamlines 

present in Figure 3.4 and Figure 3.5a. The reason for the changes in the fraction solid do 

not occur in isolation, but rather, are intimately related to the local composition and flow 

field, all of which feed upon each other.  

For alloying elements with a partition coefficient less than one (as is the case for 

the elements tracked here), solute is rejected into the liquid while the solid is depleted. 

The solid at the edge of the mush is stationary but permeable. The enriched liquid 

contained within is advected downstream, driven by the combined effect of thermal and 

solutal buoyancy, leaving behind the depleted solid. This fluid is replaced by flow from 

upstream, which generally consists of liquid that is nearer the nominal composition. The 

net result is that the neighboring downstream control volume is enriched while the solid 

protrusion is depleted. The direction of the flow and therefore the direction of 

propagation of the channel are determined by the thermosolutal buoyancy, the motion 

of the solidification front, and the associated local fluctuations in the permeability at the 

edge of the mushy region.  

The flow, composition, and permeability at the edge of the mush are linked by the 

thermodynamic model. Cells with higher solute content will have a lower liquidus 
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temperature, and therefore, a lower solid fraction for a given temperature. This result is 

shown in Figure 3.5b. Here, the solid fraction is overlaid by a single iso-composition line 

(at a value slightly above the nominal alloy composition) enclosing the depleted regions. 

The lower composition obviously corresponds to the protrusions of solid into the bulk 

fluid flow, and subsequently, to the ripples in the streamlines shown in Figure 6a. This 

mechanism functions as a positive feedback loop in which protrusions cause further 

compositional differences, which affect the solid fraction, which then further affects the 

flow through the permeability term in the momentum equations.  

As shown in Figure 3.6, the number of iterations per time step also affects the grid 

dependence. For both iteration levels, no channels are predicted for coarse grids. As the 

grids are refined, the lower iteration levels begin to predict severe freckles. While some 

instability is present in the higher iteration level for fine grids, the composition difference 

between channels is only about a tenth of a weight percent. The grid convergence of each 

of the iteration levels can be seen quantitatively in terms of the normalized Weibull 

deviation in Figure 3.7. For only four iterations, the solution is obviously not grid 

independent. However, the Weibull deviation is only slightly affected by the grid spacing 

for the higher number of iterations. 
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Figure 3.5: (a) Zn composition field showing streamlines from 0.0001 to 0.0013 kg/s 
through the edge of the mushy zone and (b) solid fraction field overlaid with a line 

showing Zn weight fraction of 0.0625 enclosing the most depleted regions. The plots are 
taken from a simulation limited to 4 iterations per time step. 
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Figure 3.6: Final Zn composition fields (in weight fraction) at various levels of grid refinement for simulations with 4 and 10 iterations 
per time step.
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Figure 3.7: The grid dependence of the normalized Weibull deviation showing the zinc 
composition field is much greater when the number of iterations per time step is 

severely limited. 

 

3.4 A Note on Length Scale and the Physical Relevance of Freckle Predictions 

With the above description of the mechanism behind freckle formation in these 

simulations, the physical relevance of these predictions may be considered. It is clear that 

the susceptibility of the model to the growth of instabilities is a relevant physical 

phenomenon brought about by the coupling of the governing equations. These channels 

grow from some initial protrusion, which, in the case of numerical simulations, is brought 

about by small numerical perturbations which grow over time, and may be exacerbated 

by convergence residuals. If the macroscale phenomena are modeled accurately, then the 
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most important question is whether the protrusions in the numerical realm are 

representative of physical reality. 

Unfortunately, the length scale of the instabilities in an actual casting may be as 

small as the dendrite arm spacing. Therefore, for a simulation to correctly predict the 

initiation of freckles, the cell size must be on a similar or smaller length scale. This 

conclusion is supported by Sung et al. [22] who found realistic predictions in their finite 

element model only when the element size was smaller than twice the dendrite arm 

spacing. However, using such a small numerical grid is computationally prohibitive for 

many commercial castings in which freckle formation may be of interest (e.g. steel ingot 

casting, electroslag remelting, vacuum arc remelting). There is a competition among the 

incipient channels, where the initial protrusions occur on the length scale of the dendrite 

arms but the eventual spacing of the freckles is much larger [11,80]. However, it is difficult 

at this time to determine the accuracy of simulations that cannot properly consider the 

initiation phase of freckle development. 

Even if macroscale continuum models cannot explicitly predict freckles, there are 

still two approaches that may produce valid results. The first is the development of 

models on the dendrite arm length scale that explicitly consider the sharp solid-liquid 

interface rather than using a continuum solid fraction field. Models such as these have 

been developed [17,18], but while they do provide insight into freckle formation at the 

appropriate length scale, they are generally too computationally expensive to use for 

casting-scale simulations.  
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The second option is to use the local results of a macro-scale simulation as inputs 

to a freckle criterion. This approach allows for the comparatively efficient evaluation of 

large scale castings for their tendency to develop freckles. Unfortunately, while many 

different criteria exist, they are generally formulated for only a narrow range of casting 

conditions (usually directional solidification) and alloy compositions. Casting scale 

simulations such as the one presented here should be used in the future, in conjunction 

with appropriate validation experiments, to aid in the development of a new criterion 

that generally considers any alloy system, arbitrary solidification front geometry, and the 

effect of the bulk fluid flow. The primary concern of this type of simulation then, is to 

produce reliable predictions of the solidification conditions and bulk fluid mechanics that 

may be used as inputs for a given criterion, which may then be compared to the 

appearance of freckles in experimental castings. Therefore, casting-scale continuum 

simulations should seek to produce converged results in which the composition of any 

erroneous freckles does not obscure the more general trends in the composition field or 

other solidification phenomena of interest. 

 

3.5 Recommendations on Obtaining a Converged Solution 

To determine if erroneous freckles obscure more general trends in the composition 

field, Figure 3.8 shows a comparison of vertical Zn composition profiles at the mid-radius 

for three different iteration levels. With only four iterations per time step, a significant 

fluctuation in the local composition is seen from about 0.05 m (measured from the 

bottom of the cavity) to 0.1 m. Adding only one iteration per time step damps the 
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magnitude of these fluctuations and changes their location slightly. Increasing to ten 

iterations per time step produces a smooth composition profile. Interestingly, in all cases, 

the average trend in the composition from the bottom to the top of the domain is 

consistent. This finding suggests that perhaps even in cases where significant freckling is 

present, and if these channels are numerical in nature, the more general prediction of the 

simulation is still valid. 

 

 

Figure 3.8: Comparison of mid-radius Zn composition profile for three iteration levels. 
For reference, the nominal Zn composition is 0.062. 
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For the results described above, each time step was limited to a certain number of 

iterations, but simply selecting a high number of iterations in this way will lead to 

unnecessarily long computation times. Instead, to obtain a converged solution without 

performing too many iterations, the general approach is to define convergence criteria to 

be applied to each of the scalar variables. One common method of determining 

convergence is: 

 

𝜙𝑘+1 − 𝜙𝑘

Δ𝜙𝑟𝑒𝑓
< 𝑡𝑜𝑙 (3.1) 

 

where 𝜙 is a scalar variable, 𝑘 + 1 the current iteration, 𝑘 the previous iteration, Δ𝜙𝑟𝑒𝑓 

a reference difference selected for that particular variable, and the left hand side of the 

equation is compared to some tolerance, 𝑡𝑜𝑙 . Appropriate reference differences and 

tolerance must be selected for each scalar variable, and once Equation (3.1) is satisfied 

for all values of interest in each control volume, the solution is considered converged. 

In the present model, all of the governing equations are solved during each iteration, 

regardless of which ones have or have not converged. Therefore, the equation for the 

scalar variable with the strictest convergence criterion controls the number of iterations 

for all of the equations. It is therefore of interest to determine which equations are most 

likely to initiate channels if not properly converged. To test this question, a semi-implicit 

solver was implemented. Similar to Vušanović and Voller [28], the governing equations 

were divided into two groups. The first includes the energy equation and the species 
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equations, both of which interact directly with the thermodynamic model, so they should 

be iterated together in order to obtain an accurate solid fraction calculation. The second 

group contains the momentum and continuity equations, which are solved together using 

the SIMPLER algorithm. The energy and species equations were first iterated while using 

the velocity field from the previous time step. During each iteration, the thermodynamic 

model was used to update the solid fraction field. Once a predetermined number of 

iterations was completed in this manner, the momentum equations were iterated, using 

the most recent values for temperature and composition for the relevant buoyancy 

source terms. In this way, the number of iterations for each group could be controlled 

independently in order to compare the sensitivity of channel formation to the 

convergence of each group. This method is termed semi-implicit because each governing 

equation is implicit in itself and in the other variables solved within its group, but explicit 

in the variables solved in the other group. 

Two tests were run, one in which four iterations were performed for the first group 

(energy, species, and thermodynamics) and ten iterations for the second group 

(momentum), and vice versa. The final Zn composition plots from these tests are shown 

in Figure 3.9. It is clear that additional iterations in the energy and species equations, 

coupled with the thermodynamic model, reduce the appearance of freckles to a much 

greater extent than additional iterations in the momentum equations.  
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Energy/Species: 4 Iterations 
Momentum: 10 Iterations 

Energy/Species: 10 Iterations 
Momentum: 4 Iterations 

  

 

Figure 3.9: Comparison of the semi-implicit scheme for different combinations of 
iterations. 

 

The final goal of this study is to determine a satisfactory convergence criterion for 

the fully implicit scheme that minimizes the prediction of channel defects. Rather than 

attempting to find the best reference difference and tolerance values for all of the 

equations, it is simpler to apply a strict tolerance to only one equation that will limit 

convergence and force all of the equations to an appropriate number of iterations. The 

results of Figure 3.9 show that the momentum and continuity equations approach 

convergence much more quickly than the energy and species equations do. This result is 

a consequence of the direct coupling between the temperature and composition fields to 

the thermodynamic model which controls the solid protrusions that initiate freckle 

formation. Between the energy and species equations, the energy equation is the most 

unstable due to the highly non-linear nature of the transient latent heat release. 
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Therefore, the temperature field was selected for the application of the convergence 

criterion. 

It should be noted here that this conclusion supports the decision by Vušanović and 

Voller [28] to use an explicit solver for the energy and species conservation equations so 

that only a single iteration per time step is required. However, the drawback of their 

approach is that the explicit scheme is only conditionally stable and requires a relatively 

much smaller time step for finding a stable solution. As a point of reference, Vušanović 

and Voller [28] used time steps of 2x10-4 s and 6x10-5 s for simulating solidification in a 

square cavity measuring 40 mm on a side for 80x80 and 150x150 numerical grids, 

respectively. In the same study, an implicit scheme with a time step of 0.01 s (capped at 

20 iterations per time step) with a 150x150 grid was also performed. When comparing 

these cases, it is clear that even with the reduction in the number of iterations used, the 

necessity of using such a small time step means that the computational expense of the 

explicit scheme is approximately an order of magnitude higher than that of the implicit 

scheme. Of course, this may not be the case for all possible conditions. In practice, there 

is more flexibility in the choice of time step size in the implicit scheme, but larger time 

steps generally require more iterations to reach convergence.  

The first challenge in developing a convergence criterion according to Equation (3.1) 

is selecting an appropriate reference difference that is characteristic of the system, but is 

also as adaptable as possible, such that an appropriate tolerance may be selected that 

does not have to change drastically for different alloys or boundary conditions. For the 

latter requirement, it is important that this value is a difference rather than an absolute 
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number. For example, the initial temperature of the system might be chosen as a 

normalizing value. In this case, consider the same alloy solidified with two very different 

superheats. In the case with a high superheat, convergence will be much easier in general. 

However, the most important details of the process, namely, alloy solidification, happens 

over the same range of temperatures. Thus, to properly resolve the temperature field in 

the range of interest, different tolerance values would be required depending on the 

superheat. In the case of the energy equation, there is an obvious value to use as a 

characteristic difference: the alloy freezing range. Since the freezing range describes the 

set of values over which the most important part of any solidification process takes place, 

it is generally representative of the system. It is also not a function of changes in initial or 

boundary conditions, but will be affected by the alloy system under consideration, 

although this is simply determined within the model based on thermodynamic 

information. Here, the value is set at the beginning of the simulation based on the 

nominal composition and held constant and uniform throughout the process. 

Now that the reference difference has been selected, an appropriate tolerance 

must be set. Five different tolerance values were tested and the corresponding final Zn 

composition results are shown in Figure 3.10. The composition field does not change 

when increasing the tolerance from 5x10-6 to 1x10-5, but there is some change when 

increasing further to 2.5x10-5. The solution changes some when increasing the tolerance 

to 5x10-5 and freckles become severe for 1x10-4. These comparisons are made 

quantitative using the normalized Weibull deviations of the final Zn composition fields 

and vertical composition profiles at the mid-radius as shown in Figure 3.11. These results 
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confirm that the final composition field changes little for tolerance values lower than 

1x10-5.  

The tolerance levels shown in Figure 3.10 and Figure 3.11 can be further evaluated 

based on the number of iterations used in each simulation. Figure 3.12 shows the average 

number of iterations per time step for each tolerance level, where each data point is 

averaged over the previous 250 time steps. For each tolerance level, the number of 

iterations is highest at the beginning and end of the process, with lower numbers of 

iterations in between. At the beginning, additional iterations are required due to the high 

temperature gradients near the cooling walls, and the fast convective flows that occur as 

a result. Near the end of the process when most or all of the bulk liquid has been 

consumed, solute rejection in the remaining mushy zone may have a large effect on the 

local composition, and through the thermodynamic model, the solid fraction. These 

changes are amplified by the small volume of the cells near the centerline of the casting. 

The transient latent heat term in the energy equation is very sensitive to these changes 

in the solid fraction, and an increase in iterations is require to achieve a converged 

solution. 
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tol = 5x10-6 tol = 1x10-5 

 

  

tol = 2.5x10-5 tol = 5x10-5 tol = 1x10-4 

   

 

Figure 3.10: The effect of changing the tolerance for convergence of the energy equation on the appearance of freckles.
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(a) (b) 

Figure 3.11: Quantitative comparisons of difference tolerances for convergence of the energy equation (a) in terms of the 
normalized Weibull deviation for the final Zn composition fields and (b) shown as mid-radius composition profiles for three different 

tolerance levels. For reference, the nominal Zn composition is 0.062.
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Figure 3.12: Iterations per time step for five different energy conservation tolerance. 
Each data point is the average of the number of iterations required for the previous 250 

time steps. 

 

As shown in Figure 3.10 and Figure 3.11, below a tolerance level of 1x10-5, there 

are few changes in the solution, but, as can be seen in Figure 3.12, there is an additional 

computational cost in the number of iterations required. It is therefore best to select a 

tolerance value that obtains a properly converged solution without adding unnecessary 

computation time. For this system, Figure 3.3 shows that convergence of the final 
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composition field occurs when at least 20 iterations per time step are used, a value that 

agrees well with the number of iterations required to meet a convergence tolerance of 

1x10-5. 

If simulations such as those described here are to be used to predict macroscale 

phenomena and to evaluate possible freckle criteria, it is important to show that 

converged results attain adequate grid independence.  Essentially, the effect of the grid 

on the simulation results must be small in comparison to the effect of changes in model 

and process parameters. Previous work has shown that grid dependence can be judged 

in solidification simulations using the normalized Weibull deviation for the final 

composition field [79]. One example of relevant process parameters is the thermal 

boundary conditions. To demonstrate this, the heat transfer coefficient boundary 

conditions shown in Figure 2.4 were multiplied by various constants, and the resulting 

normalized Weibull deviations were recorded for three different grid sizes for the 

convergence criterion chosen above, as well as the case with only four iterations per time 

step (Figure 3.13). In general, the macrosegregation decreases as the solidification rate 

increases with the magnitude of the heat transfer coefficients. When only four iterations 

per time step are used rather than the convergence criterion proposed above, two major 

differences are noted. The first is that, for all grid sizes, the Weibull deviation is 

significantly higher than the converged solution. This difference is caused by the 

significant level of channel segregation found in the iteration limited case where the wider 

distribution of composition values gives a larger value of W. Additionally, the effect of the 

grid is significantly greater, obscuring some of the differences due to changes in the 
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boundary conditions. This finding is consistent with the grid dependence study in Figure 

3.7. In the converged solution, the grid dependence is generally small compared to the 

effect of the changes in process conditions.  

 

 

Figure 3.13: The normalized Weibull deviation as a function of boundary conditions for 
three different grid sizes 

 

3.6 Conclusions 

A finite volume based model for transport phenomena in alloy solidification was used 

to simulate the casting of aluminum alloy 7050. The model exhibited a tendency to predict 

the formation of freckles, a defect that is commonly observed in experimental castings. 

However, the model prediction was found to be highly influenced by numerical factors, 

including the grid spacing and the number of iterations per time step. Through 

understanding the mechanism of channel formation, it was found that the volume 
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averaged approach of the present model negates its ability to properly predict freckles. 

Freckle formation occurs on the length scale of the dendrite arm spacing, but using a 

numerical grid fine enough to resolve the protrusions that initiate freckles is numerically 

prohibitive for industrial scale process models. Instead, casting-scale models, such as that 

presented here, should be used to understand the macro-scale flow, solute transport, and 

solidification behavior, but must be supplemented with micro-scale models to properly 

predict freckling behavior. Therefore, macro-scale models should seek to predict smooth 

composition fields and suppress the formation of channels. To achieve this goal, a 

convergence criterion for the energy equation was recommended for future finite volume 

studies of alloy solidification. While this criterion is formulated to be as general as possible, 

results from similar models should be evaluated with care, and tolerance values adjusted 

to minimize the severity of freckle predictions. The results found here suggest that 

previous work that intended to predict freckles using macroscale heat transfer and fluid 

flow models [22–26,28] are not reliable.
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CHAPTER 4. VELOCITY BASED GRAIN ATTACHMENT MODELS IN EQUIAXED 
SOLIDIFICATION 

 

4.1 Introduction 

As described in CHAPTER 1, most models for equiaxed solidification to this point 

have assumed that dendrite coherency occurs at a particular volume fraction solid or 

grain envelope fraction that is held constant and uniform throughout the domain. 

However, it is apparent that the local velocity field may advect solid grains either towards 

a rigid interface, tending to encourage attachment, or away from it, tending to postpone 

attachment. Vušanović and Krane [58] suggested a new model, within the mixture 

formulation for equiaxed solidification, which is intended to account for this effect of the 

local solid velocity. However, they only investigated the effect of this new attachment 

model for a single case within a model for horizontal direct chill casting. The purpose of 

this chapter is to more closely investigate the effect of implementing such a model and 

one variant (the AVM and FVM schemes, as detailed in §2.2.1) as compared to the more 

common constant packing fraction (CPF) approach. 
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4.2 Average Packing Fractions in Velocity Based Models 

In the velocity-based models, the local packing fraction will vary throughout the 

domain based on the velocity and solid fraction fields. For valid comparisons, 𝑔𝑠,𝑐 values 

must be chosen so that the average packing fraction (𝑔̅𝑠,𝑝) is close to the value used in 

the corresponding CPF model. Preliminary simulations for the AVM and FVM were run 

over a range of critical values to establish relationships for the present system between 

𝑔𝑠,𝑐 and 𝑔̅𝑠,𝑝. An 80x80 uniform grid was used with a particle size of 20 μm and a dendrite 

arm spacing of 50 μm. Results are shown in Figure 4.1 for the average and standard 

deviation of 𝑔̅𝑠,𝑝, compared to the CPF approach represented as a straight line with slope 

of unity and a deviation of zero. 

For both velocity-based models, 𝑔̅𝑠,𝑝 is always smaller than 𝑔𝑠,𝑐, due to the imposed 

upper limit to the volume fraction solid in the slurry, and is lower for the FVM than the 

AVM because a cell can pack based on any, rather than only one, downstream control 

volume. This difference is also manifested in an increase in the range of packing fractions 

in the FVM, shown by larger standard deviations in Figure 4.1b. Overall, AVM average 

packing fractions are close to 𝑔𝑠,𝑐, with fairly small deviations. Therefore, it is expected 

that the resulting macrosegregation for the AVM will much more closely resemble the 

CPF model than the FVM, in which cells pack over a much wider range of solid fractions. 

Vreeman et al. [42] argue that, for the CPF model, packing fractions less than 0.3 

are reasonable for aluminum alloys. In this study, a value of 0.15 for 𝑔𝑠,𝑐 was used for 

comparison with the velocity based models. As shown in Figure 4.1a, the average packing 
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fraction as a function of 𝑔𝑠,𝑐 can be adequately fit with a quadratic curve for both models. 

These function were used to calculate the values of 𝑔𝑠,𝑐 that would yield 𝑔̅𝑠,𝑝 values equal 

to 0.15. The full list of cases, including the calculated values for the critical solid fractions, 

is given in Table 4.1. 

 

4.3 Development of Macrosegregation in the Base Case 

The general aspects of solidification of alloy 7050 and the development of 

macrosegregation in the domain shown in Figure 2.4 are described here for the base case 

in Table 4.1. The general shape of the composition field forms in a similar manner for all 

three packing models. Solidification in the cavity proceeds inward from the bottom and 

the outer radius. In accordance with the phase diagram, the solid forms depleted in Zn, 

Cu and Mg relative to the liquid in the same control volume. A buoyancy induced flow 

develops, moving down the edge of the rigid mushy zone and up the centerline. Figure 

4.2 shows these results at several intermediate times for each of the three packing 

models. Macrosegregation results from any relative motion of the solid and liquid phases. 

Because these simulations do not include the effects of solidification shrinkage, there are 

two main contributions to this relative motion: thermosolutal buoyancy driven flow at 

the edge of the rigid mush, and the settling motion of solid grains. The first solid that 

forms at the outer radius, where cooling is the fastest, is depleted relative to the nominal 

composition. The associated enriched liquid is heavier than nominal because it is colder 

and has a higher composition and therefore, moves downward.
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(a) (b) 

Figure 4.1: (a) Average packing fraction and (b) the standard deviation of the packing fraction as function of the critical solid fraction 
for the two velocity based methods.



79 

 

7
9
 

Table 4.1: List of cases run for the parametric study. 

  
gs,c 

gs,c 
(AVM) 

gs,c 
(FVM) 

Grid 
Particle Size 

(μm) 
DAS 
(μm) 

Base Case 0.15 0.175 0.271 80x80 20 50 
         

Varying Grid 0.15 0.175 0.271 40x40 20 50 

  0.15 0.175 0.271 60x60 20 50 

  0.15 0.175 0.271 100x100 20 50 

  0.15 0.175 0.271 120x120 20 50 

  0.15 0.175 0.271 140x140 20 50 

  0.15 0.175 0.271 160x160 20 50 
         

Varying Particle Size 

0.15 0.175 0.271 80x80 5 50 

0.15 0.175 0.271 80x80 10 50 

  0.15 0.175 0.271 80x80 50 50 

  0.15 0.175 0.271 80x80 75 50 

  0.15 0.175 0.271 80x80 100 50 
         

Varying DAS 0.15 0.175 0.271 80x80 20 20 

  0.15 0.175 0.271 80x80 20 35 

  0.15 0.175 0.271 80x80 20 65 

  0.15 0.175 0.271 80x80 20 80 

 

 

This effect is only significant at the edge of the rigid mush where the comparatively 

high permeability allows some enriched liquid to flow into the bulk, whereas the lower 

permeability deeper in the mushy zone prevents any significant fluid flow. Depleted, 

unattached solid near the edge of the rigid interface is advected downward and then 

towards the centerline of the cavity. The particles then resist the slow up-flow of the liquid 

at the centerline according to Stokes’ law (Equation (2.23)), tending to settle instead. The 

falling solid causes a depleted region at the centerline and displaces the associated liquid, 

which tends to enrich the region nearer the top of the cavity. These trends can be seen in 

the final composition fields shown at the bottom of Figure 4.2. 
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The next notable difference among the three cases shown in Figure 4.2 is the 

volume and level of negative segregation found at the outer radius. The CPF model and 

AVM appear to have similar volumes of depleted solid here, although a direct comparison 

is difficult because of the instabilities in the CPF case. However, the FVM clearly has a 

much larger volume of negative segregation than the other two models, an observation 

that is confirmed by plotting the fitted three-parameter Weibull distributions for the final 

composition fields in Figure 4.3. The y-axis values of the PDFs in Figure 4.3 are related to 

the volume of material found at a given composition. Note that the fitted PDFs are valid 

for all real numbers, but here, are terminated at the minimum and maximum final 

compositions predicted by the model. The CPF model has the longest tail to the left, 

indicating a small volume of very depleted material, which, as can be seen in Figure 4.2, 

is located within the channel segregates at the outer radius. Because the two velocity 

based schemes tend to suppress these channels in this particular case, the magnitude of 

the negative segregation at the outer radius is lower, resulting in shorter tails to the left. 

The AVM has a higher peak near the nominal composition (𝐶0
𝑍𝑛 = 0.062). This change is 

a result of the reduction in channel segregation, and a subsequent narrowing of the 

overall distribution. The FVM distribution has a lower peak than the other two, with a 

higher tail to the left associated with the large depleted volume near the outer radius, 

and a more extreme tail to the right than the other models caused by a more enriched 

region at the top of the cavity. The width of the distributions is quantified by the 

normalized Weibull deviation which was 0.0100, 0.0067, and 0.0122 for the CPF, AVM, 
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and FVM composition fields, respectively. The relative values of the normalized Weibull 

deviations for the three models reflect the differences in the standard deviations of the 

local packing fractions (Figure 4.1b) as well as differences in the propensity for formation 

of channel segregates. These relationships between the details of the packing model and 

the compositions distributions suggest that the manner in which packing occurs has a 

strong effect on the formation of macrosegregation. 

The similarity between the local packing fraction, shown for the velocity-based 

models in Figure 4.4, to the final composition fields is striking, and is related to the initial 

permeability of the rigid solid when it first packs. In the velocity-based models, high 

temperature gradients, and therefore high solid fraction gradients, favor low packing 

fractions near the cooling walls because there is a greater probability that a control 

volume will neighbor a cell with a solid fraction greater than 𝑔𝑠,𝑐 . This effect is more 

extreme in the FVM than AVM because multiple downstream cells may trigger packing, 

generally increasing the likelihood of packing at lower solid fractions relative to the AVM. 

Solid that packs with a very low packing fraction has a correspondingly high permeability 

compared to regions with high packing fractions. This higher permeability allows enriched 

liquid to more easily flow into the bulk and be replaced by fresh liquid nearer the nominal 

composition. In cells with high packing fractions, the reduced permeability restricts 

advection of enriched liquid. The result is that control volumes with low packing fractions 

tend to be depleted in composition, and control volumes with higher packing fractions 
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Figure 4.2: The Zn composition field, flow field, and packed interface at three times 
during solidification for the three different discrete packing models. Thin lines show 
streamlines in the clockwise direction and the bold line is the packed interface. The 

packing fraction for the CPF model was 0.15 and the average packing fraction was 0.147 
for the AVM and 0.148 for the FVM.
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Figure 4.3: Fitted three-parameter Weibull distributions for the base case of each 
packing model. 

 

tend to be enriched. This relationship explains why the FVM model, with a wider range of 

packing fractions, also exhibits a wider composition distribution (Figure 4.3). 

The negative region at the outer radius is also shifted upwards slightly for both 

velocity-based cases compared to the CPF model. This upward shift is the result of the 

flow field which moves radially outward near the top of the cavity. In the CPF model, any 

solid advected with the outward flow is swept downward along the outer radius by the 

natural convection loop, and the solid advection does not affect packing unless it causes 

a buildup of solid in a particular cell that exceeds 𝑔𝑠,𝑐. However, in the velocity-based 

models, this outward flow increases the likelihood of packing at the top of the domain 

against the outside of the cavity or against any solid that has already packed here. This 
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packing is reflected in the lower packing fraction of this region, shown in Figure 4.4. Since 

the solid that packs here is initially at a lower solid fraction, it has a higher permeability 

and allows the enriched liquid to flow out of the rigid mush to be replaced by fresh liquid 

that is lower in composition, decreasing the overall composition of the cells in this region. 

 

4.4 Grid Dependence 

Contour plots showing the final composition profile for several different grid sizes 

are given in Figure 4.5. The first feature to note is that due to the settling of solid particles 

that have a lower composition than the liquid, the centerline of the ingot tends to be 

depleted, and the vertically displaced enriched liquid is the last material to freeze at the 

top of the casting, forming a region of positive segregation. The level of enrichment in this 

upper layer is inversely related to the size of the control volumes over which the 

composition is averaged, so that the composition of this region is higher for finer grids. 

This strong grid dependence of the maximum composition was previously reported by 

Voller and Vušanović [43] for simulations of columnar solidification. The results in Figure 

4.5 also demonstrate the grid dependence of the appearance and size of channel 

segregates, or compositions instabilities, which can be primarily seen propagating inward 

from the outer radius, although some instabilities also develop nearer the centerline. In 

the CPF model, these instabilities are present for all cases, and their spacing is highly grid 

dependent. In the AVM model, instabilities very similar to those seen in the CPF model 

develop for coarse grids, but are suppressed with intermediate grids. Instabilities 

reappear for fine grids, but their propagation is limited compared to the CPF model. 
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AVM FVM 

  

 

Figure 4.4: Distribution of local packing fractions (𝑔𝑠,𝑝) for the base case with the AVM 

and FVM packing protocols. 

 

The FVM also appears to show some reduction in instabilities (especially near the outer 

radius) when going from a coarse grid to an intermediate grid, but develops severe 

instabilities at fine grid sizes. While these instabilities cause grid dependent cell-to-cell 

variations in the composition field, the overall macrosegregation level, characterized by 

the normalized Weibull deviation, is less sensitive to grid size than it might first appear. 

As shown in Figure 4.6, after an initial change in these macrosegregation metrics for 

coarse grids, some level of convergence does begin to appear for finer grid sizes. The 

reason for the grid convergence in these metrics is that even though the range of 

compositions in the final casting is growing wider, the extremely enriched and depleted 

regions are occurring over smaller volumes as the grid is refined. The compositional 

extremes therefore affect the tails of the composition distribution less and less as the grid 

size decreases, leaving the bulk of the macrosegregation pattern mostly unchanged. 
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Figure 4.5: Grid dependence of final Zn composition fields (in wt. fr.) for each packing 
model, showing results of simulations with 40x40, 80x80, 120x120 and 160x160 control 

volumes.
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Unfortunately, the spacing and severity of the channel segregates do not 

approach grid independence. The details of the formation of these defects is the subject 

of CHAPTER 5, but some general conclusions may be drawn from the data presented here. 

First, the primary cause of these compositional differences is likely due to advection over 

diffusion, simply by noting the order of magnitude of the mass diffusivity. Therefore, the 

coupling between the momentum conservation equations and solute advection must be 

carefully considered to determine the source of their grid dependence. As seen in Figure 

4.5, the packing scheme undoubtedly has an effect on the formation these channels. This 

effect is not surprising in light of the dependence of the flow field and consequent solute 

transport on the permeability in the mushy zone, the application of which is controlled 

by the packing model. The larger question of course, is whether the prediction of these 

channels is realistic. If they are a numerical artifact, then a numerical model that 

suppresses these channels is desired. If they are found in experimental castings, then 

developing a numerical model that accurately predicts their occurrence will be of the 

utmost importance. 
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Figure 4.6: Quantification of macrosegregation in each of the three packing models 
using the normalized Weibull deviation for Zn. 

 

4.5 Particle Size Dependence 

The size of the free-floating grains in the present study is set at a single, constant 

value, an approach which is a simplification of the reality of equiaxed grain growth with 

its transient distribution of sizes throughout the domain. However, this simplification 

allows for a look at the effect of average grain size on macrosegregation development. 

According to Stokes’ law the difference in solid and liquid velocities in the direction of 

gravity goes as the square of the particle diameter. At smaller diameters, particles mostly 

move with the liquid, and this absence of relative motion between the solid and liquid 

prevents macrosegregation development in the slurry region. At larger diameters, 

however, the particles settle very quickly, severely depleting the bottom of the slurry 
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relative to the transient location of the solidification front. The corresponding enriched 

liquid is displaced towards the top of the casting. The larger the particles, the more 

dramatic this compositional stratification due to settling becomes, and as a consequence, 

the composition distribution broadens, as shown for extreme particle sizes for the three 

packing models in Figure 4.7a. This broadening is also reflected in an increase in the 

normalized Weibull deviation and the macrosegregation number, as shown in Figure 4.7b. 

A similar result was observed for composition distributions in DC casting by Vreeman and 

Incropera [8].  Generally, the three packing models are all affected similarly by changes in 

particle size. 

 

4.6 Dendrite Arm Spacing Dependence 

One of the main driving mechanisms for macrosegregation is the relative motion of 

solid and liquid at the edge of the rigid mushy zone. The primary factor that influences 

the tendency for fluid motion here is the permeability of the dendritic array, which is 

modeled here using the Blake-Kozeny relationship and increases with the square of the 

dendrite arm spacing. A lower permeability provides less resistance to the downward 

thermosolutal buoyancy of the cooler, enriched liquid that drives the natural convection 

flow cell. As the dendrite arm spacing and therefore the permeability increases, the flow 

rate of enriched liquid away from the rigid, depleted solid also increases. This increase in 

the relative velocity between the solid and liquid of differing composition increases the 

level of segregation in the domain. The difference in segregation is visualized in Figure 4.8 

using the normalized Weibull deviation for the final predicted Zn composition fields for  
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Figure 4.7: (a) Comparison of fitted three-parameter Weibull distributions for the final 
Zn compositions fields of the three packing models at extreme particle sizes and (b) a 
plot of the normalized Weibull deviation over the full range of particle sizes. Note the 

difference in scale of the y-axis between the top and bottom plots in (a). 
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Figure 4.8: The normalized Weibull deviation for the final Zn composition field predicted 
by each packing scheme as a function of dendrite arm spacing. 

 

each packing scheme. As expected, the width of the composition distributions increases 

with dendrite arm spacing. 

 

4.7 Conclusions 

The effect of two velocity-based packing schemes, namely the average velocity 

method (AVM) and the face velocity method (FVM), on the development of 

macrosegregation have been described and compared to the standard constant packing 

fraction model. The different models were implemented in a simulation of cylindrical 

static casting of a commercial aluminum alloy (AA7050). A parametric study was 

performed to investigate the effect of model parameters including the critical solid 
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fraction, the grid size, the free-floating particle size, and the dendrite arm spacing. In 

many cases, the velocity-based models, and particularly the FVM, have a dramatic effect 

on the resulting composition fields. In some cases these effects can be related to the 

range over which solid packs throughout the domain. It is extremely difficult, however, to 

comment on which of the models best represents reality because presently no detailed 

experimental data is available in the literature for validation. Experimental data suitable 

for model validation must measure packing fraction and the composition field in the 

context of the coupled effects of cooling conditions, dendrite morphology, and grain 

refiner additions. 

A further complicating factor is the susceptibility of the present solidification model 

to the appearance of channel segregates. The extreme grid dependence of these defects 

suggests a possible numerical origin, even though similar defects (e.g. A-segregates, 

freckles) have often been observed experimentally. Curiously, the velocity-based 

methods seem less prone to develop compositional instabilities than the constant packing 

fraction approach, particularly for moderate grid sizes. The purpose of CHAPTER 5 is to 

determine whether or not any of these models are an accurate representation of the 

physical system and whether the prediction of channel segregates is a physical 

phenomenon or a numerical artifact.  
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CHAPTER 5. CHANNEL SEGREGATION IN EQUIAXED SOLIDIFICATION 

5.1 Introduction 

In CHAPTER 4, channel segregates were observed in the predicted composition 

fields of equiaxed solidification simulations and were found to exhibit an extreme grid 

dependence. These defects are similar in appearance to freckles that form in columnar 

castings, but no experimental observations support their prediction in equiaxed cases. 

The purpose of this chapter is to more closely investigate the initiation and propagation 

of these channel segregates for the CPF and AVM grain attachment models in order to 

determine the physical relevance of these predictions.  

 

5.2 Initial Simulations: Dependence on Grid Size and Packing Rules 

To begin, the motion of the solidification front, flow patterns, and the development 

of macrosegregation are shown in Figure 5.1 for the CPF model. Solidification proceeds 

inward from the outer radius and upwards from the bottom. Because Zn preferentially 

partitions to the liquid, the first solid to form has the lowest composition in the domain. 

Thermosolutal buoyancy drives natural convection flow in a clockwise direction. The free-

floating solid particles, being denser than the liquid, resist the upward flow at the 

centerline according to Stokes’ law. These solid particles are depleted in Zn relative to the 
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liquid and therefore, when they settle, they deplete the bottom of the cavity relative to 

the transient location of the solidification front. This motion of the solid particles displaces 

comparatively enriched liquid, eventually leaving a region high in Zn at the top of the 

casting. In addition to these general trends in macrosegregation, the presence of channel 

segregates is clearly evident beginning at the outer radius of the casting and propagating 

inwards. 

Figure 5.2 shows final Zn composition profiles for the CPF model at various grid 

sizes. The overall shape of the macrosegregation is not significantly affected by the grid 

size. In all cases, the outer radius and bottom of the casting near the centerline are 

depleted, and the top of the ingot near the centerline is enriched. However, the 

morphology of the channel segregates has an extreme grid dependence. Channels form 

for all grid sizes, but the distance between the channels is on the order of the grid spacing 

in all cases. Additionally, the level of segregation within the channels increases for finer 

grids. 

Figure 5.3 shows the grid refinement results for the AVM packing rules. Again, the 

general shape of the macrosegregation profile is only weakly dependent and is similar to 

the CPF results, but the effect on the channel segregates is surprising. For coarse grids, 

segregates appear on the scale of the grid spacing as expected, but they are more isolated 

and sporadic than those that appear in the CPF model. For the moderate grid size, the 

segregates are almost completely suppressed, but a few reappear at the outer radius in 

the fine grid.
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t=40s t=115s Final 

   

 

Figure 5.1: Zn composition fields and streamlines showing the advancing solidification front and macrosegregation development at 
intermediates times throughout the process. The bold line shows the interface between the slurry and rigid packed region, and the 

light lines are clockwise streamlines from 0.02 to 0.22 kg/s in ∆(𝜌𝜓) = 0.02 kg/s increments. The numerical grid is 80x80 cells.
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40x40 80x80 120x120 

   

 

Figure 5.2: Final Zn composition fields showing the grid dependence of channel segregates predicted with the CPF model.
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This dependence on grid size and packing model, as was previously reported in [81] , 

raises the concern that these types of defects are numerical artifacts without physical 

relevance. These results suggest that there is a combined dependence on the numerical 

length scale and the transition from the slurry region to the rigid dendritic network, but 

in order to confirm these suspicions, the mechanism for channel formation must be more 

closely investigated. If these defects are numerical artifacts without physical relevance, 

then it may be of interest to determine the conditions under which a smooth composition 

field, such as that shown for the 80x80 grid in Figure 5.3, occurs, and whether and how 

the simulation may be appropriately tuned to avoid the development of segregates. 

 

5.3 The Mechanism of Channel Formation 

In an attempt to identify the mechanism by which channel segregates initiate and 

propagate, the CPF model was carefully observed. Because these compositional 

instabilities first appear at the outer radius where solidification begins, this region was 

monitored near the start of the process. A series of contour plots showing the initiation 

of channel segregates is shown in Figure 5.4 for the CPF case with an 80x80 grid. Note 

that the view of these plots is an extreme close-up of the bottom right corner of the 

domain, allowing for observation on a cell-by-cell basis. The contour indicates the Zn 

compositional field, the vectors the solid (not mixture) velocity, and the bold lines 

demarcate the slurry and packed regions. 
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40x40 80x80 120x120 

   

 

Figure 5.3: Final Zn composition fields showing the grid dependence of channel segregates in the AVM packing model.
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    t=2.36 s     t=2.38 s     t=2.50 s     t=2.98 s     t=4.98 s     t=5.24 s 

      

 

Figure 5.4: Initial development of channel segregates at the outer radius at the beginning of the process for the CPF model. The 
contour is the Zn wt. fr., the vectors show the solid velocity, and the black line indicates the interface between the slurry and rigid 

solid regions. 
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At the very beginning of the process, thermally induced natural convection drives 

fluid downward at the outer radius while at the same time, the solid fraction is slowly 

increasing. Equiaxed particles move with a downward velocity slightly larger than the 

liquid (with the difference in velocities dependent on the particle size according to Stokes’ 

law). The compositional field is relatively uniform until the fraction solid in one or more 

of the cells reaches the packing fraction. Some cells will pack such that they jut out into 

the slurry region, such as those shown at 𝑡 = 2.38 𝑠 in Figure 5.4, and disrupt the local 

flow field. These rigid protrusions affect the flow because solid is not able to flow into or 

out of these cells according to the definition of the rigid mushy zone, and because the 

limited permeability of the rigid solid acts as a barrier to flow of the bulk fluid. 

This sudden change in the flow conditions around these rigid protrusions has a 

dramatic effect on the local composition. The depleted solid within the cells is forced to 

remain stationary, but the slight permeability of the cell allows some enriched liquid to 

continue flowing downstream, to be replaced by upstream fluid of a composition nearer 

the nominal. Additionally, because the cell is packed, solid particles from upstream are 

blocked and tend to collect in the upstream cell or are forced to flow around the packed 

cells as seen by the solid velocity vectors in Figure 5.4, especially at 𝑡 = 2.38 s, 2.50 s and 

4.98 s. The result is that the cell downstream from the packed region becomes enriched 

from liquid flowing out of the packed cell while the upstream cell becomes depleted, 

creating a banded composition field that acts as an initiation site for a channel. Once a 

vertical column of control volumes is packed, the mechanism repeats when rigid 



101 

 

1
0

1
 

perturbations jut out from the packed interface into the next column of control volumes 

such as those shown at times 𝑡 = 4.98 s and 𝑡 = 5.24 s. 

Once initiated, channel propagation occurs through coupling of the banded 

composition field with the thermodynamic model, explaining why, in the CPF model, the 

next column of control volumes tends to build on existing channels rather than forming 

new compositional streaks at random positions. An example of propagation is shown in 

detail for the CPF model in Figure 5.5. When neighboring control volume (in the radial 

direction) are enriched or depleted, as shown at 𝑡 = 24.86 s, their liquidus and solidus 

temperatures are changed as well. The liquidus temperature in enriched cells is depressed 

while it is increased in depleted cells. For a given temperature, these changes correspond 

to an increase in solid fraction in depleted cells and decrease in enriched cells. In the CPF 

model, packing is based solely on the solid fraction of the cell of interest, so that the 

depleted cells with a higher solid fraction will become packed sooner, becoming rigid 

perturbations and advancing the channel through the same mechanism discussed above 

(Figure 5.5). 
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                                    t=24.86 s 

 

                t=24.88 s 

  
t=25.00 s 

 

t=25.66 s 

  

t=25.80 s 

 

 

Figure 5.5: Propagation of channel segregates in the CPF model. The color contour is Zn 
wt. fr., the vectors show the solid velocity, and the dark line is the border between the 

rigid mush and the slurry region. 

 

Now that the mechanism for the formation and propagation of these channels is 

understood for the CPF model, it is interesting to investigate further the case of the AVM 

packing model in which channels do not form. The region near the outer wall is shown in 

Figure 5.6 at the beginning of the process for the AVM, again showing the Zn composition 

field, solid velocity vectors, and the border between the slurry and packed regions of the 

domain. Initially, a rigid protrusion forms on the outer wall, seen at 𝑡 = 2.48 𝑠. However, 
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unlike the CPF model, the packing of subsequent cells is not based on the condition of the 

cell itself, but on the condition of the downstream cell. Therefore, it is common for cells 

to pack consecutively upwards due to the primarily downward solid velocity rather than 

forming a series of rigid protrusions. Channels do not form in this case because each cell 

packs in a similar manner relative to its neighbors, affecting the surrounding composition 

field in a similar way, resulting in a mostly smooth segregation pattern. 

Unfortunately, the balance between the velocity field, composition field, and 

packing model is precarious. A slight change in any of a variety of variables can result in 

the formation of rigid protrusions and the reappearance of channels. Changing the grid 

size changes the length of the offset in the packing model, and when coupled with the 

effect of the composition on the local solid fraction field along the direction of the solid 

motion, protrusions may begin to form. This particular case is seen for the both coarser 

and finer grids in Figure 5.3. Changes in the solid fraction and flow fields can also result in 

channel formation. For example, as shown in Figure 5.7, increasing the magnitude of the 

heat transfer coefficient boundary conditions speeds the flow and increases the 

solidification rate. Here, the formation of a channel, as opposed to a smooth composition 

field, can clearly be seen.
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      t=2.82 s       t=2.84 s       t=3.02 s       t=3.42 s       t=4.16 s       t=5.00 s 

      

 

Figure 5.6: Zn composition fields in the AVM showing the initial development of the packed region at cooling wall at beginning of the 
process. 
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     t=0.74 s      t=0.82 s      t=1.92 s      t=2.06 s      t=2.56 s      t=3.68 s      t=5.18 s 

       

 

Figure 5.7: Zn composition fields in the AVM with larger heat transfer coefficients of 2500 W/m2K and 1250 W/m2K at the outer 
radius and bottom, respectively. 
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Figure 5.8 schematically shows a summary of the difference between packing 

sequences that do and do not result in channel segregate initiation and propagation. In 

Figure 5.8a, the rigid protrusions have an effect on the surrounding flow that causes 

enrichment or depletion of the downstream and upstream cells, respectively. These 

compositional differences that occur in the vicinity of the perturbations are frozen in 

place by subsequent packing events and an associated sudden decrease in the 

permeability and limitation in the local solute advection. Compositional differences then 

affect the solid fraction of the next column of cells, where depleted control volumes 

develop into new perturbations, allowing the channel to propagate.  

However, in the packing sequence shown in Figure 5.8b in which the cells pack 

consecutively along the direction of the local fluid flow, the transient velocity field and 

local solutal transport for each cell develops in a similar way as its neighbors. The result 

is a smooth composition field free of channel segregates. But in order to maintain this 

smooth packing sequence, the length scale of the solute transport and its effect on the 

solid fraction field through coupling with the thermodynamic model must balance with 

the grid spacing over which the packing criterion is offset.
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Channel Segregates Smooth Composition Field 

(a) (b) 

Figure 5.8: Comparison of packing sequences that (a) form channel segregates and (b) form a smooth composition field. Shaded cells 
are packed, and arrows indicate the general direction of the flow.
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5.4 The Effect of the Permeability Model 

One interesting consequence of the above proposed mechanism for channel 

formation is that if channels occur due to solutal advection on a cell-to-cell basis at the 

edge of the rigid mush, then the appearance of freckles is a function of any parameter 

that affects flow in these select cells. The most important subset of parameters are those 

that affect the permeability of these cells. If the permeability is high, then advection of 

enriched liquid from the rigid protrusions will occur readily. However, if the permeability 

of these cells is very low, then flow is essentially halted and the compositional differences 

characteristic of channel segregates are not able to form. In addition, the strength of the 

advection is a function of the thermosolutal buoyancy force driving the fluid flow. 

Therefore, channels are most likely to occur in regions where this driving force is high, 

such as near the outer radius where flow is heavily influenced by the heat transfer 

boundary condition. Nearer the center of the casting, the effect of thermal buoyancy is 

reduced and the flow slows, as can be seen by the streamlines in Figure 5.1. Because there 

is variation in the driving force for flow it is expected that channels will appear most 

readily at the outer radius, and become less prominent as the solidification front proceeds 

towards the centerline. Changes in the permeability at the edge of the rigid mush will 

interact with the liquid momentum to produce varying levels of segregation. If the 

proposed mechanism is correct, then a higher permeability in the rigid protrusions will 

cause channel formation nearer the center of the ingot while low permeability will limit 

their appearance to the outer radius only. 
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Two factors that change the permeability at the edge of the packed mush will be 

examined here, both within the CPF model, although the same principles may be applied 

to the velocity-based model as well. The first is the critical solid fraction. Physically, this 

parameter is related to the morphology of the grains. Highly dendritic grains will have a 

lower packing fraction than a globular microstructure. The morphology is subsequently 

affected by a variety of conditions, including alloy composition, solidification rate, and 

grain refiner additions [41–43]. Within the model, the selection of a particular packing 

fraction represents an assumption about the combined effects of these factors. A major 

result of changes in the packing fraction is on the permeability of a control volume when 

it first becomes rigid, determined here by the Blake-Kozeny model. Higher packing 

fractions result in a lower permeability of the cells that form the rigid perturbations that 

initiate channels, meaning that a larger buoyancy driving force is required for significant 

solute advection to occur. The effect of packing fraction on channel segregates is shown 

in Figure 5.9. Clearly, as the packing fraction increases, the reduced permeability at the 

edge of the mush limits the ability of channels to form and propagate. 

Similarly, the permeability is affected by the dendrite arm spacing (𝜆). Increasing 

the DAS increases the permeability of the mush, independent of the packing fraction. 

Results for three 𝜆 values with a packing fraction of 0.15 are shown in Figure 5.10. Again, 

increases in permeability allow channels to develop further from the outer radius of the 

ingot, and for those channels to be more severely segregated. 
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𝑔𝑠,𝑐 = 0.1 𝑔𝑠,𝑐 = 0.2 𝑔𝑠,𝑐 = 0.3 

   

 

Figure 5.9: Final Zn composition fields showing the effect of changing the critical solid fraction in the CPF model.
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𝜆 = 20 𝜇𝑚 𝜆 = 50 𝜇𝑚 𝜆 = 80 𝜇𝑚 

   

 

Figure 5.10: Final Zn composition fields showing the difference in channel propagation as a function of changes in dendrite arm 
spacing (𝜆) for the CPF model.
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5.5 Physical Relevance and the Discrete Nature of the Packing Models 

With an understanding of the mechanism behind predictions of channel formation, 

it is of interest to consider the physical relevance of their appearance in simulations such 

as those described here that utilize a mixture formulation of the governing conservation 

equations. It seems that the mechanism of the initiation and propagation of these 

channels is based on the physical phenomena described by the model. That is, they are a 

function of the permeability and the effect of local composition on the alloy freezing 

range. However, as indicated by the grid dependence (Figure 5.2 and Figure 5.3) and the 

discrete cell-by-cell basis upon which the mechanism for channel formation operates 

(Figure 5.8), the length scale over which these defects occur is set by the numerical grid.  

A similar conclusion was reached for freckle predictions in continuum model of 

columnar solidification [82]. In that situation, channels were initiated by instabilities that 

are due to inaccurate solutions to the governing equations during the iterative solution 

procedure, and which necessarily occur on the length scale of the numerical grid. In that 

case, it was possible to damp the appearance of channels by tightening the convergence 

criterion for the energy equation. Unfortunately, such a solution is not possible in this 

case with free-floating solid. In columnar solidification, the permeability at the edge of 

the mushy zone is treated as a continuous variable and a function of the smooth solid 

fraction field. Therefore, the representation of the solidification front is smooth in that 

each cell has an average solid fraction and average permeability. In the present mixture 

formulation of the governing equations for equiaxed solidification, each cell is treated as 

either packed or unpacked without a continuum of states in between. The interface 
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between the slurry and rigid solid regions is therefore forced to fall on the faces of the 

control volumes, and the shape of the interface is only approximated on the length scale 

of the grid. As seen in this study, such a rough approximation has a dramatic impact on 

the flow field and therefore, the solute advection, causing channel initiation and 

propagation on a cell-to-cell length scale. 

If channel formation is only due to the unnatural approximation of the shape of the 

interface, then a smooth interface might damp the artificial formation of channels. In 

multi-phase models, the transition from free-floating to rigid solid is accomplished 

through a single interfacial drag term that approaches Stokes’ law at low solid fractions 

and the Blake-Kozeny permeability model at high solid fractions [49]. In this case, the 

interface is represented through a continuum of intermediate states, and indeed, 

although this particular problem has not been studied in detail, reported simulations of 

static castings using this method do not exhibit proliferation of extreme channels 

characteristic of the present mixture model [47].  

Understanding of the source of such channel segregates in the context of the 

numerical methods hints at their physical relevance. In actual castings, packing occurs by 

the attachment of each grain onto the rigid interface, consistent with the negligible effect 

of the solid particle interactions (described by the solid viscosity) except at solid fractions 

near the dendrite coherency point.  This attachment mechanism acts on a length scale 

much smaller than that of the numerical grid, both by computational necessity and by the 

nature of the volume averaged governing equations. The averaged nature of these 

simulations is acknowledged in the treatment of the solid fraction field as a continuous 
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variable even though the solid-liquid interface is sharp at the micro-scale. The same 

cannot be said for dendrite coherency because a control volume in the current schemes 

is not allowed to be only partially packed. 

An obvious solution to the problem of these numerical artifacts is to adopt of the 

continuous formulation of the interfacial drag on the solid particles formulated by Wang 

et al.[49]. However, this approach requires significant information about the morphology 

of the equiaxed particles that, in the case of these models, is obtained via numerous 

supplemental relationships and the multi-phase approach. This method is therefore not 

easily implemented in the present mixture model, and use of a multi-phase model would 

increase the computational expense of macrosegregation conditions and the number of 

inputs that are not well known experimentally. It is unclear at this time if the difficulty 

and added expense of implementing such a model produces more physically accurate 

results. An alternative approach would be to change the treatment of the transition from 

free-floating to rigid solid in the context of the mixture model by allowing the source 

terms in the momentum equations to vary continuously within cells that are only partially 

packed rather than forcing these terms to be fully activated or deactivated. Such an 

approach is the subject of CHAPTER 6. 

 

 

5.6 Conclusions 

The present study has examined the appearance of channel segregates in the 

simulation of equiaxed solidification for a cylindrical static casting of aluminum alloy 7050. 
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The model used was based on a mixture formulation of the governing equations for 

conservation of mass, momentum, energy, and species. Two different models for grain 

attachment were implemented, one that assumed that grains packed at a constant and 

uniform volume fraction solid, and another that accounted for the local solid velocity field. 

In both cases, the appearance of channel segregates was found to be extremely grid 

dependent. Interestingly, in the case of the velocity-based packing scheme, channels 

were mostly suppressed for intermediate grid sizes. The mechanism for channel 

formation was examined in detail for both grain attachment schemes, and it was found 

that channels are initiated by the formation of rigid protrusions on the packed interface 

into the neighboring flow field, and the subsequent disruption of the solute advection. 

Channel propagation then occurs through the coupling of the composition field with the 

local solid fraction in the thermodynamic model, and the effect on the permeability of the 

rigid mush. This mechanism was used to explain the effect of the packing fraction and 

dendrite arm spacing on channel appearance. It was concluded that these channels are 

primarily numerical artifacts caused by the discrete nature of the packing models that 

result in unrealistic shapes of the interface between the slurry and rigid mush regions. 

The effect of this unnatural geometry on the flow field is significant, and necessarily 

occurs on the length scale of the numerical grid, explaining the grid dependence of 

channel appearance. 
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CHAPTER 6. A CONTINUUM GRAIN ATTACHMENT MODEL 

 

6.1 Introduction 

At the core of the mechanism for the formation of channel segregation defects in 

equiaxed solidification models as described in CHAPTER 5 is the misrepresentation of the 

shape of the interface between the slurry and rigid solid regions. When this interface is 

forced to fall on the boundary between control volumes, the damping effect of the 

permeability of the rigid solid has a dramatic effect on the local flow field and 

subsequently, on the solute advection. A possible solution to this problem is to break the 

assumption that the solid within a given cell is either completely free-floating or 

completely rigid, and instead, to allow control volumes at the interface to contain both 

states. A continuum attachment model was developed for this purpose as described in 

§2.2.1.3. The basis of the model is that the transition from free-floating to rigid solid is 

smoothed over a range of solid fractions (dictated by the packing range, ∆𝑔𝑠) rather than 

occurring discretely at the critical solid fraction 𝑔𝑠,𝑐. The relative amounts of free-floating 

and rigid solid are described by the packed fraction 𝑃  of a given cell, which varies 

continuously from zero to one as a function of 𝑔𝑠,𝑐  and ∆𝑔𝑠  (Equation (2.19)). The 

weighting function 𝐹 (Equation (2.13)) is then used to control the relevant source terms
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 in the momentum conservation equations. In addition, solid advection at the interface is 

limited according to a simple modification of Stokes’ law (Equation (2.23)). 

The purpose of this chapter is first to explain the rational for the inclusion of a 

weighting function and other choices that were made during the formulation of 

continuum model. Additionally, the effect of the new model parameters (𝑛 and ∆𝑔𝑠) are 

evaluated and the continuum model is compared to the discrete CPF scheme. In particular, 

the effect of the continuum model on the formation of channel segregates is assessed. 

 

6.2 The Sharpness of the Rigid Interface 

One of the underlying assumption used in Vreeman’s [71] implementation of the 

discrete CPF model is that the interface between the slurry and rigid solid regimes is sharp. 

This assumption is strongly supported by rheological measurements in solidifying alloys, 

in which the shear strength of the material increases sharply at the packing fraction [37–

40]. Furthermore, it is consistent with the model used for the viscosity of the solid pseudo-

fluid which exhibits a sharp slope as the solid fraction approaches the critical solid fraction 

(Figure 6.1). This result is particularly true for the more common case of dendritic 

solidification (i.e. relatively small critical solid fraction), although it is still a reasonable 

approximation even for the limiting case of spherical grains (𝑔𝑠,𝑐 = 0.64). The purpose of 

this assumption in Vreeman’s work was to rationalize the use of a representative average 

solid viscosity. Because the solid viscosity becomes significant compared to the liquid 

viscosity only in a very small region (presumably smaller than a control volume), then, it 
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was reasoned, its effect may be considered negligible, and the overall effect of the viscous 

forces between solid and liquid phases in the slurry may be approximated using a 

representative solid viscosity integrated over an arbitrary (i.e. 70%) fraction of the slurry 

region. This approach has the added benefit of eliminating the numerical complication 

that the solid viscosity model approaches infinity as the solid fraction approaches the 

critical solid fraction. 

 

Figure 6.1: A comparison of the solid and liquid viscosities over the solid fraction range 
leading up to the critical solid fraction value. 

 

 

However, there is one additional consequence of this assumption that was not 

considered by Vreeman is his formation of the packing model. If the interface between 
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these two regions is considered sharp on a length scale smaller than the size of a control 

volume, then it is inappropriate to assume that a cell transitions instantaneously from a 

collection of free-floating particles into a rigid solid structure. Instead, control volumes at 

the interface between the regions must be treated as if they contain some amount of 

both conditions. This reasoning explains why the discrete grain attachment models are 

not an accurate representation of the geometry of the rigid interface and the necessity 

for developing an alternative continuum scheme. 

 

6.3 The Need for a Weighting Function 

Next, it is necessary to justify the use of the weighting function. In order to achieve 

a smooth transition between the free-floating and rigid solid states, the relevant source 

terms in the momentum conservation equations must all be active in cells at the interface 

between these two regions. Through the range of solid fractions over which the transition 

occurs, the source terms for the rigid solid are introduced according to the value of the 

weighting function (𝐹 = 𝑃𝑛) while the slurry terms are removed accordingly (1 − 𝐹). The 

natural choice for this transition is a linear weighting of the terms (i.e. 𝑛 = 1). However, 

the source terms involved often differ by several orders of magnitude. To demonstrate 

this, a simple scaling analysis of these terms was performed by considering a simplified 

system and replacing each variable with a representative difference.  

The selected system is Cartesian, with a vertical solidification front. A summary of the 

simplifying assumptions used to ease the evaluation of these expression is given below: 
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1. The system is in Cartesian coordinates. 

2. The solidification front is one-dimensional so that the vertical gradients of the 

fraction solid are equal to zero. 

3. The solid velocity is similar in magnitude to the liquid velocity (the fourth source 

term for the slurry region is equal to zero). 

4. The alloy under consideration is AA7050. 

5. Only the primary alloying element, Zn, is considered in the solutal buoyancy terms. 

 

By applying the above assumptions to Equations (2.9) and (2.10) and scaling the 

differentials, the following order of magnitude approximations are found: 

 

𝑆𝑠𝑙𝑢𝑟𝑟𝑦 ~ 
−𝜇𝑙𝑓𝑠Δu

Δ𝑥2
+

𝜇̅𝑠𝑔𝑠Δu

Δ𝑥2
+ 𝑔𝑠∆𝜌𝑔 − 𝑔𝑠𝜌𝑔[𝛽𝑇,𝑠Δ𝑇 + 𝛽𝑆,𝑠

𝑍𝑛Δ𝐶]

− 𝑔𝑙𝜌𝑔[𝛽𝑇,𝑙Δ𝑇 + 𝛽𝑆,𝑙
𝑍𝑛Δ𝐶], 

(6.1) 

 

and 

 

𝑆𝑟𝑖𝑔𝑖𝑑 ~  −
180𝜇𝑙𝑔𝑠

2

𝜆2(1 − 𝑔𝑠)3
Δ𝑢 − 𝜌𝑔 [𝛽𝑇,𝑙Δ𝑇 + 𝛽𝑆,𝑙

𝑍𝑛Δ𝐶], (6.2) 

 

where Δ𝑢 is a representative velocity difference, Δ𝑥 a representative length scale related 

to the thickness of the transition from the slurry to rigid regions, Δ𝑇 a representative 
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temperature difference, and Δ𝐶 a representative composition difference. The purpose of 

this exercise is to understand the general effect of the weighting function on the relative 

magnitudes of these source terms through the transition region. Therefore, only order of 

magnitude estimates of each of these values are necessary. The values used to evaluate 

these terms are summarized in Table 6.1. 

 

Table 6.1: Summary of values used to evaluate scaled source terms through the slurry to 
rigid transition region. 

Critical Solid Fraction (𝑔𝑠,𝑐) 0.15 

Packing Range (Δ𝑔𝑠) 0.05 

Velocity Difference (Δ𝑢) 1 cm/s 

Transition Thickness (Δ𝑥) 1 cm 

Temperature Difference (Δ𝑇) 10 K 

Composition Difference (∆𝐶) 1 wt.% 

Dendrite Arm Spacing (𝜆) 50 μm 

Density (𝜌) 2500 kg/m3 

Liquid Viscosity (𝜇𝑙) 1.3x10-3 kg/m-s 

Avg. Solid Viscosity (𝜇̅𝑠) 1.6x10-3 kg/m-s 

Solid Coef. Therm. Exp. (𝛽𝑇,𝑠) 1.5x10-5 K-1 

Solid Ceof. Sol. Exp. (𝛽𝑆,𝑠
𝑍𝑛) -0.65 

Liquid Coef. Therm. Exp. (𝛽𝑇,𝑙) 2.3x10-5 K-1 

Liquid Coef. Sol. Exp. (𝛽𝑆,𝑙
𝑍𝑛) -1.43 

 

The two source terms were evaluated across the transition region, and then 

modified by the weighting function in the same way shown in Equation (2.7). The ratio of 

the two terms (multiplied by negative one so that the resulting values are positive) is 

shown in Figure 6.2 for three different values of the weighting exponent, 𝑛. Values of this 

ratio greater than one indicate that the rigid source terms dominate the behavior of the 
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equation, while values less than one mean the slurry terms are larger. For a linear 

weighting function (i.e. 𝑛 = 1), the slurry terms are prominent only near values of 𝑃 close 

to zero, but the ratio quickly becomes much larger than one. For small values of 𝑛, the 

behavior of cell is within the rigid region almost instantaneously upon entering the 

transition region. With increasing values of 𝑛, the rigid behavior is damped at lower values 

of 𝑃 and the cell will act more as a mixture of rigid and free-floating solid. 

 

 

Figure 6.2: Scaled comparison of the orders of magnitude of the weighted source terms 
for the slurry and rigid regions through the packing range for the axial momentum 

equation with various values of the weighting function exponent. 
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Based on the data in Figure 6.2, it is clear that changing the weighting function 

exponent is an effective method of tuning the behavior of the transition between free-

floating and rigid solid grains. However, it is difficult to determine what value of 𝑛 yields 

the most realistic results. Instead, a range of values will be investigated and the 

differences between them discussed. It must be noted that the necessary drawback in 

adding additional details to any model such as that described here is the increased input 

uncertainty in any new input parameters. The uncertainty added to the model by the new 

parameter (𝑛  and ∆𝑔𝑠 ) will be quantified in CHAPTER 7. This complication, however, 

supports the use of a power-law form of the weighting function which provides a simple 

way of tuning the behavior of the system with the introduction of only a single new 

parameter.  

 

6.4 Macrosegregation Development and Grid Dependence 

Before examining the effect of the packing range and the weighting exponent, the 

overall macrosegregation development in the continuum model and its grid dependence 

is compared to the discrete CPF model for a linear weighting of the source terms. The Zn 

composition field, flow field, and rigid solid front position are shown for both the CPF and 

continuum attachment models in Figure 6.3. In both cases, the general shape of the final 

composition field is similar, and its development occurs in a comparable manner. The 

solidification front proceeds inward from the outer radius and upward from the bottom 

of the cavity. The combined driving forces of thermal and solutal buoyancy generate a 
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clockwise flow cell. The partition coefficient for Zn (and the other major alloying elements) 

in this alloy system is less than one, meaning that solid initially forms at a composition 

depleted relative to the nominal, and solute is rejected into the liquid. The first solid to 

form at the outer radius quickly become rigid. There is some permeability to the rigid 

structure, and some of the associated enriched liquid is advected away, driven by its 

thermosolutal buoyancy, to be replaced by fresh liquid from upstream nearer the nominal 

composition. The overall result is that the lowest composition in the domain, in all cases, 

is the first solid to attach to the vertical wall at the outer radius. As solidification continues, 

new depleted solid particles form near the rigid interface and are advected downward at 

a velocity slightly larger than that of the liquid as described by Stokes’ law. The solid 

particles, however, resist the upward flow at the centerline of the cavity, resulting in a 

depleted region here near the bottom of the domain. The settling motion of the solid 

particles displaces the associated enriched liquid, causing an enriched region to form at 

the top of the domain.  

There are, however, some marked differences between the two models. One of the 

primary effects of the range of solid fractions over which the continuum model transitions 

from free-floating to rigid solid is a gradual introduction of the permeability source term 

which acts to damp the flow. Therefore, the flow cell in the continuum model is slightly 

weaker than that of the discrete model. This gradual slowing of the solid also has an effect 

on the composition field. As the particles flow down the vertical solidification front they 

are slowed and tend to collect at the corner in the bottom right of the slurry region. The 

associated enriched liquid, however, continues to move through the permeable solid. The 
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result is a depleted region that extends upwards and inwards from the bottom right 

corner of the domain with a neighboring enriched region that runs in parallel. Generally, 

the flow of enriched liquid through the relatively permeable solid in the regions near the 

bottom of the packing range is an effect that does not exist in the discrete model and 

accounts for much of the difference in the composition fields. This effect allows for more 

enriched liquid to flow from the edge of the mush into the bulk fluid, as is clearly 

evidenced by the greater enrichment of the slurry and liquid regions through the process 

in Figure 6.3. 

While the subtle effects of the continuum attachment model on the general shape 

of the composition field are of interest, the most notable difference from the discrete 

packing model is the absence of channel segregate defects. As described in CHAPTER 5, 

these defects are primarily a numerical artifact. It was concluded that the mechanism 

behind their formation was the unnatural representation of the interface between the 

rigid and slurry regions in the discrete models because it was forced to fall on the 

boundaries between control volumes, and the extreme effect of the difference in 

permeability on either side of the interface on the fluid flow and subsequent solute 

advection. Part of the motivation for developing the continuum model was to improve 

the representation of this interface, and from Figure 6.3, it appears that this change has 

a dramatic effect on the formation of these channels. 
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Figure 6.3: Zn compositions fields at intermediate times during the process for the discrete and continuous packing models. The dark 
line shows the interpolated 𝑃 = 0.5 interface, and the lighter lines are streamlines varying from 0.02 to 0.22 kg/s in 0.02 kg/s 

increments. Simulations were performed with an 80x80 numerical grid.
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Next, it is important to determine whether the suppression of channel segregates 

is grid dependent, and overall, whether the grid dependence of the continuum model is 

an improvement over the discrete model. A grid study is shown in Figure 6.4 for both 

model types. First, it is apparent that the continuum attachment model maintains a 

comparatively smooth composition field throughout the range of grid sizes studied, 

although some sites of instability are seen for the finest grid. On the other hand, the 

channel segregates in the discrete model are severe in all cases, and their spacing is very 

grid dependent. The advantage of the continuum model then, is that refinement of the 

grid appears to add more detail to the composition field without also generating 

additional numerical artifacts that obscure the solution. This conclusion can be supported 

by examining the normalized Weibull deviation over a range of grid sizes, as shown in 

Figure 6.5. Here, the results of both model types share similar trends, but the continuum 

model is clearly much less sensitive to change in the grid. The remaining results in this 

study were produced using an 80x80 numerical grid. 
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Figure 6.4: Comparison of the grid dependence of the final Zn composition field for the discrete and continuous grain attachment 
models.
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Figure 6.5: The normalized Weibull deviation for the final Zn composition field for the 
discrete and continuum attachment models as a function of the number of numerical 

cells.  

 

6.5 The Effect of the Weighting Function Exponent 

In the above results, only a linear weighting function (𝑛 = 1) was used. In this case, 

the weighting function is simply equal to the packed fraction. However, as shown in 

Section 6.3, other values of 𝑛 may more accurately represent the transition from free-

floating to rigid solid. One complication of using weighting exponents other than unity is 

the calculation of the solid velocity using Stokes’ law. In Equation (2.23), the solid velocity 

across the boundary between two cells is multiplied by 1 − 𝑃, where 𝑃 is the packed 

fraction at the control volume interface. However, it is also possible that using the 

weighting function (i.e. 1 − 𝐹 instead of 1 − 𝑃) is the appropriate multiplier of Stokes’ 
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law. To this point, using a linear weighting function has made this choice immaterial 

because the weighting function is simply equal to the packing fraction. However, if 

exponents other than one are to be used, the effect of using either of these modification 

must be evaluated. 

To begin with, Stokes’ law was changed to be modified by the weighting function, 

and various values of the weighting exponent were tested. The final Zn composition fields 

for these cases are shown in Figure 6.6. For small values of 𝑛, this approach begins to 

produce channel segregates similar to those in the discrete attachment model. This effect 

is because at small values of n, the solid velocity quickly approach zero near the low end 

of the packing range, returning to the sudden transition between slurry and rigid states 

that is characteristic of the discrete model.  

Interestingly, for large values of 𝑛, the segregation near the outer radius begins to 

reverse from being primarily depleted to enriched. The reason for this change in 

segregation pattern is the effect of the weighting function on the relative solid and liquid 

velocities. The permeability term in the momentum equations quickly becomes large 

even for relative high values of 𝑛. On the other hand, Stokes’ law is affected in a much 

more direct manner. The result is that for large values of 𝑛, in regions near the edge of 

the mush, the restraining effect of the permeability terms actually causes the liquid to 

move more slowly than the solid. Essentially, enriched liquid is immobilized at the outer 

radius while the depleted solid is advected away. This situation is obviously not physically 

realistic because it is essentially acting as if the liquid is becoming rigid rather than the 

solid.
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n=0.1 n=0.5 n=0.75 

   
n=2 n=5 n=10 

   

 

Figure 6.6: The effect on the final Zn composition field of changing the weighting function exponent when Stokes’ law is multiplied 
by 1 − 𝐹. 
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 If instead, the packed fraction is used to modify Stokes’ law, then the effect of the 

weighting exponent is as shown in Figure 6.7. In this case, the level of packing within a 

given control volume has a direct relationship with the flow rate of solid in and out of that 

cell. This approach is more physically meaningful on a conceptual level. For example, if a 

cell is half packed, then across a given boundary, the flow rate of solid will be half of that 

if the cell was unpacked. Using the weighting function for Stokes’ law would, in this case, 

predict too low of a flow rate for weighting exponents less than one, and too high of a 

flow rate for exponents greater than one. The result of using the packed fraction in Stokes’ 

law is clear in Figure 6.7, in that the changes in the weighting exponent do not change the 

shape of the composition field, but only the magnitude of the segregation. Changes in the 

level of segregation are easily explained by the relationship of the weighting function to 

the permeability term. For large values of 𝑛, the permeability term is damped near the 

lower end of the packing range, allowing a greater amount of enriched liquid to flow out 

of the edge of the mush. Decreasing the value of 𝑛 causes this flow to be more quickly 

cut off, reducing the relative motion of solid and liquid that causes macrosegregation. 

Lastly, this approach has one more obvious advantage over the use of the weighting 

function in Stokes’ law in that channel segregates do not begin to form at small values of 

𝑛. 
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n=0.1 n=0.5 n=0.75 

   
n=1.5 n=2 n=2.5 

   

 

Figure 6.7: The effect on the final Zn composition field of changing the weighting function exponent when Stokes’ law is modified by 
1 − 𝑃.



134 

 

1
3

4
 

The effect of the weighting exponent on the normalized Weibull deviation for both 

versions of Stokes’ law are shown in Figure 6.8. When the weighting function is used, the 

two segregation regimes are clearly visible with a transition region between them. For 

small values of the weighting exponent, the system acts similar to the discrete model with 

a critical solid fraction value near the bottom end of the packing range, and in these cases, 

the segregation is significantly impacted by the presence of channel segregates. At higher 

exponent values, the macrosegregation is dominated by the motion of solid particles, 

while the liquid is (erroneously) restricted by the permeability terms in the momentum 

equations. For exponent values near unity, there is a transition between these two 

behaviors. When the packed fraction is used in Stokes’ law, the solid velocity is always 

affected similarly over the packing range, but changes in the weighting exponent adjust 

how strongly the permeability of the solid affects the fluid flow. Basically, low values of 

the exponent increase the effect of the permeability of the mush, while large values 

reduce this effect. 
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Figure 6.8: The effect of the weighting function exponent on the normalized Weibull 
deviation for the final Zn composition field for each of the possibilities for weighting 

Stokes’ law. 

 

 

6.6 The Effect of the Weighting Range 

The other parameter introduced in the continuum model is the range of solid 

fractions over which the weighting function is applied, ∆𝑔𝑠. A larger value will result in a 

more gradual transition between the free-floating and rigid solid states, while it is 

expected that very small values will begin to approach the discrete model in which the 
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transition occurs very suddenly. These results are confirmed by the final Zn composition 

profiles shown in Figure 6.9. For a small packing range of 0.01, the channel segregates 

that are characteristic of the discrete model begin to reappear. 

 

∆𝑔𝑠 = 0.01 ∆𝑔𝑠 = 0.09 

  

 

Figure 6.9: The effect of changing the range of volume fraction solid values over which 
the weighting function is applied on the final Zn composition field. 

 

 For larger ranges, the composition field is significantly smoother. For a given 

critical solid fraction, 𝑔𝑠,𝑐, it is expected that larger packing ranges will damp the flow via 

increases in the magnitude of the permeability term in the momentum conservation 

equations over a larger portion of the domain. The result of this increased damping of the 

flow is an overall weaker flow cell, a reduction in solute advection, and therefore, 

generally less macrosegregation. These results are shown in Figure 6.10 for the 

normalized Weibull deviation of the final Zn composition fields as a function of the 
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packing range for a constant critical solid fraction of 𝑔𝑠,𝑐 = 0.15. Clearly the general trend 

is a decrease in segregation with packing range. The appearance of channel segregates 

also contributes to the spike in these values for small packing ranges. 

 

 

Figure 6.10: The effect of changes in the weighting range on the normalized Weibull 
deviation for the final Zn composition field. 

 

 

6.7 Conclusions 

In CHAPTER 5, the discrete nature of packing criteria in numerical simulations of 

equiaxed solidification had been identified as a fundamental mechanism causing 
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numerical artifacts in fluid flow and macrosegregation predictions. The present work 

introduced a continuum grain attachment model in an attempt to suppress these 

numerical artifacts, and was largely successful in doing so. Previous models had assumed 

that each cell in the numerical domain contained solid that was either fully free-floating 

or fully rigid, an assumption that lead to a poor prediction of the shape of the interface 

between the two regions and dramatic effects on the fluid flow and solute advection. The 

present model allows cells to be partially packed by treating the packing criterion as a 

continuum over a finite range of solid volume fractions. The core of this approach is to 

use a weighting function to control the relative magnitudes of the source terms in the 

momentum conservation equations. The flow of solid is also adjusted throughout the 

packing range via a simple modification to Stokes’ law. This approach has successfully 

suppressed the formation of erroneous channel segregates to produce smooth 

composition fields.  

There are two main disadvantages to the new model. The first is that the form of the 

weighting function in this case was assumed to be a power-law relationship with the 

packed fraction within a given control volume. This choice allows for significant flexibility 

through the choice of the weighting exponent, but it is unclear if other forms of the 

weighting function might yield more realistic results. Second, by introducing parameters 

that control the weighting function (in this case, the weighting exponent 𝑛 and the range 

of solid fractions over which the model is applied, ∆𝑔𝑠) uncertainty in the values of these 

parameters is also introduced to the model. In CHAPTER 7, the CPF, AVM and continuum 

attachment models will be compared in the context of the uncertainty of the model inputs.  
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CHAPTER 7. QUANTIFICATION OF EPISTEMIC UNCERTAINTY IN GRAIN ATTACHMENT 
MODELS FOR EQUIAXED SOLIDIFICATION 

 

7.1 Introduction 

Based on the work presented in the preceding chapters, there are now several 

choices of possible grain attachment models that may be used for simulating equiaxed 

solidification using the mixture formulation: constant packing fraction, velocity based, 

and continuum. While results thus far have demonstrated the differences in these models 

for a relatively small set of cases, it is unclear whether these models actually make 

different predictions over a wider range of inputs, and if they do make different 

predictions, if any one model is more physically realistic than the others. This type of 

uncertainty is referred to as epistemic, or reducible, in that improved knowledge of the 

physical system through careful experimentation would theoretically enable 

determination of which model is the most accurate. Unfortunately, such validation data 

is not presently available. Moreover, the uncertainty in which attachment model to select 

is complicated by the uncertain nature of other model inputs. Essentially, the predictions 

from one model may not be significantly different from another when taken in the context 

of uncertainty in input parameters, including the dendrite arm spacing, critical solid 

fraction, free-floating particle size, material properties, and boundary conditions.
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Here, three grain attachment models (CPF, AVM, and continuum) will be compared 

by obtaining output distributions for each and quantifying the likelihood that a given 

output will be the same for the different models. If these models produce largely similar 

results, then the focus of future research must be on obtaining more accurate input data 

or other model improvements that narrow the output uncertainty bands, or, if the level 

of uncertainty is acceptable, then the model that is most convenient from a numerical 

perspective may be selected. If, however, the models produce very different results, then 

emphasis should be put on obtaining validation data to support the selection of one 

model over another. 

To this end, this chapter has two main objectives related to the epistemic 

uncertainty of the grain attachment models. First, what is the magnitude of the effect of 

the velocity field on macrosegregation predictions? If the constant packing fraction and 

velocity-based models produce the same outputs, then the inclusion of the solid velocity 

field in the packing criteria may be safely neglected. Otherwise, it is implied that the 

velocity field has a significant effect on grain attachment and the resulting 

macrosegregation, and the velocity-based model should be compared to corresponding 

validation data. Second, does the continuum packing model produce different results 

than the constant packing fraction model? (The continuum packing model is not 

compared to the velocity based model in this case because the continuum approach is 

not intended to account for the velocity field.) There are several interesting components 

of this objective. First, the continuum scheme is not intended to produce significantly 

different results from the constant packing fraction model, only to eliminate unwanted 
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numerical artifacts. Therefore, it is of interest if the outputs are also changed significantly 

as a result. Second, what is the effect of the new parameters introduced with the 

continuum model that do not apply to the discrete models? If the model is very sensitive 

to these parameters, then the overall distribution of the outputs may widen significantly, 

representing a need for new information about the appropriate values of these 

parameters.  

This chapter will begin by describing the methods used for uncertainty 

quantification. A preliminary analysis of the three models will be performed using 

uncertainties in a wide variety of model inputs to identify those that are the most 

important. Using this information, the computational expense of the uncertainty analysis 

will be improved by limiting the input uncertainties to only those parameters to which 

the models are the most sensitive. 

 

7.2 Description of Uncertainty Quantification 

The PRISM center at Purdue University developed the PRISM Uncertainty 

Quantification (PUQ) [63] framework as an alternative to direct Monte Carlo sampling for 

propagating uncertainty in computationally expensive models. PUQ uses the Smolyak 

sparse grid algorithm to select a comparatively small number of model configurations 

from the input probability distributions and fits Legendre polynomials to the resulting 

outputs using generalized polynomial chaos (gPC). The number of data points in the 

sparse grid correspond to the order of the polynomial response function. A level 1 sparse 

grid fits a linear function for each of the input parameters, a level 2 fits a quadratic 
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function, etc. The quality of fit of the response surface to the model data is quantified 

using the root mean squared error (RMSE). Latin hypercube sampling of the response 

surface is used to construct the output probability distribution function (PDF). The first 

advantage of this approach is that it is non-intrusive, in that it does not require any 

changes in the underlying simulation in order to propagate uncertainty through the model. 

The second is a considerable savings in computation time because the model need only 

be evaluated at selected points based on the sparse grid algorithm and the sampling 

required for construction of the output distribution is performed exclusively on the 

inexpensive surrogate model. 

The primary results from the uncertainty quantification are the probability 

distribution of output parameters and the sensitivities of the outputs to each of the inputs. 

The output PDFs are calculated by sampling from the response surface. The sensitivities 

are calculated using the elementary effects method [83,84]. In this approach, an 

elementary effect is the partial derivative of the output of interest with respect to a 

particular input as calculated between a neighboring pair of points in the sparse grid. The 

mean sensitivity, 𝑢∗, is non-dimensional (normalized by the PDF range for the input in 

question to allow comparisons between inputs), positive, and calculated using an 

arithmetic average of the associated elementary effects. Any higher order effects caused 

by a non-linear output relative to that input, or interacting effects with other inputs, are 

characterized by the standard deviation of the elementary effects, 𝜎∗. For 𝑘 neighboring 

pairs of points for a given input (with all other inputs being held constant), the mean 

sensitivity may be expressed as 
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𝑢∗ =
∆𝑥𝑖𝑛𝑝𝑢𝑡

𝑘
∑|

∆𝑦𝑖

∆𝑥𝑖
|

𝑘

𝑖=1

 (7.1) 

 

where ∆𝑥𝑖𝑛𝑝𝑢𝑡 is the normalizing range for the input probability distribution of interest 

(equal to 6.15 times the standard deviation for a Gaussian distribution), ∆𝑦𝑖  the 

difference in outputs for the 𝑖th pair of points, and ∆𝑥𝑖 the difference in the input variable 

for the 𝑖 th pair of points. Note that these point are taken directly from the model 

solutions on the sparse grid and therefore, the sensitivity results are independent of the 

fitted surrogate model. 

For this study, it is of interest to quantitatively compare the output distributions of 

the various grain attachment models. To do so, the Bhattacharyya coefficient will be used 

to describe the amount of overlap between two output distributions. For two continuous 

distributions p and q, both with respect to an output variable x, it is defined as: 

 

𝐵𝐶(𝑝, 𝑞) = ∫ √𝑝(𝑥)𝑞(𝑥) 𝑑𝑥
∞

−∞

 (7.2) 

 

The coefficient varies from zero to one, in which a value of one indicates two 

identical distributions, and a value of zero two distribution that do not overlap at all. The 

output distributions in the present study are not continuous since they consist of discrete 

bins of data. Additionally, these bins are not of equal size or location between different 



144 

 

1
4

4
 

distributions. As a result, Equation (7.2) is calculated by numerical integration over the 

two distributions, using a step size much smaller than either bin size and representing 

each bin as a constant value over its width. 

This discussion of uncertainty quantification so far applies generally to any output 

of interest. To make the analysis specific to macrosegregation necessitates some metric 

to describe the composition field. Here, the normalized Weibull deviation of the final Zn 

composition fields for AA7050, as described in §2.5, will be used. 

 

7.3 Initial Uncertainty Quantification 

The mean case used for this uncertainty analysis is the same as presented in Figure 

2.4 using the properties for AA7050 given in Table 2.1. The responses of the three models 

(CPF, AVM and continuum) for this case with an 80x80 numerical grid are shown in Figure 

7.1. For the continuum model, a weighting exponent of unity and a packing range of 0.05 

are shown. In all cases, because the partition coefficient for Zn is less than one (true for 

the three main alloying elements), the first solid to form at the outer radius is depleted. 

Thermosolutal buoyancy drives a flow cell that develops in a clockwise direction. The 

magnitude of the flow is similar for the CPF and AVM schemes, but slightly slower for the 

continuum model due to a gradual introduction of the permeability term at solid fractions 

below gs,c. As the rigid solid advances upwards and to the left, the flow carries enriched 

liquid from the rigid interface into the bulk, replaced by liquid from upstream nearer the 

nominal composition. Solid is also advected in the flow cell, but the downward buoyancy 

of the dense solid particles resists the upward flow at the centerline, resulting in a 
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depleted region caused by particle settling. This solid motion displaces an associated 

amount of enriched liquid, which eventually collects at the top of the domain and 

becomes the last solid to freeze. 

The general trends in the final composition fields are largely similar for the three 

attachment models. The largest differences are in the channel segregates that tend to 

form near the outer radius. These channels are the most severe in the CPF model. They 

are suppressed for this particular case in the AVM model, but as demonstrated in 

CHAPTER 5, tend to reappear for different grid sizes or changes in boundary conditions. 

The continuum model, as discussed in CHAPTER 6, mostly suppresses these channels over 

a wide range of conditions. 

In order to use PUQ to compare the grain attachment models, some decisions must 

be made on the inputs of interest and their probability distributions. Because the 

differences between the grain attachment models are the main concern of this study, 

inputs that directly relate to grain attachment are of the greatest interest. However, 

differences between the grain attachment models are negligible if uncertainties in the 

material properties and boundary conditions affect the result much more than the 

attachment models do. Unfortunately, the solidification model is too computationally 

expensive to consider a large number of parameters at once, due to an increase in the 

number of data points required by the sparse grid algorithm. Therefore, the best 

approach is to first use a low level uncertainty analysis to determine the importance of 

the grain attachment inputs relative to material properties and boundary conditions, and 

then to reduce the number of inputs in order to perform higher level analyses. 
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Figure 7.1: Zn composition fields at intermediate times during the process for the 
discrete and continuous packing models. The dark line shows the interpolated P=0.5 
interface, and the lighter lines are streamlines varying from 0.02 to 0.22 kg/s in 0.02 

kg/s increments. Simulations were performed with an 80x80 numerical grid.
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Normal distributions were chosen to represent all of the inputs because they only 

require two parameters (mean and standard deviation) and using mean values equal to 

those given in Table 2.1 and Figure 2.4 means that the most probable outcome is that 

shown in Figure 7.1. The inputs that will be considered for level one analysis and the 

parameters of their probability distributions are given in Table 7.1, divided into categories 

for grain attachment, material properties, and boundary conditions. The primary inputs 

that affect solid motion and grain attachment are the packing fraction, the average 

particle size, and the dendrite arm spacing. These parameters are assumed uniform and 

constant throughout the domain, but due to local difference in cooling conditions, 

composition, and the number and size of grain refiner particles, in reality, they may vary 

widely. Therefore, fairly large standard deviations were selected for these input 

distributions (Table 7.1). The material properties and boundary conditions, while not 

known with complete accuracy, do not vary throughout the domain. Therefore a 

somewhat arbitrary choice was made to give these inputs standard deviations equal to 

five percent of the mean value. The probability distributions for each input parameter are 

summarized in Table 7.1. For the purposes of this analysis, the weighting range and 

weighting exponent for the continuum model are assumed constant, where 𝑛 = 1 and 

∆𝑔𝑠 = 0.05. 
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Table 7.1: Input probability distribution parameters. 

Variable Type Input Variable 
Distribution Parameters 

Mean Std. Dev. 

Attachment 
Model 

gs,c (CPF and Cont.) 0.15 0.0375 

gs,c (AVM) 0.175 0.04375 

d (μm) 30 5 

λ (μm) 50 10 

Material 
Properties 

ks (W/m K) 149.4 7.47 

kl (W/m K) 83.2 4.16 

cp (J/kg K) 1141 57.05 

ρ (kg/m3) 2515 125.75 

Δρ (kg/m3) -229.1 11.45 

μ (Pa-s) 1.3x10-3 6.5x10-5 

Lf (J/kg) 3.75x105 1.88x104 

βT (K-1) 1.5x10-4 8x10-6 

Boundary 
Conditions 

hR (W/m2) 1000 50 

hB (W/m2) 500 25 

 

 

Due to the computational expense of using so many input uncertainty 

distributions, only a level one analysis was used, corresponding to linear response 

functions with respect to each input. The resulting sensitivities for each attachment 

model are shown in Figure 7.2 where the height of the bars represent the mean 

elementary effect of the normalized Weibull deviation for the final Zn composition field 

with respect to a given input, and the error bars indicate the standard deviation of the 

elementary effects. Based on these results for all three attachment schemes, the 

sensitivity of the simulations to parameters that directly influence free-floating solid and 

grain attachment are comparable or much greater than to the material properties and 

boundary conditions. For subsequent analysis, in order to reduce the number of model 

evaluations for higher order response surfaces, the material properties and boundary 
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conditions will be assumed constant, and only the input uncertainties for the packing 

fraction, particle size, and dendrite arm spacing will be used. 

 

7.4 Uncertainty Quantification of the Discrete Attachment Models 

The first comparison of interest is between the two discrete grain attachment 

models. The purpose of the AVM scheme proposed by Vusanovic and Krane [58] was to 

include the effect of the local velocity field on the likelihood of free-floating grains 

attaching to the rigid solid interface. However, it is of interest to determine how much of 

a difference the inclusion of this effect actually has on the macrosegregation prediction. 

If the solutions are very different, then it must be determined which one more accurately 

reflects the physical system. If they are largely the same (for some set of input 

uncertainties), then one model might be selected over another for other considerations, 

such as numerical stability or computational expense. 

By reducing the number of inputs to only those directly affecting the grain attachment 

model (packing fraction, particle size, and dendrite arm spacing), the uncertainty analysis 

was able to be increased to level three, significantly reducing the error in the fit of the 

response surface to the model data points collected from the sparse grid. The resulting 

probability distribution functions for the normalized Weibull deviation of the final Zn 

composition fields are shown in Figure 7.3. The two models have slightly different mean 

values (10.5 × 10−3 for the CPF model and 8.94 × 10−3 for the AVM) but mostly overlap. 

The Bhattacharyya coefficient for these two distributions is 𝐵𝐶 = 0.871. 
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Figure 7.2: Sensitivities from the level 1 analysis of the three attachment schemes for the input distributions given in Table 7.1. 
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Figure 7.3: Level 3 analysis of the CPF and AVM models for input ranges in the 
attachment model parameters. The RMSE for the CPF model is 5.58% and for the AVM 

model is 5.13%. 

 

Considering that these two attachment models yield mostly the same results for 

the given input uncertainties, an interesting question is with what level of certainty must 

these inputs be known in order for the differences in the attachment models to become 

significant? To address this question, the standard deviations of the input distributions 

were multiplied by factors less than one, and the overlap in the output distributions were 

monitored as the input uncertainties were decreased. The Bhattacharyya coefficient 

(measuring the amount of overlap between the distributions) as a function of the 

standard deviation multiplier is shown in Figure 7.4 along with examples of the output 

PDFs at selected points. As expected, when the input uncertainties are decreased, the 

overlap between the output PDFs also decreases. When the input standard deviations 
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reach one tenth of the values given in Table 7.1, there is no overlap between the output 

distributions. The consequence of this analysis is that, if the uncertainty in the outputs do 

not achieve some level of accuracy in which they do not significantly overlap, then they 

may be said to produce essentially the same results. In this case, selection of one model 

over the other can be based on concerns such as ease of implementation or numerical 

efficiency, rather than on physical accuracy. However, if this is not the case and the two 

models are significantly different, then one must be selected over another based on their 

physical relevance. 

A more traditional manner of comparing the results of the two discrete 

attachment models is by comparing the means and standard deviations of the output 

distributions as a function of the input deviation multiplier (Figure 7.5). As the level of 

input uncertainty is reduced, the mean output values of the models (particularly the AVM 

scheme) change some, but more significantly, the standard deviations become much 

smaller as the input uncertainty is reduced. This manner of representing the data is a 

convenient way to compare to experiments that have their own set of error bars. 
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Figure 7.4: The Bhattacharyya coefficient comparing the CPF and AVM schemes as a function of the width of the input uncertainty 
distributions and insets showing the output probability distribution functions for the normalized Weibull deviation for the final Zn 

composition fields for three different input uncertainty levels.
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Figure 7.5: The mean and standard deviation of the normalized Weibull deviation for the 
CPF and AVM attachment models at various uncertainty levels. 

 

There are essentially three different sources of the output uncertainty shown in 

Figure 7.3 through Figure 7.5. The first is the lack of knowledge of the appropriate values 

of the critical solid fraction, dendrite arm spacing, and particle size. This source of error is 

significant, but reducible through improved experimentation. Second, any 

experimentation used to determine these inputs contains irreducible error in the 

limitations of the measurement technique, generally referred to as aleatoric uncertainty. 

The last type of error is related to the model limitations in that both the CPF and 

AVM schemes assume that the these inputs are constant and uniform over the domain. 

However, the critical fraction solid and dendrite arm spacing are related to the grain 
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morphology which is subsequently a function of the local cooling conditions, solute field, 

and details of the grain refiner additions. The particle size is a representative average, but 

in reality, the free-floating grains nucleate at some size and then grow over time, resulting 

in a time-varying distribution of sizes over the domain. If these spatial distributions are 

well known before hand, then it is a simple extension of the model to allow these inputs 

to vary over the domain. However, using new sub-models to predict these distributions 

represents a significant effort and will introduce new input parameters that must then be 

determined in some way. The effort required to add new physical phenomena to the 

model begs the question as to whether it will really improve the macrosegregation 

predictions. Thankfully, uncertainty quantification allows for this determination before 

expending the effort. Appropriate experiments will allow for the determination of the 

spatial variation among these parameters for a particular situation. Using these 

distributions as input uncertainties will yield some level of output uncertainty. If the level 

of output uncertainty is still too high, then this result is motivation to add new physics to 

the model. If the output uncertainty is within a tolerable limit, then the model may be 

used in its present condition. 

 

7.5 Comparison of Continuum and Discrete Attachment Models 

The other model comparison of interest is between the CPF and continuum 

attachment schemes. The primary question to be answered here how the continuum 

model changes the macrosegregation predictions relative to the related discrete model. 

(In this case, the best comparison is not with the AVM scheme because the continuum 
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model is not intended to account for the local velocity field.) The intention of the 

continuum attachment model is to reduce the occurrence of numerical artifacts that 

appear in the discrete models due to the effect of inaccurate geometric representations 

of the rigid solid interface on the local velocity field and solute advection. In doing so, 

however, the continuum model may have also significantly changed the overall 

macrosegregation prediction. If this is in fact the case, then experimental validation data 

is required to show that the continuum model is more physically accurate. However, if 

the results of the two models are largely similar, then the continuum model may be used 

freely in place of the CPF model and the benefits of limiting numerical artifacts gained.  

Another concern, however, is that there is uncertainty in the model parameters that 

were introduced with the continuum scheme that do not apply to the discrete attachment 

models, namely the weighting exponent and packing range. Two interesting problems 

arise from this complication. The first is that, in the absence of robust experimental 

validation data (to which those parameters might be calibrated) it is of interest to 

determine what input values yield the closest predictions to the CPF model, allowing a 

fair comparison of the effects of the other various inputs. The second is determining the 

sensitivity of the model to these new input parameters. If the model is very sensitive to 

them, then their calibration to experimental results (or the development of a new packing 

scheme) becomes a priority. If, however, the model is not overly sensitive to these 

parameters, then less precise knowledge of their values is acceptable. 

The first task is to determine the values of the weighting exponent and packing 

range that yield output distributions with the greatest similarity to the CPF model. This 
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goal can be accomplished by holding one of the inputs constant while the other is varied 

(though with zero input uncertainty) and then comparing the output distribution 

functions against the CPF model. First, the weighting exponent is varied while the 

weighting range is held constant (∆𝑔𝑠 = 0.05). An example of three resulting distributions 

is shown in Figure 7.6, compared against the CPF model. For small values of the weighting 

exponent, the permeability term in the momentum equations is introduced quickly once 

the fraction solid of a cell crosses the threshold into the weighting range. The effect of 

the permeability term is to damp the flow at the edge of the rigid mush, effectively 

reducing the relative motion of solid and liquid of differing compositions and reducing the 

overall macrosegregation. High values of the weighting exponent introduce the 

permeability term slowly, tending to allow more flow at the rigid interface and increasing 

the macrosegregation. These trends are reflected in the distributions shown in Figure 7.6 

which causes higher Weibull deviations with larger exponent values, while generally 

remaining similar in shape and width. Interestingly, the effect of 𝑛 is to translate the 

output probability distribution function for the normalized Weibull deviation without 

changing its width. 
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Figure 7.6: Examples of continuum model output distributions for the normalized 
Weibull deviation for Zn for three different weighting exponent values, compared to the 

output distribution for the CPF model. 

 

The effect of the weighting exponent relative to the CPF model can also be 

determined by plotting the mean and standard deviation of the Weibull deviation 

distributions against that of the CPF model and by calculating the Bhattacharyya 

coefficient between the continuum Weibull deviation distributions and the output of the 

CPF model. The results of both approaches are shown in Figure 7.7. Again, as the 

weighting exponent is increased, the mean of the Weibull deviation increases as well, 

although the standard deviation of the distribution stays relatively constant regardless of 

the exponent value. Figure 7.7a shows that several weighting exponents, ranging from 

about 1.4 to 1.7, give close agreement with the CPF model. The calculation of the 
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Bhattacharyya coefficient (Figure 7.7b) agrees, and suggests that the best fit to the CPF 

model is for an exponent value of 1.5 (𝐵𝐶 = 0.995). 

Similarly, the weighting exponent was then held constant (𝑛 = 1.5 ) and the 

weighting range was varied. The comparisons of the resulting Weibull deviation 

distributions are shown in Figure 7.8. It is obvious from these results that changes in the 

weighting range have a much smaller effect on the overall macrosegregation distribution 

than the weighting exponent does. For all values of the weighting range that were tested, 

the Bhattacharyya coefficient is above 0.94 (Figure 7.8b). The best match with the CPF 

model is when ∆𝑔𝑠 = 0.05. 

Now that the mean values for the new inputs to the continuum attachment model 

that most closely resemble the CPF model have been determined, a better comparison of 

the two attachment schemes may now be made. Clearly, if these inputs are held constant, 

the output of the continuum model is essentially identical to the discrete model. However, 

if the continuum model is overly sensitive to these parameters, any uncertainty in their 

value has the potential to negate any benefit derived from its differences with the 

discrete models. To test this, the input uncertainties shown in Table 7.2 were 

implemented into the continuum model. While the resulting sensitivities to 𝑛 and ∆𝑔𝑠 

(Figure 7.9) are not completely negligible, they are smaller than the sensitivities of the 

model to the input parameters that are shared with the discrete models. These results 

show that the continuum attachment model may be implemented in place of a discrete 

model in order to reduce numerical artifacts and improve convergence without fear of  
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(a) (b) 

Figure 7.7: Comparison of the output normalized Weibull deviation distributions for the continuum model for various values of the 
weighting exponent (𝑛) and a constant weighting range (∆𝑔𝑠 = 0.05) to the CPF model. (a) Mean normalized Weibull deviations for 

the continuum model with error bars for the standard deviation against the mean CPF value (solid line) and plus and minus one 
standard deviation (dotted lines). (b) The Bhattacharyya coefficient between each output distribution from the continuum model to 

the CPF model. 
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(a) (b) 

Figure 7.8: Comparison of the output normalized Weibull deviation distributions for the continuum model for various values of the 
weighting range (∆𝑔𝑠) and a constant weighting exponent (𝑛 = 1.5) to the CPF model. (a) Mean normalized Weibull deviations for 

the continuum model with error bars for the standard deviation against the mean CPF value (solid line) and plus and minus one 
deviation (dotted lines). (b) The Bhattacharyya coefficient between each output distribution from the continuum model to the CPF 

model. 
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significantly altering the model predictions as a function of the uncertainty in the values 

of the new parameters. 

 

Table 7.2: Input uncertainties used to determine the sensitivity of the continuum 
attachment model to the new model parameters. 

Parameter Mean Deviation 
𝑔𝑠,𝑐 0.15 0.0375 

𝑑 (μm) 30 5 

𝜆 (μm) 50 10 

𝑛 1.5 0.25 

Δ𝑔𝑠 0.05 0.01 

 

 

 

Figure 7.9: Comparison of the sensitivities of the normalized Weibull deviation for the 
final Zn composition field in the CPF and continuum grain attachment models. 
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7.6 Conclusions 

This study used the PUQ framework, developed at Purdue University, to quantify 

the epistemic uncertainty in macrosegregation predictions produced by the use of three 

different grain attachment schemes in a model for equiaxed solidification. The three 

models, namely, the constant packing fraction (CPF), average velocity method (AVM) and 

the continuum method, were successfully compared for a base level of input 

uncertainties in those parameters that most directly affect the attachment of free-

floating grains and the resulting macrosegregation (the critical fraction solid, free-floating 

particle size, and dendrite arm spacing). The macrosegregation was characterized using 

the deviation of a three-parameter Weibull distribution, normalized by the nominal 

composition, and the output of the uncertainty quantification was a distribution of these 

values. The Bhattacharyya coefficient was shown to be an effective metric for comparing 

the overlap between distributions obtained from different attachment schemes.  

The first comparison was between the CPF and AVM models, intended to determine 

the significance of the velocity field on grain attachment. For the base level of input 

uncertainties used, there was no significant difference in the distribution of normalized 

Weibull deviations. However, if these input uncertainties were to be reduced via careful 

experimental measurements, then it was shown that the differences between the models 

may become significant. While this result is obvious, the implications are important. 

Figure 7.4 shows that for significantly different output distributions between the CPF and 

AVM attachment models, the input uncertainties need to be reduced by approximately 

70% from the initial values set here. The input uncertainties include the assumptions that 
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the particle size and critical solid fraction are constant and uniform when in reality, this is 

not the case. It is possible that the required reduction in input uncertainty cannot be 

achieved without breaking down these assumptions and adding additional physical 

phenomena to the model.  

The continuum model was then compared to the CPF model. First, the values of the 

parameters unique to the continuum model that produced the most similar results to the 

CPF model were determined by maximizing the Bhattacharyya coefficient between the 

relevant output distributions. Then, using these as the mean values, uncertainty in these 

parameters was added back into the system. It was found that the sensitivity to these 

parameters was less than the sensitivity of the model to the critical solid fraction, free-

floating particle size, and the dendrite arm spacing. It was concluded that the continuum 

model produces similar results to the CPF model while reducing the effect of numerical 

artifacts. Considering that, given the level of certainty with which the input parameters 

for equiaxed solidification are known, the AVM, CPF, and continuum models produce 

mostly the same results, the continuum model is recommended for use in mixture 

formulations due to its suppression of numerical artifacts that arise from the discrete 

nature of the other grain attachment schemes.
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

8.1 Conclusions 

The purpose of this work was to investigate the modeling of flow interactions with 

the rigid mushy zone in the context of a mixture model for alloy solidification. A model 

was described that is capable of both columnar and equiaxed grain morphologies and was 

configured for the cylindrical static casting of aluminum alloy 7050 with heat transfer 

coefficient boundary conditions at the bottom and outer radius. First, the columnar case 

was examined. It was found that interactions between the bulk fluid flow and the edge of 

the mush have a dramatic impact on the prediction of freckle defects. Small rigid 

protrusions into the bulk natural convection flow cell have a significant and cumulative 

impact on the local flow field and subsequent solute transport. The coupling of the solute 

field to the local solid fraction, and therefore, the local permeability, generates a feedback 

loop that encourages the formation of channels. Unfortunately, the length scale of this 

effect within the simulations is necessarily constrained to the size of the numerical grid, 

even though the physical phenomena may happen on a scale as small as the dendrite arm 

spacing. The conclusion was that these macroscale simulations are not suited for freckle 

predictions, and instead, should seek to predict smooth composition fields and then be 
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coupled with an appropriate freckle criterion for defect predictions. To this end, 

recommendations were made for a numerical convergence criterion that tends to reduce 

the appearance of rigid protrusions, resulting in more appropriate macrosegregation 

predictions. 

Next, the effect of the local velocity field on grain attachment was evaluated for 

equiaxed solidification. The average velocity method (AVM) was implemented based on 

previous work from the literature, and compared a new variant, the face velocity method 

(FVM), and the more common constant packing fraction (CPF) model. It was shown that 

the inclusion of the velocity field in the criteria for grain attachment had a significant 

impact on macrosegregation predictions. The effect of various process parameters on the 

predicted macrosegregation, including the critical solid fraction for packing, the dendrite 

arm spacing, and the free-floating particle size, were reported. In particular the tendency 

for the CPF model to predict channel segregates in the equiaxed macrosegregation 

pattern was noted. Both of the velocity based models also predicted the presence of 

channel segregates, although they were suppressed under some conditions in the AVM 

model. These segregates bore some resemblance to freckles found in columnar castings, 

but no experimental observations have suggested their formation in equiaxed cases. 

Further evaluation found that these channels form as a result of the discrete nature of 

these three packing models. The discrete models assume that a control volume contains 

only free-floating or only rigid solid without a smooth transition between the two states. 

When a cell packs, the damping effect of the mushy zone permeability on the momentum 

conservation equations causes significant changes in the local flow field and solute 
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advection. However, unlike the columnar case in which additional iterations can smooth 

out protrusions, the discrete grain attachment models force the geometry of the rigid 

interface to follow the control volume boundaries, a constraint that is independent of 

iterations through the numerical solution. 

To address the problem of channel segregates in the equiaxed cases due to the 

discrete nature of the grain attachment models and inaccurate representation of the rigid 

interface geometry, a new continuum model was developed. This model allows for cells 

at the interface between the slurry and rigid solid regions to undergo a smooth transition 

between the two states. The model works by assuming that grain attachment occurs over 

a finite range of solid fractions and the relevant source terms in the momentum 

conservation equations are controlled using a weighting function. This approach allows 

for the grain attachment model to be iterated and under-relaxed in order to damp the 

formation and propagation of rigid protrusions. The continuum model was found to 

effectively suppress the formation of channel segregates, and the effect of the new model 

parameters (the packing range and weighting function exponent) on the 

macrosegregation development were described.  

Finally, three of the grain attachment models (the CPF, AVM, and continuum model) 

were compared to one another in the context of uncertainty in various input parameters 

using the PRISM Uncertainty Quantification (PUQ) framework. The purpose of this 

analysis was to determine if changes in the grain attachment models had a significant 

impact on macrosegregation predictions given that many of the input parameters are not 

known with complete certainty. First, a large number of inputs were given Gaussian input 
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probability distributions. These included material properties, boundary conditions, and 

inputs to the permeability and packing models. The PUQ framework circumvents the 

computational expense of the solidification model by running only a small number of 

simulations at a select number of points determined by the Smolyak sparse grid algorithm. 

A polynomial response surface is then fitted to the resulting data. Monte Carlo sampling 

is then performed on the comparatively inexpensive response surface to construct output 

probability distribution functions. The macrosegregation in these cases was quantified 

using the deviation of a three-parameter Weibull distribution fit to the final Zn 

composition field, normalized by the nominal composition. An initial analysis found that 

the macrosegregation field for three grain attachment models is most sensitive to the 

dendrite arm spacing, free-floating particle size, and the critical solid fraction for dendrite 

coherency. A comparison between the CPF and AVM models showed little difference in 

the predicted normalized Weibull deviation for the given input uncertainties. It was found 

that the input distribution must be narrowed to approximate 10% of their estimated 

values before the models predicted significantly different results. This data suggests that 

the inclusion of the velocity field in the grain attachment criterion does not have a 

significant effect on predicted macrosegregation development in the context of the 

uncertainty inputs. For the differences in the models to become relevant, future work 

should be focused on experimental data that improves the knowledge of the input 

parameters, or model improvements that reduce the output uncertainty. The next 

comparison was between the CPF and continuum models. Uncertainty quantification was 

used to calibrate the new model parameters in the continuum scheme (the packing range 
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and weighting exponent) by maximizing the similarity between the output distributions 

of the two attachment schemes for the same set of input uncertainty. After calibration, 

the two models exhibited practically identical output probability distributions for the 

normalized Weibull deviation. In this case, because both attachment schemes were 

designed to model the same physical phenomena (i.e. they assume that the critical solid 

fraction is constant and uniform, and do not include the effect of the local velocity field) 

the similarity in the output distribution was not surprising. The importance in this results 

is that because the overall macrosegregation prediction does not change significantly 

between the two schemes, then the continuum model is preferred due to its suppression 

of numerical artifacts. Finally, the sensitivity of the continuum model to the packing range 

and weighting function exponent was evaluated, and found to be smaller than that of the 

critical solid fraction, the dendrite arm spacing, and the free-floating particle size, though 

not completely negligible. In general, these collective results show that the continuum 

grain attachment model is a significant improvement over the previous discrete 

attachment models for approximating the interactions between the bulk fluid flow and 

the rigid mushy zone in simulations of equiaxed solidification using a mixture formulation 

of the governing conservation equations. 

 

8.2 Future Work 

While the work presented here has improved the modeling of interactions between 

the bulk fluid flow and the rigid mush in mixture solidification simulations, there are many 

areas where additional work must be done to improve the understanding of the physical 
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phenomena and to improve the predictive ability of solidification models and 

macrosegregation predictions. 

 

8.2.1 Evaluation and Development of Freckle Criteria 

CHAPTER 3 showed that freckle predictions in macroscale solidification 

simulations are unreliable due to instabilities that necessarily form on the length scale of 

the numerical grid. However, these artificial channels may be suppressed by application 

of appropriate convergence criteria. Going forward with improving the prediction of 

freckles for various metallurgical processes, the primary challenge is bridging the multiple 

length scales involved in freckle formation and propagation. At the lowest length scale, 

instabilities that are responsible for channel formation may be as small as the dendrite 

arm spacing. But the fluid flow, solute transport, and heat transfer that affect small-scale 

channel development are all a function of the macroscale process parameters. It is clear 

that if an adequate freckle criterion is to be developed, the fundamental phenomena at 

these various length scales must be collectively understood. 

A significant shortcoming of many existing freckle criteria is that they are limited 

to vertical or near vertical solidification directions. When the solidification front is far 

from horizontal, channel development is complicated by the additional fluid flow parallel 

to the interface. A significant advance in understanding freckle formation would be to 

investigate the case of a cavity cooled from a sidewall by using both macro- and 

microscale simulation tools, and preferably for a specific situation for which experimental 

data may be either easily obtained or already available in the literature. Macroscale 
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simulations, such as those presented in this work, may be used to predict the temperature 

gradients and local fluid flow conditions throughout the process. These conditions may 

then be compared to the experiments to determine where freckles are most likely to 

occur. Microscale simulations (e.g. cellular automata or phase field) can then be applied 

using local conditions determined by the macroscale models to areas with and without 

freckles (Figure 8.1). If these models accurately predict the formation or absence of 

channels, then they may be used to gain a deeper understanding of the physical 

phenomena responsible for freckle growth, and perhaps, will suggest an avenue for 

development of a general freckle criterion or improvements to existing criteria.  Of course 

there are examples of microscale models used for freckle predictions [17,18], but these 

studies have been limited to directional solidification and have not been applied to 

arbitrary solidification front angles or in the presence of bulk flow fields that develop by 

thermosolutal natural convection during casting processes. 
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Figure 8.1: Schematic of a multi-scale approach to understanding freckle formation.
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8.2.2 Determining the Packed Fraction and Interface Geometry 

For equiaxed solidification simulations using the mixture formulation of the 

governing conservation equations, the continuum grain attachment model represents a 

significant improvement over the existing discrete attachment schemes. However, while 

its implementation in this work demonstrated its ability to suppress numerical artifacts, 

its development relied on a variety of simplifying assumptions and approximations. The 

first of these is the crude scheme used to determine the packed fraction of a cell (Equation 

(2.19)), which assumes that grain attachment occurs linearly over a finite range of solid 

fractions. However, the interface between the slurry and rigid solid regions is sharp on a 

length scale smaller than the control volume size, as shown in Section 6.2. The present 

model simply spreads grain attachment out over an arbitrary range of solid fractions, 

which is simple to implement and convenient from a numerical standpoint, but is not 

physically accurate.  

One better method would be to use some interpolation scheme to determine the 

location of the iso-solid fraction line equal to the critical solid fraction in each cell. The 

amount of that cell containing free-floating vs. rigid solid can then be calculated based on 

the assumed packing fraction for the system. This approach has two major advantages. 

The first is that it is a more accurate depiction of the dendrite coherency point for the 

system in that it does not smear the grain attachment transition over a range of solid 

fractions. It instead determines the location of the interface between the two regions and 

perform the appropriate volume averaging for each cell. The second advantage is that it 

more accurately represents the geometry of the interface. As discussed previously, a 
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primary deficiency in the discrete models is that by forcing control volumes to contain 

either only free-floating solid particles or only rigid solid, the shape of the interface is 

misrepresented by being forced to fall on control volume faces. The continuum model as 

formulated in CHAPTER 2 is an improvement in that it allows a more flexible depiction of 

the interface shape, but the packing range is an artificial construction. A more accurate 

interpolation from the solid fraction field would be a further improvement on 

representing the interface geometry. Similarly, the power law form of the weighting 

function presented here is simply a convenient approach to adjusting the behavior of the 

transition region between free-floating and rigid solid, but more physically accurate forms 

may be developed in the future based on the fundamentals of solidification and multi-

phase flows. Further development of methods for determining the packed fraction and 

form of the weighting function should ideally improve the representation of the physical 

system (perhaps including the effect of the local velocity field for example), and should 

be simple to implement using the formulation of the governing equations for momentum 

conservation developed here.  

Another possible improvement for the continuum attachment model is adding in 

a rigorous interface reconstruction algorithm, similar to those used for fluid-fluid 

interfaces in multiphase flow simulations [85]. A schematic of such a reconstruction is 

shown in Figure 8.2. This approach would be a further improvement on the accuracy with 

which the interface geometry is represented. More importantly, implementing a 

reconstruction scheme could be used to improve the free-floating solid model. Currently, 

solid advection across a control volume face is calculated based on an interpolated value 
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of the packed fraction, 𝑃, between two main control volumes. This approach treats solid 

advection as an average of the packing in two neighboring control volumes regardless of 

the orientation of the interface. With the information from the reconstruction, the 

geometry of interface can be approximated on a sub-control volume length scale, 

allowing for a more exact determination of the fraction of each control volume face over 

which solid may be advected. Essentially, the packed fraction at the faces of a control 

volume is calculated based on the reconstruction rather than a simple interpolation. For 

example, consider a cell on the reconstructed interface as shown in Figure 8.3. The cell 

itself has a packed fraction, 𝑃, of approximately 0.5. In the present scheme, this means if 

this cell neighbors a fully packed cell (the south face in Figure 8.3), then the interpolated 

value of 𝑃 used to determine the solid velocity in Stokes’ law at this face would be 𝑃𝑠 =

0.75, where the subscript denotes the south face of the control volume. However, based 

on the reconstruction, it is clear that this interface is completely packed and no solid 

motion should be possible (i.e. 𝑃𝑠 = 1). A similar problem is encountered at the north 

face. If the neighboring cell to the north has no rigid solid, then the interpolated value of 

the packed fraction would be 𝑃𝑛 = 0.25. However, it is clear from the location of the 

interface that there is no rigid solid at this face. The reconstruction approach allows for 

the correct determination of 𝑃𝑛 = 0. At the east and west faces, the location at which the 

reconstructed interface intersects the faces may be readily calculated and the cell face 

packed fractions evaluated accordingly. 
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Figure 8.2: A schematic of the geometry of the reconstructed interface between the 
slurry and rigid solid regions of the domain.
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Figure 8.3: Schematic showing an example control volume lying on the reconstructed interface. The bolded portions of the faces 
indicate boundaries with neighboring control volumes that allow the motion of solid particles.
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 Another advantage of more accurate knowledge of the interface geometry is that 

it allows a better determination of the local viscosity of the solid pseudo-fluid. The model 

presented in this work used Vreeman’s [71] recommendation for an average solid 

viscosity. The primary purpose for this is to avoid numerical instabilities caused by the 

fact that the viscosity function approaches infinity at the prescribed packing fraction. 

Vreeman’s argument is based on the sharpness of the interface in that only a very small 

region of free-floating solid with a solid fraction near the dendrite coherency point is 

strongly affected by the increasing solid viscosity. With the introduction of the continuum 

model and the interface reconstruction, this approximation may no longer be necessary. 

Instead, the solid fraction of only the unpacked portion of the cell may be calculated 

based on the interface geometry and local gradients in the solid fraction field. The local 

solid viscosity may then be calculated based on the average solid fraction of just this 

portion of the cell containing free-floating solid. The relevant source terms that the solid 

viscosity affects in the momentum equations are then only included based on the packed 

fraction of the cell and the weighting function. 

 

8.2.3 Local Grain Morphology 

Dendrite coherency is a function of a variety of variables, most of which affect the 

solid fraction at which grains coalesce because they affect the grain morphology. In 

prescribing a particular critical solid fraction that is constant and uniform throughout the 

domain, all of the grain attachment models discussed in this work assume that the grain 

morphology is constant and uniform. Of course, the composition, cooling rate, and grain 
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refiner additions vary throughout the domain due to heat and mass transport phenomena, 

and potentially have a significant effect on the distribution of grain morphologies, and 

therefore, packing fractions. Wang and Beckermann [48] proposed a set of morphological 

relationships for this purpose, but in the context of the multi-phase model formulation 

for the conservation equations for solidification. If possible, these relationships should be 

adapted for the mixture formulation or a new set of relationships developed for this 

purpose. 

 

8.2.4 Uncertainty Quantification and Experimental Validation 

As discussed in CHAPTER 7, as new model developments are implemented, their 

impact on the overall solution should be evaluated using uncertainty quantification and 

compared to both previous versions of the model and experimental data. Such evaluation 

is necessary for a variety of reasons. The first is as a guard against adding computationally 

expensive model features that do not significantly change the solution. There is a constant 

temptation to continue adding ever more complexity that, it is often assumed, better 

represents the physical system. However, such changes must constantly be weighed 

against any additional computational expense. A simple model addition that greatly 

improves the predictive ability of the simulation without sacrifices to computation time 

is of course welcome, but these types of modifications must be differentiated from those 

that greatly affect the model expense without significantly changing the solution. This 

problem is also closely tied to the risk of adding additional uncertainty to the model by 
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adding new uncertain parameters. Such effects should be monitored during model 

development and supplemented with experimental measurements when necessary. 

Specifically for uncertainty in macrosegregation predictions, there is need for 

further improvements to the quantification of macrosegregation. It was noted during this 

study that the normalized Weibull deviation, while certainty an improvement over the 

more commonly used macrosegregation number, tends to produce a noisy data set when 

a wide range of input parameters is used, an issue that reduces the accuracy of a fitted 

response surface and may, in the future, make comparisons with experimental data 

difficult. This problem may be due to the presence of numerical artifacts, such as channel 

segregates, that distort the composition field and tend to have a significant effect on the 

normalized Weibull deviation. Further improvements to the continuum model may be 

able to resolve this problem, but modification of the method for fitting the three-

parameter Weibull distribution or development of another, more stable metric may be 

necessary.  

Another glaring need in this research area, and an opportunity for use of 

uncertainty quantification, is quality experimental data for model validation. Some 

macrosegregation data exist for direct-chill casting, but considering the significant 

complexity and uncertainty in the boundary conditions for that process, for the purpose 

of basic grain attachment model validation, a more simplistic static casting case would be 

preferred. Good data would include a variety of information. Composition measurements 

that describe the macrosegregation would be the primary output. Other measurements 

are necessary to determine model inputs. The static casting should be outfitted with an 
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array of thermocouples in order to provide cooling condition data for validation, but also 

to determine local packing fractions using the thermal method employed by some 

researchers [41,42]. Any packing fraction measurements should be supported by 

microscopy to determine the local grain morphologies. Further thermal measurements 

should be used to determine boundary conditions [86]. Ideally, the process will be 

performed several times in order to quantify the uncertainty in the outputs of interest for 

a fair comparison to the model outputs, which of course, should be generated using 

uncertainty quantification techniques. 
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