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ABSTRACT

Perlmutter, Michael A. PhD, Purdue University, August 2016. Martingales, Singular
Integrals, and Fourier Multipliers. Major Professor: Rodrigo Bañuelos.

Many probabilistic constructions have been created to study the Lp-boundedness,

1 < p <∞, of singular integrals and Fourier multipliers. We will use a combination of

analytic and probabilistic methods to study analytic properties of these constructions

and obtain results which cannot be obtained using probability alone.

In particular, we will show that a large class of operators, including many that are

obtained as the projection of martingale transforms with respect to the background

radiation process of Gundy and Varapolous or with respect to space-time Brownian

motion, satisfy the assumptions of Calderón-Zygmund theory and therefore bound-

edly map L1 to weak-L1.

We will also use a method of rotations to study the Lp boundedness, 1 < p <∞,

of Fourier multipliers which are obtained as the projections of martingale transforms

with respect to symmetric α-stable processes, 0 < α < 2. Our proof does not use the

fact that 0 < α < 2 and therefore allows us to obtain a larger class of multipliers,

indexed by a parameter, 0 < r <∞, which are bounded on Lp. As in the case of the

multipliers which arise as the projection of martingale transforms, these new multi-

pliers also have potential applications to the study of the Beurling-Ahlfors transform

and are related to the celebrated conjecture of T. Iwaniec concerning its exact Lp

norm.
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1. Introduction

1.1 Overview

Martingale inequality methods provide a powerful tool to study the Lp bounded-

ness, 1 < p <∞, of the basic Calderón-Zygmund singular integral operators and other

Fourier multipliers on Rn. An advantage of these techniques is that they give very

good information on the size of these Lp bounds and, in particular, provide constants

that are independent of the dimension. These same arguments can be used to extend

results from Rn to manifolds and to the Ornstein-Uhleneck case. For some applica-

tions of these methods we refer the reader to [3], [7], [11], [8], [6], [16], [25], [35], [24],

and the many references provided there. However, as powerful as these techniques are,

weak-type martingale inequalities cannot be directly transferred to singular integral

operators. For example, while Burkholder’s celebrated Lp inequalities, 1 < p < ∞,

for martingale transforms [18], with his famous bound “(p∗ − 1)”, gives the same

Lp bound for many singular integral operators, his weak-type martingale transform

bound “2” provides no information for the weak-type inequalities of those operators.

This is due to the fact that the probabilistic representation of such operators involves

the use of conditional expectation which does not preserve weak-type inequalities.

When viewed as analytic objects, many of the operators which are obtained as the

projections of martingale transforms have natural generalizations which cannot be

studied by purely probabilistic methods. Therefore, in chapters 2 and 3 we will use

a combination of analytic and probabilistic techniques to study these operators.

The main result of chapter 2 is that a very general class of operators, including

many of the operators considered in [11] and [8], which arise as the projections of

martingale transforms, are in fact Calderón-Zygmund operators. This class includes

operators which are not, in general, of convolution type. Once we know that these are
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Calderón-Zygmund operators, they then satisfy all the properties of such operators,

including their weak-type boundedness. This does not, of course, answer an important

question that has been of interest to many people for many years, originally raised by

Stein in [40] in the case of the Riesz transforms: do these operators have weak-type

bounds independent of the dimension? An affirmative answer would in turn raise an

even more important question: do weak-type inequalities hold for Riesz transforms on

Wiener space? After nearly 35 years and the efforts of many, these questions remain

completely open. For a more precise formulation of these questions, see [4].

The purpose of chapter 3 is to study the Lp boundedness of a class of Fourier

multipliers which are closely related to multipliers obtained as the projection of mar-

tingale transform of α-stable processes, 0 < α < 2, in [9] and [5]. Using analytic

methods, we are able to obtain a family of operators indexed by r, 0 < r <∞, that

are bounded on Lp(Rn). When 0 < r < 2, these operators coincide with the operators

from [9] and [5]. However, for r ≥ 2 these are a new family of operators whose Lp

boundedness have not been previously studied (except in the trivial case that p = 2).

These problems are motivated by a celebrated 1982 conjecture of Tadeusz Iwaniec [29]

which asserts that the Lp norm of the Beurling-Ahlfors operator is the same as the Lp

norm of martingale transforms, namely (p∗ − 1). Although great progress has been

made on this conjecture, it too remains open.

1.2 Calderón-Zygmund Operators

Following standard terminology (see for example [26, p.175]), we will say that an

operator T acting on the Schwartz space of rapidly decreasing functions on Rn is a

Calderón-Zygmund (CZ) operator if it admits a bounded extension to L2(Rn) and is

of the form

Tf(x) = lim
ε↘0

∫
|x−x̃|>ε

K(x, x̃)f(x̃)dx̃ (1.1)
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where the kernel K is defined on the set {x 6= x̃} and satisfies the following conditions

|K(x, x̃)| ≤ κ

|x− x̃|n
(1.2)

|∇xK(x, x̃)| ≤ κ

|x− x̃|n+1
(1.3)

|∇x̃K(x, x̃)| ≤ κ

|x− x̃|n+1
, (1.4)

for some universal constant κ. Integrals as in (1.1) are referred to as principal value

integrals. For the rest of this thesis, we will assume that all integrals, where the

integrand has an isolated singularity, are to be interpreted as principal value integrals.

If there exists a function K̄, defined on Rn \ {0}, so that K̄(x− x̃) = K(x, x̃) for all

x 6= x̃, then we say that T is of convolution type. The Hilbert, Riesz, and Beurling-

Ahlfors transforms discussed below are basic examples of CZ operators of convolution

type which give rise to interesting Fourier multipliers. It is well known (see for

example [26, p.183]) that CZ operators are strong-type (p, p) for 1 < p <∞ and are

weak-type (1, 1). More precisely, there exists universal constants Cp,n,κ, depending

only on p, n, and κ, such that

‖Tf‖p ≤ Cp,n,κ‖f‖p, 1 < p <∞ (1.5)

and

|{x : |Tf(x)| > λ}| ≤ C1,n,κ

λ
‖f‖1, (1.6)

where here and below we use |A| to denote the Lebesgue measure of a set A.

We note that CZ operators do not, in general, map L1(Rn) into L1(Rn), nor do

they map L∞(Rn) into L∞(Rn). They do, however, map the Hardy space H1(Rn), an

important subset of L1(Rn), into L1(Rn) and map L∞(Rn) into the set of functions

with bounded mean oscillation. This topic will be discussed further in section 2.2.
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1.2.1 The Hilbert Transform

The Hilbert transform is the prototypical example of a Calderón-Zygmund oper-

ator of convolution type. For a rapidly decreasing function, f : R→ R, we define

Hf(x) =
1

π

∫
R

f(y)

x− y
dy.

In other words, the Hilbert transform is the operator given by convolving a function

with the singular kernel 1
πx

. It is important to note that this integral must be inter-

preted as a principal value integral since otherwise it may not converge. (Take, for

instance, x = 0 and f(y) = e−y
2
.) An interesting property of the Hilbert transform is

that if we let u(x, y) and v(x, y) be the extensions of f(x) and Hf(x) to the upper

half-space by convolution against the Poisson kernel py(x), then u(x, y) + iv(x, y) is

holomorphic on the upper half-space.

1.2.2 The Riesz Transforms

The natural generalizations of the Hilbert transform to higher dimensions are

known as the Riesz transforms. For f ∈ Lp(Rn), we define the Riesz transform in

direction j, 1 ≤ j ≤ n, by

Rjf(x) =
Γ(n+1

2
)

π(n+1)/2

∫
Rn

xj − x̃j
|x− x̃|n+1

f(x̃)dx̃.

When n = 1, this reduces to the Hilbert transform. Rj is a Fourier multiplier with

R̂jf(ξ) =
iξj
|ξ|
f̂(ξ).

In [40], Stein showed that we may take the constant, Cp,n, to be independent of n

in (1.5) for the Riesz transforms. Whether or not the constant in (1.6) can be taken

independent of n is unknown with the best known result being that the constant is

at worst O(
√
n) as n → ∞ [31]. Gundy and Varopoulos showed in [27] that the

Riesz transforms could be interpreted probabilistically as projections of martingale

transforms, and from this it again follows that the constant may be taken to be
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independent of dimension. See [4] for more on this topic. These techniques were

further explored by Bañuelos and Wang in [8] to prove the sharp inequalities

‖Rjf‖p ≤ Cp‖f‖p and ‖((Rjf)2 + f 2)1/2‖p ≤
√
C2
p + 1‖f‖p,

where

p∗ = max

{
p,

p

p− 1

}
, and Cp = cot

(
π

2p∗

)
.

The first inequality had been proved earlier by Iwaniec and Martin in [30] using the

method of rotations.

1.2.3 The Beurling-Ahlfors Transfrom

For f ∈ Lp(C), we define the Beurling-Ahlfors operator by

Bf(z) = − 1

π

∫
C

f(w)

(z − w)2
dw.

B is a Fourier multiplier with

B̂f(ξ) =
ξ2

1 − ξ2
2 − 2iξ1ξ2

|ξ|2
f̂(ξ).

Therefore, we can decompose the Beurling-Ahlfors transform into a linear combina-

tion of second order Riesz transforms,

B = R2
2 −R2

1 + 2iR1R2. (1.7)

Because of its many connections to quasiconformal mappings and other topics in

complex analysis (see for example [2]) there has been a lot of interest for many years

in finding its operator norm on Lp(C), 1 < p < ∞, which we denote ‖B‖p. In [33],

Lehto showed that ‖B‖p ≥ (p∗−1). A long standing conjecture of Iwaniec [29] is that

‖B‖p = (p∗−1). Despite the efforts of many researchers, Iwaniec’s conjecture remains

open. There are, however, many partial results, and the techniques developed in these

efforts have lead to many other interesting questions and applications. In particular,

there are a number of probabilistic constructions which provide upper bounds for

‖B‖p.
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In [8], Bañuelos and Wang showed that ‖B‖p ≤ 4(p∗ − 1). This constant was

reduced to 2(p∗ − 1) by Nazarov and Volberg in [35] using a Littlewood-Paley in-

equality proved using Bellman functions techniques. The Bellman function in [35]

is itself constructed from Burkholder martingale inequalities. In [11] the martingale

techniques from [8] were applied to space-time Brownian motion to reproduce the

bound 2(p∗ − 1). The methods of [11] were refined in [10] to reduce this constant to

1.575(p∗ − 1), which is the best known bound as of now valid for all 1 < p <∞. We

do point out that for 1000 < p <∞, this bound was improved to 1.4(p∗ − 1) in [16].

1.3 Multiplier Theorems

Two important tools for studying the Lp(Rn) boundedness of Fourier multipliers,

which we will use in chapter 3, are the Marcinkiewicz mutliplier theorem and the

Hörmander-Mikhlin multiplier theorem which we state below for convenience. For

proofs of these results see [26] or [39].

Theorem 1.3.1 (Marcinkiewicz). Let m ∈ L∞(Rn) with ‖m‖∞ ≤ K for some 0 <

K < ∞. Supposed that m(ξ) is n-times continuously differentiable on the subset

of Rn where none of the ξi are zero. For j ∈ Z, let Ij denote the dyadic interval

(−2j+1,−2j] ∪ [2j, 2j+1). Suppose that for all 1 ≤ k ≤ n, for all subsets {i1, . . . , ik}

of {1, . . . , n} of order k, and for all integers li1 , . . . lik , we have that

∫
Ili1

. . .

∫
Ilik

|∂i1 . . . ∂ikm(ξ)|dξik . . . dξi1 ≤ K <∞ (1.8)

whenever ξj 6= 0 for all j /∈ {i1, . . . , ik}. Then m(ξ) is a bounded Fourier multiplier

on Lp(Rn) for all 1 < p <∞ and

‖Tmf‖p ≤ CnK(p∗ − 1)6n‖f‖p for all f ∈ Lp(Rn),

where Cn is a constant depending only on n.
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Theorem 1.3.2 (Hörmander-Mikhlin). Let n0 =
⌊
n
2

⌋
+ 1, and let m(ξ) be n0-times

differentiable on Rn \ {0}. Suppose there exists 0 < K < ∞ such that ‖m‖∞ ≤ K

and that also

sup
R>0

R−n+2|β|
∫
R<|ξ|<2R

|∂βm(ξ)|2dξ < K2 (1.9)

for all multi-indices such that |β| ≤ n0. Then m(ξ) is a bounded Fourier multiplier

on Lp(Rn) for all 1 < p <∞ and there exists Cn depending only on n such that

‖Tmf‖p ≤ CnK(p∗ − 1)‖f‖p.

1.4 Lévy Processes

A Lévy process on Rn is an Rn-valued stochastic process, (Xt)t≥0, which almost

surely starts at the origin, has stationary, independent increments, and satisfies the

stochastic continuity condition limt↘0 P(|X|t > ε) = 0 for all ε > 0. The famous Lévy-

Khintchine formula states that there exists a point b ∈ Rn, a non-negative symmetric

n× n matrix B, and a measure ν such that ν({0}) = 0 and∫
Rn

min{|z|2, 1}dν(z) <∞,

such that the characteristic function of Xt is given by E(eiξ·Xt) = etρ(ξ) where

ρ(ξ) = ib · ξ − 1

2
Bξ · ξ +

∫
Rn

[
eiξ·z − 1− i(ξ · z)I(|z|<1)

]
ν(dz).

(b, B, ν) is referred to as the Lévy triple of Xt. The triple (b, 0, 0) corresponds to a

drift process Xt = bt; (0, B, 0) corresponds to a centered Gaussian process with whose

covariance is given by [X i
s, X

j
t ] = Bi,j min{s, t}; and (0, 0, ν) corresponds to a “pure-

jump” process. If Xt and Yt are independent Lévy processes with triples (bX , BX , νX)

and (bY , BY , νY ), then Xt + Yt is a Lévy process with the triple (bX + bY , BX +

BY , νX + νY ). Therefore, the Lévy-Khinchtine formula says that any Lévy process

can be decomposed into the sum of three independent Lévy processes, a drift process,

a centered Gaussian process, and a pure-jump process. For further background on

Lévy processes see [13], [14], and [38].
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1.4.1 α-stable Processes

For 0 < α ≤ 2, the symmetric α-stable process is a Lévy processes, (Xt)t≥0 with

ρ(ξ) = −|ξ|α. In the case that α = 2, (b, B, ν) = (0, I, 0), (Xt)t≥0 is Brownian motion

(running at twice the usual speed), and density of Xt is given by the Gaussian heat

kernel
1

(4πt)n/2
e−|x|

2/4t. (1.10)

For 0 < α ≤ 2, we have that (b, B, ν) = (0, 0, dν(z) = Cn,α
1

|z|n+αdz). If α = 1, then

(Xt)t≥0 is the Cauchy process and the density of Xt is given by the Poisson kernel

Γ(n+1
2

)

π(n+1)/2

t

(|x|2 + t2)(n+1)/2
. (1.11)

Except for in the cases α = 1 and α = 2, we do not have a simple analytic expression

for the density of Xt as in (1.10) and (1.11). However, there are a number of integral

representations which are available for any α.

1.5 Martingale Transforms

The study of martingale transforms and their boundedness on Lp dates back to D.

L. Burkholder’s 1966 paper [17]. Since that time, martingale transforms have been

extensively studied for both their theoretical importance in probability theory and

their applications to finance. As alluded to in subsection 1.1, they have also been

widely used to study the boundedness of singular integrals and Fourier multipliers.

1.5.1 Discrete Martingales

If (fn)n≥0 is a discrete-time martingale defined on a probability space (Ω,F∞,P),

with filtration F = (Fn)n≥0, then we may define a difference sequence,

dk = fk − fk−1

for k ≥ 1, and d0 = f0 so that

fn =
n∑
k=0

dk.
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If vk is a predictable sequence of random variables, in the sense that v0 = 0 and

vk ∈ Fk−1 for k ≥ 1, such that |vk| ≤ 1 a.s. for all k, then the martingale transform

of f by v is defined by

(v ∗ f)n =
n∑
k=0

vkdk.

It is straight forward to check that (v ∗f)n is a martingale. The primary result of [17]

was that the mapping f → v ∗ f is bounded on Lp, 1 < p <∞, and weak-type (1, 1).

That is, there exists constants Cp and C1 such that(
sup
n

E|(v ∗ f)n|p
)1/p

≤ Cp

(
sup
n

E|fn|p)
)1/p

(1.12)

and

P{sup
n
|(v ∗ f)n| > λ} ≤ C1

λ
‖f‖1, for all λ > 0. (1.13)

Eighteen years later in [18], Burkholder was able to show that, for all 1 < p < ∞,

the best possible value of Cp in (1.12) is p∗− 1 and that the best possible constant in

(1.13) is 2.

In [19], Burkholder introduced a condition called differential subordination, which

allows for a much simpler proof of the fact that (1.12) holds with constant p∗−1. Fur-

thermore, this construction allows us to extend this result to martingale transforms

defined with respect to stochastic integrals. Let (fn)n≥0 and (gn)n≥0 be martingales

taking values in a separable Hilbert space and let dk and ek be their difference se-

quences (so that fn =
∑n

k=0 dk and gn =
∑n

k=0 ek). We say that gn is differentially

subordinate to fn if |ek| ≤ |dk| a.s. for all k. Burkholder showed that if gn is differ-

entially subordinate to fn, then

(
sup
n

E|gn|p
)1/p

≤ (p∗ − 1)

(
sup
n

E|fn|p)
)1/p

. (1.14)

Note that p∗ − 1 is the same as the constant that appears in Iwaniec’s conjecture

regarding the Beurling-Ahlfors transform.
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1.5.2 Stochastic Integrals and Continuous-Time Martingales

Let (Xt)t≥0 and (Yt)t≥0 be martingales on a probability space (Ω,F∞,P), with a

common filtration, F = (Ft)t≥0 that take values in a separable Hilbert space. Assume

that F is right continuous and F0 contains all events of probability zero. Let [X]t and

[Y ]t denote quadratic variations of Xt and Yt respectively. Yt is said to be differentially

subordinate to Xt if |Y0| ≤ |X0| and the process [X]t − [Y ]t is non-decreasing. Note

that the quadratic variation of a discrete-time martingale fn =
∑n

k=0 dk is given

by [f ]n =
∑n

k=0 |dk|2. Therefore, this condition is the natural generalization of the

differential subordination condition for discrete martingales. In [8], Bañuelos and

Wang, showed that if Xt and Yt have continuous sample paths, and Yt is differentially

subordinate to Xt, then(
sup
t

E|Yt|p
)1/p

≤ (p∗ − 1)

(
sup
t

E|Xt|p
)1/p

. (1.15)

In the case that Xt and Yt are orthogonal, in the sense that their quadratic covariation

is zero, the constant p∗−1 can be improved to cot
(

π
2p∗

)
. We note that in [41], Wang

showed (1.15) holds even if the assumption of continuous sample paths is removed.

This fact will be important when we consider martingale transforms with respect to

general Lévy processes.

A particularly important class of examples are martingales of the form

Xt =

∫ t

0

Hs · dBs

where Bt is n-dimensional Brownian motion and Hs is a Rn-valued predictable pro-

cess. If As is a predictable, matrix-valued process such that for all s > 0, and all

v ∈ Rn, |Asv| ≤ |v|, then

(A ∗X)t =

∫ t

0

AsHs · dBs

is called the martingale transform of X by A. Similarly to the discrete martingale

transforms in the previous subsection, (A ∗ X)t is a martingale that is differentially

subordinate to Xt. We remark that if for all s > 0 and all v ∈ Rn, Av · v = 0, then

Xt and (A ∗X)t are orthogonal.
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1.6 Martingales Transforms and Harmonic Analysis

As alluded to in section 1.1, there are several constructions which use martingale

transforms to study the Lp boundedness of the classical Calderón-Zygmund singular

integrals mentioned in section 1.2 and other Fourier multipliers. In many of these

constructions, the method is based on the same fundamental idea. For a function

f in Lp(Rn), we construct a martingale M(f)t such that supt ‖M(f)t‖p = ‖f‖p.

Then we apply a martingale transform to get a new martingale, N(f)t, such that

supt ‖N(f)t‖p ≤ Cp supt ‖M(f)t‖p. Finally, we project N(f)t onto Lp(Rn) using

conditional expectation to get a new function which we denote by Sf(x). Conditional

expectation is a contraction on Lp(Rn) so ‖Sf‖p ≤ supt ‖N(f)t‖p. Combining these

three inequalities yields ‖Sf‖p ≤ Cp‖f‖p. If appropriate choices are made at each

step, this operator will coincide with an operator of classical interest in analysis such

as the Riesz Transforms or Beurling-Ahlfors transform.

1.6.1 The Background Radiation Process

We first consider the construction developed by Gundy and Varopoulos in [27]

and used by Bañuelos and Wang in [8]. The first step is to construct a martingale

corresponding to each function f ∈ Lp. Let

py(x) =
Γ(n+1

2
)

π(n+1)/2

y

(|x|2 + y2)(n+1)/2
(1.16)

be the Poisson kernel for the upper half-space, Rn+1
+ , and for f(x) ∈ C∞0 (Rn), let

(py ∗ f)(x) = uf (x, y) be the Poisson extension of f. (Note that by (1.11) py is the

density of the Cauchy process at time y.) Background radiation is a “time-reversed

Brownian motion,” (Bt)t≤0, taking values in Rn+1
+ such that B−∞ has distribution

given by the Lebesgue measure on Rn × {∞}, and B0 is distributed by the Lebesgue

measure on Rn×{0}. We write Bt = (Xt, Yt) with Xt taking values in Rn and Yt > 0.

The standard rules of stochastic calculus, in particular Itô’s formula, hold for the

background radiation process. Therefore, uf (Xt, Yt) is a martingale and



12

f(X0) = uf (B0) =

∫ 0

−∞
∇uf (Xs, Ys) · dBs,

where ∇ = (∂x1 , . . . , ∂xn , ∂y). If A(x, y) is an (n+ 1)× (n+ 1) matrix-valued function

such that

‖A‖ = ‖ sup
|v|≤1

(|A(x, y)v|)‖L∞(Rn×[0,∞)) <∞,

we define the martingale transform of f by A as

(A ∗ f) =

∫ 0

−∞
A(Xs, Ys)∇uf (Xs, Ys) · dBs. (1.17)

The random variable A ∗ f is not a function of the endpoint, X0. This motivates

us to define a projection operator by averaging the integral in (1.17) over all paths

ending at x, that is,

TAf(x) = E
(∫ 0

−∞
A(Xs, Ys)∇uf (Xs, Ys) · dBs|X0 = x

)
.

It is known (see [4]) that E(|(f(B0)|p) =
∫
Rn |f(x)|pdx, which implies

sup
t≥0
‖uf (Bt)‖p = ‖f‖p

since |uf (Bt)|p is a submartingale. In other words, lifting f ∈ Lp(Rn) to the space of

martingales does not change its norm. Combining this with the fact that conditional

expectation is a contraction in Lp(Rn), we see that the operator norm of TA is the

same as the operator norm of the martingale transform X → A ∗X. Thus, we have

‖TAf(x)‖p ≤ (p∗ − 1)‖A‖‖f‖p.

It is known (see for example [18]) that martingale transforms are weak-type (1, 1)

and in fact we have the sharp inequality

P{|A ∗X| > λ} ≤ 2‖A‖
λ
‖X‖1.
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Unfortunately, this does not give us information about the weak-type behavior of

TA because weak-type inequalities are not preserved under conditional expectation.

However, we can represent TA analytically by finding a kernel KA(x, x̃) such that

TAf(x) =

∫
Rn
KA(x, x̃)f(x̃)dx̃.

Let f, g ∈ C∞0 (Rn) and note that

g(B0) =

∫ 0

−∞
∇ug(Bs) · dBs

by Itô’s formula. Therefore, using basic facts about the covariation of stochastic

integrals and the occupation time formula for the background radiation process, (see

[23, p.31 and 57] and [27])

∫
Rn
TAf(x)g(x)dx =

∫
Rn

E
(∫ 0

−∞
A(Xs, Ys)∇uf (Xs, Ys) · dBs|X0 = x

)
g(x)dx

= E
(∫ 0

−∞
A(Xs, Ys)∇uf (Xs, Ys) · dBsg(B0)

)
= E

(∫ 0

−∞
A(Xs, Ys)∇uf (Xs, Ys) · dBs

∫ 0

−∞
∇ug(Bs) · dBs

)
= E

(∫ 0

−∞
A(Xs, Ys)∇uf (Xs, Ys) · ∇ug(Bs)ds

)
=

∫ ∞
0

∫
Rn

2yA(x, y)∇uf (x, y) · ∇ug(x, y)dxdy. (1.18)

Using the fact that ∇uf (x, y) = ((∇py)∗f)(x) and applying Fubini’s theorem, we see

that we have

KA(x, x̃) =

∫ ∞
0

∫
Rn

2yA(x̄, y)∇py(x̄− x̃) · ∇py(x̄− x)dx̄dy.

This representation will be used in chapter 2 show that TA is, under mild assumptions,

a Calderón-Zygmund operator.

If we define Aj = (ajl,m) by

ajl,m =


1 l = n+ 1, m = j

−1 l = j, m = n+ 1

0 otherwise

 ,
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then plugging into (1.18) and Fourier transforming shows that TAj = Rj. Since Aj

satisfies the orthogonality condition Ajv · v = 0 for all v ∈ Rn, it follows that

‖Rj‖p ≤ cot

(
π

2p∗

)
‖f‖p, 1 < p <∞.

We can also define A in such a way that TA = Ri,j and ‖A‖ = 1. This implies,

‖RiRj‖p ≤ (p∗ − 1)‖f‖p, 1 < p <∞.

By (1.7), this also implies that ‖B‖p ≤ 4(p∗ − 1). If A is any matrix with constant

coefficients, TA will be a linear combination of the identity and first and second order

Riesz transforms. Moreover, if A(x, y) = A(y) is independent of x and ‖A‖ < ∞,

then TA is a Fourier multiplier. For more examples of multipliers corresponding to

various choices of A, see [8] and [4].

1.6.2 Space-Time Brownian Motion

The approach of [11] is similar to the construction discussed in the previous subsec-

tion, but uses space-time Brownian motion and the heat kernel for the half Laplacian,

ht(x) =
1

(2πt)n/2
e−|x|

2/2t, (1.19)

instead of background radiation and the Poisson kernel. (We remark that ht is the

density of a standard Brownian motion at time t. Observe that this is, up to a simple

time change, t = 2s, the density of the stable process given in (1.10).) Fix T > 0, and

let Zt = (Bt, T − t) for 0 ≤ t ≤ T where Bt is Brownian motion on Rn with initial

distribution given by the Lebesgue measure. Letting uf (x, t) denote the extension of

f to the upper half-space by convolution with ht, Itô’s formula shows that uf (Zt) is

a martingale and

uf (Zt) =

∫ s

0

∇xuf (Bs, T − s) · dBs.

For an n × n matrix-valued function, A(x, t), such that ‖A‖ < ∞, we define a mar-

tingale transform and a projection operator by

A ∗ f =

∫ T

0

A(Bs, T − s)∇xuf (Bs, T − s) · dBs
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and

STAf(x) = E(A ∗ f |ZT = (x, 0)).

It is shown in [11] that limT→∞ S
T
A = SA exists in L2(Rn). Moreover,

‖SAf(x)‖p ≤ (p∗ − 1)‖A‖‖f‖p. (1.20)

If A(i,j) is defined by

a
(i,j)
l,m =

 −1 l = i, m = j

0 otherwise

 ,

then SA is the second order Riesz transform, RiRj. By (1.7), this easily leads us to

the conclusion that ‖B‖p ≤ 2(p∗−1). As with the operators arising from background

radiation, if A(x, y) = A(y) is independent of x, then SA is a Fourier multiplier.

Furthermore, we may again find a kernel so that

SAf(x) =

∫
Rn
KA(x, x̃)f(x̃)dx̃,

where

KA(x, x̃) =

∫ ∞
0

∫
Rn
A(x̄, t)∇xht(x̄− x̃)∇xht(x̄− x)dx̄dt.

1.6.3 Martingale Transforms with respect to General Lévy Processes

In [9] and [5], the construction discussed in the previous subsection was generalized

by replacing Brownian motion with more general Lévy processes. This results in a

large class of Fourier multipliers, with formulas given in terms of the characteristics

of the Lévy process, which are bounded on Lp(Rn), 1 < p < ∞. Let ν be a Lévy

measure on Rn, ϕ a complex-valued function on Rn with ‖ϕ‖∞ ≤ 1, µ a finite Borel

measure on Sn−1, and ψ a complex-valued function on Sn−1 with ‖ψ‖∞ ≤ 1. Define

mµ,ν(ξ) by

mµ,ν(ξ) =

∫
Rn(cos(ξ · z)− 1)ϕ(z)ν(dz) + Aξ · ξ∫

Rn(cos(ξ · z)− 1)ν(dz) +Bξ · ξ
(1.21)
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where

A =

(∫
Sn−1

θiθjψ(θ)dµ(θ)

)
1≤i,j≤n

and B =

(∫
Sn−1

θiθjdµ(θ)

)
1≤i,j≤n

.

Note that (cos(ξ · z) − 1) = <(eiξ·z − 1 − i(ξ · z)I(|z|<1)). Therefore, mµ,ν may be

interpreted as a “modulation” of the real part of the Lévy exponent of some process,

Xt, divided by the “unmodulated” real part of the Lévy exponent of Xt. The primary

result of [5] is to show that mµ,ν a bounded multiplier on Lp(Rn) for all 1 < p < ∞

and

‖Tmµ,νf‖p ≤ (p∗ − 1)‖f‖p for all f ∈ Lp(Rn).

We will now give a brief summary of how this multiplier is obtained in the case

where µ = 0 and ν is symmetric and finite, which corresponds to Xt being a com-

pound Poisson process. (The general case can then be proved by symmetrization and

approximation arguments. See [5] for details.) Similarly to [11], we fix T > 0, let

(Zt)0≤t≤T = (Xt, T − t)0≤t≤T , and let Vf (x, t) = Ptf(x) = ET (f(Xt + x)). It is shown

in [9] that Vf (Zt) is a martingale, with supt ‖Vf (Zt)‖p = ‖f‖p for all 1 < p <∞, and

by the generalized Itô’s formula (see for example [36])

Vf (Zt)− Vf (Z0) =

∫ t+

0

∫
Rn

[Vf (Zs− + z)− Vf (Zs−)]Ñ(ds, dz),

where Zs− = limu↗s Zu, and Ñ is the so-called compensator, defined for each fixed

t > 0 on Borel sets of Rn by

Ñ(t, A) = N(t, A)− tν(A)

where N is the Poisson random measure that describes the jumps of Xt, i.e.

N(t, A) = |{s : 0 ≤ s ≤ t,Xs −Xs− ∈ A}|.

Therefore if ϕ : Rn → C with ‖ϕ‖∞ ≤ 1, we can define the martingale transform

of Vf (Zt) by ϕ as

ϕ ∗ Vf (Zt) =

∫ t+

0

∫
Rn

[Vf (Zs− + z)− Vf (Zs−)]ϕ(z)Ñ(ds, dz).
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The quadratic variations of Vf (Zt) and ϕ ∗ Vf (Zt) are given by

[Vf (Z)]t =

∫ t+

0

∫
Rn
|Vf (Zs− + z)− Vf (Zs−)|2N(ds, dz)

and

[ϕ ∗ Vf (Z)]t =

∫ t+

0

∫
Rn
|Vf (Zs− + z)− Vf (Zs−)|2|ϕ(z)|2N(ds, dz).

Therefore, ϕ ∗ Vf (Zt) is differentially subordinate to Vf (Zt) and

sup
t
‖ϕ ∗ Vf (Zt)‖p ≤ (p∗ − 1)‖f‖p.

A projection operator can be defined by

STϕ f(x) = ET (ϕ ∗ Vf (ZT )|ZT = (x, 0))

and we again have that

‖STϕ f(x)‖p ≤ (p∗ − 1)‖f‖p.

It is shown that as T →∞, a limiting operator, Sϕ, exists and satisfies the bound

‖Sϕf(x)‖p ≤ (p∗ − 1)‖f‖p.

Moreover, Sϕ is a Fourier multiplier and Ŝϕf(ξ) = mµ,ν(ξ)f̂(ξ).

A particularly interesting class of operators occurs when we take Xt to be the

symmetric α-stable process with 0 < α < 2 and assume that ϕ is homogeneous of

order zero. In polar coordinates, we may write dν(z) = Cn,αr
−1−αdrdσ(θ) where Cn,α

is a constant chosen so that

ρ(ξ) =

∫
Rn

(cos(ξ · z)− 1)dν(z) = −|ξ|α.

In this case, the numerator of (1.21) is given by

Cn,α

∫
Rn

(cos(ξ · z)− 1)ϕ(z)dν(z) = Cn,α

∫
Sn−1

ϕ(θ)

∫ ∞
0

cos(rξ · θ)r−1−αdrdσ(θ)

= Cn,α

∫
Sn−1

ϕ(θ)|ξ · θ|α
∫ ∞

0

cos(s)s−1−αdsdσ(θ)

= C ′n,α

∫
Sn−1

ϕ(θ)|ξ · θ|αdσ(θ).
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Therefore, the corresponding multiplier is given by

mα(ξ) =

∫
Sn−1 |ξ · θ|αϕ(θ)dσ(θ)∫

Sn−1 |ξ · θ|αdσ(θ)
.

If we set n = 2 and choose ϕ(θ) = e−2i arg θ, then it is shown in [5] that mα(ξ) = α
α+2

ξ̄
ξ
.

Therefore, for all 0 < α < 2 and all f ∈ Lp(Rn)

‖Bf‖p ≤
α + 2

α
(p∗ − 1)‖f‖p.

Letting α↗ 2, we recover the bound ‖B‖p ≤ 2(p∗ − 1).

The condition 0 < α < 2 is natural from a probabilistic prospective. Otherwise,

the measure dν(z) = Cn,α
|z|n+α is not a Lévy measure on Rn. However, for any r > 0, the

multiplier

mr(ξ) =

∫
Sn−1 |ξ · θ|rϕ(θ)dσ(θ)∫

Sn−1 |ξ · θ|rdσ(θ)
(1.22)

satisfies ‖mr‖∞ ≤ 1. Therefore, Tmr is a bounded operator on L2(Rn). Furthermore,

for any r > 0, if we choose ϕ(θ) = e−2i arg θ, the formula Tmrf(x) = r
r+2

Bf(x) is

valid for all f ∈ C∞0 (Rn). Therefore, if we could prove conjecture (1), stated below,

then letting r →∞ it would follow that ‖B‖p ≤ p∗ − 1, and therefore the celebrated

conjecture of Iwaniec would be proved. This motivated the following conjecture of

Bañuelos which first appeared in [4].

Conjecture 1 Let n ≥ 2, 0 < r < ∞, ϕ ∈ L∞(Sn−1), ‖ϕ‖∞ ≤ 1, and let mr be

defined as in (1.22). Then the corresponding operator, Tmr , is bounded on Lp(Rn) for

all 1 < p <∞ and

‖Tmrf‖p ≤ (p∗ − 1)‖f‖p, for all f ∈ Lp(Rn).

This is a very strong conjecture since it includes Iwaniec’s conjecture, which has

remained unproved for over thirty years, as a special case.
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1.7 Calderón-Zygmund Operators Arising from Martingale Transforms,

Statement of Results

The constructions used in [8] and [11] give very good constants for the Lp(Rn)

boundedness, 1 < p <∞, of the operators which are constructed there as the projec-

tion of martingale transforms. However, using purely probabilistic methods, we are

not able to get any information about the behavior of these operators on L1(Rn). The

purpose of chapter 2 is to show that these operators are Calderón-Zygmund operators

and therefore are weak-type (1, 1). Specifically, we prove the following theorem. In

the case that α = 1 or 2, these operators are the conditional expectations of martin-

gale transforms which were used in [8] and [11] respectively. (See subsections 1.6.1

and 1.6.2.)

Theorem 1.7.1 Let 0 < α ≤ 2. Let (Xt)t>0 be a symmetric α-stable process on Rn

and let ϕ denote the density of X1. For y ≥ 0, let ϕy(x) = 1
yn
ϕ(x

y
). Let A(x, y) =

(ai,j(x, y)) be an (n+ 1)× (n+ 1) matrix-valued function with

‖A‖ = ‖ sup
|v|≤1

(|A(x, y)v|)‖L∞(Rn×[0,∞)) <∞. (1.23)

Further assume that ai,j(x, y) = ai,j(y) is independent of x whenever i or j = n + 1.

Consider the kernel

KA(x, x̃) =

∫ ∞
0

∫
Rn

2yA(x̄, y)∇ϕy(x̄− x̃)∇ϕy(x̄− x)dx̄dy, (1.24)

where ∇ = (∂x1 , . . . , ∂xn , ∂y). Then the operator

TAf(x) =

∫
Rn
K(x, x̃)f(x̃)dx̃

is a CZ operator.

Remark 1 If we make the additional assumption that ai,j(y) = 0 whenever i or

j = n+1, we may also write our kernel in terms of the density of Xt, which we denote

ψt. It is well known (see e.g. [13]) that ψt obeys the scaling relation ψt(x) = 1
tn/α

ψ( x
t1/α

)

which implies ϕt1/α = ψt. Therefore, after a simple change of variables we see that

KA(x, x̃) =

∫ ∞
0

∫
Rn

2

α
t

2
α
−1A(x̄, t1/α)∇ψt(x̄− x̃)∇ψt(x̄− x)dx̄dt. (1.25)



20

The reason why we need the assumption that ai,j(y) = 0 whenever i or j = n + 1 is

because these entries correspond to “vertical” derivatives with respect to the dilation

parameter t, and the change of variables y = t1/α does not commute with the taking

of vertical derivatives.

1.8 A Method of Rotations for Lévy Multipliers, Statement of Results

The main results of chapter 3 are two theorems which are partial solutions to

Conjecture 1. The probabilistic methods used in [9] and [5] do not apply when r ≥ 2.

Instead, we will study Tmr by analytic methods which make use of the Marcinkiewicz

mutliplier theorem and the Hörmander-Mikhlin multiplier theorem (see section 1.3).

Theorem 1.8.1 Let n ≥ 2, 0 < r < ∞, ϕ ∈ L∞(Sn−1), ‖ϕ‖∞ ≤ 1, and let mr be

defined as in (1.22). Then the corresponding operator, Tmr , is bounded on Lp(Rn) for

all 1 < p <∞ and

‖Tmrf‖p ≤ Cn(p∗ − 1)6nΓ( r+n
2

)

Γ( r+1
2

)
‖f‖p, for all f ∈ Lp(Rn),

where Cn is a constant which depends only on n.

Remark 2 Sterling’s formula implies that if a > 0

Γ(x+ a)

Γ(x)
= O(xa) as x→∞.

Therefore,
Γ( r+n

2
)

Γ( r+1
2

)
= O(r(n−1)/2) as r →∞.

In the case that r is sufficiently large, we can use the Hörmander-Mikhlin multiplier

theorem to obtain estimates on the Lp bounds of Tmr that are linear in p as p→∞.

Theorem 1.8.2 Let n ≥ 2 and define n0 = bn
2
c+1. Let n0 ≤ r <∞, ϕ ∈ L∞(Sn−1),

‖ϕ‖∞ ≤ 1, and let mr be defined as in (1.22). Then the corresponding operator, Tmr ,

is bounded on Lp(Rn) for all 1 < p <∞ and

‖Tmrf‖p ≤ Cn max{rn0 , 1}(p∗ − 1)‖f‖p, for all f ∈ Lp(Rn),
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where Cn is a constant depending only on n. Furthermore, Tmr is weak-type (1, 1)

and

|{Tmrf(x) > λ}| ≤ Cn max{rn0 , 1}‖f‖1

λ
.

Remark 3 Comparing the estimates in theorem 1.8.1 and theorem 1.8.2, we see

that each has some advantages over the other. The constants obtained in theorem

1.8.1 have slower growth as r → ∞ than those obtained in theorem 1.8.2 and have

the advantage of being valid for all r > 0. On the other hand, theorem 1.8.2 gives

estimates which are linear in p as p → ∞ and includes weak-type (1,1) estimates

which theorem 1.8.1 does not. This is because the proof of theorem 1.8.1 involves

the method of rotations and the Marcinkiewicz multiplier theorem, neither of which

give weak-type inequalities. We also remark that it is unknown if the operators which

are obtained in [9] and [5] satisfy weak-type (1,1) inequalities. While it is true that

martingale transforms do satisfy weak-type (1,1) estimates, these estimates are not

preserved under conditional expectation, as we already mentioned several times before.
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2. Calderón-Zygmund Operators Arising from Martingale

Transforms

2.1 The Proof of Theorem 1.7.1

Proof We need to verify that TA is bounded on L2(Rn) and that KA satisfies the

estimates (1.2), (1.3), and (1.4). From the definition of TA, we observe that (1.3) and

(1.4) are equivalent.

Lemma 1 TA is bounded on L2(Rn). In particular, there exists a constant Cn,α,

depending only on n and α, such that for all f ∈ C∞0 (Rn)

‖TAf‖2 ≤ Cn,α‖A‖‖f‖2. (2.1)

Proof Let f, g ∈ C∞0 (Rn). We will show that∣∣∣∣∫
Rn
TAf(x)g(x)dx

∣∣∣∣ ≤ Cn,α‖A‖‖f‖2‖g‖2.

Letting uf and ug denote ϕy ∗ f and ϕy ∗ g respectively,∣∣∣∣∫
Rn
TAf(x)g(x)dx

∣∣∣∣
=

∣∣∣∣∫
Rn

∫
Rn
KA(x, x̃)f(x̃)g(x)dx̃dx

∣∣∣∣
=

∣∣∣∣∫
Rn

∫
Rn

∫ ∞
0

∫
Rn

2yA(x̄, y)∇ϕy(x̄− x̃) · ∇ϕy(x̄− x)f(x̃)g(x)dx̄dydx̃dx

∣∣∣∣
=

∣∣∣∣∫ ∞
0

∫
Rn

2yA(x̄, y)

∫
Rn
∇ϕy(x̄− x̃)f(x̃)dx̃ ·

∫
Rn
∇ϕy(x̄− x)g(x)dxdx̄dy

∣∣∣∣
=

∣∣∣∣∫ ∞
0

∫
Rn

2yA(x̄, y)∇uf (x̄, y) · ∇ug(x̄, y)dx̄dy

∣∣∣∣
≤ 2‖A‖

∫ ∞
0

∫
Rn
y1/2|∇uf (x, y)|y1/2|∇ug(x, y)|dxdy.
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Now by the Cauchy-Schwartz inequality and Holder’s inequality,∫ ∞
0

∫
Rn
y1/2|∇uf (x, y)|y1/2|∇ug(x, y)|dxdy

≤
∫ ∞

0

(∫
Rn
y|∇uf (x, y)|2dx

)1/2(∫
Rn
y|∇ug(x, y)|2dx

)1/2

dy

≤
(∫ ∞

0

∫
Rn
y|∇uf (x, y)|2dxdy

)1/2(∫ ∞
0

∫
Rn
y|∇ug(x, y)|2dxdy

)1/2

.

The proof will be complete once we show that(∫ ∞
0

y

∫
Rn
|∇uf (x, y)|2dxdy

)
≤ Cn,α‖f‖2

2.

Since ϕ is the density of X1, which has characteristic function E(eiX1·ξ) = e−|ξ|
α
, we

have that ϕ̂(ξ) = e−(2π|ξ|)α . Therefore, we may apply Plancherel’s theorem, use the

scaling relation for the Fourier transform, and substitute t = y|ξ|, to see that∫ ∞
0

y

∫
Rn
|∇xuf (x, y)|2dxdy =

∫ ∞
0

y

∫
Rn

4π2|ξ|2|ϕ̂y(ξ)|2|f̂(ξ)|2dξdy

= C

∫ ∞
0

y

∫
Rn
|ξ|2|ϕ̂(ξy)|2|f̂(ξ)|2dξdy

= C

∫ ∞
0

t

∫
Rn
|ϕ̂(ξ′t)|2|f̂(ξ)|2dξdt

= C

∫
Rn
|f̂(ξ)|2

∫ ∞
0

te−2(2πt)αdtdξ

≤ Cn,α

∫
Rn
|f̂(ξ)|2dξ = Cn,α‖f‖2

2.

Likewise,∫ ∞
0

y

∫
Rn
|∂yuf (x, y)|2dxdy =

∫ ∞
0

y

∫
Rn
|∂yϕ̂y(ξ)|2|f̂(ξ)|2dξdy

= C

∫ ∞
0

y

∫
Rn
|∂yϕ̂(ξy)|2|f̂(ξ)|2dξdy

= C

∫ ∞
0

y

∫
Rn
|ξ · ∇ϕ̂(ξy)|2|f̂(ξ)|2dξdy

≤ C

∫ ∞
0

y

∫
Rn
|ξ|2|∇ϕ̂(ξy)|2|f̂(ξ)|2dξdy

≤ C

∫
Rn
|ξ|4

∫ ∞
0

y3|ϕ̂(ξy)|2|f̂(ξ)|2dydξ

= C

∫
Rn
|f̂(ξ)|2

∫ ∞
0

t|ϕ̂(ξ′t)|2dtdξ ≤ Cn,α‖f‖2
2.
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Now that we know TA is bounded on L2(Rn), we will show that it is, in fact, a

CZ operator. It suffices to show that Ki,j
A satisfies (1.2) and (1.3) for 1 ≤ i, j,≤ n+ 1

where

Ki,j
A (x, x̃) =

∫ ∞
0

∫
Rn

2yai,j(x̄, y)∂xiϕy(x̄− x̃)∂xjϕy(x̄− x)dx̄dy. (2.2)

The following lemma will be used to see that certain integrals converge.

Lemma 2 There exists a constant Cn,α, depending only on n and α, such that for

all x ∈ Rn, 1 ≤ i, j ≤ n,

|ϕ(x)| ≤ Cn,α
(1 + |x|2)(n+α)/2

(2.3)

|∂xiϕ(x)| ≤ Cn,α|x|
(1 + |x|2)(n+2+α)/2

≤ Cn,α
(1 + |x|2)(n+1+α)/2

(2.4)

and

|∂xi∂xjϕ(x)| ≤ Cn,α
(1 + |x|2)(n+2+α)/2

. (2.5)

Proof Inverting the characteristic function of X1 we see

ϕ(x) =

∫
Rn
e−ix·ξe−|ξ|

α

dξ. (2.6)

From this we readily see that ϕ ∈ C∞(Rn), so in order to show (2.4) it suffices to

show that there exists a constant Cn,α so that

|∂xiϕ(x)| ≤ Cn,α|x| (2.7)

and

|∂xiϕ(x)| ≤ Cn,α
|x|n+1+α

. (2.8)

Using the fact that ∫
Rn
ξie
−|ξ|αdξ = 0,
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we see that

|∂xiϕ(x)| =
∣∣∣∣∫

Rn
ξie
−ix·ξe−|ξ|

α

dξ

∣∣∣∣
=

∣∣∣∣∫
Rn
ξi(e

−ix·ξ − 1)e−|ξ|
α

dξ

∣∣∣∣
≤
∫
Rn
|ξ| |e−ix·ξ − 1|e−|ξ|αdξ

≤ 2

∫
Rn
|ξ|2|x|e−|ξ|αdξ ≤ Cn,α|x|,

with the last inequality following because

|eix·ξ − 1| ≤ | cos(x · ξ)− 1|+ | sin(x · ξ)| ≤ 2|x · ξ|.

Therefore (2.7) holds.

To show (2.8), we express Xt as a process subordinated to Brownian motion. A

subordinator is an a.s. increasing one-dimensional Lévy process. It is well known

(see [14] for details) that there exists a subordinator, Tt, such that

Xt = BTt ,

where Bt is a standard Brownian motion (run at twice the usual speed). By condi-

tioning on Tt we see that the density of Xt is given by

ψt(x) =

∫ ∞
0

1

(4πs)n/2
e−|x|

2/4sηα/2(t, s)ds,

where ηα/2(t, ·) is the density of Tt. Since ϕ = ψ1, we see that

∂xiϕ(x) =

∫ ∞
0

1

(4πs)n/2
xi
s
e−|x|

2/4sηα/2 (1, s) ds

= Cn
xi
|x|n

∫ ∞
0

u
n
2
−1e−uηα/2

(
1,
|x|2

4u

)
du.

It is known (see e.g. [15]) that there exists a constant Cα, depending only on α, such

that

ηα/2(t, s) ≤ Cαts
−1−α/2. (2.9)
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Therefore we have

|∂xiϕ(x)| ≤ Cα
|x|n+1+α

∫ ∞
0

u(n+α)/2e−udu

so (2.8) holds. Similar computations show

|ϕ(x)| ≤ Cα
|x|n+α

∫ ∞
0

u(n+α−2)/2e−udu

and

|∂xi∂xjϕ(x)| ≤ Cα
|x|n+α+2

∫ ∞
0

u(n+α+2)/2(u+ 1)e−udu.

Moreover, since ϕ is smooth, it and all of its all of its partial derivatives are bounded

near the origin. Therefore ϕ satisfies (2.3) and (2.5).

We are now poised to prove the theorem.

Case 1. Either i or j = n+ 1:

The fact that a(i,j)(x, y) = a(i,j)(y) depends only on y allows us to use the semi-

group property of ψy. Note that

ϕy ∗ ϕy = ψyα ∗ ψyα = ψ2yα = ϕ21/αy.

Therefore, substituting w = x̄− x̃ we see that

|K(i,j)(x, x̃)| =
∣∣∣∣∫ ∞

0

∫
Rn

2ya(i,j)(y)∂xiϕy(w)∂xjϕy(w − (x− x̃))dwdy

∣∣∣∣
=

∣∣∣∣∫ ∞
0

2ya(i,j)(y)

∫
Rn
∂xiϕy(w)∂xjϕy(w − (x− x̃))dwdy

∣∣∣∣
=

∣∣∣∣∫ ∞
0

2ya(i,j)(y)∂xi∂xjϕ21/αy(x− x̃)dy

∣∣∣∣
≤ ‖a(i,j)‖∞

∫ ∞
0

2y|∂xi∂xjϕ21/αy(x− x̃)|dy.

Likewise,

|∂xkK(i,j)(x, x̃)| =
∣∣∣∣∫ ∞

0

∫
Rn

2ya(i,j)(y)∂xiϕy(w)∂xk∂xjϕy(w − (x− x̃))dwdy

∣∣∣∣
≤ ‖a(i,j)‖∞

∫ ∞
0

2y|∂xi∂xj∂xkϕ21/αy(x− x̃)|dy.
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Therefore, it suffices to show that there exists a constant Cn,α so that |K(x)| ≤

Cn,α
1
|x|n and |K ′(x)| ≤ Cn,α

1
|x|n+1 for all x 6= 0, where

K(x) =

∫ ∞
0

2y|∂xi∂xjϕ21/αy(x)|dy

and

K ′(x) =

∫ ∞
0

2y|∂xi∂xj∂xkϕ21/αy(x)|dy.

ϕy is homogeneous of order −n, so its k-th order partial derivatives are homogeneous

of order −n− k. Therefore, if we make the substitution y = |x|t we have

K(x) =

∫ ∞
0

2y|∂xi∂xjϕ21/αy(x)|dy

=

∫ ∞
0

2|x|t|∂xi∂xjϕ21/α|x|t(|x|x′)||x|dt

=

∫ ∞
0

2|x|t 1

|x|n+2
|∂xi∂xjϕ21/αt(x

′)||x|dt

=
1

|x|n

∫ ∞
0

2t|∂xi∂xjϕ21/αt(x
′)|dt

where x′ = x
|x| . Similarly,

K ′(x) =
1

|x|n+1

∫ ∞
0

2t|∂xi∂xj∂xkϕ21/αt(x
′)|dt.

The lemma will be proved as soon as we bound the above integrals. We have assumed

that either i or j = n + 1, so we need to bound the following four integrals for any

1 ≤ k, l ≤ n.∫ ∞
0

2t|∂t∂tϕ21/αt(x
′)|dt,

∫ ∞
0

2t|∂t∂xkϕ21/αt(x
′)|dt,∫ ∞

0

2t|∂t∂xk∂xlϕ21/αt(x
′)|dt,

∫ ∞
0

2t|∂t∂t∂xkϕ21/αt(x
′)|dt.

We will show how to bound the first integral. The other three may be bounded by

the exact same method. Recalling that ϕt(x) = 1
tn
ϕ
(
x
t

)
, we see that

∂t∂tϕ21/αt(x) =
C

(1)
n

tn+2
ϕ
(x
t

)
+
C

(2)
n

tn+3

n∑
i=1

xi∂xiϕ
(x
t

)
+
C

(3)
n

tn+4

n∑
i=1

n∑
j=1

xixj∂xi∂xjϕ
(x
t

)
,

where C
(1)
n , C

(2)
n and C

(3)
n are constants depending on n.
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Therefore, it suffices to bound∫ ∞
0

t

tn+a
∂βϕ

(
x′

t

)
dt

when a = 2, 3, or 4 and β is a multi-index with |β| = a−2. By (2.3), (2.4), and (2.5),

we have

∂βϕ(x) ≤ Cn,α
(1 + |x|2)(n+α+|β|)/2 ,

which implies

∂βϕ
(x
t

)
≤ Cn,αt

n+α+|β|

(t2 + |x|2)(n+α+|β|)/2 .

Therefore, ∫ ∞
0

t

tn+a
∂βϕ

(
x′

t

)
dt ≤

∫ ∞
0

t

tn+a

tn+α+|β|

(t2 + 1)(n+α+|β|)/2dt

=

∫ ∞
0

tα−1

(1 + t2)(n+α+|β|)/2dt <∞.

Case 2. 1 ≤ i, j ≤ n:

Since ai,j(x, y) depends on both x and y, we are unable to use the semi-group

property of ψy. We are, however, still able to pull out ‖A‖ and use homogeneity.

This again allows us to bound our kernel by the product of 1
|x−x̃|n and an integral. As

in case 1, we start out by substituting w = x− x̃ to see

|K(i,j)(x, x̃)| ≤ ‖A‖
∫ ∞

0

∫
Rn

2y|∂xiϕy(w)||∂xjϕy(w − (x̃− x))|dwdy and

|∂xkK(i,j)(x, x̃)| ≤ ‖A‖
∫ ∞

0

∫
Rn

2y|∂xiϕy(w)||∂xk∂xjϕy(w − (x̃− x))|dwdy.

Therefore, we need to show that there exists a constant Cn,α so that |K(x)| ≤ Cn,α
1
|x|n

and |K ′(x)| ≤ Cn,α
1

|x|n+1 for all x 6= 0 where now

K(x) =

∫ ∞
0

∫
Rn

2y|∂xiϕy(w)||∂xjϕy(w − x)|dwdy

and

K ′(x) =

∫ ∞
0

∫
Rn

2y|∂xiϕy(w)||∂xk∂xjϕy(w − x)|dwdy.



29

Using homogeneity and substituting y = t|x| and w = |x|z we see that

|K(x)| =
∫ ∞

0

∫
Rn

2y|∂xiϕy(w)||∂xjϕy(w − x)|dwdy

=

∫ ∞
0

∫
Rn

2t|x||∂xiϕ|x|t(|x|z)||∂xjϕ|x|t(|x|(z − x′))||x|n+1dzdt

=
1

|x|n

∫ ∞
0

∫
Rn

2t|∂xiϕt(z)||∂xjϕt(z − x′)|dzdt. (2.10)

Similarly, we have

|K ′(x)| = 1

|x|n+1

∫ ∞
0

∫
Rn

2t|∂xiϕt(z)||∂xk∂xjϕt(z − x′)|dzdt. (2.11)

Therefore, to complete the proof, we need to show that the integrals in (2.10) and

(2.11) are convergent. (Note that a simple rotation of coordinates shows they do not

depend on x′.) We will show that the integral in (2.11) converges. The proof that

the integral in (2.10) converges is similar.

By (2.4) and (2.5) we know that there exists a constant Cn,α so

|∂xiϕ(x)| ≤ Cn,α|x|
(1 + |x|2)(n+2+β)/2

(2.12)

and

|∂xi∂xjϕ(x)| ≤ Cn,α
(1 + |x|2)(n+2+β)/2

, (2.13)

where β = min{α, 1
2
}. (The fact that β ≤ 1

2
will be used to see that a certain integral

is convergent.) Therefore,

|∂xiϕt(x)| ≤ Cnt
β|x|

(t2 + |x|2)(n+2+β)/2
(2.14)

and

|∂xi∂xjϕt(x)| ≤ Cnt
β

(t2 + |x|2)(n+2+β)/2
. (2.15)

This allows us to see that∫ ∞
0

∫
Rn

2t|∂xj∂xiϕt(z)||∂xjϕt(z − x′)|dzdt

≤
∫
Rn

∫ ∞
0

t
tβ

(|z|2 + t2)(n+2+β)/2

|x′ − z|tβ

(|x′ − z|2 + t2)(n+2+β)/2
dtdz,
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so it suffices to show that g1(z) and g2(z) are integrable over Rn for

g1(z) =

∫ 1

0

t1+2β 1

(|z|2 + t2)(n+2+β)/2

|x′ − z|
(|x′ − z|2 + t2)(n+2+β)/2

dt and

g2(z) =

∫ ∞
1

t1+2β 1

(|z|2 + t2)(n+2+β)/2

|x′ − z|
(|x′ − z|2 + t2)(n+2+β)/2

dt.

If zn is a sequence converging to z, then

lim
n→∞

g(zn) = lim
n→∞

∫ ∞
1

t1+2β 1

(|zn|2 + t2)(n+β+2)/2

|x′ − zn|
(|x′ − zn|2 + t2)(n+β+2)/2

dt

=

∫ ∞
1

t1+2β 1

(|z|2 + t2)(n+2+β)/2

|x′ − z|
(|x′ − z|2 + t2)(n+2+β)/2

dt = g2(z),

with the middle inequality justified by the dominating convergence theorem applied

to |x′−z| 1
t2n+3 . Thus g2(z) is continuous on Rn. Furthermore, for large z, substituting

t = |z| tan(θ) allows us to see that

g2(z) ≤ Cn,β

∫ ∞
1

t1+2β |z|
(|z|2 + t2)n+β+2

dt

≤ Cn,β

∫ π/2

0

|z|1+2β tan1+2β(θ)|z||z| sec2(θ)

|z|2n+4+2β sec2n+4+2β(θ)
dθ

= Cn,β
1

|z|2n+1

∫ π/2

0

sin1+2β(θ) cos2n+1(θ)dθ,

so g2(z) is integrable.

Likewise, we can see that g1(z) is continuous on Rn \{0, x′} using by applying the

dominating convergence theorem with t2β+1|z|−n−β−2|x′ − z|−n−β−1, and for large z

we have

g1(z) ≤ Cn,β
1

|z|2n+1

∫ π/2

0

sin1+2β(θ) cos2n+1(θ)dθ.

Therefore, it remains to show that g1(z) is integrable near 0 and x′.

If |z| < 1/2 and 0 < t < 1, it is easy to see

|x′ − z|
(|x′ − z|2 + t2)(n+2+β)/2

≤ Cn,β,

so again substituting t = |z| tan(θ) we see

g1(z) ≤ Cn,β

∫ 1

0

t1+2β

(|z|2 + t2)(n+2+β)/2
dt

≤ Cn,β
1

|z|n−β

∫ π/2

0

sin2β(θ) cosn−β−1(θ)dθ.



31

Since β ≤ 1
2
, the last integral is finite, so g1(z) is integrable near 0. A simple change

of variables and a nearly identical computation shows that g1(z) is integrable near x′,

so therefore g1(z) is integrable on all of Rn which completes the proof.

We end this section by remarking that if i or j = n+ 1, then the integral in (2.11) is

divergent. This is why we need the assumption that ai,j(x, y) = ai,j(y) in that case.

2.2 Remarks

Examining the proof of theorem 1.7.1, we see that the only facts we used were the

homogeneity of ϕy(x), the fact that ϕ̂ is “small enough” to cause TA to be bounded

on L2(Rn), and the bounds (2.3), (2.4), and (2.5). This immediately gives us the

following corollary.

Corollary 1 Let φ ∈ C2(Rn) satisfy (2.3), (2.4), and (2.5), and for y > 0, let

φy = 1
yn
φ
(
x
y

)
. Assume that there exists a constant C such that for all ξ′ ∈ Sn−1

∫ ∞
0

tφ̂(tξ′)2dt < C. (2.16)

Let A(x, y) be as in theorem 1.7.1. Consider the kernel

KA(x, x̃) =

∫ ∞
0

∫
Rn

2yA(x̄, y)∇φy(x̄− x̃)∇φy(x̄− x)dx̄dy,

where ∇ = (∂x1 , . . . , ∂xn , ∂y). Then the operator

TAf(x) =

∫
Rn
K(x, x̃)f(x̃)dx̃

is a CZ operator.

The key to proving lemma (2) was the fact that we could write the α-stable process

as BTt where Tt is the α/2 stable subordinator and Bt is an independent Brownian

motion (run at twice the usual speed). This motivates the following question. Let

Tt be a subordinator, let Bt be an independent Brownian motion, and let Xt = BTt .
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Under what conditions on Tt does the density of X1 satisfy the conditions of corollary

1?

If Xt = BTt is any such process, called subordinate Brownian motion in the

literature, it is well known (see for example [32]) that there exists a function Φ :

[0,∞)→ [0,∞), called the Laplace exponent of Tt, such that

e−λTt = e−tΦ(λ) (2.17)

and that the Lévy symbol of Xt is given by

ρ(ξ) = −Φ
(
|ξ|2
)
.

Inspecting the proofs of lemma 1 and lemma 2, we see that in order for the density of

X1 to satisfy the conditions of corollary 1, it suffices to have a bound similar to (2.9)

on the density of T1, and for Φ(λ) to increase fast enough as λ→∞ for the integrals

in the proofs to converge. We summarize this in the following corollary.

Corollary 2 Let Xt = BTt where Tt is a subordinator and Bt is an independent

Brownian motion run at twice the usual speed. Let φ denote the density of X1, and

for y > 0, let φy(x) = 1
yn
φ
(
x
y

)
. Let Φ be the Laplace exponent of Tt and assume that

there exists some δ > 0 so that

Φ(λ) ≥ O(λδ), as λ→∞. (2.18)

Further assume that there exist a constants C and γ > 0 such that the density of T1,

η(1, ·), satisfies

η(1, s) ≤ Cs−1−γ/2 (2.19)

for all s > 0. Let A(x, y) be as in theorem 1.7.1 and consider the kernel

KA(x, x̃) =

∫ ∞
0

∫
Rn

2yA(x̄, y)∇φy(x̄− x̃)∇φy(x̄− x)dx̄dy,

where ∇ = (∂x1 , . . . , ∂xn , ∂y). Then the operator

TAf(x) =

∫
Rn
K(x, x̃)f(x̃)dx̃

is a CZ operator.
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An interesting example of subordinate Brownian motion is provided by the so

called relativistic α-stable processes. For 0 < α < 2, M > 0, there exists a Lévy

process, (Xt)t≥0 with symbol ρ(ξ) = (|ξ|2 +M2/α)α/2−M and infinitesimal generator

M − (−∆ +M2/α)α/2.

When α = 1, this operator reduces to free-relativistic Hamiltonian which has been

intensely studied because of its applications to relativistic quantum mechanics. For

further background information on this process, we refer the reader to [20], [12], and

the references provided in therein.

In [37] it is shown that Tt, the subordinator for Xm
t , has density

ηm,α/2(t, s) = emte−m
2/αsηα/2(t, s), (2.20)

and Laplace exponent

Φ(λ) = (λ+m2/α)α/2 −m. (2.21)

Therefore, we readily see that the conditions of corollary 2 are satisfied.

The motivation of this chapter was to answer questions left open in [11] and [8].

Are the operators considered in those papers weak-type (1, 1) in addition to being

strong-type (p, p) for 1 < p < ∞? Proving that these operators are CZ shows that

the answer to this question is, in fact, yes. However, CZ operators are also known to

satisfy a number of other desirable properties. For example, they boundedly map the

Hardy space H1(Rn) to L1(Rn) and L∞(Rn) to the space of functions with bounded

mean oscillation (BMO). More precisely, if T is any CZ operator, then there exist

universal constants Cn and C ′n, which depend only on n, so that

‖T‖H1→L1 ≤ Cn(κ+ ‖T‖L2→L2)

and

‖T‖L∞→BMO ≤ C ′n(κ+ ‖T‖L2→L2)

where κ is as in (1.2), (1.3) and (1.4). For details on this topic, see [26, ch. 8].
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Another interesting property of CZ operators is that they are bounded on certain

weighted Lp spaces. A weight is a function w ∈ L1
loc(Rn) which is positive almost

everywhere. The associated space Lp(w), 1 ≤ p <∞, is the collection of functions f

on Rn such that

‖f‖pLp(w) =

∫
Rm
|f(x)|pw(x)dx <∞.

The Muckenhoupt characteristic of w is defined as

‖w‖Ap = sup
Q

1

|Q|

∫
Q

wdx ·
(

1

|Q|

∫
Q

w−1/(p−1)dx

)p−1

, (2.22)

with the supremum taken over all cubes, Q. Note that when p = 2 this becomes

‖w‖A2 = sup
Q

1

|Q|

∫
Q

wdx · 1

|Q|

∫
Q

w−1dx.

w is said to be an Ap weight if ‖w‖Ap is finite. In this case, it is well known (see for

example [26, ch. 9]) that if T is a CZ operator, then there exists a constant Cn,p,T,w,

depending on the n, p, T , and w, such that

‖Tf‖Lp(w) ≤ Cn,p,T,w‖f‖Lp(w),

for all f ∈ Lp(w) when 1 < p < ∞. (A corresponding weak-type result holds when

p = 1.)

Recently, in [28], Hytönen proved the so called “A2 conjecture,” that Cn,2,T,w

depends linearly on ‖w‖2, i.e., there exists a constant Cn,2,T such that

‖Tf‖L2(w) ≤ Cn,2,T‖w‖A2‖f‖L2(w),

for all f ∈ L2(w). Combining this with a result of Dragičević, Grafakos, Pereyra, and

Petermichl [21] shows that

‖Tf‖Lp(w) ≤ Cn,p,T‖w‖
max{1, 1

p−1
}

Ap
‖f‖Lp(w)

for all f ∈ Lp(w). For more information weighted Lp spaces and the A2 conjecture,

see [26, ch. 9] and [28].

The operators considered in [11] are generalized in [1] by taking the projections of

martingales transforms involving more general Lévy processes in place of Brownian
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motion. These more general operators are shown in these papers to obey the same

“p∗ − 1” strong-type bound for 1 < p <∞ as the operators from [11]. In the current

paper we have shown that the operators considered in [11] are CZ operators, and

therefore are also weak-type (1,1). It would be interesting to know if the same is true

of the operators studied in [1].
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3. A Method of Rotations for Lévy Multipliers

3.1 The proof of theorem 1.8.1

The main idea of the proof is to use a method of rotations to write Tmr as the

weighted average of multipliers which can be studied using the Marcinkiewicz multi-

plier theorem.

Proof We first observe (see [26] Appendix D, p. 443) that

∫
Sn−1

|ξ · θ|rdσ(θ) = An,r|ξ|r, (3.1)

where An,r = 1
2π(n−1)/2

Γ( 1+r
2

)

Γ(n+r
2

)
. Therefore,

mr(ξ) = A−1
n,r

∫
Sn−1

|ξ · θ|r

|ξ|r
ϕ(θ)dσ(θ). (3.2)

Now for θ ∈ Sn−1, we let mθ(ξ) = |ξ·θ|r
|ξ|r . Using (3.2), we may write Tmr as a

weighted average of the Tmθ ’s. More precisely, we shall prove the following lemma.

Lemma 3 For all f ∈ C∞0 (Rn),

Tmrf(x) = A−1
n,r

∫
Sn−1

Tmθf(x)ϕ(θ)dσ(θ),

for almost every x.
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Proof Let f and g ∈ C∞0 (Rn). Then by Plancherel’s theorem, Fubini’s theorem,

and the Cauchy-Schwarz inequality,

A−1
n,r

∫
Rn

∫
Sn−1

Tmθf(x)ϕ(θ)dσ(θ)g(x)dx

=A−1
n,r

∫
Sn−1

ϕ(θ)

∫
Rn
Tmθf(x)g(x)dxdσ(θ)

=A−1
n,r

∫
Sn−1

ϕ(θ)

∫
Rn
mθ(ξ)f̂(ξ)¯̂g(ξ)dξdσ(θ)

=A−1
n,r

∫
Rn

∫
Sn−1

mθ(ξ)ϕ(θ)dσ(θ)f̂(ξ)¯̂g(ξ)dξ

=

∫
Rn
T̂mrf(ξ)¯̂g(ξ)dξ

=

∫
Rn
Tmrf(x)g(x)dx.

We will also need to estimate the Lp boundedness of the operators Tmθ . This is

accomplished by the following lemma.

Lemma 4 There exists 0 < Cn <∞ such that

‖Tmθf‖p ≤ Cn(p∗ − 1)6n‖f‖p,

for all f ∈ Lp(Rn). Cn depends only on n and, in particular, does not depend on r

or θ.

Before proving lemma 4, we will first show how it is used to give a simple proof

of Theorem 1.8.1. By Minkowski’s integral inequality,

‖Tmrf‖p = A−1
n,r

(∫
Rn

∣∣∣∣∫
Sn−1

ϕ(θ)Tmθf(x)dσ(θ)

∣∣∣∣p dx)1/p

≤ A−1
n,r

∫
Sn−1

(∫
Rn
|ϕ(θ)|p|Tmθf(x)|pdx

)1/p

dσ(θ)

= A−1
n,r

∫
Sn−1

|ϕ(θ)|
(∫

Rn
|Tmθf(x)|pdx

)1/p

dσ(θ)

≤ A−1
n,r

∫
Sn−1

‖Tmθf‖pdσ(θ)

≤ A−1
n,rCn(p∗ − 1)6nωn−1‖f‖p,
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where ωn−1 is the surface area of Sn−1. Therefore, theorem 1.8.1 is proved.

We shall now prove lemma 4

Proof For θ in Sn−1, let R be a rotation such that Rθ = e1 and for f ∈ Lp let g(x) =

f(R−1x). Then a simple change for variables shows that Tmθf(x) = Tme1g(Rx).

Therefore, it suffices to show that

‖Tme1f‖p ≤ Cn(p∗ − 1)6n‖f‖p for all f ∈ Lp(Rn).

To prove this, we will show that me1 satisfies the assumptions of theorem 1.3.1 and

that we can take K to be independent of r in (1.8). Note that it follows from [39, p.

110] that for each fixed r, Tme1 is a Marcinkiewicz multiplier, but it takes considerably

more work to show that K can be taken to be independent of r in (1.8). me1(ξ) is

even in each ξi so it suffices to restrict attention to the region where all ξi are positive.

Noting that for all A1, . . . , Ak > 0∫ 2A1

A1

. . .

∫ 2Ak

Ak

1

ξi1ξi2 . . . ξik
dξik . . . dξi1 = log(2)k,

we see that it suffices to prove there exists C independent of r such that

|∂i1 . . . ∂ikme1(ξ)| ≤
C

ξi1ξi2 . . . ξik

or equivalently that

ξi1ξi2 . . . ξik |∂i1 . . . ∂ikme1(ξ)| ≤ C. (3.3)

The left hand side of (3.3) is homogeneous of order zero, so it suffices to bound

this quantity on the portion of the unit sphere where all ξi ≥ 0. To do this, we will

make use of two elementary lemma’s which involve the use of Lagrange multipliers to

bound polynomials on ellipses.

Lemma 5 Let a, b, c, d > 0. The maximum value of

f(x, y) = xayb
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subject to the constraints cx2 + dy2 = 1, x, y ≥ 0, is given by(
a
c

)a/2 ( b
d

)b/2
(a+ b)(a+b)/2

.

Proof It is easy to check using the method of Lagrange multipliers to show that f

is maximized when

x2 =
a

c(a+ b)
and y2 =

b

d(a+ b)
.

The result follows immediately.

Lemma 6 Let 1 < k ≤ n, then the maximum value of f(x, y, z) = (k − 1)x2kyr +

(n−k)x2k−2yrz2 subject to the constraint that g(x, y, z) = (k−1)x2 +y2 +(n−k)z2 =

1, x, y, z ≥ 0 is

(2k)k

(k − 1)k−1

(
r

2k + r

)r/2
1

(2k + r)k
.

Proof If k = n then,

f(x, y, z) = f(x, y) = (n− 1)x2nyr and g(x, y, z) = g(x, y) = (n− 1)x2 + y2,

so the result follows from lemma 5. If 1 < k < n, the method of Lagrange multipliers

can be used to show that at any point at which f achieves a local maximum, z = 0.

Therefore, the result again follows from lemma 5.

Now, in order to verify that mr satisfies (3.3), we consider three cases.

Case 1 1 /∈ {i1, . . . , ik} :

By direct computation,

|∂i1 . . . ∂ikme1(ξ)| = r(r + 2) . . . (r + 2k − 2)
ξr1ξi1 . . . ξik
|ξ|r+2k

.

Therefore, we need to bound

r(r + 2) . . . (r + 2k − 2)ξr1ξ
2
i1
. . . ξ2

ik
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on the portion of the unit sphere where all coordinates are non-negative. By sym-

metry, it is clear that this last term is maximized when ξi1 = ξi2 = . . . = ξik and

ξi = 0 , whenever i /∈ {i1, . . . , ik, 1}. Therefore, we are lead to the two-dimensional

optimization problem of maximizing

f(x, y) = x2kyr,

subject to the constraint that g(x, y) = kx2 +y2 = 1. By lemma 5, the maximal value

of f subject to this constraint is less than

Ck

(
1

2k + r

)k
.

Therefore, on the unit sphere

r(r + 2) . . . (r + 2k − 2)ξrj ξ
2
i1
. . . ξ2

ik
≤ Ck

r(r + 2) . . . (r + 2k − 2)

(2k + r)k
≤ Ck.

Case 2 k = 1, i1 = 1 :

Differentiating, we see

|ξ1∂1me1(ξ)| = r
ξr1
|ξ|r+2

(ξ2
2 + . . .+ ξ2

n),

and (3.3) can be verified by repeating the arguments of case 1.

Case 3 k > 1 and 1 ∈ {i1, . . . , ik} :

Without loss of generality, we may assume ik = 1. Carrying out the computations,

we see

|∂i1 . . . ∂ik−1
∂1m(ξ)|

=

∣∣∣∣∣r(r + 2) . . . (r + 2k − 4)rξi1 . . . ξik−1
ξr−1

1

|ξ|r+2k−2
−
r(r + 2) . . . (r + 2k − 2)ξi1 . . . ξik−1

ξr+1
1

|ξ|r+2k

∣∣∣∣∣
=
r(r + 2) . . . (r + 2k − 4)ξi1 . . . ξik−1

ξr−1
1

|ξ|r+2k

∣∣r(ξ2
2 + ξ2

3 + . . .+ ξ2
n)− (2k − 2)ξ2

1

∣∣ .
Therefore, it suffices to show that there exists Ck such that

r(r + 2) . . . (r + 2k − 4)ξ2
i1
. . . ξ2

ik−1
ξr+2

1 < Ck
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and

r(r + 2) . . . (r + 2k − 4)rξ2
i1
. . . ξ2

ik−1
ξr1(ξ2

2 + . . .+ ξ2
n) < Ck,

whenever |ξ| = 1 and all ξi ≥ 0. This can be done by using lemmas 5 and 6 in a

manner similar to cases 1 and 2.

Remark 4 In the case that r = 2k is an even integer, we have that Te1 = R2k
1 ,

the 2k-th order Riesz transform in direction 1. Dimension free estimates for this

operator were obtained by Iwaniec and Martin in [30] using a method that compared

polynomials of the Riesz transforms to polynomials of the complex Riesz transforms

and then in turn estimated the complex Riesz transforms by comparing them to the

iterated Beurling-Ahlfors transform.

Identifying Cn with R2n the complex Riesz transforms are defined by

Cj = Rj + iRn+j

for 1 ≤ j ≤ n. For a polynomial p(x) =
∑
|β|≤m cβx

β, p(R) and p(C) are defined by

p(R) =
∑
|β|≤m

cβR
β and p(C) =

∑
|β|≤m

cβC
β,

where Rβ = Rβ1
1 ◦ . . . ◦Rβn

n and Cβ = Cβ1
1 ◦ . . . ◦ Cβn

n . Iwaniec and Martin show that

if p2k is a homogeneous polynomial of degree 2k we have that

‖p2k(R)‖Lp(Rn)→Lp(Rn) ≤ ‖p2k(C)‖Lp(Cn)→Lp(Cn) ≤
2Γ(n+ k)‖Bk‖p

kπnΓ(k)

∫
S2n−1

|p2k(z)|dσ(z),

where ‖Bk‖p is the norm of the k-th iterated Beurling-Ahlfors transform on Lp(C).

Picking p(x) = x2k
1 and computing the integral on the right-hand side using the for-

mulas in Appendix D of [26], we see

‖R2k
1 ‖Lp(Rn)→Lp(Rn) ≤ ‖Bk‖p.

The Lp boundedness of Bk was studied by Dragicevic, Petermichl, and Volberg in [22]

where they showed that

C1k
1−2/p∗p∗ ≤ ‖Bk‖p ≤ C2k

1−2/p∗p∗.
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Combining this with (4) gives

‖R2k
1 ‖Lp(Rn)→Lp(Rn) ≤ C2k

1−2/p∗p∗.

Therefore,

‖Tmrf‖p ≤ Cn
Γ(n+r

2
)

Γ(n+1
2

)

(r
2

)1−2/p∗

p∗‖f‖p.

Like the bound obtained in theorem 1.8.2, this bound is linear in p. Futhermore, with

p fixed it has order r(n+1)/2−2/p∗ as r → ∞, which is slightly better than the bound

obtained in theorem 1.8.2. However, this bound has the disadvantage of only being

valid when r is an even integer whereas the bound obtained in theorem 1.8.2 is valid

for all sufficiently large r.

3.2 The proof of theorem 1.8.2

Proof It is clear that ‖mr‖∞ ≤ 1, so by (1.9) it suffices to show that(
sup
R>0

R−n+2|β|
∫
R<|ξ|<2R

|∂βmr(ξ)|2dξ
)1/2

≤ Cnr
|β|

for all multi-indexes with |β| ≤ n0. But since mr is homogeneous of order zero, we

can make a change of variables and then use polar coordinates to see that

sup
R>0

R−n+2|β|
∫
R<|ξ|<2R

|∂βmr(ξ)|2dξ =

∫
1<|ξ|<2

|∂βmr(ξ)|2dξ

=

∫ 2

1

tn−1

∫
Sn−1

|∂βmr(tξ
′)|2dσ(ξ)dt

=

∫ 2

1

tn−1−2|β|dt

∫
Sn−1

|∂βmr(ξ
′)|2dσ(ξ)

≤ Cn

∫
Sn−1

|∂βmr(ξ)|2dσ(ξ),

where ξ′ = ξ
|ξ| . Therefore, it suffices to show that for all multi-indexes β with |β| ≤ n0,(∫

Sn−1

|∂βmr(ξ)|2dσ(ξ)

)1/2

≤ Cnr
|β|. (3.4)

As in (3.1), we see that

mr(ξ) = Cn
Γ( r+n

2
)

Γ( r+1
2

)
nr(ξ),
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where

nr(ξ) =

∫
Sn−1

|ξ · θ|r

|ξ|r
ϕ(θ)dσ(θ).

We will show that

(∫
Sn−1

|∂βnr(ξ)|2dσ(ξ)

)1/2

≤ Cnr
|β|Γ( r−n0+1

2
)

Γ( r−n0+n
2

)
,

and so (3.4) will follow by observing that Sterling’s formula implies that there exists

Cn such that for all r ≥ n0

Γ( r+n
2

)

Γ( r+1
2

)

Γ( r−n0+1
2

)

Γ( r−n0+n
2

)
≤ Cn.

For all θ ∈ Sn−1, let mθ(ξ) = |ξ·θ|r
|ξ|r so that

∂βnr(ξ) =

∫
Sn−1

∂βmθ(ξ)ϕ(θ)dσ(θ).

We note that it suffices to show that for all |β| ≤ n0,

|∂βmθ(ξ)| ≤ Cnr
|β||ξ · θ|r−n0 . (3.5)

For then we see that(∫
Sn−1

|∂βnr(ξ)|2dσ(ξ)

)1/2

≤ Cnr
|β|

(∫
Sn−1

(∫
Sn−1

|∂βmθ(ξ)|dσ(θ)

)2

dσ(ξ)

)1/2

≤ Cnr
|β|

(∫
Sn−1

(∫
Sn−1

|ξ · θ|r−n0dσ(θ)

)2

dσ(ξ)

)1/2

= Cnr
|β|Γ( r−n0+1

2
)

Γ( r−n0+r
2

)
.

Let gθ(ξ) = |ξ · θ|r and h(ξ) = |ξ|−r so that mθ(ξ) = gθ(ξ)h(ξ). By Leibniz’s rule

|∂βmθ(ξ)| =

∣∣∣∣∣∑
γ≤β

(
β

γ

)
∂γgθ(ξ)∂

δh(ξ)

∣∣∣∣∣
≤ Cn

∑
γ≤β

|∂γgθ(ξ)||∂δh(ξ)|,

where δ = β − γ.
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Letting γ = (γ1, . . . , γi) and δ = (δ1, . . . , δj), we see that when |θ| = |ξ| = 1

|∂γgθ(ξ)| = r(r − 1) . . . (r − i+ 1)|ξ · θ|(r−i) |θγ1 . . . θγi |

≤ ri|ξ · θ|r−n0 (3.6)

and

|∂δh(ξ)| = r(r + 1) . . . (r + j − 1)|ξ|−r−2j
∣∣ξδ1 . . . ξδj ∣∣ ≤ Cnr

j. (3.7)

(3.5) follows immediately which completes the proof.

Remark 5 If we inspect the proof of theorem 1.8.2, we will see that if r > n + 1, it

follows from (3.6) and (3.7), that mr is multiplier which satisfies the estimate

|ξ||β||∂βmr(ξ)| ≤ Cr (3.8)

for all multi-indexes with |β| ≤ n + 1. Therefore, by a result of McConnell [34], mr

may be obtained using martingale transforms with respect to a Cauchy process.

3.3 The Method of Rotation for other Lévy Multipliers

We have seen that the Lévy multipliers which arise from martingale transforms

with respect to α-stable processes can be studied analytically using the method of

rotations. This approach has the disadvantage that it does not allow us to obtain as

good of constants as those that are obtained through probabilistic methods. However,

it has the advantage of allowing us to remove the restriction that α < 2 and thereby

obtain a larger class of operators which are bounded on Lp(Rn) for 1 < p <∞. It is

natural to wonder if this method can be applied to study the multipliers which arise

from other Lévy processes and if so will it again let us remove restrictions on any

relevant parameters.

Let (Xt)t≥0 be a Lévy process whose Lévy measure ν is rotationally-symmetric

and absolutely continuous with respect to the Lebesgue measure. Write ν in polar

coordinates as dν = v(r)drdσ(θ) for some function v(r). Let ϕ be a bounded function

on Rn that is homogeneous of order zero, and consider the multiplier given by



45

mν(ξ) =

∫
Rn(cos(ξ · z)− 1)ϕ(z)dν(z)∫

Rn(cos(ξ · z)− 1)dν(z)
.

Let ρ(ξ) be the Lévy exponent corresponding to the Lévy triple (0, 0, ν). Since the ν

is symmetric, ρ(ξ) is real, and therefore∫
Rn

(cos(ξ · z)− 1)dν(z) = ρ(ξ). (3.9)

To examine the numerator define L : R→ R by

L(x) =

∫ ∞
0

(cos(rx)− 1)v(r)dr. (3.10)

Then, we have that∫
Rn

(cos(ξ · z)− 1)ϕ(z)dν(z) =

∫
Sn−1

L(ξ · θ)ϕ(θ)dσ(θ). (3.11)

Therefore, combining (3.9) and (3.11) we see that the multiplier which arises as the

projection of martingale transforms with respect to Xt is given by

mν(ξ) =

∫
Sn−1

L(ξ · θ)
ρ(ξ)

ϕ(θ)dσ(θ).

Similarly to section 3.1, we set mθ(ξ) = L(ξ·θ)
ρ(ξ)

so that

mν(ξ) =

∫
Sn−1

mθ(ξ)ϕ(θ)dσ(θ).

Then repeating the arguments of section 3.1, we see that if Tme1 is bounded on Lp(Rn),

then Tmr is bound on Lp(Rn).

More generally, we have the following corollary.

Corollary 3 For any function L : R → R, let AL(ξ) =
∫
Sn−1 L(ξ · θ)dσ(θ). If

me1(ξ) = L(ξ1)
AL(ξ)

is an Lp multiplier for some 1 < p <∞, then for all ϕ ∈ L∞(Sn−1).

mL(ξ) =

∫
Sn−1 L(ξ · θ)ϕ(θ)dσ(θ)∫

Sn−1 L(ξ · θ)dσ(θ)
.

is also an Lp multiplier. In particular, if for some Cn,p > 0,

‖Tme1f‖p ≤ Cn,p‖f‖p for all f ∈ Lp,

then

‖TmLf‖p ≤ ωn−1Cn,p‖f‖p for all f ∈ Lp.
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Consider now, for 0 < β < α < 2, the so-called “mixed-stable” process defined

by, Zt = Xt + aYt where Xt is a rotationally-symmetric α-stable process, Yt is an

independent rotationally symmetric β-stable process, and a > 0. Zt is a Lévy process

with exponent ρ(ξ) = −(|ξ|α + aβ|ξ|β) and Lévy measure

dν(z) = (Cn,αr
−1−α + Cn,βa

βr−1−β)drdσ(θ).

In this case, by an argument similar to the α-stable case, the corresponding multiplier

is given by

mα,β(ξ) =

∫
Sn−1(Cn,α|ξ · θ|α + Cn,β,a|ξ · θ|β)ϕ(θ)dσ(θ)∫

Sn−1(Cn,α|ξ · θ|α + Cn,β,a|ξ · θ|β)dσ(θ)
.

It is already known that mα,β is an Lp multiplier for 1 < p <∞ by the results of [9]

and [5]. However, the method of rotations allows us to to remove the restriction that

0 < β < α < 2. More precisely, we can prove the following.

Corollary 4 Let 0 < r < s < ∞, let Cr, Cs > 0, and let ϕ ∈ L∞(Rn). Then mr,s

defined by

mr,s(ξ) =

∫
Sn−1(Cr|ξ · θ|r + Cs|ξ · θ|s)ϕ(θ)dσ(θ)∫

Sn−1(Cr|ξ · θ|r + Cs|ξ · θ|s)dσ(θ)
.

is an Lp multiplier, for all 1 < p <∞ and

‖Tmr,sf‖p ≤ Cn,r,s(p
∗ − 1)6n‖f‖p for all f ∈ Lp(Rn).

Proof As in the proof of theorem 1.8.1, the integral in the denominator can be

computed directly and∫
Sn−1

(Cr|ξ · θ|r + Cs|ξ · θ|s)dσ(θ) = C ′r|ξ|r + C ′s|ξ|s.

Therefore, in light of corollary 3 it suffices to show that

me1(ξ) =
Cr|ξ1|r + Cs|ξ1|s

C ′r|ξ|r + C ′s|ξ|s

is an Marcinkiewicz multiplier. As in the proof of lemma 4, we restrict attention

to the region where all ξi are non-negative, and check that me1 satisfies (3.3). We

already know that |ξ1|
r

|ξ|r satisfies (3.3) so it suffices to show that

n(ξ) =
1 + a|ξ1|t

b+ c|ξ|t
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satisfies (3.3) for all a, b, c, t > 0 since it is easy to check using Leibniz’s rule that the

product of two multipliers which satisfy (3.3) is again a multiplier satisfying (3.3).

Applying Faá di Bruno’s formula to the function g(h(ξ)), where h(ξ) = |ξ|2 and

g(x) = 1
b+cxt/2

, we see that ∂i1 . . . ∂ik
1

b+c|ξ|t is a finite linear combination of terms of

the form (
|ξ|t

b+ c|ξ|t

)i
ξi1 . . . ξik
|ξ|2k

1

b+ c|ξ|t
, 0 ≤ i ≤ k.

(3.3) then follows easily which completes the proof.

Consider again the relativistic α-stable process which was introduced in section

2.2. Here we will show that the multipliers which arise from taking the projections of

martingale transforms with respect to this process can be studied using the method

of rotations. Unfortunately, unlike in the case of the mixed stable processes, the fact

that 0 < α < 2 will play a crucial role in the proof. Therefore, we will not be able to

remove that restriction and obtain a larger class of operators.

Corollary 5 Let 0 < α < 2, M > 0, and ϕ ∈ L∞(Rn) homogeneous of order

zero. Let dν(z) = r−1−αφ(r)drdθ be the Lévy measure corresponding to the relativistic

α-stable process with mass M and let L be defined as in (3.10). Then L(ξ1)
ρ(ξ)

is a

Marcinkiewicz multiplier and therefore, by corollary 3

mν =

∫
Rn(1− cos(ξ · θ))ϕ(θ)dν(z)∫

Rn(1− cos(ξ · θ))dν(z)

is an Lp multiplier and

‖Tmνf‖p ≤ Cn,α(p∗ − 1)6n‖f‖p.

This is of course a weaker version of results already proven in [9] and [5], but never-

theless, it is interesting to observe that this result can also be obtained analytically.

Proof In [20], it is shown that the Lévy measure corresponding to Xt can be written

in polar coordinates by

dν(z) = r−1−αφ(r)drdσ(θ)
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where φ(r) is a bounded positive function that that satisfies

φ(r) ≤ Ce−rr(n+α−1)/2 (3.12)

when r ≥ 1.

Now, by Faá di Bruno’s formula, ∂i1 . . . ∂ik
1
ρ(ξ)

is a finite linear combination of

terms with the form

ξi1 . . . ξik(|ξ|2 +M2/α)
α
2
j−k

((|ξ|2 +M2/α)
α
2 −M)j+1

, 0 ≤ j ≤ k. (3.13)

Therefore, we see that 1
ρ(ξ)

is infinitely differentiable on Rn \ {0} and∣∣∣∣∂i1 . . . ∂ik 1

ρ(ξ)

∣∣∣∣ ≤ O

(
1

|ξ|α+k

)
as |ξ| → ∞.

Near 0, each term in (3.13) is bounded above by

CM,n,α
1

(|ξ|2 +M2/α)
α
2 −M)j+1

≤ CM,n,α
1

(|ξ|2 +M2/α)
α
2 −M)

≤ O

(
1

|ξ|2

)
as |ξ| → 0.

It is easy to check using the dominated convergence theorem, the mean value theo-

rem and the fact that rk−αφ(r) is integrable on (0,∞) for all k ≥ 1, that L is infinitely

differentiable on (0,∞). Therefore, in order to show that L(ξ1)
ρ(ξ)

is a Marcinkiewicz mul-

tiplier it suffices to show that

|L(ξ)| ≤ Cα min{|ξ|α, |ξ|2} (3.14)

and

|L′(ξ)| ≤ Cα min{|ξ|α−1, |ξ|}. (3.15)

For then it will follow that L(ξ1)
ρ(ξ)

satisfies (3.3) since∣∣∣∣ξi1 . . . ξik∂i1 . . . ∂ikL(ξ1)

ρ(ξ)

∣∣∣∣
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is a continuous function on Rn\{0} which is bounded near the origin and as |ξ| → ∞.

Making a change of variables, we see that

|L(x)| =
∣∣∣∣∫ ∞

0

(cos(rx)− 1)r−1−αφ(r)dr

∣∣∣∣
= |x|α

∣∣∣∣∫ ∞
0

(cos(s)− 1)s−1−αφ

(
s

|x|

)
ds

∣∣∣∣ ≤ Cα|x|α,

where the last inequality uses the boundedness of φ. On the other hand we can use

the inequality | cos(x) − 1| ≤ x2, along with (3.12) and the boundedness of φ to see

that

|L(x)| =
∣∣∣∣∫ ∞

0

(cos(rx)− 1)r−1−α)φ(r)dr

∣∣∣∣
≤ |x|2

∣∣∣∣∫ ∞
0

r1−αφ(r)dr

∣∣∣∣ ≤ Cα|x|2.

This proves (3.14). Note that the fact that 0 < α < 2 is needed in order for this

integral to converge.

To prove (3.15) observe that

L′(x) =

∫ ∞
0

sin(rx)r−αφ(r)dr.

Using the fact that | sin(x)| ≤ |x|, it follows that |L′(x)| ≤ Cα|x| by mimicing the

above arguments. To obtain the other part of (3.15) we make a change of variables,

and use the fact that ϕ is decreasing to see

|L′(x)| = |x|α−1

∣∣∣∣∫ ∞
0

sin(t)t−αϕ

(
t

x

)
dt

∣∣∣∣
= |x|α−1

∞∑
n=0

(−1)n
∫ (n+1)π

nπ

∣∣∣∣sin(t)t−αϕ

(
t

x

)∣∣∣∣ dt
≤ |x|α−1

∣∣∣∣∫ π

0

sin(t)t−αϕ

(
t

x

)
dt

∣∣∣∣
≤ Cα|x|α−1.

This completes the proof of corollary (5).
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