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ABSTRACT

Padmanabhan, Karthik Ramaswamy PhD, Purdue University, August 2016. Un-
derstanding Plant Response to Stress Using Gene Model Quality Evaluation and
Transcriptome Analysis. Major Professor: Michael R. Gribskov.

The overall aim of the project was to understand how plants reacted to environ-

mental stress and evolved to overcome it. The land plants that we see today evolved

from a green algal ancestor around 510 million years ago. Plants had to make signif-

icant changes to their cellular, morphological, regulatory and physiological processes

during their adaptation to the terrestrial environment from an aquatic environment.

The first part of the project was to find out how these changes were reflected on the

protein makeup of the early land plants. The gene model sequence data of two early

land plants, Physcomitrella patens (moss) and Chlamydomonas reinhardtii (green al-

gae). We specifically focused on the protein family expansion of protein kinases due

to their roles in various important functions that would affect the transition from wa-

ter to land. We developed a gene model quality evaluation method to score the gene

models of P. patens and C. reinhardtii using well-studied plants such as Arabidop-

sis thaliana and Oryza sativa (rice) to improve the poor quality gene models that

currently exist. The resulting corrected gene models were analyzed using functional

annotation methods to understand how the proteomics of the early land plants varied

from modern land plants.

The second part of the project was to identify the genes responsible for herbi-

cide resistance in Ambrosia trifida (giant ragweed). Giant ragweed is one of the

most competitive annual weeds in corn and soybean production across the eastern

Corn Belt in the United States. The use of glyphosate (commercial name: Roundup)
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and glyphosate-ready crop systems managed to keep giant ragweed populations un-

der control. Glyphosate-ready crop systems consist of seeds that are resistant to

glyphosate, which enables farmers to use glyphosate to control the population of

weeds. But in the last decade, glyphosate-resistant giant ragweed populations have

been reported across the world. It is a huge problem to farmers since it results in un-

usable glyphosate-ready cropping systems and huge yield losses. Glyphosate-resistant

and sensitive plants were identified from across the Midwestern United States and a

RNA-seq experiment was performed by isolating the total mRNA from leaf material,

and obtaining the expressed messenger RNA sequences. The genetic makeup of the

sensitive and resistant strains was thus compared based on their transcriptome data,

and a list of potential genes that were differentially expressed between them was iden-

tified. We also analyzed how much the quality of the transcriptome can be improved

by using the transcriptome and genome of sunflower, a closely-related plant.
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1. INTRODUCTION

1.1 Background and significance

Environmental stress in plants can be defined as conditions that negatively affect

plant growth or development (Buchanan et al., 2015). Stress can affect the gene ex-

pression, rate of cellular metabolism and rate of development in plants (Reddy et al.,

2004). Changes in plant cellular and metabolic states occur via a process called accli-

mation, which involves modifications to multiple metabolic pathways (Mittler, 2006).

Due to the increasing awareness about climate change, and widespread increase in

drought occurrences across the globe, understanding how plants respond to stress is

increasingly crucial, especially in the field of agriculture (Petit et al., 1999; Chaves

et al., 2003). Stress response also plays a major role in weeds developing resistance

to herbicides (Powles and Yu, 2010).

Thanks to the rapid advances in genomics and sequence analysis, many genes

that take part in stress response have been identified. Abscisic acid (ABA), a plant

hormone, has been recognized as playing an important role in the response to stress

conditions such as salinity, physical damage, and water scarcity, by plants (Tuteja,

2007). Plants are known to regulate the levels of ABA to counter environmental stress

(Tuteja, 2007).

Plant protein kinases play a major role in plant stress response. A study by Saijo

et al. examined the contribution of Calcium-Dependent Protein Kinases (CPKs) to

the plant stress responses (Saijo et al., 2000). In the study, the authors found that a

single CPK in rice was responsible for conferring tolerance to low temperature, salin-

ity and drought, thus suggesting that this CPK could be a commonly used regulator
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in different stress response pathways. Mitogen Activated Protein Kinases (MAPKs)

also help in pathogen response in tobacco plants (Yang et al., 2001). The study con-

cluded that a MAPK kinase kinase (MAPKK), NtMEK2, regulates the activation of

the hypersensitive response in tobacco, which is a key mechanism involved in plant

disease resistance. A protein cascade involving NtMEK2 was also discovered to con-

trol the expression of HMGR and PAL, two key defense genes which express enzymes

playing a major role in phytoalexin and salicyclic acid production (Yang et al., 2001).

Another study found that several genes that code for protein kinases are upregulated

in response to stress conditions such as salinity, cold, and drought (Liu et al., 2000b).

In addition, several protein kinases in the MAPK cascade have been identified to play

a major role in plant signaling under abiotic stress conditions such as cold stress, salt

stress, dehydration, wounding, ozone, and heavy metal stress (Sinha et al., 2011).

Nitric Oxide (NO) is known to play an important role in plant biotic and abiotic

stress response through a process called NO burst, a term used to describe rapid NO

production (Asai and Yoshioka, 2008). NO is understood to induce the activation of

a MAPK during the process of programmed cell death (Clarke et al., 2000).

1.2 Abiotic stress during early land plant evolution

The emergence of land plants, otherwise known as embryophytes, around 400-500

million years ago, and their early diversification and development, delineates a very

important phase in the growth of terrestrial life on earth (Karol et al., 2001). Early

land plants such as liverworts, hornworts and mosses evolved from charophytes, which

are comprised almost entirely of green algae (Rensing et al., 2008). These three early

land plant groups are collectively termed bryophytes, or non-vascular plants (Fig-

ure 1.1). Plants with a developed vascular system are called tracheophytes. The

morphologies and life cycles of charophytes differ from both bryophytes and tracheo-

phytes. While tracheophytes and bryophytes alternate between the diploid sporo-
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phyte and the haploid gametophyte generations, the gametophytic haploid genera-

tion is generally the only generation of the life cycle for the charophytes (Graham

and Wilcox, 2000). However, certain charaophytes such as Spirogyra and Coleochaete

scutata have been shown to have unusual life cycles that include a diploid generation

(Haig, 2010).

Plants had to make significant changes to their cellular, morphological, regulatory,

and physiological processes, during their adaptation to the terrestrial environment

(Rensing et al., 2008). During the evolution of bryophytes from charophytes, the

dynein-based transport system present in algae was replaced with a kinesin-based

transport system. Early land plants developed signaling systems that used auxin,

ABA and cytokinins. The complexity of systems such as the ATP-binding cassette

(ABC) transporter family and photoreceptor signaling increased, while an increase

in tolerance to desiccation and stress was mandated by the move to dryer environ-

ments. Mosses, in particular, elaborated a complex two-component signaling system.

Two-component signaling systems, at a basic level, involve a histidine kinase and a

corresponding response regulator. The histidine kinase receives a signal which results

in the autophosphorylation of a conserved histidine residue. The resulting phosphate

is then relayed to the response regulator protein (Stock et al., 2000). Two-component

systems are found in both prokaryotes and eukaryotes, although more complex two-

component systems have been discovered in plants (Lohrmann and Harter, 2002).

These complex systems can include more than two response regulator proteins for

signal relay and a hybrid kinase instead of a histidine kinase. Hybrid kinases are

known to contain more than one phosphodonor and phosphoacceptor sites in order

to use multiple step phosphoryl transfer system. Mosses also elaborateded more effi-

cient homologous recombination DNA repair systems, adaptations to growth in shade,

and dehydration-rehydration adaptations (Rensing et al., 2008). When tracheophytes

evolved from bryophytes, they lost motile gametes and vegetative desiccation toler-
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ance, but gained the ability to signal via gibberellin, jasmonate, ethylene,and brassi-

nosteroids.

1.2.1 Eukaryotic protein kinases

Protein kinases are enzymes that catalyze the phosphorylation of serine, threo-

nine, or tyrosine residues in proteins by transferring the γ-phosphate of ATP to the

substrate residue (Lehti-Shiu and Shiu, 2012). Eukaryotic protein kinases (EPKs) are

a large family of highly regulated and conserved proteins involved in many cellular

processes (Hanks and Hunter, 1995). A characteristic feature of EPKs is the high de-

gree of sequence and structural similarity across different species and families. EPKs

possess a highly conserved protein kinase catalytic domain of roughly 250-300 amino

acid residues (Stone and Walker, 1995).

EPKs can be broadly classified into eight different groups : AGC (Protein Ki-

nase A, G and C families), CAMK (Calmodulin/Calcium-Mediated Kinases), CMGC

(CDK, MAPK, GSK3 and CLK families), RGC (Receptor Guanylate Cyclases), TK

(Tyrosine Kinases), TKL (Tyrosine Kinase-Like), STE (homologs of yeast Sterile ki-

nases) and CK1 (Casein Kinase 1 group) protein kinases (Manning et al., 2002; Hanks

and Hunter, 1995). The classification is based mainly on sequence similarity and the

presence of certain conserved domains in each group.

Previous research has shown that the conserved regions in the protein kinase cat-

alytic domain can be classified into 12 subdomains; each region has been studied to

identify the reasons for its conservation (Hanks and Quinn, 1991). The subdomains

consist of several sites that have consensus residues (Figure 1.2). Subdomain I has a

conserved GxGxxG motif which acts as the ATP-binding loop. The primary function

of this motif is to orient the γ-phosphate of ATP for the transfer of the phosphoryl

group (Johnson et al., 2001). Subdomain II is centered on a conserved lysine residue
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that has been found to be required for maximum enzyme activity. It anchors the

α and β phosphates of ATP during catalysis (Johnson et al., 2001). An invariant

glutamate residue in subdomain III acts as a salt bridge between the conserved lysine

in subdomain II, and the protein kinase active site [25]. Subdomain IV contains a

pair of conserved phenylalanine residues which act as anchors for the ATP-binding

pocket (Johnson et al., 2001). Subdomain V is a part of both the N and C lobes; it

forms a hydrophobic beta strand in the N-lobe and takes the form of an alpha helix

in the C-lobe. The N lobe of the protein kinase consists of a β-sheet containing five

strands, and the C-lobe comprises of α-helices and loops (McClendon et al., 2014).

Residues in subdomain V help to stabilize the ATP-binding pocket, and the binding

of peptide with the substrate (Hanks and Hunter, 1995).

Subdomain VIb contains the consensus sequence HRDLKxxN, which is the most

important conserved sequence in the protein. It is termed the catalytic loop because

the aspartate residue interacts with the three ATP-phosphates, either through mag-

nesium atoms, or through direct contact (Kornev et al., 2006). In Protein Kinase A

(PKA), and some other protein kinases, the loop contains a tyrosine residue (Y) in

place of the histidine (H). Certain non-protein kinases such as the Phosphatidylinosi-

tol phosphate kinases (PIPK) contain a MDYSL motif instead (Schramp et al., 2012).

Subdomain VII comprises the highly conserved DFG triplet, which helps position the

magnesium ion, and orient the -phosphate of the ATP for transfer. Another con-

served triplet is the APE triplet which is found in subdomain VIII. The glutamate

residue in this motif forms a salt bridge with the invariant arginine in subdomain

XI. This stabilizes the kinase core, and acts as an anchor for the movement of the

activation loop (Hanks and Hunter, 1995). In most protein kinases, this subdomain

also contains a phosphorylatable amino acid residue about seven to ten residues up-

stream of the APE triplet motif, which creates an ionic bond with the arginine in

the HRDLKxxN motif in subdomain VIb. The region between this residue and the

APE motif is termed the P+1 loop [21]. Subdomain IX has a conserved DxWxxG
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motif and is involved in hydrophobic interactions that stabilize the structure of the

protein kinase. Subdomain XI contains an invariant arginine residue,. This conserved

arginine residue improves the stability of the large carboxyl-terminal lobe.

1.2.2 Eukaryotic protein kinases in land plant evolution

As mentioned earlier, early land plants underwent major changes to different fun-

damental systems during their adaptation to life on land from water. This involved

changes in response to both abiotic and biotic conditions. Alteration in water and salt

concentrations are the most important factors that affected these early plants during

the transition. Salinity and drought stress have major effects on the metabolism and

physiology of plants. Many of these changes must have involved protein kinases. The

SOS pathway has been recently identified in plants as one of the primary regulatory

pathways that is triggered during saline and drought stress (Zhu, 2000). It involves

three proteins SOS1, SOS2 and SOS3, of which SOS2 is a serine/threonine protein

kinase (McDonald and Linde, 2002). Plant defense responses are mainly mediated by

protein kinase families such as calcium-dependent protein kinases, and MAP kinases

(Romeis, 2001). Protein kinases have been found to be required for salt tolerance (Liu

et al., 2000a), ABA signaling (Hirayama and Shinozaki, 2007), carbon metabolism

(Halford and Hardie, 1998), apoptosis (Bialik and Kimchi, 2006), dehydration toler-

ance (Yoshida et al., 2002), osmotic stress response (Miko�lajczyk et al., 2000), reg-

ulation of reactive oxygen species (ROS) production (Kobayashi et al., 2007), auxin

signaling (Lee et al., 2009), jasmonate signaling (Takahashi et al., 2007), and ethylene

signaling (Guo and Ecker, 2004).

MAP kinases, and the MAPK cascade of proteins, are one of the most important

regulators of stress in plants, due to their role in signaling (Cristina et al., 2010).

It is known that H2O2 is a significant molecule used in signaling stress responses,

wounding and pathogen resistance (Kovtun et al., 2000). A majority of eukaryotes
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use protein phosphorylation mediated by MAPK cascades as responders to oxidative

signals. A typical cascade consists of MAP kinase kinase kinases (MAP3Ks), MAP

kinase kinases (MAP2Ks) and MAP kinases (MAPKs) (Nakagami et al., 2005). Re-

search has shown that MAPKs play an important role in plant pathogen response in

Arabidopsis, tobacco, rice and parsley (Nakagami et al., 2005).

Plant receptor-like kinases (RLKs) are a major class of protein kinases, and are

similar to animal receptor tyrosine kinases. They typically span the cell membrane,

and contain receptor domains esposed on the extracellular side of the cell membrane

that receive signals, and a cytoplasmic protein kinase domain that is activated when

ligands bind to the extracellular receptor (Becraft, 1998). They are known to take

part in a variety of processes such as resistance to disease, regulation of cell growth,

symbiosis and brassinosteroid signaling (De Smet et al., 2009). Only about 2% of

the total number of RLKs identified so far have been assigned functions (Shiu and

Bleecker, 2001). RLKs have been implicated in both normal growth and development

of the plant, and in plant stress responses. Various genes in rice, wheat, tomato and

Arabidopsis have been associated with disease resistance, defense response, and mi-

crobial stress response functions (Shiu and Bleecker, 2001). RLK signaling pathways

are known to activate defense response genes in various plants (Afzal et al., 2008). For

instance, the FLS2 receptor kinase is involved in Arabidopsis innate immunity. FLS2

binds bacterial flagellin, which activates downstream signals, causing plant defense

response. The expansion of the RLK family of protein kinases in early land plants

is therefore assumed to have allowed plants make suitable adjustments to signaling

systems during their evolution (Afzal et al., 2008).

Therefore, in order to track the adaptations that bryophytes and land plants had

to make, the specific protein kinase families that expanded, contracted or remained

constant during the course of evolution from charophytes to tracheophytes were an-

alyzed. To track these changes, functional analysis of bryophytes and charophytes
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were done. This helped us understand the various adaptations that the early land

plants had to make to their various bio-systems.

When EPKs are compared across bryophytes, charophytes and tracheophytes,

the latter have the highest number of protein kinases [20]. Physcomitrella patens,

a bryophyte model system, has 685 gene models annotated as protein kinases in its

genome, while Chlamydomonas reinhardtii, the most studied green algae, has only

426 protein kinases. In comparison, Arabidopsis thaliana has close to 1000 protein

kinases, and Oryza sativa has more than 1400 protein kinases. This disparity in

the number of protein kinases is mainly due to the extent of protein duplication in

each of the species. Lehti-Shiu et al. (2012) compared the percentage sequence iden-

tity between the paralogues of proteins in C. reinhardtii, P. patens, and A. thaliana

(Lehti-Shiu and Shiu, 2012). The higher the sequence identity, the more recent the

duplication event. To explain further, when a species undergoes a whole genome du-

plication event, the duplicate genes start diverging from each other due to random

mutations. Therefore, when the sequence identity between duplicated genes is high,

this implies that the duplication event was fairly recent. On the other hand, when the

sequence identity is low, it can be said that the duplication event occurred farther in

the past. They discovered that while C. reinhardtii has an average paralog percentage

identity of 56.6, A. thaliana, O. sativa, and P. patens have a much higher percentage

identities of 81.1%, 79.0% and 85.3%, respectively. This suggests that these three

plants have protein kinases that are more recently duplicated than the proteins in

the green algae. Research suggests that the A. thaliana lineage underwent at least

three whole genome duplication events, with the last one occurring around 25 million

years ago (Rizzon et al., 2006; Blanc and Wolfe, 2004). Similarly, O. sativa is known

to have undergone a whole genome duplication event approximately 21 million years

ago, with another duplication event earlier occurring 170-235 million years ago (Yu

et al., 2005). In P. patens, a whole genome duplication event is assumed to have

occurred between 30 and 60 million years ago (Rensing et al., 2007). These studies
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generally agree with the results obtained from the percentage sequence identity study

that was performed by the group.

Protein family expansion may contribute to the adaptation of the organism to its

environment. It has been suggested that the increase in size of the protein kinase

family of proteins occurred via lineage-specific expansion (Haig and Wilczek, 2006).

Lineage-specific expansion can be termed as the expansion of a particular family of

proteins in a specific lineage, when compared to its sister lineage. A study found that

up to 80% of proteins in the Arabidopsis thaliana genome consisted of lineage-specific

expansions of protein families, whose functions were mainly related to pathogen re-

sponse, stress response, and signaling pathways (Lespinet et al., 2002) This is mainly

because it is simpler for the organism to undergo gene duplication to increase their

functional diversity than start from scratch (Kondrashov, 2012).

1.2.3 Plant gene modeling

Computational methods for identifying genes in a genome typically fall into two

categories genome-guided, and ab initio gene modeling. In genome-guided gene

modeling, the genomic sequence of a closely-related organism is used to infer the

structure of genes. In plant genomics, only certain model systems such as A. thaliana

and to a certain extent, O. sativa have reasonably well annotated genomes (Kaul

et al., 2000; Project, 2005). On the other hand, ab initio gene modeling is used when

there is no closely related genome to work with, and uses signal sensors and content

sensors to identify genes (Wang et al., 2004). These will be discussed in detail in

the next chapter. Ab initio methods are often less accurate, and suffer from various

drawbacks and limitations (Li et al., 2005). Therefore, when working with sequences

from plants such as P. patens and C. reinhardtii, which dont have closely related

reference genomes, there is a need for a method to evaluate the ab initio gene models.
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1.3 Herbicide resistance in plants

Herbicides are chemicals that are used to kill unwanted plants that compete with

crop plants for resources. Herbicide application has been the most widely used and

effective form of weed control over the past four decades (Powles and Yu, 2010). How-

ever, weeds have recently developed resistance to various herbicides due to improper

herbicide treatment strategies such as constant treatment with a similar class or fam-

ily of chemicals (Jasieniuk et al., 1996).

Herbicide-resistant weeds are a growing threat to food crops and agriculture. Due

to the immense selective pressure produced by herbicide application, any plant car-

rying an allele providing resistance to herbicides is strongly selected. There are two

types of mechanisms by which weeds can develop resistance to herbicides target-site

resistance (TSR) and non-target-site-based resistance (NTSR). TSR occurs when an

amino acid change at the target protein occurs thereby preventing the binding of the

herbicide or many other effects. It can also be achieved when the target enzyme is

overexpressed via gene amplification or duplication. NTSR occurs when the plant

prevents the herbicide from reaching the target site through various mechanisms such

as reduced herbicide translocation, herbicide degradation, efflux and sequestration

(Kemp et al., 1990; Kern and Dyer, 1998; Preston and Wakelin, 2008; Ge et al.,

2010).

1.3.1 Glyphosate resistance and weed evolution

N-(phosphonomethyl)glycine, commonly known as glyphosate or RoundUp, is one

of the most widely used herbicides in the world (Shaner, 2000). Glyphosate closely re-

sembles the chemical structure of the amino acid glycine, which results in its uptake

by plants without causing any stress response. It demonstrates herbicidal activity

against a wide variety of weeds (Malik et al., 1989). Glyphosates mode of action

involves the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), an
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enzyme that is present only in plants, fungi and bacteria (Nandula, 2010). Therefore,

it is inherently non-toxic to humans, other animals, and insects. The enzyme plays

an important role in the synthesis of aromatic amino acids in the shikimate pathway.

The inhibition of EPSPS by glyphosate ultimately results in plant death due to build

up of shikimate pathway intermediates (Gomes et al., 2014).

Resistance to herbicides in plants is an evolutionary process due to selection pres-

sure that enables plants to survive a normal dose of herbicide treatment (Bradshaw

et al., 1997). The mechanisms behind herbicide resistance can be the EPSPS enzyme

target-site modification, degradation of the herbicide, bypassing the toxic activity

of the herbicide, or prevention of herbicide-target interaction by utilizing physical

barriers such as enhanced cuticles or physiological barriers like active transporters

(Sammons and Gaines, 2014). These mechanisms are further explained in detail in

the next section. Due to the use of glyphosate-resistant cropping systems, and to

general overuse of herbicides, various resistant weeds have been reported (Duke and

Powles, 2008).

1.3.2 Mechanisms of glyphosate resistance

In one mechanism, the sequence of the gene encoding EPSPS is altered with

amino acid residue 106P typically being replaced by Serine, Alanine or Threonine,

which affects the strength of glyphosate binding to the enzyme (Powles and Preston,

2006). Common weeds exhibiting this type of resistance mechanism include Malaysian

goosegrass, Italian ryegrass, and Rigid ryegrass (Gomes et al., 2014; Jasieniuk et al.,

2008; Preston et al., 2009).

Another major mechanism of glyphosate resistance in various weeds is reduced

translocation. Studies done using radioactively-labeled 14C glyphosate have shown

that many weeds restrict translocation of glyphosate within the plant (Pratley et al.,
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1999). When nuclear magnetic resonance (NMR) was used to track the transport

of glyphosate inside cellular compartments, glyphosate was found to be sequestered

inside vacuoles in some glyphosate resistant weed biotypes (Ge et al., 2013; Ge et al.,

2010). This indicates that these plants are able to recognize and isolate glyphosate

before it can cause any adverse effects . However, there has been no evidence, so

far, that glyphosate can be catabolized by plants, and therefore, such a mechanism

of resistance has not been discovered (Whitaker et al., 2013).

Another mechanism found in glyphosate-resistant weed biotypes is gene duplica-

tion. In some weeds, the EPSPS gene is duplicated multiple times to overcome the

effect of the herbicide (Boerboom et al., 1990; Jones et al., 1996; Shah et al., 1986;

Suh et al., 1993; Widholm et al., 2001). The increase in EPSPS gene expression due

to gene duplication leads to increases in protein levels, thus circumventing the effect

of the herbicide. However, studies have shown that the multiple copies of the EPSPS

gene are not stable, and are not passed to subsequent generations (Sammons and

Gaines, 2014; Pline-Srnic, 2006).

1.3.3 Herbicide resistance and plant stress

In giant ragweed, NTSR has been found to be the most common type of mecha-

nism for acquiring resistance (Powles and Yu, 2010). It has been reported that NTSR

can be caused by environmental stresses introduced by the application of herbicides

(Delye, 2013). In a process called ‘gene stacking’, weed genotypes that have reduced

sensitivity to herbicides are progressively naturally selected after each generation un-

til resistance to herbicide is achieved. Due to the extreme selective pressure, in which

up to 99% of sensitive weeds may be eliminated by spraying with herbicides, any

genetic change that enables the weed to survive and reproduce is strongly selected.

Several gene families involved in NTSR have been shown to play an important role

in plant stress response. These include the Cytochrome P450 family, oxidases, perox-
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idases, esterases, hydrolases, glutathione-S-transferases, glycosyl-transferases, trans-

porter proteins, transcription factors, and protein kinases (Delye, 2013). Studies of

comparing the stress responses due to herbicide application to other abiotic stresses

show that they affect similar pathways (Das et al., 2010; Vivancos et al., 2011; Unver

et al., 2010). Therefore, glyphosate resistance in weeds can be considered to be a

type of rapid evolutionary stress response.

1.4 Organization of Dissertation

The overall aim of this dissertation is to understand how plants react to envi-

ronmental stress, and evolve to overcome it. I focus on two specific evolutionary

scenarios: the adaptation of early land plants to the terrestrial environment, and

the evolution of glyphosate resistance in giant ragweed. Early land plants had to

withstand an enormous amount of abiotic stress during the move from an aquatic

environment to a terrestrial environment. Since eukaryotic protein kinases play an

important role in various stress related processes, it is be fair to hypothesize that the

EPK family underwent substantial functional elaboration during the transition from

charophytes to embryophytes. While some groups of proteins in the family remained

unchanged, others underwent expansion or contraction during the process of adapta-

tion. Therefore, if we can isolate these modified groups of proteins, we can estimate

the role played by different EPK family proteins during the stress.

Similarly, weeds encounter severe abiotic stress when treated with herbicides, and

resistant weeds are results of quick evolution in action. Resistance to glyphosate in

particular, has been a huge problem for farmers due to its widespread availability and

simple application. Here I focus on a weed, giant ragweed (GR) (Ambrosia trifida),

for which glyphosate-resistant biotypes have been observed, but the mechanism of

resistance has, so far, been unknown. Using a time-course study to compare the
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gene expression patterns of resistant and sensitive GR, I identify genes and pathways

responsible for conferring resistance to glyphosate.
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2. DEVELOPING A GENE MODEL QUALITY

EVALUATION METHOD TO SCORE GENE MODELS

FROM PHYSCOMITRELLA PATENS AND

CHLAMYDOMONAS REINHARDTII

2.1 Introduction

The advent of next-generation sequencing along with reducing costs and high

throughput of sequencing technologies have led to characterization of a wide vari-

ety of organisms by genome and transcriptome sequencing (Alkan et al., 2011). An

important stage of any genome sequencing experiment is the assembly of reads to

form contiguous sequences (contigs) that represent the DNA of the organism, and

predicting the structure and position of genes (Zerbino and Birney, 2008). This as-

sembly can be done using a closely-related genome as a template, which is termed a

genome-guided assembly method. In the absence of closely-related genomes, an ab

initio genome annotation is performed where inherent intron and exon signals from

the sequence are used to predict the gene characteristics. The accuracy of ab initio

genome annotation thus vary depending on the nature and evidence for this predic-

tion.

Accuracy of gene models is important for the study of an organism’s genetic fea-

tures (Testa et al., 2015). When performing comparative genomic analyses, incorrect

gene models might result in arriving at faulty functional annotations. Besides, when

incorrect functional annotations are submitted to public databases such as NCBI,

the errors are disseminated further. Gene model accuracy is also very important in

designing drugs and treatment mechanisms for various diseases.
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The moss Physcomitrella patens is a popular model system in the field of genetics

in order to study plant development and evolution (Schaefer and Zrÿd, 1997). This

is due to its straight-forward developmental configuration and the dominance of the

haploid phase in its life cycle (Nishiyama et al., 2003). The genome of P. patens was

sequenced in 2008, being the first of the mosses to have its genome published (Rensing

et al., 2008). Similarly, the unicellular eukaryotic alga Chlamydomonas reinhardtii is

a popular model system which is used to study photosynthetic processes, biogenesis of

chloroplasts, eukaryotic cilial functions, and systems biology, due to the fact that its

genetics are well-understood (Rochaix, 1995; Rupprecht, 2009). It was the first algal

model organism to be sequenced and its genome was published in 2007 (Merchant

et al., 2007). The P. patens genome contains 35,938 genes with 84% of the protein

sequences predicted to be complete. The closest relative of P. patens that has a

well-studied genome is A. thaliana, which is 400 million years apart in evolutionary

distance (Haas et al., 2005). Thus, 63% of the gene modeling in P. patens was done

by ab initio methods. Similarly, the genome of C. reinhardtii was published in 2007

and is thought to be 95% complete, with 15,143 predicted genes (Merchant et al.,

2007). About 44% of the genes modeled were based on ab initio predictions.

As mentioned earlier, ab initio gene predictions use a combination of different sig-

nals embedded in the genome to construct a statistical model that can predict genes

and their exon-intron structures. They depend on signal information and content

information of sequences to make predictions of the location and structure of genes

(Wang et al., 2004). They do not require any prior experimental knowledge or infor-

mation about specific genes (Picardi and Pesole, 2010). Statistical methods such as

Hidden Markov Models, Neural Networks, and Dynamic Programming are generally

used to make gene predictions. Computational gene finders typically look at various

sequence elements including splicing regions, transcription promoter and terminator

regions, start and stop codons, binding sites for transcription factors, polyadenyla-

tion sites, ribosome and topoisomerase II binding sites, and topoisomerase I cleavage
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sites (Haussler, 1998). More complicated gene finders include homology searches and

predictions of gene structure along with the above listed signal and content sensors

to make gene predictions.

The accuracy of ab initio gene predictors is dependent on a multitude of factors.

GC content is understood to affect the accuracy of most ab initio predictors (Nasiri

et al., 2011). GC content is defined as the percentage of guanine or cytosine bases in

DNA. It is known to be associateed with variations in the gene density and patterns

of methylation in genes (Jabbari and Bernardi, 1998; Mouchiroud et al., 1991; Duret

et al., 1995). Another major factor that affects accuracy is the frequency and number

of introns in the genome (Tenney et al., 2004). Generally, the accuracy of ab initio

predictors decreases with increased intron size and frequency, as this makes it harder

to detect intron-exon boundaries. Most ab initio prediction programs also require

training data sets to help set their initial parameters, which could bias the output

(Hoff and Stanke, 2015).

The performance of ab initio gene predictors with real data is questionable to say

the least. In a study done with the maize genome, the predictive accuracies of five

popular ab initio gene prediction software were compared (Yao et al., 2005). It was

found that even the best ab initio prediction got only 50% of the gene models right.

In a more recent study, the authors compared the accuracy of ab initio gene finders

using the Toxoplasma gondii genome (Goodswen et al., 2012). They concluded that

in the absence of experimental evidence, the accuracy of such predictors is very low.

In a study done with mouse genomic DNA, it was found that ab initio gene predictors

had a low predictive accuracy (Nasiri et al., 2011). In a study comparing the accuracy

of computational gene finders for large DNA sequences, the authors concluded that

while the algorithms gave satisfactory results while analyzing single genes with no

introns, they had difficulty with genomic sequences with large number of introns and

complex gene structures (Guigó et al., 2000). With more and more genomes being
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sequenced each day, it is often impossible to experimentally verify the structure and

function of each gene. There are possibly many such incorrect gene models present

in the C. reinhardtii and P. patens genomes, since many genes were predicted using

ab initio predictors. Therefore, a method to score the predicted gene models would

help identify the incorrect gene models.

To evaluate a gene model effectively, the most convincing approach would be to

integrate multiple sources of evidence. In the current study, two types of evidence were

used to create a gene model evaluation score that make use of the characteristics of

protein kinases : consensus regions in the primary sequence, and domain relationships.

A scoring function was devised to integrate the results of the various approaches.

2.2 Materials and Methods

2.2.1 Data collection

Amino acid sequences of P. patens were downloaded from PlantGDB, an online

resource for comparative plant genomics database (Duvick et al., 2008). Similarly,

sequences for C. reinhardtii were downloaded from Joint Genome Institute’s (JGI)

online genome portal (Nordberg et al., 2014). As references, A. thaliana and O. sativa

sequences were obtained from The Arabidopsis Information Resource (TAIR) and the

Rice Genome Annotation Project (Michigan State University) respectively (Lamesch

et al., 2012; Ouyang et al., 2007).

2.2.2 Evaluation using consensus catalytic regions

As mentioned in the previous chapter, all eukaryotic protein kinases (EPKs) have

a protein kinase domain, with varying levels of conservation. The twelve subdomains

of the protein kinase catalytic domain are conserved depending on the family of pro-

tein kinases; therefore, any gene model representing protein kinases can be evaluated
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based on the presence of consensus catalytic regions at specific locations in the se-

quence. This was done using three different methods: using Hidden Markov Models

(HMMs), regular expression searches, and by comparison to orthologous proteins.

For performing the evaluation based on HMMs, a profile HMM representing the

eukaryotic protein kinase (PF00069.20) was obtained from Pfam (Bateman et al.,

2000). Pfam is a database of profiles and functional units that can be used to identify

protein domains and families. The eukayotic protein kinase HMM contains informa-

tion depicting the conservation of the protein kinase active site and ATP binding site.

The active site and the ATP binding site are the most important functional parts of

the protein kinase, and therefore, it is expected that a true protein kinase gene model

will contain the two sites at an appropriate spacing. The gene models downloaded for

P. patens, C. reinhardtii, A. thaliana and O. sativa were then compared to this HMM

using a program called HMMER (Finn et al., 2011). The search function hmmscan

is a part of HMMER, and it compares protein sequences against a HMM and returns

their respective similarities. The E-value obtained from the comparison for each of

the protein sequences against the HMM was extracted from the results and used in

the scoring function. All sequences that did not match the protein kinase HMM were

excluded from further analysis, and the matching sequences were used as the working

set of data for subsequent processing and analysis.

To make the technique more robust, a regular expression (regex) search was also

performed. A regex is defined as a specific pattern that can be used to search for

particular characters, words or patterns of characters. Regex have frequently been

used to model protein motifs. In this study, regex pattern depicting the protein ki-

nase domain (PS50011) was obtained from Prosite (Bairoch, 1991). A program called

ScanProSite, which looks for the specified protein patterns in the submitted database

of proteins, was used for the comparison (De Castro et al., 2006). Each protein is

given a score by ScanProSite that correlates with the similarity of the protein to the
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regular expression pattern depicting the eukaryotic protein kinase. The hits for each

set of protein kinases were extracted and the score for the hit was used in the scoring

function.

In addition to the HMM and regex based searches, another approach based on

the comparison to protein homologs of the gene model was also performed. Homologs

of protein kinases in P. patens and C. reinhardtii were extracted from A. thaliana

and O. sativa proteomes using BLASTP comparisons, and the similarity was com-

pared (Altschul et al., 1990). Since protein kinases are well-conserved across species,

the similarity between proteins and their homologous sequences is bound to give a

reasonable idea about gene model reliability. This similarity was measured using

BLASTP (Altschul et al., 1990). Protein orthologs in A. thaliana and O. sativa were

functionally identified using the best BLAST hit approach (Altschul et al., 1990). To

perform this, gene models from P. patens and C. reinhardtii were used as the query

against a protein database containing the protein kinases from both A. thaliana and

O. sativa in the BLASTP search. The best BLAST hit for each gene model against

this combined set of reference protein kinases was then used as the scoring function.

2.2.3 Evaluating gene models using protein domain co-occurrence

A protein domain is a functional, structural and evolutionary unit of a protein.

Domains that have similar sequence and structure often have similar functions. As

a corollary, proteins that have similar functions tend to have the same domain com-

positions. For instance, in A. thaliana, Calcium-dependent protein kinase-1 (CPK1)

and Calcium-dependent protein kinase-6 (CPK6) have similar functions. Looking at

their domain organizations, they share the same domains one protein kinase catalytic

domain, and four EF-hand calcium-binding domains. Therefore, this was used as the

basis of an approach based on protein domain co-occurrence to evaluate gene models.
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Since we are analyzing plant protein kinases, protein sequences of A. thaliana

and O. sativa were used to construct a protein domain co-occurrence matrix. All

sequences annotated as protein kinases were extracted into a separate file. Thus, a

file containing all protein kinases, and another containing all proteins that were not

protein kinases were obtained.

An R script was then used to calculate the protein domain co-occurrence matrix

for each case. The script analyzes each protein sample and looks through the domains

it contains. Each time two domains occur in the same proteion, the pairwise counts

for the co-occurring domains are increased. Protein kinase sequences from P. patens,

C. reinhardtii, A. thaliana and O. sativa were analyzed using InterProScan to identify

domains for each protein kinase (Quevillon et al., 2005). The domains in each protein

sequence were then analyzed to get the probability that they occur together, given

that it is a protein kinase. This was done using Bayes rule. For multiple variables,

Bayes rule states that for a given independent variable K and dependent variables

D1, D2, . . . , Dn, we can say that:

P (K|D1, D2, . . . , Dn) =
P (K)

∏n
i=1 P (Di|K)

P (K)
∏n

i=1 P (Di|K) + P (¬K)
∏n

i=1 P (Di|¬K)
(2.1)

where,

K denotes the probability that the protein is a protein kinase,

¬K denotes the probability that the protein is not a protein kinase,

Di denotes the domain i.

Using Bayes rule, we can successfully predict the probability of a protein kinase

having certain domains given that we know the probability of the domain in all protein

kinases, the probability of the domain in all non-protein kinases, and the probability

of a kinase in a given protein space. In equation (2.1), P (K) and P (¬K) were values
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obtained from the HMM search based on how many of the reference proteins had

matches to the protein kinase HMM from the total set of proteins used.

2.2.4 Designing a scoring system

Since the score is based on four different methods, it is important to have a good

scoring function that can distinguish between the high quality and the low quality

gene models when the results of the different methods are combined. The total score,

ST , for the gene model can be given as,

ST = S ′
H + S ′

R + S ′
O + S ′

D (2.2)

where S ′
H , S

′
R, S

′
O, and S ′

D are the scores from each method used.

SH is the score from the HMM-based consensus search, and can be calculated as,

SH = −log(hmmscanEvalueofquery) (2.3)

SR is the score from the regular expression pattern search using Prosite. Each

gene model is assigned a score by Prosite based on the extent of similarity to the

regular expression. That score was used here. The score is unitless and is directly

proportional to the similarity to the protein kinase domain.

SO is the score from the ortholog comparison method, which can be calculated as,

SO = −log(EvaluefromBLAST ) (2.4)

where the E-value is from the best match of the gene model in the A. thaliana

and O. sativa protein sequences.
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SD is the score from the domain co-occurrence method. This score is obtained

from the probability calculation discussed in the previous section. Finally, each score

was normalized to a value range of (0,1) using the following:

Si′ =
Si − Smin

Smax − Smin

(2.5)

where Si is the score for each gene model i, Smin and Smax are the minimum and

maximum scores among gene all gene models compared, and Si′ is the normalized

score.

2.3 Results

2.3.1 Hidden Markov Model search results

The program hmmsearch was used to compare the protein sequences of P. patens,

C. reinhardtii, A. thaliana and O. sativa against the HMM representing the region

containing the protein kinase active site and ATP binding site (Finn et al., 2011).

The results are tabulated in Table 2.1. Overall, P. patens was found to contain 950

matches to the protein kinase HMM, while C. reinhardtii, A. thaliana and O. sativa

contained 581, 1361 and 2058 matches respectively. The search was done with a very

liberal E-value cutoff of 10. While the cutoff resulted in some false positives, the final

score was determined by the results obtained from the other comparisons as well,

which minimized the impact of false positives.

2.3.2 Regular expression search results

The next step in the analysis was to do the regular expression analysis using

the protein kinase domain pattern obtained from Prosite (Bairoch, 1991). Using the

program called ScanProSite, we searched the set of protein kinases obtained for each

plant against the regular expression pattern PS50011 which represents the protein

kinase active site and the ATP binding site (Fig 2.1 and 2.2) (De Castro et al., 2006).
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The results are tabulated in Table 2.2. Overall, close to 95% of all sequences that

matched the protein kinase HMM have matches using the regular expression search

as well. To find out the reason why a small set of sequences did not have hits for

the regular expression search, we performed a BLASTP comparison using the TAIR

set of proteins as the database (Lamesch et al., 2012). We found that while most

sequences are annotated as protein kinases, the E-value for the hit was high (between

10−5 and 0.5). This could be a possible reason why they don’t show up as protein

kinases in the regular expression search.

2.3.3 Protein domain co-occurrence analysis

Gene models for P. patens, C. reinhardtii, A. sativa and O. sativa were each di-

vided into kinases and non-kinases depending on the matches to the protein kinase

HMM in the first step (Table 2.3). The program InterProScan was then run for each

set of protein kinases and non-protein kinases for each plant (Quevillon et al., 2005).

Each sequence was annotated with the set of domains it contains using sequence sim-

ilarity. Domain annotations include Pfam domains, PANTHER domain annotations,

and InterPro architectures. (Bateman et al., 2000; Mi et al., 2016). On analyzing the

results file, we found that almost all proteins had annotations for InterPro signatures.

Therefore, InterPro annotations were used for constructing the domain co-occurrence

matrices. Overall, the co-occurrence matrix constructed using the protein kinases

had 221 unique domains, and the matrix constructed using non-protein kinases had

6997 unique domains.

Next, an R script was used to extract the domain annotations from the Inter-

Pro results file for both the protein kinases and the non-kinases (Apweiler et al.,

2001). Since we are using A. thaliana and O. sativa sequences as references, we used

the sequences from these two plants in order to construct the reference domain co-

occurrence matrix. The R script was used to analyze each protein sequence and count
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the domains that co-occur in the same sequence. Using this script, we constructed

two matrices - one for the protein kinases and one for the non-protein kinases (Figures

2.3 and 2.4). These matrices were used as the reference to calculate the conditional

probabilities of protein domain co-occurrences. The next step was to analyze the

sequences of the two reference plants using the domain co-occurrence matrix to verify

how well the method works. A function was written to calculate the probability that

a protein sequence encodes a kinase given that it contains certain protein domains.

This was done using the Bayes rule as mentioned in the equation (2.1).

The results for the domain co-occurrence for protein kinases and non-protein ki-

nases for A. thaliana and O. sativa are shown in Figures 2.5, 2.6, 2.7 and 2.8. Among

the groups of protein kinases, sequences from Arabidopsis performed very well in the

test, with all of the sequences scoring having a probability of 0.8 for being a protein

kinase. Similarly for the protein kinase sequences from O. sativa, all protein kinases

scored above 0.8 for the probability.

For the non-protein kinases, in A. thaliana, close to 13,000 proteins scored 0 for

the probability of being a kinase, while approximately 1500 had a probability of more

than 0.9. In O. sativa, there was a similar trend, as close to 14000 having a proba-

bility of less than 0.2, while around 2000 had a probability of greater than 0.9. We

decided to investigate the sequences that were in the non-kinase group, but still had

a high probability of being a kinase. We used UniProt to retrieve the functional an-

notations for the sequences that had greater than 0.9 probability of being a kinase in

the non-kinase sequence group. We compared the results from this study to the set

of known protein kinases and non-protein kinases from A. thaliana. For the protein

kinases, all the proteins had a probability of 1 (Figure 2.9). For the non-protein

kinases, a majority of the protein kinases had a probability score of less than 0.2,

but just like the HMM-based non-protein kinases, there was a small set of proteins

that had a high probability (Figure 2.10). Therefore, these probability scores have
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the same distribution as the protein kinases and the non-protein kinases from the

HMM-based classification.

In A. thaliana, out of a total of 1656 sequences having a probability greater than

0.9, 797 sequences had unreviewed functions with no experimental verification, 12

were annotated as protein kinases, 52 were annotated as other kinases, 154 were

phosphatases, 117 were proteins involved in phospho-transfer reactions, and 183 were

annotated with a probable but unconfimed function. Similarly, in O. sativa, out of

the 2193 sequences that had a high probability score, 1003 were annotated as protein

kinases, 114 were expressed proteins with no function, 95 were phosphatases, and

140 proteins were phosphor-transfer proteins. Therefore, it seems like the domain

co-occurrence is picking up protein kinases that were not detected by a simple HMM

search alone. It also seems to pick up sequences involved with phosphoryl group

transfer that are very similar to protein kinases. Thus, the use of protein domain

co-occurrence alone may not be sufficient since it seems to contain false positives. So

it is important to use the results from the protein domain co-occurrence with other

homology-based methods for accurate scoring and gene model evaluation.

The next step was to compute the protein kinase probabilities for P. patens and

C. reinhardtii sequences. Using a procedure similar to that used for the two reference

plants, we used the domain co-occurrence matrices computed for protein kinases and

non-protein kinases to determine the probability of the protein being a protein kinase

given the list of domains it contains. We calculated the probabilities separately for

the protein kinases and non-protein kinases determined using the HMM search.

In P. patens, for the protein kinase group, we found that all the sequences had

a probability greater than 0.8 (Figure 2.11). In the non-kinase group, more than

10000 sequences had a probability less than 0.2, while close to 2000 sequences had

a probability greater than 0.9 (Figure 2.12). In C. reinhardtii, almost all sequences
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except a handful had a probability greater than 0.8 in the kinase group (Figure 2.13).

In the non-kinase group, more than 3500 sequences had a probability less than 0.2,

and more than 4000 had a probability less than 0.6 (Figure 2.14). Approximately

1000 sequences had a probability of more than 0.9. These results mirror the results

we obtained for Arabidopsis and O. sativa, and it is possible that most of these se-

quences are in fact protein kinases which did not get picked up in the HMM search.

In order to further probe the set of sequences that are predicted as protein kinases

even in the non-protein kinase group, we combined the sequences that had a protein

kinase probability greater than 0.9 from the non-protein kinase group from P. patens

and C. reinhardtii and combined them with the protein kinase sequences that we had

originally classified using the HMM search. Thus, we had a total of 2221 sequences in

P. patens and 1422 sequences in C. reinhardtii. We ran hmmsearch again using this

new set of sequences in order to verify if we were able to get any new matches to the

protein kinase domain HMM. Unfortunately, there was no change in the number of

matches to the protein kinase domain in either of the plants. Similarly, we compared

the new set of sequences against the protein kinase Prosite profile using ScanProSite.

Once again, we found no new hits to the protein kinase domain among the sets of

sequences for both the plants. This suggests that there may be inherent changes in

the protein kinase domain region either due to sequence deletions or due to fusion of

two proteins leading to reduced similarity against the protein kinase domain HMM

and Prosite profile. We used BLASTP to calculate the E-value for the comparison

against the orthologs in A. thaliana and O. sativa as done previously. The overall

distribution of E-value scores for P. patens and C. reinhardtii can be found in Figure

2.15 and 2.16 respectively.
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2.3.4 Scoring the protein kinase gene models

We constructed a data table for storing the results from the different analyses us-

ing an R script. The score for each sequence was calculated by combining the results

from the HMM search, the Prosite motif search, the BLAST homology search, and

the protein domain co-occurrence study. Specifically, we used the E-values from the

hmmscan results and the BLASTP search, the ScanProSite scores, and the domain

co-occurrence probability scores for each sequence to calculate the score.

Since not all sequences had scores in all four categories, we imputed the missing

values by using the “na.roughfix()” function in the randomForest package in R. The

function imputes missing values by using the column medians for each column. Thus,

we were able to obtain the scores for each sequence and each method.

As mentioned previously, we calculated the negative logarithm (base 10) of the

E-value to obtain scores for the HMM-based search and the BLASTP search. The

scores for three methods - HMM, Prosite, and BLASTP, were then normalized to a

value between 0 and 1 using equation (2.5). This step was skipped for the protein

domain co-occurrence based score because the score is already a value between 0 and

1. The sum of the normalized scores is the final score for each gene model.

The statistics for the final score for each plant is given in Table 2.4. The scoring

function was tested using protein kinases from A. thaliana (Figure 2.17) and O. sativa

(Figure 2.18). The scores for A. thaliana ranged from 1.838 to 3.481, while for O.

sativa, the scores ranged from 1.626 to 3.606. On analyzing known protein kinases in

this set, it was found that all protein kinases were present in the scores higher than

the first quartile score. In P. patens, the gene model scores ranged between 0.9073

and 3.7140 with a mean score of 2.5250 and a median of 2.5230 (Figure 2.19). In C.

reinhardtii, the scores ranged from a minimum of 0.6811 and a maximum of 3.8480
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with a mean and median score of 2.0930 and 2.0020 respectively (Figure 2.20). Protein

sequences with a score higher than the first quartile score (2.1730 for P. patens and

1.8740 for C. reinhardtii) were used for the functional analysis in the next chapter.

2.4 Discussion

We devised a scoring method to evaluate and score the protein kinase gene models

in P. patens and C. reinhardtii. Using the A. thaliana and O. sativa gene models

as references, the gene models of the early plants were compared in order to verify

the integrity of the gene models using consensus catalytic regions comparisons and

protein domain co-occurrence studies.

2.4.1 Evaluation using consensus catalytic regions

A combination of hidden markov model based search, regular expression search

and orthologous proteins based search was used to evaluate the protein kinase gene

models. We were able to shortlist a set of protein kinases to be used as the reference

by running hmmscan against the two reference proteomes and using it for guiding the

analysis. Even though there was a slight reduction in the number of protein kinases

detected using Prosite regular expression search when compared to the HMM-based

search, we found that they had very weak matches to the reference protein kinases

we searched against. Therefore, it is probable that the Prosite based search was more

sensitive to minor sequence changes than the HMM based search, thus neglecting

any sequence that deviated from the protein kinase domain regular expression. This

means that the HMM based method allows for the flexibility of having a slightly

modified protein kinase domain due to the method having prior probabilities assigned

to a variety of positions in the protein kinase domain HMM. The E-value cutoff of

the HMMER search was kept at a very liberal value which could also explain the

difference.
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2.4.2 Protein domain co-occurrence analysis

We used the sequences from the reference proteins that had hits against the pro-

tein kinase HMM for the hmmscan search as the base for constructing the protein

domain co-occurrence matrix. Each sequence had an annotation that contained the

set of functional protein domains that it contained. This information was obtained

using InterProScan, which compares the protein sequence against the set of known

protein domains in Pfam, Prosite, PANTHER and InterPro signatures. The domain

information for the reference sequences was used to construct a pairwise matrix which

contained the number of times each domain occurred with the another domain. A

total of 221 unique domains for the protein kinases, and 6997 unique domains for the

non-protein kinases were used to construct the pairwise matrix.

When the domain co-occurrence study was first tested using the reference se-

quences as a benchmark, we found that while the set of protein kinases had high

probability scores as expected, there were a significant number of sequences from the

non-protein kinase set of sequences that had greater than 0.9 probability of being a

protein kinase. On analyzing the functions of these outliers, we found that many of

them were protein kinases that did not match either the HMM of the protein kinase

domain, nor the regular expression of the protein kinase domain. This leads us to

speculate that these sequences may have insertions, deletions, fusions or other mu-

tations in the protein kinase domain which prevents them from matching the HMM

and the regular expression pattern of the domain. A large number of sequences also

had unknown functions, which could signify the presence of fusion proteins that have

domain arrangements similar to protein kinases, but do not have a functional protein

kinase domain. Other proteins that had a high probability were mostly involved in

phosphorus group transfer functions which suggests that the method may produce a

small number of false positives from closely related proteins.
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2.4.3 Protein kinase gene model scoring

Finally, the scores from the different methods were combined after normalization

and imputation of missing values. While imputation using the column medians may

have affected the scores, it was mandatory to avoid the presence of missing values

which impeded the calculation of final scores. The scores were designed to eliminate

the presence of proteins annotated as protein kinases but lacking the required stuc-

tural and functional domains for protein kinase activity. With that in mind, we chose

proteins that scored among the top 75% of the scoring system for functional anno-

tation since this set could have sets of protein kinases that had previously unknown

functions.

2.4.4 Future directions

We have shown that a gene model scoring system utilizing the presence of con-

served regions, and domain co-occurrence performs reasonably well. Therefore, this

can be easily expanded to other protein families in the future. That could lead to

having a generalized gene model scoring system that can be designed based on con-

servation of specific gene families. Such a system would drastically reduce the need

for manual curation, and will make genome annotation significantly more reliable and

faster. The model can also be expanded to species other than plants.
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Table 2.1.: The number of protein kinases that match the protein kinase HMM

domain across the four species of plants

Species No. of protein kinases

Physcomitrella patens 950

Chlamydomonas reinhardtii 581

Arabidopsis thaliana 1361

Oryza sativa 2058
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Table 2.2.: The number of matches to the protein kinase domain found using

ScanProSite among the four species

Species No. of matches using PROSITE

P. patens 910

C. reinhardtii 536

A. thaliana 1339

O. sativa 2005
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Table 2.3.: The number of protein kinases and non-protein kinases used for the

protein domain co-occurrence matrix across the four species of plants

Species No. of protein kinases No. of non-protein kinases

Physcomitrella patens 950 37404

Chlamydomonas reinhardtii 581 16128

Arabidopsis thaliana 1361 34025

Oryza sativa 2058 64280
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Table 2.4.: The statistics for the final score that represents the strength of the gene model being a protein kinase for P.

patens and C. reinhardtii.

Species Minimum value 1st Quartile Median Mean 3rd Quartile Maximum value

P. patens 0.9073 2.1730 2.5230 2.5250 2.9370 3.7140

C. reinhardtii 0.6811 1.8740 2.0020 2.0930 2.2530 3.8480

A. thaliana 1.838 2.939 2.949 2.944 2.949 3.481

P. patens 1.626 2.890 2.911 2.895 2.924 3.606
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Fig. 2.1.: A representation of the protein kinase active site domain used in
ScanProSite. The X axis denotes the position, and the Y axis represents the bit

score obtained from BLAST and HMMER log-odds scores.
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Fig. 2.2.: A representation of the protein kinase ATP-binding domain used in
ScanProSite.The X axis denotes the position, and the Y axis represents the bit score

obtained from BLAST and HMMER log-odds scores.
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Fig. 2.5.: Histogram showing the distribution of probabilities in the set of protein
kinases from A. thaliana
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Fig. 2.6.: Histogram showing the distribution of probabilities in the set of
non-protein kinases from A. thaliana
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Fig. 2.7.: Histogram showing the distribution of probabilities in the set of protein
kinases from O. sativa
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Fig. 2.8.: Histogram showing the distribution of probabilities in the set of
non-protein kinases from O. sativa
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Fig. 2.9.: Histogram showing the distribution of probabilities in the set of known
protein kinases from A. thaliana
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Fig. 2.10.: Histogram showing the distribution of probabilities in the set of known
non-protein kinases from A. thaliana
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Fig. 2.11.: Histogram showing the distribution of probabilities in the set of protein
kinases from P. patens
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Fig. 2.12.: Histogram showing the distribution of probabilities in the set of
non-protein kinases from P. patens
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Fig. 2.13.: Histogram showing the distribution of probabilities in the set of protein
kinases from C. reinhardtii
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Fig. 2.14.: Histogram showing the distribution of probabilities in the set of
non-protein kinases from C. reinhardtii
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Fig. 2.15.: Histogram showing the distribution of E-value based BLASTP scores for
the potential protein kinases from P. patens
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Fig. 2.16.: Histogram showing the distribution of E-value based BLASTP scores for
the potential protein kinases from C. reinhardtii
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Fig. 2.17.: Histogram showing the distribution of final scores in the set of protein
kinases from A. thaliana
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Fig. 2.18.: Histogram showing the distribution of final scores in the set of protein
kinases from O. sativa
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Fig. 2.19.: Histogram showing the distribution of final scores in the set of protein
kinases from P. patens
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Fig. 2.20.: Histogram showing the distribution of final scores in the set of protein
kinases from C. reinhardtii
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3. FUNCTIONAL CLASSIFICATION AND ANALYSIS OF

PROTEIN KINASES FROM PHYSCOMITRELLA

PATENS AND CHLAMYDOMONAS REINHARDTII

3.1 Introduction

Protein kinases played an important role in the evolution of early land plants

from an aquatic environment to a terrestrial environment due to their involvement

with major stress response and signaling pathways (Zhu, 2000; McDonald and Linde,

2002; Cristina et al., 2010). Therefore, we can study the functional evolution of

protein kinases in early plants to comprehend the changes that occured during early

plant evolution. Unfortunately, the quality of ab initio gene models in non-model

plants are questionable due to the reliance on computational gene predictors that do

not use the unique characteristics of protein kinases to make gene model predictions

(Li et al., 2005).

As discussed in the first chapter, there are no currently available methods to

evaluate gene models. We discussed the development of a novel method to score

protein kinase gene models in early plants such as P. patens and C. reinhardtii in

the previous chapter. Using the scoring function, we had shortlisted 1422 and 2221

gene models in C. reinhardtii and P. patens respectively as protein kinases. In order

to fully understand the impact the protein kinase family had on the development of

early plants, we need to analyze the functions of these newly curated set of protein

kinases and compare them with the protein kinases in the reference plants. Apart

from performing functional analyses, we also need to estimate the expansion of the

protein kinase family by categorizing the newly curated protein kinases from the
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early plants, and the set of protein kinases from the reference plants. This can help

us understand the manner of elaboration that occurred in the protein family.

3.2 Materials and Methods

3.2.1 Functional analysis using Blast2GO

To identify the functions of the curated set of protein kinases, we used the Blast2GO

program (Conesa et al., 2005). Blast2GO is a software suite that enables the func-

tional annotation of proteins using a combination of tools such as BLAST, InterPro,

Gene Ontology and KEGG pathway analysis (Altschul et al., 1990; Apweiler et al.,

2001; Consortium, 2004; Kanehisa et al., 2006). Thus, it provides a snapshot of the

different functions and the functional pathways of a given set of proteins. In order to

compare the functional arsenal of protein kinases from P. patens and C. reinhardtii

with those from A. thaliana and O. sativa, we used Blast2GO to analyze the protein

kinase sequences from each set of plants.

3.2.2 Tracking the expansion of protein kinase families

In order to find out the relative expansion and contraction of specific protein

kinase families, we used the “hmmsearch” program from the HMMER suite of tools

(Finn et al., 2011). Hmmsearch utilizes a set of sequences as the database, and a

profile HMM as the query in order to find similarity between them. Profile HMMs

for specific protein families in plants were previously published by Lehti Shiu et al

(2012) (Lehti-Shiu and Shiu, 2012). The previous study was done to track protein

family changes, but used the already available poor quality gene models. Therefore,

it was necessary to perform evaluation of the existing gene models and then track the

protein kinase family changes. Therefore, these profile HMMs were used as the query

for the search, while the set of protein kinases from P. patens and C. reinhardtii, and

A. thaliana and O. sativa were used as the sequence database respectively.
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3.3 Results

3.3.1 Blast2GO results

Protein kinases sequences from early plants, and the reference plants were loaded

separately as inputs to Blast2GO. The first step in the functional analysis was to

perform a BLASTP search against the TAIR database for each set of protein kinases.

Once BLAST results were obtained, an InterPro domain annotation was performed,

and GO terms were mapped to each sequence based on the best BLAST hit, and

the set of InterPro domains it was annotated with. The final annotation step verifies

the GO terms assigned to each sequence by taking the intersection of the set of all

annotations, and an enzyme-code mapping is done based on the GO terms.

In both sets of protein kinases, almost all sequences was annotated with at least

one GO term (Figure 3.1 and 3.2). A majority of sequences had between 4 and 20

GO annotations. This means that there was sufficient evidence for the functional

annotation to be correct, since there are multiple sources of evidence for the same

annotation. Looking at specific GO terms, the third level GO terms were extracted

from each set of protein kinases and the top 20 biological process, molecular function

and cellular component terms were compared between them. Figure 3.3 shows the

distribution of the top GO terms for the sequences from P. patens and C. reinhardtii.

Focusing on the biological processes, we find that most GO terms denote different

metabolic and cellular processes. Functions involving response to stress, and response

to chemical stress were also present, as were responses to different kinds of stimuli.

Looking at the same comparison for the protein kinases from A. thaliana and O.

sativa, we found that the distribution of biological processes and functions remains

similar, even though the number of sequences annotated with each term increased

(Figure 3.4.
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Next, we looked at the distribution of all biological process GO terms in each set

of protein kinases. For the sequences from the early plants, a total of 28 different

biological processes were affected, with processes related to serine/threonine protein

kinase activity and phosphorylation having the most number of sequences annotated

(Figure 3.5). Similarly, when looking at protein kinases from the reference plants, a

total of 37 different biological processes were shown to be affected (Figure 3.6. This

means that the number of biological process functions had increased in late land plants

when compared to early plants. Interestingly, the protein kinases from the reference

plants had more annotations related to stress and defense response processes than

the early plants. For instance, terms such as “response to salt stress” and “defense

response to bacterium” are completely missing from the functional annotation of early

plants.

3.3.2 Hmmsearch results

In order to investigate the changes in specific protein kinase families between the

early plants and the reference plants, a hmmsearch was done between each set of

protein kinases and the profile HMM for different protein kinase families. The results

are tabulated in Table 3.1. In the early plant group, RLK-Pelle kinases were the

largest group, with the CMGC family having the second highest number of proteins.

RLK-Pelle kinases had the highest number of proteins in the reference group as well,

but the CK1 protein kinases had the next highest number of proteins. The CK1 group

of protein kinases seemed to have undergone the most expansion, going from 182 to

1039 proteins. CK1 kinases function in DNA repair, transcription factor regulation,

and signaling (Eide and Virshup, 2001). Alternately, the CMGC family of protein

kinases went down from 553 to 340 in the reference group. Overall, 5 protein kinase

families showed expansion in numbers, while 3 families had their number of proteins

reduced when going from early to late land plants.
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3.4 Discussion

This study was done to investigate the changes in the protein kinase functions

and families of well-evolved plants when compared to early plants. Looking at the

functional annotations of early plants, we found that the protein kinases from A.

thaliana and O. sativa may have expanded their functional ability when compared

to the protein kinases from P. patens and C. reinhardtii. In other words, protein

kinases from the reference plants gained several functions as they completely moved

from an aquatic to a terrestrial environment. We also found that while early plants

were annotated with certain stress related functions, some of the stress and defense

response functions may have evolved at a later evolutionary stage.

We also studied the changes in specific protein kinase families during evolution.

While the protein kinase families of AGC, CAMK, CK1, RLK-Pelle and STE kinases

expanded, the number of proteins in Aurora, CMGC, and TKL had reduced over

time. CAMK and RLK-Pelle kinases have been known to regulate different types of

stress responses (Afzal et al., 2008; Sheen, 1996). Therefore, it is possible that these

protein kinases had duplicated to combat significant biotic and abiotic stress over the

course of evolution.
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Table 3.1.: Comparison of the number of protein kinases in each protein kinase

family between the early plant group and the reference group

Protein kinase family Early plant group Reference group

AGC 49 120

CAMK 117 294

Aurora 44 9

CK1 182 1039

CMGC 553 340

RLK-Pelle 867 2145

STE 55 142

TKL 205 166
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4. DE NOVO ASSEMBLY AND ANNOTATION OF THE

GIANT RAGWEED (AMBROSIA TRIFIDA)

TRANSCRIPTOME

4.1 Introduction

Giant ragweed (Ambrosia trifida) is one of the most problematic annual weeds in

corn and soybean production across the eastern corn belt in the United States, and in

some parts of Canada (Abul-Fatih and Bazzaz, 1979; Bassett and Crompton, 1982).

It is a member of the Asteraceae family. Other common names of the weed include

great ragweed, tall ambrosia and crown-weed wild hemp. It is usually found growing

in ditches adjacent to roads, meadows and riverbanks (Abul-Fatih and Bazzaz, 1979).

It is very adaptive to a variety of environments, and is resistant to a variety of weed

control measures (Baysinger and Sims, 1991). Prior to the introduction of genetically-

modified glyphosate-resistant crops, giant ragweed was the most troublesome weed

for Midwestern crop varieties (Harrison et al., 2001). Due to the rapid growth cycle

of giant ragweed seedlings, it is very competitive with crops and, if left unchecked,

can dominate any cropping system.

In order to study the glyphosate resistance mechanism in giant ragweed, it is essen-

tial that we study the gene expression differences between the resistant and sensitive

plants, and identify the genes responsible for the resistance. The first version of the

glyphosate-sensitive (GS) biotype of giant ragweed transcriptome was published in

2012 (Lai et al., 2012). But no gene annotations were provided, making it difficult to

identify the key genes involved in glyphosate resistance. This existing transcriptome

was determined using older 454 sequencing technology and a substantially lower depth

of coverage than is typical of more modern approaches. In this study, the transcrip-
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tome of giant ragweed was sequenced using Illumina HiSeq sequencing technology,

and annotated using the Trinotate de novo sequence assembly pipeline (Haas et al.,

2005).

4.2 Materials and Methods

4.2.1 Plant material

Glyphosate-resistant (GR) and GS biotype seeds of giant ragweed were collected

from Noble County, Indiana and Darke County, Ohio respectively. Greenhouse dose-

response studies originally proposed by Stachler (2008) were used to characterize their

resistance and susceptibility (Stachler, 2008). After allowing the seeds to grow in the

greenhouse, plants at the five-node growth stage were selected for hebicide treatment.

4.2.2 Herbicide treatment

All glyphosate solutions for plant treatment were prepared using Touchdown

HiTech (N-(phosphonomethyl) glycine, in form of the monopotassium salt) (Syn-

genta Crop Protection, Inc., Greensboro, NC 27419). The herbicide was sprayed at

the recommended field rate of 0.7 kg ae ha−1. Due to the absence of surfactant from

the formulation, a non-ionic spreader-sticker adjuvant surfactant (NIS), (AttachTM)

at 0.25% v/v and 1.0 % w/v Ammonium Sulfate (AMS) was added. Glyphosate was

sprayed on the plants using a compressed-air bench top track sprayer equipped with a

flat fan 80015E Tee Jet tip (Spraying Systems Co., Wheaton, IL 60189) with a nozzle

pressure of 249 kPa delivering a volume of 187 L of spray solution ha−1.

4.2.3 mRNA extraction

Leaf material was harvested from A. trifida obtained from Indiana and Ohio,

and used for RNA extraction using a protocol modified from Eggermont et al (Eg-

germont et al., 1996). 2 cm diameter leaf disks from the first fully developed leaf
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were punched out, frozen in liquid nitrogen, and total RNA was extracted in a 2 ml

test tube. Each time point contained leaf disks from four separate plants. SDS and

phenol-chloroform mixture was used for primary extraction. RNA was purified with

subsequent chloroform extractions and lithium chloride precipitations. DNA contam-

ination was removed by DNaseI treatment. RNA concentrations were determined

with a Nanodrop photometer and the quality assessed with the RNA 6000 nanochip

of an Agilent Bioanalyzer. Samples with RIN values (RNA Integrity Number) above

8 were used for library construction. Sequencing libraries were constructed using the

Illumina TruSeq RNA library kit with paired-end barcoding. Steps in this proce-

dure include isolation of poly-A containing mRNA and fragmentation to small pieces

which were transcribed into first and second strand cDNA and ligated to adapter

oligonucleotides and subsequently amplified by PCR.

4.2.4 Sequencing

Sequencing libraries were constructed using the Illumina TruSeq RNA library

kit with paired-end barcoding. Steps in this procedure include isolation of poly-A

containing mRNA and fragmentation to small pieces, which were transcribed into

first and second strand cDNA, ligated to adapter oligonucleotides, and subsequently

amplified by PCR. Between 31 x 106 and 88 x 106 raw reads (101 bases length) were

generated via Illumina sequencing from each RNA sample. Sequence data totaling

50 Gbases has been deposited in the NCBI Sequence Read Archive (SRA) database

under accession SRX759962.

4.2.5 RNA-Seq assembly and annotation

RNA was assembled from paired-end reads using the Trinity package (version

r2012-10-05) (Grabherr et al., 2011). The resulting assembly contained 246,544 pre-

dicted transcript sequences derived from 145,713 assemblies (Trinity components).

Trinotate (version r2013-02-25) was used to annotate the transcript assembly with
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predicted protein functions (Haas et al., 2005). Trinotate is an annotation program

that is specifically designed to work with de novo assembled transcriptomes. It uses a

combination of methods for functional annotation, such as NCBI-BLAST, HMMER,

Pfam, eggNog, TMHMM, signalP and the Gene Ontology database (Altschul et al.,

1990; Finn et al., 2011; Bateman et al., 2000; Jensen et al., 2008; Sonnhammer et al.,

1998; Petersen et al., 2011; Consortium, 2004). The completeness of the transcrip-

tome was evaluated using CEGMA (Core Eukaryotic Genes Mapping Approach) and

BUSCO (Benchmarking Universal Single-Copy Orthologs) (Parra et al., 2007; Simão

et al., 2015).

4.2.6 Transcriptome Quality Improvement

Since the RNA-seq data obtained was a part of a single-replicate study, we wanted

to find out if using data from other sources could improve the overall quality of

the transcriptome. First, we used MIRA (Mimicking Intelligent Read Assembly) to

combine 454 RNA-Seq data from a previously published giant ragweed transcriptome

(Chevreux et al., 1999). The second study was to find if the genome of a related

plant can be used to extend the transcriptome sequence length. For this, we used

a program called PASA (Program to Assemble Spliced Alignments) to make the

sunflower genome that was recently published as the reference genome for sequence

assembly (Haas et al., 2003). For each case, we then analyzed the resulting hybrid

transcriptome assembly and used Trinotate for annotation.

4.3 Results

Since giant ragweed does not have a published genome, a de novo transcriptome

assembly was performed. RNA-seq assembly was done using Trinity, there were a total

of 246,544 predicted Trinity isoforms. As mentioned in the previous section, Trinotate

was used to annotate the de novo assembly. Since Trinotate uses BLAST as one of the

methods for annotation, we can estimate the number of predicted transcripts based on
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the number of Trinity isoforms annotated with at least one functional hit. Based on

the number of transcripts annotated by Trinotate using BLAST comparisons, giant

ragweed has slightly more than 54,500 predicted transcripts, which is more than

Arabidopsis thaliana and less than Oryza sativa (Table 4.1) (Altschul et al., 1990).

An E-value cutoff of 1x10−20 was used as a similarity cut-off in the BLASTP searches.

4.3.1 Transcriptome completeness

To evaluate the completeness of the transcriptome, Core Eukaryotic Genes Map-

ping Approach (CEGMA) analysis was first performed (Parra et al., 2007). The

CEGMA gene set consists of approximately 450 proteins that are highly conserved

and found universally in most eukaryotes, and can therefore, be used to gauge how

complete the transcriptome is. The annotated transcriptome of A. trifida was com-

pared against a set of core eukaryotic genes, and it was found that 97% (241 out of

248) of the core genes were present and complete, and 100% (248 out of 248) were

present and partially represented. We also quantified the completeness of the tran-

scriptome using a similar analysis pipeline called BUSCO, which assesses the quality

of the assembly based on gene content from single-copy orthologs from OrthoDB, a

database of eukaryotic orthologs (Simão et al., 2015; Kriventseva et al., 2008) . When

compared to a plant lineage dataset of core genes, the giant ragweed transcriptome

was estimated to be 94% complete. These results suggests that the transcriptome is

relatively complete.

4.3.2 eggNog annotation

eggNog is a database of functionally annotated orthologous genes, similar to Clus-

ters of Orthologous Groups (COG) and EuKaryotic Orthologous Groups (KOG)

(Jensen et al., 2008; Koonin et al., 2004; Tatusov et al., 2003). eggNog annota-

tions provide a snapshot of the representation of the protein functional categories in

the transcriptome. Based on the eggNog annotations of the giant ragweed transcrip-
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tome, we find that the most common annotated function is that of serine/threonine

protein kinase, followed by leucine-rich repeat protein, and WD-40 repeat protein

(Table 4.2). The result is along expected lines since the serine/threonine protein

kinases are one of the largest groups of proteins in plants. The cytochrome P450

family of proteins, which is also a large protein family, is also among the top five

most annotated functions.

4.3.3 Gene Ontology annotation

Trinotate incorporates Gene Ontology (GO) annotations into the results, allowing

comparisons with protein function results obtained by eggNog, and analysis of pre-

dicted cellular localizations and biological processes of the proteins in the predicted

proteome (Grabherr et al., 2011; Consortium, 2004). 56,345 predicted transcript

isoforms were annotated with at least one GO term. GO terms are hierarchical in

nature; the parent terms are generalized, while the child terms are more specialized

in nature. GO terms at the third hierarchical level were thus extracted from the

hierarchy of annotations predicted for the transcriptome. In total, 90,612 cellular

component, 121,057 biological process, and 108,272 molecular function annotations

were assigned. Figures 4.1, 4.2 and 4.3 show the top 25 GO terms each for molecular

function, biological process and cellular component respectively.

4.3.4 Pfam annotation

Approximately 3500 predicted Trinity transcripts had Pfam domain annotations

in the Trinotate results. The domain with the highest number of hits was the Protein

kinase domain, followed by the Chlorophyll A-B binding protein and the Tyrosine

kinase domain respectively (Table 4.3). Considering that plants have only a few

known tyrosine kinases, it was suprising that so many transcripts were annotated

with the tyrosine kinase domain. However, there is a possibility that the domain
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annotations indicate the presence of a large number of Tyrosine kinase-like proteins,

which are known to be present in plants, and are part of a diverse family of proteins.

4.3.5 TMHMM predictions

Transmembrane helices are a part of the structure of membrane proteins. Approx-

imately one-third of all currently mapped gene sequences in the Protein Data Bank

(PDB) are known to encode membrane proteins (Hildebrand et al., 2004). They

typically function as transporters for various specific molecules across the biological

membrane. Trinotate results include the prediction of TMHMM which indicates the

presence of transmembrane helices in the translation products of the predicted Trin-

ity transcripts. We found that 8211 Trinity transcripts had a TMHMM prediction,

with a protein length of 51.66 amino acids and 2.308 helices per protein on average.

The number of helices ranged from 1 to 16, and the predicted protein length varied

between 11.14 to 352.56 amino acids respectively.

4.3.6 Improving the transcriptome using long read sequence data

We investigated whether the previously published transcriptome of giant ragweed,

which was based on the 454 sequencing platform, can be used to improve the quality

of the short read sequence data (Lai et al., 2012). Transcriptome data sequenced

using 454 sequence technology was obtained from The Compositae Genome Project,

and the MIRA (Mimicking Intelligent Read Assembly) program was used to combine

the data with the Illumina giant ragweed data (Chevreux et al., 1999). While the

original Trinity assembly contained 249,598 predicted transcript isoforms, the com-

bined 454-Illumina transcriptome contained 142,395 transcripts. This dataset was

then annotated using Trinotate, and a total of 54,596 annotations were found. 48,270

transcript isoforms were annotated with at least one GO term, and a total of 102,223

cellular component, 110,806 biological process and 87,667 molecular function annota-

tions were determined. In eggNog annotations, the top annotated function remained
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Serine/threonine protein kinase with 2303 transcripts. The reduction in the number

of predicted genes together with the increased level of annotation suggests that com-

bining these datasets slightly improves the transcriptome assembly. The relatively

small change again suggests that the Trinity assembly is fairly complete.

4.3.7 Comparison with the sunflower transcriptome

Since the complete genome of giant ragweed is not available, we calculated the

coverage of the giant ragweed transcriptome versus the transcriptome of Helianthus

annuus (sunflower), a close relative (Gill et al., 2014). We used a Perl script to esti-

mate the percentage of coverage relative to the sunflower transcriptome, and found

that close to 26% of the 246,544 predicted Giant Ragweed transcripts had matches in

the sunflower transcriptome, based on BLAST comparisons using a conservative E-

value cutoff of 1x10−20. This shows that the giant ragweed transcriptome sequences

have coverage greater than 1x10−20. On the other hand, around 77% of the sun-

flower transcriptome sequences had coverage greater than an E-value of 1x10−20 in

the giant ragweed transcriptome. Considering the divergence between giant ragweed

and sunflower, this suggests that the ragweed transcriptome reported here is nearly

complete.

4.3.8 Improving the transcriptome using sunflower as the reference genome

We wanted to find out whether the recently published sunflower genome could be

used to improve the quality of the giant ragweed transcriptome (Gill et al., 2014). To

test this, a software pipeline called PASA (Program to Assemble Spliced Alignments)

was used (Haas et al., 2003). The sunflower genome was used as the reference for

the giant ragweed transcriptome data. However, the transcriptome quality was not

appreciably improved, and the number of transcripts remained relatively high. This

was probably due to the fact that the sunflower genome is only about 80% similar to

giant ragweed in sequence similarity.
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4.4 Discussion

The genomics of giant ragweed has been of great interest recently due to the

increase in prevalence of herbicide resistance. The present work seeks to publicize the

availability of the annotated transcriptome of giant ragweed, The transcriptome of

giant ragweed was assembled using the Trinity pipeline, and subsequently annotated

using Trinotate. This would help a great deal in identifying the source of glyphosate

resistance. The development of tools such as Trinotate could lead to a deluge in

annotations of genome and transcriptome sequences of non-model organisms. The

transcriptome was annotated using BLAST, Gene Ontology, and eggNog identifiers.

We tried to improve the quality of the transcriptome using the recently published

sunflower genome and transcriptome sequences. Even though the use of the sunflower

genome as reference did not lead to the reduction in the number of Trinity transcripts,

the use of transcriptome sequences lead to a notable reduction. Finally, we attempted

to use the previously published long-read transcriptome sequences of giant ragweed to

improve the transcriptome quality. This lead to only a slight reduction in the number

of transcripts from which we can infer that the transcriptome sequence we have is

fairly complete.
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Table 4.1.: The number of annotated genes in different species. The data for A.

thaliana, O. sativa and Z. mays were obtained from PlantGDB (Duvick et al., 2008).

Species No. of gene annotations

Ambrosia trifida 54,596

Arabidopsis thaliana 37,761

Oryza sativa 68,464

Zea mays 136,522
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Table 4.2.: Top 25 functional annotations of the giant ragweed transcriptome using

eggNog

COG/NOG No. of transcripts Functional annotation

COG0515 4470 Serine/threonine protein kinase

COG4886 804 Leucine-rich repeat (LRR) protein

COG2319 680 FOG: WD40 repeat

COG0666 340 FOG: Ankyrin repeat

NOG12793 278 Calcium ion binding protein

COG2124 239 Cytochrome P450

COG0724 235 RNA-binding proteins (RRM domain)

COG0513 233 Superfamily II DNA and RNA helicases

COG0699 213 Predicted GTPases (dynamin-related)

COG0631 213 Serine/threonine protein phosphatase

COG0457 201 FOG: TPR repeat

COG0477 198 Permeases of the major facilitator superfamily

COG1028 189 Dehydrogenases with different specificities

NOG318082 188 Transposable element

COG0474 182 Cation transport ATPase

COG1100 176 GTPase SAR1 and related small G proteins

NOG237917 172 Protein involved in lipid transport

COG2939 167 Carboxypeptidase C (cathepsin A)

NOG251664 149 Delta-Like 3 (Drosophila) protein

COG0484 138 DnaJ-class molecular chaperone with C-terminal Zn finger

COG0596 136 Predicted hydrolases or acyltransferases (alpha/beta hydrolase)

NOG280712 125 Disease resistance protein

COG0154 125 Asp-tRNAAsn/Glu-tRNA Fln amidotransferase A subunit

COG2940 119 Proteins containing SET domain
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Table 4.3.: Top 25 Pfam domain annotations of the predicted proteins in the giant

ragweed transcriptome

PFAM Domain ID Function Frequency

PF00069.20 Protein kinase domain 865

PF00504.16 Chlorophyll A-B binding protein 417

PF07714.12 Tyrosine kinase 406

PF00400.27 WD40 repeat 374

PF00101.15 Ribulose bisphosphate carboxylase, small chain 295

PF00067.17 Cytochrome P450 290

PF00076.17 RNA recognition motif 286

PF12338.3 Ribulose-1,5-bisphosphate carboxylase small subunit 256

PF13504.1 Leucine rich repeat 222

PF01946.12 Thi4 family 199

PF01535.15 Pentatricopeptide repeat 178

PF00481.16 Protein phosphatase 2C 163

PF00646.28 F-box domain 133

PF00106.20 short chain dehydrogenase 129

PF00226.26 DnaJ domain 128

PF00249.26 Myb-like DNA-binding domain 128

PF00270.24 DEAD/DEAH box helicase 125

PF00153.22 Mitochondrial carrier protein 119

PF00847.15 AP2 domain 111

PF00005.22 ABC transporter 109

PF00025.16 ADP-ribosylation factor family 109

PF00501.23 AMP-binding enzyme 106

PF00004.24 ATPase family associated with various cellular activities (AAA) 105

PF00149.23 Calcineurin-like phosphoesterase 105

PF08263.7 Leucine rich repeat N-terminal domain 101
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Fig. 4.1.: Top 25 Molecular Function third-level annotations found using Gene
Ontology
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Fig. 4.2.: Top 25 Biological Process third-level annotations found using Gene
Ontology
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Fig. 4.3.: Top 25 Cellular Component third-level annotations found using Gene
Ontology
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5. INVESTIGATION OF THE MECHANISM OF

RESISTANCE TO GLYPHOSATE IN GIANT RAGWEED

(AMBROSIA TRIFIDA)

5.1 Introduction

Resistance to herbicides, especially glyphosate, in weeds has been a major issue

across the world recently. In the past decade, there has been a rise in reports of

glyphosate-resistant weeds across 17 countries, including Brazil, Canada, Australia

and the United States (Heap, 1997). Due to the use of glyphosate-resistant cropping

systems for over two decades, and overuse of the herbicide, there has been a strong

selective pressure for giant ragweed to develop resistance to glyphosate (Duke and

Powles, 2008; Nandula, 2010). Glyphosate-resistant giant ragweed is a huge problem

for farmers since it results in the failure of glyphosate-ready cropping systems, thus

leading to huge yield losses (Foresman and Glasgow, 2008). One way to gain insight

into resistance mechanisms and the adaptation of giant ragweed to the presence of

glyphosate, is to identify genes whose expression differs between glyphosate sensitive

and resistant biotypes.

There are no significant phenotypic differences between the glyphosate-sensitive (GS)

and glyphosate-resistant (GR) biotypes of giant ragweed prior to herbicide treatment.

But when sprayed with glyphosate, certain varieties of giant ragweed plants resistant

to glyphosate exhibit a hypersensitive response, with rapid necrosis of the mature

leaves of the plant within the first 12 hours of treatment (Figure 5.1) (Segobye, 2013).

GR plants thus had a unique response when treated with glyphosate, and resumed

normal growth from axillary meristems and started to reproduce. The progression

of the response and symptoms resemble a typical hypersensitive response similar to
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that observed on some plants after pathogen attack. GS plants do not exhibit rapid

leaf necrosis but their leaves become chlorotic, then necrotic, and eventually, the

plants die over a two week period.

As mentioned in the first chapter, glyphosate is an inhibitor of 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS) which is an important

enzyme in the shikimic acid pathway involved in biosynthesis of aromatic amino

acids. When sprayed on leaves, the herbicide is absorbed and transported throughout

the plant by both passive and active transport (Hetherington et al., 1999). The

competitive inhibition of the EPSPS enzyme leads to shikimic acid accumulation and

disruption of the production of the aromatic amino acids tryptophan, phenylalanine

and tyrosine (de Maŕıa et al., 2006).

The mechanism of resistance to glyphosate in other common weeds such as Malaysian

goosegrass, Italian ryegrass, and Rigid ryegrass have been identified (Gomes et al.,

2014; Jasieniuk et al., 2008; Preston et al., 2009). However, the glyphosate resistance

mechanism in giant ragweed is yet to be determined. In this study, we compared the

gene expression differences between the resistant and sensitive plants using a time

course experiment and identified sets of genes that could be involved in glyphosate re-

sistance. We also investigate the presence of single nucleotide polymorphisms (SNPs)

in the EPSPS gene in order to verify target-site mutation as a possible mechanism of

resistance.

5.2 Materials and Methods

5.2.1 RNA-Seq and assembly

mRNA extraction, sequencing and assembly was done using the procedure described

in Chapter 4. Trinity was used for de novo transcriptome assembly, and the resulting

transcripts were annotated using Trinotate.
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5.2.2 Transcriptome analysis

After the RNA-seq reads were mapped to the assembly sequences, we estimated the

counts per million transcripts (CPM) value using RSEM (RNA-Seq by Estimation

Maximization) (version 1.2.9) (Li and Dewey, 2011). Since we observed clear

systemic changes in gene expression even at the first time point, we used a set of

genes previously published in rice analyses as controls to normalize the expression

values (Jain, 2009). A list of rice genes with stable expression levels over many

conditions were identified by Jain (2009). The set of 25 genes given in the paper were

used as queries in a TBLASTN search against the assembled ragweed sequences. 21

of the initial 25 had matches in the ragweed transcriptome. The expression levels

(CPM) for these genes in both the resistant and sensitive varieties were compared

across all four time points. Only 12 genes showed a relatively stable CPM value,

while the rest of the genes varied excessively across the time points (more than 1.5

fold up or down). These 12 genes were considered for the normalization (Table 5.1).

To normalize the expression levels, a scale factor was determined for each standard

gene with respect to the time zero point (scale = CPMt/CPM0). An average scale

factor for each time point was then calculated as the simple average of the scale factors

for each of the standard genes at each time point. By definition, the scale factor for the

zero time point is one, corrected CPM for all genes were then calculated by multiplying

the raw expression level by the scale factor for the respective time point. Gene level

counts that were less than 1 CPM in all time points were excluded from further

analysis. Expression ratios were then calculated for each assembly, comparing the

expression levels in the glyphosate resistant and sensitive strains at each time point.

Numbers larger than 1 therefore reflect genes (assemblies) with higher expression in

the resistant variety. All values were adjusted by the addition of a pseudo count of 0.5

CPM before calculating expression ratios. Assemblies with expression ratios greater

than 4, or less than -4 were further examined in the study.
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5.2.3 SNP analysis

Single nucleotide polymorphisms (SNPs) are variations in genetic sequences between

different individuals, where each variation specifically occurs at a particular position

in the genome. Presence of SNPs between two populations could explain differences

in disease resistance. In order to determine if mutation in the EPSPS gene could

be a possible mechanism of resistance, we used the annotations of the transcriptome

done in the previous chapter to identify copies of the EPSPS gene, and calculated

the number of SNPs present in the genes in both the resistant and sensitive biotypes.

We used samtools mpileup for variant calling and to estimate the SNPs in each copy

of the EPSPS gene.

5.3 Results

5.3.1 Transcriptome analysis

A preliminary time course study of the transcriptome level response of resistant

and sensitive biotypes of giant ragweed to glyphosate treatment was performed. As

mentioned previously, mRNA was extracted from each biotype and sequenced, using

the Illumina TruSeq technology, for four time points pre-treatment (0 hour), and 3

hours, 8 hours, and 12 hours, after treatment with glyphosate. RSEM was used to

estimate the number of read counts per million transcripts (CPM), and control genes

identified from rice were used for the normalization. After normalization, genes that

were differentially expressed between resistant and sensitive plants were identified

and compared across the four time points.

Genes that were differentially expressed between resistant and sensitive plants were

identified and compared across the four time points. Looking at the results, two

striking observations can be made.
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1. There is a difference in gene expression patterns between the resistant and

sensitive plants even before the plants were sprayed with herbicide (Table 5.2).

2. The response to glyphosate is very rapid, and a large number of genes were

significantly up or down-regulated within the first three hours (Table 5.3).

The top differentially expressed transcripts in resistant and sensitive plants before

treatment are shown in Tables 5.4 and 5.5 respectively. The genes with at least

a two-fold change in expression level were identified in resistant and sensitive

plants, and subjected to pathway analysis using agriGO to identify pathways

with significantly over-represented genes (cutoff P < 1e−7) (Consortium, 2004; Du

et al., 2010). Pathways with terms such as response to other organisms and lipid

biosynthetic process both of which are known to be related to pathogen response

were the most significantly over-represented (Figure 5.2). Contrastingly, pathways

that are over-represented in the sensitive biotype are annotated with terms like

response to stress, response to oxidative stimulus and lignin biosynthesis, which are

known stress response indicators (Figure 5.3) [24]. The most significant GO terms

for GR and GS giant ragweed at the 0 hour time point are tabulated in Tables 5.6

and 5.7 respectively. This leads us to speculate that, not only do resistant giant

ragweed plants react to glyphosate treatment in a manner resembling pathogen

defense reactions, but they are already primed by alterations in stress response

processes to hyper-react. This is consistent with the rapid necrosis reaction observed

in resistant giant ragweed biotypes used in this study.

5.3.2 EPSPS gene expression comparison

To test the hypothesis if over-expression of the EPSPS gene could be a possible

mechanism of resistance, we compared the gene expression of the EPSPS gene between

GR and GS giant ragweed. Based on the Trinotate annotations obtained, we identified

two copies of the EPSPS gene in the giant ragweed transcriptome - comp144227 c0 -
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seq1 and comp163996 c0 seq1 (Table 5.8). Using the normalized gene expression

results, we compared the expression of each gene copy across the four time points for

both the resistant and sensitive biotype (Table 5.9). The basal level of expression in

the first copy is higher than the second in both GR and GS giant ragweed. While

the expression of the first copy shows a marginal increase in the GR biotype during

the first three hours post-treatment, it increases rapidly at the later time points.

Contrastingly, the expression of the same gene copy in the GS giant ragweed shows a

dramatic decrease in the first three hours, and maintains the low level of expression

at the 8 and 12 hour time points. The second EPSPS gene copy on the other hand

shows minimal change in gene expression across time points in both GR and GS giant

ragweed.

5.3.3 SNP analysis

In order to test if target site mutation could be a possible mechanism of resistance to

glyphosate, we performed SNP analysis on the EPSPS gene. We then used samtools

mpileup to compare the SNPs in the EPSPS gene copies between the resistant and

sensitive plants. We found 29 SNPs in the first copy of the EPSPS gene (Table 5.10),

and 17 SNPs in the second copy (Table 5.11). In the first copy, all SNPs were in

the GS biotype of giant ragweed, and only 1 of the 29 was found to alter the amino

acid sequence. Upon further inspection., it was discovered that the amino acid change

occurs before the first Met residue. Therefore, there is little possibility that the amino

acid change affects the predicted protein in any way. In the second EPSPS gene copy,

10 SNPs were found in the GR biotype, 3 were found in the GS biotype, and 4 were

found in both. 6 out of the 17 SNPs were found to cause amino acid changes in the

predicted protein. Interestingly, all 6 were discovered in the GR biotype.
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5.4 Discussion

The use of RNA-Seq and transcriptome analysis of GR and GS giant ragweed

seems like a powerful approach to understand the mechanism of resistance. Even

though this was a single-replicate study, preliminary results from the differential

gene expression comparison and SNP analysis indicate that there could be multiple

mechanisms that lead to glyphosate resistance in giant ragweed. We performed a

time course study to quantitatively measure the impact of glyphosate on GR and

GS giant ragweed across four time points - 0 (pre-treatment), 3, 8 and 12 hours

after treatment with glyphosate. Looking at the differential gene expression before

treatment with glyphosate, the genes expressed higher in GR plants seem to play

important roles in pathogen resistance, while highly differentially expressed genes in

GS plants play major roles in stress response. We can infer that GR plants possibly

utilize a pathogen-response pathway to prevent the uptake of glyphosate, resulting

in a hypersensitive-like response after glyphosate treatment.

Using the transcriptome annotation done in the previous chapter, we isolated two

copies of the crucial EPSPS gene. Analyzing the gene expression of the EPSPS

genes across the time points in both GR and GS plants, we found that while the

expression level of the second gene copy remained relatively unchanged, the first

gene copy showed dramatic increase in expression in later time points in GR plants.

In GS plants, the expression of the first gene copy went down from the first time

point to the second time point, and showed little change at later time points. This

could indicate that the overexpression of the EPSPS gene could also be a possible

resistance mechanism.

Finally, we did SNP analysis on the two EPSPS gene copies for both GR and GS

biotypes of giant ragweed. We found that the first gene copy contained no SNPs in

GR plants, and no SNPs that could have an effect on the protein sequence in GS
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plants. For the second gene copy, there were a total of 17 SNPs, of which 6 possibly

affect the predicted amino acid sequence. In contrast to the SNPs found in the first

gene copy, the second gene copy had SNPs in both GR and GS biotypes, even though

the 6 that affect the protein sequence were all from the GR biotype. This means

that target-site mutation could potentially be an additional mechanism of resistance

to glyphosate.

The complete transcriptome assembly of giant ragweed has been deposited in

the NCBI BioProject database (http://www.ncbi.nlm.nih.gov/bioproject/) and is

publicly available under accession PRJNA267208. The preliminary time-course

experiment presented here identified groups of genes that may explain glyphosate

resistance in giant ragweed. A more extensive transcriptome analysis study, with

multiple replicates of sensitive and resistant giant ragweed biotypes, from a broader

range of geographic sources, and with shorter time intervals will be useful to overcome

the limitations of this preliminary study.
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Table 5.1.: Normalization of expression values using control genes from rice. 12 genes from the list of 25 genes identified by

Jain (2009) showed relatively stable expression across all time points, and thus were used for determining the scaling factor

for the normalization (Jain, 2009)

Initial average expression (CPM) Scaled expression values

Seq Name R03 R33 R83 R123 S03 S33 S83 S123 Gene name Mean R Mean S R03 R33 R83 R123 S03 S33 S83 S123

LOC Os07g34589 92.97 130.37 153.91 138.51 90.76 78.69 121.71 142.69 Protein translation factor SUI1 homolog 128.94 108.4625 0.721033 1.01109 1.193656 1.074221 0.836787 0.725504 1.122139 1.31557

NM 001065286 182.57 244.85 103.47 136.94 175.15 133.2 202.35 240.41 Conserved hypothetical protein 166.9575 187.7775 1.093512 1.466541 0.619739 0.820209 0.932753 0.70935 1.077605 1.280292

LOC Os04g35910 10.9 13.04 19.94 20 9.49 14.38 19.88 21.08 Coiled-coil domain containing 55 15.97 16.2075 0.68253 0.816531 1.248591 1.252348 0.585531 0.887244 1.226593 1.300632

LOC Os01g05490 87.3 100.14 33.86 25.81 98.41 68.5 73.38 62.6 Triosephosphate isomerase 61.7775 75.7225 1.413136 1.620979 0.548096 0.41779 1.299614 0.904619 0.969065 0.826703

LOC Os08g03290 519.16 487.42 235.41 209.67 749.7 664.05 768.51 622.39 Glyceraldehyde-3-phosphate dehydrogenase 362.915 701.1625 1.430528 1.343069 0.648664 0.577739 1.069224 0.94707 1.096051 0.887654

LOC Os01g70780 33.59 32.51 41.98 31.06 51.52 38.63 52.9 64.43 SVP1-like protein 2 34.785 51.87 0.965646 0.934598 1.206842 0.892914 0.993252 0.744746 1.019857 1.242144

LOC Os07g11290 5.84 7.65 10.93 9.83 4 5.96 15.4 11.38 Expressed protein 8.5625 9.185 0.682044 0.893431 1.276496 1.148029 0.435493 0.648884 1.676647 1.238977

LOC Os04g53620 1147.96 1395.11 1766.81 1772.33 1549.44 1577.01 1345.8 929.58 Polyubiquitin 1520.553 1350.458 0.754962 0.917502 1.161953 1.165583 1.147345 1.16776 0.996551 0.688345

LOC Os08g03390 53.36 57.83 58.61 56.47 50.29 56.69 95.99 86.41 Pre-mRNA-splicing factor SLU7 56.5675 72.345 0.943298 1.022318 1.036107 0.998276 0.695141 0.783606 1.326837 1.194416

NM 001057599 9.88 8.04 2.23 2.7 6.07 5.46 6.15 6.71 Atypical receptor-like kinase MARK 5.7125 6.0975 1.72954 1.40744 0.390372 0.472648 0.99549 0.895449 1.00861 1.100451

LOC Os08g12750 7.29 7 5.08 7.51 9.3 10.57 14.39 15.06 Serine/threonine protein kinase 6.72 12.33 1.084821 1.041667 0.755952 1.11756 0.754258 0.857259 1.167072 1.221411

LOC Os04g51370 13.88 17.12 20.6 21.42 11.35 15.18 10.89 16.06 Protein kinase domain containing protein 18.255 13.37 0.76034 0.937825 1.128458 1.173377 0.848915 1.135378 0.81451 1.201197

Final Scale Factor 1.000 1.134 1.088 1.069 1.000 1.040 1.461 1.432
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Table 5.2.: Gene expression differences between resistant and sensitive biotypes of

giant ragweed before treatment with glyphosate. The number of genes that are

expressed more than 4-fold higher in glyphosate-resistant giant ragweed (Resistant

+) or more than 4-fold higher in glyphosate-sensitive giant ragweed (Sensitive +)

are shown.

Pre-treatment

Resistant + 318

= 35079

Sensitive + 70
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Table 5.3.: Gene expression differences between resistant and sensitive biotypes of

giant ragweed after treatment with glyphosate. After treatment with glyphosate,

the number of differentially expressed genes increases rapidly within the first three

hours, and continues to increase at later time points. ( + ) denotes at least 4-fold

higher expression level, ( = ) denotes similar expression level, ( - ) denotes at least

4-fold lower expression level, and PT stands for post-treatment.

3 hours PT 8 hours PT 12 hours PT

Sensitive

( + ) ( = ) ( - ) ( + ) ( = ) ( - ) ( + ) ( = ) ( - )

Resistant

( + ) 62 550 31 101 3342 323 412 5471 329

( = ) 552 33020 1014 2643 26654 597 1273 25339 696

( - ) 18 181 39 58 1632 117 22 1710 215
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Table 5.4.: Genes with greater than four-fold higher expression in resistant plants compared to sensitive plants. Genes

expressed higher in resistant plants tend to play important roles in pathogen response regulation.

Gene identifier Gene Annotation GO Annotation Expression ratio R/S

comp148939 c0 Glycosyl hydrolase superfamily protein GO:0009725 response to hormone stimulus 26.846

comp166081 c1 Alpha/beta-hydrolases superfamily protein GO:0005515 protein binding 26.344

comp149865 c0 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein GO:0012505 endomembrane system 7.665

comp142951 c0 Lipid transfer protein 12 GO:0008289 lipid binding 6.532

comp159731 c0 Glutathione S-transferase family protein GO:0006457 protein folding 4.906

comp167561 c0 Protein kinase superfamily protein GO:0006468 protein amino acid phosphorylation 4.777

comp158185 c0 Ethylene-forming enzyme GO:0009815 1-aminocyclopropane-1-carboxylate oxidase activity 4.581

comp171245 c0 Pleiotropic drug resistance 7 GO:0005886 plasma membrane 4.076
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Table 5.5.: Genes with greater than four-fold higher expression levels in sensitive plants compared to resistant plants.

Genes expressed at a higher level in sensitive plants seem to impact control of stress response.

Gene identifier Gene Annotation GO Annotation Expression ratio S/R

comp161591 c0 Metallathionein 2B GO:0006508 proteolysis 12.926

comp165624 c0 Thioredoxin superfamily protein GO:0009535 chloroplast thylakoid membrane 9.706

comp144176 c0 NADH-ubiquinone oxidoreductase (complex I), chain 5 protein GO:0009507 chloroplast 7.694

comp150391 c0 Cysteine-rich domain superfamily protein GO:0009507 chloroplast 4.972

comp165059 c0 Fe superoxide dismutase 2 GO:0019430 removal of superoxide radicals 4.702

comp163658 c0 Unknown protein involved in response to salt stress GO:0003677 DNA binding 4.258
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Table 5.6.: Highly significant GO terms determined by BlastX search against

Arabidopsis thaliana using agriGO for glyphosate resistant giant ragweed. All

matching Arabidopsis genes with E-value less than 1e−20 and percentage identity

greater than 40% were retained.

GO term Description P FDR

GO:0006457 protein folding 5.20E-07 4.20E-05

GO:0019748 secondary metabolic process 2.30E-06 9.20E-05

GO:0051707 response to other organism 7.70E-05 0.0021

GO:0009607 response to biotic stimulus 0.00011 0.0023
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Table 5.7.: Highly significant GO terms determined by BlastX search against

Arabidopsis thaliana using agriGO for glyphosate sensitive giant ragweed. All

matching Arabidopsis genes with E-value less than 1e−20 and percentage identity

greater than 40% were retained.

GO term Description P FDR

GO:0009699 phenylpropanoid biosynthetic process 1.10E-26 1.20E-23

GO:0019748 secondary metabolic process 7.40E-25 4.00E-22

GO:0009698 phenylpropanoid metabolic process 5.70E-24 2.00E-21

GO:0019438 aromatic compound biosynthetic process 1.30E-23 3.50E-21

GO:0006725 cellular aromatic compound metabolic process 1.90E-23 4.10E-21

GO:0042398 cellular amino acid derivative biosynthetic process 1.30E-21 2.40E-19

GO:0006952 defense response 3.00E-18 4.60E-16

GO:0006950 response to stress 4.60E-18 6.20E-16

GO:0006575 cellular amino acid derivative metabolic process 5.50E-18 6.60E-16

GO:0050896 response to stimulus 3.00E-17 3.20E-15

GO:0006519 cellular amino acid and derivative metabolic process 1.20E-15 1.20E-13

GO:0051707 response to other organism 1.00E-13 9.30E-12

GO:0009607 response to biotic stimulus 1.10E-13 9.50E-12

GO:0051704 multi-organism process 5.50E-12 4.30E-10

GO:0009808 lignin metabolic process 7.30E-11 5.30E-09

GO:0009807 lignan biosynthetic process 1.70E-10 1.10E-08

GO:0009806 lignan metabolic process 1.70E-10 1.10E-08

GO:0006468 protein amino acid phosphorylation 2.90E-10 1.80E-08

GO:0042221 response to chemical stimulus 5.50E-10 3.20E-08

GO:0009809 lignin biosynthetic process 6.00E-10 3.30E-08

GO:0006979 response to oxidative stress 6.80E-09 3.50E-07

GO:0016310 phosphorylation 8.40E-09 4.20E-07

GO:0008152 metabolic process 1.40E-08 6.80E-07

GO:0006796 phosphate metabolic process 7.10E-08 3.20E-06

GO:0006793 phosphorus metabolic process 7.30E-08 3.20E-06
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Table 5.8.: EPSPS gene copies in the giant ragweed transcriptome and their

annotations

Sequence ID: comp144227 c0 seq1

PFAM annotation: PF00275.15: EPSP synthase

GO annotation:

GO:0003866: 3-phosphoshikimate 1-carboxyvinyltransferase activity,

GO:0009073: aromatic amino acid family biosynthetic process

Predicted Gene Model:

MNLASLSCNQTINKRSLAVAASVATTEKSSVEEIVLKPIKEISGTVNLPGSKS

LSNRILLLAALAEGTTVVDNLLNSDDVHYMLGALRALGLNVEENGEIKRAT

VEGCGGVFPVGKEAKDEIQLFLGNAGTAMRPLTAAVTAAGGNSSYILDG

VPRMRERPIGDLVTGLKQLGADVDCFLGTNCPPVRVAANGGLPGGKVKL

SGSISSQYLTALLMAAPLALGDVEIEIIDKLISVPYVEMTLKLMERFGVSVEHS

DSWDKFYVRGGQKYKSPGNAYVEGDASSASYFLAGAAITGGTVTVEGC

GTSSLQGDVKFAEVLGQMGAEVTWTENSVTVKGPPRNASGRGHLRPVDV

NMNKMPDVAMTLAVVALYADGPTAIRDVASWRVKETERMIAICTELRKLG

ATVEEGPDYCVITPPEKLNVTAIDTYDDHRMAMAFSLAACADVPVTIKDPG

CTRKTFPDYFEVLERFTKH*

Sequence ID: comp163966 c0 seq1

PFAM annotation: PF00275.15 EPSP synthase

GO annotation:

GO:0003866: 3-phosphoshikimate 1-carboxyvinyltransferase activity,

GO:0009073: aromatic amino acid family biosynthetic process

Predicted Gene Model:

MAAHVSNVAQNIQTSNSIFNNLSKSQTPSSKSSPFLSFGSKYKTPFTHFSFS

SNNRKLFTVSASVAATSAIPEIVLQPIKEISGTVNLPGSKSLSNRILLLAALSQ

GTTVVDNLLNSDDVHYMLGALRTLGLRVDEDGAIKRAVVEGCGGVFPV

GREAKDEIQLFLGNAGTAMRPLTAAVTAAGGNSSYILDGVPRMRERPIGD

LVTGLKQLGADVDCFLGTNCPPVRVVGGGGLPGGKVKLSGSISSQYLT

ALLMASPLALGDVEIEIIDKLISIPYVEMTIKLMERFGVSVEHSDSWDRFFIKG

GQKYKSPGNAYVEGDASSASYFLAGAAITGGTITVEGCGTSSLQGDVK

FAEVLGQMGAEVTWTENSVTVKGPARDASGRKHLRAVDVNMNKMPDV

AMTLAVVALYADGPTAIRDVASWRVKETERMIAICTELRKLGATVEEGPD

YCVITPPERLNVAAIDTYDDHRMAMAFSLAACADVPVTIKDPACTRKTFP

DYFEVLQRFTKH*
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Table 5.9.: Comparison of the expression of the EPSPS gene copies across the four

time points in GR and GS giant ragweed

Sequence ID
FPKM value

R0 R3 R8 R12 S0 S3 S8 S12

comp144227 c0 52.21 66.21 298.66 798.74 64.98 18.97 16.51 22.23

comp163966 c0 4.72 3.7 2.11 7.77 19.17 8.75 6.75 5.59
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Table 5.10.: SNPs found in the first copy of the EPSPS gene (comp144227) in

glyphosate-sensitive giant ragweed. Amino acid changes in italics indicate amino

acid changes in the protein sequence. The GR biotype had no SNPs.

Position Consensus nucleotide Modified nucleotide Consensus amino acid Modified amino acid

111 A C asn lys

273 CT C asn asn

276 AG A lys lys

360 CT T ile ile

378 AG G leu leu

468 TC C asp asp

501 CT C ala ala

508 TC T leu leu

558 CT C cys cys

618 TC C asn asn

621 A G ala ala

720 CT C ile ile

723 CT T gly gly

756 A C ala ala

768 T C cys cys

789 AG A pro pro

990 TC T ser ser

1002 TC C ser ser

1017 GA G lys lys

1029 CA A arg arg

1179 TC C phe phe

1194 AT A gly gly

1209 AG G glu glu

1314 TC T asp asp

1371 GA G arg arg

1416 TC T ala ala

1602 CG G thr thr

1611 TC C thr thr

1746 T C leu leu
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Table 5.11.: SNPs found in the second copy of the EPSPS gene (comp163996) in

giant ragweed. Amino acid changes in italics indicate amino acid changes in the

protein sequence.

Position Consensus nucleotide Modified nucleotide Consensus amino acid Modified amino acid Giant ragweed biotype

204 TC T tyr his R

247 CG G arg thr R

274 CT T val ala R

305 G T val val S

623 T G thr thr S

866 TC C leu leu R

872 TC C asp asp R

897 TC T leu leu RS

956 AG A ser ser RS

960 GA G glu lys R

1052 CT T ser ser RS

1097 TC C ile ile S

1340 TC T asp asp R

1415 AT A thr thr R

1428 CT C pro ser R

1447 GC C thr ser R

1487 CT T tyr tyr RS
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ska, G. (2000). Osmotic stress induces rapid activation of a salicylic acid–induced
protein kinase and a homolog of protein kinase ask1 in tobacco cells. The plant cell,
12(1):165–178.

Mittler, R. (2006). Abiotic stress, the field environment and stress combination.
Trends in plant science, 11(1):15–19.

Mouchiroud, D., D’Onofrio, G., Aissani, B., Macaya, G., Gautier, C., and Bernardi,
G. (1991). The distribution of genes in the human genome. Gene, 100:181–187.

Nakagami, H., Pitzschke, A., and Hirt, H. (2005). Emerging map kinase pathways
in plant stress signalling. Trends in plant science, 10(7):339–346.

Nandula, V. K. (2010). Glyphosate resistance in crops and weeds: history, develop-
ment, and management. John Wiley & Sons, Hoboken, NJ, USA.

Nasiri, J., Haghnazari, A., and Alavi, M. (2011). Evaluation of prediction accuracy
of genefinders using mouse genomic dna. Trends in bioinformatics, 4:10–22.

Nishiyama, T., Fujita, T., Shin-I, T., Seki, M., Nishide, H., Uchiyama, I., Kamiya,
A., Carninci, P., Hayashizaki, Y., Shinozaki, K., Kohara, Y., and Hasebe, M. (2003).
Comparative genomics of physcomitrella patens gametophytic transcriptome and
arabidopsis thaliana: implication for land plant evolution. Proceedings of the na-
tional academy of sciences, 100(13):8007–8012.



115

Nordberg, H., Cantor, M., Dusheyko, S., Hua, S., Poliakov, A., Shabalov, I.,
Smirnova, T., Grigoriev, I. V., and Dubchak, I. (2014). The genome portal of the
department of energy joint genome institute: 2014 updates. Nucleic acids research,
42(D1):D26–D31.

Ouyang, S., Zhu, W., Hamilton, J., Lin, H., Campbell, M., Childs, K., Thibaud-
Nissen, F., Malek, R. L., Lee, Y., Zheng, L., Orvis, J., Haas, B., Wortman, J., and
Buell, C. R. (2007). The tigr rice genome annotation resource: improvements and
new features. Nucleic acids research, 35(suppl 1):D883–D887.

Parra, G., Bradnam, K., and Korf, I. (2007). Cegma: a pipeline to accurately
annotate core genes in eukaryotic genomes. Bioinformatics, 23(9):1061–1067.

Petersen, T. N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). Signalp
4.0: discriminating signal peptides from transmembrane regions. Nature methods,
8(10):785–786.

Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I.,
Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov,
V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., PEpin, L., Ritz, C., Saltzman, E.,
and Stievenard, M. (1999). Climate and atmospheric history of the past 420,000
years from the vostok ice core, antarctica. Nature, 399(6735):429–436.

Picardi, E. and Pesole, G. (2010). Computational methods for ab initio and com-
parative gene finding. Data mining techniques for the life sciences, pages 269–284.

Pline-Srnic, W. (2006). Physiological mechanisms of glyphosate resistance 1. Weed
technology, 20(2):290–300.

Powles, S. B. and Preston, C. (2006). Evolved glyphosate resistance in plants:
biochemical and genetic basis of resistance 1. Weed technology, 20(2):282–289.

Powles, S. B. and Yu, Q. (2010). Evolution in action: plants resistant to herbicides.
Annual review of plant biology, 61:317–347.

Pratley, J., Urwin, N., Stanton, R., Baines, P., Broster, J., Cullis, K., Schafer, D.,
Bohn, J., and Krueger, R. (1999). Resistance to glyphosate in lolium rigidum. i.
bioevaluation. Weed science, pages 405–411.

Preston, C. and Wakelin, A. M. (2008). Resistance to glyphosate from altered
herbicide translocation patterns. Pest management science, 64(4):372–376.

Preston, C., Wakelin, A. M., Dolman, F. C., Bostamam, Y., and Boutsalis, P.
(2009). A decade of glyphosate-resistant lolium around the world: mechanisms,
genes, fitness, and agronomic management. Weed science, 57(4):435–441.

Project, I. R. G. S. (2005). The map-based sequence of the rice genome. Nature,
436(7052):793–800.

Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., and
Lopez, R. (2005). Interproscan: protein domains identifier. Nucleic acids research,
33(suppl 2):W116–W120.

Reddy, A. R., Chaitanya, K. V., and Vivekanandan, M. (2004). Drought-induced
responses of photosynthesis and antioxidant metabolism in higher plants. Journal
of plant physiology, 161(11):1189–1202.



116

Rensing, S. A., Ick, J., Fawcett, J. A., Lang, D., Zimmer, A., Van de Peer, Y.,
and Reski, R. (2007). An ancient genome duplication contributed to the abundance
of metabolic genes in the moss physcomitrella patens. BMC evolutionary biology,
7(1):1.

Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H.,
Nishiyama, T., Perroud, P.-F., Lindquist, E. A., Kamisugi, Y., Tanahashi, T., Sakak-
ibara, K., Fujita, T., Oishi, K., Shin-I, T., Kuroki, Y., Toyoda, A., Suzuki, Y.,
Hashimoto, S.-i., Yamaguchi, K., Sugano, S., Kohara, Y., Fujiyama, A., Anterola,
A., Aoki, S., Ashton, N., Barbazuk, W. B., Barker, E., Bennetzen, J. L., Blanken-
ship, R., Cho, S. H., Dutcher, S. K., Estelle, M., Fawcett, J. A., Gundlach, H.,
Hanada, K., Heyl, A., Hicks, K. A., Hughes, J., Lohr, M., Mayer, K., Melkozernov,
A., Murata, T., Nelson, D. R., Pils, B., Prigge, M., Reiss, B., Renner, T., Rom-
bauts, S., Rushton, P. J., Sanderfoot, A., Schween, G., Shiu, S.-H., Stueber, K.,
Theodoulou, F. L., Tu, H., Van de Peer, Y., Verrier, P. J., Waters, E., Wood, A.,
Yang, L., Cove, D., Cuming, A. C., Hasebe, M., Lucas, S., Mishler, B. D., Reski,
R., Grigoriev, I. V., Quatrano, R. S., and Boore, J. L. (2008). The physcomitrella
genome reveals evolutionary insights into the conquest of land by plants. Science,
319(5859):64–69.

Rizzon, C., Ponger, L., and Gaut, B. S. (2006). Striking similarities in the genomic
distribution of tandemly arrayed genes in arabidopsis and rice. PLoS computational
biology, 2(9):e115.

Rochaix, J.-D. (1995). Chlamydomonas reinhardtii as the photosynthetic yeast.
Annual review of genetics, 29(1):209–230.

Romeis, T. (2001). Protein kinases in the plant defence response. Current opinion
in plant biology, 4(5):407–414.

Rupprecht, J. (2009). From systems biology to fuelchlamydomonas reinhardtii as a
model for a systems biology approach to improve biohydrogen production. Journal
of biotechnology, 142(1):10–20.

Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., and Izui, K. (2000). Over-expression
of a single ca2+-dependent protein kinase confers both cold and salt/drought toler-
ance on rice plants. The plant journal, 23(3):319–327.

Sammons, R. D. and Gaines, T. A. (2014). Glyphosate resistance: state of knowl-
edge. Pest management science, 70(9):1367–1377.
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