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This thesis is dedicated to my parents.
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“ It is an old maxim of mine that when you have excluded the impossible,

whatever remains, however improbable, must be the truth.”

- Sherlock Holmes
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ABSTRACT

Mukundan, Vivek PhD, Purdue University, August 2016. Rees algebras and Iterated
Jacobian duals. Major Professor: Bernd Ulrich.

Consider the rational map Ψ : Pd−1 [f1:···:fm]−−−→ Pm−1 where the fi’s are homogeneous

forms of the same degree in the homogeneous coordinate ring R = k[x1, . . . , xd] of

Pd−1. Assume that I = (f1, . . . , fm) is a height 2 perfect ideal in the polynomial

ring R. In this context, the coordinate ring of the graph of Ψ is the Rees algebra

of I and the co-ordinate ring of the image of Ψ is the special fiber ring. We study

two settings. The first setting is when I is almost linearly presented. Here we study

the ideal defining the graph and the image of Ψ. Whenever possible, we also study

invariants such as the Castelnuovo-Mumford regularity and the relation type of the

graph of Ψ. In the second setting we impose no constraints on the column degrees of

the presentation matrix of I, but the number of generators of I is restricted to d+ 1

(two more than the dimension of the source of Ψ). For this configuration, we study

the image of Ψ.

We also introduce a new method, namely “iterated” Jacobian duals, to study the

graph of Ψ. This is a generalization of the usual Jacobian duals which are often used

to describe the graph of Ψ.
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1. INTRODUCTION

The primary focus of this thesis is to find the defining ideal of Rees algebras of ideals

in a polynomial ring. As a consequence we also solve the implicitization problem

under some conditions.

The Rees algebra is one of the most often studied blow-up algebras. Rees algebras

provide an algebraic realization for the concept of blowing up a variety along a sub-

variety. The search for the implicit equations defining the Rees algebra is a classical

and fundamental problem which has been studied for many decades. In low dimen-

sions, the implicitization problem has often been referred to as the moving-curve and

moving-surface ideal problem and has significant applications in the area of computer

aided geometric design. For example, it can be used to draw a curve/surface near a

singularity, compute intersections with parametrized curves/surfaces etc.

Let I = (f1, . . . , fm) be an ideal of R. Then the Rees algebra of I is R(I) =

R[It] ⊆ R[t]. Since the Rees algebra is an R-algebra we define an epimorphism

Φ : R[T1, . . . , Tm] → R(I) given by Φ(Ti) = fit. We are interested in finding a

complete generating set for the ideal, ker Φ, “defining” R(I). The kernel ker Φ is

called the defining ideal (or defining equations) of R(I).

To describe the implicitization problem, consider the rational map

Ψ : Pd−1k

[f1:···:fm]−−−→ Pm−1k

where the fi’s are homogeneous forms of the same degree in the homogeneous co-

ordinate ring R = k[x1, . . . , xd] of Pd−1k . The implicitization problem involves finding

the defining ideal of the image of Ψ. A way to solve this problem is to study the

Rees algebra of the ideal I = (f1, . . . , fm). This is because the Rees algebra gives the

bi-homogeneous co-ordinate ring of the graph of Ψ and the special fiber ring gives the

homogeneous co-ordinate ring of the image of Ψ.
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The primal nature of ker Φ makes it harder to decipher. If one were to compute

the kernel directly, devoid of sophistry, the resulting equations may be quite hard to

read and the algebraic properties such as Cohen-Macaulayness, relation type etc. of

R(I) are harder to unravel. So the emphasis must be laid on finding forms of the

defining equations which help in the twin tasks of computing the defining equations

and also of studying various algebraic properties of R(I), without much effort.

The symmetric algebra Sym(I) and the associated graded ring grI(R) are other

blow-up algebras often studied in conjunction with the Rees algebra. An easy ob-

servation shows that the map Φ factors through the symmetric algebra and hence to

study ker Φ, we often study A = ker(Sym(I) � R(I)). Let L ⊆ R[T1, . . . , Tm] denote

the defining ideal of Sym(I). When the symmetric algebra and the Rees algebra of an

ideal I are isomorphic, the ideal I is said to be of linear type. The study of ideals of

linear type has been very extensive ( [1–3]). The most general theorem characterizing

ideals of linear type is by using the theory of approximation complexes developed by

Herzog, Simis, Vasconcelos [4].

The starting point of our investigation is the following result of Herzog, Simis and

Vasconcelos. These authors show that when the ideal I is strongly Cohen-Macaulay

and satisfies

µ(IP ) ≤ ht P for all P ∈ V (I) (1.1)

then the ideal I is of linear type. The class of strongly Cohen-Macaulay ideals is

reasonably large and includes licci ideals such as height two perfect and height three

Gorenstein ideals. In the course of proving these results the authors introduced

the notion of approximation complexes in [4]. These complexes turned out to be a

powerful tool in the study of ideals of linear type and also of Rees algebras in general.

The approximation complexes,M• and Z•, “approximate” the resolutions of Sym(I),

Sym(I/I2). The acyclicity of these complexes is equivalent, under some conditions, to

the ideal I being generated by a d-sequence or a proper sequence, respectively. These

complexes also provide information on the Cohen Macaulayness and Gorensteiness of

the Rees algebra R(I) and the associated graded ring grI(R).
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Ideals generated by more than dimR elements cannot be of linear type. To study

the Rees algebra of I in this case, Huckaba and Huneke in [5] used a reduction of I

that can be generated by dimR elements. A reduction J of I is closely related to

I, in that, R(I) is module finite over R(J). The reduction number rJ(I) measures

how “closely” the two ideals are related. Even though I is not of linear type, one

can hope to salvage algebraic properties of the Rees algebra R(I) by studying the

respective properties of R(J). So it is also very useful to study the properties of the

Rees algebra of the reduction J and then study the transfer of properties between

R(I) and R(J). When the reduction number is very small, Huneke and Huckaba

show that R(J) is Cohen Macaulay and the property does transfer to R(I).

Under suitable assumptions, the reduction number of strongly Cohen Macaulay

ideals is bounded by `(I) − g + 1, where `(I) and g are the analytic spread and

the height of the ideal. In fact `(I) − g + 1 is the smallest positive number the

reduction number r(I) can possibly attain [6]. Such a reduction number is called the

expected reduction number. Ulrich in [7] shows that the expected reduction number

characterizes the Cohen Macaulayness of R(I) in the case of grade 2 perfect ideals.

Morey and Ulrich in [8] extend the characterization, under suitable conditions, by

showing that the Rees algebra R(I) is Cohen Macaulay if and only if the defining

ideal of the Rees algebra is of the expected form. This description, as most traditional

descriptions of the defining ideal of R(I), revolves around the notion of Jacobian

Duals. The Jacobian dual is a matrix, B(ϕ), which dualizes the presentation matrix

ϕ with respect to I1(ϕ) = (a1, ..., ar). In general, it can be shown that the expected

form is the smallest possible ideal the defining ideal of R(I) can possibly be equal to,

when I is not of linear type.

The expected form is one such form that supports the earlier emphasis on the

shape of the defining ideals and its twin uses. Morey and Ulrich show that when R

is a polynomial ring and I is grade 2 perfect ideal with a linear presentation matrix,
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then the defining ideal of R(I) is of the expected form. One important assumption

which appears in this result is a weakening of condition (1.1), namely,

µ(IP ) ≤ ht P for all P ∈ V (I) with ht P ≤ d− 1 (1.2)

In the literature, the above condition (1.2) is called the Gd condition. As a direct

consequence of [4, 2.6], this condition means that strongly Cohen Macaulay ideals

which satisfy the Gd condition are of linear type locally on the “punctured” spectrum.

The presentation matrix of I being linear is a noticeable constraint and hence natural

questions on the nature of the defining ideal of R(I) when the presentation matrix

is non-linear can be asked. Such questions bring the focus to the problems being

discussed in this thesis. Not all the grade 2 perfect ideals have the property that

the defining ideal of the Rees algebra is of the expected form. Thus we focus our

attention to the case of grade 2 perfect ideals generated by homogeneous elements of

the same degree.

Using the Hilbert-Burch theorem, such an ideal can be realized as the ideal gen-

erated by the maximal minors of a m ×m − 1 matrix with homogeneous entries of

constant degree along each column. We first restrict the presentation matrix ϕ of I

to be “almost linearly presented”, that is, all but the last column of ϕ are linear and

the last column consists of homogeneous entries of arbitrary degree n ≥ 1.

When d = 2, Kustin, Polini, Ulrich in [9, 2.4] gave a description of the defining

ideals of the Rees algebra of grade 2 perfect almost linearly presented ideals. Their

work involves a construction of a “well-behaved” ring A mapping onto the Rees al-

gebra, so that the kernel of the map A � R(I) is a height one prime ideal. The

ring A, is the homogeneous coordinate ring of a rational normal scroll built with the

presentation matrix ϕ of I. Describing explicit representatives of divisor classes on

rational normal scrolls, they constructed a new height one prime ideal K and prove

that ker Φ ∼=A K
(n). Recall that n is the degree of the entries in the last column of the

presentation matrix ϕ. This type of construction is very productive as they go on to

give a complete description of the generators of K(n). The latter form of the defining
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equation was also useful in determining various properties of the Rees algebra like

the depth, analytic spread of I, the reduction number of I etc.

One of the problems this thesis discusses is the efforts taken extending the above

result to d > 2. We were able to construct a close enough ring A and also an

appropriate height one prime K to show that ker Φ ∼= K(n). Using this result we also

show that ker Φ = L : (x1, . . . , xd)
n. Notice that when the presentation matrix ϕ is

linear (n = 1), the theory of residual intersections will immediately gives

ker Φ = L : (x1, . . . , xd) = L+ Id(B(ϕ))

recovering the result of Morey and Ulrich. A complete generating set of K(n), similar

to the one presented in [9, 3.6] resisted generalization to the case of d > 2,’ mainly

due to the uncharacterizable nature of the presentation matrix ϕ.

The thesis introduces the notion of iterated Jacobian duals. It is an attempt to

study the generators of L : (x1, . . . , xd)
n. This method extends the notion of Jacobian

duals, and helps in constructing generators for ker Φ. For the presentation matrix ϕ

with I1(ϕ) ⊆ (a1, . . . , ar), we set B1(ϕ) = B(ϕ) and we iteratively construct Bi(ϕ)

from Bi−1(ϕ) (we refer to Chapter 3 for details on the construction). By construction,

L + Ir(Bi(ϕ)) ⊆ L + Ir(Bi+1(ϕ)). Though Bi(ϕ) may not be uniquely determined,

we prove that L + Ir(Bi(ϕ)) is uniquely determined when a1, . . . , ar is an R-regular

sequence.

Theorem 1.0.1 Let R be a Noetherian ring and ϕ be a presentation matrix of the

ideal I with entries in R. Suppose I1(φ) ⊆ (a1, . . . , ar) and a1, . . . , ar is a regular

sequence. Then the ideal L+Ir(Bi(φ)) of R[T1, . . . , Tm] is uniquely determined by the

matrix φ and the regular sequence a1, . . . , ar.

One can also show that (L, Id(Bi(ϕ))) ⊆ L : (x1, . . . , xd)
i. Thus it is interesting to

study when these two ideals are equal. We present a condition, namely the equality

Kn = K(n) in the ring A, for when ker Φ coincides with the ideal of the iterated

Jacobian dual (L+ Id(Bn(ϕ))).
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Theorem 1.0.2 Let R = k[x1, . . . , xd] and I be a grade 2 perfect ideal. Suppose that

the presentation matrix ϕ of I is almost linear, that is, all but the last column of ϕ is

linear and the last column consists of homogeneous entries of arbitrary degree n ≥ 1.

Further assume that the ideal I satisfies Gd. If Kn = K(n) then ker Φ = L+Id(Bn(ϕ)).

Next, under the above hypotheses, we study ideals which satisfy µ(I) = d+ 1. Such

ideals are also known as ideals of second analytic deviation one. For such ideals one

has Kn = K(n) in the ring A and hence ker Φ = (L+ Id(Bn(ϕ))). Furthermore, such

an explicit form of the defining ideal also helps to determine the relation type of I,

the Castelvnuovo-Mumford regularity and the Cohen-Macaulayness of R(I).

Theorem 1.0.3 Let R = k[x1, . . . , xd] and I be a grade 2 perfect ideal. Suppose

that the presentation matrix of I is almost linear, that is, all but the last column of

ϕ is linear and the last column consists of homogeneous entries of arbitrary degree

n ≥ 1.Further assume that the ideal I satisfies Gd and µ(I) = d+ 1. Then

(a) the defining ideal of R(I) satisfies ker Φ = L : (x1, . . . , xd)
n = L+ Id(Bn(ϕ)).

(b) R(I) is almost Cohen-Macaulay (i.e., depth R(I) = dimR(I)−1) and the special

fiber ring F(I) is Cohen-Macaulay.

(c) the relation type satisfies rt(I) = n(d − 1) + 1 where rt(I) is defined to be the

maximum T -degree appearing in a homogeneous minimal generating set of ker Φ.

(d) the Castelnuovo-Mumford regularity satisfies reg R(I) = n(d− 1).

When restated, the above theorem gives explicit generators defining the graph of Ψ

(and hence the image of Ψ) when the presentation matrix is almost linear. Under

the hypotheses of the previous theorem we attempt to find the equations defining the

image of Ψ with no constraints on the presentation matrix. This is the next question

we study in this thesis. As a consequence, a method to check when the map Ψ is

birational onto its image was found.

The map Ψ is said to be birational onto its image when there exists a rational

map Υ : Im Ψ → Pd−1 such that Υ ◦ Ψ = id. The criteria for the rational map Ψ to
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be birational on to its image is of interest to geometers. Much work has been done

on the problem in the case m = d in [10]. The technique of using the Rees algebras

as a means to check birationality was emphasized in [11,12].

Henceforth, we assume that the d+ 1×d presentation matrix ϕ has homogeneous

columns of the same degree ei, where 1 ≤ e1 ≤ · · · ≤ ed+1. The starting point of our

investigation for computing the image of Ψ was the theorem of Jouanolou [13]. A

non-constructive proof of the same has been given by Kustin, Polini, Ulrich in [14].

This theorem provides a method to study A by considering the dual of the symmetric

algebra. The ring B = R[T1, · · · , Td+1] = k[x1, . . . , xd][T1, ..., Td+1] is a bigraded

algebra as it is naturally endowed with the bigrading deg xi = (1, 0), deg Tj = (0, 1).

Thus both A and Sym(I) become bigraded B-modules. This paves the way to define

modules Ai = ⊕jA(i,j) and Sym(I)i = ⊕jSym(I)(i,j) over the ring S = k[T1, . . . , Td+1].

The theorem of J.-P. Jouanaolou states that

Ai ∼= HomS(Sym(I)δ−i, S(−d))

where δ =
∑

j ej − d and Hom denotes the graded dual. With the hypotheses of

Theorem 1.0.3, it is well known that the image of Ψ is a hypersurface. Since the

defining ideal of the image of Ψ is A0, we conclude that A0 is principally gener-

ated. By Jouanolou’s theorem, notice that A0
∼= HomS(Sym(I)δ, S(−d)). We first

begin by finding a generator of HomS(Sym(I)δ, S(−d)). By computing the dimen-

sion of Sym(I), we first notice that Sym(I) is a complete intersection ring. Thus

the Koszul complex K• gives a natural bi-homogeneous B-resolution for Sym(I).

From this we extract an S-resolution (Fi, φi)0≤i≤n−1 for Sym(I)δ. We use a theorem

of Buchsbaum-Eisenbud, to obtain an element in HomS(Sym(I)δ, S). The element

in HomS(Sym(I)δ, S(−d)) can then be easily recovered by shifting the T -degrees.

We first fix a basis for ∧rkFk and an orientation η ∈ ∧tiFi where tk = rank Fk.

The orientation η allows us to define an isomorphism ∧sFk ∼= ∧tk−sF∗k. The result
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in [15, 3.1] now states that for each 1 ≤ k ≤ n−2, there exists unique homomorphism

ak : R→ ∧rkFk−1 such that

an−1 = ∧rn−1φn−1 and

∧rkFk
∧rkφk //

a∗k+1

��

∧rkFk−1

R

ak

BB

where rk = rank φk. SinceA0 is principally generated, Sym(I)δ is an S-module of rank

one and hence ∧r1F0
∼= F∗0. For a1 ∈ ∧r1F0, we denote a∗1 ∈ F∗0 for the image of a1 un-

der the isomorphism ∧r1F0
∼= F∗0. Our candidate for an element in HomS(Sym(I)δ, S)

arises from a∗1. To recover the element ã1 ∈ A0 from a∗1 ∈ HomS(Sym(I)δ, S), we

use the method of Morley Forms developed by J.-P. Jouanolou. The degree of the

element ã1 can be compared to a known multiplicity.

Theorem 1.0.4 deg ã1 = e(R/(g1, . . . , gd−1) : I∞) where gi’s are general k-linear

combination of the generators of I, namely the fi’s.

By a theorem of Kustin, Polini and Ulrich in [16, 3.7], one has

e(R/(g1, . . . , gd−1) : I∞) = e(F(I)) · α

where α is the degree of the map Ψ. Also, since the image of Ψ is a hypersurface,

notice that e(F(I)) gives the degree of the generator of A0. From this we conclude

that ã1 generates A0 if and only if the map Ψ is birational onto its image. As a

consequence, the constructive proof gives us a method to check whether the rational

map Ψ is birational onto its image.

Theorem 1.0.5 Let Ψ : Pd−1 [f1:···:fd+1]−−−→ Pd such that I = (f1, . . . , fd+1) is a grade 2

perfect ideal generated by forms of the same degree. Also assume that I satisfies the

Gd condition. Then the following are equivalent:

1. Ψ is birational onto its image.
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2. grade I1(a1) > 1.

3. ã1 generates A0.

At the time of writing this thesis, a generalized method to compute Ai, i > 0 has

been found extending by the above methods.

This thesis is organized as follows. Basic facts on Commutative Algebra is covered

in Chapter 2. We study the defining ideal of Rees algebra of height two perfect

ideals which are almost linearly presented in chapter 3. We introduce the notion of

iterated Jacobian duals in Chapter 4. In Chapter 5, applying the technique of iterated

Jacobian duals, we present a complete generating set for the defining ideal of Rees

algebras whose second analytic deviation is one. Finally in Chapter 6, we solve the

implicitization problem for a certain class of ideals.
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2. PRELIMINARIES

In this chapter we give definitions, examples and results required to make the presen-

tation self contained. Throughout, R will be a Noetherian ring and I = (f1, . . . , fm)

an R-ideal.

2.1 Height two perfect ideals and Hilbert-Burch theorem

One of the important conditions we assume as a hypothesis in our results is that

the ideals are grade 2 perfect.

Definition 2.1.1 The grade of a proper ideal is the maximal length of an R-regular

sequence in I.

In a Cohen-Macaulay ring, it can be shown that the notion of height and grade of an

ideal coincide. An equivalent definition for the grade of the ring R/I is grade R/I =

min {i | ExtiR(R/I,R) 6= 0}. Thus grade R/I ≤ projdimRR/I for any proper ideal

I.

Definition 2.1.2 I is said to be a perfect ideal when grade R/I = projdimRR/I.

Perfect ideals of height 2 are characterized by the Hilbert-Burch theorem.

Theorem 2.1.3 [17, 20.15], (Hilbert-Burch Theorem)

(a) If a complex

F : 0→ F2
φ2−→ F1

φ1−→ R→ R/I → 0

is exact where F2 is free and F1
∼= Rn, then F2

∼= Rn−1 and there exists a non

zero divisor a such that I = aIn−1(φ2). In fact, the ith entry of the matrix φ1 is

(−1)ia times the minor obtained from φ2 by leaving out the ith row. The ideal

In−1(φ2) has grade at least two.
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(b) Conversely, given any (n− 1)× n matrix φ2 such that grade In−1(φ2) ≥ 2 and a

non zero divisor a, the map φ1 obtained as in part (a) makes F a free resolution

of R/I with I = aIn−1(φ2).

2.2 Strongly Cohen-Macaulay Ideals

Definition 2.2.1 [18, 5.42] An ideal I in a Cohen-Macaulay ring R is said to be

strongly Cohen-Macaulay if the Koszul homology modules of I with respect to one

(and then to any) generating set are Cohen-Macaulay.

Consider a complete intersection ideal I in a Cohen-Macaulay ring R. Notice that

in this case, the Koszul homology modules (except the zeroth) of a regular sequence

generating I are all zero and hence I is strongly Cohen-Macaulay. The case of generic

complete intersections is discussed below

Recall that I is said to be generically a complete intersection if IP is generated by

a regular sequence for every prime ideal P which is minimal over I.

Proposition 2.2.2 [19, 2.2] Let R be a Cohen-Macaulay local ring, and I an ideal

of R such that

(a) R/I is Cohen-Macaulay

(b) I is generically a complete intersection

(c) µ(I) = ht I + 1.

Then I is strongly Cohen-Macaulay.

Other standard examples of strongly Cohen-Macaulay ideals are grade two perfect

and grade three Gorenstein ideals. In fact an ideal in the linkage class of a complete

intersection (licci) is always strongly Cohen-Macaulay [20].

One of the important questions, commutative algebraist are interested in is the

equality of the ordinary and symbolic powers of ideals. A criterion we use to check
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this equality for strongly Cohen-Macaulay ideals is the following theorem of Simis

and Vasconcelos. Recall that for a prime ideal P , the symbolic power P (k) is defined

to be P kRP ∩R. Similarly, for any ideal I, we define the k-th symbolic power of I to

be I(k) = ∩P∈AssR(R/I)(I
kRP ∩R).

Theorem 2.2.3 [21, 3.4] Let I be an ideal of height g of a Cohen-Macaulay ring R.

Assume that I is generically a complete intersection and is strongly Cohen-Macaulay.

If

µ(IP ) ≤ ht P − 1 for all P ∈ V (I) with g + 1 ≤ ht P,

then I i = I(i) for all i.

2.3 Fitting Ideals and G-conditions

Fitting ideals of an ideal I are important invariants connected to the ideal I. Let

ϕ be a presentation matrix of I i.e.,

Rs ϕ−→ Rm → I → 0.

For the m × s matrix ϕ, let It(ϕ) represent the R-ideal generated by all the t by t

minors of ϕ. We set It(ϕ) = R for t ≤ 0 and It(ϕ) = 0 for t > min{m, s}.

Definition 2.3.1 Define Fitti(I) = Im−i(ϕ). This ideal is called the i-th Fitting ideal

of I.

It is well known that Fitti(I) depends only on i and I and not on m, s, ϕ. Some of

the properties of the Fitting ideals are :

Observation 2.3.2 (a) (ann(I))m ⊂ Fitt0(I) ⊂ ann(I).

(b) In case R is local, Fitti(I) = R if and only if µ(I) ≤ i.

(c) V (Fitti(I)) = {P ∈ Spec(R) | µRP (IP ) > i}.

One of the important conditions we use in this thesis concerns the G-conditions
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Definition 2.3.3 I satisfies Gi if µ(IP ) ≤ ht P for all P ∈ V (I) with ht P < i.

We say I satisfies G∞ if I satisfies Gi for all i. Using (b),(c) in Observation 2.3.2, we

obtain a practical method to verify the Gi condition by rewriting it in terms of the

Fitting invariants

I satisfies Gi if ht Fittk(I) > k for all k < i.

We will be using the condition Gd throughout this thesis, where dimR = d.

2.4 Rees Algebra of Ideals

Definition 2.4.1 The Rees algebra R(I) of an ideal I is defined to be the subring

R[It] =
∞⊕
i=0

I iti ⊂ R[t].

It can be shown that R(I) ∼=
∞⊕
i=0

I i. To study Rees algebras one often considers their

defining ideal. Let I = (f1, . . . , fm). There exists an R-epimorphism

Φ : R[T1, . . . , Tm] � R(I)

Ti → fit

Definition 2.4.2 The kernel, ker Ψ of the epimorphism Ψ is called the defining ideal

of the Rees algebra R(I).

Let ϕ be a presentation matrix of I, i.e.,

Rs ϕ−→ Rm → I → 0.

We can generate some obvious relations in ker Φ using the presentation matrix ϕ.

Let Jϕ = ([T1 · · ·Tm] · ϕ) be the R[T1, . . . , Tm]-ideal generated by entries of the row

vector [T1 · · ·Tm] · ϕ. The generators of Jϕ are linear forms in ker Φ. Such relations

are important in the study of the symmetric algebra Sym(I). The map Φ factors

through Sym(I), and hence to study ker Φ, it is enough to study A = ker(Sym(I) �

R(I))) = ker Φ.
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Remark 2.4.3 The symmetric algebra Sym(I) ∼= R[T1, . . . , Tm]/L where L = Jϕ for

a presentation matrix ϕ of I. The ideal L ⊆ R[T1, . . . , Tm] is called the defining ideal

of Sym(I).

The dimensions of the algebras R(I), Sym(I) can be easily computed.

Theorem 2.4.4 (a) If ht I > 0, dimR(I) = dimR + 1.

(b) [22, 2.6] dim Sym(I) = sup{µ(IP ) + dimR/P | P ∈ Spec(R)}

The relationship between R(I) and Sym(I) has been studied extensively. An inter-

esting class forms the ideals satisfying R(I) ∼= Sym(I).

Definition 2.4.5 When R(I) ∼= Sym(I) via the map Φ, then the ideal I is said to

be of linear type.

A classical theorem classifying ideals of linear type is the following theorem of Herzog,

Simis and Vasconcelos.

Theorem 2.4.6 [4, 2.6] Let R be a Cohen-Macaulay ring and let I be an ideal of

positive grade. Assume

(a) I satisfies the condition G∞.

(b) I is a strongly Cohen-Macaulay ideal.

Then ideal I is of linear type. Further, R(I) is Cohen-Macaulay.

Example 2.4.7 Let R = k[x, y] and I = (x2, y2). Then the ideal I satisfies both the

conditions of the above theorem. Thus I is of linear type.

Often, to study ker Φ, we study the minors of the Jacobian dual matrix.

Definition 2.4.8 Let ϕ be a m× s presentation matrix of I and I1(ϕ) = (a1, . . . , at)

be the ideal of entries of ϕ. Write

[T1 · · ·Tm] · ϕ = [a1 · · · at] ·B(ϕ)

where B(ϕ) is a t × s matrix with linear entries in R[T1, . . . , Tm]. The matrix B(ϕ)

is called a Jacobian dual of ϕ.
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Let R = k[x1, . . . , xd] and I be an R-ideal. If the presentation matrix ϕ of I consists

of linear entries, [a1, . . . , at] = [x1, . . . , xd] then B(ϕ) is a unique matrix. But the

matrix B(ϕ) is not always uniquely determined as the following example show.

Example 2.4.9 Let ϕ =


x x2

y xy + y2

0 xy

 be a presentation matrix of an ideal I.

Then

[T1 T2 T3] · ϕ = [x y] ·

 T1 xT1 + yT2 + yT3

T2 yT2


= [x y] ·

 T1 xT1

T2 yT2 + xT2 + xT3



Both the matrices

 T1 xT1 + yT2 + yT3

T2 yT2

 and

 T1 xT1

T2 yT2 + xT2 + xT3

 are can-

didates for B(ϕ).

Recall that L = ([T1 · · ·Tm] · ϕ) = ([a1 · · · at] · B(ϕ)) is the defining ideal of Sym(I).

Even though there are two candidates B1, B2 for B(ϕ), we show, in Lemma 2.4.11,

that (L, It(B1)) = (L, It(B2)) when a1, . . . , at is an R-regular sequence. Thus in

Sym(I), we have It(B1) = It(B2).

We first prove a general lemma which make use of Cramer’s Rule.

Lemma 2.4.10 Let [a1 · · · at] be a 1 × t matrix and N be a t × t − 1 matrix with

entries in R. Now let Nr, 1 ≤ r ≤ t, be the t− 1× t− 1 submatrix of N obtained by

removing the r-th row of N . Set mr = det Nr. Then, in the ring R/([a1 · · · at] ·N)

ar ·mk = (−1)r−kak ·mr, 1 ≤ r ≤ t, 1 ≤ k ≤ t (2.1)

Proof Let N = (bij) and

[a1 · · · ak−1 ak+1 · · · at] ·Nk = [g1 · · · gt−1]
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We make use of Cramer’s Rule to see that ar · mk = det Nkr , r ∈ {1, · · · , k −

1, k, · · · , t} where Nkr is a matrix obtained from Nk, by replacing the r-th row by

[g1 · · · gt−1]. But in the ring R/([a1 · · · at] ·N),

gi = −akbki

Thus, in this ring, we have ar ·mk = det Nkr = −ak ·m′′, where m′′ is the determinant

of the matrix N ′′ whose rows are equal to that of Nk, except for the r-th row which

is replaced by [bk1 · · · bkt]. Also, after r − k − 1 row transposition of the r-th row

of N ′′, we get m′′ = (−1)r−k−1mr, where mr is as described in the statement of

the lemma. Putting all these observations together, we get ar · mk = −ak · m′′ =

−ak(−1)t−k−1mr = (−1)r−kak ·mr.

Proposition 2.4.11 Let ϕ be an m×s presentation matrix of I and I1(ϕ) = (a1, . . . , at)

such that a1, . . . , at is an R-regular sequence. Suppose B1 and B2 are two matrices

with t rows satisfying

([a1 · · · at] ·B1) = ([a1 · · · at] ·B2), (2.2)

then (L, It(B1)) = (L, It(B2)) where L = ([a1 · · · at] ·B1) = ([a1 · · · at] ·B2).

Proof Let E = (a1, . . . , at)/([a1 · · · at] ·B1) and consider the free presentation

F1
[δ | B1]−−−−→ F0 → E → 0

where δ represents the first differential of the Koszul complex K on the R-regular

sequence a1, . . . , at. Notice that

It([δ | B1]) = Fitt0(E) = It([δ | B2]) (2.3)

as ([a1 · · · at] · B1) = ([a1 · · · at] · B2) and the Fitting ideals do not depend on the

presentation matrix.

Thus it suffices to show that

L+ It([δ | B1]) ⊆ L+ It(B1) (2.4)
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as this would imply, using (2.3), that

L+ It(B1) = L+ It([δ | B1]) = L+ It([δ | B2])

Using similar arguments we can also show L+ It([δ | B2]) = L+ It(B2) proving that

L+ It(B1) = L+ It(B2).

Notice that ([a1 · · · at]·[δ | B1]) = ([a1 · · · at]·B2) = L because [a1 · · · at]·δ = 0. Now

to prove (2.4), it is enough show to that It([δ | B1]) ⊆ It(B1) in the ring R = R/L.

Since δ is the first Koszul differential, we may assume the columns of δ are of the

form ajek − akej, 1 ≤ j, k ≤ t, where {ej} form a basis of Rt.

Now any element of It([δ | B1]) involving a column of δ is of the form det[δ′ | M ]

where M is a t× t− 1 submatrix of [δ | B1] and δ′ is a column of δ. Then det[δ′ | M ]

is of the form

(−1)k+1(ajmk − (−1)j−kakmj) (2.5)

where mr is the determinant of the submatrix of M obtained by removing the r-th

row of M . Now in the ring R/L, using Lemma 2.4.10, we see that elements of the form

(2.5) are zero. Thus It([δ | B1]) ⊆ It(B1) in the ring R and hence L + It([δ | B1]) =

L+ It(B2).

Thus, irrespective of the candidate B1, B2 for B(ϕ), the ideal (L, It(B(ϕ))) is uniquely

determined when I1(ϕ) is generated by an R regular sequence. We show in Lemma

2.4.13 that (L, It(B(ϕ))) ⊂ L : (a1, . . . , at).

Another useful lemma which we use is the following

Lemma 2.4.12 Let a1, . . . , at be elements in R. Let B be an t×t matrix with entries

in R and [L1 · · ·Lt] = [a1 · · · at] · B. Let mij be the minor of B obtained by deleting

the i-th row and j-th column. Then in the ring A/(L1, . . . , Lt−1)

ai detB = (−1)i+tmitLt

Proof Using Cramer’s rule, ai detB is the determinant of a matrix C, obtained

by replacing the i-th row by [L1 · · ·Lt]. To compute detC, we expand along the
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i-th row to see that detC =
t∑

j=1

(−1)i+kmikLj. But in the ring A/(L1, . . . , Lt−1),

ai detB = (−1)i+tmitLt.

Lemma 2.4.13 Let B be a t×s matrix with entries in R and [L1 · · ·Ls] = [a1 · · · at] ·

B. Then ai · Id(B) ⊆ (L1, . . . , Ls) for all i.

Proof The proof is immediate from the Cramers rule or Lemma 2.4.12.

2.5 Residual Intersection

Some of the proofs presented in this thesis use the theory of residual intersections.

Definition 2.5.1 [23, 1.1] Let R be a Cohen-Macaulay local ring and let a = (a1, . . . , at)

be an R-ideal and b = (b1, . . . , bs) ⊆ a with b 6= a. Set J = b : a.

(a) If ht J ≥ s ≥ ht a, then J is said to be an s-residual intersection of a (with

respect to a).

(b) If furthermore, aP = bP for all P ∈ V (a) with ht P ≤ s, then we say J is a

geometric s-residual intersection of I.

The Cohen-Macaulayness of residual intersections are well documented. The following

is a result of Huneke, Ulrich .

Theorem 2.5.2 [23, 5.3] Let R be a local Gorenstein ring, I a strongly Cohen-

Macaulay ideal satisfying G∞. Let J = (L1, . . . , Ls) : I be any s-residual intersection

of I. Then R/J is Cohen-Macaulay.

When I is a complete intersection, a complete generating set for J = (L1, . . . , Ls) : I

can be found. Such a generating set can be found using the techniques of generic

residual intersection. In fact complete resolutions of J have been worked out by

Bruns, Kustin and Miller.



20

Theorem 2.5.3 [24, 4.8] Let R be a Cohen-Macaulay local ring and I = (a1, . . . , at),

with a1, . . . , at a regular sequence. Let (L1, . . . , Ls) ⊂ I and ψ be a t× s matrix with

entries in R so that [L1 · · ·Ls] = [a1 · · · at] · ψ. If (L1, . . . , Ls) : I is an s-geometric

residual intersection of I, then (L1, . . . , Ls) : I = (L1, . . . , Ls) + It(ψ).

2.6 Relation type and Regularity of R(I)

We now define two important invariants namely relation type and regularity of

the Rees algebra.

Definition 2.6.1 The relation type rt(I) is defined to be the maximum T -degree ap-

pearing in a homogeneous minimal generating set of the defining ideal of the Rees

algebra.

For the regularity, we use the definition as in [25]. Let S =
⊕

n≥0 Sn be a finitely

generated standard graded ring over a Noetherian commutative ring S0. For any

graded S-module M we denote by Mn, the homogeneous component of degree n of

M , and define

a(M) :=

max{n : Mn 6= 0} if M 6= 0

−∞ if M = 0

Let S+ be the ideal generated by the homogeneous elements of positive degree of S.

Definition 2.6.2 For i ≥ 0, set ai(S) := a(H i
S+(S)), where H i

S+(.) denotes the i-

th local cohomology functor with respect to the ideal S+. The Castelnuovo-Mumford

regularity of S is defined as the number reg S = max{ai(S) + i : i ≥ 0}

We also make use of Castelnuovo-Mumford regularity on short exact sequences.

Theorem 2.6.3 [17, 20.19] If 0 → A → B → C → 0 is a short exact sequence of

finitely graded S-modules, then

(a) reg A ≤ max{reg B, reg C + 1}.

(b) reg B ≤ max{reg A, reg C}.
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(c) reg C ≤ max{reg A− 1, reg B}.

(d) If A has finite length, then reg B = max{reg A, reg C}.

2.7 Buchsbaum-Eisenbud Multipliers

The theorem we discuss in this section concerns the relationship between the ideals

of minors of the matrices appearing in a free resolution. We will be using this theorem

to a great effect in Chapter 6.

An oriented free module is by definition a free module F with a fixed generator

η ∈ ∧rF where r = rank F . η is called the orientation of F . The orientation of F

determines an isomorphism ∧kF ∼= ∧r−kF for 0 ≤ k ≤ r.

Theorem 2.7.1 [15, 3.1] Let (F•, φ•) be the free resolution

0→ Fn
φn−→ Fn−1

φn−1−−−→ · · · φ3−→ F2
φ2−→ F1

φ1−→ F0

where Fi are oriented free modules of finite rank. Let ri = rank φi. Then

(a) for each k, 1 ≤ k < n, there exists a unique homomorphism ak : R→ ∧rkFk−1 =

∧rk−1F ∗k−1 such that

(i) an = ∧rnφn : R = ∧rnFn → ∧rnFn−1.

(ii) for each k < n, the diagram

∧rkFk
∧rkfk //

a∗k+1

��

∧rkFk−1

R

ak

BB

commutes.

(b) For all k > 1,
√
I1(ak) =

√
Irk(φk).
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Example 2.7.2 Let R = k[x, y] and I = (x2, xy, y2, z2). Consider the resolution of

I

0→ R2 φ2−→ R5 φ1−→ R4 [x2 xy y2 z2]−−−−−−−→ I

where

φ1 =


−y 0 −z2 0 0

x −y 0 −z2 0

0 x 0 0 −z2

0 0 x2 xy y2

 φ2 =



z2 0

0 z2

−y 0

x −y

0 x


Let ri = rank φ1. Thus r1 = 3, r2 = 2. We use the following notation for an ordered

basis of ∧rF . For any R-free module F and an ordered basis {e1, . . . , en} of F , let

B denote the basis {(−1)i1+···+ir−1ei1 ∧ · · · ∧ eir | 1 ≤ i1 < · · · < ir ≤ n} of ∧rF .

Further we arrange the set B by decreasing lexicographic order on the index set

{(i1, . . . , ir) | 1 ≤ i1 < · · · < ir ≤ n} ⊆ Nr.

Now by Theorem 2.7, .

a2 = ∧2φ2 =



x2

xy

y2

0

xz2

yz2

−xz2

−yz2

0

z4


Thus using the identification ∧3R5 ∼= ∧2R5, we have

a∗2 =
[
−z4 0 yz2 −xz2 −yz2 xz2 0 −y2 xy −x2

]
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Also

∧3φ1 =


−x2z4 0 x2yz2 −x3z2 −x2yz2 x3z2 0 −x2y2 x3y −x4

−xyz4 0 xy2z2 −x2yz2 −xy2z2 x2yz2 0 −xy3 x2y2 −x3y

−y2z4 0 y3z2 −xy2z2 −y3z2 xy2z2 0 −y4 xy3 −x2y2

−z6 0 yz4 −xz4 −yz4 xz4 0 −y2z2 xyz2 −x2z2


By Theorem 2.7, we have the following commutative diagram

∧3R5 ∧3φ1 //

a∗2

��

∧3R4

R

a1

DD .

Thus a1 can be computed considering a column (first column), and dividing its entries

by the corresponding column (first entry) of a∗2. Thus

a1 =


x2

xy

y2

z2

 .
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3. ALMOST LINEARLY PRESENTED IDEALS

In this chapter we study the defining ideal of the Rees algebra of height two perfect

ideals. Further we require the presentation matrix of the ideal to be almost linear.

The methods we discuss in this chapter are a generalization of the work presented

in [9]. This is joint work with Jacob A. Boswell.

We follow the following setting in this chapter

Setting 3.0.1 Let

(a) R = k[x1, . . . , xd]

(b) I = (f1, . . . , fm) be a height two perfect ideal where f1, . . . , fm are homogeneous

polynomials of the same degree.

(c) I satisfies the Gd condition, that is,

µ(IP ) ≤ ht P for all P ∈ V (I) with ht P < d (3.1)

(d) Since I is height two perfect ideal, it can be generated by the maximal minors

of an m × m − 1 matrix ϕ with homogeneous entries of constant degree along

each column (Theorem 2.1.3). Further, assume that the presentation matrix ϕ is

almost linear, that is, all but the last column of ϕ is linear and the last column

consists of homogeneous entries of arbitrary degree n ≥ 1.

Remark 3.0.2 Since I satisfies the Gd condition, we assume µ(I) = m > d. For,

if µ(I) ≤ d, then I satisfies the G∞ condition and hence I will be of linear type by

Theorem 2.4.6.

Let

Φ : B = R[T1, . . . , Tm] � R(I)

Ti → fit
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We attempt to compute a generating set for ker Φ (called the defining ideal of R(I)).

Let L = (L1, . . . , Lm−1) where [T1, . . . , Tm] · ϕ = [L1, . . . , Lm−1]. This is the

defining ideal of the symmetric algebra Sym(I).

Remark 3.0.3 Setting deg xi = (1, 0) and deg Tj = (0, 1), we see that B is a bigraded

ring. With respect to this grading, both ker Φ and L are bi-homogeneous.

Theorem 3.0.4 One has ker Φ = L : (x1, . . . , xd)
∞.

Proof Let 0 6= y ∈ (x1, . . . , xd). Since I satisfies the Gd condition, we first show

that Iy satisfies G∞ in Ry. Since I satisfies Gd, ht Fitti(I) > i for i < d. Now

ht Fittd−1(I) > d−1 and Fittd−1(I) is homogeneous. Hence Fittd−1(I) is an (x1, . . . , xd)-

primary ideal. Thus Fittd−1(Iy) = Ry. Also ht Fitti(Iy) > i for i < d − 1.

Thus Iy satisfies G∞ in Ry. Using Theorem 2.4.6 we have Iy is of linear type

in Ry (Ly = ker Φy). Thus ysL ⊆ ker Φ for some s. Since this is true for all

y ∈ (x1, . . . , xd) and B is Noetherian, ker Φ ⊆ L : (x1, . . . , xd)
t for some t >> 0.

Also, L : (x1, . . . , xd)
i ⊆ ker Φ for all i as (x1, . . . , xd)

i 6⊂ ker Φ and ker Φ is a prime

ideal. Thus ker Φ = L : (x1, . . . , xd)
∞.

At the end of this chapter we present the index of saturation of L : (x1, . . . , xd)
∞

in the setting of 3.0.1. We now follow the construction as in [9] to find a form of

ker Φ. We first construct a Cohen-Macaulay ring A close to R(I) such that R(I) is

A modulo a prime ideal of height one.

Notation 3.0.5 (a) Let ϕ′ denote the matrix obtained by deleting the last column of

ϕ. Since ϕ is an almost linear matrix, ϕ′ is a linear matrix.

(b) J = (L1, . . . , Lm−2) + Id(B(ϕ′)) ⊂ B where [L1 · · ·Lm−2] = [x1 · · ·xd] ·B(ϕ′) and

B(ϕ′) is a matrix with linear entries in k[T1, . . . , Tm].

(c) Define A = B/J

(d) Let N be the matrix obtained by deleting the last row of B(ϕ′)
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(e) Define K = J + Id−1(N) + (xd)

(f) Let m denote the ideal (x1, . . . , xd) in A.

Observation 3.0.6 If ϕ is almost linear and m > d, I1(ϕ
′) ⊃ I2(ϕ) ⊃ Im−d+1(ϕ) =

Fittd−1(I). Recall that ϕ′ is obtained from ϕ by removing the last column. Since

ht Fittd−1(I) ≥ d by the Gd condition, I1(ϕ) = (x1, . . . , xd).

Notice that B(ϕ) is a d×m− 1 matrix and B(ϕ′) is a d×m− 2 matrix.

We use the following two theorems to prove that the ring A is a Cohen-Macaulay

ring of dimension d+ 2.

Theorem 3.0.7 [26, 2.2] The ideal (L1, . . . , Lm−2) : (x1, . . . , xd)
∞ = ([x1, . . . , xd] ·

B(ϕ′)) : (x1, . . . , xd)
∞ is a prime ideal in B, of height m− 2.

Theorem 3.0.8 [26, 2.4] The ideal Id(B(ϕ′))is a prime ideal in k[T1, . . . , Tm], of

height m−d− 1 and (L1, . . . , Lm−2) : (x1, . . . , xd) is a geometric residual intersection

of the ideal (x1, . . . , xd) in B. Furthermore,

(L1, . . . , Lm−2) : (x1, . . . , xd)
∞ = (L1, . . . , Lm−2) : (x1, . . . , xd)

= (L1, . . . , Lm−2) + Id(B(ϕ′)).

Lemma 3.0.9 The following statements are true.

(a) The ring A is a Cohen-Macaulay domain of dimension d+ 2.

(b) The ideals K and m are Cohen-Macaulay A-ideals of height one.

Proof (a) By Theorem 3.0.4, we have ker Φ = L : (x1, . . . , xd)
∞ = (L1, . . . , Lm−1) :

(x1, . . . , xd)
∞ and ker Φ is a prime ideal of heightm−1. By Theorem 3.0.7, (L1, . . . , Lm−2) :

(x1, . . . , xd)
∞ is a prime ideal of height m− 2 and by Theorem 3.0.8

(L1, . . . , Lm−2) : (x1, . . . , xd)
∞ = (L1, . . . , Lm−2) : (x1, . . . , xd)

= (L1, . . . , Lm−2) + Id(B(ϕ′))

= J
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Further, since J is a geometric residual intersection of (x1, . . . , xd) in B (Theorem

3.0.8), A is a Cohen-Macaulay ring (Theorem 2.5.2). Also, since J is a prime ideal of

height m− 2, we have A is a Cohen-Macaulay domain of dimension d+ 2.

(b) Notice that J + (x1, . . . , xd) = Id(B(ϕ′)) + (x1, . . . , xd). Again using Theorem

3.0.8, Id(B(ϕ′)) is a prime ideal of height m − d − 1. As m − d − 1 is of maximal

possible height, Id(B(ϕ′)) is Cohen-Macaulay. Notice that x1, . . . , xd is a regular

sequence on Id(B(ϕ′)) and hence Id(B(ϕ′))+(x1, . . . , xd) is Cohen-Macaulay of height

m − 1. Now as J is a prime ideal that is homogeneous with respect to (x1, . . . , xd)

and (T1, . . . , Tm), it follows that J + (x1, . . . , xd) is a prime ideal. But notice that

J + (x1, . . . , xd) = Id(B(ϕ′)) + (x1, . . . , xd). Thus m is a height 1 prime ideal in A.

Recall that K = J + Id−1(N) + (xd). But notice that K can also be generated by

(L̃1, . . . , L̃m−2) + Id−1(N) + (xd) where [L̃1, . . . L̃m−2] = [x1 · · ·xd−1] ·N . Since J is a

prime ideal of height m− 2 and xd ∈ K\J , K has height at least m− 1. By Krull’s

Altitude Theorem (L̃1, . . . , L̃m−2) + Id−1(N) is of height at least m− 2. Notice that

(L̃1, . . . , L̃m−2) + Id−1(N) ⊆ (L̃1, . . . , L̃m−2) : (x1, . . . , xd−1)

Thus (L̃1, . . . , L̃m−2) : (x1, . . . , xd−1) is a residual intersection and hence (L̃1, . . . , L̃m−2) :

(x1, . . . , xd−1) is Cohen-Macaulay (Theorem 2.5.2). Using [8, 1.5,1.8] we get

(L̃1, . . . , L̃m−2) : (x1, . . . , xd−1) = (L̃1, . . . , L̃m−2) + Id−1(N)

Also, the generators (L̃1, . . . , L̃m−2) + Id−1(N) do not involve the variable xd. Thus

xd is regular on (L̃1, . . . , L̃m−2) + Id−1(N) and hence K is Cohen-Macaulay of height

m− 1. This shows that K is a height 1 prime ideal in A.

Lemma 3.0.10 The following statements are true

(a) mi = m(i).

(b) K
(i)

= (xd)
i :A m(i).

(c) m(i) = (xd)
i :A K

(i)
.
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Proof (a) Temporarily setting deg xi = 1 and deg Tj = 0, we get grm(A) ∼= A, a

domain. Thus mi = m(i).

(b) Using Lemma 2.4.13, we see that mK ⊆ (xd). Thus miK
i ⊆ (xd)

i. After localizing

at any prime P with ht P = 1, we see m(i)K
(i) ⊆ (xd)

i. Thus

m(i) ⊆ (xd)
i : K

(i)
. (3.2)

We now show that mi and K
(i)

do not share an associated prime. Recall that K =

(L̃1, . . . , L̃m−2) + Id(B) + (xd) and (L̃1, . . . , L̃m−2) : (x1, . . . , xd−1) = (L̃1, . . . , L̃m−2) +

Id(B) is of heightm−2. Now suppose Id(B) = 0, then (L̃1, . . . , L̃m−2) : (x1, . . . , xd−1) =

(L̃1, . . . , L̃m−2) is of height m− 2. Thus (x1, . . . , xd−1) contains a regular element on

B/(L̃1, . . . , L̃m−2). This would imply m − 2 < d − 1 showing m ≤ d, a contradic-

tion. Thus Id−1(N) 6= 0. By degree considerations, Id−1(N) 6⊂ J as the generators of

Id−1(N) have T -degree d− 1 in k[T1, . . . , Tm]. Thus K 6⊂ (x1, . . . , xd) + J . Since m is

the unique associated prime of mi and K 6⊂ m, mi and K
(i)

do not share an associated

prime. Thus

(xd)
i : K

(i) ⊆ m(i).

Hence K
(i)

= (xd)
i :A m(i).

(c) The proof is analogous to that of (b).

Since Lm−1 ∈ (x1, . . . , xd)
n (recall Lm−1 is the form coming from the non-linear

column of ϕ), Lm−1 ∈ mn = (xd)
n : K(n). Thus Lm−1K

(n) ⊆ (xd)
n. We are ready

define the A-ideal D = Lm−1K
(n)

xd
n . Also, D ⊆ ker Φ as Lm−1 ∈ ker Φ, xd 6∈ ker Φ and

ker Φ is a prime ideal.

Theorem 3.0.11 In the setting of 3.0.1, D = ker Φ in the ring A, where ker Φ

denotes the image of ker Φ in the ring A.

Proof A module M satisfies the Serre’s Condition S2 if

depth MP ≥ min{2, dimMP}

for every P ∈ Supp(M).
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It is well known, that in a Cohen-Macaulay ring, proper ideal of positive height is

unmixed of height one if and only if it satisfies the S2 condition. Since A is Cohen-

Macaulay, K
(n)

is unmixed of height one and hence satisfies S2. Since D ∼= K(n), D

is also a height one unmixed ideal.

Since D ⊆ ker Φ it suffices to show that these ideals are equal locally at the

associated primes of D. Recall that the associated primes of D are of height one.

As K 6⊂ m we have K
(i)

m = Am. Also, ker Φ 6⊂ m. Thus

mn
m = (xd)

n
m : K

(n)

m

= (xd)
n
m : Am

= (xd)
n
m.

As mm = (xd)m, the only m-primary ideals of A are m(i) (and hence mi). Thus

(Lm−1)m = mi
m = (xd)

i
m for some i. As Lm−1 has T -degree n, i ≤ n. Thus

Dm =
(Lm−1)mK

(n)

m

xd
n
m

=
(xd

i)m
(xd

n)m
⊃ Am = ker Φm

For a height one prime P 6= m,

KP = (xd))P : mP

= (xd))P : AP

= (xd))P .

Therefore

DP =
(Lm−1)PK

(n)

P

xd
n
P

= (Lm−1)P = ker ΦP

The last equality is due to the Gd condition (linear type in the punctured spectrum).

Thus DP = AP for all height one prime P ∈ Spec(A).

Corollary 3.0.12 In the setting of 3.0.1, ker Φ = L : (x1, . . . , xd)
n. Further, n is

the smallest possible integer for which this holds.
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Proof Notice that Dmn ⊆ (Lm−1) in A. Thus D ⊆ L : mn. Thus ker Φ ⊆ L : mn.

This shows ker Φ ⊆ (L + Id(B(ϕ′))) : (x1, . . . , xd)
n. Since (L + Id(B(ϕ′))) is bi-

homogeneous and (x1, . . . , xd) · Id(B(ϕ′)) ⊆ L it follows that

ker Φ ⊆ L : (x1, . . . , xd)
n.

As L : (x1, . . . , xd)
∞ = ker Φ ⊆ L : (x1, . . . , xd)

n, we have ker Φ = L : (x1, . . . , xd)
n.

Assume there exists an i ∈ N with i < n so that ker Φ = L : (x1, . . . , xd)
i. Then in

the ring A, miker Φ ⊆ (Lm−1). Localizing at the prime m, we obtain mi
m ⊆ (Lm−1)m.

As Lm−1 ∈ (x1, . . . , xd)
i (i < n), we have mi

m = (Lm−1)m. Similarly we can show that

(Lm−1)m ⊆ mn
m. Thus mi = m(i) = (Lm−1)m ⊆ mn ⊆ mi, which is a contradiction.

Notice that a generating set for ker Φ can be completely determined, if a generating

set for K(n) can be found. If d = 2, a generating set for K(n) is given in [9]. In general,

it is hard to compute a generating set for K(n), but for computational purposes, one

can use Lemma 3.0.10. We will present attempts to construct a generating set for

L : (x1, . . . , xd)
n in Chapter 4 and for the special case of K(n) = Kn in Chapter 5.
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4. ITERATED JACOBIAN DUALS

In the previous section we proved that ker Φ = L : (x1, . . . , xd)
n in the setting of 3.0.1.

An attempt to construct a generating set for L : (x1, . . . , xd)
n led to the conception of

iterated Jacobian duals. This notion generalizes Jacobian dual matrices. The minors

of these matrices help us construct more generators for ker Φ, especially those which

are not of the expected form. This is joint work with Jacob Boswell.

First we define the iterated Jacobian dual of an arbitrary matrix φ, in a Noetherian

ring R. We then apply the setting of 3.0.1 and present a condition for the equality of

the ideal arising from iterated Jacobian duals and the defining ideal of R(I).

4.1 Constructing the Iterated Jacobian dual

Let R be a Noetherian ring. Consider a presentation

Rs φ−→ Rm → cokerφ→ 0.

Assume I1(φ) ⊆ (a1, . . . , at). Then there exists a t× s matrix B(φ), called a Jaco-

bian dual of φ, with linear entries in R[T1, . . . , Tm] such that the following condition

is satisfied

[T1 · · ·Tm] · φ = [a1 · · · at] ·B(φ). (4.1)

The existence of B(φ) is clear, but it may not be uniquely determined. In a polynomial

ring, the uniqueness of B(φ) depends on the linearity of the matrix φ.

Let L denote the ideal defining the symmetric algebra Sym(cokerφ).

Definition 4.1.1 Set B1(φ) = B(φ) and L1 = L. Suppose (B1(φ),L1), . . . ,

(Bi−1(φ),Li−1) have been constructed inductively such that, for 1 ≤ j ≤ i − 1,
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Bj(φ) are matrices with t rows having homogeneous entries of constant degree in

R[T1, . . . , Tm] along each column and Lj = ([a1 · · · at] ·Bj(φ)), 1 ≤ j ≤ i− 1.

We now construct (Bi(φ),Li). Let

Li−1 + (It(Bi−1(φ)) ∩ (a1, . . . , at)) = Li−1 + (u1, . . . , ul)

where u1, . . . , ul are homogeneous in R[T1, . . . , Tm]. Then there exists a matrix C

having homogeneous entries of constant degree in R[T1, . . . , Tm] along each column

such that

[u1 · · ·ul] = [a1 · · · at] · C. (4.2)

Define Bi(φ), an i-th iterated Jacobian dual of φ, to be

Bi(φ) = [Bi−1(φ) | C] (4.3)

where | represents matrix concatenation. Now set Li = ([a1 · · · at] ·Bi(φ)).

By construction, Bi−1(φ) is a submatrix of Bi(φ) and Li−1 ⊆ Li. As with the

Jacobian dual matrix B(φ), the iterated Jacobian dual matrices Bi(φ) are also not

uniquely determined. Further, notice that the generating set (u1, . . . , ul) need not

be unique. Thus we can construct different candidates for Bi(φ) of different sizes.

Suppose

Li−1 + (Ir(Bi−1(φ)) ∩ (a1, . . . , at)) = Li−1 + (u1, . . . , ul) = Li−1 + (v1, · · · , vp) (4.4)

and suppose B and B′ satisfy

[u1 · · ·ul] = [a1 · · · at] · C and B = [Bi−1(φ) | C]

[v1 · · · vp] = [a1 · · · at] · C ′ and B′ = [Bi−1(φ) | C ′]
(4.5)

For our purposes, we show in Theorem 4.1.2 that L+It(B) = L+It(B
′) when a1, . . . , at

is a R-regular sequence. Thus the ideal of an iterated Jacobian dual, L+ It(Bi+1(φ)),

depends only on the matrix φ and the regular sequence a1, . . . , at. Also, in the

construction, we assume that t should not be “too big”, otherwise the matrix B(φ)

(and hence Bi(φ)) may have rows of zeros, which would trivialize the construction.



35

Remark 4.1.1 L1 = L is a well defined R[T1, . . . , Tm]-ideal because it is the ideal

defining the symmetric algebra Sym(cokerφ). Assume that Lj, 1 ≤ j ≤ i−1 are well

defined ideals. The candidates for Bi(φ), namely B and B′, are constructed with the

generators, (u1, . . . , ul) and (v1, . . . , vp) respectively. Now (4.4) guarantees that

([a1 · · · at] ·B) = ([a1 · · · at] ·B′)

showing that Li is a well-defined R[T1, · · · , Tm]-ideal.

Now using Lemma 2.4.11, proved in the preliminaries section, we show the unique-

ness of the ideal of an iterated Jacobian dual L+ Ir(Bi(φ)).

Theorem 4.1.2 Let R be a Noetherian ring and φ be a m× s matrix with entries in

R. Suppose I1(φ) ⊆ (a1, . . . , ar) and a1, . . . , ar is a regular sequence. Then the ideal

L+ Ir(Bi(φ)) of R[T1, . . . , Tm] is uniquely determined by the matrix φ and the regular

sequence a1, . . . , ar.

Proof Since the construction of the iterated Jacobian dual is inductive, we prove

this result using induction. Using Lemma 2.4.11, we see that L+ Ir(B1(φ)) is a well

defined ideal, proving the initial step of the induction hypothesis. Now suppose that

L+ Ir(Bj(φ)), 1 ≤ j ≤ i− 1 are well defined ideals. Now, if B, B′ are two matrices

which satisfies (4.5), then we show that

L+ Ir(B) = L+ Ir(B
′)

Since L ⊆ Li, clearly L+ It(B) ⊆ Li + It(B). Also It(B) ⊇ It(Bi−1(φ)). Now notice

that

Li ⊆ ([a1 · · · at] ·Bi−1(φ)) + ([a1 · · · at] · C)

= Li−1 + (u1, . . . , ul)

⊆ Li−1 + It(Bi−1(φ))

⊆ Li−1 + It(B)
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Since It(B) ⊇ It(Bi−1(φ)) ⊇ It(Bi−2(φ)) ⊇ · · · ⊇ It(B1(φ)), we show, successively,

that

Li ⊆ Li−1 + It(B) ⊆ Li−2 + It(B) ⊆ · · · ⊆ L+ It(B)

Thus Li + It(B) ⊆ L + It(B) and hence Li + It(B) = L + It(B). Similarly we can

show that Li + It(B) = L+ It(B
′)

Now it is enough to show Li + It(B) = Li + It(B
′). Since Li = ([a1 · · · at] · B) =

([a1 · · · at] ·B′), we now use Lemma 2.4.11 to show the result.

Now, since L+ Ir(Bi(φ)) ⊆ L+ It(Bi+1(φ)) and R[T1, · · · , Tm] is Noetherian, the

procedure stops after a certain number of iterations. In fact, when R is a polynomial

ring and φ is linear, the procedure stops after the first iteration.

Remark 4.1.3 Using Lemma 2.4.13, we can see that L+It(B1(φ)) ⊆ L : (a1, . . . , at).

Notice that ([a1, · · · , at] ·B2(φ)) ⊆ L+ It(B1(φ)). Using Lemma 2.4.13 again,

(a1, . . . , at) · It(B2(φ)) ⊆ L+ It(B(φ)) ⊆ L : (a1, . . . , at).

Thus L+ It(B2(φ)) ⊆ L : (x1, . . . , xd)
2. Iteratively, we can show that

L+ Ir(Bi(φ)) ⊆ L : (a1, . . . , at)
i.

It is still unclear when the two ideals are equal or if their respective index of stabi-

lizations are related.

4.2 Ideals of Codimension two

In the previous section we showed that the ideal of an iterated Jacobian dual

L+It(Bi(φ)) are uniquely determined. We now apply the notion of iterated Jacobian

duals to the Setting of 3.0.1.

Let R = k[x1, . . . , xd] and I, a grade 2 perfect ideal generated by forms of the

same degree. Further, I satisfies the Gd condition. Let ϕ be the presentation matrix
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of I. Assume µ(I) = m > d. If ϕ is linear, then the defining ideal of the Rees algebra

R(I) has the expected form L+Id(B(ϕ)) (see [8]). If ϕ is not linear, it is interesting to

study when the defining ideal of R(I) and L+ Id(Bi(ϕ)) coincide. Such a form of the

defining ideals is easier to compute and has advantages when computing invariants

such as relation type, regularity etc.

In [27], the author presents a condition as to when ker Φ equals the expected form.

An analogous condition is presented below for the ideal of an iterated Jacobian dual.

Remark 4.2.1 Let R = k[x1, . . . xd] be a polynomial ring with the homogeneous max-

imal ideal M and I be a grade 2 perfect ideal with presentation matrix ϕ. Assume

I satisfies the Gd condition and let I1(ϕ) ⊆ (a1, . . . , ad) where a1, . . . , ad form an

R-regular sequence. If

(a) ht (Id(Bn(ϕ)) + M)/MR[T1, . . . , Tm] ≥ m− d and

(b) L+ Id(Bn(ϕ)) is unmixed,

then ker Φ = L+ Id(Bn(ϕ)).

Proof The proof of the remark is identical to the one presented in [27, 3.1], but for

ease of reference we present the proof.

We have to show that L = L+ Id(Bn(ϕ)) is a prime ideal of height m− 1. Let P

be an associated prime of L and p = P ∩R.

If M 6= p, then Ip is of linear type and hence Lp = m − 1. Since Lp ⊆ Lp ⊆ Pp,

we have ht P ≥ m− 1.

Now suppose M = p, then Id(Bn(ϕ))+M ⊆ L+M ⊆ P . Further, using (a) in the

hypotheses and the fact that a1, . . . , ad is anR-regular sequence, ht (Id(Bn(ϕ))+M) ≥

m. Thus ht P ≥ m.

Therefore if P is a minimal prime of L, then ht P ≥ m−1 and hence ht L = m−1.

Further, if L ⊆ P and M = P ∩R, then ht L 6= ht P .

Using (b) in the hypothesis, all the minimal primes P of L are of height m − 1.

In particular, M 6⊆ P . Thus there exists an a ∈ M which is regular modulo L. To
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show L is a prime ideal we show La is a prime ideal. But by the Gd condition, Ia is

of linear type and hence La = ker Φa, a prime ideal. Thus La = La is a prime ideal.

Not much information is available on the unmixed nature of L + Id(Bn(ϕ)), but its

believed to be strong enough for the above remark to be of practical use.

Now in the setting of 3.0.1, we put our efforts to search for a condition for the

equality of ker Φ and L + It(Bn(ϕ)). When d = 2, Kustin, Polini and Ulrich present

a complete generating set for ker Φ in [9]. From this generating set we see that ker Φ

and L+ It(Bn(ϕ)) are not always equal. A search for a condition led us to Corollary

4.2.3.

Henceforth, we assume that ( ) denote the image in the ring A.

Theorem 4.2.2 Let A,K be as defined in Notation 3.0.5. Then in the setting of

3.0.1, one has Lm−1K
n

xd
n ⊆ L+ Id(Bn(ϕ)) in the ring A.

Proof Write Di = Lm−1K
i

xd
i and D′i = L+ Id(Bi(ϕ)). Clearly Di ⊆ Di+1 and D′i ⊆

D′i+1.

As in Notation 3.0.5, K = (L̃1, · · · , L̃m−2, Id−1(B), xd) where B is a submatrix of

B(ϕ′). Now let B(ϕ) = (bij), 1 ≤ i ≤ d, 1 ≤ j ≤ m− 1.

We prove the containment Di ⊆ D′i, 1 ≤ i ≤ n, by induction. Let i = 1. As

L̃i ∈ (xd) in the ring A, it is clear that Lm−1L̃i
xd

∈ (Lm−1) = L. Now let w be a

d − 1 × d − 1 minor of B. For ease of notation, assume that w is the determinant

of the submatrix of B obtained from the first d− 1 rows and the first d− 1 columns

of B. Consider M , a submatrix of B(ϕ) obtained from the first d rows and column

indices belonging to the set {1, . . . , d − 1,m − 1}. Using Lemma 2.4.12, we have

(−1)d+m−1Lm−1 · w = det(M) · xd in the ring A. Thus we have Lm−1w
xd

= det(M) ∈

Id(B1(ϕ)) proving the initial step of induction D1 ⊆ D′1.

Now assume that the result is true for 1 ≤ i < n. Consider Lm−1w1···wn
xd
n ∈ Dn with

w1, . . . , wn ∈ K. It is enough to show that Lm−1w1···wn
xd
n ∈ D′n.
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By induction hypothesis, we have Lm−1w1···wn−1

xd
n−1 = w′ ∈ D′n−1. Thus Lm−1w1···wn

xd
n =

w′wn
xd

. If w′ ∈ L, then w′ ∈ (Lm−1) in the ring A. Thus by induction hypothesis,

w′wn
xd
∈ D1 ⊆ D′1 ⊆ D′n.

If w′ ∈ Id(Bn−1(ϕ)) and Id(Bn−1(ϕ))∩(x1, . . . , xd) = (0), then w′ ∈ Id(B(ϕ′)) ⊆ J .

Thus w′ = 0 and in this case, w′wn
xd

= 0 (recall that A is a domain and n ≥ 2).

Now, assume w′ ∈ Id(Bn−1(ϕ)) ∩ (x1, . . . , xd) = (u1, . . . , ul). It is enough to show

that upwn
xd
∈ D′n, 1 ≤ p ≤ l. So, let w′ = up for some p ∈ {1, · · · , l}.

Recall that wn ∈ K. Now, if wn ∈ (xd) ⊆ K, then w′wn
xd
∈ (w′) ⊆ D′n−1 ⊆ D′n.

Thus assume that wn ∈ Id−1(B). Rewrite

w′ =
d∑

k=1

xkw
′
k for some w′k ∈ B. (4.6)

Now

w′wn
xd

=

d∑
k=1

xkw′kwn

xd
.

For ease of notation assume that wn = detM where M is a d × d − 1 submatrix

consisting of the first d rows and the first d−1 columns of B(φ). Hence in the ring A,

using Lemma 2.4.10, we have xkwn = (−1)k−dxddetMk where Mk is the submatrix

of M obtained by removing the k-th row. Thus,

w′wn
xd

=

d∑
k=1

xkw′kwn

xd

=

d∑
k=1

(−1)k−dxddetMkw′k

xd

=
d∑

k=1

(−1)k−ddetMkw′k

which is the determinant of the d× d matrix

H =


w′1

M
...

w′d

 .
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Notice that detH ∈ L+ Id(Bn(ϕ)) = D′n. The decomposition in (4.6) is not unique.

Thus a different decomposition in (4.6) leads to a different choice of H. But Theorem

4.1.2 shows that irrespective of the decomposition in (4.6), detH ∈ D′n.

Corollary 4.2.3 In the setting of 3.0.1, if K
(n)

= K
n
, then the defining ideal of the

Rees algebra satisfies ker Φ = L+ Id(Bn(ϕ)).

Proof If K
(n)

= K
n
, then ker Φ = Lm−1K

(n)

xd
n = Lm−1K

n

xd
n ⊆ L+ Id(Bn(ϕ)) ⊆ ker Φ.

Interestingly, the above corollary states that, L : (x1, . . . , xd)
n = L + Id(Bn(ϕ)) and

the index of stabilization of the ideal of an iterated Jacobian dual is n.

Remark 4.2.4 In Theorem 4.2.2, the ideals D1 and D′1 are actually equal. We

already showed the inclusion D1 ⊂ D′1. To show the reverse inequality D′1 ⊆ D1,

notice that xd ∈ K and hence Lm−1 = Lm−1xd
xd

∈ D1 showing that L ⊆ D1. Now let

w ∈ Id(B1(ϕ)). Since Id(B(ϕ′)) ⊆ J , we can assume that w 6∈ Id(B(ϕ′)). Now in the

ring A, wxd = Lm−1w′. Thus w = Lm−1w′

xd
∈ D1.

A natural question is whether Di = D′i for 1 ≤ i ≤ n ?. The answer is affirmative,

if a slight change is made in the construction of the iterated Jacobian duals. The

change is described as follows. Instead of considering all the minors of It(Bi(ϕ)) ∩

(x1, . . . , xd) to construct C in (4.2), we consider a special subset of minors. These

minors are determinants of submatrices all but one of whose columns are columns

of B(ϕ′) and the last column is that of Bi−1(ϕ). This type of construction has been

independently studied by Cox,Hoffman and Wang [28] in the case of d = 2, m = 3.

In the setting of 3.0.1, we showed that I1(ϕ) = (x1, . . . , xd) (Observation 3.0.6). But in

general, the iterated Jacobian dual is defined to be constructed with any generating

set containing I1(ϕ). The generating set need not even be homogeneous and this

feature was explored in the case of d = 2 by Hong, Simis and Vasconcelos in [29].

We now present some examples on how to construct the iterated Jacobian duals.
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Example 4.2.5 Consider a matrix

ϕ =


x1 0 0

x2 x1 0

x3 x2 x21

0 x3 x23


in a polynomial ring R = k[x1, x2, x3]. Since grade I3(ϕ) ≥ 2, the converse of

the Hilbert-Burch Theorem, guarantees the existence of a grade 2 perfect ideal I

whose presentation matrix is ϕ. Also, the G3 condition is satisfied as ht Fitt3(I) =

ht I1(ϕ) = 3, Fitt2(I) = ht I2(ϕ) ≥ 3. We now construct candidates for iterated

Jacobian duals.

B1(ϕ) = B(ϕ) =


T1 T2 xT3

T2 T3 0

T3 T4 zT4

 .
To construct B2(ϕ), we have to construct (detB1(ϕ)) = I3(B(ϕ)).

detB1(ϕ) = −xT 3
3 − zT 2

2 T4 + zT1T3T4 + xT2T3T4

= x(−T 3
3 + T2T3T4) + z(−T 2

2 T4 + T1T3T4)

= x(−T3(T 2
3 − T2T4)) + y(0) + z(T4(−T 2

2 + T1T3))

We can construct B2(ϕ) using detB1(ϕ).

B2(ϕ) =


T1 T2 xT3 −T3(T 2

3 − T2T4)

T2 T3 0 0

T3 T4 zT4 T4(−T 2
2 + T1T3)

 .
We already know that L + I3(B2(ϕ)) ⊆ L : (x1, x2, x3)

2 = ker Φ (Remark 4.1.3). In

the next section we will show that the defining ideal of the Rees algebra R(I) satisfies

ker Φ = L+ I3(B2(ϕ)).
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Example 4.2.6 Let R = k[x1, x2]. Let I be a grade 2 perfect ideal whose presenta-

tion matrix

ϕ =


x1 0 x21

x2 x1 x22

0 x2 x21 + x22

0 0 x21 + x22 + x1x2

 .

One candidate for the first iterated Jacobian dual is

B1(ϕ) =

T1 T2 x1T1 + x1T3 + x1T4 + x2T4

T2 T3 x2T2 + x2T3 + x2T4

 .
Notice that I2(B1(ϕ)) ∩ (x1, x2) = (d1, d2) where

d1 = x1(−T1T2 − T2T3 − T2T4) + x2(T1T2 + T1T3 + T1T4 − T2T4)

d2 = x1(−T1T3 − T 2
3 − T3T4) + x2(T

2
2 + T2T3 + T2T4 − T3T4)

We construct B2(ϕ) using d1, d2 to get

B2(ϕ) =

T1 T2 x1T1 + x1T3 + x1T4 + x2T4 −T1T2 − T2T3 − T2T4 −T1T3 − T 2
3 − T3T4

T2 T3 x2T2 + x2T3 + x2T4 T1T2 + T1T3 + T1T4 − T2T4 T 2
2 + T2T3 + T2T4 − T3T4

.

Using [9, 3.6], one can show that f = T 2
2 +T1T2+T 2

3 +T1T3+T3T4+T1T4−T2T4 ∈ ker Φ,

but it is clear that f 6∈ L+ I2(B2(ϕ)). Subsequent iterations of the Jacobian dual do

not produce an element of bi-degree (0, 2) (we refer to Remark 3.0.3 for the grading

scheme on B). Thus L+ I2(B2(ϕ)) 6= A.
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5. SECOND ANALYTIC DEVIATION ONE IDEALS

In this chapter we present a generating set for ker Φ of ideals whose second analytic

deviation is one, in terms of iterated Jacobian duals. Further, properties like depth,

Cohen-Macaulayness and Castelnuovo-Mumford regularity of the Rees algebra are

also studied. This is joint work with Jacob Boswell.

5.1 The defining ideal of the Rees algebra R(I) if µ(I) = d+ 1

The rest of this chapter assumes the setting of 3.0.1. The special fiber ring F(I)

is defined as

F(I) ∼= R(I)/(x1, . . . , xd)R(I).

The dimension of F(I) is called analytic spread and is denoted by `(I). It is known

that ht I ≤ `(I) ≤ dimR = d.

In this chapter we further assume that µ(I) = d+1. Since I is of maximal analytic

spread (`(I) = d, see for example [30]), the second analytic deviation µ(I)− `(I) is 1.

Remark 5.1.1 Since dim Sym(I) = d + 1 [22], ht L = d. Now the presentation

matrix ϕ of I is an d + 1 × d matrix and hence L is d-generated. Thus Sym(I) is a

complete intersection ring.

Observation 5.1.2 Let A,K be as defined in Notation 3.0.5. Then in the setting of

3.0.1, K is generically a complete intersection and strongly Cohen-Macaulay in the

ring A.

Proof Recall that the A-ideals K and m are Cohen-Macaulay of height one (Lemma

3.0.9). To prove K is generically a complete intersection, we localize K at height one

primes P ∈ V (K) of A and then show KP is a complete intersection in AP . Now
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let P ∈ V (K). Since m is not an associated prime of K, we have mP = AP . Since

(xd)P :AP KP = mP = AP (Lemma 3.0.10) showing that KP = (xd)P . Thus K is

generically a complete intersection.

Following Notation 6.0.2, notice that K = (w, xd), where Id−1(N) = (w), is an

almost complete intersection ideal of height one in the Cohen-Macaulay ring A. Also,

A/K is Cohen-Macaulay (Lemma 3.0.9). Thus K is strongly Cohen-Macaulay (The-

orem 2.2.2).

Lemma 5.1.3 Let B(ϕ′) be as defined in Setting 3.0.5 and µ(I) = d + 1, then

ht Id−1B(ϕ′) = 2.

Proof We know that A is a complete intersection domain (Remark 5.1.1) of dimen-

sion d+2. Since µ(I) = d+1, we see that Id(B(ϕ′)) = 0. Thus A = S/(L1, . . . , Lm−2).

Also, [L1 · · ·Lm−2] = [x1 · · ·xd] · B(ϕ′) and hence A can be viewed as a symmetric

algebra A ∼= Symk[T ](cokerB(ϕ′)) over the ring k[T1, . . . , Td+1]. Since A is a domain

we see that

d+ 2 = dimA = dim Symk[T ](cokerB(ϕ′))

= rank cokerB(ϕ′) + dim k[T ].

Thus rank cokerB(ϕ′) = 1. Using [31, 6.8,6.6] we see that grade Id−1(B(ϕ′)) ≥ 2.

Since B(ϕ′) is a d× d− 1 matrix, ht Id−1(B(ϕ′)) ≤ 2. Thus ht Id−1(B(ϕ′)) = 2.

Theorem 5.1.4 Let R = k[x1, · · · , xd] be a polynomial ring and let I be a grade 2

perfect R-ideal whose presentation matrix ϕ is almost linear. If I satisfies Gd and

µ(I) = d+ 1, then the defining ideal of R(I) satisfies

A = L+ Id(Bn(ϕ)) = L : (x1, · · · , xd)n

where n is the degree of the entries of the last column of ϕ. Furthermore, the special

fiber ring F(I) ∼= k[T1, . . . , Td+1]/(f) where deg f = n(d− 1) + 1.
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Proof It suffices to show that K
n

= K
(n)

(Corollary 4.2.3). To prove this equality,

we use Theorem 2.2.3. Using Observation 5.1.2, K is strongly Cohen-Macaulay. So

we have to show

µ(KP ) ≤ ht P − 1 for all P ∈ V (K), with ht P = 2. (5.1)

Let K = (w, xd) and

(w) = Id−1(B) ⊂ Id−1(B(ϕ′)) = (w,w′1, · · ·w′d−1).

Now let P ∈ V (K) such that ht P = 2. If P 6∈ V ((x1, . . . , xd)), then KP = (xd)P and

hence (5.1) is trivially satisfied.

Now suppose P ∈ V ((x1, . . . , xd)). Observe that, since ht Id−1(B(ϕ′)) = 2 (Ob-

servation 5.1.3), we have ht (x1, . . . , xd, Id−1(B(ϕ′)) = d+ 2. Thus

ht (x1, . . . , xd, Id−1(B(ϕ′)) = 3 in A and hence P 6⊃ Id−1(B(ϕ′)). Using Lemma

2.4.10, we have xi · w = (−1)i−dxd · w′i. Since w ∈ K ⊆ P , we have w′i 6∈ P for some

1 ≤ i ≤ d − 1. Thus xd ∈ (w)P in AP and hence KP = (w)P . This proves (5.1) in

this case too.

We now prove the statement on the special fiber ring. Notice that

(x1, . . . , xd) + ker Φ = (x1, . . . , xd) + L+ Id(Bn(ϕ))

= (x1, . . . , xd) + (f ′)

where f ′ ∈ Id(Bn(ϕ)). Notice that f ′ is an element which has x-degree equals zero.

Any element in Id(B1(ϕ)) has bidegree (n − 1, d). Subsequently, any element in

Id(B2(ϕ)) having the least x-degree has bidegree (n − 2, 2d − 1). Continuing like

this, the element in Id(Bn(ϕ)) having the least x-degree (equal zero) has bi-degree

(0, n(d− 1) + 1). Thus the degree of f ′ is also (0, n(d− 1) + 1). Now let f = f ′ where

¯ represents the image in the ring k[T1, . . . , Td+1].

Corollary 5.1.5 Let I be the ideal defining a set of 11 points in P2. Then for a

general choice of points, the defining equations of the Rees algebra satisfy ker Φ =

L+ I3(B2(ϕ)), where ϕ is a presentation matrix of I.
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Proof From the discussion in [32, 1.2], we see that for a general choice of 11 =(
4+1
2

)
+ 1 points, the ideal I is a grade two perfect ideal satisfying the G3 condition.

Further, the 4 × 3 presentation matrix ϕ of I is almost linear with the last column

consisting of quadratic entries. Thus the defining ideal of the Rees algebra satisfies

ker Φ = L+ I3(B2(ϕ)).

Example 5.1.6 In Example 4.2.5, K = (T1T3 − T 2
2 , x2), an almost complete inter-

section in the domain A. By the above theorem, A = L+I3(B2(ϕ)) = L : (x1, x2, x3)
2.

5.2 Depth, Relation type and Regularity

We begin by constructing a series of short exact sequences which play an important

role in computing the invariants such as depth and regularity of the Rees algebra.

Recall that m denotes the ideal (x1, . . . , xd) and n, the homogeneous maximal

ideal of A. As in the above theorem, K = (w, xd), where (w) = Id−1(B). Also K

is a Cohen-Macaulay ideal and mA = (xd) : K, which gives the exact sequence of

bi-graded A-modules

0→ mA(0,−(d− 1))→ A(−1, 0)⊕ A(0,−(d− 1))→ K → 0. (5.2)

Apply Sym( ) to the above short exact sequence and consider the n-th degree com-

ponent to obtain

mA(0,−(d− 1))⊗ Symn−1(A(−1, 0)⊕ A(0,−(d− 1)))
σ−→

Symn(A(−1, 0)⊕ A(0,−(d− 1)))→ Symn(K)→ 0.

Due to rank reasons kerσ is torsion. But the source of σ is a torsion-free module and

hence σ is injective. Thus we have an exact sequence

0→ mA(0,−(d− 1))⊗ Symn−1(A(−1, 0)⊕ A(0,−(d− 1)))→

Symn(A(−1, 0)⊕ A(0,−(d− 1)))→ Symn(K)→ 0. (5.3)
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Notice that K is strongly Cohen-Macaulay (Observation 5.1.2). Also K satisfies

the G∞ condition. Thus K is an A-ideal of linear type (Theorem 2.4.6). Therefore

Symn(K) ∼= K
n
.

Thus sequence (5.3) now reads

0→
n−1⊕
i=0

mA(−i,−(n− i)(d− 1))→
n⊕
i=0

A(−i,−(n− i)(d− 1))→ K
n → 0. (5.4)

Recall that a Noetherian local ring S is said to be almost Cohen-Macaulay when

depth S = dimS − 1.

Theorem 5.2.1 Assume the setting of Theorem 5.1.4. Further, let n > 1. Then

depth F(I) = depth R(I) = d, i.e the Rees algebra R(I) is almost Cohen-Macaulay

and the special fiber ring F(I) is Cohen-Macaulay.

Proof From the short exact sequence,

0→ mA→ A→ A/mA→ 0 (5.5)

we have depth mA = d+2. Now from (5.4) we have depth K
n ≥ d+1. The sequence

0→ ker Φ→ A→ R(I)→ 0

and the isomorphism ker Φ = Lm−1K
(n)

xd
n
∼= K(n) now implies that depth R(I) ≥ d. The

Rees algebra R(I) is not a Cohen-Macaulay ring unless A = L : (x1, . . . , xd) [33, 4.5].

Recall that the defining ideal of the Rees algebra is also of the form L : (x1, . . . , xd)
n.

Also, n is minimal by Corollary 3.0.12. Thus when n > 1, the Rees algebra is not a

Cohen-Macaulay ring and hence we conclude depth R(I) = d.

Since F(I) ∼= k[T1, . . . , Td+1]/(f) (Theorem 5.1.4), we have depth F(I) = d.

We compute the regularity of R(I) with respect to M = (x1, . . . , xd),

N = (x1, . . . , xd, T1, . . . , Td+1) and (T1, . . . , Td+1). For convenience, we let (T ) =

(T1, . . . , Td+1). When computing reg MR(I) we set deg xi = 1, deg Ti = 0. Analo-

gously the grading scheme is set for reg NR(I) and reg (T )R(I).
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Theorem 5.2.2 In the setting of Theorem 5.1.4,

rt(I) = reg F(I) + 1 = reg (T )R(I) + 1 = n(d− 1) + 1

Furthermore, reg MR(I) ≤ n− 1 and reg NR(I) ≤ (n+ 1)(d− 1)

Proof Since ker Φ = gK
(n)

xd
n = gK

n

xd
n , the relation type, rt(I), is easily computed by

considering the (T )-degrees of the generating set of K
n
. Thus rt(I) = n(d− 1) + 1.

The statement reg F(I) = n(d − 1) is clear as F(I) ∼= k[T1, . . . , Td+1]/(f) where

deg f = n(d− 1) + 1 (Theorem 5.1.4).

It is well known that rt(I) − 1 ≤ reg(T )R(I). Therefore, in order to show the

equality reg(T )R(I)+1 = n(d−1)+1, it is enough to show that reg(T )R(I) ≤ n(d−1).

To compute the regularities we make use of exact sequences (5.4) and (5.5). Notice

that A/MA ∼= k[T1, . . . , Td+1]. Since A is a complete intersection domain defined by

forms which are linear in both the x1, . . . , xd and T1, . . . , Td+1 variables, we have

reg(T )A = reg(T )A/MA = 0

regMA = regMA/MA = 0

regNA = d− 1, regNA/MA = 0

Thus from (5.5) we have,

reg(T )MA ≤ 1, regMMA ≤ 1, regNMA = d− 1.

Let M =
n−1⊕
i=0

MA(−i,−(n− i)(d− 1)) and N =
n⊕
i=0

A(−i,−(n− i)(d− 1)). Thus

reg(T )M ≤ n(d− 1) + 1 reg(T )N = n(d− 1)

regMM ≤ n regMN = n

regNM = (n+ 1)(d− 1) regNN = (n+ 1)(d− 1).

Now using (5.4) we have

reg(T )K
n ≤ n(d− 1) (5.6)

regMK
n ≤ n

regNK
n ≤ (n+ 1)(d− 1).
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Next, consider the short exact sequence

0→ ker Φ→ A→ R(I)→ 0.

We now use the bigraded isomorphism ker Φ ∼= K
n
(0,−1) and the inequalities in (5.6)

to show

reg(T )R(I) ≤ n(d− 1)

regMR(I) ≤ n− 1

regNR(I) ≤ (n+ 1)(d− 1).
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6. IMAGES OF CERTAIN RATIONAL MAPS

In this chapter we study the blow-up algebras associated to the rational map

Ψ : Pd−1 [f1:···:fm]−−−→ Pm−1

where the fi’s are homogeneous forms of the same degree in the homogeneous co-

ordinate ring R = k[x1, . . . , xd] of Pd−1. The implicitization problem involves finding

the implicit equations defining the image of the rational map Ψ. Recall that the

coordinate ring of the image of Ψ is the special fiber ring F(I) = R(I)/mR(I)

where m = (x1, . . . , xd). We concern ourselves with the case when m = d + 1 and

I = (f1, . . . , fd+1) is a grade 2 perfect ideal satisfying the Gd condition in R =

k[x1, . . . , xd]. In low dimensions, the implicitization problem has been referred to as

the moving curve and moving surface ideal problem [34]. This is joint work with

Youngsu Kim.

We first present a condition when the map Ψ is birational onto its image. It is

a constructive method that uses the Buchsbaum-Eisenbud Multipliers (we refer to

Section 2.7). We also find the defining ideal of the image of Ψ when the map Ψ is

birational onto its image. These defining ideals have been computed before by J.-P.

Jouanolou [13], but the methods presented here are different from his. Jouanolou’s

method involves finding the MacRae invariant of a graded components of Sym(I),

whereas we find the Buchsbaum-Eisenbud multiplier of a different component of

Sym(I). Both methods uses the minors of the matrices in the respective resolu-

tions. But as the resolutions we consider are smaller, the ideal of minors we need are

smaller and hence, computationally simpler.

We now define the setting of the problem
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Setting 6.0.1 Let

(a) Ψ : Pd−1 [f1:···:fd+1]−−−→ Pd where fi’s are homogeneous forms of the same degree d in

the homogeneous coordinate ring R = k[x1, . . . , xd] of Pd−1

(b) I = (f1, . . . , fd+1) is a grade two perfect ideal satisfying the Gd condition in R.

(c) the homogeneous coordinate ring of Pd is S = k[T1, . . . , Td+1].

(d) the homogeneous coordinate ring of Pd−1 × Pd is B = R[T1, . . . , Td+1].

As in the previous sections, the homogeneous d + 1 × d presentation matrix ϕ of I

consists of homogeneous entries of constant degree along each column. In this chapter

we do not impose any constraints on the degrees of the columns of ϕ. Recall that

the defining ideal of the Rees algebra R(I) is the kernel ker Φ of the epimorphism

Φ : B � R(I) where Φ(Ti) = fit. Since the map Φ factors thorough the symmetric

algebra and the defining ideal of the symmetric algebra is well understood, it suffices

to find the kernel A = ker(Sym(I) � R(I)).

We use the following notation in this chapter

Notation 6.0.2 (a) Let the degrees of the entries of the i-th column of ϕ be di and

1 ≤ d1 ≤ · · · ≤ dd.

(b) In B, set deg xi = (1, 0) and deg Tj = (0, 1) making B a bi-graded algebra.

(c) The B-modules A and Sym(I) are also bi-graded. Let A(i,j) and Sym(I)(i,j) rep-

resent the (i, j)-th bi-homogeneous component of A and Sym(I) respectively.

(d) Let Sym(I)i =
⊕

j Sym(I)(i,j) and Ai =
⊕

j A(i,j) which are also S-modules.

Recall that the defining ideal of Sym(I) is L = (L1, . . . , Ld) where [T1 · · ·Td+1] · ϕ =

[L1, . . . , Ld]. In the setting of 6.0.1 we have dim Sym(I) = d+ 1, and hence ht L = d.

Thus Sym(I) is a complete intersection ring. A natural choice of a B-free resolution

of Sym(I) is the Koszul complex K•(L1, . . . , Ld;B) on the generating set L1, . . . , Ld.
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Since the co-ordinate ring of the image of Ψ is F(I) ∼= R(I)/mR(I) we attempt

to find the defining ideal of F(I). Consider the following commutative diagram

0 // J // B = R[T1, . . . , Td+1] // //R(I)

0 // K //
?�

OO

S = k[T1, . . . , Td+1]
?�

OO

// // F(I)
?�

OO
(6.1)

Thus the defining ideal of F(I) is a subset of the defining ideal of R(I). In fact, the

defining ideal of F(I) consists of homogeneous elements of the defining ideal of R(I)

that have x-degree zero. In the above diagram J is the defining ideal of R(I) and K

is the defining ideal of F(I). Thus J /L = A and A0 = J0 = K. Thus we infer that

to study the defining ideal of F(I) it is enough to study A0.

The starting point of our investigation is the following result of J.-P.Jouanolou. He

used Morley forms to prove the theorem that will be presented in the next section. A

non-constructive proof of the same was given by Kustin, Polini and Ulrich in [14, 2.4],

whose generalization is what we discuss below.

Theorem 6.0.3 There is an isomorphism of bi-graded B modules

A ∼= HomS(Sym(I), S)(−δ,−d) (6.2)

where δ =
∑d

i=1 di − d. Here Hom represents graded Hom.

Proof Since I is a grade 2 perfect ideal satisfying Gd, [4, 3.6] shows that

A = 0 :Sym(I) m
∞ = H0

m(Sym(I)).

We now consider the Koszul complex K•(L1, . . . , Ld;B). Notice that the Li’s are

bi-homogeneous elements of bi-degree (di, 1). Now

K•(L1, . . . , Ld;B) : 0→ Kd
∂d→ Kd−1 → · · · → K1 → K0

is a bi-graded B-free resolution of Sym(I). For the module of the right hand side of

(6.2) one has

HomS(Sym(I), S) ∼= HomS(K•(L1, . . . , Ld;B), S)

∼= K•(L1, . . . , Ld; Hom(B, S))(
d∑
i=1

di, d). (6.3)
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The second isomorphism is due to the self duality of the Koszul complex. We now

realize Hom(B, S) as the highest local cohomology of B using the following series of

isomorphisms.

Hd
m(B) ∼= Hd

m(R⊗R B)

∼= Hd
m(R)⊗R B (B is R flat)

∼= Hd
m(R)⊗k S (B ∼= R⊗k S)

∼= Homk(R, k)[d]⊗k S (Serre Duality)

∼= HomS(B, S)(d, 0). (6.4)

Next we decompose the Koszul complex K•(L1, . . . , Ld;B) into short exact sequences

0→ J0 → K0 → Sym(I)→ 0

0→ J1 → K1 → J0 → 0

...

0→ Jd−2 → Kd−2 → Jd−1 → 0

0→ Kd → Kd−1 → Jd−3 → 0.

Applying the local cohomology functor to the above short exact sequences, we see

H0
m(K0)→ H0

m(Sym(I))→ H1
m(J0)→ H1

m(K0) = 0,

H1
m(K1) = 0→ H1

m(J0)→ H2
m(J1)→ H2

m(K1) = 0,

...

Hd−2
m (Kd−2) = 0→ Hd−3

m (Jd−3)→ Hd−1
m (Jd−2)→ Hd−1

m (Kd−2) = 0, and

Hd−1
m (Kd−1) = 0→ Hd−1

m (Jd−2)→ Hd
m(Kd)

ρ→ Hd
m(Kd−1).

The map ρ is the differential of the Koszul complex K•(L1, . . . , Ld,H
d
m(B)). Notice

that H0
m(K0) = H1

m(K1) = · · · = Hd−1
m (Kd−2) = 0 because the modules Ki are free R

modules and grade m = d. Thus

H0
m(Sym(I)) ∼= H1

m(J0) ∼= · · · ∼= Hd−1
m (Jd−2) ∼= Hd(K•(L1, . . . , Ld; Hd

m(B)))



55

But

Hd(K•(L1, . . . , Ld; Hd
m(B))) ∼= Hd(K•(L1, . . . , Ld; Hom(B, S)(d, 0))) by (6.4)

∼= Hom(Sym(I), S)(−δ,−d).

Remark 6.0.4 From the above theorem, we conclude thatA0
∼= Hom(Sym(I)δ, S(−d)).

We compute Hom(Sym(I)δ, S), but we can easily recover Hom(Sym(I)δ, S(−d)) by

shifting the T -degree.

Now notice the Koszul complex K•(L1, . . . , Ld;B) is

0→ B

(
−

d∑
i=1

di,−d

)
→

⊕
1≤i1<···<id−1≤d

B

(
d−1∑
j=1

dij ,−(d− 1)

)
→ · · ·

· · · →
⊕
1≤i≤d

B(−di,−1)→ B → Sym(I)→ 0

From this B-resolution K•(L1, . . . , Ld;B) of Sym(I) we extract an S-resolution for

Sym(I)δ

F : 0→ Fn−1
φn−1−→ Fn−2 → · · · → F1

φ1−→ F0
φ0−→ Sym(I)δ → 0 (6.5)

where

Fi =
⊕

1≤j1<j2<···<ji≤d

S(δ−(dj1
+···+dji

)+d−1

d−1
)(−i) =

⊕
1≤k1<k2<···<kd−i≤d

S
(
dk1

+···+dkd−i
−1

d−1
)(−i)

and n ≤ d.

Let

ri = rank φi

ti = rank Fi =
∑

1≤k1<k2<···<kd−i≤d

(
dk1 + · · ·+ dkd−i − 1

d− 1

)
(6.6)

Remark 6.0.5 Notice that from (6.5), if n ≤ i ≤ d− 1, then∑
1≤k1<k2<···<kd−i≤d

(
dk1 + · · ·+ dkd−i − 1

d− 1

)
= 0
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Remark 6.0.6 Since rank Sym(I)δ = 1, notice that r1 = rank φ1 = rank F0 − 1 =

t0 − 1. Also,
n−1∑
j=0

(−1)jtj = 1 and ri + ri+1 = rank Fi [35].

Applying the functor Hom( , S) to (6.5) we get

Hom(Sym(I)δ, S) = kerφ∗1 (6.7)

where φ∗1 : F ∗0 → F ∗1 . When µ(I) = d + 1, it is well know that the image of Ψ is

a hypersurface (see for example [30, 2.4]). Thus A0 = (a) is principally generated.

Using Remark 6.0.4, this in turn shows that rank Sym(I)δ = 1 and that kerφ∗1 is

generated by one element.

Before we explain the process of constructing an element in kerφ∗1, we define a

crucial isomorphism ∧kFi ∼= ∧ti−kF ∗i for k ≤ ti which is used throughout the chapter.

And this isomorphism is explicitly defined by fixing an “orientation”. We briefly

mention the method below.

Basis for Fi and orientation of ∧tiFi: Let {ei1, . . . , eiti} denote the ordered basis

for Fi. For an ordered set ν = {j1, . . . , jt} ⊆ {1, . . . , ti}, let eiν denote the element

eij1 ∧ · · · ∧ e
i
jt . Fix the orientation ei1 ∧ · · · ∧ eiti ∈ ∧

tiFi for each Fi, which defines an

isomorphism ∧tiFi
∼=−→ R. Using this orientation we define the isomorphism ∧kFi ∼=

∧ti−kF ∗i for each k ≤ ti. Consider an ordered subset ν ⊆ {1, . . . , ti} of cardinality k

and let νc denote its complement in {1, . . . , ti}. Since ∧kFi ⊗ ∧ti−kFi ∼= ∧tiFi, every

element eiν ∈ ∧kFi defines a map

∧ti−kFi → ∧tiFi
∼=−→ R (6.8)

eiνc → eiνc ∧ eiν = (−1)χ · ei1 ∧ · · · ∧ eiti

eiµ → 0

where χ is the number of permutations required to convert eiνc ∧ eiν into ei1 ∧ · · · ∧ eiti
and µ 6= νc is a subset of {1, . . . , ti} of cardinality ti−k. This map is nothing but the

map ((−1)χ · eiνc)∗ ∈ ∧ti−kF ∗i . Thus for every element eiν ∈ ∧kFi, we have a unique

element ((−1)χ · eiνc)∗ ∈ ∧ti−kF ∗i and hence we have the isomorphism ∧kFi ∼= ∧ti−kFi.
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We now explain the process of constructing an element in HomS(Sym(I)δ, S) ∼=

kerφ∗1. First notice that φ1 : F1 → F0 induces a map F ∗0⊗F1 → S, which by dualizing,

gives

S
φ̃1−→ F0 ⊗ F ∗1 .

Let

dφ1i : ∧r1+iF0 → ∧r1+i+1F0 ⊗ F ∗1

be the composite map

∧r1+iF0 = ∧r1+iF0 ⊗ S
id⊗φ̃1−−−→ ∧r1+iF0 ⊗ F0 ⊗ F ∗1

m⊗id−−−→ ∧r1+i+1F0 ⊗ F ∗1

where m : ∧r1+iF0⊗F0 → ∧r1+i+1F0 is the usual multiplication in the exterior algebra∧
F0.

Lemma 6.0.7 [15, 3.2] The following statements are true.

(a) The composition

∧iF0 ⊗ ∧r1F1
m(id⊗∧r1φ1)−−−−−−−−→ ∧r1+iF0

d
φ1
i−−→ ∧r1+i+1F0 ⊗ F ∗1

is zero.

(b) The following diagram commutes

∧r1+iF0

∼=
��

d
φ1
i // ∧r1+i+1F0 ⊗ F ∗1

∼=
��

∧t0−r1−iF ∗0
(id⊗φ1)∗m∗ // ∧t0−r1−i−1F ∗0 ⊗ F ∗1

Proposition 6.0.8 The image of each column of ∧r1φ1 under the isomorphism ∧r1F0
∼=

F ∗0 is in kerφ∗1.

Proof In statement (b) of the Lemma 6.0.7, substituting i = 0, we get

(id⊗φ1)
∗m∗ : ∧t0−r1F ∗0 → ∧t0−r1−1F ∗0 ⊗ F ∗1 .
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Since by Remark 6.0.6, we have r1 = t0 − 1, we get

(id⊗φ1)
∗m∗ : ∧1F ∗0 ∼= F ∗0 → ∧0F ∗0 ⊗ F ∗1 = S ⊗ F ∗1 ∼= F ∗1 ,

which is nothing but the map φ∗1. Similarly, we can show that

m(id⊗ ∧r1 φ1) : ∧iF0 ⊗ ∧r1F1 = ∧0F0 ⊗ ∧r1F1
∼= ∧r1F1 → ∧r1+iF0 = ∧r1F0

is the map ∧r1φ1. Thus statement (a) of Lemma 6.0.7 now says that when i = 0, the

image of each column of ∧r1φ1 under the isomorphism ∧r1F0 = ∧t0−r1F ∗0 = ∧1F ∗0
∼= F ∗0

is in kerφ∗1.

Notice that this shows that each column of ∧r1φ1 is a candidate for the element of

kerφ∗1. But for each fixed column, the entries of the column may have a common

factor. One of the ways to wean out the common factors is to use the method of

Buchsbaum-Eisenbud multipliers. The theorem of Buchsbaum-Eisenbud (Theorem

2.7.1) guarantees the existence of unique homomorphisms ak : R → ∧rkFk−1 for

1 ≤ k ≤ n− 1 such that

(a) an−1 = ∧rn−1φn−1

(b) for each k < n− 1, the diagram

∧rkFk
∧rkφk //

a∗k+1

��

∧rkFk−1

S

ak

CC
(6.9)

commutes.

(c) Further,
√
I1(ai) =

√
Iri(φi) for 1 ≤ i ≤ n− 1.



59

How to implement Buchsbaum-Eisenbud multipliers: Notice that an−1 =

∧rn−1φn−1. Thus an−1 is a column matrix consisting of signed maximal minors of

φn−1. Next consider the diagram

∧rn−2Fn−2
∧rn−2φn−2 //

a∗n−1

��

∧rn−2Fn−3

S

an−2

AA

Using an−1 we can construct the dual map

a∗n−1 : ∧rn−2Fn−2 ∼= ∧tn−2−rn−2F ∗n−2 = ∧rn−1F ∗n−2 → S∗

Thus the entries of a∗n−1 are still maximal minors of φn−1 but in a different order.

Now let

a∗n−1 = [a∗n−1,1 · · · a∗n−1,ln−1
] and an−2 =


an−2,1

...

an−2,ln−2


Then the above commutative diagram says that

∧rn−2φn−2 = an−2 · a∗n−1 =


an−2,1a

∗
n−1,1 an−2,1a

∗
n−1,2 · · · an−2,1a

∗
n−1,ln−1

an−2,2a
∗
n−1,1 an−2,2a

∗
n−1,2 · · · an−2,2a

∗
n−1,ln−1

...
...

...

an−2,ln−2a
∗
n−1,1 an−2,ln−2a

∗
n−1,2 · · · an−2,ln−2a

∗
n−1,ln−1


(6.10)

Not all the entries of a∗n−1 can be zero, as this would imply ∧rn−2φn−2 is zero, a

contradiction to the fact that rank φn−2 = rn−2. Assume that the p-th entry of a∗n−1

is non zero. Now to recover an−2 we consider the a nonzero column of ∧rn−2φn−2, say

the pth column, and divide it by a∗n−1,p.

We iteratively keep using the commutative diagram in (6.9) to get a1. By abuse

of notation, we identify the map a1 with the element a1(1) ∈ ∧r1F0.
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Proposition 6.0.9 In the setting of 6.0.1, let a∗1 ∈ F ∗0 denote the element under the

isomorphism ∧r1F0
∼= F ∗0 . Then a∗1 ∈ kerφ∗1

Proof Notice that a1 is a column of ∧r1φ1 with common factors (coming from a∗2)

removed. And the image of each column of ∧r1φ1 under the isomorphism ∧r1F0
∼= F ∗0

is in kerφ∗1 (by Proposition 6.0.8). Thus a∗1 ∈ kerφ∗1 because a∗2 6= 0.

Alternate Proof: We showed in Proposition 6.0.8 that the composition of the maps

∧r1F1
∧r1φ1−−−→ ∧r1F0

∼= F ∗0
φ∗1−→ F ∗1

is zero. If η : ∧r1F0
∼= F ∗0 , then φ∗1 ◦ η(∧r1φ1) = 0. Combining this with Theorem

2.7.1 we get

∧r1F1

a∗2 ""

∧r1φ1 // ∧r1F0
∼= F ∗0

φ∗1 // F ∗1

S

a1

99

Let J denote the image of a∗2 in S. Also, J Im(φ∗1 ◦ η(a1)) = 0. Since
√
J =

√
Ir2(φ2)

and grade Ir1(φ1) ≥ 2, J contains a nonzero divisor in S. Now since J Im(φ∗1◦η(a1)) =

0 in a free module F ∗1 , we have φ∗1 ◦ η(a1) = 0. By definition, a∗1 = η(a1) and hence

a∗1 ∈ kerφ∗1.

6.1 Birationality and Defining ideal of the image

Since kerφ∗1
∼= A0, and a∗1 ∈ kerφ∗1 (Proposition 6.0.9), we can recover the cor-

responding element b ∈ A0 = (a) using the method of Morley forms developed by

J.-P. Jouanolou. An explicit description of b is presented in Theorem 6.2.6 and the

method of Morley forms is explained in the next Section 6.2.

Recall the grading of B and Sym(I) in Notation 6.0.2. Since Sym(I)0 = S, we

have F(I) ∼= S/A0. Clearly, deg a = e(F(I)) where e( ) represents the Hilbert-Samuel

multiplicity.

We can compute the multiplicity e(F(I)) using the following formula
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Theorem 6.1.1 [16, 2.4]

e(F(I)) =
1

[k[Rd] : k[f1, . . . , fd+1]]
· e
(

R

(g1, . . . , gd−1) : I∞

)
(6.11)

where g1, . . . gd−1 are general k-linear combinations of the generators f1, . . . , fd+1 of

I,

Notice that k[f1, . . . , fd+1] ∼= F(I) is the coordinate ring of the image of Ψ. It

is well known that the map Ψ is birational onto its image if and only if [k[Rd] :

k[f1, . . . , fd+1]] = 1.

In an attempt to show that b generates A0, we compare deg b with e(F(I)) =

deg a. Once we show that deg b = deg a, then b generates A0. The degree of the

entries of a1 and the degree of the element b are related by the formula

degree of the entries of a1 + d = deg b (6.12)

where the extra d comes from Morley forms (Observation 6.2.7).

Theorem 6.1.2 In the setting of 6.0.1,

deg b = e

(
R

(g1, . . . , gd−1) : I∞

)
where g1, . . . , gd−1 are general k-linear combinations of f1, . . . , fd+1.

Proof We first use (6.12) to compute deg b. Recall that rank φi = ri, rank Fi = ti

and that the entries of the matrices φi are linear. Note that the entries of an−1 are

rn−1 × rn−1 minors of φn−1 and hence the degree of the entries of an−1 is rn−1. Now

to construct an−2 we considered a column of ∧rn−2φn−2 and divided it by a non zero

entry of a∗n−1. Thus the degree of the entries of an−2 is the difference between the

degree of the entries of ∧rn−2φn−2 and the degree of the entries of a∗n−1. The degree

of the entries of ∧rn−2φn−2 is rn−2. Thus

degree of the entries of an−2 = rn−2 − rn−1
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Iteratively, we can compute

degree of the entries of a1 =
n−1∑
i=1

(−1)i−1ri (6.13)

Since ri =
n−1∑
j=i

(−1)j−itj and
n−1∑
j=0

(−1)jtj = 1 (Remark 6.0.6), we have

ri =
i−1∑
j=0

(−1)i+j+1tj + (−1)i.

Now using (6.13) we get

deg b = degree of the entries of a1 + d

=
n−1∑
i=1

(−1)i−1ri + d

=
n−1∑
i=1

(−1)i−1

(
i−1∑
j=0

(−1)i+j+1tj + (−1)i

)
+ d

=
n−1∑
i=1

i−1∑
j=0

(
(−1)jtj − 1

)
+ d

=
n−1∑
k=1

(−1)n−1−k · k · tn−1−k + (n− 1)(−1) + d

=
n−1∑
k=1

(−1)n−1−k · k · tn−1−k + (d− n) + 1 (6.14)

Now we compute the multiplicity on the right hand side of the result. By the gen-

eral choice of g1, . . . , gd−1 and since I satisfies theGd condition, the ideal (g1, . . . , gd−1) :

I is a residual intersection of height d−1 [36]. Further (g1, . . . , gd−1) : I+I has height

d [36]. It is known that (g1, . . . , gd−1) : I∞ = (g1, . . . , gd−1) : I [19, 3.1]. Recall that

µ(I) = d + 1 and consider the module M = I/(g1, . . . , gd−1). Let ϕ′′ be the 2 × d

homogeneous presentation matrix of M .

Notice that
√

Fitt0(M) =
√

annM =
√

(g1, . . . , gd−1) : I has height d− 1. Hence

ht I2(ϕ
′′) = d − 1 and therefore I2(ϕ

′′) = annM by [37]. Thus (g1, . . . , gd−1) : I =

I2(ϕ
′′) (see also [19]).
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Now, the Eagon-Northcott complex gives a minimal free resolution for N =

R/((g1, . . . , gd−1) : I). We first construct the Eagon-Northcott complex EN(ϕ′′) where

ϕ′′ : Rd → R2. The column degrees of ϕ and that of ϕ′′ are the same. Then EN(ϕ′′)

is

0→ Rd−1(−(d1 + · · ·+ dd))→
⊕

1≤j1<···<jd−1≤d

Rd−2(−(dj1 + · · ·+ djd−1
))→ · · ·

· · · →
⊕

1≤j1<j2≤d

R(−(dj1 + dj2))→ R→ 0

Since the e(N) = e(N(−1)), we consider EN(ϕ′′)(−1), which gives the resolution for

N(−1). Now the Hilbert series of N(−1) is

d−1∑
i=1

(−1)i · i ·
∑

1≤j1<···<ji+1≤d
tdj1+···+dji+1

−1 + t−1

(1− t)d

Let p(t) =
d−1∑
i=1

(−1)i · i ·
∑

1≤j1<···<ji+1≤d
tdj1+···+dji+1

−1 + t−1. Then

e(N) = e(N(−1))

= (−1)d−1
pd−1(1)

(d− 1)!

= (−1)d−1

d−1∑
i=1

(−1)i · i ·
∑

1≤j1<···<ji+1≤d

(
dj1 + · · ·+ dji+1

− 1

d− 1

)
+ (−1)d−1


=

d−1∑
i=1

(−1)d−1+i · i ·
∑

1≤j1<···<ji+1≤d

(
dj1 + · · ·+ dji+1

− 1

d− 1

)
+ 1

=
d−1∑
i=1

(−1)d−1−i · i ·
∑

1≤j1<···<ji+1≤d

(
dj1 + · · ·+ dji+1

− 1

d− 1

)
+ 1 (6.15)

Notice that for i < d − (n − 1) and 1 ≤ j1 < · · · < ji+1 ≤ d,
(dj1+···+dji+1

−1
d−1

)
= 0

(Remark 6.0.5). Thus (6.15) becomes

e(N) =
d−1∑

i=d−(n−1)

(−1)d−1−i · i ·
∑

1≤j1<···<ji+1≤d

(
dj1 + · · ·+ dji+1

− 1

d− 1

)
+ 1

=
d−1∑

i=d−(n−1)

(−1)d−1−i · i · td−i−1 + 1 (6.16)
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Notice that
d−1∑

i=d−(n−1)
(−1)d−1−itd−i−1 = 1 (Remark 6.0.6). Thus (6.16) becomes

e(N) =
d−1∑

i=d−(n−1)

(−1)d−1−i · (i− (d− n)) · td−i−1 + (d− n) + 1 (6.17)

By a change of indices, we get

e(N) =
n−1∑
k=1

(−1)n−1−k · k · tn−1−k + (d− n) + 1 (6.18)

Notice that (6.18) is exactly the same as (6.14).

Now we present the main theorem of this section.

Theorem 6.1.3 In the setting of 6.0.1, the following statements are equivalent.

(a) Ψ is birational onto its image.

(b) b is a principal generator of A0.

(c) grade I1(a1) = grade I1(a
∗
1) > 1.

Proof (a) ⇔ (b) The rational map Ψ is birational onto its image, if and only if

[k[Rd] : k[f1, . . . , fd+1]] = 1. Thus using Theorem 6.1.1 and Theorem 6.1.2, Ψ is

birational onto its image if and only if deg b = e(F(I)).

(b)⇔ (c) This is an immediate consequence of the fact that b generates A0 if and only

if a∗1 generates kerφ∗1. Now use the Buchsbaum-Eisenbud criterion [35] for exactness

of complexes.

Now we present an example which uses Theorem 6.1.3

Example 6.1.4 Let Ψ′ : P2 [f0:f1:f2:f3]−−−−→ P3 such that

f0 = x2y4 − x4yz + y3z3 − yz5 f1 = −x3y3 − x3z3 + xz5

f2 = x5y + x3yz2 − xy3z2 f3 = −x3y3 + xy5 + x5z − x3z3
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Let I = (f0, f1, f2, f3) be an ideal in R = k[x, y, z] (coordinate ring of P2). Consider

a homogeneous presentation matrix ϕ of I

ϕ =


x 0 x3

y x2 y3

z y2 z3

0 z2 x2y


One can easily check that I is a height two perfect ideal satisfying G3 in R. Let

S = k[T0, T1, T2, T3] (coordinate ring of P2) and B = R[T0, T1, T2, T3] (coordinate ring

of P2×P3). Let [L1 L2 L3] = [T0 T1 T2 T3] ·ϕ. Notice that δ = 1+2+3−3 = 3. Using

the Koszul complex K•(L1, L2, L3;B) we can extract an S resolution of Sym(I)δ =

Sym(I)3.

0→ S
φ2−→ S10 φ1−→ S10 → Sym(I)3 → 0

where

φ1 =



T0 0 0 0 0 0 T1 0 0 T0

T1 T0 0 0 0 0 0 T1 0 T3

T2 0 T0 0 0 0 0 0 T1 0

0 T1 0 T0 0 0 T2 0 0 0

0 T2 T1 0 T0 0 0 0 0 0

0 0 T2 0 0 T0 T3 0 0 0

0 0 0 T1 0 0 0 T2 0 T1

0 0 0 T2 T1 0 0 0 T2 0

0 0 0 0 T2 T1 0 T3 0 0

0 0 0 0 0 T2 0 0 T3 T2



φ2 =



T1

0

0

T2

0

T3

−T0
−T1
−T2

0
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Notice that, by Theorem 2.7, a2 = ∧1φ2. By construction, the entries of a∗2 and

φ2 are the same. We wish to construct a∗1. Now, the first column of ∧9φ1 is



−T 5
1 T

4
2 + 3T 2

0 T
2
1 T

5
2 + T 3

1 T
6
2 − T 7

1 T2T3 − T 2
0 T

4
1 T

2
2 T3 + T 5

1 T
3
2 T3 + T 2

0 T
2
1 T

4
2 T3 − T1T 7

2 T3 − 3T 2
0 T

4
1 T2T

2
3 − 2T 3

1 T
4
2 T

2
3 − T 5

1 T2T
3
3

3T0T
4
1 T

4
2 − T 3

0 T1T
5
2 + T0T1T

7
2 + T0T

6
1 T2T3 + T 3

0 T
3
1 T

2
2 T3 + 2T0T

4
1 T

3
2 T3 + 2T0T

3
1 T

4
2 T3 + 2T 3

0 T
3
1 T2T

2
3 + T0T

5
1 T2T

2
3

−2T0T
5
1 T

3
2 − 2T 3

0 T
2
1 T

4
2 − T0T 3

1 T
5
2 − T0T 2

1 T
6
2 − 3T0T

5
1 T

2
2 T3 − T 3

0 T
2
1 T

3
2 T3 − 2T0T

4
1 T

3
2 T3 + T0T1T

6
2 T3 + T 3

0 T
4
1 T

2
3 − T0T 6

1 T
2
3 + 2T0T

3
1 T

3
2 T

2
3 + T0T

5
1 T

3
3

T 6
1 T

3
2 − 3T 2

0 T
3
1 T

4
2 − T 4

1 T
5
2 − T 2

0 T
5
1 T2T3 − T 4

0 T
2
1 T

2
2 T3 − 2T 2

0 T
3
1 T

3
2 T3 − 2T 2

0 T
2
1 T

4
2 T3 + T 2

1 T
6
2 T3 − T 4

0 T
2
1 T2T

2
3 − 2T 2

0 T
4
1 T2T

2
3 + T 4

1 T
3
2 T

2
3 + T 2

0 T1T
4
2 T

2
3 + T 2

0 T
3
1 T2T

3
3

−T 7
1 T

2
2 + T 4

0 T1T
4
2 + T 5

1 T
4
2 − T 2

0 T1T
6
2 − T 3

1 T
5
2 T3 − T 4

0 T
3
1 T

2
3 + T 2

0 T
5
1 T

2
3 − T 5

1 T
2
2 T

2
3 − T 2

0 T
2
1 T

3
2 T

2
3 − T 2

0 T
4
1 T

3
3

T 8
1 T2 + 2T 2

0 T
5
1 T

2
2 + T 4

0 T
2
1 T

3
2 − T 6

1 T
3
2 + T 2

0 T
3
1 T

4
2 + 2T 2

0 T
2
1 T

5
2 + 3T 2

0 T
5
1 T2T3 + T 4

0 T
2
1 T

2
2 T3 + 2T 2

0 T
4
1 T

2
2 T3 + T 4

1 T
4
2 T3 − T 2

0 T1T
5
2 T3 + T 6

1 T2T
2
3 − T 2

0 T
3
1 T

2
2 T

2
3

−3T0T
5
1 T

3
2 + T 3

0 T
2
1 T

4
2 − T0T 2

1 T
6
2 + T 3

0 T
4
1 T2T3 + T 5

0 T1T
2
2 T3 − T0T 4

1 T
3
2 T3 − T 3

0 T1T
4
2 T3 + 3T 3

0 T
3
1 T2T

2
3 − 2T0T

3
1 T

3
2 T

2
3 − 2T 3

0 T
2
1 T2T

3
3

2T0T
6
1 T

2
2 + 2T 3

0 T
3
1 T

3
2 + T0T

4
1 T

4
2 + T0T

3
1 T

5
2 + 2T 3

0 T
3
1 T

2
2 T3 + T0T

5
1 T

2
2 T3 + 3T 3

0 T
2
1 T

3
2 T3 − T0T 2

1 T
5
2 T3 + T 5

0 T
2
1 T

2
3 − T 3

0 T
4
1 T

2
3 + T0T

4
1 T

2
2 T

2
3 − T 3

0 T1T
3
2 T

2
3 + T 3

0 T
3
1 T

3
3

−T0T 7
1 T2 − 2T 3

0 T
4
1 T

2
2 − T 5

0 T1T
3
2 − 2T0T

5
1 T

3
2 − T0T 4

1 T
4
2 + T 3

0 T1T
5
2 − 2T 3

0 T
4
1 T2T3 − T0T 6

1 T2T3 − 3T 3
0 T

3
1 T

2
2 T3 + 2T0T

3
1 T

4
2 T3 + 2T 3

0 T
2
1 T

2
2 T

2
3

3T0T
6
1 T

2
2 − T 3

0 T
3
1 T

3
2 + T0T

5
1 T

3
2 − 3T 3

0 T
2
1 T

4
2 − T 3

0 T
5
1 T3 + T0T

7
1 T3 − T 5

0 T
2
1 T2T3 + T 3

0 T
4
1 T2T3 − 3T0T

4
1 T

3
2 T3 + T 3

0 T1T
4
2 T3 − T0T 6

1 T
2
3 − T 3

0 T
3
1 T2T

2
3



The first entry of a∗2 is the first entry of φ2 which equals T1. Dividing the above

column by T1 we get

a1 =



−T 4
1 T

4
2 + 3T 2

0 T1T
5
2 + T 2

1 T
6
2 − T 6

1 T2T3 − T 2
0 T

3
1 T

2
2 T3 + T 4

1 T
3
2 T3 + T 2

0 T1T
4
2 T3 − T 7

2 T3 − 3T 2
0 T

3
1 T2T

2
3 − 2T 2

1 T
4
2 T

2
3 − T 4

1 T2T
3
3

3T0T
3
1 T

4
2 − T 3

0 T
5
2 + T0T

7
2 + T0T

5
1 T2T3 + T 3

0 T
2
1 T

2
2 T3 + 2T0T

3
1 T

3
2 T3 + 2T0T

2
1 T

4
2 T3 + 2T 3

0 T
2
1 T2T

2
3 + T0T

4
1 T2T

2
3

−2T0T
4
1 T

3
2 − 2T 3

0 T1T
4
2 − T0T 2

1 T
5
2 − T0T1T 6

2 − 3T0T
4
1 T

2
2 T3 − T 3

0 T1T
3
2 T3 − 2T0T

3
1 T

3
2 T3 + T0T

6
2 T3 + T 3

0 T
3
1 T

2
3 − T0T 5

1 T
2
3 + 2T0T

2
1 T

3
2 T

2
3 + T0T

4
1 T

3
3

T 5
1 T

3
2 − 3T 2

0 T
2
1 T

4
2 − T 3

1 T
5
2 − T 2

0 T
4
1 T2T3 − T 4

0 T1T
2
2 T3 − 2T 2

0 T
2
1 T

3
2 T3 − 2T 2

0 T1T
4
2 T3 + T1T

6
2 T3 − T 4

0 T1T2T
2
3 − 2T 2

0 T
3
1 T2T

2
3 + T 3

1 T
3
2 T

2
3 + T 2

0 T
4
2 T

2
3 + T 2

0 T
2
1 T2T

3
3

−T 6
1 T

2
2 + T 4

0 T
4
2 + T 4

1 T
4
2 − T 2

0 T
6
2 − T 2

1 T
5
2 T3 − T 4

0 T
2
1 T

2
3 + T 2

0 T
4
1 T

2
3 − T 4

1 T
2
2 T

2
3 − T 2

0 T1T
3
2 T

2
3 − T 2

0 T
3
1 T

3
3

T 7
1 T2 + 2T 2

0 T
4
1 T

2
2 + T 4

0 T1T
3
2 − T 5

1 T
3
2 + T 2

0 T
2
1 T

4
2 + 2T 2

0 T1T
5
2 + 3T 2

0 T
4
1 T2T3 + T 4

0 T1T
2
2 T3 + 2T 2

0 T
3
1 T

2
2 T3 + T 3

1 T
4
2 T3 − T 2

0 T
5
2 T3 + T 5

1 T2T
2
3 − T 2

0 T
2
1 T

2
2 T

2
3

−3T0T
4
1 T

3
2 + T 3

0 T1T
4
2 − T0T1T 6

2 + T 3
0 T

3
1 T2T3 + T 5

0 T
2
2 T3 − T0T 3

1 T
3
2 T3 − T 3

0 T
4
2 T3 + 3T 3

0 T
2
1 T2T

2
3 − 2T0T

2
1 T

3
2 T

2
3 − 2T 3

0 T1T2T
3
3

2T0T
5
1 T

2
2 + 2T 3

0 T
2
1 T

3
2 + T0T

3
1 T

4
2 + T0T

2
1 T

5
2 + 2T 3

0 T
2
1 T

2
2 T3 + T0T

4
1 T

2
2 T3 + 3T 3

0 T1T
3
2 T3 − T0T1T 5

2 T3 + T 5
0 T1T

2
3 − T 3

0 T
3
1 T

2
3 + T0T

3
1 T

2
2 T

2
3 − T 3

0 T
3
2 T

2
3 + T 3

0 T
2
1 T

3
3

−T0T 6
1 T2 − 2T 3

0 T
3
1 T

2
2 − T 5

0 T
3
2 − 2T0T

4
1 T

3
2 − T0T 3

1 T
4
2 + T 3

0 T
5
2 − 2T 3

0 T
3
1 T2T3 − T0T 5

1 T2T3 − 3T 3
0 T

2
1 T

2
2 T3 + 2T0T

2
1 T

4
2 T3 + 2T 3

0 T1T
2
2 T

2
3

3T0T
5
1 T

2
2 − T 3

0 T
2
1 T

3
2 + T0T

4
1 T

3
2 − 3T 3

0 T1T
4
2 − T 3

0 T
4
1 T3 + T0T

6
1 T3 − T 5

0 T1T2T3 + T 3
0 T

3
1 T2T3 − 3T0T

3
1 T

3
2 T3 + T 3

0 T
4
2 T3 − T0T 5

1 T
2
3 − T 3

0 T
2
1 T2T

2
3



Macaulay2 computations show that the grade I1(a1) = grade I1(a
∗
1) = 2 and hence,

by Theorem 6.1.3 Ψ′ is birational onto its image.

6.2 Morley Forms

The objective of Morley forms is to define an explicit isomorphism between Ai
and Hom(Sym(I)δ−i, S(−d)). Thus given an element in Hom(Sym(I)δ−i, S(−d)), we

can recover the element in Ai through this isomorphism. It was conceptualized by

J.-P.Jouanolou in [13,38].

Morley forms are graded component of the determinant of a matrix in Sym(I)⊗S
Sym(I). We now proceed to define Morley forms. Throughout this section we assume
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the setting of 6.0.1. Recall that R = k[x1, . . . , xd], S = k[T1, . . . , Td+1], B = R ⊗k S.

The symmetric algebra has a presentation

Sym(I) ∼= B/L where L = (L1, . . . , Ld)

and [L1 · · ·Ld] = [T1 · · ·Td+1] · ϕ

Consider B ⊗S B and Li ⊗ 1 − 1 ⊗ Li ∈ (x1 ⊗ 1 − 1 ⊗ x1, . . . , xd ⊗ 1 − 1 ⊗ xd) for

1 ≤ i ≤ d. Let D be a d× d matrix such that

[L1 ⊗ 1 − 1 ⊗ L1 · · ·Ld ⊗ 1 − 1 ⊗ Ld] = [x1 ⊗ 1 − 1 ⊗ x1 · · ·xd ⊗ 1 − 1 ⊗ xd] · D

(6.19)

Notice that detD ∈ B ⊗S B. Consider the natural epimorphisms

Γ :B � Sym(I)

Γ⊗ Γ :B ⊗S B � Sym(I)⊗S Sym(I)

We set ∆ = (Γ⊗Γ)(detH). We now impose the grading scheme on Sym(I)⊗SSym(I)

deg xi ⊗ 1 = (1, 0, 0) deg 1⊗ xi = (0, 1, 0)

deg Tj ⊗ 1 = (0, 0, 1) deg 1⊗ Tj = (0, 0, 1)

We now rewrite

∆ =
δ∑
i=0

morl(i,δ−i,d) where

morl(i,δ−i,d) ∈ Sym(I)(i,d) ⊗ Sym(I)(δ−i,d)

The tri-homogeneous elements {morl(i,δ−i,d) | 0 ≤ i ≤ δ} are the Morley forms asso-

ciated to the regular sequence L1, . . . , Ld in B.

The Sylvester element syl is defined as detB(ϕ) ∈ Sym(I). Since L1, . . . , Ld is a

regular sequence, (L1, . . . , Ld) : (x1, . . . , xd) = (L1, . . . , Ld) + detB(ϕ). Thus syl is a

nonzero element of bi-degree (δ, d) in Sym(I). Since Aδ ∼= Hom(Sym(I)0, S(−d)) ∼=

S(−d), Aδ is generated by syl. Thus this defines an isomorphism

µsyl : S → Aδ where µsyl(a) = a · syl.
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If u ∈ Hom(Sym(I)δ−i, S) then (1⊗u)(morl(i,δ−i,d)) ∈ Sym(I) as the map u induces

Sym(I)⊗S Sym(I)δ−i
1⊗u−−→ Sym(I)⊗S S = Sym(I).

In Theorem 6.2.2, it will be shown that the image (1 ⊗ u)(morl(i,δ−i,d)) ∈ Ai. This

defines a homomorphism

ν1 : HomS(Sym(I)δ−i, S)→ Ai

ν1(u) = (1⊗ u)(morl(i,δ−i,d)) (6.20)

Due to the multiplication map Ai ⊗S Sym(I)δ−i → Aδ, every element a ∈ Ai defines

an element µa ∈ Hom(Sym(I)δ−i,Aδ) where µa(b) = a · b. Thus we can define the

map

ν2 : Ai → HomS(Sym(I)δ−i, S)

ν2(a) = µ−1syl ◦ µa (6.21)

First we list a few facts about Morley forms.

Lemma 6.2.1 The following statements hold

(a) morl(δ,0,d) = α1 · syl⊗ 1 ∈ Sym(I)δ ⊗S Sym(I)0, for some α1 ∈ k.

(b) morl(0,δ,d) = 1⊗ α2 · syl ∈ Sym(I)0 ⊗S Sym(I)δ for some α2 ∈ k.

(c) If b ∈ Sym(I)k, then (b⊗ 1)morl(i,δ−i,d) = (1⊗ b)morl(i+k,δ−i−k,d) ∈ Sym(I)i+k ⊗S
Sym(I)δ−i

The proof of the above lemma is analogous to the proof presented in [14, 4.1]. The

following theorem of Jouanolou shows that ν1 and ν2 are inverses of each other.

Theorem 6.2.2 [38, 3.11] Let 0 ≤ i ≤ δ. Then the following statements are true

(a) If u ∈ Hom(Sym(I)δ−i, S), then (1⊗ u)(morl(i,δ−i,d)) ∈ Ai.

(b) The homomorphisms ν1, ν2 defined in (6.20) and (6.21) are inverses of each other

(up to multiplication by a unit in k).
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Since Sym(I)δ−i is minimally generated by xm1
1 · · · x

md−1

d−1 x
δ−i−

∑d−1
j=1 mj

d where mj ≥ 0

and
∑d−1

j=1 mj ≤ δ − i, there exist elements qm1···md−1
∈ Sym(I)i such that

morl(i,δ−i,d) =
∑

m1+···+md−1≤δ−i

qm1···md−1
⊗ xm1

1 · · ·x
md−1

d−1 x
δ−i−

∑d−1
j=1 mj

d (6.22)

An explicit description of qm1···md−1
for the ideals we consider is not available in the

literature. Once such a description is made available, then for u ∈ Hom(Sym(I)δ−i, S),

ν1(u) = (1⊗u)(morl(i,δ−i,d)) =
∑

m1+···+md−1≤δ−i

qm1···md−1
·u
(
xm1
1 · · · x

md−1

d−1 x
δ−i−

∑d−1
j=1 mj

d

)
Recall that we are interested in recovering the element b ∈ A0 from a∗1 ∈ kerφ∗1. So

let ua ∈ Hom(Sym(I)δ, S) represent the element a∗1. Then

ν1(ua) = (1⊗ ua)(morl(0,δ,d)) =
∑

m1+···+md−1≤δ

qm1···md−1
· ua

(
xm1
1 · · ·x

md−1

d−1 x
δ−

∑d−1
j=1 mj

d

)
(6.23)

We are going to describe qm1···md−1
explicitly in Theorem 6.2.5.

Notation 6.2.3 For non negative integers t = t1, t2, . . . , td−1, let p(t, j) = dj−
d−1∑
k=1

tk.

Now write

Lj =
∑

t1+···+td−1≤dj
C

(j)
t1t2···td−1

xt11 · · ·x
td−1

d−1 x
p(t,j)
d where C

(j)
t1t2···td−1

∈ S and 1 ≤ j ≤ d.

Lemma 6.2.4 Let Lj be as defined in Notation 6.2.3. Then

Lj ⊗ 1− 1⊗ Lj =

(x1 ⊗ 1− 1⊗ x1) ·

 ∑
t11+···+t1d−1≤dj

C
(j)
t11t12···t1d−1

t11−1∑
α1=0

xt11−1−α1
1 ⊗ xα1

1 · · ·x
t1d−1

d−1 x
p(t1,j)

d


+(x2⊗1−1⊗x2)·

 ∑
t21+···+t2d−1≤dj

C
(j)
t21 t···t2d−1

t22−1∑
α2=0

xt211 xt22−1−α2
2 ⊗ xα2

2 · · · x
t2d−1

d−1 x
p(t2,j)

d


...

+(xd⊗1−1⊗xd)·

 ∑
td1+···+tdd−1≤dj

C
(j)
td1td2···tdd−1

p(td,j)−1∑
αd=0

xtd11 xtd22 · · ·x
tdd−1

d−1 x
p(td,j)−1−αd
d ⊗ xαdd


(6.24)
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Proof Notice that

(xi ⊗ 1− 1⊗ xi)

(
tii−1∑
αi=0

xti11 · · ·x
tii−1−αi
i ⊗ xαii · · ·x

tid−1

d−1 x
p(ti,j)

d

)
=(

tii−1∑
αi=0

xti11 · · ·x
tii−αi
i ⊗ xαii · · ·x

tid−1

d−1 x
p(ti,j)

d

)
−

(
tii−1∑
αi=0

xti11 · · ·x
tii−1−αi
i ⊗ xαi+1

i · · ·xtid−1

d−1 x
p(ti,j)

d

)
= xti11 · · ·x

tii
i ⊗ x

tii+1

i+1 · · · x
p(ti,j)

d − xt11 · · ·x
tii−1

i−1 ⊗ x
tii
i · · · x

p(ti,j)

d

Now use the right hand side of (6.24) and change of index to get∑
t1+···+td−1≤dj

C
(j)
t1t2···td−1

(xt11 ⊗ xt22 · · · x
pt,j
d − 1⊗ xt11 · · · x

pt,j
d )

+
∑

t1+···+td−1≤dj

C
(j)
t1t2···td−1

(xt11 x
t2
2 ⊗ xt33 · · ·x

pt,j
d − xt11 ⊗ xt22 · · ·x

pt,j
d )

...

+
∑

t1+···+td−1≤dj

C
(j)
t1t2···td−1

(xt11 · · ·x
pt,j
d ⊗ 1− xt11 · · · x

td−1

d−1 ⊗ x
pt,j
d )

=Lj ⊗ 1− 1⊗ Lj

Recall that ∆ = (Γ⊗ Γ)(detD) where D = (drs) is the matrix defined in (6.19). By

Lemma 6.2.4 the j-th column of the matrix, constructed with Lj, is

∑
t11+···+t1d−1≤dj

C
(j)
t11t12···t1d−1

t11−1∑
α1=0

xt11−1−α1
1 ⊗ xα1

1 · · ·x
t1d−1

d−1 x
p(t1,j)

d∑
t21+···+t2d−1≤dj

C
(j)
t21t22···t2d−1

t22−1∑
α2=0

xt211 xt22−1−α2
2 ⊗ xα2

2 · · · x
t2d−1

d−1 x
p(t2,j)

d

...∑
td1+···+tdd−1≤dj

C
(j)
td1td2···tdd−1

p(td,j)−1∑
αd=0

xtd11 xtd22 · · · x
tdd−1

d−1 x
p(td,j)−1−αd
d ⊗ xαdd
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Notice that morl(0,δ,d) ∈ Sym(I)0 ⊗ Sym(I)δ and hence the entries of D which con-

tribute to morl(0,δ,d) are entries which are in B0⊗Bi. Thus morl(0,δ,d) = (Γ⊗Γ)(detD′)

where the column j of D′ is

∑
t11+···+t1d−1≤dj

C
(j)
t11t12···t1d−1

· 1⊗ xt11−11 xt122 · · ·x
t1d−1

d−1 x
p(t1,j)

d∑
t22+···+t2d−1≤dj

C
(j)
0t22···t2d−1

· 1⊗ xt22−12 xt233 · · ·x
t2d−1

d−1 x
p(t2,j)

d

...∑
td−1d−1≤dj

C
(j)
00···0td−1d−1

· 1⊗ xtd−1d−1

d−1 x
p(td−1,j)

d

C
(j)
00···0 · 1⊗ x

tdd−1
d


(6.25)

Theorem 6.2.5 Let Lj be as defined in Notation 6.2.3. The description of qm1m1···qmd−1

in (6.23) is

qm1m2...md−1
=
∑
σ∈Sd

sgn(σ)
∑

C(σ(1))
s11s12...s1d−1

C
(σ(2))
0s22···s2d−1

· · ·C(σ(d))
00···0

where the second summation satisfies the following conditions

for 1 ≤ l ≤ d− 1,
l∑

r=1

srl = ml + 1

for 1 ≤ l ≤ d− 1,
d−1∑
r=l

slr ≤ dσ(l)

Proof To compute qm1m2...md−1
, we compute the determinant of D′ = (d′uv). If

dimR = d = 1, the the matrix D′ is a 1×1 matrix and hence the result is clear. Now

assume that the above result is true for d− 1× d− 1 matrix of the form D′.

We compute the determinant by expanding along the first row to get

detD′ =
d∑
v=1

(−1)vd′1vD
′
1v
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where D′1v is the determinant of the submatrix of D′ obtained by deleting row 1 and

column v. In fact D′1v is the determinant of the submatrix of D′ involving exactly

d− 1 variables, namely, x2, x3, . . . , xd. Thus by induction hypothesis, we have

D′1v =
∑

m2+···md−1≤δ−dv

Qm2···md−1
· 1⊗ xm2

2 · · ·x
md−1

d−1 x
δ−dv−

∑d−1
k=2mk

d and

Qm2···md−1
=
∑
τ∈SX

sgn(τ)
∑

C
(τ(1))
0t22···t2d−1

· · ·C(τ(v−1))
00tv−1v−1···tv−1d−1

C
(τ(v+1))
00tvv ···tvd−1

· · ·C(τ(d))
00···0

where the second summation satisfies

X = {1, . . . , d}\{v}

for 2 ≤ l′ ≤ d− 1,
l′∑

r′=2

tr′l′ = ml + 1

for 2 ≤ l′ ≤ d− 1,
d−1∑
s′=l′

tl′s′ ≤ dτ(l′)

Using (6.25),

d′1v =
∑

t11+···+t1d−1≤dv

C
(v)
t11t12···t1d−1

· 1⊗ xt11−11 xt122 · · · x
t1d−1

d−1 x
p(t1,v)

d (6.26)

Thus

morl(0,δ,d) = detD′∑
m1+···+md−1≤δ

qm1···md−1
⊗ xm1

1 · · ·x
md−1

d−1 x
δ−

∑d−1
j=1 mj

d =
d∑
v=1

(−1)vd′1vD
′
1v

Notice that x1 does not appear in the description of D′1v and hence t11 − 1 = m1 in

(6.26). Hence

qm1···md−1
=

d∑
v=1

(−1)v
∑
P ′′

C
(v)
m1+1t12···t1d−1

·Qm2−t12···md−1−t1d−1

where the second summation satisfies

for 2 ≤ l ≤ d− 1, 0 ≤ t1l ≤ ml + 1

m1 + 1 +
d−1∑
l=2

t1l ≤ dv (6.27)
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Thus

qm1···md−1
=

d∑
v=1

(−1)v
∑

C
(v)
m1+1t12···t1d−1

·
∑
τ∈SX

sgn(τ)

∑
C

(τ(1))
0t22···t2d−1

· · ·C(τ(v−1))
00tv−1v−1···tv−1d−1

C
(τ(v+1))
00tvv ···tvd−1

· · ·C(τ(d))
00···0

where the second summation satisfies (6.27) and the fourth summation satisfies

X = {1, . . . , d}\{v}

for 2 ≤ l ≤ d− 1,
l∑

r=2

trl = ml − t1l + 1

for 2 ≤ l ≤ d− 1,
d−1∑
s=l

tls ≤ dτ(l) (6.28)

Combining the conditions in (6.27) and (6.28) we get the result.

Theorem 6.2.6 Consider a∗1 ∈ kerφ∗1 and let ua ∈ Homs(Sym(I)δ, S) represent the

element a∗1. Then the description of b ∈ A0 corresponding to the element a∗1 is

b =
∑

m1+···+md−1≤δ

qm1···md−1
· ua

(
xm1
1 · · ·x

md−1

d−1 x
δ−

∑d−1
j=1 mj

d

)
where qm1···md−1

is as described in Theorem 6.2.5.

Proof Notice that Sym(I)δ is minimally generated by xm1
1 · · ·x

md−1

d−1 x
δ−

∑d−1
j=1 mj

d where

mi’s are non negative integers. Thus using Theorem 6.2.2, we have

b = ν1(ua) = (1⊗ ua)(morl(0,δ,d))

= (1⊗ ua)

 ∑
m1+···+md−1≤δ

qm1···md−1
⊗ xm1

1 · · · x
md−1

d−1 x
δ−

∑d−1
j=1 mj

d


=

∑
m1+···+md−1≤δ

qm1···md−1
· ua

(
xm1
1 · · ·x

md−1

d−1 x
δ−

∑d−1
j=1 mj

d

)
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Observation 6.2.7 From Theorem 6.2.5, notice that qm1m2···md−1
∈ Sym(I)0 is of

bi-degree (0, d). Thus using using the above proposition, we see that

deg b = degree of the entries of a∗1 + d

= degree of the entries of a1 + d
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J. Combin., 3, 1996. The Foata Festschrift.

[14] A. R. Kustin, C. Polini, and B. Ulrich. The bi-graded structure of Symmetric
Algebras with applications to Rees rings. ArXiv e-prints, January 2013.

[15] D. A. Buchsbaum, D. Eisenbud. Some structure theorems for finite free resolu-
tions. Advances in Math., 12:84–139, 1974.

[16] A. R. Kustin, C. Polini, and B. Ulrich. Blowups and fibers of morphisms. ArXiv
e-prints, 1410.3172, October 2014.



76

[17] D. Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathemat-
ics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

[18] W. V. Vasconcelos. Integral closure. Springer Monographs in Mathematics.
Springer-Verlag, Berlin, 2005. Rees algebras, multiplicities, algorithms.

[19] C. Huneke. Strongly Cohen-Macaulay schemes and residual intersections. Trans.
Amer. Math. Soc., 277:739–763, 1983.

[20] C. Huneke. Linkage and the Koszul homology of ideals. Amer. J. Math.,
104(5):1043–1062, 1982.

[21] A. Simis and W.V. Vasconcelos. The syzygies of the conormal module. Amer.
J. Math., 103:203–224, 1981.

[22] C. Huneke and M. Rossi. The dimension and components of symmetric algebras.
J. Algebra, 98:200–210, 1986.

[23] C. Huneke and B. Ulrich. Residual intersections. J. Reine Angew. Math., 390:1–
20, 1988.

[24] W. Bruns, A. R. Kustin and M. Miller. The resolution of the generic residual
intersection of a complete intersection. J. Algebra, 128:214–239, 1990.

[25] N. V. Trung. The Castelnuovo regularity of the Rees algebra and the associated
graded ring. Trans. Amer. Math. Soc., 350:2813–2832, 1998.

[26] J. A. Boswell and V. Mukundan. Rees algebras and almost linearly presented
ideals. J. Algebra, 460:102 – 127, 2016.

[27] S. Morey. Equations of blowups of ideals of codimension two and three. J. Pure
Appl. Algebra, 109:197–211, 1996.

[28] D. Cox, J. W. Hoffman and H. Wang. Syzygies and the Rees algebra. J. Pure
Appl. Algebra, 212:1787–1796, 2008.

[29] J. Hong, A. Simis and W. V. Vasconcelos. On the homology of two-dimensional
elimination. J. Symbolic Comput., 43:275–292, 2008.

[30] B. Ulrich, W. V. Vasconcelos. The equations of Rees algebras of ideals with
linear presentation. Math. Z., 214:79–92, 1993.

[31] J. Herzog, A. Simis,and W. V. Vasconcelos. Approximation complexes of
blowing-up rings. II. J. Algebra, 82:53–83, 1983.
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