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ABSTRACT 

Merrill, Daniel A. Ph.D., Purdue University, August 2016. Investigation of Cellular 
Microenvironments and Heterogeneity with Biodynamic Imaging. Major Professor: 
David D. Nolte. 
 
 
 Imaging of biological tissue in a relevant environment is critical to accurately 

assessing the effectiveness of chemotherapeutic agents in combatting cancer.  Though 

many three-dimensional (3D) culture models exist, conventional in vitro assays continue 

to use two-dimensional (2D) cultures because of the difficulty in imaging through deep 

tissue.  3D tomographic imaging techniques exist and are being used in the development 

of 3D efficacy assays.  However, most of these assays look at therapy endpoint (dead or 

living cancer cell count) and do not capture the dynamics of tissue response. 

 Biodynamic imaging (BDI) is a 3D tomographic imaging and assay technique that 

uses the dynamics of scattered coherent light, or speckle, to measure dynamic response of 

tissue to perturbations.  Dynamic measurements allow BDI to not only assess overall 

efficacy, but to also measure phenotypic changes in cancer tissue as it responds to 

therapy.  Because BDI captures the phenotypic response of tissue, it naturally accounts 

for genetic and microenvironmetal factors, and shows promise as an accurate predictor of 

in vivo chemotherapeutic response. 
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 This thesis presents the development of BDI into a predictive assay for assisting 

in chemotherapy selection.  It shows how microenvironmental factors alter BDI response 

measurements.  It reports how different BDI biomarkers can accurately assess sensitivity 

to platinum treatment in xenograpft models of ovarian cancer.  Changes in sensitivity 

during metastasis are observed, and a method for addressing sample variability and 

heterogeneity is presented.  A predictive model for chemotherapeutic selection is 

developed and applied retrospectively to primary esophageal cancer.  Finally, a new 

imaging modality called tissue dynamic spectroscopic imaging (TDSI) is presented, 

which is capable of directly assessing spatial functional patterns in patient samples.  
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CHAPTER 1. BYODYNAMIC IMAGING (BDI) 

1.1 Introduction 

Biodynamic imaging is a full-frame, coherent imaging and drug response assay 

technique that uses biological motion as both contrast agent and information source.  It 

achieves a high imaging rate without the need for biological stains or other labels, 

preserving the natural chemical and physiological state of imaged tissue.  Biodynamic 

imaging has been used to study the effect of chemotherapeutics on ex vivo and in vitro 

cancer tumor models [1-3], the viability of oocytes for artificial insemination [4, 5], and 

is currently developing predictive methods for assisting in cancer patient chemotherapy 

selection [6].   

Biodynamic imaging currently has three modes: optical coherence imaging (OCI), 

motility contrast imaging (MCI), and tissue dynamics spectroscopy (TDS).  Biodynamic 

imaging begins with optical coherence imaging (OCI) [7], a full-frame, en face optical 

coherence tomographic technique with important similarities to optical coherence 

tomography (OCT) [8-12].  Motility contrast imaging (MCI) [13] uses intensity 

fluctuations in the OCI image as the contrast agent of an imaged tissue target.  These 

intensity fluctuations arise due to dynamic changes in the local index of refraction of the 

target volume.  Thus, MCI generates a representation of the motile activity of the target 

within the imaged volume.  Tissue dynamics spectroscopy (TDS) [14] calculates the 



 

 

2 

spectral power of the intensity fluctuations of the OCI image.  The shape of the resulting 

power spectrum characterizes the motion present within the imaged volume and changes 

with changing tissue behavior.  Thus TDS measures the response behavior of tissue to 

perturbations, such as chemotherapeutics. 

This thesis presents the development of BDI toward being a clinically relevant 

predictive assay for chemotherapeutic therapy selection.  CHAPTER 2 reports a study of 

how changes in the cellular microenvironment affect BDI response measurements and 

shows distinct differences in behavior between 2D cell culture and 3D tissue 

environments.  It presents a 3D tissue model that mimics 2D culture response and shows 

that this model will transition into the full 3D culture response.  An assay of ovarian 

cancer sensitivity to platinum therapies using BDI is presented in CHAPTER 3, while 

CHAPTER 4 looks at how metastasis alters that sensitivity.  This is the first application 

of BDI to in vivo and ex vivo chemotherapeutic response assessment. BDI shows clear 

differences in ex vivo response between tumor biopsies grown from sensitive and 

insensitive ovarian cancer cell lines.  A method for assessing in vivo response using ex 

vivo re-exposure is discussed, and a method for predicting patient response to 

chemotherapy is developed using BDI measurement biomarkers. 

CHAPTER 5 presents the development of a fourth BDI mode: tissue dynamics 

spectroscopic imaging (TDSI), which combines the biodynamic measurements of OCI, 

MCI, and TDS as contrast agent to generate a false color image of the spatially 

heterogeneous behavior of a tissue sample, including response to chemotherapeutics.  

TDSI shows regional differences in sample behavior characteristic of heterogeneous  
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cancer tissue that are not apparent in traditional BDI analysis.  Such heterogeneous 

response to chemotherapeutics has important implications determining the cause of multi-

drug resistance and patient relapse. 

 

1.2 Cellular dynamics and 3D tissue 

Imaging of live tissue in a three-dimensional (3D) environment is of critical 

importance to biophysical science and especially to the study and treatment of cancer.  

Several 3D tumor models have been developed, including in vitro multicellular tumor 

spheroid models [15-18] and murine xenografts.  However, the majority of 

chemotherapeutic efficacy assays continue to use two-dimensional (2D) culture models.  

This is because photon diffusion makes direct optical imaging through highly scattering 

media, such as tumor tissue, difficult and limits the depth resolution of traditional 

microscopy.   

 Cells have a typical size of 5-20 μm, which is much larger than the wavelength of 

near-infrared light.  In this regime, ray optics dominates and cells act as tiny lenses.  

Stacked into tissue structures, these lenses generate a “showerglass” effect due to optical 

aberrations that limits resolution as imaging depth increases.  Furthermore, the eukaryotic 

cell is a heterogeneous body containing many different structures with different refractive 

indices.  This causes significant scattering of light as it propagates through tissue. 

 Eukaryotic cell structure can be separated into different regions.  Outside the cell 

is the extracellular matrix, a region composed of collagen proteins and other molecules 

used by to organize cells into tissue.  The cell membrane surrounds the interior of the cell.  

It is transfixed by different components through which the cell senses changes in the 
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extracellular matrix, communicates with other cells via cell-cell contacts, and takes in 

nutrients and expels waste.  The cytoskeleton, made of microtubules, actin filaments, and 

stress fibers, is a flexible structure with high tensile strength that gives the cell dynamic 

rigidity.  The cytoplasm fills the interstices of the cytoskeleton and is made up of cellular 

organelles, the largest of which, the nucleus, exhibits both geometric optic and Mie 

scattering behaviors [19].  Other organelles important to the study of tissue imaging are 

mitochondria (typical size: 200 nm to 5 μm), endosomes and exosomes.  For these 

smaller organelles, scattering dominates optical interaction.  

Cells and organelles are in constant motion.  Mitosis and other processes change 

cell shape and cause undulations in the cell membrane. The common characteristic 

frequency of these undulations is in the range of 0.01 Hz to 0.1 Hz [20, 21].  Cytoskeletal 

components are in dynamic equilibrium, constantly being built and dismantled.  

Organelles driven by molecular motors travel at speeds in the range of several microns 

per second [22-25].  The various cellular components create dynamically shifting 

scattering interfaces. 

 

1.3 Dynamic Light Scattering 

When tissue is illuminated with a coherent source, scattering interactions lead to 

coherent noise, or speckle.  Speckle arises due to interference between multiple waves 

scattered from spatially distributed variations in the refractive index of the illuminated 

target [26].  In biological targets, such refractive index variations come from different  
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cellular and tissue components.  These components are in motion and generate time-

varying speckle patterns through dynamic light scattering.  This dynamic speckle is used 

by BDI to assess tissue health and response to perturbations. 

Dynamic light scattering is a well-established technique for investigating 

biological systems, and has been used to study motions of the cell and nucleus [27, 28].  

Dynamic light scattering is appropriate for optical systems in the dilute limit where single 

scattering interactions dominate.  Diffusing wave spectroscopy (DWS), first proposed by 

Pine, et al. in 1988 [29], extends dynamic light scattering to optically dense scattering 

regimes by using the diffusion approximation to treat photon scattering as random walks 

[30, 31]. 

Dynamic light scattering is caused by the change in the optical phase of the 

scattered light as the particle moves.  For instance, consider the incident light scattering 

off a moving particle illustrated in Figure 1.1 [26]. 

 

 

Figure 1.1. Illustration of momentum transfer during scattering events. 
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The light field scattered from a single moving particle is 

  1.1 

As the position  of the particle changes, the phase of the scattered light changes.  The 

difference in phase from one position to the next is 

  1.2 

where  is the scattering vector.  The direction of the initial k-

vector defines , and the magnitude of q for a scattering angle θ is 

  1.3 

Field autocorrelation is obtained by taking an ensemble average over scattered 

fields, or by integrating over all time.  (Ensemble averages and time averages are 

equivalent under stationary statistics.)  The stochastic sum is evaluated using a 

probability distribution as 

  1.4 

where  is the probability functional of the displacement Δx.  The 

autocorrelation is  

  1.5 
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and the stochastic sum is equivalent to an integral over the probability distribution 

  1.6 

where the autocorrelation is proportional to the Fourier transform of the probability 

functional.  The physical process, such as diffusion or drift or active transport, determines 

this probability functional.  Different types of motion have different probability 

functionals. For diffusion, the probability functional is 

 1.7 

which gives the diffusion autocorrelation function 

  1.8 

A one-dimensional random walk can be described as the sum of uncorrelated steps Xi  

  1.9 

where N is the number of steps, Xi is a Gaussian distributed set of random steps, and Z is 

evaluated as statistical ensembles [4].  Active transport is defined by velocity 

distributions and by persistence times (the time of unidirectional free runs).  If the 

velocity distribution is Gaussian, and the mean free run time (persistence time) 

distribution is exponential, then the rms step size is given by

  1.10 
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where it is assumed that the mean speed is zero, with a standard deviation given by the 

characteristic speed v0 with a characteristic persistence time τ.  The expectation of the 

squared displacement of the random walk is then 

  1.11 

The mean number of steps taken in a measurement time t is given by , which 

yields 

  1.12 

where the equivalent diffusion coefficient of the actively driven random walk is defined 

as 

  1.13 

The holographic fringes and the dynamic speckle set the resolution of the speckle 

image.  Nyquist theory predicts that two pixels are required to fully resolve each 

interference fringe and two fringes resolve each speckle.  In practice, however, it is more 

convenient to use the “Rule of 9” with three fringes per speckle and 3 pixels per fringe.  

The holographic fringe spacing is set by the angle  between the beam axis of the off-

axis reference beam and the optic axis of the speckle.  The fringe spacing is 

  1.14 
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and the resolution of the system is 

  1.15 

where N is the number of pixels on the CCD and FOV is the field-of-view of the 

reconstruction. 

  

1.4 Optical Coherence Imaging (OCI) 

Tomographic techniques have successfully imaged through deep tissue and have 

found wide clinical and experimental applications. Ultrasound [32], X-ray computed 

tomography (CT) [33], and magnetic resonance imaging (MRI) [34] are standard imaging 

modalities found in hospitals all over the world.  In more recent years, confocal 

microscopy [35-37], photoacoustic tomography (PAT) [38-43], and optical coherence 

tomography (OCT) [8, 10, 11] have achieved smaller resolutions and are growing in 

clinical use [44-47]. 

OCT is based on low-coherence reflectometry [48], an optical ranging technique 

that measures reflectance as a function of depth.  OCT uses heterodyne detection to 

obtain a one-dimensional A-scan of the reflectance.  When combined with a second, 

transverse OCT scan, a two-dimensional B-scan image is generated.  The joint system 

rasters across the target to construct the full 3D image.  Depth resolution is limited by the 

coherence-length of the source independent of the numerical aperture of the imaging 

system, which allows OCT systems to use very small optics, such as those in an  
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endoscope.  OCT has gained wide acceptance since it was first reported in 1991 [8].  It 

has a penetration depth of about 1 mm in turbid media and a spatial resolution near the 

diffraction limit for shallow depths in translucent media.  

In 1996, Dr. David Nolte’s group, in collaboration with Dr. Paul French of 

Imperial College, London, invented holographic optical coherence imaging (OCI) [49] as 

a full-frame imaging version of optical coherence tomography (OCT) for probing tissue 

up to a millimeter in depth.  In OCI, positioning the reference off-axis relative to the 

optical axis of the scattered photons creates a spatially modulated intensity profile.  The 

off-axis orientation allows OCI to record the full image frame in a single capture.  OCI 

was first performed using photorefractive quantum well (PRQW) devices to image live 

rat osteogenic tumor spheroids [50, 51].  Dr. Kwan Jeong updated the OCI system by 

moving the PRQW device from image plane to Fourier plane and, later, by replacing the 

PRQW device with a digital CCD camera [52-54].  Current OCI uses low-coherence [55-

58] digital holography [59] to reduce background and improve sensitivity.  It achieves 

high frame rates (25 frames per second) while maintaining resolution and has proven to 

be a useful tool for studying tissue-level biophysics. 

 

1.4.1 Fourier-domain digital holography 

At the core of the OCI is Fourier-domain digital holography. The theory is 

explained in greater detail in [7, 54]. In brief, consider the Mach-Zehnder interferometer 

shown in Figure 1.2.  
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Figure 1.2. Fourier-domain digital holographic configuration. A beam splitter (BS) splits 
the light into two coherent beams: the object beam that impinges on the target, and the 
reference beam that is routed through a series of delay mirrors (M). Light scattered from 
the target (OP) is projected onto the Fourier plane (FP) by the lens (L) where it is 
spatially heterodyned with the reference beam, and the CCD records the resulting 
interference as an intensity hologram. The hologram is numerically Fourier-transformed 
back into an image (IP) of the target. 
 

A beam splitter splits the coherent light wave into two waves: a reference plane wave and 

an object wave. The object wave  scatters off a target and is Fourier-transformed 

by an ideal lens of focal length  onto the plane of the CCD camera. The object wave at 

the plane of the detector is given by  

  1.16 
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where  is the wavelength of the source.  The reference wave travels through the delay 

path and is directed onto the detector so that at the detector.  The reference plane-wave is 

given by 

  1.17 

where  and  are the spatial wavenumbers.  The reference wave in OCI replaces the 

need for a phase modulator in conventional OCT, and an off-axis configuration provides 

a spatially modulated carrier wave, which allows for full-frame imaging of the hologram.  

The electric wave at the detector is a coherent sum of the object and reference waves. The 

intensity pattern recorded by the detector is 

  1.18 

The first two terms of Eq. (1.18) are the respective intensities of the object and 

reference beams at the detector. The last two terms are Fourier- and conjugate Fourier-

transforms of the image. After capturing the intensity pattern using a digital camera, a 

computer performs numerical reconstruction of the images using a fast Fourier transform 

(FFT).  The third and fourth terms can be calculated using Eq. (1.16) and Eq. (1.17), and 

are given by  

  1.19 

and 

  1.20 
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The image is located at (  and the conjugate image is located at 

, and are separated from the zero-order image at (0,0).  Figure 1.3 shows 

an example of recorded Fourier-domain hologram and the resulting reconstructed image. 

 

 

Figure 1.3. OCI frame and corresponding transformed image. a) The OCI Fourier frame 
captures b) a holographic intensity pattern when the optical path length difference 
between the object and reference beams is within the coherence length of the source. c) 
The corresponding image and conjugate image are reconstructed from the OCI frame 
through a fast Fourier transform. d) An image of the target, a tumor spheroid, can be seen. 
 

For a CCD camera with pixel size  and a chip size of N by N pixels, 

the resulting reconstructed image has N by N pixels of size  

  1.21 
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where  is the width of the CCD chip.  Fourier detection is less sensitive than 

image detection to debris in the light path, and digital processing improves image contrast 

and noise reduction capabilities. Holographic image capture also provides depth 

resolution when a low-coherence illumination source is used. 

 

1.4.2 Three-dimensional volumetric holography with low-coherence 

Imaging through translucent, dynamic media is complicated for a source with 

high-coherence because photons coherent at the detector have scattered from different 

depths within the sample, Depth resolution can be achieved by using a low-coherence 

source to generate the holograms [55]. With a low-coherence source, only photons whose 

distance-of-flight is equal to that of the reference interfere coherently at the plane of the 

detector to generate the hologram. In the backscatter configuration, the depth resolution is 

given by [60] 

 1.22

where  is the full-width-half-max (FWHM) bandwidth of the source.  Scattered light 

outside this volume is added incoherently and can be removed during image processing. 

This coherence-gating allows for images to be made of specific depths within the target, 

limited by the extinction of the beam within the target and by the sensitivity of the 

detector. 
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1.5 The OCI system 

Figure 1.4 shows a complete diagram of the current OCI system. A neutral 

density filter (ND) attenuates the light from the super-luminescent diode (SLD).  The 

waveplate (λ/2) adjusts the polarization of the beam before it is split by a polarizing 

beamsplitter (PBS) into object and reference beams to maximize the intensity of the 

object beam. The object beam is focused by lens L1 onto the target, and the scattered 

light is collected and projected onto an image plane (IP) by lenses L2 (f = 15 cm) and L3 

(f = 15 cm).  The projected image plane is Fourier-transformed by lens L4 (f = 5 cm) onto 

the second Fourier-plane (FP2) at the camera (CCD) with a 1/3 magnification. The 

reference beam passes through the delay stage (dotted box) and is attenuated by another 

ND to match the intensity of the object beam at the CCD.  The reference beam is directed 

onto the CCD by means of mirrors (M). Lenses L5 and L6 are used to shape the reference 

beam to match the beam profile of the scattered object beam at the CCD. Interference 

patterns are recorded and digitally Fourier-transformed back to the image plane to 

generate OCI images of the target. The delay stage can be adjusted to probe different 

depths within the target. 
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Figure 1.4. BDI setup. 

 

Short coherence light at 847.2 nm wavelength with 50 nm FWHM bandwidth is 

supplied by a 20.5 mW Superlum Broadlighters Fiber Lightsource (model: S-840-B-I-20 

SM).  This gives a depth resolution of 6.3 μm (single-scattering).  The CCD camera is a 

Rolera EM-C2 from QImaging with a bit depth of 14 bits.  Recorded images are 800 by 

800 pixels with a square pixel of size of 8 μm.  This results in a minimum practical fringe 

spacing of 24 μm and a minimum speckle size of 72 μm.  Capture is triggered externally 

through a function generator controlled by a custom-developed LabVIEW VI (National 

Instruments) that also controls the motion of the 2-axis translation stage and the reference  
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beam delay stage.  Camera frames are recorded using StreamPix 5 (Norpix).  Spatial 

coordinates and zero-path matched position of the reference beam delay stage are 

recorded for each tumor [61]. 

 

1.6 Motility Contrast Imaging (MCI) 

Motility contrast imaging (MCI) [13] uses the speckle intensity fluctuations as a 

label-free image contrast to create a false-color image of the sample motility.  Sample 

motility is influenced by all cellular activity and is an indication of cell health and 

cellular action.  MCI images can indicate regions of hypoxia/necrosis and other tumor 

inhomogeneities that exhibit strong motional differences.  

A sequence of OCI frames is captured, representing one observation of the living 

target.  By capturing several sequences, changes in the time-dependent behavior of the 

target are detected.  For a single OCI sequence, the temporal normalized standard 

deviation (NSD) of the intensity I is defined at each pixel (x,y) as 

  1.23 

This value is used to assign a color to each pixel to create a false-color MCI frame of the 

motility of the sample during that sequence.  Figure 1.5 shows MCI frames of two 

different HT-29 tumor spheroids following the application of either growth medium or 

nocodazole (10 μg/mL).  The motility of the sample changes very little after the growth 

medium is applied while the nocodazole causes significant decrease. 
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Figure 1.5. MCI frames of healthy and treated HT-29 tumor spheroids at successive times. 
Frames show the motility of the spheroid after application of either a) growth medium, in 
the healthy case, or b) 10 μg/mL nocodazole, for the drugged tumor. Motility of the 
healthy tumor is maintained while that of the drugged tumor decreases over time as the 
nocodazole begins to affect cellular processes. MCI frames also show the low-motility 
region that often forms in the interior of the tumor spheroids. 

 

Changes in sample health can be inferred by calculating the average NSD of the 

entire sample during a particular OCI sequence and recording that average over time. 

Figure 1.6 shows the average NSD in time for two different tumor spheroids. One 

spheroid received growth medium at time t = 0 while the other tumor received 10 μg/mL 

nocodazole.  The average sample NSD decreases rapidly following the application of 

nocodazole. The average NSD of the healthy tumor did not change significantly, from 

which can be inferred that the growth medium maintained the health of the sample. 
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Figure 1.6. Average NSD of healthy (growth medium) and drugged (nocodazole) tumor.  
The motility of the drugged tumor decreases rapidly following the application of 
nocodazole (10 μg/mL) with a decay time of 33 minutes 

 
MCI and average NSD detect changes in the overall motion of a sample, but these 

changes can arise from several different biological processes. Tissue dynamics 

spectroscopy analyzes the different frequencies of motion within the sample to separate 

one process from another. 

 

1.7 Tissue Dynamics Spectroscopy (TDS) 

Another technique within BDI is tissue dynamics spectroscopy (TDS) [62]. TDS 

uses speckle fluctuation spectroscopy on the reconstructed OCI frames to produce a 

characteristic power spectrum for the sample. The shape of this power spectrum is 

dependent on the motion of scattering objects within the sample and changes with 

changing sample conditions. The theory is explained briefly. 
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Different biological processes happen at characteristic speeds [20, 63, 64]. All 

these processes result in local fluctuations in the index of refraction and cause dynamic 

changes in the scattered speckle. The autocorrelation of the intensity I of a pixel is given 

by 

  1.24 

where τC is the relaxation of the process.  For diffusion, 

  1.25 

with ki being the magnitude of the wavevector of the incident light and D being the 

diffusion coefficient. The autocorrelation can be written as 

  1.26 

The Fourier transform is a Lorentzian  

  1.27 

In log-space, S(ω) has a distinct shape and exhibits a knee frequency 

  1.28 

While the observed process may not be strictly diffusive, the power spectrum can be 

approximated as 

  1.29 

Figure 1.7 shows how the relaxation time of the autocorrelation function influences the 

shape and knee frequency of the power spectrum, and Figure 1.8 shows how s influences 

the shape of the curve. 
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Figure 1.7. Example autocorrelation functions and power spectrum. a) Three 
autocorrelation plots are shown for three different relaxation times—0.5 s, 1 s, and 2 s—
along with b) their corresponding power spectra.  

 

Figure 1.8. Example power spectra with exponential dependencies. The graph shows 
power spectra for three different values of s—1, 1.5, and 2. 
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A tissue sample may exhibit many different biological processes at the same time, 

causing its speckle fluctuation spectrum to have a complicated shape.  Also, detection 

bandwidth causes information above the Nyquist frequency to be shifted to frequencies 

near the Nyquist.  This raises the power spectral density at high frequencies and creates a 

Nyquist floor to which the power spectrum asymptotes.  Figure 1.9 shows the fluctuation 

power spectrum for two different tumor spheroids.  MIA PaCa-2 (PaCa-2) tends to be a 

more aggressive and active cancer cell line than HT-29, which may be reflected in the 

higher knee-frequency. 

 

 

Figure 1.9. Example power spectra of healthy tumor spheroids for two different cell lines.  
Speckle fluctuation power spectra show the power spectral density for different 
frequencies of motion of scattering objects within the target volume and are characteristic 
of the behavior of the target.  The power spectra are fitted with a modified Lorentzian 
function.  For the HT-29 spectrum, the effective relaxation time τC = 61.3 seconds and the 
exponent of the fit s = 1.49. For PaCa-2, τC = 3.06 seconds and s = 1.41. 
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By comparing the power spectrum of a sample after a perturbation relative to the 

baseline power spectrum of the sample, the time-dependent response of the sample to the 

perturbation can be determined.  For a power spectrum  measured at time , the 

differential spectral power is defined as 

  1.30 

 

where  is the time of the baseline measurement.  More recently, computations have 

used  

  1.31 

Eq. (1.30) is the first-order term in the Taylor expansion of Eq. (1.31), so in the limit that 

 the two definitions are equal.  However, Eq. (1.31) is less susceptible 

to noise in the spectrum. 

The differential spectral power can be represented by a drug-response 

spectrogram that acts as a “voiceprint” of the sample response to a perturbation. Figure 

1.10 shows example response spectrograms for tumor spheroids of two different cell lines, 

PaCa-2 and HT-29, to nocodazole (10 μg/mL).  Frequency (horizontal axis) spans three 

orders of magnitude from 0.01 Hz to 12.5 Hz.  Time (vertical axis) typically spans 11-16 

hr.  The zero on the time axis marks the introduction of the perturbation (nocodazole in 

Figure 1.10).  

 

D ω ,t( ) = S ω ,t( )− S ω ,t0( )
S ω ,t0( )

D ω ,t( ) = log S ω ,t( )⎡⎣ ⎤⎦ − log S ω ,t0( )⎡⎣ ⎤⎦
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Figure 1.10. Example drug response spectrograms to nocodazole (10 μg/mL) for 
spheroids of two different cell lines. The 2D color graph shows shifts in speckle 
fluctuation spectra relative to the baseline sample spectrum. These shifts are indicative of 
changes in the dynamics of the spheroid due to the introduction of the drug. 

 

The amplitude of the differential spectral power is indicated by color.  Shifts to 

higher power are red, indicative of an enhancement of the motions in the target at that 

frequency.  Blue areas mark shifts to lower spectral power and indicate suppression of 

motions at that frequency.  Thus a spectrogram gives an easily readable representation of 

the changes in motion of the imaged volume in response to the perturbation.  In Figure 

1.10, two tumor spheroids from different cancer cell lines, MIA-PaCa-2 (PaCa-2) and 

HT-29, respond to the microtubule-destabilizing drug nocodazole.  As microtubules make 

up part of the cytoskeleton of the cell, the destruction of microtubules leads to less rigid 

structure in PaCa-2 and a corresponding enhancement appears in the low frequencies as 

cell deformation increases.  HT-29 forms a more rigid cell structure (see CHAPTER 2.4) 

and the cell deformations do not appear at frequencies above 0.01 Hz, but the high 

frequency enhancement in the spectrogram indicates increased vesicle activity as the cells 

respond to microtubule depolymerization. 
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1.8 Biomarkers and Feature Vectors 

BDI generates a wealth of information that is difficult to quantify objectively.  One 

method developed is to use feature vectors to condense the results from OCI, MCI, and 

TDS into a set of values that characterize a single sample response measurement.  The 

feature vector includes a set of conditional biomarker values calculated from OCI, MCI, 

and TDS measurements of the initial and final condition of the sample.  Examples of such 

markers are backscatter intensity (BB), NSD, spectral knee frequency and slope, and the 

change in these parameters. 

Other biomarker values are obtained through a linear filter applied to the 

spectrogram and integrated over log frequency.  For linear filter , the biomarker 

value M is 

  1.32 

Figure 1.11 shows a collage of different linear filters used to generate biomarker values 

entered into the feature vector. 
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Figure 1.11. Collage of linear biomarker filters. 

 

Other biomarkers come from logical combinations of the linear filters described 

above and select for specific biological responses.  For example, APOP is a nonlinear 

filter that identifies enhanced frequency bands at high and low frequencies (a signature 

that previously has been correlated with apoptosis [65]).   
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CHAPTER 2. CELLULAR ADHESION EFFECTS IN BIODYNAMIC IMAGING 

2.1 Abstract 

In this chapter, biodynamic imaging is used investigate the change in adhesion-

dependent tissue response in 3D cultures.  Cellular adhesions play a role in tissue 

dynamics and have connections to chemotherapeutic resistance and metastasis. The 

results of this study show that increasing density of cellular adhesions slows motion 

inside tissue and alters the response to cytoskeletal drugs.  A clear signature of membrane 

fluctuations was observed in mid frequencies (0.1 – 1 Hz) that was enhanced by the 

application of cytochalasin-D that degrades the actin cortex inside the cell membrane.  

This enhancement feature is only observed in tissues that have formed adhesions, because 

cell pellets initially do not show this signature, but develop this signature only after 

incubation enables adhesions to form. 

 

2.2 Introduction to cellular adhesions 

Traditionally, imaging through deep tissue has been difficult and in vitro tissue 

assays have favored a two-dimensional (2D) culture model. However, while 2D culture 

assays have the advantage of simplicity, 2D monolayer cultures feature an artificial 

environment that modifies cell shape and cell contacts and provides limited connections 

to the surrounding extracellular matrix (ECM). Furthermore, the mechanical and 
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chemical properties of, and the contacts with, the extracellular environment modify 

expression of adhesion compounds and adhesion structure [66-69]. Cellular adhesions 

have been linked to the development and spread of various cancers including colorectal 

[70, 71], breast [72], ovarian [73], and lung [74], and may contribute to the resistance of 

tumors to chemotherapeutic treatments [75, 76]. Cellular adhesions are an important 

target of chemotherapy research. 2D cell cultures, with a modified cellular environment 

and lack of adhesions, may change how they respond to chemotherapeutic drugs. A more 

biologically accurate, three-dimensional (3D) tissue model is needed. 

Multicellular tumor spheroids closely resemble the macrostructure of in vivo 

cancer tumors [77]. Use of dense 3D tissue models such as tumor spheroids for drug 

testing has been limited by the difficulty to obtain information from deep tissue imaging. 

Biodynamic imaging (BDI) makes it possible to probe processes within the tissue without 

altering the surrounding microenvironment. In this chapter, BDI and dynamic light 

scattering (DLS) are used to investigate how culture morphology affects cellular 

adhesions and the measured response of the sample to cytoskeletal drugs. Much of this 

work was reported in [78]. 

 

2.3 Materials and Methods 

2.3.1 Cell cultures 

Cell lines are from American Type Culture Collection (ATCC) Manassas, VA. 

Cells were cultured in their respective growth media (Table 2.1) at 37 °C in a humidified 

CO2 incubator.  All growth media contain 10% fetal calf serum (Atlanta Biologicals), 

penicillin (100 IU), and streptomycin (100 µg/mL).  
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Table 2.1. Cell culture information. Information about genetic mutations comes from [79, 
80]. 

Cell Line Cell Origin Mutation Growth Medium 

HT-29 Human colon c-myc, H-ras, K-ras, N-ras, myc, fos and p53 McCoy 5A 

UMR-106 Rat bone p53 DMEM

MIA PaCa-2 Human pancreas p53, K-ras DMEM 

 

2.3.2 Cytoskeletal Drugs 

Cytochalasin-D, colchicine, nocodazole, paclitaxel, and dimethyl sulfoxide 

(DMSO) were obtained from Sigma. Each drug was prepared to twice the desired 

concentration to allow for later mixing inside the sample well [78].  DMSO (0.05%) 

dissolved in growth medium was used as the negative control in all experiments, and all 

drugs were dissolved in DMSO before being added to the growth medium to improve 

solubility. The cytoskeletal action of each drug is outlined in Table 2.2. 

Table 2.2. Cytoskeletal drug information. 

Drug Abbr. Mechanism of Action 
Cytochalasin-D Cyto.  Inhibit actin polymerization  

Colchicine Colch. Inhibit microtubule polymerization
Nocodazole Noco.  Inhibit microtubule polymerization 
Paclitaxel Taxol  Inhibit microtubule depolymerization  

 

 

2.3.3 Tumor Spheroids  

A 50 mL capacity Sythecon rotating bioreactor (Synthecon, Houston, TX) was 

seeded with 2x106 cells in growth media. Bioreactors were incubated for 7-10 days, or 
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until tumor spheroids were just visible to the naked eye (200-300 μm), before spheroids 

began being used in an experiment [78]. Spheroids typically had diameters between 150 

and 500 μm. Spheroids were immobilized in 8-well chamber slides.  To immobilize the 

spheroids, they were first pipetted into each well. Then 75-100 µL of low gelling 

temperature agarose made up in medium without serum was added. After a gentle mixing 

step some of the mixture was withdrawn to leave approximately 100µL of material. The 

spheroid was typically covered by the agarose. 

Slides were glued to a 2-axis translation stage in the OCI system to prevent the 

sample moving during observation. Eight tumors were selected from each slide for 

testing, typically one tumor from each well. Growth medium was heated to 37 °C and 

pipetted into each well until the well was full and any bubbles were removed. The wells 

were covered with a microscope slide to limit evaporation and contamination from the 

environment. 

 

2.3.4 Cell Suspensions 

Cells were grown in flasks until about 80 % confluent. Cells were then trypsinized 

and pipetted into a 1.5 in. diameter petri dish at 105-106 cells/mL. Low gelling 

temperature agarose was added until the sample was slightly more than 1 mm in depth at 

its center. Cells and agarose were gently mixed and the dish was incubated for ~4 hours 

prior to experimentation. Each sample was cut into roughly rectangular shape (~10 mm x 

5 mm) using a razor blade and then placed inside a flow cell (49IR1, NSG Precision 

Cells). The lid of the flow cell held the sample in place. Growth medium was heated to 
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37 °C and between 3 and 5 mL were injected through the flow cell using a syringe and 

tubing (Figure 2.1) [78]. 

 

 

Figure 2.1. Flow cell and drug injection components. a) Drug injection components were 
a syringe (3-10 mL volume, depending on need), a needle (20 guage), a pipet tip, ~3 in. 
of 1/32 in. inner diameter flexible tubing, and two ~3 in. pieces of 1/16 in. flexible tubing. 
b) Components were assembled as shown, the cut sample was placed inside the flow cell, 
and the device was clamped to the target stage of the DLS system. 

 

2.3.5 Cell Pellets 

8-well chamber slides of cell pellets were prepared from centrifuged cell cultures 

and embedded in low-temperature gelling agarose. Slides received either no incubation, 

or 24 hours of incubation, prior to testing to allow adhesions to form. Slides of cell pellets 

were otherwise handled in the same manner as those of tumor spheroids [78]. 

 

 

2.3.6 Optical Coherence Imaging (OCI) 

A diagram and explanation of the optical coherence imaging (OCI) system can be 

found in CHAPTER 1.5. OCI frames of each tumor spheroid were captured in cycles 

every 20-24 minutes, on average [78]. Each capture sequence consisted of 15-45 seconds 
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travel time to allow the system to transition between tumors, followed by frame capture: 

10 background frames captured at 10 frames per second (fps) with the reference beam not 

zero-path matched, then 50 frames at 0.5 fps and 500 frames at 25 fps with the reference 

beam zero-path matched. All frames were captured with a 10 ms exposure time. 

Tumor spheroids were observed for 12 cycles (4.8 hours) to allow the tumors to 

stabilize.  Then half of the growth medium (~0.5 mL) was removed from each well and 

replaced with a control drug. Tumors were then observed for 27 cycles (10.8 hours). 

 

2.3.7 Image-domain DLS  

A diagram of the homodyne DLS system is shown in Figure 2.2 [78]. The 

incident beam at 840 nm wavelength was supplied by a high-coherence 106 mW Melles-

Griot CW diode laser (56DOL817). The CCD camera used was a Retiga EX from 

QImaging. Capture was triggered externally through a function generator controlled by a 

custom developed LabVIEW (National Instruments) program. Camera frames were 

recorded using StreamPix 5 (Norpix). Another custom LabVIEW program controlled the 

pump (NE-500, New Era Pump Systems) used for drug injection. 

Frames were captured in 4-minute cycles, capturing 250 frames at 10 fps followed 

by 100 frames at 0.5 fps. All frames were captured with a 10 ms exposure time. Cells in 

suspension were observed for 46 cycles (~3 hours) to allow the sample to stabilize.  Then 

2 mL of control drug was injected into the flow cell over 8 minutes to completely replace 

the growth medium. Samples were observed for 180 cycles (12 hours). Frame capture 

was continuous with 4 cycles given to the drug injection. At the end of the experiment, 
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samples were fixed by injecting 3 % glutaraldehyde into the flow cell and were observed 

for another 16 cycles (~1 hour). 

 

 

Figure 2.2. Image-domain DLS. In image-domain DLS (a), incident light from a CW 
laser scatters off a target and then is collected and projected onto the image-plane (IP) at 
a CCD by lenses (L1 and L2). Focal lengths of the two lenses are 5 mm for L1 and 20 
mm for L2, resulting in a 4x magnification of the object plane at the CCD. The DLS 
frame captures an image of the object (b) as a dynamic speckle pattern. Dynamic 
measurements are made on a small portion of the sample (c), indicated by the white box 
in (b).  

 

2.4 Cell line Trends in Cellular Adhesions 

Three cell lines were chosen to investigate the effects of cell adhesion density on 

the performance of biodynamic imaging [78].  The holographic MCI images (Figure 2.3a) 

of human colorectal adenocarcinoma HT-29 demonstrated the strongest adhesions.  They 

form round spheroids and exhibit a low-motility core indicative of hypoxia even in small 

tumors (< 100 mm).  Human pancreatic carcinoma MIA PaCa-2 (PaCa-2) showed the 

weakest adhesions, forming loose cell conglomerates instead of spheroids with no low-

motility core even in larger tumors (> 300 mm). Rat osteosarcoma UMR-106 had 

adhesion density falling between the other two, forming round spheroids but exhibiting 

low-motility cores in larger tumors.  
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Figure 2.3b shows microscope images of cells suspended in agarose for each cell 

line. HT-29 cells formed heterogeneous suspensions composed of cell clumps and 

individual cells. UMR-106 and PaCa-2 formed fairly homogenous suspensions. PaCa-2 

formed slightly larger cell clumps due to rapid cell growth. 

 

 

Figure 2.3. Holographic motility contrast images (MCI) (a) showing the shape and 
motility of tumor spheroids of different sizes for three cell lines along with microscope 
images (b) of cell suspensions for the same cell lines. The white bars in MCI are 200 μm. 
HT-29 formed tight, round tumor spheroids with large regions of low motility in the 
center even in tumors of less than 200 μm diameter.  UMR-106 formed round tumor 
spheroids, with low-motility central regions typically appearing in spheroids of greater 
than 200 μm diameter.  PaCa-2 formed irregularly shaped tumors that showed no low-
motility regions even at sizes greater than 500 μm. 

Sample responses were measured under the four cytoskeletal drugs (Table 2.2). 

Figure 2.4 shows average tissue response spectrograms for the three cell lines under the 

four drugs. Response to cytochalasin-D for the three cell lines showed an enhancement 
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in the mid-frequencies, generally between 0.1 and 1 Hz (shown in white square on the 

figure).  This frequency band is associated with undulations in the cell membrane [63] 

and its enhancement is consistent with increased movement of the cell membrane due to a 

decrease in cell adhesions. 

 

Figure 2.4. Biodynamic tissue response spectrograms of tumor spheroids responding to 
different cytoskeletal drugs. All drugs were administered at 10 μg/mL concentrations. 
BDI of HT-29 and PaCa-2 spheroids used a faster frame rate (25 fps) compared with BDI 
of UMR-106 (10 fps). The response of HT-29 to the microtubule-affecting drugs—
paclitaxel (Taxol), nocodazole (Noco.), and colchicine (Colch.)—was noticeably 
different from the response of PACA-2 or UMR-106. The white lines highlight the zero-
contour of the relevant feature.  

The intensity and duration of the mid-frequency enhancement (Figure 2.5) caused 

by cytochalasin-D were proportional to the relative cell adhesion strengths of the three 

cell lines as predicted from the MCI images. The center frequency describes the 
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frequency about which the enhancement is centered which decreases with increasing 

relative cell adhesion strength, indicative of the resistive influence that cell adhesions 

have on the motion of the cell membrane. 

 

 

Figure 2.5. Response to cytochalasin-D. Center frequency, amplitude, and duration of 
mid-frequency enhancement measured from tissue dynamic response spectrograms for 
cytochalasin-D applied to different cell lines. As the relative adhesion strength of the cell 
line increases, the enhancement shifts to lower frequencies, suggesting slower motion, 
and has higher amplitude and longer duration. 

 

 

The response to colchicine, nocodazole, and paclitaxel (Figure 2.4) in UMR-106 

and PaCa-2 showed a low-frequency enhancement that shifts to lower frequencies with 

increasing relative adhesion strength. Significantly, HT-29 response to these microtubule 

drugs had almost no low-frequency enhancement, but does exhibit enhanced motion 
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above 1 Hz. This high-frequency enhancement was observed in the UMR-106 and in 

PaCa-2 at or above 5 Hz. 

 

2.5 Influence of Growth on Cell Adhesion Formation 

To test the effect of different growth techniques on drug responsivity, tissue 

response was measured for three different cell culture growth environments: tumor 

spheroids, cell pellets, and cells suspended in agar [78]. 

The response in UMR-106 to colchicine and paclitaxel (Figure 2.6) is consistent 

between tumor spheroids and cells in suspension.  Colchicine shows a characteristic low-

frequency (0-0.1 Hz) enhancement that reflects changes in cell shape due to reduction in 

cytoskeletal stiffness by inhibition of microtubule polymerization. The features of the 

response spectrogram shift from 0.05 Hz in the cell suspension to 0.1 Hz in the tumor 

spheroids due to the increased degree of multiple light scattering. 
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Figure 2.6. Comparison of tissue response spectrograms for UMR-106 to cytoskeletal 
drugs.  Response spectrograms for cells in suspension (Susp.) under colchicine (Colch.) 
and paclitaxel (Taxol) present features (marked by the white lines) consistent with those 
for the tumor spheroids (Spher.) under the same drug. However, the response 
spectrogram for cells in suspension under cytochalasin-D (Cyto.) lacks the mid-range 
(0.1-1 Hz) enhancement seen in the tumor spheroid (white square). The white lines and 
square highlight the zero-contour of the relevant feature. 
 

On the other hand, the response to cytochalasin-D in UMR-106 (Figure 2.6) is 

inconsistent between tumor spheroids and cells in suspension, and the mid-range (0.1-1 

Hz) spheroid enhancement response is not present in the response of the cells in 

suspension. This lack of mid-range enhancement was found to be independent of the dose 

of cytochalasin-D, although the cells in suspension exhibit a overall suppression 

indicative of cell death with a time-to-saturation that is dose-dependent (Figure 2.7). 
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Figure 2.7. Dose dependent response to cytochalasin-D for UMR-106 cells in suspension. 
Tissue response spectrograms for UMR-106 cells in suspension under cytochalasin-D at 
concentrations of 0, 0.01, 0.1, 1 and 10 μg/mL lack mid-range (0.1-1 Hz) enhancement at 
all doses. However, the average of the differential response shows an overall suppression 
whose saturation time decreases monotonically with increasing concentration. The 
saturation time estimates how quickly the cytochalasin-D affects the cells in suspension. 
Average differential response is averaged over frequencies from 0.005 to 1 Hz. The 
samples under 0 and 0.1 μg/mL cytochalasin-D have an slight initial enhancement 
relative to the baseline (0.095 and 0.126, respectively) that offsets the overall suppression 
measured. 
 

Tumor spheroids and cell suspensions of PaCa-2 (Figure 2.8) show a difference in 

their respective drug responses that is similar to the difference in drug response of UMR-

106, with the cell suspensions lacking an enhancement feature in the mid-frequencies that 

occurs in the drug response of the tumor spheroids. Spectrogram features for PaCa-2 

appear at higher frequencies than UMR-106 in both tumor spheroids and cell suspensions, 
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which is consistent with the hypothesis that the lower adhesion density of PaCa-2 allows 

for faster cell membrane motion when the cytoskeletal drugs are applied.  

To investigate the transition in response between the adhesion-poor environment 

of the cells in suspension and the adhesion-rich environment of the tumor spheroids, we 

measured the response of dense cell pellets formed from cell cultures. These pellets are 

optically dense like tumor spheroids, but initially they have fewer adhesions. Incubating 

the pellets allows adhesions to form. Cell pellets of PaCa-2 were treated with 

cytochalasin-D and their response was measured to rule out sample density and scattering 

frequency as the cause of this difference in drug response. Differing levels of cell 

adhesions were allowed to develop by changing the time over which the pellets were 

incubated. Pellets that received no incubation prior to testing showed a drug-response 

similar to that of the cell suspensions. After 24 hours of incubation, cell pellet drug-

response showed a moderate enhancement in the mid-frequencies, becoming more like 

the tumor spheroid response, indicating increased formation of cell contacts prior to drug 

injection (Figure 2.8).  
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Figure 2.8. Tissue response spectrograms of PaCa-2 to cytochalasin-D and colchicine for 
cells in suspension (Susp.), cell pellets, and tumor spheroids (Spher.). Cell pellets were 
tested after 0 and 24 hours of incubation. The response to colchicine consistently shows a 
strong low-frequency range enhancement. The response of the cell pellets to 
cytochalasin-D demonstrated a transition in responses with the response of samples 
without incubation (0 hr) being similar to the response of cell suspensions, lacking the 
enhancement associated with changes in the cellular adhesions. After 24 hours of 
incubation the response becomes closer to that of the tumor spheroid and begins to show 
the expected enhancement (indicated by the white oval). 

 

2.6 Discussion and Conclusion 

Predicting cancer response to chemotherapies requires culture models that 

accurately mimic the native tissue microenvironment and requires assays that can 

measure cell response within that environment.  In the present study, we used digital 

holography in the form of biodynamic imaging to study the response of multicellular 

tumor spheroids, a common 3D tissue model, to several cytoskeletal drugs. We also 

investigated how this response is altered by differences in the level of cellular adhesions 

present in the culture model. 
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Tumor spheroids of the three cell lines—HT-29, UMR-106, and PaCa-2—

displayed strong changes in cellular motion in response to disruption of the cytoskeleton. 

For the UMR-106 and PaCa-2 cell lines, changes to the microtubules resulted in similar 

alterations in the cellular motion irrespective of whether the disruption was due to 

polymerization or depolymerization. The changes due to microtubule disruption for HT-

29, however, are significantly different from those of UMR-106 and PaCa-2 over the 

frequencies measured. Cohen [81] showed that microtubule disruption in HT-29 induced 

cell differentiation and was accompanied by assembly and reorganization of the actin 

microfilaments, which suggests that HT-29 displays a response to nocodazole, colchicine, 

and paclitaxel that is physiologically different from that of UMR-106 or PaCa-2. 

Tumor spheroids and cells in suspension exhibit significantly different behavior in 

response to cytochalasin-D for the UMR-106 and PaCa-2 cell lines. Drug dosage does not 

account for this difference, with dose only influencing how quickly a drug affects the 

cells. While cytochalasin-D appears to induce cell death in both the tumor spheroids and 

cells in suspension, only the adhesion-rich tumor spheroids showed significant increase in 

membrane motion accompanying the actin microfilament depolymerization. Ujihara 

found that actin disruption by cytochalasin-D significantly decreased adhesion area in 

fibroblasts while microtubule disruption by colchicine had a much smaller effect [82]. 

Greater decrease in adhesion area would account for the stronger difference in tissue 

response due to cytochalasin-D relative to colchicine observed between adhesion-rich and 

adhesion-poor culture models. 

Holographic biodynamic imaging measurements on cell pellets with variable 

incubation demonstrate a transition from adhesion-poor to adhesion-rich environments. 
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This suggests that the difference in response shown by the cell suspensions and tumor 

spheroids is not due to differences in sample density, but is caused by changes in the 

microenvironment during incubation and is a strong indication of the influence of cell-

cell contacts and the extracellular matrix on overall sample response to chemotherapeutic 

drugs. 

In conclusion, a systematic study was performed of dynamic light scattering 

signals as a function of the adhesion strength among the cells in tissues grown from 

different cell lines and different growth environments.  A clear signature of membrane 

fluctuations was observed in mid frequencies (0.1 – 1 Hz) that was enhanced by the 

application of cytochalasin-D that degrades the actin cortex inside the cell membrane.  

This enhancement feature is only observed in tissues that have formed adhesions, because 

cell pellets initially do not show this signature, but develop this signature after incubation 

enables adhesions to form.  Digital holography, and in particular biodynamic imaging 

that uses digital holography to capture tissue dynamics, provides a new analysis 

technique to assess drug effects in natural 3D tissue environments. 
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CHAPTER 3. OVARIAN CANCER CELL LINES SENSITIVITY TO PLATINUM 
THERAPY 

3.1 Abstract 

Three-dimensional (3D) tissue cultures are replacing conventional two-

dimensional (2D) cultures for applications in cancer drug development.  However, direct 

comparisons of in vitro 3D models relative to in vivo models derived from the same cell 

lines have not been reported because of the lack of sensitive optical probes that can 

extract high-content information from deep inside living tissue.  This chapter discusses 

the use of BDI to measure response to platinum in 3D living tissue.  Human ovarian 

cancer cell lines were grown either in vitro as 3D multicellular monoculture spheroids or 

as xenografts in nude mice. Fragments of xenografts grown in vivo in nude mice from a 

platinum-sensitive human ovarian cell line showed rapid and dramatic signatures of 

induced cell death when exposed to platinum ex vivo, while the corresponding 3D 

multicellular spheroids grown in vitro showed negligible response.  The differences in 

drug response between in vivo and in vitro growth have important implications for 

predicting chemotherapeutic response using tumor biopsies from patients or patient-

derived xenografts.  This chapter also discusses the use of BDI for ex vivo testing of in 

vivo drug exposure.  Xenograft fragments from nude mice exposed to platinum treatment 
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in vivo showed decreased sensitivity to ex vivo re-exposure when compared to xenografts 

from untreated mice.  This is the first time BDI has been used to assess the efficacy of in 

vivo treatment [3]. 

 

3.2 Introduction 

Ovarian cancer accounts for 3% of all cancers in women. It is the fifth deadliest 

overall and the most deadly gynecological variant, killing 14,030 women in the United 

States in 2013. That same year 22,240 new cases were diagnosed [83, 84]. 

Approximately 80% of patients diagnosed with epithelial ovarian cancer (EOC) will 

relapse after first-line platinum-based and taxane-based chemotherapy. The average 

duration of survival after EOC recurrence is 12 to 18 months.  Currently, fewer than one 

in ten patients with advanced EOC survive beyond 5 years.  On the other hand, it has 

been shown that patients whose time-to-recurrence is increased have higher rates of 

overall [85, 86].  Recurrence of ovarian cancer is associated invariably with the 

emergence of partial or complete platinum or taxane resistance. Development of a 

methodology that can predict subsequent response to treatment would be useful for 

selecting chemotherapeutic or biological agents most likely to arrest tumor growth.  At 

the present time, treatment selection is empirical, and is not individualized to tumor 

characteristics.  

Even though cells thrive in three-dimensional environments and communicate 

with near and distant neighbors, most assays in cell biology use two-dimensional cultures. 

For instance, current methodologies used to predict response to therapy include 2D 

chemosensitivity assays that test cultured cancer cells to chemotherapy [87, 88].  These 
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assays have limited ability to yield cells from clinical specimens, lack predictive power 

for subsequent clinical applications [89-92], and rely solely on the epithelial tumor 

components.  It is now known that cells in 2D do not behave as cells in 3D tissues, 

displaying different genetic expression profiles [93-95], different intercellular signaling 

[96-99], and different forces attaching them to their environment [69, 100, 101].  The 

cellular dimensionality and microenvironment exert an essential influence on drug 

sensitivity [102, 103] or resistance [104, 105] of 3D cultures relative to 2D monolayers.  

Therefore, an evolution is in progress in cell-based assays transitioning from 2D cell 

culture to 3D tissue because three-dimensional tissue presents a more natural 

environment to cells [106, 107], enabling contacts to the extracellular matrix and to other 

cells that translate to intracellular signaling [95, 99] and gene expression [93, 94, 108] 

that more closely replicate the tumor environment. 

Three-dimensional tissue models that are ideal in vitro models to study complex 

three-dimensional tumor heterogeneity include multicellular tumor spheroids [15-17, 

109], tumor xenografts from mouse models that are excised and tested in vitro, and 

finally human tumor biopsies.  In spite of the distinct advantages of these 3D tissues 

[110], conventional imaging techniques are unable to penetrate deep enough within tissue 

to image the heterogeneous regions of tumors.  Here we use biodynamic imaging (BDI) 

and the signatures of different dynamical cellular functions [111, 112] to solve this 

problem. We have validated BDI in applications of drug screening and phenotypic 

profiling [112-118], but this is the first application of the technique to pre-clinical cancer 

biology. 
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3.2.1 Biology of ovarian cancer 

Ovarian cancers exhibit clinically relevant heterogeneity that makes it difficult to 

develop widely applicable treatments [84, 119]. Though surface epithelial cancer is the 

most common of ovarian cancers, there is controversy over the actual originating cells of 

different ovarian cancers [84, 119-122]. Surface epithelial ovarian cancer is classified as 

serous, endometrioid, mucinous, and clear cell type based on morphology, differentiation, 

progression, response to therapy, and prognosis. Classification is hampered by the fact 

that epithelial ovarian cancer can mimic cancers of the oviduct, uterus, and cervical canal. 

[120].  Several hypotheses have been advanced as to the cause of carcinogenesis [123-

126]. 

Primary and recurrent ovarian cancers are generally bulky, and it is accepted that 

tumor heterogeneity related to polyclonal cell expansion is omni-present and partly 

responsible for variable and incomplete responses to therapy [127] and tumor recurrence.  

The recently-released results of the human tumor genome atlas for ovarian cancer 

demonstrated that ovarian tumors are characterized by genomic chaos and that no driver 

mutations or pathway activation characterize specific ovarian tumor subsets [128].  Thus 

therapeutic progress has been hindered by the inevitable emergence of chemotherapy 

resistance and tumor heterogeneity leading to incomplete or mixed tumor response [129]. 

A2780 is an established human ovarian epithelial cancer cell line cultured from 

tumor tissue of an untreated patient. A2780 responds to platinum treatments and has been 

used as a parent cell line to derive other platinum-resistant cell lines by culturing A2780 

cells in the presence of platinum compounds. A2780/CP70 (CP70) is created by 

intermittently exposing A2780 culture to increasing doses of cis-
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diamminedichloroplatinum(II) (cisplatin) up to 70 uM [130]. This cell line was later 

modified to stably express green fluorescent protein to create the A2780/CP70-GFP cell 

line (CP70-GFP). A2780cis is a platinum-resistant cell line derived from A2780 through 

chronic exposure to increasing concentrations of cisplatin [131]. 

 

3.2.2 Biochemical and biophysical effects of platinum therapies 

There is a high degree of variability in response to existing and developing EOC 

therapies.  Primary treatment is based on platinum and taxanes that follow initial surgery 

[132].  While platinum compounds have proved effective in increasing the survival rate 

among ovarian cancer patients, patient cancers frequently develop platinum-resistance. In 

many cases, these tumors also exhibit resistance to other standard-of-care therapies [130]. 

Predicting how a patient’s cancer will respond to chemotherapeutic compounds is a 

critical tool for improving patient longevity and quality of life. 

 Cisplatin, cis-diamminedichloroplatinum(II), and carboplatin, cis-Diammine(1,1-

cyclobutanedicarboxylato)platinum(II), are two common platinum compounds used to 

treat a number of cancers including ovarian, cervical, lung, and testicular types [130, 133-

135]. The primary cytotoxic action of cisplatin is DNA damage [136, 137].  Cisplatin 

resembles alkylating agents and cross-links DNA strands by bonding to certain 

nucleotides [138].  These cross-links interfere with DNA replication and transcription.  

These DNA lesions are sensed by the cell and induce DNA repair or cell death.  

Increased DNA repair in associated with ciplatin resistance.  This chapter presents a 

study of cisplatin response in sensitive (A2780) and resistant (A2780/CP70 and A2780cis) 

cell lines in in vivo, ex vivo, and in vitro, 3D tissue models using BDI. 
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3.3 Materials and Methods 

3.3.1 Animal and Tissue Models 

A2780 and A2780cis ovarian cancer cells were from Sigma.  A2780/CP70 cells 

were a gift from Dr. Bob Sanders, University of Texas at Austin.  A2780/CP70-GFP cells 

were produced in Dr. Daniela Matei’s laboratory.  Cells were cultured at 37 °C in a 

humidified CO2 incubator in RPMI 1640 (Cellgro, Manassas, VA) supplemented with 10% 

fetal bovine serum (Cellgro) and 1% antibiotics [139].  

Xenografts were generated by Dr Matei’s laboratory through intraperitoneal (ip) 

implantation of 5x106 cells into 6-7 week-old nude female BalbC mice.  IP xenografts 

formed and were harvested after 4 weeks.  Harvested tumors were placed in ice cold 

media and were transported to Dr. John Turek’s laboratory within 2 hours and prepared 

for imaging. This extraction/transport/preparation protocol ensured that the samples 

experienced limited degradation during transport and preparation for BDI. 

 

3.3.2 Chemotherapy drugs 

Cisplatin and carboplatin were obtained from Selleck Chemicals. Dimethyl 

sulfoxide (DMSO) came from Sigma-Aldrich. Each drug was prepared to twice the 

desired concentration to allow for later mixing inside the sample well. DMSO dissolved 

(0.05%) in growth medium was used as the negative control in all experiments. DMSO 

was selected since cisplatin, carboplatin, and the positive control drug were each 

dissolved in DMSO before being added to growth medium to improve solubility.  

Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) was used as a 

positive control. To prepare the FCCP (Sigma-Aldrich), 50 mg was dissolved in 200 μL 
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of DMSO and divided into 40 aliquots of 5 μL each. 5 mL growth medium was added to 

one aliquot of FCCP to make the 200 µM FCCP solution used in each experiment. FCCP 

was chosen as a positive control because of the strong, predictable response demonstrated 

by other cancer cell lines.  Table 3.1 shows chemical information for the three drugs. 

 

Table 3.1. Chemical information. Information obtained from manufacturer’s website. 

 

 

3.3.3 Tumor spheroids 

Spheroids were formed using two methods: rotating bioreactors (Synthecon, 

Houston, TX) as described in CHAPTER 2.3.3, and 96-well Corning U-bottom spheroid 

plates. The U-bottom growth technique generates spheroids more rapidly by using high 

cell seeding density. Plates were seeded with 1-5 x104 cells and incubated with typical 

incubation times of 48-72 hours. CP70-GFP spheroids grew slightly slower than A2780, 

though this was most likely due to low seeding density. CP70-GFP spheroids showed 

greater longevity while A2780 spheroids often broke up after 48 hours. In general, the U-
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bottom samples had lower cohesion and lacked extensive cellular adhesions and had only 

minor extracellular matrix compared to the samples grown in bioreactors. 

Both 8-well slides (see CHAPTER 2.3.3) and 96-well plates were used for these 

experiments. The 96-well plates were prepared by first transplanting tumors from the 

Corning plates into standard 96-well plates (Falcon). The residual medium after pipetting 

was 50 µL. Then 75-100 µL of low gelling temperature agarose made up in medium 

without serum was added. After a gentle mixing step some of the mixture was withdrawn 

to leave approximately 100 µL of material. The spheroid was typically covered by the 

agarose. If bubbles remained in the mixture, the plate was degased at 5-7 mm Hg briefly. 

The plate was then briefly placed inside a refrigerator to allow the agar to partially 

solidify. Finally, more growth medium was added to each well and the plate was placed 

at 37 °C in a humidified CO2 incubator for 0-3 hours. 

Slides/plates were glued to a 2-axis translation stage in the OCI system to prevent 

the sample moving during observation. 8-16 tumors were selected from each slide/plate 

for testing, typically one tumor from each well. Growth medium was heated to 37 °C and 

pipetted into each well until the well was full and any bubbles were removed. 

 

3.3.4 Murine biopsies 

Tumor biopsies were harvested from the peritoneal cavity of nude mice by Dr. 

Matei’s lab (Figure 3.1). Biopsies were maintained at 4 °C for 5-48 hours before testing. 

Biopsies were sectioned using a razor blade to cut the tumor into pieces of approximately  
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1 mm3 in volume.  Pieces were affixed inside either 8-well or 96-well plates using a small 

drop of GLUture (Abbot Laboratories) and covered with agarose. Growth medium was 

added to each well. Experiments were performed immediately after plates were prepared. 

 

 

Figure 3.1. Photo of sacrificed mouse. Cancer cells (2x106 cells/mL) were injected into 
the peritoneal cavity of each mouse. Tumors (as one held by the forceps) formed on 
peritoneal lining and on the surface of surrounding organs.  Tumors developed (with or 
without drug) for 3 weeks prior to harvesting. 
 

3.3.5 OCI sequence 

A diagram and explanation of the OCI system is found in CHAPTER 1.5.  OCI 

frames of each tumor were captured in cycles every 20-24 minutes, for an 8-sample 

experiment, or 40-48 minutes, for a 16-sample experiment, on average. Each capture 

sequence consisted of 15-45 seconds travel time to allow the system to transition between 

tumors, followed by frame capture: 10 background frames captured at 10 frames per 

second (fps) with the reference beam not zero-path matched, then 50 frames at 0.5 fps 

and 500 frames at 25 fps with the reference beam zero-path matched.
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Tumor spheroids were observed for 5 cycles (4 hours), for a 16-sample 

experiment, or 9 cycles (3.6 hours), for an 8-sample experiment, to allow the tumors to 

stabilize. Then half of the growth medium (~150 µL) was removed from each well and 

replaced with a drug at twice the intended concentration to minimally disturb the sample. 

Tumors were then observed for 12 or 24 cycles (9.6 hours), respectively. 

 

3.3.6 Proliferation assay 

Exponentially growing A2780 and CP70 cells were seeded in 96-well plates. 

Twenty four hours after seeding, cells were treated with 2, 4, 8, 16, 32 μM of cisplatin. 

After 72 hours of drug exposure, a cell counting kit-8 (CCK-8) assay was performed 

according to manufacturer’s specifications (Dojindi).  In a CCK-8 assay, a solution 

containing a water-soluble tetrazolium salt (WST-8) is added to the cell culture.  WST-8 

is reduced by dehydrogenases in cells to give an orange colored product (formazan), 

which is soluble in the tissue culture medium. The amount of the formazan dye generated 

by dehydrogenases in cells is directly proportional to the number of living cells.  Growth 

inhibition curves were generated, where each point represents mean ± SD of 3 replicates. 

The 50% inhibitory concentration (IC50) value was calculated by using nonlinear 

regression by fitting the normalized data to a sigmoid dose–response curve. The 

treatment of cells cultured as spheroids was carried out using the same cisplatin 

concentrations for 72 hours, and normalized data were plotted.   
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3.3.7 Logistic Predictor 

To define the performance of the predictive assay for therapy response, a logistic 

model was constructed which incorporated three biomarkers.  These are apoptosis-related 

(APOP), all-frequency (ALLF) and knee-frequency (KNEE) motility metrics (See 

Chapter 1).  These three metrics correlated most strongly with the two cell line 

populations (sensitive and insensitive).  The logistic function used is  

  3.1 

The argument ARG in the logistic function is constructed from the mean values and 

standard deviations of the motility metrics to construct a multivariable logistic predictor 

Ln of drug response for the nth sample as 

  3.2 

where m varies over the selected biomarkers, M is the number of biomarkers, bnm is the 

value of the mth biomarker for the nth sample, sm is the standard deviation of the mth 

biomarker, and Km is the Kolmogorov-Smirnov threshold between the two populations 

(responsive and non-responsive) for the mth biomarker.

 

3.4 Results 

3.4.1 Biodynamic characterization of A2780 and CP70-GFP cell lines 

The growth of tumor spheroids in the rotating bioreactor provides sufficient time 

for the tumors to generate tighter tissues, with multiple adhesions and minor extracellular 

matrix, and these samples would be the closest to naturally-occurring avascular tumors 
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grown in vivo.  The average NSD of the tumor spheroids are 0.82 ± 0.01 (N = 56) for 

A2780 and 0.91 ± 0.06 (N = 53) for CP70.  In addition, several samples were grown as 

co-cultures of both cell lines, and these had an average NSD of 0.85 ± 0.06 (N = 4), 

which is approximately the average of the two separate cell lines (Figure 2a).  A 

comparison of the three growth techniques (bioreactor, U-bottom and biopsy) shows that 

the U-bottom plate samples had the highest motility with an average NSD of 0.89 ± 0.03 

(N = 8) and 0.92 ± 0.01 (N = 30) for A2780 and CP70, respectively.  In general, both cell 

lines had lower motility when grown in the bioreactor (0.82 ± 0.01, N = 43; 0.89 ± 0.01, 

N = 18).  The lower bioreactor motility is consistent with the presence of more 

intercellular adhesions that constrain the motion of the cell membrane, which is a major 

contributor to the overall motility metric.  Average values for A2780 biopsies are 0.74 ± 

0.02 and for the A2780-cis biopsies are 0.78 ± 0.01 (Figure 2b). 

 

 

Figure 3.2. Average initial NSD of ovarian cultures.  The number of samples averaged is 
indicated.  Error bars show sample variability on the mean for each culture type.  Cell 
line average NSD (left) includes samples of many different growth methods, including 
tumor spheroids, cell pellets, and murine biopsies. Though the average value of the initial 
NSD depends on culture growth type (right), the sensitive cell line always shows lower 
average initial NSD than the insensitive cell line. 
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MCI images of platinum-sensitive A2780 and platinum-insensitive CP70-GFP 

tumor spheroids (Figure 3.3) and murine biopsies show strong differences in the overall 

motility of the two cell lines. A2780 spheroids have regions of low motility tending 

toward the center of the tumor consistent with hypoxia occurring in the tumor’s central 

region. CP70-GFP spheroids are more resistant to hypoxic effects due to constitutively 

expressed HIF1-α protein [140] and show less reduction in the motility of the central 

tumor region. Co-cultured spheroids of A2780 and CP70-GFP cells tend to form regions 

where one cell line predominates. MCI images of co-cultured spheroids show 

heterogeneous portions of high- and low-motility corresponding to groupings of CP70-

GFP and A2780 cells, respectively. This separation was confirmed with fluorescence 

microscopy. 
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Figure 3.3. Sample MCI frames for sensitive (A2780), insensitive (CP70-GFP), and co-
culture tumor spheroids. The difference in average motility is visible with A2780 tumor 
spheroids demonstrating much lower motility overall than the CP70-GFP.  The co-
cultured spheroids showed marginal heterogeneity with moderately high- and low-
motility regions. 

 

Examples of positive and negative control spectrograms are shown in Figure 3.4 

for the mitochondrial toxin FCCP (100 M) and for the carrier DMSO (0.05%). The 

compound FCCP is a mitochondrial uncoupler (inhibits the mitochondrial membrane 

polarization), and the response of both A2780 and CP70 to FCCP is characteristic of TDS 

spectrograms on tumor spheroids from other cell lines [1].  The negative controls are 

relatively nonresponsive, with minor changes over time that are typical of healthy tissue 

samples that continue to proliferate. 
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Figure 3.4. Tissue dynamics spectroscopy (TDS) control experiments on tumor spheroids 
from A2780 and A2780/CP70 (CP70) cell lines.  a) Positive control consisted of 100 μM 
FCCP.  b) Negative controls consisted of 0.05% DMSO. 

 

3.4.2 Prospects for Therapy Efficacy Testing 

Biodynamic imaging was used to measure the response of tumor spheroids and 

murine biopsies of platinum-sensitive and -insensitive ovarian cancer cell lines. The goal 

was to develop metrics for predicting sample response to chemotherapeutic treatments. 

Doses of 10 µM carboplatin or 10 µM cisplatin were administered to tumor spheroids 

(A2780 and CP70-GFP) and murine biopsies (A2780, CP70, and A2780cis) and tissue 

responses were measured. (However, the CP70 murine culture became infected before all 

experiments were completed, leading to low replicate numbers in some experiments). 

Table 3.2 gives sample numbers within each experimental group. 
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Table 3.2 Sample numbers for each drug group in therapy efficacy assessments. 

 

 

Results show a strong response in the A2780 murine biopsies to both carboplatin 

and cisplatin while CP70 biopsies showed no significant response to cisplatin (Figure 

3.5a). A2780cis biopsies also showed no response when treated.  Tumor spheroids of 

both A2780 and CP70-GFP cell lines showed little significant response to either 

carboplatin or cisplatin even at high doses (Figure 3.5b). This result was unexpected. 

Average baseline and dosed spectra from tumor spheroids of sensitive and resistant cell 

lines are shown in Figure 3.5c.  The baseline spectra show a normal spectral shape with 

knee frequencies at 0.018 Hz (A2780) and 0.025 Hz (CP70-GFP) and a slope of -1.2 for 

both cell lines. After treatment, the spectra show minimal changes in shape.  The average 

baseline spectra of ex vivo xenograft biopsies (Figure 3.5c) have a knee frequency and 

slope of 0.0007 Hz and -1.3 for A2780, and 0.04 Hz and -1.8 for A2780cis.  Figure 3.6 

shows overall inhibition in ovarian tumor activity measured by BDI. 

 



 

 

60 

Figure 3.5. Tissue dynamics spectroscopy results of ovarian cancer cultures exposed to 
platinum compounds. a) Average TDS response spectrograms of sensitive/insensitive cell 
lines for biopsies and spheroids responding to cisplatin and carboplatin. The biopsies 
were xenografts grown from the same cell lines as the spheroids.  The resistant biopsy 
data to carboplatin is from a related resistant cell line (A2780cis).  There is a striking 
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difference in sensitivity between the A2780 explants relative to the spheroids. b) Average 
tissue dynamics response spectrograms of spheroids grown in vitro for A2780 (sensitive) 
and A2780/CP70 (resistant) cell lines and both platinum compounds for 10 μm and 50 
μM over 9 hours after dose. Average baseline and dosed power spectra for c) in vitro 
spheroids and d) ex vivo xenograft biopsies of sensitive and resistant cells lines. Knee 
frequencies and slope parameters of each spectrum are indicated.  

 

 

Figure 3.6. Inhibition, as measured by ALLF linear filter, of ovarian tumor activity in 
response to platinum therapy. 
 

Distinct dose-dependent decreases in cell viability upon treatment with cisplatin 

were observed for A2780 (sensitive) and CP70 (resistant) cells, when grown as 2D 

monolayers.  Spheroids were significantly more resistant to cisplatin compared to 2D 

cultures and differences between sensitive and resistant cells were not observed (Figure 

3.7). Vascularization of the biopsies or effects caused by the transport of samples may 

account for the difference in sample sensitivity, and experiments are continuing.  Tumor 

spheroids grown in a bioreactor have no significant stromal constituents, while xenografts 
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have mouse-derived stromal tissue as a constituent.  In addition, clonal selection may be 

different in the two different growth environments, leading to different phenotypes 

between the explants and the spheroids.  Therefore, the more natural mouse environment 

for tumor growth, and the different tissue constituents, may provide markedly different 

responses to the platinum therapy 

 

 

Figure 3.7. IC50s over 72 hours for a) 2D culture compared to b) 3D culture (tumor 
spheroids) from the same cell lines.  The sensitive cell line is A2780, and the insensitive 
cell line is A2780/CP70 (CP70).  The 3D spheroids have IC50 values approximately 10 
times larger than for 2D.  In the spheroids, both cell lines have high IC50s (72 μM and 
104 μM) over 72 hours. 

 

The sensitivity, specificity, and accuracy of the biodynamic chemoresponse assay 

on murine xenograft biopsies were measured using a logistic regression on selected 

biomarkers.  The logistic values for each biopsy sample are shown in Figure 3.8. 
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Figure 3.8. Values for three biodynamic biomarkers (ALLF, APOP and KNEE) measured 
across 24 samples.  The samples are grouped as sensitive/carboplatin, sensitive/cisplatin, 
insensitive/cisplatin and insensitive/carboplatin.  The ALLF biomarker measures overall 
inhibition in the drug-response spectrogram.  The APOP biomarker is a nonlinear metric 
that correlates with apoptotic response.  The KNEE biomarker is the knee frequency of 
the fluctuation spectral power. 

 

By combining the three motility metrics in the multivariate logistic function, the 

combined group predicted chemotherapy response in 100% of cases using a binary 

classifier (response vs. non-response) that fully separated the two groups (Figure 3.9).  To 

test for over-fitting of the data by the logistic predictor, a one-left-out (OLO) cross 

validation analysis was performed in which the logistic function was trained using 23 of 

the biopsies, holding one of the samples back that was subsequently tested in the 

predictor.  This procedure was repeated for each of the 24 tumor fragments, and the 

results are shown in Figure 3.9 as the red bars.  The performance of the OLO assay is 

almost identical to the full assay, with 100% separation between the two populations.   
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When the logistic prediction values were fit by continuous Gaussian distributions to 

generate a smooth a receiver-operator curve (ROC), the accuracy, sensitivity and 

specificity of the OLO analysis were all above 95%. 

 

 

Figure 3.9. Logistic predictor model using selected biomarkers.  The logistic predictor 
used three biomarkers (ALLF, APOP and KNEE) of 24 individual biopsy samples across 
sensitive (A2780) and resistant (A2780/CP70 and A2780cis) cell lines responding to 50 
μM cisplatin (Cisp.) and carboplatin (Carbo.) treated ex vivo.  Blue bars are results of 
training the logistic function with all samples.  Red bars are results of the one-left-out 
(OLO) cross validation.   
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3.4.3 In Vivo Platinum Treatment Tested by Ex Vivo Re-exposure 

The treatment of tumors ex vivo occurs in a very different environment compared 

to the more natural chemotherapy applied in vivo for which the drug is delivered to the 

tumor through the circulatory system of the mouse.  To test the ability of biodynamic 

imaging to monitor tumor treatment in vivo, mice were treated with 50 mg/kg of 

carboplatin for varying periods of time before the mouse was sacrificed. The duration of 

the delay before sacrifice varied between 0 and 4 hours. The TDS response of the 

harvested tumor biopsies (with varying exposure time in vivo) was measured by further 

carboplatin (10 µM) treatment in vitro. 

Response spectrograms of sensitive A2780 (Figure 3.10a) biopsies show expected 

sensitivity to carboplatin in the post-harvesting measurement, but the magnitude of the 

response decreases with increasing duration of pretreatment.  The pretreatment of the 

tumors in vivo have an immediate inhibitory effect on the tumor tissue.  Figure 3.10b 

shows the influence of pretreatment on initial sample motility. The NSD motility metric 

of biopsies from the insensitive A2780cis cell line remained essentially constant for 

different pretreatment times. However, the sensitive A2780 samples showed a decrease in 

initial NSD motility as pretreatment time increased.  This demonstrates the sensitivity of 

biodynamic imaging to the state of health of the biopsies and the ability to measure, using 

ex vivo techniques, the patient response to therapy. 
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Figure 3.10. Response of A2780 xenograft biopsy to 10 µM carboplatin re-exposure ex 
vivo following carboplatin pretreatment. TDS drug response spectrograms show re-
exposure for biopsies pretreated in vivo with 50 mg/kg carboplatin for 0.5 hr, 1 hr, 3 hr 
and 4 hr treatment. Xenograft fragments were then re-exposed during BDI assessment. a) 
Re-exposure of samples to carboplatin demonstrate low-frequency suppression, the 
amplitude of which correlated with decreasing time since initial treatment. The response 
to further treatment decreased with increasing pretreatment time. b) Effect of carboplatin 
pretreatment on sample health for sensitive (A2780) and insensitive (A2780cis) cell lines. 
Relative NSD is calculated by shifting the origin of the y-axis so that the average baseline 
NSD of the untreated samples for each day’s experiment is unity. This reduces the 
systematic influences on average values and allows for comparison of experiments run on 
different days. 

 

The drug-response spectrograms of Figure 3.10 were quantified by applying 

feature masks to the time-frequency spectrograms for feature extraction and 

quantification.  Different feature masks correspond to different dynamical “biomarkers” 

or signatures of tissue response.  One of the strongest biomarkers for chemotherapy 

response is the “dipole” feature mask that measures overall shift in spectral weight. A 

shift of spectral weight to lower frequencies constitutes metabolic inhibition and is 

captured by a positive dipole value.  Another strong dynamical biomarker is 
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organelle/vesicle activity that appears near the Nyquist frequency.  Enhanced organelle 

activity has been associated with apoptotic processes [141].  The metabolic inhibition and 

organelle activity biomarkers are plotted in Figure 3.11 as a function of the duration of 

the in vivo treatment time.  These values correspond to the response of the pretreated 

tissues to an in vitro dose of platinum.  Increasing treatments decrease this second 

response.  Tumors that have been degraded by treatment in vivo before surgery are less 

healthy (reflected in the measured NSD values) and hence will not respond as strongly 

because the tissue is less viable than untreated or more weakly-treated samples. 

 

 

Figure 3.11. Spectral response to re-dosing.  Spectral response measures average spectral 
change across masked spectrograms. Masks select for specific biological processes. 
Metabolic inhibition is the total average response (ALLF) while organelle/vesicle activity 
is the average of a dipole masked response (SDIP). 
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3.5 Discussion and Conclusion 

Technologies that accurately assess the efficacy of chemotherapy could play a 

pivotal role in cancer care.  The body is essentially a black box, opaque to most types of 

imaging, while for body-penetrating techniques (such as ultrasound or MRI), it allows 

only limited spatial resolution.  Although the ultimate goal would be to observe, with 

microscopic resolution, cancer tissue responding to treatment in the patient in real time, 

imaging technology has not yet reached this stage.  Compounding the difficulties of in 

vivo imaging are difficulties of finding specific biomarkers of treatment response.  In 

many assessment techniques, tumor size reduction is the principal biomarker that 

provides a measure of the objective response to therapy.  However, even if a therapy can 

kill most of a tumor, thereby providing a positive response measure, spatial heterogeneity 

in the tumor and its environment can prevent therapy from killing all of the cancer, which 

ultimately will relapse.   

 Biodynamic imaging may provide some solutions to this problem of therapy 

efficacy assessment.  Although the BDI technology is not currently configured to image 

tissue in vivo, the next best thing is to measure fresh living tissue ex vivo.  Excised living 

tissues can be maintained in a healthy state for more than a day by providing nutrients 

and oxygen to small tissue samples.  The tissue inside the samples retain their essential 

3D environment and microenvironment constituents (extracellular matrix, stromal tissue, 

etc.) and hence retain the ability to respond naturally to applied drugs.  In this way, BDI 

approaches the ideal of measuring drug treatment efficacy in situ.  The further challenge 

of specificity for biomarkers of assessment techniques is also provided by BDI.  

Biodynamic imaging is fundamentally a functional and mechanistic imaging modality.  
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The image contrast from Doppler light scattering arises entirely from changes in the 

physiology and mechanical motions induced by applied therapeutics.  The altered 

dynamics of cells and tissues provides a direct measure of the mechanistic effects of the 

drug on the tissue.  Furthermore, biodynamic imaging on small samples can measure 

spatial heterogeneity, isolating regions of tissue that have different responses, or that do 

not respond to the applied therapeutic.  This capability of BDI could be potentially 

valuable for prediction of progression free times. 

 Chemotherapy response assays on ex vivo biopsies have two different applications 

in the clinic.  These are therapy selection, and therapy monitoring.  Therapy selection 

typically takes place after patient relapse when multiple salvage therapies are being 

evaluated.  However, an application of growing utility in the clinic for chemoresponse 

assays is the selection of therapies even before first-line therapies and standard-of-care 

are selected.  By personalizing therapy to the patient from the beginning of treatment, 

precious time would be saved for patients who do not respond to standard-of-care.  The 

second application of biopsy-based chemoresponse assays for therapy monitoring is not 

typically as useful, because most patients do not undergo surgery during chemotherapy.  

However, for laboratory studies or preclincal trials, therapy monitoring of biopsies 

provides a valuable measure for drug development. 

 In this chapter, biodynamic imaging (BDI) was demonstrated for the first time in 

preclinical trials in the second application of therapy monitoring.  Biopsies of sensitive 

and resistant tumor xenografts were tested for platinum sensitivity from untreated 

animals, as well as for platinum sensitivity from animals that had undergone initial 

treatment.  Specific cell lines of human ovarian cancer were selected to control the 
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sensitivity/resistance of the tumor tissues to platinum.  As expected, cell lines known to 

be sensitive to platinum produced tumor xenografts that were sensitive when tested as 

biopsies ex vivo, both with and without pretreatment in the mouse.  Conversely, the cell 

line known to be resistant to platinum produced biopsy explants that were resistant to 

platinum in ex vivo treatments.  BDI assessment of response vs. non-response using a 

multivariate logistic function resulted in 100% discrimination between known sensitive 

and resistant populations.. 

 In contrast to this high-accuracy performance of the BDI chemoresponse assay on 

murine biopsies, the same assays run on tumor spheroids grown by both bioreactor and u-

bottom plate techniques showed almost no differential response to platinum between the 

two cell lines.  This null result on the in vitro-grown 3D tissue culture has important 

ramifications on several fronts.  First, it highlights a potentially important difference 

between in vitro and in vivo tissue growth.  These two environments are radically 

different and may induce the outgrowth of different clonal populations.  Furthermore, the 

in vivo growth includes stromal cells and tissues that are missing from the in vitro culture.  

These different microenvironmental cues are known to lead to different gene expression 

and altered signaling pathways, which may contribute to the difference in the 

experimental responses to platinum.  Second, the null results on the 3D tumor spheroids 

for cell lines with known sensitivity/resistance to platinum in 2D may highlight critical 

differences between 2D and 3D culture.  It is clear that drug transport in 3D culture is 

different than for 2D monolayers, leading to EC50 values that can differ by an order of 

magnitude.  The use of 3D culture for chemoresponse testing requires much higher 

concentrations, which consequently may induce off-target effects in the drug response.  
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These issues can confound interpretations and predictions from 3D culture assays.  On 

the other hand, the biopsy explants do show the anticipated sensitivity/resistance to 

platinum that is predicted by 2D studies on these same cell lines. 

 Ultimately, it is the chemoresponse of tumor tissue in vivo that is most relevant 

for therapy monitoring.  The differential response to platinum of the A2780 and CP70 

explants demonstrates the unique utility of biodynamic imaging for chemoresponse 

testing in the relevant tissue environment.  Furthermore, pretreatment with platinum of 

the mice in vivo prior to surgery had a clear effect on the BDI response on subsequent 

retreatment ex vivo, further demonstrating the utility of BDI for therapy monitoring 

under relevant environmental and tissue conditions. 
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CHAPTER 4. HETEROGENOUS RESPONSE TO PLATINUM IN METASTATIC 
OVARIAN CANCER 

4.1 Introduction 

4.1.1 Multidrug resistance (MDR) 

The development of drug resistance in cancer patients inhibits effective treatment 

and decreases patient survival.  Cisplatin and other platinum compounds have proved to 

be effective at treating epithelial ovarian cancer, but have a high probability of inducing 

drug resistance in treated patient cancers. In many cases, these tumors also exhibit 

resistance to other standard-of-care therapies [130].  The origin of platinum resistance is 

not well understood.  Research shows that tumor microenvironment plays a significant 

role [105, 142-144].  Since metastasis changes the microenvironment of tumor cells as 

they travel to new areas of the body, metastatic tumors may also exhibit significant 

changes in platinum sensitivity. 

 

4.1.2 Tissue Structure and Mechanics 

Animal tissue can be separated into four broad categories [145]. Mesenchymal 

tissue is composed of fibroblast cells that form collagen fibers that make up cartilage, 

bones, muscles, and blood vessels as well as other structural tissues.  Epithelial cells are 

specialized organ cells that make up the liver, skin, intestines, glands, etc.  Haemato-

lymphoid cells comprise much of the immune system and include red and white blood 
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cells, lymphocites, and macrophages.  Nervous system cells make up the brain, spinal 

column, and nerves throughout the body.  Figure 4.1 is an illustration of the how these 

cells relate.  Epithelial tissue is of particular importance in the study of cancer as over 90 

percent of all cancer originates in the epithelium [83]. 

 

 

Figure 4.1.  Illustration of tissue components.  Epithelial cells (A) are supported by 
collagen fibers (B) generated by fibroblast cells (C).  Running through the mesenchyme 
are nerve bundles (D) and blood vessels (E).  Collagen fibers in regions such as the skin 
are supported by muscle cells (F). 

 

4.1.3 Cancer 

Cancer can be broadly defined as the invasive, proliferative growth of an aberrant 

tissue.  Normal tissue cells, exposed to a carcinogenic agent, mutate.  Though mutation is 

a normal and beneficiary process of evolution, many mutations result in dysfunction 

within the cell and threaten survivability of the organism.  Thus, regulatory mechanisms 

induce the death of these cells. However, when a mutation suppresses or alters these 
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regulatory mechanisms, the cell can grow and proliferate without bound, turning into 

cancerous tissue that invades and overcrowds the surrounding tissue and can lead to death 

of the parent organism. 

Cancer typically begins in the epithelium and follows three stages.  During 

initiation, epithelial stem cells are exposed to carcinogenic agents.  This exposure can be 

prolonged without tissue becoming cancerous.  Individual cells affect the behavior of 

surrounding cells and the components of the interstitial environment, which gives rise to 

a field effect that precedes the formation of cancerous lesions and is an area of active 

research for early cancer detection [146]. 

Once a cell has mutated sufficiently to overcome limiting mechanisms, promotion 

leads to clonal expansion of the initiated cells within the local tissue.  During this stage 

tumor lesions form within the surrounding epithelium, though such lesions may present 

little visual difference from normal epithelial cells.  Promotion passes into proliferation, 

as the aberrant cells invade surrounding regions and penetrate into the mesenchyme. 

 

4.1.4 Metastasis 

Metastasis is the formation of cancerous bodies at some distance from the parent 

cells.  Once cancerous cells progress beyond the epithelium where they originated, they 

begin to invade other organs through the mesenchyme.  This can occur through direct 

growth of cancerous tissue, or through proliferation into the lymphatic system or the 

blood vessels.  Once inside the lymphatic or blood vessels, cancer cells can detach from 

the parent tumor and be carried throughout the body. 
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Metastatic tumors present a mixture of parent and transplant environments.  

Tumor cells have genetic heritage from the parent epithelium from which they derived, 

but structural and chemical differences in the host location can alter expression and 

behavior.  Thus, the phenotype of metastatic and primary tumors can vary.  The primary 

way ovarian cancer spreads was thought to be continuous exposure of abdominal organs 

to free-floating tumour cells. However, there is evidence that metastasis to the peritoneal 

cavity may be carried through the blood [147]. The preferential host of metastatic ovarian 

cancer is the omentum.  The omentum is a large fold of peritoneum that hangs down from 

the stomach and encloses the small intestines and other abdominal viscera.  Nieman, et al. 

showed that the adipocyte-rich omentum provides a proliferative advantage and transfers 

fatty acids to ovarian cancer cells [148].  This chapter investigates the effect metastasis 

has on ovarian tumor sensitivity to cisplatin studied through biodynamic imaging. 

 

4.2 Materials and Methods 

4.2.1 Animal and Tissue Models 

A2780 and SK-OV-3 (SKOV3) ovarian cancer cells were from Sigma. 

Xenografts were generated by Dr. Daniela Matei’s laboratory through orthotopic 

implantation of 5x106 cells into the ovary of 6-7 week-old nude female BalbC mice.  

Xenografts formed and metastasized.  Primary and metastatic tumors were harvested after 

4-6 weeks.  Harvested tumors were placed in ice cold media and were transported to Dr. 

John Turek’s laboratory within 2 hours and prepared for imaging. Sample information is 

presented in Table 4.1. 
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Table 4.1. Outline of mouse experiments. Group g1 received a larger panel of drugs 
during testing than did other groups.  Group g10 samples came from a mouse that was 
dying at the time of harvest. Sample was poor making data quality suspect.  Response 
from g10 was not included in analysis. 

 

 

4.2.2 Chemotherapy drugs 

Cisplatin was obtained from Selleck Chemicals. Dimethyl sulfoxide (DMSO) 

came from Sigma-Aldrich. Cisplatin was prepared to twice the desired concentration to 

allow for later mixing inside the sample well. DMSO (0.1%) dissolved in growth medium 

was used as the negative control in all experiments. DMSO was selected because 

cisplatin is dissolved in DMSO before being added to growth medium to improve 

solubility.  
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4.2.3 Murine biopsies 

Tumor biopsies were harvested from nude mice by Dr. Matei’s lab. Biopsies were 

maintained at 4 °C for 5-48 hours before testing. Biopsies were sectioned using a razor 

blade to cut the tumor into pieces of approximately 1 mm3 in volume.  Pieces were 

affixed inside 96-well plates using a small drop of GLUture (Abbot Laboratories) and 

covered with agarose. Growth medium was added to each well. Experiments were 

performed immediately after plates were prepared. 

 

4.2.4 OCI sequence 

A diagram and explanation of the OCI system is shown in CHAPTER 1.5.  OCI 

frames of each xenograft tumor section were captured in cycles every 40-48 minutes on 

average. Each capture sequence consisted of 15-45 seconds of travel time to allow the 

system to transition between tumors, followed by frame capture: 10 background frames 

captured at 10 frames per second (fps) with the reference beam not zero-path matched, 

then 50 frames at 0.5 fps and 500 frames at 25 fps with the reference beam zero-path 

matched. 

Tumor sections were observed for 6 cycles (4.8 hours) to allow the samples to 

stabilize. Then half of the growth medium (~150 µL) was removed from each well and 

replaced with a drug at twice the intended concentration to limit disturbing the sample. 

Tumors were then observed for a further 12 cycles (9.6 hours). 
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4.2.5 Patient-derived xenografts (PDX) 

Patient-derived xenograft tumors were supplied by Dr. Matei.  Patient-derived 

xenografts are tumors cultured from biopsied patient cancer cells and grown in nude mice.  

Their genetic heritage is that of the derived patient cancer cells.  It is unknown if and how 

the murine environment alters phenotypic response. 

 

4.3 Results 

4.3.1 Changes in platinum sensitivity of metastatic tumors 

Samples from a single mouse group were tested over a two-day period.  It was 

uncertain if biopsy samples would still be viable for testing after 24-48 hours post-

operation.  Figure 4.2 shows the distributions of initial NSD values for primary and 

metastatic samples for both A2780 and SKOV3 cell lines.  Initial NSD values had 

considerable sample-to-sample variance, but there was no significant difference between 

the distributions for primary and metastatic samples.  However, the initial condition of 

the sample showed no correlation with which day it was tested (Figure 4.3).  
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Figure 4.2. Distribution of initial a) NSD and b) backscatter brightness values of A2780 
and SKOV3 biopsies. 
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Figure 4.3. Comparison of initial sample NSD and backscatter brightness (BB) for 
ovarian injection biopsies.  The first data point in each set corresponds to day 1 values 
and the second corresponds to day 2.  Error bars represent standard error on the mean.  
There was variance in the NSD and BB from day 1 to day 2, but no systematic trend 
between days.

 

Response to cisplatin (25 μM) and to DMSO (0.1%) for each experimental group 

is shown in Figure 4.4.  Samples exposed to the carrier (negative control) display a non-

zero response that can be characterized as sample drift.  The excision of samples from 

living hosts and subsequent transport, sample separation, and immobilization is likely to 

cause trauma to all samples.  The response to the DMSO carrier can be considered a 

natural background to drug responses.  The greater challenge is the wide variability of 

sample response among samples from the same host, that may represent spatial 

heterogeneity consisting of varying tissue constitution (stromal, epithelial, cancerous, 

etc.).  This sample-to-sample variability complicates the interpretation of individual  
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group responses.  However, response spectrograms generally demonstrated an 

enhancement in the low-frequency band up to 0.1 Hz for metastatic tumors over the 

primary tumor response.   

 

 

Figure 4.4. Average sample response for each experimental group.  DMSO (0.1%) and 
cisplatin (25 μM) responses are shown for each group of samples, separated by cell line 
and sample type—primary or metastatic. 

 

This enhancement is more easily seen in the average primary and metastatic 

responses shown in Figure 4.5.  This enhancement was common for both A2780 and 

SKOV3 tumors, though the difference in response of A2780 tumors is stronger than for 

SKOV3. 
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Figure 4.5. Average response to 25 μM cisplatin (DMSO subtracted).  Response for 
primary and metastatic samples is shown for both A2780 and SKOV3 cell lines.  DMSO 
response for each group has been subtracted prior to averaging.  The difference between 
primary and metastatic responses is also shown. 

 

Figure 4.6 compares the response to cisplatin of intraperitoneal (IP) and 

othotopically injected tumors.  The more recent orthotopic A2780 tumors had weaker 

response to cisplatin than had the IP tumors reported in CHAPTER 3.  The orthotopic 

SKOV3 tumors showed response to cisplatin.  This was unexpected as the literature has 

classified SKOV3 as cisplatin-resistant.  The cisplatin sensitivity may be due to genetic 

mutations in the established line since its sensitivity was first reported, or this may 

signify a change in phenotypic response due to the 3D environment. 
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Figure 4.6. Comparison of ovarian tumor response (DMSO subtracted) to cisplatin.  
Intraperitoneal (IP) A2780 tumors exhibited a much stronger response to ciplatin than did 
the othotopically (Ortho) grown tumors.  The SKOV3, which are classified in the 
literature as a resistant cell line, showed considerable response to cisplatin treatment. 

 

Because tumor samples demonstrated a significant response to DMSO, it is 

important to account for systematic drifts in the population behavior that are not due to 

the application of cisplatin.  Figure 4.7a shows the average response of all samples to any 

perturbation, DMSO or cisplatin.  This response can be considered the average drift in 

population response as the experiment progressed through 9 hours of observation.  The 

population drift was subtracted from each group response and the resulting average 

response for primary and metastatic tumors is shown in Figure 4.7b.  Note that the 

enhancement below 0.1 Hz is still present. 
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Figure 4.7. Correcting for sample population drift.  a) Average response spectrograms of 
each population to any perturbation, DMSO or cisplatin, show drift in sample behavior 
due to natural degradation of the tissue. b) Spectrograms show average response for 
primary and metastatic tumors with the population response removed to correct for 
changes in sample behavior not due to application of cisplatin. 

 

The change in logistic predictor values for each group using the response 

corrected for population drift maintains the trend of increased resistance in A2780 

metastatic tumors (Figure 4.8).  The SKOV3 tumors, however, show no strong trends in 

resistance change.  These results are consistent with the DMSO-corrected response. 
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Figure 4.8. Change in resistance to platinum therapy between metastatic and primary 
tumors. 
 

4.3.2 Patient-derived xenograft (PDX) response to cisplatin 

Patient-derived xenografts (PDX) are an emerging in vitro 3D tumor model for 

culturing patient cancer cells in a laboratory environment.  Preliminary to testing human 

ovarian patient biopsies, patient-derived murine-implanted tumors were assayed.  Figure 

4.9 shows the BDI response for one patient PDX. 

 

Figure 4.9. Average response spectrograms for primary and metastatic PDX tumors 
derived from single human patient.  Metastatic samples showed stronger suppression in 
response to cisplatin (25 μM) than did primary samples. 
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The metastatic PDX for this patient showed greater suppression in the mid to low 

frequencies indicative of increased sensitivity to cisplatin verses the primary PDX 

samples.  The primary sample still showed some sensitivity to cisplatin.  Results 

correlated well with conventional sensitivity assay results supplied by Dr. Matei. 

 

4.4 Discussion and Conclusion 

Orthotopic tumor biopsies present distinct challenges over the in vitro tissue 

models our group has used in the past.  These tumors present a more organic structure 

that includes many different cell types that are difficult to differentiate using current 

technologies.  This led to a higher variance in sample response than was previously 

observed in other 3D tissue models.  Current research is developing new methods to 

address response measurements of strongly heterogeneous tissue (see CHAPTER 5). 

A2780 tumors exhibit greater change in sensitivity to cisplatin compared with 

SKOV3 tumors for metastatics versus primaries.  Primary A2780 tumors in mouse 

groups 2, 4, 5, 6 and 7 showed sensitivity to cisplatin that decreased in the corresponding 

metastatic tumor samples. This decrease was present even when the metastatic tumors 

exhibited a sensitive response. Decrease in sensitivity suggests that metastatic cells may 

have developed better mechanisms for resisting and repairing cisplatin damage.  

Curiously, sample group 8 showed little response in the primary tumors.  The metastatic 

tumors of that same group had a sensitive response.  It is unclear why this particular 

mouse group would present an opposite trend.  However, when corrected for baseline 

drift, neither the primary nor the metastatic tumors showed strong response. 
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The SKOV3 tumors, in general, showed sensitivity to cisplatin.  This differs from 

publish cisplatin sensitivity assessed using 2D assays [149].  The change in sensitivity 

between primary and metastatic SKOV3 tumors in smaller than that of the A2780 tumors, 

suggesting that metastatic SKOV3 cells retain greater phenotypic similarity to the parent 

tumor cells.  Both SKOV3 and A2780 metastatic tumors showed enhancement in their 

response below 0.1 Hz, indicating a common mechanism of cisplatin resistance. 

The PDX sample had an effect opposite that shown by the established cell lines, 

with metastasis displaying increased sensitivity to cisplatin therapy.  This result raises 

questions about the validity of established cell lines as accurate models for drug therapy 

development.  Patient cancers may be more chaotic than current development protocols 

assume, which would be a major factor in drug failure during clinical trials.  The 

unexpected sensitivity of SKOV3 tumors suggests that clonal variations may have 

entered into the established cell line that would alter their behavior from that of the 

original patient source.  However, more PDX tumor experiments are needed to confirm 

these hypotheses. 
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CHAPTER 5. TISSUE DYNAMICS SPECTROSCOPIC IMAGING (TDSI) 

5.1 Abstract 

Spectrograms generated by tissue dynamic spectroscopy (TDS) indicate average 

cell behavior across the entire sample tissue.  When tissue is strongly homogenous, the 

average cell behavior closely matches individual cell behavior.  However, when tissue 

has heterogeneous structure, TDS spectrograms combine the different cellular responses, 

producing an average that may differ from the local tissue responses in certain regions of 

the sample.  In patient biopsy tissue—where samples contain varying amounts of 

cancerous cells, normal organ cells, and structural tissues—regional differences in tissue 

response can be large. A method for assessing the heterogeneity of response within a 

sample is needed.  This chapter discusses the development of tissue dynamics 

spectroscopic imaging (TDSI), an imaging modality that applies TDS on a voxel-by-

voxel basis across the sample to map differences in regional tissue response.  It also 

presents early work looking at regional differences in tissue response that might confound 

or invalidate predictions of patient outcome from tested biopsies. 

 

5.2 Introduction 

Correct identification of tissue response is critical if BDI is to achieve clinical 

utility.  The complexity of cancer biopsies confounds current predictive capabilities of 
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BDI, increasing error and misdiagnosis.  As shown in Figure 5.1, ex vivo tissue, whether 

it is murine xenografts or patient biopsies, is comprised of several different cell types.  

Cancerous cells, normal organ cells, structural components, and blood vessels are all 

bound together.  Without employing other imaging techniques, it is often difficult for 

OCI, MCI, or TDS modalities to determine cell type.  However, each cell type may 

contribute differently to the measured sample response, confounding assessments.  Even 

different cancerous cells may respond differently with parts of the tumor exhibiting a 

sensitive phenotype while other parts are resistant to applied therapeutics.  BDI must 

develop an imaging modality that can address the heterogeneity present in ex vivo tissue 

samples. 

 

 

Figure 5.1. Histology images of stained biopsy tissue samples.  Histology shows that 
biopsy samples are comprised of several different cell types and structures including: (A) 
cancer cells, (B) blood vessels, (C) stromal tissue, (D) normal organ cells, and (E) mucin.  
White regions (F) are artifacts of the staining typical of tears in the tissue. Bars are 200 
μm. 
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To this end, tissue dynamics spectroscopic imaging (TDSI) is an extension of 

TDS that uses different biodynamic response features as the imaging contrast.  It is a 

form of functional imaging [34, 47, 150] that helps detect regional differences in 

response behavior within a sample. 

 

5.2.1 Early TDSI 

TDSI has been developing since the start of biodynamic imaging.  In early tumor 

spheroid experiments, Jeong, et al. [14] noted that MCI images of large UMR-106 

spheroids showed a low-motility region in the center (Figure 5.2).  This corresponded to 

cells in the center of the spheroid being starved for nutrients, which caused them to 

undergo necrosis.  Jeong found that sectioning the OCI images into “shell” and “core” 

regions during BDI analysis resulted in spectrograms that often showed differences in 

tissue response between the two regions.  There was, however, no standardized method 

for determining which parts of the image were shell regions and which parts were core 

region, so sectioning was chosen by the operator.  Furthermore, BDI analysis algorithms 

only accepted circular or elliptical masks for sectioning.  While working with cell lines 

that formed tight spheres, such as UMR-106 or HT-29, circular masks were sufficient, 

but once projects involved biopsied tissue or cell lines that didn’t form spheres in the 

bioreactor, such as MIA-PaCa-2, more complicated sectioning geometries were needed.  

As biopsies and MIA-PaCa-2 tumor spheroids lacked the nutrient-starved central region, 

shell-core sectioning no longer made sense and was abandoned. 
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Figure 5.2. Differences in shell-core response measured by BDI.  MCI images (a) of large 
UMR-106 tumor spheroids often exhibited central, low-motility regions.  These central 
“core” regions showed different response to treatment (b) from the outer “shell” region of 
the spheroid as well as different changes in motility (c). 

Several attempts at functional imaging of heterogeneous tissue have occurred 

since those early experiments.  A2780 and A2780/CP70-GFP (CP70-GFP) cell lines 

showed distinctly different average motilities.  When co-cultured in the same bioreactor, 

tumor spheroids would form as aggregates of the two cell lines with each cell type 

preferentially clustering with itself.  This lead to spheroids with distinct regions 

comprised of A2780 and CP70-GFP cells.  MCI images of co-cultured spheroids showed 

regions of high and low motility that corresponded to CP70-GFP and A2780 cell regions, 

respectively, as confirmed by fluorescence imaging (Figure 5.3).  However, the high 

resistance of A2780 and CP70-GFP tumor spheroids to platinum compounds (see 

CHAPTER 3) made determining differences in drug response between tissue regions 

uncertain. 
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Figure 5.3. MCI and fluorescence images of A2780 and A2780/CP70-GFP co-culture 
spheroid.  A2780 spheroids had distinctly lower motility than spheroids of A2780/CP70-
GFP (CP70-GFP) cells.  This difference in motility is evident in the co-cultured spheroids 
due to preferential segregation between the two cell lines.  Motility determination of cell 
type in the MCI image was confirmed by fluorescence imaging. 
 

More recently, researchers in our group generated functional images of spheroid 

and biopsy samples (Figure 5.4) [151].  This involved separating the OCI capture 

sequence into 2 pixels by 2 pixels regions and generating a response spectrogram for each 

region.  The operator then selected a mask and threshold value based on features 

observed in the spectrograms to determine similarity of response.  Unfortunately, this 

method required the operator to inspect each spectrogram individually, 15625 

spectrograms for a standard 250 pixels by 250 pixels OCI image, and subjectively 

selecting the different features.  No standard feature masks were available. 
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Figure 5.4. Functional images of selected spheroid and biopsy samples. 
 

For TDSI to become a practical imaging mode, a scriptable, standardized 

technique was needed to select tissue response features.  Feature vectors, as a way of 

condensing sample condition and response information, are a natural method for mapping 

regional responses within a tissue sample.  The standardized biomarkers recently adopted 

into BDI analysis protocol remove operator subjectivity and allow TDSI to be part of 

already existing BDI sample processing. 

 

5.3 Current Methodology 

5.3.1 Micro-spectrograms 

Micro-spectrograms are generated in a manner similar to traditional TDS (macro-) 

spectrograms (see CHAPTER 1.7), but the average spectra comprise response 

information from a few pixels instead of the entire OCI image.  A series of OCI images is 

acquired and divided into regions of regular pixel size.  The region size determines the 

granularity of the TDSI image.  An imaging target can be treated as a diffraction grating 

with spatial period .  For an N pixels by N pixels CCD chip of finite dimension, the 
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maximum spatial frequency  captured at the Fourier plane constrains the minimum 

resolvable feature, 

  5.1 

with a frequency grating spacing on the CCD of 

  5.2 

The field of view of the reconstructed image L relates to the grating spacing as 

  5.3 

which gives a the reconstructed image a pixel size p of  

  5.4 

This means that TDSI requires a minimum pixel size of 2 by 2 averaged OCI pixels to 

avoid oversampling the dynamic speckle. 

Once the OCI series is divided into pixel groups, normal TDS analysis occurs for 

each pixel during each image capture sequence in the series.  For an OCI image of N by 

N pixels, this results in a TDSI image of N/2 by N/2 pixels with each pixel having an 

associated backscatter brightness, NSD, and average fluctuation spectrum at each capture 

time.  A spectrogram for each pixel is generated by comparing the fluctuation spectrum at 

each time to the sample average baseline power spectrum.  Note that this baseline power 

spectrum is averaged across the entire sample, which modifies the interpretation of the 

micro-spectrograms to show how tissue behavior within a TDSI pixel compares to the 

average untreated tissue behavior of the entire sample.  Using biomarker analysis, (see  
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CHAPTER 1.8) the BDI output of each TDSI pixel generates a feature vector that 

encapsulates the condition and response of the imaged tissue within that pixel.  Figure 5.5 

presents an illustration of the analysis flow. 

 

 

Figure 5.5. Illustration of TDSI image generation. 
 

5.3.2 Biomarker Maps and RGMerge 

Selected biomarkers are used as contrast agent to generate biomarker maps 

(Figure 5.6) that show regional differences in response amplitude for that biomarker.  

Individual maps are combined using a custom Matlab function called rgmerge.m that 

assigns one biomarker to the red value and another biomarker to the green value in a red-

green-blue (RGB) color space.  The result is an image (Figure 5.6) where the color of 

each pixel indicates how well the two biomarker maps overlap and color saturation 

indicates the strength of each biomarker.  Pixels look more red where the green-assigned 

biomarker has small values and look greener where the red-assigned biomarker has small 

values.  Where both biomarkers have large values the resulting pixel looks yellow, and 

where both biomarkers have small values, the pixel has low color saturation and looks 

black. 
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Figure 5.6. Individual and merged biomarker maps of esophageal biopsy sample 
responding to carboplatin (25 μM) plus taxol (10 μM) combination therapy.  Maps use 
the values of ALLF and TANH biomarkers.  The merged image shows three regions with 
distinct response behavior: a central red region surrounded by a yellow region where both 
biomarkers overlap, and a small green region in the lower left of the image. 

 

Comparing two biomarkers of vastly different amplitudes resulted in merged 

TDSI images dominated by the biomarker with the largest value.  However, it was 

desirable to preserve some measure of the relative strength of biomarker, especially those 

relating to features of the spectrograms.  For this reason, conditional biomarker values 

(see CHAPTER 1.8) are scaled so that the largest negative value of each is -1 and the 

largest positive value is 1.  Response biomarkers are scaled together so that the largest 

negative value of all biomarkers is -1 and the largest positive value is 1.  Scaling 

maintains relative distance from zero so that values close to zero remain close to zero. 

Because rgmerge.m uses RGB color space, all values must be positive, which 

divides the biomarker space into positive and negative groups.  Representing the different 

possible combinations of positive and negative values for each pair of 82 biomarkers is 

challenging (Figure 5.7) and further research is required to devise a method that is both 

information-rich and easily understandable. 
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Figure 5.7. Example TDSI images of positive- and negative-value space combinations for 
two biomarkers.  Biomarker values are from an esophageal patient biopsy sample 
responding to carboplatin (25 μM) plus taxol (10 μM) combination therapy. 
 

5.4 Results 

5.4.1 Heterogeneity of tissue response for a single esophageal patient 

TDSI provides BDI a systematic method for visualizing the amount of 

heterogeneity present in a patient’s tumor. Figure 5.8 shows TDSI images for positive 

and negative biomarker combinations of nine selected biomarkers.  Color can be 

indicative of heterogeneous response, but because the data include positive and negative 

values, of particular importance are changes in shape between the different images.   
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Figure 5.8. TDSI images for sample from a single esophageal biopsy patient.  ALLF (red) 
is compared against (green, from top to bottom) ST/2, TANH, SDIP, QDIP, Q3T/2, LOF, 
MID, and HIF.  Columns are positive- and negative-space combinations of each 
biomarker: (from right to left) positive red, positive green; negative red, negative green; 
positive red, negative green; negative red, positive green. 
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We can classify patient sample heterogeneity by size and distinctness of regions 

into strong, moderate, and weak groups.  Samples 2, 5, 6, 7, 9, 13, and 15 show large, 

easily separable regions of different response and would be classified as strongly 

heterogeneous.  Samples 1, 3, 10, 11, and 16 show large bands of color, but those bands 

tend to be harder to separate and are classified as moderately heterogeneous. The 

remaining samples (4, 8, 12, and 14) show overlapping biomarker masks, or they 

exhibited generally weaker response and would be classified as weakly heterogeneous.  

Though subjective, this classification indicates that 75% of this patient’s samples exhibit 

strong to moderate heterogeneity.  Image segmentation methods are needed to make a 

more systematic assessment. 

 

5.4.2 Comparison of micro-spectrograms to macro-spectrogram  

TDSI shows differences in response that are masked in the macro-spectrogram 

and other BDI output.  These differences would confound response predictions and could 

lead to misapplication of chemotherapeutics, developments of drug-resistance, or later 

patient relapse.  Figure 5.9 shows BDI results for one esophageal patient biopsy sample 

responding to cisplatin (25 μM) plus fluorouracil (5fu, 25 μM) combination therapy. 
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Figure 5.9. BDI results for esophageal patient biopsy sample.  OCI and MCI images 
correspond to final observation of the sample following application of cisplatin (25 μM) 
plus fluorouracil (5fu, 25 μM) combination therapy.  The macro-spectrogram shows mild 
response to therapy.  The TDSI image has three regions: a central dark region, a green 
halo, and a red nodule in the upper left.  Micro-spectrograms for the three regions 
indicate that the green region experienced suppression in the low frequencies in response 
to therapy, while the red region experienced an enhancement.  The dark region (micro-
spectrogram not shown) showed a response similar to that indicated by the macro-
spectrogram. 

 

The OCI image for this sample shows no distinct tissue structures and is typical of 

biopsy samples.  The MCI image has a slight increase in motility visible in the upper 

right suggesting heterogeneous behavior, but the extent of the region is unclear.  The 

macro-spectrogram for this sample shows a slight overall suppression indicative of mild 

response to the therapy.  From the TDSI image of this sample, however, one can 
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determine the size of the higher-motility region at the top-left of the MCI image.  TDSI 

also shows three regions within this sample.  When the micro-spectrogram of each region 

was plotted, the red region showed enhancement in the low- and mid-frequencies 

indicative of resistance to therapy, while the outer green region had suppression in those 

same frequency ranges, suggesting that a portion of the sample was more strongly 

responsive to therapy.  The central dark region had a micro-spectrogram similar to that of 

the macro-spectrogram.  When averaged during traditional TDS analysis, the responsive 

and resistive regional behaviors cancel out.  Therefore, while the macro-spectrogram 

would indicate mild response to therapy, portions of the patient’s cancer may be resistant 

and presage relapse and the development of completely a resistive cancer strain. 

 

5.5 Discussion and Conclusion 

Improvements in TDSI calculation allow for faster image generation, systematic 

biomarker selection, and lower operation interaction.  The analysis flow is 

complimentary to existing analysis methods, which saves computational time and data 

storage space. More research is needed, however, to find the best method for representing 

the information gained. 

Though only one experiment’s complete sample set is presented in this chapter, 

examples of heterogeneous response in TDSI images were not scarce among the sample 

sets processed so far.  Continuing research will develop objective methods for assessing 

sample heterogeneity and quantifying the amount of heterogeneous tissue present in a  
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patient’s biopsy.  Also, the addition of traditional imaging methods would illuminate the 

cause of heterogeneous response and help the project determine which biomarker 

combinations best differentiate tissue type.  

TDSI brings functional imaging to BDI analysis and opens new avenues of 

inquiry into how heterogeneous response may affect long-term patient survival.  Issues of 

representation and data compression must be addressed before the technique can be 

broadly applied to chemotherapeutic response tests.  However, initial results on 

esophageal patient biopsies are promising and indicate that heterogeneous structure is 

common and must be addressed for BDI to achieve better predictive capabilities. 
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Appendix A Biodynamic Study of Synergistic Effects in Pancreatic Tissue 

Synergistic effects play a critical role in the viability of potential cancer treatments 

because they potentially increase the effectiveness of the treatment while limiting the ill 

effect to the patient. Several studies in recent years have investigated different synergies, 

including between different chemotherapeutic drugs [152, 153], between 

chemotherapeutic drugs and different cancer treatments, and between different cancer 

treatments [18]. 

The research group of Dr. Melissa Fishel at the Indiana School of Medicine looked at 

synergistic effect of redox disruption with STAT3 blockade as a dual-targeted therapy for 

treating pancreatic ductal adenocarcinoma (PDAC) [154].  They showed that STAT3 is 

regulated by the redox function of the APE1/Ref-1 endonuclease and that the redox 

inhibitor E3330 blocked DNA binding of STAT3.  In cell culture assays, dual-targeted 

therapy using E3330 and the STAT selective inhibitor STATTIC synergized to inhibit 

growth and spread of PDAC cells with a 3-fold increase in inhibition over mono-

therapies of either E3330 or STATTIC.  However, because 2D cell cultures differ from 

3D tissue in both genetic expression and cellular environment, testing of this novel dual-

targeted therapy in 3D tissue models was needed. BDI is a natural response assay for 

testing combined STAT3/redox inhibition in 3D tissue. 

Cell cultures: MIA PaCa-2 cells were from American Type Culture Collection 

(ATCC) Manassas, VA. Cells were cultured in DMEM at 37 °C in a humidified CO2 

incubator.  All growth media contain 10% fetal calf serum (Atlanta Biologicals), 

penicillin (100 IU), and streptomycin (100 µg/mL). 
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Stat-inhibiting drugs: STATTIC and E3330 were provided by Dr. Mark Kelley, 

Indiana University School of Medicine. 

Sample preparation and imaging: The preparation and imaging methods for both 

tumor spheroid and cell suspension samples was the same as described in CHAPTER 2, 

with the following deviation: for tumor spheroids, 550 frames were captured at 25 frames 

per second instead of 500 frames.  This did not change the data analysis or workflow, 

however, as only 500 frames were used. 

Sample rejection protocol: Experiments exhibited several failure modes that caused 

samples to be rejected from the analysis. Samples would lose coherence-gaiting due to 

fringe washout, or would shift position due to immobilization failure. These modes 

showed strong changes in MCI compared with successful experiments (see Figure A.1a-

c).  Some samples showed erratic jumps in NSD without loss of coherence or 

immobilization (See Figure A.1d-e).  These modes were systematic failures that 

invalidated sample results. A few samples demonstrated an unusually strong response to 

STATTIC, either alone or in combination with E3330. These pathological cases were 

marked by a strong decrease in normalized standard deviation of the speckle intensity and 

by strong shifts in the tissue response spectrograms (See Figure A.1f-g). It was not 

possible a priori to determine when a sample would have a pathological response.  The 

reason for such a response is unknown. These samples were not included in the 

combinatorial response calculations described below.  An entire experiment was rejected 

when a majority of individual samples were rejected. 
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Figure A.1. Examples of accepted and rejected samples.  Individual samples were 
rejected because of coherence-gate loss (a) or immobilization failure (b) after adding drug. 
Acceptable MCI behavior is shown in (c).  Some samples showed normal acceptable 
MCI, but had erratic jumps in NSD (d). Acceptable NSD behavior is shown in (e). Some 
samples exhibited pathological response (f) marked by clear changes in sample motility 
contrast, large decrease in NSD, and abnormally large change in power spectral density 
(spectrogram). Non-pathological behavior is shown in (g). 
 

Results: To study the combinatorial effects of kinase inhibitors on pancreatic cancer 

PaCa-2, we used BDI to see how the STAT-inhibitor STATTIC and the APE1-inhibitor 

E3330 combined produced a greater effect on PaCa-2 than the drugs separately. Drug 
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controls were applied separately and in combination and tumor response was compared 

against negative controls (1.25 mM DMSO and growth medium).  Individual sample 

responses are shown in Figure A.2.  The average tumor response to each control is shown 

in Figure A.3. 

 

 

Figure A.2. Individual samples response spectrograms. 
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Figure A.3. Combinatorial averaged spectrograms. Spectrograms show average PaCa-2 
tumor response to the STAT-inhibitor drugs E3330, STATTIC, and their combination. 
Individual response spectrograms were calculated for each sample with the average 
negative control (DMSO) response of each data set subtracted from each sample in that 
set. Then the average response spectrogram over all data sets for each control was 
calculated. 

There is a visible enhancement of motion up to 0.5 Hz due to the addition of E3330 

and/or STATTIC. This enhancement is greater than any response to the DMSO in which 

both E3330 and STATTIC were dissolved. The average low-frequency enhancement was 

calculated beginning after 3.5 hours, which was the estimated half-max time of the 

response change. The results can be seen in Figure A.4. 
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Figure A.4. Percent change in low-frequency tumor response relative to DMSO. Shows 
the average change in power spectral density between 0 and 9 hours after a drug was 
applied.  

Discussion and Conclusion: Biodynamic imaging and analysis showed an 

enhanced effect in the combination therapy relative to the individual therapies.  However, 

the measured enhancement was not more than the sum of the individual effects of 

STATTIC and E3330, suggesting that the combination effects were additive and did not 

have any particular synergy when applied to 3D culture models. 

The cause of pathological response is unknown.  Several samples from at least 

two experimental sample groups exhibited an overwhelming sensitivity to applied 

therapy.  However, no experimental group showed pathological response in all samples 

indicating that this was a biological effect and not an artifact of the BDI system, nor due 

to operator error.  Even more intriguing was the fact that pathological behavior was not  
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isolated to the combination therapies, but also occurred in samples that received the 

mono-therapies.  More systematic investigation is needed before the cause of this 

hypersensitivity can be determined. 

. 
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Appendix B Assessing response to therapy for esophageal cancer patients using 
biodynamic imaging 

Patient biopsies: Esophageal patient biopsies were obtained from Indiana University 

Hospital.  Harvested tumors were placed in ice-cold media and were transported to John 

Turek’s laboratory within 2 hours and prepared for imaging.  Half the biopsy was 

immediately prepared while the other half was maintained at 4 °C for up to 36 hours 

before testing. Biopsies were sectioned using a razor blade to cut the tumor into pieces of 

approximately 1 mm3 in volume.  Pieces were affixed inside 96-well plates using a small 

drop of GLUture (Abbot Laboratories) and covered with agarose. Growth medium was 

added to each well. Experiments were performed immediately after plates were prepared. 

Chemotherapy drugs: Cisplatin, carboplatin, fluorouracil (5-FU), and paclitaxel 

(taxol) were obtained from Selleck Chemicals. Dimethyl sulfoxide (DMSO) came from 

Sigma-Aldrich. Drugs were prepared to twice the desired concentration to allow for later 

mixing inside the sample well.  Drug concentrations were as follows: 25 μM for cisplatin, 

carboplatin, and 5-FU; 10 μM for taxol.  DMSO dissolved in growth medium was used as 

the negative control in all experiments. DMSO was selected since it is the carrier for the 

other drugs before being added to growth medium to improve solubility.  

OCI sequence: A diagram and explanation of the OCI system is found in CHAPTER 

1.5.  OCI frames of each tumor section were captured in cycles every 40-48 minutes on 

average. Each capture sequence consisted of 15-45 seconds travel time to allow the 

system to transition between tumors, followed by frame capture: 10 background frames 

captured at 10 frames per second (fps) with the reference beam not zero-path matched, 

then 50 frames at 0.5 fps and 500 frames at 25 fps with the reference beam zero-path 
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matched.  Tumor sections were observed for 6 cycles (4.8 hours) to allow the samples to 

stabilize. Then half of the growth medium (~150 µL) was removed from each well and 

replaced with a drug at twice the intended concentration to limit disturbing the sample. 

Tumors were then observed for a further 12 cycles (9.6 hours). 

Results:  Figure B.1 shows average patient response to the mono- and combination 

therapies for esophageal patients 1-6.  Patients were designated as responsive or non-

responsive to therapy based on average therapy response spectrogram.  The response 

biomarkers were then clustered based on similarity within each population (Error! 

Reference source not found.Figure B.2). 

Figure B.1. Average response spectrograms for esophageal patients (#1-6).  The number 
of replicates for each drug is indicated 
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Figure B.2. Clustered feature vectors for the esophageal patients. (#1-6) 
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