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ABSTRACT

Man, Mengren. Ph.D., Purdue University, August 2016. Nanophotonics for Dark
Materials, Filters, and Optical Magnetism. Major Professor: Kevin J. Webb.

Research on nanophotonic structures for three application areas is described, a

near perfect optical absorber based on a graphene/dielectric stack, an ultraviolet

bandpass filter formed with an aluminum/dielectric stack, and structures exhibiting

homogenizable magnetic properties at infrared frequencies. The graphene stack can

be treated as a effective, homogenized medium that can be designed to reflect lit-

tle light and absorb an astoundingly high amount per unit thickness, making it an

ideal dark material and providing a new avenue for photonic devices based on two-

dimensional materials. Another material stack arrangement with thin layers of metal

and insulator forms a multi-cavity filter that can effectively act as an ultraviolet filter

without the usual sensitivity of the incident angle of the light. This is important in

sensing applications where the visible part of the spectrum is to be removed, allowing

detection of ultraviolet signals. Finally, achieving a magnetic material that functions

at optical frequencies would be of enormous scientific and technological impact, in-

cluding for imaging, sensing and optical storage applications. The challenge has been

to find a guiding principle and a suitable arrangement of constituent materials. A

lattice of dielectric spheres is shown to provide a legitimately homogenized material

with a magnetic response. This should pave the way for experimental studies.

More specifically, a graphene stack is designed, fabricated and characterized. The

structure shows strong absorption of light. Spectroscopic ellipsometry is used to

obtain the complex sheet conductivity of graphene. Further modeling results establish

the graphene stack as the darkest optical material, with lower reflectivity and higher

per-unit-length absorption than alternative light-absorbing materials.



ix

An optical bandpass filter based on a metal/dielectric structure is modeled, show-

ing performance that is largely independent of the angle of incidence. Parametric

evaluations of the reflection phase shift at the metal-dielectric interface provide in-

sight and design information. Filter passbands in the ultraviolet (UV) through visible

or longer wavelengths can be achieved by engineering the dielectric thickness and se-

lecting a metal with an appropriate plasma frequency, as demonstrated in simulations.

A lattice of suitable dielectric particles is shown to fulfill the requirements for

a magnetic optical material. Using Mie theory, the microscopic origin of the mag-

netic response is explicitly identified as being due to the magnetic dipole resonance

of an isolated sphere. This provides a design basis, and dielectric and lattice require-

ments with candidate dielectrics that will allow magnetic materials to be designed

and fabricated for optical applications are presented.
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1. INTRODUCTION

1.1 Background

Nanophotonics is concerned with studying the interaction between electromag-

netic waves and structures with feature size at the nanometer scale. Research in this

subject has seen rapid growth since the late twentieth century. Furthermore, with

the advent of metamaterials, it has created new opportunities for controlling light

in the sub-wavelength regime and promises a wide range of applications from energy

harvesting, imaging, to photonic circuitry.

Efficient absorbers of light is necessary for harvesting energy from light. Recent

studies on graphene have shown that it exhibits extraordinarily efficient absorption of

light as an atomically thin material. Its excellent properties as an electrical conductor

could potentially allow extraction of electrical current, if charge separation can be

achieved following the creation of electron-hole pairs under excitation from light.

Hence, we investigate the effectiveness of accumulating the absorption from individual

sheets of graphene (≈ 2%) by stacking [1]. The result is the darkest optical material

ever created.

Optical filters and mirrors are commonly created from a dielectric stack. Such

structures are important in the detection of certain wavelengths of light and for cre-

ating mirrors. A periodic structure composed of a unit cell having two different

dielectrics, the usual arrangement, has relatively strong sensitivity to the incident

angle of the light [2–4]. When designed for normal incidence, this means the per-

formance degrades as the angle of incidence moved from the normal direction, often

a problem in applications. Furthermore, achieving suitable dielectric fir ultraviolet

(UV) wavelengths may be a challenge. The use of an aluminum-dielectric stack allows
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very thin layers to be used, which reduces the sensitivity to incident angle, and it

turns out the aluminum has useful properties in the UV [5].

Another aspect receiving wide attention in nanophotonics research are opportuni-

ties for optical magnetism, which is necessary in the perfect imaging devices based on

metamaterials. As is well known, natural materials do not exhibit magnetic properties

at optical frequencies. Artificial metamaterials employ resonant structures to achieve

a magnetic dipole moment at such high frequencies. The first successful design of

such a resonant structure was the split-ring resonator (SRR), but efforts to push the

conduction current-based magnetic response into the optical regime have remained

unsuccessful [6]. While plasmonic nanostructures support circulating displacement

current at higher frequencies, losses associated with metals can be prohibitive. An

alternate approach is to use dielectric structures. Dielectric particles made from mate-

rials with large positive permittivity support strong magnetic dipole resonances in the

scattering of plane waves at optical frequencies [7–9]. Using Mie theory [10–12], we

analyze the scattering properties of dielectric spheres and identify a magnetic dipole

resonance. This feature is found to exist in the homogenized response of a lattice that

produces a homogenized permeability. Features in the homogenized permeability are

found to correspond to the magnetic dipole resonance of individual particles, which

will have far-reaching impact.

1.2 Thesis Outline

This thesis consists of five chapters, including the introduction and summary chap-

ters. Chapter 2 presents the design, modeling, fabrication, and characterization of a

light-absorbing structure based on multiple layers of alternating graphene and dielec-

tric. The optical properties of graphene are modeled using the frequency-dependent

complex conductance, which is determined with spectroscopic ellipsometry of chem-

ical vapor deposition (CVD) of graphene transferred to quartz substrate. A new

technique for analyzing data from ellipsometry is developed, which takes into con-
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sideration the incoherent superposition of light reflected from the back side of the

optically thick substrate. Results from experiment and modeling establishes the per-

formance of graphene stacks as the darkest material, which could have applications

in energy harvesting.

In Chapter 3, a design for a UV bandpass filter is presented. The filter is composed

of a stack of alternating metal and dielectric layers, similar to the graphene stack

presented in Chapter 2. Aluminum is identified as the material of choice for achieving

a metallic response at ultraviolet frequencies. The multilayer structure behaves as a

coupled Fabry-Pèrot cavity system whose resonant transmission can be designed to

go beyond the visible wavelength, in the ultraviolet regime. The angle-insensitivity

of the filter is derived from cancellation of contribution to phase shift by forward

propagation with that by reflection. Such properties make the structure an efficient

UV filter with minimal fabrication difficulties.

In Chapter 4, we identify the microscopic origins for optical magnetism in di-

electric metamaterials. A magnetic metamaterial response requires the excitation

of a significant magnetic dipole moment, and the underlying structure should pro-

duce strong optical scatter, which typically occurs at a resonance. Among candidate

structures, metamaterials composed of purely dielectric materials show promise as

low-loss optical media, as they are free from losses commonly associated with metal-

lic or plasmonic components. Recent developments in dielectric metamaterials draw

attention to aspects of homogenization, characterization of such metamaterials as ho-

mogeneous media with effective parameters such as permittivity and permeability. In

the process, we also carried out an analysis of the microscopic origins of homogenized

magnetic response in relation to the behavior of optical scatter from individual di-

electric particles. The results allow us to revisit the issue with rigorous methods for

homogenization and establish a criterion for uniquely extracting the effective permit-

tivity and permeability.

Chapter 5 gives a concise summary of the research findings and accomplishments.
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There are three appendices. In modeling these structures, existing theories were

studied and original models were developed. These are included in the appendices.

The theory for monochromatic plane wave propagation in a planar stratified medium

was developed for modeling the graphene stack and the UV-filter. A model for ex-

tracting the sheet conductivity of atomically thin 2D material such as graphene and

MoS2 was established. This new model does not require the use of a wavelength-

dependent physical model for refractive index n or permittivity ε for least square

fitting, as is common in existing spectroscopic ellipsometry studies. The model also

takes into account of the incoherent superposition of light due to reflections from

an optically thick transparent substrate. The Nicolson-Ross-Weir method that ex-

tracts material properties from S-parameters was used extensively in the studies on

magnetic effective medium.
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2. ULTRA-DARK GRAPHENE STACK

METAMATERIALS

We present a fabrication method to achieve a graphene stack metamaterial, a

periodic array of unit cells composed of graphene and a thin insulating spacer, that

allows accumulation of the strong absorption from individual graphene sheets and

low reflectivity from the stack. The complex sheet conductivity of graphene from

experimental data models the measured power transmitted as a function of wave-

length and number of periods in the stack. Simulated results based on the extracted

graphene complex sheet conductivity for thicker stacks suggest that the graphene

stack reflectivity and the per-unit-length absorption can be controlled to exceed the

performance of competing light absorbers. Furthermore, the electrical properties of

graphene coupled with the stack absorption characteristics provide for applications

in optoelectronic devices.

2.1 Introduction

Metamaterials have provided a new domain for optical materials with the promise

of important functionality, suggesting new devices and performance not achievable

with natural materials. Various spatial arrangements of nanostructured materials

may prove important in solar energy harvesting, for example [13]. With small reflec-

tion and significant absorption per unit length, a material becomes dark. Dark mate-

rials could prove to be of great use in applications like photovoltaics, photodetectors,

and stealth technology. Among the possible dark materials that have been studied

This chapter has been published as: S. Chugh, M. Man, Z. Chen and K. J. Webb, “Ultra-dark

graphene stack metamaterials,” Appl. Phys. Lett. 106, 061102 (2015)
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so far, such as black silicon [14] and nickel-phosphorus alloys [15], the performance

of vertically aligned carbon nanotubes (VA-CNTs) has stood out [16]. Recently, a

graphene sheet stack was proposed, and simulated results indicated that this dark

material should have important properties [17]. The proposed graphene sheet stack

is composed of graphene and a thin, nanometer-scale, spacer having dielectric prop-

erties similar to the background medium, free space for most applications. Those

graphene stack simulations indicated that the graphene stack should be the dark-

est material. Here, we present experimental data from fabricated graphene stacks,

along with related simulation results, that indicates a performance as a black material

that surpasses that of VA-CNTs, thereby establishing graphene stacks as the darkest

material known.

Monolayer graphene consists of a single layer of carbon atoms arranged in a hexag-

onal honeycomb lattice. It is well established that a single layer of graphene shows a

significantly high absorption over a large range of wavelengths [1, 18]. This behavior

is remarkable considering the fact that graphene is just one atomic layer thick. Our

idea of making extremely thin dark materials is based on the understanding that the

absorptive property of individual graphene layers can be retained and accumulated if

they are stacked together with a finite distance between them. As we will show later,

this blackness results from the property that the reflection from the stack can be

made small by changing the properties of the spacer while the (controllable) per unit

length absorption, mostly determined by graphene’s absorption and spacer’s thick-

ness, remains high. Another interesting materials aspect is that the stack provides a

means to achieve high absorption independent of wavelength. Placing a material (a

graphene sheet) in a cavity allows control of absorption at the expense of bandwidth.

This removal of the absorption-bandwidth constraint, means that it is possible to re-

alize devices that draw upon this concept. For instance, it becomes possible to control

the sensitivity of a photodetector by using a graphene stack without compromising

speed or bandwidth - and the (equal) high electron and hole velocities allows high

speed. It is worthwhile to mention that the graphene stack can be homogenized into
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an effective medium and the graphene layers are electrically isolated so that there

is no charge transport between layers. In this sense, the properties studied here are

those of a homogenized spatial arrangement of graphene, but not of graphene. Fur-

thermore, although the optical properties of graphene only have received extensive

attention, the extraction of complex conductivity (with displacement current) has not

yet been dealt with properly. In our work, we present a detailed extraction method,

which in principle, carries over to the many other two-dimensional optical materials

that are of current interest to the materials community.

Figure 2.1 shows the schematic of a graphene stack, which consists of multiple

graphene layers and intervening dielectric support layers. We present a graphene stack

fabrication method and describe its optical properties using both measurement data

and calculations based on extracted complex sheet conductivity from ellipsometry

data. This provides understanding of the physical transport in graphene. Based on

an excellent match between the experiments and the simulated results, we describe

the key parameters of a stack and discuss how they should be tuned to achieve a near

perfect black material. This provides evidence that graphene stacks are the darkest

material to date.

The optical properties of a graphene stack were recently studied in far-infrared and

THz region [19], in relation to the influence of doping and number of graphene layers

on the plasmonic properties of a periodically patterned disc array. In that work, the

disc array was of interest as a notch filter, and a ribbon arrangement operates as a po-

larizer. Drude parameters for the graphene sheet were extracted from measurements

for single and multiple sheets. In our work, a rigorous extraction procedure is used to

determine the graphene sheet complex conductivity at each measurement wavelength,

and this is used in the stack description. Also, the properties of a graphene-based

Bragg stack, a 1D photonic crystal, were recently investigated [20].
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Fig. 2.1. Schematic of a graphene stack on a quartz substrate.

2.2 Fabrication of Graphene/PMMA Stack

We used CVD-grown graphene on copper foil with polymethyl methacrylate (PMMA)

as a carrier for transfer [21,22]. In this method, PMMA is spin coated over graphene

grown on copper foil, and then the copper is removed by etching with a 1M FeCl3 solu-

tion. The resultant graphene-PMMA layer was then transferred to a quartz substrate

after rinsing it several times with water and HCl. Each period of a graphene-PMMA

stack was fabricated using this process. The PMMA layer thickness can be controlled

by changing its concentration as well as the spin speed, allowing tens to hundreds of

nanometer film thicknesses to be achieved. This graphene transfer method is rela-

tively straight forward, providing a viable and inexpensive way to produce thin dark

materials. We fabricated the graphene-PMMA stack on a 0.5 mm thick quartz sub-

strate (SPI# 01016T-AB) with each PMMA spacer of 200 nm thickness. Graphene

(from Graphene Laboratories Inc.) was transferred from copper foil to quartz and be-

fore transferring the next unit cell, the substrate was baked at 180 ◦C for 20 minutes
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so as to allow the PMMA coating to soften and spread uniformly on the underly-

ing graphene layer. This process can be repeated, yielding a periodic structure of

graphene layers separated by PMMA.

2.3 Measurement of Sheet Conductivity of Graphene

To determine the graphene sheet conductivity, we transferred a single graphene-

PMMA film to quartz, and then dissolved the PMMA using a hot acetone bath.

Resides were removed by annealing in a forming gas environment (5% hydrogen and

95% nitrogen) at 500 ◦C for 30 minutes. Ellipsometry measurements were obtained

(with a J. A. Woollam instrument) to extract the wavelength-dependent graphene

film properties. The results of ellipsometry measurements are a result of superposition

over the detector bandwidth. Such incoherent superposition causes no complication

in thin film optics, as the phase difference accumulated between different wavelength

components is negligible due to the small distance traversed by light. In such cases,

light can still be modeled as monochromatic plane wave. However, it is inevitable

to use a thick substrate (0.5 mm quartz) to support graphene, and as a result the

reflected power varies drastically, even over a small wavelength range.

A rigorous extraction procedure was developed to adequately account for the

incoherent superposition of light to represent the light source used in the ellipsome-

try measurements. It has been established that ellipsometry data can be expressed

as functions of reflectance at four distinct polarizations R(0◦), R(45◦), R(90◦), and

Rγ(45◦) where the angles in the argument refer to the orientation of the electric

field vector with respect to the plane of incidence [23, 24]. Spectral averaging can

be readily carried out for these reflectances. Given the optical thickness of the sub-

strate (nquartz×0.5 mm), the phase difference accumulated over the bandwidth of the

light source is significantly larger than 2π. It is therefore sufficient to average these

quantities over a phase of 2π as 〈R(α)〉 = (2π)−1
∫ 2π

0
R(α) dδn, where δn is the phase

accumulated via traversing the substrate, and R(α) is the unaveraged reflectance with
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electric field making an angle α with the plane of incidence. We do not limit the fre-

quency dependence of the sheet conductivity by the choice of a physical model (e.g.,

Lorentz, Cauchy, Drude), and instead carry out direct inversion of ellipsometry data

to determine the wavelength-dependent complex sheet conductivity (σs = σ′s+iσ
′′
s [S])

for graphene. Details of the derivation of this extraction method can be found in the

supporting information.

The extracted sheet conductivity is plotted in Fig. 2.2. Note that the conduction

current dominates the displacement current, and that there is substantial disper-

sion, with increasing conductivity as the wavelength is reduced. Raman spectroscopy

measurements were carried out on the same CVD-grown graphene transferred on a

SiO2(90 nm)/Si(0.5 mm) substrate. The defining feature of the Raman spectrum of

graphene (as shown in the inset of Fig. 2.2) is the 2D peak. This peak is caused by a

double resonance process due to electron scattering by two inter-valley transverse op-

tical phonons [25]. The line-width of the 2D peak increases with increasing number of

graphene layers due to coupling between them and a value of 45 cm−1 indicates that

the sample largely consists of bilayer graphene [26]. We suspect that the dispersion

in the wavelength range shown is due to impurities carried by graphene during the

transfer process. We also show the universal graphene conductance [1, 27, 28] result

[πe2/(2h), with e the electron charge and h Planck’s constant] in Fig. 2.2. Note that

the real part of the extracted conductance approaches this for longer wavelength,

near-infrared light. The increasing σ at shorter wavelengths indicates that the ab-

sorption of graphene increases with reduction in wavelength, which is in agreement

with previous reports of the excitonic peak shown by graphene in the UV range (∼

270 nm) [18].

2.4 Modeling the Optical Properties of Graphene/Dielectric Stacks

The optical modeling of the graphene/dielectric stacks was based on the transfer

matrix method, which allows cascading of planar elements by multiplication of the
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Fig. 2.2. (a) Conductance of CVD-grown bilayer graphene extracted from
ellipsometry measurements (with exp(−iωt) time convention) plotted in
the cgs-Gaussian unit of cm/s. Also shown (in green squares) is the con-
stant theoretical conductance value for monolayer graphene [1]. (b) Mea-
sured Raman spectrum for the graphene sample with a 532 nm laser. The
line-width of the 2D peak increases with increasing number of graphene
layers, due to coupling between them, and a value of 45 cm−1 indicates
that the sample largely consists of bilayer graphene [26].

corresponding element transfer matrices. The model uses a monochromatic plane

wave having a definite direction of propagation/incidence. The transfer matrix for

the graphene layer was modeled by a sheet conductivity. For comparison with exper-

imental data, in which an optically thick substrate was present (Fig. 2.3), spectral

averaging was carried out. The transfer matrix [29] for a graphene sheet having zero

thickness is derived in the supplementary material. We carried out transmittance

measurements on the graphene-PMMA stack after each unit cell transfer using a

Perkin Elmer Lambda950 spectrophotometer. Experimental and simulated results at

normal incidence are plotted in Fig. 2.3. Simulated results are spectrally averaged

over a bandwidth representative of the measurements, which gives smooth spectra.

An excellent agreement between the experimental and the predicted data validates

our ellipsometric extraction of σs as well as the matrix model for the stack.
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Fig. 2.3. Normalized measured transmitted power (thick-solid lines) at
normal incidence for a graphene-PMMA stack with a spacer thickness of
200 nm and corresponding calculated values using the extracted graphene
sheet conductivity (thin-dashed lines).

As the graphene-PMMA stack is extended to a higher number of unit cells, high

absorption of light can be achieved with an overall stack thickness at the micron

level. For 100 unit cells, such a stack absorbs almost 95% of light in the entire visible

range and the per unit length absorption constant, α, of this graphene-PMMA stack is

calculated to be 0.17-0.25 µm−1 (Over 700-400 nm, respectively). This property could

prove to be beneficial in making inexpensive dark materials for small wavelength range

when used with anti-reflection coatings (with an optimized thickness and impedance).

With the recent introduction of large area CVD synthesis of graphene films and use

of flexible thermal release tapes [30], the process of graphene transfer has become

much faster, making multiple transfers easier.

Further improvement in the dark behavior of a graphene stack system requires

reduction in reflectivity. As the reflectivity is strongly influenced by the refractive

index of the spacer material, lowering the spacer refractive index can substantially
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reduce the reflected power. Ideally, the graphene layers would be suspended in air.

However, because a structural support is required, we desire a material with a refrac-

tive index close to 1. Materials with such a low refractive index do not exist in nature,

so they have to be engineered as a homogenized effective medium. Typically, they

can be made by introducing porosity in a bulk material so as to achieve a reduced

effective refractive index. Such a material could be patterned with UV lithography

for large scale manufacture. Here, we demonstrate a new e-beam lithography tech-

nique to make a pillared structure of hydrogen silsesquioxane (HSQ) (Fig. 2.4), a

negative e-beam resist having a bulk refractive index of ∼ 1.4, which can be used

as a spacer in a graphene stack. In order to make the HSQ pillar array, we used a

modified lithography technique that we call beam-hopping. Instead of exposing sev-

eral circular patterns with short exposure times using a small step size within each

pillar, we make the pattern using long exposure times and long step sizes, so that

each individual beam exposure makes one of the pillars. After one long exposure, at a

pillar location, the beam hops to the next pillar position. This technique significantly

reduces the total lithography time, relative to conventional e-beam lithography. Fig-

ures 2.4(a) and (b) show the SEM and the AFM images, respectively, of an HSQ

pillar array fabricated using this technique. The diameter of each pillar is 60 nm and

the center-to-center distance between the pillars is 120 nm. An AFM scan across

the edge of the sample gives a thickness of 118 nm for the HSQ layer. Ellipsometry

measurements were carried out on this pillared structure at several angles of incidence

to determine the effective refractive index. The refractive index of the HSQ layer was

fitted to a Cauchy model [31], and was found to be approximately 1.04. With such

a low refractive index, dispersion with wavelength is negligible. We also measured

negligible depolarization in the light scattered from the pillar array.

Using the extracted complex sheet conductivity, we model the optical properties

of a graphene stack having a spacer material of refractive index 1.04. For 50 unit cells,

the absorption constant, α, and power reflectance, R, are plotted in Figs. 2.5(a) and

(b), respectively, against spacer thickness and wavelength. As the spacer thickness
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(a)
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Fig. 2.4. (a) SEM and (b) AFM images of an HSQ pillar array, as a
realization of an artificial low-index material for a graphene stack. The
diameter of each pillar and the neck width are 60 nm, and the height is
118 nm. The refractive index of this pillared structure was found to be
1.04 using ellipsometry.

decreases, the conductivity of individual graphene layers start to add linearly, thereby

resulting in the increased reflectance in this regime in Fig. 2.5(b). R is less than

0.05% for spacer thicknesses over 40 nm, but it increases sharply at smaller spacer

thicknesses. Although α decreases monotonically with increasing spacer thickness, it

remains large even when the spacer is more than 40 nm thick. A good compromise
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between reflectivity and per unit length absorption suggests a spacer thickness of

greater than 40 nm. The graphene stack thus gives an extremely low power reflectance

with a very high per unit length absorption constant (implying a small total film

thickness), the two characteristics which define the blackness of a material.
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Fig. 2.5. (a) Calculated per unit length power absorption constant, α. (b)
Power reflectance (normalized to 1) for a stack with 100 unit cells. The
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adds linearly.
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We find that these results for a low-index graphene stack are much better than

those for VA-CNTs [16], in terms of both per unit length power absorption constant,

α, and power reflectance, R. Optical measurements carried out on a carbon nanotubes

array 300 µm in thickness showed α ≈ 0.12 µm−1 for light traveling along the carbon

nanotubes. For a graphene stack having 50 unit cells with a spacer thickness of 75 nm

(yielding a total thickness of ∼ 38 µm) and spacer refractive index of 1.04, we find

that α = 0.53 µm−1 for normal incidence, more than 3 times that achieved with VA-

CNTs. For the same stack, at normal incidence, the power reflectance is R ≈ 0.043%

at both 633 nm and 457 nm, while the corresponding values achieved for VA-CNTs are

0.045% and 0.07%. This suggests that graphene stacks show better performance than

VA-CNT with even smaller thickness. The reflectivity of VA-CNTs can be controlled

by changing the nanotube thickness and spacing, to change the effective refractive

index. However, the ability to control the reflection by changing the spacer thickness

in a graphene stack is important in increasing blackness by reducing reflection, and

cannot be replicated with VA-CNTs.

An ideal black material should absorb light at all wavelengths, independent of the

angle of incidence. It is therefore important to study the angle-dependent behavior

of these graphene stacks. In order to further substantiate their potential as black

materials, we plot the angle-dependent per unit length absorption constant and power

reflectance spectra of the low-index stack consisting of 50 unit cells. Figure 2.6 shows

the predicted absorption constant and power reflectance for TE and TM polarizations,

respectively. It can be seen that the performance of the stack is extremely good even

for large angles of incidence.

The combination of strong optical absorption over a wide wavelength range and

high mobility carrier transport in graphene enables a wide range of optoelectronic ap-

plications, such as a new class of high speed photodetectors. Graphene, brought into

contact with metals, naturally forms a potential barrier that can be tuned by electric

field or chemical doping. While photo response of 0.001 A/W has been demonstrated

in single layer graphene [32], our stacked graphene will maximize the photo absorp-
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Fig. 2.6. Angle-dependent per unit length power absorption constant, α,
and power reflectance (normalized to 1) spectra for a stack of 50 unit cells.
The spacer has n = 1.04 and a thickness of 75 nm. (a), (b): Absorption
constant and power reflectance, respectively, for TM incidence; (c), (d):
absorption constant and power reflectance, respectively, for TE incidence.

tion and increase the photo response by two orders of magnitude, enabling ultrafast

photodetectors. Recent work on graphene [33] shows that because of its small elec-

tron heat capacity and weak electron-phonon coupling, it can be used to make highly

sensitive and fast bolometers that work at low temperatures. Our proposed graphene

stack could be implemented as the absorbing material in such devices, thereby increas-
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ing their sensitivity. The absorption ability of graphene in the microwave range [34]

makes the graphene stack an ideal candidate for use in military applications as well.

Highly absorbing graphene stack can be used as a radar absorbent material (RAM),

improving stealth technology.

2.5 Conclusion

To conclude, we have demonstrated a graphene stack that has the characteris-

tics of the darkest known material. The model developed provides a quantitative

measure of the performance of these stacks and, furthermore, given a certain absorp-

tion/reflection requirement, helps us define their parameters, i.e. the refractive index

and thickness of the spacer and the number of unit cells. As the darkness of these

stacks critically depends on the spacer material, newer technologies to make low re-

fractive index materials, which are cheaper and simpler, could prove to be beneficial.

This, we believe, is the next step in the realization of darker metamaterials.
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3. ANGLE-INSENSITIVE ULTRAVIOLET FILTERS

BASED ON METAL-INSULATOR STACKS

We present a metal-dielectric stack ultraviolet (UV) bandpass filter that rejects

the longer wavelength, visible spectrum and is thin and relatively insensitive to the

angle of incidence. Parametric evaluations of the reflection phase shift at the metal-

dielectric interface provide insight and design information. This non-trivial phase

shift allows coupled Fabry-Pérot resonances with subwavelength dielectric film thick-

ness. Furthermore, the total phase shift, with contributions from wave propagation

and non-trivial reflection phase shift, is insensitive to the angle of incidence. Filter

passbands in the UV can be shifted to visible or longer wavelengths by engineering

the dielectric thickness and selecting a metal with an appropriate plasma frequency.

3.1 Introduction

Filters that pass a portion of the ultraviolet (UV) spectrum and reject longer

wavelength visible light, making them solar blind, are important in sensing applica-

tions. Such filters could be used for flame sensing, in the detection of biological and

chemical agents, and for plume detection. Furthermore, in such sensing and detection

applications, it is important to have the same spectral response for a broad range of

incident angles, i.e., angular-insensitivity [2].

Several types of UV filters have been proposed and demonstrated [3, 4]. A solar

blind UV band-pass filter consisting of a metal nano-grid was demonstrated by coating

20 nm of Al on a prefabricated SiO2 square grid with a 190 nm period, 30 nm

This chapter has been published as: S. Kim, M. Man, M. Qi and K. J. Webb, “Angle-insensitive

and solar-blind ultraviolet bandpass filter,” Opt. Lett. 39, 5784 (2014)
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linewidth, and 250 nm depth [4]. This coating process requires oblique deposition,

which results in nonuniformity over the structure, and also the fabrication of a SiO2

square nano-grid is rather complicated. The peak power transmission efficiency of

about 27 % at normal incidence is further reduced by half by tilting the illumination

angle to 20◦. A multilayer dielectric stack consisting of high and low refractive index

layers has also been demonstrated as a UV filter [3]. However, the multilayer dielectric

stack, which utilizes the multiple interference effect from each layer, requires a thick

stack and hence can be expensive to manufacture. Also, optical filters based on

multiple interference are usually very sensitive to the angle of incidence, because the

phase shift accumulated by light traversing the structure determines the resonance;

the phase accumulation by propagation is intrinsically angle-sensitive. As a result,

the transmitted power and hence filter response is strongly angle-dependent [35].

Metal-dielectric multilayer structures have been considered for bandpass filters in

the visible regime, with normal incidence [36, 37], and when local homogenization is

possible, as an equivalent ladder network at normal and oblique incidence [38]. Light

can be transmitted into bulk metal, subject to the skin depth. However, by alternating

thin metal and dielectric layers, high transmission is possible. The total thickness

of this type of filter is small compared to all-dielectric interference filters. Other

research has suggested an omnidirectional resonance can be supported in a metal-

dielectric-metal (MDM) structure for TM light, in which the angular dependence of

the propagation phase shift is (possibly partially) compensated by that of incident

angle-dependent reflection phase shift at the dielectric-metal interface, resulting in

angle-insensitivity [39]. This concept has been extended for the omnidirectional MDM

single cavity Fabry-Pérot filter at visible regime [40].

In this Letter, we demonstrate an angle-insensitive and solar-blind UV bandpass

filter based on a multilayer stack of metal and lossless dielectric films. We begin by

evaluating the degree of non-trivial phase shift parametrically, and present a complete

phase shift map for filter design and choice of material. The phase shift at the metal-

dielectric interface allows the reduction of the length of each Fabry-Pérot cavity to tens
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of nanometers, and introduces an angular insensitivity to the filter. By controlling

the dielectric thickness and using metals with appropriate plasma frequencies, it is

possible to implement a variety of bandpass filters whose central resonant wavelengths

range from UV through visible or even longer wavelengths.

Fig. 3.1. Schematic of the metal-dielectric multilayer filter structure: dm
and dd are the metal and dielectric thicknesses, respectively, εm and εd
are, respectively, the dielectric constants of the metal and dielectric, Np

is the number of unit cell periods, and θinc is the angle of incidence.

Figure 3.1 shows a schematic of the metal-dielectric multilayer structure, with the

corresponding parameters. Here, dm and dd are the metal and dielectric thicknesses,

respectively, εm and εd are, respectively, the dielectric constants of the metal and di-

electric, Np is the number of unit cell periods, and θinc is the angle of incidence. The

transfer matrix method (TMM) [29] was used to calculate the normalized transmis-

sion (T ) and reflection (R) power spectra, and the normalized absorption (A) power

spectrum was obtained from A = 1 − T − R. We use Al [41] and SiO2 [5] as the

metal and dielectric, respectively. Unlike commonly used plasmonic metals, such as

Ag and Au, the plasma frequency for Al (3.57×1015 Hz or 79.7 nm) lies deep in the
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UV region. While in the visible regime Al has high loss, that in the UV is low, making

it a good plasmonic material in this wavelength range. Furthermore, the smaller real

part of the dielectric constant in the UV facilitates film transmission.

3.2 Non-trivial Phase Shift
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To understand better the material conditions for controlling the cavity phase, we

evaluated the electric field reflection phase shift (φref) at the interface of a lossless

dielectric (refractive index nd =
√
εd) and a semi-infinite metal (ñm = nm + ikm =

√
εm), under normal incidence, which is given by

Γn =
nd − (nm + ikm)

nd + (nm + ikm)
(3.1)

φref (Γn) = arctan

 −2
(
km
nd

)
1−

(
nm

nd

)2

−
(
km
nd

)2

 , (3.2)
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where −π ≤ φref (Γn) ≤ 0. Γn is the reflection coefficient at the metal-dielectric

interface with a normal illumination, and φref (Γn) is the phase component of Γn. In

Fig. 3.2, we plot φref (Γn) using Eq. (C.2) as a function of nm/nd and km/nd; the real

(nm) and imaginary (km) components of metal refractive indices are normalized by the

adjacent lossless dielectric (nd). Calculations show that the phase shift approaches

−π/2 as the denominator of Eq. (C.2) approaches 0, i.e., 1−(nm/nd)
2−(km/nd)

2 → 0.

The case for Al is also plotted as a function of wavelength (black plus symbols) in

Fig. 3.2. Here, the refractive index of the lossless dielectric is chosen to be nd = 1.5,

that assumed for SiO2. Notice that over the free space wavelength range of 150 nm

to 300 nm, the reflection phase shift at the SiO2-Al interface is quite high (−3π/4 ≤

φref (Γn) ≤ −π/2), and therefore we consider implementing this wavelength region as

the resonant filter passband. In such a spectral region, the resonant cavity length can

be reduced, suppressing the phase accumulation by wave propagation.
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3.3 Modeling the UV-Filter
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Fig. 3.3. Simulated power spectrum for transmission (T ), reflection (R),
and absorption (A) for a filter having dm=10 nm, dd=50 nm, and θinc=0◦

for (a) Np=2 and (b) Np=3. Al and SiO2 are used as metal and dielectric,
respectively.
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Figure 3.3 gives the calculated T , R, and A as a function of wavelength for a UV

filter structure with dm=10 nm, dd=50 nm, and with normal illumination (θinc=0◦);

(a) Np=2 and (b) Np=3. Notice that the resonant passband wavelength in Fig. 3.3(a),

approximately at 252 nm, is large relative to the dielectric and metal film thicknesses.

The phase shift that occurs upon reflection at the dielectric-metal interface allows

resonance with small dielectric thickness. This is facilitated by a metal operated close

to, yet at wavelengths longer than its plasma frequency (visible wavelength regime

for Ag or Au, and UV wavelength regime for Al). In Fig. 3.3(b), with Np=3, two

distinct transmission peaks can be observed, compared to a single peak with Np=2

in Fig. 3.3(a). Three unit cells (Np=3) form two coupled cavities, and the modes

of these otherwise isolated cavities interact. Consequently, the doubly degenerate

single cavity mode splits into two different eigenmodes (252 ± 28 nm) [42]. Here,

the longer wavelength peak corresponds to the symmetric mode coupling, and the

shorter wavelength peak corresponds to the antisymmetric mode coupling [37]. The

magnitude of the resonant transmission peaks differs because of the material (Al)

dispersion.

Figure 3.4 shows the spectrum for T (on a logarithmic scale) as a function of illu-

mination angle for transverse electric (TE - Ey, Hx, Hz - Fig. 3.4(a)) and transverse

magnetic (TM - Hy, Ex, Ez - Fig. 3.4(b)) cases. The structure dimensions and materi-

als are the same as in Fig. 3.3. For TE, there is moderate sensitivity to incident angle,

and for TM, T is essentially independent of angle, except for θinc ∼ 90◦, a regime that

is not of practical significance. Filters based on Fabry-Pérot interference with dielec-

tric films typically exhibit substantial sensitivity to angle of incidence, due to changes

of phase shift accumulated in the cavity [35]. The metal-dielectric multilayer filter,

however, has reduced angular sensitivity for TM.

The angular sensitivity of the filter responses shown in Fig. 3.4 are further analyzed

by calculations of phase shift for both TE and TM polarizations, as functions of the

incident angle, θinc, of a single Al-SiO2-Al resonant cavity at λ0 = 225 nm. The total

round-trip phase shift is φtot = 2φref +φprop (lines with the circle symbol), where 2φref
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(a) T (λ0,θinc), TE

(b) T (λ0,θinc), TM

Fig. 3.4. Transmission (T ) power spectrum (logarithmic scale) as a func-
tion of angle of incidence θinc for (a) TE and (b) TM illumination. Al and
SiO2 are used as metal and dielectric, respectively. The metal thickness
dm=10 nm, the dielectric thickness dd=50 nm, and the number of periods,
Np=3.

is the reflection phase shift at both cavity walls (dashed lines) and φprop = 2kzdd is

the round-trip phase accumulation by wave propagation (blue line). The TE and TM
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Fig. 3.5. (a) The round-trip phase shifts, as a function of incident angle
θinc, of a single Al-SiO2-Al resonant cavity at λ0 = 225 nm: the reflection
phase shift 2φref for TE (red dashed lines) and TM (green dashed lines),
the phase accumulation by wave propagation φprop (blue line), and the
total phase shift φtot for TE (red line with circles) and TM (green line with
circles). (b) Magnitude of the electric field reflection coefficient |Γ(θinc)|
for both SiO2/Al (dashed lines) and SiO2/Si (solid lines) interfaces, for
TE (red) and TM (green) polarizations.
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cases are red and green, respectively. Notice that the trends in angular dependency of

2φref under TE and TM (dashed lines) are opposite. Under TM incidence, 2φref (green

dashed line) has the opposite angular dependence compared to φprop (blue line); as a

result, the φtot for TM polarized light (line with green circles) is relatively insensitive

to angle, and the condition for resonant transmission is approximately satisfied at

almost all angles of incidence. Such phase compensation is the underlying principle

for the angle-insensitive filter response for TM incidence [39]. Under TE incidence,

on the other hand, 2φref (red dashed line) exhibits the same angle-dependence trend

as φprop; the resultant φtot (red line with circles) ranges from 0 to −2π as the θinc

goes from 0◦ to 90◦. Nevertheless, as shown in Fig. 3.4(a), the filter response for TE

is reasonably insensitive to the angle of incidence for a large range of incident angles

(< 60◦). In Fig. C.1(b), we plot the magnitude of the reflection coefficient |Γ(θinc)|

at a SiO2/Al (dashed lines) and SiO2/Si (solid lines) interface for TE (red) and TM

(green) polarizations. Notice that |Γ(θinc)| for the SiO2/Al case shows remarkably

less angle-sensitivity, compared to SiO2/Si, for both TE and TM cases.

The central resonant wavelength of the transmission passband can be tuned by

changing the dielectric thickness. Figure 3.6 shows the T spectrum (logarithmic scale)

as a function of dielectric thickness, dd, with two different numbers of unit cells; (a)

Np = 3 and (b)Np = 8. The materials and metal thickness, dm, are same as in Fig. 3.4,

and the illumination is normal (θinc=0◦). As the dielectric thickness increases, the

cavity length increases as well, shifting the resonance to longer wavelengths. The

magnitude of the transmission power also varies, showing higher transmission peaks

for the UV regime; this is because Al has a lower loss at these wavelengths. Higher

order resonant modes begin to appear for larger dielectric thickness. Increasing the

number of unit cells leads to additional coupling between the Fabry-Pérot resonators,

and as a result, each mode splits into multiple peaks and ripples appear in the pass-

band, as shown in Fig. 3.6(b). Also, Fig. 3.6(b) shows a higher wavelength selectivity

compared to Fig. 3.6(a), as expected from a higher order filter [35]. As the num-

ber of unit cells, Np, increases, higher quality factor resonators sharpen the cut-off
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(a) T (λ0,dd), Np=3

(b) T (λ0,dd), Np=8

Fig. 3.6. Transmission (T ) power spectrum (logarithmic scale) as a func-
tion of dielectric thickness dd when (a) Np=3 and (b) Np=8. Al and
SiO2 are used as metal and dielectric, respectively. The metal thickness
is dm=10 nm and the illumination is normal (θinc=0◦).

and introduce passband ripple. This higher wavelength selectivity would improve the

sensitivity of a solar-blind UV detector or sensor.
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3.4 Conclusion

In conclusion, the metal-dielectric multilayer filter we presented is relatively thin

and effective as a solar-blind UV bandpass filter, with angular insensitivity and a high

wavelength selectivity. The principle of the metal-insulator stack bandpass filter is not

limited for UV applications. By using Ag or Au as the metal whose plasma frequencies

fall within the visible or longer wavelength regime, it is possible to design an angle-

insensitive filter for visible or longer wavelengths. The reflection phase shift map

that we presented can be used to choose appropriate materials. A higher reflection

phase shift increases the effective cavity length and provides an angular insensitivity

in the filter response. In addition to changing materials, the central wavelength of

the transmission band can be easily tuned by the dielectric thickness. This type of

angle-insensitive metal-dielectric multilayer filter should be useful in color displays, for

optical detectors, and for various spectral analysis that can benefit from insensitivity

to the angle of incidence.
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4. THE QUEST FOR HOMOGENIZED MAGNETIC

MEDIUM

4.1 Introduction

Magnetic effects form the basis of much of modern technology. From data storage

to magnetic resonance imaging (MRI), magnetic material responses have been of crit-

ical importance. At optical frequencies, however, the magnetic response of natural

materials is negligible [43], and the magnetic field couples to atoms much more weakly

than does the electric field [44]. As a result, the permeability approaches unity at op-

tical frequencies, and there is no role in controlling the propagation of light. However,

during the past decade, research in nanophotonics and plasmonics has demonstrated

a range of applications that depend on suitable magnetic material properties at high

frequencies, such as high resolution imaging [45], enhanced nonlinearities [46,47], im-

proved MRI resolution [48–51], and magnon waves [52], the dual of surface plasmons.

Interest in artificial magnetic media that enable new control of the behavior of light

has grown tremendously with the growth of interest in metamaterials [53–57].

Achieving a magnetic metamaterial response requires the excitation of significant

magnetic dipole moments in the structure. Such strong interactions between the

electromagnetic wave and the material require the underlying structure to produce

strong optical scattering, which could occur with a resonance effect. A major emphasis

has stemmed from the microwave split-ring resonator (SRR) [46]. This concept of

driving circulating current into resonance has since appeared in metamaterial designs

that show magnetic response at microwave and terahertz frequencies, and has led

to a number of experimental demonstrations of negative refraction [58]. It has also

been shown that conduction current in carbon nanotube coil mixtures can provide

significant magnetic properties well into the infrared wavelength range [59]. All of this
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work has involved conductor concepts and hence is based on the premise of moving

free charge. However, at optical frequencies, and by way of example, the material

response of noble metals is dominated by displacement current, and the complex

dielectric constant has a negative real part [60].

Efforts to increase the operating frequency of SRRs into the optical regime have

remained unsuccessful [6], primarily because there is too little free charge and it can-

not be moved quickly enough, an argument attributed to Landau and Lifshitz [43].

Several designs have since been reported [61–66] in which resonant surface plasmon

modes – displacement current – supported by plamonic nanostructures replaces con-

duction current in the SRRs. Among these plasmonic metamaterials, the so-called

fishnet structure garnered substantial interest [62–64], with reports of negative re-

fractive index in the optical regime [63, 67]. Subsequent work addressed the spa-

tial dispersion that results in strong angular dependence of the retrieved effective

medium parameters, challenging a homogenized material picture [68–70]. Another

approach that has been presented is use of an array of metal nanoparticles, such as

in a ring [6, 65, 66, 71, 71–73] or cluster [74, 75]. A circular ring of such plasmonic

particles coupled together can support a circulating displacement current, giving rise

to a magnetic dipolar response [65]. While homogenization of such nanoparticles has

been investigated (see, for example, [71,73,74]), there remains the question of whether

this mode is adequately excited in a mixture and whether substantial magnetism is

possible with angle-insensitive homogenization.

While metal nanoparticles provide a strong scatter and a substantial electric dipole

moment, they may not be the best choice for achieving a large magnetic dipole.

In addition, the non-radiative loss, described by the imaging part of the complex

dielectric constant, can be substantial. In some situations, even small losses can

severely compromise performance [76, 77]. All-dielectric metamaterials, those with

constituent materials having a positive real part of their dielectric constant, may

provide an effective suite of properties and low dissipative loss [7, 9, 78–80]. Of key

importance here, the series solution of Mie for scatter from a spherical dielectric
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particle dictates that the lowest order, longest wavelength resonance is of magnetic

dipole character [7–10,78]. Increasing the dielectric contrast increases the strength of

scatter and hence the magnetic dipole moment [9]. Non-spherical dielectric resonators,

such as a cube [7, 8], exhibit similar magnetic dipole character.

The excitation of strong magnetic dipole moment in a dielectric particle at optical

frequencies can form the microscopic origin of magnetism [7]. However, realizing a

homogenized magnetic material response requires a permeability that is insensitive

to angle. In a periodic structure, significant scatter occurs at the edges of the Bril-

louin zone where the lattice dimension (Λ) in an integer multiple of half the effective

wavelength (λ). Meaningful homogenization requires frequencies sufficiently far re-

moved from the edge of the Brillouin zone. Forming an intra-cell resonance, as in

the magnetic dipole resonance from a dielectric particle, can fulfill this requirement.

Because the magnetic dipole resonance on individual particles forms the microscopic

origin for optical magnetism, the resonance in the metamaterial relevant to achiev-

ing meaningful homogenized permeability µeff should remain sub-unit-cell in nature,

which precludes strong modification of the magnetic dipole resonance as the particles

are assembled into a lattice. With weakly interacting scatterers, the resonance fre-

quency for the magnetic dipole of an isolated particle thus sets an upper bound on

the size of the lattice, if meaningful homogenization is to be pursued.

We address basic questions of the homogenized magnetic response in relation to

the constituent particle’s scattering properties and the lattice. For simplicity, we limit

our analysis to homogeneous spherical dielectric particles as constituent resonators

in the metamaterial, allowing the use of Mie theory for the isolated scatterers to

act as a guide. Prior work has considered homogenized magnetism based on the

magnetic dipole moment from a Mie-type resonance of the constituent particles [7–9,

78]. Our focus here is the establishment of a correlation between the Mie resonance

and the rigorously extracted effective permeability, and how the extracted parameters

vary with the key parameters, including frequency, lattice, angle of incidence, and

component material properties. The character of scatter from an isolated spherical
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particle, the leading electric and magnetic dipole terms in a spherical wavefunction

expansion, and the importance of a dielectric particle in achieving a magnetic material

response are outlined in Sect. 4.2. Section 4.3 has our key simulation results that

show the validity of a homogenized dielectric lattice in realizing a magnetic material

response. Section 4.4 presents basic and applied material response issues and the

potential impact of the work is summarized in Sect. 4.5.

4.2 Magnetic dipole moment from an isolated particle

We present the calculated scattering efficiency spectrum of a nanometer-scale

sphere made of a hypothetical material having dispersionless dielectric constant of

41.7, which corresponds to that of LiNbO3 at terahertz frequencies. This provides

a basis for homogenized magnetism and a means to design materials. Specifically,

the use of Mie theory facilitates the characterization of the magnetic dipole moment

strength arising from a spherical dielectric particle. The exact wave function de-

scribing scatter of a linearly-polarized monochromatic plane wave by a homogeneous

spherical particle was developed by Mie [10]. The two lowest order terms of the series

correspond, respectively, to the fields radiated by a magnetic dipole and an electric

dipole. Higher order multipoles occupy corresponding terms of increasing orders in

the series expansion. The strength of scatter is characterized by the scattering cross

section,

σsca =

Re

[∮
s
(Esca ×H∗sca) · n ds

]
∣∣∣Einc ×H∗inc

∣∣∣ . (4.1)

A dimensionless quantity, the scattering efficiency, is defined by normalizing σsca to

the geometrical cross section of the particle, giving

Qsca =
σsca

πa2
, (4.2)

where a is the radius of the spherical particle.
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In the series solutions of the scattered field, let al and bl denote the complex

amplitude of the l-th electric and magnetic multipole, respectively. These scattering

amplitudes have solutions [11]

al =
nψ′l(q)ψ(nq)− ψl(q)ψ′l(nq)
nξ′l(q)ψl(nq)− ψ′l(nq)ξl(q)

(4.3)

bl =
nψ′l(nq)ψl(q)− ψl(nq)ψ′l(q)
nψ′l(nq)ξl(q)− ψl(nq)ξ′l(q)

, (4.4)

where q = 2πa/λ is the size parameter,

ψl(z) =

√
πz

2
Jl+1/2(z) (4.5)

and

ξl(z) =

√
πz

2
H

(1)
l+1/2(z), (4.6)

are the Ricatti-Bessel functions, with Jν(z) the Bessel function of the first kind and

H
(1)
ν (z) = Jν(z) + iNν(z) is the Hankel function of the first kind describing scattered

fields, where Nν(z) is the Neumann function.

The scattering efficiency Qsca can then be expressed as [11]

Qsca =
2

q2

∞∑
l=1

(2l + 1)
(
|al|2 + |bl|2

)
. (4.7)

The absorption and extinction efficiencies are determined like wise, with

Qext =
2

q2

∞∑
l=1

(2l + 1) Re(al + bl) (4.8)

and

Qabs = Qext −Qsca. (4.9)

Equation (4.7) is particularly convenient for identifying resonances in the magnetic

dipole moment, i.e., local maxima in b1. As an example, in Fig. 4.1(a) we show the

calculated Qsca for an ε = 41.7 sphere of radius a = 80 nm. The relative contributions

from the first three modes are shown, along with the magnetic dipole resonance at

λ = 1.05 µm.
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Fig. 4.1. (a) The spectrum of Qsca, and the relative contribution of the
first three modes. The dielectric sphere has ε = 41.7 radius a = 80 nm,
and is situated in free space. From the figure the resonance frequencies of
magnetic dipole (b1), electric dipole (a1), and magnetic quadrapole (b2)
can be determined. Higher order partial waves (l ≥ 3) have negligible
amplitude at these wavelengths. (b) The case for metal nanoparticle:
a = 160 nm and ε = −3.
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For a particle at the reference coordinate center, and an incident plane wave field

in the z-direction having E = x̂E0, the far-field electric field in spherical coordinates

becomes [11]

E
(s)
θ ≈ E0

eikr

−ikr
cosφS2(cos θ)

−E(s)
φ ≈ E0

eikr

−ikr
sinφS1(cos θ), (4.10)

where η0 is the free space wave impedance, and S1 and S2 are scattering functions rep-

resented as an infinite series in terms of Legendre polynomials of order corresponding

to the term in the series. The normalized θ-dependent fields, described in (4.10), are

plotted in Fig. 4.2 for wavelengths that can be identified as resonances in Fig. 4.1(a).

The magnetic and electric dipolar and quadrapolar characters are clear. The magnetic

dipole in Fig. 4.2(a) is m = ŷm and the electric dipole in Fig. 4.2(b) is p = x̂p. We

exploit the magnetic dipole resonance in creating a homogenized magnetic material.

The magnetic dipole resonance in Fig. 4.1(a), presented in terms of Mie’s wave

function expansion, can also be viewed in terms of the particle cavity field resonance.

A spherical cavity with a perfect electric conductor (PEC) boundary condition has

the TMm,1,1 (transverse magnetic to the radial direction, so Hr = 0) mode as the

lowest order resonance [89]. The internal field for this mode has the form of a electric

dipole. The boundary condition at the surface of a large dielectric constant material

is approximately at perfect magnetic conductor (PMC). Solving the dual problem for

cavity modes results in the lowest order mode being TEm,1,1 and a magnetic dipole

character for the internal and scattered fields. Therefore, the enhanced magnetic

dipole effect in Fig. 4.1(a) corresponds to the cavity mode of the dielectric particle.

Achieving a strong homogenized magnetic material thus corresponds to an intra-cell

resonance, as is the case with prior SRR and also that on carbon nanotube (CNT)

coil mixtures [59].

In Fig. 4.3 we show the calculated lowest order magnetic dipole resonant wave-

length (λmd) as a function of spherical particle radius. Notice that there is linear

dependence on particle radius. Also, as expected, the larger the dielectric constant



39

  1

  2

30

210

60

240

90

270

120

300

150

330

180 0

 

 

|S1(cos θ)|
|S2(cos θ)|   1

  2

30

210

60

240

90

270

120

300

150

330

180 0

 

 

|S1(cos θ)|
|S2(cos θ)|

(a) λ = 1.05 µm (b) λ = 0.747 µm

  2

  4

30

210

60

240

90

270

120

300

150

330

180 0

 

 

|S1(cos θ)|
|S2(cos θ)|

  5

  10

30

210

60

240

90

270

120

300

150

330

180 0

 

 

|S1(cos θ)|
|S2(cos θ)|

(c) λ = 0.729 µm (d) λ = 0.571 µm

Fig. 4.2. Far-field scattering patterns from (4.10) for an isolated dielectric
sphere having ε = 41.7 and radius a = 80 nm in free space at wavelengths
corresponding to resonance in the: (a) magnetic dipole; (b) electric dipole;
(c) magnetic quadrapole; (d) electric quadrapole. The resonant wave-
lengths can be identified in Fig. 4.1(a). The asymmetry in (c) results
from multi-pole superposition.
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Fig. 4.3. The wavelength for magnetic dipole resonance, λmd, for a dielec-
tric sphere having dielectric constants ε = 41.7 (red star symbols, with the
red dashed line giving the interpolated results) and ε = 12 (blue square
symbols and blue dashed line). It is clear that for fixed material, λmd for
the dielectric sphere scales linearly with respect to sphere radius over the
range of particle radii relevant to this investigation.

that longer the resonant wavelength. In this case, the lower dielectric constant is

approximately that for Si. The ratio between the slopes of the two curves is approx-

imately
√

41.7/12.

We point out that the while a dielectric sphere has the magnetic dipole as its

dominant and lowest order mode, exhibiting appreciable electric and magnetic mul-

tipole resonances, a metal (plasmonic) sphere exhibits almost exclusively the electric

multipole resonances with the electric dipole being dominant. While this appears to

have been recognized [90,91], in the broader context of desirable material properties,

we consider a fictitious, lossless, metal particle in Fig. 4.1(b). Notice that the electric

dipole resonance is strong and lowest order, and the magnetic dipole is negligible.

This character lead to the conclusion that dielectric spherical nanoparticles (having

positive real part of dielectric constant) are the preferred choice over metallic (plas-

monic, with a negative real part of the dielectric constant), although both can lead

to strong scatter. However, this position may depend on structure, because CNT
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coil mixtures that have conduction current resonance have been shown to be a viable

magnetic metamaterial [59].

4.3 Homogenized magnetism from dielectric lattices

In this section, we present results for the homogenized material response of dielec-

tric lattices. We first describe a numerical homogenization procedure where we use

a finite element method to determine the complex scattered fields at each frequency,

hence the S-parameters, and then extract what we claim are the unique material

constitutive parameters using a procedure now know as the NRW method [92]. By

investigating convergence issues and sensitivity to angle of incidence, we build a case

that dielectric spheres on a cubic lattice can provide legitimate homogenized mag-

netism and exploit the intra-cell magnetic dipole resonance of the isolated particle in

Sect. 4.2. We compare this numerical procedure with an analytic method that cap-

ture quite nicely the magnetic dipole resonance, providing a simple design framework.

Finally, we show results for a candidate optical dielectric material, MoS2.

4.3.1 Illustrative Homogenized Magnetism from a Dielectric Lattice

We apply the NRW numerical homogenization procedure to the fictitious high

dielectric constant material identified as having a suitable magnetic dipole moment

in Sect. 4.2, ε = 41.7 (LN at THz frequencies) and a spherical radius of a = 80 nm.

The wavelength λmd corresponding to the magnetic dipole resonance sets an upper

bound for the lattice constant Λ, namely Λ < λmd/2. Clearly, the radius a of the

particle sets a lower bound, 2a ≤ Λ. Thus, with a given dielectric material, Mie

theory can be used to choose a particle size a that yields magnetic dipole resonance

in the desired wavelength regime. Then the range of the lattice constant Λ of the

metamaterial is conveniently determined from

2a < Λ <
λmd

2
. (4.11)
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We chose a lattice constant of Λ = 280 nm. Since λmd = 1.05 µm given the material

and a = 80 nm, the necessary condition in (4.11) is fulfilled.

The homogenized parameters for this slab is shown in Fig. 4.4. The results for n

in Fig. 4.4(a) indicate a passive material at all wavelengths (n′′ > 0). Although the

material is composed of lossless dielectric spheres, there is scattering loss the produces

a non-zero n′′ in the neighborhood of the intra-cell resonances. In the regime of

useful homogenization, there is only one propagating wave scattered from the lattice,

that in the normal direction. However, the total near-field solution, including all

coefficients of the evanescent plane wave spectrum, influence the complex amplitude

of the propagating mode, inducing this apparent loss in the refractive index. The

real part of the refractive index can have any sign in principle, but here n′ > 0. The

extracted (η =
√
µ/ε) is shown in Fig. 4.4(b). The real part of the impedance (η′)

is restricted to be positive, representing positive power flow. The imaginary part

of the impedance is unrestricted. Both n and η are uniquely determined from the

selection of Γ and z in Step 1. We found that significant homogenized magnetism

exists for this structure, as indicated in Fig. 4.4(c), where µ′ deviates appreciably

from unity at around the wavelength λ = 1.1 µm. This is near the wavelength

(λmd = 1.05 µm) of the magnetic dipole resonance of an isolated sphere predicted

by Mie theory calculations, shown in Fig. 4.1(a). The magnetic resonance is thus of

sub-unit-cell nature and occurs at wavelength longer than the edge of the Brillouin

zone (λ = 2Λ), and is indicative of valid homogenization. The extracted ε is given in

Fig. 4.4(d). Notice that the signs of µ′′ and ε′′ change in Figs. 4.4(c) and (d). Those

are uniquely determined and collectively provide a passive, slightly lossy medium

through n. We return to this issue in Sect. 4.4.

We established convergence in the homogenized parameters as a function of the

number of periods in the slab. Figure 4.5 shows a comparison between 1 and 5 units

cells, and essentially identical results. While an asymmetric unit cell may require

some number of periods to arrive at parameter convergence, depending on the con-

stituent materials, a symmetric unit cell has been shown to have the same extracted
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Fig. 4.4. Extracted (a) complex refractive index and (b) η =
√
µ/ε for

a single lattice period with spheres having radius a = 80 nm and ε =
41.7. The lattice has dimension Λ = 280 nm and normal incidence is
considered. (c) Effective permeability µ and (d) effective permittivity ε of
a one-unit-cell thick slab. The solid lines correspond to the NRW method
and the dashed line the analytical method of Lewin. The magnetic dipole
resonance of a single sphere occurs at λ = 1.05 µm, while the electric
dipole resonance occurs at 0.747 µm.
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Fig. 4.5. The effective medium properties retrieved using NRW method
for stabs measuring one and five unit cells in thickness. The results are
virtually identical, indicating one cell is sufficient in our study.

parameters regardless of the number of periods [87]. This along with our numerical

data indicates a slab on unit slab thick provides accurate homogenized parameters.

For computational expediency, the remainder of our results are for this case.

Valid homogenization should not exhibit dependence on the angle of incidence

under which the S-parameters are obtained. Therefore, it is of interest to investigate

the angle-dependence of the retrieved effective medium properties. We limit our in-

vestigation to TE polarized incidence (electric field perpendicular to the plane defined

by the slab surface unit normal vector and the incident wave vector). In Fig. 4.6,
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the retrieved effective permeability and permittivity for five angles of incidence are

shown. The effective medium properties are found to be largely independent from the

angle of incidence up to 30◦, but µ′ and ε′ show substantial deviation at 40◦, for much

of the wavelengths range. Of particular importance is the fact that there is little

change µ′ at the first resonance as a function of incidence angle. We attribute this

to excitation of the dielectric sphere resonance, and it is good news with respect to

attaining insensitivity to incidence angle (over the small wavelength range of interest)

where there is a substantial homogenized permeability. Our interpretation of these

results is that we have shown a legitimately homogenized magnetic material, in this

case at λ = 1.05 µm.

4.3.2 Analytic Homogenization

Lewin developed an analytical procedure for homogenizing a semi-infinite simple

cubic lattice loaded with identical dielectric spheres [95]. The problem treated is

an infinite homogeneous medium into which scatterers are introduced onto a cubic

lattice in a semi-infinite half-space. This conforms with our situation of dielectric

spheres arranged to this point in a slab and in free space. We apply this method of

homogenization and compare with the numerical NRW approach with a slab.

In Lewin’s work, the reflected and transmitted fields are expressed as a sum of the

scattered fields of the particles in the lattice. This uses Mie theory but retains only

the first two terms in the partial wave expansion. Weakly interacting scatterers are

assumed, which means either low fill fraction or small dielectric constant scatterers.

The constitutive parameters of the effective medium, ε and µ, are extracted following

the determination of reflection and transmission coefficients at the boundary of the

semi-infinite effective medium [95]. In this aspect it is similar to the NRW method.

We provide the results from Lewin here because they a plotted in comparison with
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Fig. 4.6. The homogenization results for a structure with dielectric ε =
41.7 spheres 80 nm in radius on a simple cubic lattice with Lattice constant
Λ = 280 nm as a function of incident angle. The finite slab is 1 unit cell
thick.
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our numerical slab results and the fact that they can provide a design framework.

The homogenized parameters [95],

ε = ε1

(
1 +

3vf

F (θ)+2be
F (θ)−be − vf

)
(4.12)

µ = µ1

(
1 +

3vf

F (θ)+2bm
F (θ)−bm − vf

)
, (4.13)

where

F (θ) =
2(sin θ − θ cos θ)

(θ2 − 1) sin θ + θ cos θ
, (4.14)

ε1 and µ1 are the dielectric constant and the relative permeability of the background

medium, respectively, and ε2 and µ2 are those of the particle,

be =
ε1
ε2
, bm =

µ1

µ2

, (4.15)

the volume filling fraction is

vf =
4π

3

( a
Λ

)3

, (4.16)

and

θ =
(ω
c

)
a
√
ε2µ2. (4.17)

For the lattice under consideration, ε1 = 1, ε2 = 41.7, and µ1 = µ2 = 1. The ho-

mogenized effective medium parameters are shown in Figs. 4.4(c) and (d) for compari-

son with the numerical results for a slab with NRW extraction. The Lewin parameters

are real, as dissipative losses are absent in the constituent particles. The resonances

in µ and ε occurs at wavelengths that corresponds respectively to the magnetic dipole

resonance at λ = 1.05 µm and the electric dipole resonance at λ = 0.747 µm of

an isolated sphere, shown in Fig. 4.2(a) and (b). Notice how nicely µ′ is captured

through the magnetic dipole resonance in the mixture in Fig. 4.4(c), the major feature

of interest here, and how the electric dipole resonance is captured in Fig. 4.4(d). In

the analytical results, ε is not affected by resonance in the magnetic dipole. Similarly,

the µ is not affected by resonance in the electric dipole. In the numerical results

obtained using the NRW method, any multipole resonance affects both the electric
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and magnetic homogenized responses. For wavelengths longer than that of magnetic

dipole resonance (λmd), the two methods agree perfectly. Although Lewin uses ex-

pansion terms up to quadrapole, the results are in agreement with the more accurate

numerical procedure only through the dipole resonances. We attribute this deviation

to the strength of scatter this medium.

4.3.3 Magnetism from Patterned Transition Metal Dichalcogenides

Among naturally existing materials, TMDs possess large positive dielectric con-

stant over a wide spectrum range. The striking relevant feature of TMDs is their

large sheet dielectric constant and low loss in the near-infrared [97]. This suggests

a strong magnetic dipole moment at a Mie resonance. Based on the bulk MoS2 di-

electric constant [96], we approximate the dielectric constant as being isotropic and

use the values in Fig. 4.7(a). The calculated optical scattering spectrum for an MoS2

sphere 80 nm in radius is shown in Fig. 4.7(b). It is evident from the scattering spec-

trum that an appreciable magnetic dipole resonance occurs at incident wavelength

0.79 µm. We subsequently homogenize a structure consisting of MoS2 spheres with

80 nm radius on a simple cubic unit lattice with lattice constant Λ = 280 nm using

the numerical NRW procedure, and find the retrieved effective medium properties are

shown in Figs. 4.7(c) and (d) for the normal incidence case. We found that significant

homogenized magnetic response exists for this structure, as indicated in Fig. 4.7(c)

near the wavelength of magnetic dipole resonance of an isolated MoS2 sphere pre-

dicted by Mie theory calculations, shown in Fig. 4.7(b). The magnetic resonance

is thus again of sub-unit-cell nature and occurs at wavelength longer than the edge

of the Brillouin zone (λ = 2Λ), the two necessary conditions for legitimate homog-

enization. We show the results from Lewin’s homogenization, and it again does a

remarkable job through the magnetic and electric dipole resonances, capturing the

complex constitutive parameters.
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4.4 Discussion

4.4.1 Uniqueness and Extraction of Homogenized Material Properties

Section 4.3 presented a a numerical procedure to determine the homogenized pa-

rameters of a slab of known thickness using the NRW approach. While fitting a param-

eterized model to a data set is an optimization problem, with complex S-parameters at

each frequency, the NRW procedure is convenient. Our FEM simulations played the

role of experimental data. At microwave and even THz frequencies, phase information

(including though time domain data) is routinely obtained. At optical frequencies,

phase information can be obtained with an interferometer measurement (see [98]

for example), and this is now routinely achieved done in obtaining the transmission

matrix [99]. However, it is most common and convenient to measure intensities at

optical frequencies, as in ellipsometry. Material properties can be determined from

such experimental data with a forward model, and some of our earlier work presents

an example approach for single stacked 2D materials [100].

We described a procedure in Sect. 4.3 whereby the material parameters can be

uniquely determined. This requires S-parameter data at sufficiently low frequencies so

that the phase progression over the thickness of the slab is less than 2π. If this cannot

be realized, then there is a uniqueness problem in the selection of k, within modulo 2π.

However, by using multiple incident angles at each frequency, it is in principle possible

to circumvent this problem and obtain the unique material parameters. Furthermore,

in an experiment, varying sample thicknesses may be possible, further aided unique

extraction of the material properties.

4.4.2 Constitutive Parameters

The cubic lattice symmetry means that the homogenized material is isotropic, and

that µ and ε should describe the material response. This will of course only be possi-

ble with angle-independent material parameters when homogenization is legitimate.

We made the case that this was true through the isolated particle magnetic dipole
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resonance in the mixtures we considered, and in particular, over wide angles at that

resonance. This provides a basis for realizing an optical magnetic material.

The basis for potential optical magnetism is weak spatial dispersion of second or-

der, as has been extensively presented (see, for example, [59,87,101]). Consequently,

the basis is the spatially varying material, providing a non-local in space (as well

as time) material-field relationship. Therefore, as the lattice shrinks and the mate-

rial contrast diminishes, spatial dispersion reduces and so will homogenized µ. The

challenge faced in realizing a homogenized optical magnetic material then becomes

one of a sufficiently strongly scattering material with an adequately small lattice size,

relative to the wavelength, to allow homogenization. In addition, there are aspects of

the material properties and the spatial arrangement of materials within the unit cell

that impact µ. We have shown that dielectric rather than metal (ε′ > 0 rather than

ε′ < 0) is important. at least for spherical inclusions. However, the game is to pack

a intra-cell resonant material into the unit cell in a way that allows homogenization

and a substantial scattering cross-section at resonance and a large magnetic dipole

(per unit volume).

Our procedure involved the extraction of k and η, and then ε and µ. All of these

parameters become unique with enforcement of passivity (for k and n) and then the

determination of unique ε and µ as secondary and fundamental parameters, as far as

Maxwell’s equations are concerned. The extraction procedure enforced passivity, and

hence all results at all wavelengths (whether or not homogenization is meaningful) are

for a lossy material that will produce field decay with increase in propagation distance

(k′′ > 0 and n′′ > 0 for exp(−iωt)). Passive material properties reflected in complex

µ and ε usually have µ′′ > 0 and ε′′ > 0. Notice that both µ′′ and ε′′ change signs

around resonances in Figs. 4.4, 4.6 and 4.7, but of course k′′ > 0. There is no freedom

of sign choice in the NRW homogenization, so the precise signs of the complex µ and ε

are predetermined. We considered this issue extensively, both is terms of uniqueness

and sign choice, and the legitimacy of homogenization. We find that homogenization

is appropriate over substantial angular ranges at the magnetic dipole resonance, and
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that there can be situations where one of the constitutive parameters reflect gain when

the overall material is lossy, and that this extraction is unique. There is substantial

treatment in the literature of anti-resonance, where one of the constituent materials

exhibits gain [56]. There has been concern that this is a violation of causality and

that it occurs when homogenization fails [93, 102]. We find neither to be the case in

the situations of primary interest here and around the magnetic dipole resonance.

So-called Bloch materials that display an anti-resonance [103]. The response of

such materials has been found to exist with increasing number of periods. In this

sense, the responses we have presented would appear to be Bloch materials. However,

we should emphasize that the homogenized material descriptions presented match the

numerical field calculations at all wavelengths, and that over a large wavelength range

that spans through the first magnetic dipole resonance, a homogenized description

predicts the numerical results. We have thus found a regime where homogenization

is valid while simultaneously fitting within this Bloch lattice framework.

4.4.3 Causality

We return to causality because it is fundamental and because anti-resonance has

been associated with violation of causality. Anecdotally, we solve Maxwell’s equations

for the lattice to numerical precision, so subject to this precision, causality is implied

because of the mathematical basis of the representation. The homogenized material

description agrees with the numerical result, including where an anti-resonance oc-

curs (but the material remains passive). Therefore, we have anecdotal evidence that

causality is upheld and that an anti-resonance does not preclude this. Of course,

a system with gain can also be causal. What has led to the concern about anti-

resonance is the local (anomalous dispersion) shape of the material parameter as a

function of frequency (µ′ or ε′ in the neighborhood of an anti-resonance). The wave

packet group velocity (vg = dω/dk′) is approximate, itself non-causal (because of the

truncated spectral representation) and known to have anomalies in the neighborhood
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of resonances. This is immaterial because the exact time domain field solution can

be constructed from a temporal Fourier transform description.

The Kramers-Kronig relations [104], which result from causality, are given by the

Hilbert transform pair

ζ ′(ω)− 1 =
2

π
−
∫ ∞

0

ω′ζ ′′(ω′)

ω′2 − ω2
dω′

ζ ′′(ω) =
−2ω

π
−
∫ ∞

0

ζ ′(ω′)− 1

ω′2 − ω2
dω′, (4.18)

where ζ = ζ ′ + iζ ′′ and ζ ∈ {µ, ε, n2}, the reality of ζ(t) has been enforced, and

the integral is interpreted as a principal value, with the pole residue evaluated. The

mathematical basis of (4.18) is an integral theorem [105] that uses Cauchy’s integral

theorem. The physical basis is that the local atomic excitation by the wave cannot

occur at a time prior to this distance divided by the speed of light in vacuum, which

forms the local t = 0 condition used in deriving (4.18). Of relevance here is the fact

that (4.18) does not place any specific requirement on the local dispersive properties

of the material, only in the integral sense. For example, gain and anti-resonance are

not strictly forbidden, although of course one could construct solutions with these

characteristics that do not satisfy (4.18). Our homogenized results, by virtue of the

solution method, will satisfy (4.18). One may view ζ a a response function that

satisfies ζ(t) = 0 for local time t < 0. Because we treat a homogenized material with

local electric and magnetic dipole moments, n =
√
µε. we can thus apply (4.18) to

n or k. In either case, our homogenized material responses are passive and hence

must satisfy (4.18). Thus, collectively (n) and separately (ε and µ), the homogenized

material properties we have extracted satisfy causality requirements.

4.4.4 Prospects for Optical Magnetism

We have established that a lattice of dielectric spheres can lead to homogenized

magnetism. The fact that ε′ > 0 leads to low-loss opportunities for creating optical

magnetic materials have substantial µ. The requirement for large a ε′ material could

be met by TMDs, perhaps in a layered arrangement, and Si. We note that prior work
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on Si resonators showed the prospects for magnetic effects [7]. Our work went further

by addressing the homogenized material issues. The requirement of a large dielectric

constant material is one of achieving a magnetic dipole resonance within the unit cell.

At conditions away from this resonance, there may still be useful µ, but the difference

from unity will diminish.

Negative index lenses have been proposed for achieving high resolution. A true

negative index requires µ′ < 0 and ε′ < 0. The major challenge has been achieving

µ′ < 0 - metals for instance provide ε′ < 0. Our results in Figs. 4.4, 4.6 and 4.7 indicate

that µ′ can be negative. However, the density of the material should be high relative

to the relevant wavelength [106]. Evanescent fields have a high transverse spatial

frequency, and the lattice dimension we considered will not satisfy this requirement.

However, recent work on negative index lens properties [57] suggests it may be possible

to exploit a different material regime that may be accessible based on work presented

here.

Based on our work, non-spherical dielectrics such as patterned Si on a lower di-

electric material might provide a viable optical magnetic material for applications.

By using a silicon-on-insulator (SOI) substrate, developed for electronic devices, the

top Si layer could be patterned and the contrast would exist with the woer index

SiO2 layer. Also, the exfoliated and tarnsfer of TMD materials onto a quartz sub-

strate, as we did for graphene stack materials [100], may also provide a path for

implementation. The homogenization of Lewin provides a simple start for designs,

and refinements could use numerical modeling, as we did.

4.5 Conclusions

We have shown that dielectric metamaterials provide a viable low-loss means to

achieve a homogenized opical magnetic material. The microscopic origin of their

homogenized magnetic response derives from magnetic dipole resonance of the indi-

vidual constituent particles. We have demonstrated that with high-index materials,

such a magnetic dipole resonance could occur at frequencies in the optical regime.
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In the case of spherical particle inclusions, Mie theory becomes a valuable analytical

method in the determination of the resonance frequency the magnetic dipole mode,

and its dependence on material properties and particle size. The more complicated

cases of arbitrarily-shaped particle of heterogeneous composition, e.g., core-shell, can

be considered as a perturbation from the homogeneous spherical case. For particles

of less regular shapes or compositions, numerical modeling would be needed and the

scattering properties would become polarization-dependent. The validity of homog-

enized effective medium properties is justified based on their lack of variation with

respect to the angle of incidence, particularly in the neighborhood of the magnetic

dipole resonance. The use of naturally existing high-index materials as constituents

is also considered. For instance, transition metal dichalcogenides are shown to be

effective in building resonators with substantial magnetic dipole resonance.
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Fig. 4.7. (a) The dielectric constant of MoS2 plotted as a function of the
wavelength of light [96]. For λ > 0.7 µm the material is almost lossless,
suitable for applications in homogenized magnetism. (b) Scattering effi-
ciency from a Mie expansion for an 80 nm radius MoS2 sphere. Note the
strong magnetic dipole resonance at 0.79 µm. Homogenized (c) n and
(d) η =

√
µ/ε for a one unit cell thick lattice of spherical particles on a

simple cubic grid: Λ = 280 nm. The MoS2 spheres have radius a = 80 nm.
The strong resonance in µ at 0.79 µm corresponds to the magnetic dipole
resonance in (b). The edge of the first Brillouin zone corresponds to a
free-space wavelength λ = 0.56 µm.
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5. SUMMARY

The thesis presented three topics in nanophotonics research for application as light-

absorbing dark materials, bandpass filters, and magnetic metamaterials. The main

accomplishments of these research activities are summarized below.

1. In Chapter 2, we demonstrated the design of an efficient light-absorbing dark

material using a stack of graphene and dielectric. Its effectiveness was veri-

fied with experiments involving ellipsometric measurement of graphene conduc-

tance, fabrication of graphene/dielectric stacks, and characterization of optical

reflection and transmission. A new model for analyzing data from ellipsom-

etry measurements was developed, which took into account the 2D nature of

graphene and the incoherent superposition of light due to reflection from the

back of transparent quartz substrate. This ellipsometry data analysis procedure

could be useful in studying other 2D materials such as chalcogenides.

2. In Chapter 3, the concept of a bandpass filter that shows little sensitivity to the

angle of incidence was demonstrated. The filter is based on a metal/dielectric

stack structure, similar to the graphene stack. The insensitivity to angle of

incidence derives from the nontrivial phase shift at the interface between metal

and dielectric, whose angular dependence tends to cancel that of the phase shift

arising from propagation within the dielectric layer. The filter pass band is

a result of resonant transmission of the coupled Fabry-Pèrot cavities formed

by alternating layers of metal and dielectric. Aluminum was identified as the

material of choice for retaining metallic character at UV frequencies due to its

high plasma frequency. Filter passbands can be shifted to the visible or longer

wavelength by adjusting thickness of dielectric layers and choosing materials

with suitable plasma frequency.
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3. Chapter 4 presents a detailed study of dielectric metamaterials consisting of

spherical resonators arranged on a simple cubic lattice. We consider a hypo-

thetical material having permittivity ε = 41.7, corresponding to that of LiNbO3

at terahertz frequencies. The absence of metallic or plasmonic components

allows the metamaterial to be free of resistive losses that prohibits useful op-

tical applications. Using Mie theory, the resonance frequency for the magnetic

dipole moment of a spherical particle is calculated. It was found that features

in the homogenized effective permeability correspond in frequency to the mag-

netic dipole resonance of individual spherical particle. The results establish

explicitly that the magnetic dipole resonances of the individual resonators in a

metamaterial lie at the microscopic origin of homogenized magnetic response.

In the case of spherical particle inclusions, Mie theory becomes a valuable aid

in identifying the frequencies of the magnetic dipole resonance and its depen-

dence on material properties and particle size. For legitimate homogenization,

the magnetic dipole resonance should correspond to a wave number well within

the first Brillouin zone. Hence, for a given material and sphere radius, one

can conveniently obtain an upper bound on the lattice constant using only Mie

theory calculations. The more complicated cases involving dielectric particles

of arbitrary shapes can be guided with preliminary studies based on spherical

particles made of the same materials.
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A. ELLIPSOMETRY ANALYSIS WITH

CONSIDERATION OF INCOHERENT SUPERPOSITION

We provide the ellipsometry analysis method used to extract the wavelength-dependent

complex sheet conductivity of graphene. Our contributions here include the deriva-

tion of a set of modified Fresnel coefficients that incorporate sheet conductivity at

the interface between two media. These new Fresnel coefficients fit our optical model

of graphene and enabled us to extract its sheet conductivity by matching a forward

model calculation (with spectral averaging) to measured data.

Spectroscopic ellipsometry gives a measures the ratio of the electric field reflection

coefficients for TE (rTE) and TM (rTM) components as a function of wavelength [107].

The ellipsometer provides two sets of wavelength-dependent data, Ψexp and ∆exp,

and the ratio is expressed as a function of rTE/rTM = tan Ψexp exp(i∆exp). In the

extraction procedure, we express these two quantities in terms of an unknown complex

sheet conductivity, σs, and denote them as Ψcalc(σs) and ∆calc(σs). These quantities,

as recorded by a power detector in the ellipsometer, are a result of superposition over

the detector bandwidth, and the data are impacted with the thick (0.5 mm) quartz

substrate used in the experiment. We expressed Ψcalc(σs) and ∆calc(σs) in terms of

averaged reflectance.

Previous studies have established that Ψexp and ∆exp can be expressed as functions

of reflectances for four distinct polarizations, R(0◦), R(45◦), R(90◦), and Rγ(45◦),

where the angles in the argument refer to orientation of electric field with respect to

the plane of incidence [23, 24]. We show the derivation in detail. Consider coherent

linearly-polarized incident light. The reflected field with amplitude normalized to

that of the incident field is

Ex = |rs| cos(τ + δ1), (A.1)
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Ey = |rp| cos(τ + δ2), (A.2)

where

τ = ωt− k · r, (A.3)

a1 = |rs|, (A.4)

a2 = |rp|. (A.5)

The relation between these quantities and the ellipsometric angles Ψ and ∆ are

∆ = δ2 − δ1, (A.6)

tan Ψ =
a2

a1

=
|rp|
|rs|

, (A.7)

tan Ψ exp(i∆) =
rp
rs
. (A.8)

Define the intensity reflectance at an arbitrary angle of polarization φ as

R(φ) = |Eξ|2. (A.9)

Note that the amplitude of Eξ is already normalized to that of incdient light. For

definition of the angle φ, please refer to Fig. A.1.

From Fig. A.1, one can see thatEξ
Eη

 =

 cosφ sinφ

− sinφ cosφ

Ex
Ey

 (A.10)

Hence,

R(φ) = |rx cosφ+ rp sinφ|2

= rsr
∗
s cos2 φ+ rpr

∗
p sin2 φ+ (rsr

∗
p + r∗srp) cosφ sinφ. (A.11)

We can relate (rsr
∗
p + r∗srp) to ∆ by writing

rp = |rp|eiδ2 (A.12)

rs = |rs|eiδ1 (A.13)
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Fig. A.1. The polarization ellipse for the electric field vector of light re-
flected from graphene sample, which is the locus of the electric field vector
E(t) in a plane normal to the wavevector of reflected plane wave. The
smallest circumscribing rectangle is shown in red. The x- and y-axes are
determined by the setup of the ellipsometer. The blue rectangle circum-
scribes the vibrational ellipse and has major axes along x- and y-directions.

∆ = δ2 − δ1 (A.14)

cos ∆ =
rsr
∗
p + r∗srp

2|rsr∗p|
=
rsr
∗
p + r∗srp

2
√
RsRp

, (A.15)

where

Rs = |rs|2, Rp = |rp|2. (A.16)

Hence,

2
√
RsRp cos ∆ = rsr

∗
p + r∗srp. (A.17)

Therefore, the power reflectance at arbitrary φ ∈ [0, π] is

R(φ) = Rs cos2 φ+Rp sin2 φ+ 2
√
RsRp cos ∆ cosφ sinφ. (A.18)
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There are two special cases for linearly polarized light,

TM: φ =
π

2
, Rp = rpr

∗
p = R(90◦) (A.19)

TE: φ = 0, Rs = rsr
∗
s = R(0◦) (A.20)

With incoherent incident light, we need to average R(φ) over a certain bandwidth.

We now show that Ψ and ∆ can be expressed in terms of the intensity reflectances

R(φ) for φ ∈ {0◦, 45◦, 90◦, 135◦}. Define the three parameters,

α = cos 2Ψ (A.21)

β = sin 2Ψ cos ∆ (A.22)

γ = sin 2Ψ sin ∆. (A.23)

First, write α in terms of Rs and Rp. Since

tan Ψ =
|rp|
|rs|

, (A.24)

tan2 Ψ =
Rp

Rs

. (A.25)

We have

cos2 Ψ =
1

1 + tan2 Ψ
=

Rs

Rs +Rp

(A.26)

Hence,

α = cos 2Ψ = 2 cos2 Ψ− 1 =
Rs −Rp

Rs +Rp

. (A.27)

In the above equation, the power reflectances Rs and Rp can be readily averaged over

the spectral range of interest to take into account the incoherent superposition of

light due to an optically thick and transparent substrate. Similarly for β,

β = sin 2Ψ cos ∆ =
√

1− α2 cos ∆ =
2
√
RsRp

Rs +Rp

cos ∆. (A.28)

From Eq. (A.15), we can write β as

β =
2
√
RsRp

Rs +Rp

·
rsr
∗
p + r∗srp

2
√
RsRp

=
rsr
∗
p + r∗srp

Rs +Rp

. (A.29)
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For φ = 45◦, we have

R(45◦) = R(0◦) cos2 45◦ +R(90◦) sin2 45◦ + (rsr
∗
p + r∗srp) cos 45◦ sin 45◦

=
1

2

[
R(0◦) +R(90◦) + rsr

∗
p + r∗srp

]
(A.30)

Hence,

rsr
∗
p + r∗srp = 2R(45◦)−R(0◦)−R(90◦). (A.31)

Therefore,

β =
2R(45◦)

R(0◦) +R(90◦)
− 1. (A.32)

This leads to

2
√
RsRp cos ∆ = 2 Re[rsr

∗
p] (A.33)

R(0◦) = Rs = 〈rsr∗s〉 (A.34)

R(90◦) = Rp = 〈rpr∗p〉 (A.35)

R(45◦) = Rs cos2 45◦ +Rp sin2 45◦ + 2 Re
[
〈rsr∗p〉

]
sinφ cosφ (A.36)

Spectral averaging was carried out for these reflectances. Given the optical thick-

ness of the substrate, the phase difference accumulated by traversing the substrate,

between frequency components at the two ends of the detector bandwidth, is sig-

nificantly larger than 2π. It is therefore valid and convenient to derive analytical

expressions for spectrally averaged reflectances by evaluating

〈R(α)〉 =
1

2π

∫ 2π

0

R(α) dδn, (A.37)

where δn is the phase accumulated in traversing the substrate, R(α) is the power

reflectance with the electric field making an angle α with the plane of incidence, and

〈·〉 is the average.

For our sample with two interfaces, where the top is air-graphene-quartz and the

bottom is quartz-air, the electric field reflection coefficient is [12]

r =
r12 + r23e

i2δn

1 + r12r23ei2δn
, (A.38)



71

leading to the intensity reflectance

R = |r|2. (A.39)

where r12 is the electric field reflection coefficient between semi-infinite media denoted

1 and 2, with incidence coming from medium 1. r23 is similarly defined.
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Fig. A.2. Schematic of graphene on quartz substrate, which makes up the
air-graphene-quartz structure. n1 and n3 are the refractive index of air, n2

that or quartz.

Fig. A.3. The plane interface between two semi-infinite regions of homo-
geneous media having refractive indices n1 and n2. Nonzero urface current
density exists at the plane x = 0.
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The presence of surface charge density leads to the boundary conditions

n̂12 × (E(2) − E(1)) = 0 n̂12 × (H(2) −H(1)) =
4π

c
j (A.40)

A set of modified Fresnel coefficients were derived to incorporate the sheet conduc-

tance at the top interface, giving

tTM =
2n1 cos θ1

n2 cos θ1 + n1 cos θ2 + (4π/c)σs cos θ1 cos θ2

rTM =
n2 cos θ1 − n1 cos θ2 + (4π/c)σs cos θ2 cos θ1

n2 cos θ1 + n1 cos θ2 + (4π/c)σs cos θ2 cos θ1

tTE =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2 + (4π/c)σs

rTE =
n1 cos θ1 − n2 cos θ2 − (4π/c)σs
n1 cos θ1 + n2 cos θ2 + (4π/c)σs

, (A.41)

where n1 and n2 are the refractive indices of free space and quartz, respectively, and

θ1 and θ2 are the angles between the wave vector and the interface normal in these

two media, respectively.

Standard ellipsometer output Ψ and ∆ are defined in terms of the ratio between

TM and TE reflection coefficients, as follows

rTM

rTE

= tan Ψei∆. (A.42)

The calculated averaged reflectance produce Ψcalc(σs) and ∆calc(σs) [23,24], which is to

be matched to the experimental quantities. We used the MATLAB [108] optimization

toolbox to iteratively update the complex sheet conductivity in the model at each

wavelength to match the experimental data.
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B. THE T-MATRIX METHOD

We include a derivation of the transfer matrix method used in calculating the plane

wave angle and wavelength-dependent power reflectance and transmittance of the

graphene stacks. The transfer matrix relates the forward and backward propagating

field components, [E+ E−]
T

, at two different locations in the stratified structure [29].

Two types of matrices are present: a matrix P that describes propagation and a

matrix D that imposes the boundary conditions [29]. P gives the plane wave phase

retardation acquired over a homogeneous slab, and has the form

Pi =

e−ik0 cos θinidi 0

0 eik0 cos θinidi

 , (B.1)

where ni is the refractive index of the ith medium, di is the thickness, k0 is the free

space wavenumber, and θi is the angle between the wave vector and the surface nor-

mal. The D matrices impose the boundary conditions. Each boundary requires two

D matrices to describe the tangential electric and magnetic field boundary conditions,

as illustrated in Fig. B.1 and Fig. B.2.

Imposing the TE boundary conditions at the graphene boundary leads to

E1 + E ′1 = E2 + E ′2 (B.2)

√
ε1

µ1

(E1 − E ′1) cos θ1 =

√
ε2

µ2

(E2 − E ′2) cos θ2 +
4πσs
c

(E2 + E ′2), (B.3)

where the prime signifies the field associated with the −x-traveling waves, referring

to Figs. B.1 and B.2. Equations (B.2) and (B.3) can be written as [29]

D1

E1

E ′1

 = Dg2

E2

E ′2

 , (B.4)
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Fig. B.1. Reflection and transmission of TE waves. All components of
electric field are directed out of the page.

where the subscript g indicates inclusion of the graphene sheet conductivity σs. Fol-

lowing from Eq. (B.4), the D matrices for medium i and TE-polarized waves are

Di =

 1 1√
εi
µi

cos θi −
√

εi
µi

cos θi

 (B.5)

Dgi =

 1 1√
εi
µi

cos θi + 4π
c
σs −

√
εi
µi

cos θi + 4π
c
σs

 . (B.6)

Similar matrices can also be found for TM polarization (Fig. B.2). Applying

boundary conditions on the tangential fields yields

(E1 + E ′1) cos θ1 = (E2 + E ′2) cos θ2 (B.7)√
ε1

µ1

(E1 − E ′1) =

√
ε2

µ2

(E2 − E ′2) +
4π

c
σs cos θ2(E2 + E ′2), (B.8)

which gives

Di =

cos θi cos θi√
εi
µi

−
√

εi
µi

 (B.9)
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Fig. B.2. Reflection and transmission of TM waves. H1 and H2 are directed
out of the page, and H ′1 and H ′2 into the page.

Dgi =

 cos θi cos θi√
εi
µi

+ 4π
c
σs cos θi −

√
εi
µi

+ 4π
c
σs cos θi

 . (B.10)

The overall transmission matrix is a cascade of the D and P matrices for the entire

stack, giving

Mstack =

M11 M12

M21 M22

 = D0
−1
(
DiPiDi

−1
) [N−1∏

i=1

(
DgiPiDi

−1
)]

(DgsPsDs
−1)D0,

(B.11)

where the subscript s represents substrate and N is the number of unit cells. Each

unit cell is made up of one sheet of graphene and a dielectric spacer layer. In modeling

stacks without substrate, the factor (DgsPsDs
−1) is omitted.

The reflectance is given by

R =

∣∣∣∣M21

M11

∣∣∣∣2 (B.12)

and the transmittance by

T =
nt cos θt
ni cos θi

∣∣∣∣ 1

M11

∣∣∣∣2 , (B.13)
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where n1 is the refractive index of semi-infinite medium from which the incidence

comes, and nt that of the semi-infinite medium to which light is transmitted. In the

case that nt = n1, such that they describe the same medium, e.g., free space, the

transmittance simply reduces to T = |1/M11|2. We used Eqs. (B.12) and (B.13) to

evaluate the plane wave reflectance and transmittance of the graphene stacks as a

function of wavelength and incidence angle.
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C. THE NICOLSON-ROSS-WEIR METHOD

The method we present was employed by A. Nicolson and G. Ross [92]. Here we

make extensions to account for homogeneous background medium other than vacuum.

Consider a slab structure situated within a homogeneous background characterized

by permittivity εb.

Fig. C.1. A slab of homogeneous material situated in some background
medium

We let the slab be characterized by relative permittivity ε and relative permeability

µ, and define η =
√
µ/ε. Correspondingly the background medium is characterized

by relative permittivity and permeability εb, µb. We define ηb =
√
µb/εb.

If the slab were infinitely thick, we obtain the reflection coefficient at Interface 1

as

Γ =
η − ηb
η + ηb

(C.1)

Consider a slab with finite thickness d. The transmission coefficient from the inner

side of Interface 1 to the inner side of Interface 2 is simply the phase factor

z = exp(iω
√
µε d) = exp[i(ω/c)

√
µε d] (C.2)
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From Eq. (C.1) and (C.2), the scattering coefficients from the slab may be obtained

via Airy summation, which is the approach taken by A. M. Nicolson and G. F. Ross

in [92].

S21 = (1 + Γ)z(1− Γ) + (1 + Γ)z(−Γ)z(−Γ)z(1− Γ) + · · ·

=
∞∑
n=1

(1 + Γ)z(2n−1)Γ(2n−2)(1− Γ)

=
(1− Γ2)z

1− Γ2z2
(C.3)

S11 = Γ + (1 + Γ)z(−Γ)z(1− Γ) + · · ·

= Γ +
∞∑
n=1

(1 + Γ)z2n(−Γ)2n−1(1− Γ)

=
(1− z2)Γ

1− Γ2z2
(C.4)

Thus, we have managed to express the S-parameters in terms of the reflection coeffi-

cient Γ and the phase factor z.

C.1 Inverting the S-Parameters for z and Γ

The purpose of the inversion procedure is to obtain from Eq. (C.4) expressions

of z and Γ in terms of S11 and S21. In order to simplify the algebraic manipuation,

we define the following two intermediate quantities, the sum and difference of the

S-parameters,

V1 = S21 + S11, (C.5)

V2 = S21 − S11. (C.6)
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C.1.1 Inverting for Γ

We can simplify the product of V1 and V2 as

V1V2 = (S21 + S11)(S21 − S11)

= S21
2 − S11

2

=

[
z(1− Γ2)

1− Γ2z2

]2

−
[

Γ(1− z2)

1− Γ2z2

]2

=
z2(1− Γ2)2 − Γ2(1− z2)2

(1− Γ2z2)2

=
z2 − 2z2Γ2 + z2Γ4 − Γ2 + 2z2Γ2 − z4Γ2

(1− Γ2z2)2

=
z2 + z2Γ4 − Γ2 − z4Γ2

(1− Γ2z2)2

=
z2 − Γ2 + Γ2z2(Γ2 − z2)

(1− Γ2z2)2

=
(z2 − Γ2)(1− Γ2z2)

(1− Γ2z2)2

=
z2 − Γ2

1− Γ2z2
(C.7)

The difference between V2 and V1 is

V1 − V2 = S21 + S11 − S21 + S11

= 2S11

=
2Γ(1− z2)

1− Γ2z2
. (C.8)

Let

X =
1− V1V2

V1 − V2

. (C.9)
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Using Eq. (C.7) and (C.8), we may simplify X as.

X =
1− z2−Γ2

1−Γ2z2

2Γ(1−z2)
1−Γ2z2

=

[
1− Γ2z2 − z2 + Γ2

1− Γ2z2

] [
1− Γ2z2

2Γ(1− z2)

]
=

1− Γ2z2 − z2 + Γ2

2Γ(1− z2)

=
1− z2 + Γ2 − Γ2z2

2Γ(1− z2)

=
(1− z2) + Γ2(1− z2)

2Γ(1− z2)

=
(1− z2)(1 + Γ2)

2Γ(1− z2)

=
1 + Γ2

2Γ
(C.10)

From Eq. (C.10) we immediately obtain a quadratic equation in Γ,

Γ2 − 2XΓ + 1 = 0, (C.11)

and we can solve for Γ in terms of the S-parameters,

Γ = X ±
√
X2 − 1, (C.12)

since X is defined in terms of V1 and V2 which eventually depends on S11 and S21.

C.1.2 Inverting for z

Obtaining z from the S-parameters is relatively straight-forward. It is easy to

notice that

1− ΓS11 =
1− Γ2z2 − Γ2 + Γ2z2

1− Γ2z2

=
1− Γ2

1− Γ2z2
. (C.13)

Since S21 = (1−Γ2)z
1−Γ2z2

, we easily obtain

z =
S21

1− ΓS11

(C.14)
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Or, to make use of the intermediate quantities V1 and V2 we just defined, we notice

that

V1 = S21 + S11

=
(1− Γ2)z

1− Γ2z2
+

(1− z2)Γ

1− Γ2z2

=
(1− Γ2)z + (1− z2)Γ

1− Γ2z2

=
z − Γ2z + Γ− z2Γ

1− Γ2z2
(C.15)

V1 − Γ =
z − Γ2z + Γ− z2Γ− Γ + Γ3z2

1− Γ2z2

=
z − Γ2z − Γz2 + Γ3z2

1− Γ2z2

=
(z − Γz2) + Γz2(−1 + Γ2)

1− Γ2z2

=
(z − Γz2)− Γz(z − Γ2z)

1− Γ2z2

=
(z − Γz2)(1− Γz)

1− Γ2z2

=
z(1− Γz)(1− Γz)

1− Γ2z2
(C.16)

1− V1Γ = 1− (z − Γ2z + Γ− z2Γ)Γ

1− Γ2z2

=
1− Γ2z2 − Γz + Γ3z − Γ2 + Γ2z2

1− Γ2z2

=
1− Γz + Γ3z − Γ2

1− Γ2z2

=
(1− Γz + Γ3z − Γ2)

1− Γ2z2

=
(1− Γz) + (Γ3z − Γ2)

1− Γ2z2

=
(1− Γz)− Γ2(1− Γz)

1− Γ2z2

=
(1− Γz)(1− Γ2)

1− Γ2z2
(C.17)



82

From Eq. (C.16) and (C.17), we observe that z can also be expressed as

z =
V1 − Γ

1− V1Γ
(C.18)

C.2 Multiple Values and Ambiguities

The inversion of S-parameters doesn’t produce unique results for the material

parameters, due to the complex algebraic operation of taking the n-th roots of a

complex number, where n ∈ Z. In this subsection we focus on such operations. We

list the places where they occur in the derivation, and present methods for overcoming

these ambiguities to obtain uniquely determined wave and material parameters.

C.2.1 Multiple Values in Γ and z

We gather the inversion results obtained so far. Γ and z are respectively give in

Eq. (C.12) and (C.18). z depends on Γ and hence all the ambiguities in Γ affect the

results of z.

The solution for Γ in Eq. (C.12) contains the complex square root of the quantity

X2−1, which has two solutions and has been made explicit by writing the sign choice

‘±’ in Eq. (C.12). The ambiguity is easy to remove, since there are only two solutions.

We simply need to remove the one that is not physical, and select the solution that

satisfies |Γ| 6 1. This allows us to uniquely determine Γ. z is obtained by substituting

Γ into Eq. (C.18). Thus we are able to uniquely determine Γ and z.

C.2.2 Multiple Values in Impedance and Wave Number

We show how ambiguity due to multiple values enters the expression for the wave

number k, which is the worst difficulty in the application of the Nicolson-Ross-Weir

method. Having obtained uniquely determined values of Γ and z, we can determine

the intrinsic impedance η =
√
µ/ε of the medium and the wave number k inside the

medium.
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We recall that

Γ =

√
µ/ε−

√
µb/εb√

µ/ε+
√
µb/εb

=

√
µ/ε−

√
µb/εb√

µ/ε+
√
µb/εb

(C.19)

It is extremely easy to obtain

1 + Γ =
2
√
µ/ε√

µ/ε+
√
µb/εb

(C.20)

and

1− Γ =
2
√
µb/εb√

µ/ε+
√
µb/εb

. (C.21)

Following the unique determination of Γ, there is no ambiguity with η. The wave

number k is closely related to the phase factor z via z = exp(ikd) = exp
[
i(ω/c)

√
µε d

]
.

k =
1

id
ln(z) = − 1

id
ln

(
1

z

)
(C.22)

Equation (C.22), simple as it appears, leads directly to the most common difficulty

associated with the Nicolson-Ross-Weir method. Mathematically, the complex loga-

rithm produces infinitely many solutions [109]. For example, consider w = |w|eiθ.

ln(w) = ln |w|+ i(θ + 2πm), (C.23)

where m ∈ Z.

C.3 Choosing the Appropriate Solution

To eliminate the ambiguity arising from the effective refractive index n having

multiple solutions, we need to settle on an appropriate choice of n, which could differ

for different frequencies. The wave number k, as a function of frequency, should be

continuous.

To sum up, in order to obtain unique values for η and k, we encounter two places

where there are multiple values.



84

1. The complex square root in Eq. (C.12). Since there are only two solutions,

we simply need to choose the correct sign for the square root to ensure |Γ| 6 1,

to satisfy passivity.

2. The complex natural logarithm in Eq. (C.22). This function produces

an infinite number of choices, and poses the greatest challenge to the successful

application of the Nicolson-Ross-Weir method. This requires S-parameter data

at sufficiently low frequencies so that the phase progression over the thickness

of the slab is less than 2π. If this cannot be realized, then there is a uniqueness

problem in the selection of k, within modulo 2π. However, by using multi-

ple incident angles at each frequency, it is in principle possible to circumvent

this problem and obtain the unique material parameters. Furthermore, in an

experiment, varying sample thicknesses may be possible, further aided unique

extraction of the material properties.

Having settled the above two issues with multiple-valued functions, the values for η

and k that we obtain are unique, with no ambiguities.

C.4 Obtaining ε and µ

With uniquely determined wave parameters η and k, it is quite straight-forward

to obtain the material parameters ε and µ. We define the intermediate quantities c1

and c2 to simplify the expressions,

c1 = η2 =
µ

ε
=

(
1 + Γ

1− Γ

)2
µb
εb
, (C.24)

c2 = n2 = µε =

(
k

ω/c

)2

= −
[
c

ωd
ln

(
1

z

)]2

. (C.25)

Following the definition, we obtain ε and µ as,

ε =

√
c2

c1

, (C.26)

µ =
√
c1c2. (C.27)
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