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ABSTRACT 

Liu, Yangfan. Ph.D., Purdue University, August 2016. Efficient Modeling of Sound Source 

Radiation in Free-Space and Room Environments. Major Professor: J. Stuart Bolton, 

School of Mechanical Engineering. 

 

 

Motivated by the need to develop efficient acoustics simulations for sources in different 

room environments, a modeling procedure has been proposed that consists of two steps in 

general: (1) the modeling of the free-space radiation of the source based on measurements 

in a anechoic environment, and (2) the prediction of the sound field in a room environment 

based on that free-space information.  

 

To achieve a high modeling efficiency, i.e., to reduce the number of modeling parameters 

while still maintaining acceptable accuracy, a Multipole Equivalent Source Model (ESM) 

with undetermined source locations has been developed for the free-space sound field 

prediction. In contrast with traditional ESM’s, or acoustical holography methods in general, 

the model developed in the present work possesses two efficiency improvements: (1) the 

use of the series of monopoles, dipoles, quadrupoles, etc. as equivalents sources (since in 

predicting the sound field, the multipole series can be simply represented as closely located 

monopoles) and (2) the flexibility of using spatially separated sources with undetermined 

locations. In the inverse parameter estimation process of this method, the calculation of the 

source strengths is linear while the source locations are determined 
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by a nonlinear optimization procedure. It is shown, by an experimental validation, that the 

prediction using this method can be accurate for almost the whole audio frequency range 

 

 To model the sound field at high frequencies specifically, different types of methods using 

local-basis functions were developed. At high frequencies, the spatial variation of the 

sound field is usually large and thus the number of measurements points in space is likely 

not to be enough to model a relatively complicated source if a traditional equivalent source 

model is used, and the under-sampling errors from all regions will accumulate to affect the 

predictions in any particular region. However, if localized basis functions are used to 

represent the sound field, the under-sampling errors from different regions do not affect 

each other. Two types of local-basis method are developed in this work: one based on 

piece-wise polynomial interpolation (which is limited to having only a single source) and 

the other based on least squares (which can be applied to multiple sources and even to 

interior problems). Simulation results have shown that these local-basis methods, at very 

high frequencies, can achieve good overall prediction accuracy with only a loss of some 

details in the spatial variation of the sound field.  

 

In the room acoustics modeling section, the Equivalent Source Method is modified and 

implemented which, compared with the geometric acoustics models, gives a prediction 

based on a more rigorous mathematical foundation and, compared with Boundary Element 

methods, reduces the computational intensity. In this proposed room acoustics ESM, the 

free-space source radiation is assumed known, and the room component sound field is 

determined by an ESM. Differing from the free-space ESMs, this room acoustics ESM (1) 
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contains additional equivalent sources representing the incoming waves, and (2) uses 

impedance boundary conditions on the surfaces instead of the measured sound field, to 

estimate the source strengths. It is validated by simulations (in both 2D and 3D spaces) and 

then by experiments that the proposed room acoustics ESM can be used as a reduced order 

modeling technique in simulating the sound field in a room. It is also shown that the 

prediction accuracy and the computational load can be flexibly balanced, if Multipole 

ESMs are used, by selecting an appropriate maximum source order.  
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CHAPTER 1. INTRODUCTION 

1.1 Motivation and Objective 

Efficient simulations of sound field in different environment are of great application 

potential and research interests. The prediction of free-space sound fields, for example, can 

be a useful tool to characterize and visualize the acoustic radiation of certain machines or 

audio devices; it is also helpful from a noise control point-of-view, to identify the locations 

and the strengths of noise sources from each component of a machine. Sound field 

simulations in room acoustics, i.e., predicting the sound field in a room, are widely applied 

in the design of concert halls, and in-car audio systems, etc. Although each application and 

technique can give its own practical value and research interest, the primary motivation 

behind the work presented here is the desire of having a fast simulation technique to 

accurately predict the sound radiations of sources, such as loudspeakers, televisions or 

other audio systems, in free space and in different room environments, so that the design 

of the audio products and the listening environments can be easily and effectively evaluated.  

 

The problem addressed in this work can be described as: to predict the sound field 

everywhere in free space and inside a certain room based on: (1) the measurements of the 

free-space sound pressure at a number of locations (or the distribution of the normal 
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velocities on the source surface) and (2) the boundary conditions on all the source and room 

surfaces, usually the distribution of the normal impedances. Computationally intensive 

techniques such as the Finite Element Models and Boundary Element Models are not 

convenient to use, especially when the frequency is high and the room is large, because a 

large number of elements are required in these numerical techniques, resulting in a very 

intensive computation load. Therefore the modeling approaches proposed in the work 

reported here are mainly extensions and improvements of techniques in the category of 

acoustic holography which, traditionally, aim at sound field reconstruction from sound 

pressure measurements in an anechoic environment (usually only accurate at low 

frequencies). Specifically, the current work is an attempt to improve the traditional 

holography techniques in the aspects of reducing the modeling order, extending the feasible 

frequency range and generalizing their applications to deal with room acoustics simulations. 

It is also pointed out here that since there is no solution, strictly speaking, to achieving high 

speed and accuracy at the same time, the claim of fast and accurate simulation here 

essentially means finding an appropriate balance between prediction accuracy and the 

computational intensity. 

 

1.2 The General Modeling Procedure 

Based on the above mentioned application that required efficient and accurate predictions 

of the sound field generated by certain sources in free space and in different room 

environments, a modeling procedure was proposed (illustrated in Figure 1.1) which, in 

general, contains two steps: (1) the reconstruction of the sound field in free space from the 

measured sound field at a number of locations (the same as in traditional acoustic 
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holography techniques) and (2) the prediction of the sound field in different rooms with 

the input of the free-space sound field and the surface impedances of the rooms. The main 

reasons for using two separate steps are firstly, that when the sound field of the same source 

in several room environments is to be simulated, it is not necessary to perform 

measurements in each room; and, secondly, that the free space sound radiation from the 

source itself is of interest, from the design of audio products point-of-view, because it can 

provide information about how certain features in the design affect the acoustic radiation 

pattern. Also, the modeling procedure is more efficient than a single-step room acoustics 

simulation procedure, i.e., requires fewer model parameters to describe the target sound 

field, if the modeling orders are reduced for both the free-space and room acoustics 

simulations, because the room acoustics simulation requires the calculation of the free-

space sound field from the source as an input.  

 

 

Figure 1.1. Illustration of the proposed two-step simulation approach. 

 

1.3 Outline of this Document 

It has already been mentioned that the current work focuses on improving the techniques 

used in acoustic holography to achieve lower model orders and improved accuracy for 
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higher frequencies and extending their use to room acoustics simulations. In Chapter 2, the 

background and techniques that are commonly used in free-space and room acoustics 

sound field simulations are summarized. Limitations of these techniques will be mentioned 

and the reasons why they are not desirable, when used directly, in the application of the 

present work, will be briefly explained. Among the techniques reviewed in that chapter, 

the Equivalent Source Model (ESM) has the strongest connection to this work; in that 

method it is assumed that the sound field to be reconstructed can be described as a 

combination of contributions from a number of sources of certain types (equivalent sources) 

and then the strength of each source is estimated by matching the model predictions with 

the measurements. With the calculated source strength, the sound field can be calculated 

everywhere. All the techniques developed in this work are, to some extent, improvements 

and modifications of the traditional Equivalent Source Method. 

 

In Chapter 3, a free-space sound field prediction method, proposed in this work and 

referred to as the Equivalent Source Method with un-fixed source locations, will be 

explained in detail. This method has been shown to provide accurate predictions over a 

larger frequency range than traditional techniques. In this approach, differing from 

traditional ESMs, the series of monopoles, dipoles, quadrupoles, etc. are used as the 

equivalent sources and the locations of the sources, in addition to the source strengths, are 

assumed unknown and are estimated based on the measurements. It is this additional 

flexibility of undetermined source locations that gives a higher frequency limit and reduces 

the number of model parameters needed for accurate sound field predictions. It is also 

mentioned that by using this method, it is more convenient for the construction of the room 
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acoustics models, since each equivalent source can be represented as a number of closely 

located monopoles, it is possible to only consider monopole inputs in the room acoustics 

models if it can be assumed that the scattered sound field from the source geometry is small 

compared with that reflected from the room.  

 

In Chapter 4, it is explained how the use of Equivalent Source Methods can be extended in 

the room acoustics applications. This extension is desirable because it can provide an 

alternative that is faster compared with the Boundary Element Models and has a more 

rigorous mathematical foundation compared with the geometric acoustics models. 

Compared with the usual Equivalent Source Models, the room acoustics ESM contains 

additional sources representing the incoming wave contributed by the room surfaces. To 

avoid the need of making measurements in the room, the impedance boundary conditions 

on all the surfaces (rather than measured sound pressure as in traditional ESMs) are used 

to estimate the parameters. It is also demonstrated that this proposed approach, when 

multipoles are chosen as equivalent sources, can offer a flexible balance between the 

model’s prediction accuracy and its computational intensity. 

 

The method developed in Chapter 3 can give accurate performance at higher frequencies 

than traditional acoustic holography methods; however, it is not designed for very high 

frequencies for relatively complicated sources, since the sound field can be very 

complicated at high frequencies and the number of measurements is usually less than what 

is required to describe all the details in the spatial variations of the sound field. A treatment, 

referred to as the local basis Method, is described in Chapter 5 to deal with this situation, 
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which can be used to predict the general pattern of the sound field, with the loss of some 

details in spatial variations. This result has an advantage compared with traditional sound 

reconstruction methods in which largely meaningless results will be obtained at very high 

frequencies. The main reason for this improvement is that the function basis, can also be 

interpreted as equivalent sources, that are used to describe to sound field and which only 

contribute to a particular region in space so that the spatial under-sampling errors from 

other regions will not affect the estimation of the model parameters. In this way, the 

accumulation of errors from the whole space (as in the cases of using traditional approaches) 

is avoided. An additional advantage can be brought out by the local basis method: when 

measurement information is given only in certain solid angle region rather than covering 

the whole source, good predictions can still be achieved in that region and are not affected 

by the missing information in other regions. 

 

In Chapter 6, the work presented in this document is summarized, the main results and 

conclusions are stated and the associated improvements as well as the limits are commented 

upon. The possible future works are also discussed in that chapter. 
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CHAPTER 2.  A REVIEW OF SOUND FIELD PREDICTION TECHNIQUES FOR 

DIFFERENT ENVIRONMENTS 

2.1 Introduction 

The two general steps included in the whole modeling process, as introduced in the 

previous chapter, are: (1) the prediction of the free-space sound field radiation from a 

source based on sound field measurements (typically sound pressure measurements) at a 

number of locations in an anechoic environment; and (2) the simulation of the sound field 

in a room with given free-space information, room geometry and normal impedance 

distributions on all the surfaces. It is noted that the results from the first step are taken as 

the input of the second step. In order to present more clearly the methods developed in the 

current work (to be discussed in detail in later chapters) dealing with problems in both steps, 

the commonly used simulation techniques for both the free-space and the room 

environments are briefly reviewed and explained here in this chapter. The limitations 

associated with each of these techniques will be commented upon, which can then explain 

why it is not desirable to use them directly in the application of this work and can also 

illustrate the aspects on which improvements are necessary.  

 

2.2 A Review of Free-space Sound Field Prediction Techniques 

It has been explained in the previous chapter that for the purpose of reducing the 

computational intensity, the free-space simulation methods used in the current work are
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developed based on some improvements and modifications of techniques in the area of 

acoustical holography. Thus the techniques in acoustical holography are focused on in this 

section. In general, the goal of acoustical holography is to predict or reconstruct the total 

sound field in free space based on sound field measurements at a number of locations in a 

sub-region of the whole space (usually samples of boundary conditions from a 

mathematical point of view). 

 

Strictly speaking, there is no widely accepted way to categorize the techniques in the 

acoustical holography area, and terminologies are frequently used in both strict and loose 

senses when referring to which category a specific technique belongs. In this document, 

the review of the techniques will be organized according to the categorization that divides 

all the methods into two types: (1) the non-parametric (Fourier-based) methods and (2) the 

parametric methods. Although there is no clear cut distinction, the main difference between 

these two categories is that the non-parametric methods decompose the total sound field 

into orthogonal basis functions (i.e., Fourier basis under different coordinate systems) and 

estimate the coefficients of the each basis function by performing an inverse Fourier 

transform on the measurement surface meaning that the measurement are required to be 

performed on a plane, a cylindrical surface or a sphere, etc., depending on the choice of  

coordinate system. The parametric methods, on the other hand, do not have strict 

requirements on the measurement locations (because no spatial Fourier transforms need to 

be performed), and describe the sound field by a model containing a number of parameters 

which can be estimated from the measurements using optimization techniques. Another 

reason for using this categorization is that the prediction error in non-parametric methods 
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are usually analyzed from the spatial windowing and aliasing point-of-view, but for 

parametric methods, error analysis is often done by treating the process as an inverse 

parameter estimation problem.  

 

In this section, the Fourier-based methods are reviewed first, and several methods in the 

category of parametric methods are presented, including the Inverse Boundary Element 

Method, the Equivalent Source Method and the Statistically Optimized Near-field 

Acoustical Holography (SONAH). Finally, related treatments of the ill-posed nature of 

inverse problems are introduced, since they play very important roles in the parametric 

techniques. 

 

2.2.1 The Fourier-Based Methods 

Each technique in the category of Fourier-based methods requires a known sound pressure 

or normal particle velocity distribution on a certain type of surface: an infinite plane for 

Cartesian coordinates, a cylinder and a sphere for cylindrical and spherical coordinates 

respectively. By using the Fourier Transform for the targeted coordinate system, the data 

on the given surface can be used calculate the sound field on any surface in the space that 

is conformal to the measurement surface, and thus the sound field in the whole space can 

be calculated.  

 

Although the connections of the sound field on the given surface to that on a conformal 

surface were originally derived differently for different coordinates (Williams and 

Maynard, 1982) (Maynard and Williams, 1985), they can all be derived through the general 
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solutions of the Helmholtz equation and result in final formulae of the same form (Williams, 

1999) (Wu, 2008). The sound field at a fixed frequency in a source free region is governed 

by the Helmholtz equation: 

2 2( , ) ( , ) 0,P X k P X     (2.1) 

where 𝑃(𝑋⃗, 𝜔) is the sound pressure at a single angular, temporal frequency, 𝜔, and 𝑘 =

𝜔/𝑐  is the wavenumber. The general solutions for this equation can be generated by 

separation of variables in different coordinate systems (Williams, 1999). When the 

Sommerfeld radiation boundary condition is satisfied and the time dependence is assumed 

to be 𝑒−𝑗𝜔𝑡, the general solution in the Cartesian coordinate system can be described by 

the family of plane waves and can be written as:  

( )

2

1
( , , ) ( , ) ,

4

x y zj k x k y k z

x y x yP x y z P k k e dk dk


   

 
    

(2.2) 

with the familiar relation: 𝑘2 = 𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2. Likewise, the general solution in cylindrical 

coordinates can be expressed as cylindrical waves:  

(1)1
( , , ) ( ) ( )

2
zjk zjn

n z n r z

n

P x y z e A k e H k r dk



 




    
(2.3) 

where 𝐻𝑛
(1)

 is the Hankel function of the first kind, and 𝑘2 = 𝑘𝑟
2 + 𝑘𝑧

2. Finally, in spherical 

coordinate, the general solution can be written as a series of spherical waves: 
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(1)

0

( , , ) ( ) ( , ),
n

m

mn n n

n m n

P r C h kr Y   


 

 
 

(2.4) 

where ℎ𝑛
(1)

 is the spherical Hankel function of the first kind. It is observed that all these 

expressions of the general solutions are in the form of inverse Fourier transforms with 

respect to different coordinate systems: i.e., the Cartesian, polar and spherical Fourier 

transforms, respectively. Therefore, if the sound pressure on a plane (for Cartesian 

coordinates), on a cylinder (for cylindrical coordinates) or on a sphere (for spherical 

coordinates) is given, the coefficients in equations (2.2) to (2.4) can be determined by 

calculating two-dimensional Fourier transforms associated to the coordinate system. Thus 

the sound field reconstruction formula for all three types of Fourier-based methods can be 

expressed as: 

1( ) { { ( )} ( , )},H HP X P X G X X
 

(2.5) 

where 𝑋⃗𝐻  denotes locations on the surface with given measurement data, and the 

propagator has the following expressions for different coordinate systems: 𝐺(𝑋⃗𝐻, 𝑋⃗) =

𝑒𝑗𝑘𝑧(𝑧−𝑧𝐻)  for Cartesian coordinates, 𝐺(𝑋⃗𝐻, 𝑋⃗) = 𝐻𝑛
(1)

(𝑘𝑟𝑟)/𝐻𝑛
(1)

(𝑘𝑟𝑟𝐻)  for cylindrical 

coordinates and 𝐺(𝑋⃗𝐻, 𝑋⃗) = ℎ𝑛
(1)

(𝑘𝑟)/ℎ𝑛
(1)

(𝑘𝑟𝐻) for spherical coordinates. 

 

In practice, however, the sampling and windowing errors brought about by finite discrete 

measurements have to be dealt with (Kwon and Kim, 1995) (Rowell and Oldham, 1995) 

as well as the error in measurement locations (Bai, 1995). Based on the above mentioned 
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idea of acoustical holography, many holography methods and improvements have been 

proposed in the literature with respect to specific issues. For example, Sarkissian (1991) 

has used a non-Fourier basis for the prediction of radiation power; Loyau et al. (1988) 

reconstructed sound fields from intensity measurements, Williams et al. (1989), have 

extended the normal NAH to the application of broadband excitation, etc. Back-

propagation, formulated as an inverse problem, and regularization tools have also been 

well studied (Nelson and Yoon, 2000) (Yoon and Nelson, 2000) (Williams, 2001). Patch 

holography, dealing with the practical requirements of a large number of simultaneous 

measurements, has also been proposed and implemented (Lee and Bolton, 2005) (Lee and 

Bolton, 2006) (Williams, et al., 2003) (Sarkissian, 2005). 

 

2.2.2 The Inverse Boundary Element Method 

One disadvantage of the Fourier based method, from the application point of view, is that 

it requires the measurements to be performed on a surface of a certain geometry. The use 

of other techniques, such as the Inverse Boundary Element Method (IBEM), can overcome 

this issue. The usually preferred IBEM, the direct IBEM (Veronesi and Maynard, 1989), 

developed based on the Helmholtz integral equation (also referred to as Green’s formula) 

(Williams, 1999) is expressed as: 

0

( | )
( , ) ( ( , ) ( | ) ( , ) ) ,

s
s s s sn

s

G X X
cP X j v X G X X P X d X

n
   




 


  

(2.6) 

where 𝑃  is the sound pressure at location 𝑋⃗ , 𝐺  is the free space Green’s function, 𝑋⃗𝑠 

denotes a point on the enclosed boundary Γ, and 𝑛⃗⃗𝑠 is the normal vector of the boundary 



13 

 

1
3
 

surface pointing to the sound field region. The coefficient 𝑐 is 1 when 𝑋⃗ is in the sound 

field region, 0 when 𝑋⃗ is outside and equals the solid angle of the boundary when it is on 

the boundary. 

 

In the above integral, the right hand side of Eq. (2.6), can be numerically evaluated by 

using a mesh discretization on the boundary surface where the pressure and the normal 

velocity distribution on the boundary are interpolated by using surface shape functions. 

Thus the value of the integral evaluated at an arbitrary location, 𝑋⃗, can be expressed as a 

linear combination of pressure and normal velocities on nodes of the boundary elements in 

the mesh. When Eq. (2.6) is evaluated at the locations of the nodes, a linear relation 

between the nodal values of pressure and that of normal velocities can be established as: 

,s ss ssCP A P B v 
 

(2.7) 

in which 𝑃⃗⃗𝑠 and 𝑣⃗𝑠 are vectors containing the pressure and normal velocity values on the 

surface nodes; 𝐶  is a diagonal matrix with the coefficients of the nodal locations. The 

matrices 𝐴𝑠 and 𝐵𝑠  are results from discretizing the two parts of the integral in Eq. (2.6) 

with 𝑋⃗ evaluated at the nodal locations. It is shown, by Eq. (2.7), that the pressure and the 

normal velocity on the boundary determine each other, so either one determines the sound 

field in the whole space. 

 

In order to reconstruct the sound field in the whole sound field region, the nodal pressure and 

normal velocity values need to be calculated from the measured sound pressure at a number of 
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locations in the space (with no restrictions on where the measurement should be performed in 

principle). This is done by solving the linear system generated by evaluating Eq. (2.6) at the 

measurement locations: i.e., 

,m s sm mP A P B v 
 

(2.8) 

where the subscript 𝑚 here denotes the measurement locations. Since the measurements are 

performed inside the sound field region, there is no coefficient matrix involved in Eq. (2.8). 

Given the measured sound pressure, 𝑃⃗⃗𝑚, the nodal pressure and normal velocities can be solved 

by combining Eqs. (2.7) and (2.8). In the matrix inversion process, Singular Value 

Decomposition is usually applied in consideration of its ill-posed nature (Borgiotti, et al., 1990) 

(Varah, 1973). The singularity of the matrix relating nodal values to measurements can be 

improved if the locations of measurements are chosen by using the Effective Independence 

Method (Kim and Ih, 1996). At some of the eigen frequencies for the associated homogeneous 

Dirichlet problem inside the boundary surface, it has been shown (Copley, 1968) that the 

solution to Eq. (2.6) is not unique. One popular treatment with regard to this non-uniqueness 

issue was the Combined Helmholtz Integral Equation Formulation (CHIEF) developed by 

Schenck, 1968, which involves modifying Eq. (2.7) to not only contain the nodal locations 

on the mesh but also several points inside the boundary.  

 

For the sound field generated by a thin vibrating structure that does not form a closed 

surface, the formulation of the Indirect Boundary Element Method (Raveendra, 1998) can 

be used as an alternative to the usual direct BEM formulation, which replaces the pressure 

and normal velocity in Eq. (2.6) by the jump of the pressure and normal velocity cross the 
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vibrating surface. With further boundary conditions of a specified pressure or velocity on 

the surface the formula becomes the form of a single or a double layer of potential (Filippi, 

1977), which can be expressed as:  

( , ) ( , ) ( | )P X Y G Y X dY  


 
 

(2.9) 

and 

( | )
( , ) ( , )

G Y X
P X Y dY

n
  







  

(2.10) 

respectively, where 𝛼  and 𝛽  are the potential density (or strength) functions. With 

measurements of sound pressure at a number of locations, the potential densities can be 

estimated by inverting the associated formulation in a similar way as in the direct Inverse 

BEM (Eq. (2.8)). Although the layers of potential formulation can be derived from the indirect 

BEM formulation for a thin structure, either the single or double layer potential has a 

completeness property (Filippi, 1977) (Doicu and et al. 2000) which allows either potential 

to be used to describe any sound field radiated from a closed surface as well (Chen and 

Schweikert, 1963). In the work of Valdivia and Williams (2004), the performance of different 

formulations in the application of acoustical holography were compared and the use of different 

shape functions was investigated along with the treatments of the ill-posedness in the inversion 

of the formulation. Both the single and the double layer of potential formulations, however, 

were shown to have a non-existence issue at the same eigen-frequencies as the direct Helmholtz 

integral formulation (Copley, 1968), but for different reasons. To overcome this, a mixed single 

and double layer formulation was developed by Sayhi, et al. (1981). It is noted here that the 
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integration surface of the layers of potential formulations here are the actual surface of the 

sound radiation structure; however, their completeness, the ability to represent any possible 

sound field, still remains when the integration surface is chosen to be any closed surface inside 

the actual source boundary.  These types of formulations will be reviewed as specific types of 

Equivalent Source Methods in a later section in this chapter.  

 

2.2.3 The Equivalent Source Methods  

Although the Inverse Boundary Element Method has the flexibility that does not require 

the sound field measurements to be performed on a particular surface geometry or at equal 

spatial intervals, it is a computationally intensive method since numerical integrations are 

necessary and usually a very fine mesh is required for high frequency simulations. The 

Equivalent Source Methods, reviewed in this section, have the further advantages of high 

modeling efficiency and simplicity in the mathematical formulation.  The idea of the 

Equivalent Source Method (ESM) is to assume that the sound field in the space is the same 

as that which is generated by some sources (a continuous source distribution or a number 

of discrete sources) referred to as the equivalent sources. The types of the equivalent 

sources are specified a priori, and the source strengths (or source locations as well, if not 

specified a priori) are estimated by minimizing the error between the model-predicted 

sound field and the measurements. Compared with Finite Element Methods where basis 

functions (the shape function) are chosen so that the boundary conditions are satisfied and 

the parameters (the nodal values) are then determined by minimizing the error in the 

satisfaction of the governing equation, the Equivalent Source Method can be interpreted as: 

choosing the basis functions (the equivalent sources) to satisfy the governing equation and 
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then determine the parameters (source strengths, or source locations as well) by minimizing 

the error in the satisfaction of the boundary conditions. It is also noted that in order to make 

the construction of the ESM mathematically rigorous, the collection of the equivalent 

sources assumed in the model should be a complete basis in a sense that any possible 

solution to the governing equation should be represented by the sound field generated by 

the equivalent sources with some associated source parameters. Examples of different 

choices of equivalent sources include: a continuous layer of monopoles (i.e., single layer 

potential) (Koopmann, et al., 1989) (Fahnline and Koopmann, 1991); a double layer of 

monopoles and dipoles (i.e., a mix of single and double layer potentials) (Jeans and 

Mathews, 1992); spherical waves of different orders located at a single point (Ochmann 

1995) (Wang and Wu, 1997) and spherical waves at undetermined source locations 

(Ochmann, 1992). Compared with the single and double layer potential formulations in the 

Inverse BEM’s, the potentials (or distributions of monopoles or dipoles) in ESM’s are 

usually not placed on the actual physical source boundary but, instead, inside the source 

boundary, and the strength functions (or source strengths) in the ESM’s have no direct 

connection to the sound pressure or normal velocity on the source boundary. 

 

The general formulation for the ESM can be derived by first expressing the actual sound 

field to be generated by assumed equivalent sources as (von Estorff, 2000) (Ochmann, 

1995): 

( ) ( ) ( , ) ,
Q

p x c y q x y dy   (2.11) 
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where 𝑄 denotes for the region in which the assumed equivalent sources are distributed, 

𝑞(𝑥, 𝑦) is the sound field expression (evaluated at 𝑥) from each source (located at 𝑦 and 

with a unit source strength), and 𝑐(𝑦) is the source strength at 𝑦. Although Eq. (2.11) is 

written in the form of a volume integral, it could be a surface or line integral if the sources 

are assumed to be placed on a surface or curve, or it could even be a series summation if 

discrete equivalent sources are assumed rather than a continuous distribution of sources. 

 

The boundary error can then be calculated as the difference between the measured sound 

field and the prediction by Eq. (2.11) on the measurement surface (i.e. the boundary): 

( ) ( ) ( ) ( , ) ,m

Q

x p x c y q x y dy     (2.12) 

where 𝑝𝑚(𝑥) denotes the measured sound pressure. It is usually a vector of measurements 

at a number of discrete locations, although it is written as a continuous function, since the 

vector form can be interpreted as a sequence of direct delta functions with different 

strengths. 

 

After the boundary error is expressed, as in Eq. (2.12), the source strength, 𝑐(𝑦), can be 

estimated by minimizing the error. Different techniques in the Equivalent Source Methods 

use different ways to minimize the error; these ways, however, can all be derived from the 

weighted residue method. Here only the formulation for the case of given measured sound 

pressure, i.e., the Dirichlet boundary condition, is introduced, and it can be easily extended 

to other types of boundary value problems (von Estorff, 2000). According to the weighted 
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residue method, the coefficients for the assumed sources are determined so that the 

boundary error is orthogonal to the space spanned by a set of chosen weighting functions, 

{𝑤𝑖(𝑥)} , which gives the following equation for all 𝑖’s: 

( ) ( ) { ( ) ( ) ( , ) } ( ) 0,i m i
S S

Q

x w x ds p x c y q x y dy w x ds       (2.13) 

where 𝑆 is the measurement surface. Under the constraint that the measured sound pressure, 

𝑝𝑚(𝑥) , is only available at a number of discrete locations on the surface, the usual 

treatments for evaluating this surface integral are: (1) sampling the error function and the 

weighting functions at each of the measurement locations which then turns the integrals 

into inner products of finite-dimensional vectors; or (2) interpolating the error function 

based on values at the measurement locations and then evaluating the integral of continuous 

functions. 

 

It can be shown that the above general equation, Eq. (2.13), can lead to the formulations of 

different techniques, by substituting different choices of equivalent sources, 𝑞(𝑥, 𝑦), and 

different weighting functions, 𝑤𝑖(𝑥). For example: (1) the choice of a collection of discrete 

simple sources together with weighting functions that are delta functions leads to a 

collocation method (or matrix inversion solution) (Koopmann, et al., 1989) (Jeans and 

Mathews, 1992); (2) choosing weighting functions to be the conjugate of each source sound 

field function leads to the least square solution (or solution from SVD) (Wang and Wu, 

1997); (3) if spherical waves are chosen as equivalent sources and weighting functions are 

the surface normal derivatives of the source function, the formulation is identical to the 
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Null-field equations (Ochmann, 1995); (4) the two kinds of full-field equations can be 

derived by replacing the weighting function for the null-field equations with the real part 

of the source function (first kind) and the conjugate of the source functions (second kind) 

(Ochmann, 1999). 

 

2.2.4 The Statistically Optimized Near-Field Acoustical Holography 

In the Equivalent Sources Method reviewed above, the chosen equivalent sources are 

usually a finite subset of a complete basis, which means that the sound field prediction 

from the ESM’s gives, if least square method is used in parameter estimations, the 

projection of the actual sound field to the chosen finite subset of the complete basis, and 

the components of the basis that are not included in the chosen subset are completely 

discarded. In another way, the ESM predictions are the optimums only in the space of 

chosen equivalent sources, while containing no information outside of this space. 

Statistically Optimized Near-field Acoustical Holography (SONAH) was developed to 

overcome this limitation: i.e., to find an optimized prediction in a larger space, or even the 

whole space spanned by the complete basis. In principle, the representation of the sound 

field by any basis that are complete can be used to formulate a SONAH method, it is, 

however, more convenient to use plane waves than to use other basis. Compared with the 

Fourier based methods, in which a plane wave representation is also used, the SONAH 

method has a smaller error and is easier to handle from a computational point of view (Hald, 

2003) (Hald and Gomes, 2006). The idea of SONAH can be extended for other source 

types (Cho, et al., 2005) but will not usually lead to a formulation that has the same level of 

simplicity as for plane waves.  
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To derive the formulation of the SONAH method (Hald, 2005) (Hald, 2009), the prediction of 

the sound pressure at an arbitrary location in the space is first written as a linear combination 

of the measured sound pressures: 

1

( ) ( ) ( ),
N

n m n

n

p x c x p x



 

(2.14) 

where 𝑝(𝑥) is the predicted sound pressure at an arbitrary location, 𝑥; 𝑃𝑚(𝑥𝑛) denotes the 

measured sound pressure at the 𝑛th measurement location 𝑥𝑛, and 𝑐𝑛(𝑥) is the coefficient 

for the 𝑛th measurement which is a function of 𝑥. The goal for SONAH is to find the 

expression for 𝑐𝑛(𝑥) such that the prediction 𝑝(𝑥) is an optimum prediction in the space 

spanned by a complete basis, and, here, the basis of all plane waves is considered. Let {𝜑𝑖} 

be the complete basis which include infinitely many basis functions. In order to find an 

optimum prediction in the space spanned by all 𝜑𝑖’s, it is first necessary to derive a finite 

subset solution of the 𝑐𝑛(𝑥)’s that is optimum in sapn{𝜑𝑖} with 𝑖 = 1, 2 , … 𝑀, and then 

take the limit as 𝑀 approaches infinity. This finite subset solution of 𝑐𝑛(𝑥) can be derived 

by a least square fit to the following set of linear equations: 

1

( ) ( ) ( ), 1,2,... .
N

i n i n

n

x c x x i M 


 
 

(2.15) 

 

After defining the matrix and vector notations: 
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(2.16) 

the least square solution with Tikhonov regularization (Tikhonov, 1963) to Eq. (2.15) is:  

2 1( ) ( ) ( ),H Hc x A A I A x  
 

(2.17) 

where 𝜆 is the regularization parameter, and H denotes the Hermitian of a matrix. When 

the limit is taken as 𝑀 approaches infinity, the solution in Eq. (2.17) is then the optimized 

solution in the space spanned by the complete basis. This leads to the following expressions: 

*

, ' '

1

[ ] lim ( ) ( ),
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(2.18) 

*

1
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n i n i
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
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(2.19) 

If the sources for the basis, {𝜑𝑖}, are chosen to be plane waves, the infinite sum in eqs. 

(2.18) and (2.19) become integrations in the two-dimensional wavenumber domain, 𝑘⃗⃗ =

(𝑘𝑥, 𝑘𝑦). When using the polar coordinates and the properties of the Bessel functions, these 

integrals can be reduced analytically to a simple form that is very suitable for numerical 

integrations. This is the reason why only the plane wave representation SONAH is usually 

used and SONAH based on other types of basis functions usually results in a more 

complicated formulation. The specific expressions for the reduced forms of eqs. (2.18) and 

(2.19) are not reviewed here and can be found in (Hald, 2005) and (Hald, 2009). Different 
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methods to choose the regularization parameter in Eq. (2.17) were proposed by Gomes and 

Hansen (2008). 

 

2.2.5 The Treatments of Ill-Posedness 

In almost all the sound field reconstruction techniques, the parameter estimation process is 

an ill-posed inverse problem; one reason is that the sound field always has evanescent 

components which decays rapidly as the receivers move away from the source and usually 

have amplitudes less than the noise level at some measurement locations (William, 1999). 

When the system is inverted, i.e., to calculate the source strength from measurement, the 

measurement noise, even though small, will be amplified and results in large errors in the 

calculated parameters. Another cause of the ill-posedness is the under-determined nature 

of the model that is used to describe the relation between the model parameters and the 

measured quantities: i.e., a system that has more unknowns than the number of equations. 

This is usually the case for the Inverse BEM and the Equivalent Sources Method when a 

large number of lower order sources are used as the equivalent sources. Mathematically, 

this ill-posedness can be explained by the singular value decomposition (SVD) of the 

system matrix relating the measurements to the parameters (usually source strengths) 

(Hansen, 1998). This measurements-parameter relation can, in most sound field 

reconstruction techniques, be expressed in a discrete linear form (matrix vector form): i.e., 

, ,H
mP Ac A U V  

 
(2.20) 
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where 𝑃⃗⃗𝑚 is the measurements, 𝑐 denotes the parameters (usually the source strengths), 𝐴 

is the system matrix and 𝐴 = 𝑈Σ𝑉𝐻  represents the SVD of the system matrix. The 

inversion of the above system gives the solution (Hansen, 1998): 
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(2.21) 

where 𝜎𝑖 is the 𝑖th singular value (i.e., the 𝑖th diagonal element in Σ), usually ordered as 

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑁. When evanescent wave components exist, some of the singular values 

are close to zero; on the other hand, when model under-determinacy exists, some singular 

values are exactly zero. In all these cases, the errors in 𝑃⃗⃗𝑚 are amplified, as seen from Eq. 

(2.21),which then introduces large error in the calculated parameters. 

 

To deal with this error amplification problem, usually a filter is applied to the singular 

values, which keeps the large singular values and eliminates or compensates the small 

singular values. With the filter applied, Eq. (2.21)  becomes: 
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(2.22) 

The commonly used techniques to choose the filter coefficients ( 𝑓𝑖 ), referred to as 

regularization techniques, are Truncated Singular Value Decomposition (TSVD) (Hanson, 

1971) (Varah, 1973) and Tikhonov regularization (Tikhonov, 1963) (Phillips, 1962). For 

TSVD, the 𝑓𝑖’s are chosen to be one for the first 𝐼 singular values and zero for the rest, 

whereas the Tikhonov regularization uses a smoother filter which has the expression 𝑓𝑖 =
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𝜎𝑖
2/(𝜎𝑖

2 + 𝜆2)  for some parameter 𝜆 . The expression for the Tikhonov regularization 

comes from the idea of balancing the least square solution and the least norm solution to 

Eq.(2.20) by solving the following minimization problem: 

2 2
2min( ).mP Ac c 

 
(2.23) 

The performance of each regularization technique depends on the choice of their 

regularization parameters: 𝐼 for TSVD and 𝜆 for the Tikhonov regularization. Different 

parameter choice techniques have been developed based on different criteria. Since the 

performance of each technique depends largely on the specific problem, no single 

technique is preferred for all applications. Widely applied techniques include: (1) 

Generalized Cross Validation (GCV) (Golub, et al., 1979) (Wahba, 1977) in which one 

element of the measurement data is first removed and then the error at this measurement 

location is calculated as the difference between this measured data and that predicted based 

on the remaining data, the regularization parameter is finally chosen to minimize the 

average of such errors calculated at all the measurement locations; (2) the L-Curve (Hansen, 

1992) (Hansen and O’Leary 1993) method, where the norms of the residuals and the norms 

of the solution vectors are calculated for different parameter choices; when the logarithm 

of these two norms are plotted against each other on a 2D plane (different points 

corresponding to different choices of the regularization parameter), the curve of the plot 

usually forms a L-shape, then the final parameter choice is the one corresponding to the 

corner point on the L-curve which is regarded as the best balance between the least square 

and the least norm solution; (3) Normalized Cumulative Periodogram (NCP) (Hansen, et 
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al., 2006), the idea of which is that the best parameter choice is the one that makes the 

residual vector closest to white noise, i.e. the Normalized Cumulative Periodogram is 

closest a straight line; (4) Morozov’s Discrepancy Principle (MDP) (Williams, 2001), 

which gives the parameter choice that makes the norm of the residual is closest to the pre-

measured or guessed noise level. 

 

The regularization techniques mentioned above, i.e., the TSVD and the Tikhonov method, 

are analytical regularizations, meaning that the final regularized solution has an analytical 

expression, once the regularization parameter is determined. The basic idea behind this 

type of regularizations is to balance the least square solution and the least norm solution of 

the original equation. Usually this type of technique can give satisfactory results when the 

system is not very rank deficient, which means that the rank of the system matrix is not too 

small compared with the total number of unknown variables. For strongly rank deficient 

systems, an iterative regularization may give more reasonable solutions, in which iterations 

are usually performed in a similar way as in the normal gradient-based optimization 

algorithms, but, after each iteration, some constraints are enforced to ensure the sparsity of 

the solution, meaning that most elements in the solution vector are zero, or ensure the 

solution’s physical meaning: e.g., some elements in the solution need to be positive. In a 

recently proposed sound field reconstruction technique, the Wideband Acoustical 

Holography (Hald, 2014), an iterative regularization is used to ensure sparsity. In some 

recent work on beamforming, which is not the focus in the review here, since it is a source 

localization technique rather than a sound field reconstruction techniques, iterative 
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regularizations to ensure positivity have been widely applied (Brooks and Humpherys, 

2006) (Lylloff, et al., 2015).   

 

2.3 A Review of Room Acoustics Sound Field Prediction Techniques 

The second (and also the last) step in the modeling process, after the reconstruction of the 

sound field in free space, is to model the room effect: i.e., the change of the free space 

sound field because of the existence of the room. The room acoustics simulation techniques 

can be divided into two categories in general: the wave acoustics methods and the 

geometrical acoustics methods. In the category of the wave acoustics methods, the 

prediction of the sound field in a room is treated as finding or approximating the solution 

to a suitable boundary value problem either analytically or numerically. Analytical 

approaches can only be applied to problems with simple room geometry and simple 

boundary conditions (Kuttruff, 2000), thus are not suitable for most realistic room acoustics 

practices. The numerical solutions, on the other hand, can deal with more complex and 

realistic problems but are usually computationally intensive, the most widely implemented 

methods of which are the Finite Element Method (FEM) and the Boundary Element 

Method (BEM). For the category of the geometrical acoustics methods, sound propagation 

is modeled as rays, instead of solutions of the wave equations. In room acoustics 

simulations, methods based on geometrical acoustics are more popular than the methods 

based on wave acoustics, largely due to its flexibility in dealing with arbitrary room 

geometries and the simplicity in numerical calculations. The commonly used geometric 

acoustics models include: the Ray Tracing model, the Beam Tracing model, the Image 
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Source Model and the Hybrid Models. In this Section the above mentioned room acoustics 

techniques are generally reviewed.  

 

2.3.1 Methods Based on Geometrical Acoustics 

The methods based on geometrical acoustics do not try to solve the governing equation in 

the room region, but instead combine together individual models describing the sound 

generation, propagation, reflection, diffraction and reception, respectively, to simulate the 

signals received at different receiver locations in a room. The geometrical acoustics 

treatments for these components, although, strictly speaking, they do not give a solution to 

the governing equations, can nonetheless produce reasonably accurate results for relatively 

high frequencies. Different modeling techniques for each of these acoustical phenomena 

in a room environment are reviewed: the fundamental geometrical acoustics models for 

each individual phenomenon are presented first and it is then described how these 

fundamental models can be used to construct different room acoustics simulation 

techniques.   

 

2.3.1.1 Fundamental Models Used in Geometrical Room Acoustics 

2.3.1.1.1 Sound Propagation, Sources and Receivers in Geometrical Acoustics 

In geometrical acoustics, energy density is usually used to describe the sound field and the 

sound propagation is usually modeled as rays. Also in the usual practices of geometrical 

acoustics, only point sources are dealt with. When a wave front is generated by and 

propagated away from a source in a media without motion, the surface area of the wave 
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front increases at a factor of the square of the distance, so the energy density decreases at 

a rate of distance squared. This gives a simple expression for the energy density 

propagation along a ray of sound:  

2

2

1
,p

r  
(2.24) 

where 𝑟 denotes the propagation distance from the source. An equivalent interpretation of 

this expression in geometrical acoustics is that the total energy generated from the source 

is distributed among a large but fixed number of rays, and the energy carried by each ray 

stays constant when propagation is in the air, but the number of rays that fall into a unit 

area on the wave front surface decreases at the rate of the squared distance.  Based on this 

energy relation, a complex sound pressure can be constructed and expressed as: 

,
jkre

p
r



 
(2.25) 

where 𝑘 is the wavenumber. It is noted here that although the propagation expression is the 

same as a monopole, it is purely based on the assumption of energy distribution on the 

wave front rather than solving the wave equation.  

 

The above expressions only describe the change of energy density or sound pressure 

amplitude at a particular point moving with the wave front, but due to the directivity of the 

source, the energy densities at different locations on the wave front can be different. In 

geometrical room acoustics, the expression for the energy density for the whole space is 

simply a multiplication of Eq. (2.24) by the directivity factor (DF): i.e., 
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(2.26) 

which, strictly speaking, does not satisfy the wave equation and can only be understood 

from the energy assumption mentioned earlier. Receivers are treated in the same way as 

the sources, i.e., the energy density times the directivity factor of the receiver, and 

sometimes a visibility factor is also included which is 1 if the source-to-receiver path is not 

blocked by any obstacles and 0 otherwise.  

 

2.3.1.1.2 Reflection Models 

In most geometrical room acoustics practices, the reflection of sound is calculated under 

the assumption that the room surfaces are locally reacting: i.e., it is assumed that the normal 

specific acoustic impedance at a point on the surface is independent of the motion at other 

locations on the surface and thus is not a function of the incidence angle of the incidence 

wave. This local reaction model is even applied to materials that are known to be non-

locally reacting such as porous materials, and still gives reasonable results (Kuttruff, 2000). 

 

To calculate the reflection from an infinite, flat, locally reacting surface from a certain 

incidence angle, the plane wave reflection coefficient is usually used in geometrical room 

acoustics even if the source has the sound field expression of a monopole rather than a 

plane wave. This treatment, although it is wrong in the strict sense, can be shown, by the 

expansion of saddle point integration, to be an asymptotic expression of the exact solution 

of the point source reflection when the source is several wavelength above the plane. 
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(Mechel, 2002) Curved surfaces, whose spatial variations are at lower orders compared 

with the wave lengths, are usually approximated by small flat polygons in room acoustics, 

so no special care is taken for dealing with such curved surfaces. (Vorländer, 2008)  

 

However, when non-smooth surfaces are considered (i.e., the spatial variations are at the 

same order or even higher orders than the wave length), modelling of sound scattering 

needs to be involved. Similarly, sound scattering cannot be neglected for surfaces with 

geometric irregularities. Most often, only the hard surface boundary conditions are 

considered for analytic solutions to non-smooth and irregular surface scattering problems, 

the most classic results for scattering by non-smooth (corrugated) walls are from Rayleigh 

(1945); and for scattering by irregularities are from Twersky (1957) and Biot (1968). 

Although it is possible to include these exact models for scattering in room acoustics 

simulations, in most practices a simpler approach is preferred: the approach of scattering 

and diffusion coefficients. In the presence of a rough surface, both specular reflection and 

non-specular (or diffuse) reflection exist: in specular reflection, the reflected wave 

generated by a incidence plane wave propagates in a single direction (this is the only type 

of reflection for flat, homogeneous surfaces); whereas in diffuse reflection, a incident plane 

wave can produce reflected waves in all directions. The scattering coefficient is the ratio 

of the energy in non-specular reflection to the energy of the total reflection, which can be 

measured but includes no information of how the non-specular reflection energy is 

distributed between different propagation angles. In room acoustics simulations, the 

random-incidence scattering coefficient is usually obtained from measurements (Vorlander 

and Mommertz, 2000) and the angular distribution of the diffuse reflection energy is 



32 

 

3
2
 

assumed to follow the Lambert reflection law which assumes a uniform energy density 

distribution of the diffuse reflection. The diffuse coefficient (Cox, et al., 2006), a measure 

of how uniform the diffusely reflected energy is distributed in different spatial angles, is 

not directly applied in room acoustics simulations. Instead, a more general description of 

the energy distribution pattern, the Bidirectional Reflectance Distribution Function 

(BRDF), is used when the description in terms of the scattering coefficient and the Lambert 

law is not satisfactory. (Siltanen, et al. 2007) The BRDF is a function of two directions 

(four angles in 3D) at each frequency, one for an incidence (incoming) direction and the 

other for the reflection (outgoing) direction; it describes the portions of the energy carried 

by an incoming wave from an arbitrary direction that is reflected to any given outgoing 

directions. (Nicodemus, 1965)  

 

It is noted that the above mentioned reflection models are all for infinite surfaces only. In 

the case of a finite surface, such as a free-hanging reflector, it is known to add a high-pass 

filtering effect to the result of infinite surface reflection. One way to model this effect is to 

construct a high-pass filter and apply it to the reflection coefficients obtained under the 

assumption of infinite surfaces (Rindel, 1986); or, as a more general alternative, include a 

diffraction model in the simulation which can also be capable of dealing with surfaces that 

are connected by certain angles. 
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2.3.1.1.3 Diffraction Models 

Sound diffraction describes the edge-generated sound field (in addition to the reflected 

sound field) when an incident sound wave propagates to two or more surfaces that are 

connected together by edges. Since edges are very common features for room geometries, 

it is important to include the modeling of sound diffraction in room acoustics simulations. 

The canonical case of sound diffraction in acoustics is the infinite rigid wedge problem, 

i.e., a plane wave diffracted by two rigid planes connected together by straight edge with a 

certain angle. Typical treatments for this problem include: (1) Biot and Tolstoy’s work 

which is based on a formulation of wave propagation by Lagrange’s equations and using 

normal modes as generalized coordinates (Biot and Tolstoy, 1957) (Tolstoy, 1975); (2) 

Morse and Ingard’s work which uses the cylindrical wave expansion of the incident wave 

at the edge (Morse and Ingard, 1968); and (3) Pierce’s work where a contour integration in 

the complex plane is used to describe the diffracted sound field (Pierce, 1981). In room 

acoustics simulations, one way to include diffraction modeling is the secondary edge 

source approach, a further development of Biot and Tolstoy’s work, which expresses the 

diffraction sound field from a polygon surface as an integral along the edges of the polygon 

(Torres, et al. 2001). Another type of secondary edge source model for diffraction, a class 

of modeling separate from Torres, et al.’s work, can be derived using the Fresnel-Kirchhoff 

approximation and the Maggi-Rubinowicz transformation (Tsingos and Gascuel, 1998) 

(Sakurai and Nagata, 1981). One modeling method that is particularly suited for sound 

diffraction from a thick noise barrier (Pierce, 1974) was developed by using the asymptotic 

expression of the Pierce’s treatment mentioned earlier. As another modeling class for sound 
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diffraction, there are methods based on geometrical optics such as the Geometrical Theory 

of Diffraction (Keller, 1962) and the Uniform Theory of Diffraction (Kouyoumjian and 

Pathak, 1974). In Section 2.3.1.2, it is further commented how these fundamental 

diffraction models can be included in a practical geometrical room acoustics simulation 

model.  

 

2.3.1.1.4 The Room Acoustic Rendering Equation 

Almost all commonly-used geometrical room acoustics models can be described using a 

general equation, i.e., the room acoustics rendering equation. Different modeling 

procedures can be viewed as a different way to solve this equation. The sound energy at a 

particular point in the room includes the contribution of emitted energy from the whole 

room surface patches (it is assumed that the geometry of the room surface is represented 

by surface patches), however, the energy emitted from a single surface patch depends on 

the energy that is reflected from all the other surface patches to that single patch. The room 

acoustic rendering equation is used to describe this recursive relation. It is noted that this 

equation only describes the sound reflections in a room and sound diffraction is not 

included. Such a formulation is sometimes referred to as the Kuttruff’s integral equation 

(Kuttruff, 1995) (Kuttruff, 2000). This room acoustics rendering equation can be expressed 

in a form that is directly related to the geometrical acoustics simulations as (Siltanen, et al., 

2009):  

0( , ) ( , ) ( , , ) ( , ) ,
G

l x l x R x x l x dx         
(2.27) 
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where ( , )l x   is the energy emitted from a single surface patch located at x to a field 

point in the room (  is the angle between the surface normal vector and the ray connecting 

this surface patch and the field point); 0 ( , )l x   is the reflection from the source to the field 

point or the direction emission if the surface patch at x  is an active source; ( , )l x   is the 

energy emitted from x to x (  is the outgoing angle).  The integral is the contribution 

from the reflection from all the other surface patches and the reflection kernel, ( , , )R x x  , 

is expressed as: 

( , ,( , , ) ( , ) ( , ,))R x x V x x xx g x    
 

(2.28) 

where ( , )V x x  is the visibility factor as described at the end of Section 2.3.1.1.1; 

( , , )x     is the Bidirectional Reflectance Distribution Function (BRDF) of the surface 

patch at x  (described in Section 2.3.1.1.2) with  being the incidence angle from  the 

surface patch at x (the angle between the straight line from x  to x and the normal vector 

of the surface patch at x ) and ( , )g x x  describes the propagation of a sound ray from x

to x  including the factors of time delay, atmospheric attenuation, etc.  

 

The differences among various geometrical room acoustics models mainly revolve around 

include how the room acoustic rendering equation is sampled and numerically evaluated; 

what type of BRDF is used and whether additional diffraction models are included or not. 

It is noted that there are other types of rendering equations (Alarcão, 2005) (Navarro, 2010) 

which can be derived based on the energy transportation in the room space instead of the 

boundary based equation, as for Eq. (2.27). These volumetric approaches, however, are not 
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directly related to geometrical acoustics modeling and are not widely used in room 

acoustics simulations.  

 

2.3.1.2 Commonly-Used Geometrical Room Acoustics Modeling Techniques 

After the introduction of the fundamental models in geometrical acoustics, the commonly-

used modeling techniques in geometrical room acoustics are reviewed in this section which 

use different ways to combine the fundamental models together to simulate the impulse 

responses at the locations of interest in the room. There are two main modeling categories 

in general: techniques based on reflection path and techniques based on boundary surfaces. 

The reflection-path-based techniques primarily focus on describing the propagation path 

of a sound ray from the source to the receiver at the end and the reflections (and sometimes 

also diffractions) along the path. The boundary-surface-based techniques, on the other hand, 

first calculate the time history of the energy distribution on the room boundary surfaces, 

and then, in a second step, propagate the energy on the boundary to the receiver locations. 

These two technique categories are not fundamentally different, but the surface-based 

techniques are more convenient for interactive simulations or when a moving receiver is 

involved, since the first step can be pre-computed.  

 

2.3.1.2.1  Image-Source Method 

The image-source method is a convenient way to describe the specular reflections on the 

surfaces, but it is not easy to include diffuse reflections and diffraction. The main principle 

of the image-source method is that the reflected sound field of a source (usually a monopole) 
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from a flat plane can be represented by another source (i.e., the image source) located at 

the mirror location of the original source across the plane with its source strength being the 

strength of the original source times the reflection coefficient of the plane. The angle-

dependent plane wave reflection coefficient can be used as explained in Section 2.3.1.1.2. 

The early image-source model was proposed by Carslaw (1899). This model was later used 

to calculate the sound field in a rectangular shaped room (Mintzer, 1950) where higher 

order image sources (images of the image sources) are involved. Computer simulation 

programs were then developed to calculate the sound field in rectangular rooms (Gibbs and 

Jones, 1972) (Allen and Berkley, 1979). In order to increase the computational speed of 

the image-source model, McGovern (2009) proposed a technique to get rid of unnecessary 

computations by using sorted look-up tables. Further extensions of this image-source 

method for rectangular spaces include: the use of multipoles to efficiently simulate sound 

field for a moving receiver or for several receivers at the same time (Duraiswami, et al., 

2007); synthesizing the diffuse reverberation based on the energy decay curve obtained 

from the image-source model (Lehmann and Johnansson, 2008), etc. 

 

While it is possible to calculate the locations of the image sources by specific formulas for 

rectangular shaped rooms, the higher order image source locations in an arbitrary polygonal 

room geometry need to be determined by recursively mirroring the lower order sources 

with respect to each surface in the room. Furthermore, some additional checks need to be 

performed (Borish, 1984): first, for a particular surface, the image sources behind that 

surface should not be used to construct new higher order image sources; also, for a 

particular source, the surfaces that are completely behind other surfaces should not be used 
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to create new images; moreover, after all valid image sources are constructed, in order for 

a image source to contribute to energy received at a certain location, a visibility test needs 

to be performed for each pair of image source and receiver location, which means the 

reflection path connecting the original source to the receiver needs to hit all its reflecting 

surfaces at the inside of their boundaries when following the sequence of  the surfaces that 

create that particular image source.  The image source method can only be used to calculate 

the early reflections efficiently, as the number of image sources grows exponentially to an 

impractically large number at higher reflection orders. 

 

2.3.1.2.2 Stochastic Ray-Tracing Method 

In contrast with the image-source method where the reflection paths are found analytically, 

the ray-tracing methods find the reflection paths and calculate the room impulse responses 

in a stochastic, Monte-Carlo-like procedure. The very early work on ray tracing was 

proposed by Allred and Newhouse (1958), and it was then implemented in room acoustics 

simulations in the late 1960’s (Krostad, et al., 1968) (Schroeder, 1970). The general steps 

for implementing ray-tracing simulations (Vorländer, 2008) include: first emit a large 

number of sound, plane-wave-like rays from the source in all directions; then track each of 

the ray paths and modify the path and the amount of energy carried by the ray when hitting 

each reflecting surface; finally record the sound energy propagating through the 

neighborhood of the receiver location over time to generate the room impulse response. In 

the source emission process, the rays can be emitted in either pre-defined directions or in 

random directions, and if the source has certain directivity patterns, the directivity is used 



39 

 

3
9
 

to weight the strength of the rays that are uniformly distributed in all directions or to weight 

the directional distribution density of the emitted rays with equal strength. Similarly, in the 

process of modifying the energy carried by the ray when reflection occurs, one can either 

modify the energy strength of the ray according to the reflection coefficient of the surface 

or assign a probability for a ray to be eliminated from all the rays hitting this surface 

according to surface’s absorption coefficient. In the energy recording process at the 

receiver’s locations, the receiver, instead of being a point, needs to have some volume, 

since the probability for a ray hitting a volume-less point is infinitely small. This volumetric 

receiver, however, may cause the problem of registering false rays (Lehnert, 1993) as well 

as the problem of recording the same reflection path multiple times.   

 

One advantage of the ray-tracing method over the image-source method is that it is 

convenient to include diffuse reflections in ray tracing. There is more than one way to 

realize the diffuse reflections as well (Vorländer, 2008): the most accurate way is to 

generate, when a single ray hits surface, one specularly reflected ray and a number of 

diffusely reflected rays uniformly distributed in all directions in the half space, where the 

total energy assigned to the diffuse reflections is determined by the scattering coefficient 

and the Lambert law, or, secondly, the BRDF can be used to determine the strength of each 

diffuse ray in its particular direction. A computationally more efficient way is to generate 

only one single ray when a ray hits a surface, but give the generated ray a certain probability 

(depending on the scattering coefficient) to become a specular reflection or a diffuse 

reflection, and the probability of the direction of the diffuse reflection is similarly assigned 

by the Lambert law or the BRDF. Another way, the vector mixing model, linearly combines 
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the specular and diffuse ray together to form a single ray. Edge diffraction can also be 

added to ray-tracing methods by modifying rays close to edges (Mehta and Mulholland, 

1976) (Christensen and Rindel, 2005). The relation between the number of rays and the 

accuracy has been studied by Vorländer (2008). 

 

2.3.1.2.3 Beam-Tracing Method 

Instead of using a straight lines to represent the propagation path and using a volumetric 

receiver in ray-tracing methods, the beam-tracing technique uses volumetric beams to 

represent the path and a point receiver. The term, beam tracing, however, can be referred 

to two different techniques in room acoustics: one is an extension of the stochastic ray-

tracing method, the other, sometimes referred to as deterministic beam tracing, is used as 

the first step in image-source method to efficiently calculate the image source locations in 

a complicated room geometry. 

 

The very early work, still a currently widely-used version, of the stochastic beam-tracing 

technique (Haviland and Thanedar, 1973) (Walsh, 1980) uses pyramid-shaped beams by 

dividing the sphere around the source into triangles. When a pyramidal beam hits the 

intersections of more than one surface, the beam is split into several beams whose beam 

cross-section change from triangles to polygons, the exact shapes of which depends on the 

geometry of the surface intersections. As an alternative to the pyramidal beam shape, the 

geometry of a circular-cone shaped beam can also be used (van Maercke, 1986), one 

problem brought by which is that there will be overlaps among the beams if circular disks 
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are used to cover a sphere. This problem can be handled by weighting the energy 

contribution inside a beam such that the energy is closer to zero when a receiver is located 

closer to the boundary. Another way to implement beam tracing is to still use volume-less 

rays but to allow the volume of the receivers to increase along with the rays’ propagation 

distance (Vorländer, 1989). It is noted here that most beam-tracing methods, except for 

pyramidal beam-tracing, can conveniently handle the issue of beam splitting when hitting 

multiple surfaces. As with ray-tracing methods, it is also possible to include diffuse 

reflection (Dalenbäck, 1996) and diffractions (Chandak, et al., 2008) in beam tracing. 

 

The second type of beam-tracing, deterministic beam tracing, is used as a more efficient 

alternative to finding the valid image sources (described in the image-source method 

section). In traditional image-source methods, the image sources are found by mirroring all 

lower order sources with respect to all surfaces and then removing the invalid image 

sources. In this family of beam tracing, the first order image sources are found in the same 

way, and then beams are formed by connecting each first order image source to the edges 

of the surface that were used to create this first order source (one single beam for one first 

order source). These beams are then traced and reflected on each encountered surface, and 

each reflection creates a new image source. In this process, all the created image sources 

are valid, thus there is no need to check and remove the invalid sources (Stephenson, 1996) 

(Funkhouser, et al., 2004).  Another advantage of this type of beam tracing over the 

traditional image-source methods is the possibility to include diffractions (Tsingos, et al., 

2001). 
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2.3.1.2.4 Radiosity Method 

In contrast with the three previously introduced path-based methods, the radiosity method 

is a surface-based method, which, as mentioned before, first involves calculating the energy 

distributed on the room surfaces and then propagating the energy from the surfaces to the 

receivers. The basic radiosity method directly applies the room acoustics rendering 

equation, Eq. (2.27), and assumes ideally diffuse reflection: i.e., the BRDF is assumed to 

be constant. This method can be used to calculate the reverberation time (Gilbert, 1981) 

(Kuttruff, 1997), the room response (Moore, 1984) or the late reverberation part of the 

room response (Lewers, 1993). The details of how to implement this method to simulate 

the sound field in a diffusely reflecting room with arbitrary shape was presented by Nosal 

et al. (2004). The theoretical equivalence of this method to the stochastic ray-tracing 

method was demonstrated by Le Bot and Bocquillet (2000).  

 

One extension of the basic radiosity method is to use a non-constant BRDF to account for 

more general surface reflection properties, which is sometimes referred to as the method 

of acoustic radiance transfer (Siltanen et al., 2007). In this case, the surface needs to be 

discretized into patches to use the angle-dependent reflection properties. It is also noted 

here that it is usually more efficient to implement this type of radiosity method in the 

frequency domain rather than the time domain (Siltanen et al., 2009).  
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2.3.1.2.5 Hybrid Methods 

In geometrical room acoustics, hybrid methods are used to compute the room responses by 

combining several different methods mentioned above, which typically use the path-based 

methods for the early reflections (dominated by specular reflections) and the surface-based 

methods for the later reverberations where diffuse reflections are more important (Lewers, 

1993) (Tenenbaum, et al., 2007). Recently, Koutsouris et al. (2013) proposed a data-driven 

method to switch from specular reflection mode to the diffuse reflection mode.  Another 

type of hybrid method, developed by Aretz (2012), involves using finite element simulation 

for the low frequency components and the geometrical acoustics simulations for high 

frequencies.  

 

2.3.2 Methods Based on Wave Acoustics 

Simulations based on the Boundary Element Method (BEM) and Finite Element Method 

(FEM) are two types of widely-used wave-based techniques in room acoustics. Solutions 

to the Helmholtz equation in terms of acoustic modes in the room is also an important 

category in wave-based method for room acoustics; this modal method, however, is not 

commonly used in room acoustics simulations, since it cannot be easily applied to arbitrary 

room geometries or be used to deal with general impedance boundary conditions. The BEM 

for room acoustics is no different to the BEM described in Section 2.2.2 for modeling the 

free-space sound field, thus only the FEM in room acoustics is briefly introduced here 

(Aretz, 2012) (Van Hal, et al., 2003) (Van Genechten, et al., 2009). 
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The finite element formulation, a weak form formulation of an acoustics problem, can be 

derived either by using the weighted residue method (Fish and Belytschko, 2007) or based 

on the fundamental theorem of calculus of variation (Shames and Dym, 1995).  Firstly, the 

Helmholtz equation is multiplied by an arbitrary weighting function, ( )w x , and integrated 

over the room region, which gives: 

2

0

2( ,0)w p k p j q d


     (2.29) 

where k denotes the wavenumber; q denotes the strength of volume source distribution 

in space. Then, Green’s first identity is applied to this volume integral, which results in: 

2

0( ) ,0

v zp

w p wk p wj q
p

n
d w d

    


    


    (2.30) 

where the second term is the surface integral over the boundary of the room region. The 

boundary is composed of the surfaces with one of the three types of boundary conditions: 

surface with pressure boundary condition, p ; surface with normal velocity boundary 

condition, v , and surface with impedance boundary condition, z . It is noted that the 

weighting functions are chosen arbitrarily, but with one constraint: it is zero on p . Thus 

the weak form for the finite element formulation is derived after applying the boundary 

conditions: 

2 0
0 0( ( 0( ) ) ) ,

v

n

sz

j
w j vw p wk p wj q w p dd d

Z


 

  


           

(2.31) 
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where nv  is the specified normal velocity boundary condition and  Zs is the impedance 

boundary condition. In most FEM applications, both the weighting function, w , and the 

sound field, p , are discretized and approximated by the same shape functions on a mesh 

of the room region: i.e., the Galerkin method is used. After this discretization, the above 

equation, Eq. (2.31), can be written as a matrix system with the nodal values of the sound 

pressure on the mesh being the unknowns: 

2( ) ,K j M p jA f   
  

(2.32) 

in which p  is the vector containing the nodal values of the sound pressure; K and M are 

the compressibility matrix and the mass matrix resulting from the volume integral of  the 

terms w p   and 
2k p , respectively; the damping matrix, A, is obtained from the surface 

integral on z ; and the excitation vector, f , resulting from the combination of the velocity 

boundary condition term and the volume source term. The solution of this problem can be 

found by solving the above linear system for the nodal sound pressure values.  
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CHAPTER 3. FREE-SPACE SOUND FIELD PREDICTION USING MULTIPOLE 

EQUIVALENT SOURCE MODEL WITH UN-FIXED SOURCE LOCATIONS 

3.1 Introduction 

As mentioned in the Introduction (Chapter 1), the first step of the simulation is to predict 

the free-space radiation of the source. It is recalled here that the problem of this step is to 

predict the sound field everywhere in an anechoic environment based on the sound field 

measurements at a finite number of locations. The efficiency of the modeling (specifically, 

the number of model parameters required to achieve enough prediction accuracy) for this 

step is important since it affects not only the computational intensity of simulating the free-

space sound field itself, but also that of the room acoustics simulation, since the result of 

this step will be taken as an input to the next operation (room acoustics prediction). From 

this concern, it is generally undesirable to implement the computationally intensive models 

such as Finite Element Models (FEM) or Boundary Element Models (BEMs), and thus the 

idea of using techniques in the area of acoustic holography (or improved methods based on 

them) is a natural alternative. In some applications, the predictions are based on the given 

distribution of the normal velocities on the source surface; in this chapter, however, it is 

focused on the case of using measured sound pressure as input, since the method discussed 

here, as mentioned in Section 2, can easily be modified to treat the case of having normal 

velocity inputs.  
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From the review of the various free-space sound field reconstruction techniques in Chapter 

2, it is seen that in the area of acoustical holography, the existing techniques can be broadly 

classified into parametric and non-parametric methods. In the non-parametric methods, 

often referred to as Fourier-based holography, the sound field is decomposed into a set of 

orthogonal basis functions using measurements in a geometry where orthogonality applies 

(Williams and Maynard, 1982) (Maynard, et al., 1985) (Williams, et al., 1987). In the 

category of the parametric methods, however, it is assumed that the actual sound field is 

equivalent to that generated by a combination of some wave or source components with 

undetermined parameters and those parameters are estimated using measured data. 

Techniques in the parametric category can, in general, be viewed as equivalent source 

methods. In classical Equivalent Source Methods (ESM), the sound field is approximated 

by a distribution of simple sources, say monopoles or dipoles, with fixed locations 

(Koopmann, et al., 1989) (Fahnline and Koopmann, 1991) (Jeans and Mathews, 1992). 

Inverse Boundary Element Methods (IBEM) (Veronesi and Maynard, 1989) (Kim and Lee, 

1990) (Saijyou and Uchida, 2004), although derived from the Helmholtz equation, can also 

be interpreted as using a distribution of monopoles (pressure terms) and dipoles (normal 

velocity terms) on a closed boundary. In addition to methods in which a spatial distribution 

of simple, lower order sources is used, higher order sources with one fixed location can 

also be used as equivalent sources. Spherical harmonics were chosen in the initial proposal 

of the Helmholtz Equation Least Squares (HELS) method (Wang and Wu, 1997) (Wu and 

Yu, 1998) (Rayess and Wu, 2000) in which parameter estimation was performed through 

a least square method.  The HELS method was extended to the use of any arbitrary set of 

higher order sources. The Statistically Optimized Near-field Acoustical Holography 
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(SONAH) method (Cho, et al., 2005) (Hald, 2009) can also be viewed as a member of the 

higher order, single location category, in which a wave expansion of various types can be 

used with the wave strengths calculated, however, implicitly, as opposed to the HELS 

method. In the techniques using higher order sources, additional flexibility can be achieved 

by adapting un-fixed sources: i.e., the locations of each of the component sources can be 

different and they need to be estimated as a subset of parameters together with the source 

strengths, Ochmann (1992) has implemented a model similar with spherical waves. 

 

In the work described in this chapter, an ESM with higher order sources and un-fixed 

source locations is proposed which uses the multipole series of monopoles, dipoles, 

quadrupoles, octupoles and higher orders. With the additional flexibility of the 

undetermined source locations, it should, in principle, require fewer number of model 

parameters to reach the desired prediction accuracy. The use of the multipole sources 

instead of the usual spherical waves is more convenient than the usual techniques in this 

category, if the reconstructed free-space sound field will be inputted into another model for 

further processing: e.g., a room acoustic model to predict the sound field from the same 

source but in different rooms as in the work of this document. This follows because each 

multipole source, after its strength and location are calculated, can be treated as a 

combination of closely located monopoles and the models following this free-space sound 

field prediction only need to consider the simple case of having a monopole source. This 

is also much more convenient when the free-space sound field needs to be physically 

reconstructed (i.e., to generate the same sound field by using a number of loudspeakers), 

since multipoles can easily be physically realized using a number of small loudspeakers 
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(Beauvilain, et al., 2000). The parameter estimation, in this work, is divided into two parts: 

a linear optimization for source strengths and a non-linear optimization for source locations. 

The effects of different degrees of non-collocation and the effects of regularization 

methods were also investigated. The implementation of this method in the prediction of the 

sound field in both the near and far fields was validated through a measurement of a 

loudspeaker. 

 

3.2 The Model of Multipole ESM with Un-Fixed Source Locations 

The multipole model with un-fixed source locations, as compared with a model involving 

fixed, single location, higher order sources, allows more flexibility in model structure and 

thus, in principle, is more likely to approximate a sound field using a smaller number of 

sources. The source sequence consisting of monopoles, dipoles, quadrupoles and higher 

orders was chosen to be the equivalent sources used in this model; thus, the sound field 

expression of each individual source should be derived as the first step in constructing the 

model. Then an appropriate parameter estimation method needs to be proposed to 

determine the locations and strengths of the various source components. It is noted here 

that one necessary requirement for a series of sources being used as equivalent sources to 

represent a sound field is that the chosen source series needs to be complete, i.e., the series 

can, with appropriate source strengths and source locations, converge to any possible free-

space sound field, if the included source order approaches infinity. The proof of this 

completeness property for the multipoles are demonstrated in the Appendix along with 

discussions of the linear dependence relations among different source orders. 
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3.2.1 The Sound Fields of the Multipoles 

The terminology used in this paper regarding the multipole sequence is as follows: the 

monopole is referred to as a source of order zero, the dipole as a first order source, etc. As 

in the convention in acoustics, a monopole with strength 0S is defined to be a source that 

radiates the sound field  

0

0 00 0 0 0

0

( , ) ( , ) ,
4

jk X X

S

e
P X X S P X X S

X X
 



 

 


 

(3.1) 

where 0X is the source location, X is the receiver location and /k c is the wavenumber. 

This is an outgoing monopole when time dependence is assumed to be j te  . 

 

Based on this definition, a source of order n  ( 0n  ) can be constructed as a combination 

of two closely placed ( 1n  )st order sources with the same strength but opposite sign, and 

aligned in the direction nu , where 1nu  . Thus the sound field of an n th order source can 

be written as: 

0 01 1 1( , ) ( , ) ( ) ,
n

nSn n Sn n n nu
P X X d P X X S d P u        (3.2) 

where nd  (a small number) is the distance between the two lower order sources, 1nP 

denotes the sound field of the ( 1n  )st order source with unit strength, and  is the del 

operator. It is also defined that the strength of the n th order source is 1n n nS d S  . 
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From the iterative formula above, the explicit expression for a general n th order source can 

be written in tensor form as (Liu, 2011): 

1 20( ) ... , ,n
nSn n n n n nP S P S R P u u u R      (3.3) 

where the strength 0 1 2...n nS S d d d ,  denotes the tensor outer product, n  indicates 

performing the outer product on the del operator n times, and ( ) denotes the tensor inner 

product. It can be seen that the tensor nR has a rank of n and has 3n components in total. 

 

When it is noted that partial derivatives do not depend on the sequence of differentiation 

for smooth functions, it is seen that the tensor possesses a symmetric property meaning that 

not all components in the tensor are independent. This leads to the fact that the sound field 

of an arbitrarily-oriented n th order source can be decomposed into a combination of 

multipoles with a standard configuration of that source order, each of which can be 

expressed as: 
𝜕𝑛

𝜕𝑥𝑖1𝑦𝑖2𝑧𝑖3
(

𝑒−𝑗𝑘𝑟

4𝜋𝑟
), with 𝑖1 + 𝑖2 + 𝑖3 = 𝑛 and 𝑟 being the distance from source 

location to receiver location. The determination of the number of multipoles in each order 

is a standard combination-with-repetition problem: i.e., the function 
𝑒−𝑗𝑘𝑟

4𝜋𝑟
 is differentiated 

𝑛 times, for each time, one direction is chosen from three different directions (i.e., the 𝑥, 𝑦 

or 𝑧 directions) and the order in which the differentiation is performed does not matter. 

Thus the number of multipoles in each order can be calculated as:  
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
, (3.4) 

where 𝐶𝑎
𝑏 denotes the combination number resulting from choosing 𝑏 out of 𝑎, and where 

𝑛 is the source order. Specifically, the dipole has 3 standard configuration components, the 

quadrupole has 6 and the octupole has 10 and so on. 

 

3.2.2 Model Construction 

To construct the model, it is assumed that measurements of the sound field are obtained at 

different locations 1 2, ,... W   , and that the equivalent sources consist of 0M monopoles, 

1M dipoles, etc., up to NM sources of order N . By arranging the equivalent sources into a 

vector with a global index, instead of two indices, representing the number of sources for 

each order, the relationship between the measured sound pressures and the equivalent 

sources can be written as: 
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 

 (3.5) 

where iP is the measured sound field at the i th location, jg denotes the unit strength sound 

field of the j th source in terms of the global index, and jQ is the strength of the jth  source.  
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In the above equation, the source locations, jX ,and the corresponding strengths, jQ , are 

the parameters to be estimated, while the measurement locations, i , are known from the 

design of the measurement. The main difference between this model structure and that of 

a model using fixed source locations is that an additional set of parameters, jX  , needs to 

be estimated. In the present work, two types of un-fixed source locations models are 

discussed: the collocated model and the non-collocated model. In the former category, all 

sources are located at the same undetermined location, whereas in the latter category, the 

sources in different orders can have different undetermined source locations but the sources 

of the same order have the same source location.  

 

3.2.3 Parameter Estimation Process 

Equation (3.5) is in the form of ( )P A X Q ; thus the parameters, X and Q , can be 

determined by solving the following optimization problem: 

2

min ( ) .P A X Q  (3.6) 

This problem is essentially a non-linear optimization, since the matrix A is not constant but 

depends on X . However, it is observed that if the source locations are known, the 

estimation of the source strength is a linear least squares problem. Based on this 

observation, the parameter estimation process used here is based on a non-linear 

optimization algorithm that updates the source locations only, and within each update, the 

strengths are determined by a linear process.  
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The linear part of the problem, i.e., the estimation of source strengths with given source 

locations, is accomplished by a standard least square solution in combination with a certain 

regularization method since the problem is often ill-posed (Nelson and Yoon, 2000) (Yoon 

and Nelson, 2000). Generally speaking, there are no regularization methods that can be 

declared better than the others before comparing the results. Therefore the effects of 

different regularization types are compared later in this chapter. 

 

In the part of the non-linear optimization that updates source locations, the Trust Region 

Reflective Method (Coleman and Li, 1996) was chosen due to its quadratic convergence 

rate and the ability to handle relatively large number of parameters; moreover the 

requirement of the existence of the Hessian matrix of the cost function can be met in this 

problem. In principle, the source locations do not necessarily need to be allowed to move 

in all three degree of freedoms. For example, it can be assumed that some of the sources 

have the same location, or that they are only allowed to move along a line or on a plane, 

etc. Such constraints are sometimes helpful to reach a balance between flexibility of the 

model and the capability and speed of the optimization algorithm. 

 

3.3 Implementation of the Multipole ESM’s 

The model implemented in this chapter includes all the standard configurations of 

multipoles (the independent components of the tensor in Eq. (3.3)) from monopole to 

octupole: i.e., one monopole, three dipoles, six quadrupoles and ten octupoles. In addition, 

the sources of the same order are constrained to have the same location and all source 
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locations should be within the volume of the physical, vibrating object (e.g., the 

loudspeaker in the experiment described below).  

 

Since the calculation of the sound field involves evaluation of n th order derivatives of a 

monopole sound field, two possible approaches can be used: a) analytical evaluation as in 

Eq. (3.3); or a b) finite difference method. Here, the analytical process was implemented. 

 

The particle velocities associated with a particular pressure field, necessary for the 

prediction of intensity, were evaluated analytically by using 

1
( ),sn snV P

j
    (3.7) 

where  is the air density. In the actual implementation, it is most convenient to treat ( )snP

as the pressure expression of an ( 1n  )st order source. 

 

In carrying out the Trust Region Reflective algorithm, the Jacobian of the cost function 

was calculated by forward finite difference, the maximum number of iterations and 

function evaluations were set to be 400 and 800, respectively, and the tolerance for 

determining a local minimum was 61 10 .  

 

3.4 Experimental and Numerical Results 

Experimental measurements were conducted to validate the proposed multipole Equivalent 

Sources Models, in which the sound field generated by a loudspeaker in an anechoic 
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environment was measured and compared with the prediction from the proposed models. 

The performances of the multipole ESM’s with different flexibilities (i.e., different 

constraints on the undetermined source locations) were compared. Three types of models 

with different flexibilities were investigated: fixed-location model (all equivalent sources 

are fixed at a certain location); collocated model (all equivalent sources have the same but 

un-fixed source location); non-collocated model (equivalent sources of different orders 

have different un-fixed source locations, but sources of the same order have the same 

location). Also for the purpose of demonstrating the use of the proposed models in source 

visualizations, the sound pressure distribution over the loudspeaker surface was predicted 

using the collocated model which was then verified with a BEM prediction where the 

vibrating velocity measured by a laser vibrometer was used as the BEM boundary condition. 

 

3.4.1 Description of the Experiment 

The loudspeaker used in this experiment is an Infinity Primus P163 with a dimension of 

0.265 m  0.207 m  0.37m, the sound field of which was measured in an anechoic 

environment (shown in Figure 3.1). Sound pressure measurements were performed both in 

the near field and far field on six planes around the loudspeaker with each plane parallel 

with a corresponding face on the loudspeaker. The measurement locations are shown in 

Figure 3.2, where the distance between the near-field measurement plane and the 

corresponding face of the loudspeaker is around 0.3 m, and the distance for the far-field 

plane was 0.9 m. Note that the distances from the measurement planes to the loudspeaker 

faces are not exactly the same in either the near field or the far field measurement; however, 

the exact coordinates of each microphone was measured and was used in the model 
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constructions, since, from the model construction process described in Section 3.2, it is 

noticed that it is not necessary to guarantee all microphones having the same distance to 

the source as long as the coordinates of each microphone are known.  There were 54 

measurement points on each face (a total of 324 near-field measurement points and another 

324 far-field measurement points) which were measured separately by using a 18-channel 

planar microphone array (Brüel & Kjær, sliced wheel array WA-1558-W; microphones: 

Brüel & Kjær, Type 4959).  The sampling frequency in this experiment was 65.5 k Hz, and 

in the calculation of the frequency response of each microphone measurement to the input 

signal, the H1 estimator was used (8 Hz frequency interval up to 25.6 k Hz, 100 averages 

from 0.125s time segments with 50% overlap). 

 

     

Figure 3.1. Photos of the experimental setup. 
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Figure 3.2. The spatial distribution of the measurement locations in the experiment. 

 

The separate measurements were synchronized together to obtain the effectively 

simultaneously measured signals at all the receiver locations by using the transfer matrix 

method (Kim, et al., 2004) (Lee and Bolton, 2006) with one reference signal, the input 

signal to the loudspeaker. As required by the transfer matrix method, the number of 

reference signals used in the synchronization should be no less than the number of 

uncorrelated sources existing in the measurement. To verify the satisfaction of this 

requirement in this experiment, singular value decompositions were performed at each 

frequency on the cross power spectrum density matrix for a simultaneous 18-channel 

measurement in front of the loudspeaker. The first three largest singular values for each 

frequency were then plotted in Figure 3.3, from which it is observed that there is only one 

significant singular value for each frequency and all the other singular values are at least 
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30 dB lower than the first one. This indicates that there is only one main sound source and 

the other singular values represent the ambient noise. Thus only one reference signal is 

needed to synchronize all the separate measurements together. 

 

 

Figure 3.3. The first three singular values of the cross power spectrum density matrix for 

a simultaneous 18-channel measurement in front of the loudspeaker. 

 

In the model construction process used in this experiment, all the multipole ESM’s, 

regardless of what flexibility was chosen, contained a multipole series up to order 3 (i.e., 

up to octupole), and the 324 near-field measurement data were used to estimate the source 

strengths as well as the source locations in the model. With the calculated parameters, the 

sound pressures at the 324 far-field measurement locations were predicted by the ESM, 

and were then compared with the measured far-field sound pressure to investigate the 

performance of the models. From Eq. (3.4), it can be calculated that there are 20 multipoles 

in total if the series includes sources up to order 3 as in the current experiment which results 

in the system matrix in Eq. (3.5) being a 324 by 20 matrix for each frequency. Figure 3.4 
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shows a typical distribution of the 20 singular values of this matrix (the distribution does 

not change significantly with different frequencies or different source locations), in which 

there exists a very sharp transition at the 16th singular very and the singular values after the 

16th are very close to zero. This feature can be explained by the linear dependence relations 

among different multipole order, which is discussed in detail in the Appendix. It is also 

concluded, in the Appendix, that the number of linearly independent multipoles is the same 

as the number of components included in the spherical wave series up to the same order, 

which, if the calculation is carried out, gives exactly 16 for multipoles up to order 3. 

Because of this linear dependence relation, a truncated singular value decomposition has 

been perform at the 16th singular value when finding the least-square solution to Eq. (3.5) 

to estimate the strengths of the equivalent sources. 

 

 

Figure 3.4. A typical singular value distribution of the system matrix for multipole ESM. 
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3.4.2 Validate and Compare ESM’s with Different Flexibilities  

As mentioned before, the model parameters were estimated using the near-field 

measurement data, and the model performance (i.e., the accuracy of the model predicted 

sound field) is indicated by comparing the measured and the model predicted sound 

pressure at the 324 far-field measurement locations. For the fixed-location model, all the 

equivalent sources were placed at the center of the loudspeaker; for both the collocated (all 

source locations were the same but undetermined) and the non-collocated models (sources 

of different orders can have different locations but the sources of the same order have the 

same location), the source locations were constrained to move only within the loudspeaker. 

The initial guesses of the source locations in both the collocated and the non-collocated 

models were all at the center of the loudspeaker for the lowest frequency component and 

the calculated source locations for the current frequency component was used as the initial 

guess for the next (higher) frequency component.  

 

Results for models with three different flexibilities (i.e., the fixed-location model, the 

collocated model and the non-collocated model) are shown in Figure 3.5 to Figure 3.11, 

where the predictions from each of these three models are compared with the measurement 

at the frequencies of 400 Hz, 1 kHz, 2 kHz, 3 kHz, 6 kHz, 10 kHz and 20 kHz respectively. 

The microphone indices from 1 to 54 are on plane parallel to the front face of the 

loudspeaker; 55 to 108 the right face; 109 to 162 the back face; 163 to 216 the left face; 

217 to 270 the top face; and 271 to 324 the bottom face. It is clearly observed that 

predictions from the fixed-location model are accurate up to 2 kHz, however, starting at 3 

kHz the model performance is deteriorating, and for frequencies of 6 kHz and above, no 
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meaningful predictions are obtained from the fixed-location model. The other two models, 

i.e., the collocated and the non-collocated models, both achieve good prediction accuracies 

for all the frequencies. Although small mismatches to the measurement can be found for 

the predictions from the collocated and the non-collocated models, it is noted here that the 

plots shown in those figures are in linear scales, and these discrepancies become much less 

noticeable if decibel scales are used. The highest frequency shown here, 20 kHz, is already 

the upper limit for the human audible frequency range, so it is concluded that the collocated 

and the non-collocated models can be used to reconstruct the sound field for the whole 

audible frequency range, at least for sources similar to the loudspeaker used in the current 

experiment.    

 

 

Figure 3.5. Performance comparison among ESM’s with different flexibility at 400 Hz. 
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Figure 3.6. Performance comparison among ESM’s with different flexibility at 1 kHz. 

 

 

Figure 3.7. Performance comparison among ESM’s with different flexibility at 2 kHz. 
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Figure 3.8. Performance comparison among ESM’s with different flexibility at 3 kHz. 

 

 

Figure 3.9. Performance comparison among ESM’s with different flexibility at 6 kHz. 
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Figure 3.10. Performance comparison among ESM’s with different flexibility at 10 kHz. 

 

 

Figure 3.11. Performance comparison among ESM’s with different flexibility at 20 kHz. 
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Since both the collocated model and the non-collocated model gave good performances for 

all frequencies, but the collocated model had fewer source location parameters to optimize 

(recall that optimizing the source locations is a non-linear process), the collocated model 

is preferred both from a computational intensity point-of-view and from the model 

efficiency point-of-view. Thus only the collocated model was used in the following further 

validations.  

 

First, instead of comparing the measurement with the prediction at each microphone index 

in 2D plots, the 3D spatial distribution of the sound pressure levels at each microphone 

were also compared between the measurements and the predictions from the collocated 

model (Figure 3.12 to Figure 3.15). The results indicate that the model can also accurately 

predict the spatial pattern of sound field.  

 

 

Figure 3.12.  Comparison of sound pressure level spatial distribution at 400 Hz 

(collocated model results vs. measurement). 
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Figure 3.13.  Comparison of sound pressure level spatial distribution at 2k Hz (collocated 

model results vs. measurement). 

 

 

Figure 3.14.  Comparison of sound pressure level spatial distribution at 6k Hz (collocated 

model results vs. measurement). 
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Figure 3.15.  Comparison of sound pressure level spatial distribution at 15k Hz 

(collocated model results v.s. measurement). 
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3.18. It is noticed that the diaphragm has zero response above 3 kHz where the tweeter’s 

velocity is large; and the tweeter has zero response below 1.5 kHz; there is, however, some 

small tweeter response between 1.5 kHz and 3 kHz where the diaphragm is also 

contributing, which, to some extent, supports the source location at 2 kHz in Figure 3.16 

being in between the diaphragm and the tweeter locations. 

 

Figure 3.16.  The (collocated model) calculated source locations at different frequencies. 
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Figure 3.17.  Photos of the laser vibrometer measurement. 

 

 

Figure 3.18.  Frequency responses of the diaphragm and the tweeter velocity. 
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3.4.3 ESM Source and Sound Field Visualization and Comparison with BEM 

To demonstrate the use of the proposed multipole ESM in visualizing the source 

information, here the collocated model was used to predict the sound pressure distribution 

on the loudspeaker surface, which was then verified by comparison with the BEM 

prediction of sound pressure on the same surface.  

 

In the BEM calculations, the boundary mesh for frequencies below 2200 Hz are the same, 

which have more than 6 nodes per wavelength at 2200 Hz, and the mesh for higher 

frequencies have also satisfied the criterion of at least 6 nodes per wavelength. The 

boundary condition used in the BEM is a velocity boundary condition, such that the 

diaphragm and the tweeter are both vibrating like rigid bodies with the velocities being the 

measured velocities from the laser vibrometer experiment (Figure 3.17 and Figure 3.18), 

and the remaining areas (physically made of wood) have zero velocity (i.e., assuming the 

wooden surfaces are acoustically hard). The collocated ESM predicted sound pressure are 

compared with the BEM predictions on the loudspeaker surface (Figure 3.19 to Figure 3.21) 

and are compared with both the BEM predictions and the measurements at the near field 

and the far field measurement locations (Figure 3.22 to Figure 3.24). It is noted that the 

collocated model used here to compare with the BEM results was slightly difference from 

the collocated models used previously in Section 3.4.2: the constraint region within which 

the sources were allowed to move was smaller than the one used in the previous collocated 

models. The reason for this difference and the details in choosing the constraint region is 

discussed later, after the source visualization results and the performance comparison with 

the BEM results are commented upon. From Figure 3.22 to Figure 3.24, it is noticed that 
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the BEM predictions agree with the measurement and the ESM results, which validates the 

use of the velocity boundary condition mentioned earlier: i.e., the diaphragm and the 

tweeter were assumed to have rigid-body motions and the remaining surfaces were 

acoustically hard. Thus it is reasonable to claim the accuracy of the BEM predictions on 

the loudspeaker surface as well. In Figure 3.19 to Figure 3.21, the ESM predicted sound 

pressures are found to be in agreement with the BEM results: errors occur only in areas 

where the sound pressure is low and both predictions have successfully captured the 

location change of the pressure “hot spot” from the diaphragm to the tweeter location as 

the frequency is sweeping through the cross-over frequency of the loudspeaker at 3 kHz.  

This demonstrates that the proposed ESM can be used to accurately predict and visualize 

the source information.  

 

 

Figure 3.19.  Sound pressure prediction compared on the loudspeaker surface at 400 Hz. 
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Figure 3.20.  Sound pressure prediction compared on the loudspeaker surface at 2 kHz. 

 

 

Figure 3.21.  Sound pressure prediction compared on the loudspeaker surface at 4 kHz. 
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Figure 3.22.  Sound pressure comparisons at the microphone locations at 400 Hz. 

 

 

Figure 3.23.  Sound pressure comparisons at the microphone locations at 2 kHz. 
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Figure 3.24.  Sound pressure comparisons at the microphone locations at 4 kHz. 
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location). One way to circumvent this is to constrain the source location to a smaller 

feasible region (i.e., the region within which the sources are allow to move) such that the 

source is still inside the loudspeaker but its distance to the loudspeaker’s front face is larger 

than certain value. This distance threshold should be large enough to avoid the close-to-
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singularity issue when evaluating the sound pressure on the front face, but, at the same 

time, should be small enough so that the feasible region for the source location optimization 

is not too small. After trying a few distances, by gradually increasing this value and 

comparing with the BEM predicted sound pressure on the surface as well as the measured 

sound pressure at the far field measurement locations, 4 cm was found shown to be a good 

choice of this distance threshold. This is validated by the good agreements at all frequencies 

shown in Figure 3.25 to Figure 3.28, where the performance from the modified collocated 

ESM used here (labeled as “Collocated (-4 cm)” in the figures) and that from the previously 

used collocated ESM (where the feasible region for the source location is exactly the 

loudspeaker region). 

 

 

Figure 3.25.  Performance comparison between two different collocated ESM at 400 Hz. 
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Figure 3.26. Performance comparison between two different collocated ESM at 2 kHz. 

 

 

Figure 3.27.  Performance comparison between two different collocated ESM at 6 kHz. 
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Figure 3.28.  Performance comparison between two different collocated ESM at 15 kHz. 

 

 

3.5 Summary 

For the purpose of developing an efficient model for free-space sound field prediction, the 

higher order equivalent source model with un-fixed source locations was proposed as a 

new ESM category, which makes use of a set of higher order multipoles to approximate 

the actual sound field, which, in contrast with traditional methods, allows the component 

locations of the sources to be undetermined and allows different sources to have different 

locations. A nonlinear optimization approach was used to determine the source locations 

that achieved the least discrepancy between the measured and the model-predicted sound 

fields.  
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A measurement of the free space radiation of a loudspeaker was carried out to validate the 

accuracy of this model and its use in visualizing the source information. The performances 

of the multipole ESM’s with three different degrees of flexibilities were investigated: the 

fixed-location model, the collocated model and the non-collocated model, in which the 

highest source order was chosen to be the octupoles. By comparing the model predictions 

with the measurements, it is shown that the fixed-locations can only accurately predict the 

sound field below 3 kHz, while the collocated and the non-collocated models can both have 

accurate predictions for the whole audible frequency range (i.e., up to 20 kHz). Since there 

is no large performance difference between the collocated and the non-collocated models, 

and the former has fewer parameters that need to be nonlinearly optimized, the collocated 

model is preferred in reconstructing and visualizing the sound field from sources similar to 

a loudspeaker. The calculated source locations, when using the collocated model, change 

from the physical diaphragm location to the tweeter location as the frequency sweeps 

through the designed cross-over frequency of loudspeaker from the low frequency region 

to the high frequency region, which is an indirect validation of the use of the proposed 

multipole ESM’s in sound field reconstruction.  

 

When calculating the sound pressure on the loudspeaker surface, in order to avoid 

evaluating the sound pressure at field points close to the source locations, it is necessary to 

constrain the sources to being inside the loudspeaker and, at the same time, constrain the 

distances between the sources and the front face of the loudspeaker to being larger than 4 

cm (a value that could be application-dependent). After this additional constraint, the 
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predicted sound pressure distribution on the loudspeaker surface agrees well with the BEM 

predictions, and is thus considered to be accurate.  

 

 

. 



81 

 

8
1
 

CHAPTER 4. REDUCED ORDER SIMULATIONS IN ROOM ACOUSCTICS USING 

EQUIVALENT SOURCE METHODS WITH SOURCES OF FINITE SIZES 

4.1 Introduction 

An efficient model has been described in Chapter 3 for simulating the free-space sound 

field radiation of a source, the result of which can be taken as the input to the room 

acoustics model developed in this chapter to accomplish the task of the prediction of the 

sound field in different room environments. A similar motivation (i.e., to predict the sound 

field using fewer model parameters) is applied here, as that which lies behind the work 

discussed in the previous chapter. In this chapter, a reduced order model for room acoustics 

is constructed. In the application concerned in the current work, the source, such as a 

loudspeaker, flat screen television, etc., usually has a finite geometric dimension that 

cannot be neglected, which is in contrast with the prediction of sound field from a musical 

instrument in a large concert hall. Thus the objective for this chapter is to develop a suitable 

room acoustics model that can be applied to sources with finite sizes and that has a 

relatively low model order. 

 

It is not difficult to conclude from the review of commonly used room acoustics models in 

Chapter 2 that they cannot be directly implemented here, since: (1) the techniques such as 

the Image Source Model, the Ray Tracing Model and Hybrid Model usually require the 

point source assumption and the calculations involved are not derived from a rigorous
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mathematical foundation (solving boundary value problem for governing equations); and 

(2) the simulations from models of FEM and BEM types, although they can be very 

accurate and can be used in the case of finite-size sources, are usually too intensive from a 

numerical computation point of view. Therefore new modeling alternatives need to be 

developed. The characteristics of the target application and the analysis of the limits of 

traditional room acoustics techniques have motivated the idea of developing a reduced 

order room acoustics model based on the Equivalent Source Models (ESMs) which was 

previously designed for free-space sound field prediction only.  

 

As already mentioned in earlier chapters and it is recapped here, in a slightly different 

manner, the ESMs were originally developed and primarily implemented in the context of 

Near-field Acoustical Holography (NAH) in which the goal is to determine and visualize 

the source characteristics. For the purpose of NAH, it is first assumed that the total sound 

field is generated by a finite number of sources with unknown parameters, but whose fields 

satisfy the governing equation in the domain; the unknown parameters are then estimated 

based on matching the measured sound pressure or particle velocity at certain locations 

(i.e., the fields must match the boundary conditions: the Direchlet boundary condition for 

sound pressure and the Neumann for velocity). To apply the ESM to room acoustics, 

however, some modifications are necessary, since the given information in this application 

is usually the free-space sound field radiated by the source and the impedances of the 

various boundary surfaces, rather than a direct measurements of sound pressure as in NAH 

applications.  The necessary modifications include: (1) an accounting for the room 

component of the total sound field (defined here as: the total sound field minus the free-
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space component) which is represented by the assumed equivalent sources, as suggested 

by the work of Bi and Bolton (2012); (2) satisfaction of the room surface impedance 

boundary conditions (i.e., the Robin boundary conditions) for the room component, which 

are matched to estimate the source parameters; and (3) the chosen equivalent sources need 

to be able to represent both outgoing and incoming wave components. 

 

In the work presented in this chapter, the general process of constructing the room acoustics 

ESM are presented first, which is independent of the specific type of equivalent sources 

that are chosen to represent the room component sound field. Then, as a preliminary 

numerical validation of the developed model, two different types of ESMs were 

constructed to simulate the sound field in a two-dimensional room with a simple circular 

geometry: one model makes use of a distribution of monopoles as the equivalent sources 

(the monopoles are placed inside the source surface and outside the room surface as well), 

and the other model makes use of a multipole series of monopoles, dipoles, quadrapoles, 

etc. to represent the room component sound field. After this two-dimensional numerical 

validation, a similar three-dimensional simulation is performed with a more complicated 

room geometry. The ESM results are compared with the BEM solutions to analyze the 

performance of each model under different conditions. Finally, an experiment involving a 

loudspeaker in a small room environment is conducted to further validate the proposed 

ESM models and to demonstrate the use of ESM as a reduced order modeling technique in 

room acoustics. 
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4.2 Theories on the Room Acoustics ESMS with Finite Size Source 

The total sound field in a room with acoustic sources of finite sizes, e.g. a large engine in 

a test cell, includes three components (Bobrovntiskii, et al., 1991) (Langrenne, et al., 2007): 

(1) the free-space component, i.e., the sound field without the room effect; (2) the incoming 

component, i.e., the sound field contributed by scattering from all the passive room surfaces; 

and (3) the source scattering component, i.e., the contribution from the scattering of the 

incoming component by the extended source surfaces. For the sake of convenience in the 

present work, the sum of the latter two components is defined here to be the “room 

component”. Since the source characteristics are usually known in room acoustics 

simulations, meaning that the free-space component is either given or can be easily 

calculated from the given information, the total sound field prediction is accomplished if 

the room component can be predicted. Therefore the following explanations will be 

focused on how to predict the room component using an ESM based on the known free-

space source components and the impedances of the surfaces of the room. Moreover, also 

for the sake of computational convenience, it is assumed here that all the boundary surfaces 

are locally reacting.  

 

4.2.1 Boundary Conditions on Different Surfaces 

The boundary conditions for the room component sound field need to be clearly identified 

and made distinct from the boundary conditions for the total sound field since they are to 

be used to estimate the parameters of the ESM that are used to represent the room 

component. When the size of the source is not negligible, as in the application of this work, 

boundary conditions need to be found for two types of surfaces: (1) the source surface, i.e., 
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the surfaces whose motion generates the sound field; and (2) the room surface, i.e., the 

passive interior surfaces that have no initial motion.  

 

Under the assumption of locally reacting surfaces, the boundary conditions for the total 

sound field for both the source surfaces and the room surfaces can be expressed as 

(Langrenne, et al., 2007): 

1 0 1

2 2

( ) ( ) ( ) ( )
,

( ) ( ) ( )

t nt

t nt

x p x u x u x x

x p x u x x





  


 
 (4.1) 

where Γ1  and Γ2  denote the source and room surfaces, respectively;  𝛽1  and  𝛽2  are the 

admittances on Γ1 and Γ2, 𝑢0 is the in-vacuo normal driving velocity, and  𝑝𝑡, 𝑢𝑛𝑡 are the 

sound pressure and the normal particle velocity of the total sound field.  

 

When considering only the free-space component on the source surfaces, there is a similar 

relation between the sound pressure and normal particle velocities: i.e.,   

1 0 1( ) ( ) ( ) ( ) .f nfx p x u x u x x     (4.2) 

In this expression, 𝑝𝑓  and 𝑢𝑛𝑓  represent the free-space sound pressure and the normal 

particle velocity, respectively. Since the total sound field is simply the sum of the free-

space component and the room component, according to the previous definition, we can 

write: 
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,
t f r

t f r

p p p

u u u

 


 
 (4.3) 

where the subscript 𝑟 denotes the room component. By substituting Eqs. (4.1) and (4.2) 

into Eq. (4.3), the boundary conditions for the room component sound field can be derived 

as: 

1 1

2 2 2

( ) ( ) ( ) 0
.

( ) ( ) ( ) ( ) ( ) ( )

r nr

r nr nf f

x p x u x x

x p x u x u x x p x x



 

  


   
 (4.4) 

 

Equation (4.4) then relates the room component sound pressure and particle velocity to 

those of the free-space component which are assumed to be known, and thus can be directly 

used in the ESM construction process. Also note that for a problem in which only the 

driving velocity of the source surfaces, 𝑢0, is given, the free-space pressure, 𝑝𝑓 and particle 

velocity 𝑢𝑛𝑓 can be found by solving a free-space forward prediction problem. There are 

many techniques available to perform that task: BEM, series expansion or free-space ESM, 

etc.  

 

4.2.2 The Construction of the ESMs for Room Acoustics 

4.2.2.1 The Room Acoustics ESM in General 

The general process of constructing an Equivalent Source Model, which is the same for 

both free-space and room acoustics simulations, is that the sound field in a region in space, 



87 

 

8
7
 

or a certain component of the sound field in the region, is first assumed to be equivalent to 

the sound field generated by a number of sources of certain types (with fixed or unfixed 

locations), but the strength of each source (together with their source locations if assumed 

to be unfixed) are treated as unknown parameters of the model which are then estimated 

by matching the required boundary conditions of the problem. In room acoustics, as 

mentioned before, the room component of the total sound field is to be represented by ESM, 

and the boundary conditions specified in Eq. (4.4) are to be used for parameter estimation. 

The focus on this work will be placed on fixed-source-location ESM only, but the 

construction of an ESM with unfixed source locations can be performed in a similar way 

as in Chapter 3.   

 

Based on the above assumptions, the sound pressure at a location in space can be related 

to the equivalent sources by the expression:  

1

( ) ( , ) ,
N

i i i

i

p x g x y Q


  (4.5) 

where 𝑁 is the total number of equivalent sources included in the model, 𝑥 is the location 

where the sound pressure is to be evaluated; 𝑄𝑖 and 𝑦𝑖 denote the source strength and the 

source location of the 𝑖th assumed equivalent source, respectively; and 𝑔𝑖(𝑥, 𝑦𝑖)  is the 

sound pressure generated by the 𝑖 th source of unit strength (which is known since it 

depends only on the assumed type of the 𝑖th source). A similar relation can be derived for 

the particle velocity, which is expressed as: 
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10

1
( ) ( , ) ,

N

i i i

i

u x g x y Q
j 

    (4.6) 

where ∇⃗⃗⃗ denotes the gradient, the overhead arrow denotes a vector quantity and 𝜌0 is the 

air density. The sign at the front of the expression is chosen to be positive if the time 

dependence is assumed to be 𝑒−𝑗𝜔𝑡 , and be negative if 𝑒𝑗𝜔𝑡 , where 𝜔  is the circular 

frequency and 𝑡 represents time. 

 

In order to estimate the model parameters, i.e., the source strength in the present work, Eqs. 

(4.5) and (4.6) are evaluated at a number of sampling points on both the source surfaces 

and the room surfaces, which turns the boundary condition expressions in Eq. (4.4) into 

(1) (1)

1

(2) (2)

22

0
n

n

p u

nf fp u

B A A
Q

u B pB A A

   
   

      
 (4.7) 

with 

1 1 11 1 1 1 2 1 2 2 1 2 2 2  ( ( ), ( ),..., ( )), ( ( ), ( ),..., ( )) ,M M M MB diag x x x B diag x x x       
 

(1) (1)

0

1
( ) ( , ), ( ) ( , ) ,

np ij j i j u ij n j i jA g x y A g x y
j

  

 

1 1

(2) (2)

0

1
( ) ( , ), ( ) ( , ) ,

np ij j M i j u ij n j M i jA g x y A g x y
j

   

 

1 1 1 11 2 1 2[ ( ), ( ),..., ( )] , [ ( ), ( ),..., ( )] ,T T
nf nf M nf M nf M f M f M f Mfu u x u x u x p p x p x p x    
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where T denotes matrix transpose,  𝑥1, 𝑥2, … , 𝑥𝑀1
 are the locations of the sampling points 

on the source surfaces, and 𝑥𝑀1+1, 𝑥𝑀1+2, … , 𝑥𝑀 are the samples on the room surface; 𝑄⃗⃗ is 

a vector containing the strengths of the equivalent sources; and 𝑝⃗𝑓 and 𝑢⃗⃗𝑛𝑓 are the free-

space sound pressure and normal particle velocities at the room surface sampling locations. 

The admittance matrices, 𝐵1 and 𝐵2, are diagonal matrices since here the room surfaces 

are assumed locally reacting. If the assumption of local reaction is removed, admittance 

matrices having non-diagonal forms would result.  

 

Given known source locations in the model, all the matrices in Eq. (4.7) are constants since 

the sampling points are chosen before the parameter estimation process. Thus the source 

strengths, 𝑄⃗⃗,  can be estimated by solving a linear optimization problem in which the least 

square method is usually applied with associated regularization schemes (Nelson and Yoon, 

2000) (Yoon and Nelson 2000). Based on this general formula, an ESM of a specific type 

can be constructed by substituting the corresponding formula for 𝑔𝑖(𝑥, 𝑦𝑖) into Eq. (4.5). 

 

Aside from the model construction process, the issue of model completeness is addressed 

here. In principle, as mentioned in Chapter 3, it needs to be verified that the assumed 

equivalent sources can be used to represent any possible sound field in the region if the 

number of the sources and the order of the sources approaches infinity, even when the 

model construction process does not depend on the type of assumed sources. Two specific 

types of sources are used as equivalent sources in this work: distributions of monopoles 

and multipole series. The completeness of the multipole series is shown in the Appendix 
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as mentioned in the previous chapter, and the completeness of the monopole distributions 

is a classical property of single layer potentials (Doicu, et al., 2000).   

 

4.2.2.2 The Room Acoustics ESM with Monopole Distributions 

In the monopole distribution ESM development presented here, a layer of monopoles are 

assumed to be distributed outside the room surface, and another layer is placed inside the 

source surface, similar to the source placement in the work of Bi and Bolton (2012). The 

geometry of the source distributions are chosen to be conformal to their associated surfaces. 

Since, in this chapter, the ESM with monopole distributions is only implemented in two-

dimensional rooms, the descriptions here are presented with a focus on constructing models 

in 2D spaces. It is noted that the 3D counterpart can be constructed in a similar process, 

and the necessary modifications to the 2D version are commented along with the 

introduction of the 2D model construction process in this section. In a two-dimensional 

space, the sound field of a single monopole is the Green’s function of the two-dimensional 

Helmholtz equation with the boundary condition of out-going waves. When the time 

dependence is assumed to be 𝑒−𝑗𝜔𝑡, the specific formula for the monopole sound pressure 

is: 

(1)

0( , ) ( ),
4

j
g x y H kr  (4.8) 

in which 𝑟 is the distance from the source location to the sound pressure evaluation location, 

𝑘 is the wavenumber, and 𝐻0
(1)

(∙) is the zero order Hankel function of the first kind that 

satisfies: 
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2 2( ) ( , ) ( ).k g x y x y      (4.9) 

Note that if the time dependence is assumed to be 𝑒𝑗𝜔𝑡, the Hankel function of the first 

kind, 𝐻0
(1)

(∙), in Eq. (4.8) needs to be replaced by Hankel function of the second kind, 

𝐻0
(2)

(∙). Also if the model is to be constructed in a 3D space, the spherical Hankel functions 

need to be used, i.e., replace 𝐻0
(1)

(∙) by 
𝑒𝑗𝑘𝑟

4𝜋𝑟
 for the 𝑒−𝑗𝜔𝑡 time dependence and replace 

𝐻0
(2)

(∙) by 
𝑒−𝑗𝑘𝑟

4𝜋𝑟
 for the 𝑒𝑗𝜔𝑡 time dependence. 

 

The monopole distribution ESM can be constructed by substituting Eq. (4.8) into the 

general formula, Eq. (4.7), and then applying the linear least squares method to estimate 

the source strengths. Usually regularizations are necessary at this stage because of the 

possibly ill-posed nature of the problem. In Section 4.3, the effect of the chosen 

regularization method will be discussed in detail.   

 

4.2.2.3 The Room Acoustics ESM with Multipoles 

It is more complicated to construct a multipole ESM to represent the room component 

sound field than a monopole ESM, since the sound field expressions for the multipoles 

used here, i.e., monopoles, dipoles, quadrupoles and so on, do not have as simple forms as 

the monopoles which were described in the previous chapter Section 3.2.1. Also the linear 

dependence relation among different multipole orders is detailed in the Appendix. 

Compared with the construction of the free-space multipole ESM in Chapter 3 where only 
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the outgoing multipoles are included, the room acoustics model described here should 

include a series of sources that represent the in-coming waves as well as the outgoing waves, 

since the room component, physically, contains both types of waves.  

 

The sound field expression of the outgoing multipoles in 3D space was derived in detail in 

Chapter 3. With some simple modifications to these, the corresponding expressions can be 

obtained for the incoming multipoles and for 2D space. With the time dependence of 𝑒−𝑗𝜔𝑡, 

the outgoing and the incoming monopoles (zeroth order of the multipole series) in 3D space 

are defined respectively as: 

0 0, ,
4

( , ) ( , )
4

jkr jkr
out inP x y P

e e

r r
x y

 



   (4.10) 

where 𝑘 is the wavenumber, and 𝑟 is the distance between the source and the receiver 

locations. For the time dependence of 𝑒𝑗𝜔𝑡, the expressions of the incoming and outgoing 

sources need to exchanged. For 2D space, the zeroth order multipoles are defined, with 

time dependence of 𝑒−𝑗𝜔𝑡, as: 

(1) (2)

0 0 0 0( ),( , ) ( , ) ( ) ,
4 4

io nutP x y
j j

H k HP x yr kr   (4.11) 

in which the notations are the same as those in Eq. (4.8). Also similarly, the expressions of 

the incoming and outgoing sources are exchanged for the 𝑒𝑗𝜔𝑡 time dependence. 

 

The 𝑛 th order multipole is then defined, in the same process as in Chapter 3, as all possible 

𝑛 th order partial derivatives of the zeroth order multipole, 𝑃0, with respect to the receiver 
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location variable, which may include differentiations in the 𝑥, 𝑦 and 𝑧 directions different 

number of times but the sum of the times differentiated in all directions is 𝑛 . 

Mathematically, the 𝑛  th order multipole includes all sources having the sound field 

expressions of the following form: 

0 .
n

n i j k
PP with i j

x y z
k n 










 (4.12) 

For Eq. (4.12), the same redundancy issue as discussed in Chapter 3 applies here, since the 

differentiation only depends on the number of times the function is differentiated in each 

direction rather than the sequence of the differentiation: e.g., xyz yxz    . Thus there are 

less than 3𝑛 sources comprising a 𝑛th order multipole. Similar to Eq. (3.5), the expression 

to determine the number of multipoles (for both 2D and 3D space) of each order is:  

1

1 , 0
( , ) ,

, 0
n

n r

n
N n r

C n 


 


 (4.13) 

where ( , )N n r   denotes the number of multipoles of order 𝑛 in a 𝑟-dimensional space.  

 

In the current work, a highest source order was chosen before the construction of the ESM, 

and then the non-identical components of all the multipoles (both in-coming and out-going) 

up to that highest order were included as the equivalent sources that represent the room 

component sound field. To estimate the sources strengths in the model, the linear least 

square method was applied, as in the process of constructing the monopole distribution 
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ESM, together with regularization methods which will be discussed in detail in the next 

section. 

 

4.3 Numerical Simulations for Model Validation and Analysis in 2D Space 

As a preliminary investigation of the room acoustics ESM developed in this chapter, 

numerical simulations were first conducted in two-dimensional room spaces with simple 

room geometries. In this section, two room acoustics ESMs (i.e., the monopole distribution 

ESM and the multipole ESM) were constructed, validated and analyzed by using a 

numerical simulation of the sound field in a two-dimensional room with a circular shape 

and with a finite-size source. Some of the advantages of the multipole ESM, compared 

with the monopole distribution ESM, are illustrated by the results of this simulation. 

 

4.3.1 Description of the Simulation Setup 

The intent of the simulation is to predict the sound field in a two-dimensional room with 

its geometry shown in Figure 4.1 in which the outer circle, having a radius of 𝑅2 = 2 m, 

represents the boundary surface of the room, and the concentric inner circle, having a radius 

of 𝑅1 = 0.5 m, represents a vibrating surface, referred to as the source surface. The 

receivers (i.e., the field evaluation points) in this simulation are placed on two circles, with 

the same center as the room surface: they have radii of 𝑟1 = 1 m and 𝑟2 = 1.5  m 

respectively as shown in Figure 4.1. There were 200 receivers in total with 100 of them 

being on each circle.  A non-uniformly distributed in-vacuo driving normal velocity was 

applied on the source surface, as shown in Figure 4.2, which drives the upper half of the 
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source surface at a normal velocity of 2 m/s and keeps the lower half passive. The driving 

velocity distribution in this simulation was identical across all the frequencies considered.  

 

 

Figure 4.1. The geometry of the two-dimensional room used in the simulation. 

 

 

Figure 4.2. The driving normal velocity distribution on the source surface. 
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Figure 4.3. The normal impedance of different surfaces for each simulation case. 
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both cases, and in all these models the assumed monopoles were placed on two circles, 

referred to as the virtual source surfaces (the number of sources on each circle was different 

to maintain a similar source density on each source surface): one was outside the room 

surface (radius of 2.2 m) representing the inward-going wave of the room component sound 

field in the room region, and the other was placed inside the source surface (radius of 0.4 

m) to represent the outgoing wave. To account for the impedance boundary conditions, the 

number of sampling points on the room surface and the source surface are chosen to be the 

same as the number of monopoles on the outer and inner virtual source surfaces 

respectively. The regularization method used in the monopole distribution ESMs was the 

Tikhonov method (Yoon and Nelson, 2000) in combination with the Generalized Cross 

Validation (GCV) method (Yoon and Nelson, 2000) to determine the regularization 

parameters. For the multipole ESMs, all the multipoles were placed at the origin, and 

models differing in the included source orders were implemented: in these cases, Truncated 

Singular Value Decomposition (TSVD) regularization (Yoon and Nelson, 2000) was 

applied. The reason for choosing different regularization techniques for different types of 

ESMs and their associated regularization parameters can be illustrated by the singular value 

distributions of the system matrices for each model type, as shown in Figure 4.4 and Figure 

4.5. It can be observed from the singular value distributions (which are similar at all 

frequencies), that in each of the multipole ESMs, there is a sharp transition separating the 

singular values greater and less than one, at which point the singular values can be truncated 

(e.g., the 14th singular value for the 3rd order multipole ESM as shown in Figure 4.5). This 

sharp transition of the singular values resulted from the linear dependence relation among 

different orders of multipoles (the same reason for the singular value transition in the free-
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space ESM described in Chapter 3). The proof for this linear dependence relation was 

provided in the Appendix, where it is shown that the number of linearly independent 2D 

multipoles up to certain order is the same as the number of cylindrical waves up to the same 

order. It is then straightforward to verify that, when including both incoming and outgoing 

sources, there are exactly 14 linearly independent multipoles up to source order 3. By 

contrast, in the monopole distribution ESMs, no such sharp transition exists (as shown in 

Figure 4.4) and some more general techniques, such as the GCV method, are necessary to 

determine the parameters of the regularization process. In the presented simulation 

examples of the multipole ESMs (with source order up to 3 and 6), the same number of 

sampling points on the boundary surfaces are used: 100 on the room surface and 30 on the 

source surface. For the monopole distribution ESMs, as models of different combinations 

of source densities on the surfaces outside the room and inside the source is to be 

investigated later, the number of sampling points on the room surface was chosen to be the 

same as the number of monopoles on the surface outside the room and similarly the number 

of sampling points on the source surface is the same as the number of sources on the surface 

inside the source. 
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Figure 4.4. The singular value distributions for the monopole distribution ESMs (at the 

top: ESM with 100 monopoles outside and 30 inside; at the bottom: ESM with 200 

outside and 60 inside). 

 

 

Figure 4.5. The singular value distributions for the multipole ESMs (up to the 3rd order 

multipole). 

 

4.3.2 Simulation Results and Analysis 

For the convenience of describing the simulation results, the two simulation cases, one with 

the active region of the source surface facing the higher impedance region on the room 

surface and the other with the active region facing the lower impedance region, are referred 

to as the cases 1 and 2, respectively (as illustrated in Figure 4.3). The overall prediction 

0 20 40 60 80 100 120 140
10

-6

10
-4

10
-2

Singular Value Distribution for Monople ESM (100,30)

Index of Singular Values
S

in
g
u
la

r 
V

a
lu

e
s

0 50 100 150 200 250 300
10

-6

10
-4

10
-2

Singular Value Distribution for Monople ESM (200,60)

Index of Singular Values

S
in

g
u
la

r 
V

a
lu

e
s

0 2 4 6 8 10 12 14 16 18 20
10

-10

10
0

10
10

Singular Value Distribution for Multipole ESM (3rd order)

Index of Singular Values

S
in

g
u
la

r 
V

a
lu

e
s

0 10 20 30 40 50 60
10

-10

10
0

10
10

Singular Value Distribution for Multipole ESM (6th order)

Index of Singular Values

S
in

g
u
la

r 
V

a
lu

e
s



100 

 

1
0
0
 

accuracy for a developed ESM at a single frequency is indicated, in the present work, by 

the comparison of its averaged sound pressure prediction among all the receiver locations 

in the space, i.e., a spatially averaged performance, to that produced by the BEM model. 

Besides the overall prediction performance, the performance of different ESMs at 

individual frequencies were also investigated by comparing the predictions of developed 

models with that of the BEM at all the receiver locations at a single frequency component.  

 

In the analysis of the monopole distribution ESMs, the effect of applying regularization 

was first investigated. It was found that no meaningful predictions could be obtained 

(specifically, the predictions differed from the true values by a factor of 10𝑛  at all 

frequencies) if no regularization was applied to a model containing a large number of 

sources (more than 1000 monopoles). No figures were included here to show this, since 

the visual comparison between the true and the predicted sound field is not quite 

meaningful for such a large difference. However, when the number of sources was small, 

the resulting prediction could be accurate without regularization, but only at low 

frequencies. When regularization techniques were applied, on the other hand, the frequency 

region for which accurate predictions could be made expanded by adding more sources to 

the model. These situations are visualized in Figure 4.6 where the overall predictions of 

two monopole distribution ESMs are compared, one of which contains 100 monopoles on 

the outside virtual source surface and 30 on the inside surface (with no regularization); and 

the other one involves 1000 and 300 monopoles on the two virtual source surfaces, 

respectively (with regularization).  It was observed that the model with 130 sources could 

be accurate at frequencies lower than 2500 Hz, while the one with 1300 monopoles could 
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achieve good predictions up to at least 5000 Hz. To investigate whether the reason for the 

failure of the first model (containing 130 monopoles) at higher frequencies was due to the 

lack of enough sources or due to the elimination of the regularization process, the results 

were compared for two models with the same source configuration but where one was 

regularized while the other was not: that comparison is shown in Figure 4.7, and it shows 

that there was no improvement in model performance by using regularization at higher 

frequencies. Thus it was concluded that 130 monopoles were simply not enough to describe 

the sound field at high frequencies in this simulation. It was also observed that the 

application of the regularization techniques introduced unstable predictions at some 

individual frequency components (possibly for frequencies where accurate results could be 

obtained without regularization), which can be seen in the results at lower frequencies in 

Figure 4.7, where the process of regularization actually enlarges the prediction error. This 

is due to the inappropriate choices of regularization parameters obtained by general 

algorithms such as GCV. However, by comparing the lower-frequency results of the model 

containing 1300 sources, with regularization, in Figure 4.6, and the one containing 130 

source, also with regularization, in Figure 4.7, it was found that the instability introduced 

by the process of regularization was reduced when the number of contained sources was 

made large.  
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Figure 4.6. The spatially-averaged predictions of monopole distribution ESMs (solid line: 

result from BEM; dash line: result from ESM containing 130 monopoles, without 

regularization; dash line with circle: result from ESM containing 1300 monopoles with 

regularization). 
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Figure 4.7. The spatially-averaged predictions of monopole distribution ESMs (solid line: 

result from BEM; dash line: result from ESM containing 130 monopoles, without 

regularization; dash line with circle: result from ESM containing 130 monopoles with 

regularization). 
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monopoles on the outer virtual source surface and 60 on the inner virtual surface could 

accurately predict the room sound field up to at least 4000 Hz for the given geometry. 

 

 

Figure 4.8. The sound pressure predictions from monopole distribution ESMs, all with 

regularization, including different numbers of sources at 2000 Hz (solid line: result from 

BEM; solid line with star: result from ESM containing 130 monopoles; dash line: result 

from ESM containing 195 monopoles; solid line with circle: result from ESM containing 

260 monopoles). 
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instabilities introduced by the regularization were observed in the performances of the 

multipole ESMs. The improvement of the prediction accuracy obtained by increasing the 

source order in the model can be demonstrated in the comparison of the predictions from 

these two models at different spatial locations at single frequencies. By comparing the 

prediction results at 1000 Hz, 2000 Hz and 4000 Hz (shown in Figure 4.11 to Figure 4.13), 

it can be seen that the oscillations in the predicted results were continuously reduced as the 

source order was increased; and improvements similar to these examples were seen for all 

frequencies. The robust performance of the multipole ESM and the stable improvement by 

increasing the source order make it possible to flexibly balance the required computational 

time and the associated prediction error by choosing appropriate source orders involved in 

the model.  

 

To analyze the parameter efficiency of the various ESMs used in the examples here, the 

number of required parameters for each model was summarized in Table 4.1. For the 

monopole distribution ESMs, the number of parameters was calculated as the sum of the 

number of monopoles placed on both the source (inside) surface and the room (outside) 

surface; for the multipole ESMs, it was calculated by summing up the number of 

independent sources for each order (using Eq. (4.13)). By investigating the number of 

parameters and the prediction accuracy (demonstrated previously), the conclusion is 

obvious that to achieve reasonable accuracy, the use of multipole ESMs requires many 

fewer model parameters than when using the monopole distribution ESMs: i.e., the 

multipole ESM appears to be more efficient than the monopole distribution ESMs.  
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Figure 4.9. The sound pressure predictions from monopole distribution ESMs, all with 

regularization, including different numbers of sources at 4000 Hz (solid line: result from 

BEM; dash line: result from ESM containing 195 monopoles; solid line with circle: result 

from ESM containing 260 monopoles). 
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other schemes, such as series expansion or free-space ESM, were used to calculate the free-

space information.  

 

Table 4.1. The required model parameters for the ESMs presented in the simulations. 

Type of ESM Number of Parameters 

Multipole ESM (order up to 3) 10 

Multipole ESM (order up to 6) 28 

Monopole ESM (outside: 100; inside: 30) 130 

Monopole ESM (outside: 150; inside: 45) 195 

Monopole ESM (outside: 200; inside: 60) 260 

Monopole ESM (outside: 1000; inside: 300) 1300 

 

 

 

Figure 4.10. The spatial averaged predictions of multipole ESMs (solid line: result from 

BEM; dash line with star: result from ESM with multipole order up to 3; dash line with 

circle: result from ESM with multipole order up to 6). 
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Table 4.2. The computational time for each model yielding acceptable accuracy (unit: 

sec). 

Frequency 200 Hz 500 Hz 1000 Hz 2000 Hz 4000 Hz 

BEM Total 7.72 16.80 45.74 138.12 475.49 

Monopole 

ESM 

(260) 

Free space pressure 

at sampling points 
2.60 2.43 4.83 11.87 33.15 

Free space velocity 

at sampling points 
10.41 10.17 20.37 48.94 131.07 

Free space pressure 

at receivers 
2.63 2.47 4.97 12.00 32.11 

Room acoustics 

prediction 
0.42 0.33 0.30 0.29 0.26 

Total 16.06 15.40 30.48 73.09 196.61 

Multipole 

ESM 

(max 

order: 3) 

Free space pressure 

at sampling points 
1.48 1.43 3.12 7.99 25.23 

Free space velocity 

at sampling points 
6.07 5.66 12.12 32.92 98.25 

Free space pressure 

at receivers 
2.59 2.44 4.90 11.75 31.60 

Room acoustics 

prediction 
0.38 0.19 0.18 0.19 0.20 

Total 10.52 9.72 20.31 52.85 155.29 

Multipole 

ESM 

(max 

order: 6) 

Free space pressure 

at sampling points 
1.45 1.37 2.93 8.08 24.32 

Free space velocity 

at sampling points 
5.96 5.66 12.16 32.46 97.69 

Free space pressure 

at receivers 
2.61 2.46 4.92 11.94 32.06 

Room acoustics 

prediction 
3.00 2.79 2.55 2.42 2.39 

Total 13.01 12.28 22.56 54.90 156.46 
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Figure 4.11. The predictions from the multipole ESMs at 1000 Hz (solid line: result from 

BEM; dash line: result from ESM with multipole order up to 3; dash line with star: result 

from ESM with multipole order up to 6). 

 

  
Figure 4.12. The predictions from the multipole ESM at 2000 Hz (solid line: result from 

BEM; dash line: result from ESM with multipole order up to 3; dash line with star: result 

from ESM with multipole order up to 6). 
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Figure 4.13. The predictions from the multipole ESM at 4000 Hz (solid line: result from 

BEM; dash line: result from ESM with multipole order up to 3; dash line with star: result 

from ESM with multipole order up to 6). 
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4.4.1 Description of the Numerical Simulations 

An Alpha Cabin (Chappuis, 1993) was used as the room geometry in the simulation. The 

source involved is a sphere located at the center of the room with part of it driven by a 

given in-vacuo normal velocity. The purpose of using an Alpha Cabin in the simulation 

was only to demonstrate the capability of using the room acoustics ESM for irregular room 

geometries. The original purpose of the Alpha Cabin, i.e., to measure the acoustics 

absorption of a material sample, is not focused on here. Three layers of receivers are placed 

in the room at different heights, at which the predictions from BEM and the ESM are 

compared. An illustration of the geometric configurations of the room, the source and the 

receivers is presented in Figure 4.14. More specifically, the room surface consists of six 

planes and a conical surface. In terms of the coordinates, the list here keeps three decimal 

places with the unit of meter, the four vertices of the bottom plane (in counter-clock-wise 

order viewing from the top) are located at (0, 0 ,0), (2.200, 0, 0), (2.550, 1.690, 0) and (-

0.350, 1690, 0); similarly, the four vertices’ coordinates of the top plane are: (-0.050, -

0.050, 1.200), (2.250, -0.050, 1.200), (2.649, 1.790, 1.550) and (-0.449, 1.790, 1.550); the 

vertex of the cone is at (1.093, 0.838, 0.800) and the angle between the revolution side and 

the center axis of the cone is 49.22 degree. The radius of the spherical source surface is 0.3 

m, and its center is located on the center axis of the cone, but the z -coordinate is 0.4 m. 

Each layer of the receivers are in the x y  plane, spanning from 0.1 to 2.1 m in the x -

direction and from 0.15 to 1.55 m in the y -direction, the spacing interval for each plane is 

0.2 m in both x  and y  directions. The three layers of receivers are at the heights of 0.05, 

0.4 and 0.75 m respectively, and the points inside the source surface are removed from this 

grid. 
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Figure 4.14. The geometries of the room surface (yellow), the source surface (green) and 

the receiver locations (red dots). 

 

The in-vacuo normal velocity of the source surface is defined as:  

2

0

cos (2 )
( ) ,

0 else

/ 4
u

  



 


 (4.14) 

where   is the angle between the radial vector of the point on the sphere and the x -axis. 

This means that the part of the source surface facing in the positive x -direction is driven 

by a normal velocity distribution which decays to zero as the angle   increases to / 4 , 

and the rest of the sphere is passive. The impedance of the source surface is a real constant 

of 900 Rayls, and the impedance of the room surface is also uniform and real and was 

calculated by assuming a constant absorption coefficient of 0.5  : i.e., 
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0

1 1
,

1 1
Z c






 

 
  (4.15) 

where 0  and c  denote the air density and the sound speed, respectively.  

 

 

Figure 4.15. The meshes used in BEM calculations: the mesh on the left is for 125 Hz, 

250 Hz and 500 Hz; the mesh on the right is for 1000 Hz. 

 

 

Figure 4.16. The sampling points used in the ESM simulations: the blue dots are samples 

on the room surface and the red dots are on the source surface. 
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The predictions of the sound field at the receivers from the room acoustics ESM are 

compared, at different frequencies, with the results obtained by BEM calculations. The 

OpenBEM (Henriquez and Juhl, 2010) Matlab package was used to perform the BEM 

calculations, and the meshes of the surfaces used in the BEM simulations were generated 

by Abaqus 6.14-1. Simulations were conducted at four different frequencies: 125 Hz, 250 

Hz, 500 Hz and 1000 Hz. Two meshes were used in the BEM calculations: for frequencies 

from 125 to 500 Hz, a mesh with at least 8 nodes per wavelength at 500 Hz was used (4492 

nodes on the room surface and 223 nodes on the sources surface); while for the 1000 Hz 

simulation, the mesh contained 8 nodes per wavelength at 1000 Hz (18367 nodes on the 

room surface and 903 nodes on the sources surface). The sampling points used in the ESM 

were the same for all frequencies with the nodes taken from a mesh with an inter-nodal 

distance of 0.1 m (124 nodes) on the source surface and 0.3 m (208 nodes) on the room 

surface, with the points on the edges and corners excluded. The two meshes and the 

locations of the sampling points are shown in Figure 4.15 and Figure 4.16. In the ESM 

simulations, the maximum multipole order (same for outgoing and incoming sources) was 

chosen to be 4 for frequencies of 125 Hz, 250 Hz and 500Hz; and it was chosen to be 6 for 

the 1000 Hz prediction. Due the limitation of the computing power of a personal computer, 

it was impossible to perform BEM simulations at higher frequencies for this problem.  
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Figure 4.17. The lcations of the recerivers: the numbers are the receiver indices and the 

green sphere represents the source surface. 

 

4.4.2 Results and Discussions 

The predicted total sound field in the room from the room acoustics ESM was compared 

with the BEM predictions (treated as true values) at the receiver locations for the 

frequencies of 125 Hz, 250 Hz, 500 Hz and 1000 Hz. The locations of the receivers 

(identified by indices) are shown in Figure 4.17 together with the source surface. The 

prediction comparisons at different frequencies are shown in Figure 4.18 to Figure 4.21. 

Recall that the maximum source order in the ESM was 4 for the four lower frequencies and 

6 for the highest frequency.  

 

From the results shown in Figure 4.18 to Figure 4.21, it is easily observed that, in general, 

the ESM predictions are in good agreements with the true values (the BEM calculations) 
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at all tested frequencies without going to very high source order.  It can also be noticed that 

there are some small mismatches at the receivers that have large sound pressure amplitudes 

for some frequencies which correspond to the receivers that are very close to the source 

surface. These mismatches are not significant since firstly, the differences would not be 

noticeable if a decibel unit were used to present the results and moreover, in most room 

applications, for example predicting the acoustics of a loudspeaker or a television in a room, 

the listeners’ locations are usually not very close to the source surfaces, and thus such ESM 

predictions are well suited for this practice. It is also noted that although the results 

presented here are only up to 1000 Hz, limited by a PC’s computation power to perform 

BEM calculations for higher frequencies, the ESM simulations are not restricted by this 

frequency limit. Therefore the validity of the room acoustics ESM is demonstrated in 3D 

cases and the conclusions from the 2D room acoustics ESMs can be similarly extended to 

3D. 

 

Figure 4.18. The comparison of the ESM and the BEM predictions at 125 Hz. 
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Figure 4.19. The comparison of the ESM and the BEM predictions at 250 Hz. 

 

 

Figure 4.20. The comparison of the ESM and the BEM predictions at 500 Hz. 
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Figure 4.21. The comparison of the ESM and the BEM predictions at 1000 Hz. 
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the performance of the model. Similar to the experimental setup in Chapter 3, the 
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back face of the loudspeaker to that of the room is 0.858 m; the distance between the right 

face of the loudspeaker and that of the room is 0.775 m; the distance between the two 

bottom faces is 1.00 m. The surfaces of the room were covered by plywood panels which 

were then partially covered by sound absorbing materials (Johns Manville, Microlite AA 

Premium NR Blankets) of 1 inch thickness. The uncovered regions are highlighted in the 

left figure in Figure 4.23. The sound field was measured by using a 18-channel planar array 

(Brüel & Kjær, sliced wheel array WA-1558-W; microphones: Brüel & Kjær, Type 4959), 

at four sides of the loudspeaker (measurement planes were parallel to the front, left, back 

and right faces of the loudspeaker). As shown in Figure 4.24, measurements are performed 

at the receivers on two planes on each side of the loudspeaker: one at a distance of 0.25 m 

away from the corresponding loudspeaker face and the other at a distance of 0.5 m. The 

sound field was measured separately on each measurement plane with a white noise input 

signal to the loudspeaker, and the individual measurements were then synchronized 

together to form a simultaneous measurement by using the transfer function method (Kim, 

et al., 2004) (Lee and Bolton, 2006) with the input signal to the loudspeaker as the reference 

signal.  

 

 

Figure 4.22. Setup of the experiment. 
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Figure 4.23. Left: room geometry (highlighted regions are not covered by sound 

absorbing materials); Right: geometry relation of the loudspeaker (green) and the room 

(yellow) and the sampling points on the source surface (red) and the room surface (blue) 

that were used in the Equivalent Sources Model.  

 

  

Figure 4.24. Left: the receiver locations on the array; Right: the receiver locations (black 

dots) in the whole measurement (the green box represents the loudspeaker). 
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 Figure 4.25. The setup and results of the impedance measurement. 
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zero (all the surfaces on the loudspeaker except the diaphragm and the tweeter are also 

made of wood). The first part was validated by another experiment (the setup of which is 

shown in Figure 4.26) where the velocity of the diaphragm and the tweeter of the 

loudspeaker was measured by a laser vibrometer (Polytech PSV-400 scanning head, 

Polytech OFV-5000 Controller) when the loudspeaker was placed with its front face facing 

a large wooden surface but at different distances (from 0.5 to 1.7 m). It was observed from 

the measurement results (shown in Figure 4.27) that the velocity of both the diaphragm and 

the tweeter is not changed within this distance range, i.e., the reflected sound field causes 

negligible velocity change on these regions. In the small room measurement setup 

mentioned earlier (illustrated in Figure 4.23), the distances between the loudspeaker and 

the room surfaces are within the distance range in the laser vibrometer measurements and 

the room surfaces are acoustically softer than the plywood surface used in the laser 

vibrometer measurement, thus the reflected sound field in the room experiment could cause 

even smaller velocity change to the diaphragm and the tweeter compared with the velocity 

change that occurred in the laser vibrometer measurement which can be regarded as zero. 

Therefore part (1) of the validation of the boundary condition is demonstrated. Part (2) of 

this validation, i.e., that the uncovered wooden surfaces are acoustically hard, is generally 

accepted in the acoustics area and can be further justified by the experimental results in 

Chapter 3, where the BEM prediction of the sound field agrees well with the measurement 

when using the velocity boundary condition on the loudspeaker surface such that the 

diaphragm and the tweeter have a rigid body motion (the velocities of which are obtained 

from the laser vibrometer measurement) and the rest of the surfaces have zero velocity. To 

apply the velocity boundary condition on the loudspeaker surface in this room acoustics 
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application, it is only necessary to set 1 0   in Eq. (4.4). The velocity distribution on the 

source surface was calculated by a free-space Multipole Equivalent Sources Model 

obtained from the work in Chapter 3 where the sound pressure was measured for the same 

loudspeaker in an anechoic environment. Thus the simulation in the present work involves 

using a free-space Equivalent Sources Model as an input to a room acoustics Equivalent 

Sources Model.    

 

 

Figure 4.26. Setup of the laser vibrometer measurement of the diaphragm and the 

tweeter’s velocity of the loudspeaker. 
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Figure 4.27. Measured frequency responses of the diaphragm and the tweeter’s velocity 

to the input signal to the loudspeaker (no noticiable velocity changes within this distance 

range). 

 

4.5.2 Measurement Results and Discussions 

After determining the boundary conditions on different surfaces, the sound field in the 

room can be simulated by using the room acoustics Equivalent Sources Model described 

in Section 4.2.2. The equivalent sources used in the present work are the multipoles up to 

order three. To calculate the source strengths, 487 sampling points on the room surface and 

166 sampling points on the source surface were used (illustrated in Figure 4.23). The 

model-predicted sound pressure is compared with the measured sound pressure at all the 

receiver locations, and the comparison results are shown at 520 Hz, 1024 Hz and 2000 Hz 

in Figure 4.28 to Figure 4.33, where the receiver indices are ordered such that receiver 

indices from 1 to 72 correspond to the measurements with a smaller distance (0.25 m) to 

the source, and 73 to 144 with a distance of 0.5 m; while at each measurement distance the 

72 indices are ordered as front face measurement, left face, back face and then right face.  
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From the comparison results, it is seen that the Equivalent Sources Model (ESM) prediction 

does not agree well with the experiment result at 520 Hz. Although better agreement is 

seen at higher frequencies (1024 Hz and 2000 Hz), that does not indicate good model 

performance since the total sound field is close to the free-space sound field at these 

frequencies, which suggests that good model prediction occurs simply because the room 

surface is very absorptive at higher frequencies and the room component sound field is 

close to zero. Overall, the ESM prediction tends to be close to the free-space sound field. 

 

To further analyze the reason for this, a simulation using the Boundary Element Model (the 

same process as in Section 4.4) was carried out at 520 Hz, in which there were 3438 nodes 

in the mesh (more than 6 nodes per wave length). From Figure 4.34, it is first noticed that 

the BEM prediction agrees reasonably well with the experiment. Also from the BEM 

calculation, the sound pressure and the normal particle velocity distribution of the room 

component sound field (i.e., the component that is represented by ESM) can be extracted 

for both the room surface and the source surface. With this information extracted from 

BEM, the source strengths of the ESM (with the same model structure as the ESM 

described in the previous paragraph) can be estimated based on three different types of 

boundary condition: the room component pressure boundary condition, the normal velocity 

boundary condition and the impedance boundary condition (Eq. (4.7)). By comparing the 

performance of the ESM’s with these three boundary conditions, it is observed that the 

prediction using the pressure boundary condition shows a fairly good agreement with the 

BEM and the experiment results, while the other two boundary conditions result in 

predictions that are close to each other and are, seem from Figure 4.28, both close the free-
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space sound field. These observations imply that it is valid to use a small number of higher 

order equivalent sources to represent the room component sound field, and that the use of 

the velocity boundary condition to calibrate the ESM is more likely to produce errors in 

sound pressure predictions. For the prediction from the impedance boundary condition, its 

formulation, as seen from Eq. (4.7), is a linear combination of the pressure and the velocity 

boundary condition, so the least square estimate can be viewed as a weighted average of 

the results from the other two boundary conditions. The admittance serves as the weighting 

factor of the result from the pressure boundary condition, while the weighting factor for 

the velocity boundary condition is one. Since, from Figure 4.25, the impedance is on the 

order of 310 , the weighting factors for the pressure boundary condition (on the order of 

310 for the material covered surfaces and zero for the hard surfaces) are very small 

compared with one. This causes the prediction from Eq. (4.7) to be closer to the prediction 

from the velocity boundary condition which produces large errors. This means that for 

cases where the admittance is small, the direct use of the least square estimate from Eq. 

(4.7) will produce large errors in the room acoustics predictions. One possible physical 

reason might be that the room geometry is almost rectangular and the sound field in the 

room is a combination of the room modes for a rectangular geometry which are difficult to 

represent by using the multipole equivalent sources. The room modes are relatively 

significant at this frequency, since it is observed that the near field of the sound field at the 

back side of the loudspeaker (receiver indices: 37 to 54) is large where the free-space 

component is small which is possibly due the contribution from the acoustical modes of 

the room. Based on the above observations, it is suggested here, as a possible solution to 

this issue in the future work, that the acoustical modes for the room geometry and the 
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corresponding impedance boundary condition on the room surfaces could be used as the 

equivalent sources at low frequencies and that the multipole equivalent source are used at 

high frequencies. 

 

 

Figure 4.28. Comparison of measurement and model prediction at 520 Hz (plot with 

receiver indices). 
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Figure 4.29. Comparison of measurement and model prediction at 520 Hz (spatial 

distribution). 

 

 

Figure 4.30. Comparison of measurement and model prediction at 1024 Hz (plot with 

receiver indices). 
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Figure 4.31. Comparison of measurement and model prediction at 1024 Hz (spatial 

distribution). 

 

 

Figure 4.32. Comparison of measurement and model prediction at 2000 Hz (plot with 

receiver indices). 
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Figure 4.33. Comparison of measurement and model prediction at 2000 Hz (spatial 

distribution). 

 

 

Figure 4.34. Comparison of model performance of BEM and ESM based on different 

types of boundary conditions (pressure, velocity and impedance boundary conditions) at 

520 Hz. 

 

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-0.5

0

0.5

 

x

Measurement (2000 Hz)

y 

z

S
ou

nd
 P

re
ss

ur
e 

Le
ve

l (
dB

)

0

5

10

15

20

25

30

35

40

45

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-0.5

0

0.5

 

x

Model Prediction(2000 Hz)

y
 

z

S
ou

nd
 P

re
ss

ur
e 

Le
ve

l (
dB

)

0

5

10

15

20

25

30

35

40

45

0 50 100 150
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Receiver Index

R
e
a
l 
P

a
rt

 S
o
u
n
d
 P

re
s
s
u
re

 (
P

a
)

Comparison at 520 Hz

 

 

Exp

BEM

ESM P

ESM Un

ESM Impedance

0 50 100 150
-0.015

-0.01

-0.005

0

0.005

0.01

Receiver Index

Im
a
g
in

a
ry

 P
a
rt

 S
o
u
n
d
 P

re
s
s
u
re

 (
P

a
)

 

 

Exp

BEM

ESM P

ESM Un

ESM Impedance



131 

 

1
3
1
 

4.6 Summary 

A reduced order modeling method, the room acoustics Equivalent Sources Method (ESM), 

was developed to simulate the sound field in a room environment with arbitrary room 

geometries, sources of finite size and non-uniform surface impedances. This ESM for room 

acoustics, in contrast with those used for free-space predictions, describes the room 

component sound field rather than the total sound field as generated by the assumed 

equivalent sources. The boundary conditions for the room component, on both the room 

surfaces and the source surfaces, were derived in terms of the free-space component sound 

field and the surface normal impedance. With a knowledge of the free-space component, 

which can easily be calculated from the given source information, the parameters of the 

ESMs can be estimated and the process of the room acoustic simulation is then complete.  

 

As a preliminary investigation, two types of Equivalent Source Models for room acoustics 

were constructed and implemented in simulations in two-dimensional rooms, one 

consisting of layers of monopoles distributed exterior to the room region and the other 

consisting of incoming and out-going multipoles. The monopole distribution ESM was 

implemented by estimating the source strength of monopoles that were placed both inside 

the source surfaces and outside the room surfaces to match the boundary conditions through 

a least-squares approach together with Tikhonov regularization and Generalized Cross 

Validation to determine the regularization parameters. For the construction of the multipole 

ESM, the sound field expression of an arbitrarily-oriented multipole of any order was 

derived and the source strengths were estimated in a process similar to that for the 

monopole ESM, but using truncated singular value decomposition to regularize the 
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estimation process. The regularization parameters for the multipole ESMs were chosen 

based on the observation of a sharp transition in the singular value distribution of the 

system matrix in the inverse process. The room environment in this 2D simulation involves 

a circular-shaped room surface with non-uniform surface impedance and a finite-size 

source surface of the same geometry driven by a non-uniform velocity distribution. The 

prediction accuracies of both types of ESMs, i.e., the monopole distribution ESM and the 

multipole ESM, were analyzed by comparing the predictions with the results from a BEM 

procedure (treated as the “true values”). The simulation results showed that the monopole 

distribution ESM without regularizations can only be applied to models with a relatively 

small number of sources, which can give stable and accurate predictions up to 2500 Hz in 

the present geometry. To achieve a wider performance range by increasing the number of 

assumed sources, the application of regularization is necessary. In general, to predict the 

sound field at higher frequencies requires a larger number of sources; however, accurate 

predictions at some frequency components, at which unstable results are introduced by the 

regularization, require a much larger number of sources than is necessary for even higher 

frequency components where the regularization does not cause any instability. In the 

analysis of the multipole ESMs, their performance was found to be more robust than that 

obtained from the monopole distribution ESMs, and an improvement in prediction 

accuracy can be achieved by increasing the highest source order contained in the model. It 

was also indicated that by appropriately choosing the highest source order included in the 

multipole ESM, the tradeoff between prediction accuracy and computational speed can be 

adjusted flexibly as needed in a particular application. 
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Further studies were conducted to investigate the possibility of extending the 2D 

implementation of the room acoustics ESMs to 3D. Due to the advantages of the multipole 

ESM, compared with the monopole distribution ESM, observed from the 2D simulations, 

only the multipole ESM is implemented in 3D room space simulations. An ESM using the 

3D multipole series of monopole, dipoles, quadrupoles, etc. was constructed and the source 

strengths of which were estimated in a similar way as in the 2D simulations. By comparing 

the ESM predictions with the BEM results at frequencies up to 1000 Hz in an Alpha cabin 

with a sphere source at the center, it was shown that the 3D room acoustics ESM offers 

predictions consistent with the BEM results in the demonstrated frequency range. For 

higher frequencies, the ESM might still give accurate and efficient predictions, but it was 

not compared with the BEM results due to the computational limitation of a personal 

computer to conduct BEM calculations at higher frequencies. 

 

After the simulation investigations, the performance of the room acoustics ESMs were also 

studied experimentally. In the experiment, a rectangular loudspeaker was placed at the 

center of a small rectangular room whose surfaces were made of plywood, but a large 

portion of the room surface were then covered by sound absorbing materials. The free-

space ESM of the loudspeaker was used to give the source information which was then 

used as an input to the room acoustics ESM to simulate the sound field in the room.  From 

the results, it was shown that when multipoles are used as the Equivalent Sources, the 

model prediction can achieve reasonable accuracy if the sound pressure boundary condition 

of the room component sound field is used to calibrate the model, but if the normal velocity 

boundary condition is used, the sound pressure prediction contains large errors. In a 
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realistic room acoustics simulation practice, the available boundary condition is the 

impedance boundary condition, and if a direct least-square estimate is used for calculating 

the strength of the equivalent sources, the prediction from the impedance boundary 

condition results in a weighted combination of the results from the pressure and the velocity 

boundary conditions where the value of the admittance is the relative weighting factor for 

the pressure boundary condition result. For the experimental condition in the present work, 

the admittance is small compared with one, which leads to a model prediction that is close 

to the result using the velocity boundary condition.  Physically, this relatively large 

discrepancy might result from the difficulties of using the multipoles to represent the sound 

field where the acoustical modes of a rectangular room geometry are significant.  This leads 

to the suggestion to use the acoustical modes for the room geometry and satisfy the 

impedance boundary condition of the room surface as the equivalent sources at the low 

frequency range and then use the multipoles ESM for the mid and high frequency range. 

 

 

 



135 

 

1
3
5
 

CHAPTER 5. FREE-SPACE SOUND FIELD PREDICTION AT HIGH 

FREQUENCIES USING LOCAL-BASIS METHODS 

5.1 Introduction 

The development of the free-space sound field prediction model discussed in Chapter 3 

makes it possible to accurately predict the sound field for almost the whole audible range, 

a feasible frequency limit much higher than most traditional methods in acoustical 

holography. It is, however, not expected to have such a wide feasible frequency range when 

the source is much more complicated than the loudspeaker which was used in the 

experiment in Chapter 3, since the spatial variation of the sound field generated by a 

complicated source is usually very large and a large number of measurement points are 

required in space to achieve accurate model prediction when equivalent source models are 

used. It will be demonstrated in this chapter that an alternative simulation technique can be 

constructed to accomplish the same task as that mentioned in Chapter 3, but specifically 

for very high frequencies. 

 

The idea of proposing this new method for simulations at very high frequency is mainly 

based on the analysis of the sources of errors in the parameter estimation processes in 

Equivalent Source Methods (including the one constructed in Chapter 3). For realistic 

sound sources, the sound field usually becomes complicated at high frequencies, and the 

series representing the sound field (i.e., the sound field from the equivalent sources) 
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converges at very high orders, so that a large number of measurements with high spatial 

resolution are required to estimate all the coefficients, especially for those higher order 

terms with rapid spatial variations.  This means that “required” information is missing in 

the spatial gaps among the measurements at high frequencies. Since each term in the series 

chosen to represent the sound field in most of the available techniques contributes to the 

sound field over the whole space, the missing information would affect the estimation of 

the series coefficient: i.e., the error in the coefficient estimation for each term is an 

accumulation of missing information in all measurement gaps. This observation has 

motivated the present approach of using a local basis, i.e., a basis that contributes to the 

sound field only in a certain region, to describe the sound field, instead of a global basis as 

used in most available techniques. One feature that makes it convenient to use a local basis 

in high frequency sound field reconstruction is that the radial dependence of the sound field 

generated by a single physical source (with a relatively small spatial size), when 

represented by spherical waves in a spherical coordinate system, can be, under the 

assumption of high frequencies, approximated by an expression (as discussed in detail in 

Section 5.2) such that the sound pressure along a radius at certain angular direction is 

determined by the sound pressure at one point on the radius and does not depend on the 

sound field at other angular directions. This feature is used differently in the development 

of the two local-basis methods described in this chapter: one for the case of a single source 

(or sources that are located within a small region in space), and the other extends to the 

case of multiple sources (e.g., the sound field generated by several loudspeakers, each of 

which is some distance apart from the others). 
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For the situation of having a single source, as the objective of the first local-basis method, 

the special feature for high-frequency sound fields described in the previous paragraph 

suggests that the sound field for the whole space is determined by the sound pressure 

distribution on the unit sphere centered at the origin of the spherical coordinate system, and 

also suggests that a measurement at an arbitrary location can be “projected” onto the unit 

sphere (i.e., the sound pressure at the location having the same angular coordinate, but with 

unit radius, can be calculated). After this projection, the measurement are converted to 

sound pressure sampling points on the unit sphere. Then, the sound pressure distribution 

on the unit sphere can be interpolated from these sampling points by using piece-wise 

interpolants, which are the local basis used in this first method. After the interpolation, the 

resultant sound pressure distribution on the unit sphere can then be used to predict the 

sound field for the whole space. 

 

In the development of the second local-basis method, where multiple sources contribute to 

sound field at the same time, the measurement cannot be “projected” in a similar way to 

the first method. To overcome this difficulty, the primary idea in the second method is to 

avoid using interpolation: instead, first create mesh grids on the unit spheres around the 

origins of each set of spherical waves, so that the nodal sound pressure values on, and the 

corresponding shape functions (the local basis used in this method), can be used to 

determine the sound field in the whole space. The three-dimensional sound field can then 

be predicted after a least-squares estimation of the nodal values based on the measurements. 

Another advantage of using the local-basis methods over the global basis methods is that, 

due to the local nature of the basis, when measurement information is given only in certain 
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solid angle region, good predictions can still be achieved in that region and are not affected 

by the missing information in other regions. It is also noted here that this second local-basis 

method, in principle, can easily be extended to reconstruct the sound field in an interior 

environment as well, one must only include both incoming and outgoing sources and 

proceed with the prediction in the same way as described in this chapter. 

 

5.2 Theories of High Frequency Sound Field Reconstruction 

The use of the local-basis method to reconstruct the sound field at high frequencies is 

mathematically dependent on the approximated form of the sound field expression for a 

single source (or all sources that are located in a single small spatial region) under the 

assumption of large wavenumber, which will be derived and discussed in the first 

subsection below.  This approximation can be interpreted as being: the sound field is 

similar to a monopole sound field with a certain angular directivity pattern. Then two 

different local-basis sound field reconstruction methods are introduced: one focusing on 

the situation of a single source and the other dealing with the case of multiple sources. 

 

5.2.1 Approximate Representation of the High Frequency Sound Field 

If there is only one small-sized source in space or there are multiple sources but that are all 

located within a small spatial region, the sound field generated by this source can be 

effectively represented by the spherical wave series with the origin located on the center of 

the small source region (referred to as the source location in this chapter). The 

approximated sound field expression can be derived from the spherical wave 

decomposition (Williams, 1999) of a sound field.  Any out-going sound field in free space, 
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with the time dependence of 𝑒−𝑗𝜔𝑡 , can be expressed as an infinite series of spherical 

waves, in spherical coordinates, as: 

0
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where 𝑟 is the radius, 𝜙 is the azimuthal angle ranging from 0 to 2π and 𝜃 is the polar 

angle ranging from 0 to π; 𝑘  represents the wavenumber, ℎ𝑛(∙) denotes the 𝑛 th order 

spherical Hankel function of the first kind, and 𝑃𝑛
𝑚(∙) denotes the associated Legendre 

polynomial; the integers 𝑚 and 𝑛 are referred to as the order and the degree of this series, 

and 𝐶𝑛
𝑚 is the coefficient of each term in the series (i.e., the spherical wave basis). 

 

From Eq. (5.1), it is observed that the radial dependence of the sound field is expressed by 

the spherical Hankel functions with the product 𝑘𝑟 as the argument.  The power series 

expansion of the spherical Hankel functions, ℎ𝑛(𝑧), can be expressed as 
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where, in the context of sound field representation: 𝑧 = 𝑘𝑟.  Thus, the amplitude of the 

radial dependence of the sound field contains only negative powers of  𝑘𝑟.  When the 

frequency is high (i.e., for large wavenumbers), the argument 𝑘𝑟 is significantly large so 

long as the radius is not close to zero.  The latter observation suggests that the terms in the 

expansion of the spherical Hankel function with powers less than -1 become very small at 

large 𝑘𝑟, and thus can be eliminated from the series without introducing significant error.  
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After this truncation (by setting 𝑚 = 0 in Eq. (5.2)), the approximated expression for 

ℎ𝑛(𝑘𝑟) is obtained as: 
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After substituting the approximated expression in Eq. (5.3) into Eq. (5.1), the sound field 

at high frequencies (radius not close to zero) can therefore be approximated by the series: 

0

( , ) (cos( )) ,,
jkr

m jm

mn

m

n

n

n n

e
P r D P e

r

  
 

 

    (5.4) 

where the coefficients: 𝐷𝑚𝑛 = (−𝑗)𝑛+1𝐶𝑚𝑛/𝑘.  

 

Since the special case of radius close to zero is not considered here, it is assumed that no 

measurements are taken, and no predictions are made, near the origin.  In that case, it can 

be seen from Eq. (5.4) that the radial dependence of the sound field at high frequencies is 

decoupled from the angular coordinates, and that the sound field in a certain solid angle 

region does not contain contributions from other solid angle regions.  More specifically, 

given the sound pressure at an arbitrary location (𝑟, 𝜃, 𝜙) , the sound pressure at its 

corresponding location on the unit sphere, 𝑃(1, 𝜃, 𝜙), can be easily evaluated by using the 

simple relation: 

( 1)
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It is also noted that if the time dependence is, instead, assumed as 𝑒−𝑗𝜔𝑡, the spherical 

Hankel function of the second kind needs to be used to instead of the first kind in the 

derivation described above, which will then result in a similar relation to Eq. (5.5): 

( 1)

, ,( , ) (1, ) .
jk re

P r P
r

   
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  (5.6) 

Equation (5.5) or Eq. (5.6) is the approximated expression for the high frequency sound 

field which is used in constructing either the local-basis method to reconstruct the sound 

field from a single source or from multiple sources.  

 

5.2.2 Local-Basis Reconstruction for a Single Source 

In the development of the first local-basis method here, it is assumed that there is only one 

source (all physical sources are in a small spatial region) in space and a spherical coordinate 

is defined with the origin being the source location (center of the small source region). 

When the sound pressure at the locations corresponding to all of the measurements in space 

are evaluated by Eq. (5.5) or Eq. (5.6), the corresponding 𝑃(1, θ, ϕ) can be calculated 

straightforwardly, i.e., after they are “projected” onto the unit sphere, the sound pressures 

at a number of distributed points on the unit sphere are obtained.  Then the sound pressure 

distribution on the unit sphere can be estimated by using piece-wise interpolation from the 

distributed points (the piece-wise interpolants are the local basis for this method), which 

means that the estimated sound pressure in a small region on the unit sphere depends only 

on the neighboring sound pressures rather than on all measurement points.  As mentioned 

earlier, when a localized basis is used to describe the sound field, the error in the estimation 
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does not accumulate from the missing information over the measurement surface (the unit 

sphere in the context here), and reasonable reconstruction results may be expected even if 

the measurement does not include complete information about the actual sound field. 

 

The approximation of the sound pressure distribution on the unit sphere by a piece-wise 

interpolation from distributed data includes two main steps: (1) the division of the unit 

sphere into small regions (usually spherical triangles) by connecting the distributed points 

as the boundaries of the regions; and (2) the interpolation of the sound pressure inside each 

small region based on the sound pressure values on the nodes of the region and boundary 

conditions such as continuities of the function values as well as its derivatives.  

 

Piece-wise interpolation of data on a two-dimensional plane, or a multi-dimensional 

Euclidian space, is a widely-studied area (Awanou, et al., 2005) (Bajaj, 1993), in which 

Delaunay triangulation (Lee and Schachter, 1980) and spline interpolation (Lai, 2007) are 

commonly used.  For the case of interpolation on a sphere considered here, rigorously 

speaking, triangulation based on Geodesic distance (Renka, 1984) and spherical splines 

(Alfeld, et al., 1996 (1)) or polynomials defined on a sphere (Alfeld, et al., 1996 (2)) should 

be used, rather than performing interpolation directly by treating the angular coordinates 

as the Cartesian coordinates in a Euclidian space.  However, for the purpose of 

demonstrating the advantages of using a local basis compared with a global basis to 

describe the sound field in a simple way, the “projected” measurements are assumed to be 

uniformly distributed on the unit sphere so that traditional interpolation techniques, i.e., 

techniques in Euclidian spaces, would give similar results to the methods specifically 
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designed for spherical surfaces, and thus the former were implemented in the present work. 

This is because, under this assumption, the result of triangulation based on both the 

Euclidian distance and the Geodesic distance would be similar. Specifically, the angular 

coordinates of the measurement locations are generated by the algorithm proposed by 

Leopardi (2006), in which the obtained points are the center of a specified number of 

regions on the unit sphere with equal areas and small diameters (i.e., close to regular 

shapes).   

 

After triangulation, the sound pressure value within each triangle is interpolated by using 

a cubic spline on the domain 𝜃 × 𝜙 ∈ [0, 𝜋] × [0,2𝜋), with a periodic boundary condition 

specified in the 𝜙  direction as: 𝑃(𝜃, 𝜙) = 𝑃(θ, 𝜙 + 2𝜋) , and a boundary condition of 

constant value at the north and south poles: i.e., 𝑃(0, 𝜙) = 𝑐𝑜𝑛𝑠𝑡 and 𝑃(π, 𝜙) = 𝑐𝑜𝑛𝑠𝑡.  

Both types of boundary conditions are easily implemented in standard two-dimensional 

spline interpolation techniques.  It is noted here that after projection to the unit sphere there 

is always a measurement point located on the north and south poles, respectively, when 

using the Leopardi algorithm; thus pressure values are always given at the north and south 

poles in the present work.  If there are no measurements taken in the direction of the poles, 

the sound pressure at the poles can only be obtained by extrapolation. 

 

5.2.3 Local-Basis Reconstruction for Multiple Sources 

In the following formulation of sound field reconstruction from a number of sound pressure 

measurements in the space, it is assumed that the sound field is generated by multiple sound 

sources, not located close to each other, in space, and that each source is compact: i.e., it 
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can be enclosed by a sphere that is relatively small compared with the distance to the 

prediction locations. This assumption is necessary to guarantee the validity of the use of a 

spherical wave series to represent each source as well as the approximated form of each 

spherical wave series discussed earlier in Section 5.2.1. In addition, the locations of the 

sources, i.e., the origin of the spherical wave series describing each source, is assumed to 

be known. It is noted that a group of closely located sources can be treated as a single 

source in the current work. 

 

If multiple sources are present, the total sound field in free space includes contributions 

from all of them, and the sound field generated by each individual source can be 

represented by a spherical wave series with its origin at the source location as described in 

Section 5.2.1. Thus the total free-space sound field can be expressed as: 
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 (5.7) 

where 𝑝𝑖(𝑦⃗𝑖, 𝑥⃗, 𝜔) denotes the sound field contribution, evaluated at 𝑥⃗, from the 𝑖th source 

located at 𝑦⃗𝑖 , 𝜔 is the angular velocity (as before, a time dependence of 𝑒−𝑗𝜔𝑡  is first 

assumed), and M is the total number of sources. The expression in the square brackets in 

the second line of Eq. (5.7) is the same spherical wave series representation as in Eq. (5.1) 

but applied to the 𝑖th source contribution, 𝑟𝑖, 𝜙𝑖 and 𝜃𝑖 are the radius, the azimuthal angle 

(ranging from 0 to 2𝜋) and the polar angle (ranging from 0 to 𝜋) of the location 𝑥⃗ in the 

spherical coordinate system with its origin located at 𝑦⃗𝑖. All the other notations are the 
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same as in Section 5.2.1: 𝑘  represents the wavenumber, ℎ𝑛(∙)  denotes the 𝑛 th order 

spherical Hankel function of the first kind, and 𝑃𝑛
𝑚(∙) denotes the associated Legendre 

polynomial, where the integers 𝑚 and 𝑛 are referred to as the order and the degree of this 

series, and 𝐶𝑚𝑛
𝑖  is the coefficient of each term in the series. 

 

The approximated expression of Eq. (5.5) can be applied to each source, the sound field 

component from the 𝑖th source can thus be related to the distribution of this sound field 

component on the unit sphere centered at the 𝑖th source location, 𝑃𝑖(1, 𝜃, 𝜙), as: 
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By using the relation described in Eq. (5.8), the total sound field, created by all the sources, 

can be expressed, at high frequencies, as: 
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Recall that the above equation, Eq. (5.9), is for the time dependence of 𝑒−𝑗𝜔𝑡, and similar 

to the argument leading to Eq. (5.6), if the time dependence is 𝑒𝑗𝜔𝑡, the counterpart of Eq. 

(5.9) is 
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After deriving this relation, the problem of constructing the total sound field is converted 

to estimating the sound field components from each source on the unit spheres centered at 

corresponding source locations. 

 

Recall from Section 5.2.2 that the construction of the local basis representation of the sound 

field from a single source relies on the fact that there is only one term in Eq. (5.5) (or Eq. 

(5.6)). However, for the current consideration of having multiple sources, there is a sum of 

multiple terms as shown in Eq. (5.9) (or Eq. (5.10)). Because of this, the process of the 

direct projection of measurement to obtain sampling points on the unit sphere cannot be 

performed here. The main goal for this section is to overcome this difficulty.  

 

In the construction of the local-basis formulation for multiple sources, a mesh grid is first 

generated on each unit sphere, 𝑆𝑖 , whose origin is at the location of the 𝑖th source, as 

illustrated in Figure 5.1. It follows that the sound field component from the 𝑖th source on 

this unit sphere, 𝑝𝑖(1, 𝜙𝑖 , 𝜃𝑖), can be interpolated from the sound pressure at the nodes of 

the grid: specifically, the pressure can be expressed as: 
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where 𝑁 is the total number of nodes of the grid on 𝑆𝑖, and 𝑝𝑖
(𝑞)

 denotes the sound pressure 

component from the 𝑖th source evaluated at the 𝑞th node of 𝑆𝑖. If (𝜙𝑖, 𝜃𝑖) is located inside 

one of the neighboring elements of the 𝑞 th node, 𝜉(𝑞)(𝜙𝑖, 𝜃𝑖)  is the shape function 

associated with the 𝑞th node in that element; otherwise, 𝜉(𝑞)(𝜙𝑖 , 𝜃𝑖) = 0. It is again noted 
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here that the nodal pressure values, 𝑝𝑖
(𝑞)

, cannot be calculated directly from the measured 

sound pressures. In principle, there is no restriction on the choice of the grid generation 

method applied to the spheres; the basic polyhedron subdivision method (Fekete, 1990) 

was used here with the choice of the starting polyhedron taken from tetrahedron, 

octahedron or icosahedron (the choice criterion will be explained at the end of this section). 

  

  

Figure 5.1. Mesh of the unit sphere around a source. 

 

For convenience, a time dependence of 𝑒−𝑗𝜔𝑡 is assumed for the remaining part of this 

section, and one only needs to replace the wavenumber 𝑘  by – 𝑘  in all the following 

derivations, if the time dependence is 𝑒−𝑗𝜔𝑡.  With the same interpolation performed on 

unit spheres around all sources, the total sound field, by substituting Eq. (5.11) into Eq. 

(5.9), can then be expressed as: 
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where the meanings of the various notations are consistent with Eq. (5.7) and Eq. (5.9), but 

the angular velocity, 𝜔, in the time dependence has been omitted from now on for the 
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purpose of conciseness, thus implying that the reconstruction is performed for one 

frequency component at a time. By adopting a global index, 𝑡, to combine the two indices 

(𝑖 and 𝑞), and then evaluating 𝑝(𝑥⃗) at all the measurement locations, the sound pressure at 

different measurement locations can be expressed as: 

( ) ( )

1

,ˆˆ
N

s s

t

M

t

t

pp 




   (5.13) 

or in a matrix form: 

(1) (1)

(1) 1
1

(2) (2

2

2
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2

2
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1
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... ... ... .

ˆ

... ..

ˆp

p

p

p

 

 

 
    
        
       

  

 (5.14) 

where 𝑝(𝑠) represents the total sound field at the 𝑠th measurement location, 𝑝̂𝑡 is the same 

as 𝑝𝑖
(𝑞)

 in Eq.(5.11) and 𝜉𝑡
(𝑠)

 is the expression 𝜉(𝑞)(𝜙𝑖 , 𝜃𝑖)𝑒𝑗𝑘(𝑟𝑖−1)/𝑟𝑖 evaluated at the 𝑠th 

measurement location. With the relation between the measurement values and the nodal 

values on the unit spheres written in the form of Eq. (5.14), the nodal values, 𝑝̂𝑡, can be 

estimated from the measurements, 𝑝(𝑠), by finding a least square solution. Once the nodal 

values, 𝑝̂𝑡, are calculated, the sound pressure at any location in the space can be predicted 

by a substitution of 𝑝̂𝑡 into Eq.(5.12), and the sound field reconstruction is thus achieved. 

 

It is further noted that, in this reconstruction method, the interpolation accuracy, i.e., the 

number of nodes on each unit sphere, is limited by the number of measurements, since the 

error in the least-square estimation will be large if the number of nodes (summed over all 
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spheres), 𝑝̂𝑡, is much greater than the total number of measurements, 𝑝(𝑠). Based on this 

consideration, the mesh grid generation algorithm in the present work was, therefore, 

operated with the combination of the starting polyhedron type (chosen from tetrahedron, 

octahedron or icosahedron) and the number of subdivision times that gives the largest total 

number of nodes (same grid on all spheres) that was still less than the number of 

measurements available. 

 

5.3 Simulation Analysis of the Method for a Single Source 

Two simulations were conducted in the present work to validate the first local-basis method 

developed in this chapter that uses piece-wise interpolation to reconstruct the sound field 

from a single source in free-space and to demonstrate the features of this method.  The first 

simulation was aimed at reconstructing the sound field in the whole space by distributing 

measurement points around the source (the number of measurement being much less than 

the number of actual source terms used to generate the field): here it was expected that the 

detailed spatial variations in the radiation would not be captured, but that the overall sound 

field would be predicted with reasonable accuracy.  The purpose of the second simulation 

was to illustrate an implementation that cannot be achieved by methods in which a global 

basis is used to describe the sound field: i.e., it is demonstrated that the sound field in a 

certain solid angle region can be predicted in detail by using an array of measurements that 

covers that region only.  This capability is practically valuable in situations in which the 

sound radiation in only a certain view angle is of interest: e.g., in predicting the sound field 

of a television projected towards a viewer. 
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Figure 5.2. The projection of measurements onto the unit sphere. 

 

 

Figure 5.3. The coefficients of each spherical wave term in the actual source. 
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5.3.1 The Reconstruction of the Sound Field in the Whole Space 

In the simulation focused on predicting the sound field in the entire space at high frequency 

(10 kHz was chosen as the example frequency here), 200 measurement points were placed 

around the origin with their angular coordinates generated by the Leopardi algorithm to 

ensure a relatively uniform sampling in all directions and their radii were generated from 

a uniform random distribution ranging from 1 to 3 m.  The locations of the measurement 

points are illustrated in Figure 5.2. The source used in this simulation is specified in terms 

of the spherical wave series as in Eq. (5.1), where the coefficients in the series were 

generated from a uniform random distribution (from 0 to 1).   

 

  
Figure 5.4. The performance comparison of the two methods when the number of actual 

source terms is less than the number of measurements: on the unit sphere (top) and on a 

sphere of 𝑟 = 3 (bottom). 
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The sound field reconstruction results obtained by using both the spherical wave basis (i.e., 

a global basis) with a least-square method to estimate the coefficients and the piece-wise 

interpolation method described in Section 5.2.2 (i.e., the first local-basis method), are 

compared in two situations: (1) the number of terms in the actual source expression is 

nearly the same as the number of measurement; specifically, a source with spherical waves 

up to degree 13 (including 196 terms in total) was used; and (2) the number of source terms 

was much greater than the number of measurements (the usual case in high frequency 

sound radiation), where a source up to degree 30 (including 961 terms in total) was used.  

The coefficients of each source term in both situations are shown in Figure 5.3. To 

investigate the performance of the two reconstruction methods (i.e., the one using global 

basis and the one using local-basis), the predicted sound fields from both methods were 

compared with the true sound field on two surfaces: one was the unit sphere and the other 

was in the far field (a sphere with radius of 3 m). 

 

Based on the performance of the two reconstruction techniques, shown in   

Figure 5.4 and Figure 5.5, it can be seen that more accurate results can be obtained from 

the method using a spherical wave basis (a global basis) when the number of actual source 

terms is nearly the same as the number of measurements.  However, the global basis 

method fails completely (i.e., gives no meaningful predictions) when the number of source 

terms is much greater than the number of measurements, whereas reasonable predictions, 

although with some detailed spatial variations being lost in the reconstruction, can still be 

obtained by the piece-wise interpolation method (i.e., the local-basis method).  Since the 

latter situation is more likely to represent the case at high frequencies, it is concluded that 
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the local-basis method is a more suitable choice, compared with traditional methods based 

on using a global basis, when reconstructing the sound field at high frequencies. 

 

 

Figure 5.5. The performance comparison of the two methods when the number of actual 

source terms is greater than the number of measurements: on the unit sphere (top) and on 

a sphere of 𝑟 = 3 (bottom). 

 

 

5.3.2 The Reconstruction of the Sound Field in a Particular Region 

In the previous simulation, the energy of the sound radiation was concentrated in several 

small, “hot-spot” solid angle regions.  It is demonstrated in this second simulation that a 

hot-spot region can be reconstructed in detail by using measurements that cover that region 

only.  A planar array of measurements was taken that covered the target region and the 
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distance from the measurement plane to the origin was 2 m (the locations of the 

measurements are shown in Figure 5.6). As in the previous simulation, the sound pressure 

in this solid angle region on the unit sphere was interpolated from the “projected” 

measurements.  The true values and the interpolated values (shown in Figure 5.7) of the 

sound pressure in this region were compared on the unit sphere, which demonstrates that 

accurate reconstruction of sound field can be achieved (i.e., the details of the spatial 

variation can all be captured).  It is noted here that the spacing of the measurements in the 

planar array is much wider than the spacing of the projections on the unit sphere, meaning 

that a high spatial resolution of measurements on the unit sphere can be obtained by 

“projection” from the widely-spaced array of measurements: i.e., this approach solves the 

problems, when using traditional techniques, that requires impractically small spacing of 

the measurement to capture the details of the sound field variations in space. 

 

 

Figure 5.6. The locations of measurements used in predicting the sound field in a 

particular region. 
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Figure 5.7. The comparison of the true and the interpolated sound field in a particular 

region on the unit sphere. 

 

5.4 Simulation Analysis of the Method for Multiple Sources 

For the purpose of demonstrating the validity of using the second local-basis method 

(described in Section 5.2.3) to reconstruct the sound field from multiple sources at high 

frequencies, only two sources were included in the numerical simulation presented here. 

As illustrated in Figure 5.8, the two source were 1 m apart from each other (located at (-

0.5,0,0) and (0.5,0,0) in a Cartesian coordinate system), and the sound pressure was 

measured at 200 locations in the space whose distances to the origin were between 1 m and 

3 m.  
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Figure 5.8. The geometry of the simulation setup (2 sources and 200 measurement 

locations). 

 

To ensure that the reconstruction accuracy was not biased to any directions, the angular 

coordinates (spherical coordinates) of the measurement locations were generated using the 

Leopardi algorithm mentioned before (Leopardi, 2006) that can divide a sphere into an 

arbitrary number of small elements (measurement locations were chosen to be the centers 

of these element). The distance from each measurement location to the origin was obtained 

randomly from a uniform distribution ranging from 1 m to 3 m. Based on the number of 

measurements and sources (200 measurements and 2 sources) assumed here, the grid on 

the sphere around each source was, according to the criterion mentioned at the end of 

Section 5.2.3, generated from an octahedron subdivided twice which then includes 66 

nodes on a single sphere. For the purpose of generating a sound field with a complicated 
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spatial directivity pattern (as usually occurs in realistic cases at high frequencies), each 

source was determined by a very high order spherical wave series (up to order 20) with the 

coefficients (both the real and the imaginary parts) of the involved source terms randomly 

generated from a standard normal distribution. The coefficients for both sources can be 

found in Figure 5.9, and then the total sound field in the simulation was generated 

according to Eq. (5.7). Simulation results at two representative frequencies, 8000 Hz and 

15000 Hz, are presented here, which are generally considered to be in the high frequency 

range in usual cases.  

 

To illustrate the accuracy of the proposed sound field prediction technique, the predicted 

sound pressure (the least-square solution of Eq. (5.14)) is compared with the true sound 

field at 500 test locations on a sphere of radius 1 m centered at the origin and at another 

500 test locations on a concentric sphere with radius 3 m. The angular coordinates of these 

test locations were obtained from the same algorithm (Leopardi, 2006) that was used to 

generate the measurement locations. It is observed from these comparisons, from Figure 

5.10 to Figure 5.13, that the prediction based on the proposed method can capture the 

general pattern of the actual sound field at high frequencies having very large spatial 

variations, although the result is not accurate in some angular directions. To further 

illustrate this observation and the spatial distribution of the prediction accuracy, the sound 

fields on a sphere with radius of 3 m (both actual and predicted) are plotted on a sphere 

(Figure 5.14). The present results are consistent with the conclusions regarding the 

performance of the first local-basis method demonstrated in Section 5.3. It is restated here 

that the purpose and the advantage of using local basis methods at high frequencies is to 
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be able to obtain a reconstruction of the general pattern of the sound field when its spatial 

variation is very large, i.e., having a complicated directivity pattern, where the traditional 

methods (methods using a global basis) would result in meaningless results. It is thus fair 

to conclude that the proposed method is a generalization, from a single source to multiple 

sources, of the sound field reconstruction method using local basis representations at high 

frequencies.  

 

 

(a) 

 

(b) 

Figure 5.9. The amplitudes of the source terms in each source ((a) for Source 1 and (b) 

for Source 2). 
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Figure 5.10. Comparison of the true and the predicted sound pressure at the sphere with 

radius of 1 m at 8000 Hz. 

 

 

Figure 5.11. Comparison of the true and the predicted sound pressure at the sphere with 

radius of 1 m at 15000 Hz. 
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Figure 5.12. Comparison of the true and the predicted sound pressure at the sphere with 

radius of 3 m at 8000 Hz. 

 

 

Figure 5.13. Comparison of the true and the predicted sound pressure at the sphere with 

radius of 3 m at 15000 Hz. 
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(a) 

 

(b) 

Figure 5.14. Surface plot of the actual and the predicted sound pressure on the sphere 

with a radius of 3 m ((a) for 8000 Hz and (b) for 15000 Hz). 

 

5.5 Summary 

To reconstruct a sound field at high frequencies where the number of measurements in 

practice is usually much less than the number of terms in the series required to accurately 

represent the field in free-space, two methods that involve the use of a local basis was 
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proposed and validated in the present work. The first method is limited to situations of a 

single source (or all sources are distributed in a small region in space), and the second 

method is a generalization to multiple sources. Both methods mathematically depend on 

an approximated expression of the sound field under the assumption of large wavenumber 

(i.e., high frequency) in which the radial (in spherical coordinates) dependence of the sound 

field can be approximated by the form ejkr/r. But the two methods have different model 

construction processes.  

 

In the first method, i.e., the one for a single source, the direct use of the approximated 

expression allows all measurements at arbitrary locations to “projected” onto the unit 

sphere around the source location, yielding a number of distributed measurements, and 

then the sound pressure distribution on the unit sphere can be interpolated from these 

scattered data by using piece-wise polynomials.  The interpolated sound pressure on the 

unit sphere can then be “projected” out to predict the sound field anywhere in free space. 

The results from the simulations demonstrated that, when the number of terms in the actual 

source is nearly the same as the number of measurement, the use of a global basis, as in 

traditional techniques, gives more accurate predictions than the local-basis method; 

however, in a typical situation for high frequencies, the number of measurements is much 

less than that necessary to describe the spatial variation of the sound field, in which case 

the traditional method is likely to fail completely; in contrast, the proposed piece-wise 

interpolation method can still give reasonable reconstruction results.  It was also 

demonstrated that it is possible to reconstruct the detailed sound field in certain directional 
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regions, if a local basis is used, by taking measurements in that region only, and the missing 

information from the other regions does not affect the prediction in that region.  

 

The second local-basis method developed in this chapter is more general compared with 

the first method, and extends the applicability of simulating a sound field having a single 

source to the case of having multiple sources. Based on the derived approximate expression 

for the sound field, it has been shown that, at high frequencies, the sound field component 

from each single source can be determined by its distribution on the unit sphere centered 

at the associated source location. With mesh grids generated on the unit spheres around 

each source and interpolation applied to each sound field component from their values at 

the nodes of the grids, the total sound pressure at the measurement locations can be linearly 

related to the nodal values on the grids. By finding the least-square solution to this linear 

system, the nodal values can be estimated from the measurements, and thus the total sound 

field can be reconstructed. Simulations were carried out, at both 8000 Hz and 15000 Hz, 

for a case having two sources with very complicated spatial directivities, which showed 

that the general spatial pattern of the sound field can be reconstructed by the proposed 

method (giving similar performance to the previous method that is limited to one source).  
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CHAPTER 6. SUMMARY AND FUTURE WORKS 

6.1 Summary 

Motivated, primarily, by the need of fast and efficient modeling of the sound field 

generated by a certain source, such as an audio device, in different environments, anechoic 

and the room environments, in particular, a two-step simulation approach was considered 

in which the free-space sound field of the source is first simulated and then this result is 

input into a room acoustics model that predicts the sound field in a certain room 

environment. Such a two-step process has the advantage of conveniently simulating 

different room effects for the same source.  

 

To achieve high modeling efficiency, i.e., a fast and accurate simulation, the simulation 

procedures in each part of the whole process were proposed mainly based on modifications 

and improvements to certain acoustical holography techniques. The work presented here 

mainly consists of three part: (1) the proposal of a free-space sources model using a series 

of monopoles, dipoles, quadrupoles, etc. with undetermined source locations to represent 

the sound radiation from a source; (2) the development of a reduced order modeling 

approach for room acoustics simulation in which the Equivalent Source Method in 

acoustical holography has been modified for sound field predictions in interior 

environments; and (3) a treatment for simulating the high-frequency sound field in which 
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the sound field is represented by functions that only describe the sound field in a certain 

angular region in the spherical coordinate system. Also, as a theoretical foundation for the 

use of multipoles to represent a sound field, the completeness property of the multipole 

series was mathematically proven. The linear dependence relation (more generalized than 

that recognized in previous literature in the acoustics area) among different multipole 

orders is demonstrated. These results are given in the Appendix of this document. 

 

In the proposed free-space sound field model described in Chapter 3, the series of 

monopoles, dipoles, quadrupoles, etc. are used as the equivalent sources, based on the 

completeness properties on the multipoles, to describe the sound field. One reason for using 

multipoles is that it will be simpler for the forward calculation of the sound field, after the 

source parameters are found by solving an inverse problem, because in the forward process 

each source in the series can be treated as a combination of closely located monopoles. 

This simplifies the calculation especially when this free-space result is used as the input to 

different room acoustics models and there is negligible source surface scattering of the 

room surface reflected sound field, because, in this circumstance,  only monopole sources 

need to be considered in the room acoustics simulation. The locations of the equivalent 

sources in this free-space model are not specified in the beginning and need to be 

determined by a nonlinear optimization procedure; a model as such is more flexible 

compared with the commonly used equivalent source models with fixed source locations, 

and it can thus be used to simulate more complicated sound fields allowing accurate 

predictions over a wider frequency range than the usual acoustical holography techniques. 

The performance of models at three different flexibility levels was investigated in a 
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measurement of the free-space sound field from a loudspeaker. The three flexibility levels 

are: the fixed-location model (sources fixed at the center of the loudspeaker for all 

frequencies); the collocated model (all sources have the same but undetermined location 

which is estimated by optimization for each frequency component with the constraint that 

all sources lie inside the loudspeaker); and the non-collocated model (sources of different 

orders can have different (undetermined) locations inside the loudspeaker but the sources 

of the same order have the same location). It was shown from the experimental results that, 

by using a multipole series up to the order of octupoles, the collocated and the non-

collocated equivalent source models can be used to predict the free-space sound field 

accurately for the whole audible frequency range (up to 2 kHz), whereas the fixed-location 

mode can only produce accurate predictions up to 3 kHz. The source locations calculated 

from the collocated model were found to be consistent with the design of the loudspeaker 

since the calculated source location were at the diaphragm location for frequencies below 

the designed cross-over frequency of the loudspeaker, while it moves towards the tweeter 

location when the frequency increases and passes the cross-over frequency. Also, the 

collocated model can be used to visualize the sound field on the loudspeaker surface, but 

with an additional constraint: the equivalent source locations need to be a certain distance 

away from the front face of the loudspeaker. This distance threshold is application-

dependent and, in the presented experimental condition, it was found that 4 cm is enough 

for this threshold. The predicted sound pressure distribution over the loudspeaker surface 

was verified with a Boundary Element Model result with a velocity boundary condition 

obtained from laser vibrometer measurements. 
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The reduced order room acoustics model, described in Chapter 4, has extended the 

traditional use of equivalent source models to room acoustics applications by including 

sources that represent both incoming and out-going wave components. The source 

parameters are estimated using the impedance boundary conditions on the room surfaces. 

Compared with the ray models or other geometric acoustics models, the proposed method 

is more mathematically rigorous and can be applied to situations involving finite-size 

sources. It is also computationally much faster than Boundary Element Models. In the 

preliminary simulation investigations carried out for two-dimensional room spaces, two 

types of room acoustics Equivalent Source Models (ESM) were developed and compared: 

(1) the monopole distribution ESM using one layer of monopoles inside the source surface 

and one layer outside the room surface; (2) a multipole ESM with the series of monopoles, 

dipoles etc. placed inside the source surfaces (each source has an incoming and an out-

going component). From this simulation of a two-dimensional room with circular geometry 

it was shown that the multipole ESM can generally give more stable results because this 

model structure can use Truncated Singular Value Decomposition to regularize the 

problem with a fixed truncation parameter for all frequencies. In contrast, in the monopole 

distribution ESM, the regularization parameter has to be chosen from a number of 

techniques such as Generalized Cross Validation, which may give inaccurate results at 

some frequencies. Moreover the multipole ESM usually requires fewer model parameters 

(i.e., is more efficient) than the monopole distributions model to achieve relatively the same 

overall accuracy. It was also observed that for multipole ESMs, when the source order is 

low, the spatially averaged error for the sound field prediction is still small, but the spatial 

“ringing” effect is larger compared with results from models with additional higher order 
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sources. For the monopole distribution ESMs, there is no such gradual transition, as the 

number of sources decreases, from an accurate prediction to meaningless results. This 

means that the use of multipole ESM is offers the flexibility to balance the computational 

intensity and accuracy by appropriate choice of the maximum source order included in the 

model. For further analysis, simulations in three-dimensional rooms were performed by 

using the multipole ESM only, where the room involved is an Alpha cabin with relatively 

absorptive surfaces and the source is of a spherical shape with a part of its surface vibrating. 

The 3D simulation results have validated that the multipole room acoustics ESM in 3D has 

similar characteristics as that demonstrated in the 2D simulations. After the simulation 

validations, an experimental validation was also carried out with a loudspeaker in a small 

rectangular room (where the surface impedances were known). Based on the experimental 

results, the use of multipole ESM as a reduced order modeling method in room acoustics 

was validated, however, only when the pressure boundary condition on the source surface 

is given (usually through a BEM calculation), and the direct use of a free-space ESM 

coupled into a room acoustics ESM was not producing plausible results. Thus, so far, the 

experimental results only support the use of ESM as a reduced order modeling technique 

after a BEM calculation.  

 

The approach described in Chapter 5, is to simulate the complicated sound field at very 

high frequencies when the number of measurements is much less than the number of source 

terms required to describe the sound field, if the usual equivalent sources are used. It was 

observed that if the function basis is a global basis, i.e., it describes the sound field 

everywhere in the space rather than only a certain region in the space (local basis), the error 
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in the parameter estimation is an accumulation of mismatch errors (between the true sound 

field and the closest prediction the chosen basis can achieve) at all the measurement 

locations. Based on this observation, the proposed method uses a local basis represent the 

sound field on a sphere. The use of this basis relies on the fact that the sound field, when 

described in spherical coordinates, has an approximated form of 𝑝(𝜃, ∅)/(𝑘𝑟) when 𝑘𝑟 is 

large as for high frequencies. This approximation can be used, in different ways, to generate 

two different local basis models: one only predicts the sound field from a single source (or 

source located within a single small region in space), the other is more generalized and can 

deal with the case of having multiple sources. If there is only one source in that space, the 

sound field on the unit sphere with angular coordinates the same as the measurements can 

be directly calculated from the measured sound field, and then the continuous function 

𝑝(𝜃, ∅), can be determined by piece-wise interpolation, thus the sound field in the whole 

space can be predicted. However, if multiple sources exist, the sound field components 

from each source are combined together to produce the total sound field which is the 

quantity being measured. In this case, it is not possible to directly calculate each sound 

pressure component on the unit spheres around each corresponding source. The second 

local basis method solves this problem by generating a grid mesh on each of the spheres 

and the shape functions and the undetermined nodal values are used to describe the 

distribution of each sound field component on its corresponding sphere. Then the nodal 

values from all the unit spheres are estimated together by a least-square match to the 

measured sound pressure. Numerical simulations for both methods have been used to 

validate the use of these local basis models. It is shown that when the sound field is very 

complicated, as it typically is at high frequencies, and a relatively small number of 
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measurements are available, the traditional global basis methods produce meaningless 

results. In contrast, the local basis models, although they cannot predict all the details of 

the sound field, they can still be used to reconstruct the general directivity pattern. An 

additional advantage of the second method, which deals with multiple sources, is that it is 

straightforward to be extended so that it can be applied to an interior environment, because 

some of the sources can be specified as generating incoming waves without changing the 

approximated expression for the sound pressure at high frequencies. 

 

6.2 Future Works 

Based on the methodologies and the results presented in this document, some suggestions 

of possible future works are discussed here that could further improve the results or extend 

the applications. In Chapter 3, the proposed free-space multipole Equivalent Source Model 

(ESM) was validated by an experiment using a loudspeaker which is a relatively simple 

source, thus the applications of the multipole ESM in reconstructing the sound fields from 

more complicated sources, e.g., automobile engines, could be investigated in the future, 

where not only the spatial distribution of the sound field is more complicated, the sound 

field may include contributions from multiple uncorrelated sources as well. Also the model 

constructions described in that chapter can be straightforwardly extended to include more 

than one multipole series with different source locations as the equivalent sources, which 

could be a better modeling alternative if there exists multiple actual sources, and this 

application is also of interest to look into. In processing the measurement data, the errors 

in measuring the spatial coordinates of each microphone can, in principle, affect the model 

prediction accuracy, which has not been studied in detail in the present work, so an error 
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analysis on the spatial locations of the microphones may help provide guidance of 

implementing the proposed models. Similarly, rigorously speaking, a microphone 

measures the sound pressure on a finite area, rather than an idealized single point as in the 

treatment in this document, this may result in observable errors in model predictions as 

well, especially at high frequencies. It is, therefore, suggested to calculate the averaged 

sound pressure of the microphones’ measurement regions and compare these averaged 

quantities with the measurements. In the model construction and the sound field prediction 

processes, the sound field from multipoles is evaluated using symbolic differentiations 

which is a computationally intensive method, especially for multipoles of relatively high 

orders. It is desired to develop some more efficient method to calculate the sound field 

from multipoles. One possible direction to study this is, motivated by the close relation 

between the multipoles and the spherical wave functions as demonstrated in the Appendix, 

to try to derive recursive formulas for multipoles of different orders that are analogous to 

the classical recursive formulas for the spherical wave functions. 

 

Regarding to the room acoustics modeling methods described in Chapter 4, the associated 

experimental results, although validated the use of the equivalent source model as a 

reduced order modeling process, did not support the direct use of the proposed model as a 

room acoustics simulation method. One possible reason might be that the sound field at 

around 500 Hz (the frequency band that is focused on in that chapter) include a strong 

modal response from the rectangular room which cannot be efficiently represented by 

multipoles. However, there is no further evidence to support this explanation and it needs 

to be further verified. If the strong contribution of the room modes were verified to be the 
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main cause of the errors in the multipole ESM predictions, one might consider using the 

functions of the room’s modal shapes as the equivalent sources for low frequencies. Also 

the effects of the room shape and the surface impedances on the model performances could 

be further investigated. The performance of the developed model at higher frequencies was 

not well demonstrated by the presented experiment results, because the room surfaces are 

very absorptive at higher frequencies which results in a very small room component sound 

field compared with the free-space component. Thus it is suggested to perform a similar 

experiment in the future but with less absorptive surfaces at higher frequencies, so that the 

room component sound field becomes more obvious and the performance of the proposed 

models can possibly be demonstrated. Another direction for further investigations is that 

an Equivalent Source Model with un-fixed source locations (similar to the one used in 

Chapter 3) may be applied. In such implementations, it may be worth trying to use 

multipoles to represent the outgoing waves (same as the presented work), but use the 

spherical wave function with the spherical Bessel functions of the first kind (a solution 

with no singularities) to represent the incoming waves, because in this way, the source 

locations for the incoming waves can be allowed to move within the whole room region. 

This is a much larger region than the region within the source surface which is the 

constraint that is required if the chosen equivalent sources have singularities at the source 

locations, such as the multipoles. By constraining the source locations inside larger region 

may probably result in more accurate model predictions. 

 

 In Chapter 5, the local basis methods were validated only by numerical simulations, thus 

the first suggestion for the future work regarding to this is to also perform an experimental 
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validation. In the simulation of the local-basis method for multiple sources, the mesh grids 

on the unit spheres around the source locations were generated by the method of polyhedral 

subdivisions, which results in meshes with element sizes being relatively the same all over 

the spheres. However, it is possible that the projected points from the measurement 

locations onto the unit spheres are not uniformly distributed on the spheres, or, in even 

worse situations, there are some nodal values on the mesh grids that are not contributing to 

any measurement locations. This introduces both the issue of inefficient representation of 

the sound field and the issue of unnecessary ill-posedness in the inverse estimation of the 

nodal values. Therefore it may be desired to generate non-uniform mesh grids based on the 

measurement locations in this local-basis method.  
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APPENDIX 

COMPLETENESS AND LINEAR DEPENDENCE OF MULTIPOLES 

A.1 The Definition of (Cartesian) Multipoles 

The “multipole” terminology has been used to refer to different source series in the 

literature; some authors use it to indicate spherical wave series (i.e. the spherical Hankel 

functions times spherical harmonics), whereas it sometimes refers to the series of monopole, 

dipoles, quadrupoles, etc. Here, the latter meaning is adopted, as in most acoustics texts, 

and in order to avoid misinterpretation, the terminology Cartesian multipole is used. Note 

that each term in the spherical wave series is a product of solutions to equations of the 

Sturm-Liouville type, which are themselves generated by applying separation of variables 

to the Helmholtz equation, and they are thus known to be a complete and orthogonal basis 

for representing solutions of the Helmholtz equation. However, Cartesian multipoles, 

although closely related to the spherical waves, are not generated from Sturm-Liouville 

equations, and their completeness property has not been proven so far, which was the main 

objective in the present work. Mathematically, the (Cartesian) multipole of order 𝑛, is 

defined as the 𝑛th order partial derivative of the Green’s function of the Helmholtz 

equation. Thus a 𝑛th order multipole, 𝛹𝑛 , can be expressed as:  
𝜕𝑛

𝜕𝑥𝑖1𝑦𝑖2𝑧𝑖3
𝐺 , with 
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𝑖1 + 𝑖2 + 𝑖3 = 𝑛, where 𝐺 satisfies ∇2𝐺 + 𝑘2𝐺 = 𝛿(𝑥⃗), and 𝑘 is the wavenumber. In 2D 

cases, no differentiation in the 𝑧-direction is involved, i.e., 𝑖3 = 0. .  

 

The determination of the number of multipoles in each order is a standard combination-

with-repetition problem: i.e., the function 𝐺 is differentiated 𝑛 times, and each time one 

direction is chosen from three different directions (i.e., the 𝑥, 𝑦 or 𝑧 directions) and the 

order in which the differentiation is performed does not matter. In 2D cases, there are only 

two directions to choose from. Thus the number of multipoles in each order can be 

calculated as:  

1

1 , 0
( , )

, 0
n

n d

n
N n d

C n 


 


 

(1) 

where 𝐶𝑎
𝑏  denotes the combination number resulting from choosing 𝑏 out of 𝑎, 𝑛 is the 

source order and 𝑑 = 2 or 3 for the 2D and 3D cases, respectively.  

 

A.2 The Proof of the Completeness of the Cartesian Multipole Series 

The proof of the completeness of the Cartesian multipole series is based on the classic 

result that the spherical wave (cylindrical wave for 2D cases) series is complete in 

representing a solution to the Helmholtz equation. More specifically, it is known that there 

exists a spherical (or cylindrical) wave that converges to any solution of the Helmholtz 

equation in the 𝐿2 sense, for a  𝐶2 boundary surface (Doicu, et al., 2000) (Millar, 1983) or, 

more generally, for Lyapunov surfaces (Ochmann, 1995). It is generally agreed in the field 
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of acoustics that the Cartesian multipole series and the spherical wave (or cylindrical wave) 

series span the same space, and thus the multipole series is complete. However, no rigorous 

mathematical proof has been presented for this statement: instead, this equivalence is 

usually illustrated by explicitly working out the expressions for monopole, dipoles and 

quadrupoles, and comparing them with the expressions for spherical waves to show that 

the statement holds true for these three source orders, and then it is claimed that it holds 

for any arbitrary source order (Morse and Ingard, 1986). In other areas, the mathematical 

proof of the completeness of the multipole series representing a solution of the Laplace 

equation has been demonstrated (Morse and Feshbach, 1953), but the procedures used in 

that proof cannot be easily extended to the treatment of the multipole series solution for 

the Helmholtz equation, which is the subject here.  Therefore the focus of the present work 

is to show that, for the Helmholtz equation, the Cartesian multipole series spans the same 

vector space as the spherical wave series in 3D and the cylindrical wave series in 2D. Note 

that only the solution for outgoing waves is considered here, since the incoming wave 

solutions can be treated in an identical way.  

 

The key result in the present work, which leads directly to the completeness of the 

multipole series, is the following statement: let 𝜑𝑛 be an 𝑛th order spherical wave for 3D 

cases (or a cylindrical wave in 2D cases), and 𝜓𝑛 be an 𝑛th order multipole; then each 𝜑𝑛 

can be expressed as a linear combination of multipoles 𝜓𝑖 with 𝑖 ≤ 𝑛. This means that the 

multipoles and the spherical waves (or cylindrical waves) span the same space and thus the 

completeness of spherical and cylindrical waves infers the completeness of the multipole 

series. The 2D and 3D cases are treated separately in proving this statement. 
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A.2.1 2D Multipoles 

In 2D cases, a statement that is stronger than the one given above holds: each 𝜑𝑛, which 

denotes cylindrical waves here, can be expressed as a linear combination of multipoles of 

the same order (i.e., 𝜓𝑖  with 𝑖 = 𝑛). The proof of this statement can be conducted by 

induction. It is first noted that the when 𝑛 = 0, the cylindrical wave and the multipole are 

the same: i.e., both comprise a single outgoing field, which is expressed as 

(1)

0 0 0 ( ),H kr    (2) 

when the time dependence is assumed to be 𝑒−𝑗𝜔𝑡, and where 𝐻0
(1)

(∙) is the zeroth order 

Hankel function of the first kind. Thus the validity of the statement is confirmed for 𝑛 = 0, 

and then when it is assumed that the statement holds for an arbitrary 𝑛, the same statement 

only needs to be deduced for 𝑛 + 1. Since, from the definition of a multipole, each 𝑛 + 1st 

order multipole, 𝜓𝑛+1, can be expressed as 
𝜕

𝜕𝑥
𝜓𝑛 or 

𝜕

𝜕𝑦
𝜓𝑛 for a corresponding 𝑛th order 

multipole, 𝜓𝑛 , and since, based on the assumed validity of the statement that, for an 

arbitrary 𝑛, each cylindrical wave 𝜑𝑛is a linear combination of the 𝜓𝑛’s, the statement for 

𝑛 + 1 (i.e., each 𝜑𝑛+1 is a linear combination of the 𝜓𝑛+1’s) can be deduced once it is 

shown that each 𝜑𝑛+1 is a linear combination of the 
𝜕

𝜕𝑥
𝜑𝑛’s and 

𝜕

𝜕𝑦
𝜑𝑛’s: i.e., each 𝑛 + 1st 

order cylindrical wave is a linear combination of the 𝑥 and 𝑦 derivatives of the 𝑛th order 

cylindrical waves. 

 

At this point, the steps left to complete the proof for 2D cases are not complicated; however, 

in 3D cases the remaining process is more involved, and so that proof will be presented 
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separately in the next subsection. To complete the proof for 2D cases, it is first noted that 

the expression of the cylindrical wave of order 𝑛 in polar coordinates is written as: 

(1)( , ) ( ) ,jn

n nr H kr e     (3) 

where 𝐻𝑛
(1)

(∙) is the 𝑛th order Hankel function of the first kind. Note that only the waves 

with the term 𝑒𝑗𝑛𝜃 need to be considered in the proof, since for the case of  𝑒−𝑗𝑛𝜃, the 

treatment is identical if 𝑛  is replaced by – 𝑛 . To proceed with the proof, the above 

definition is then combined with the derivative relation of the Hankel function and the 

differentiation relation between polar and Cartesian coordinates: i.e., 

(1)
(1) (1)

1

( )
( ) ( ),n

n n

nH td
H t H t

dt t
   (4) 

1 1
cos sin , sin cos ,

x r r y r r
   

 

     
   

     
 (5) 

where 𝑡 in Eq. (4) is an arbitrary independent variable. It is then straightforward to derive 

the results: 

(1)
(1)

1

(1)
(1)

1

   

   

( )
(cos sin ) ( ) cos

( )
(sin cos ) ( )sin .

jn jnn
n

jn jnn

n

nn

x

nH kr
j e kH kr e

r

nH kr
j e kH kr

ry
e

 

 

  

 



 






  



  












 (6) 

From Eqs. (3) and (6), it can be shown that  
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(1) ( 1

11

) 1
( ) ( ),  nnn

j

n

nH kr e j
k x y

  



 



 


 (7) 

which proves the statement that each 𝜑𝑛+1 is a linear combination of  
𝜕

𝜕𝑥
𝜑𝑛 and 

𝜕

𝜕𝑦
𝜑𝑛. 

This last step finishes the induction process and thus completes the proof of the 

completeness of the 2D multipoles series. 

 

A.2.2 3D Multipoles 

As for the 2D cases, the focus here is on proving the statement that each spherical wave, 

𝜑𝑛, can be expressed as a linear combination of Cartesian multipoles 𝜓𝑖 with 𝑖 ≤ 𝑛. It is 

noted first that in 3D cases the condition 𝑖 ≤ 𝑛 is required, whereas only 𝑖 = 𝑛 is needed 

in 2D cases. According to the same induction logic as used in the 2D proof, after checking 

the validity for 𝑛 = 0 , it is then only necessary to show that each 𝜑𝑛+1  is a linear 

combination of the 
𝜕

𝜕𝑥
𝜑𝑛’s, 

𝜕

𝜕𝑦
𝜑𝑛’s, 

𝜕

𝜕𝑧
𝜑𝑛’s and 𝜑𝑖’s with 𝑖 ≤ 𝑛: this last statement differs 

slightly from the 2D cases because of the condition 𝑖 ≤ 𝑛 and the inclusion of the 𝜑𝑖’s.  

 

It is easy to check the validity of the statement for 𝑛 = 0, since the zeroth order multipole 

is the Green’s function which is a constant times the zeroth order spherical Hankel’s 

function: i.e., the zeroth order spherical wave. However, to prove the linear combination 

relation of  𝜑𝑛+1, it is difficult to use direct differentiation and simple algebra to derive a 

relation similar to Eq. (7): instead a more delicate procedure is required. 
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There are 2𝑛 + 1 spherical wave functions for order 𝑛 (still only considering the outgoing 

waves for the 𝑒−𝑗𝜔𝑡 time dependence), which can be expressed, in spherical coordinates, 

as: 

(1) ( ) ( , )m

n n nh kr Y    (8) 

where ℎ𝑛
(1)

(∙) is the 𝑛th order spherical Hankel function of the first kind, and 𝑌𝑛
𝑚(∙) is an 

𝑛th order spherical harmonic with −𝑛 ≤ 𝑚 ≤ 𝑛. To proceed with the proof in the present 

work, the following properties of spherical harmonics need to be used: (1) with 𝑥1, 𝑥2, 𝑥3 

being used to replace 𝑥, 𝑦, 𝑧 for convenience, the function, 

( )

1 2 3( , , ) ( , ),m n m

n nP x x x r Y    (9) 

is a homogeneous harmonic polynomial of degree 𝑛 (Colton and Kress, 2012), i.e., 𝑃𝑛
(𝑚)

=

∑ 𝑏𝑖,𝑗,𝑘𝑥1
𝑖 𝑥2

𝑗
𝑥3

𝑘 with 𝑖 + 𝑗 + 𝑘 = 𝑛, and it satisfies the Laplace equation (∇2𝑃𝑛
(𝑚)

= 0); (2) 

in addition, it can be shown that for each order 𝑛, there exist exactly 2𝑛 + 1 independent 

homogeneous harmonic polynomial (Colton and Kress, 2012). For the convenience of 

listing those independent functions,  𝑃𝑛
(𝑚)

 is expressed as:  

( )

1 2 3 1 2 3

0

( , , ) ( , ) ,
n

m k

n n k

k

P x x x a x x x



  (10) 

where 𝑎𝑛−𝑘(𝑥1, 𝑥2) is a homogeneous polynomial of degree 𝑛 − 𝑘. Since it is harmonic, 

𝑃𝑛
(𝑚)

 is determined if 𝑎𝑛 and 𝑎𝑛−1 are determined with the relation, 𝑎𝑛−𝑘 =
∇2𝑎𝑛−𝑘+2

𝑘(𝑘−1)
, so 



197 

 

1
9
7
 

that the 2𝑛 + 1 independent 𝑃𝑛
(𝑚)

’s can be written, by specifying their 𝑎𝑛’s and 𝑎𝑛−1’s, as 

(Colton and Kress, 2012):  

1 2 1

1

1 1 2

0 0,1,...

0 0,1,... 1.

n j j

n n

n j j

n n

a x x a j n

a a x x j n





 



  

   
 (11) 

From these two properties, it is seen that the 𝑌𝑛
𝑚’s in Eq. (8) and the 

𝑃𝑛
(𝑚)

𝑟𝑛 ’s with 𝑃𝑛
(𝑚)

 

specified in Eq. (11) are two bases of the same space. Thus in proving the linear 

combination property of 𝜑𝑛, it is equivalent, but more convenient, to define the spherical 

waves, 𝜑𝑛, as: 

(1)
( )

1 2 3

( )
( , , ),mn

n nn

h kr
P x x x

r
   (12) 

where, again, the 𝑃𝑛
(𝑚)

’s are specified in Eq. (11).  

 

Recall that the goal here is to prove that each 𝜑𝑛+1  can be expressed as a linear 

combination of 
𝜕

𝜕𝑥𝑖
𝜑𝑛’s (𝑖 = 1,2 𝑜𝑟 3) and 𝜑𝑗 (𝑗 ≤ 𝑛). By following the definition in Eq. 

(12), and using the differentiation relation and the recursive relation of the spherical 

Hankel’s functions, i.e., 

(1) (1)

1( ) ( )
,n n

n n

h t h td

dt t t


 

  
 

 (13) 
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the derivatives of 𝜑𝑛 can be expressed as: 

(1) (1)
( )1 1

1 1 2 3 1 2 31 1

( ) ( )
( , , ) ( , , ),

2 1 2 1

i mn n
n n nn n

i i

h kr h krk k
q x x x P x x x

x n r n r x
  

 

 
 

   
 (15) 

with 

( ) 2 ( )

1 1 2 3 1 2 3 1 2 3( , , ) (2 1) ( , , ) ( , , ).i m m

n i n n

i

q x x x n x P x x x r P x x x
x




   


 (16) 

To proceed further, it is, first, necessary to show that the first and the second terms on the 

right hand side of Eq. (15) belong to the space of the 𝑛 + 1st order spherical wave and 𝑛 −

1st order spherical wave, respectively, which means that, by differentiating a 𝑛th order 

spherical wave, spherical waves of order 𝑛 + 1 and 𝑛 − 1 are produced. To prove that 

statement, it needs to be shown that 
𝜕

𝜕𝑥𝑖
𝑃𝑛

(𝑚)
 is a homogeneous harmonic polynomial of 

degree 𝑛 − 1 and that 𝑞𝑛+1
𝑖  is a homogeneous harmonic polynomial of degree 𝑛 + 1. It is 

straightforward to check that these two terms are homogeneous polynomials of the desired 

degrees, and it also not difficult to show that 
𝜕

𝜕𝑥𝑖
𝑃𝑛

(𝑚)
 is harmonic: i.e., ∇2 (

𝜕

𝜕𝑥𝑖
𝑃𝑛

(𝑚)
) = 0 

(since ∇2𝑃𝑛
(𝑚)

= 0). It still remains to be shown that 𝑞𝑛+1
𝑖  is harmonic.  That result can be 

obtained by direct calculation or by noticing that both 
𝜕

𝜕𝑥𝑖
𝜑𝑛 and 

ℎ𝑛−1
(1)

(𝑘𝑟)

𝑟𝑛−1

𝜕

𝜕𝑥𝑖
𝑃𝑛

(𝑚)
 satisfy 

(1)
(1) (1)

1 1

( ) 1
( ) ( ) ,

2 1

n
n n

h t
h t h t

t n
 

   
 (14) 
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the Helmholtz equation, so that 
ℎ𝑛+1

(1)
(𝑘𝑟)

𝑟𝑛+1 𝑞𝑛+1
𝑖  satisfies the Helmholtz equation, and, so 

therefore, 𝑞𝑛+1
𝑖  is harmonic. 

 

To finish the proof that all 𝜑𝑛+1’s can be constructed from linear combinations of 
𝜕

𝜕𝑥𝑖
𝜑𝑛’s 

(𝑖 = 1,2 𝑜𝑟 3) and 𝜑𝑗’s (𝑗 ≤ 𝑛), it is further noted that the term 
ℎ𝑛−1

(1)
(𝑘𝑟)

𝑟𝑛−1

𝜕

𝜕𝑥𝑖
𝑃𝑛

(𝑚)
, from the 

previous steps, belongs to the set {𝜑𝑗 , 𝑗 ≤ 𝑛}, so the proof is completed if it can be shown 

that all 𝜑𝑛+1 ’s can be written as a linear combination of the 
ℎ𝑛+1

(1)
(𝑘𝑟)

𝑟𝑛+1 𝑞𝑛+1
𝑖 ’s , which were 

already shown to be spherical waves of order 𝑛 + 1. The latter is equivalent to saying that 

each of the independent 𝑃𝑛+1
(𝑚)

’s (listed in Eq. (11), with 𝑛  replaced by 𝑛 + 1), can be 

expressed as linear combinations of the 𝑞𝑛+1
𝑖 ’s (defined in Eq. (16)) with the independent 

𝑃𝑛
(𝑚)

’s listed in Eq. (11) and with 𝑖 = 1, 2 and 3. This is a relatively simple step, since, if 

all independent 𝑃𝑛
(𝑚)

’s listed in Eq. (11) and 𝑖 = 1, 2 and 3 are enumerated, the first term 

in the expression of 𝑞𝑛+1
𝑖  in Eq. (16), i.e., 𝑥𝑖𝑃𝑛

(𝑚)
, already includes the 𝑎𝑛+1’s and 𝑎𝑛’s in 

Eq. (11) after replacing 𝑛 with 𝑛 + 1. The last step of the proof is to show that the second 

term in Eq. (16)), 𝑟2 𝜕

𝜕𝑥𝑖
𝑃𝑛

(𝑚)
, does not cancel the first term, −(2𝑛 + 1)𝑥𝑖𝑃𝑛

(𝑚)
, for any of 

the 𝑎𝑛+1’s and 𝑎𝑛’s. Such a no-cancellation property is ensured by the different constant 

coefficient in front of each term, as long as 𝑛 ≠ 0, which is the case since the validity of 

the case 𝑛 = 0 was checked at the beginning of the proof. At this point, the proof of the 

completeness of the 3D multipoles series is finished.  

 



200 

 

2
0
0
 

In the case of incoming waves, the same conclusion holds, i.e., each incoming spherical 

wave (cylindrical wave for 2D) can be expressed as a finite linear combination of a number 

of incoming Cartesian multipoles, where the incoming multipoles are defined as the 

complex conjugate of the outgoing multipoles, and the incoming spherical (or cylindrical 

for 2D) waves are defined by replacing the spherical Hankel function of the first kind in 

Eq. (3) (or the Hankel function of the first kind in Eq. (8) for 2D) with their counterparts 

of the second kind. The proof of this statement for incoming waves can be achieved either 

by following the same process as in the outgoing wave case, or simply by taking the 

complex conjugate of the outgoing wave conclusion, i.e., the complex conjugate of Eq. (3) 

(or Eq. (8) for 2D) can be expressed as a finite linear combination of incoming multipoles, 

and then noticing that the complex conjugate of the outgoing spherical (or cylindrical) 

waves have a one-to-one correspondence to the incoming spherical (or cylindrical) waves. 

Therefore the completeness of the incoming Cartesian multipole series is also proven. 

 

A.3 The Linear Dependence Among the Multipoles 

After proving the completeness of the multipoles series, the linear dependence relations 

among different orders of multipoles can, with some effort, be clearly observed. A classic 

specific case of this linear dependence relation is that a longitudinal quadrupole contains a 

monopole component. Here, a more general conclusion can be drawn for multipoles of 

arbitrary orders. Only the 3D multipoles are discussed here, since the 2D multipole case is 

a simplification of the 3D case.  
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One obvious linear dependence relation for the multipoles follows from the fact that each 

multipole satisfies the Helmholtz equation, i.e.,  

2 2 2
2

2 2 2
0,n n n nk

x y z
   

  
   

  
 (17) 

in which, based on the definition of multipoles, each of the first three terms on the left hand 

side represents a multipole of order 𝑛 + 2, while the last term is a multipole of order  𝑛. 

For the special case of 𝑛 = 0, it represents the well-known monopole-quadrupole coupling: 

since the first three terms in Eq.(17), with 𝑛 = 0 , represent the three longitudinal 

quadrupoles and the last term represents a monopole, it is then clear that a monopole sound 

field can be expressed as the sum of the three longitudinal quadrupoles multiplied by 

−1/𝑘2. Thus, in general, this equation can be interpreted as meaning that any multipole of 

order 𝑛 can be expressed as a linear combination of three multipoles of order 𝑛 + 2. This 

observation also suggests that in the space spanned by the multipoles up to order 𝑀 , 

span{𝜓𝑛 , 𝑛 ≤ 𝑀}, all 𝜓𝑛’s with 𝑛 ≤ 𝑀 − 2 are linearly dependent on the 𝜓𝑀−1’s and 

𝜓𝑀’s. A more interesting conclusion that can be drawn, based on the proof in the previous 

section, is that the 𝜓𝑀−1’s and 𝜓𝑀’s are linearly independent, which then means that if a 

basis is to be extracted from a multipole series, one only needs to include the multipoles in 

the highest two orders: that is all the other lower order sources can be eliminated.  

 

To prove that the 𝜓𝑀−1’s and 𝜓𝑀’s are linearly independent, one only needs to show that 

the total number of multipoles included in orders 𝑀 and 𝑀 − 1 is the same as the total 

number of spherical waves included in orders from 0 to 𝑀, since, from the proof in the 
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previous section, it is known that the space spanned by the multipoles up to order 𝑀 is the 

same as the space spanned by the spherical waves up to the same source order and that all 

of the spherical waves, defined in Eq. (8), are known to be linearly independent (in fact, 

orthogonal). This can be checked easily with the help of Eq. (1) and the knowledge of the 

fact that there are 2𝑛 + 1 independent spherical waves for order 𝑛: i.e., one can find: 

𝑁(𝑀, 3) + 𝑁(𝑀 − 1,3) = ∑ 2𝑛 + 1𝑀
𝑛=0 . Therefore it is concluded that in the sequence of 

multipoles, the multipoles in the two highest orders form a basis of the space spanned by 

all the elements in the sequence, and the lower order multipoles can be obtained by linear 

combination of multipoles in the two highest orders through the Helmholtz equation. 
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