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ABSTRACT

Lim, Heejong PhD, Purdue University, August 2016. Essays in Operations Manage-
ment. Major Professor: Anath V. Iyer.

In the first essay, we investigate the impact of reciprocity in the dyadic supply

chain. Our study is motivated by the experiences of the semiconductor and LCD

industries, we investigate the impact of reciprocity in the dyadic supply chain. A

notable characteristic in the above technology industries is the alternating possession

of bargaining power caused by cyclical demand. We incorporate a reciprocal game

in a dyadic supply channel over two periods. We investigate how a supplier is influ-

enced and protects himself during the oversupply period by anticipating the buyer’s

reciprocal behavior. Our results show that a supplier’s understanding of a buyer’s

reciprocal behavior can mitigate double marginalization and can even fully coordinate

the channel. This implies that even without a costly mechanism to resolve the double

marginalization, appropriate consideration of the counterpart will increase channel

e�ciency.

In the second essay, we consider a firm that manages a portfolio of customers plac-

ing orders that need replacement parts. The firm has both long-term and short-term

customers. A long-term customer places both routine orders for routine maintenance

and urgent orders due to emergency with a low margin for the firm and a short-

term customer places urgent orders with a high margin for the firm. Routine orders

provide stable loads and generate e�ciency. Considering the increase in e�ciency by

routine orders, there is a trade-o↵ between the e�ciency and profitability of the order

portfolio. Motivated by data provided by the company, we build an analytical model

to support optimal decision making. We identify the impact of an additional urgent



ix

order to the cost embedded in the future operations. Finally, we model the mixed

integer program to support the company’s capacity plan. We conclude with in sights

provided to the firm and managerial insights for optimal customer order portfolios.

In the third essay, we focus on the economic benefit of profound technology

projects as milestones are achieved. Ce-Al alloy project by CMI promotes an ex-

ample. The project we use replaces the current aluminum (Al) alloy with Al-cerium

(Ce) alloy in an engine block and an engine head to increase the operational e�ciency

of the vehicle. We can expect higher fuel e�ciency as well as a lower cost of produc-

tion. The Ce-Al alloy development project by the Critical Material Institute (CMI)

announces an achievement level at every milestone. The model keeps track of two

goals, e�ciency improvement and production cost reduction. Based on the progress

about those two R&D tracks, the research question involves when to add capacity

for production to maximize profits and how to adjust the R&D strategy to maximize

benefit. The problem is modeled in a Bayesian update and a stochastic dynamic pro-

gram. Insights from the model were used to estimate the economic benefit for CMI

and suggestion for improvement.
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1. INTRODUCTION

We describe the ability of production by the measure called capacity. In operations

management, capacity has been extensively discussed by many researchers. When the

cost to change capacity is expensive, capacity is considered to be inflexible. In case

that capacity is not flexible, the company faces challenges such as capacity idleness,

capacity shortage, and loss of customer satisfaction. Furthermore, investment in ca-

pacity is a problematic issue. In the traditional operations literature, many strategies

have been suggested such as designing a contract or a mechanism.

Long-term relationship is one of strategies to deal with challenges because building

a good relationship can reduce transaction costs. In this dissertation, we will discuss

how long-term relationship impacts on the supply chain and the optimal timing strat-

egy to expand the capacity. Chapter 2 and 3 considers the long-term relationship in

the supply chain. Chapter 4 investigates the timing of capacity expansion according

to research and development (R&D) progress.

In chapter 2, motivated by the experiences of the semiconductor and the Liq-

uid Crystal Display (LCD) industries, we investigate the impact of reciprocity in the

dyadic supply chain. Alternating possession of bargaining power causes demand cycle

in the technology industry. While demand swings are huge, the capacity of the man-

ufacturing facility is not flexible. In the shortage period, procuring quality products

reliably is the issue, and in the oversupply period, maintaining capacity utilization is

another problem. Under this circumstance, we have observed that the supplier makes

business decisions considering long term relationship.In this chapter, we ask questions

as follows:
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1. Does considering the opponent’s benefit make sense in terms of the player’s

long term profit?

2. How does the presence of kindness and reciprocity impact on the dyadic supply

chain?

3. What is the manager’s optimal decision if he expects a long-term relationship with

the opponent?

In order to take into account reciprocal behavior, we incorporate a reciprocal game

in a dyadic supply channel over two periods. we investigate how a buyer’s anticipated

reciprocal behavior influences a supplier’s order so as to protect the supplier during

the oversupply period. Our analysis of the influence of reciprocity can provide man-

agers in participating firms insights about how suppliers and buyers make decisions.

On the other hand, we also examine the supply channel coordination and the double

marginalization problem that are conventional areas of interest in the supply chain

literature. We examine the impact of reciprocity in the sense of channel coordina-

tion. Our results show that a supplier’s correct understanding of a buyer’s reciprocal

propensity can mitigate double marginalization and can even fully coordinate the

channel. This implies that even without a costly mechanism to resolve the double

marginalization, appropriate consideration of the counterpart will increase channel

e�ciency.

Chapter 3 is driven by a project with the metal fabrication company located in

Texas. They supply various metal parts for oil refineries and chemical plants. The

company, as a supplier, wants to strengthen relationships to customer firms by means

of lower price for urgent orders from long-term customers and maximize their long-

term profit. They believe that a positive relationship leads to more routine orders

from customers and that increased routine orders that will compensate for any losses

stemming from the low pricing strategy for urgent orders.
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After exploring data provided by the company, we found interesting observations.

The first observation is that the customer relation a↵ects likelihood of placing urgent

orders. The second is that the company charges fewer margins for the urgent or-

der from the customer with routine orders (long-term customer) than those without

routine orders (short-term customer). However, margins of routine orders are not

di↵erentiated. The third is that they work urgent jobs more e�ciently when the shop

is highly loaded. We found that the firm needs to maintain a certain level of work

load from routine orders for e�ciency and they need to accept urgent orders from

short-term customers for profitability.

Based on data exploration, we developed a deterministic analytic model for the

pricing decision. Findings are:

1. Price of a low margin urgent job is relative to that of a high margin urgent job

2. Loss due to a low margin urgent order is compensated by margin of a routine order

3. When capacity is large, the firm needs to fill the capacity with routine orders

In addition, we will study the option to postpone routine orders. The optimal

quantity to be postponed will be investigated. The cost impact of an additional ur-

gent order will be identified.

In chapter 4 considers the project of the Critical Materials Institute (CMI), which

aims to reduce US dependence on critical materials. One of projects CMI aims at

developing advanced alloy by adding critical material. Replacing current aluminum

alloy with Ce-Al alloy in an engine block and an engine head increases e�ciency

of a vehicle. Material property of Ce-Al alloy features lighter weight and better

thermodynamic performance. In addition, the production time can be reduced up to

80%. We can expect higher fuel e�ciency as well as lower cost of production. The

Ce-Al alloy development project announces an achievement level at every milestone.

The research question is when to add capacity for production and how to adjust R&D



4

strategy. As an extension, we will consider two research tracks that report their own

progress. Under given additional resource such as post-doc researchers or funds, we

will investigate the optimal decision to invest additional resources. The problem is

modeled in a Bayesian stochastic dynamic program.
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2. ORDERS AND RECIPROCITY IN THE

TECHNOLOGY SUPPLY CHAIN

2.1 Introduction

Our objective in this research is to examine how reciprocal decisions a↵ect the

nature of decision making in a supply chain. Reciprocity is defined to be behavioral

response to kindness signaled by the counterpart. [1] Reciprocity motivates the one

to pay back for kind actions by taking actions that are kind to the counterpart. Reci-

procity is conditional to the first mover’s action. Thus, reciprocity is di↵erent from

altruism. [2] There are two main motivations to investigate the impact of reciprocity.

First, behavioral economics literature has indicated that if somebody is nice to the

other, the other would be nice to somebody by fairness. The nature of reciprocity

clearly has an implication in economics (Rabin, 1993) In organizational behavior lit-

erature, there are many research in fairness, reciprocity, and trust. [3] highlighted

that fairness generates trust and reciprocity in fairness and trust leads to the e↵ec-

tive team. Reciprocity also proves that the one is trustworthy. They also found that

there are two aspects in fairness: fairness in outcome and in process. They observed

two aspects in unexpected ways: people accept unfair outcomes when the process is

fair or people reject fair outcomes when the process is unfair. This implies that how

fairness in the process is perceived more importantly than fairness of outcomes. They

also illustrated how fairness is operationalized by the manager. In our problem, we

assume that two companies already went through the operationalizing fair process.

Therefore, we suppose that two companies consider each other trustworthy. Second,

we observed reciprocal decisions in high-tech industry. The notable characteristics

of high-tech industry is that the production capacity is not su�cient at early stage

and the market is oversupplied as competitors enter the market. At some point, the
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leading company develops the advanced technology and the market faces shortage.

In this environment, we observed that buyers reciprocal decisions are made according

to suppliers favorable decisions. We consider the particular case of Liquid Crystal

Display (LCD) industry. In early 2000s, the new display technology, LCD started to

emerge. Its advantages were light weight, thinness and scalability of size. Once the

new technology was introduced, the manufacturing capacity for LCD panels was a

critical constraint for both the LCD manufacturer and the Original Equipment Man-

ufacturer (OEM). In the LCD industry, the shortage and oversupply are inevitable

due to demand cycles, i.e. periods of under capacity and overcapacity. Consequently,

there is an alternating possession of bargaining power. For the LCD manufacturer,

the manufacturer cannot easily invest in building capacity for the shortage because in

the oversupply period, unutilized capacity hurts financial performance. In addition,

low utilization hurts the production yield severely when they want to ramp up the

production quantity due to the characteristics of manufacturing process. The OEM

also wants to prevent low utilization during the oversupply, expecting the reliable

supply of quality LCD panels over time. We found that the LCD manufacturer cares

for big OEMs during the shortage with low prices and adequate supply so that OEMs

order a certain level of quantity during the oversupply as a return.

There is a similar practice in the apparel industry. Ruentex was a Taiwanese tex-

tile company producing various textiles such as yarn, printed flannel and denim. Liz

Claiborne, a US based apparel company, was looking for a supplier who could supply

quality textiles reliably. Liz Claiborne chose Ruentex for its potential capability even

though Ruentex could not provide quality textiles. When Ruentex had problem in

quality or production, Liz Claiborne instead of finding an alternative supplier, helped

Ruentex to solve those problems and to improve their quality. As their relationship

became stronger, Liz Claiborne could procure various high quality textiles at a good

price and obtain market competitiveness. [4]
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2.1.1 Characteristics of LCD Industry

LCD fabrication process is similar to that of semiconductor manufacturing.

• Process industry and high investment cost: Like chemical industries, iron and

steel mills, or the petroleum refineries, LCD manufacturing requires a huge

investment for its manufacturing facility. As with the semiconductor industry,

the photolithography machine is essential and critical to fabricate circuits on the

glass panel and the photolithography machine costs approximately 25 million

US dollars. Though the number depends on the target production capacity, an

LCD manufacturing plant is usually equipped with about 20 photolithography

machines. Including other equipment, it costs about 3.5 billion US dollars to

build the 8th generation FAB with a capacity of a hundred thousand panels per

month.

• Demand cycle and uncertainty: There are three main markets for LCD. The

first is the IT market focusing LCD displays for computers. Corporate buyers

are biggest consumers of LCD displays. Usually they lease laptops, desktops

and other peripherals, especially monitors, from PC manufacturers such as Dell,

HP, Acer, Lenovo, and so on. Expiration of leasing contracts generates a de-

mand of LCD panels periodically. The second market is the television (TV)

market. a TV has been called a 10 year appliance. In other words, TV is ex-

pected to last about 10 years. Besides, big sports events such as Olympics and

World Cup Soccer attract consumers to buy newer and larger TVs. Relatively

long lifetime and periodic big events generate another stream of the season-

ality. The third market is the mobile device market. Mobile devices require

low-power consumption and di↵erent dimensions of LCD screens to meet their

requirements. Smartphones and tablet PCs are recently introduced to public.

Their demand is growing fast. However, speed of demand growth depends on

the world economics forecast is uncertain and demand is uncertain.
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• Limited number of customers: Once the LCD is fabricated and assembled into

the LCD module, it is sold to OEMs or set manufacturers. (OEMs are HP,

Dell, Lenovo, Apple, Samsung, LG, and so on) There are several big buyers and

many small buyers.

• Mix of Make-to-Order and Make-to-Stock: We can divide the manufacturing

process into three phases i.e. panel, cell, and module. In the panel phase,

semiconductor circuits are fabricated on a glass panel (TFT glass). In the cell

phase, a fabricated TFT glass and a color filter glass are attached together and

liquid crystal is injected between them. Then the original assembled glass panel

is cut into the specified size. In the module phase, a cell is assembled with the

product control board, aluminum chassis, and back light units. Most of buyer’s

requests are met in the cell phase. Requests are di↵erent from di↵erent buyers.

Therefore, it is produced in make-to-order.

• Outsourcing is not preferred: Each LCD manufacturer has developed his own

technology and mass production technology. For example, Samsung and Sharp

have developed VA mode LCD. But LG has developed IPS mode LCD. Be-

sides, since the production yield relies on the mass production technology, the

mass production technology is the top secret for the manufacturer. Therefore,

outsourcing for the shortage period is not an option to be considered. Man-

ufacturers concern leakage of the mass production technology, the production

capacity, and weakness of their models very much. Most of all, there is a com-

patibility problem in adapting parts from other manufacturer.

The characteristics of LCD manufacturing allow us to assume that stocking inventory

is not appropriate and the production capacity is fixed.
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2.1.2 Research Question

In summary in LCD industry, the LCD manufacturer and the OEM engage in

reciprocal behavior. For example, the LCD manufacturer o↵ers a lower wholesale

price for a big OEM (a high priority customer) during a capacity shortage period

expecting a larger order quantity from the OEM during the oversupply period. We

show that the presence of trust embedded kindness and reciprocity in a dyadic supply

chain, improves not only channel e�ciency but also profits for both players than the

double marginalization case focusing on the LCD supply chain practice. In partic-

ular, we show that the seller’s (LCD manufacturer) lower wholesale price o↵er than

the outside option during the shortage period is perceived as kindness to the buyer

(OEM) and, in return, the buyer will order more than his outside option during the

excess period by keeping the seller’s kindness in her mind. We show that the supply

chain e�ciency is always better o↵ in the presence of trust as manifested by kindness

and reciprocity than without them and we study conditions that they induce the full

channel coordination.

2.2 Literature

A comprehensive understanding of supply chains requires as to incorporate the

understanding of human behavior to explain real work practices [5]. This needs to

incorporate behavioral factors into operations management was emphasized by [6],

and has been discussed by [5].

Trust has been discussed in many literature. Destroying trust between a supplier

and a buyer results in long-term loss [7]. Trust is defined as the anticipation that the

other organization may be relied on to fulfill its commitments, to behave predictably,

and to act and negotiate fairly even when the opportunistic behavior is possible [8].

There are several benefits when trust is maintained between organizations. Trust re-
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duces transactional costs related to bargaining and monitoring. Therefore enhanced

performance is expected with trust [9]. Transaction costs are lower with self-enforcing

agreements that are based on trust [10]. [5] highlighted fairness, trust and reciprocity

as notable topics for OM. Fairness was defined as satisfaction of expectations of par-

ticipants in the system. Fairness enhances trust between two agents. Reciprocity in

fairness and trust leads to high performance [3].

There is empirical evidence of the role of trust in the supply chain. [11] showed that

the buyer’s satisfaction with past transaction, more specifically reciprocity positively

a↵ects the supplier and buyer relationship. In addition, he showed that trust and mu-

tual dependency also a↵ect supply chain relationship positively. More recently, [12]

examined the impact of relationship-level factors such as asymmetric dependence and

trust. Their empirical results emphasized the importance of trust between firms and

showed that its impact can be mediated by factors such as communication and com-

mitment. In other words, trust was necessary but not su�cient for the success of

the supply chain. [13] investigated if the background of the supply chain participants

a↵ects the inclination to trust. Specifically they examined how the national origin of

firms, China and US, a↵ects trust, trustworthiness, and strategic information sharing

in a dyadic supply chain. Their experiments found that Chinese firms tend to show

lower trust and trustworthiness when there is no long-term perspective, and tend to

trust US firms. [14] studied that coordinating contracts underperformed compared

to prediction in laboratory experiments. Channel coordination was lower than 100%

because of incomplete information. There was unexplained contract rejects by play-

ers, and players tend to split profit 50-50 rather than 100-0. They developed a model

that incorporates fairness and incomplete information. Their model explained rejects

by players, fair profit split in the experiments. Past empirical studies support, the

idea that supply chain participants’ propensities to reciprocity and trust a↵ect their

behavior and they do not focus only on their own well-being.
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In the economics literature, there is extensive research that deals with fairness and

reciprocity. [15] developed a game theoretic framework incorporating game player’s

perception and emotions towards the opponent. His framework was intended to model

three facts. They are; people are willing to sacrifice their welfare to help the oppo-

nent who is kind, people are willing to sacrifice their welfare to hurt the opponent

which is unkind, and those considerations are more significant when the sacrifice cost

is smaller. He defined kindness as a ratio of what the player can get benefit and

the maximum benefit. We use a modified revision of his definition of kindness for

our model. [16] uses a model a model, in which one player’s payo↵ was linear in the

player’s profit and the opponent’s profit. Information about the weight of the oppo-

nent profit was not shared with the opponent. Experiments were performed under

various settings and his model explained the experiments. [17] developed a tractable

model by revising Levine’s model. The model provide ease of analysis and was used

in experiments under various circumstances. In previous fairness or reciprocal liter-

ature, belief of the opponent’s kindness complicates the analysis. They developed a

model that does not require as to model this belief. In our study, we revised their

model for two period game and investigated player’s choices analytically.

In theoretical supply chain relationship literature, the majority of work concerns

trust of buyer regarding shared information under asymmetric information. There are

two papers related to fairness which is related to reciprocity and trust. [7] proposed

a simple relational contract when the supplier ramps up capacity is uncertain while

the buyer needs a certain quantity. They concluded that the benefit of the relational

contract is substantial, especially when the capacity cost is moderated and bargaining

powers are similar. They also found that with a proper informal contract helps the

buyer avoid monitoring cost incurred by the seller’s investment decision. [18] stud-

ied how fairness a↵ects channel coordination. In their study, if the buyer considers

fairness, the seller would o↵er a simple wholesale price that is just above the seller’s

marginal cost to achieve maximum channel profit and maximum channel utility. They
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concluded that a constant wholesale price would fully coordinate channel in the pres-

ence of concern about fairness. Their models, however, have shown a limited ability to

incorporate reciprocity. Simply speaking, reciprocity is a return action to kindness.

We need at least a two period setting to model reciprocity. Another limitation is

that relational contract requires an outside option. [19] suggested a model for channel

coordinating contract in the presence of a fairness preference. Their model explained

rejections and low e�ciency in the experiments applied by conventional models. [20]

extended [18]. They used a non-linear demand function and generalized the results

of [18]. Recently, [21] applied the reciprocal game to two player supply chain based

on Stackelberg model. They showed that intention is an important factor in decision

making and changes equilibrium.

In the operations area, reciprocity has not been studied analytically. Our work

contributes to the operation literature in three ways. First, we model the reciprocal

game in a dyadic supply chain setting over two periods. In the first period, the seller

takes actions signaling kindness to the buyer. Then the buyer takes action reciprocally

in the next period. A reciprocal game is modeled for the technology supply chain.

More specifically, we incorporate the characteristics of technology industry, which is

the alternating possession of bargaining power caused by cyclical demand. Second, we

consider the capacity of the seller. Capacity is a critical constraint in the technology

industry such as the semiconductor or LCD industries. Lastly, actions related to

kindness are determined endogenously. Our model does not require outside options

or intention of the counterpart.

2.3 Model

We describe the two player supply chain over two periods and the supplier’s kind-

ness and the buyer’s reciprocal reaction. Participants make decisions sequentially in

the traditional operations literature.
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In our model, we first assume that we operate as a Make-to-Order system so that

carrying inventory over periods is not allowed. an LCD panel is not a consumer

commodity but an intermediate product. As final display products are adjusted,

the product specification required by a buyer changes over periods. The second

assumption is that demand has a significant cycle. Large corporations or educational

organizations usually lease IT assets from computer companies like Dell, HP, Apple,

and Lenovo. Period of lease leads demand cycle. On the other hand, in the TV

market, demand surges at certain times such as for big sports events like the Olympics

and World cup.

We model a two period game and the time line starts with high demand (or

capacity shortage). In the shortage period, the demand is so high that the order

quantity is always equal to or greater than the allocated capacity. Likewise, in the

oversupply period, the demand is so low that the order quantity is always equal to or

less than the allocated capacity. Thirdly, we assume that the seller’s capacity for the

buyer is not flexible in the short term perspective. In other words, the production

capacity is fixed, and it requires substantial time and capital to ramp up the capacity.

The seller is, however, able to provide quantity more than the allocated capacity for

the buyer by reallocating capacity from other buyers. In this case, the seller must pay

a penalty cost to other buyers, the cost of changing production specifications, and the

cost for loss of reputation. The fourth assumption is that the seller has the bargaining

power in the shortage period and the buyer has it in the oversupply period. When

the seller has the bargaining power, he decides the wholesale price. If the buyer has

the bargain power, she decides the wholesale price and the order quantity. Lastly, we

assume that demand is deterministic and the market size is forecasted in advance.

2.3.1 Sequence of Moves

We consider a two period game in the dyadic supply chain as described in Figure

2.1. The market demand has a cycle. In the first period, the demand is high and the
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choose ws

observe ✓(ws)
choose qs

deliver qs

choose wo, qo

deliver qo

t = s t = o

seller

buyer

Figure 2.1. Sequence of the game

seller (he) faces a capacity shortage. In the shortage period, the seller announces the

wholesale price to the buyer (she). The wholesale price is determined under expec-

tation of a certain order quantity and the capacity overage cost. The buyer observes

the seller’s kindness from the wholesale price. According to both the perceived kind-

ness and the wholesale price, the buyer decides LCD panel order quantity. This order

quantity is intended by the seller when he makes a decision. The seller thus fulfills the

buyer’s order. The demand in the second period is low enough for the seller to face

the capacity oversupply. In the oversupply period, the competition among suppliers

is fierce. The buyer possesses the bargaining power during the oversupply period.

In the second period, the buyer choses both the wholesale price and the LCD panel

order quantity based on both the anticipated kindness by the seller and the wholesale

price in the previous period.

2.3.2 Profit function

One of critical constraints in our model is the capacity allocated for the buyer. As

assumed earlier, in the shortage period the seller may reallocate capacity assigned to

other buyers. ce is the unit capacity excess cost that includes loss of goodwill by other

buyers, resource switching cost, and so on. In the oversupply period, the unit cost ci

is incurred by unutilized capacity. ci represents financial loss and cost by the low yield.
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t: Time period, t =2 {s, o}, where s and o represents the shortage and the

oversupply period, respectively, and the shortage period comes first

wt: Wholesale price at time t

qt: Order quantity at time t

c: Unit production cost of the seller

k: Predetermined capacity allocation for the buyer

Dt: Potential market size at time t

We define the seller’s profit functions

(2.1)⇡shortage
seller (ws, qs) = (ws � c) qs � ce (qs � k)+ � ci (k � qs)

+

(2.2)⇡oversupply
seller (wo, qo) = (wo � c) qo � ce (qo � k)+ � ci (k � qo)

+

We define x+ = max{0, x}. The buyer’s profit is not related to the capacity. Thus,

(2.3)⇡shortage
buyer (ws, qs) = (rs(qs)� ws) qs

(2.4)⇡oversupply
buyer (wo, qo) = (ro(qo)� wo) qo

As we assume that the demand curve is linear, the inverse demand function is rt(qt) =
Dt � qt

a
where t 2 {s, o} and a is the slope of the curve.

2.3.3 Definition of kindness

We next model the extent of kindness explicitly. [15] defined kindness as a function

of how much payo↵ a player gives to the opponent than the equitable payo↵, and [17]

normalized Rabin’s definition. We use a modified version of this definition of kindness.

The sellers’s kindness is defined to be the buyer’s additional profit over two periods

despite of the possibility of the seller’s opportunistic behavior.

Definition 2.3.1 (Kindness) The seller’s kindness is the buyer’s additional profit

in the shortage period normalized by the di↵erence between the maximum and the

minimum profit.
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Let ✓(ws) denote kindness by the seller’s choice ws in the shortage period and �

denote the buyer’s kindness sensitivity. Then,

(2.5)✓(ws) = �

⇣⇣

(D
s

�aw
s

)2

4 a +max ⇡oversupply
buyer

⌘

�
⇣

(D
s

�a c�a c
e

)2

16 a + (D
o

�a c)2

4 a

⌘⌘

⇣

max ⇡shortage
buyer +max ⇡oversupply

buyer

⌘

�
⇣

min ⇡shortage
buyer +min ⇡oversupply

buyer

⌘

where,

(2.6)max ⇡shortage
buyer =

(Ds � a c� a ce)
2

4 a

(2.7)max ⇡oversupply
buyer =

(Do � a c+ a ci)
2

4 a

The buyer’s kindness sensitivity, �, describes the extent to which the buyer per-

ceives kindness with the seller’s shortage wholesale price, ws.

2.3.4 Buyer’s utility

[18] modeled a buyer’s interest in fairness compared to the outside option in a

form of the utility function. In our model, the buyer considers her profit as well as the

opponent’s profit over all periods in proportion to the kindness that she has perceived

in the seller. We model the buyer’s concern in the utility function. We modified [17]’s

model for our problem.

Definition 2.3.2 Buyer’s utility Once the buyer perceives the seller’s kindness. She

considers her utility as incorporating both her own profit and the seller’s profit over

all periods. But for her opponent, she takes his overall profit into account weighted

by the kindness perceived by the buyer. The utility function is defined as below,

u(ws, qs, wo, qo) = ⇡shortage
buyer (ws, qs) + ⇡oversupply

buyer (wo, qo)

+ ✓(ws)
⇣

⇡shortage
seller (ws, qs) + ⇡oversupply

seller (wo, qo)
⌘

2.3.5 Seller’s objective

The seller’s objective function is to maximize his profit over two periods. The seller

chooses his wholesale price expecting the buyer’s choice to maximize his profit. Once
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the wholesale price is chosen, the buyer chooses the order quantity in the shortage

and decides both the wholesale price and the quantity in the oversupply.

max
w

s

⇣

⇡shortage
seller (ws, qs) + ⇡oversupply

seller (wo, qo)
⌘

2.4 Analysis

In this section, we first provide results for participants’ optimal decisions. We

then explore the impact of parameters on the discussion. The analysis proceeds

backward starting from the second period. We analyze the buyer’s decisions in the

oversupply period. They are the wholesale price and the order quantity decision for

the oversupply period. Based on the optimal outcome, the buyer makes a decision on

order quantity in the shortage period. While the buyer maximizes the utility function

defined in the definition 2.3.2, the seller maximizes his overall profit by choosing the

optimal wholesale price in the shortage period. First, participants’ optimal decisions

are investigated. Then we analyze the kindness function defined in the definition 2.3.1.

In the next chapter, We compare the supply chain with the presence of reciprocity to

that without the presence of reciprocity as benchmark.

2.4.1 Buyer’s choices in the oversupply period

The buyer has perceived the seller’s kindness expressed by the wholesale price ws.

To convey his kindness, the seller o↵ers a lower wholesale price with the expectation

of a certain amount of the order quantity. Given ws in the first period, and perceived

kindness ✓(ws) in the first period, the buyer chooses qo to maximize her utility as

defined in definition 2.3.2.

⇡shortage
buyer (ws, qs) + ⇡oversupply

buyer (wo, qo) + ✓(ws)
⇣

⇡shortage
seller (ws, qs) + ⇡oversupply

seller (wo, qo)
⌘

(2.8)

The utility function is concave in qo. Note that we only consider the case of qo  k.

When qo > k, the seller does not have any problem due to oversupply, and has no
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motivation to express his kindness, because the capacity is already fully utilized in

the second period. By investigating the first order condition of equation (2.8),

(2.9)
@u(ws, qs, wo, qo)

@qo
=

Do � 2qo � awo

a
+ ✓(ws) (wo � c+ ci)

(2.10)q⇤o(ws, wo) =
Do � awo + a✓(ws) (wo � c+ ci)

2

The seller’s marginal profit is assumed to be always positive, i.e., wo � c+ ci � 0. In

equation (2.10), we show that kindness positively impacts the buyer’s order quantity.

Proposition 2.4.1 (Buyer’s reciprocal order quantity) Under the assumption that

wo � c+ ci � 0, the following properties hold,

1. if ✓(ws) = 0, the buyer becomes selfish. She pursues her own profit by ordering

as much as she needs optimally, i.e., q⇤o = q⇤o,no reciprocity

2. if ✓(ws) > 0, the buyer becomes kind. She tends to share the profit by ordering

more than she needs optimally, i.e., q⇤o > q⇤o,no reciprocity

3. if ✓(ws) < 0, the buyer becomes spiteful. She hurts the seller’s profit by ordering

less than she needs optimally, i.e., q⇤o < q⇤o,no reciprocity

Note that q⇤o,no reciprocity =
Do � awo

2
is the optimal order quantity in the oversupply

period without the presence of reciprocity.

In the oversupply period, the bargaining power is possessed by the buyer. The

buyer chooses the wholesale price, wo. The utility function, u(ws, qs, wo, qo), is linear

in wo. We investigate the first order condition.

(2.11)
@u(ws, qs, wo, qo)

@wo
= qo(✓(ws)� 1)

The quantity has to be always greater than 0, qo > 0, to run the business. Hence the

wholesale price decision relies on the slope of the utility function a↵ected by kindness

✓(ws). When kindness is more than 1, the buyer’s utility function is increasing in
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the wholesale price, wo. Therefore, the buyer wants to pay as much as she can.

the If kindness is 1, the buyer’s utility function is constant or she is indi↵erent in

the wholesale price of the oversupply period. When kindness is less than 1, the

buyer’s utility function is decreasing in the wholesale price of the oversupply period.

Thus, she will pay the minimum possible wholesale price. The wholesale price of the

oversupply period is to be bounded by the unit production cost and the market price,

c  wo 
Do � qo

a
.

Proposition 2.4.2 (Buyer’s reciprocal wholesale price) With the condition qo > 0,

1. if ✓(ws) = 1, the buyer is indi↵erent with the wholesale price wo. She chooses

wo 2


c,
Do � qo

a

�

.

2. if ✓(ws) > 1, the buyer takes care of the seller’s profit actively. She chooses

wo =
Do � qo

a
.

3. if 0 < ✓(ws) < 1, the buyer takes care of the seller’s profit passively by ordering

more than the order quantity that she can maximize her profit at the wholesale

price wo = c.

4. if ✓(ws)  0 the buyer takes revenge by ordering less quantity than she needs

and chooses wo = c.

By proposition 2.4.1 and 2.4.2, when kindness ✓(ws) = 1, q⇤o =
Do � a c+ a ci

2

(2.12)w⇤
o =

8

>

>

>

>

>

<

>

>

>

>

>

:

Do � qo
a

if ✓(ws) > 1
⇢

x|x 2


c,max

⇢

c,
Do + a c� a ci

a

���

if ✓(ws) = 1

c if ✓(ws) < 1

In equation (2.12), when ✓(ws) > 1, w⇤
o =

Do � qo
a

. We plug w⇤
o in u(ws, qs, wo, qo)

and find the first order condition. We obtain the optimal q⇤o =
Do � ac+ aci

2
. For

✓(ws) < 1, w⇤
o = c. Hence, q⇤ =

Do � ac+ aci✓(ws)

2
. When ✓(ws) = 1, the buyer is
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indi↵erent to wo 2


c,max

⇢

c,
Do + a c� a ci

a

��

in terms of buyer’s utility. If utility

is the same in that range, the buyer will pursue her maximum profit. Thus, w⇤
o = c

when ✓(ws) = 1.

Theorem 2.4.1 (Buyer’s optimal order quantity in the oversupply) Under propo-

sition 2.4.1 and 2.4.2, if kindness ✓(ws) < 1, the buyer’s optimal order quantity is

proportional to perceived kindness ✓(ws). If kindness ✓(ws) � 1, the buyer’s optimal

order quantity is fixed. Because the seller cannot expect more order quantity to utilize

his facility by doing a kindness more than 1, the seller does not have incentive to

doing kindness more than 1, ✓(ws) > 1.

(2.13 )q⇤o =

8

>

<

>

:

Do � ac+ aci
2

if ✓(ws) � 1

Do � ac+ aci✓(ws)

2
if ✓(ws) < 1

When there is positive kindness, the buyer tends to order proportionally more to

received kindness, and it is more than
Do � ac

2
. She would return the kind behavior

received in the shortage period. By theorem 2.4.1, the seller does not need to send

a signal of kindness more than 1. Excessive kindness only hurts seller’s financial

performance in the shortage period but cannot bring extra benefit in the oversupply

period. In the next section, we will investigate optimal decision in the first period.

2.4.2 Buyer’s order quantity choice in the shortage period

As we study the sequence described in Figure 3.3, we look at buyer’s decision,

i.e, which the order quantity in the first period. The buyer’s concern is her utility,

u(ws, qs, wo, qo), is concave in qs. To maximize utility, we investigate the first order

condition.

(2.14)
@u(ws, qs, wo, qo)

@qs
=

(Ds � 2qs � aws)

a
� ✓(ws) (c+ ce � ws)

The marginal profit for the seller is ws � c � ce and is assumed to be negative

because delivering more LCD panels than the allocated capacity requires the seller
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to sacrifice his profit. Because the buyer orders in accordance with her perception

about kindness, the buyer orders less with the positive perception of kindness and

the buyer orders more with negative perception of kindness.

Theorem 2.4.2 (Buyer’s optimal order quantity in the shortage) The buyer’s order

quantity in the shortage period depends on kindness. If the buyer perceives that the

seller is kind, she will order less to save the seller’s capacity excess cost. If the buyer

perceives that the seller is spiteful, i.e. not kind, she will order more to hurt the seller

(i.e. force excess capacity cost to be incurred).

(2.15 )q⇤s =
Ds � aws + a✓(ws)(ws � c� ce)

2

2.4.3 Seller’s wholesale price choice and kindness

In this section, we analyze perceived kindness. We dissect the kindness function

to demonstrate how the wholesale price, ws, impacts on the kindness perception.

(2.16)
@✓(ws)

@ws
= �

�
�

D
s

2 � aw
s

2

�

(D
o

�a c+a c
i

)2

4 a + (D
s

�a c�a c
e

)2

4 a

 0

The kindness sensitivity � describes the buyer’s propensity to kindness. When the

buyer has several good outside options, � is low or she is not sensitive to kindness.

On the other hand, if the buyer has limited outside options or he relies on the seller,

� is high or she is sensitive to kindness.

Theorem 2.4.1 implies that the kindness is bounded from above. The upper bound

of the perceived kindness is ✓(ws) = 1. The seller is certainly able to show more

kindness than 1, but, as we discussed, it hurts the seller’s performance. The seller

also wants the buyer not to be spiteful, and hence the lower bound of kindness is

0, ✓(ws) = 0. Equation (2.16) proves that the kindness function is monotonously

decreasing in ws. Therefore we define the upper and the lower bound of the wholesale

price of the shortage period, ws. The lower bound wlb
s satisfies ✓(wlb

s ) = 1. The upper
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bound wub
s results in ✓(wub

s ) = 0 due to monotonous nonincreasing property in ws.

Solution of ✓(wlb
s ) = 1 is,

(2.17)wlb
s =

Ds

a
�
p

(4 + �) (Ds � a c� a ce)2 + 4 (Do � a c+ a ci)2

2
p
� a

Likewise, we find the root of ✓(wub
s ) = 0. That is,

(2.18)wub
s =

Ds + a c+ a ce
2 a

Theorem 2.4.3 (Wholesale price and kindness) O↵ering a lower wholesale price in

the shortage period gives the buyer the perception of more kindness. The wholesale

price is bounded by equation (2.17) and (2.18)

(2.19 )wlb
s  w⇤

s  wub
s

Theorem 2.4.3 narrows extent of the seller’s wholesale price choice. Under the

business setting of the LCD industry, the seller is better o↵ expecting the buyer to

act with good will. In other words, the seller does not want the buyer to be upset at

the pricing in the shortage period. Theorem 2.4.3 implies that extremely low price

or high price are not feasible for the buyer (by the seller during the shortage period).

In the following section, the optimal choice of the wholesale price ws is discussed.

2.4.4 Seller’s wholesale price choice in the shortage period

As a first mover, the seller does not make decision with unconditional kindness.

Rather than kindness, the seller wants to maximize his profit by taking the buyer’s

reciprocity into account when he chooses the wholesale price. In other words, the seller

uses a calculated kindness perspective. This setting is reasonable because the seller

only has an expectation about the buyer’s reaction. There is a paper which showed

that both the seller and the buyer have concerns about fairness (or kindness) the

channel cannot be coordinated ( [18]). They showed that when the buyer concerns

fairness the channel is always coordinated. We take their idea in our model. The

overall profit is not concave in the wholesale price, ws, in general. However, since the
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seller’s profit function, ⇡seller
s (ws) + ⇡seller

o (ws), is a quartic function in ws, its second

derivative function is a quadratic function in ws. Therefore, in order to confirm

concavity in the bounded range of ws, both
@2⇡seller

@w2
s

(wub
s ) and

@2⇡seller

@w2
s

(wlb
s ) should

be negative.

(2.20)

@2⇡seller

@w2
s

�

wub
s

�

=
@2⇡seller

@w2
s

✓

Ds + a c+ a ce
2 a

◆

= �a
(4 + 3 �) (Ds � a c� a ce)

2 + 4 (Do � a c+ a ci)
2

4 (Ds � a c� a ce)
2 + 4 (Do � a c+ a ci)

2

 0

However,
@2⇡seller

@w2
s

(wlb
s ) needs conditions on parameters.

(2.21)
@2⇡seller

@w2
s

�

wlb
s

�

=
(20 + 9 �) (Ds � a c� a ce)

2 + 20 (Do � a c+ a ci)
2

4 (Ds � a c� a ce)
2 + 4 (Do � a c+ a ci)

2

�
12

p
�
p

(4 + �) (Ds � a c� a ce)2 + 4 (Do � a c+ a ci)2 (Ds � a c� a ce)

4 (Ds � a c� a ce)
2 + 4 (Do � a c+ a ci)

2

=

�

(4� 3 �) (Ds � a c� a ce)
2 + 4 (Do � a c+ a ci)

2 �(100 + 21 �) (Ds � a c� a ce)
2 

4 (Ds � a c� a ce)
2 + 4 (Do � a c+ a ci)

2

+

�

(4� 3 �) (Ds � a c� a ce)
2 + 4 (Do � a c+ a ci)

2 �100 (Do � a c+ a ci)
2 

4 (Ds � a c� a ce)
2 + 4 (Do � a c+ a ci)

2

In order for equation (2.21) to be negative,

(2.22)
4

3

 

(Do � a c+ a ci)
2

(Ds � a c� a ce)
2 + 1

!

 �

As long as equation (2.22) holds, the seller’s profit function is concave in the

bounded range of ws as shown in equation 2.19.

Assuming concavity, by the first order condition and the feasible interval of ws,

the seller’s optimal choice of the wholesale price is,

wFOC
s

=
Ds + a c+ a ce

2 a

�
1
2

1/3

8

 

2
�

4 (Do � a c+ a ci)
2 + (3 � + 4) (Ds � a c� a ce)

2 � 4 � a2 ci2
�3

27 �3

!1/6

⇣
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p
3 sin↵

⌘

(2.23)
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Because the seller’s overall profit function is a quartic equation, even though the

function is not guaranteed to be concave, we can derive the optimal decision in the

interval of the wholesale price, ws using the shape of the profit function curve. By

bounds of ws, the seller’s optimal choice on the wholesale price in the shortage period

is,
(2.24)w⇤

s = max
�

wlb
s , w

FOC
s

 

We will discuss the seller’s decision in detail in later this section with buyer’s kindness

sensitivity.

We now investigate the impact of buyer’s kindness sensitivity on the seller’s deci-

sion. First if we take derivative of wFOC
s with respect to �,

(2.25)
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Figure 2.2. Optimal whole price and kindness sensitivity

Therefore, wFOC
s is decreasing in �. So, if the buyer is sensitive to the seller’s kindness,

the seller is better o↵ by o↵ering a lower wholesale price than usual.

If we di↵erentiate wlb
s with respect to �, its derivative is always positive. Therefore,

wlb
s is increasing in �. Thus, the wholesale price choice is as described in Figure 2.2.

Regardless of the extent of the buyer’s kindness sensitivity, the seller tends to lower

the wholesale price when the overall channel profit is larger.

Theorem 2.4.4 (Seller’s optimal wholesale price in shortage) if � � �, the optimal

wholesale price, w⇤
s , is nonincreasing in �. Otherwise, w⇤

s is nondecreasing in �.

Theorem 2.4.4 implies that the seller tends to sacrifice his profit when the buyer

is insensitive to the kindness. When the buyer is easily moved because she is too

sensitive to the kindness, the seller would take advantage of the buyer’s reciprocity.

The wholesale price is the minimum when the seller has the kindness sensitivity at

the threshold level �. Recall that the perceived kindness is 1 when the seller chooses
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the lower bound of ws. Therefore, if the buyer’s kindness sensitivity is more than

the threshold �, the kindness is always 1. Another important implication of theorem

2.4.4 is that if the buyer is more sensitive to the kindness or more grateful for the

seller’s good will, this attitude of the buyer induces the seller to o↵er more kindness.

2.5 Benchmark

We now present a benchmark for the supply chain e�ciency without the presence

of reciprocity. When the buyer makes reciprocal decisions to kindness, the seller has

the incentive to behave kindly. Reciprocity leads the seller to o↵er lower wholesale

price than his selfish decision. We will check the channel e�ciency for each period in

following sections.

2.5.1 Shortage period

Figure 2.3. Channel profit in shortage
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When the seller chooses the wholesale price, he has the feasible range, wlb
s  ws 

wub
s . The lower bound induces kindness of 1 and the upper bound results in no kind-

ness. Let’s confirm how kindness and reciprocity impact the channel coordination.

We check the channel profit in the shortage period. Let’s define,

(2.26)⇡channel
s (ws, qs) = ⇡seller

s (ws, qs) + ⇡buyer
s (ws, qs)

(2.27)⇡channel
s (wlb

s , q
⇤
s) =

(Ds � a c� a ce)
2 + 4 k a ce

4 a

The channel coordination order quantity is qchs =
Ds � a c� a ce

2

(2.28)⇡seller
s (ws, q

ch
s ) + pibuyers (ws, q

ch
s ) =

(Ds � a c� a ce)
2 + 4 k a ce

4 a

wlb
s results in the fully coordinated channel profit.

Without the presence of kindness and reciprocity, in other words, when the seller and

the buyer behave selfishly, the channel profit is

(2.29)
⇡channel
s (wub

s ) = ⇡channel,no reciprocity
s

=
3 (Ds � a c� a ce)

2 + 16 k a ce
16 a

� 0

If we compare equation 2.27 and 2.29, ⇡channel
s (wlb

s ) � ⇡channel
s (wub

s )

Now we show that
@⇡s

channel

@ws
(ws) is monotonously nonincreasing in ws.

(2.30)
@⇡channel

s

@ws
(wlb

s ) = 0

@⇡channel
s

@ws
(wub

s ) = �
(Ds � a c� a ce)

�

� (Ds � a c� a ce)
2�

8 (Ds � a c� a ce)
2 + 8 (Do � a c+ a ci)

2

�
(Ds � a c� a ce)

�

2 (Ds � a c� a ce)
2 + 2 (Do � a c+ a ci)

2�

8 (Ds � a c� a ce)
2 + 8 (Do � a c+ a ci)

2  0

(2.31)

@⇡channel
s

@ws
(ws) is a quintic equation in ws. By comparing roots of

@⇡channel
s

@ws
(ws), wlb

s

is one of maximum points and wub
s is less than the closest neighboring root on the right
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hand side. Therefore,
@⇡channel

s

@ws
(ws) is always negative in the interval, wlb

s  ws  wub
s .

⇡channel
s (ws)is monotonously nonincreasing in ws when wlb

s  ws  wub
s . By equation

2.27, 2.29 and monotonously nonincreasing property of ⇡channel
s (ws), we conclude that

the supply chain is always better o↵ with presence of kindness and reciprocity.

Figure 2.4. Channel profit in shortage

Theorem 2.5.1 (channel e�ciency by kindness sensitivity in the shortage period)

In the range of 0  �  �⇤, where ✓(�⇤) = 1, the channel profit is monotonously

nondecreasing. With �⇤, channel is fully coordinated.
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Proof

(2.32)
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2 �3Ds
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512 a
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o
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i
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4 a + (a c�D
s

+a c
e

)2

4 a

⌘2
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and the first order condition of ⇡channel
s (�) is the root of ✓(�) = 1.

Figure 2.4 explains that perceived kindness sensitivity, i.e, a higher �, helps chan-

nel coordination. When the seller’s wholesale price, ws, is fixed, a larger kindness

sensitivity, i.e., higher �, results in higher kindness. This higher kindness leads the

buyer to consider seller’s profit to a greater extent, i.e., the higher � increase chan-

nel coordination. However, Theorem 2.5.1 points that too much kindness sensitivity

makes decreasing channel profit. Thus if �̂ is very large and ✓(�̂)|w
s

> 1, then the

channel profit begins to decrease. (Figure 2.3) Thus, more kindness sensitivity up to

some point is better o↵ for the channel. But with too much kindness sensitivity the

channel is worse o↵.

2.5.2 Oversupply period

We check the channel e�ciency in the oversupply period in the feasible interval

of ws.

(2.33)⇡channel
o (wlb

o ) =
(Do � a c+ a ci)

2 � 4 a ci k

4 a

Channel coordination order quantity is qcho =
Do � a c+ a ci

2

(2.34)⇡o
seller(wo, q

ch)o + ⇡o
buyer(wo, q

ch
o ) =

(Do � a c+ a ci)
2 � 4 a ci k

4 a

wlb
s results in the fully coordinated channel profit again.

When there is no kindness and reciprocity,

(2.35)⇡channel
o (wub

s ) =
(Do � a c+ a ci)

2 � a2 c2i � 4 a ci k

4a
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Figure 2.5. Channel profit in oversupply

Since the buyer has the bargaining power in the oversupply period, without the

presence of reciprocity, the buyer chooses the order quantity, qno reciprocityo =
Do � a c

2
.

Considering the capacity idling cost, the supply chain is not coordinated.

⇡seller
o (wo, q

no reciprocity
o ) + ⇡buyer

o (wo, q
no reciprocity
o ) =

(Do � a c+ a ci)
2 � a2 c2i � 4 a ci k

4a
(2.36)

It turns out to be the equation (2.35) and (2.36) are the same.

By equation (2.33) and (2.35), ⇡channel
o (wlb

s ) � ⇡channel
o (wub

s ). Now we show that
@⇡channel

o

@ws
(ws) is monotonously decreasing in ws.

(2.37)
@⇡channel

o

@ws
(wlb

s ) = 0

@⇡channel
o

@ws
(ws) is a cubic equation in ws. By comparing roots of

@⇡channel
o

@ws
(ws), wlb

s

is one of maximum points and wub
s is less than the closest neighboring roots on the

right hand side,
Ds

a
. Therefore,

@⇡channel
o

@ws
(ws) is always negative in the interval, wlb

s 
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ws  wub
s . ⇡channel

o (ws)is monotonously nonincreasing in ws when wlb
s  ws  wub

s . By

monotonously nonincreasing property of ⇡o
channel(ws), we conclude that the presence

of kindness and reciprocity is better o↵ to no-reciprocity case.
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Figure 2.6. Channel profit in oversupply

Theorem 2.5.2 (Channel e�ciency by kindness sensitivity in the oversupply period)

In the range of 0  �  �⇤, the channel profit is monotonously nondecreasing where

✓(�⇤) = 1. With a knowledge of �⇤, the channel is fully coordinated.

Proof

@2⇡channel
o

@�2
(�)

= �
ci2
�

3Ds
2 + 2Ds a c+ 2Ds a ce � 8Ds aws � a2 c2 � 2 a2 c ce � a2 ce2 + 4 a2 ws

2
�2

512 a
⇣

(D
o

�a c+a c
i

)2

4 a + (a c�D
s

+a c
e

)2

4 a

⌘2

< 0
(2.38)

and the first order condition of ⇡channel
o (�) is the root of ✓(�) = 1.
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In the oversupply period, again, more kindness coordinates the channel more e�-

ciently. Figure 2.6 shows kindness perceived in the previous period leads to the more

coordinated channel in the second (oversupply) period. There is a unique � that

maximizes the channel profit and that achieves the full channel coordination. At the

same ws, higher kindness sensitivity � derives higher kindness. By concavity of the

channel profit function, more kindness sensitivity up to some point is better for the

channel. But with too much kindness sensitivity the channel is worse o↵.

2.6 Optimal Capacity Allocation

We have confirmed the impact of kindness and reciprocity on the supply chain.

We will now investigate the impact of the capacity allocation when the seller knows

the buyer’s kindness sensitivity in advance. The seller’s interest is his total profit over

two periods, ⇡seller
s (k) + ⇡seller

o (k). By di↵erentiating in the capacity, k,

(2.39)
@(⇡seller

s (k) + ⇡seller
o (k))

@k
= ce � ci

If ce > ci, seller’s total profit is nondecreasing in k, and choosing the upper bound

of k is optimal. (k⇤ = q⇤s = D
s

�aw
s

+a ✓(w
s

) (w
s

�c�c
e

)
2 ) When ce < ci, seller’s total

profit is nonincreasing in k, and choosing the lower bound of k, is the optimal when

k⇤ = q⇤o = D
o

�a c+a c
i

✓(w
s

)
2 . If ce = ci, the seller is indi↵erent between capacities in

n

D
o

�a c+a c
i

✓(w
s

)
2 , Ds

�aw
s

+a ✓(w
s

) (w
s

�c�c
e

)
2

o

. This result implies that when the cost of

the capacity excess is higher than the cost of idle capacity, the seller is better o↵

preparing capacity as much as he will deliver in the shortage period. Since we as-

sume (ws � c� ce) < 0, capacity decreases in the kindness sensitivity �. This means

that when the buyer is more sensitive to kindness (or wholesale price, ws), the buyer

is more willing to bear the capacity excess cost. If being idle is more hurtful than

being having excess capacity, the seller is better o↵ allocating the capacity as much

as he will deliver in the oversupply period. In this case, k increases in the kindness

sensitivity �. It implies that as the buyer is more sensitive to the kindness, the seller

is more willing to bear the idle capacity cost. In the case that the capacity excess
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cost and the capacity idle cost are the same, the seller can choose any capacity,

k⇤ 2
n

D
o

�a c+a c
i

✓(w
s

)
2 , Ds

�aw
s

+a ✓(w
s

) (w
s

�c�c
e

)
2

o

.

While the seller must take care of capacity allocation, the buyer’s total profit is

indi↵erent to the capacity allocation.
@(⇡buyer

s (k) + ⇡buyer
o (k))

@k
= 0.

2.7 Industry Examples

2.7.1 Other Example

Reciprocal decisions are not restricted to the specific industry such as LCD. Re-

ciprocal decisions are widely made in Business-to-Business (B2B) practices. Figure

2.7 provided by a metal fabrication company that supplies parts for oil refineries and

chemical plants. Customers of the company are grouped into two categories, i.e. long

term customers and short term customers. For long term customers, there are ur-

gent orders and routine orders while there are only urgent orders for non-preferred

customers. The signal of kindness is conveyed to long term buyers by charging lower

price for the urgent orders. While the conventional intuition tells us that the urgent

order is expensive due to additional cost such as rescheduling and delay costs, a lower

price for the urgent order can induce customers’ reciprocal behavior through having

routine orders. Customers’ reciprocal decisions are represented by increased routine

orders in both hourly volume and the number. Figure 2.7 shows long term customers’

reciprocal decisions in response to lower prices for urgent orders.

There are examples in other industry. The first case is the trade between steel

mills and steel wholesalers. In the accordance with the assumption that the seller

and the buyer are leading players in the industry and that they have alternating

bargaining powers according to the demand cycle, we explore data from only firms

whose sales volume class is top in the steel industry. We study data from 2009 to

2014. The number of firms that fall in the top range of sales volume di↵ers each
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year. Average annual revenues of steel mills in each year are compared to the average

annual cost of sales of the steel wholesalers in the Figure 2.8.
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Figure 2.8. Example of reciprocity in the steel mill industry

We can find that when steel mills face low demand, the cost of sales of wholesalers

is relatively high. This implies that wholesalers bear a higher cost of sales for the

steel mills. On the other hand, when steel mills enjoy a good season, the wholesaler

could lower the cost of sales thanks to the steel mills’ kindness. There may be other

reasons for this observation. However, alternating peaks of revenue and cost of sales

gives us indirect evidence of the existence of reciprocity in practice. There is similar

behavior in the oil extraction and refinery industry. We study data from 2009 to

2014. Average annual revenues of oil-gas extraction firms are compared to annual

cost of sales of refineries in Figure 2.9. Similar alternating peaks of revenue and cost

of sales are discovered and the existence of reciprocity in their trade can be observed.
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Figure 2.9. Example of reciprocity in the oil extraction industry

2.8 Managerial Insights

The goal of his section is to illustrate managerially implications that are sug-

gested by the model. First, the supply channel is coordinated without the costly

contracts. In specific condition, i.e., when kindness is 1, the supply channel is fully

coordinated. This implies that the performance of the supply channel can be im-

proved when participants have trust each other and their decisions are reciprocal.

The second implications is that the participants financial performance is improved

with trust and the presence of reciprocity. Considering the opponent’s reciprocal de-

cision, the seller can reduce operation costs such as capacity excess cost and idling

cost. Lastly, supply channel participants need to understand kindness sensitivity.

The second mover’s sensitivity a↵ects seller’s decision. When the sensitivity is at a

reasonable level, the seller will o↵er a good price. But either being too sensitive or

too insensitive to kindness induces the seller o↵er a higher price. This implies that

the buyer needs to consider fairness in the relationship for her own benefit.
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2.9 Conclusion

With the presence of reciprocity, the long term transaction is a di↵erent story

from the case without the presence of reciprocity. The alternating possession of the

bargaining power greatly amplifies the impact of reciprocity. A spiteful decision in

the current period induces revenge in the future. On the other hand, a kind decision

may lead the opponent to repay kindness.

In our research, we model the kindness function and the reciprocal utility func-

tion. In the dyadic supply chain over two periods, the seller makes a decision of

wholesale price with the bargaining power in the shortage period. Next period when

the oversupply hurts the buyer’s utilization, the buyer repays or revenges according

to her perception on the seller. Decisions of two periods are connected by kindness

of the seller. First, we analyzed participants’ optimal decisions. If the seller o↵ers

lower wholesale price than expected, the buyer would order less in the shortage to

save the seller’s capacity excess cost. Furthermore she would order more than she

needs for maximizing the profit in the oversupply period. Consequently, the seller

may reduce the capacity idling cost. Interestingly, the buyer repays his indebtedness

by ordering more quantity instead of paying a higher unit wholesale price. Only if

the seller’s kindness is more than a certain level (in this analysis, ✓(ws) = 1), the

buyer increases the wholesale price slightly. Second, we investigated the impact of

the buyer’s kindness sensitivity. Being more sensitive to kindness implies that she

has su�cient reason to leave the table. She may have good outside options such as

a reliable supplier who suggests a better price. The seller’s lower wholesale price in

the shortage period impresses the buyer. We found that if the buyer is more sensitive

to kindness, the seller is better o↵ when he o↵ers a lower wholesale price. Lastly,

the impact of the presence of kindness and reciprocity was analyzed. The presence

of kindness and reciprocity coordinates the channel in both the shortage period and

the oversupply period. Especially when the seller o↵ers kindness of 1, the channel is
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fully coordinated in both periods. Even without implementing costly contracts, the

presence of kindness and reciprocity relaxes or even solves the double marginalization

problem.

Our work has contribution to the literature in three ways. First, we modeled and

analyzed the supply chain presence of kindness and reciprocity. To our best knowl-

edge, the current literature is about relational contract in a single period and trust

regarding information asymmetry, specifically forecasting information. Our work is

di↵erent because we model the tractable reciprocal game. Second, we consider capac-

ity of the seller. Capacity is an important constraint in the technology industry such

as LCD, semiconductor, and smartphones. Third, our model considers two periods.

More specifically, we incorporate the notable characteristics of technology industry,

which is the alternating possession of bargaining power caused by the cyclical de-

mand. Lastly, kindness is determined endogenously. Our model does not require

outside options or intention of the counterpart. Outside option and the intention is

also hard to model and estimate.

There are further details that can be included when the randomness of cycle

duration is taken into account, we believe the impact of the presence of kindness

and reciprocity will be more significant. Our model considers two periods. Due to

tractability of the analytical model, the model is simplified into a two period game.

A multiple period game analysis would provide for further rich managerial insight.

We leave these extensions for future research.
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3. OPTIMAL CAPACITY DEPLOYMENT BETWEEN

LONG-TERM AND SHORT-TERM CUSTOMERS

3.1 Introduction

In business-to-business markets, capacity utilization is an important concern. [22]

When it comes to making operational decisions, the under-utilization of expensive

facilities and the cost of lost sales are frequent problems for companies. In other

words, a company wants to be assured that the optimal profitable use of its capac-

ity. [22] presented approaches for the company’s assurance for profitable capacity

usage. Among their approaches, we focus on establishing and maintaining long-term

relationships [23].

Long-term relationships have been recognized as a strategic factor in buyer-seller

relationships ( [24] and [25]). A long-term customer is profitable because usually he

occupies the sellers production capacity consistently, and thus reduces market un-

certainty. The customer also benefits by securing a source of supply at a negotiated

price which is usually lower than a spot market price. There are multiple strategies

that firms can choose to strengthen a relationship such as price contracts and trust

based delivery guarantees.

While long-term relationships reduce the uncertainty in capacity utilization, the

expected profit may not be substantial. Orders from buyers with short-term rela-

tionships, or the spot market, generates higher margins [26]. One can find similar

problems in the health care area. While routine patients occupy the service capac-

ity, there is serious uncertainty in the random arrival of new patients. As a service

provider, a hospital does not want to lose their new patient revenue stream. Thus,
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trade-o↵ between long-term and short-term customers has been an interesting ques-

tion in any industries with a serious concern regarding capacity utilization, in both

capital-intensive industries such as the steel, semiconductors, chemicals, and oil in-

dustry and service industries like the health-care and hospitality industries.

In this paper, we will use data from a metal fabrication company to motivate our

model. The company produces metal fabrication parts for oil refineries and chemical

plants. They have routine orders for replacement parts from long-term customers

and urgent orders from both long-term and short-term customers. The benefit of

routine orders is that they use capacity consistently, thereby reducing uncertainty.

The other benefit is that the production e�ciency is improved by the load from rou-

tine orders. The benefit of handling urgent orders from routine customers at lower

margins is that such customers then increase routine orders when they perceive the

company treats them well. We will discuss these points in detail later. Urgent orders

from non-routine customers are the most profitable but they are random and can be

considered as short work.

Our goal in this research is to establish the optimal portfolio of orders and as-

sociated pricing to maximize the long-term profit. We also want to understand the

impact that additional urgent orders from non-routine customers have on cost consid-

ering the given shop load. We first provide analysis of acquired data and use the data

insights to build a model. Based on our observations from the model, we identify the

underlying managerial insight into their business

In the next section, we provide a review of the relevant literature. Section 3

describes our observations from the data. Section 4 presents the analytic model to

provide a managerial insight. Section 5 discusses the exact decision model based on

the mixed integer program. Finally in section 6, we conclude and provide an extension.
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3.2 Literature

Our research fits into the research streams that consider multiple customer classes,

long-term relationships, and job shop capacity planning. Extensive studies have been

performed on multiple customer classes. [27] characterized the optimal policies when

the firm has two demand classes. They considered deterministic demand (or long-

term contracts) and stochastic demand (or urgent orders). Based on their analytical

results, they developed a heuristic approaches to run the system. [28] developed an

optimal di↵erentiation strategy for pricing, lead time, and delivery reliability to max-

imize the profit of a firm selling express and regular products under a fixed capacity.

They emphasized the importance of understanding the demand characteristics regard-

ing price, lead time, and reliability. [29] studied the inventory policy of two demand

classes with Poisson arrivals and backorder. They showed that the cost can be ex-

plained in a single relevant dimension, and then presented the optimal levels in charts

and lookup tables for easy implementation. [30] considered a make-to-stock queue for

multi-class customers with di↵erent cost structures. They presented an e�cient al-

gorithm for calculating optimal decisions. [31] considered inventory models, where, a

supplier o↵ers di↵erent lead times to its customers. The orders of those customers

who are patient can be postponed to the next period, while the orders of who are

impatient must be fulfilled during the current period. They characterized the opti-

mal policy and described the benefits and downsides of o↵ering an alternative lead

time. [32] looked at the case of a single-period assemble-to-order production of two

products to satisfy two di↵erent customers. In addition, one customer can confirm her

order prior to the others and the manufacturer must fulfill her order. They proposed

the optimal policy for the inventory and the production.

In the supply chain literature, long-term contracts have been considered as a strat-

egy to deal with uncertainty. [22] surveyed the theories and practices for business-to-

business markets. They pointed out that long-term relationships are one of the more
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favored strategies. For one thing, a long-term relationship based on trust reduces

transaction costs. [33] and [34] considered a single product make-to-order business

targeting both a longterm contract and a spot market. They provided the manufac-

turers optimal decision for the long-term contract price and optimal production level.

[35] focused on congestion and complexity in the job shop. They assumed that

quality is a↵ected when expediting jobs. [36] considered the pricing policy given fa-

cility congestion. [37] worked on job shop capacity planning using mixed integer pro-

gramming and considered recourse strategies such as overtime and outsourcing.

To our best knowledge, there is no research has considered a customer class,

longterm relationships, and job-shop planning focusing on cost measures such as ef-

ficiency with the shop load that varies. We consider two types of customers, i.e.,

routine and non-routine customers and two types of orders, i.e., urgent and routine

orders. In addition, we take the shop load into account to consider the impact on

work e�ciency. We identify optimal customer order portfolios. In the next chapter,

we address the company description and empirical observations.

3.3 Description of the Company

We focus on data from a company that does metal fabrication for oil refineries and

chemical plants. There are two streams of orders, routine and urgent orders. Cus-

tomers doing periodic maintenance to keep their facility operation generate routine

orders. Usually, routine orders are sent to the supplier with a past relationship. How-

ever, since the market is competitive, the price is low and the margin is slim. Due to

unexpected events, such as facility failure, urgent orders are placed by either routine

customers or non-routine customers. In most cases, a certain level of the capacity of

the supplier is occupied by routine orders. thus it is common for the customer to find
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a non-routine supplier for emergency cases. Therefore, there are two types of urgent

orders, which are an urgent order from the routine customer and an urgent order

from the non-routine customer. To maximize its long-term profit, the metal fabri-

cation company wants to compose a portfolio of customer orders. They believe that

generous pricing for the urgent order from routine customer will generate a greater

volume of routine orders from those customers. Another concern is how to price the

urgent order from a non-routine customer. When the urgent order is received, they

have to postpone current routine orders to complete the urgent order. For pricing an

incoming urgent order, they want to estimate the cost of any additional congestion

influenced by the new urgent order.

Table 3.1 describes the statistics of orders. Urgent orders are more profitable

than routine orders from the company. Especially, urgent orders from non-routine

customers have profit margin of 73.1%. The margin of urgent orders from routine

customers is 43.5%. The di↵erence in margins confirms that the company’s strategic

pricing to treat routine customers well. Similar behavior is observed in routine orders

as well. Routine orders from customers who have an urgent order are not profitable,

while routine orders from customers who do not have urgent orders have profit margin

by 20.4%.

3.3.1 Emprical Observations

Figure 3.1 shows that the company charges a lower margin for a routine customer.

For example, customer A places a small quantity of routine orders and the company

charges a high margin for urgent orders. Customer B frequently places routine orders.

The company confirmed that they treat routine customers well so that the relation-

ship can be maintained on an ongoing basis (Table 3.1).
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Figure 3.1. Routine order demand and urgent order margin

Figure 3.2. Urgent order margin comparison
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Figure 3.2 shows that the margin of an urgent order from a routine customer is

lower than that of an urgent order from a non-routine customer. Urgent orders from

a routine customer are more likely to be less profitable, as shown in figure 3.2 .

(3.1)Pr(Act > Est|LoadRoutine > 30000) = 56.5%

(3.2)Pr(Act > Est|LoadRoutine  30000) = 77.4%

where Act and Est are actual hours spent for the order and estimated hours, respec-

tively.

We observed that the process e�ciency of urgent orders increases when the load from

routine orders is large. (Equation 3.1 and 3.2) The company representative confirmed

that when workers face a high volume of routine orders, their working speed increases.

In the operations literature, the learning e↵ect is a traditional topic and extensively

studied topic. [38] surveyed various learning models. We will use the exponential

model among their summarized models.

The data analysis and the company discussions confirmed that the pricing of ur-

gent orders from routine customers will a↵ect routine orders in the future, and urgent

orders from non-routine customer are more profitable. Also, there is significant e�-

ciency improvement when the shop is loaded by routine orders.

In the next section, we will build a model that accounts for the long-term rela-

tionship based pricing and the learning e↵ect to identify the optimal order portfolios.

3.4 Model

In this section, we first model the problem as a newsvendor model to choose ca-

pacity and price. When capacity is not flexible or there is di�culty to expand over

a short term period, a newsvendor model provides rich operational insight. In the

model, we consider overage cost, ce. which is incurred when orders are more than
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the predetermined capacity, as the cost of outsourcing, overtime of labors, and hiring

part time workers are strategies that the company deploy when they have an excess

of orders over capacity.

3.4.1 Nomenclature

K : Capacity. Decision variable.

c : Capacity maintenance cost.

ce : Overtime cost.

pl : Price of an urgent order from a routine customer. The supplier’s decision variable.

pr : Price of a routine order.

ph : Price of an urgent order from a non-routine customer.

Dl : Random demand for urgent orders from a routine customer.

Dh : Random demand for urgent orders from a non-routine customer.

The demand for routine orders fro longterm customers is deterministic and calcu-

lated as yr(pl) = ar � br pl, in other words, routine order volume increases as urgent

order prices decrease. The market price for the routine orders is fixed because we

assume that the market is competitive, thus if the supplier raise the price, customers

will leave. The demand for urgent orders from routine customers is random. As

described in previous chapters, urgent orders are generated by unexpected accidents.

Once the price is determined by agreement, any demand for urgent orders is purely

random and is not influenced by any other factors, i.e., an urgent order from a rou-

tine customer, Dl, is random and described as Dl ⇠ N(µl, �2
l ). On the other hand,

an urgent order from a non-routine customer is controlled by the supplier through

pricing. The inverse demand function for the urgent order from a non-routine cus-

tomer is, Dh(pl) = ah � bh ph + eh, where eh ⇠ N(0, �2
h). We define plan accuracy to
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be
Actual Hours of a job

Planned Hours of a job
. By the learning e↵ect, when the supplier processes the

routine orders of yr(pl), the e�ciency is defined to be s(yr(pl)) = as (ar � br pl)
b
s

3.4.2 The single period case

We consider a single period with two customers, one of whom is a routine cus-

tomer and the other a non-routine customer. The routine customer places urgent and

routine orders, Dl and Dr, respectively. The non-routine customer only places urgent

orders, Dh. An urgent order, Dh is random and the price ph is announced before Dh

is observed by the supplier. In other words, the seller is able to control the demand

of the urgent order from the non-routine customer by price ph. However, the routine

order demand Dr(pl) is determined by the routine customer’s perception about how

he is treated by the seller. This signal is transferred by the price announcement of pl.

When pl is meaningfully lower, the routine customer places more routine orders as

a return. However, the urgent order from the routine customer is not influenced by

price pl because the urgent order is for an emergency event such as a facility failure.

The supplier accepts all orders. We model the problem as a single period newsvendor

problem with a backorder for the routine customer. When capacity shortage occurs,

the supplier will work overtime or hire part time workers to expedite the work. This

generates linear cost ce and we assume ce � ph The profit function is,

(3.3)⇡(pl, K) = pr yr(pl) + pl Dl + ph Dh(ph)

� ce [(yr(pl) + (Dl +Dh(ph)) s(yr(pl)))�K]+ � cK

The first three terms are revenue generated by orders. The fourth term describes the

cost when the demand is greater than the given capacity, K.

We transform the expectation of equation (3.3) into the tractable model. We define

(yr(pl) + (Dl +Dh) s(yr(pl))) = (yr(pl) + (µl + µh) s(yr(pl))) + v
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where v ⇠ N(0, �2
h + �2

l )

K = (yr(pl) + (µl + yh(ph)) s(yr(pl))) + k

where k is a decision variable. We let fv(·) represent the probability density function

of v and Fv(·) the cumulative distribution function.

E [⇡(pl, ph, k)] = pr yr(pl) + pl µl + ph yh(ph)� ce (yr(pl) + (µl + yh(ph)) s(yr(pl)))

� ce

Z 1

k

(v � k) fv(v) dv � c (yr(pl) + (µl + yh(ph)) s(yr(pl)) + k)

(3.4)

In equation (3.3), the first three terms represent revenue. The fourth term represents

the expected cost of orders beyond capacity. The fifth term is the expected cost in-

curred by randomness. The last term stands for the production cost.

The optimal capacity choice by the newsvendor is,

(3.5)k⇤ = F�1

✓

c� ce
ce

◆

Optimal capacity means that it is a trade-o↵ between the capacity excess cost and

opportunity cost incurred by the capacity investment cost. When the supplier’s fa-

cility requires expensive investment, the supplier is better o↵ to prepare less capacity

because any idleness of the facility hurts the financial statement.

(3.6)
@2E [⇡(pl, ph, k)]

@p2l
= asb

2
r(�bs � 1)bsc(ah + µl � bhph)(ar � brpu)

�2�b
s

< 0

Therefore, expected profit function (3.4) is concave in pl.

(3.7)
@E [⇡(pl, ph, k)]

@pl
= µl � brpr � c(�br + asbrbs(ah + µl � bhph)(ar � brpu)

�1�b
s)

Thus, the maximum profit can be obtained by the price of the urgent order from the

routine customer, p⇤l .
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Proposition 3.4.1 The optimal price for the urgent order for the routine customer

is,

(3.8 )p⇤l =
ar
br

� 1

br

✓

brc+ µl � brpr
asbrbsc(ah + µl � bhph)

◆

1
�b

s

�1

Properties of p⇤l are;

1. p⇤l is non decreasing in µl.

2. p⇤l is non decreasing in ph.

The optimal price for the urgent order from the routine customer increases when the

supplier expects more urgent orders from the routine customer. By charging a higher

price for the urgent order from the routine customer, the supplier saves a room for

the urgent order and hopes to compensate the profit by losing the routine orders.

The optimal price is similar for ph. When the margin for the urgent order from the

non-routine customer is high, even though the demand is random, the supplier hopes

for potential profitability by preparing more room for urgent orders.

(3.9)
@2E [⇡(pl, ph, k)]

@p2h
= �2bh < 0

Therefore, the expected profit function (3.4) is concave in ph.

(3.10)
@E [⇡(pl, ph, k)]

@ph
= ah � 2bhph + asbhc(ar � brpu)

�b
s

Thus, the maximum profit can be obtained by the price of the urgent order from the

non-routine customer, p⇤h.

Proposition 3.4.2 The optimal price for the urgent order from the non-routine cus-

tomer is,

(3.11 )p⇤h =
ar
br

� 1

br

✓

(ar � brpu)�b
s(asbhc+ ah(ar � brpu)bs)

2 bh

◆
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announce pu, ph

observe dl, dh
choose x

deliver dl,dh, and yr(pl)� x
deliver urgent orders and yr(pl) + x

t = 1 t = 2

supplier

customers

Figure 3.3. Sequence of the event
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3.4.3 The two period case with a postponement option

Now we consider the two period case. The prices of all three types of order are

announced initially and fixed. In the first period, after urgent order demand is real-

ized (regardless of a customer type), the supplier has the option to postpone some of

tbe routine orders. Where the supplier may want the benefit of e�ciency with a high

volume of routine orders in the first period. Benefit from the supplier may want to

prioritize the revenue of urgent orders to routine orders and expect e�ciency in the

second period. In the second period, the supplier must finish all of the postponed

routine orders, and the routine orders and urgent orders in the second period. The

amount of postponed routine orders is denoted in the first period by x. When the

supplier makes the decision for the amount of postponement, the supplier knows the

volumes of both urgent orders, dl and dh. The postponement incurs a linear cost of

delay, cd. The profit function over two periods is,

(3.12)V (dl, dh, x) = pr(yr(pl)� x) + pl dl + ph dh � cK
� ce((dh + dl)s(yr(pl)� x) + yr(pl)� x�K)+ � cd x+ V2(x)

where the profit function of the second period is,

(3.13)
V2(x) = pr(yr(pl) + x) + pl µl + ph yh(ph)h� cK

� ce((µl+ yh(ph))s(yr(pl)+x)+ yr(pl))� ce

Z 1

K�v

(v+x�K) fv(v) dv

(3.14)
@2V (dl, dh, x)

@x2
= as(�1� bs)bsce(dl + dh)(ar � brpl � x)�2�b

s � cef(K � x)

< 0
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Therefore, V (dl, dh, x) is concave in x and there exists the unique optimal solution

x⇤.

@V1(dl, dh, x)

@x

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

�cd � ce(�1 + asbs(dl + dh)(ar � brpl � x)�1�b
s)� ce(1� F (K � x))

(dh + dl)s(yr(pl)� x) + yr(pl)� x�K > 0

�cd � ce(1� F (k � x))

(dh + dl)s(yr(pl)� x) + yr(pl)� x�K  0

(3.15)

The optimal postponement quantity, x⇤, cannot be simply calculated because of the

power function in the learning function and distribution function of the urgent orders.

However we can find the properties by comparative statistics.

Proposition 3.4.3 The optimal amount of routine order postponement x⇤ is,

x⇤ =

8

>

>

<

>

>

:

no explicit solution (dh + dl)s(yr(pl)� x) + yr(pl) + F�1(
cd + ce

ce
)� 2K > 0

K � F�1(
cd + ce

ce
) (dh + dl)s(yr(pl)� x) + yr(pl) + F�1(

cd + ce
ce

)� 2K  0

(3.16 )

When (dh + dl)s(yr(pl)� x) + yr(pl) + F�1(
cd + ce

ce
)� 2K > 0,

1. x decreases in du + dh.

2. x decreases in variances of either or both urgent orders.

When (dh + dl)s(yr(pl)� x) + yr(pl) + F�1(
cd + ce

ce
)� 2K  0,

1. x decreases in cd.

2. x increases in ce.

The threshold (dh+ dl)s(yr(pl)�x)+ yr(pl)+F�1(
cd + ce

ce
) means the sum of the ob-

served shop load in the first period and the optimal capacity. If it is greater than 2K,
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when their observed volume of urgent orders is large, the supplier wants to take the

advantage of e�ciency by keeping more routine orders (or reducing the postponement

amount). When there is more uncertainty regarding urgent orders, the supplier wants

to save room for urgent orders in the second period by reducing x. When the threshold

is less than 2K, x is decided by cost. Please note that the x is a newsvendor solution

considering the postponement cost and capacity excess cost. When postponement

cost is high, the supplier is better o↵ to postpone less. On the other hand, if capacity

excess cost is low, the supplier is better o↵ to complete more routine order in the first

period. We have found the supplier’s optimal decision and its properties. In the next

chapter, based on managerial insights, we will build a model for the optimal planning.

3.5 Extension

One important question is how the new arrival of urgent order impacts operational

costs. It is obvious that operational cost would vary by the facility work load because

it is a combination of production, capacity excess, and overtime (or outsourcing) cost.

First, we will take into account the learning e↵ect by routine orders. We found that

the impact of increased load from routine orders is to get workers to work faster from

the data set. As the learning curve is not linear, we approximate the curve in a

piecewise linear function. Second, we will consider the pricing decision for the urgent

order from non-routine customers. Once the pricing decision at period t is made and

announced, the impact will be observed at the same period t. We consider that the

expected urgent demand from the non-routine customer will change with the pric-

ing. [39] suggested how the scenario approach can be applied in the case of capacity

planning. Their idea is to optimize the expected objected function by incorporating

probabilities of scenarios. Model is essentially developed in the mixed integer pro-

gram. We use the ideas from [39] and developed production planning model using
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announce pu, ph

receive orders

Schedule a plan

receive R, U routine, Unon�routine

receive R, U routine, Unon�routine

t = 1 t = 2 t = 3

· · ·supplier

Figure 3.4. Sequence of the event

the mixed integer program considering possible scenarios.

3.5.1 Model

We start the planning at period 1. (Figure 3.4) The plan covers the time window

from period 1 through period t. At period 1, the supplier announces the price for the

urgent order from the routine customer and the urgent order from the non-routine

customer. Then, the supplier receives the newly arrived orders including routine and

urgent orders. The firm has historical records about demand. Based on the historical

record, the supplier knows the potential demand size for all types of orders and their

associated probabilities. In order to avoid quadratic forms, we have several relax-

ations. First, we used a piecewise-linear curve for the learning curve. Second, the

expected profit was originally measured by the product of the price and the inverse

demand function, which is eventually a quadratic function. So we prepared a combi-

nation of the price and its corresponding demand as a scenario and designed to have

the model select the optimal combination. The parameters and decision variables are

defined as follows:
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Set Definition

H The set of resources (machine). {h 2 H}

S The set of sources (The studied company and outsource). s 2 {W,O}

I The set of existing orders. {i 2 I}

Ji The set of operations for order i. {j 2 Ji}

M The set of scenarios. {m 2 M}

L The set of ranges of shop load by routine orders. {l 2 L}

Qnon�routine The set of price and demand combination for non-routine urgent orders.

{qn 2 Qnon�routine}

Qroutine The set of price and demand combination for routine urgent orders. {qr 2 Qroutine}

Monetary Parameters

rr Market price of routine orders.

rnon�routine urgent
q
n

Price of urgent orders for non-routine customers.

rroutine urgent
q
r

Price of urgent orders for routine customers.

Demand Parameters

Unon�routine urgent
q
n

mt Urgent order demand from non-routine customers when the price

is announced as rnon�routine urgent
q
n

under scenario m at period t.

U routine urgent
mt Urgent order demand from routine customers under scenario m at pe-

riod t.

Rq
r

mt Routine order demand from routine customers when the price of urgent order

for routine customers is announced as rroutine urgent
q
r

under scenario m at period t.
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R
0
q
r

mt Product of routine order demand from routine customers when the price of

an urgent order for routine customers is announced as rroutine urgent
q
r

under scenario m

at period t and acceleration by the learning e↵ect. R
0
q
r

mt = sRq
r

mt

ui Indicator variable of urgency for order i.

ui =

8

<

:

1 urgent order

0 routine order
vi Indicator variable of urgent order from routine customer for order i.

vi =

8

<

:

1 urgent order from the routine customer

0 urgent order from the non-routine customer

Capacity Parameters

kht Production capacity of resource h.

⌧ijh Amount of capacity required for operation j to process order i at resource h.

Sl(·) The piecewise linear function of working speed under the load of routine orders.

This function is originally an increasing concave function. We will approximate the

function in a piecewise linear function.

Cost Parameters

cpijh Production cost for operation j of order i at resource h.

cojh Outsourcing cost for operation j at resource h when capacity is not su�cient.

cdi Delay cost of order i. cp Average production cost.

Probability Parameters

pmt The probability that scenario m happens at period t.
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Decision Variables

xijhsmt Number of hours for operation j where the order i is processed at resource

h under scenario m at period t under scenario m.

yijhsmt Binary variable. 1 if operation j of order i is assigned at resource h under

scenario m at period t under scenario m, 0 otherwise.

oijm Binary variable. 1 if operation j of order i is outsourced under scenario m, 0

otherwise.

wq
n

m Binary variable. 1 if price schedule q for urgent order from non-routine cus-

tomers is selected. 0 otherwise under scenario m.

zq
r

m Binary variable. 1 if price schedule q for urgent order from routine customers is

selected. 0 otherwise under scenario m.

Temporary Variables

Cim Completion period of order i under scenario m.

�im Tardiness of order i under scenario m.

✏lm Binary variable. 1 if the shop load is in the range l under scenario m.

Based on the definition, we develop the optimal planning model.
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Objective

max
X

i 2I

(1� ui) (r
r � cp) +

X

i 2I

X

q
r

2Q
routine

zq
r

m(r
routine urgent
q
r

� cp)ui vi

+
X

i 2I

X

q
n

2Q
non�routine

wq
n

m(r
non�routine urgent
q
n

� cp)ui (1� vi)

+
X

m 2M

X

t 2T\{1}

X

q
r

2Q
routine

zq
r

m(r
r � cp)Rq

r

mtpm

+
X

m 2M

X

t 2T\{1}

X

q
r

2Q
routine

zq
r

m(r
routine urgent
q
r

� cp)U routine urgent
mt pm

+
X
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The objective function (3.17) is a maximization of the expected profit from period 1

through period t. The first term is revenue subtracted by production cost generated

by existing routine orders. The second term is revenue subtracted by production cost

generated by existing urgent orders from the routine customer. The third term is

revenue subtracted by production cost generated by existing urgent orders from the

non-routine customer. The fourth term is expected revenue subtracted by produc-

tion cost by routine orders from period 2 to period t. Similarly, the fifth and sixth

terms are for urgent orders from the routine customer and the non-routine customer,

respectively. The seventh and the eighth terms mean delay cost and outsourcing cost

for order i, respectively.

Equation (3.18) means that operation j of order i is processed as required at

resource h and equation (3.19) implies that when the operations j is outsourced,

it should be totally outsourced. Equation (3.20) restricts current urgent orders so

that these cannot occupy resources to a degree that exceeds the remaining capac-

ity. Since there is an e�ciency improvement for urgent orders when the load by

routine orders is high, the remaining capacity after routine orders is considered,

kh �
P

q
r

2Q
routine

zq
r

mRq
r

mt, is multiplied by acceleration variable s, i.e. s(kh �
P

q
r

2Q
routine

zq
r

mRq
r

mt) = khs �
P

q
r

2Q
routine

zq
r

mR
0
q
r

mt. The left-hand side is the re-

quired capacity amount for urgent orders. The right-hand side represents the expected

remaining capacity considering the routine and urgent orders that will be ordered in

the future. The routine orders’ capacity occupation is restricted by equation (3.21)

and an e�ciency gain is not considered. Equation (3.22) is the capacity constraint
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for the first period. We do not consider the e�ciency by the learning e↵ect, because

currently the supplier has orders placed in period 1 only, which means that shop load

really doesn’t matter in terms of the e�ciency. As we discussed, we want to avoid a

quadratic form to maintain linearity. Therefore, there are potential combinations of

price and demand. Equations (3.23) and (3.24) imposes zq
r

m and wq
n

m can choose

only one value of 1, i.e. zq
r

m and wq
n

m are selection variable among the combinations.

While equations (3.20) and (3.21) are of resource (or machine) perspective, equations

(3.25) and (3.26) are restrictive in terms of orders’ processing time. Orders cannot

be processed more than 24 hours. In case of urgent orders, there is acceleration, s,

by learning e↵ect. Therefore, urgent orders can be processed at most 24 s hours.

In equations (3.27) through (3.31), the e�ciency factor is selected. Equation (3.27)

has the model choose an appropriate piece among piecewise linear learning curves.

Equations (3.28) and (3.29) check if the load of routine orders is in the range of a

piece one by one. Once the piece is selected, ✏lm is set to 1. Using ✏lm, equations

(3.30) and (3.31) returns the corresponding e�ciency factor s. The period of an or-

der is completed and is obtained in equation (3.32). Equations (3.33) through (3.35)

returns the value about how long the jobs are delayed. We do not consider the case

in which the order is completed early.

Equation (3.36) and (3.37) impose an constraint to placing a link between deci-

sion variables xijhsmt and yijhsmt. When yijhsmt = 0, the decision variable concerning

time spent on resource h, xijhsmt, cannot be non-zero. If yijhsmt = 1 or the order is

assigned to resource h at time t, the model can decide the time to occupy resource

h and imposes a constraint not to spend more than the required time at resource

h. A sequence of required operations for the order is imposed by equations (3.38)

and (3.39). In equation (3.38) when the previous operation, j � 1, is not assigned,

or yi(j�1)hsmt = 0 then the current operation j cannot be assigned to any resource.

We also need the operations to be completed for the next operation. Equation (3.39)
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requires that the previous operation must be fully completed before the current op-

erations are assigned.

3.5.2 Numerical Study

In this section, we numerically identify the impact of shop load on performance

measures such as expected delay cost, expected outsourcing cost, cost impact of the

additional order, and expected profit by varying the initial shop load. We assume that

the supplier is making optimal decisions. Thus the impact of shop load determined

by optimal decisions is studied. The mixed integer program (MIP) in the previous

chapter is implemented in ILOG Cplex 12.5 in the Java language. The planning

time horizon is 20. The number of machines (or resources) and the number of opera-

tions are both 4. However, the sequence of operations and the required machine are

random. We assume there are three possible demand scenario over periods with cor-

responding probabilities. In our setting, we assume the equally distributed demand

scenarios, i.e. their probabilities are 0.33, 0.34, and 0.33.

Since our main concern is shop load, we generate 60 data sets varying the shop

load. Each data set is created by random number generation. In each data set, num-

bers of routine orders, urgent orders from the routine customer, and urgent orders

from the non-routine customer are randomly generated. However the expected ratios

are 88%, 8%, and 4% for routine orders, urgent orders from the routine customer, and

urgent orders from the non-routine customer, respectively. The required processing

time for each operation of each order is randomly generated by uniform distribution of

U(1, 3). The outsource cost per hour for each operation of each order follows U(1, 2).

Deadlines for orders are randomly determined by U(2, 16) Delay cost per order is

generated by U(5, 20).
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Figure 3.5. Cost impact of shop load
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Figure 3.6. Pricing Urgent Order from Routine Customers

Cost impact is determined by comparing the total profit of a data set and that of

the data set with an additional urgent order, i.e., ⇡(Load)�⇡(Load+1), which implies

profit loss by accepting one unit of order. The impact of an additional urgent order

on cost is larger when the shop is loaded more. The slope determined by regression

is 4.0292 and R2 = 0.03018 (Figure 3.5). We observed that there is a strong negative

impact. This implies that the negative impact of additional urgent orders is getting

stronger as the firm receives more shop load. Figure 3.6 illustrates how the optimal

price for urgent orders from routine customers changes by initial shop load. When

the shop is not loaded the optimal price is around 100. But, when shop load is more

than the threshold, the optimal price increases dramatically. This implies that when

the shop is fully loaded, the firm wants to reduce the volume of routine orders, while

the shop capacity is not fully utilized, the firm wants both to attract more routine

order and to keep the minimum margin on routine orders.
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Figure 3.7. Pricing Urgent Order from Non-Routine Customers
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The firm controls the volume of urgent orders from non-routine customers by

pricing. When the shop is loaded, the firm wants to reduce the volume of urgent

orders from non-routine customers by charging high margins. However, when the

shop capacity is not fully utilized, the firm wants to attract more urgent orders to fill

the slack capacity and enjoy high margin of urgent orders from non-routine customers

(Figure 3.7).

3.6 Conclusion

In this research, we consider the supplier that has both routine orders and urgent

orders from routine customers and non-routine customers. Since long-term relation-

ships can reduce transaction costs, there is room in price discounts for routine cus-

tomers. [10]. Thus routine customers may expect lower costs. While urgent orders

from routine customers are discounted, ones from non-routine customer are profitable.

Through data analysis, we confirmed there is e�ciency improvement by routine or-

ders. Workers accelerate the pace of their labor when they face more work. Thus our

research question is: What is the optimal order portfolio under the situation of two

classes of orders and two classes of customers.

Our contribution to the operations management literature is that we derive an op-

timal decision strategy considering the trade o↵ between profitability and e�ciency

based on the actual data provided by the company. First, we analyze the data and

identify several characteristics of the company’s business. They are e�ciency by rou-

tine orders and profitability by urgent orders. Also, we observed the company has two

types of orders and two types of customers. Second, we model a stochastic dynamic

program to extract managerial insights. The company confirmed they control the

volume of orders by pricing. Thus, we apply a linear inverse demand function. When

they expect a larger demand of urgent orders from either routine or non-routine cus-

tomers, they are better o↵ to increase the price for urgent orders. As an extension,
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we also look at the case of demand postponement. We consider two periods and the

firm can decided the amount of routine orders to postpone. Then in the next period,

the firm will deliver all orders. In this case, when they decide the level of urgent

orders is enough, the supplier wants to take the advantage of e�ciency by maintain-

ing a pattern of more routine orders. (or reducing the postponement amount) When

there is more uncertainty regarding urgent orders, the supplier wants to save room

for urgent orders in the second period. Third, we identify the impact of additional ur-

gent orders. Specifically, when the shop is loaded more, the impact is more negative.

Lastly, we model the mixed integer program (MIP) for order scheduling. With a brief

forecast of demand, the MIP provides the optimal scheduling considering outsourcing

and delivery delay costs. The firm may use this model to estimate both the direct

and indirect costs incurred by newly arrived urgent orders. Such a cost estimation

may be helpful to the company in pricing for urgent orders.

In the future, we will identify the cost impact by additional urgent order in detail.

Our current analysis is intuitive but simple. In order to find out more factors that

a↵ects cost, we will polish the model. In addition, we will run more numerical exper-

iments and feed real data to the MIP. Ultimately, we will suggest a firm a practical

decision support system for pricing to the firm.
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4. COORDINATED CAPACITY INVESTMENT IN

CLEAN ENGINE TECHNOLOGY UNDER CRITICAL

MATERIAL R&D

4.1 Introduction

Although the crude oil price has been dropped due to su�cient supply, the concern

about the environment, such as global warming, still warrant significant attention.

The most severe cause of global warming is carbon emission.

Emissions resulting from human activities are substantially increasing

the atmospheric concentrations of the greenhouse gases: carbon dioxide,

methane, chlorofluorocarbons (CFCs) and nitrous oxide. These emissions

will enhance the greenhouse e↵ect, resulting on average in an additional

warming of the Earth’s surface.

-Working Group I of the United Nations Intergovernmental Panel on Cli-

mate Change (IPCC), 1990

In the automotive industry, properties such as better fuel e�ciency and lower

emissions have gained attention. Since the mid 1990s, aluminum (Al) alloy engines

have been widely used due to their many advantages; they are lighter than traditional

cast iron engines, which means they o↵er better fuel e�ciency. Another benefit is

their thermal conductivity. [40] As of 2012, [41] reported that 80% of engine blocks

and 99% of cylinder head were already being made of Al alloy. They also forecasted

that Al alloy would more penetrate the market in the future. However, Al has poor

mechanical properties so is required to be 1.5 to 2 times thicker than steel.
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The Critical Materials Institute (CMI) is doing research on new material for a new

high performance Al casting alloy that uses cerium (Ce). Ce is the most abundant,

but least used among the rare earth elements (REEs). The aim of the research is

to develop castable aluminum cerium (Al-Ce) alloys. Ce-Al alloys exhibits high tem-

perature mechanical properties that are superior to existing commercial Al casting

alloys in the current market (CMI white paper). The net e↵ect of this new alloy is

to permit thickness smaller to steel and higher temperature operation

The project follows a planned technology roadmap. The milestones and associ-

ated TRLs highlight progress from lab to market. The roadmaps are used to develop

a model that incorporates project progress on manufacturers’ decisions regarding in-

vestment for capacity expansion. Once the model is properly developed, we estimate

the parameters and evaluate the real option value of projects according to project

results.

In our model, the project’s success is linked to technology roadmapping. The

technology roadmap coordinates and presents planned tasks and schedule about re-

search objectives that must be achieved in order to develop technology that satisfy

requirements for the product. It documents clarified product and process goal, and

milestones to meet those goals. The technology roadmap aggregates all this informa-

tion and evaluates according to a technology readiness level (TRL). Figure 4.1 is a

TRL example. The figure illustrates an expected technology according to its level of

completion and commercialization.

The model describes a manufacturer that determines the time and volume of

the manufacturing capacity extension for a new engine manufactured with a new

aluminum and cerium (Al-Ce) alloys. Assume the manufacturer currently produces

the aluminum alloy-based engines and plans to produce the Al-Ce alloy engines as

CMI R&D project milestones progresses. Our research questions are as follows: How
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Figure 4.1. Technology Readiness Level



72

to expand the capacity as a function of milestones achievement? When to expand

the capacity for new material engines with technology for R&D?

4.2 Literature Review

Extensive research has contributed to literature related to investments in man-

ufacturing capacity under uncertainty. [42] worked on a survey regarding capacity

expansion . In their pioneering book, [43] claimed that many projects, e.g., building

ships or aircrafts, take a significantly long time to complete, and there are likely to

be stopped momentarily or permanently abandoned.

[44] and [45] worked on theoretical decision models for firms’ technology adoption

behavior and found that firms might postpone technology adoption to collect infor-

mation on an innovation and progress when profitability is uncertain initially. [46]

conducted similar work to ours. He assessed the reconciled decision that considers

both R&D and technology adoption. He modeled a firm over infinite time periods.

The firm can conduct R&D and deploy the technology at the status of the current

period. R&D is modeled in independent draws with a fixed cost in his model. In

our model, R&D is exogenous and R&D achievement is fed to the model in a form

of predefined scores at each period. In particular, [47] and [48] considered di↵usion

with given supply constraints. Especially, [48] concluded that a supplier with a sup-

ply constraint would postpone the introduction of the new product after the supplier

completes the production of a su�cient quantity.

There are many papers focused on sequential capacity investment following the de-

velopment progress of new technology. [49] considered the case in which the supplier

determines the capacity addition for the a new pharmaceutical drug’s production

by coordinating investment with test trials. In the automotive industry, there are

extensive research streams concerning capacity and technology. [50] examined the
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competition of firms and the choice of technology and capacity. They concluded that

contrary to conventional ideas, flexibility is not always the best choice for competition.

There is another stream regarding product di↵usion. [51] considered the capacity

decision during a product’s transition. They gave an example of Intel. During the

generation transition of chips, the firm may consider either new capacity investment

or the conversion of existing capacity. In terms of product transition, we also con-

sider a similar transition from the an existing Al alloy engine to the an Al-Ce alloy

engine. While the situation is similar, the setting is di↵erent. We consider sequential

capacity additions and the demand varies depending the properties of the Ce-Al alloy

engines. In [52]’s seminal paper, they described how a successive technology product

substitutes the previous generation’s product. They developed a model considering

both di↵usion and substitution. [53] worked on a DOE project related to the magnet

material, providing initial insight into the Bayesian learning process regarding the

project achievement.

4.3 Model

Our model incorporates two R&D progress along two dimension, i.e., production

cost and fuel e�ciency improvement by accounting for paths of the prospective tech-

nologies. The main dimension is a model for adding capacity that includes supply

and demand mechanism for the newly developed product in a monopoly setting but

with existing products as alternatives. If we consider the automotive industry as

one entity, a monopolistic market promotes insights in a Bayesian environment. The

models thus describe capacity addition decisions in accordance with R&D progress.

We will consider a duopoly case with competition in the future as an extension.
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4.3.1 Technology Readiness Level (TRL)

The R&D of technologies is performed following a plan or technology roadmap

that plans milestones during a project’s assessment. As we approach the time period

near the commercialization, it is more likely to influence capacity decisions by the

industry. Evaluation of the R&D project success is weighted by a Technology Readi-

ness Level (TRL) score for each task. A higher TRL task means the task is close to

commercialization. When the industry finds a higher TRL, it would consider capac-

ity addition. For instance, when the TRL is determined as 5 for a specific lab-scale

experiment with a simulated environment. If the task includes a literature survey

and hypothesis formulation, TRL would be determined as 1.

The model for R&D describes the TRL according to the percentage of discovered

progress. We applied the percent-done curves described in [54]. Poisson variables

N cost and N eff are used for the cumulative progress of the production cost task and

fuel e�ciency task, respectively, over the time horizon of the R&D project. In each

period, t, gcostt and gefft denote the proportion of the progress of the production cost

task and fuel e�ciency task, respectively, observed in the period, whereas Gcost
t and

Geff
t represents the proportion of the cumulative progress of the two tasks. We place

wights by the TRL on arrivals to capture the fact that milestones closer to commer-

cialization influence industry decisions more than milestones in the early stages. In

other words, we measure the maturity of the R&D by the product of weight and TRL

scores. In each project, TRL the table provides TRL scores. (Table 4.2)

There is significant uncertainty in conducting R&D projects. In an ideal situation,

one can achieve the initially targeted performance. However, in reality, performance

variability caused by trade-o↵s among multiple technical criteria brings about uncer-

tainty [55]. The Al-Ce alloy project considers two tasks of targets, production cost

reduction and fuel e�ciency improvement. Depending on the realized performance
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Figure 4.2. Scoring TRL tasks
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of the project, high or low realization can be obtained in each task. Table 4.1 gives

an example of the pure distribution. When the research project of fuel e�ciency is

successful, or the research project is in the high (H), the chance of 43.72mpg is 99%

and the probability of 34.35mpg is 1% in this example. The cumulative arrival, N ,

represents the overall success throughout the R&D. In addition to our previous de-

scription, superior performance corresponds to higher arrival rates. In other words,

a higher TRL score is achieved in each experiment. Therefore, the Poisson process

with arrival rates of �eff
1 and �eff

2 corresponds to the random arrival N in cases of

32.35mpg and 43.72mpg, respectively when we consider fuel e�ciency. Similarly, the

Poisson process with arrival rates of �cost
1 and �cost

2 corresponds to the random arrival

N in cases of $23,975.63 and $29,508.96, respectively, for the cost task.

Proposition 4.3.1 Given observed progress N1, N2, ..., Nt in each period, the pos-

terior density Pt in period t depends on the sum N = N1 +N2 + ...+Nt.

In Proposition 4.3.1 ( [53]), the cumulative arrival, N , is a su�cient statistic to de-

scribe the future arrival distribution of success. The Poisson process is appropriate

to model the R&D project’s progress with various advantages. We can use the cu-

mulative progress for the state variable to update the automotive industry’s belief.

Although there is an unexpected event and due to the task being missed, the indus-

try can maintain the updating process while the project follows the schedule and the

research institute attempts to return to the schedule. The other advantage of the

process is its memoryless property, meaning that the manufacturer in the industry

does not have to consider individual tasks’ achievement in their capacity planning

decision.

Proposition 4.3.2 Priors are updated in each period by the cumulative progress, N .

Pt(N) = (P1t, P2t)(N)

=

✓

e�1G(t)�N
1

P

i e
�
i

G(t)�N
i

,
e�2G(t)�N

2
P

i e
�
i

G(t)�N
i

◆

The proposition 4.3.2 ( [53]), illustrates the priors updated at every period according

to the cumulative progress, N , by period t. Cumulative progress is determined by the
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Table 4.1.
Pure distribution

MPG(Base MPG=31.1mpg)

Pure Dist. 34.35mpg (10% improvement) 43.72mpg (40% improvement)

Low 99% 1%

High 1% 99%

Cost (base cost = $28811.26)

Pure Dist. $28975.63 (Ce-Al $10/kg) $29508.96 (Ce-Al $30/kg)

Low 1% 99%

High 99% 1%
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score determined by product of TRL and weight. The score represents information

about the cumulative maturity of development. The manufacturer is required to

choose the capacity investment in advance of technology commercialization, as there

is always a lead time in investment. For instance, even without the new facility

construction, the manufacturer needs to place an order for the new equipment and

renovation of the facility, which takes significant time. The arrival rates are di↵erent

in every milestone. It is determined by G(t) and G(t) stand for the percentage

completed until time t. In the next section, we will illustrate the optimal capacity

investment decision corresponding to the R&D progress.

4.3.2 Market Behavior

While the manufacturer produces existing Al alloy engines, the new technology

permits for Al-Ce alloy engines. But since the development is uncertain, it is di�cult

to forecast the demand of the new engines. Thus, the manufacturer monitors R&D

status and determines the capacity expansion or not to invest and to postpone the

decision in every period. The Al-Ce alloy engines are produced under the constraint of

the available capacity, x. We consider a linear inverse demand function, P (q) = a�b q,

where p is the price of the product, a represents the maximum willingness to pay

(WTP), and b denotes the price elasticity. c denotes the production cost for the

engine with the prospective technology. e represents the fuel e�ciency corresponding

to the current technology. In other words, the distributions of c and e are determined

by technology maturity. We now consider the manufacturer’s decision in a single

period.
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4.3.3 Single Period Case

The profit of the manufacturer when the capacity is x is illustrated as follows:

⇡ (x, c, e)

= max
q
r

,q
n

��

ar � brq qr + bre er � cr � brx qn
�

qr +
�

an � bnq qn + bne en � cn � bnx qr
�

qn
 

subject to 0  qn  x
(4.1)

Let j denotes the engine type, j 2 {r, n}. r stands for Al alloy engine cars and n

stands for Al-Ce alloy engine cars. aj is WTP. bjq denotes the quantity elasticity. bje

denotes the fuel e�ciency elasticity. bjx represents the cross elasticity. Fuel e�ciency

and the cost of production impacts on the market price, and note that the production

quantity q is limited by the available capacity. The optimal production quantity is

q⇤n =

min

(

2arbrq � arbnx � arbrx + 2brqb
n
e en � 2brqcn � breb

n
xer � breb

n
e er + bnxcr + brxcr

4bnq b
r
q � bnx

2 � 2bnxb
r
x � brx

2 , x

)

.

Proposition 4.3.3 The expected profit of the manufacturer in a period is given by,

(4.2 )⇧ (x, fc(c), fe(e)) =

Z c
h

c
l

Z e
h

e
l

⇡ (x, c, e) fc(c) fe(e) dc de

where fc(c) is distribution function of cost c with support [cl, ch] and fe(e) is distri-

bution function of cost e with support [el, eh]. ⇧ (x, fc(c), fe(e)) is concave in x

As the outcome of the development is uncertain c and e are random variables with

distributions fc and fe, respectively. ( [53])

4.3.4 Multi-Period Case

Now, we consider the multi-period case. We model the problem in a T period

model. The engine manufacturer obtains the information regarding R&D achieve-

ment in each period. The manufacturer then determines whether to add capacity

in a particular period; there is an option to postpone the capacity expansion in the
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period. We suppose that the manufacturer sequentially invests in the capacity expan-

sion. In other words, the manufacturer has an option to add the capacity of k in each

period. It is not possible for the manufacturer to add capacity in another quantity.

Thus, the capacity expands as follows: 0, k, 2k, · · ·.

In our model, we have three state variables: the currently available capacity, x, the

cumulative progress in the production cost task, N cost, and the cumulative progress

in the fuel e�ciency task, N eff . Previously, we noted that the we consider two tasks

of research, production cost reduction and fuel e�ciency improvement, previously.

The expected profit in period t is,

(4.3)

⇧t

�

x,N cost, N eff
�

= max

(

�cc k

+
1
X

n
c

=0

1
X

n
e

=0

⇧t+1

�

x+ k,N cost + nc, N
eff + ne

�

pet
�

ne|N eff
�

pct
�

nc|N cost
�

,

1
X

n
c

=0

1
X

n
e

=0

⇧t+1

�

x,N cost + nc, N
eff + ne

�

pet
�

ne|N eff
�

pct
�

nc|N cost
�

)

where, pet
�

ne|N eff
�

=
P2

i=1 P
e
it p (�

e
i g

e(t+ 1), ne) and pct (nc|N cost) =
P2

i=1 P
c
it p (�

c
i g

c(t+ 1), nc). p (�, n) is Poisson density function of mean � and n

arrivals. The terminal value ⇧T

�

x,N cost, N eff
�

= ⇡
�

x, f c
T (c|N cost) , f e

T

�

e|N eff )
��

where, f e
T

�

e|N eff
�

=
P2

i=1 P
e
iT (N

eff )f e
i (e) and f c

T (c|N cost) =
P2

i=1 P
c
iT (N

cost)f c
i (c)

Proposition 4.3.4 There is a threshold x⇤
t (N

cost, N eff ) in period t for all t 2 T . If

x  x⇤
t (N

cost, N eff ), the manufacturer invests for the capacity, otherwise, the manu-

facture holds the investment and wait at period t.

Proposition 4.3.4 ( [53]) he concavity in proposition 4.3.3. The manufacturer updates

information regarding the maturity of technology. Based on this information, the

firm will determine threshold policy.
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4.3.5 Parameters

As noted previously, our problem is a practical one related to R&D projects’ per-

formance. When we have parameters and the sample path, we can derive capacity

addition decision. In this section, we demonstrate decision making using our model.

Since the model is implemented in Mathematica, the research institute or the manu-

facturer can explore di↵erent sample paths or di↵erent parameters.

An automobile engine is the most important component due to its role, which

generates power out of fossil fuel. Any function of automobiles related to physical

movement or electronic operation is supplied energy by the engine either directly or

indirectly. Conventionally, engines were made of cast-iron due to its durability and

thermo dynamics properties. In the mid 1990s, Al alloy began to replace the existing

cast-iron engines to reduce their weight and ensure a higher operation temperature.

Al alloy engines provided higher fuel e�ciency than the cast-iron engines. However,

due to their material properties, Al alloy requires 50% more thickness to maintain

the equivalent mechanical strength to cast iron [40]. Although Al alloy reduces the

engine weight by 50% despite of its thickness, there is room to reduce the weight as

long as we improve the mechanical properties of the material. Al-Ce alloy is better

than Al alloy in terms of the thermal dynamic properties. Al-Ce is durable even at

higher temperatures than an Al alloy engine’s operational temperature. Therefore,

we can expect higher fuel e�ciency with Al-Ce alloy engines.

According to CMI’s whitepaper (2014) , the price of Al-Ce alloy is expected to

be $10/kg in the best case and $30/kg in the worst case. Thus, we estimates the

material cost of engine blocks and cylinder heads and take thickness reduction into

account. Assuming the aluminum alloy is replaced with Al-Ce alloy, the cost of the

engine would be $28,975.63 (cl) and $29,508.96 (ch) in the best case and worst cases

of production cost reduction research task. [56] Possible fuel e�ciencies are estimated



82

to be 34.35mpg (el) and 43.72mpg (eh). Based on the data in the U.S. Department of

Transportation (US DOT), we assumed that there would be 10%improvement for the

worst outcome and 40% improvement for the best outcome regarding fuel e�ciency

improvement research task.

In the technology roadmap, the number of milestones is 8. Having two research

tasks makes it problematic to consider combinations of two state variables because of

curse of dimension. Thus, we had to reduce the time horizon to 4 instead of 8. Consid-

ering two possible outcomes for one research task, we model the success as a random

variable according to the Poisson arrival of success with arrival rates � 2
�

�j
1,�

j
2

 

where j 2 {cost, eff}. We choose �j
1 = 5 and �j

2 = 10. The percent done curve

was calculated by the TRL scores and some weights. We had 4 miles stones and

each had associated tasks. Each task was assigned a TRL by the importance of the

task. To emphasize the higher TRL to magnify the closeness to the commercializa-

tion, we multiplied weights to TRLs. Weights were multiplied as follows: TRL 1, 2,

and 3 are weighted by 1. TRL 4 is weighted by 2. TRL 5 is weighted by 3. TRL

6 is weighted by 4. TRL 7 is weighted by 5. Weights are increasing in TRLs. We

calculate the percent-done curve by dividing the weighted sum of TRL with the cu-

mulative percent-done curve over 7 periods. The cumulative percent-done curve is

G(1) = 0.04, G(2) = 0.16, G(3) = 0.28, G(4) = 0.4, G(5) = 0.56, G(6) = 0.68, and

G(7) = 1. The initial prior is chosen as Pj = 0.5, 0.5. Thus we do not know how the

research will unfold. The manufacturer repeat updating his prior to Pt(N) in period

t by proposition 4.3.2.

Supply and Demand

In the case of hybrid cars, a previous study found no significant dereference in

the willingness-to-pay (WTP) between regular internal combustion cars and hybrid
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cars [57]. Although [57] compared hybrid cars to regular cars, we assume that the

WTP for Al-Ce alloy engine cars would be very similar to regular cars, as Al-Ce alloy

engine cars are expected to cost more than regular cars, similar to hybrid cars.

Demand elasticity, bq, fuel e�ciency elasticity, be, and cross elasticity, bx were

estimated by a regression with historical data. The annual sales quantity of reg-

ular cars and hybrid cars, and the annual average fuel e�ciency (mile per gallon)

were collected from public data such as www.statistica.com, www.autoalliance.org,

www.afdc.energy.gov/data/10301, and www.fueleconomy.gov. The regression gave us

brq = 493.7, bre = 3392.11, and brx = 10269.1 for Al alloy engine cars. For Ce-Al alloy

engine cars, we obtained bnq = 13742.1, bne = 2139.42, and bnx = 656.5. The WTP

for Al alloy engine cars was estimated as ar = �62080.3 for Al alloy engine cars and

an = �27559.3 for Ce-Al alloy engine cars.

We solved the stochastic dynamic program and obtain the option values for dif-

ferent observations based on our parameter estimations. Using the estimations, we

evaluated the option values for the project for outcomes. For example, the capacity

addition decision is illustrated in Figure 4.3. Period 1 is the early stage and the ar-

rival of success is low. However, the manufacturer expected the Ce-Al engines to have

some potential, so the firm invested the capacity of 130,000 cars/year. From period 2

to period 5, the firm sought to foresee potential and did want to lose the market. The

firm still expect successful R&D. Thus, the firm invest on the capacity extension one

unit by one unit of capacity. In period 6, the firm observed the cumulative success

arrival of (3, 7) Now the firm observed that the R&D would not improve. Therefore,

the firm decided to stop capacity investment.

Table 4.1 provides the expected option value and cumulative capacity that is in-

vested at every period for a given sample path. The option value of capacity addition

grows when the success arrival increases. But, if the progress is staggered i.e. the
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Figure 4.3. Capacity additions for the sample path, k = 130, 000 engines/year
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number of arrivals remains the same, the option value decreases over time. Therefore,

the option value increases with the arrival of success in the same period. The option

value decreases in the time with the same success arrivals in time (Table 4.2).

Capacity expansion is illustrated in Table 4.3. In this sample, when the research is

successful in fuel e�ciency improvement, the firm can benefit from investing in more

capacity.

4.4 Extension

We modeled the R&D project with two tasks, production cost reduction and fuel

e�ciency improvement. Parameterizing and running the model led us to propose a

new question. What if we can adjust resources based on project outcome? Let us

suppose that the project manager is given an option to invest resources to expedite

the project. For instance, the project manager receives additional funds, he may

want to hire a post-doc researcher to speed up the study of fuel e�ciency improve-

ment. When the project is expedited, the uncertainty of the outcome is somewhat

resolved. Although in the sample path the fuel e�ciency task is successful, the man-

ager may want to a firm and tangible outcome. When he has an additional researcher

for the fuel e�ciency task, the manager has to spend the funds but the expected

option value should be greater. A second option for the manager is to hire a re-

searcher for the production cost reduction task. If the manager believes that the

fuel e�ciency improvement research is mature. he may want to accelerate the task

behind the schedule. In this section, we illustrate expedition options and their values.

Figure 4.4 illustrates an example of how expedition works. The blue and dashed

and dotted line represents the original percent-done curve. The red line indicates

when the project manager decides to invest additional resources in period 4. Thus,
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Table 4.3.
Capacity addition of the sample path

(Cost, E↵) P1 P2 P3 P4 P5 P6

(0, 0) 0.13M 0.26M 0.26M 0.26M 0.26M 0.26M

(1, 2) 0.13M 0.26M 0.39M 0.39M 0.39M 0.39M

(1, 3) 0.13M 0.26M 0.39M 0.52M 0.52M 0.52M

(2, 4) 0.13M 0.26M 0.39M 0.52M 0.65M 0.65M

(3, 6) 0.13M 0.26M 0.39M 0.52M 0.65M 0.65M

(3, 7) 0.13M 0.26M 0.39M 0.52M 0.65M 0.65M

Figure 4.4. Percent-done curves for expedition options
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the impact will be observed in period 5, and he expects completions of 68% in period

5 and 100% in period 6. When the project manager invests additional resources in

period 5, the impact will be observed in period 6. That follows the green line. The

manager expects 100% completion in period 6. The project manager may expedite

one research task by hiring one researcher. As such, the progress acceleration is

e↵ective in only one task.

Examples in Table 4.4 and Table 4.5 use the same sample path in which research

regarding cost reduction is not well progressed but research regarding e�ciency im-

provement is successful. Table 4.4 illustrates the expected outcome of the option to

hire a researcher for the cost reduction task. We assume there is lead time of one

month for the additional researcher’s output. The first table is the case in which the

researcher is hired in period 4 and the second is when the researcher is hired in period

5. Comparing Table 4.2, while expected profits until period 5 are larger than those

of the original sample path, the research ends up with less expected profit in the last

period. This implies that hiring an additional researcher reduces uncertainty. Thus,

the cost reduction research task would end up with the low pure distribution in Table

4.1 in this example. Thus, the expected profit in the last period decreases.

What if the manager assigns an additional researcher to the e�ciency improvement

task to speed up experiments? Table 4.5 describes the outcome when the manager

concentrates on the successfully progressing research task. In this case, the manager

is better o↵ to invest early. It is optimal for him to hire the researcher in period

4. This means that reducing uncertainty for the successful research task is benefi-

cial. Therefore, the manager’s optimal choice is to invest additional resources on the

successful research task in period 4.
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4.5 Conclusion

We have developed a model for the problem of capacity investment in accor-

dance with the R&D progress. We evaluated the value of R&D project progress by

tasking the Technology Readiness Level (TRL) and obtained the capacity addition

decision for Ce-Al alloy engine cars. The major contributions are as follows:, First, we

modeled development uncertainty as a mixture of pure distributions and TRL, and

second, we examined the value of additional resources for the R&D project. Since we

consider two tasks of the research, an additional resource deployment strategy has

been suggested by our model. In addition, we estimated the parameters of our model

so that the model improves not only practical decision support in terms of sequen-

tial capacity additions and recourse strategies but also the option value of the project.

Our research had several limitations. We had to reduce the number of possible

outcomes in order to avoid the curse of dimension. Simplified results are unavoidable.

We will develop a technique to bypass dimension reduction. In addition, a more

sophisticated model will be devised for a research progress adjustment strategy.
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5. SUMMARY

We have studied topics regarding capacity. The first two chapters studied the long-

term relationship in the supply chain and operations. The last chapter studied how

to expand capacity in accordance with research and development progress.

In the second chapter, we identified the impact of reciprocity in the supply chain.

The supply channel is coordinated without the costly contracts. This implies that

the performance of the supply channel can be improved when participants have trust

each other and their decisions are reciprocal. The second implication is that the

participants’ financial performance is improved with trust and the presence of reci-

procity. Lastly, when the sensitivity is at a reasonable level, the seller will o↵er a

good price. But either being too sensitive or too insensitive to kindness induces the

seller to o↵er a higher price. This implies that the buyer needs to consider fairness

in the relationship for her own benefit.

In the third chapter, we explored data provided by the real company. We observed

that how long term relationships impacts on the operation and studied suppliers op-

timal portfolios among routine and urgent orders. We studied that the impact of

additional orders to operation costs varies by the shop load and there is a threshold

where operation costs increase much.

In the fourth chapter, the optimal capacity expansion strategy was studied, The

project of the Critical Materials Institute (CMI) aims to reduce US dependence on

critical materials. One of the projects CMI aims at developing advanced alloy by

adding critical material. The Ce-Al alloy development project announces an achieve-

ment level at every milestone. We modeled the stochastic dynamic program with
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Bayesian update. We run the model with parameters and economic benefits were

estimated. Based on the progress of those two R&D tasks, additional resource invest-

ment strategy was studied.
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