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ABSTRACT

Li, Lingnan Ph.D., Purdue University, August 2016. Maximum Empirical Likelihood
Estimation in U-statistics Based General Estimating Equations. Major Professor:
Hanxiang Peng.

In the first part of this thesis, we study maximum empirical likelihood estimates
(MELE’s) in U-statistics based general estimating equations (UGEE’s). Our technical
maneuver is the jackknife empirical likelihood (JEL) approach. We give the local
uniform asymptotic normality condition for the log-JEL for UGEE’s. We derive the
estimating equations for finding MELE’s and provide their asymptotic normality. We
obtain easy MELE’s which have less computational burden than the usual MELE’s
and can be easily implemented using existing software. We investigate the use of
side information of the data to improve efficiency. We exhibit that the MELE’s
are fully efficient, and the asymptotic variance of a MELE will not increase as the
number of UGEE’s increases. We give several important examples and demonstrate
that efficient estimates of moment based distribution characteristics in the presence
of side information can be obtained using JEL for U-statistics.

In the second part, we propose several JEL goodness-of-fit tests for spherical
symmetry, rotational symmetry, antipodal symmetry, coordinatewise symmetry and
exchangeability. We employ the jackknife empirical likelihood for vector U-statistics
to incorporate side information. We use estimated constraint functions and allow the
number of constraints and the dimension to grow with the sample size so that these
tests can be used to test hypotheses for high dimensional symmetries. We demonstrate
that these tests are distribution free and asymptotically chisquare distributed. We

conduct extensive simulations to evaluate the performance of these tests.






1. INTRODUCTION

Empirical likelihood (EL) is a data-driven likelihood approach with nonparametric
nature which is effective and requires few assumptions about the distribution of the
data. Owen (1988, 1990, 1991) showed that the empirical likelihood ratio statistics
have the limiting chi-square distribution under mild conditions. He also demonstrat-
ed that tests and confidence intervals can be constructed. The empirical likelihood
theory has been successfully extended to various areas of statistics with tremendous
accomplishments. These include Bartlett correction (DiCiccio, et al., 1991), gener-
alized linear models (Kolaczyk, 1994), heteroscedastic partially linear models (Lu,
2009), partially linear models (Shi and Lau, 2000; Wang and Jing, 2003), paramet-
ric and semiparametric models in multiresponse regression (Chen and Van Keilegom,
2009), right censored data (Li and Wang, 2003), U-statistics with side information
(Yuan, et al., 2012), and stratified samples with nonresponse (Fang, et al., 2009).
Qin and Lawless (1994) linked empirical likelihood with finitely many estimating e-
quations and investigated maximum empirical likelihood estimators. Chen, et al.
(2009) obtained asymptotic normality for the number of constraints growing to infin-
ity. Hjort, et al. (2009) and Peng and Schick (2013a, 2013b) generalized the empirical
likelihood approach to allow for the number of constraints to grow with the sample
size and for the constraints to use estimated criteria functions. Algorithms, calibra-
tion and higher-order precision of the approach can be found in Hall and La Scala
(1990), Emerson and Owen (2009) and Liu and Chen (2010) among others.

In Owen’s homepage (http://statweb.stanford.edu/~owen/empirical/) software
can be found. Here are two algorithms from this site: scel. R (R function to compute
empirical likelihood using a self-concordant convex criterion) and el. R (Mai Zhou’s R

code for empirical likelihood, with an emphasis on survival analysis).



U-statistics is a class of statistics which is especially useful in estimation. Many
popular statistics such as high order moments information can be expressed by U-
statistics, see e.g. Serfling (1980), Kowalski and Tu (2008) and Lee (1990). Yuan, et
al. (2012) explored maximum empirical likelihood estimates (MELE’s) in U-statistics
with side information. However, usual EL method runs into serious computational
difficulties when it’s applied to U-statistics. U-statistics are not independent but
correlated so that they do not satisfy the independence or at least asymptotic inde-
pendence which is assumed by the definition of empirical likelihood. Moreover, unlike
the usual empirical likelihood, the nonlinearality of EL weights 7;’s in the constraints
equations results in that there are no explicit solutions for the EL weights. Jing, et
al. (2009) identified the asymptotic independence of the jackknife pseudo values of a
U-statistic and introduced their jackknife empirical likelihood (JEL) for U-statistics,
and showed its effectiveness in handling one- or two-sample U-statistics. Some nice
properties of the jackknife pseudo values of a U-statistic were exploited to establish
the Wilks theorems for their cases. For example, the average of the jackknife pseudo
values is equal to the U-statistic, and the sample variance of them is an asymptotically
unbiased estimator of the asymptotic variance of the U-statistic.

Motivated by applications to goodness of fit U-statistic testing, Peng and Tan
(2016) gave two approaches to justify the JEL for vector U-statistics and proved the
Wilks theorems. They extended empirical likelihood for general estimating equations
(GEE’s) to U-statistics based general estimating equations (UGEE’s). The results
were extended to allow for the use of estimated constraints and for the number of
constraints to grow with the sample size. They exhibited that the JEL can be used
to construct EL tests for moment based distribution characteristics (e.g. skewness,
coefficient of variation) with less computational burden and more flexibility than
the usual EL. This can be done in the U-statistic representation approach and the
vector U-statistic approach which were illustrated with several examples including
JEL tests for Pearson’s correlation, Goodman-Kruskal’s Gamma, overdisperson, U-

quantiles, variance components, and simplicial depth. They showed that tests are



asymptotically distribution free. They ran simulations to exhibit power improvement
of the tests with incorporation of side information.

Soon it was realized that it can also be used to construct point estimators. Qin and
Lawless (1994) linked empirical likelihood with GEE’s and investigated maximum em-
pirical likelihood estimators (MELE’s). They established consistency and asymptotic
normality of MELE’s under the usual regularity conditions, and demonstrated that
the variance of a MELE will not increase when the number of estimating equations
is increased. Furthermore, they showed that MELE’s are fully semiparametrically
efficient in the sense of least dispersed regular estimators (Bickel, et al. (1993), Van
der Vaart (2000)). Peng and Schick (2013) explored MELE’s in the case of constraint
functions that may be discontinuous and/or depend on additional parameters. The
latter is the case in applications to semiparametric models where the constraint func-
tions may depend on the nuisance parameter. Zhang (1995, 1997) used the method of
MELE’s to construct improved estimates in M-estimation and quantile processes with
the availability of auxiliary (side) information. He established consistency and asymp-
totic normality, and proved that the asymptotic variances of the resulting estimators
are smaller than those of the usual sample M-estimators and sample quantiles. It was
utilized by Hellerstein and Imbens (1999) for the least squares estimators in a linear
regression model and the application to a real data set was presented. These authors
dealt with finitely many of constraints. Peng and Schick (2013) has employed on-step
estimator to construct MELE’s. Peng (2015) developed a class of easy MELE’s which
is computationally more efficient. Recently, Tang and Leng (2012) used this idea to
construct more efficient estimators of parameters in quantile regression.

In this thesis, we study MELE’s in UGEE’s and their asymptotic behaviors. Our
technical maneuver is the jackknife empirical likelihood approach. It is well known
that the asymptotic behaviors of the U-statistic U, (h) is determined by h; (see Chap-
ter 2). Here we shall apply the theory of Qin and Lawless (1994) on h; to derive the
asymptotic behaviors of the MELE’s of the JEL for UGEE’s. These results for the
UGEE'’s are parallel to those of Qin and Lawless (1994). We obtain the uniform local



asymptotic normality for the logarithm of the JEL ratio in Chapter 3. We derive
the estimating equations for the MELE’s in UGEE’s in Chapter 4. Here we also give
a class of easy MELE’s and establish their asymptotic distribution. In Chapter 5,
we provide a number of examples. Here we demonstrate that efficient estimates of
moment based distribution characteristics in the presence of side information can be
obtained using JEL for U-statistics. In Chapter 6, we propose several JEL tests for
various multivariate and high dimensional symmetries. Some of the technical details

are provided in Chapter 7.



2. JACKKNIFE EMPIRICAL LIKELIHOOD FOR
VECTOR U-STATISTICS

In this chapter, we recall some facts about one-sample multivariate U-statistics and

introduce the JEL approach.

2.1 Vector U-statistics

Let (Z,.%) be a measurable space and P be a probability measure on this space.
Let Zy,...,Z, be independent copies of a Z-valued random variable Z with cumu-
lative distribution function F under P. Let h : R™ = R% be a known function that is
permutation symmetric in its m arguments. 6 € © is a parameter we are interested

in. A multivariate or vector U-statistic with kernel A of order m is defined as

-1
Up = Upp(h) = <n) Z WMZi,...,%Z;,;0), n>2.

m . )
1<i1<..<im<n

Throughout we assume h is F™-square integrable, that is, h € Lo(F™), where
Ly(F™) = {f: [|If|?dF™ < oo}, where [Jv|| denotes the euclidean norm of vecotr

v. We assume throughout that
E(h(;0)) = E(h(Z1,...,Zn;0)) = 0. (2.1.1)

This of course implies E(U,) = 0. Also, we shall abbreviate P,f = n~' 37", f(Z;)
and Pf = E(f(Z)). Let h,, = h and

he(z1, ...y 260) = E(h(21, ..o 26, Zewty - oy Zm3 0)), c¢=1,...,m—1,
Then h,. is a version of the conditional expectation, that is,

hc(zl, e ,20;9) = E(h(Zl, . .,Zm;9)|Zl = Z1,.. .,ZC = Zc)-



Let 6. be the point mass at z € Z. We now define
hi(z1,. .. 02:) = (0,, — P)...(0,, — P)P™°h, c¢=0,1,...,m.
Throughout we let
f=f-Pf

be the centered version of a function f for which Pf is well defined. Clearly A = hy.

2.2 JEL for vector U-statistics

Let Ufl:{) denote the U-statistic based on the n — 1 observations Z;, ..., Z;_q,

Zjt1, -, Zyn. The jackknife pseudo values of the U-statistic are defined as

Let R,; = Vi,; —mhy(Z;;0). Tt has been shown in (4.6) of Peng and Tan (2016) that

each component of R,; is of O,(n~/2), hence

Vi (0) = mhy(Z;,0) + Op,(n™Y?), j=1,....,n.

As argued in Peng and Tan (2016), this shows that each jackknife value an depends
asymptotically on Z;, so that f/nj, j=1,...,n are asymptotically independent. As a
result, if 7; is a probability mass placed at Z;, then approximately the same proba-
bility mass 7; is placed at the jackknife value an for 7 =1,...,n; because of the the
asymptotic independence of the jackknife values, the joint likelihood is approximately
the product of these m;’s. Consequently, it is justified to introduce the JEL for the

vector U-statistic U, (h) as follows:
F,(0) = sup { Hmrj e Py, Z']rjvnj(e) = O}, 0 €0, (2.2.1)
j=1 j=1
where &7, denotes the closed probability simplex in dimension n, i.e.

L@n:{'ﬂ-:(ﬂ-la-.-7ﬂ_n)—r€[0,1]”:71.1_’_..._'_7-[-”:1}.



Using Lagrange multipliers, Owen (1988) derived

1 1
- j=1,...,n, (2.2.2)

Tj
where ¢ satisfies the equation

% > % =0. (2.2.3)
j=1 nj

As (2.1.1) holds, f/nj = V,;. For notational brevity, we sometimes write f/nj = Vo

Peng and Tan (2016) showed that the JEL for vector U-statistics are asymptotically

chi-square distributed under the same usual assumption as for the asymptotic nor-

mality of vector U-statistics, that is, if Var(hi(Z)) is nonsingular then —2log %, (6,)

is asymptotic chi-square distributed with d degrees of freedom, i.e.

—2log ,@n(QO) — Xﬁ.






3. MAXIMUM EMPIRICAL LIKELIHOOD ESTIMATION

In this chapter, we give the local uniform asymptotic normality condition for the

log-JEL for UGEFE’s.

3.1 Asymptotic behaviors of the local logarithm of the JEL ratio

Let (Z,.7) be a measurable space, 2 be a family of probability measures on .#,
and 6 be a parameter of interest which is from an open subset © of R*. Let 71, ..., Z,
be independent and identically distributed (i.i.d.) 2Z’-valued random variables with
an unknown distribution @) belonging to the model 2. Recall that a kernel function
h : R™ s RY is permutation symmetric about its m arguments and satisfies (2.1.1).
We are interested in inference about the characteristic # and work with the jackknife
empirical likelihood (JEL) ratio %, (0) in (2.2.1).

Qin and Lawless (1994) studied the maximum empirical likelihood estimator
(MELE),

0 = arg max %, (f). (3.1.1)
0o

Recall that the local JEL ratio is defined as
R0y +n1?)
R, (00)

For a function f on 2 x ©, let f, f denote the first and second partial derivative of

Z(t) = log , teR bOy+nteo.

f with respect to parameter 6, that is,

. 0 , 0?
f(#0) = 25 f(2:0), f(0) = 55z f(20), z€Z, 0€6.

Recall h = h — E(h). Let us introduce the following assumptions.

(A1) There exist a neighborhood N (fy) of 6y and a square-integrable function G' on

Z™ such that h(zy,...,2zn,;0) is twice continuously differentiable with respect



10

to 0 for every (z1,...,2,) € Z™ with the first partial derivative h of full rank

and second partial derivative h satisfying

Hh(zl, cey Zmy O)]] F Hh(zl, o zmi ) <Gz, 2m), 0 € N(6p).

(A2) SUDge N (0y) E|h(Zy, ..., Zw; 0)||* < co.
(A3) W = m2E(hi(Z;0,)%?) is positive definite.

Remark 3.1.1 (A1) implies that ||A(z1,...,2,;60)| is also bounded by a square-
integrable function G*(z1, ..., 2,) on Z™ x N(6) provided that N(6y) is bounded
(by K). In fact, it follows from the mean value theorem that for 6 € N(f,), there

exist 0* lying between 6, and 6 such that
< Hh(’zh s 7zm;60>H + G(’Zla st 7Zm)H9 o 90”

< ||h(z1, -y 2m; 00)|| + 2K G (21, . .., 2m)

=G (21,4 Zm)-
Let w, = u,(6p) where
un(0) =n"*Y " mhy(Z;;0). (3.1.2)
j=1

We have the following uniform local asymptotic normality.

Theorem 3.1.1 Assume that (A1)-(A3) are satisfied. Then it holds the expansions
sup || — 21og % (0 + 0 2t) — (up — A)TW " (u, — At)|| = 0p(1)  (3.1.3)
lt<C

and

sup || Z(t) —tT ATW  u, +1/2tT ATWTLAL|| = 0p(1) (3.1.4)
lti<c

for every finite constant C, where A = —E[m;h(Z; 6o)].
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Note that A has full rank by (A1) and plays the same role as the quantity
—FElu(Z;0)] does in Qin and Lawless (1994). Note also that the quadratic function ¢
defined by

qt) =t"TATW tu, — 1/2tTATW AL, t € RY, (3.1.5)

is uniquely maximized by £ = (ATW'A)"LATW ~u,. This shows that 0 — %, (6)
has a local maximizer 6 such that
n'2(0 — 0)) — (ATW A TTATW e, = op(1).

Therefore,

0 =6y + (ATW—lA)*% > ATW T (Z5:00) + op(n?). (3.1.6)

Jj=1

This of course implies the asymptotic normality of é, ie.
V(0 —0) = (0, (ATW 4. (3.1.7)
Substituting (2.2.2) in %,(6), we get

—log %, (0 Zlog (1+€"V,,(0), 0€0, (3.1.8)

7=1
where ¢ satisfies (2.2.3). It is not difficult to see that under (A1) — (A3) the random

function 0 — 2,,(0) is continuously differentiable. Consequently, 6 and & = £(6) must

satisfy
Bin(0,6) =0, By, (0,€) =0, (3.1.9)
where
B, (0,6) = %Z (9) (3.1.10)
and §
By, (0,€) = 1 Z 1 +§T1V (0 )avnéée)Té. (3.1.11)

Note that (3.1.9) are the estimating equations for the MELE 6. Summarizing the

above discussion, we have the following result.
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Theorem 3.1.2 Suppose (A1) — (A3) hold. Then there is a mazimizer 0 for the JEL
0 — %, (0) such that 6 solves (3.1.9) and satisfies the stochastic expansion (5.1.6)
hence (3.1.7).

3.2 Some lemmas

To prove Theorem 3.1.1, we need the following lemmas with the proof delayed to

Chapter 7.

Lemma 3.2.1 Assume (A1)-(A2) are met. Then it holds for every finite C,

D,(C) = sup —ZHVW fo + nY2t) — mhi(Z;;00)||> = Op(1/n). (3.2.1)

ltj<c

Lemma 3.2.2 Under assumptions (A1)-(A2), it holds the expansion,

n

sup anl/Q Z(an(eo -+ nfl/zt) — miLl(Zj, 90)) + AtH = OP(l) (322)

jei<c s
for every finite constant C', with A = —E[m;zl(Z; 6o)].

To complete the proof of Theorem 3.1.1, we need a general result from Peng and
Schick (2013). Let T,1(t), ..., Tnn(t) be d-dimensional random vectors indexed by
t € R*, where k < d. We are interested in the asymptotic behavior of the empirical

likelihood process

= sup { Hmrj T E @n,ZWJ i ( 0} It < C,

where C' is a positive constant. We shall use the following result which is a special

case of Lemma 5.2 of Peng and Schick (2015).

Lemma 3.2.3 Let x4, ..., z, be d-dimensional vectors. Set

L 1l T
z* —lrgjangliH m—ﬁzﬁj, S—;Zxﬂﬂj,
7j=1 7j=1
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and let \ denote the smallest and A the largest eigen value of the matrixz S. Then the
inequality A > 5||x||x* implies

A3 2n||z|]Px*

| —2logZ —nz'S™'z|| < (A + 4A2) O e (3.2.3)
where . .
X = sup{Hmrj ST E ‘@”’Zﬂjxj = 0}.
j=1 j=1
Motivated by this we introduce the quantities
T = s ITuOl Talt) = 3T, 8a(8) = 1 ST 0
j= j=

We impose the following conditions.
(B1) supy,<c Th(t) = op(n'/?).

(B2) There is a positive definite d x d matrix S such that

sup ||S,(t) — S|| = op(1).
le<c

(B3) There exist k-dimensional random vectors u,, and and d x k matrix A of full

rank & such that u, = Op(1) and

sup |[v/nT,(t) — u, + At|| = op(1).
lt<c

We have the following result with the proof delayed to Chapter 7.

Lemma 3.2.4 Suppose (B1)-(B3) hold. Then

sup || — 2log %, (t) — (u, — At)T S~ (u, — At)|| = op(1) (3.2.4)
lt<C

and therefore

‘@”(t) T AT -1 1 T AT -1
1 —t A S u,+ =t A STAL = 1). 3.2.5
IEFSPCH % 2%.0) "7y | =ortl) (3:29)
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3.3 Proof of Theorem 3.1.1

With the help of the Lemma 3.2.1 — Lemma 3.2.4 we now prove the main result
PrROOF OF THEOREM 3.1.1. We verify the assumptions of Lemma 3.2.3 with
T,;(t) = Vij(0+nY2t), S = W, u, = n~/? > i mhy(Z;;0), and A = —E[mhy(Z;6,)]

Since E||mhy(Z;6,)]| is finite, we obtain

max |[mhy(Z;;00)|| = op(n'/?). (3.3.1)

1<5<n
For a fixed C, note that we have the bound

Sup - max |V (0 + 07128 < max |lmhy(Z;;0)|| + n*/2 DY/
[t <c 1sisn lsj<

where D, is given in (3.2.1). It then follows from Lemma 3.2.1 that D,, = 0,(1) hence

sup max ||V;,;(0 +n"V2t)|| = op(n'/?).
Itl<c 1<j<n

This implies (B1). From Lemma 3.2.2 and the central limit theorem it follows that

(B3) holds. We are now left to verify (B2). To this end, set

3

1
— Z (Z;0)h{ (Z:0).
By (A2),

W, — W| = op(1). (3.3.2)
We conclude (B2) from Lemma 3.2.1, (3.3.2) and the bound

_ 1 <& 1
la™ (Su(t) — Wa)al| = IIE > @V (0 + 0 EZ (a"hi(Z;:0))||

< Dy + Zth 0)1°Dn)",

valid for every unit vector a in R¥, every ¢ with ||¢|| < C. We now apply Lemma 3.2.3
|

to complete the proof of Theorem 3.1.1.
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4. EASY MAXIMUM EMPIRICAL LIKELIHOOD
ESTIMATION
In this chapter, we discuss the existence of maximum empirical likelihood estimate
(MELE) 6. We derive the estimating equations for the MELE’s and obtain their

asymptotic behaviors. In the end, we give a class of easy MELE’s and establish their

asymptotic distributions.
4.1 MELE’s and semiparametric effeciency
If hy were a known function, we would work with the empirical likelihood ratio,
K (0) = sup { Hmrj T E P, Zﬂjmﬁl(Zj;G) = O}, 0 € 0. (4.1.1)
j=1 j=1

It follows from Owen (1988) that if Var(mh,) is finite and positive definite then (4.1.1)

reaches its maximum when

1 1
B 51 + meiLl(Zj;Q)’

T

where € = (£, ...,&;) " are Lagrange multipliers, which is a d x 1 vector and satisfies

Xn: mﬁl(Z],H)
1 + éTmizl(Zj; 9)

j=1
Moreover, £ — 0 as n — oo.

In addition to satisfying (A1)-(A3), we further assume FG® < oo. It then follows
from Lemma 1 of Qin and Lawless (1994) that as n — oo, with probability 1 the EL
ratio function in (4.1.1) attains its maximum value at some 0 in the interior of the

ball [|0 — 6o|| < n~'/3, and 0 and £ = £(0) satisfy

Aln(éa g) = 07 AQn(éa g) = O’ (412)
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where R
An0,6) = = m(Z;6) (4.1.3)
n J=1 1 + €Tmh1(Zj; 9)
1 1 Omhi(Z;;0)7

The equations in (4.1.2) are theoretically useful and can’t be used to find the MELE’s
defined by the JEL ratio (2.2.1) because h; is unknown. Instead, we find the MELE’s
by solving the estimating equations in (3.1.10) — (3.1.11). The next lemma states that
both sets of equations give the same solutions as the sample size tends to infinity.
To this end, let No(0p,0) = {0 : |0 — 6] < n 13} x {&€ : ||€]] < n~'/3} denote
a neighborhood of (6y,0). We have the following lemma with the proof delayed to
Chapter 7.

Lemma 4.1.1 Assume (A1)-(A3) hold. Then
sup ||B1n(97§) - Aln(07€)|| = OPU—), (415)
(0,£)€No(60,0)

and

sup || Ban(6,€) — A2 (0, )| = 0op(1). (4.1.6)
(0,6)€No(60,0)

Consequently, from Lemma 4.1.1 it follows that for large n, there exists some
point 6 in a shrinking neighborhood of 6y, such that 6 and € = £(6) satisfy (3.1.9)
and the JEL (2.2.1) reaches its maximum value at (6, €). These statement hold on an
event Q with P(Q) = 1 at least for sufficiently large n. In general, on its complement
Q¢ where (6,€) are not defined we define them to be arbitrary numbers. The below

theorem gives the asymptotic normality and the proof can be found in Chapter 7.

Theorem 4.1.1 Assume (A1)-(A8) hold with the dominating function G satisfying
E(G3) < 0o. Then, as n tends to infinity, with probability one 6(0) attains its mai-
mum at some 0 in a shrinking neighborhood of 0y, and 6 and & = 5(@) solves (3.1.9),
and satisfy

Vil —6y) — A (0,V), n(é—0)— 4(0,U), (4.1.7)
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where
1

V = (E(h)" (B(§) " B(h))
U— %(E(}}?Q))_l(fd — E(h)VE() T (E(R§2) ™),

and 0 andé are asymptotically uncorrelated.

As a result, the weights 7;, 7 = 1,...,n can be estimated by

1 1
nil+4 ngﬁl(Zj; é),

~

7Tj:

j=1,...,n. (4.1.8)
This, in turn, yields an efficient estimate of the DF F' as follows:
Fu(z) =) #1(Z; < 2). (4.1.9)
j=1
Remark 4.1.1 The asymptotic variance matrix V' can be consistently estimated by
~ n s AT n o~ AN 1 n 4 ~ -1
j=1 j=1 j=1

Theorem 4.1.1 also can be used to get approximate confidence limits for € or F.

By the U-statistics theory, the asymptotic distribution of a U-statistic U, (h)
of order m with kernel h is dictated by h;. Thus we apply Corollary 1 of Qin and
Lawless (1994) with their estimating function g = h; to obtain the below result.

Corollary 4.1.1 Assume that the assumptions of Theorem 4.1.1 hold. Suppose d >
k. Then the asymptotic covariance-variance matriz V =V, of \/ﬁ(é — 6) does not
increase (in the sense of positive definiteness of positive definite matrices) as the

number of estimating equations increases.

Using the same argument as above and applying Theorem 3 of Qin and Lawless

(1994), we have the following.

Theorem 4.1.2 Under the assumptions of Theorem 4.1.1, the MELE 0 is fully effi-
cient in the sense of Van der Vaart (1988) and Bickel, Klaassen, Ritov and Wellner
(1993).
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The efficiency criteria used are that of a least dispersed regular estimator or that
of a locally asymptotic minimax (LAM) estimator. These criteria are based on the
convolution theorems and on the lower bounds on the local asymptotic risk in LAN
(locally asymptotically normal) and LAM families, see the above references and ad-

ditional references therein.

4.2 Easy maximum empirical likelihood estimation

In this section, we study a special case of the U-statistics based estimating equa-
tions, that is, some of the equations do not involve parameters. At a first glance, it is
seemingly restrictive for use. But actually it is quite useful as we shall demonstrate
below. As to this special case, we derive the estimating equations for the MELE’s
which are computationally faster than the usual MELE’s — easy MELE’s — as the
solutions of the estimating equations given before.

Consider a kernel functions of the form,
WZyyoos Zm;0) = (W(Zy, .., Zm; 0) T 0( 20y oo Zm) )T,

where v : R™ x O — RP and v : R™ — R? are measurable functions and O is an

open subset of R¥. Suppose u and v satisfy
E(u(Zy,...,Zy,;0)) =0, 0€0, (4.2.1)

and

E(w(Z,...,Z)) = 0. (4.2.2)

While (4.2.1) serves as a criterion equation for the parameter 6, (4.2.2) describes side
information about the underlying distribution. The parameter 6 is usually estimated
by the M-estimate, the solution to the sample version of (4.2.1), that is, the UGEE
with kernel u(;6),

Uy (u(; 0)) = (;) B S ulZi... Z,,30)=0, 6€0, (4.2.3)

1<ip < <im<n
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where we assume, without loss of generality, that u is argument symmetric about its
m variables (otherwise we symmetrize it). The M-estimate is not efficient in general
as the side information given by (4.2.2) is not utilized. Often we assume that the
number p of equations in (4.2.1) is equal to the dimension k of the parameter 6
(otherwise we can eliminate those redundant equations). Throughout this section we
assume p = k.

We now work with the JEL,
Fn(6) = sup { Hmr] ™ e WH,Zijec (0), V) = o}, heco, (4.24)

where Vi, V. are the jackknife pseudo values based on the U-statistics with kernel

function u and v respectively.

In this case, V = m?E((@1(Z;600)",01(2)") " (@1(Z;60)",9:(Z) ")), so that
E(a?)  E(io])
E(oay) B0

V =m? (4.2.5)

Introduce the following assumption.
(A4) Suppose u satisfies (A1), u and v satisfy (A2), and V satisfies (A3).

Under (A4), we can apply Lemma 3.2.1 and Lemma 3.2.2 to u, so that it holds for

every finite C,

. 1

D, (C) = sup — Vi (6o +n~ 120y — miiy (Z;;00) ) = Op(=). 4.2.6
”tI;CnZn ) min(Z; )| = Op(1). (4.26)

sup ||n” 1/22 (Voi(0o +n~ V20) —miiy (Z;;600)) + Aut|| = op(1), (4.2.7)

lt<c

where A, = —FE[mi(Z;60)] of full rank. Let A, = Oy and A = (A], AT Tt
follows from Theorem 3.1.1 holds for the JEL (4.2.4). Let & = (fu( " I ) be the

Y(gx1)

Lagrange multipliers. Then we have

1 1 .
T = — 7=1...,n,

nl+&Va0) + &V

u ' nj
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where ¢ satisfies
Zn: vec(V,4(0), V) _
L+ & Vou(0) + &V,

j=1 u ' nj

Thus, similar to the discussion in the previous section, as n — 0o, (4.2.4) attains its

maximum value in probability at some 0 in a shrinking neighborhood of 6y, and 6

and € = (§;,6))" = (€u(0), €))7 satisty

Cin(0,6) =0, Con(0,€) =0, (4.2.8)
where
1 <& vec(V%(0), V)
Cin(0,6) = = nj ng__ 4.2.9
1n(6,¢) n;HgJV%(e)ﬁmj (4.29)
Con(0,6) = = T - 4.2.10
w08 =22 T r ey 210

Therefore, as a corollary of Theorem 4.1.1, the asymptotic properties of the MELE’s
0 of (4.2.4) can be obtained as stated below. As a convention, we drop the argument
at the true value of parameter so that u(Z;6y) = u(Z), E(u(Z;0y)%%) = E(u®?*(Z2))
and of course E(u®?(Z)) = E(u®?), etc. Under (A4), V is invertible. Let the inverse
of the block matrix V' be V=1 = (V¥),,;_15. By the inverse formulas for a block

matrix, we have

Vi —Vina (o] )(E(57?))
—Van E(0vaf ) (E(a?)) ™ %

V= , o (4.2.11)
Vive = B(af?) — B(a o] ) (E(T72) " E(oy)),
Varr = E(u?) — E(0yii) ) (E(a5?)) " E(idy).
Theorem 4.2.1 Suppose (A4) holds. Suppose also p = k. Then, as n tends to in-

finity, with probability one é(&) attains its mazimum at some 0 in a shrinking neigh-

borhood of 0y, & = (O,éJ)T solves (4.2.8), and satisfy

ﬂ(é - 00) - ‘/V(()? V)? \/ﬁ(év - 0) - JV<07 U),
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where

V= (B(in) Vi (E(in) ", U= Vaa — VIVTLV™

and 6 and é are asymptotically uncorrelated.

Remark 4.2.1 As the asymptotic variance of the estimate of the UGEE (4.2.3) is
Y = (E(ﬁl))_lE(ﬂ{@Q)(E(ﬁl))_T, the asymptotic variance of the MELE’s satisfies
V<

Now let us expand the constraints in (4.2.4) as

> Vi) =0, veo, (4.2.12a)
> mvy=0. (4.2.12D)
j=1
Based on (4.2.12b), we look at the JEL,
S, = sup { Hmrj tm e Py, ZﬁjV,fj = 0}. (4.2.13)
j=1 j=1
This has the solution
. 1 1 .
LS S — ]:1,...,77,,
n14+EVy
where fv satisfies
n VU~
Y —H =0 (4.2.14)
T1/v
= L+&, Vi

Naturally, we substitute 7; in (4.2.12a) to get

_Z1+5T _0. (4.2.15)

Therefore, we find &, = 0, and £ = (Opxl,év). It is worth to note that (4.2.14) —
(4.2.15) are identical to (4.2.9) — (4.2.10). Consequently, we can find the MELE’s by
solving (4.2.14) — (4.2.15). We refer the MELE’s as the solutions to (4.2.15) to as
the easy empirical likelihood estimates as they have less computational burden than
those usual MELE’s as the solutions to (4.2.9) — (4.2.10) (or (3.1.9)) as pointed by
Peng (2015).
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5. APPLICATIONS: EXAMPLES

In this chapter, we give several examples.

5.1 Estimating the expected values with side information

We are interested in estimation of the expected value 6 = E(¢(Z1,...,Z,,)) for
some known function ¥ : R™ +— R? in the presence of side information given by
ET(Zy,...,Zy) = a for some measurable function 7" : R™ — R and constant a.
Without loss of generality, we assume both ¢ and 7" are argument-symmetric. Hence
our kernel functions are given by

W21y Ly 0) = W( 21, ..., Zy) — 0, (5.1.1a)
{U(Zl,...,Zm)—T(Zl,...,Zm)—a. (5.1.1b)
We shall apply Theorem 4.2.1 to derive the asymptotic behaviors.

Let us first mention that U-statistics are quite general. Heffernan (1997) showed
that a statistical functional § = 6(Q) of a distribution ) admits an unbiased estimator
iff there is a function ¢ of m variables such that 0(Q) = [---[ ¢ dQ™, and derived the
U-statistic as the unique MVUE of a central moment. Moment based distribution
characteristics (e.g. Pearson’s correlation) are functions of central moments, so that

the sample versions as test statistics can be expressed as functions of U-statistics.

Example 1 ESTIMATING THE MEAN DIFFERENCE IN THE PRESENCE OF KNOWN
COVARIANCE. Let Z = (X,Y) be a bivariate random vector with finite second mo-
ments. We are interested in estimating the mean difference § = E(X —Y') when there
is available the side information Cov(X,Y") = a for some known a. Let Z; = (X, Y;),

t=1,...,n be a random sample of Z. Let

1
u(Zl,ZQ;G) = §<X1 —|—X2 —}/1 —}/2) —0
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be the symmetrized kernel function. The side information can be expressed by the

U-statistic based equation E(U,(v)) = 0 with the kernel equal to
v(Zy, Zy) = %(X1Y1 + XY — XhY, — XoY)) —a.
We shall apply Theorem 4.2.1 to derive the asymptotic behavior of the MELE 0.
Let E(X) = 1, E(Y) = pg, Var(X) = 0%, and Var(Y) = 03. Then
uy(21;0) = E(u(Zy, Z9;0)| 21 = z1)

= B =)+ 5( = ¥2) = 0

1 1
= 5(351 - yl) + —(Ml - Mz) — 0,

2
1 1
= 5(% — Y1) — 597
Ul(Zl) = E(U(Zl, ZQ)|Zl = Zl)

1
= 5(51513/1 + E(XoY2) — w1 — y1jn) — a
1

= 5(%91 + paple +a — Tiplo — Yiph1) — a,
1 1
§(~T1 —p1) (Y1 — p2) — 5@,
and
) 1
Uy(z;0) = —3

Let 6 be the MELE. Then it follows from Theorem 4.2.1 that

Vin(f =) — A (0, V),
where
% —E(X-Y) - 90)2 . (E[<(X -Y) - 90) ((X — ) (Y — /;2) - a)])2
E((X = p)(Y — p2) — a)
(B(X — )Y — ) = B((X — )Y — )?) )

E((X = m)*(Y = p2)?) + a?
Example 2 ESTIMATING THE DF IN THE PRESENCE OF KNOWN CV. By (4.1.9),

_ 2 2

we can construct an improved distribution function (DF) F' of a random variable Z
in when side information is available. Let Z;,

W2, Zot) = S([Z < ] 411 <1)), teR

ooy Zy beiid. copies of Z. Let
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Then
0y = B2, Z2:1)) = 5(P(Zy < 1) + P(Zy < 1) = F(0).

Often we have some side information about F. Here we assume the side information
is given by o/u = cg, that is, the coefficient of variation of Z equals to a constant cq.

This side information can be expressed as a U-statistic equation by taking
1

Therefore, with the kernel functions equal to

1
u(Z1, Za; 0;) = 5(1[21 <t +1[Zy <t]) — b,
1 2 2 2
U(Zl, Z2) = §(Z1 + ZZ) — (1 + C(])ZlZQ,

the jackknife pseudo values V%, V), can be computed, and the estimates (ét,é) can
be obtained as the solutions to the estimating equations (3.1.9). Alternatively, we
can apply (4.2.14) and (4.2.15) to this example and obtain computationally faster

estimates as the solutions to the below equations: Find é as the solution to

n VU

D e =0
j=1 +§v nj

while ét is the solution to
I~ Vi Viai(6e)

n 1_|_§T

As

. 1 1 1

My = ———>, j=1,...,n.
b1 vy

by (4.1.9), an efficient estimate of the DF F(2) is given by
2)=> #1[Z; < 2.
j=1
Here we suppress the dependence of 7; on the fixed t.

Example 3 ESTIMATING THE CONVOLUTION WITH SIDE INFORMATION. Let 7,

, Zpn be i.i.d. copies with a random variable Z on R with finite p = E(Z) and
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02 = Var(Z;). Let (21, 2) = 1[z1 + 22 < t],21,22 € R for known ¢t € R. Hence
0, = P(Z1 + Zy < t) is the convolution of Z; and Z,. Suppose that there is available
the side information that the coefficient of variation is known: o/u = ¢y for some

known constant ¢g. The kernel functions can be constructed as
w(Zy, Z2;0) = 1(Z1 + Zy < t) — 0y,
W2, ) = 5B+ B) ~ 1L+ D2
Let F' be the DF of Z. It follows
ui(z1;0) = E(u(Zy, Z9;0)|Z1 = z1) = F(t — z1) — b4,
o) = B(Z0, %)|2 = 2) = 5 (24 (1+ &) — (14 e

and

ul(zl; Ht) = —1.

By Theorem 4.2.1, the MELE 0, is asymptotically normally:
Vi, — 0,) — (0, V),

where

Vi, =E(F(t — Z1) — 6,)*

(E(F(t —Zy) — Qt)(%(zf + o2+ p?) — (1+ C%)MZ1)>2
E(G(ZE+ 1+ )u?) — (1 + ) uzy)?

Example 4 ESTIMATING GINI’'S MEAN DIFFERENCE WITH SIDE INFORMATION.
Let Zi,...,Z, be iid. with r.v Z. Gini’s mean difference of Z; and Z5 is de-
fined as E|Z; — Zs|, which is an alternative index of variability. It is estimated by

the U-statistic

-1
n
UnQ:(Q) >z zy).

1<i<j<n

Suppose there is available side information that the inter-quartile range is known,

Pl < Z < q3) =0.5,
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for some known constants ¢q, g3. Clearly the U-statistic as estimate does not utilize
this side information. Here we use the JEL method to incorporate the side informa-
tion. To this end, let § = FE|Z; — Zy|. The kernel is then given by u(Z;, Z2;0) =
|Z1 — Z5| —6. The side information can be expressed by the U-statistic with the kernel
equal to
v(21,22) = (U < 21 < @3] + 1 g1 < 22 < g3])/2 = 0.5.
It is easy to calculate
ui(z1;0) = Elzy — Z3| — 0,
v1(21) = 1 < 21 < g3)/2 — 0.25,

and 1 (z1;0) = —1. By Theorem 4.2.1, the MELE 6 has asymptotic normal distribu-

tion with the variance equal to
E(ui) = (E(ui1))?/E(v}) = E(uj) — 16(E(uv1))*.

Example 5 ESTIMATING THE OVERDISPERSION PARAMETER WITH SIDE INFOR-
MATION. Overdispersion is common in count data. This can be modeled by overdis-

persion parameter ¢ as

Var(Z) = 6E(Z), ¢ > 1. (5.1.2)

Let Z1,...,Z, be count data (frequency data). Suppose there is available side infor-

mation that

We are interested in estimating the overdispersion parameter ¢. Clearly (5.1.2) can
be written as

E(Z*) = ¢E(Z) + (E(2))?,

which is equivalent to

E(Z} — ¢Z, — Z,Z,) = 0.

Thus the corresponding U-statistic based equation with the kernel equal to the sym-

metrized function:

u(Zy, 23 6) = %(Z% +73) - %(Zl + 2o) = Z1 2. (5.1.3)
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The jackknife pseudo value of (5.1.3) is one constraint for estimating ¢. Moreover,

the kernel function of the side information can be constructed as
1
v(Zy,Zy) = 5(1[21 =0+ 1[Z, =0]) — BK. (5.1.4)

Now we apply Theorem 4.2.1 to (5.1.3) and (5.1.4) to estimate ¢. Let E(Z) = u. We

have
u1(21; @) =E(u(Z1, Zo; 9)| 2y = 1)
1
:E(ﬁ(zf + Z3) — %(21 + Zy) — z212)
1 10) 1
=52~ gt i A
U1<Zl) :E(U(Zl, ZQ)|Z1 = Zl)
1
1
25(1[21 = 0] — I),
and
. z
Uy (2;0) = 7

Hence, by Theorem 4.2.1,

Vi(§ — o) = A (0, V),

where ( )2 ( )2
4 E(ujvy) 4 E(uyvy)
V= (B - )y A (g g )y
) = ) = e (Pl = 4
Example 6 THE SIMPLICIAL DEPTH FUNCTION. Let Zy,...,Z, be iid. with a

distribution @ on R™. The simplicial depth function D(z) of a point z € R™ with

respect to distribution () is defined as follows:
D(z)=P(z € A(Z1,...,Zp41)), 2z €R™,

where A(Zy, ..., Zy+1) denotes the random simplex with vertices 71, ..., Z,41, i.e.,

the closed simplex with vertices Zi,..., Z,4+1. For a point z € R™, D(z) is the
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value of the population simplicial depth at point z. The usual estimate of the depth
function is the sample simplicial depth D, (z) given by the U-statistic,

Dn(z):< " )1 S 1:€AZy,... Z,,)] zER™

m+ 1 4 ,
1<i1 < <tm+1<n

The depth function can be used to define the multivariate medians and possess ro-
bustness property. When additional information is available about the underlying
distribution ), our JEL approach is capable to employ it into the estimation. In
this example, we assume the marginal medians of Z are known as the side informa-
tion. Let Z = (ZW, ..., Z")T and M = (aV,...,a™)T where ) = med(ZV),
l=1,...,m Let Z; = (2",....Z2"")T, j=1,...,n. Fix z € R" and D = D(z).

The kernel functions can be constructed as

U(Zl, Ce ,Zerl;D) = ]_[Z € A(Zl, .. -;Zm+1)] — D,

and .
1 < 1
! — 0] I _
(2, 7Zm+1)—m—+1j1 (1[Z; Sa()]—§), l=1,....,m
Thus
u1(21; D) :P(Z € A(zy, Zo, ,Zm+1)) D:;
1 1 1 m+1 1
0] _ 0 O @ )
= 1 < S I R - =
() =g Al <aT = 5) m+1FJ (7<) =3)
1 W o 1
:m_{_l(l{z Sa()]_§)’ l:l7 ’m’
and
(2 D) = —1.

Let v = (v%l), . ,vgm))T. Hence, by Theorem 4.2.1, the MELE D satisfies

~

Vn(D — D) — A(0,V),

where

V = E(u?) — E(uo])(E(v0])) " E(nyu).
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5.2 Smoothed U-quantiles

The theory of U-quantile provides a unified treatment of several commonly used
statistics, see Arcones (1993). Let x : R™ +— R be a measurable argument-symmetric
function. Associated with x there induces a distribution function
H(t) = P(k(Z1,...,Zy) < t), t € R. The minimum variance unbiased estimate
(MVUE) of H(t) is the U-statistic of order m given by

Up(t) = Upp(t) =: (”)1 > 1s(Zy...., %) <t], teR,  (52.1)

1<i1 < <im<n
and k shall be referred to as the kernel (of the U-quantile). As H(t) is a distribution
function, its p-th quantile ¢, is well defined by t, = inf{t : H(t) > p} for p € [0, 1].
The U-quantiles include the Hodges-Lehmann median estimator, Gini’s mean differ-
ence, Theil’s estimator of the slope in a simple linear model, and Kendall’s tau. They
correspond to the U-quantiles with py = 1/2 and the kernels (21, 22) = 271 (21 + 22),
|21 — 22|, (31 — y2)/ (71 — 22), and (21 — 22)(y1 — y2) respectively.

As the U-quantiles are discontinuous, our theory does not apply here. We now
consider smoothed U-quantiles. Let F' be a continuous DF. A continuous estimator

of H(t) is the smoothed U-quantile,

Hyp(t) = (”) S B((t-w(Z,.... Z,)), tER (5.2.2)

M i< <imen
where Fy(t) = F(t/b) with b a bandwidth. This is the smoothed version of the U-
statistic in (5.2.1). Given p € [0, 1], the p-th U-quantile solves H(t,) = p. The
smoothed sample p-th U-quantile £, is a solution of H,,,(t,) = p.
Let us take the Theil-Sen estimator for an illustration. The Theil-Sen estimator
is a robust estimator of the slope in a simple linear model. Suppose that Z; =

(X;,Y;))T,i=1,...,n are independent and satisfy

Y;:Oé—l-ﬂXi—i-Ei, izl,...,n,
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where « is the intercept and f is the slope, and €;,7 = 1,...,n arei.i.d. The Theil-Sen

estimator of the slope is the median of the slopes (Y; —Y;)/(X; — Xj):
B =med {(Yi — V) /(Xi = X;): 1<i<j<n},
where X1, ..., X, are assumed to be distinct for the sake of convenience. In this case,
K(21,22) = (Y1 — ¥2) /(21 — 22) and
H(t) = P((Yi — Y2)/(X, - X2) < 1)

While the corresponding U-statistic is

v = (5) 3 100 -v)x-x) -5 <0
the smoothed version is
Hal9)= (3) X R84 - )/ - X)) (523

Hence, to estimate 3, one constraint can be chosen as

1
H,o(8) — 3= 0. (5.2.4)
In a simple linear model, we assume errors ¢;, ¢ = 1,...,n are i.i.d. with the

normal with zero mean. Therefore, we have

PO<e;) = % (5.2.5)

Here we relax the normality assumption to (5.2.5), the assumption of zero median
of the error and use it to improve the efficiency of the Theil-Sen estimator. The

U-statistic based equation of (5.2.5) is

n\ ! €+ €5 1
E 1 =L 2=, 2.
(2> ) 0 < 5 ] 5 0 (5.2.6)
1<i<j<n

Thus, we obtain the smoothed version of (5.2.6)

() X meg-g-0 62

1<i<j<n
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This gives us another constraint.

Now let us apply Theorem 4.1.1 to get the asymptotic distribution of the im-
proved Theil-Sen estimator 5. From (5.2.4) and (5.2.7), the kernel is h(Zy, Zs; 3) =
(W21, Z5; 8), (21, Z2; B)) T, where

W2y, Zy; 8) = Fy(B — (Y1 — Ya) /(X1 — X)) — 1/2,
h®(Z1, Zs; B) = Fy((Yi + Ya — B(X1 + X1))/2) — 1/2.
Therefore,
1) (213 8) = E[Fy(B — (31 — Ya) /(21 — X2))] = 1/2,
WP (211 8) = E[Fy((y1 + Yo — Bla + X2))/2)] — 1/2.
Let f be the pdf of F and f,(t) = f(£). Since F is a cdf, it follows

hgl)(zl; B)=EMb (B — (1 — Ya) /(11 — X)),
h?)(zl; B) = E(— (z1+ X2)/(2b) fo((yr + Y2 — B(z1 + X3))/2)).

Using these we can obtain the asymptotic normal distribution of the MELE by The-

orem 4.1.1.
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6. AN EL APPROACH TO GOODNESS-OF-FIT TESTING
FOR MULTIVARIATE AND HIGH DIMENSIONAL
SYMMETRIES

In this chapter, we develop empirical likelihood tests to various multivariate and high
dimensional symmetries based on the characterizations of the symmetries. We report

some simulation results.

6.1 Testing multivariate symmetries
6.1.1 Spherical symmetry
A random vector X in R? is spherically symmetric about a point § € R? if
X—-0L1(X—0),

for every orthogonal d x d matrix I', where 2 denotes both sides of the equality have
an identical distribution. Spherical symmetry is equivalent to the assertion that the
radius V' = || X — || is independent of the spatial unit vector U = (X — 0)/|| X — 0],
which is uniformly distributed on the unit sphere St in R% ie. U ~ %(8%71).

Independence of V' and U of course implies
E[a](v)bk(U>] :07 Qa; € L2,0<FV)7 bk € LQ,O(FU)aij: 1727"'7 (611)

where Ly(F) = {h: [h*dF < oo} and Lyo(F) = {h € Ly(F): [hdF =0} for a
distribution F', and Fy and Fy; are the distribution functions of V' and U respectively.
There are numerous choices for a and b, for example, one can choose the sign function
a1(v) = sign(v), Huber’s function as(v) = v1[||v|| < 1.4] + 1.4sign(v)1[||v|| > 1.4] and

the coordinatewise projection functions b, (U) = Uy, k= 1,...,d of U.
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As U is uniformly distributed over % (S97!), we can use it as side information. To
this end, we shall resort to the Jackknife empirical likelihood for vector U-statistics
developed by Tan, et al. (2015). Let (V;,U;),i = 1,...,n be a random sample of
(V,U), and let R = U; + Uy and R° = R/||R||. Tt is well known that U being
uniformly distributed over the unit sphere %/ (S%°!) is equivalent to the assertion

that |R|| and R® are independent. Independence implies
E(a(|RNR%) =0, € Lyp(G),l=1,2,...,

where G denotes the distribution function of |R||. Note that G is known and com-

putable. We mention the formula below in the usual case.

Remark 6.1.1 For d = 3, the distribution function G of ||R|| is given by

1 dIldl‘Qdyl dy2

Gr) = —— ,
167 Jizj=1 yl=t )zt <r /(1 — 22 — 22)(1 — y? — y3)

where = = (21, %9, 23),y = (y1,¥y2,y3) and 0 < r < 2.

We can choose ¢; as for a;. As G is known, a systematic way of choosing ¢;,1 = 1,2, ...
is to take them to be basis functions of Ly o(G), for example, ¢; = ¢; o G, where
@i(t) = v2cos(lnt),t € (0,1) is the usual orthonormal trigonometric basis. Denote
cr, = (c1,...,cr)" for some positive integer L. Let (U, Us) = cr(||R||) ® R°, where
® denotes the Kronecker product. Then it is an argument-symmetric vector kernel
and satisfies E(k(Uy,Us)) = 0 by the preceding independence. The vector U-statistic
with x as the kernel is now given by
-1
Un(cz) = <2‘) 3 k(UL
1<i<j<n

The Jackknife pseudo values of the vector U-statistics are calculated by
Vo =nUn(cp) — (n— DU (er), j=1,...,n,

where U,Siji) is the vector U-statistic based on the n —1 observations with the deletion

of the jth. The preceding discussion motivates us to use the first few equations in
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(6.1.1) as constraints to construct the Jackknife empirical likelihood ratio with side
information as follows:
R = sup { Hmrj cm e Py, ijvec(aJ(Vj) ® b (Uj), Vyiler)) = O},
j=1 j=1
where ay = (aM, ..., a7 b = (D, b¥))T and vec(X,Y) denotes the column
vector consisting of stacking X,Y. Let Z:° be the empirical likelihood ratio when

the Jackknife pseudo values are not included. It follows from Corollary 3.1 of Tan, et

al. (2015) that the following holds. Denote x1(u) = E(k(Uy, Us)|Uy = u).

Theorem 6.1.1 Suppose the covariance Cov(vec(a;(V),bx(U),k1(U)) has full rank
JK + Ld. Then —2log Z:*" has an asymptotic chisquare distribution with JK + Ld

degrees of freedom, that is,
—2log %, = X%JKJrLd)'
If E(aS*(V)E(bS2(U)) has full rank JK, then —2log #5° = X%k

A systematic way of choosing aV¥) is o) = p; o Fy,j = 1,2,..., which is an
orthonormal basis of Ly o(Fy). But it is not computable as Fy is unknown. One
can estimate it by the empirical distribution function Fy and obtain computable
al) = ©; o Fy. With estimated constraints, we now work with the empirical likelihood

ratio:

B = sup{Hmrj i€ ‘@”’Zﬂjd‘](vj) QU; = 0}.
i=1 j=1

We will allow J, d to depend on the sample size n, J = J,,d = d,, and grow to
infinity slowly. The following is the asymptotic result with the proof delayed to the

last section.

Theorem 6.1.2 Suppose J,d, — oo but J3d) + Jid> + J>d> = o(n). Then

—2log 5 — Jud,
VIud,

= H(0,1). (6.1.2)
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This shows —2log @ff is approximately chisquare distributed with J,,d,, degrees of

freedom. Thus for 0 < a < 1,
P(- 2log #°° > XG0 (1—a)) = a,

where x23(1—a) is the (1 —a)-th percentile of the chisquare distribution with d degrees
of freedom. Accordingly the test 1[—2log %55 > X3, 4, (1 —a)] has an asymptotic size
a. If J, = J for all n, then this is the case of the sphere with infinity dimension. If

d, = d for all n, then this is the case of a d-dimensional sphere.

6.1.2 Rotational symmetry
A random vector X € S? is rotationally symmetric about a fixed direction @ if
X-0L0(X-0),

for every d x d rotation matrix @ about the direction @ in R?. Rotational symmetry
is equivalent to the assertion that the projection T = #"X of X onto the direction
0 is independent of the unit tangent ¢ at 6 to S, which is uniformly distributed
on 8472 e & ~ U (8%(0)), where S¥2(0) = {z € R : ||z|| = 1,270 = 0}. For
more details, see page 179 of Madia and Jupp (2000). Notice that X satisfies the
tangent-normal equation,

X =T60+V1-T%. (6.1.3)

Rotationally symmetric distributions include von Mises-Fisher-type distributions with
densities of the form f(6"x),z € S, Waston-type distributions with densities of the
form g(/{(@Tx)Q),x € 8%, and Bingham-type distributions of densities of the form
h(z"Kz),z € 8¢, where f, g, h are nonnegative functions and K is a positive definite
matrix.

In modeling directional and axial data using parametric distributions, one often
wishes to test the null hypothesis that the underlying distribution is rotationally

symmetric about # = 0,. By exploiting the preceding independence, a nonparametric
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test is the empirical likelihood ratio elaborated below. Let (7;,&;),i = 1,...,n be a
random sample of (T,¢), where T = 6] X and ¢ = (X — T0,)/v/1—T2. As in the
spherical symmetry, the uniform distribution of ¢ can be used as side information.
To this end, let R = & + & and R® = R/||R||. Again the statement that & ~
U (8%72) is equivalent to the assertion that ||R|| and RY are independent. Let G be
the distribution function of ||R||. Let d™ = ¢,, 0 G and dy = (d(y, - .., d™))T. This
is computable as G is known. Let x(&1,&) = dy(||R]]) ® R°. Then it is argument-
symmetric and satisfies E(k(&1,£2)) = 0 by the preceding independence. The vector
U-statistic with s as kernel is now given by

o\

t(ds) = () POECE

The Jackknife pseudo values of the vector U-statistics are calculated by
Voi(dar) = nUn(dys) — (n — DU (day), j=1,....n,

Analogously we construct the Jackknife empirical likelihood ratio with side informa-

tion as follows:
B = sup { Hmrj T E Py, ijvec(aJ(Tj) ® b (&), Vay(dur)) = 0},
j=1 j=1

for some choices of a; = (aV,...,a)T and b = (BW,...,bENT. Let Z7* be
the empirical likelihood ratio when the jackknife pseudo values are not included.

It follows from Corollary 3.1 of Tan, et al. (2015) that the following holds. Let
§i(x) = E(r(&1, 82)[& = ).

Theorem 6.1.3 Suppose the matriz Cov(vec(as(T)), bk (§), k1(£)) has full rank JK+
M(d—1). Then —2log Z.*" = X%JK—&—M(d—l))' If E(a$*(T)E(b%2(€)) has full rank JK,
then —2log Z"* = X5

As the distribution Frpr of T is unknown, we estimate it by the empirical distri-

bution function Fr. Let J,,d, be positive integers and tend to infinity and take
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ay, = (@D, ..., a")T = (¢1,..., ;)7 o Fpr. With the estimated constraints, the

empirical likelihood ratio as test statistic is now given by

A" = sup { Hmrj cw e Py, Zﬂjd(‘]")(Tj) ®E = 0}.

J=1 J=1

We have the following.

Theorem 6.1.4 Suppose J,d,, — oo but J2d, = o(n). Then

—2log Zrs — Jy(d,, —
Jn(d, — 1)

D v, (6.1.4)

Thus —2log 9?;5 is approximately chisquare distributed with J,(d,, — 1) degrees of
freedom and the test 1[—2log Z7* > X?]n(dn_l)(l — «)] has an asymptotic size o €
(0,1).

6.1.3 Antipodally symmetric distributions

Let X have the continuous generalized Scheiddegger-Watson distribution, i.e., the
density is of the form g(||z,||),z € S, where g is some known function, and =, is
the part of x in an s-dimensional subspace V. Then the tangent-norm equation of X
is given by

X=Tn+(1-THY%, T=|zl,neV, eV

where 9]l = 1, n € V, ||€]| = 1, £ € V1. Here we take n = X, /|| X,]], £ = (X —
Tn)/(1 — T?*)Y/2. A relationship similar to the rational symmetry is that 7,7 and ¢
are independent, and 1 and ¢ are uniformly distributed on unit spheres in V and V*.
Analogous to the preceding discussions, one can construct an empirical likelihood

ratio test and we shall omit the details.

6.1.4 Coordinatewise symmetry

A random vector X in R? has a distribution coordinatewise symmetric about @ if

()(1_01"~'7‘de_061)i (Sl(Xl_91)7"'a8d(Xd_9d))7 Sj::tla]:]-a7d
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Coordinatewise symmetry of X about 6 is equivalent to the assertion that the coor-
dinatewise radius vector V = (Vi,...,Vy)" is independent of the coordinatewise sign
vector U = (Uy,...,Uy)", where V; = || X;—6;|| and U; = sign(X;—6;). Independence

implies
E[a(])(V)b(k)(U)] = O, a(]) € LQ,O(FV)7 b(k) € LQ,O(FU)aja k= 17 2a ceee

Analogous to the preceding discussions, we choose several o) € Loo(Fy),j=1,...,J

and b*) € Lyo(Fy),k =1,..., K and construct the empirical likelihood ratio:

R = sup { ﬁmrj we P, iﬂjaJ(Vi) ® b (U;) = O},
i=1

Jj=1

By Owen’s theorem, we have the following.

Theorem 6.1.5 Suppose the matriz E(aja)(V)) @ E(bgbj(U)) has full rank JK.
Then
—2log B = Xk

6.1.5 Exchangeability

A random vector X in R? is exchangeable if
(X1, X)) L (X, X))

for every permutation my,...,mq of 1,...,d. Then O = (Xg1,...,Xqq)', where
Xg1 < ... < Xgq are the order statistics of X, is independent of R = (Ry,...,Rq)",

where R; = 2% | 1[X; < X;] are the rank statistics. Independence implies
E[aV(0)p®(R)] =0, aY € Lyo(Fo),b™ € Lyo(Fr), jk=1,2,....

In the same fashion, we choose several al) & Lyo(Fo),j = 1,...,J and bk €

Lyo(Fr),k=1,..., K and construct the empirical likelihood ratio:
Hy® = sup { Hmrj T E Py, ZﬂjaJ(Oj) ® br(R;) = O},
j=1 Jj=1

where (0, R;),j =1,...,n is a random sample of (O, R).

By Owen’s theorem, we have the following.
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Theorem 6.1.6 Suppose the matriz E(aja)(0)) @ E(bgbj(R)) has full rank JK.
Then
—2log Z° = Xk

6.2 Simulation study
6.2.1 Testing the center of spherical symmetry

Consider the null hypothesis that the center of symmetry of a distribution is the
origin of R? versus the alternative hypothesis that the center is ¢, different from the
origin,

H(]iQ:O VS H1:9:91.

We were interested in the power performance of the proposed tests at the nominal level
of significance o = .05 in different cases. Specifically, we looked at the following cases.
Case 1. How the power of the tests decreases as the dimension d grows with respect
to different sample sizes n. Case 2. How the power of the tests increases as #; moves
away from the origin for a fixed sample size n with respect to different dimensions d
and different number of constraints J, K. Case 3. How the side information increases
the power of the tests. We examined the test 1[—2log 25 > X5,4,(1—a)] in Cases 1
and 2 and the test 1[—2log Z: > X%, 14(1 — )] in Case 3. In the latter situation,
we choose a(v) = (sign(v), v1[||v]| < 1.4] + 1.4sign(v)1[|jv|| > 1.4])" and bg(U) = U.
As E(U) = 0, these choices still satisfy the equalities in (6.1.1) by the independence
of V and U even though the components a™), a® of a are not in Ly (Fy ). Examining
Cases 2 and 3, one observes that there is significant power increase and sample size

reduction with the use of the side information



Table 6.1.
Case 1: The simulated a = .05 level of significance of the EL test
about the center of spherical symmetry Hy : § = 0 with J = r,
d = dim, n = 400 and m = 2000 repetitions. Data generated from
multivariate normal.

r=1 r=2 r=3 r=4 r=>5

dim=1 | 0.0395 | 0.0520 | 0.0470 | 0.0585 | 0.0465
dim=2 | 0.0475 | 0.0610 | 0.0480 | 0.0460 | 0.0560
dim=3 | 0.0570 | 0.0605 | 0.0520 | 0.0615 | 0.0595
dim=4 | 0.0555 | 0.049 | 0.05450 | 0.06500 | 0.0705




Table 6.2.
Case 1: The simulated power of the test about the center of spherical
symmetry Hy: 0 =0 vs Hy : 0 = rep(0.4,dim) with J = r, d = dim,
and m = 2000 repetitions at a = 0.05 level of significance. Data
generated from multivariate normal.

n r=1 =2 =3 =4 =5
50 | 0.3170 | 0.2425 | 0.2005 | 0.183 | 0.1835
100 | 0.5460 | 0.4070 | 0.3810 | 0.3530 | 0.3175
150 | 0.7190 | 0.6260 | 0.5880 | 0.5105 | 0.4500
200 | 0.8350 | 0.7500 | 0.7285 | 0.6495 | 0.6190
250 | 0.9035 | 0.8590 | 0.8200 | 0.7870 | 0.7285
300 | 0.9425 | 0.9165 | 0.8900 | 0.8550 | 0.8225
dim=1 | 350 | 0.9745 | 0.9530 | 0.9330 | 0.9050 | 0.8870
400 | 0.9875 | 0.9780 | 0.9680 | 0.9565 | 0.9390
450 | 0.9955 | 0.9900 | 0.9845 | 0.9715 | 0.9685
500 | 0.9975 | 0.9910 | 0.9880 | 0.9815 | 0.9820
600 1 0.9985 | 0.9975 | 0.9980 | 0.9930
700 1 1 0.9995 | 0.9990 | 0.9985
800 1 1 1 1 0.9995
50 | 0.2180 | 0.1690 | 0.1720 | 0.2035 | 0.2565
100 | 0.4290 | 0.3190 | 0.2480 | 0.2555 | 0.2335
150 | 0.6125 | 0.4870 | 0.3805 | 0.3675 | 0.3200
200 | 0.7525 | 0.6245 | 0.5580 | 0.4795 | 0.4495
250 | 0.8660 | 0.7440 | 0.6735 | 0.6200 | 0.5745
300 | 0.9065 | 0.8485 | 0.7715 | 0.7165 | 0.6745
dim=2 | 350 | 0.9620 | 0.8970 | 0.8615 | 0.8130 | 0.7615
400 | 0.9860 | 0.9425 | 0.9140 | 0.8595 | 0.8210
450 | 0.9905 | 0.9625 | 0.9480 | 0.9185 | 0.8965
500 | 0.9955 | 0.9815 | 0.9675 | 0.9555 | 0.9280
600 | 0.9990 | 0.9940 | 0.9915 | 0.9885 | 0.9815
700 1 0.9980 | 0.9970 | 0.991 | 0.991
800 1 1 1 0.998 | 0.9985
50 | 0.1745 | 0.1660 | 0.2390 | 0.3365 | 0.4720
100 | 0.3355 | 0.2325 | 0.2305 | 0.2110 | 0.2440
150 | 0.4845 | 0.3285 | 0.2980 | 0.2770 | 0.2705

200 | 0.6430 | 0.4755 | 0.4165 | 0.3395 | 0.3175
250 | 0.7685 | 0.6040 | 0.5250 | 0.4370 | 0.3945
300 | 0.8630 | 0.7050 | 0.6370 | 0.5565 | 0.5060
dim=3 | 350 | 0.9100 | 0.8095 | 0.7355 | 0.6710 | 0.6040
400 | 0.9475 | 0.8680 | 0.8070 | 0.7285 | 0.6840

450 | 0.9700 | 0.9105 | 0.8720 | 0.7980 | 0.7525
500 | 0.9865 | 0.9405 | 0.9125 | 0.8645 | 0.8360
600 | 0.9945 | 0.9790 | 0.9600 | 0.9350 | 0.9230
700 | 0.9995 | 0.9955 | 0.9890 | 0.9695 | 0.9580
800 1 0.9975 | 0.9960 | 0.9920 | 0.9860
50 | 0.1580 | 0.1995 | 0.353 | 0.5375 | 0.7570
100 | 0.2510 | 0.2120 | 0.2125 | 0.2580 | 0.3345
150 | 0.3830 | 0.2680 | 0.2255 | 0.2250 | 0.2525
200 | 0.5045 | 0.3350 | 0.3195 | 0.2640 | 0.2845
250 | 0.6465 | 0.4580 | 0.4050 | 0.3515 | 0.3335
300 | 0.7465 | 0.5655 | 0.5050 | 0.4315 | 0.3600
dim=4 | 350 | 0.8420 | 0.6590 | 0.5925 | 0.5150 | 0.4345
400 | 0.8825 | 0.7665 | 0.6560 | 0.5825 | 0.4920
450 | 0.9260 | 0.8150 | 0.7440 | 0.6710 | 0.5965
500 | 0.9665 | 0.8670 | 0.8260 | 0.7335 | 0.6605
600 | 0.9855 | 0.9470 | 0.9075 | 0.8430 | 0.8100
700 | 0.9980 | 0.9780 | 0.9605 | 0.9085 | 0.8885
800 | 0.9995 | 0.9905 | 0.9840 | 0.9590 | 0.9370

42



Table 6.3.
Case 2: The simulated power of the test about the center of spherical
symmetry Hy : 0 = 0 vs Hy : 0 = 0, with J = r, d = dim, n = 400
and m = 2000 repetitions at a = 0.05 level of significance. Data
generated from multivariate normal.

0, r=1 r=2 r=3 r=4 r=>5
0.05 0.0920 | 0.0820 | 0.0735 | 0.0695 | 0.0685
0.10 0.1875 | 0.1595 | 0.1460 | 0.1345 | 0.1170
0.15 0.3615 | 0.2860 | 0.2535 | 0.2450 | 0.2305
] 0.20 0.5980 | 0.4990 | 0.4540 | 0.4090 | 0.4170
dm=t 0.25 0.7875 | 0.6995 | 0.6440 | 0.6080 | 0.5685
0.30 0.9020 | 0.8415 | 0.7985 | 0.7630 | 0.7500
0.35 0.9580 | 0.9265 | 0.9085 | 0.8675 | 0.8595
0.40 0.9910 | 0.9775 | 0.9670 | 0.9490 | 0.9365
(0.05,0.05) 0.0845 | 0.0755 | 0.0770 | 0.0670 | 0.0630
(0.10,0.10) 0.1830 | 0.1405 | 0.1290 | 0.1165 | 0.1020
(0.15,0.15) 0.3615 | 0.2670 | 0.2350 | 0.2005 | 0.2020
. (0.20,0.20) 0.5405 | 0.4370 | 0.4125 | 0.3400 | 0.3230
dm=2 (0.25,0.25) 0.7510 | 0.6275 | 0.5830 | 0.4840 | 0.4620
(0.30,0.30) 0.8680 | 0.7995 | 0.7515 | 0.6675 | 0.6310
(0.35,0.35) 0.9480 | 0.8920 | 0.8425 | 0.7995 | 0.7590
(0.40,0.40) 0.9770 | 0.9410 | 0.9075 | 0.8820 | 0.8500
(0.05,0.05,0.05) 0.0865 | 0.0665 | 0.0680 | 0.0745 | 0.0690
(0.10,0.10,0.10) 0.1695 | 0.1235 | 0.1210 | 0.1180 | 0.1040
(0.15,0.15,0.15) 0.3065 | 0.2415 | 0.2030 | 0.1905 | 0.1655
_ (0.20,0.20,0.20) 0.5020 | 0.3765 | 0.3420 | 0.3010 | 0.2410
=3 (0.25,0.25,0.25) 0.6805 | 0.5585 | 0.4730 | 0.4155 | 0.3825
(0.30,0.30,0.30) 0.8145 | 0.6690 | 0.6265 | 0.5530 | 0.5045
(0.35,0.35,0.35) 0.8995 | 0.7935 | 0.7295 | 0.6390 | 0.5995
(0.40,0.40,0.40) 0.9460 | 0.8550 | 0.8040 | 0.7400 | 0.6790
(0.05,0.05,0.05,0.05) | 0.0605 | 0.0610 | 0.0695 | 0.0690 | 0.0805
(0.10,0.10,0.10,0.10) | 0.1320 | 0.1165 | 0.1160 | 0.1120 | 0.1060
(0.15,0.15,0.15,0.15) | 0.2710 | 0.1965 | 0.1730 | 0.1480 | 0.1660
At (0.20,0.20,0.20,0.20) | 0.4315 | 0.3045 | 0.2870 | 0.2440 | 0.2425
(0.25,0.25,0.25,0.25) | 0.6165 | 0.4485 | 0.4160 | 0.3560 | 0.3455
(0.30,0.30,0.30,0.30) | 0.7440 | 0.5690 | 0.5240 | 0.4490 | 0.392
(0.35,0.35,0.35,0.35) | 0.8310 | 0.6935 | 0.5895 | 0.5325 | 0.4885
(0.40,0.40,0.40,0.40) | 0.8960 | 0.7435 | 0.6640 | 0.5750 | 0.5225

43
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Table 6.4.
Case 3: The simulated o = .05 level of significance of the test about
the center of spherical symmetry Hy : 0 = 0 with J = K = r,
d = L = dim, n = 50, and m = 100 repetitions. Data generated from
multivariate normal.

r=1|r=2|r=3|r=4 | r=5
dim=2 0 0 0.08 | 0.06 | 0.08
dim=3 | 0.02 | 0.03 | 0.08 | 0.10 | 0.14

dim=4 | 0.03 | 0.02 | 0.10 | 0.26 | 0.41

Table 6.5.
Case 3: The simulated power of the test about the center of spherical
symmetry Hy : 0 =0vs Hy : 0 =0, with J = K =r, d =L = dim,
n = 50, and m = 100 repetitions at a = 0.05 level of significance.
Data generated from multivariate normal.

0, r=1|r=2|r=3 | r=4|r=5
( ) 0.11 { 0.05 | 0.09 | 0.15 | 0.13
( ) 0.17 1 0.23 | 0.15 | 0.20 | 0.25
dim=2 (0.3,0.3) 0.59 | 0.53 | 0.39 | 0.47 | 0.46
( )
( )

0.1,0.1
0.2,0.2

0.4,04 0.8210.79 | 0.76 | 0.74 | 0.79
0.5,0.5 0.9810.911{0.95]0.90 | 0.93

(0.1,0.1,0.1) | 0.06 | 0.06 | 0.12 | 0.14 | 0.21
(0.2,0.2,0.2) | 0.31 [ 0.20 | 0.31 | 0.34 | 0.5
dim=3 | (0.3,0.3,0.3) | 0.69 | 0.55 | 0.59 | 0.66 | 0.84
( )
( )

0.4,0.4,0.4) 1091 |1 0.92 | 0.90 | 0.91 | 0.95
0.5,0.5,0.5) 1 0.99 1 0.99 | 0.97 | 1 1
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6.2.2 Testing rotational symmetry

Consider the null hypothesis that the direction of rotational symmetry of a dis-
tribution is (0,0, 1) versus the alternative hypothesis that the direction is 6; different
from (0,0, 1),

Hy:0=(0,0,1) vs H;:0=06.

We looked at the same Cases 1 and 2 as in Subsection (6.2.1). Specifically, we studied
the test 1[—2log Zs > in(dn_l)(l — «)] and chose the same a; as in Subsection
(6.2.1). Here the data were generated from the von Mises-Fisher distribution. This
is a probability distribution defined on the sphere S with the pdf given by

fa(0" 2 k) = Cy(r) exp(kf'z), =€ 8,

where k£ > 0, ||f|| = 1 and the normalization constant Cy(k) is given by
jod/2-1

Cal¥) = Gyt )

where I, denotes the modified Bessel function of the first kind with order v. When
d = 3, C3(k) reduces to

K K

Cs(k) = dmsinhk 27 (exp(r) — exp(—k))’

The parameter # is the mean direction and the parameter x the concentration param-
eter. The distribution is more concentrated around the mean direction 6 with higher
k. When x = 0, the distribution is uniform on 8. Obviously, the von Mises-Fisher

distribution is rotationally symmetric about the mean direction 6.

6.3 Proof of Theorem 6.1.2

We shall apply Theorem 7.4 of Peng and Schick (2013) to prove the result. For
self-containedness, we quote their result below. Assume that (Z,.7) is a measurable
space, that Z1, ..., Z, are independent copies of the Z-valued random variable Z with

distribution @), and that m,, is a positive integer that tends to infinity with n. Let w,



Table 6.6.
Case 1: The simulated a = 0.05 level of significance of the test about
the direction of rotational symmetry Hy : 0 = (0,0,1)" with d = 3,
J = r, and m = 2000 repetitions. Data generated from the von
Mises-Fisher distribution.

r=1 r=3 r=>5
n=50 | 0.0505 | 0.0990 | 0.2275
n=100 | 0.0530 | 0.0685 | 0.0865

Table 6.7.
Case 2: The simulated power of the test about rotational symmetry
Hy: 0= (0,0,1)T ws H;:60 = (0.14,0.14,0.98)" with d = 3,
J = r, and m = 2000 repetitions at & = 0.05. Data generated from
the von Mises-Fisher distribution.

r=1 r=3 r=>5
n=50 | 0.949 | 0.9995 | 0.9955
n=100 | 0.9995 1 1
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denote a measurable function from Z to R™ such that [w, dQ =0 and [ ||w,|*dQ

is finite. Let w,, be an estimator of w,,. Consider
R n 1 n A
K, = sup { Hmrj TEe P, - ijwn(Zj) = O}.
7j=1 7j=1
Let ||[M]|, be the spectral norm (the largest eigenvalue) of matrix M and set
. 1 <&
W, = ! dQ, d W, =—- Dn ! (Z5).
/wwn Q an n;wwn( ])

Lemma 6.3.1 Suppose the m, X m,, dispersion matrices W,, is regular in the sense

that
0< igf ”iﬁil w W,u < sgp Hilulfl u Wu < .
Assume
i gas [0(Z)] = op(n2), (6:3.1)
W, = Woallo = 0, (m, /) (6.3.2)
and

D SACAR % > vnlZ) + 0p(n™) (6.3.3)

j=1
for some measurable function v, from S into R™ such that [v,dQ = 0 and ||v,|]
is Lindeberg, that is, for every € > 0, [|lva|*1[||vn]l > ev/n]dQ — 0. Suppose the
dispersion matriz U,, = W, /> [ vav,) dQW, ofWZI/%n(Z) satisfies | Uy |lo = O(1)
and m,, /trace(U?) is bounded. Then, as m,, tends to infinity with n,

—2log #,, — trace(U,)
2trace(U2)

= A(0,1).
Proof of Theorem 6.1.2. We shall prove this by applying Lemma 6.3.1 with
7 =WV, U, wy(2) =+dnas,(V)RU and w,(Z) = /dpas,(V)®U.

Then m,, = Jod, and W,, = d, E(a5*(V)) @ E(U®?) =1, ® 14, as E(U®?) =14, /d,.
Thus W, is regular. Clearly (6.3.1) is met as ||w(Z;)| < V2Jy?d, and J3d} = o(n).
For (6.3.2), by the triangle inequality,

W, — Wl < W, — Wl + |W,, — W, (6.3.4)



48

Since

nE|W, — W, ||> < @ E|a;(V)® U|* < 4J2d’

n-n’

it follows |[W,, — W,|lo < 2J,d2/v/m = o(mn /%) as J3d° = o(n). Note
HWn - Wn”o <D, + QHWnHiﬂD}/Q,

where Dy, = dy; Y77 g, (V5) — as, (V)] @ Uy]]*. Thus (6.3.2) is implied by D, =
0,(m; 1) in view of (6.3.4). To this end, let o, (t) = (o1, ..., "N s0a;, = @,0Fy
and ay, = ¢, 0 Fyy. We need the following properties of the trigonometric basis: for

t €0,1],
lea@ll < 2012, Nl < V22, en@)l < Var? 2, (6.3.5)

where ¢! and ¢! denote the first and second order derivatives of ¢. Using the second

inequality in (6.3.5), we derive
1 O - -
= llen(Ev (V) — en(Ev (V) I* < 20T sup [ Fy (8) = Fv (8)]] = Op(Jy/n).
j=1

Hence the desired D,, = Op(J3d% /n) = op(m; ') as J1d3 = o(n). We now show (6.3.3)
holds with v,,(Z2) = Vd,a;, (V)@ U = Vd,pn o Fy (V)@ U. Clearly E(v,(Z)) =0 as
E(U) =0and V are independent of U, and v, is Lindeberg as ||v,(Z)|| < V203 d, =
o(y/n). Moreover, since [wv,v, dQ = W, it follows that U, = I; ® I,,, hence

U, = 0,(1) and m,,/trace(U?) = 1. Now using Taylor expansion, we write
1 < -
- Y Vdu(palEv(V)) = onlFv (V) @ U = Lo + M, say,

where

- %Z Vi (Fy (V) (B (V;) = Fy (V) @ U

Zﬁ () (B (V) = F (V) @ U,
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where Fy; lies in between Fy(V;) and Fy(V;). Using the second inequality in (6.3.5),
we get
E(||Ln|]?) = trace(E(LE?))
d, ~
= “trace(B [, (V)* (Fy (V1) - Fy(W))*] @ E(UE?)

< LB (g (R ()P (B (V) — Fr(W))?)

< 272 2% B (sup (B (1) — Fo(1))?)
n teR

= Op(Jyd,/n*) = op(n™")

as J3d, = o(n). This shows L,, = op(n~1/2). Using the third inequality in (6.3.5), we
find

1M, || < V2r? T2 sup 1Ev(t) = By (1)1 = Op(J32d)? /n) = op(n™'7?)
te

as J2d3 /n = o(1). This yields M, = op(n~'/?) and hence the desired (6.3.3). We
now apply Lemma 6.3.1 to complete the proof. [ |



50



ol

7. TECHNICAL DETAILS

In this chapter, we prove the lemmas and theorems.

7.1 Proofs for Lemmas in Chapter 3

Let us recall some expressions and properties of U-statistics and their jackknife
pseudo values. Given the definitions in the first section, by the Hoeffding decompo-

sition, we have

Voi(0) = mhy(Z;;0) + Ry (0), j=1,...,n. (7.1.1)

where R,,; is the remainder given by

Rus(6) = i (™) (10the(0) = (0= DUE2, 0E0)) G = 1o, (112)

After rearranging equation (7.1.2), we have for j = 1,...,n that
- m * —J *
ug(8) =Y " )V 0O = (= DUEZ,020D) . (113)
c=2

where

hj(kcfl)j = hz(Zﬁ 21y Zemt). (7.1.4)
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Proof of Lemma 3.2.1. Let 6,,, = 6y+n""/?t. By (7.1.1) and Cauchy inequality,
1 < - )
- Z Vi (One) — mha(Z;;60) ||
:—Z Iy (Z5; 01) + R (0t) — mha(Z5; 60) |1

= Z Iml1(Z;; 0ne) = ha(Z55 00)] + R (0n0) ||
j=1

n

1 - -
<=372 (||m[h1<zj;em> = (253 0012 + 1Ry (61 )
j=1
2 n
m ~
——Zth(Zj;@m) — I (Zj; 00)|1” + Z”Rn] o) ||
j=1
2 n
m
=T B (255 0) = (253 00)]* + ZHRm 1l
j=1

:=2m*A,(t) + 2B,(t).

It follows that

A

D, (C) <2m? sup A,(t) +2 sup B,(t).
lt<c lt<C

Let Zy,...,Zm be iid copies of Z;. Then
h(Z;;0) = E(W(Zy, ..., Zw; 0)|Z) = Z;).

For large n and |t|| < C, 6,; € N(6p), so that by (Al) we get
ZHE( (Ziy oo 2oy On) — W21, . Do 00)| 21 = Zj> I2
—ZE (1552 ZusO30IP120 = 2, ) )

< 025 <EZE(G2(Z, o I 2y = Zj))

where 07, lies between 6y and 6,,,. By the law of large umbers, for M > 0,

P (%iE(GQ(Z, T2 = Z;) > M) B _ o(1)
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since (G is square-integrable. This shows
1 . .
A,(t) = Op(=) uniformly in |t|| < C.
n

Next we show this also holds for B,,(t).

Without loss of generality, we prove the case of § € R2. Let’s denote the coordi-
nates of t as (t1,t3). Select Cy as —C' < Cy < C, then point ty = (Cp, Cp) is located
inside the circle {||t|| < C'}.

sup B,(t) < B,(to) + sup |B,(t) — Bn.(to)]- (7.1.5)
lt]|<C lt|<C

For any € > 0,

P(sup B,(t) > €)
ti<c

<P(By(to) > ¢/2) + P(sup |Ba(t) — Bu(to)| > €/2)

ltI<C
EB,(t
< (to) + P(sup |B,(t) — Bu(to)| > €/2)
€/2 lj<c
::Pln + P2n-

By (7.1.3) and the Cauchy inequality,

1 n
EB,(to) =~ > B[ Ruj(Onio) I = Bl R (Bt |I?
j=1

m 2
m *
<2 Y- (") ALV arUo e (0, 0)
c=2

T (= 12Var(US) (b (6u))) -

In the proof of Theorem 7.1 of Peng and Tan (2016), it suffices to show Var(U,,(0,,)) =

O(2) holds. Therefore we get
9 1
EHUn(ento)H = O(E)’
and this proves Py, = O(%). Let us now show Py, = O(%). To this end, let

Tnj(t) = an(ent) - an(ento)v ||t|| < C.
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Using (7.1.3) again, we have

< m * *
Tnj(t) = (C>C[U("—l)(c—l)(h(c—l)j(ent)) - U(n—l)(c—l)(h(c—l)j(ento))]
=2 (7.1.6)

= (M) e DU he0)) ~ U2 06

c=2

By the definition of U-statistics, (A1) and using the mean value theorem, there is ¢*

satifying ||t*]| < C such that
(21, ey Zoms Ont) — P21, oy Zom Oty || < 07 Y22C || 21 ooy Zo; O |
<nY20G(Zy, ..., Zn).
Therefore the difference in the first sum on the right side of (7.1.6) satisfies

1UGn—1)(=1) (B{c—1);(0nt)) — Un—1)(e—1) (A{e1); (Onto))

n—1\" . .
:”( ) Z (h (Zj;ZiN""Zicfﬁent) —h (Zj;Ziw'”7Zic71;6nto))’|

c—1) L
211 <...<lc—1
n—1\"
S(c—l) Z (0z, + P)(0z, + P)...(6z,_, + P)P""°
1< <be—1

IW(Zy, ooy Zo Ont) — (21, e Zo; Oty |

-1
Sn_l/QQC(n _11> > (07, + P)(0z, +P)...(0z,_, +P)P"C(Z, ... Zn),

c — ) / le—1
11<...<lc—1

where >

i1<..<i., denotes the sum over all permutations of 1,....,7 — 1,7 +1,...,n.

Similar inequalities can be derived for the difference in the second sum on the right

side of (7.1.6). Let

9*(21'1, ceey ZZC) = (5Z~L1 + P) c. (5Zic + P)Pm_CG,
(7.1.7)
g;(Zil, ceey ch) = L(]*(Z]7 Zi17 ceey Zic—l)'

Note that ¢* is argument-symmetric. Combining the inequalities above yields

n1/2 o m * - m —7 *
— 1<) Utn—ye-1(g]) + Y _ (c=DULT(97), (7.1.8)
2C —\c¢ —~\c (n—1)

uniformly in ||t]] < C. Recall

1 n
Ba(t) = = > [1Ruj(00) 1%,
ni
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and after the partition,

sup Bn(t) < Bn(tO) + sup |Bn(t) - Bn(t0)|;
lt<c lt<C

also, recall the definition of P, as

Py, = P(Hiﬁlfc B, (t) — Bu(to)| > €/2).

By the Cauchy inequality, we derive

Py =P( sup—ZHmm (Bu) P = 1Ry 0t I > ¢/2)

ltj<c ™

sup —ZHRW ) = B Ot |1 B 0r) | + 1B (Buce ) ) > €/2)

ltj<c ™

<P( sup —ZII% Mg (N + 21 R (Ot )11 > 6/2>

lt<c ™

<P
(
<P((sp 23 (IO + 20 )1) > 2)
<P( sup —ZH% O > ¢/4)

(sup anm D) G S MR Oua) ) > €/64),

=3 IR0 = Op (1), (7.19)

For arbitrary fixed M > 0, when n is large, there is ¢ > 0 such that

1 < ,
P(E Z ||an(9nto)”2 > M) =¢,

j=1
and

1 — /

j=1



Let Co(t) = 5 D77 7y (1|7, we have

P( s Calt) (5 D 1Py 0 ) ) > €2/64)
=P (1 s Colt) (D ey Cun)IF) > /643 (Y 32 1R > 1))
+ P({ sup Cy(t

Hl<c )(% Z ||an<0nto)||2) > 52/64} ﬂ{% Z |‘an(9nt0)||2 < M})
<+ P( s Cul0)> iy )

when ¢ — 0. Using this and (7.1.8), we derive for 0 < ¢ < 1 and M that

Pon §P<”§ﬁl<pc Cult) > 5 )+ P(

2
1
§2P<

sup C,(t) > ) +é
It<c ) 64.M

sup C,(t) > ¢
t<c 4

4 - m 2 * /
t e 2 (1) (= 1pvar o)+
1 /
= (E)JFG

Take M — oo, then ¢ — 0, hence this completes the proof.

o6
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Proof of Lemma 3.2.2. Let A,(t) be the expression inside the supremum in
(3.2.2). We now bound it by [|A,(t)]| < [[An ()| + [|A2n(t)]], where

n

Aln(t) =n /2 Z(an (Qnt) - mﬁl(zﬁ ent))a

i=1
n

Aoy (t) = n~1/?2 Z(mill(zj; Ont) — mﬁl(Zﬁ b)) + At.

j=1
By the Mean Value Theorem, for each j = 1,...,n, there is some 07, lying between 6y

and #,;, such that

Bonlt) = 172> (s (Z5:0) — (2, 00) + At

j=1
=n""2Y " mE[(MZ1, ... Zon; i) — W(Z1, .., Zn 00))| 21 = Zj] + At
j=1

n

oh . - -
R ZmE[%(ZI’ s D 05 (00| 20 = Z,) + Al
j=1
t - ah ad ~ * 7
j=1
t u 0 = > *\| 77
--> = (mE(h(Zb s Lo 0| 20 = Zj>> + At
j=1
tx= 0, - ;
= 2 gm0 + A
+ n - . - 1 n 2
= E ; (mhl(Zj; Gjt) — mhl(Zj; 00)) + <E ;mhl(zj; 00) + A>t
(7.1.10)

where the equality from the fifth step to the sixth step in (7.1.10) is obtained by the

Dominated Convergence Theorem, see Remark 7.1.1 below. For the second term of
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the last line, we apply the law of large numbers to get supy,<¢ || Ba(t)|| = op(1). Let
G1(2) = E(G(Zy, ..., Zm)| Z1 = z). We now apply (A1) to bound the first term by

t n
Au(0) <ml 1 S™ 6 (2,) 165 - 6ol
j=1

C < _
Smg z; Gl(ZJ)TL 1/20
]:

n

_ 1
:mCQn 1/2(5 ; G1<ZJ>)

—O0p(n~1/?)
uniformly in |¢[| < C. Combining these two, we obtain sup<c [[A2.(¢)[| = op(1).
To deal with Ay, we now introduce U, (6), the projection of a vector U-statistic
U, (0) of order m with kernel h onto some sum space, which enables a U-statistic
to be approximated within a sufficient degree of accuracy by a sum of i.i.d. random
variables (for the details see Section 5.3.1, Serfling (1980)). Specifically, the projection
U, () of a U-statistic U, (6) is defined as

U,(0) = Z E(U,(0)Z;) — (n —1)E(U,(6)). (7.1.11)

This is a sum of i.i.d. random variables, and satisfies

A~

U,(0) — E(U,(0)) = % Xn: hy(Z;;0), (7.1.12)

where h; is defined as before. The proof of this can be found in Remark 7.1.2. It is

useful to express the difference U,, — U, as a U-statistic,

Un(e)—ﬂn(m:(”)_l S H(Zi.....Z;0), (7.1.13)

1<i1 <. <im<n

based on the symmetric kernel
H(zy, ... 2m;0) =h(z, ..., 20 0) —hy(21:0) — ... — hy(2,;6). (7.1.14)

Assume E||hyl||? < oo uniformly in § € N(6). Then it is shown in Remark 7.1.3 that

uniformly in § € N(6,),

E||U,(0) — U,(0)]> = O(n72). (7.1.15)
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We now express Ay, as

_ 1 « 1N -
nY2AL(t) = E;vnj(em) — E;mhl(Z] -

: (7.1.16)
m -
j=1

Using the projection U, (6) in (7.1.12) and noting (2.1.1), we further rewrite (7.1.16)

as
nV2A () = Un(Ong) — Un(0,1).- (7.1.17)
Thus it is left to show
sup ||Un(0nt) — Un(ﬁnt)H = 0p(n’1/2). (7.1.18)
lti<c

where C' is an arbitrary positive constant.

Denote Uy = U, (0) — Un(ent)- It can then be expressed as a U-statistic,

-1
Uy = (”) ST H(Ziy, Ziy ), (7.1.19)

m . .
1< <...<tm<n

where H = H is given in (7.1.14) with h = h. To prove (7.1.18), it suffices to show
P(supyy<c |Unel| > n~'/%€) = 0 as n — oo. Using the same technique as in the proof
of Lemma 3.2.1, without loss of generality, we prove the case of two dimensional
t € R? and denote ¢t = (t1,t5)". Equally partition [-C,C] as —C = Cy < C; < Cy <

.. < Cp, = C and obtain L? rectangles as
ay {t = (tl,tQ) O <t < Cl, Cll/fl <ty < Cl//}v 1< l,l/ < L.
We take t;; = (C}, Cy) from each rectangle to get

P( sup [Unl| > n2)
||t|\<C

L
- _ €
< Z ”Unt”/ | >n 1/2 Z Sup ||Unt - Untu/ || >n 1/25)

LI=1 —1 tEayy

= an —|— an.
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Applying (7.1.15) with U = U, we get

BN One) = OnOun)| < (BI0.0) — CalO) ) = O(-)

holds uniformly in ¢t = t;,1,I' = 1,..., L. Consequently, there exists M > 0 such

e St EllUniy 102 12 Mn~tpl/2
i < =2 €/2 - = €/2 — 0
for L = L,, = logn. This shows €y,, = op(1).
Finally, we are now left to show s, = op(1). To ease notation, set Z. =
(Ziy, ..., Z;,) and write Y _h(Z.) the sum of all the permutations ¢ = (i1, ..., %)

with 1 <) < iy < ... < i, < n. With the aid of (7.1.14) and by (Al), we now use

the mean value theorem to get

||Unt nt”/H
-1
n
:H (m) Z (H(an Hnt) - H(an Qnt”/)) ||

C

Z H (h(Z07 ent) ch ent”/ Z zqa Bl<qua ent”/» H

() 3
() Z(umzc;em) M2y ||+§||h1 Bmzzq,ent”,)n)
:(:L) 3 (Hh(ZC; Ont) — 1(Ze; O, ) || + é [ E(M(Ze; Ont) — MZe:; Gnt,,,)|Ziq)H)
( )1Z<u et =22 315 (5@ 1) ||}2f0)
( )_IZ<H %t g+ 3 (15t 12, }2?)

SQL\/\?%/*(Z)12< +ZE Z.)|Z:, )
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where tj,, t7, € aw. Let £(Ze) = G(Ze) + 341 E(G(Zc)|Zi,). The average in the last
line is actually a U-statistic of order m with kernel . Since G is square-integrable,

it follows E(k(Z.)) < oco. Hence

Qo < L2P(|[Unali — Er)|| + Er > f%)
L
1Bk > ]

< L*P(|Um > -
< LP(|Unm(®)] 12750

4 fo)
Var(Unm (%)) | o
WjLL 1[Er > — 1 \/_(J]
O(1/n) + L*1[Ex > Z%]

<L?

= op(1)
as L = L, =logn — oo while Fg < co. This completes the proof. [ |

Remark 7.1.1 Assume (A1) is met. Let {0,,} € N(6y) be a sequence such that 6,, —

0y as n — oo. Since hy is differentiable with respect to 6, lim,,_,« hg"fh% = hg, holds.

Under (A1), ||80h9|| can be bound by a square-integrable function G for § € N(6,).
Thus it follows from the Dominated Convergence Theorem that 2 sgEhg = F (%hg).
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Remark 7.1.2 The proof of (7.1.12) can be obtained by expanding U, (#) and ap-
plying the definition of hy(Z;;0).

U,.(0) — Z E(U,(0)|Z,) — nEh

1<ii1<...<im<n

( )(Zj;0)+<n7;1>Eh>—nEh

10) + (1 — E)Eh> — nEh

3
S

3

) > EM(Z,....,Z,;0)|Z)—nEh
)

.
Il
—

[
IM=1
N N
3 3

<.
Il
-

I
(]
3|3
E
N
“%

s |3

WE

hy(Z;;0) + (1 — %)Eh - Eh)

.
Il
—

Remark 7.1.3 The proof of (7.1.15) is similar to the proof of Lemma 5.2.2B, Serfling
(1980).

Proof Let us prove that (7.1.15) holds for the case of d = 1 for ease of notation.

For d > 1, it can be obtained by stacking the coordinates. Define (;, = 0 and, for

1<e<m,
C.(0) = Var[h(Z, ..., Z;0)] = E[02(Zy,. .., Z;0)].
We have
0= Gy < G1(8) < -+ < Gul6) = Var(hy) < 00, 6 € N(B).
Consider two sets {a1, ..., a,} and {b, ..., by} of m distinct integers from {1,...,n}

and let ¢ be the number of integers common to the two sets. It follows from symmetry

of h and independence of {Z;, ..., Z,} that

En(Zy, ..., 2o, ;O0( 2y, ..., Z 1 0)] = C(6).
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Recall the difference (7.1.13) of U,, and its projection U,, with the kernel H given in
(7.1.14). Clearly,

Hence,
Co = C1(0) = 0. (7.1.20)

Write
E(U,(0) — U,(6))? ( ) ZEHH s Zigs0), (7.1.21)
where {i1,...,%jm}, 7 = 1,2 are two sets of permutations among {1,...,n}, and )

denotes summation over all (;)2 of indicated terms. Consider a typical term of the
product. For the jth factor, let p; denote the number of indices repeated in the other
factor. Since (7.1.20), if p; < 1, then the product has zero expectation. Thus a term
in (7.1.21) can have nonzero expectation only if each factor in the product contains
at least 2 indices which appear in the other factor in the product. Note that each
nonzero expectation is bounded by E(G*?) which is independent of the parameter 6,
where G* is the square-integrability function given in Remark 3.1.1. Let ¢ denote the
number of distinct elements among the repeated indices in the two factors of a given

product. Then

20 <) p;. (7.1.22)
For fixed values of ¢, p; and p,, the number of ways to select the indices in the two
factors of a product is of order

O(nQ+(m—p1)+(m—P2))’ (7.1.23)

where the implicit constants depend upon m, but not upon n. Moreover, by (7.1.22),
2
1
<13 Z

where [-] denotes integer part. Thus

2

2 2
g+ Y m—p) < omt | ij - m=2m - 1+ )]
=1 j=1

J=1
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since, for any integer x, x — [32] = [3(z + 1)]. Note that p;,p, > 2, we have
Z?:lpj > 4, so that

g+ D m—p)) < 2m— LA+ 1)] =2m 2 (7.1.24)

j=1
Thus, by (7.1.23) and (7.1.24), it follows that the number of terms in the sum in

(7.1.21) for which the expectation is possibly nonzero is of order
O(n2mf2).

The sum of such possibly nonzero terms is bounded by O(n*™~2)E(G?). Since
(”)_1 = O(n™™), it follows that (7.1.15) is proved. u

m

Proof of Lemma 3.2.3. Let A\,(t) and A,(t) denote the smallest and largest
eigen values of S, (t). It follows from (B2) that there are constants 0 < n < K < oo
such that

P(sup An(t) > K) —0 and P( inf A, (f) >n) — 0. (7.1.25)
lt<c t<C
If follows from (B3) that
sup || T (t)[| = Op(n~"?).
lt<c

This and (B1) yield

||§F50T2(t)|!’ﬂ‘n(t)ll = op(1) (7.1.26)
and
Hfll‘lj)chZ(t)HTn(t)H?’ =op(1). (7.1.27)

From (3.2.3), (7.1.25) - (7.1.27) it follows that
sup || — 2log Z,(t) — nT,(t) 'S, (1) T(t)|| = op(1). (7.1.28)
lt<c

From (B2) we derive

sup [[Sa(t)™ — 87| = op(1)
e
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and thus obtain the expansion

||iﬁl<pc 0T, () TS, (1) " T (t) — nT, (1) TS T, (1)]| = op(1). (7.1.29)

The first conclusion (3.2.4) in the lemma follows from (7.1.28), (7.1.29) and (B3).

The second conclusion (3.2.5) is a simple consequence of (3.2.4). |

7.2 Proofs for Lemmas and Theorems in Chapter 4

Proof of Lemma 4.1.1. Taking partial derivatives of equations (4.1.3) — (3.1.11)
w.r.t. 6 and &, we get

0A1, amhl . 0Ay, 1 ¢ 27 . 2
—gr (0:0) = nZ ggr (20 e (6.0) = ‘ﬁ;m h(Z;:0)°

907 :
7=1
oA oA omb :
2n 2n m 1
aeT (970) = 07 8£T ; < Z]79 > ?
and
OB, 1OV, OBin L&y e
aHT (97 0) - n = 60T (9)7 ag‘r (97 0) - n ]Zl Vn] (0> )
8B2n o aBQn o 1 - av’ﬂj !
TEO0=0 GRe0=1Y (520
Thus, expanding A;,(6,&) and Ay, (0,€) at (0, 0), we have
Aln(ea g)
0A1, A1,
=A1n(60,0) + 57 (60, 0)(6 = 60) + 57 (60, 0)(€ = 0) + 0 (60)
e - 1 < Omhy 7.2.1)
Zgzmhl(zj;90)+5;37(23';90)(9—90) (
- = Z m*hi(Z;;00)%%€ + op(6,),
and
0As, 0 Az,
Agn(0,€) =Aan (00, 0) + 555 (00, 0)(0 = b0) + 5760, 0)(€ = 0) + 0p(5:)

o 6mh1 T (7.2.2)
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where 6, = ||0 — 0| + |||, (6,&) € No(6y,0). These expansions follow from the usual
mean value theorem and the bounded assumptions of the kernel functions.

Similarly, expanding By, (0, &) and Ba, (0, &) at (6y,0), we get

Bual0.6) = - Vi (00) + - S (00) (0 — )
J;ln = (7.2.3)
- D Vai(00)%°¢ + 0p(5,),
j=1
and -
= (OVy
B (6, = 2 30 (G70) €+ on(6). (7.2.4)
j=1

Hence it follows from (7.2.1)-(7.2.4) that

sup |‘Bln<97§> - Aln(eag)n
(6,£)€No(60,0)

1 — ] — . -
<= D IR O]+ — D11 Ry (B0l
j=1 Jj=1

1 & 5 )
+o Z; Vi (06)5% — m2hy (Z;;00) %% || |0~ 2| + 0p(82),
J:

and
1 o, - -
sup || Ban(0,6) — Ao (0, ) < =Y [[ R (00)[[1n"?| + 0p(6,).
(6,£)€No(60,0) n j=1

By (7.1.3),

. m m . . .

0 :Z( C)(cUm1><c1><h<c_1>j<e>> ~ (e = UL :0)))

c=2

Hence

0] 3" ) (Wt B + (e = DU G-

Expanding the U-statistics in the above inequality and using (7.1.7), we obtain

m

. m « - m —j % .
ol < 3 (7)o (@) + 3 (7)€ DO, i=1en
c=2

c=2
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Thus, for M > 0,

Z 1R (B0) | > M)

]—1

SP(% > (Z (T) CU(n—1>(c—1>(9§>> > %)

@)

as M — oo. Therefore, we arrive at
1o -
- > " [[R20;(60) || = op(1)
j=1
Now we are left to show
1 & .
= 1Vas (00)°2 — m?ha(Z5:00)°2) = 0p(n'/).
=1

In the proof of Lemma 3.2.1 (the proof about B, (t)), we have shown

1 :
E|Ry@)F = O(=), j=1,....n

Moreover,
Z 1R (00) 1> = Z Vs (6o) mEI(ZjQ 00)[1* = Op(1), (7.2.5)

as the expected value of the above sum is O(1). Thus by Markov’s inequality, we

derive for any € > 0,

P((max [V (80)| > n'2€) <3 P (([Vay(60)]] > n'/2e)

< € 2B (Vi (00)|IP1[|| Vo | > n'/2€]) = 0, n — oo.
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Thus
max. 1V2j (60)|| = op(n'/?). (7.2.6)
It follows that
max |mhy(Z;;00)|| = op(n'/?). (7.2.7)
1<i<n

Now let us write the components of h(-;6y) as (hV(:;0y),..., A D (-;6y)). By (7.2.5)

and the Cauchy inequality, we have

= = (7.2.8)

=0,(n7 "), LI'=1,...,d.
And this completes the proof. [ |
Proof of Theorem 4.1.1. Under (A1) — (A3), the JEL %,(f) in (3.1.8) is
continuously differentiable and its maximizer must satisfy (3.1.9). By Lemma 4.1.1,
the euclidean norm of the difference of the solutions of (4.1.2) and (3.1.9) tends to
zero as n — oo. Consequently, we prove the first part of the theorem by applying
Lemma 1 of Qin and Lawless (1994). We now apply their Theorem 1 to prove the

remaining (4.1.7). By Lemma 4.1.1 and Taylor’s expansion of By, and By, we have

0 =B1,(0,€)
0B, - 0B, -
=Bin (6o, 0) + 891T (60,0)(0 — bo) + agf#(@o, 0)(§ = 0) + op(dn),
0 :BQn(é7 é)
B (60,0) + 52 60,0)(8 — B0) + 2 (60, 0)(€ — 0) + 00 (5,),

where 4, = ||6 — 8| + ||€]|. We have

§ ) g [ Binl00,0) +0p(00)
é - 00 ! OP(5n) ’
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where
S — 8812_1Tn % — _% Z?:l Vnéim % Z?:l an
" 0Ba,, 1 n T
86% 0 (60,0) n Zj:l Vn] 0

Thus .

511 512 —E(mzh%ﬁ) E(mhl)

Sn —p = .
S 0 E(mhy)T 0

The convergence to S1; can be obtained by the law of large numbers to (7.2.8),
and the convergence to Sis (S21) from the proof of Lemma 4.1.1. From this and
Bin(00,0) = 2370, Vii(60) = Op(n='/2), we derive 6, = Op(n~'/?). Consequently,

we arrive at
V(0 — 0y) = S531521 S5 V1B (0, 0) + op(1) — A(0, V).

From this, Lemma 4.1.1 and Theorem 3.1.1 it follows the desired result. [ |
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