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ABSTRACT

Li, Lingnan Ph.D., Purdue University, August 2016. Maximum Empirical Likelihood
Estimation in U-statistics Based General Estimating Equations. Major Professor:
Hanxiang Peng.

In the first part of this thesis, we study maximum empirical likelihood estimates

(MELE’s) in U-statistics based general estimating equations (UGEE’s). Our technical

maneuver is the jackknife empirical likelihood (JEL) approach. We give the local

uniform asymptotic normality condition for the log-JEL for UGEE’s. We derive the

estimating equations for finding MELE’s and provide their asymptotic normality. We

obtain easy MELE’s which have less computational burden than the usual MELE’s

and can be easily implemented using existing software. We investigate the use of

side information of the data to improve efficiency. We exhibit that the MELE’s

are fully efficient, and the asymptotic variance of a MELE will not increase as the

number of UGEE’s increases. We give several important examples and demonstrate

that efficient estimates of moment based distribution characteristics in the presence

of side information can be obtained using JEL for U-statistics.

In the second part, we propose several JEL goodness-of-fit tests for spherical

symmetry, rotational symmetry, antipodal symmetry, coordinatewise symmetry and

exchangeability. We employ the jackknife empirical likelihood for vector U-statistics

to incorporate side information. We use estimated constraint functions and allow the

number of constraints and the dimension to grow with the sample size so that these

tests can be used to test hypotheses for high dimensional symmetries. We demonstrate

that these tests are distribution free and asymptotically chisquare distributed. We

conduct extensive simulations to evaluate the performance of these tests.
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1. INTRODUCTION

Empirical likelihood (EL) is a data-driven likelihood approach with nonparametric

nature which is effective and requires few assumptions about the distribution of the

data. Owen (1988, 1990, 1991) showed that the empirical likelihood ratio statistics

have the limiting chi-square distribution under mild conditions. He also demonstrat-

ed that tests and confidence intervals can be constructed. The empirical likelihood

theory has been successfully extended to various areas of statistics with tremendous

accomplishments. These include Bartlett correction (DiCiccio, et al., 1991), gener-

alized linear models (Kolaczyk, 1994), heteroscedastic partially linear models (Lu,

2009), partially linear models (Shi and Lau, 2000; Wang and Jing, 2003), paramet-

ric and semiparametric models in multiresponse regression (Chen and Van Keilegom,

2009), right censored data (Li and Wang, 2003), U-statistics with side information

(Yuan, et al., 2012), and stratified samples with nonresponse (Fang, et al., 2009).

Qin and Lawless (1994) linked empirical likelihood with finitely many estimating e-

quations and investigated maximum empirical likelihood estimators. Chen, et al.

(2009) obtained asymptotic normality for the number of constraints growing to infin-

ity. Hjort, et al. (2009) and Peng and Schick (2013a, 2013b) generalized the empirical

likelihood approach to allow for the number of constraints to grow with the sample

size and for the constraints to use estimated criteria functions. Algorithms, calibra-

tion and higher-order precision of the approach can be found in Hall and La Scala

(1990), Emerson and Owen (2009) and Liu and Chen (2010) among others.

In Owen’s homepage (http://statweb.stanford.edu/∼owen/empirical/) software

can be found. Here are two algorithms from this site: scel.R (R function to compute

empirical likelihood using a self-concordant convex criterion) and el.R (Mai Zhou’s R

code for empirical likelihood, with an emphasis on survival analysis).
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U-statistics is a class of statistics which is especially useful in estimation. Many

popular statistics such as high order moments information can be expressed by U-

statistics, see e.g. Serfling (1980), Kowalski and Tu (2008) and Lee (1990). Yuan, et

al. (2012) explored maximum empirical likelihood estimates (MELE’s) in U-statistics

with side information. However, usual EL method runs into serious computational

difficulties when it’s applied to U-statistics. U-statistics are not independent but

correlated so that they do not satisfy the independence or at least asymptotic inde-

pendence which is assumed by the definition of empirical likelihood. Moreover, unlike

the usual empirical likelihood, the nonlinearality of EL weights πj’s in the constraints

equations results in that there are no explicit solutions for the EL weights. Jing, et

al. (2009) identified the asymptotic independence of the jackknife pseudo values of a

U-statistic and introduced their jackknife empirical likelihood (JEL) for U-statistics,

and showed its effectiveness in handling one- or two-sample U-statistics. Some nice

properties of the jackknife pseudo values of a U-statistic were exploited to establish

the Wilks theorems for their cases. For example, the average of the jackknife pseudo

values is equal to the U-statistic, and the sample variance of them is an asymptotically

unbiased estimator of the asymptotic variance of the U-statistic.

Motivated by applications to goodness of fit U-statistic testing, Peng and Tan

(2016) gave two approaches to justify the JEL for vector U-statistics and proved the

Wilks theorems. They extended empirical likelihood for general estimating equations

(GEE’s) to U-statistics based general estimating equations (UGEE’s). The results

were extended to allow for the use of estimated constraints and for the number of

constraints to grow with the sample size. They exhibited that the JEL can be used

to construct EL tests for moment based distribution characteristics (e.g. skewness,

coefficient of variation) with less computational burden and more flexibility than

the usual EL. This can be done in the U-statistic representation approach and the

vector U-statistic approach which were illustrated with several examples including

JEL tests for Pearson’s correlation, Goodman-Kruskal’s Gamma, overdisperson, U-

quantiles, variance components, and simplicial depth. They showed that tests are
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asymptotically distribution free. They ran simulations to exhibit power improvement

of the tests with incorporation of side information.

Soon it was realized that it can also be used to construct point estimators. Qin and

Lawless (1994) linked empirical likelihood with GEE’s and investigated maximum em-

pirical likelihood estimators (MELE’s). They established consistency and asymptotic

normality of MELE’s under the usual regularity conditions, and demonstrated that

the variance of a MELE will not increase when the number of estimating equations

is increased. Furthermore, they showed that MELE’s are fully semiparametrically

efficient in the sense of least dispersed regular estimators (Bickel, et al. (1993), Van

der Vaart (2000)). Peng and Schick (2013) explored MELE’s in the case of constraint

functions that may be discontinuous and/or depend on additional parameters. The

latter is the case in applications to semiparametric models where the constraint func-

tions may depend on the nuisance parameter. Zhang (1995, 1997) used the method of

MELE’s to construct improved estimates in M-estimation and quantile processes with

the availability of auxiliary (side) information. He established consistency and asymp-

totic normality, and proved that the asymptotic variances of the resulting estimators

are smaller than those of the usual sample M-estimators and sample quantiles. It was

utilized by Hellerstein and Imbens (1999) for the least squares estimators in a linear

regression model and the application to a real data set was presented. These authors

dealt with finitely many of constraints. Peng and Schick (2013) has employed on-step

estimator to construct MELE’s. Peng (2015) developed a class of easy MELE’s which

is computationally more efficient. Recently, Tang and Leng (2012) used this idea to

construct more efficient estimators of parameters in quantile regression.

In this thesis, we study MELE’s in UGEE’s and their asymptotic behaviors. Our

technical maneuver is the jackknife empirical likelihood approach. It is well known

that the asymptotic behaviors of the U-statistic Un(h) is determined by h1 (see Chap-

ter 2). Here we shall apply the theory of Qin and Lawless (1994) on h1 to derive the

asymptotic behaviors of the MELE’s of the JEL for UGEE’s. These results for the

UGEE’s are parallel to those of Qin and Lawless (1994). We obtain the uniform local
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asymptotic normality for the logarithm of the JEL ratio in Chapter 3. We derive

the estimating equations for the MELE’s in UGEE’s in Chapter 4. Here we also give

a class of easy MELE’s and establish their asymptotic distribution. In Chapter 5,

we provide a number of examples. Here we demonstrate that efficient estimates of

moment based distribution characteristics in the presence of side information can be

obtained using JEL for U-statistics. In Chapter 6, we propose several JEL tests for

various multivariate and high dimensional symmetries. Some of the technical details

are provided in Chapter 7.
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2. JACKKNIFE EMPIRICAL LIKELIHOOD FOR

VECTOR U-STATISTICS

In this chapter, we recall some facts about one-sample multivariate U-statistics and

introduce the JEL approach.

2.1 Vector U-statistics

Let (Z ,S ) be a measurable space and P be a probability measure on this space.

Let Z1, . . . , Zn be independent copies of a Z -valued random variable Z with cumu-

lative distribution function F under P . Let h : Rm 7→ Rd be a known function that is

permutation symmetric in its m arguments. θ ∈ Θ is a parameter we are interested

in. A multivariate or vector U-statistic with kernel h of order m is defined as

Un =: Unm(h) =:

(
n

m

)−1 ∑
1≤i1<...<im≤n

h(Zi1 , . . . , Zim ; θ), n ≥ 2.

Throughout we assume h is Fm-square integrable, that is, h ∈ L2(Fm), where

L2(Fm) =
{
f :
∫
‖f‖2 dFm <∞

}
, where ‖v‖ denotes the euclidean norm of vecotr

v. We assume throughout that

E(h(; θ)) =: E(h(Z1, . . . , Zm; θ)) = 0. (2.1.1)

This of course implies E(Un) = 0. Also, we shall abbreviate Pnf = n−1
∑n

j=1 f(Zj)

and Pf = E(f(Z)). Let hm = h and

hc(z1, . . . , zc; θ) = E(h(z1, . . . , zc, Zc+1, . . . , Zm; θ)), c = 1, . . . ,m− 1.

Then hc is a version of the conditional expectation, that is,

hc(z1, . . . , zc; θ) = E(h(Z1, . . . , Zm; θ)|Z1 = z1, . . . , Zc = zc).
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Let δz be the point mass at z ∈ Z. We now define

h∗c(z1, . . . , zc) = (δz1 − P ) . . . (δzc − P )Pm−ch, c = 0, 1, . . . ,m.

Throughout we let

f̃ = f − Pf

be the centered version of a function f for which Pf is well defined. Clearly h∗1 = h̃1.

2.2 JEL for vector U-statistics

Let U
(−j)
n−1 denote the U-statistic based on the n − 1 observations Z1, . . . , Zj−1,

Zj+1, . . ., Zn. The jackknife pseudo values of the U-statistic are defined as

Vnj = nUn − (n− 1)U
(−j)
n−1 , j = 1, . . . , n.

Let Rnj = Ṽnj −mh̃1(Zj; θ). It has been shown in (4.6) of Peng and Tan (2016) that

each component of Rnj is of Op(n
−1/2), hence

Ṽnj(θ) = mh̃1(Zj, θ) +Op(n
−1/2), j = 1, . . . , n.

As argued in Peng and Tan (2016), this shows that each jackknife value Ṽnj depends

asymptotically on Zj, so that Ṽnj, j = 1, . . . , n are asymptotically independent. As a

result, if πj is a probability mass placed at Zj, then approximately the same proba-

bility mass πj is placed at the jackknife value Ṽnj for j = 1, . . . , n; because of the the

asymptotic independence of the jackknife values, the joint likelihood is approximately

the product of these πj’s. Consequently, it is justified to introduce the JEL for the

vector U-statistic Un(h) as follows:

R̂n(θ) = sup
{ n∏
j=1

nπj : π ∈Pn,
n∑
j=1

πjṼnj(θ) = 0
}
, θ ∈ Θ, (2.2.1)

where Pn denotes the closed probability simplex in dimension n, i.e.

Pn =
{
π = (π1, . . . , πn)> ∈ [0, 1]n : π1 + · · ·+ πn = 1

}
.
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Using Lagrange multipliers, Owen (1988) derived

πj =
1

n

1

1 + ξ>Ṽnj(θ)
, j = 1, . . . , n, (2.2.2)

where ξ satisfies the equation

1

n

n∑
j=1

Ṽnj(θ)

1 + ξ>Ṽnj(θ)
= 0. (2.2.3)

As (2.1.1) holds, Ṽnj = Vnj. For notational brevity, we sometimes write Ṽnj = Vnj.

Peng and Tan (2016) showed that the JEL for vector U-statistics are asymptotically

chi-square distributed under the same usual assumption as for the asymptotic nor-

mality of vector U-statistics, that is, if V ar(h1(Z)) is nonsingular then −2 log R̂n(θ0)

is asymptotic chi-square distributed with d degrees of freedom, i.e.

−2 log R̂n(θ0) =⇒ χ2
d.
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3. MAXIMUM EMPIRICAL LIKELIHOOD ESTIMATION

In this chapter, we give the local uniform asymptotic normality condition for the

log-JEL for UGEE’s.

3.1 Asymptotic behaviors of the local logarithm of the JEL ratio

Let (Z ,S ) be a measurable space, Q be a family of probability measures on S ,

and θ be a parameter of interest which is from an open subset Θ of Rk. Let Z1, ..., Zn

be independent and identically distributed (i.i.d.) Z -valued random variables with

an unknown distribution Q belonging to the model Q. Recall that a kernel function

h : Rm 7→ Rd is permutation symmetric about its m arguments and satisfies (2.1.1).

We are interested in inference about the characteristic θ and work with the jackknife

empirical likelihood (JEL) ratio R̂n(θ) in (2.2.1).

Qin and Lawless (1994) studied the maximum empirical likelihood estimator

(MELE),

θ̂ = arg max
θ∈Θ

R̂n(θ). (3.1.1)

Recall that the local JEL ratio is defined as

L̂n(t) = log
R̂n(θ0 + n−1/2t)

R̂n(θ0)
, t ∈ Rk, θ0 + n−1/2t ∈ Θ.

For a function f on Z ×Θ, let ḟ , f̈ denote the first and second partial derivative of

f with respect to parameter θ, that is,

ḟ(z; θ) =
∂

∂θ
f(z; θ), f̈(z; θ) =

∂2

∂θ∂θ>
f(z; θ), z ∈ Z , θ ∈ Θ.

Recall h̃ = h− E(h). Let us introduce the following assumptions.

(A1) There exist a neighborhood N(θ0) of θ0 and a square-integrable function G on

Z m such that h(z1, . . . , zm; θ) is twice continuously differentiable with respect
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to θ for every (z1, . . . , zm) ∈ Z m with the first partial derivative ḣ of full rank

and second partial derivative ḧ satisfying

‖ḣ(z1, . . . , zm; θ)‖+ ‖ḧ(z1, . . . , zm; θ)‖ ≤ G(z1, . . . , zm), θ ∈ N(θ0).

(A2) supθ∈N(θ0) E‖h(Z1, . . . , Zm; θ)‖2 <∞.

(A3) W = m2E
(
h̃1(Z; θ0)⊗2

)
is positive definite.

Remark 3.1.1 (A1) implies that ‖h(z1, . . . , zm; θ)‖ is also bounded by a square-

integrable function G∗(z1, . . . , zm) on Z m × N(θ0) provided that N(θ0) is bounded

(by K). In fact, it follows from the mean value theorem that for θ ∈ N(θ0), there

exist θ∗ lying between θ0 and θ such that

‖h(z1, . . . , zm; θ)‖ ≤ ‖h(z1, . . . , zm; θ0)‖+ ‖ḣ(z1, . . . , zm; θ∗)‖‖θ − θ0‖

≤ ‖h(z1, . . . , zm; θ0)‖+G(z1, . . . , zm)‖θ − θ0‖

≤ ‖h(z1, . . . , zm; θ0)‖+ 2KG(z1, . . . , zm)

:= G∗(z1, . . . , zm).

Let un = un(θ0) where

un(θ) = n−1/2

n∑
j=1

mh̃1(Zj; θ). (3.1.2)

We have the following uniform local asymptotic normality.

Theorem 3.1.1 Assume that (A1)-(A3) are satisfied. Then it holds the expansions

sup
‖t‖≤C

‖ − 2 log R̂n(θ0 + n−1/2t)− (un − At)>W−1(un − At)‖ = oP (1) (3.1.3)

and

sup
‖t‖≤C

‖L̂n(t)− t>A>W−1un + 1/2t>A>W−1At‖ = oP (1) (3.1.4)

for every finite constant C, where A = −E[m ˙̃h1(Z; θ0)].
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Note that A has full rank by (A1) and plays the same role as the quantity

−E[u̇(Z; θ)] does in Qin and Lawless (1994). Note also that the quadratic function q

defined by

q(t) = t>A>W−1un − 1/2t>A>W−1At, t ∈ Rk, (3.1.5)

is uniquely maximized by t̂ = (A>W−1A)−1A>W−1un. This shows that θ 7→ R̂n(θ)

has a local maximizer θ̂ such that

n1/2(θ̂ − θ0)− (A>W−1A)−1A>W−1un = oP (1).

Therefore,

θ̂ = θ0 + (A>W−1A)−1m

n

n∑
j=1

A>W−1h̃1(Zj; θ0) + oP (n−1/2). (3.1.6)

This of course implies the asymptotic normality of θ̂, i.e.

√
n(θ̂ − θ0) =⇒ N (0, (A>W−1A)−1). (3.1.7)

Substituting (2.2.2) in R̂n(θ), we get

− log R̂n(θ) =
n∑
j=1

log(1 + ξ>Vnj(θ)), θ ∈ Θ, (3.1.8)

where ξ satisfies (2.2.3). It is not difficult to see that under (A1) – (A3) the random

function θ 7→ R̂n(θ) is continuously differentiable. Consequently, θ̂ and ξ̂ = ξ(θ̂) must

satisfy

B1n(θ, ξ) = 0, B2n(θ, ξ) = 0, (3.1.9)

where

B1n(θ, ξ) =
1

n

n∑
j=1

Vnj(θ)

1 + ξ>Vnj(θ)
, (3.1.10)

and

B2n(θ, ξ) =
1

n

n∑
j=1

1

1 + ξ>Vnj(θ)

∂Vnj(θ)
>

∂θ
ξ. (3.1.11)

Note that (3.1.9) are the estimating equations for the MELE θ̂. Summarizing the

above discussion, we have the following result.
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Theorem 3.1.2 Suppose (A1) – (A3) hold. Then there is a maximizer θ̂ for the JEL

θ 7→ R̂n(θ) such that θ̂ solves (3.1.9) and satisfies the stochastic expansion (3.1.6)

hence (3.1.7).

3.2 Some lemmas

To prove Theorem 3.1.1, we need the following lemmas with the proof delayed to

Chapter 7.

Lemma 3.2.1 Assume (A1)-(A2) are met. Then it holds for every finite C,

D̂n(C) = sup
‖t‖≤C

1

n

n∑
j=1

‖Vnj(θ0 + n−1/2t)−mh̃1(Zj; θ0)‖2 = OP (1/n). (3.2.1)

Lemma 3.2.2 Under assumptions (A1)-(A2), it holds the expansion,

sup
‖t‖≤C

‖n−1/2

n∑
j=1

(Vnj(θ0 + n−1/2t)−mh̃1(Zj; θ0)) + At‖ = oP (1) (3.2.2)

for every finite constant C, with A = −E[m ˙̃h1(Z; θ0)].

To complete the proof of Theorem 3.1.1, we need a general result from Peng and

Schick (2013). Let Tn1(t), ...,Tnn(t) be d-dimensional random vectors indexed by

t ∈ Rk, where k ≤ d. We are interested in the asymptotic behavior of the empirical

likelihood process

Rn(t) = sup
{ n∏
j=1

nπj : π ∈Pn,

n∑
j=1

πjTnj(t) = 0
}
, ‖t‖ ≤ C,

where C is a positive constant. We shall use the following result which is a special

case of Lemma 5.2 of Peng and Schick (2015).

Lemma 3.2.3 Let x1, ..., xn be d-dimensional vectors. Set

x∗ = max
1≤j≤n

‖xj‖, x̄ =
1

n

n∑
j=1

xj, S =
1

n

n∑
j=1

xjx
>
j ,
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and let λ denote the smallest and Λ the largest eigen value of the matrix S. Then the

inequality λ > 5‖x̄‖x∗ implies

‖ − 2 log R − nx̄>S−1x̄‖ ≤ (Λ +
Λ3

4Λ2
)

2n‖x̄‖3x∗

(λ− ‖x̄‖x∗)3
, (3.2.3)

where

R = sup
{ n∏
j=1

nπj : π ∈Pn,
n∑
j=1

πjxj = 0
}
.

Motivated by this we introduce the quantities

T∗n(t) = max
1≤j≤n

‖Tnj(t)‖, T̄n(t) =
1

n

n∑
j=1

Tnj(t), Sn(t) =
1

n

n∑
j=1

Tnj(t)T>nj(t).

We impose the following conditions.

(B1) sup‖t‖≤C T∗n(t) = oP (n1/2).

(B2) There is a positive definite d× d matrix S such that

sup
‖t‖≤C

‖Sn(t)− S‖ = oP (1).

(B3) There exist k-dimensional random vectors un and and d × k matrix A of full

rank k such that un = OP (1) and

sup
‖t‖≤C

‖
√
nT̄n(t)− un + At‖ = oP (1).

We have the following result with the proof delayed to Chapter 7.

Lemma 3.2.4 Suppose (B1)-(B3) hold. Then

sup
‖t‖≤C

‖ − 2 log Rn(t)− (un − At)>S−1(un − At)‖ = oP (1) (3.2.4)

and therefore

sup
‖t‖≤C

‖ log
Rn(t)

Rn(0)
− t>A>S−1un +

1

2
t>A>S−1At‖ = oP (1). (3.2.5)
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3.3 Proof of Theorem 3.1.1

With the help of the Lemma 3.2.1 – Lemma 3.2.4 we now prove the main result.

Proof of Theorem 3.1.1. We verify the assumptions of Lemma 3.2.3 with

Tnj(t) = Vnj(θ+n
−1/2t), S = W , un = n−1/2

∑n
j=1mh̃1(Zj; θ), andA = −E[m ˙̃h1(Z; θ0)].

Since E‖mh̃1(Z; θ0)‖ is finite, we obtain

max
1≤j≤n

‖mh̃1(Zj; θ0)‖ = oP (n1/2). (3.3.1)

For a fixed C, note that we have the bound

sup
‖t‖≤C

max
1≤j≤n

‖Vnj(θ + n−1/2t)‖ ≤ max
1≤j≤n

‖mh̃1(Zj; θ)‖+ n1/2D̂1/2
n

where D̂n is given in (3.2.1). It then follows from Lemma 3.2.1 that D̂n = op(1) hence

sup
‖t‖≤C

max
1≤j≤n

‖Vnj(θ + n−1/2t)‖ = oP (n1/2).

This implies (B1). From Lemma 3.2.2 and the central limit theorem it follows that

(B3) holds. We are now left to verify (B2). To this end, set

W̄n =
1

n

n∑
j=1

h̃1(Z; θ)h̃>1 (Z; θ).

By (A2),

‖W̄n −W‖ = oP (1). (3.3.2)

We conclude (B2) from Lemma 3.2.1, (3.3.2) and the bound,

‖a>(Sn(t)− W̄n)a‖ = ‖ 1

n

n∑
j=1

(a>Vnj(θ + n−1/2t))2 − 1

n

n∑
j=1

(a>h̃1(Zj; θ))
2‖

≤ D̂n + 2(
1

n

n∑
j=1

‖h̃1(Zj; θ)‖2D̂n)1/2,

valid for every unit vector a in Rk, every t with ‖t‖ ≤ C. We now apply Lemma 3.2.3

to complete the proof of Theorem 3.1.1.
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4. EASY MAXIMUM EMPIRICAL LIKELIHOOD

ESTIMATION

In this chapter, we discuss the existence of maximum empirical likelihood estimate

(MELE) θ̂. We derive the estimating equations for the MELE’s and obtain their

asymptotic behaviors. In the end, we give a class of easy MELE’s and establish their

asymptotic distributions.

4.1 MELE’s and semiparametric effeciency

If h1 were a known function, we would work with the empirical likelihood ratio,

Rn(θ) = sup
{ n∏
j=1

nπj : π ∈Pn,
n∑
j=1

πjmh̃1(Zj; θ) = 0
}
, θ ∈ Θ. (4.1.1)

It follows from Owen (1988) that if Var(mh1) is finite and positive definite then (4.1.1)

reaches its maximum when

πj =
1

n

1

1 + ξ>mh̃1(Zj; θ)
, j = 1, ..., n,

where ξ = (ξ1, ..., ξd)
> are Lagrange multipliers, which is a d× 1 vector and satisfies

n∑
j=1

mh̃1(Zj; θ)

1 + ξ>mh̃1(Zj; θ)
= 0.

Moreover, ξ → 0 as n→∞.

In addition to satisfying (A1)-(A3), we further assume EG3 <∞. It then follows

from Lemma 1 of Qin and Lawless (1994) that as n→∞, with probability 1 the EL

ratio function in (4.1.1) attains its maximum value at some θ̃ in the interior of the

ball ‖θ − θ0‖ ≤ n−1/3, and θ̃ and ξ̃ = ξ(θ̃) satisfy

A1n(θ̃, ξ̃) = 0, A2n(θ̃, ξ̃) = 0, (4.1.2)
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where

A1n(θ, ξ) =
1

n

n∑
j=1

mh̃1(Zj; θ)

1 + ξ>mh̃1(Zj; θ)
, (4.1.3)

A2n(θ, ξ) =
1

n

n∑
j=1

1

1 + ξ>mh̃1(Zj; θ)

∂mh̃1(Zj; θ)
>

∂θ
ξ. (4.1.4)

The equations in (4.1.2) are theoretically useful and can’t be used to find the MELE’s

defined by the JEL ratio (2.2.1) because h1 is unknown. Instead, we find the MELE’s

by solving the estimating equations in (3.1.10) – (3.1.11). The next lemma states that

both sets of equations give the same solutions as the sample size tends to infinity.

To this end, let N0(θ0, 0) = {θ : ‖θ − θ0‖ ≤ n−1/3} × {ξ : ‖ξ‖ ≤ n−1/3} denote

a neighborhood of (θ0, 0). We have the following lemma with the proof delayed to

Chapter 7.

Lemma 4.1.1 Assume (A1)-(A3) hold. Then

sup
(θ,ξ)∈N0(θ0,0)

‖B1n(θ, ξ)− A1n(θ, ξ)‖ = oP (1), (4.1.5)

and

sup
(θ,ξ)∈N0(θ0,0)

‖B2n(θ, ξ)− A2n(θ, ξ)‖ = oP (1). (4.1.6)

Consequently, from Lemma 4.1.1 it follows that for large n, there exists some

point θ̂ in a shrinking neighborhood of θ0, such that θ̂ and ξ̂ = ξ(θ̂) satisfy (3.1.9)

and the JEL (2.2.1) reaches its maximum value at (θ̂, ξ̂). These statement hold on an

event Ω with P (Ω) = 1 at least for sufficiently large n. In general, on its complement

Ωc where (θ̂, ξ̂) are not defined we define them to be arbitrary numbers. The below

theorem gives the asymptotic normality and the proof can be found in Chapter 7.

Theorem 4.1.1 Assume (A1)-(A3) hold with the dominating function G satisfying

E(G3) <∞. Then, as n tends to infinity, with probability one θ̂(θ) attains its maxi-

mum at some θ̂ in a shrinking neighborhood of θ0, and θ̂ and ξ̂ = ξ(θ̂) solves (3.1.9),

and satisfy
√
n(θ̂ − θ0)→ N (0, V ),

√
n(ξ̂ − 0)→ N (0, U), (4.1.7)
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where

V =
(
E( ˙̃h1)>

(
E(h̃⊗2

1 )
)−1

E( ˙̃h1)
)−1

,

U =
1

m2

(
E(h̃⊗2

1 )
)−1(

Id − E( ˙̃h1)V E( ˙̃h1)>
(
E(h̃⊗2

1 )
)−1)

,

and θ̂ and ξ̂ are asymptotically uncorrelated.

As a result, the weights πj, j = 1, . . . , n can be estimated by

π̂j =
1

n

1

1 + ξ̂>mh̃1(Zj; θ̂)
, j = 1, ..., n. (4.1.8)

This, in turn, yields an efficient estimate of the DF F as follows:

F̂n(z) =
n∑
j=1

π̂j1(Zj ≤ z). (4.1.9)

Remark 4.1.1 The asymptotic variance matrix V can be consistently estimated by

V̂ =
(( n∑

j=1

π̂j
˙̃h1(Zj; θ̂)

)>( n∑
j=1

π̂jh̃
⊗2
1 (Zj; θ̂)

)−1( n∑
j=1

π̂j
˙̃h1(Zj; θ̂)

))−1

. (4.1.10)

Theorem 4.1.1 also can be used to get approximate confidence limits for θ or F .

By the U-statistics theory, the asymptotic distribution of a U-statistic Umn(h)

of order m with kernel h is dictated by h1. Thus we apply Corollary 1 of Qin and

Lawless (1994) with their estimating function g = h1 to obtain the below result.

Corollary 4.1.1 Assume that the assumptions of Theorem 4.1.1 hold. Suppose d >

k. Then the asymptotic covariance-variance matrix V = Vd of
√
n(θ̂ − θ0) does not

increase (in the sense of positive definiteness of positive definite matrices) as the

number of estimating equations increases.

Using the same argument as above and applying Theorem 3 of Qin and Lawless

(1994), we have the following.

Theorem 4.1.2 Under the assumptions of Theorem 4.1.1, the MELE θ̂ is fully effi-

cient in the sense of Van der Vaart (1988) and Bickel, Klaassen, Ritov and Wellner

(1993).
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The efficiency criteria used are that of a least dispersed regular estimator or that

of a locally asymptotic minimax (LAM) estimator. These criteria are based on the

convolution theorems and on the lower bounds on the local asymptotic risk in LAN

(locally asymptotically normal) and LAM families, see the above references and ad-

ditional references therein.

4.2 Easy maximum empirical likelihood estimation

In this section, we study a special case of the U-statistics based estimating equa-

tions, that is, some of the equations do not involve parameters. At a first glance, it is

seemingly restrictive for use. But actually it is quite useful as we shall demonstrate

below. As to this special case, we derive the estimating equations for the MELE’s

which are computationally faster than the usual MELE’s – easy MELE’s – as the

solutions of the estimating equations given before.

Consider a kernel functions of the form,

h(Z1, . . . , Zm; θ) = (u(Z1, . . . , Zm; θ)>, v(Z1, . . . , Zm)>)>,

where u : Rm × Θ 7→ Rp and v : Rm 7→ Rq are measurable functions and Θ is an

open subset of Rk. Suppose u and v satisfy

E(u(Z1, . . . , Zm; θ)) = 0, θ ∈ Θ, (4.2.1)

and

E(v(Z1, . . . , Zm)) = 0. (4.2.2)

While (4.2.1) serves as a criterion equation for the parameter θ, (4.2.2) describes side

information about the underlying distribution. The parameter θ is usually estimated

by the M-estimate, the solution to the sample version of (4.2.1), that is, the UGEE

with kernel u(; θ),

Unm(u(; θ)) =

(
n

m

)−1 ∑
1≤i1<···<im≤n

u(Zi1 , . . . , Zim ; θ) = 0, θ ∈ Θ, (4.2.3)
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where we assume, without loss of generality, that u is argument symmetric about its

m variables (otherwise we symmetrize it). The M-estimate is not efficient in general

as the side information given by (4.2.2) is not utilized. Often we assume that the

number p of equations in (4.2.1) is equal to the dimension k of the parameter θ

(otherwise we can eliminate those redundant equations). Throughout this section we

assume p = k.

We now work with the JEL,

R̂n(θ) = sup
{ n∏
j=1

nπj : π ∈Pn,

n∑
j=1

πjvec(V u
nj(θ), V

v
nj) = 0

}
, θ ∈ Θ, (4.2.4)

where V u
nj, V

v
nj are the jackknife pseudo values based on the U-statistics with kernel

function u and v respectively.

In this case, V = m2E
(
(ũ1(Z; θ0)>, ṽ1(Z)>)>(ũ1(Z; θ0)>, ṽ1(Z)>)

)
, so that

V = m2

 E(ũ⊗2
1 ) E(ũ1ṽ

>
1 )

E(ṽ1ũ
>
1 ) E(ṽ⊗2

1 )

 . (4.2.5)

Introduce the following assumption.

(A4) Suppose u satisfies (A1), u and v satisfy (A2), and V satisfies (A3).

Under (A4), we can apply Lemma 3.2.1 and Lemma 3.2.2 to u, so that it holds for

every finite C,

D̂n(C) = sup
‖t‖≤C

1

n

n∑
j=1

‖V u
nj(θ0 + n−1/2t)−mũ1(Zj; θ0)‖2 = OP (

1

n
). (4.2.6)

sup
‖t‖≤C

‖n−1/2

n∑
j=1

(V u
nj(θ0 + n−1/2t)−mũ1(Zj; θ0)) + Aut‖ = oP (1), (4.2.7)

where Au = −E[m ˙̃u1(Z; θ0)] of full rank. Let Av = 0q×k and A = (A>u , A
>
v )>. It

follows from Theorem 3.1.1 holds for the JEL (4.2.4). Let ξ = (ξ>u(p×1)
, ξ>v(q×1)

) be the

Lagrange multipliers. Then we have

πj =
1

n

1

1 + ξ>u V
u
nj(θ) + ξ>v V

v
nj

, j = 1, . . . , n,
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where ξ satisfies
n∑
j=1

vec(V u
nj(θ), V

v
nj)

1 + ξ>u V
u
nj(θ) + ξ>v V

v
nj

= 0.

Thus, similar to the discussion in the previous section, as n→∞, (4.2.4) attains its

maximum value in probability at some θ̂ in a shrinking neighborhood of θ0, and θ̂

and ξ̂ = (ξ̂>u , ξ̂
>
v )> = (ξu(θ̂)

>, ξ̂>v )> satisfy

C1n(θ̂, ξ̂) = 0, C2n(θ̂, ξ̂) = 0, (4.2.8)

where

C1n(θ, ξ) =
1

n

n∑
j=1

vec(V u
nj(θ), V

v
nj)

1 + ξ>u V
u
nj(θ) + ξ>v V

v
nj

, (4.2.9)

C2n(θ, ξ) =
1

n

n∑
j=1

ξ>u V̇
u
nj(θ)

1 + ξ>u V
u
nj(θ) + ξ>v V

v
nj

. (4.2.10)

Therefore, as a corollary of Theorem 4.1.1, the asymptotic properties of the MELE’s

θ̂ of (4.2.4) can be obtained as stated below. As a convention, we drop the argument

at the true value of parameter so that u(Z; θ0) = u(Z), E(u(Z; θ0)⊗2) = E(u⊗2(Z))

and of course E(u⊗2(Z)) = E(u⊗2), etc. Under (A4), V is invertible. Let the inverse

of the block matrix V be V −1 = (V ij)i,j=1,2. By the inverse formulas for a block

matrix, we have

V −1 =

 V −1
11·2 −V −1

11·2E(ũ1ṽ
>
1 )(E(ṽ⊗2

1 ))−1

−V −1
22·1E(ṽ1ũ

>
1 )(E(ũ⊗2

1 ))−1 V −1
22·1

 , (4.2.11)

where

V11·2 = E(ũ⊗2
1 )− E(ũ1ṽ

>
1 )
(
E(ṽ⊗2

1 )
)−1

E(ṽ1ũ
>
1 ),

V22·1 = E (̃̃v⊗2
1 )− E(ṽ1ũ

>
1 )
(
E(ũ⊗2

1 )
)−1

E(ũ1ṽ
>
1 ).

Theorem 4.2.1 Suppose (A4) holds. Suppose also p = k. Then, as n tends to in-

finity, with probability one θ̂(θ) attains its maximum at some θ̂ in a shrinking neigh-

borhood of θ0, ξ̂ = (0, ξ̂>v )> solves (4.2.8), and satisfy

√
n(θ̂ − θ0)→ N (0, V̄ ),

√
n(ξ̂v − 0)→ N (0, Ū),
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where

V̄ =
(
E( ˙̃u1)

)−1
V11·2

(
E( ˙̃u1)

)−>
, Ū = V22·1 − V 21V −1

11·2V
12.

and θ̂ and ξ̂ are asymptotically uncorrelated.

Remark 4.2.1 As the asymptotic variance of the estimate of the UGEE (4.2.3) is

Σ =
(
E( ˙̃u1)

)−1
E(ũ⊗2

1 )
(
E( ˙̃u1)

)−>
, the asymptotic variance of the MELE’s satisfies

V̄ ≤ Σ.

Now let us expand the constraints in (4.2.4) as

n∑
j=1

πjV
u
nj(θ) = 0, ϑ ∈ Θ, (4.2.12a)

n∑
j=1

πjV
v
nj = 0. (4.2.12b)

Based on (4.2.12b), we look at the JEL,

Rn = sup
{ n∏
j=1

nπj : π ∈Pn,
n∑
j=1

πjV
v
nj = 0

}
. (4.2.13)

This has the solution

π̂j =
1

n

1

1 + ξ̂>v V
v
nj

, j = 1, . . . , n,

where ξ̂v satisfies
n∑
j=1

V v
nj

1 + ξ>v V
v
nj

= 0. (4.2.14)

Naturally, we substitute π̂j in (4.2.12a) to get

1

n

n∑
j=1

V u
nj(θ)

1 + ξ̂>v V
v
nj

= 0. (4.2.15)

Therefore, we find ξu = 0, and ξ̂ = (0p×1, ξ̂v). It is worth to note that (4.2.14) –

(4.2.15) are identical to (4.2.9) – (4.2.10). Consequently, we can find the MELE’s by

solving (4.2.14) – (4.2.15). We refer the MELE’s as the solutions to (4.2.15) to as

the easy empirical likelihood estimates as they have less computational burden than

those usual MELE’s as the solutions to (4.2.9) – (4.2.10) (or (3.1.9)) as pointed by

Peng (2015).
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5. APPLICATIONS: EXAMPLES

In this chapter, we give several examples.

5.1 Estimating the expected values with side information

We are interested in estimation of the expected value θ = E(ψ(Z1, . . . , Zm)) for

some known function ψ : Rm 7→ Rd in the presence of side information given by

ET (Z1, . . . , Zm) = a for some measurable function T : Rm 7→ R and constant a.

Without loss of generality, we assume both ψ and T are argument-symmetric. Hence

our kernel functions are given by{
u(Z1, . . . , Zm; θ) = ψ(Z1, . . . , Zm)− θ, (5.1.1a)

v(Z1, . . . , Zm) = T (Z1, . . . , Zm)− a. (5.1.1b)

We shall apply Theorem 4.2.1 to derive the asymptotic behaviors.

Let us first mention that U-statistics are quite general. Heffernan (1997) showed

that a statistical functional θ = θ(Q) of a distribution Q admits an unbiased estimator

iff there is a function ψ of m variables such that θ(Q) =
∫
· · ·
∫
ψ dQm, and derived the

U-statistic as the unique MVUE of a central moment. Moment based distribution

characteristics (e.g. Pearson’s correlation) are functions of central moments, so that

the sample versions as test statistics can be expressed as functions of U-statistics.

Example 1 Estimating the mean difference in the presence of known

covariance. Let Z = (X, Y ) be a bivariate random vector with finite second mo-

ments. We are interested in estimating the mean difference θ = E(X−Y ) when there

is available the side information Cov(X, Y ) = a for some known a. Let Zi = (Xi, Yi),

i = 1, . . . , n be a random sample of Z. Let

u(Z1, Z2; θ) =
1

2
(X1 +X2 − Y1 − Y2)− θ
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be the symmetrized kernel function. The side information can be expressed by the

U-statistic based equation E(Un(v)) = 0 with the kernel equal to

v(Z1, Z2) =
1

2
(X1Y1 +X2Y2 −X1Y2 −X2Y1)− a.

We shall apply Theorem 4.2.1 to derive the asymptotic behavior of the MELE θ̂.

Let E(X) = µ1, E(Y ) = µ2, Var(X) = σ2
1, and Var(Y ) = σ2

2. Then

u1(z1; θ) = E(u(Z1, Z2; θ)|Z1 = z1)

= E(
1

2
(x1 − y1) +

1

2
(X2 − Y2)− θ)

=
1

2
(x1 − y1) +

1

2
(µ1 − µ2)− θ,

=
1

2
(x1 − y1)− 1

2
θ,

v1(z1) = E(v(Z1, Z2)|Z1 = z1)

=
1

2
(x1y1 + E(X2Y2)− x1µ2 − y1µ1)− a

=
1

2
(x1y1 + µ1µ2 + a− x1µ2 − y1µ1)− a,

=
1

2
(x1 − µ1)(y1 − µ2)− 1

2
a,

and

u̇1(z; θ) = −1

2
.

Let θ̂ be the MELE. Then it follows from Theorem 4.2.1 that

√
n(θ̂ − θ0)→ N (0, V̄ ),

where

V̄ =E((X − Y )− θ0)2 −
(
E[
(
(X − Y )− θ0

)(
(X − µ1)(Y − µ2)− a

)
]
)2

E
(
(X − µ1)(Y − µ2)− a

)2

=σ2
1 + σ2

2 − 2a−

(
E
(
(X − µ1)2(Y − µ2)

)
− E

(
(X − µ1)(Y − µ2)2

))2

E
(
(X − µ1)2(Y − µ2)2

)
+ a2

.

Example 2 Estimating the DF in the presence of known CV. By (4.1.9),

we can construct an improved distribution function (DF) F of a random variable Z

in when side information is available. Let Z1, . . . , Zn be i.i.d. copies of Z. Let

ψ(Z1, Z2; t) =
1

2
(1[Z1 ≤ t] + 1[Z2 ≤ t]), t ∈ R.
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Then

θt = E(ψ(Z1, Z2; t)) =
1

2
(P (Z1 ≤ t) + P (Z2 ≤ t)) = F (t).

Often we have some side information about F . Here we assume the side information

is given by σ/µ = c0, that is, the coefficient of variation of Z equals to a constant c0.

This side information can be expressed as a U-statistic equation by taking

T (Z1, Z2) =
1

2
(Z2

1 + Z2
2)− (1 + c2

0)Z1Z2.

Therefore, with the kernel functions equal to

u(Z1, Z2; θt) =
1

2
(1[Z1 ≤ t] + 1[Z2 ≤ t])− θt,

v(Z1, Z2) =
1

2
(Z2

1 + Z2
2)− (1 + c2

0)Z1Z2,

the jackknife pseudo values V u
nj, V

v
nj can be computed, and the estimates (θ̂t, ξ̂) can

be obtained as the solutions to the estimating equations (3.1.9). Alternatively, we

can apply (4.2.14) and (4.2.15) to this example and obtain computationally faster

estimates as the solutions to the below equations: Find ξ̂ as the solution to

n∑
j=1

V v
nj

1 + ξ>v V
v
nj

= 0,

while θ̂t is the solution to
1

n

n∑
j=1

V u
nj(θt)

1 + ξ̂>v V
v
nj

= 0.

As

π̂j =
1

n

1

1 + ξ̂>v V
v
nj

, j = 1, . . . , n.

by (4.1.9), an efficient estimate of the DF F (z) is given by

F̂n(z) =
n∑
j=1

π̂j1[Zj ≤ z].

Here we suppress the dependence of π̂j on the fixed t.

Example 3 Estimating the convolution with side information. Let Z1,

. . . , Zn be i.i.d. copies with a random variable Z on R with finite µ = E(Z) and
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σ2 = Var(Z1). Let ψ(z1, z2) = 1[z1 + z2 ≤ t], z1, z2 ∈ R for known t ∈ R. Hence

θt = P (Z1 + Z2 ≤ t) is the convolution of Z1 and Z2. Suppose that there is available

the side information that the coefficient of variation is known: σ/µ = c0 for some

known constant c0. The kernel functions can be constructed as

u(Z1, Z2; θt) = 1(Z1 + Z2 ≤ t)− θt,

v(Z1, Z2) =
1

2
(Z2

1 + Z2
2)− (1 + c2

0)Z1Z2.

Let F be the DF of Z. It follows

u1(z1; θ) = E(u(Z1, Z2; θ)|Z1 = z1) = F (t− z1)− θt,

v1(z1) = E(v(Z1, Z2)|Z1 = z1) =
1

2
(z2

1 + (1 + c2
0)µ2)− (1 + c2

0)µz1;

and

u̇1(z1; θt) = −1.

By Theorem 4.2.1, the MELE θ̂t is asymptotically normally:

√
n(θ̂t − θt)→ N (0, V̄t),

where

V̄t =E(F (t− Z1)− θt)2

−

(
E(F (t− Z1)− θt)(1

2
(Z2

1 + σ2 + µ2)− (1 + c2
0)µZ1)

)2

E(1
2
(Z2

1 + (1 + c2
0)µ2)− (1 + c2

0)µZ1)2
.

Example 4 Estimating Gini’s mean difference with side information.

Let Z1, . . . , Zn be i.i.d. with r.v Z. Gini’s mean difference of Z1 and Z2 is de-

fined as E|Z1 − Z2|, which is an alternative index of variability. It is estimated by

the U-statistic

Un2 =

(
n

2

)−1 ∑
1≤i<j≤n

|Zi − Zj|.

Suppose there is available side information that the inter-quartile range is known,

P (q1 ≤ Z ≤ q3) = 0.5,
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for some known constants q1, q3. Clearly the U-statistic as estimate does not utilize

this side information. Here we use the JEL method to incorporate the side informa-

tion. To this end, let θ = E|Z1 − Z2|. The kernel is then given by u(Z1, Z2; θ) =

|Z1−Z2|−θ. The side information can be expressed by the U-statistic with the kernel

equal to

v(z1, z2) = (1[q1 ≤ z1 ≤ q3] + 1[q1 ≤ z2 ≤ q3])/2− 0.5.

It is easy to calculate

u1(z1; θ) = E|z1 − Z2| − θ,

v1(z1) = 1[q1 ≤ z1 ≤ q3]/2− 0.25,

and u̇1(z1; θ) = −1. By Theorem 4.2.1, the MELE θ̂ has asymptotic normal distribu-

tion with the variance equal to

E(u2
1)− (E(u1v1))2/E(v2

1) = E(u2
1)− 16(E(u1v1))2.

Example 5 Estimating the overdispersion parameter with side infor-

mation. Overdispersion is common in count data. This can be modeled by overdis-

persion parameter φ as

Var(Z) = φE(Z), φ > 1. (5.1.2)

Let Z1, . . . , Zn be count data (frequency data). Suppose there is available side infor-

mation that

P (Z = 0) = P0.

We are interested in estimating the overdispersion parameter φ. Clearly (5.1.2) can

be written as

E(Z2) = φE(Z) + (E(Z))2,

which is equivalent to

E(Z2
1 − φZ1 − Z1Z2) = 0.

Thus the corresponding U-statistic based equation with the kernel equal to the sym-

metrized function:

u(Z1, Z2;φ) =
1

2
(Z2

1 + Z2
2)− φ

2
(Z1 + Z2)− Z1Z2. (5.1.3)
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The jackknife pseudo value of (5.1.3) is one constraint for estimating φ. Moreover,

the kernel function of the side information can be constructed as

v(Z1, Z2) =
1

2
(1[Z1 = 0] + 1[Z2 = 0])− P0. (5.1.4)

Now we apply Theorem 4.2.1 to (5.1.3) and (5.1.4) to estimate φ. Let E(Z) = µ. We

have

u1(z1;φ) =E(u(Z1, Z2;φ)|Z1 = z1)

=E
(1

2
(z2

1 + Z2
2)− φ

2
(z1 + Z2)− z1Z2

)
=

1

2
z2

1 −
φ

2
z1 +

1

2
µ2 − z1µ;

v1(z1) =E(v(Z1, Z2)|Z1 = z1)

=
1

2
(1[z1 = 0] + P (Z2 = 0))− P0

=
1

2
(1[z1 = 0]− P0),

and

u̇1(z; θ) =
z

2
.

Hence, by Theorem 4.2.1,

√
n(φ̂− φ0)→ N (0, V̄ ),

where

V̄ =
4

µ2

(
E(u2

1)−
(
E(u1v1)

)2

E(v2
1)

)
=

4

µ2

(
E(u2

1)− 4

(
E(u1v1)

)2

P0(1− P0)

)
.

Example 6 The simplicial depth function. Let Z1, . . . , Zn be i.i.d. with a

distribution Q on Rm. The simplicial depth function D(z) of a point z ∈ Rm with

respect to distribution Q is defined as follows:

D(z) = P
(
z ∈ ∆(Z1, . . . , Zm+1)

)
, z ∈ Rm,

where ∆(Z1, . . . , Zm+1) denotes the random simplex with vertices Z1, . . . , Zm+1, i.e.,

the closed simplex with vertices Z1, . . . , Zm+1. For a point z ∈ Rm, D(z) is the
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value of the population simplicial depth at point z. The usual estimate of the depth

function is the sample simplicial depth Dn(z) given by the U-statistic,

Dn(z) =

(
n

m+ 1

)−1 ∑
1≤i1<···<im+1≤n

1[z ∈ ∆(Zi1 , . . . , Zim+1)], z ∈ Rm.

The depth function can be used to define the multivariate medians and possess ro-

bustness property. When additional information is available about the underlying

distribution Q, our JEL approach is capable to employ it into the estimation. In

this example, we assume the marginal medians of Z are known as the side informa-

tion. Let Z = (Z(1), . . . , Z(m))>, and M = (a(1), . . . , a(m))> where a(l) = med(Z(l)),

l = 1, . . . ,m. Let Zj = (Z
(1)
j , . . . , Z

(m)
j )>, j = 1, . . . , n. Fix z ∈ Rm and D = D(z).

The kernel functions can be constructed as

u(Z1, . . . , Zm+1;D) = 1[z ∈ ∆(Z1, . . . , Zm+1)]−D;

and

v(l)(Z1, . . . , Zm+1) =
1

m+ 1

m+1∑
j=1

(
1[Z

(l)
j ≤ a(l)]− 1

2

)
, l = 1, . . . ,m.

Thus

u1(z1;D) =P
(
z ∈ ∆(z1, Z2, . . . , Zm+1)

)
−D;

v
(l)
1 (z1) =

1

m+ 1

(
1[z

(l)
1 ≤ a(l)]− 1

2

)
+

1

m+ 1

m+1∑
j=2

(
P (Z

(l)
j ≤ a(l))− 1

2

)
=

1

m+ 1

(
1[z

(l)
1 ≤ a(l)]− 1

2

)
, l = 1, . . . ,m,

and

u̇1(z;D) = −1.

Let v1 = (v
(1)
1 , . . . , v

(m)
1 )>. Hence, by Theorem 4.2.1, the MELE D̂ satisfies

√
n(D̂ −D)→ N (0, V̄ ),

where

V̄ = E(u2
1)− E(u1v

>
1 )
(
E(v1v

>
1 )
)−1

E(v1u1).
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5.2 Smoothed U-quantiles

The theory of U-quantile provides a unified treatment of several commonly used

statistics, see Arcones (1993). Let κ : Rm 7→ R be a measurable argument-symmetric

function. Associated with κ there induces a distribution function

H(t) = P (κ(Z1, . . . , Zm) ≤ t), t ∈ R. The minimum variance unbiased estimate

(MVUE) of H(t) is the U-statistic of order m given by

Un(t) = Unm(t) =:

(
n

m

)−1 ∑
1≤i1<···<im≤n

1[κ(Zi1 , . . . , Zim) ≤ t], t ∈ R, (5.2.1)

and κ shall be referred to as the kernel (of the U-quantile). As H(t) is a distribution

function, its p-th quantile tp is well defined by tp = inf {t : H(t) ≥ p} for p ∈ [0, 1].

The U-quantiles include the Hodges-Lehmann median estimator, Gini’s mean differ-

ence, Theil’s estimator of the slope in a simple linear model, and Kendall’s tau. They

correspond to the U-quantiles with p0 = 1/2 and the kernels κ(z1, z2) = 2−1(z1 + z2),

|z1 − z2|, (y1 − y2)/(x1 − x2), and (x1 − x2)(y1 − y2) respectively.

As the U-quantiles are discontinuous, our theory does not apply here. We now

consider smoothed U-quantiles. Let F be a continuous DF. A continuous estimator

of H(t) is the smoothed U-quantile,

Hnm(t) =

(
n

m

)−1 ∑
1≤i1<···<im≤n

Fb((t− κ(Zi1 , . . . , Zim)), t ∈ R, (5.2.2)

where Fb(t) = F (t/b) with b a bandwidth. This is the smoothed version of the U-

statistic in (5.2.1). Given p ∈ [0, 1], the p-th U-quantile solves H(tp) = p. The

smoothed sample p-th U-quantile t̂p is a solution of Hnm(tp) = p.

Let us take the Theil-Sen estimator for an illustration. The Theil-Sen estimator

is a robust estimator of the slope in a simple linear model. Suppose that Zi =

(Xi, Yi)
>, i = 1, . . . , n are independent and satisfy

Yi = α + βXi + εi, i = 1, . . . , n,
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where α is the intercept and β is the slope, and εi, i = 1, . . . , n are i.i.d. The Theil-Sen

estimator of the slope is the median of the slopes (Yi − Yj)/(Xi −Xj):

β = med {(Yi − Yj)/(Xi −Xj) : 1 ≤ i < j ≤ n} ,

where X1, . . . , Xn are assumed to be distinct for the sake of convenience. In this case,

κ(z1, z2) = (y1 − y2)/(x1 − x2) and

H(t) = P ((Y1 − Y2)/(X1 −X2) ≤ t).

While the corresponding U-statistic is

Un2(β) =

(
n

2

)−1 ∑
1≤i<j≤n

1[(Yi − Yj)/(Xi −Xj)− β < 0],

the smoothed version is

Hn2(β) =

(
n

2

)−1 ∑
1≤i<j≤n

Fb
(
β − (Yi − Yj)/(Xi −Xj)

)
. (5.2.3)

Hence, to estimate β, one constraint can be chosen as

Hn2(β)− 1

2
= 0. (5.2.4)

In a simple linear model, we assume errors εi, i = 1, . . . , n are i.i.d. with the

normal with zero mean. Therefore, we have

P (0 ≤ εj) =
1

2
. (5.2.5)

Here we relax the normality assumption to (5.2.5), the assumption of zero median

of the error and use it to improve the efficiency of the Theil-Sen estimator. The

U-statistic based equation of (5.2.5) is(
n

2

)−1 ∑
1≤i<j≤n

1[0 <
εi + εj

2
]− 1

2
= 0. (5.2.6)

Thus, we obtain the smoothed version of (5.2.6)(
n

2

)−1 ∑
1≤i<j≤n

Fb(
εi + εj

2
)− 1

2
= 0. (5.2.7)
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This gives us another constraint.

Now let us apply Theorem 4.1.1 to get the asymptotic distribution of the im-

proved Theil-Sen estimator β. From (5.2.4) and (5.2.7), the kernel is h(Z1, Z2; β) =

(h(1)(Z1, Z2; β), h(2)(Z1, Z2; β))>, where

h(1)(Z1, Z2; β) = Fb
(
β − (Y1 − Y2)/(X1 −X2)

)
− 1/2,

h(2)(Z1, Z2; β) = Fb
(
(Y1 + Y2 − β(X1 +X2))/2

)
− 1/2.

Therefore,

h
(1)
1 (z1; β) = E[Fb(β − (y1 − Y2)/(x1 −X2))]− 1/2,

h
(2)
1 (z1; β) = E[Fb((y1 + Y2 − β(x1 +X2))/2)]− 1/2.

Let f be the pdf of F and fb(t) = f( t
b
). Since F is a cdf, it follows

ḣ
(1)
1 (z1; β) = E

(
b−1fb(β − (y1 − Y2)/(x1 −X2))

)
,

ḣ
(2)
1 (z1; β) = E

(
− (x1 +X2)/(2b)fb((y1 + Y2 − β(x1 +X2))/2)

)
.

Using these we can obtain the asymptotic normal distribution of the MELE by The-

orem 4.1.1.
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6. AN EL APPROACH TO GOODNESS-OF-FIT TESTING

FOR MULTIVARIATE AND HIGH DIMENSIONAL

SYMMETRIES

In this chapter, we develop empirical likelihood tests to various multivariate and high

dimensional symmetries based on the characterizations of the symmetries. We report

some simulation results.

6.1 Testing multivariate symmetries

6.1.1 Spherical symmetry

A random vector X in Rd is spherically symmetric about a point θ ∈ Rd if

X − θ d
= Γ(X − θ),

for every orthogonal d× d matrix Γ, where
d
= denotes both sides of the equality have

an identical distribution. Spherical symmetry is equivalent to the assertion that the

radius V = ‖X − θ‖ is independent of the spatial unit vector U = (X − θ)/‖X − θ‖,

which is uniformly distributed on the unit sphere Sd−1 in Rd, i.e. U ∼ U (Sd−1).

Independence of V and U of course implies

E[aj(V )bk(U)] = 0, aj ∈ L2,0(FV ), bk ∈ L2,0(FU), j, k = 1, 2, . . . , (6.1.1)

where L2(F ) =
{
h :
∫
h2 dF <∞

}
and L2,0(F ) =

{
h ∈ L2(F ) :

∫
h dF = 0

}
for a

distribution F , and FV and FU are the distribution functions of V and U respectively.

There are numerous choices for a and b, for example, one can choose the sign function

a1(v) = sign(v), Huber’s function a2(v) = v1[‖v‖ ≤ 1.4] + 1.4sign(v)1[‖v‖ > 1.4] and

the coordinatewise projection functions bk(U) = Uk, k = 1, . . . , d of U .
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As U is uniformly distributed over U (Sd−1), we can use it as side information. To

this end, we shall resort to the Jackknife empirical likelihood for vector U-statistics

developed by Tan, et al. (2015). Let (Vi, Ui), i = 1, . . . , n be a random sample of

(V, U), and let R = U1 + U2 and R0 = R/‖R‖. It is well known that U being

uniformly distributed over the unit sphere U (Sd−1) is equivalent to the assertion

that ‖R‖ and R0 are independent. Independence implies

E(cl(‖R‖)R0) = 0, cl ∈ L2,0(G), l = 1, 2, . . . ,

where G denotes the distribution function of ‖R‖. Note that G is known and com-

putable. We mention the formula below in the usual case.

Remark 6.1.1 For d = 3, the distribution function G of ‖R‖ is given by

G(r) =
1

16π2

∫
‖x‖=1,‖y‖=1,‖x+y‖≤r

dx1dx2dy1dy2√
(1− x2

1 − x2
2)(1− y2

1 − y2
2)
,

where x = (x1, x2, x3), y = (y1, y2, y3) and 0 ≤ r ≤ 2.

We can choose cl as for aj. As G is known, a systematic way of choosing cl, l = 1, 2, . . .

is to take them to be basis functions of L2,0(G), for example, cl = ϕl ◦ G, where

ϕl(t) =
√

2 cos(lπt), t ∈ (0, 1) is the usual orthonormal trigonometric basis. Denote

cL = (c1, . . . , cL)> for some positive integer L. Let κ(U1, U2) = cL(‖R‖)⊗ R0, where

⊗ denotes the Kronecker product. Then it is an argument-symmetric vector kernel

and satisfies E(κ(U1, U2)) = 0 by the preceding independence. The vector U-statistic

with κ as the kernel is now given by

Un(cL) =

(
n

2

)−1 ∑
1≤i<j≤n

κ(Ui, Uj).

The Jackknife pseudo values of the vector U-statistics are calculated by

Vnj = nUn(cL)− (n− 1)U
(−j)
n−1 (cL), j = 1, . . . , n,

where U
(−j)
n−1 is the vector U-statistic based on the n−1 observations with the deletion

of the jth. The preceding discussion motivates us to use the first few equations in
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(6.1.1) as constraints to construct the Jackknife empirical likelihood ratio with side

information as follows:

Rssu
n = sup

{ n∏
j=1

nπj : π ∈Pn,

n∑
j=1

πjvec
(
aJ(Vj)⊗ bK(Uj), Vnj(cL)

)
= 0
}
,

where aJ = (a(1), . . . , a(J))>, bK = (b(1), . . . , b(K))>, and vec(X, Y ) denotes the column

vector consisting of stacking X, Y . Let Rss
n be the empirical likelihood ratio when

the Jackknife pseudo values are not included. It follows from Corollary 3.1 of Tan, et

al. (2015) that the following holds. Denote κ1(u) = E(κ(U1, U2)|U1 = u).

Theorem 6.1.1 Suppose the covariance Cov(vec(aJ(V ), bK(U), κ1(U)) has full rank

JK + Ld. Then −2 log Rssu
n has an asymptotic chisquare distribution with JK + Ld

degrees of freedom, that is,

−2 log Rssu
n ⇒ χ2

(JK+Ld).

If E(a⊗2
J (V )E(b⊗2

K (U)) has full rank JK, then −2 log Rss
n ⇒ χ2

JK .

A systematic way of choosing a(j) is a(j) = ϕj ◦ FV , j = 1, 2, . . . , which is an

orthonormal basis of L2,0(FV ). But it is not computable as FV is unknown. One

can estimate it by the empirical distribution function F̂V and obtain computable

â(j) = ϕj ◦F̂V . With estimated constraints, we now work with the empirical likelihood

ratio:

R̂ss
n = sup

{ n∏
i=1

nπj : π ∈Pn,
n∑
j=1

πj âJ(Vj)⊗ Uj = 0
}
.

We will allow J , d to depend on the sample size n, J = Jn, d = dn, and grow to

infinity slowly. The following is the asymptotic result with the proof delayed to the

last section.

Theorem 6.1.2 Suppose Jndn →∞ but J3
nd

5
n + J4

nd
3
n + J5

nd
3
n = o(n). Then

−2 log R̂ss
n − Jndn√
Jndn

⇒ N (0, 1). (6.1.2)
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This shows −2 log R̂ss
n is approximately chisquare distributed with Jndn degrees of

freedom. Thus for 0 < α < 1,

P
(
− 2 log R̂ss

n > χ2
Jndn(1− α)

)
→ α,

where χ2
d(1−α) is the (1−α)-th percentile of the chisquare distribution with d degrees

of freedom. Accordingly the test 1[−2 log R̂ss
n > χ2

Jndn
(1−α)] has an asymptotic size

α. If Jn = J for all n, then this is the case of the sphere with infinity dimension. If

dn = d for all n, then this is the case of a d-dimensional sphere.

6.1.2 Rotational symmetry

A random vector X ∈ Sd is rotationally symmetric about a fixed direction θ if

X − θ d
= O(X − θ),

for every d× d rotation matrix O about the direction θ in Rd. Rotational symmetry

is equivalent to the assertion that the projection T = θ>X of X onto the direction

θ is independent of the unit tangent ξ at θ to Sd−1, which is uniformly distributed

on Sd−2, i.e. ξ ∼ U (Sd−2(θ)), where Sd−2(θ) =
{
x ∈ Rd : ‖x‖ = 1, x>θ = 0

}
. For

more details, see page 179 of Madia and Jupp (2000). Notice that X satisfies the

tangent-normal equation,

X = Tθ +
√

1− T 2ξ. (6.1.3)

Rotationally symmetric distributions include von Mises-Fisher-type distributions with

densities of the form f(θ>x), x ∈ Sd, Waston-type distributions with densities of the

form g
(
κ(θ>x)2

)
, x ∈ Sd, and Bingham-type distributions of densities of the form

h(x>Kx), x ∈ Sd, where f, g, h are nonnegative functions and K is a positive definite

matrix.

In modeling directional and axial data using parametric distributions, one often

wishes to test the null hypothesis that the underlying distribution is rotationally

symmetric about θ = θ0. By exploiting the preceding independence, a nonparametric
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test is the empirical likelihood ratio elaborated below. Let (Ti, ξi), i = 1, . . . , n be a

random sample of (T, ξ), where T = θ>0 X and ξ = (X − Tθ0)/
√

1− T 2. As in the

spherical symmetry, the uniform distribution of ξ can be used as side information.

To this end, let R = ξ1 + ξ2 and R0 = R/‖R‖. Again the statement that ξ ∼

U (Sd−2) is equivalent to the assertion that ‖R‖ and R0 are independent. Let G be

the distribution function of ‖R‖. Let d(m) = ϕm ◦G and dM = (d(1), . . . , d
(M))>. This

is computable as G is known. Let κ(ξ1, ξ2) = dM(‖R‖) ⊗ R0. Then it is argument-

symmetric and satisfies E(κ(ξ1, ξ2)) = 0 by the preceding independence. The vector

U-statistic with κ as kernel is now given by

Un(dM) =

(
n

2

)−1 ∑
1≤i<j≤n

κ(ξi, ξj).

The Jackknife pseudo values of the vector U-statistics are calculated by

Vnj(dM) = nUn(dM)− (n− 1)U
(−j)
n−1 (dM), j = 1, . . . , n,

Analogously we construct the Jackknife empirical likelihood ratio with side informa-

tion as follows:

Rrsu
n = sup

{ n∏
j=1

nπj : π ∈Pn,
n∑
j=1

πjvec(aJ(Tj)⊗ bK(ξj), Vnj(dM)
)

= 0
}
,

for some choices of aJ = (a(1), . . . , a(J))> and bK = (b(1), . . . , b(K))>. Let Rrs
n be

the empirical likelihood ratio when the jackknife pseudo values are not included.

It follows from Corollary 3.1 of Tan, et al. (2015) that the following holds. Let

ξ1(x) = E(κ(ξ1, ξ2)|ξ2 = x).

Theorem 6.1.3 Suppose the matrix Cov(vec(aJ(T )), bK(ξ), κ1(ξ)) has full rank JK+

M(d−1). Then −2 log Rrsu
n ⇒ χ2

(JK+M(d−1)). If E(a⊗2
J (T )E(b⊗2

K (ξ)) has full rank JK,

then −2 log Rrs
n ⇒ χ2

JK .

As the distribution FT of T is unknown, we estimate it by the empirical distri-

bution function F̂T . Let Jn, dn be positive integers and tend to infinity and take
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âJn = (a(1), . . . , a(Jn))> = (ϕ1, . . . , ϕJn)> ◦ F̂T . With the estimated constraints, the

empirical likelihood ratio as test statistic is now given by

R̂rs
n = sup

{ n∏
j=1

nπj : π ∈Pn,

n∑
j=1

πj â
(Jn)(Tj)⊗ ξj = 0

}
.

We have the following.

Theorem 6.1.4 Suppose Jndn →∞ but J5
nd

5
n = o(n). Then

−2 log R̂rs
n − Jn(dn − 1)√
Jn(dn − 1)

⇒ N (0, 1). (6.1.4)

Thus −2 log R̂rs
n is approximately chisquare distributed with Jn(dn − 1) degrees of

freedom and the test 1[−2 log R̂rs
n > χ2

Jn(dn−1)(1 − α)] has an asymptotic size α ∈

(0, 1).

6.1.3 Antipodally symmetric distributions

Let X have the continuous generalized Scheiddegger-Watson distribution, i.e., the

density is of the form g(‖xv‖), x ∈ Sd−1, where g is some known function, and xv is

the part of x in an s-dimensional subspace V . Then the tangent-norm equation of X

is given by

X = Tη + (1− T 2)1/2ξ, T = ‖xv‖, η ∈ V , ξ ∈ V⊥.

where ‖η‖ = 1, η ∈ V , ‖ξ‖ = 1, ξ ∈ V⊥. Here we take η = Xv/‖Xv‖, ξ = (X −

Tη)/(1 − T 2)1/2. A relationship similar to the rational symmetry is that T, η and ξ

are independent, and η and ξ are uniformly distributed on unit spheres in V and V⊥.

Analogous to the preceding discussions, one can construct an empirical likelihood

ratio test and we shall omit the details.

6.1.4 Coordinatewise symmetry

A random vector X in Rd has a distribution coordinatewise symmetric about θ if

(X1 − θ1, . . . , Xd − θd)
d
= (s1(X1 − θ1), . . . , sd(Xd − θd)), sj = ±1, j = 1, . . . , d.
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Coordinatewise symmetry of X about θ is equivalent to the assertion that the coor-

dinatewise radius vector V = (V1, . . . , Vd)
> is independent of the coordinatewise sign

vector U = (U1, . . . , Ud)
>, where Vj = ‖Xj−θj‖ and Uj = sign(Xj−θj). Independence

implies

E[a(j)(V )b(k)(U)] = 0, a(j) ∈ L2,0(FV ), b(k) ∈ L2,0(FU), j, k = 1, 2, . . . .

Analogous to the preceding discussions, we choose several a(j) ∈ L2,0(FV ), j = 1, . . . , J

and b(k) ∈ L2,0(FU), k = 1, . . . , K and construct the empirical likelihood ratio:

Rcs
n = sup

{ n∏
i=1

nπj : π ∈Pn,

n∑
j=1

πjaJ(Vi)⊗ bK(Ui) = 0
}
,

By Owen’s theorem, we have the following.

Theorem 6.1.5 Suppose the matrix E(aJa
>
J (V )) ⊗ E(bKb

>
K(U)) has full rank JK.

Then

−2 log Rcs
n ⇒ χ2

JK .

6.1.5 Exchangeability

A random vector X in Rd is exchangeable if

(X1, . . . , Xd)
d
= (Xπ1 , . . . , Xπd)

for every permutation π1, . . . , πd of 1, . . . , d. Then O = (Xd,1, . . . , Xd,d)
>, where

Xd,1 ≤ . . . ≤ Xd,d are the order statistics of X, is independent of R = (R1, . . . , Rd)
>,

where Rj =
∑d

i=1 1[Xi ≤ Xj] are the rank statistics. Independence implies

E[a(j)(O)b(k)(R)] = 0, a(j) ∈ L2,0(FO), b(k) ∈ L2,0(FR), j, k = 1, 2, . . . .

In the same fashion, we choose several a(j) ∈ L2,0(FO), j = 1, . . . , J and b(k) ∈

L2,0(FR), k = 1, . . . , K and construct the empirical likelihood ratio:

Res
n = sup

{ n∏
j=1

nπj : π ∈Pn,
n∑
j=1

πjaJ(Oj)⊗ bK(Rj) = 0
}
,

where (Oj, Rj), j = 1, . . . , n is a random sample of (O,R).

By Owen’s theorem, we have the following.
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Theorem 6.1.6 Suppose the matrix E(aJa
>
J (O)) ⊗ E(bKb

>
K(R)) has full rank JK.

Then

−2 log Res
n ⇒ χ2

JK .

6.2 Simulation study

6.2.1 Testing the center of spherical symmetry

Consider the null hypothesis that the center of symmetry of a distribution is the

origin of Rd versus the alternative hypothesis that the center is θ1 different from the

origin,

H0 : θ = 0 vs H1 : θ = θ1.

We were interested in the power performance of the proposed tests at the nominal level

of significance α = .05 in different cases. Specifically, we looked at the following cases.

Case 1. How the power of the tests decreases as the dimension d grows with respect

to different sample sizes n. Case 2. How the power of the tests increases as θ1 moves

away from the origin for a fixed sample size n with respect to different dimensions d

and different number of constraints J,K. Case 3. How the side information increases

the power of the tests. We examined the test 1[−2 log R̂ss
n > χ2

Jndn
(1−α)] in Cases 1

and 2 and the test 1[−2 log Rssu
n > χ2

JK+Ld(1− α)] in Case 3. In the latter situation,

we choose a(v) = (sign(v), v1[‖v‖ ≤ 1.4] + 1.4sign(v)1[‖v‖ > 1.4])> and bK(U) = U .

As E(U) = 0, these choices still satisfy the equalities in (6.1.1) by the independence

of V and U even though the components a(1), a(2) of a are not in L2,0(FV ). Examining

Cases 2 and 3, one observes that there is significant power increase and sample size

reduction with the use of the side information
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Table 6.1.
Case 1: The simulated α = .05 level of significance of the EL test
about the center of spherical symmetry H0 : θ = 0 with J = r,
d = dim, n = 400 and m = 2000 repetitions. Data generated from
multivariate normal.

r=1 r=2 r=3 r=4 r=5

dim=1 0.0395 0.0520 0.0470 0.0585 0.0465

dim=2 0.0475 0.0610 0.0480 0.0460 0.0560

dim=3 0.0570 0.0605 0.0520 0.0615 0.0595

dim=4 0.0555 0.049 0.05450 0.06500 0.0705
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Table 6.2.
Case 1: The simulated power of the test about the center of spherical
symmetry H0 : θ = 0 vs H1 : θ = rep(0.4, dim) with J = r, d = dim,
and m = 2000 repetitions at α = 0.05 level of significance. Data
generated from multivariate normal.

n r=1 r=2 r=3 r=4 r=5

dim=1

50 0.3170 0.2425 0.2005 0.183 0.1835

100 0.5460 0.4070 0.3810 0.3530 0.3175

150 0.7190 0.6260 0.5880 0.5105 0.4500

200 0.8350 0.7500 0.7285 0.6495 0.6190

250 0.9035 0.8590 0.8200 0.7870 0.7285

300 0.9425 0.9165 0.8900 0.8550 0.8225

350 0.9745 0.9530 0.9330 0.9050 0.8870

400 0.9875 0.9780 0.9680 0.9565 0.9390

450 0.9955 0.9900 0.9845 0.9715 0.9685

500 0.9975 0.9910 0.9880 0.9815 0.9820

600 1 0.9985 0.9975 0.9980 0.9930

700 1 1 0.9995 0.9990 0.9985

800 1 1 1 1 0.9995

dim=2

50 0.2180 0.1690 0.1720 0.2035 0.2565

100 0.4290 0.3190 0.2480 0.2555 0.2335

150 0.6125 0.4870 0.3805 0.3675 0.3200

200 0.7525 0.6245 0.5580 0.4795 0.4495

250 0.8660 0.7440 0.6735 0.6200 0.5745

300 0.9065 0.8485 0.7715 0.7165 0.6745

350 0.9620 0.8970 0.8615 0.8130 0.7615

400 0.9860 0.9425 0.9140 0.8595 0.8210

450 0.9905 0.9625 0.9480 0.9185 0.8965

500 0.9955 0.9815 0.9675 0.9555 0.9280

600 0.9990 0.9940 0.9915 0.9885 0.9815

700 1 0.9980 0.9970 0.991 0.991

800 1 1 1 0.998 0.9985

dim=3

50 0.1745 0.1660 0.2390 0.3365 0.4720

100 0.3355 0.2325 0.2305 0.2110 0.2440

150 0.4845 0.3285 0.2980 0.2770 0.2705

200 0.6430 0.4755 0.4165 0.3395 0.3175

250 0.7685 0.6040 0.5250 0.4370 0.3945

300 0.8630 0.7050 0.6370 0.5565 0.5060

350 0.9100 0.8095 0.7355 0.6710 0.6040

400 0.9475 0.8680 0.8070 0.7285 0.6840

450 0.9700 0.9105 0.8720 0.7980 0.7525

500 0.9865 0.9405 0.9125 0.8645 0.8360

600 0.9945 0.9790 0.9600 0.9350 0.9230

700 0.9995 0.9955 0.9890 0.9695 0.9580

800 1 0.9975 0.9960 0.9920 0.9860

dim=4

50 0.1580 0.1995 0.353 0.5375 0.7570

100 0.2510 0.2120 0.2125 0.2580 0.3345

150 0.3830 0.2680 0.2255 0.2250 0.2525

200 0.5045 0.3350 0.3195 0.2640 0.2845

250 0.6465 0.4580 0.4050 0.3515 0.3335

300 0.7465 0.5655 0.5050 0.4315 0.3600

350 0.8420 0.6590 0.5925 0.5150 0.4345

400 0.8825 0.7665 0.6560 0.5825 0.4920

450 0.9260 0.8150 0.7440 0.6710 0.5965

500 0.9665 0.8670 0.8260 0.7335 0.6605

600 0.9855 0.9470 0.9075 0.8430 0.8100

700 0.9980 0.9780 0.9605 0.9085 0.8885

800 0.9995 0.9905 0.9840 0.9590 0.9370
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Table 6.3.
Case 2: The simulated power of the test about the center of spherical
symmetry H0 : θ = 0 vs H1 : θ = θ1 with J = r, d = dim, n = 400
and m = 2000 repetitions at α = 0.05 level of significance. Data
generated from multivariate normal.

θ1 r=1 r=2 r=3 r=4 r=5

dim=1

0.05 0.0920 0.0820 0.0735 0.0695 0.0685

0.10 0.1875 0.1595 0.1460 0.1345 0.1170

0.15 0.3615 0.2860 0.2535 0.2450 0.2305

0.20 0.5980 0.4990 0.4540 0.4090 0.4170

0.25 0.7875 0.6995 0.6440 0.6080 0.5685

0.30 0.9020 0.8415 0.7985 0.7630 0.7500

0.35 0.9580 0.9265 0.9085 0.8675 0.8595

0.40 0.9910 0.9775 0.9670 0.9490 0.9365

dim=2

(0.05,0.05) 0.0845 0.0755 0.0770 0.0670 0.0630

(0.10,0.10) 0.1830 0.1405 0.1290 0.1165 0.1020

(0.15,0.15) 0.3615 0.2670 0.2350 0.2005 0.2020

(0.20,0.20) 0.5405 0.4370 0.4125 0.3400 0.3230

(0.25,0.25) 0.7510 0.6275 0.5830 0.4840 0.4620

(0.30,0.30) 0.8680 0.7995 0.7515 0.6675 0.6310

(0.35,0.35) 0.9480 0.8920 0.8425 0.7995 0.7590

(0.40,0.40) 0.9770 0.9410 0.9075 0.8820 0.8500

dim=3

(0.05,0.05,0.05) 0.0865 0.0665 0.0680 0.0745 0.0690

(0.10,0.10,0.10) 0.1695 0.1235 0.1210 0.1180 0.1040

(0.15,0.15,0.15) 0.3065 0.2415 0.2030 0.1905 0.1655

(0.20,0.20,0.20) 0.5020 0.3765 0.3420 0.3010 0.2410

(0.25,0.25,0.25) 0.6805 0.5585 0.4730 0.4155 0.3825

(0.30,0.30,0.30) 0.8145 0.6690 0.6265 0.5530 0.5045

(0.35,0.35,0.35) 0.8995 0.7935 0.7295 0.6390 0.5995

(0.40,0.40,0.40) 0.9460 0.8550 0.8040 0.7400 0.6790

dim=4

(0.05,0.05,0.05,0.05) 0.0605 0.0610 0.0695 0.0690 0.0805

(0.10,0.10,0.10,0.10) 0.1320 0.1165 0.1160 0.1120 0.1060

(0.15,0.15,0.15,0.15) 0.2710 0.1965 0.1730 0.1480 0.1660

(0.20,0.20,0.20,0.20) 0.4315 0.3045 0.2870 0.2440 0.2425

(0.25,0.25,0.25,0.25) 0.6165 0.4485 0.4160 0.3560 0.3455

(0.30,0.30,0.30,0.30) 0.7440 0.5690 0.5240 0.4490 0.392

(0.35,0.35,0.35,0.35) 0.8310 0.6935 0.5895 0.5325 0.4885

(0.40,0.40,0.40,0.40) 0.8960 0.7435 0.6640 0.5750 0.5225
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Table 6.4.
Case 3: The simulated α = .05 level of significance of the test about
the center of spherical symmetry H0 : θ = 0 with J = K = r,
d = L = dim, n = 50, and m = 100 repetitions. Data generated from
multivariate normal.

r=1 r=2 r=3 r=4 r=5

dim=2 0 0 0.08 0.06 0.08

dim=3 0.02 0.03 0.08 0.10 0.14

dim=4 0.03 0.02 0.10 0.26 0.41

Table 6.5.
Case 3: The simulated power of the test about the center of spherical
symmetry H0 : θ = 0 vs H1 : θ = θ1 with J = K = r, d = L = dim,
n = 50, and m = 100 repetitions at α = 0.05 level of significance.
Data generated from multivariate normal.

θ1 r=1 r=2 r=3 r=4 r=5

dim=2

(0.1,0.1) 0.11 0.05 0.09 0.15 0.13

(0.2,0.2) 0.17 0.23 0.15 0.20 0.25

(0.3,0.3) 0.59 0.53 0.39 0.47 0.46

(0.4,0.4) 0.82 0.79 0.76 0.74 0.79

(0.5,0.5) 0.98 0.91 0.95 0.90 0.93

dim=3

(0.1,0.1,0.1) 0.06 0.06 0.12 0.14 0.21

(0.2,0.2,0.2) 0.31 0.20 0.31 0.34 0.5

(0.3,0.3,0.3) 0.69 0.55 0.59 0.66 0.84

(0.4,0.4,0.4) 0.91 0.92 0.90 0.91 0.95

(0.5,0.5,0.5) 0.99 0.99 0.97 1 1
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6.2.2 Testing rotational symmetry

Consider the null hypothesis that the direction of rotational symmetry of a dis-

tribution is (0, 0, 1) versus the alternative hypothesis that the direction is θ1 different

from (0, 0, 1),

H0 : θ = (0, 0, 1) vs H1 : θ = θ1.

We looked at the same Cases 1 and 2 as in Subsection (6.2.1). Specifically, we studied

the test 1[−2 log R̂rs
n > χ2

Jn(dn−1)(1 − α)] and chose the same aJ as in Subsection

(6.2.1). Here the data were generated from the von Mises-Fisher distribution. This

is a probability distribution defined on the sphere Sd with the pdf given by

fd(θ
>x;κ) = Cd(κ) exp(κθ>x), x ∈ Sd,

where κ ≥ 0, ‖θ‖ = 1 and the normalization constant Cd(κ) is given by

Cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
,

where Iv denotes the modified Bessel function of the first kind with order v. When

d = 3, C3(κ) reduces to

C3(κ) =
κ

4π sinhκ
=

κ

2π(exp(κ)− exp(−κ))
.

The parameter θ is the mean direction and the parameter κ the concentration param-

eter. The distribution is more concentrated around the mean direction θ with higher

κ. When κ = 0, the distribution is uniform on Sd. Obviously, the von Mises-Fisher

distribution is rotationally symmetric about the mean direction θ.

6.3 Proof of Theorem 6.1.2

We shall apply Theorem 7.4 of Peng and Schick (2013) to prove the result. For

self-containedness, we quote their result below. Assume that (Z,S ) is a measurable

space, that Z1, . . . , Zn are independent copies of the Z-valued random variable Z with

distribution Q, and that mn is a positive integer that tends to infinity with n. Let wn
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Table 6.6.
Case 1: The simulated α = 0.05 level of significance of the test about
the direction of rotational symmetry H0 : θ = (0, 0, 1)> with d = 3,
J = r, and m = 2000 repetitions. Data generated from the von
Mises-Fisher distribution.

r=1 r=3 r=5

n=50 0.0505 0.0990 0.2275

n=100 0.0530 0.0685 0.0865

Table 6.7.
Case 2: The simulated power of the test about rotational symmetry
H0 : θ = (0, 0, 1)> vs H1 : θ = (0.14, 0.14, 0.98)> with d = 3,
J = r, and m = 2000 repetitions at α = 0.05. Data generated from
the von Mises-Fisher distribution.

r=1 r=3 r=5

n=50 0.949 0.9995 0.9955

n=100 0.9995 1 1
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denote a measurable function from Z to Rmn such that
∫
wn dQ = 0 and

∫
‖wn‖2 dQ

is finite. Let ŵn be an estimator of wn. Consider

R̂n = sup
{ n∏
j=1

nπj : π ∈Pn,
1

n

n∑
j=1

πjŵn(Zj) = 0
}
.

Let ‖M‖o be the spectral norm (the largest eigenvalue) of matrix M and set

Wn =

∫
wnw

>
n dQ, and Ŵn =

1

n

n∑
j=1

ŵnŵ
>
n (Zj).

Lemma 6.3.1 Suppose the mn ×mn dispersion matrices Wn is regular in the sense

that

0 < inf
n

inf
‖u‖=1

u>Wnu ≤ sup
n

sup
‖u‖=1

u>Wnu <∞.

Assume

mn max
1≤j≤n

‖ŵn(Zj)‖ = op(n
1/2), (6.3.1)

‖Ŵn −Wn‖o = op(m
−1/2
n ) (6.3.2)

and
1

n

n∑
j=1

ŵn(Zj) =
1

n

n∑
j=1

vn(Zj) + op(n
−1/2) (6.3.3)

for some measurable function vn from S into Rmn such that
∫
vn dQ = 0 and ‖vn‖

is Lindeberg, that is, for every ε > 0,
∫
‖vn‖21[‖vn‖ > ε

√
n] dQ → 0. Suppose the

dispersion matrix Un = W−1/2
n

∫
vnv

>
n dQW

−1/2
n of W−1/2

n vn(Z) satisfies ‖Un‖o = O(1)

and mn/trace(U2
n) is bounded. Then, as mn tends to infinity with n,

−2 log R̂n − trace(Un)√
2trace(U2

n)
=⇒ N (0, 1).

Proof of Theorem 6.1.2. We shall prove this by applying Lemma 6.3.1 with

Z = (V, U>)>, wn(Z) =
√
dnaJn(V )⊗ U and ŵn(Z) =

√
dnâJn(V )⊗ U.

Then mn = Jndn and Wn = dnE(a⊗2
Jn

(V ))⊗E(U⊗2) = IJn ⊗ Idn as E(U⊗2) = Idn/dn.

Thus Wn is regular. Clearly (6.3.1) is met as ‖ŵ(Zj)‖ ≤
√

2J
1/2
n dn and J3

nd
4
n = o(n).

For (6.3.2), by the triangle inequality,

‖Ŵn −Wn‖o ≤ ‖Ŵn − W̄n‖o + ‖W̄n −Wn‖o. (6.3.4)
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Since

nE‖W̄n −Wn‖2 ≤ d2
nE‖aJ(V )⊗ U‖4 ≤ 4J2

nd
4
n,

it follows ‖W̄n −Wn‖o ≤ 2Jnd
2
n/
√
n = o(m

−1/2
n ) as J3

nd
5
n = o(n). Note

‖Ŵn − W̄n‖o ≤ Dn + 2‖W̄n‖1/2
o D1/2

n ,

where Dn = dn
1
n

∑n
j=1 ‖[âJn(Vj) − aJn(Vj)] ⊗ Uj‖2. Thus (6.3.2) is implied by Dn =

op(m
−1
n ) in view of (6.3.4). To this end, let ϕn(t) = (ϕ(1), . . . , ϕ(Jn))> so aJn = ϕn ◦FV

and âJn = ϕn ◦ F̂V . We need the following properties of the trigonometric basis: for

t ∈ [0, 1],

‖ϕn(t)‖ ≤ (2Jn)1/2, ‖ϕ′n(t)‖ ≤
√

2πJ3/2
n , ‖ϕ′′n(t)‖ ≤

√
2π2J5/2

n , (6.3.5)

where ϕ′n and ϕ′′n denote the first and second order derivatives of ϕ. Using the second

inequality in (6.3.5), we derive

1

n

n∑
j=1

‖ϕn(F̂V (Vj))− ϕn(FV (Vj))‖2 ≤ 2π2J3
n sup
t∈R
‖F̂V (t)− FV (t)‖ = OP (J3

n/n).

Hence the desired Dn = OP (J3
nd

2
n/n) = oP (m−1

n ) as J4
nd

3
n = o(n). We now show (6.3.3)

holds with vn(Z) =
√
dnaJn(V )⊗U =

√
dnϕn ◦ FV (V )⊗U . Clearly E(vn(Z)) = 0 as

E(U) = 0 and V are independent of U , and vn is Lindeberg as ‖vn(Z)‖ ≤
√

2J
1/2
n dn =

o(
√
n). Moreover, since

∫
vnv

>
n dQ = Wn it follows that Un = IJn ⊗ Idn , hence

Un = Op(1) and mn/trace(U2
n) = 1. Now using Taylor expansion, we write

1

n

n∑
j=1

√
dn
(
ϕn(F̂V (Vj))− ϕn(FV (Vj))

)
⊗ Uj = Ln +Mn, say,

where

Ln =
1

n

n∑
j=1

√
dnϕ

′
n(FV (Vj))

(
F̂V (Vj)− FV (Vj)

)
⊗ Uj,

Mn =
1

n

n∑
j=1

√
dnϕ

′′
n(F ∗nj)

(
F̂V (Vj)− FV (Vj)

)2 ⊗ Uj,
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where F ∗nj lies in between F̂V (Vj) and FV (Vj). Using the second inequality in (6.3.5),

we get

E
(
‖Ln‖2

)
= trace

(
E(L⊗2

n )
)

=
dn
n

trace
(
E
[
ϕ′n(V1)⊗2

(
F̂V (V1)− FV (V1)

)2]⊗ E(U⊗2
1 )
)

≤ dn
n
E
(
‖ϕ′n(FV (V1))‖2

(
F̂V (V1)− FV (V1)

)2
)

≤ 2π2J
3
ndn
n

E
(

sup
t∈R

(
F̂V (t)− FV (t)

)2)
= OP (J3

ndn/n
2) = oP (n−1)

as J3
ndn = o(n). This shows Ln = oP (n−1/2). Using the third inequality in (6.3.5), we

find

‖Mn‖ ≤
√

2π2J5/2
n d3/2

n sup
t∈R
‖F̂V (t)− FV (t)‖2 = OP (J5/2

n d3/2
n /n) = oP (n−1/2)

as J5
nd

3
n/n = o(1). This yields Mn = oP (n−1/2) and hence the desired (6.3.3). We

now apply Lemma 6.3.1 to complete the proof.
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7. TECHNICAL DETAILS

In this chapter, we prove the lemmas and theorems.

7.1 Proofs for Lemmas in Chapter 3

Let us recall some expressions and properties of U-statistics and their jackknife

pseudo values. Given the definitions in the first section, by the Hoeffding decompo-

sition, we have

Vnj(θ) = mh̃1(Zj; θ) +Rnj(θ), j = 1, . . . , n. (7.1.1)

where Rnj is the remainder given by

Rnj(θ) =
m∑
c=2

(
m

c

)(
nUnc(h

∗
c(θ))− (n− 1)U

(−j)
(n−1)c(h

∗
c(θ))

)
, j = 1, . . . , n. (7.1.2)

After rearranging equation (7.1.2), we have for j = 1, . . . , n that

Rnj(θ) =
m∑
c=2

(
m

c

)(
cU(n−1)(c−1)(h

∗
(c−1)j(θ))− (c− 1)U

(−j)
(n−1)c(h

∗
c(θ))

)
, (7.1.3)

where

h∗(c−1)j = h∗c(Zj; z1, . . . , zc−1). (7.1.4)
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Proof of Lemma 3.2.1. Let θnt = θ0 +n−1/2t. By (7.1.1) and Cauchy inequality,

1

n

n∑
j=1

‖Vnj(θnt)−mh̃1(Zj; θ0)‖2

=
1

n

n∑
j=1

‖mh̃1(Zj; θnt) +Rnj(θnt)−mh̃1(Zj; θ0)‖2

=
1

n

n∑
j=1

‖m[h̃1(Zj; θnt)− h̃1(Zj; θ0)] +Rnj(θnt)‖2

≤ 1

n

n∑
j=1

2
(
‖m[h̃1(Zj; θnt)− h̃1(Zj; θ0)]‖2 + ‖Rnj(θnt)‖2

)
=

2m2

n

n∑
j=1

‖h̃1(Zj; θnt)− h̃1(Zj; θ0)‖2 +
2

n

n∑
j=1

‖Rnj(θnt)‖2

=
2m2

n

n∑
j=1

‖h1(Zj; θnt)− h1(Zj; θ0)‖2 +
2

n

n∑
j=1

‖Rnj(θnt)‖2

:=2m2An(t) + 2Bn(t).

It follows that

D̂n(C) ≤ 2m2 sup
‖t‖≤C

An(t) + 2 sup
‖t‖≤C

Bn(t).

Let Z̃1, . . . , Z̃m be i.i.d copies of Z1. Then

h1(Zj; θ) = E(h(Z̃1, . . . , Z̃m; θ)|Z̃1 = Zj).

For large n and ‖t‖ ≤ C, θnt ∈ N(θ0), so that by (A1) we get

An(t) =
1

n

n∑
j=1

‖E
(
h(Z̃1, . . . , Z̃m; θnt)− h(Z̃1, . . . , Z̃m; θ0)|Z̃1 = Zj

)
‖2

≤ 1

n

n∑
j=1

E

(
‖∂h
∂θ

(Z̃1, . . . , Z̃m; θ∗jt)‖2|Z̃1 = Zj

)
‖n−1/2t‖2

≤ C2 1

n

(
1

n

n∑
j=1

E(G2(Z̃1, . . . , Z̃m)|Z̃1 = Zj)

)

where θ∗jt lies between θ0 and θnt. By the law of large umbers, for M > 0,

P

(
1

n

n∑
j=1

E(G2(Z̃1, . . . , Z̃m)|Z̃1 = Zj) > M

)
≤ E(G2)

M
= o(1)
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since G is square-integrable. This shows

An(t) = OP (
1

n
) uniformly in ‖t‖ ≤ C.

Next we show this also holds for Bn(t).

Without loss of generality, we prove the case of θ ∈ R2. Let’s denote the coordi-

nates of t as (t1, t2). Select C0 as −C < C0 < C, then point t0 = (C0, C0) is located

inside the circle {‖t‖ < C}.

sup
‖t‖≤C

Bn(t) ≤ Bn(t0) + sup
‖t‖≤C

|Bn(t)−Bn(t0)|. (7.1.5)

For any ε > 0,

P ( sup
‖t‖≤C

Bn(t) > ε)

≤P (Bn(t0) > ε/2) + P ( sup
‖t‖≤C

|Bn(t)−Bn(t0)| > ε/2)

≤EBn(t0)

ε/2
+ P ( sup

‖t‖≤C
|Bn(t)−Bn(t0)| > ε/2)

:=P1n + P2n.

By (7.1.3) and the Cauchy inequality,

EBn(t0) =
1

n

n∑
j=1

E‖Rnj(θnt0)‖2 = E‖Rn1(θnt0)‖2

≤2m
m∑
c=2

(
m

c

)2{
c2V ar(U(n−1)(c−1)(h

∗
(c−1)j(θnt0)))

+ (c− 1)2V ar(U
(−j)
(n−1)c(h

∗
c(θnt0)))

}
.

In the proof of Theorem 7.1 of Peng and Tan (2016), it suffices to show V ar(Un(θnt0)) =

O( 1
n
) holds. Therefore we get

E‖Un(θnt0)‖2 = O(
1

n
),

and this proves P1n = O( 1
n
). Let us now show P2n = O( 1

n
). To this end, let

rnj(t) = Rnj(θnt)−Rnj(θnt0), ‖t‖ ≤ C.
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Using (7.1.3) again, we have

rnj(t) =
m∑
c=2

(
m

c

)
c[U(n−1)(c−1)(h

∗
(c−1)j(θnt))− U(n−1)(c−1)(h

∗
(c−1)j(θnt0))]

−
m∑
c=2

(
m

c

)
(c− 1)[U

(−j)
(n−1)c(h

∗
c(θnt))− U

(−j)
(n−1)c(h

∗
c(θnt0))].

(7.1.6)

By the definition of U-statistics, (A1) and using the mean value theorem, there is t∗

satifying ‖t∗‖ ≤ C such that

‖h(Z̃1, ..., Z̃m; θnt)− h(Z̃1, ..., Z̃m; θnt0)‖ ≤ n−1/22C‖ḣ(Z̃1, ..., Z̃m; θnt∗)‖

≤ n−1/22CG(Z̃1, ..., Z̃m).

Therefore the difference in the first sum on the right side of (7.1.6) satisfies

‖U(n−1)(c−1)(h
∗
(c−1)j(θnt))− U(n−1)(c−1)(h

∗
(c−1)j(θnt0))‖

=‖
(
n− 1

c− 1

)−1 ∑
i1<...<ic−1

(h∗(Zj;Zi1 , ..., Zic−1 ; θnt)− h∗(Zj;Zi1 , ..., Zic−1 ; θnt0))‖

≤
(
n− 1

c− 1

)−1 ∑
i1<...<ic−1

(δZj + P )(δZi1 + P ) . . . (δZic−1
+ P )Pm−c

‖h(Z̃1, ..., Z̃m; θnt)− h(Z̃1, ..., Z̃m; θnt0)‖

≤n−1/22C

(
n− 1

c− 1

)−1 ∑
i1<...<ic−1

(δZj + P )(δZi1 + P ) . . . (δZic−1
+ P )Pm−cG(Z1, ..., Zm),

where
∑

i1<...<ic−1
denotes the sum over all permutations of 1, ..., j − 1, j + 1, ..., n.

Similar inequalities can be derived for the difference in the second sum on the right

side of (7.1.6). Let

g∗(Zi1 , ..., Zic) = (δZi1 + P ) . . . (δZic + P )Pm−cG,

g∗j (Zi1 , ..., Zic) = g∗(Zj;Zi1 , ..., Zic−1).
(7.1.7)

Note that g∗ is argument-symmetric. Combining the inequalities above yields

n1/2

2C
‖rnj(t)‖≤

m∑
c=2

(
m

c

)
cU(n−1)(c−1)(g

∗
j ) +

m∑
c=2

(
m

c

)
(c− 1)U

(−j)
(n−1)c(g

∗), (7.1.8)

uniformly in ‖t‖ ≤ C. Recall

Bn(t) =
1

n

n∑
j=1

‖Rnj(θnt)‖2,
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and after the partition,

sup
‖t‖≤C

Bn(t) ≤ Bn(t0) + sup
‖t‖≤C

|Bn(t)−Bn(t0)|;

also, recall the definition of P2n as

P2n = P ( sup
‖t‖≤C

|Bn(t)−Bn(t0)| > ε/2).

By the Cauchy inequality, we derive

P2n =P
(

sup
‖t‖≤C

1

n

n∑
j=1

|‖Rnj(θnt)‖2 − ‖Rnj(θnt0)‖|2 > ε/2
)

≤P
(

sup
‖t‖≤C

1

n

n∑
j=1

‖Rnj(θnt)−Rnj(θnt0)‖(‖Rnj(θnt)‖+ ‖Rnj(θnt0)‖) > ε/2
)

≤P
(

sup
‖t‖≤C

1

n

n∑
j=1

‖rnj(t)‖(‖rnj(t)‖+ 2‖Rnj(θnt0)‖) > ε/2
)

≤P
(

sup
‖t‖≤C

1

n

n∑
j=1

(
‖rnj(t)‖2 + 2‖rnj(t)‖‖Rnj(θnt0)‖

)
> ε/2

)
.

≤P
(

sup
‖t‖≤C

1

n

n∑
j=1

‖rnj(t)‖2 > ε/4
)

+ P
(

sup
‖t‖≤C

( 1

n

n∑
j=1

‖rnj(t)‖2
)( 1

n

n∑
j=1

‖Rnj(θnt0)‖2
)
> ε2/64

)
.

1

n

n∑
j=1

‖Rnj(θnt0)‖2 = OP (1). (7.1.9)

For arbitrary fixed M > 0, when n is large, there is ε′ > 0 such that

P (
1

n

n∑
j=1

‖Rnj(θnt0)‖2 > M) = ε′,

and

P (
1

n

n∑
j=1

‖Rnj(θnt0)‖2 ≤M) = 1− ε′.
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Let Cn(t) = 1
n

∑n
j=1 ‖rnj(t)‖2, we have

P
(

sup
‖t‖≤C

Cn(t)
( 1

n

n∑
j=1

‖Rnj(θnt0)‖2
)
> ε2/64

)
=P
(
{ sup
‖t‖≤C

Cn(t)
( 1

n

n∑
j=1

‖Rnj(θnt0)‖2
)
> ε2/64}

⋂
{ 1

n

n∑
j=1

‖Rnj(θnt0)‖2 > M}
)

+ P
(
{ sup
‖t‖≤C

Cn(t)
( 1

n

n∑
j=1

‖Rnj(θnt0)‖2
)
> ε2/64}

⋂
{ 1

n

n∑
j=1

‖Rnj(θnt0)‖2 ≤M}
)

≤ε′ + P
(

sup
‖t‖≤C

Cn(t) >
ε2

64M

)
.

when ε′ → 0. Using this and (7.1.8), we derive for 0 < ε < 1 and M that

P2n ≤P
(

sup
‖t‖≤C

Cn(t) >
ε

4

)
+ P

(
sup
‖t‖≤C

Cn(t) >
ε2

64M

)
+ ε′

≤2P
(

sup
‖t‖≤C

Cn(t) >
ε

4

)
+ ε′

≤2P
( 1

n

n∑
j=1

{ m∑
c=2

(
m

c

)
cU(n−1)(c−1)(g

∗
j )
}2

>
ε

8
4C2n

)
+ ε′

+ 2P
( 1

n

n∑
j=1

{ m∑
c=2

(
m

c

)
(c− 1)U

(−j)
(n−1)c(g

∗)
}2

>
ε

8
4C2n

)
+ ε′

≤ 2
ε
8
n4C2

E

(
m∑
c=2

(
m

c

)
cU(n−1)(c−1)(g

∗
1)

)2

+
2

ε
8
n4C2

E

(
m∑
c=2

(
m

c

)
(c− 1)U

(−1)
(n−1)c(g

∗)

)2

+ ε′

≤ 4

εnC2

m∑
c=2

(
m

c

)2

c2V ar(U(n−1)(c−1)(g
∗
1))

+
4

εnC2

m∑
c=2

(
m

c

)2

(c− 1)2V ar(U
(−1)
(n−1)c(g

∗)) + ε′

=O(
1

n
) + ε′.

Take M →∞, then ε′ → 0, hence this completes the proof.
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Proof of Lemma 3.2.2. Let ∆n(t) be the expression inside the supremum in

(3.2.2). We now bound it by ‖∆n(t)‖ ≤ ‖∆1n(t)‖+ ‖∆2n(t)‖, where

∆1n(t) = n−1/2

n∑
j=1

(Vnj(θnt)−mh̃1(Zj; θnt)),

∆2n(t) = n−1/2

n∑
j=1

(mh̃1(Zj; θnt)−mh̃1(Zj; θ0)) + At.

By the Mean Value Theorem, for each j = 1, ..., n, there is some θ∗jt lying between θ0

and θnt, such that

∆2n(t) = n−1/2

n∑
j=1

(m(h̃1(Zj; θnt)− h̃1(Zj; θ0))) + At

= n−1/2

n∑
j=1

mE[(h(Z̃1, ..., Z̃m; θnt)− h(Z̃1, ..., Z̃m; θ0))|Z̃1 = Zj] + At

= n−1/2

n∑
j=1

mE[
∂h

∂θ
(Z̃1, ..., Z̃m; θ∗jt)(n

−1/2t)|Z̃1 = Zj] + At

=
t

n

n∑
j=1

mE[
∂h

∂θ
(Z̃1, ..., Z̃m; θ∗jt)|Z̃1 = Zj] + At

=
t

n

n∑
j=1

∂

∂θ

(
mE(h(Z̃1, ..., Z̃m; θ∗jt)|Z̃1 = Zj)

)
+ At

=
t

n

n∑
j=1

∂

∂θ
(mh̃1(Zj; θ

∗
jt)) + At

=
t

n

n∑
j=1

(
m ˙̃h1(Zj; θ

∗
jt)−m

˙̃h1(Zj; θ0)
)

+
( 1

n

n∑
j=1

m ˙̃h1(Zj; θ0) + A
)
t

:= An(t) +Bn(t),

(7.1.10)

where the equality from the fifth step to the sixth step in (7.1.10) is obtained by the

Dominated Convergence Theorem, see Remark 7.1.1 below. For the second term of
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the last line, we apply the law of large numbers to get sup‖t‖≤C ‖Bn(t)‖ = oP (1). Let

G1(z) = E(G(Z1, ..., Zm)|Z1 = z). We now apply (A1) to bound the first term by

An(t) ≤m‖t‖
n

n∑
j=1

G1(Zj)‖θ∗jt − θ0‖

≤mC

n

n∑
j=1

G1(Zj)n
−1/2C

=mC2n−1/2(
1

n

n∑
j=1

G1(Zj))

=OP (n−1/2)

uniformly in ‖t‖ ≤ C. Combining these two, we obtain sup‖t‖≤C ‖∆2n(t)‖ = oP (1).

To deal with ∆1n, we now introduce Ûn(θ), the projection of a vector U-statistic

Un(θ) of order m with kernel h onto some sum space, which enables a U-statistic

to be approximated within a sufficient degree of accuracy by a sum of i.i.d. random

variables (for the details see Section 5.3.1, Serfling (1980)). Specifically, the projection

Ûn(θ) of a U-statistic Un(θ) is defined as

Ûn(θ) =
n∑
j=1

E(Un(θ)|Zj)− (n− 1)E(Un(θ)). (7.1.11)

This is a sum of i.i.d. random variables, and satisfies

Ûn(θ)− E(Un(θ)) =
m

n

n∑
j=1

h̃1(Zj; θ), (7.1.12)

where h̃1 is defined as before. The proof of this can be found in Remark 7.1.2. It is

useful to express the difference Un − Ûn as a U-statistic,

Un(θ)− Ûn(θ) =

(
n

m

)−1 ∑
1≤i1<...<im≤n

H(Zi1 , . . . , Zim ; θ), (7.1.13)

based on the symmetric kernel

H(z1, . . . , zm; θ) = h(z1, . . . , zm; θ)− h̃1(z1; θ)− . . .− h̃1(zm; θ). (7.1.14)

Assume E‖hθ‖2 <∞ uniformly in θ ∈ N(θ0). Then it is shown in Remark 7.1.3 that

uniformly in θ ∈ N(θ0),

E‖Un(θ)− Ûn(θ)‖2 = O(n−2). (7.1.15)
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We now express ∆1n as

n−1/2∆1n(t) =
1

n

n∑
j=1

Vnj(θnt)−
1

n

n∑
j=1

mh̃1(Zj; θnt)

= Un(θnt)−
m

n

n∑
j=1

h̃1(Zj; θnt).

(7.1.16)

Using the projection Ûn(θ) in (7.1.12) and noting (2.1.1), we further rewrite (7.1.16)

as

n−1/2∆1n(t) = Un(θnt)− Ûn(θnt). (7.1.17)

Thus it is left to show

sup
‖t‖≤C

‖Un(θnt)− Ûn(θnt)‖ = oP (n−1/2). (7.1.18)

where C is an arbitrary positive constant.

Denote Unt = Un(θnt)− Ûn(θnt). It can then be expressed as a U-statistic,

Unt =

(
n

m

)−1 ∑
1≤i1<...<im≤n

H(Zi1 , . . . , Zim ; θnt), (7.1.19)

where H = H is given in (7.1.14) with h = h. To prove (7.1.18), it suffices to show

P (sup‖t‖≤C ‖Unt‖ > n−1/2ε)→ 0 as n→∞. Using the same technique as in the proof

of Lemma 3.2.1, without loss of generality, we prove the case of two dimensional

t ∈ R2 and denote t = (t1, t2)>. Equally partition [−C,C] as −C = C0 < C1 < C2 <

... < CL = C and obtain L2 rectangles as

all′ : {t = (t1, t2) : Cl−1 < t1 ≤ Cl, C
′
l′−1 < t2 ≤ C ′l′}, 1 ≤ l, l′ ≤ L.

We take tll′ = (Cl, Cl′) from each rectangle to get

P
(

sup
‖t‖≤C

‖Unt‖ > n−1/2ε
)

≤
L∑

l,l′=1

P
(
‖Untll′‖ > n−1/2 ε

2

)
+

L∑
l,l′=1

P
(

sup
t∈all′
‖Unt − Untll′‖ > n−1/2 ε

2

)
:= Ω1n + Ω2n.
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Applying (7.1.15) with U = U , we get

E‖Un(θnt)− Ûn(θnt)‖ ≤
(
E‖Un(θnt)− Ûn(θnt)‖2

) 1
2

= O(
1

n
)

holds uniformly in t = tll′ , l, l
′ = 1, . . . , L. Consequently, there exists M > 0 such

that

Ω1n ≤
∑L

l,l′=1E‖Untll′‖n
1/2

ε/2
≤ L2Mn−1n1/2

ε/2
→ 0

for L = Ln = log n. This shows Ω1n = oP (1).

Finally, we are now left to show Ω2n = oP (1). To ease notation, set Zc =

(Zi1 , . . . , Zim) and write
∑

c h(Zc) the sum of all the permutations c = (i1, ..., im)

with 1 ≤ i1 < i2 < ... < im ≤ n. With the aid of (7.1.14) and by (A1), we now use

the mean value theorem to get

‖Unt − Untll′‖

=‖
(
n

m

)−1∑
c

(
H(Zc; θnt)−H(Zc; θntll′ )

)
‖

≤
(
n

m

)−1∑
c

‖(h(Zc; θnt)− h(Zc; θntll′ ))−
m∑
q=1

(h̃1(Ziq ; θnt)− h̃1(Ziq ; θntll′ ))‖

≤
(
n

m

)−1∑
c

(
‖h(Zc; θnt)− h(Zc; θntll′ )‖+

m∑
q=1

‖h̃1(Ziq ; θnt)− h̃1(Ziq ; θntll′ )‖

)

=

(
n

m

)−1∑
c

(
‖h(Zc; θnt)− h(Zc; θntll′ )‖+

m∑
q=1

‖E(h(Zc; θnt)− h(Zc; θntll′ )|Ziq)‖

)

≤
(
n

m

)−1∑
c

(
‖∂h
∂θ

(Zc; θnt∗
ll′

)‖ 1√
n

2
√

2C

L
+

m∑
q=1

‖E
(
∂h

∂θ
(Zc; θnt∗

ll′q
)|Ziq)

)
‖ 1√

n

2
√

2C

L

)

≤
(
n

m

)−1∑
c

(
‖∂h
∂θ

(Zc; θnt∗
ll′

)‖ 1√
n

2
√

2C

L
+

m∑
q=1

E

(
‖∂h
∂θ

(Zc; θnt∗
ll′q

)‖|Ziq)
)

1√
n

2
√

2C

L

)

≤2
√

2C

L
√
n

(
n

m

)−1∑
c

(
G(Zc) +

m∑
q=1

E(G(Zc)|Ziq)

)
,
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where t∗ll′ , t
∗
ll′q
∈ all′ . Let κ(Zc) = G(Zc) +

∑m
q=1 E(G(Zc)|Ziq). The average in the last

line is actually a U-statistic of order m with kernel κ. Since G is square-integrable,

it follows E(κ(Zc)) <∞. Hence

Ω2n ≤ L2P
(
‖Unm(κ− Eκ)‖+ Eκ >

ε

2

L

2
√

2C

)
≤ L2P

(
‖Unm(κ̃)‖ > ε

4

L

2
√

2C

)
+ L21

[
Eκ >

ε

4

L

2
√

2C

]
≤ L2 Var(Unm(κ̃))

ε2

16
L2

8C2

+ L21
[
Eκ >

ε

4

L

2
√

2C

]
≤ O(1/n) + L21

[
Eκ >

ε

4

L

2
√

2C

]
= oP (1)

as L = Ln = log n→∞ while Eg <∞. This completes the proof.

Remark 7.1.1 Assume (A1) is met. Let {θn} ∈ N(θ0) be a sequence such that θn →

θ0 as n→∞. Since hθ is differentiable with respect to θ, limn→∞
hθn−hθ0
θn−θ0 = ḣθ0 holds.

Under (A1), ‖ ∂
∂θ
hθ‖ can be bound by a square-integrable function G for θ ∈ N(θ0).

Thus it follows from the Dominated Convergence Theorem that ∂
∂θ
Ehθ = E( ∂

∂θ
hθ).
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Remark 7.1.2 The proof of (7.1.12) can be obtained by expanding Ûn(θ) and ap-

plying the definition of h1(Zj; θ).

Ûn(θ)− E(Un(θ)) =
n∑
j=1

E(Un(θ)|Zj)− nEh

=
n∑
j=1

(
n

m

)−1 ∑
1≤i1<...<im≤n

E(h(Zi1 , . . . , Zim ; θ)|Zj)− nEh

=
n∑
j=1

(
n

m

)−1((n− 1

m− 1

)
h1(Zj; θ) +

(
n− 1

m

)
Eh
)
− nEh

=
n∑
j=1

(m
n

h1(Zj; θ) + (1− m

n
)Eh

)
− nEh

=
n∑
j=1

(m
n

h1(Zj; θ) + (1− m

n
)Eh− Eh

)
=
m

n

n∑
j=1

(h1(Zj; θ)− Eh)

=
m

n

n∑
j=1

h̃1(Zj; θ).

Remark 7.1.3 The proof of (7.1.15) is similar to the proof of Lemma 5.2.2B, Serfling

(1980).

Proof Let us prove that (7.1.15) holds for the case of d = 1 for ease of notation.

For d > 1, it can be obtained by stacking the coordinates. Define ζ0 = 0 and, for

1 ≤ c ≤ m,

ζc(θ) = Var[hc(Z1, . . . , Zc; θ)] = E[h̃2
c(Z1, . . . , Zc; θ)].

We have

0 = ζ0 ≤ ζ1(θ) ≤ · · · ≤ ζm(θ) = Var(hθ) <∞, θ ∈ N(θ0).

Consider two sets {a1, . . . , am} and {b1, . . . , bm} of m distinct integers from {1, . . . , n}

and let c be the number of integers common to the two sets. It follows from symmetry

of h̃ and independence of {Z1, . . . , Zm} that

E[h̃(Za1 , . . . , Zam ; θ)h̃(Zb1 , . . . , Zbm ; θ)] = ζc(θ).
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Recall the difference (7.1.13) of Un and its projection Ûn with the kernel H given in

(7.1.14). Clearly,

H̃1(Z1; θ) = h̃1(Z1; θ)− h̃1(Z1; θ) = 0.

Hence,

ζ0 = ζ1(θ) = 0. (7.1.20)

Write

E(Un(θ)− Ûn(θ))2 =

(
n

m

)−2∑
E

2∏
j=1

H(Zij1 , . . . , Zijm ; θ), (7.1.21)

where {ij1, . . . , ijm}, j = 1, 2 are two sets of permutations among {1, . . . , n}, and
∑

denotes summation over all
(
n
m

)2
of indicated terms. Consider a typical term of the

product. For the jth factor, let pj denote the number of indices repeated in the other

factor. Since (7.1.20), if pj ≤ 1, then the product has zero expectation. Thus a term

in (7.1.21) can have nonzero expectation only if each factor in the product contains

at least 2 indices which appear in the other factor in the product. Note that each

nonzero expectation is bounded by E(G∗2) which is independent of the parameter θ,

where G∗ is the square-integrability function given in Remark 3.1.1. Let q denote the

number of distinct elements among the repeated indices in the two factors of a given

product. Then

2q ≤
2∑
j=1

pj. (7.1.22)

For fixed values of q, p1 and p2, the number of ways to select the indices in the two

factors of a product is of order

O(nq+(m−p1)+(m−p2)), (7.1.23)

where the implicit constants depend upon m, but not upon n. Moreover, by (7.1.22),

q ≤ d1
2

2∑
j=1

pje,

where d·e denotes integer part. Thus

q +
2∑
j=1

(m− pj) ≤ 2m+ d1
2

2∑
j=1

pje −
2∑
j=1

pj = 2m− d1
2

(
2∑
j=1

pj + 1)e,



64

since, for any integer x, x − d1
2
xe = d1

2
(x + 1)e. Note that p1, p2 ≥ 2, we have∑2

j=1 pj ≥ 4, so that

q +
2∑
j=1

(m− pj) ≤ 2m− d1
2

(4 + 1)e = 2m− 2. (7.1.24)

Thus, by (7.1.23) and (7.1.24), it follows that the number of terms in the sum in

(7.1.21) for which the expectation is possibly nonzero is of order

O(n2m−2).

The sum of such possibly nonzero terms is bounded by O(n2m−2)E(G2). Since(
n
m

)−1
= O(n−m), it follows that (7.1.15) is proved.

Proof of Lemma 3.2.3. Let λn(t) and Λn(t) denote the smallest and largest

eigen values of Sn(t). It follows from (B2) that there are constants 0 < η < K < ∞

such that

P ( sup
‖t‖≤C

Λn(t) > K)→ 0 and P ( inf
‖t‖≤C

λn(t) > η)→ 0. (7.1.25)

If follows from (B3) that

sup
‖t‖≤C

‖T̄n(t)‖ = OP (n−1/2).

This and (B1) yield

sup
‖t‖≤C

T∗n(t)‖T̄n(t)‖ = oP (1) (7.1.26)

and

sup
‖t‖≤C

nT∗n(t)‖T̄n(t)‖3 = oP (1). (7.1.27)

From (3.2.3), (7.1.25) - (7.1.27) it follows that

sup
‖t‖≤C

‖ − 2 log Rn(t)− nT̄n(t)>Sn(t)−1T̄n(t)‖ = oP (1). (7.1.28)

From (B2) we derive

sup
‖t‖≤C

‖Sn(t)−1 − S−1‖ = oP (1)
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and thus obtain the expansion

sup
‖t‖≤C

‖nT̄n(t)>Sn(t)−1T̄n(t)− nT̄n(t)>S−1T̄n(t)‖ = oP (1). (7.1.29)

The first conclusion (3.2.4) in the lemma follows from (7.1.28), (7.1.29) and (B3).

The second conclusion (3.2.5) is a simple consequence of (3.2.4).

7.2 Proofs for Lemmas and Theorems in Chapter 4

Proof of Lemma 4.1.1. Taking partial derivatives of equations (4.1.3) – (3.1.11)

w.r.t. θ and ξ, we get

∂A1n

∂θ>
(θ, 0) =

1

n

n∑
j=1

∂mh̃1

∂θ>
(Zj; θ),

∂A1n

∂ξ>
(θ, 0) = − 1

n

n∑
j=1

m2h̃1(Zj; θ)
⊗2,

∂A2n

∂θ>
(θ, 0) = 0,

∂A2n

∂ξ>
(θ, 0) =

1

n

n∑
j=1

(
∂mh̃1

∂θ
(Zj; θ)

)>
,

and
∂B1n

∂θ>
(θ, 0) =

1

n

n∑
j=1

∂Vnj
∂θ>

(θ),
∂B1n

∂ξ>
(θ, 0) = − 1

n

n∑
j=1

Vnj(θ)
⊗2,

∂B2n

∂θ>
(θ, 0) = 0,

∂B2n

∂ξ>
(θ, 0) =

1

n

n∑
j=1

(
∂Vnj
∂θ>

(θ)

)>
.

Thus, expanding A1n(θ, ξ) and A2n(θ, ξ) at (θ0, 0), we have

A1n(θ, ξ)

=A1n(θ0, 0) +
∂A1n

∂θ>
(θ0, 0)(θ − θ0) +

∂A1n

∂ξ>
(θ0, 0)(ξ − 0) + oP (δn)

=
1

n

n∑
j=1

mh̃1(Zj; θ0) +
1

n

n∑
j=1

∂mh̃1

∂θ>
(Zj; θ0)(θ − θ0)

− 1

n

n∑
j=1

m2h̃1(Zj; θ0)⊗2ξ + oP (δn),

(7.2.1)

and

A2n(θ, ξ) =A2n(θ0, 0) +
∂A2n

∂θ>
(θ0, 0)(θ − θ0) +

∂A2n

∂ξ>
(θ0, 0)(ξ − 0) + oP (δn)

=
1

n

n∑
j=1

(
∂mh̃1

∂θ>
(Zj; θ)

)>
ξ + oP (δn),

(7.2.2)
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where δn = ‖θ− θ0‖+ ‖ξ‖, (θ, ξ) ∈ N0(θ0, 0). These expansions follow from the usual

mean value theorem and the bounded assumptions of the kernel functions.

Similarly, expanding B1n(θ, ξ) and B2n(θ, ξ) at (θ0, 0), we get

B1n(θ, ξ) =
1

n

n∑
j=1

Vnj(θ0) +
1

n

n∑
j=1

∂Vnj
∂θ>

(θ0)(θ − θ0)

− 1

n

n∑
j=1

Vnj(θ0)⊗2ξ + oP (δn),

(7.2.3)

and

B2n(θ, ξ) =
1

n

n∑
j=1

(
∂Vnj
∂θ>

(θ)

)>
ξ + oP (δn). (7.2.4)

Hence it follows from (7.2.1)-(7.2.4) that

sup
(θ,ξ)∈N0(θ0,0)

‖B1n(θ, ξ)− A1n(θ, ξ)‖

≤ 1

n

n∑
j=1

‖Rnj(θ0)‖+
1

n

n∑
j=1

‖Ṙnj(θ0)‖|n−1/2|

+
1

n

n∑
j=1

‖Vnj(θ0)⊗2 −m2h̃1(Zj; θ0)⊗2‖|n−1/2|+ oP (δn),

and

sup
(θ,ξ)∈N0(θ0,0)

‖B2n(θ, ξ)− A2n(θ, ξ)‖ ≤ 1

n

n∑
j=1

‖Ṙnj(θ0)‖|n−1/2|+ oP (δn).

By (7.1.3),

Ṙnj(θ) =
m∑
c=2

(
m

c

)(
cU(n−1)(c−1)(ḣ

∗
(c−1)j(θ))− (c− 1)U

(−j)
(n−1)c(ḣ

∗
c(θ))

)
.

Hence

‖Ṙnj(θ0)‖ ≤
m∑
c=2

(
m

c

)(
cU(n−1)(c−1)(‖ḣ∗(c−1)j(θ0)‖) + (c− 1)U

(−j)
(n−1)c(‖ḣ

∗
c(θ0)‖)

)
.

Expanding the U-statistics in the above inequality and using (7.1.7), we obtain

‖Ṙnj(θ0)‖ ≤
m∑
c=2

(
m

c

)
cU(n−1)(c−1)(g

∗
j ) +

m∑
c=2

(
m

c

)
(c− 1)U

(−j)
(n−1)c(g

∗), j = 1, . . . , n.
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Thus, for M > 0,

P (
1

n

n∑
j=1

‖Ṙnj(θ0)‖ > M)

≤P (
1

n

n∑
j=1

(
m∑
c=2

(
m

c

)
cU(n−1)(c−1)(g

∗
j )

)
>
M

2
)

+ P (
1

n

n∑
j=1

(
m∑
c=2

(
m

c

)
(c− 1)U

(−j)
(n−1)c(g

∗)

)
>
M

2
)

≤ 2

M
E

(
m∑
c=2

(
m

c

)
cU(n−1)(c−1)(g

∗
1)

)
+

2

M
E

(
m∑
c=2

(
m

c

)
(c− 1)U

(−1)
(n−1)c(g

∗)

)

=
2

M

m∑
c=2

(
m

c

)
cE(U(n−1)(c−1)(g

∗
1)) +

2

M

m∑
c=2

(
m

c

)
(c− 1)E(U

(−1)
(n−1)c(g

∗))

=OP (1)

as M →∞. Therefore, we arrive at

1

n

n∑
j=1

‖Ṙnj(θ0)‖ = oP (1)

Now we are left to show

1

n

n∑
j=1

‖Vnj(θ0)⊗2 −m2h̃1(Zj; θ0)⊗2‖ = oP (n1/2).

In the proof of Lemma 3.2.1 (the proof about Bn(t)), we have shown

E‖Rnj(θ0)‖2 = O(
1

n
), j = 1, . . . , n.

Moreover,

n∑
j=1

‖Rnj(θ0)‖2 =
n∑
j=1

‖Vnj(θ0)−mh̃1(Zj; θ0)‖2 = OP (1), (7.2.5)

as the expected value of the above sum is O(1). Thus by Markov’s inequality, we

derive for any ε > 0,

P
(

max
1≤j≤n

‖Vnj(θ0)‖ > n1/2ε
)
≤

n∑
j=1

P
(
‖Vnj(θ0)‖ > n1/2ε

)
≤ ε−2E

(
‖Vn1(θ0)‖21[‖Vn1‖ > n1/2ε]

)
→ 0, n→∞.
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Thus

max
1≤j≤n

‖Vnj(θ0)‖ = oP (n1/2). (7.2.6)

It follows that

max
1≤j≤n

‖mh̃1(Zj; θ0)‖ = oP (n1/2). (7.2.7)

Now let us write the components of h(·; θ0) as (h(1)(·; θ0), . . . , h(d)(·; θ0)). By (7.2.5)

and the Cauchy inequality, we have∣∣∣ 1
n

n∑
j=1

(
Vnj(h

(l))Vnj(h
(l′))−mh̃(l)

1 (Zj; θ0)mh̃
(l′)
1 (Zj; θ0)

)∣∣∣2
≤2

1

n

n∑
j=1

(
Vnj(h

(l))−mh̃(l)
1 (Zj; θ0)

)2 1

n

n∑
j=1

Vnj(h
(l′))2

+ 2
1

n

n∑
j=1

(
mh̃

(l)
1 (Zj; θ0)

)2 1

n

n∑
j=1

(
Vnj(h

(l′))−mh̃(l′)
1 (Zj; θ0)

)2

=Op(n
−1), l, l′ = 1, . . . , d.

(7.2.8)

And this completes the proof.

Proof of Theorem 4.1.1. Under (A1) – (A3), the JEL R̂n(θ) in (3.1.8) is

continuously differentiable and its maximizer must satisfy (3.1.9). By Lemma 4.1.1,

the euclidean norm of the difference of the solutions of (4.1.2) and (3.1.9) tends to

zero as n → ∞. Consequently, we prove the first part of the theorem by applying

Lemma 1 of Qin and Lawless (1994). We now apply their Theorem 1 to prove the

remaining (4.1.7). By Lemma 4.1.1 and Taylor’s expansion of B1n and B2n, we have

0 =B1n(θ̂, ξ̂)

=B1n(θ0, 0) +
∂B1n

∂θ>
(θ0, 0)(θ̂ − θ0) +

∂B1n

∂ξ>
(θ0, 0)(ξ̂ − 0) + oP (δn),

0 =B2n(θ̂, ξ̂)

=B2n(θ0, 0) +
∂B2n

∂θ>
(θ0, 0)(θ̂ − θ0) +

∂B2n

∂ξ>
(θ0, 0)(ξ̂ − 0) + oP (δn),

where δn = ‖θ̂ − θ0‖+ ‖ξ̂‖. We have ξ̂

θ̂ − θ0

 = S−1
n

 B1n(θ0, 0) + oP (δn)

oP (δn)

 ,
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where

Sn =

 ∂B1n

∂ξ>
∂B1n

∂θ

∂B2n

∂ξ>
0


(θ0,0)

=

 − 1
n

∑n
j=1 V

⊗2
nj

1
n

∑n
j=1 V̇nj

1
n

∑n
j=1 V̇

>
nj 0


Thus

Sn →p

 S11 S12

S21 0

 =

 −E(m2h̃⊗2
1 ) E(m ˙̃h1)

E(m ˙̃h1)> 0

 .

The convergence to S11 can be obtained by the law of large numbers to (7.2.8),

and the convergence to S12 (S21) from the proof of Lemma 4.1.1. From this and

B1n(θ0, 0) = 1
n

∑n
j=1 Vnj(θ0) = OP (n−1/2), we derive δn = OP (n−1/2). Consequently,

we arrive at

√
n(θ̂ − θ0) = S−1

22.1S21S
−1
11

√
nB1n(θ0, 0) + oP (1)→ N (0, V ).

From this, Lemma 4.1.1 and Theorem 3.1.1 it follows the desired result.
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