
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2016

Information inference for cyber-physical systems
with application to aviation safety and space
situational awareness
Sangjin Lee
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Aerospace Engineering Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Lee, Sangjin, "Information inference for cyber-physical systems with application to aviation safety and space situational awareness"
(2016). Open Access Dissertations. 794.
https://docs.lib.purdue.edu/open_access_dissertations/794

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F794&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/218?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/794?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F794&utm_medium=PDF&utm_campaign=PDFCoverPages


Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By  

Entitled

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation 
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of 
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s): 

Approved by:
Head of the Departmental Graduate Program Date

Sangjin Lee

Information Inference for Cyber-Physical Systems with Application to Aviation Safety and Space Situational Awareness

Doctor of Philosophy

Inseok Hwang Martin J. Corless
Chair

Jianghai Hu Dengfeng Sun

Carolin E. Frueh

Inseok Hwang

Weinong Wayne Chen 6/29/2016





INFORMATION INFERENCE FOR CYBER-PHYSICAL SYSTEMS

WITH APPLICATION TO

AVIATION SAFETY AND SPACE SITUATIONAL AWARENESS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Sangjin Lee

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2016

Purdue University

West Lafayette, Indiana



ii

“Progress, Not Perfection”

This dissertation is dedicated to my parents, Youngheung Lee and Sunye Seo.



iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to my adviser, Professor

Inseok Hwang, for his continuous support and guidance for my PhD study and related

research. I am very grateful for his patience, motivation, and enthusiasm for research,

from which I have learned a lot about right attitudes of a researcher. Thanks to his

invaluable advice and guidance, I could successfully solve many challenging research

problems and complete my PhD.

I would like to thank my other committee members, Professor Martin Corless,

Professor Jianghai Hu, Professor Dengfeng Sun, and Professor Carolin Frueh for their

insightful comments and encouragement. I also want to thank Dr. Nikunj Oza in the

NASA Ames Research Center for his support in completing a NASA project that I

participated in.

My sincere gratitude goes to my former advisers in Yonsei University, Professor

Sang-Young Park and Professor Chandeok Park, for their valuable suggestions and

guidance. They helped me a lot prepare myself to study in America and make right

decisions for my academic career.

Last but not the least, I would like to extend my sincerest thanks and appreciation

to my parents for their unconditional love and emotional support. Saving the most

important for last, I wish to give my heartfelt thanks to my wife, Jooyoung, for her

endless love, patience, and continual support of my academic endeavor.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 EVENT-BASED STATE ESTIMATION FOR CYBER-PHYSICAL SYS-
TEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Problem Formulation for Event-Based State Estimation . . . . . . . 12

2.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Nonlinear Stochastic System Model . . . . . . . . . . . . . . 12
2.2.3 Event-Based Observation Model . . . . . . . . . . . . . . . . 13
2.2.4 Event-Based State Estimation Problem . . . . . . . . . . . . 14
2.2.5 Solution to the Event-Based State Estimation Problem . . . 15

2.3 Numerical Algorithm for Event-Based State Estimation . . . . . . . 17
2.3.1 Discretization of the State Space . . . . . . . . . . . . . . . 17
2.3.2 Approximation of the Initial Pdf on the Markov State Space 19
2.3.3 Construction of the Approximating Markov Chain . . . . . . 20

2.4 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 EVENT-BASED HYBRID STATE ESTIMATION FOR CYBER-PHYSICAL
SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Problem Formulation for Event-Based Hybrid State Estimation . . 30

3.2.1 Stochastic Linear Hybrid System . . . . . . . . . . . . . . . 30
3.2.2 Event-Based Observation Model . . . . . . . . . . . . . . . . 31
3.2.3 Event-Based Hybrid State Estimation Problem . . . . . . . 32

3.3 Event-Based Hybrid State Estimation Algorithm . . . . . . . . . . . 34
3.4 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 40



v

Page

4 APPLICATION TO SPACE SITUATIONAL AWARENESS I: TRACKING
OF MANEUVERING SPACECRAFT . . . . . . . . . . . . . . . . . . . 48
4.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Modeling of Stochastic Dynamical System Subject to Abrupt State

Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Stochastic Nonlinear Dynamical System with Unknown Jumps 51
4.2.2 Probabilistic Model for State-Dependent Abrupt Jumps . . . 52

4.3 State-Dependent Adaptive Estimation for Dynamical System with Abrupt
State Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 Two Dynamical Models for State Estimation . . . . . . . . . 55
4.3.2 State-Dependent Adaptive Estimation . . . . . . . . . . . . 57

4.4 Applications to the Tracking of Impulsively Maneuvering Spacecraft 63
4.4.1 Example 1: Tracking of a Geostationary Satellite Performing

Station Keeping Maneuvers . . . . . . . . . . . . . . . . . . 63
4.4.2 Example 2: Tracking of a Spacecraft Performing Orbital Trans-

fers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 APPLICATION TO SPACE SITUATIONAL AWARENESS II: ANALYT-
ICAL UNCERTAINTY PROPAGATION IN SATELLITE FORMATION
FLYING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . 76
5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Relative Motion Dynamics . . . . . . . . . . . . . . . . . . . 79
5.2.2 Uncertainty Propagation Problem . . . . . . . . . . . . . . . 83

5.3 Analytical Solution to Uncertainty Propagation . . . . . . . . . . . 87
5.3.1 Derivation of the State Transition Matrix Ψ . . . . . . . . . 87
5.3.2 Evaluation of the Covariance P̃(θ) . . . . . . . . . . . . . . . 89

5.4 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 APPLICATION TO PILOT-AUTOMATION INTERACTION ISSUE DE-
TECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . 98
6.2 Intent-Based Pilot and Automation Behavior Modeling . . . . . . . 101

6.2.1 Design of Intent Set . . . . . . . . . . . . . . . . . . . . . . 102
6.2.2 Modeling of the Automation: Hybrid System . . . . . . . . . 103
6.2.3 Modeling of the Pilot: Discrete Event System . . . . . . . . 105

6.3 Real-Time Mode Confusion Detection . . . . . . . . . . . . . . . . . 106
6.3.1 Hybrid State Estimation using the SDTHE Algorithm . . . . 107
6.3.2 Intent Inference and Mode Confusion Detection . . . . . . . 110

6.4 Demonstration of the Proposed Pilot-Automation Mode Confusion De-
tection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4.1 Mode Confusion Example 1: “kill the capture” . . . . . . . . 111



vi

Page
6.4.2 Mode Confusion Example 2: “airspeed reset problem in the

vertical navigation (VNAV) mode” . . . . . . . . . . . . . . 122

7 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A Design of Transition Probabilities π in Chapter 2 . . . . . . . . . . . . . 145

B Proof of Theorem 3.3.1 in Chapter 3 . . . . . . . . . . . . . . . . . . . . 147

C Explicit Expression for K(E) in Chapter 5 . . . . . . . . . . . . . . . . . 150

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



vii

LIST OF TABLES

Table Page

2.1 Filtering equations for event-based state estimation . . . . . . . . . . . 18

2.2 Numerical algorithm for event-based state estimation . . . . . . . . . . 24

3.1 Event-based hybrid state estimation algorithm . . . . . . . . . . . . . . 41

3.2 Comparison of estimation performance (100 Monte Carlo runs) . . . . . 46

5.1 Procedure to find analytical solution to the uncertainty propagation prob-
lem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Comparison between Pa and Pn using distance measure d . . . . . . . 96

6.1 Construction of dimension-wise intent sets . . . . . . . . . . . . . . . . 102

6.2 Comparison of estimation error and measurement error for Example 1 (100
Monte Carlo runs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 Comparison of estimation error and measurement error for Example 2 (100
Monte Carlo runs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



viii

LIST OF FIGURES

Figure Page

2.1 Illustration of event-based sampling for CO2 density monitoring . . . . 10

2.2 Send-on-Delta sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Illustration of a grid and the neighborhood of q in U . . . . . . . . . . 19

2.4 Illustration of discretization of the state space . . . . . . . . . . . . . . 20

2.5 One realization of x(t) and v(t) . . . . . . . . . . . . . . . . . . . . . . 26

2.6 RMS errors of the proposed algorithm (EBMC) and the particle-based
algorithm (EBParticle) (100 Monte Carlo simulations) . . . . . . . . . 27

2.7 RMS state estimation error for different grid sizes of the EBMC where
ε1 = ε2. For each grid size, 100 Monte Carlo runs are performed. . . . . 27

2.8 Comparison of estimation accuracy vs. number of measurements of event-
based sampling (‘Send-on-Delta’) and time-based sampling. From the left
to the right, δ for the ‘Send-on-Delta’ is 0.5, 0.6, 0.7, 0.8, and 0.9; and T
for time-based sampling is 0.2 sec, 0.3 sec, 0.4 sec, 0.5 sec, 0.6 sec, and 0.7
sec. The entire simulation time is 50 sec. . . . . . . . . . . . . . . . . . 28

3.1 Networked system with the SOD sampling . . . . . . . . . . . . . . . . 33

3.2 Illustration of grid points for pseudo-measurements . . . . . . . . . . . 37

3.3 Actual and estimated trajectories of the aircraft (a single run) . . . . . 43

3.4 Comparison of mode-estimation accuracy (a single run) with δ1 = δ2 =
100 m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 RMS position errors with 100 Monte Carlo runs with δ1 = δ2 = 100 m . 44

3.6 RMS position errors of EBHSE for different number of grid points (N1 =
N2) with 100 Monte Carlo runs . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Comparison of estimation accuracy versus number of measurements of
event-based sampling (Send-on-Delta) and time-based sampling. From
the left to the right, δ1 = δ2 for the Send-on Delta is 30 m, 40 m, 60 m,
80 m, 100 m, and 120 m; and Ts for time-based sampling is 2 sec, 4 sec,
6 sec, 8 sec, 10 sec, and 12 sec. . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Impulsive maneuver from a GTO to a GEO at apogee with uncertainty 53



ix

Figure Page

4.2 Structure of the proposed algorithm (EKF denotes extended Kalman filter) 62

4.3 Relative motion in the local vertical and local horizontal (LVLH) frame 64

4.4 A true trajectory of the geostationary satellite in the y − z plane of the
LVLH frame (corresponding to longitude-latitude) . . . . . . . . . . . . 66

4.5 History of the inclination of the geostationary satellite around the moment
of a NS station keeping maneuver . . . . . . . . . . . . . . . . . . . . . 67

4.6 Comparison of state estimation accuracy for Example 1 (100 Monte Carlo
runs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Mode transition probabilities γ12 and γ21 for a single run in Example 1 70

4.8 Impulsive maneuver at a node for a non-coplanar transfer (inclination
change) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 A true trajectory of the spacecraft around its ascending node . . . . . . 73

4.10 Comparison of state estimation accuracy for Example 2 (100 Monte Carlo
runs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.11 Mode transition probabilities γ12 and γ21 for a single run in Example 2 75

5.1 Relative motion in the local-vertical-local-horizontal (LVLH) frame . . 79

5.2 Evolution of the PDF of X(t) (only position is considered) . . . . . . . 84

5.3 Partition of Pa into Pa
xy, Pa

yz, Pa
xyz, and Pa
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ABSTRACT

Lee, Sangjin PhD, Purdue University, August 2016. Information Inference for Cyber-
Physical Systems with Application to Aviation Safety and Space Situational Aware-
ness. Major Professor: Inseok Hwang.

Due to the rapid advancement of technologies on sensors and processors, engineer-

ing systems have become more complex and highly automated to meet ever stringent

performance and safety requirements. These systems are usually composed of physical

plants (e.g., aircraft, spacecraft, ground vehicles, etc.) and cyber components (e.g.,

sensing, communication, and computing units), and thus called as Cyber-Physical

Systems (CPSs). For safe, efficient, and sustainable operation of a CPS, the states

and physical characteristics of the system need to be effectively estimated or in-

ferred from sensing data by proper information inference algorithms. However, due

to the complex nature of the interacting multiple-heterogeneous elements of the CPS,

the information inference of the CPS is a challenging task, where exiting methods

designed for a single-element dynamic system (or for even dynamic systems with

multiple-homogenous elements) could not be applicable. Moreover, the increasing

number of sensor resources in CPSs makes the task even more challenging as mean-

ingful information needs to be accurately and effectively inferred from huge amount

of data, which is usually noise corrupted. Many aerospace systems such as air traffic

control systems, pilot-automation integrated systems, networked unmanned aircraft

systems, and space surveillance systems are good examples of CPSs and thus have

the aforementioned challenging problems.

The goals of this research are to 1) overcome the challenges in complex CPSs

by developing new information inference methodologies based on control, estimation,

hybrid systems and information theories, and 2) successfully apply them to various

complex and safety-critical aerospace systems such as air transportation systems,
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space surveillance systems, and integrated human-machine systems, to promote their

efficiency and safety.



1

1. INTRODUCTION

1.1 Background and Motivations

In recent years, engineering systems have become increasingly automated through

the development of advanced sensing, communication, and computing technologies.

Many sensors and computing devices in the systems are tightly coupled to effectively

monitor and control their physical processes and environment. Such system consist-

ing of interacting cyber elements (computing, sensing, and communication compo-

nents) and physical processes is called a Cyber-Physical System (CPS) [1, 2]. Many

of aerospace systems can be classified as CPSs including air traffic control systems,

space surveillance systems, integrated pilot-automation systems, unmanned aircraft

systems, etc. For example, in the air traffic control systems, many sensors (e.g.,

GPS and radars) are used to collect information about multiple aircraft (physical

processes), and the collected information is used by air traffic management decision

tools (computing components) to compute control strategies necessary for safe and

efficient air traffic flow management [3].

In a CPS, estimation and inference of the system’s states and physical charac-

teristics are very important, as the information is critical for analyzing the system’s

current status and computing necessary control inputs to the system for achieving

important functionalities. For example, position and velocity information of aircraft

are crucial for the air traffic control system, as it can be used to predict the risk of

collisions between aircraft, based on which air traffic controllers can issue a necessary

advisory to resolve the risk, ensuring the safety of airspace operation [4]. However,

in most applications, the states and physical parameters of a system are not directly

observable and thus need to be inferred from noisy sensor measurements, which leads

to state estimation and inference problems.
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Due to the complex nature of the interacting multiple-heterogeneous elements of

a CPS, designing proper information inference algorithms is a quite challenging task.

Some of the main challenges are described as follows.

First, in CPSs, many sub-elements are integrated using communication networks,

where a large amount of data including sensor measurements or control signals are

transmitted among the elements. In such sensor networks and networked control

systems, the limitation of communication bandwidth and power resource for data

transmission has been a great issue, as they can largely affect the performance of

the whole networked system [5, 6]. This issue can be dealt with by introducing an

event-based sampling framework [7–10]. Rather than transmitting information at

synchronous time intervals, the estimator and the sensor nodes can communicate

only when some interesting events happen, thereby decreasing the data transmission

rate. Although the event-based sampling is useful, the resulted filtering problem is

quite challenging because the observations are sparse and irregular. This implies that

the traditional filtering theories that assume the availability of observations at every

regular sampling time are not applicable.

Second, many CPSs can be modeled as hybrid systems, which involve the inter-

action of discrete states (or modes) and continuous states [11,12]. The discrete state

dynamics describe logical behaviors of a CPS such as the logic of embedded con-

trollers or transitions between multiple modes of operation of the system. For a given

discrete state (or mode), the mode-conditioned continuous state dynamics describe

the physical behavior of the system, such as the continuous response of a physical

component to the control input. For example, in air traffic control applications, the

dynamics of an aircraft can be represented as a hybrid system since the aircraft’s

behavior consists of both the logical behavior (discrete transitions between different

flight modes (discrete states)) and the physical behavior (the aircraft’s continuous

motion (continuous state) corresponding to a specific flight mode). To monitor and

control hybrid systems, it is necessary to estimate both the discrete state and contin-

uous state using noisy measurements, which is challenging since it requires intractable
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computation of the exponentially increasing number of hypotheses for all the possible

discrete state histories [13].

Another challenge arises when the states of CPSs are subject to abrupt changes

due to system component failures or external environmental changes. For example,

in space surveillance systems, the velocity of a spacecraft can abruptly change due to

impulsive thrust applied for orbital transfers [14, 15]. Since the rapid change in the

trajectory of the maneuvering spacecraft can cause dangerous and imminent safety

issues to adjacent spacecraft, the abrupt changes should be accurately monitored for

the safe operation of space. The state estimation of systems with abrupt state jumps is

quite challenging because an estimation algorithm should be able to detect the abrupt

changes in a timely manner and then appropriately adjust the estimation filters to

compensate for the changes [16, 17]. The detection scheme also has to be robust to

noisy measurements, because false detection due to noise can degrade the performance

of the state estimation (e.g., tracking accuracy in the space surveillance example).

These challenges necessitate the development of an adaptive estimation technique,

which can perform both the robust state jump detection and the corresponding filter

compensation in a systematic manner.

1.2 Objectives and Contributions

The contributions of this thesis are twofold: 1) theoretical development of new in-

formation inference (state estimation) algorithms that overcome the aforementioned

challenges in complex CPSs, and 2) application of the developed algorithms to infor-

mation inference problems of various CPSs in the filed of aerospace engineering.

1.2.1 Theories

The first objective of this thesis is to develop a new state estimation algorithm

that can effectively deal with the challenges due to the event-based sampling structure

of CPSs. To achieve this goal, we first propose a theoretical framework to mathemat-
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ically formulate the continuous-time nonlinear event-based state estimation problem.

In the proposed framework, Stochastic Differential Equations (SDEs) [18] are in-

troduced to model the evolution of the continuous-time nonlinear dynamics, and a

mathematical model is proposed to describe the generation of measurements made

by event-based sampling. The event-based state estimation problem is then formu-

lated to compute the probability density function (pdf) of the state of the SDEs,

with the sequence of noisy measurements obtained by the event-based sampling. To

solve the event-based state estimation problem, a numerical algorithm based on the

Markov chain approximation method [19–21] is proposed. The proposed algorithm

first discretizes the original state space into a grid space, and constructs a Markov

chain on the grid space that approximates the evolution of the original SDEs. The

pdf of the state of the SDEs is then approximated by computing the probability mass

function of the state of the Markov chain. It has been shown that the evolution of

the pdf of the original SDEs, which is complex due to the sparsity and irregularity of

measurements made by the event-based sampling, can be accurately and effectively

approximated by the proposed algorithm.

The second objective is to develop a new state estimation algorithm, called the

Event-Based Hybrid State estimation (EBHSE) algorithm, that can address the chal-

lenges caused by the hybrid system structure of CPSs as well as the event-based

sampling [22]. To mathematically describe the hybrid system structure with uncer-

tainty, a mathematical model called the Stochastic Hybrid System (SHS) [12, 23] is

introduced. Based on the model, the hybrid state estimation problem is formulated

as to compute the probability density of the hybrid state (continuous and discrete)

of the SHS with the noisy measurements generated at certain events by the event-

based sampling. The optimal solution for the hybrid state estimation requires the

computation of the exponentially increasing number of probabilities of the discrete

state histories [13]. To deal with this computational complexity, we exploit the idea

of the interacting multiple model approach [24] that keeps the number of the discrete

state histories constant via a mixing technique. In addition, the sparsity and irregu-
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larity of measurements resulted from the event-based sampling lead to the evaluation

of a multivariate integration over the measurement space, which is computationally

demanding. To efficiently compute the integration, we propose a pseudo measure-

ment generation method, where the multivariate integration is approximated as the

weighted sum of simple Gaussian functions evaluated at each pseudo measurement.

Another objective of this thesis is to develop a new adaptive estimation algorithm

for CPSs whose states are subject to abrupt changes. To achieve this objective,

we first propose to model such systems as the SHS with two discrete modes, each

of which describes the motion of the system with or without abrupt state jumps.

Then, the abrupt state jumps are modeled as transitions between discrete modes

and the probability of the transition is characterized by the discrete state dynamics.

For the discrete state dynamics, we propose to use a continuous state-dependent

transition model in the sense that the probability of abrupt state jumps is dependent

on the value of the continuous state in many systems [25–28]. For example, for a

geostationary satellite performing station-keeping maneuvers, impulsive maneuvers

(i.e., abrupt state jumps) are likely to occur when its longitude or latitude (i.e.,

continuous state) approaches predefined bounds around a desired location [29]. Based

on the SHS modeling, the estimation of systems with abrupt state jumps can be

performed under the hybrid state estimation framework, where the discrete mode and

the mode-conditioned continuous state are simultaneously estimated. The estimated

discrete mode provides information on whether abrupt state jumps happen or not

(abrupt change detection), and the estimated mode-conditioned continuous state is

combined over the two modes to compensate for the effect of the abrupt jumps (filter

adjustment).

1.2.2 Applications

The proposed state estimation algorithms have been applied to various information

inference problems in three different CPSs in aerospace applications: 1) air traffic
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control systems, 2) space surveillance systems, and 3) pilot-automation integrated

systems.

In air traffic control systems, a key requirement for safe and efficient air traffic

flow management in terminal aerospace is accurate knowledge of the aircraft’s states

(e.g., position, velocity, and flight mode) [30–32]. Using the accurate state informa-

tion of the aircraft, more efficient airborne spacing with reduced separation thresholds

can be achieved, and thereby, air traffic flow near an airport can be effectively man-

aged within its capacity [3]. Since the behavior of an aircraft is governed by hybrid

dynamics (i.e., discrete transitions between flight modes and the continuous motion

corresponding to a specific flight mode), the corresponding aircraft tracking problem

is formulated as the hybrid state estimation problem. In addition, we introduce the

event-based sampling framework [33] to the tracking problem as an attempt to re-

duce data transmission rate required for communication between the aircraft and air

traffic controllers. The complexities due to the event-based sampling framework and

the hybrid dynamics of the aircraft have been dealt with by the proposed EBHSE

algorithm [22]. It has been shown that the proposed algorithm can produce accurate

state estimation results with reduced communication channel usage.

As space has become highly congested by many space objects, the space surveil-

lance system has become crucial for space situational awareness (SSA) with the ob-

jective of safe operation of space assets [34–36]. The space surveillance system is a

good example of a CPS where multiple sensors (ground-based or space-based) are

networked and controlled to track multiple physical objects (e.g., satellites or space

debris). One of the challenging problems in SSA is to track a maneuvering spacecraft

with impulsive burn, where the magnitude and the time of occurrence of impulsive

maneuvers are usually unknown a priori [37–39]. To deal with this problem, we first

formulate the tracking problem of the maneuvering spacecraft as the state estimation

problem of a system with abrupt state jumps (i.e., abrupt changes in the velocity

of the spacecraft due to impulsive maneuvers). Then, we apply the newly proposed

adaptive estimation algorithm to the problem in order to compute accurate state
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estimates. Two illustrative scenarios are considered in this problem: 1) tracking of

a geostationary satellite performing station-keeping maneuvers and 2) tracking of a

spacecraft performing orbital transfers.

Another challenging issue in SSA is that observations can be made only for a small

subset of space objects at a given time due to limited observational resources [40].

Therefore, during the time period without measurement updates, statistical proper-

ties of the trajectories of space objects need to be accurately predicted (known as

uncertainty propagation) [41,42]. In particular, for satellites flying in close proximity,

monitoring the uncertainties of neighboring satellites’ states is a crucial task since

the uncertainty information can be used to compute the collision probability between

satellites with the objective of collision avoidance [43, 44]. In this sense, we develop

an analytical closed-form solution to the uncertainty propagation problem for the

satellite relative motion near general elliptic orbits [45]. Since the proposed analyt-

ical solution does not require any numerical integration, it allows satellite onboard

computers having low computational capability to perform necessary computations

efficiently.

The pilot-automation integrated system is an example of a CPS, in which hetero-

geneous elements (i.e., human and machine) are interacting in a complex way. One

challenging problem in this system is to detect malicious interaction between the pilot

and automation [46,47]. Due to the rapid advancement of the flight deck technology,

pilot-automation interaction issues have become a core area of focus in today’s avia-

tion safety. The complexity of the advanced flight deck leads to new safety concerns

such as dysfunctional interaction between the pilot and automation. To detect the

interaction issues, we first propose to model the complex behaviors of the pilot and

automation using a discrete event system and a hybrid system, respectively. We then

propose to infer the intents of the pilot and automation using the intent inference

and hybrid state estimation. The interaction issues are then identified by detecting

mismatches between the inferred intents of the pilot and automation [48]. It has
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been shown that real pilot-automation interaction issues can be effectively identified

in real-time by the proposed approach.

1.3 Outline of Thesis

The thesis is organized as follows. In Chapter 2, a theoretical framework of the

event-based state estimation problem for CPSs is proposed, and the corresponding

state estimation algorithm is developed. In Chapter 3, the event-based state estima-

tion framework is extended to CPSs with the hybrid system structure to formulate

the event-based hybrid state estimation problem. The EBHSE algorithm is then de-

veloped to solve the estimation problem and applied to an aircraft tracking problem

in the air traffic control application. In Chapter 4, an adaptive state estimation al-

gorithm for CPSs subject to abrupt state jumps is proposed and applied to tracking

problems of impulsively maneuvering spacecraft in the SSA application. Another ap-

plication in SSA, called the uncertainty propagation problem, is presented for satellite

formation flying systems, and the corresponding analytical solution to the problem

is derived in Chapter 5. In Chapter 6, a pilot-automation interaction issue detection

algorithm is developed to identify anomalous interaction in the pilot-automation in-

tegrated systems. A summary and future research directions are discussed in Chapter

7.
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2. EVENT-BASED STATE ESTIMATION FOR

CYBER-PHYSICAL SYSTEMS

This chapter discusses the state estimation problem for CPSs in which the state

needs to be estimated using information generated by the event-based sampling. In

Section 2.1, the motivation and literature review for this problem are presented. In

Section 2.2, the event-based state estimation problem is mathematically formulated.

A numerical estimation algorithm based on the Markov chain approximation is pro-

posed in Section 2.3. In Section 2.4, the proposed algorithm is demonstrated with an

illustrative state estimation problem of ‘bi-stable’ system.

2.1 Background and Motivations

To save communication bandwidth and power resource for data transmission,

event-based sampling and control have received much attention in the areas of net-

worked control systems and wireless sensor networks. For example, in many en-

vironmental monitoring systems, e.g., greenhouse climate monitoring [49], various

event-based sampling strategies have been applied to reduce the bandwidth of com-

munication incurred by a large amount of wireless sensors monitoring CO2 density.

Because of the large number of sensors, time-based sampling methods, where mea-

surements are taken at synchronous time intervals, are not appropriate since they

require massive data transmission. To avoid such difficulty, the data sampling can be

performed with the lower communication resource by using the event-based sampling

strategy in which measurements are generated only when predefined events happen

(e.g., ‘critical’ change in CO2 density, see Figure 2.1). Another benefit of the event-

based sampling is that the event-based sampling framework is appropriate for the

observation with binary sensors. Those binary sensors generate binary signals only
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estimate the state of Stochastic Differential Equations (SDEs)
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is challenging because measurements are taken only when some
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I. INTRODUCTION

To save communication bandwidth and power resource
for data transmission, event-based sampling and control have
received much attention in the areas of networked control
systems and wireless sensor networks. For example, in many
environmental monitoring systems, e.g., greenhouse climate
monitoring [1], various event-based sampling strategies have
been applied to reduce the bandwidth of communication
incurred by a large amount of wireless sensors monitoring
CO2 density. Because of the large number of sensors, time-
based sampling methods, where measurements are taken at
synchronous time intervals, are not appropriate since they
require massive data transmission. To avoid such difficulty, the
data sampling can be performed with the lower communication
resource by using the event-based sampling strategy in which
measurements are generated only when pre-defined events
happen (e.g., “critical” change in CO2 density, see Fig. 1).
Another benefit of the event-based sampling is that the event-
based sampling framework is appropriate for the observation
with binary sensors. Those binary sensors generate binary
signals only when triggered by some pre-defined events. The
binary proximity sensor that gives one-bit signal regarding a
target’s presence or absence is a typical example [2], [3].

Although the event-based sampling is useful, the resulted
filtering problem is quite challenging because the observations
are sparse and irregular. This implies that the traditional
filtering theories which assume the availability of observations
at every regular sampling time are not applicable.
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Fig. 1. Illustration of event-based sampling for CO2 density monitoring

To challenge the difficulty in the state estimation with the
event-based sampling, several filtering algorithms have been
proposed [4]–[11]. In these previous works, the update of the
state probability density is performed only when the outputs
of a system are crossing pre-defined thresholds (i.e., when
events happen). This approach, however, has a limitation in the
sense that it ignores the information that no event is triggered
between the consecutive threshold crossings. No threshold
crossing implies that the outputs of a system must be within the
upper and lower threshold bounds. Recently, there have been
efforts to use the ignored information on the update of state
estimates [12]–[15]. In [12], a state estimation problem with
the ‘Send-on-Delta’ sampling method was considered. It was
shown that the estimation performance can be improved by
using the implicit information of no output generated between
the two consecutive threshold crossings. References [13] and
[14] proposed an event-based filtering algorithm which is
based on the Gaussian sum filter [16]. They showed that the
divergence of error-covariance can be prevented by using the
implicit information. However, all the work mentioned above
[12]–[14] was based on the time-invariant linear dynamics
and linear measurement equations in their formulation, which
implies that they need to be extended to deal with general
nonlinear cases, which could be nontrivial. In [15], a nonlinear
event-based state estimation algorithm has been proposed
which is based on particle filtering. Although the algorithm
in [15] can deal with nonlinear dynamics, its event-based
sampling model is limited to the ‘Send-on-Delta’ method.

Another concern is that the event-based state estimation
problem has been formulated through different approaches
such as level-crossings [17], [18], measurement quantization
[19], ”Send-on-Delta” [20], estimation with discrete sensors
[21], and so forth. Because of the different formulations, it is
not easy to apply the solution developed for a specific problem
to other problems. Thus, it is important to develop a general
framework for a large class of event-based state estimation
problem and the corresponding general solution.

The contribution of this paper is twofold. First, a gen-
eral framework for the continuous-time nonlinear event-based

Figure 2.1. Illustration of event-based sampling for CO2 density monitoring

when triggered by some predefined events. The binary proximity sensor that gives

one-bit signal regarding a target’s presence or absence is a typical example [50,51].

Although the event-based sampling is useful, the resulted filtering problem is quite

challenging because the observations are sparse and irregular. This implies that the

traditional filtering theories which assume the availability of observations at every

regular sampling time are not applicable.

To challenge the difficulty in the state estimation with the event-based sampling,

several filtering algorithms have been proposed [52–55]. In these previous works, the

update of the state probability density is performed only when the outputs of a sys-

tem are crossing predefined thresholds (i.e., when events happen). This approach,

however, has a limitation in the sense that it ignores the information that no event is

triggered between the consecutive threshold crossings. No threshold crossing implies

that the outputs of a system must be within the upper and lower threshold bounds.

Recently, there have been efforts to use the ignored information on the update of state

estimates [33, 56–58]. In [33], a state estimation problem with the ‘Send-on-Delta’

sampling method was considered. It was shown that the estimation performance can

be improved by using the implicit information that no output is generated between

the two consecutive threshold crossings. References [56] and [57] proposed an event-

based filtering algorithm which is based on the Gaussian sum filter. They showed that

the divergence of error-covariance can be prevented by using the implicit information.

However, all the work mentioned above [33, 56, 57] were based on the time-invariant

linear dynamics and linear measurement equations in their formulations, which im-
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plies that they need to be extended to deal with general nonlinear cases, which could

be nontrivial. In [58], a nonlinear event-based state estimation algorithm has been

proposed which is based on particle filtering. Although the algorithm in [58] can deal

with nonlinear dynamics, its event-based sampling model is limited to the ‘Send-on-

Delta’ method.

Another concern is that the event-based state estimation problem has been for-

mulated through different approaches such as level-crossings [59], measurement quan-

tization [60], ‘Send-on-Delta’ [61], estimation with discrete sensors [62], and so forth.

Because of the different formulations, it is not easy to apply the solution developed

for a specific problem to other problems. Thus, it is important to develop a gen-

eral framework for a large class of event-based state estimation problems with the

corresponding general solution.

The contributions in this chapter are twofold. First, a general framework for the

continuous-time nonlinear event-based state estimation problem is developed. The

evolution of the continuous-time nonlinear dynamics is modeled by Stochastic Differ-

ential Equations (SDEs). Based on the dynamics, an event-based filtering problem

is mathematically formulated such that the probability density function (pdf) of the

SDE’s state is computed through two steps: 1) the propagation of the pdf between

consecutive measurements (i.e., with no event occurring); and 2) the update of the

pdf when an event happens and corresponding new measurement arrives. Secondly,

a numerical algorithm based on the Markov chain approximation method [19–21]

is proposed to solve the filtering problem. The Markov chain’s state space is con-

structed by discretizing the original state space. Then, with the appropriate choice

of the transition probability of the Markov chain, the evolution of the SDE is ap-

proximated by that of the Markov chain so that the event-based state estimation

of the SDE is solved by estimating the Markov chain’s state. Unlike the previous

research mentioned above, the proposed algorithm is general so that it can be applied

to event-based state estimation problems with time-varying nonlinear dynamics and

measurement models.



12

2.2 Problem Formulation for Event-Based State Estimation

In this section, the continuous-time nonlinear event-based state estimation prob-

lem is formulated. The nonlinear stochastic dynamics is represented using SDE and

the measurements are given using an event-based sampling model. Filtering equa-

tions are then derived to compute the pdf of the SDE’s state given measurements

generated by the event-based sampling model.

2.2.1 Notations

In this chapter, we denote the n-dimensional Euclidean space by Rn, the integers

by Z, the Euclidean norm by ‖ · ‖, the expectation of a random variable by E[·],
the probability of an event by Pr{·}, and the normalized probability density/mass

function (pdf/pmf) by p(·) (p̃(·) for the unnormalized pdf/pmf).

2.2.2 Nonlinear Stochastic System Model

Let x(t) ∈ Rn1
and v(t) ∈ Rn2

be the state of the system and the noise process,

respectively. The augmented state X(t) is then defined as X(t) := [x(t) v(t)]T ∈ Rn,

where n = n1 + n2 (note that the augmented state simplifies the description of the

event-based observation model presented in the following section). The following SDE

is given to describe the evolution of the augmented state as [18]:

dX(t) = a(X(t), t)dt+ b(X(t), t)dW(t) (2.1)

where a : Rn×[0,∞)→ Rn and b : Rn×[0,∞)→ Rn×n are the drift term and volatil-

ity term, respectively, and W(t) is the standard n-dimensional Brownian motion. a

and b are assumed to be continuous functions satisfying the Lipschitz conditions so

that the solution to (2.1) exists and is unique.
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2.2.3 Event-Based Observation Model

Define y(t) as a function of the augmented state X(t) as:

y(t) = h(X(t)) (2.2)

where y(t) ∈ Rl is a l-dimensional measurement vector and h : Rn → Rl is a (piece-

wise) smooth bounded nonlinear function. Unlike the time-based sampling where

the measurement y is transmitted to the estimator at every predefined time step,

the event-based sampling generates the measurement only at the moment when some

events happen. Those events are represented as conditions that y needs to satisfy

in order to generate the measurement [56, 57]. Define τi as the ith event epoch such

that i = 0, 1, 2, . . . and τ0 = t0, τi < τj, i < j, where t0 is the initial time. During an

interval Ti = (τi, τi+1), the trajectory of y(t) is allowed to reside only in the region

Ei(⊂ Rl), which is defined by

Ei = {y|y ∈ Rl,Fi(y) < 0} (2.3)

where Fi := [Fi,1 Fi,2 . . . Fi,ni
]T : Rl → Rni is a (piecewise) smooth nonlinear vector

function whose size ni is dependent on each event instant, and 0 is ni×1 zero vector.

Each boundary ∂Ei,k := {y|Fi,k(y) = 0,Fi(y) ≤ 0} represents an independent ‘event’

which is triggered when y(t) crosses to leave Ei. It is assumed that the boundaries are

exclusive to each other so that, at each event occurring time, only one event can occur,

i.e., output y(t) can cross only one boundary at a time. The next event occurring

time τi+1 is then defined such that y(τ−i+1) ∈ Ei and y(τi+1) /∈ Ei, where τ−i+1 is the

left limit of τi+1. At time τi+1 (assume that ∂Ei,k is triggered, i.e., y(t) is crossing

∂Ei,k), the information Fi,k(y(τi+1)) = 0 and Fi(y(τi+1)) ≤ 0 is generated and sent to

an estimator. Note that Fi and ni are allowed to vary at each event instant and its

explicit expression is determined by the events predefined for specific problems. For

example, consider the one-dimensional ‘Send-on-Delta’ example illustrated in Figure

2.2. Assume that, at time τi, the one-dimensional output y(τi) = yi is generated.
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Figure 2.2. Send-on-Delta sampling

Then, the region Ei that y(t) can move without triggering the next event is derived

by defining Fi as:

Fi,1 = y(t)− yi − δ < 0

Fi,2 = yi − y(t)− δ < 0
(2.4)

where δ is a predefined level. In this example, y(t) crosses Fi,2 at time τi+1, and

therefore, the information Fi,2(y(τi+1)) = 0 and Fi(y(τi+1)) ≤ 0 (i.e., yi+1 := y(τi+1) =

yi− δ) is sent to the estimator. Note that the size of δ can vary for each event instant

although the size is assumed to be fixed in Figure 2.2.

2.2.4 Event-Based State Estimation Problem

The information that the estimator receives up to the current time t is a series of

the event occurring times and the corresponding event information as:

{τi+1, Fi,ki(y(τi+1)) = 0,Fi(y(τi+1)) ≤ 0} with i = 0, . . . , N (2.5)
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such that τN+1 ≤ t < τN+2, where ki refers to the index of the boundary (ki ∈
{1, 2, . . . , ni}) that is triggered at τi+1. Based on the fact that the information is

generated by the event-based sampling, the information (2.5) can be interpreted as:





y(s) ∈ Ei, if τi < s < τi+1

Fi,ki(y(s)) = 0 and Fi(y(s)) ≤ 0, if s = τi+1

(2.6)

for s ∈ [t0, t]. Note that the information of Fi,ki(y(τi+1)) = 0 and Fi(y(τi+1)) ≤ 0 is

equivalent to y(τi+1) ∈ ∂Ei,ki . Define Y (s) as:

Y (s) =




Ei, if τi < s < τi+1

∂Ei,ki , if s = τi+1

(2.7)

The state estimation problem is then defined to compute the pdf p(·) as:

p(X(t)|y(s) ∈ Y (s), t0 ≤ s ≤ t) (2.8)

with the given initial pdf pt0(X) (the condition for pt0(X) will be presented in the

following subsection). For brevity, denote (2.8) as pt(X(t)|Y t). From this, we define

the estimate of X(t) conditioned on the information up to t as:

Xt|t := E[X(t)|Y t] (2.9)

Note that the difference between the conventional estimation techniques and the

event-based state estimation is that the former updates the pdf only when the new

measurement data arrives (i.e., when t = τi, i = 1, 2, . . .) while the latter uses not

only the measurement data but also the information generated by ‘no measurements

between the two consecutive measurements’ (i.e., during t ∈ (τi, τi+1)).

2.2.5 Solution to the Event-Based State Estimation Problem

Define ∀i, Ei := {X|h(X) ∈ Ei} and ∂Ei,ki := {X|h(X) ∈ ∂Ei,ki}. The initial

pdf pt0(X) is given on E0 (i.e., pt0(X) = 0 if h(X) /∈ E0). This is reasonable because

y(= h(X)) should remain in E0 until the first event occurring time τ1(> t0). The
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computation of (2.8) is then performed recursively by two steps. Assume that the

pdf of the state at the event occurring time τi, pτi(X|Y τi) is available from the last

iteration of the algorithm.

Propagation

∀t ∈ (τi, τi+1), the available information is that the output y(t) is within Ei. Thus,

the pdf pt(X|Y t) is computed by propagating pτi(X(τi)|Y τi) within the domain Ei

(i.e.,
⋃ni

k=1 ∂Ei,k plays as the absorbing barrier). Define the generator L and its adjoint

L∗ associated with the SDE (2.1) for a bounded and twice-differentiable function

f : X→ R as:

Lf(X) =
n∑

i=1

ai(X, t)
∂f

∂Xi

+
1

2

n∑

i,j=1

(b(X, t)b(X, t)T )ij
∂2f

∂Xi∂Xj

(2.10)

L∗f(X) = −
n∑

i=1

∂[ai(X, t)f(X)]

∂Xi

+
1

2

n∑

i,j=1

∂2[bij(X, t)f(X)]

∂Xi∂Xj

(2.11)

where Xi is the ith element of the state vector X, ai is the ith element of the vector-

valued function a, and bij is the element in ith row and jth column of the matrix-valued

function b. The propagation of the pdf of the state is then performed by solving the

Fokker-Plank equation for t > τi as:

∂

∂t
pt(X) = L∗pt(X) (2.12)

with the initial condition

pτi(X) = pτi(X(τi)|Y τi)

and the boundary condition

pt(X) = 0 for X ∈
ni⋃

k=1

∂Ei,k

Updating

At time t = τi+1, when the next event occurs, the propagated pdf is corrected by

the new information that the output y(t) leaves Ei through ∂Ei,ki . That is, the pdf
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propagated in Ei is reduced onto ∂Ei,ki . For the reduction, we consider the net flow

of probability across the surface ∂Ei,ki , which is given by a surface integral as [63]:

Net flow of probability =

∫

∂Ei,ki

n(X) · J(X, t)dX (2.13)

where n is the unit normal vector to ∂Ei,ki outward from Ei and J := [J1 J2 . . . Jn]T

is a probability current vector defined such that

Ji(X, t) = ai(X, t)pt(X)− 1

2

∑

j

∂

∂Xj

bij(X, t)pt(X) (2.14)

Note that the occurrence of an event implies that the probability is flowing out of

Ei through the surface ∂Ei,ki . In this sense, the probability density of X on ∂Ei,ki

at t = τi+1 is proportional to the net probability flow across X. Therefore, the pdf

pτi+1
(X|Y τi+1) can be computed as:

pτi+1
(X|Y τi+1) =





1
c
n(X) · J(X, τi+1), for X ∈ ∂Ei,ki

0, otherwise

(2.15)

where c =
∫
∂Ei,ki

n(X)·J(X, τi+1)dX is a normalizing constant. The pdf pτi+1
(X|Y τi+1)

is then propagated in Ei+1 until the next event occurring time τi+2. The iterative

state estimation steps are summarized in Table 2.1.

2.3 Numerical Algorithm for Event-Based State Estimation

To compute the pdf (2.8), it is necessary to solve (2.12) and (2.15). Because their

analytical solutions, in general, are hard to obtain, they need to be solved numeri-

cally. In this section, a numerical algorithm based on Markov chain approximation is

presented.

2.3.1 Discretization of the State Space

Assume that U ⊂ Rn is the bounded domain where the system (2.1) evolves. To

construct the Markov Chain, the state space of the Markov Chain needs to be defined
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Table 2.1. Filtering equations for event-based state estimation

1.Initialization

Set an initial pdf pt0(X) on E0

2.Iteration

for (i = 0, ..., N)

while t ∈ (τi, τi+1) (Propagation)

Compute the pdf pt(X) for X ∈ Ei using (2.12),

with the initial condition: pτi(X) = pτi(X(τi)|Y τi)

and the boundary condition: pt(X) = 0 for X ∈ ⋃ni

k=1 ∂Ei,k

if t = τi+1 (Updating)

Compute the pdf pτi+1
(X|Y τi+1) on ∂Ei,ki using (2.15)

end

end

i = i+ 1

end

by discretizing the original state space U . Let Q ⊂ Zn be the Markov Chain’s state

space and define ε = [ε1 ε2 . . . εn]T as the grid size. Then, for all the points in the

Markov Chain’s state space, ∀q = [q1 q2 . . . qn]T ∈ Q, its corresponding coordinate

in U is mapped by

X(q) = [ε1q1 ε2q2 . . . εnqn]T (2.16)

The grid G(q) ⊂ Rn is defined as an area centered at X(q) as:

G(q) :=
{

X|‖Xi −Xi(q)‖ ≤ εi
2
,∀i
}

(2.17)

where Xi is ith element of X for all i = 1, . . . , n. ∀q ∈ Q, we define its neighborhood

N(q) ⊂ Q as:

N(q) := {q′|q′ − q ∈ {−1, 0, 1}n, and q′ 6= q} (2.18)
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TABLE I
FILTERING EQUATIONS FOR EVENT-BASED STATE ESTIMATION

1.Initialization
Set an initial pdf pt0 (X) on E0

2.Iteration
for (i = 0, ...,N)

while t ∈ (τi,τi+1) (Propagation)
Compute the pdf pt(X) for X ∈ Ei using (12),
with the initial condition: pτi (X) = pτi (X(τi)|Y τi )
and the boundary condition: pt(X) = 0 for X ∈⋃ni

k=1 ∂Ei,k
if t = τi+1 (Updating)

Compute the pdf pτi+1 (X|Y τi+1 ) on ∂Ei,ki using (15)
end

end
i = i+1

end

III. NUMERICAL ALGORITHM FOR EVENT-BASED STATE
ESTIMATION

To compute the pdf (8), it is necessary to solve (12) and
(15). Because their analytical solutions, in general, are hard
to obtain, they need to be solved numerically. In this section,
a numerical algorithm based on Markov chain approximation
is presented.

A. Discretization of the State Space

Assume that U ⊂ Rn is the bounded domain where the
system (1) evolves. To construct the Markov Chain, the state
space of the Markov Chain needs to be defined by discretizing
the original state space U . Let Q⊂Zn be the Markov Chain’s
state space and define ε = [ε1 ε2 . . . εn]

T as the grid size.
Then, for all the points in the Markov Chain’s state space,
∀q = [q1 q2 . . . qn]

T ∈Q, its corresponding coordinate in U
is mapped by

X(q) = [ε1q1 ε2q2 . . . εnqn]
T (16)

The grid G(q)⊂Rn is defined as an area centered at X(q) as:

G(q) :=
{

X|‖Xi−Xi(q)‖ ≤
εi

2
,∀i
}

(17)

where Xi is ith element of X for all i = 1, . . . ,n. ∀q ∈Q, we
define its neighborhood N(q)⊂Q as:

N(q) :=
{

q′|q′−q ∈ {−1, 0, 1}n, and q′ 6= q
}

(18)

where {−1, 0, 1}n is n-tuple whose element takes a value
in a set {−1, 0, 1}. The above definitions are illustrated in
Fig. 3 for a two-dimensional case (n = 2), in which the empty
squares represent the neighborhood of q and the shaded region
is the grid G(q). By using the above definitions, Ei, ∂Ei,k, and
∂Ei :=

⋃ni
k=1 ∂Ei,k are approximated in Q as:

QEi := {q|X(q) ∈ Ei}
Q∂Ei := {q|X(q) /∈ Ei, q ∈ N(q′) for some q′

such that X(q′) ∈ Ei}
Q∂Ei,k

:= {q|q ∈Q∂Ei , Fi.k ◦h(X(q))≥ 0}

(19)

Figure 4 illustrates the above definitions, where the shaded
regions represent Q∂Ei , which is an approximation of ∂Ei
(black bold line).

q

G(q)
ε1

ε2

Fig. 3. Illustration of a grid and the neighborhood of q in U

Ei / QEi
Ei / QEi

Q∂Ei

∂Ei

Fig. 4. Illustration of discretization of the state space

B. Approximation of the initial pdf on the Markov state space

To begin with, the initial pdf pt0(X) needs to be approxi-
mated to pt0(q) on the Markov Chain’s state space Q. Because
the state space Q is a discretized space, the pdf pt0(q) is
represented as a pmf. Assume that the initial pdf is given by
pt0(X) such that

pt0(X)≥ 0, ∀X ∈ E0∫

E0

pt0(X)dX = 1
(20)

The pmf pt0(q) approximating the pdf pt0(X) is then computed
as:

pt0(q) =
∫

G(q)
pt0(X)dX (21)

C. Construction of the Approximating Markov Chain

Upon the Markov state space defined in the previous section,
a Markov chain is constructed to approximate the evolution
of the original system (1). Let {Q j} be the Markov chain
defined on Q, where j ∈N is the index of the Markov chain’s
time step. Let ∆ be the time interval of one transition step
of the Markov chain such that ∆ = λ ‖ε‖2 for some fixed
positive constant λ . To approximate the evolution of the pdf
(8), the transition probabilities of the Markov chain need to be
designed in such a way that its distribution converges to the
distribution of (8), as the grid size ε and time step ∆ approach
to zero.

Figure 2.3. Illustration of a grid and the neighborhood of q in U

where {−1, 0, 1}n is n-tuple whose element takes a value in a set {−1, 0, 1}. The

above definitions are illustrated in Figure 2.3 for a two-dimensional case (n = 2), in

which the empty squares represent the neighborhood of q and the shaded region is

the grid G(q). By using the above definitions, Ei, ∂Ei,k, and ∂Ei :=
⋃ni

k=1 ∂Ei,k are

approximated in Q as:

QEi
:={q|X(q) ∈ Ei}

Q∂Ei
:={q|X(q) /∈ Ei,q ∈ N(q′) for some q′

such that X(q′) ∈ Ei}

Q∂Ei,k
:={q|q ∈ Q∂Ei

, Fi,k ◦ h(X(q)) ≥ 0}

(2.19)

Figure 2.4 illustrates the above definitions, where the shaded regions represent Q∂Ei
,

which is an approximation of ∂Ei (black bold line).

2.3.2 Approximation of the Initial Pdf on the Markov State Space

To begin with, the initial pdf pt0(X) needs to be approximated to pt0(q) on the

Markov Chain’s state space Q. Because the state space Q is a discretized space, the
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TABLE I
FILTERING EQUATIONS FOR EVENT-BASED STATE ESTIMATION

1.Initialization
Set an initial pdf pt0 (X) on E0

2.Iteration
for (i = 0, ...,N)

while t ∈ (τi,τi+1) (Propagation)
Compute the pdf pt(X) for X ∈ Ei using (12),
with the initial condition: pτi (X) = pτi (X(τi)|Y τi )
and the boundary condition: pt(X) = 0 for X ∈⋃ni

k=1 ∂Ei,k
if t = τi+1 (Updating)

Compute the pdf pτi+1 (X|Y τi+1 ) on ∂Ei,ki using (15)
end

end
i = i+1

end

III. NUMERICAL ALGORITHM FOR EVENT-BASED STATE
ESTIMATION

To compute the pdf (8), it is necessary to solve (12) and
(15). Because their analytical solutions, in general, are hard
to obtain, they need to be solved numerically. In this section,
a numerical algorithm based on Markov chain approximation
is presented.

A. Discretization of the State Space

Assume that U ⊂ Rn is the bounded domain where the
system (1) evolves. To construct the Markov Chain, the state
space of the Markov Chain needs to be defined by discretizing
the original state space U . Let Q⊂Zn be the Markov Chain’s
state space and define ε = [ε1 ε2 . . . εn]

T as the grid size.
Then, for all the points in the Markov Chain’s state space,
∀q = [q1 q2 . . . qn]

T ∈Q, its corresponding coordinate in U
is mapped by

X(q) = [ε1q1 ε2q2 . . . εnqn]
T (16)

The grid G(q)⊂Rn is defined as an area centered at X(q) as:

G(q) :=
{

X|‖Xi−Xi(q)‖ ≤
εi

2
,∀i
}

(17)

where Xi is ith element of X for all i = 1, . . . ,n. ∀q ∈Q, we
define its neighborhood N(q)⊂Q as:

N(q) :=
{

q′|q′−q ∈ {−1, 0, 1}n, and q′ 6= q
}

(18)

where {−1, 0, 1}n is n-tuple whose element takes a value
in a set {−1, 0, 1}. The above definitions are illustrated in
Fig. 3 for a two-dimensional case (n = 2), in which the empty
squares represent the neighborhood of q and the shaded region
is the grid G(q). By using the above definitions, Ei, ∂Ei,k, and
∂Ei :=

⋃ni
k=1 ∂Ei,k are approximated in Q as:

QEi := {q|X(q) ∈ Ei}
Q∂Ei := {q|X(q) /∈ Ei, q ∈ N(q′) for some q′

such that X(q′) ∈ Ei}
Q∂Ei,k

:= {q|q ∈Q∂Ei , Fi.k ◦h(X(q))≥ 0}

(19)

Figure 4 illustrates the above definitions, where the shaded
regions represent Q∂Ei , which is an approximation of ∂Ei
(black bold line).

q

G(q)
ε1

ε2

Fig. 3. Illustration of a grid and the neighborhood of q in U
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Q∂Ei

∂Ei

Fig. 4. Illustration of discretization of the state space

B. Approximation of the initial pdf on the Markov state space

To begin with, the initial pdf pt0(X) needs to be approxi-
mated to pt0(q) on the Markov Chain’s state space Q. Because
the state space Q is a discretized space, the pdf pt0(q) is
represented as a pmf. Assume that the initial pdf is given by
pt0(X) such that

pt0(X)≥ 0, ∀X ∈ E0∫

E0

pt0(X)dX = 1
(20)

The pmf pt0(q) approximating the pdf pt0(X) is then computed
as:

pt0(q) =
∫

G(q)
pt0(X)dX (21)

C. Construction of the Approximating Markov Chain

Upon the Markov state space defined in the previous section,
a Markov chain is constructed to approximate the evolution
of the original system (1). Let {Q j} be the Markov chain
defined on Q, where j ∈N is the index of the Markov chain’s
time step. Let ∆ be the time interval of one transition step
of the Markov chain such that ∆ = λ ‖ε‖2 for some fixed
positive constant λ . To approximate the evolution of the pdf
(8), the transition probabilities of the Markov chain need to be
designed in such a way that its distribution converges to the
distribution of (8), as the grid size ε and time step ∆ approach
to zero.

Figure 2.4. Illustration of discretization of the state space

pdf pt0(q) is represented as a pmf. Assume that the initial pdf is given by pt0(X)

such that

pt0(X) ≥ 0, ∀X ∈ E0∫

E0

pt0(X)dX = 1
(2.20)

The pmf pt0(q) approximating the pdf pt0(X) is then computed as:

pt0(q) =

∫

G(q)

pt0(X)dX (2.21)

2.3.3 Construction of the Approximating Markov Chain

Upon defining the Markov state space through discretization of the original state

space in Section 2.3.1, a Markov chain is constructed to approximate the evolution

of the original system (2.1). Let {Qj} be the Markov chain defined on Q, where

j ∈ N is the index of the Markov chain’s time step. Let ∆ be the time interval of

one transition step of the Markov chain such that ∆ = λ‖ε‖2 for some fixed positive

constant λ. To approximate the evolution of the pdf (2.8), the transition probabilities

of the Markov chain need to be designed in such a way that its distribution converges

to the distribution of (2.8), as the grid size ε and time step ∆ approach to zero.
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Propagation

For all j such that τi + j∆ ∈ (τi, τi+1), the transition probabilities of the Markov

chain are designed to have the following property:

Pr{Qj+1 = q′|Qj = q} =




π(q′,q), if q′ ∈ N(q) ∪ q, ∀q ∈ QEi

0, otherwise

(2.22)

where π(·, ·) is a parameter to be designed. Equation (2.22) shows the fact that, at

each time step, the state of the Markov chain is allowed to jump from q to either its

neighborhood N(q) or itself. Note that a legitimate Markov chain can be constructed

with transition probabilities that allow its state to jump from one state to any other

state, if only the resultant Markov chain weakly converges to the original system. In

this paper, we designed the transition probabilities such that the Markov chain state

can only jump from a state to the state itself or its neighborhood. In this setting,

the construction of the Markov chain is then completed by designing the appropriate

π(·, ·) in (2.22). The following theorem provides the weak convergence conditions

that π(·, ·) must satisfy to ensure that the distribution of {Qj} is consistent with the

distribution of X(t). An example of designing the appropriate π is presented in the

Appendix.

Theorem 2.3.1 Assume that as ε, ∆ → 0, the Markov chain {Qj} with the transi-

tion probabilities given by (2.22) satisfies the following properties:

1

∆
E[X(Qj+1)−X(Qj)|Qj = q]→ a(X(q), j∆)

1

∆
E[(X(Qj+1)−X(Qj))(X(Qj+1)−X(Qj))

T |Qj = q]

→ b(X(q), j∆)b(X(q), j∆)T

(2.23)

Then, ∀j, the distribution of {Qj} defined on Q converges to the distribution of X(t)

defined on U .

Proof To prove the theorem, we need to show that for a bounded and twice-

differentiable function f : X→ R,

E[f(X(Qj+1))− f(X(Qj))|Qj = q]

∆
→ Lf (2.24)
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as ∆, ‖ε‖ → 0. By Taylor’s theorem,

E[f(X(Qj+1))− f(X(Qj))|Qj = q]

=
n∑

i=1

E[X(Qj+1)−X(Qj)|Qj = q]i
∂f

∂Xi

∣∣∣∣
X(q)

+
1

2

n∑

i,l=1

{
E[(X(Qj+1)−X(Qj))(X(Qj+1)−X(Qj))

T |Qj = q]il

× ∂2f

∂Xi∂Xl

∣∣∣∣
X(q)

}
+H.O.T

(2.25)

Note that the H.O.T has the order greater than ‖ε‖3 and the fact that ∆ = λ‖ε‖2,

which implies that

lim
∆,|ε‖→0

H.O.T

∆
= 0 (2.26)

Hence, from the properties (2.23) and (2.26),

lim
∆,|ε‖→0

E[f(X(Qj+1))− f(X(Qj))|Qj = q]

∆

=
n∑

i=1

a(X)i
∂f

∂Xi

∣∣∣∣
X(q)

+
1

2

n∑

i,l=1

(b(X)b(X)T )il
∂2f

∂Xi∂Xl

∣∣∣∣
X(q)

= Lf

(2.27)

Assume that the pmf pτi(q|Y τi) is available at τi. The propagation of the pmf is

then performed iteratively by the following three steps: 1) to solve the Chapman-

Kolmogorov forward equation which is the discretized version of the Fokker-Plank

equation, 2) to zero out the probability mass at the absorbing barrier (i.e., Q∂Ei
),

and 3) to re-normalize the rest of the distribution. In the first step, for t = τi + j∆ ∈
(τi, τi+1), the pmf pt(q|Y t) is propagated using the Chapman-Kolmogorov forward

equation as:

pτi+(j+1)∆(q|Y τi+j∆) =
∑

q′∈QEi

[Pr{Qj+1 = q|Qj = q′}

×pτi+j∆(q′|Y τi+j∆)
]

(2.28)
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In the second step, p̃τi+(j+1)∆(q|Y τi+(j+1)∆) is obtained by

p̃τi+(j+1)∆(q|Y τi+(j+1)∆) =




pτi+(j+1)∆(q|Y τi+j∆), if q ∈ QEi

0, otherwise

(2.29)

Note that in (2.29) p̃ represents the unnormalized pmf. To zero out the probability

mass at the absorbing barrier (Q∂Ei
) is reasonable since the state is not allowed

to evolve across the boundary ∂Ei until the next event occurring time τi+1. The

unnormalized pmf p̃τi+(j+1)∆(q|Y τi+(j+1)∆) is then normalized in the last step to find

pτi+(j+1)∆(q|Y τi+(j+1)∆).

Updating

At the next event occurring time τi+1, the propagated pmf pτ−i+1
(q|Y τ−i+1) in QEi

is

reduced to Q∂Ei,ki
using the new information that the output y(t) leaves Ei through

∂Ei,ki . Equation (2.15) is used to compute the updated pmf pτi+1
(q|Y τi+1). The

probability flow vector at q for any time t = τi + j∆ ∈ (τi, τi+1) is approximated as:

J(q, t) ≈
∑

q′∈N(q)

nq′q[Pr{Qj+1 = q′|Qj = q}pτi+j∆(q|Y τi+j∆)]

−
∑

q′∈N(q)

nq′q[Pr{Qj+1 = q|Qj = q′}pτi+j∆(q′|Y τi+j∆)]
(2.30)

where nq′q is a unit vector which is parallel to X(q′) − X(q). Using (2.15), the

updated pmf pτi+1
(q|Y τi+1) is obtained as:

pτi+1
(q|Y τi+1) ∝ n(q) · J(q, τi + j∗∆), ∀q ∈ Q∂Ei,ki

(2.31)

where j∗ = sup{j|τi + j∆ ∈ (τi, τi+1)}. Note that the unit normal vector n(q) can be

approximated analytically by

n(q) ≈ 1

c1

∇(Fi,ki ◦ h)|X=X(q) (2.32)

where c1 is a normalizing constant. As the grid size becomes smaller, X(q) will

be closer to ∂Ei,ki , and therefore, the normal vector at X(q) computed by (2.32)
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Table 2.2. Numerical algorithm for event-based state estimation

1.Initialization

Construct the pmf pt0(q) on Q by discretizing the initial pdf

pt0(X), using (2.21).

2.Iteration

for (i = 0, ..., N)

j = 0

while (τi + j∆ < τi+1) (Propagation)

Compute the pmf pτi+(j+1)∆(q|Y τi+j∆) using (2.28) for ∀q ∈ QEi

if (τi + (j + 1)∆ < τi+1)

Zero out the probability mass at the absorbing barrier Q∂Ei

using (2.29) and normalize the resulted pmf

end

j = j + 1

end

(Updating)

Correct the pmf pτi+1
(q|Y τi+1) using (2.31) for ∀q ∈ Q∂Ei,ki

i = i+ 1

end

will approach to true normal vector at ∂Ei,ki . The numerical algorithm proposed in

this section is summarized in Table 2.2. Given the pmf pt(q|Y t) computed from the

propagation or update steps, the state estimate of X(t) is approximated as:

Xt|t := E[X(t)|Y t] ≈ E[X(q)|Y s] =
∑

q∈Q

X(q)ps(q|Y s) (2.33)

In (2.33), s = t0 + j∆, where j = sup{j|s ≤ t}.
The computational complexity of the proposed numerical approach grows as Md,

where M is the number of grid points in each dimension and d is the dimension
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of the state space. This complexity is similar to other grid-based methods [64, 65]

developed to find numerical solutions of the Fokker- Plank equation. In the methods,

the number of grid points is unchanged as the pdf is propagated in the given whole

domain. However, in our proposed approach, the number of grid points varies and are

always are less than the number of grid points for the given whole domain, because the

pdf needs to be propagated only in the subspace whose size and shape are changing

according to the predefined events. By reducing the number of grid points, we can

improve the computational time. In addition, the computational complexity can be

further alleviated by using an adaptive grid [66,67] rather than a fixed grid, which will

be included in our future work. Recently, it has been shown that the Markov chain

approximation is comparable to or even better than the well-known particle filters

in computational time and accuracy for approximating the evolution of the pdf [68].

This implies the practicality of the proposed algorithm in terms of the computational

complexity.

2.4 Numerical Simulation

In this section, the proposed algorithm for the event-based state estimation is

illustrated with an estimation of ‘bi-stable’ (also known as ‘double-well’) system,

which is a well-known nonlinear stochastic model in biological applications (e.g., the

behavior of membrane). Consider the one-dimensional bi-stable system described by

the following SDE [69]:

dx = αx(β − x2)dt+ σxdW1 (2.34)

where α, β, and σx are positive constants, and W1 is the standard one-dimensional

Brownian motion. We also consider a noise process modeled by the Ornstein-Uhlenbeck

(O-U) process which is often used to model the perturbation of the membrane poten-

tial in biology as [70]:

dv = −κvdt+ σvdW2 (2.35)

where κ and σv are positive constants, and W2 is the standard one-dimensional Brow-
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nian motion independent of W1. Therefore, the two-dimensional augmented state is

defined as X := [x v]T . The measurement model y is y(t) = x(t) + v(t). In this

example, the one-dimensional Send-on-Delta method is used as an event-based sam-

pling (see Eq. (2.4) and Figure 2.2). That is, whenever the difference between the

current y(t) and the last transmitted value yi exceeds the predefined threshold δ,

y(t) is sent to the estimator. To build the Markov chain, we design π using equa-

tions in the Appendix. For the numerical simulation, the values for constants are

set as follows: α = 0.001, β = 50, κ = 1.2, σx = 0.5, and σv = 0.2. The proposed

Markov chain-based algorithm (denoted by ‘EBMC’) is compared with the particle

filter-based algorithm (denoted by ‘EBParticle’) [58], both of which utilize the addi-

tional information generated between the two consecutive measurement arrivals (i.e.,

the information that the outputs of a system must be within the upper and lower

threshold bounds defined by the events). Note that both the estimators receive the

same number of measurements which are generated from the event-based sampling

(‘Send-on-Delta’). Figure 2.5 shows one realization of x(t) and v(t) which starts at

[0.3 0]T . In Figure 2.6, the performance of the proposed algorithm (EBMC) is com-
6

TABLE II
NUMERICAL ALGORITHM FOR EVENT-BASED STATE ESTIMATION

1.Initialization
Construct the pmf pt0 (q) on Q by discretizing the initial pdf
pt0 (X), using (21).

2.Iteration
for (i = 0, ...,N)

j = 0
while (τi + j∆ < τi+1) (Propagation)

Compute the pmf pτi+( j+1)∆(q|Y τi+ j∆) using (28) for ∀q ∈QEi
if (τi +( j+1)∆ < τi+1)

Zero out the probability mass at the absorbing barrier ∂Ei
using (29) and normalize the resulted pmf

end
j = j+1

end
(Updating)
Correct the pmf pτi+1 (q|Y τi+1 ) using (31) for ∀q ∈Q∂Ei,ki
i = i+1

end

vector at X(q) computed by (32) will approach to true normal
vector at ∂Ei,ki . The numerical algorithm proposed in this
section is summarized in Table II. Given the pmf pt(q|Y t)
computed from the propagation or update steps, the state
estimate of X(t) is approximated as:

Xt|t := E[X(t)|Y t ]≈ E[X(q)|Y s] = ∑
q∈Q

X(q)ps(q|Y s) (33)

In (33), s = t0 + j∆, where j = sup{ j|s≤ t}.
The computational complexity of the proposed numerical

approach grows as Md , where M is the number of grid points
in each dimension and d is the dimension of the state space.
This complexity is similar to other grid-based methods [27],
[28] developed to find numerical solutions of the Fokker-
Plank equation. In the methods, the number of grid points
is unchanged as the pdf is propagated in the given whole
domain. However, in our proposed approach, the number of
grid points varies and are always are less than the number
of grid points for the given whole domain, because the pdf
needs to be propagated only in the subspace whose size and
shape is changing according to the predefined events. By
reducing the number of the grid points, we can improve the
computational time. In addition, the computational complexity
can be further alleviated by using an adaptive grid [29], [30]
rather than a fixed grid, which will be included in our future
work. Recently, it has been shown that the Markov chain
approximation is comparable to or even better than the well-
known particle filters in computational time and accuracy for
approximating the evolution of the pdf [31]. This implies
the practicality of the proposed algorithm in term of the
computational complexity.

IV. NUMERICAL SIMULATION

In this section, the proposed algorithm for the event-based
state estimation is illustrated with an estimation of “bi-stable”
(also known as “double-well”) system, which is a well-known
nonlinear stochastic model in biological applications (e.g.,
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Fig. 5. One realization of x(t) and v(t)

the behavior of membrane). Consider the one-dimensional bi-
stable system described by the following SDE [32]:

dx = αx(β − x2)dt +σxdW1 (34)

where α , β , and σx are positive constants, and W1 is the
standard one-dimensional Brownian motion. We also consider
a noise process modeled by the Ornstein-Uhlenbeck (O-U)
process which is often used to model the perturbation of the
membrane potential in biology as [33]:

dv =−κvdt +σvdW2 (35)

where κ and σv are positive constants, and W2 is the
standard one-dimensional Brownian motion independent of
W1. Therefore, the two-dimensional augmented state is defined
as X := [x v]T . The measurement model y is y(t) = x(t)+v(t)
. In this example, the one-dimensional Send-on-Delta method
is used as an event-based sampling (see Eq. (4) and Fig.
2). That is, whenever the difference between the current
y(t) and the last transmitted value yi exceeds the pre-defined
threshold δ , y(t) is sent to the estimator. To build the Markov
chain, we design π using equations in the Appendix. For
the numerical simulation, the values for constants are set as
follows: α = 0.001, β = 50, κ = 1.2, σx = 0.5, and σv = 0.2.
The proposed Markov chain-based algorithm (denoted by
‘EBMC’) is compared with the particle filter-based algorithm
(denoted by ‘EBParticle’) [15], both of which utilize the
additional information generated between the two consecutive
measurement arrivals (i.e., the information that the outputs of
a system must be within the upper and lower threshold bounds
defined by the events). Note that the both estimators receive the
same number of measurements which are generated from the
event-based sampling (“Send-on-Delta”). Figure 5 shows one
realization of x(t) and v(t) which starts at [0.3 0]T . In Figure
6, the performance of the proposed algorithm (EBMC) is
compared with the EBParticle in terms of state estimation error
(i.e., difference between the true state x(t) and the estimated

Figure 2.5. One realization of x(t) and v(t)
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Fig. 6. RMS errors of the proposed algorithm (EBMC) and the particle-based
algorithm (EBParticle) (100 Monte Carlo simulations)
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Fig. 7. RMS state estimation error for different grid sizes of the EBMC where
ε1 = ε2. For each grid size, 100 Monte Carlo runs are performed.

state value). In the simulation, δ = 0.5 for the “Send-on-
Delta”, and λ = 0.08, ε1 = ε2 = 0.2 for the EBMC, and the
number of particles for the EBParticle is 400 (the number is
chosen so that the computation time of the EBParticle is almost
the same as the EBMC). The simulation results show that the
proposed hybrid estimation algorithm has smaller estimation
errors than the EBParticle. In Figure 7, it is shown that as
the grid sizes, ε1 and ε2 become smaller, the estimation error
decreases. That is, as we have a finer grid, we can have more
accurate approximation, which is consistent with Theorem 1.

We also compare the event-based sampling (“Send-on-
Delta” in this example) with the time-based sampling (where
measurements are taken at synchronous time intervals), to
show the advantage of the event-based sampling with regard
to the communication channel usage. By changing δ (for
“Send-on-Delta”) and T (sampling time for time-based sam-
pling), we perform several simulations with different number
of measurements. For the estimation with the time-based
sampling, we uses the regular particle filter [36] (denoted
by ‘RParticle’) which performs only its time update when
there is no measurement transmission. Figure 8 shows the
number of measurements used by the estimation algorithms
(the EBParticle for “Send-on-Delta” and the RParticle for
time-based sampling). In the figure, it is found that, by using
the event-based sampling, the desired estimation accuracy
can be obtained with smaller number of measurements than
time-based sampling, which motivates the use of event-based
sampling.

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
0

50

100

150

200

250

300

RMS error

A
ve

ra
ge

 n
um

be
r 

of
 m

ea
su

re
m

en
ts

 o
f o

ne
 M

on
te

 C
ar

lo
 r

un

 

 
Event−based sampling
Time−based sampling

Fig. 8. Comparison of estimation accuracy vs. number of measurements of
event-based sampling (“Send-on-Delta”) and time-based sampling. From the
left to the right, δ for the “Send-on-Delta” is 0.5, 0.6, 0.7, 0.8, and 0.9; and
T for time-based sampling is 0.2 sec, 0.3 sec, 0.4 sec, 0.5 sec, 0.6 sec, and
0.7 sec. The entire simulation time is 50 sec.

V. CONCLUSIONS

In this paper, we have considered the event-based state
estimation problem where measurements are available only
when some events happen. First, a general framework for
the event-based state estimation problem has been developed
in an attempt to derive general filtering equations that can
be applied to various event-based estimation problems. Then,
a numerical algorithm which is based on the Markov chain
approximation method has been proposed to solve the filtering
equations. Unlike the existing methods which perform the
measurement update only when new measurement data arrives,
the proposed approach systematically uses the information
generated between the two consecutive measurement arrivals.
The improvement of the estimation accuracy obtained by
the proposed algorithm has been demonstrated through an
illustrative state estimation example of “bi-stable” nonlinear
system.

APPENDIX A
DESIGN OF TRANSITION PROBABILITIES π

How to choose the transition probabilities of the Markov
chain is a design problem [35]. In this appendix, an example
of how to design the appropriate π in Eq. (22) is presented. For
simplicity, we consider a two-dimensional case of Eq. (1) (i.e.,
n = 2) whose state is X = [X1 X2]

T ∈R2 and whose evolution
is governed by the following SDE:

dXi = ai(X, t)dt +bi(X, t)dWi for i = 1,2 (A.1)

where a1, a2, b1, and b2 are scalar functions, and W =
[W1 W2]

T is the standard two-dimensional Brownian motion.
Let {Q j} be the Markov chain to approximate X(t) and the

Figure 2.6. RMS errors of the proposed algorithm (EBMC) and the
particle-based algorithm (EBParticle) (100 Monte Carlo simulations)
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Fig. 7. RMS state estimation error for different grid sizes of the EBMC where
ε1 = ε2. For each grid size, 100 Monte Carlo runs are performed.

state value). In the simulation, δ = 0.5 for the “Send-on-
Delta”, and λ = 0.08, ε1 = ε2 = 0.2 for the EBMC, and the
number of particles for the EBParticle is 400 (the number is
chosen so that the computation time of the EBParticle is almost
the same as the EBMC). The simulation results show that the
proposed hybrid estimation algorithm has smaller estimation
errors than the EBParticle. In Figure 7, it is shown that as
the grid sizes, ε1 and ε2 become smaller, the estimation error
decreases. That is, as we have a finer grid, we can have more
accurate approximation, which is consistent with Theorem 1.

We also compare the event-based sampling (“Send-on-
Delta” in this example) with the time-based sampling (where
measurements are taken at synchronous time intervals), to
show the advantage of the event-based sampling with regard
to the communication channel usage. By changing δ (for
“Send-on-Delta”) and T (sampling time for time-based sam-
pling), we perform several simulations with different number
of measurements. For the estimation with the time-based
sampling, we uses the regular particle filter [36] (denoted
by ‘RParticle’) which performs only its time update when
there is no measurement transmission. Figure 8 shows the
number of measurements used by the estimation algorithms
(the EBParticle for “Send-on-Delta” and the RParticle for
time-based sampling). In the figure, it is found that, by using
the event-based sampling, the desired estimation accuracy
can be obtained with smaller number of measurements than
time-based sampling, which motivates the use of event-based
sampling.
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Fig. 8. Comparison of estimation accuracy vs. number of measurements of
event-based sampling (“Send-on-Delta”) and time-based sampling. From the
left to the right, δ for the “Send-on-Delta” is 0.5, 0.6, 0.7, 0.8, and 0.9; and
T for time-based sampling is 0.2 sec, 0.3 sec, 0.4 sec, 0.5 sec, 0.6 sec, and
0.7 sec. The entire simulation time is 50 sec.

V. CONCLUSIONS

In this paper, we have considered the event-based state
estimation problem where measurements are available only
when some events happen. First, a general framework for
the event-based state estimation problem has been developed
in an attempt to derive general filtering equations that can
be applied to various event-based estimation problems. Then,
a numerical algorithm which is based on the Markov chain
approximation method has been proposed to solve the filtering
equations. Unlike the existing methods which perform the
measurement update only when new measurement data arrives,
the proposed approach systematically uses the information
generated between the two consecutive measurement arrivals.
The improvement of the estimation accuracy obtained by
the proposed algorithm has been demonstrated through an
illustrative state estimation example of “bi-stable” nonlinear
system.

APPENDIX A
DESIGN OF TRANSITION PROBABILITIES π

How to choose the transition probabilities of the Markov
chain is a design problem [35]. In this appendix, an example
of how to design the appropriate π in Eq. (22) is presented. For
simplicity, we consider a two-dimensional case of Eq. (1) (i.e.,
n = 2) whose state is X = [X1 X2]

T ∈R2 and whose evolution
is governed by the following SDE:

dXi = ai(X, t)dt +bi(X, t)dWi for i = 1,2 (A.1)

where a1, a2, b1, and b2 are scalar functions, and W =
[W1 W2]

T is the standard two-dimensional Brownian motion.
Let {Q j} be the Markov chain to approximate X(t) and the

Figure 2.7. RMS state estimation error for different grid sizes of the
EBMC where ε1 = ε2. For each grid size, 100 Monte Carlo runs are
performed.

pared with the EBParticle in terms of state estimation error (i.e., difference between

the true state x(t) and the estimated state value). In the simulation, δ = 0.5 for

the ‘Send-on-Delta’, and λ = 0.08, ε1 = ε2 = 0.2 for the EBMC, and the number

of particles for the EBParticle is 400 (the number is chosen so that the computation

time of the EBParticle is almost the same as the EBMC). The simulation results

show that the proposed estimation algorithm has smaller estimation errors than the

EBParticle. In Figure 2.7, it is shown that as the grid sizes, ε1 and ε2 become smaller,

the estimation error decreases. That is, as we have a finer grid, we can have more

accurate approximation, which is consistent with Theorem 2.3.1.
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Fig. 7. RMS state estimation error for different grid sizes of the EBMC where
ε1 = ε2. For each grid size, 100 Monte Carlo runs are performed.

state value). In the simulation, δ = 0.5 for the “Send-on-
Delta”, and λ = 0.08, ε1 = ε2 = 0.2 for the EBMC, and the
number of particles for the EBParticle is 400 (the number is
chosen so that the computation time of the EBParticle is almost
the same as the EBMC). The simulation results show that the
proposed hybrid estimation algorithm has smaller estimation
errors than the EBParticle. In Figure 7, it is shown that as
the grid sizes, ε1 and ε2 become smaller, the estimation error
decreases. That is, as we have a finer grid, we can have more
accurate approximation, which is consistent with Theorem 1.

We also compare the event-based sampling (“Send-on-
Delta” in this example) with the time-based sampling (where
measurements are taken at synchronous time intervals), to
show the advantage of the event-based sampling with regard
to the communication channel usage. By changing δ (for
“Send-on-Delta”) and T (sampling time for time-based sam-
pling), we perform several simulations with different number
of measurements. For the estimation with the time-based
sampling, we uses the regular particle filter [36] (denoted
by ‘RParticle’) which performs only its time update when
there is no measurement transmission. Figure 8 shows the
number of measurements used by the estimation algorithms
(the EBParticle for “Send-on-Delta” and the RParticle for
time-based sampling). In the figure, it is found that, by using
the event-based sampling, the desired estimation accuracy
can be obtained with smaller number of measurements than
time-based sampling, which motivates the use of event-based
sampling.
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Fig. 8. Comparison of estimation accuracy vs. number of measurements of
event-based sampling (“Send-on-Delta”) and time-based sampling. From the
left to the right, δ for the “Send-on-Delta” is 0.5, 0.6, 0.7, 0.8, and 0.9; and
T for time-based sampling is 0.2 sec, 0.3 sec, 0.4 sec, 0.5 sec, 0.6 sec, and
0.7 sec. The entire simulation time is 50 sec.

V. CONCLUSIONS

In this paper, we have considered the event-based state
estimation problem where measurements are available only
when some events happen. First, a general framework for
the event-based state estimation problem has been developed
in an attempt to derive general filtering equations that can
be applied to various event-based estimation problems. Then,
a numerical algorithm which is based on the Markov chain
approximation method has been proposed to solve the filtering
equations. Unlike the existing methods which perform the
measurement update only when new measurement data arrives,
the proposed approach systematically uses the information
generated between the two consecutive measurement arrivals.
The improvement of the estimation accuracy obtained by
the proposed algorithm has been demonstrated through an
illustrative state estimation example of “bi-stable” nonlinear
system.

APPENDIX A
DESIGN OF TRANSITION PROBABILITIES π

How to choose the transition probabilities of the Markov
chain is a design problem [35]. In this appendix, an example
of how to design the appropriate π in Eq. (22) is presented. For
simplicity, we consider a two-dimensional case of Eq. (1) (i.e.,
n = 2) whose state is X = [X1 X2]

T ∈R2 and whose evolution
is governed by the following SDE:

dXi = ai(X, t)dt +bi(X, t)dWi for i = 1,2 (A.1)

where a1, a2, b1, and b2 are scalar functions, and W =
[W1 W2]

T is the standard two-dimensional Brownian motion.
Let {Q j} be the Markov chain to approximate X(t) and the

Figure 2.8. Comparison of estimation accuracy vs. number of mea-
surements of event-based sampling (‘Send-on-Delta’) and time-based
sampling. From the left to the right, δ for the ‘Send-on-Delta’ is 0.5,
0.6, 0.7, 0.8, and 0.9; and T for time-based sampling is 0.2 sec, 0.3
sec, 0.4 sec, 0.5 sec, 0.6 sec, and 0.7 sec. The entire simulation time
is 50 sec.

We also compare the event-based sampling (‘Send-on-Delta’ in this example) with

the time-based sampling (where measurements are taken at synchronous time inter-

vals), to show the advantage of the event-based sampling with regard to the commu-

nication channel usage. By changing δ (for ‘Send-on-Delta’) and T (sampling time

for time-based sampling), we perform several simulations with different number of

measurements. For the estimation with the time-based sampling, we use the regular

particle filter [71] (denoted by ‘RParticle’) which performs only its time update when

there is no measurement transmission. Figure 2.8 shows the number of measure-

ments used by the estimation algorithms (the EBParticle for ‘Send-on-Delta’ and the

RParticle for time-based sampling). In the figure, it is found that, by using the event-

based sampling, the desired estimation accuracy can be obtained with smaller number

of measurements than time-based sampling, which motivates the use of event-based

sampling.
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3. EVENT-BASED HYBRID STATE ESTIMATION FOR

CYBER-PHYSICAL SYSTEMS

In this chapter, we extend the event-based state estimation problem to CPSs that have

the hybrid system structure, and develop the corresponding state estimation algo-

rithm, called the Event-Based Hybrid State Estimation (EBHSE) algorithm. Firstly,

the motivation and literature review for this problem are presented in Section 3.1.

We then mathematically formulate the event-based hybrid state estimation problem

in Section 3.2. The EBHSE algorithm is proposed in detail in Section 3.3 and applied

to an aircraft tracking problem in the air traffic control application in Section 3.4.

3.1 Background and Motivations

The stochastic hybrid systems (SHS) are dynamical systems which contain inter-

acting continuous states and discrete states (or modes) with uncertainties. The SHS

have been widely used in various applications such as communication networks [23],

target tracking [13,72], chemical reactions [73], and manufacturing [74], to name a few.

To monitor and control the SHS, it is necessary to estimate both the discrete state and

continuous state using noisy measurements, which leads to the hybrid state estima-

tion problem. Several hybrid estimation algorithms have been developed [24,25,75,76]

including the Interacting Multiple Model (IMM) algorithm [24], the multiple model

adaptive estimation algorithm [75], the state dependent transition hybrid estimation

algorithm [25], etc. These hybrid estimation algorithms, however, assume that mea-

surements are generated at synchronous time intervals (time-based sampling), and

thus cannot effectively and efficiently deal with event-based sampling.

The objective of this chapter is to develop an event-based state estimation al-

gorithm for the SHS. There are two main difficulties to solve the hybrid estimation
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problem with event-based sampling. Firstly, the optimal hybrid state estimation re-

quires the computation of the exponentially increasing number of probabilities of the

discrete state histories. To deal with this problem, we exploit the idea of the IMM

approach which keeps the computational complexity constant via mixing [13]. Sec-

ondly, the computation of the mode-matched state estimates with event-based sam-

pling leads to the evaluation of a multivariate integration over the measurement space,

which is computationally demanding. To efficiently compute the integration, we pro-

pose a pseudo measurement generation method, where the multivariate integration

is approximated as the weighted sum of Gaussian functions evaluated at each pseudo

measurement. This enables to find a closed-form representation of the mode-matched

posterior distribution and mode-matched likelihood with bounded complexity.

3.2 Problem Formulation for Event-Based Hybrid State Estimation

In this section, a mathematical model for a class of SHS and a event-based sam-

pling model are presented. The event-based hybrid state estimation problem is then

formulated as to find the probability density functions (pdfs) of both the continuous

and discrete states of the hybrid system.

3.2.1 Stochastic Linear Hybrid System

We consider a discrete-time stochastic linear hybrid system which consists of the

continuous state x(k) = [x1, x2, . . . , xn]T ∈ Rn, the discrete state (mode) q(k) ∈
Q = {1, 2, . . . , nq}, and the measurement vector y(k) = [y1, y2, . . . , yp]

T ∈ Rp, where

k = 0, 1, . . . is the discrete-time index. For each q(k), the continuous state dynamics

and the measurement equation are given by

x(k + 1) = Aq(k)x(k) +Bq(k)wq(k)(k)

y(k) = Cq(k)x(k) + vq(k)(k)
(3.1)

where wq(k)(k) and vq(k)(k) are zero-mean white Gaussian noise with covariances Qq(k)

and Rq(k), respectively. The discrete state transitions are governed by a finite state
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Markov chain whose state space is equivalent to Q. Define the probability vector

m(k) ≡ [m1(k), . . . ,mnq(k)]T , where mi(k) denotes the probability that the system is

in the i-th discrete state at time k. The discrete state transition is then characterized

by the evolution of the probability vector m(k), which is given by

m(k + 1) = Πm(k) (3.2)

where Π = [πij]nq×nq is the transition probability matrix whose elements are defined

by

πij ≡ p(q(k + 1) = j|q(k) = i) (3.3)

with
∑nq

j=1 πij = 1, where we use p(·|·) to denote a conditional probability.

3.2.2 Event-Based Observation Model

We assume that the measurements are sent to an estimator only when certain

events happen in order to reduce the communication cost (e.g., bandwidth). Unlike

conventional time-based sampling where the estimator receives the measurements at

a fixed sampling interval, the duration between the acquisition of two consecutive

measurements can vary in event-based sampling. The conditions (events) by which

sensors decide when to transmit their measurements can be defined in various ways. In

this research, we consider the send-on-delta (SOD) method where the sensors transmit

their measurement data to the estimator only when its measurement value varies more

than a given specified value δ. By adjusting the δ value, the data transmission rate

can be reduced and therefore can save network bandwidth resources.

Suppose the i-th measurement output yi (i.e., measurement from the i-th sen-

sor) (i = 1, 2, . . . , p) is sampled with period Ts (for simplicity, we assume that each

sensor’s output yi is scalar but this assumption can be easily extended to a general

vector measurement case). To illustrate the SOD, let us assume that the i-th sensor

transmitted its measurement data yi(k) to the estimator at time k. At the next sam-

pling time k + 1, if the difference between the current measurement value yi(k + 1)
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and the previously transmitted one (in this case, yi(k)) is greater than δi, the sensor

sends yi(k+ 1) to the estimator; otherwise it does not. Let yi,last(k− 1) represent the

last transmitted measurement from the i-th sensor up to time k− 1. Here, we define

an indicator function γ : Rp → [0, 1] such that

γ(yi(k)) =





1, if |yi(k)− yi,last(k − 1)| > δi

0, otherwise

(3.4)

where δi, i = 1, 2, . . . , p, is a given threshold value for each sensor. Each sensor’s

measurement, yi(k), is sent to the estimator when γ(yi(k)) = 1 (i.e., when the dif-

ference between the current value and the previously transmitted value exceeds the

pre-defined threshold). Define two index sets T (k) and S(k) as:

T (k) = {i|γ(yi(k)) = 1, for i = 1, 2, . . . , p}

S(k) = {1, 2, . . . , p} \ T (k)
(3.5)

Then, an information vector I(k) available to the estimator at time k, is defined as:

I(k) = {{yi(k)|i ∈ T (k)}, S(k)} (3.6)

where {yi(k)|i ∈ T (k)} is the explicit information which is directly sent to the esti-

mator, and S(k) gives the implicit information that, for i ∈ S(k), yi(k) remains in

the (−δi, δi) interval of the last transmitted sensor value yi,last(k − 1). The measure-

ments that the estimator received at time k (i.e., yi(k) for i ∈ T (k)) are stored to

update yi,last(k). The network structure of the sensors and the estimator with the

SOD sampling is depicted in Figure 3.1.

3.2.3 Event-Based Hybrid State Estimation Problem

Let Ik ≡ {I(1), I(2), . . . , I(k)} denote the set of information (available to the

estimator) up to time k. The hybrid estimation problem is then defined as to compute
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Figure 3.1. Networked system with the SOD sampling

both the continuous state pdf p(x(k)|Ik) and the mode probability p(q(k)|Ik). From

the total probability theorem, p(x(k)|Ik) is computed by

p(x(k)|Ik) =

nq∑

i=1

p(x(k)|q(k) = i, Ik)p(q(k) = i|Ik) (3.7)

Using the Bayesian approach, the hybrid state estimation problem can be formulated

as follows: assume that at time k − 1, the mode-conditioned continuous state pdfs

p(x(k − 1)|q(k − 1) = i, Ik−1) and the mode probabilities mi(k − 1) = p(q(k − 1) =

i|Ik−1) have been computed for each mode i ∈ Q. Then, the goal of the hybrid state

estimation is to recursively compute p(x(k)|q(k) = i, Ik) and mi(k) = p(q(k) = i|Ik)
for all modes i ∈ Q using the new information vector I(k) generated at time k. The

hybrid state estimates are then obtained as:

x̂(k) := E[x(k)|Ik]

q̂(k) := argmax
j

p(q(k) = j|Ik)
(3.8)

where E[·|·] denotes the conditional expectation of a random variable (i.e., x̂ is the

minimum mean square error estimate).
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3.3 Event-Based Hybrid State Estimation Algorithm

In this section, a recursive filtering algorithm is developed for the event-based hy-

brid state estimation. There are the two main difficulties: the exponentially growing

number of discrete state histories and the multivariate integration over the measure-

ment space. To overcome these obstacles, we first exploit the IMM approach where

the discrete state histories are approximated by a mode probability mixing step. In

the mixing step, the mode-matched conditional posterior distributions are merged

and approximated to a single Gaussian distribution to keep the number of mode his-

tories constant. This enables to keep the exponentially growing number of the discrete

state histories to the bounded computational complexity. Secondly, we also propose

the pseudo measurement generation method which approximates the multivariate

integration as the weighted sum of Gaussian functions evaluated at each pseudo mea-

surement. This leads to a closed-form representation of the mode-matched posterior

distribution and mode-matched likelihood.

Assume that from the last iteration at time k−1, the mode probabilities mi(k−1)

are computed and the mode-conditioned continuous state pdfs are obtained as:

p(x(k − 1)|q(k − 1) = i, Ik−1) = N (x(k − 1); x̂i(k − 1), P i(k − 1)) (3.9)

for i = 1, 2, . . . , nq, where N represents the Gaussian distribution with the mean

x̂i(k − 1) and the covariance P i(k − 1).

Step 1: Mixing

The mixing probability mi|j(k) is computed by

mi|j(k) = p(q(k − 1) = i|q(k) = j, Ik−1)

=
p(q(k) = j|q(k − 1) = i, Ik−1)p(q(k − 1) = i|Ik−1)

p(q(k) = j|Ik−1)

=
πijm

i(k − 1)∑nq

i=1 πijm
i(k − 1)

(3.10)
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Using the mixing probability, the initial conditions for a filter matched to mode j are

obtained as:

x̂0j(k − 1) =

nq∑

i=1

mi|jx̂i(k − 1)

P 0j(k − 1) =

nq∑

i=1

mi|j {P i(k − 1) + [x̂i(k − 1)− x̂0j(k − 1)][x̂i(k − 1)− x̂0j(k − 1)]T
}

(3.11)

Step 2: Mode-matched estimation

For given mode j and the initial conditions (x̂0j(k − 1) and P 0j(k − 1)), the

mode-conditioned prior distribution p(x(k)|q(k) = j, Ik−1) is computed as:

p(x(k)|q(k) = j, Ik−1) = N (x(k); x̂j(k|k − 1), P j(k|k − 1)) (3.12)

where

x̂j(k|k − 1) = Ajx̂
0j(k − 1)

P j(k|k − 1) = AjP
0j(k − 1)ATj +BjQjB

T
j

(3.13)

From Bayes’ theorem, the mode-conditioned posterior distribution p(x(k)|q(k) =

j, Ik) can be obtained as:

p(x(k)|q(k) = j, Ik) =
p(I(k)|x(k), q(k) = j, Ik−1)

p(I(k)|q(k) = j, Ik−1)
p(x(k)|q(k) = j, Ik−1) (3.14)

Note that the computation of the likelihood function p(I(k)|x(k), q(k) = j, Ik−1) is

not trivial due to the implicit information contained in the information vector I(k),

unlike the conventional Kalman filter for time-based sampling where the likelihood

function can be easily computed with residuals. From the explicit and the implicit

information in I(k), the likelihood function can be represented as a multivariate

integral as [57, 58]:

p(I(k)|x(k), q(k) = j, Ik−1) =

∫

y(k)∈Y (k)

p(y(k)|x(k), q(k) = j, Ik−1)dy(k) (3.15)

where Y (k) is a set of y(k) such that, for all y(k) ∈ Y (k)

yi(k) = yi,last(k) for i ∈ T (k)

|yi(k)− yi,last(k − 1)| ≤ δi for i ∈ S(k)
(3.16)
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Note that the direct evaluation of the multivariate integral in (3.15) is numerically

intensive. To efficiently evaluate the multivariate integral in (3.15), we propose an

approximate method based on pseudo measurement generation which discretizes the

domain of the integral Y (k) by a set of pseudo-measurements ypseudo(k) as:

1) Let nS(k) be the number of elements in S(k) (i.e., the number of sensors not

sending their measurements). Also, define an one-to-one mapM : {1, 2, . . . , nS(k)} →
S(k) that connects a new index l ∈ {1, 2, . . . , nS(k)} to i in S(k) such that

M(1) = smallest i in S(k)

M(nS(k)) = largest i in S(k)

and for l2 > l1,M(l2) >M(l1)

For example, if S(k) = {2, 5, 9} (i.e., nS(k) = 3), then M(1) = 2, M(2) = 5, and

M(3) = 9.

2) To discretize Y (k), let Nl be the designed number of grid points for theM(l)-th

sensor for l = 1, 2, . . . , nS(k). The grid size εl is then computed as:

εl =
2× δM(l)

Nl

(3.17)

For example, if S(k) = {2, 5, 9} (and thus, M(1) = 2, M(2) = 5, and M(3) = 9),

then we have

ε1 = 2×δ2
N1

, ε2 = 2×δ5
N2

, and ε3 = 2×δ9
N3

3) To represent each grid point in Y (k), define a discretization vector d :=

[d1, d2, . . . , dnS(k)
]T ∈ NnS(k) such that

1 ≤ dj ≤ Nj for j = 1, 2, . . . , ns(k) (3.18)

For example, if S(k) = {2, 5, 9} and N1 = N2 = N3 = 3, then all the discretization

vectors d are [1, 1, 1]T , [1, 1, 2]T ,. . . ,[3, 3, 3]T . Therefore, the total number of the dis-

cretization vectors (i.e., the total number of grid points in Y (k)) is equal to Ntot =
∏nS(k)

j=1 Nj. The pseudo-measurements ydpseudo(k) = [ydpseudo,1, y
d
pseudo,2, . . . , y

d
pseudo,p]

T ∈
Y (k) (i.e., a single grid point in Y (k)) corresponding to each discretization vector d

is defined as:
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Figure 3.2. Illustration of grid points for pseudo-measurements

• ∀i ∈ T (k)

ydpseudo,i = yi,last(k) (3.19)

• ∀i ∈ S(k)

ydpseudo,i = yi,last(k − 1)− δi + (dM−1(i) − 1)× εM−1(i) (3.20)

In Figure 3.2, the generation of grid points is illustrated. In the illustration, it is

assumed that there are five sensors (i.e., p = 5) and only three sensors (1, 2, 4-th

sensors) send their measurements to the estimator at time k. Therefore, S(k) = {3, 5}
(i.e.,M(1) = 3 andM(2) = 5). The number of grid points for the sensors in S(k) is

given by N1 = 8, N2 = 5, and the total number of grid points is Ntot = N1×N2 = 40.
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With the Ntot pseudo-measurements, the likelihood function in (3.15) can be ap-

proximated as:

p(I(k)|x(k), q(k) = j, Ik−1) =

∫

y(k)∈Y (k)

p(y(k)|x(k), q(k) = j, Ik−1)dy(k)

≈ D

Ntot

∑

∀d

p(ydpseudo(k)|x(k), q(k) = j, Ik−1)

=
D

Ntot

∑

∀d

N (ydpseudo(k);Cjx(k), Rj)

(3.21)

where D =
∏

i∈S(k)(2δi). The following theorem provides a convergence property of

the approximation.

Theorem 3.3.1 Define the approximation error ε as:

ε =

∣∣∣∣∣

∫

y(k)∈Y (k)

p(y(k)|x(k), q(k) = j, Ik−1)dy(k)− D

Ntot

∑

∀d

N (ydpseudo(k);Cjx(k), Rj)

∣∣∣∣∣
(3.22)

Then,

ε→ 0 as Ni →∞ for i = 1, 2, . . . , nS(k) (3.23)

The proof is presented in the Appendix. Note that the approximation in (3.21) can be

considered as quasi-Monte Carlo approximation [77, 78], where the random samples

of Monte Carlo methods are replaced by deterministic points. So, the convergence in

(3.23) is deterministic as different from Monte Carlo approximations whose conver-

gence is provided in a probabilistic way [79]. Note that the convergence property in

Theorem 3.3.1 is also numerically demonstrated in the simulation section.

Using the approximated likelihood function, the mode-conditioned posterior dis-

tribution p(x(k)|q(k) = j, Ik) in (3.14) can be computed as:

p(x(k)|q(k) = j, Ik) ∝ p(I(k)|x(k), q(k) = j, Ik−1)p(x(k)|q(k) = j, Ik−1)

≈ D

Ntot

(∑

∀d

N (ydpseudo(k);Cjx(k), Rj)

)

×N (x(k); x̂j(k|k − 1), P j(k|k − 1))

(3.24)



39

Note that from the identity of Gaussian distribution [80], the multiplication of two

Gaussian distributions can be rewritten as:

N (ydpseudo(k);Cjx(k), Rj)N (x(k); x̂j(k|k − 1), P j(k|k − 1))

= N (x(k);λd,Λ)N (ydpseudo(k); θ,Θ)
(3.25)

where

Λ =
(
P j(k|k − 1)−1 + CT

j R
−1
j Cj

)−1

λd = Λ
(
P j(k|k − 1)−1x̂j(k|k − 1) + CT

j R
−1
j ydpseudo(k)

)

θ = Cjx̂
j(k|k − 1)

Θ = CjP
j(k|k − 1)CT

j +Rj

(3.26)

Because N (ydpseudo(k); θ,Θ) is constant for given d, x̂j(k|k−1), and P j(k|k−1), it can

be considered as weight wd for N (x(k);λd,Λ). Then, the posterior distribution can

be represented as the weighted sum of Gaussians which can then be approximated as

a single Gaussian via moment matching:

p(x(k)|q(k) = j, Ik) =
∑

∀d

wd∑
∀dw

d
N (x(k);λd,Λ)

≈ N (x(k); x̂j(k), P j(k))

(3.27)

where

x̂j(k) =
∑

∀d

wd∑
∀dw

d
λd

P j(k) =
∑

∀d

wd∑
∀dw

d

{
Λ + (λd − x̂j(k))(λd − x̂j(k))T

} (3.28)

Step 3: Mode probability update

The mode probability is updated by using Bayes’ rule as:

mj(k) = p(q(k) = j|Ik)

=
1

c
p(I(k)|q(k) = j, Ik−1)p(q(k) = j|Ik−1)

(3.29)



40

where c is a normalizing constant; p(I(k)|q(k) = j, Ik−1) is the mode-likelihood func-

tion computed using (3.21) by

p(I(k)|q(k) = j, Ik−1) =

∫ ∞

−∞
p(I(k)|x(k), q(k) = j, Ik−1)p(x(k)|q(k) = j, Ik−1)dx(k)

=
D

Ntot

∫ ∞

−∞

(∑

∀d

N (ydpseudo(k);Cjx(k), Rj)

)

×N (x(k); x̂j(k|k − 1), P j(k|k − 1))dx(k)

=
D

Ntot

∑

∀d

N (Cjx̂
j(k|k − 1); ydpseudo(k), CjP

j(k|k − 1)CT
j +Rj)

(3.30)

and p(q(k) = j|Ik−1) is the prior mode probability given by

p(q(k) = j|Ik−1) =

nq∑

i=1

p(q(k) = j|q(k − 1) = i, Ik−1)p(q(k − 1) = i|Ik−1)

=

nq∑

i=1

πijmi(k − 1)

(3.31)

Step 4: Output

The continuous state estimate x̂(k) and its covariance P (k) are obtained using

(3.28) and (3.29) as:

x̂(k) =

nq∑

j=1

x̂j(k)mj(k)

P (k) =

nq∑

j=1

{
P j(k) + (x̂j(k)− x̂(k))(x̂j(k)− x̂(k))T

}
mj(k)

(3.32)

The discrete state estimate q̂ can be computed with (3.8). The proposed event-based

hybrid state estimation algorithm is summarized in Table 3.1.

3.4 Numerical Simulation

In this section, the proposed algorithm for event-based hybrid state estimation

is demonstrated with an illustrative maneuvering aircraft tracking problem. Con-

sider the aircraft’s motion in the two-dimensional horizontal plane [13, 72]. Let
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Table 3.1. Event-based hybrid state estimation algorithm

1.Initialization

x̂j(0), P j(0), mj(0) for j = 1, 2, . . . , nq

2.Iteration

for (k = 1, 2, . . .)

Mixing

Compute x̂0j(k − 1) and P 0j(k − 1) for j = 1, 2, . . . , nq using (3.11)

Mode-matched estimation

Compute mode-conditioned continuous state estimates x̂j(k) and P j(k)

for j = 1, 2, . . . , nq using (3.28)

Mode probability update

Update mode probability mj(k) for j = 1, 2, . . . , nq using (3.29)

Output

Compute x̂(k) and P (k) using (3.32)

end

x = [ξ, ξ̇, η, η̇]T be the continuous states describing the aircraft’s motion with the

ξ-axis pointing the east and the η-axis pointing the north. In this example, the air-

craft is assumed to have two flight modes (nq = 2): 1) Constant Velocity (CV) mode

(q = 1) and 2) Coordinated Turn (CT) mode (q = 2). The continuous state dynamics

for each mode q is modeled as:

x(k + 1) =




1 Ts 0 −1
2
ψ̇qT

2
s

0 1 0 −ψ̇qTs
0 1

2
ψ̇qT

2
s 1 Ts

0 ψ̇qTs 0 1



x(k) +




1
2
T 2
s 0

Ts 0

0 1
2
T 2
s

0 Ts



wq(k)

y(k) =


1 0 0 0

0 0 1 0


x(k) + vq(k)

(3.33)
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where ψ̇1 = 0 for mode 1 and ψ̇2 = −1.3 deg/s for mode 2; the sampling time

Ts = 2 sec;

Q1 =


0.052 0

0 0.052


 , Q2 =


0.12 0

0 0.12




R1 = R2 =


252 0

0 252




(3.34)

The switching between the two modes is governed by a first-order Markov chain with

the following transition probability matrix:

Π =


0.9 0.1

0.1 0.9


 (3.35)

Note that for both modes, the measurement y ∈ R2 is the aircraft’s position (ξ, η).

In this example, we assume that the measurements are sent to an estimator using the

SOD method with given δ1 and δ2.

The proposed event-based hybrid state estimation algorithm (denoted by ‘EBHSE’)

is compared to the conventional IMM approach (denoted by ‘IMM’) where each

Kalman filter works as asynchronous filter (i.e., it ignores the implicit information

that for sensors not sending their measurements, the measurements remain in the

(−δ, δ) interval from the last transmitted values). That is, each asynchronous Kalman

filter propagates its mode-conditioned mean and covariance using (3.13) and updates

them using the standard measurement update equation as:

x̂j(k|k) = x̂j(k|k − 1) +Kj(k)(ỹ(k)− C̃j(k)x̂j(k|k − 1))

where Kj(k) = P j(k|k − 1)C̃j(k)T (C̃j(k)P j(k|k − 1)C̃j(k)T + Rj)
−1; ỹ(k) denotes

a set of measurements yi(k) such that i ∈ T (k); and C̃j(k) is the measurement

matrix mapping the states x into ỹ(k). Note that each algorithm uses the same

number of measurements obtained by the SOD method, but the proposed algorithm

systematically utilizes the implicit information to improve the estimation accuracy.

In addition, the difference between the proposed algorithm and the conventional IMM

algorithm can be represented by the information vector I(k) which they consider.
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1) Conventional IMM approach with asynchronous Kalman filters:

I(k) = {yi(k)|i ∈ T (k)}

2) Event-based hybrid state estimation:

I(k) = {{yi(k)|i ∈ T (k)}, S(k)}

Operating scenario: the aircraft starts at the location (1000 m, 1000 m) in the ξ−η
coordinates. The initial velocity is (−10m/s,−10m/s) and the aircraft keeps a nearly

constant velocity (i.e., CV mode) for 140 sec. Then, the aircraft makes a coordinate

turn (i.e., CT mode) with ψ̇2 = −1.3 deg/s for 60 sec. After the coordinate turn,

the aircraft flies at a constant velocity (i.e., CV mode) for another 120 sec. Figure

3.3 shows the result of a single run including the true trajectory of the aircraft with

the estimated trajectories obtained by each estimation method (where the number

of grids is chosen by N1 = N2 = 10 and δ1 = 100 m and δ2 = 100 m for the SOD

algorithm). The mode estimation accuracies of both algorithms are compared in

Figure 3.4, where the mode estimate q̂ is obtained using (3.8). Figure 3.5 shows the

Figure 3.3. Actual and estimated trajectories of the aircraft (a single run)
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(a) Estimated mode from the IMM

(b) Estimated mode from EBHSE

Figure 3.4. Comparison of mode-estimation accuracy (a single run)
with δ1 = δ2 = 100 m

Figure 3.5. RMS position errors with 100 Monte Carlo runs with δ1 = δ2 = 100 m
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Figure 3.6. RMS position errors of EBHSE for different number of
grid points (N1 = N2) with 100 Monte Carlo runs

RMS position estimation error for each method and other statistics of the results are

summarized in Table 3.2.

It is obvious that the proposed algorithm produces more accurate estimates com-

pared to the conventional IMM approach. In particular, during the coordinate turn,

the aircraft’s η coordinate remains within 2δ2 (i.e., no measurement data of y2 is

provided to the estimator during the coordinated turn). This causes the conventional

IMM to lose the estimation accuracy while the proposed algorithm keeps the accu-

racy by using the implicit information. The RMS error statistics for each method

is summarized in Table 3.2 with the different values of δ1 and δ2. It is found that

the estimation accuracy is improved as the size of δ1 and δ2 decreases. This result is

reasonable because measurements are transmitted more frequently to the estimator

with smaller δ1 and δ2. Figure 3.6 shows that as the number of grid points, N1 and

N2 become larger, the estimation error decreases, validating the convergence of the

approximation error in Theorem 3.3.1.
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Figure 3.7. Comparison of estimation accuracy versus number of mea-
surements of event-based sampling (Send-on-Delta) and time-based
sampling. From the left to the right, δ1 = δ2 for the Send-on Delta is
30 m, 40 m, 60 m, 80 m, 100 m, and 120 m; and Ts for time-based
sampling is 2 sec, 4 sec, 6 sec, 8 sec, 10 sec, and 12 sec.

To show the benefit of event-based sampling in terms of data transmission rate,

we compare it to time-based sampling (where measurements are sent to the estimator

at regular time intervals). To adjust the number of measurements for the comparison

study, we change the sizes of δ1 and δ2 for the SOD, and the sampling time Ts for time-

based sampling. In Figure 3.7, it is shown that the desired estimation accuracy can

be attained with the smaller number of measurements by using event-based sampling.

This result shows the advantage of event-based sampling over time-based sampling

regarding to the communication channel usage.



48

4. APPLICATION TO SPACE SITUATIONAL

AWARENESS I: TRACKING OF MANEUVERING

SPACECRAFT

In this chapter, an adaptive state estimation algorithm for CPSs subject to abrupt

state jumps is developed and applied to tracking problems of impulsively maneuver-

ing spacecraft in the SSA application. First, the motivations of this research are

discussed in Section 4.1. Then, in Section 4.2, we present a mathematical model for

CPSs in which abrupt state jumps occur probabilistically conditioned on the state of

the systems. Using the model, Section 4.3 proposes a new adaptive state estimation

algorithm in detail. In Section 4.4, the proposed algorithm is applied to two illus-

trative examples, 1) tracking of a geostationary satellite performing station keeping

maneuvers and 2) tracking of a spacecraft performing orbital transfers.

4.1 Background and Motivations

As space has become highly congested by many space objects, SSA has become

crucial for the safe operation of space assets. One of the challenging tasks in SSA is

the surveillance and tracking of spacecraft that have the capability to maneuver to

perform various space missions. These tasks are essential to accurately predict the fu-

ture trajectories of maneuvering spacecraft, and thus to effectively manage the safety

of other spacecraft around the predicted future trajectories. It has been reported that

there are more than 1000 currently operating spacecraft with the maneuver capabil-

ity, and the number of such spacecraft is increasing [81,82]. This emphasizes the need

to develop effective and efficient techniques for maneuvering spacecraft tracking.



49

The types of spacecraft maneuvers can be classified into two categories based on

the type of the propulsion system used: 1) impulsive maneuvers using high-thrusts

and 2) continuous maneuvers using low-thrusts. This study focuses on spacecraft with

impulsive high-thrust maneuvers. The impulsive maneuvers usually occur using high

thrusts which can provide high enough thrust to rapidly change the trajectories of

the maneuvering spacecraft. The rapid changes of the maneuvering spacecraft’s tra-

jectory can cause more dangerous and imminent safety issues to adjacent spacecraft,

and thus more efforts need to be made to accurately monitor the impulsively maneu-

vering spacecraft. In this sense, an emphasis is placed on the tracking of spacecraft

implementing impulsive maneuvers.

The accurate tracking of maneuvering spacecraft is a challenging problem since

the magnitude and the time of occurrence of maneuvers are usually unknown. To

overcome these challenges, several approaches have been developed to detect orbital

maneuvers of spacecraft. Kelecy and Jah [83] used an orbit determination technique

based on batch least squares and the extended Kalman filter (EKF) to detect a single

finite maneuver, where they checked inconsistency between filtered and smoother state

estimates. Holzinger et al. [84] developed an optimal control performance metric based

on the consistency check of measurement residuals to detect and characterize orbital

maneuvers. A similar approach based on the optimal control framework was proposed

and applied to GEO satellite maneuver detection and reconstruction problem by

Lubey et al. [29]. The idea of the consistency check has been also applied to recorded

two-line element set (TLE) data. Patera [37] proposed a moving window curve fit

approach using the TLE data to detect the change of the maneuvering spacecraft’s

energy. Lemmens and Krag [85] also used the TLE data to check any inconsistency

of the spacecraft’s orbital elements due to maneuvers. Changes in orbital elements

have also been explicitly used in [38] to estimate the maneuver time and magnitude of

thrust using the Gaussian variation of parameters equations [86]. The performance

of these approaches, however, is highly dependent on the tracking accuracy (i.e.,

the accuracy of estimated orbital elements or states), which implies the necessity of



50

effective state estimation algorithms capable of providing accurate state estimates of

the maneuvering spacecraft.

Many tracking algorithms have been developed to estimate the position and veloc-

ity of a maneuvering spacecraft (see Teixeira et al. [87] and references therein). One

of the simplest approaches is to use a single Kalman filter based on a single dynami-

cal model [87, 88]. However, these approaches may suffer from significant errors as a

priori unknown maneuvers can cause filter divergence. To account for the maneuvers,

multiple model adaptive estimation (MMAE) approaches have been developed where

the maneuvers are considered as changes within multiple dynamics [75, 89, 90]. The

interacting multiple-model (IMM) algorithm [72] is one of the most popular algo-

rithms among them, and it has been successfully applied to maneuvering spacecraft

tracking [34, 91]. However, these approaches also have limitations. They are applied

to the cases where maneuvers occur for a reasonably long length of time (i.e., con-

tinuous low-thrust maneuvers) [91], or that the magnitude of a maneuver can take a

value from an a priori known finite set [34]. These assumptions are not appropriate

for the tracking of spacecraft with a priori unknown impulsive maneuvers.

Most importantly, it should be noted that, in many cases, the probability of oc-

currence of impulsive maneuvers is dependent on certain conditions on the state of

the spacecraft. For example, for a geostationary satellite performing station keeping

maneuvers, the impulsive maneuvers are likely to occur when its longitude or lati-

tude approaches predefined bounds around a desired location. If this information is

explicitly used in a tracking algorithm, the occurrences of impulsive maneuvers can

be predicted more accurately, and thus the tracking accuracy can be improved. How-

ever, most of the aforementioned algorithms including the MMAE approaches do not

incorporate the information explicitly, which emphasizes the need to develop a new

tracking algorithm that can systematically exploit this information.

To address this problem, a new adaptive state estimation algorithm is developed in

this study. First, a general mathematical model is proposed for a stochastic nonlinear

dynamical system with unknown abrupt state jumps (e.g., abrupt changes in the
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velocity of a spacecraft due to impulsive maneuvers). A probabilistic model is also

proposed to describe the abrupt state jumps whose probability of occurrence depends

on the state of the system. Two extended Kalman filters are designed, each of which

is matched to either a no abrupt change model or an abrupt change model, to account

for the motion of the system with or without the abrupt jumps. The two filters are

then systematically blended using a state-dependent transition probability which is

derived using the probabilistic model for the abrupt state jumps. Through state-

dependent blending, the information about the state-dependent probability of abrupt

jumps is explicitly utilized in the proposed algorithm. The proposed algorithm is

then applied to the tracking problem of impulsively maneuvering spacecraft.

4.2 Modeling of Stochastic Dynamical System Subject to Abrupt State

Jumps

In this section, a mathematical model for a stochastic nonlinear dynamical system

with unknown abrupt state changes (i.e. state jumps) is introduced, and a proba-

bilistic model is presented to describe the abrupt state jumps whose probability of

occurrence is dependent on the state of the system.

4.2.1 Stochastic Nonlinear Dynamical System with Unknown Jumps

Consider the following discrete-time nonlinear dynamical system and the obser-

vation equation

x(k + 1) = f(x(k)) + Bw(k) + δt,k+1Gu

y(k) = h(x(k)) + v(k)
(4.1)

where x(k) ∈ Rn is the state, y(k) ∈ Rp is the observation vector, u ∈ Rm is the de-

terministic but unknown input vector, f : Rn → Rn and h : Rn → Rp are (piecewise)

smooth bounded nonlinear functions, w(k) and v(k) are l- and p-dimensional zero-

mean white Gaussian noises with covariance Q(k) and R(k), respectively, B ∈ Rn×l
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and G ∈ Rn×m are constant matrices, and δi,j is the Kronecker delta with δi,j = 0

for i 6= j and δi,j = 1 for i = j. The term δt,k+1Gu in (4.1) represents abrupt

jumps in the system whose magnitudes and times of occurrence (i.e., t in δt,k+1) are

unknown. Note that impulsive thrusts can produce abrupt jumps in the velocity of

the spacecraft, and thus the spacecraft’s motion during impulsive maneuvers can be

described by (4.1) (in this case, G should be designed such that the abrupt jumps in

the position are not allowed to occur).

4.2.2 Probabilistic Model for State-Dependent Abrupt Jumps

In many applications, abrupt jumps occur when certain conditions on the state

of the system are satisfied. For example, for a spacecraft in a geostationary transfer

orbit (GTO), impulsive maneuvers (i.e., abrupt jumps in velocity) are likely to occur

when the spacecraft approaches the apogee of its orbit to transfer to a geostationary

orbit (GEO). Another example is station-keeping maneuvers of geostationary satel-

lites. When a geostationary satellite drifts out of a desired region (usually given as

latitude/inclination and longitude bounds), impulsive maneuvers are performed to

keep the position of the satellite within the desired region. Although those conditions

are deterministic, actual abrupt jumps occur stochastically in practice due to navi-

gation errors or external disturbances. In this sense, we build a probabilistic model

for the abrupt jumps such that the probability of their occurrences is dependent on

the state of system.

Let us denote the state-dependent jump probability as π(x(k)). To model π(x(k)),

let us first consider an illustrating example of a spacecraft in a GTO. In this example,

a maneuver occurs at the apogee of the GTO at about 42,164 km, which corresponds

to the orbital radius of a GEO, as illustrated in Figure 4.1. The motion of the

spacecraft could be modeled as a nonlinear dynamical system with abrupt state (i.e.,
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actual trajectory 

nominal trajectory 

before maneuver  

(a GTO) 

nominal trajectory 

after maneuver 

(a GEO) 

Figure 4.1. Impulsive maneuver from a GTO to a GEO at apogee with uncertainty

velocity) jumps as in (4.1). Let r(k) be the position of the spacecraft at time k and ra

be the location of the apogee, then an impulsive maneuver occurs when a condition

r(k)− ra = 0 (4.2)

is satisfied. In practice, due to many factors such as orbital perturbations and navi-

gation errors, the impulsive maneuver may occur around the apogee but not exactly

at the apogee (see Figure 4.1). This uncertainty can be described by a probabilis-

tic model where the probability of occurrence of the abrupt jump is conditioned on

r(k) − ra. It is reasonable that the jump probability is high when r(k) is close to

ra. Suppose that the position r(k) can be represented as a function of the state of

the spacecraft in a general form as r(k) = Lg(x(k)), where L is a constant matrix

and g is a smooth nonlinear function. For example, if the state itself is the position,

i.e., x(k) = r(k), then, L is the identity matrix and g is the identity function (more
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complex cases where L and g are nontrivial will be presented in the simulation section

where station keeping maneuvers of a geostationary satellite are considered). Then,

the jump probability can be modeled as a function f(Lg(x(k))− ra) in this example.

Motivated by this example, the jump condition can be generally represented as:

Lg(x(k))− µ = 0 (4.3)

and the corresponding state-dependent jump probability is modeled as:

π(x(k)) = f(Lg(x(k))− µ) (4.4)

where L ∈ Rs×q, g : Rn → Rq, µ ∈ Rs, and f : Rs → [0, 1]. Note that f should

have the property that the state-dependent jump probability (4.4) is highest when

the jump condition (4.3) is satisfied, i.e., Lg(x(k)) = µ, and gradually decreases

as Lg(x(k)) moves away from µ. In this sense, we propose to use a multivariate

Gaussian function to model f as:

π(x(k)) = f(Lg(x(k))− µ)

= ηNs(Lg(x(k));µ,Σ)
(4.5)

where the covariance matrix Σ ∈ Rs×s determines the rate of decrease in the jump

probability as Lg(x(k)) moves away from µ, and η ∈ [0, 1] is a scaling parameter

that needs to be chosen to satisfy that 0 ≤ π(x(k)) ≤ 1. It can be easily seen that

the multivariate Gaussian function in (4.5) satisfies the desired property of f . In

addition, the use of the multivariate Gaussian function facilitates the development of

an analytical solution in the proposed adaptive estimation algorithm which will be

presented in the next section.

4.3 State-Dependent Adaptive Estimation for Dynamical System with

Abrupt State Jumps

In this section, an adaptive estimation algorithm is proposed to estimate the state

of the nonlinear dynamical system (4.1) where abrupt jumps occur based on the state-

dependent jump probability (4.5). We first formulate the state estimation problem
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as follows. Let Yk ≡ {y(1),y(2), . . . ,y(k)} denote a set of measurements up to time

k. Then, the state estimation problem is to compute the conditional pdf p(x(k)|Yk),

and the minimum mean square error estimate x̂(k) is obtained as:

x̂(k) := E[x(k)|Yk] (4.6)

where E[·|·] denotes the conditional expectation of a random variable. This state

estimation problem is nontrivial to solve due to the presence of abrupt state jumps,

which causes the following challenges:

• First, the abrupt jumps in the state can cause filtering algorithms to diverge

when the dynamical models used in the algorithms are not designed to account

for the jumps.

• Second, incorporating the abrupt jumps into the dynamical models is difficult,

since the magnitudes and the times of occurrence of the jumps are unknown a

priori.

• Third, the knowledge of the state-dependent jump probability must be incor-

porated into the filter design, which is not straightforward.

To overcome the above difficulties, we propose an adaptive estimation algorithm based

on multiple dynamical models [75]. Since the behavior of the system rapidly changes

due to the abrupt jumps, a single dynamical model is not effective in accurately

describing the complex behavior of the system. In this sense, two dynamical models

(called the “No abrupt change model” and the “Abrupt change model”, respectively)

are used in the proposed estimation algorithm as explained in the following section.

4.3.1 Two Dynamical Models for State Estimation

Let q denote the index of the two models (i.e., q ∈ {1, 2}). Both of the models

have the following structure as:

x(k + 1) = f(x(k)) + Bwq(k) for q = 1, 2 (4.7)
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where wq(k) are zero-mean white Gaussian noises with covariances Qq(k), respec-

tively. As shown, the characteristics of the two models are determined by the value

of Qq(k), each of which is explained below.

• q = 1: No abrupt change model

The first model is a no abrupt change model where it is assumed that there is

no abrupt jump (i.e., no impulsive maneuver). The covariance Q1(k) is set to

be equal to Q(k) (i.e., the same as the covariance of w(k) in (4.1), which means

that this model is the same as the actual dynamics (4.1) when there is no abrupt

jump (i.e., Gu = 0). So, this model can accurately describe the behavior of the

system when no abrupt jumps occur, but could cause significant errors when

the unmodeled abrupt jumps occur.

• q = 2: Abrupt change model

The second model is an abrupt change model which accounts for possible jumps

in the state of the system. In this model, a large covariance matrix Q2(k)(> ρI)

is used to deal with the unknown abrupt jumps, where ρ is a positive constant

and Q2(k) > ρI means that Q2(k) − ρI is positive definite. In this setting,

the effects of the unknown abrupt jumps in the actual system (Gu in (4.1))

are covered by the process noise w2(k) whose covariance Q2(k) is set to a large

number. In practice, the magnitude of each element in the covariance Q2(k)

can be chosen using the knowledge on the bounds on Gu in the actual system.

For example, for impulsively maneuvering spacecraft, the covariance can be

chosen using the bounds on impulsive thrusters that are currently operating

in space [92]. Even though this model can account for the abrupt jumps, its

accuracy is degraded when describing the behaviors of the actual system when

no abrupt jumps occur. This is because the magnitude of the covariance Q2(k)

in the model is unnecessarily large compared to that of Q(k) in the actual

system without the abrupt jumps.
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If the occurrence times of abrupt jumps are known, one of the two models can be cor-

rectly chosen and used for the state estimation. However, the exact time is unknown

in most cases (as assumed in this paper), and thus the two models need to be sys-

tematically blended to accurately describe the behaviors of the system. In this paper,

we propose to use multiple model adaptive estimation [75], where multiple dynamical

models are mixed using an adaptive weighting and a discrete transition between the

models. Many algorithms have been developed for multiple model adaptive estima-

tion. One of the most popular algorithms among them is the IMM algorithm [72]

which has been shown to be efficient and effective in many applications. In partic-

ular, the IMM algorithm has produced excellent performance in maneuvering target

tracking [22, 93, 94], which implies that it can also be applied to tracking an im-

pulsively maneuvering spacecraft. However, the IMM algorithm and other similar

approaches model the transitions between the multiple models as a Markov process

with constant transition probabilities. So, those algorithms cannot explicitly incor-

porate a priori knowledge that the transitions (i.e., the transitions between the “No

abrupt change model” and the “Abrupt change model” in this paper) are based on

the state-dependent jump probability (4.5). In the following section, an adaptive

estimation algorithm based on the two models (4.7) is proposed that can account for

the state-dependent jump probability explicitly.

4.3.2 State-Dependent Adaptive Estimation

In the proposed algorithm, two extended Kalman filters (EKFs), each of which is

matched to one of the dynamical models (4.7), are used. Define the mode probabilities

mi(k) as:

mi(k) := p(q(k) = i|Yk) (4.8)

which denotes the probability that the i-th model (or called ‘the i-th mode’) correctly

describes the actual system at time k given measurements up to time k. Let us assume

that, from the last iteration at time k−1, the mode probabilities mi(k−1), i = 1, 2 are
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computed and the mode-matched probability density functions (pdfs) are obtained

as:

p(x(k − 1)|q(k − 1) = i,Yk−1) = Nn(x(k − 1); x̂i(k − 1),Pi(k − 1)) (4.9)

for i = 1, 2, where the mean x̂i(k−1) and the covariance Pi(k−1) are computed from

the i-th EKF using the i-th model at time k−1 (note that the EKF assumes that the

pdf is Gaussian, and thus computes only mean and covariance of the distribution).

Then, using the new measurement y(k) obtained at time k, the mode-matched pdfs

p(x(k)|q(k) = i,Yk) and the mode probabilities mi(k) for i = 1, 2 at time k can be

recursively computed as shown in the following steps [26,95].

Step 1: Mixing

The mixing probability mi|j(k) is computed as:

mi|j(k) = p(q(k − 1) = i|q(k) = j,Yk−1)

=
p(q(k) = j|q(k − 1) = i,Yk−1)p(q(k − 1) = i|Yk−1)

p(q(k) = j|Yk−1)

=
γij(k − 1)mi(k − 1)∑2
l=1 γlj(k − 1)ml(k − 1)

(4.10)

where γij(k − 1) := p(q(k) = j|q(k − 1) = i,Yk−1) is the mode transition probability

computed as:

p(q(k) = j|q(k − 1) = i,Yk−1)

=

∫

Rn

p(q(k) = j|q(k − 1) = i,x)p(x(k − 1) = x|q(k − 1) = i,Yk−1)dx

(4.11)

Define the state-dependent transition probability πij(x) as:

πij(x) := p(q(k) = j|q(k − 1) = i,x) (4.12)

Note that π12(x) represents the probability of the transition from the “No abrupt

change model” to the “Abrupt change model” conditioned on the state x. It is

obvious that this probability should be designed such that it increases as the jump
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probability of the actual system increases. This design strategy enables the proposed

estimation algorithm to put more weight on the “Abrupt change model” as the actual

system is likely to jump, and thus the proposed algorithm can perform more accurate

state estimation. In this sense, we design π12(x) as equivalent to the state-dependent

jump probability (4.5). The other terms π11(x), π21(x), π22(x) are then computed as:

π11(x) = 1− π12(x)

π21(x) = π11(x)

π22(x) = 1− π21(x)

(4.13)

The integration in (4.11) can be computed as follows. We consider π12 first, as the

other cases can be easily solved from (4.13) once π12 is computed. From (4.5), (4.9),

(4.11), and (4.12), we have

p(q(k) = 2|q(k − 1) = 1,Yk−1) =

∫

Rn

π12(x)p(x(k − 1) = x|q(k − 1) = 1,Yk−1)dx

=

∫

Rn

π(x)p(x(k − 1) = x|q(k − 1) = 1,Yk−1)dx

=

∫

Rn

ηNs(Lg(x);µ,Σ)Nn(x; x̂i(k − 1),Pi(k − 1))dx

(4.14)

There are two cases: 1) g is the identity function (g(x) = x), or 2) g is not the

identity function. For the first case, from the identity of Gaussian distribution [80],

the multiplication of two Gaussian distributions can be rewritten as:

Ns(Lx;µ,Σ)Nn(x; x̂i(k − 1),Pi(k − 1)) = κNn(x;λ,Λ) (4.15)

where

Λ =
(
Pi(k − 1)−1 + LTΣ−1L

)−1

λ = Λ
(
Pi(k − 1)−1x̂i(k − 1) + LTΣ−1µ

) (4.16)

and κ is a constant given by

κ =
|Λ|1/2

(2π)s/2|Pi(k − 1)|1/2|Σ|1/2

× exp

[
−1

2
(µTΣ−1µ + x̂i(k − 1)TPi(k − 1)−1x̂i(k − 1)− λTΛ−1λ)

] (4.17)
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Using (4.15), Equation (4.14) can be evaluated in a closed-form as [26,95]:
∫

Rn

Ns(Lg(x);µ,Σ)Nn(x; x̂i(k − 1),Pi(k − 1))dx = ηκ (4.18)

When g is not the identity function, we assume that the distribution of g(x) is given by

a Gaussian distribution as Nq(g(x);µg,Σg). Then, the mode transition probability

(4.14) can be computed as:

p(q(k) = 2|q(k − 1) = 1,Yk−1) =

∫

Rn

π12(x)p(x(k − 1) = x|q(k − 1) = 1,Yk−1)dx

=

∫

Rq

ηNs(Lg;µ,Σ)Nq(g;µg,Σg)dg

(4.19)

where the multiplication of two Gaussian distributions in the right-hand side can

be simplified using (4.15)∼(4.17). Then, similarly to (4.18), Equation (4.19) can be

evaluated in a closed-form.

Based on the mixing probability, the mean and covariance that need to be prop-

agated at time k for the EKF matched to the j-th model are obtained as:

x̂0j(k − 1) =
2∑

i=1

mi|j(k)x̂i(k − 1)

P0j(k − 1) =
2∑

i=1

mi|j(k)
{
Pi(k − 1)

+
[
x̂i(k − 1)− x̂0j(k − 1)

] [
x̂i(k − 1)− x̂0j(k − 1)

]T}

(4.20)

Step 2: Model-conditioned estimation

For a given model j and the initial conditions obtained in (4.20), the model-

conditioned prior distribution p(x(k)|q(k) = j,Yk−1) is computed as (based on the

Gaussian assumption of the EKF):

p(x|q(k) = j,Yk−1) = Nn(x(k); x̂j(k|k − 1),Pj(k|k − 1)) (4.21)

where

x̂j(k|k − 1) = f(x̂0j(k − 1))

Pj(k|k − 1) = F(k − 1)P0j(k − 1)F(k − 1)T + BQj(k − 1)BT
(4.22)
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and F(k − 1) = ∂f
∂x

∣∣
x̂0j(k−1)

. Using the new measurement y(k) at time k, the model-

conditioned posterior distribution p(x(k)|q(k) = j,Yk) is computed as:

p(x(k)|q(k) = j,Yk) = Nn(x(k); x̂j(k),Pj(k)) (4.23)

where

x̂j(k) = x̂j(k|k − 1) + K(k)(y(k)− h(x̂j(k|k − 1)))

Pj(k) = (I−K(k)H(k))Pj(k|k − 1)
(4.24)

and

K(k) = Pj(k|k − 1)H(k)T (H(k)Pj(k|k − 1)H(k)T + R(k))−1

H(k) =
∂h

∂x

∣∣∣∣
x̂j(k|k−1)

(4.25)

Step 3: Mode probability update

Using Bayes’ rule, the mode probability is updated as:

mj(k) = p(q(k) = j|Yk)

=
1

c
p(y(k)|q(k) = j,Yk−1)p(q(k) = j|Yk−1)

(4.26)

where c is a normalizing constant, p(y(k)|q(k) = j,Yk−1) is the model-conditioned

likelihood function given by

p(y(k)|q(k) = j,Yk−1) = Np(y(k)− h(x̂j(k|k − 1)); 0,Sj(k)) (4.27)

where

Sj(k) = H(k)Pj(k|k − 1)H(k)T + R(k) (4.28)

and p(q(k) = j|Yk−1) is the prior mode probability computed as:

p(q(k) = j|Yk−1) =
2∑

i=1

γij(k − 1)mi(k − 1) (4.29)

Step 4: Output



62

Figure 4.2. Structure of the proposed algorithm (EKF denotes ex-
tended Kalman filter)

Using the model-conditioned state estimates x̂j(k) and covariances Pj(k), j = 1, 2,

a single representative state estimate x̂(k) and covariance P(k) are computed as

weighted sums as:

x̂(k) =
2∑

j=1

x̂j(k)mj(k)

P(k) =
2∑

j=1

{
Pj(k) +

[
x̂j(k)− x̂(k)

] [
x̂j(k)− x̂(k)

]T}
mj(k)

(4.30)

The overall structure of the proposed algorithm is shown in Figure 4.2.
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4.4 Applications to the Tracking of Impulsively Maneuvering Spacecraft

In this section, the proposed algorithm is applied to two spacecraft tracking ex-

amples: 1) tracking of a geostationary satellite performing station keeping maneuvers

and 2) tracking of a spacecraft performing orbital transfers. For each example, the

equations of motion (4.1) are introduced, and an abrupt state jump model (4.5) is de-

rived. The state-dependent adaptive estimation algorithm is then applied to estimate

the position and velocity of the impulsively maneuvering spacecraft. The performance

of the proposed algorithm is compared with the IMM algorithm and with two EKFs,

each of which uses either the “No abrupt change model” only or the “Abrupt change

model” only.

4.4.1 Example 1: Tracking of a Geostationary Satellite Performing Sta-

tion Keeping Maneuvers

Since the geostationary satellite stays around a desired location which moves

around the Earth in a circular orbit, the behavior of the geostationary satellite can

be described using a relative motion with respect to the desired location. Define a

state vector x as x := [x y z vx vy vz]
T , where x, y, and z represent the coordinates of

the geostationary satellite’s position with respect to the desired location in the local

vertical and local horizontal (LVLH) frame (see Figure 4.3), and vx, vy, and vz denote

the velocities along each direction. Then, the relative motion of the geostationary
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Figure 4.3. Relative motion in the local vertical and local horizontal (LVLH) frame

satellite performing impulsive maneuvers (i.e., abrupt state jumps) can be described

as [96]:

x(k + 1) =




x(k + 1)

y(k + 1)

z(k + 1)

vx(k + 1)

vy(k + 1)

vz(k + 1)




=




x(k) + ∆Tvx(k)

y(k) + ∆Tvy(k)

z(k) + ∆Tvz(k)

vx(k) + ∆T
(

2nvy(k) + n2x(k)− µ(Rc+x(k))

[(Rc+x(k))2+y(k)2+z(k)2]3/2
+ µ

R2
c

)

vy(k) + ∆T
(
−2nvx(k) + n2y(k)− µy(k)

[(Rc+x(k))2+y(k)2+z(k)2]3/2

)

vz(k) + ∆T
(
− µz(k)

[(Rc+x(k))2+y(k)2+z(k)2]3/2

)




+ w(k) + δt,k+1


03×3

I3×3


u

(4.31)

where u := [ux uy uz]
T ; ux, uy, and uz denote the control inputs along each direction;

w(k) ∈ R6 is a zero-mean white Gaussian noise with covariance Q(k); n =
√

µ
R3

c
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is the mean orbital motion of the desired location; Rc is the orbital radius of the

desired location and µ is the gravitational constant of the Earth; ∆T is the sampling

time. We assume that the satellite is observed by a ground-based optical sensor that

generates the angular measurements given as [97]:

y(k) =




tan−1
(

y(k)−yobs(k)
Rc+x(k)−xobs(k)

)

tan−1

(
z(k)−zobs(k)√

(Rc+x(k)−xobs(k))2+(y(k)−yobs(k))2

)

+ v(k) (4.32)

where [xobs(k) yobs(k) zobs(k)]T is the position vector of the optical sensor with respect

to the center of the Earth represented in the x̂− ŷ− ẑ frame, and v(k) ∈ R2 is a zero-

mean white Gaussian noise with covariance R(k). Due to orbital perturbations such

as non-spherical earth gravity, solar radiation pressure, and third body gravity, the

geostationary satellite drifts from the desired location, and thus it needs to regularly

perform maneuvers to maintain its position within an allowed region centered on

the desired location. Generally, the geostationary satellite performs two types of

maneuvers: 1) North-South (NS) maneuvers for latitude (or inclination) correction

and 2) East-West (EW) maneuvers for longitude correction. As an example, the

proposed algorithm is applied to an NS maneuver case, where the desired location of

the geostationary satellite is at 150 deg west longitude, and the corresponding jump

condition is given as:

g(x(k))− incd = 0 (4.33)

where g : R6 → R is a mapping from the state x to the inclination of the geostationary

satellite, and incd is the maximum allowed inclination error (ideally the inclination of

the geostationary satellite remains at zero to ensure no latitude error). Note that incd

corresponds to µ in the general jump condition in (4.3) and is set as incd = 0.2 deg

such that the corresponding latitude bound is 0.2 deg from the desired location. To

account for the uncertainties in the jump conditions, the covariance (Σ in (4.5))

is set as Σ = 0.000012 deg2. This value for Σ is chosen by assuming that the

maneuver execution timing error is around 1 ∼ 2 sec, and considering the usual

cross track drift rate (around 10 m/s) of a GEO satellite. The scaling parameter
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Figure 4.4. A true trajectory of the geostationary satellite in the y−z
plane of the LVLH frame (corresponding to longitude-latitude)

η is set to 1. Note that the proposed algorithm can also be applied to an EW

maneuver case by setting the corresponding jump condition as y(k)− yd = 0, where

yd is the maximum allowed along-track distance from the desired location (e.g., yd =

147 km for 0.2 deg longitude bound from the desired location). For simulation,

the covariance of the process noise Q(k) of the true system (4.31) is set as Q(k) =

diag([10−2 m2, 10−2 m2, 10−2 m2, 10−7 (m2/sec2), 10−7 (m2/sec2), 10−7 (m2/sec2)]),

where diag([·]) denotes a square diagonal matrix with the elements of vector [·] on

the main diagonal. The sampling rate ∆T is 10 sec (i.e., it is assumed that the

measurement y(k) is obtained every 10 sec) and the covariance of the measurement

noise R(k) is set as [98]:

R(k) =


22 arcsec2 0

0 22 arcsec2


 (4.34)

Figure 4.4 shows a true trajectory of the geostationary satellite, which is bounded

around the desired location due to the station keeping maneuvers, and Figure 4.5



67

6.6 6.8 7 7.2 7.4 7.6 7.8 8

x 10
6

0.186

0.188

0.19

0.192

0.194

0.196

0.198

0.2

0.202

0.204

Time (sec)

In
c
lin

a
ti
o
n
 (

d
e
g
)

NS maneuver

Figure 4.5. History of the inclination of the geostationary satellite
around the moment of a NS station keeping maneuver

shows the history of the inclination at around time of a NS maneuver. Given

the above simulated scenario, the proposed estimation algorithm is applied to es-

timate the state of the geostationary satellite. In the algorithm, the covariances

of the process noises for both models Qq(k) (q = 1: no abrupt change model

and q = 2: abrupt change model) are designed as: Q1(k) = Q(k) and Q2(k) =

diag([1002 m2, 1002 m2, 1002 m2, 12 (m2/sec2), 12 (m2/sec2), 12 (m2/sec2)]). Note

that the values of Q1(k) and Q2(k) can be determined by examining the magnitude

of the unmodeled external inputs. In this example, the magnitude of Q1(k) can be

chosen comparable to the magnitude of orbital perturbations such as the solar radi-

ation pressure and third body gravity (e.g., comparable to the magnitude of Q(k)),

while the magnitude of Q2(k) can be chosen using the knowledge of the bound on

the magnitude of unknown impulsive maneuvers. For station keeping maneuvers of a

GEO satellite, a normal range of the magnitude of impulsive maneuvers is estimated

as a few m/s [99]. In this way, the values for Q1(k) and Q2(k) can be systematically
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chosen depending on the scenario considered. The simulation was performed with the

initial state x(0) as:

x(0) = [−2121 m, 20985 m, 94202 m, −0.100 m/s, 0.278 m/s, −8.438 m/s]T

The two filters were initialized as x̂i(0) = x(0) and Pi(0) = diag([1002 m2, 1002 m2,

1002 m2, 102 (m2/sec2), 102 (m2/sec2), 102 (m2/sec2)]) for i = 1, 2. The performance

of the proposed algorithm is compared with 1) a single EKF using only the no abrupt

change model (denoted as ‘EKF1’), 2) a single EKF using only the abrupt change

model (denoted as ‘EKF2’), and 3) IMM algorithm using both models with constant

transition probabilities π11 = 0.9, π12 = 0.1, π21 = 0.1, and π22 = 0.9. Figure 4.6

shows the RMS state estimation errors (i.e., difference between the true state x(k)

and the estimate x̂(k)) for 100 Monte Carlo simulations (since the along-track and

cross-track motions are of interest in this example, the errors are computed for the ŷ

and ẑ components). There are a few interesting observations from the results. First,

when there is no impulsive maneuver, EKF1 performs best as it is designed using the

no abrupt change model. On the other hand, EKF2 using the abrupt change model

produces errors whose magnitudes are similar to those of the measurement noise.

When the maneuver happens, EKF1 quickly diverges, causing significant estimation

errors, since the no abrupt change model in EKF1 cannot account for the abrupt

state jump due to the maneuver (in this example, the magnitude of the impulse is

21.376 m/s for the NS maneuver). On the other hand, both of the IMM and proposed

algorithm using interacting multiple models produce smaller errors than EKF1 when

the maneuver happens and than EKF2 when no maneuver happens. It is obvious

that, the proposed algorithm not only performs similarly to EKF1 when there is

no maneuver but also keeps the magnitude of errors as small as EKF2 does when

the maneuver occurs. In Figure 4.7, the mode transition probabilities, γ12 and γ21,

of the proposed algorithm for a single run are shown. Unlike the IMM algorithm

where the mode transition probabilities are fixed, those values are time-varying in

the proposed algorithm as they account for the state-dependent mode transition. As

shown in the figure (in this case, the satellite approaches its inclination bound at
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Figure 4.6. Comparison of state estimation accuracy for Example 1
(100 Monte Carlo runs)

around 7, 097, 700 sec), the mode transition probability γ12 (from “No abrupt change

model” to “Abrupt change model”) increases or decreases as the satellite approaches

or moves away from the bound, respectively.
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Figure 4.7. Mode transition probabilities γ12 and γ21 for a single run in Example 1

4.4.2 Example 2: Tracking of a Spacecraft Performing Orbital Transfers

In this example, we consider a spacecraft orbiting the Earth whose motion is

represented in the inertial reference frame centered on the center of the Earth with

theX-axis aligned with the vernal equinox line, the Z-axis aligned with the geographic

North pole of the Earth, and the Y -axis completing a right-handed coordinate system

(see Figure 4.8). Define a state vector x as x := [X Y Z vX vY vZ ]T , where X, Y ,

and Z are the coordinates of the spacecraft’s position in the reference frame, and vX ,

vY , and vZ are the velocities along each direction. The equations of the motion of

the spacecraft performing impulsive orbital maneuvers are given as [96]:

x(k + 1) =




X(k + 1)

Y (k + 1)

Z(k + 1)

vX(k + 1)

vY (k + 1)

vZ(k + 1)




=




X(k) + ∆TvX(k)

Y (k) + ∆TvY (k)

Z(k) + ∆TvZ(k)

vX(k)− µ
R(k)3

∆TX(k)

vY (k)− µ
R(k)3

∆TY (k)

vZ(k)− µ
R(k)3

∆TZ(k)




+ w(k) + δt,k+1


03×3

I3×3


u

(4.35)
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Figure 4.8. Impulsive maneuver at a node for a non-coplanar transfer
(inclination change)

where R(k) :=
√
X(k)2 + Y (k)2 + Z(k)2; u := [uX uY uZ ]T ; uX , uY , and uZ denote

the control inputs along each direction; and w(k) ∈ R6 is a zero-mean white Gaussian

noise with covariance Q(k). In this example, it is assumed that a ground-based radar

is used to track the spacecraft and it generates the range and angle measurements

as [100]:

y(k) =




tan−1
(
Y (k)−Yobs(k)
X(k)−Xobs(k)

)

tan−1

(
Z(k)−Zobs(k)√

(X(k)−Xobs(k))2+(Y (k)−Yobs(k))2

)

√
(X(k)−Xobs(k))2 + (Y (k)− Yobs(k))2 + (Z(k)− Zobs(k))2




+ v(k)

(4.36)

where [Xobs(k) Yobs(k) Zobs(k)]T is the position of the radar with respect to the center

of the Earth, and v(k) ∈ R3 is a zero-mean white Gaussian noise with covariance

R(k). In this example, we consider a non-coplanar transfer which changes the incli-

nation of the spacecraft’s orbit. For the inclination change, the impulsive maneuver

usually occurs at the ascending or descending nodes of the initial orbit of the space-

craft as they are two common points in the initial orbit and new orbit after the
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maneuver (see Figure 4.8, where Vinitial and Vnew denote the velocity vectors of the

spacecraft right before and after the impulsive maneuver, respectively) [86]. Using

this information, the jump condition is given by

Z(k)− Zd = 0 (4.37)

where Zd = 0 corresponds to µ in the general jump condition in (4.3). In the simula-

tion, the spacecraft is assumed to move initially in a circular orbit of 7000 km around

the center of the Earth with an inclination of 10 deg. The spacecraft changes its orbit

to another circular orbit with the same orbital radius but with a new inclination of

30 deg. In this scenario, the magnitude of the maneuver is about 2.67 km/s. The

uncertainties in the jump condition (Σ in (4.5)) is set as Σ = 102 km2 and the scaling

parameter η is set to 1. For simulation, the covariance of the process noise Q(k) of the

true system (4.35) is set as Q(k) = diag([10−2 m2, 10−2 m2, 10−2 m2, 10−8 (m2/sec2),

10−8 (m2/sec2), 10−8 (m2/sec2)]). The sampling rate ∆T is 1 sec and the covariance

of the measurement noise R(k) is set as [100]:

R(k) =




0.012 deg2 0 0

0 0.012 deg2 0

0 0 202 m2


 (4.38)

Figure 4.9 shows a true trajectory of the spacecraft around its ascending node where

an impulsive maneuver occurs to change its inclination. Given the above simulated

scenario, the proposed estimation algorithm is applied where the covariances of the

process noises for both models are Q1(k) = Q(k) and Q2(k) = diag([1002 m2, 1002 m2,

1002 m2, 5002 (m2/sec2), 5002 (m2/sec2), 5002 (m2/sec2)]). The simulation was per-

formed with the initial state x(0) as:

x(0) = [6696.35 km, 1849.33 km, −859.51 km, −1.88 km/s, 7.24 km/s, 0.92 km/s]T

The two filters were initialized as x̂i(0) = x(0) and Pi(0) = diag([1002 m2, 1002 m2,

1002 m2, 102 (m2/sec2), 102 (m2/sec2), 102 (m2/sec2)]) for i = 1, 2. Figure 4.10

shows the estimation results obtained by the four different algorithms (EKF1, EKF2,
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Figure 4.9. A true trajectory of the spacecraft around its ascending node

IMM, and the proposed algorithm), where the IMM algorithm uses the constant

transition probabilities π11 = 0.9, π12 = 0.1, π21 = 0.1, and π22 = 0.9. Although

EKF1 provides the best results when there is no maneuver, it incurs a significant

estimation error when the actual maneuver happens. On the other hand, EKF2

gives estimation accuracy corresponding to the level of the measurement noise, which

is not desirable. Similarly to the previous example, it is shown that the proposed

algorithm outperforms all the other algorithms, providing the smallest estimation

errors even when the orbital maneuver occurs. In Figure 4.11, the mode transition

probabilities, γ12 and γ21, of the proposed algorithm for a single run are shown (in

this case, the spacecraft passes its ascending node around 730 sec). Similarly to the

previous example, the mode transition probabilities are time-varying and its values

are dependent on the state of the spacecraft.
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(100 Monte Carlo runs)
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5. APPLICATION TO SPACE SITUATIONAL

AWARENESS II: ANALYTICAL UNCERTAINTY

PROPAGATION IN SATELLITE FORMATION FLYING

In this chapter, an important information inference problem in the SSA application,

called the uncertainty propagation problem is discussed for satellite formation flying

systems. The motivations and existing research for this problem are reviewed in

Section 5.1. In Section 5.2, the uncertainty propagation problem is mathematically

formulated for satellite relative motion near general elliptic orbits. In Section 5.3,

an analytical closed-form solution to the uncertainty propagation problem is derived.

Section 5.4 demonstrates the accuracy of the analytical solution with illustrative

examples.

5.1 Background and Motivations

The surveillance and tracking of space objects are crucial tasks for space situa-

tional awareness with the objective of safe operation of space assets [81, 82]. Those

tasks are challenging to perform since observations can be made only for a small

subset of objects at a given time due to limited observational resources [40]. During

the time period without measurement updates, the trajectory of an object needs to

be predicted using an orbit propagation model (e.g., the simplified general pertur-

bation model [101]) to maintain a desired level of situational awareness. However,

the predicted trajectory is stochastic due to uncertainties in both the propagation

model and initial conditions (i.e., knowledge of the object’s state after the last mea-

surement update) used for the prediction. Hence, it is important to keep track of
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statistical properties of the predicted trajectory such as the mean and covariance of

the probability distribution of the object’s state (known as uncertainty propagation).

The uncertainty propagation is crucial especially for satellite formation flying

missions where multiple satellites are flying in a cluster to achieve certain mission

objectives. There has been much interest in satellite formation flying, as it enables

low-cost and high-efficient mission design such as synthetic apertures, space interfer-

ometry, and Earth mapping [102]. Many tasks of satellite formation flying, such as

formation keeping [103] and formation reconfiguration [104], are performed based on

the knowledge of the states of satellites within a cluster (or orbital debris moving

through a cluster), which is usually updated by communication with ground control

centers or between satellites. Since the availability of communication is limited due to

the geometry between centers and satellites, signal loss, or signal delay, it is very im-

portant to monitor the uncertainties of neighboring satellites’ states during the time

intervals without communication. The uncertainty information is important as it can

be used to compute the collision probability between satellites with the objective of

collision avoidance [43,44].

The uncertainty propagation problem has been posed in the literature to predict

the probability density function (PDF) of the states of objects. Recently, Terejanu et

al. [105] proposed a Gaussian-mixture-model approach to approximate the PDF by a

finite sum of Gaussian density functions, where the weights of different components

of a Gaussian-mixture model are determined by numerical optimization techniques.

Similar approaches based on a Gaussian-mixture model were also developed in [42,

106,107]. Fujimoto et al. [41] developed a state transition tensor based approach that

approximates the solution to the Fokker-Plank equations associated to the two-body

dynamics. These approaches are based on the nonlinear two-body dynamics (i.e.,

motion between a satellite and the Earth) and thus need to be modified to exploit

features of the relative motion dynamics between satellites.

There are a few conditions to be considered in the uncertainty propagation for

satellite formation flight. Most importantly, it should be noted that the uncertainty
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propagation is carried out without ground contacts, and thus necessary computa-

tion needs to be performed by onboard computers of each satellite within a cluster.

Moreover, the computation should be fast enough in order to facilitate the collision

probability calculation, which is crucial for initiating responsive collision avoidance

maneuvers. These conditions imply that the algorithm for the uncertainty propaga-

tion should be computationally efficient so that satellite onboard computers having

low computational capability can perform the necessary computations in a timely

manner. To address this issue, analytical approaches have been proposed for the

uncertainty propagation in satellite relative motion [108, 109]. In these approaches,

closed-form solutions were developed based on the linearized relative motion dynamics

and white Gaussian process noises, which analytically compute the mean and covari-

ance of the PDF of the satellite’s relative state without any numerical integration.

These solutions, however, rely on an assumption of circular chief orbits, and thus

use simplified relative dynamic models (e.g., the Clohessy-Wiltshire (CW) equations)

that facilitate finding the analytical solutions. Hence, their accuracies significantly

decrease when applied to more general cases where the chief orbit is elliptic, which

limits the applicability of the solutions. In this sense, it is necessary to develop a

new analytical solution that can account for satellite relative motions along general

elliptic orbits. However, this involves the use of more complicated relative motion

dynamics, and it makes the corresponding uncertainty propagation problem difficult

to solve.

In this study, an analytical closed-form solution is developed for the uncertainty

propagation in satellite relative motion near general elliptic orbits. The well-known

Tschauner-Hempel (TH) equations, widely used to describe the relative motions of

the deputy satellite with respect to the chief satellite moving in an elliptic orbit

[110,111], are used as a relative dynamic model. Based on the TH equations and the

assumption of white Gaussian process noise, the uncertainty propagation problem is

formulated to compute the mean and covariance of the PDF of the deputy’s relative

state. The evolution of the mean and covariance matrix is governed by a linear time-
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Figure 5.1. Relative motion in the local-vertical-local-horizontal (LVLH) frame

varying differential equation, whose solution requires the integration of the quadratic

function of the inverse of the fundamental matrix associated to the TH equations.

The difficulties in evaluating the integration are overcome by the introduction of an

adjoint system to the TH equations and the binomial series expansion. From the

analytical solution obtained, we can evaluate the uncertainty of the states of the

deputy satellite at any time of interest without any numerical integration.

5.2 Problem Formulation

5.2.1 Relative Motion Dynamics

We consider the relative motion of a deputy satellite with respect to a chief satellite

that moves around the Earth in an elliptic orbit. Under the assumption of linearized

differential gravitational acceleration, the relative motion of the deputy can be de-

scribed by [112]:

ẍ(t)− 2θ̇(t)ẏ(t)− θ̈(t)y(t)− θ̇(t)2x(t)− 2µx(t)

rc(t)3
= ux(t)

ÿ(t) + 2θ̇(t)ẋ(t) + θ̈(t)x(t)− θ̇(t)2y(t) +
µy(t)

rc(t)3
= uy(t)

z̈(t) +
µz(t)

rc(t)3
= uz(t)

(5.1)

where x(t), y(t), and z(t) are the coordinates of the deputy’s position at time t with
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respect to the chief in the local-vertical-local-horizontal (LVLH) frame (see Figure

5.1); the dot (·) represents the differentiation with respect to time; rc(t) is the orbital

radius of the chief from the center of the Earth; ux(t), uy(t), and uz(t) represent the

external disturbances applied to the deputy; θ(t) refers to the true anomaly of the

chief; and µ is the gravitational constant of the Earth. By defining the deputy’s state

vector X(t) and the disturbance vector u(t) as X(t) ≡ [x(t) y(t) z(t) ẋ(t) ẏ(t) ż(t)]T ∈
R6 and u(t) ≡ [ux(t) uy(t) uz(t)]

T ∈ R3, respectively, (5.1) can be represented in the

state-space form as:

Ẋ(t) = A(t)X(t) + Bu(t) (5.2)

where

A(t) =


 03×3 I3×3

A1(t) A2(t)


 , B =


03×3

I3×3




A1(t) =




θ̇(t)2 + 2µ
rc(t)3

θ̈(t) 0

−θ̈(t) θ̇(t)2 − µ
rc(t)3

0

0 0 − µ
rc(t)3


 , A2(t) =




0 2θ̇(t) 0

−2θ̇(t) 0 0

0 0 0




(5.3)

Define Υ(t) and Γ(t, t0) ≡ Υ(t)Υ(t0)−1 as the fundamental matrix and state transi-

tion matrix associated to A(t), respectively. It is noted that (5.2) is linear in terms of

X(t) and u(t), but the coefficients are functions of rc(t) and θ(t) that evolve by [113]

r̈c(t) = rc(t)θ̇(t)
2 − µ

rc(t)2

θ̈(t) = −2ṙc(t)θ̇(t)

rc(t)

(5.4)

So, to compute Γ(t, t0), (5.4) needs to be integrated numerically, which would ham-

per finding a closed-form solution to the uncertainty propagation later in this paper.

However, the equations can be converted to a simpler form by changing the inde-
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pendent variable from time t to the true anomaly θ and by introducing the following

transformation [114]: 


x̃

ỹ

z̃


 ≡ θ̇1/2




x

y

z


 (5.5)

This transformation was introduced by Tschauner and Hempel [114] to facilitate the

development of an analytical solution to the satellite relative motion along general

elliptic Earth orbits. With this transformation, (5.2) is now represented by another

linear state space form called the Tschauner-Hempel (TH) equations as [114]:

X̃′(θ) = Ã(θ)X̃(θ) + B̃(θ)u(θ) (5.6)

where (′) denotes derivative with respect to the true anomaly θ and

X̃(θ) ≡ [x̃(θ) ỹ(θ) z̃(θ) x̃′(θ) ỹ′(θ) z̃′(θ)]T

u(θ) ≡ [ux(θ) uy(θ) uz(θ)]
T

Ã(θ) =


 03×3 I3×3

Ã1(θ) Ã2


 , B̃(θ) =


 03×3

1
θ̇(θ)3/2

I3×3




Ã1(θ) =




3/ρ(θ) 0 0

0 0 0

0 0 −1


 , Ã2 =




0 2 0

−2 0 0

0 0 0




(5.7)

where ρ(θ) ≡ 1 + e cos θ, e is the eccentricity of the chief’s orbit, θ̇(θ) = ρ(θ)2µ2

h3
[86],

and h is the angular momentum of the chief’s orbit. The transformation matrix T(θ)

between X(t) and X̃(θ) is then obtained as [115]:

X(t(θ)) = T(θ)X̃(θ)

T(θ) =




h3/2

ρ(θ)µ
I3×3 03×3

µe sin θ
h3/2

I3×3
ρ(θ)µ

h3/2
I3×3




(5.8)

where the independent variables θ and t are interrelated through Kepler’s equation

(that is, there is an one-to-one map G such that θ = G(t) and thus t = G−1(θ)).



82

Whenever θ and t appear together in the following equations throughout the paper,

it should be understood that θ and t are related to each other by G. Note that the

transformed system (5.6) is much simpler than (5.2) in that its coefficients are now

varying explicitly with the independent variable θ, which renders the integration of

(5.4) unnecessary and thus facilitates the development of analytical solutions. In fact,

for the system matrix Ã(θ) in (5.6), the closed-form solution of fundamental matrix

Φ(θ) is derived as [115]:

Φ(θ) =




0 −c 0 −s 3esI − 2 0

1 s(1 + 1/ρ) 0 −c(1 + 1/ρ) 3ρ2I 0

0 0 c/ρ 0 0 s/ρ

0 −c′ 0 −s′ 3e(s′I + s/ρ2) 0

0 2c− e 0 2s 3(1− 2esI) 0

0 0 −s/ρ 0 0 c/ρ




≡


φ3×6

φ′3×6




(5.9)

where c ≡ ρ cos θ, s ≡ ρ sin θ, and

I ≡
∫ θ

θ0

1

ρ(σ)2
dσ (5.10)

Define Ψ(θ, θ0) ≡ Φ(θ)Φ(θ0)−1 as the state transition matrix associated to Ã(θ).

Then, from the transformation in (5.8), we have

Γ(t(θ), t0) = T(θ)Ψ(θ, θ0)T(θ0)−1 (5.11)

where t0 = G−1(θ0). The TH equations and associated fundamental matrix will be

used to derive analytical solutions to the uncertainty propagation between satellites

flying in formation near elliptic orbits.
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5.2.2 Uncertainty Propagation Problem

Assume that u(t) accounts for uncertainties exerted on the relative motion dy-

namics, (5.2), and is modeled as a white Gaussian noise process of zero mean and

strength U (U is symmetric and positive semidefinite), i.e.,

E{u(t)} = 0

E{u(t)u(t′)T} = Uδ(t− t′)
(5.12)

where E{·} denotes the expectation of a random variable, and δ is the Dirac delta. In

addition, assume that the initial state X(t0) is independent of u(t) and has a Gaussian

distribution with mean X0 and covariance P0 as:

X(t0) ∼ N (X(t0); X0,P0) (5.13)

The assumption of the zero-mean white Gaussian noise process and initial Gaussian

distribution is reasonable in the sense that the orbit determination techniques usually

produce estimation results in terms of Gaussian distributions, and dominant stochas-

tic disturbances such as aerodynamics and solar pressure are typically modeled as

white Gaussian process noises [116]. The uncertainty propagation problem is then

defined to compute the PDF of X(t) (now X(t) is a random vector) whose evolution is

governed by (5.2) with the uncertainties in u(t) and X(t0). In the stochastic setting,

(5.2) can be represented as a linear stochastic differential equation as [117]:

dX(t) = A(t)X(t)dt+ Bdβ(t) (5.14)

where β(t) is a vector-valued Brownian motion process associated with u(t), which

has the following properties:

E {β(t)} = 0, ∀t > t0

E
{

[β(t2)− β(t1)][β(t2)− β(t1)]T
}

=

∫ t2

t1

Udt, ∀t1, t2, t1 < t2
(5.15)

The solution to (5.14) is the stochastic process X(t) given by

X(t) = Γ(t, t0)X(t0) +

∫ t

t0

Γ(t, τ)Bdβ(τ) (5.16)
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Probability Ellipsoids 

Figure 5.2. Evolution of the PDF of X(t) (only position is considered)

It is well-known that given the linear system with the zero mean white Gaussian noise

process u(t) and the initial Gaussian distribution X(t0), X(t) is a Gaussian random

variable for any fixed t. That is, the statistical properties of X(t) ∼ N (X(t); m(t),P(t))

are characterized only by its mean m(t) and covariance P(t), which can be computed

as [117]:

m(t) = Γ(t, t0)X0

P(t) = Γ(t, t0)P0Γ(t, t0)T +

∫ t

t0

Γ(t, τ)BUBTΓ(t, τ)Tdτ
(5.17)

The overall framework of the uncertainty propagation problem is illustrated in Figure

5.2, where a probability ellipsoid refers to a boundary within which the state vector

is contained with a specific probability. Its shape and size are determined by the

state covariance matrix P(t) [118]. Note that, as discussed earlier, finding analytical

expressions for Υ(t) and Γ(t, τ) is not straightforward, and thus it is challenging to

find a closed-form solution to (5.17). To overcome this difficulty, we propose to use

the transformed system (5.6) that is much simpler and preserves linearity, so that we

can easily exploit the well-known characteristics of the linear Gaussian model. To do
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that, we need to convert the distributions of u(t) and X(t0), which are defined in the

time domain, into the θ domain to find the statistics of u(θ) and X̃(θ0) as follows.

First, from the fact that a linear transformation of a Gaussian random vector

has also a Gaussian distribution [79], the PDF of the transformed initial state vector

X̃(θ0) can be computed as:

X̃(θ0) ∼ N (X̃(θ0); X̃0, P̃0) (5.18)

where

X̃0 = T(θ0)−1X0

P̃0 = T(θ0)−1P0(T(θ0)−1)T
(5.19)

Second, the statistics of u(θ) can be determined by examining the properties of its

associated Brownian motion β̃(θ), which is obtained by the transformation of β(t) to

the θ domain. The properties of β̃(θ) can be completely characterized by its diffusion

Ũ(θ) such that

E
{
β̃(θ)

}
= 0, ∀θ > θ0

E
{

[β̃(θ2)− β̃(θ1)][β̃(θ2)− β̃(θ1)]T
}

=

∫ θ2

θ1

Ũ(θ)dθ, ∀θ1, θ2, θ1 < θ2

(5.20)

So, the task of finding the statistics of u(θ) is equivalent to the determination of Ũ(θ).

We consider a stochastic differential equation for the transformed system (5.6) as:

dX̃(θ) = Ã(θ)X̃(θ)dθ + B̃(θ)dβ̃(θ) (5.21)

The solution to (5.21) is given by the stochastic process X̃(θ) as:

X̃(θ) = Ψ(θ, θ0)X̃(θ0) +

∫ θ

θ0

Ψ(θ, σ)B̃(σ)dβ̃(σ) (5.22)

Similarly to (5.16), X̃(θ) is a Gaussian random vector for any fixed θ, and its mean

and covariance are computed as:

m̃(θ) = Ψ(θ, θ0)X̃0

P̃(θ) = Ψ(θ, θ0)P̃0Ψ(θ, θ0)T +

∫ θ

θ0

Ψ(θ, σ)B̃(σ)Ũ(σ)B̃(σ)TΨ(θ, σ)Tdσ
(5.23)
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Note that the two random vectors X(t) and X̃(θ) are related to each other through the

linear transformation T(θ) (5.8). That is, similarly to (5.19), we have the following

identity:

P(t(θ)) = T(θ)P̃(θ)T(θ)T (5.24)

From the identity, we have

Γ(t, t0)P0Γ(t, t0)T +

∫ t

t0

Γ(t, τ)BUBTΓ(t, τ)Tdτ

= T(θ)Ψ(θ, θ0)P̃0Ψ(θ, θ0)TT(θ)T

+ T(θ)

(∫ θ

θ0

Ψ(θ, σ)B̃(σ)Ũ(σ)B̃(σ)TΨ(θ, σ)Tdσ

)
T(θ)T

(5.25)

Note that in (5.25), we can easily see from (5.11) and (5.19) that the first terms in

both sides are equivalent and thus canceled out. Then, (5.25) can be simplified as:

∫ t

t0

Γ(t, τ)BUBTΓ(t, τ)Tdτ

= T(θ)T(θ)−1

(∫ θ

θ0

Γ(t(θ), τ(σ))T(σ)B̃(σ)Ũ(σ)B̃(σ)TT(σ)TΓ(t(θ), τ(σ))Tdσ

)

× (T(θ)−1)TT(θ)T

=

∫ θ

θ0

Γ(t(θ), τ(σ))T(σ)B̃(σ)Ũ(σ)B̃(σ)TT(σ)TΓ(t(θ), τ(σ))Tdσ

=

∫ t

t0

Γ(t, τ)
1

θ̇
BŨ(σ(τ))

1

θ̇
BTΓ(t, τ)T θ̇dτ

=

∫ t

t0

Γ(t, τ)B
1

θ̇
Ũ(σ(τ))BTΓ(t, τ)Tdτ

(5.26)

where T(σ)B̃(σ) in the third last line is computed to 1
θ̇
B in the second last line

using (5.3), (5.7), and (5.8). Equation (5.26) implies that the diffusion Ũ(θ) can be

computed as:

Ũ(θ) = θ̇(θ)U (5.27)
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which then can be used to evaluate (5.23) to characterize the random vector X̃(θ).

The mean m(t) and covariance P(t) of the random vector X(t) are then obtained by

m(t) = T(θ(t))m̃(θ(t))

P(t) = T(θ(t))P̃(θ(t))T(θ(t))T
(5.28)

That is, the uncertainty propagation problem in this paper becomes equivalent to

computing m̃(θ) and P̃(θ) in (5.23), which requires the integration that is quadratic

in terms of Ψ(θ, σ). The next section will show how to derive an analytical solution

to (5.23).

5.3 Analytical Solution to Uncertainty Propagation

5.3.1 Derivation of the State Transition Matrix Ψ

To compute (5.23), we need to derive the state transition matrix Ψ(θ, σ) in an

analytical form. Note that the derivation of Ψ(θ, σ) requires the calculation of the

inverse of the fundamental matrix Φ(θ)−1, which is challenging to perform. To deal

with this difficulty, we propose to introduce an adjoint system associated with the

system matrix Ã(θ) given by

Λ′(θ) = −Ã(θ)TΛ(θ) (5.29)

where Λ(θ) ≡ [λ1(θ) λ2(θ) λ3(θ) λ4(θ) λ5(θ) λ6(θ)]T ∈ R6 is the adjoint state of

X̃(θ). Denote the fundamental matrix of the adjoint system (5.29) as Π(θ) (i.e.,

Λ(θ) = Π(θ)Π(θ0)−1Λ(θ0)). The following identity shows the relation between Π(θ)

and Φ(θ) [119]:

d

dθ
[Π(θ)TΦ(θ)] = Π(θ)′TΦ(θ) + Π(θ)TΦ(θ)′

= −[Ã(θ)TΠ(θ)]TΦ(θ) + Π(θ)T Ã(θ)Φ(θ)

= 0

(5.30)
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Equation (5.30) indicates that the multiplication Π(θ)TΦ(θ) is constant, and thus we

have Π(θ)TΦ(θ) = C where C is a constant matrix. From this, the inverse of the

fundamental matrix Φ(θ)−1 can be computed as follows:

Φ(θ)−1 = C−1Π(θ)T (5.31)

It is noted that the task of computing the inverse of the fundamental matrix is now

reduced to finding the fundamental matrix of the adjoint system Π(θ) and computing

the inverse of the constant matrix C, which are much easier to perform. The funda-

mental matrix of the adjoint system Π(θ) can be found in the literature as [120]:

Π(θ) =


Ã2φ(θ)− φ′(θ)

φ(θ)




=




2 3s/ρ 0 −3c/ρ− e 3I(3ρ− 1 + e2)− 3es/ρ2 0

0 e 0 0 1 0

0 0 s/ρ 0 0 −c/ρ
0 −c 0 −s 3esI − 2 0

1 s(1 + 1/ρ) 0 −c(1 + 1/ρ) 3ρ2I 0

0 0 c/ρ 0 0 s/ρ




(5.32)
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Using Φ(θ) and Π(θ) given in (5.9) and (5.32), respectively, the constant matrix

C = Π(θ)TΦ(θ) and its inverse C−1 can be computed as:

C = Π(θ)TΦ(θ)

=
[
φ(θ)T ÃT

2 − φ′(θ)T φ(θ)T
]

φ(θ)

φ′(θ)




= φ(θ)T ÃT
2 φ(θ)− φ′(θ)Tφ(θ) + φ(θ)Tφ′(θ)

=




0 −e 0 0 −1 0

e 0 0 1 0 0

0 0 0 0 0 1

0 −1 0 0 −e 0

1 0 0 e 0 0

0 0 −1 0 0 0




(5.33)

C−1 =
1

1− e2




0 −e 0 0 1 0

e 0 0 −1 0 0

0 0 0 0 0 e2 − 1

0 1 0 0 −e 0

−1 0 0 e 0 0

0 0 1− e2 0 0 0




(5.34)

Note that, given e, C in (5.33) is computed as a constant matrix. Using C−1 and

Π(θ), the inverse of the fundamental matrix Φ(θ)−1 can be obtained using (5.31),

and thus we can analytically derive the state transition matrix Ψ(θ, σ) without the

explicit inversion of Φ(θ) [115,121].

5.3.2 Evaluation of the Covariance P̃(θ)

Given the state transition matrix Ψ(θ, σ), the evaluation of m̃(θ) in (5.23) can

be easily performed, and thus we focus on the computation of P̃(θ), which involves
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the integration of a quadratic form of Ψ(θ, σ). Using (5.31), P̃(θ) in (5.23) can be

evaluated as:

P̃(θ) = Ψ(θ, θ0)P̃0Ψ(θ, θ0)T +

∫ θ

θ0

Ψ(θ, σ)B̃(σ)Ũ(σ)B̃(σ)TΨ(θ, σ)Tdσ

= Φ(θ)Φ(θ0)−1P̃0(Φ(θ)Φ(θ0)−1)T

+ Φ(θ)

[∫ θ

θ0

Φ(σ)−1B̃(σ)Ũ(σ)B̃(σ)T (Φ(σ)−1)Tdσ

]
Φ(θ)T

= Φ(θ)Φ(θ0)−1P̃0(Φ(θ)Φ(θ0)−1)T

+ Φ(θ)C−1

[∫ θ

θ0

Π(σ)T B̃(σ)Ũ(σ)B̃(σ)TΠ(σ)dσ

]
(C−1)TΦ(θ)T

= Φ(θ)Φ(θ0)−1P̃0(Φ(θ)Φ(θ0)−1)T

+ Φ(θ)C−1

[∫ θ

θ0

1

θ̇(σ)3
φ(σ)T Ũ(σ)φ(σ)dσ

]
(C−1)TΦ(θ)T

(5.35)

Since the first term in the right-hand side of (5.35) can be easily evaluated using

P̃0, Φ(θ) and Φ(θ)−1, the only remaining difficulty is to compute the integral in the

second term, which can be rewritten using (5.27) as:
∫ θ

θ0

1

θ̇(σ)3
φ(σ)T Ũ(σ)φ(σ)dσ =

∫ θ

θ0

1

θ̇(σ)2
φ(σ)TUφ(σ)dσ

=
h6

µ4

∫ θ

θ0

1

ρ(σ)4
φ(σ)TUφ(σ)dσ

(5.36)

It is noted that the direct integration of (5.36) is cumbersome due to the presence

of 1/ρ(σ)4 and I (in φ(σ), see (5.10)) in the integrand. This difficulty can be dealt

with by introducing the change of variable from the true anomaly θ to the eccentric

anomaly E, which can be performed using the following identities [86]:

dθ =

√
1− e2

1− e cosE
dE

cos θ =
cosE − e

1− e cosE

sin θ =

√
1− e2 sinE

1− e cosE

ρ(θ) = 1 + e cos θ =
1− e2

1− e cosE

I = (1− e2)−3/2(E − e sinE − E0 + e sinE0)

(5.37)
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where E0 is the initial eccentric anomaly corresponding to θ0. Define a matrix-valued

function K(E) as the integrand after the change of variable using (5.37) such that

∫ θ

θ0

1

ρ(σ)4
φ(σ)TUφ(σ)dσ =

∫ E

E0

K(η)dη (5.38)

It can be easily found that almost all elements of K(E) are composed of polynomials

of cosE, sinE, and E, which can be analytically integrated (the elements of K(E)

are presented in the Appendix). However, a few of the elements have the term of

(1−e cosE)−1, which hampers the analytical integration. To deal with this difficulty,

we propose to use the binomial series expansion as:

(1− e cosE)−1 = 1 + e cosE + e2 cos2E + e3 cos3E + · · · (5.39)

Since 0 ≤ e < 1 and thus |e cosE| < 1, the series in (5.39) converges absolutely. For

the integration, we use N terms of the series, where N can be chosen based on the

desired accuracy. Since (1 − e cosE)−1 is now represented as a polynomial of cosE,

all the elements in K(E) can be analytically integrated, resulting in a closed-form

solution. Once the closed-form solution is obtained, the distribution of X̃(θ) (and

thus X(t)) at any θ (also t) of interest can be analytically described without any

numerical integration, which reduces computational loads significantly. The overall

procedure for the analytical uncertainty propagation is summarized in Table 5.1.

5.4 Numerical Simulation

In this section, the accuracy of the analytical solution is demonstrated with illus-

trative numerical examples. To evaluate its accuracy, we first analytically compute

m(t) and P(t) using the analytical solution (we will denote them as ma(t) and Pa(t)),

and compare them to the distribution computed from Monte Carlo simulation. We

also compare ma(t) and Pa(t) with those computed through the direct numerical

integration of (5.23) (we will denote them as mn(t) and Pn(t)).

In the simulation, the semi-major axis of the chief’s orbit is assumed to be 7, 000

km, and the gravitational constant is given as µ = 398600.4418 km3/sec2. Different
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Table 5.1. Procedure to find analytical solution to the uncertainty
propagation problem

1.Input

1) The distribution X(t0) ∼ N (X(t0); X0,P0) at the initial time t0.

2) Time tf for which the distribution will be computed.

2.UncertaintyPropagation

A. Compute the true anomalies θ0 and θf corresponding to t0 and tf

(using Kepler’s equation), respectively.

B. Transform X(t0) ∼ N (X(t0); X0,P0) to X̃(θ0) ∼ N (X̃(θ0); X̃0, P̃0)

using (5.19).

C. Compute the closed-form of Ψ(θ, σ) using the results in Section 5.3.1.

D. Evaluate the integral
∫ θf
θ0

1
ρ(σ)4

φ(σ)TUφ(σ)dσ in (5.36).

a. Compute E0 and Ef corresponding to θ0 and θf , respectively.

b. Evaluate the integral
∫ Ef

E0
K(η)dη in (5.38).

E. Compute m̃(θf ) using (5.23).

F. Compute P̃(θf ) using (5.35).

G. Transform m̃(θf ) and P̃(θf ) to m(tf ) and P(tf ), respectively using (5.28).

3.Output

The distribution of X(tf ) at time tf , X(tf ) ∼ N (X(tf ); m(tf ),P(tf )).

values for the eccentricity of the chief’s orbit e are considered for the simulation. For

the initial distribution X(t0) ∼ N (X(t0); X0,P0), we have

X0 = [20 m, 15 m, 20 m, 0.1 m/s, 0.1 m/s, 0.1 m/s]T (5.40)
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P0 =




10−3 m2 0 0 0 0 0

0 10−3 m2 0 0 0 0

0 0 10−3 m2 0 0 0

0 0 0 10−5 m2/s2 0 0

0 0 0 0 10−5 m2/s2 0

0 0 0 0 0 10−5 m2/s2




(5.41)

The strength U of u(t) is set as [108]:

U =




10−5 0 0

0 10−5 0

0 0 10−5


 (m/s2)2 (5.42)

In the analysis, we focus on the uncertainties in the position of the deputy (x, y, z),

which are important as they are directly related to collision probability computation.

For the purpose of visualization, we present the results either in the x-y plane or y-z

plane. To obtain statistical information tailored for each plane, we partition Pa(t) to

obtain covariance matrices Pa
xy(t) and Pa

yz(t) containing information only for x and y,

or y and z, respectively (see Figure 5.3). Uncertainties in the velocity of the deputy

can also be analyzed in the similar way.

From the eigenvectors and eigenvalues of Pa
xy(t) and Pa

yz(t), we can determine the

principle directions and the magnitude of the covariances along these directions, from

which probability ellipsoids can be drawn. Figure 5.4 shows the simulation results

when e = 0.2. In the figure, the probability ellipsoids computed from Pa
xy(t) and

Pa
yz(t) (obtained using N = 5 expansion terms) are shown with blue lines, which

contain 80% of the distribution, for every 500 seconds after the initial time t0 = 0

sec. For comparison, the probability ellipsoids computed from the analytical solutions

using the CW equation [108] are also presented with green dashed lines. Note that,

given the covariance matrix, the probability ellipsoid can be computed for any number

of percent. In this example, we choose 80% for the appropriate visualization. It is clear

that the proposed analytical solution (blue line) can accurately predict the probability



94

Figure 5.3. Partition of Pa into Pa
xy, Pa

yz, Pa
xyz, and Pa

ẋẏż, where P ij

is the element in the ith row and jth column of Pa

distribution of the states (red dots) obtained from Monte Carlo simulation. On the

other hand, the solutions using the CW equations fail to capture the distribution. This

is because the CW equations assume a circular chief orbit, and thus when applied to

the case where the chief orbit is elliptic, their accuracy significantly decreases.

Although the comparison to Monte Carlo simulation provides a qualitative way

to check the accuracy of the analytical solution, it is also necessary to examine the

accuracy quantitatively. In this sense, we compare Pa(t) (obtained from the analytical

solution) directly to Pn(t) (obtained from the numerical integration of (5.23)). For the

appropriate comparison, we first partition Pa(t) and Pn(t) into Pa
xyz(t) and Pa

ẋẏż(t),

and Pn
xyz(t) and Pn

ẋẏż(t) containing statistical information on the position and velocity,

respectively (see Figure 5.3). We then use the Frobenius norm to measure a distance

d(·, ·) between the two arbitrary matrices with the same size, O = {oij} ∈ Rs×l and

Q = {qij} ∈ Rs×l as:

d(O,Q) =

√√√√
s∑

i=1

l∑

j=1

(oij − qij)2 (5.43)

Table 5.2 shows the distances d(Pa
xyz(t),P

n
xyz(t)) and d(Pa

ẋẏż(t),P
n
ẋẏż(t)), where Pa(t)

and Pn(t) are computed using several values for e and N , with the same initial con-
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ditions X0 and P0 in (5.40) and (5.41) and U in (5.42). The distances are evaluated

at t = 1, 500 sec. From the table, it is found that the analytical solution converges

to the numerical solution as it uses more terms in the binomial series expansion. In

addition, it is observed that more terms in the binomial series are needed to attain

a certain level of accuracy as e increases. This is reasonable since the magnitude of

higher-order terms (i.e., the magnitude of truncation error) in the binomial series is

proportional to the magnitude of e. Note that when e = 0, the proposed analytical

solution becomes exact (i.e., no approximation), and thus the measured distance (i.e.,

the difference between the analytical solution and numerical solution) is attributed

only to inherent numerical errors caused by numerical integration. This implies that

the accuracy obtained for the case when e = 0 in Table 5.2 can be used as reference

for determining how good a given approximation is.

As shown in Figure 5.4 and Table 5.2, it is demonstrated that the analytical

solution developed in this paper is highly accurate and its accuracy can be effectively

managed by the number of the binomial series N . Therefore, this analytical solution

provides an accurate tool for characterizing the uncertainties in the satellite relative

motion without the computational cost caused by numerical integration.
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ż
,P

n ẋ
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Figure 5.4. Evolution of the probability ellipsoid (blue line: the pro-
posed analytical solution, green dashed line: the analytical solution
using the CW equations, and red dots: Monte Carlo simulation using
500 samples)
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6. APPLICATION TO PILOT-AUTOMATION

INTERACTION ISSUE DETECTION

In this chapter, we develop information inference algorithms for pilot-automation

integrated systems to identify safe-critical issues due to malicious interaction be-

tween the pilot and automation. In Section 6.1, the motivations of this research

are presented. Section 6.2 proposes intent-based behavior models for the pilot and

automation. Based on the models, a real-time pilot-automation interaction issue de-

tection algorithm is developed in Section 6.3. In Section 6.4, the proposed algorithm

is demonstrated with two illustrative pilot-automation interaction issue examples.

[122–143]

6.1 Background and Motivations

The operation of aircraft has become increasingly automated through the devel-

opment of advanced autopilot systems [46]. The control inputs (signals) necessary

to manage the aircraft’s behaviors, which were manually generated by pilots in the

past, are now produced mainly by automation through various flight modes in the

autopilot systems. The tasks of the pilots have become more supervisory such as

to decide which flight mode is appropriate for the aircraft’s desired motion, and to

engage a flight mode with necessary information (e.g., target altitude, target heading,

target airspeed, etc.). Although these automated systems have enabled accurate and

efficient operations of the aircraft, its complexity has caused a new safety concern

called ‘human-automation mode confusion’. The mode confusion (also called the lack

of mode awareness or automation surprise [122]) happens when the pilot becomes

confused about the current and future status (i.e., operating flight mode) of the au-

tomation and interact with it incorrectly. As a consequence, the automation behaves
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inconsistently with the pilot’s goal and fails to produce the desired aircraft’s motion

as intended by the pilot. It is found that many incidents and accidents reported

in the NASA’s Aviation Safety Reporting System (ASRS) have been caused by the

mode confusion problem [47,123]. Because the mode confusion can cause unexpected

changes in the aircraft’s altitude and airspeed, which should be maintained within

a safe operating range, it is important to identify the mode confusion in a timely

manner to prevent undesirable accidents/incidents. Thus, real-time mode confusion

detection is a crucial problem for safety monitoring of the aircraft.

In the literature, it is found that most mode confusion detection algorithms have

been designed to work off-line. Many of them have been developed in the context of

1) verifying a given automation system, or 2) identifying anomalies in the recorded

flight data, which are not appropriate for real-time safety monitoring. Firstly, formal

verification approaches have been used for the off-line verification of a given automa-

tion system in order to identify any faulty logic or elements of the system that can

cause the mode confusion to the pilot [124–128]. The verification process requires

examining every possible operating scenario, which is computationally expensive for

on-line applications. The other limitation of these approaches is that, they require

the accurate knowledge on pilot’s decision making behavior (i.e., the sophisticated

mental model of pilots), which are usually not available or hard to obtain. Also, since

they use formal language [129, 130] defined on the discrete states (e.g., automation

logic), it is hard to incorporate the continuous states (i.e., continuous motion of an

aircraft such as altitude change, speed change, heading change, etc.) in their model.

Since the consequences of the mode confusion are usually reflected in the continuous

states (e.g., undesired altitude change), the continuous states should be exploited to

increase the effectiveness in detecting the mode confusion.

Secondly, in the anomaly detection approaches, the mode confusion is regarded

as an anomaly in the flight data which rarely occurs compared to the normal aircraft

operation. At a raw data level, anomalies are defined as a set of data points that are

different from the majority of the given data set, where the data points belonging
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to the majority are assumed as the consequences of the normal operation [131–135].

Therefore, the aircraft’s anomalous behaviors due to the mode confusion are reflected

as anomalies in the data set recorded by the onboard flight data recorder. Several

data mining and machine learning techniques have been used to identify anomalies

in the recorded flight data such as clustering [136], classification [137], and regression

[138]. However, anomalies identified by these algorithms can be attributed not only

to the mode confusion but also to other factors such as the aircraft’s mechanical

failure or noises in the data set. Hence, an additional step to differentiate the mode

confusion-related anomalies from the others is necessary, which is usually done by

domain experts. In addition, these anomaly detection approaches can be applied

only when enough amount of flight data is collected and thus, these approaches are

not appropriate for the real-time detection of the mode confusion.

It is noted that when the mode confusion happens, the automation’s behavior

and the pilot’s objective are not consistent [48, 139]. So, in order to detect the

mode confusion, the goal of the automation based on which the aircraft’s actual

behavior is generated needs to be compared with that of the pilot. To represent

the automation’s and the pilot’s goals, we propose to use a concept of ‘intent set’

whose elements (‘intent’) abstractly describe the behavior of the automation and

the pilot (e.g., ‘climb’, ‘descent’, ‘constant altitude’, etc.). By using an intent set,

the complex behavior of the pilot and the automation can be succinctly represented

in terms of ‘intent’, and therefore, can be effectively compared to detect the mode

confusion. However, the intent is not directly available, and not known ahead of

time, since neither the flight management system nor flight data recording system

provides explicit intent information. Therefore, the intent needs to be inferred from

the available information such as measurements (e.g., the pilot’s input, the aircraft’s

flight modes, etc.) and the automation’s and the pilot’s models describing how the

measurements are generated, which is challenging. To deal with the necessary steps

for the intent inference explained above, we propose a hybrid system and a discrete

event system as the models for the automation and the pilot, respectively, and based
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Figure 6.1. Overall framework for pilot-automation mode confusion detection

on those models, develop an intent inference algorithm. The inferred intents of the

automation and the pilot are then monitored in real-time and compared to identify

any inconsistency which indicates the occurrence of the mode confusion. The overall

framework of the proposed algorithm is presented in Figure 6.1.

6.2 Intent-Based Pilot and Automation Behavior Modeling

The underlying idea of our proposed algorithm is that the mode confusion is re-

flected in the flight measurement data in which the actual behavior of the automation

is targeted towards a goal which is different from that of the pilot. This implies that

the mode confusion can be detected by comparing the goal (intent) of the pilot to

that of the automation. To this end, we first construct an intent set consisting of

finite flight intents that can abstractly describe the behaviors of the automation and

the pilot. We then model the pilot and the automation to characterize the generation

of the measurement data under their specific flight intents. Using the models and the

intent sets, the intents of the pilot and the automation can be inferred by estimating

for what intents the observed measurement data is generated.
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Table 6.1. Construction of dimension-wise intent sets

Dimension Intents

Vertical, iV iV ∈{Climb, Descend, Constant Altitude}
Lateral, iL iL ∈{Turn Left, Turn Right, Constant Heading}
Speed, iS iS ∈{Accelerate, Decelerate, Constant Speed}

6.2.1 Design of Intent Set

Based on our survey on the mode confusion incidents and accidents, we have found

that the mode confusion can be represented as a conflict between the intents of the

automation and the pilot at a tactical level of the aircraft’s behavior (e.g., altitude

change, heading change, and speed change) [48,140]. In general, the automation sys-

tem consists of vertical flight modes (governing vertical motion), lateral flight modes

(governing lateral motion), and auto-throttle flight modes (governing airspeed) which

the pilot can control via the Mode Control Panel (MCP). Therefore, it is reasonable

to assume that the pilot has intents along the three dimensions (vertical, lateral,

and speed) and issues commands accordingly to control the flight modes in each

dimension. Motivated by this, an intent set along each dimension is constructed as

presented in Table 6.1. In Table 6.1, iV , iL, and iS denote vertical flight intent, lateral

flight intent, and speed flight intent, respectively. The overall intent (denoted by I)

is then represented as a 3-tuple of the dimension-wise intents as I = (iV , iL, iS) ∈ I,

where I = {I1, I2, . . . , I27} is the total intent set whose elements are combinations

of the three dimension-wise intents (e.g., I1 = (Climb,Turn Left,Accelerate),. . .,

I27 = (Constant Altitude,Constant Heading,Constant Speed)). By representing the

automation’s and the pilot’s intents using the same intent set I, the consistency be-

tween the complex behaviors of the automation and the pilot can be easily monitored.
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6.2.2 Modeling of the Automation: Hybrid System

Hybrid systems refer to dynamical systems which contain interacting continu-

ous states and discrete states (or modes) [25, 26]. The dynamics of the automa-

tion (aircraft) can be represented as a hybrid system since the aircraft’s behavior

consists of both the logical behavior (discrete transitions between flight modes (dis-

crete states)) and the physical behavior (the aircraft’s continuous motion (continuous

state) corresponding to a specific flight mode) [32,144]. Let us define the continuous

state, the sensor measurements vector, and the discrete state at a given time k as

x(k) ∈ X ⊂ Rn, y(k) ∈ Rp, and q(k) ∈ Q = {1, 2, . . . , nq}, respectively. For each

q(k), the continuous state dynamics and the measurement equation are given by

x(k + 1) = Aq(k)x(k) + wq(k)(k)

y(k) = Cq(k)x(k) + uq(k)(k)
(6.1)

where wq(k)(k) and uq(k)(k) are zero-mean white Gaussian noises with covariance Qq(k)

and Rq(k), respectively. The discrete state (flight mode) transitions are governed by

the mode transition function γ : Q×X× Zc × Zd → Q as:

q(k + 1) = γ(q(k), x(k), zc(k), zd(k)) (6.2)

where zc(k) ∈ Zc ⊂ Rnzc and zd(k) ∈ Zd = {1, 2, . . . , nzd} are the pilot’s continu-

ous (e.g., MCP target value setting) and discrete control inputs (e.g., mode switch

engagement, i.e., each element in Zd represents a specific switch configuration), re-

spectively. The mode transition function γ is mathematically defined based on a set

of guard conditions G(i, j) ⊂ X× Zc × Zd, ∀i, j ∈ Q as:

γ(i, x, zc, zd) = j if [xT zTc zd]
T ∈ G(i, j) (6.3)

These guard conditions can be formulated based on a given automation logic (i.e.,

autopilot) to describe the flight mode transitions. The flight mode transitions can be

classified as: 1) forced transition, and 2) autonomous transition. The forced transition

is triggered when the pilot engages a specific flight mode via an appropriate mode
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switch setting (e.g., the Altitude Hold mode is switched to the Vertical Speed (V/S)

mode when the pilot pushes the V/S mode button with a higher target altitude

setting). In this forced transition case, the guard condition is given by

G(i, j) = {[xT zTc zd]
T |

zd ∈ {mode switch configuration triggering the transition from mode i to mode j}}
(6.4)

The autonomous transition happens without the pilot’s external input when the con-

tinuous state x satisfies certain conditions. For example, the aircraft climbing to a

target altitude in the V/S mode automatically transitions from the V/S mode to the

Altitude Capture mode when the current altitude approaches the target altitude in

order to prepare a smooth level-off. In the autonomous transition case, the guard

condition is generally given by

G(i, j) = {[xT zTc zd]
T |Lx,ijx+ Lθ,ijθ ≤ 0} (6.5)

where Lx,ij ∈ Rl×n and Lθ,ij ∈ Rl×nzc are constant matrices characterizing the au-

tonomous transition, and θ ∈ Rnzc is a random vector with probability density func-

tion (pdf):

p(θ) = N (θ; θ̄,Σθ) (6.6)

which describes the uncertainties of the guard condition due to noise in the sensor

measurements (whereN represents the Gaussian distribution with the mean θ̄ and the

covariance Σθ). For the above example of the altitude capturing, the guard condition

can be represented as |Hf − h(k)| ≤ δ, where Hf is the target altitude (i.e., pilot’s

continuous input), h(k) is the actual altitude of the aircraft (i.e., continuous state),

and δ is a parameter denoting the distance within which the capture happens. This

condition can be written as:

−1

1


h(k) +


 1

−1


 (Hf − δ) ≤


0

0


 (6.7)

The illustration of the hybrid system model for the automation is given in Figure 6.2

with three flight modes. The behavior of the automation described by x(k) and q(k)
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Figure 6.2. Illustration of the automation as hybrid system model

is then abstracted to the automation’s flight intent Ia(k) ∈ I through the following

intent mapping µ : X×Q → I:

Ia(k) = µ(x(k), q(k)) (6.8)

For example, when the aircraft is operating in the V/S mode with a positive altitude

change rate, the corresponding intent of the automation is ‘Climb’. Using this intent

representation, we can succinctly describe the aircraft’s current motion as one of the

flight intents in the intent set I.

6.2.3 Modeling of the Pilot: Discrete Event System

When it comes to the pilot model, it should be noted that the pilot decides the

desired flight behavior (flight intent) and issues commands (output) to the automation

(e.g., to make the aircraft ‘climb’, the pilot either noses up using the yoke or sets a

higher target altitude value using the MCP) to make it happen. This implies that

the behavior of the pilot could be effectively described by discrete transitions between
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his/her flight intents [140, 141]. In this sense, a discrete event system whose states

correspond to the intent of the pilot Ip ∈ I is used to model the behavior of the pilot

as:

Ip(k) = g(Ip(k − 1), x(k), q(k), zc(k), zd(k)) (6.9)

In the above equation, the transition function g implies that the current intent of

the pilot is determined by the previous intent Ip(k − 1), current continuous and

discrete states of the aircraft x(k), q(k), and the pilot’s inputs zc(k) and zd(k).

For example, assume that the intent of the pilot at time k − 1 is Ip(k − 1) =

(Constant Altitude, Constant Heading, Constant Speed). When the pilot sets the

higher target altitude value on the MCP and pushes the V/S mode switch, the intent

of the pilot is changed to Ip(k) = (Climb, Constant Heading, Constant Speed).

6.3 Real-Time Mode Confusion Detection

Our proposed algorithm detects the mode confusion by identifying a mismatch

between the inferred intents of the pilot and the automation. The first step is to

infer the pilot’s and the automation’s intents which are not directly available from

the measurements. The goal of intent inference is to compute Îp(k) and Îa(k) (which

are estimates for the actual intents, Ip(k) and Ia(k)) using the noise-corrupted sensor

measurements y(k) and the pilot’s control inputs, zc(k) and zd(k). In this paper, it

is assumed that the avionics information, such as the flight modes, is not directly

available to the algorithm, and thus the continuous and the discrete states, x(k) and

q(k), of the automation should be first estimated for intent inference (note that the

proposed framework can also handle the case where all the avionics information is

accessible, which is a special case of the problem considered). This leads to the hybrid

state estimation problem where the probability density functions of both the contin-

uous and the discrete states are computed using the sequence of noisy measurements

y. In this paper, we propose to use the state-dependent transition hybrid estimation

(SDTHE) algorithm [25,26] to solve the hybrid estimation problem. Unlike the IMM
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algorithm [72] which assumes constant mode transition probabilities (i.e., it assumes

the flight mode transitions happen with fixed probabilities regardless of the values of

the continuous states), the SDTHE can deal with continuous-state-dependent mode

transitions (i.e., autonomous flight mode transitions depending on the conditions that

the continuous states need to satisfy).

6.3.1 Hybrid State Estimation using the SDTHE Algorithm

Let Y(k) ≡ {y(1), y(2), . . . , y(k)} denote the set of measurements up to time k.

The hybrid estimation problem is then defined as to compute both the continuous

state pdf p(x(k)|Y(k)) and the mode probability p(q(k)|Y(k)). From the total prob-

ability theorem, p(x(k)|Y(k)) is computed by

p(x(k)|Y(k)) =

nq∑

i=1

p(x(k)|q(k) = i,Y(k))p(q(k) = i|Y(k)) (6.10)

Define the discrete state probability mi(k) as mi(k) ≡ p(q(k) = i|Y(k)), for i =

1, 2, . . . , nq. The estimates of the hybrid states are then obtained as:

x̂(k) :=E[x(k)|Y(k)]

q̂(k) :=argmax
i

mi(k)
(6.11)

where E[·|·] is the (conditional) expectation of a random variable.

In the SDTHE algorithm, a bank of nq Kalman filters [117], each of which is

matched to the continuous dynamics of the individual flight mode, are used. Assume

that, from the last iteration at time k − 1, the mode probabilities mi(k − 1), i =

1, 2, . . . , nq are computed and the mode conditioned continuous pdfs are obtained as:

p(x(k − 1)|q(k − 1) = i,Y(k − 1)) = N (x(k − 1); x̂i(k − 1), P i(k − 1)) (6.12)

for i = 1, 2, . . . , nq, whereN denotes the Gaussian distribution with the mean x̂i(k−1)

and the covariance P i(k− 1) which are computed from the i-th Kalman filter at time

k− 1. The goal of the estimation is to compute p(x(k)|q(k) = i,Y(k)) and mi(k) for

all modes i ∈ Q using the new measurement y(k) generated at time k.
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Step 1: Mixing

The mixing probability mi|j(k) is computed as:

mi|j(k) = p(q(k − 1) = i|q(k) = j,Y(k − 1))

=
p(q(k) = j|q(k − 1) = i,Y(k − 1))p(q(k − 1) = i|Y(k − 1))

p(q(k) = j|Y(k − 1))

=
λij(k − 1)mi(k − 1)

Σ
nq

l=1λljm
l(k − 1)

(6.13)

where λij(k−1) := p(q(k) = j|q(k−1) = i,Y(k−1)) is denoted as the mode transition

probability and computed as [142]:

λij(k − 1) =

∫

Rn

p(q(k) = j|q(k − 1) = i, x(k − 1) = x,Y(k − 1))

× p(x(k − 1) = x|q(k − 1) = i,Y(k − 1))dx

=

∫

Rn

Φl(Lθ,ijzc + Lx,ijx, Lθ,ijΣθL
T
θ,ij)N (x; x̂i(k − 1), P i(k − 1))dx

= Φl(Lθ,ijzc + Lx,ijx̂
i(k − 1), Lθ,ijΣθL

T
θ,ij + Lx,ijP

i(k − 1)LTx,ij)

(6.14)

In (6.14), Φl(µ,Σ) is the l-dimensional Gaussian cumulative density function for y ∼
N (µ,Σ) defined as:

Φl(µ,Σ) := Pr(y ≤ 0) (6.15)

Based on the mixing probability, the initial conditions for the Kalman filter matched

to mode j are obtained as:

x̂0j(k − 1) = Σ
nq

i=1m
i|j(k)x̂i(k − 1)

P 0j(k − 1) = Σ
nq

i=1m
i|j(k){P i(k − 1)

+ [x̂i(k − 1)− x̂0j(k − 1)][x̂i(k − 1)− x̂0j(k − 1)]T}

(6.16)

Step 2: Mode-conditioned estimation

For given mode j and the initial conditions computed in (6.16), Kalman filter j

computes its own posterior p(x(k)|q(k) = j,Y(k)) as:

p(x(k)|q(k) = j,Y(k)) = N (x(k); x̂j(k), P j(k)) (6.17)
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where

x̂j(k) = Ajx̂
0j(k − 1) +Kj(k)νj(k)

P j(k) = [I −Kj(k)Cj]P
j(k|k − 1)

P j(k|k − 1) = AjP
0j(k − 1)ATj +Qj

Kj(k) = P j(k|k − 1)CT
j S
−1
j (k)

Sj(k) = CjP
j(k|k − 1)CT

j +Rj

νj(k) = y(k)− CjAjx̂0j(k − 1)

(6.18)

Step 3: Mode probability update

The mode probability is updated using Bayes’ rule as:

mj(k) = p(q(k) = j|Y(k))

=
1

c
p(y(k)|q(k) = j,Y(k − 1))p(q(k) = j|Y(k − 1))

(6.19)

where c is a normalizing constant; p(y(k)|q(k) = j,Y(k−1)) is the mode-conditioned

likelihood function given by

p(y(k)|q(k) = j,Y(k − 1)) = N (νj(k); 0, Sj(k)) (6.20)

and p(q(k) = j|Y(k − 1)) is the prior mode probability computed as:

p(q(k) = j|Y(k − 1)) = Σ
nq

i=1λij(k − 1)mi(k − 1) (6.21)

Step 4: Output

The continuous state estimate x̂(k) and its covariance P (k) are obtained as a weighted

sum of the mode-conditioned state estimates and the covariances as:

x̂(k) = Σ
nq

j=1x̂
j(k)mj(k)

P (k) = Σ
nq

j=1{P j(k) + [x̂j(k)− x̂(k)][x̂j(k)− x̂(k)]T}mj(k)
(6.22)

The discrete state estimate q̂(k) can be computed with (6.11).
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Figure 6.3. Intent inference-based mode confusion detection algorithm

6.3.2 Intent Inference and Mode Confusion Detection

Once the continuous and the discrete states estimates, x̂(k) and q̂(k) are obtained

using (6.11) and (6.22), the intents of the pilot and the automation can be inferred

as Îp(k) and Îa(k), respectively, by

Îa(k) = µ(x̂(k), q̂(k))

Îp(k) = g(Îp(k−1), x̂(k), q̂(k), zc(k), zd(k))
(6.23)

The mode confusion can then be detected by identifying mismatches between the

inferred intents of the pilot and the automation as:

The occurrence of mode confusion at time k =





yes, if Îp(k) 6= Îa(k)

no, if Îp(k) = Îa(k)

(6.24)

Note that the comparison can be performed at each time step k, so that the mode

confusion can be monitored in real-time. In Figure 6.3, the proposed mode confusion

detection algorithm based on intent inference is summarized.

6.4 Demonstration of the Proposed Pilot-Automation Mode Confusion

Detection Algorithm

In this section, we demonstrate the proposed algorithm with two illustrative mode

confusion examples. For each example, we first describe the real scenario of the mode

confusion, and then, test the proposed algorithm to demonstrate its performance.
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6.4.1 Mode Confusion Example 1: “kill the capture”

Mode Confusion Incident Scenario

One of the well-known mode confusion examples is “kill the capture” [124]. There

are two main vertical flight modes related to this incident: the Altitude Hold mode

where a specified altitude value is maintained, and the Vertical Speed (V/S) mode.

The logical behavior that describes transitions among the vertical flight modes of an

autopilot is illustrated in Figure 6.4. In Figure 6.4, the MCP target altitude refers

to the target altitude value chosen by the pilot through the MCP. Note that there

are autonomous transitions between flight modes (e.g., the V/S mode to the Altitude

Capture mode and the Altitude Capture mode to the Altitude Hold mode). Also, note

that there are two distinct V/S modes, one of which moves toward the MCP target

altitude (will be denoted by V/S target mode) and the other freely climbs or descends

without a target altitude (will be denoted by V/S free mode). The most interesting

feature is the presence of the capture start altitude which is determined according to

the MCP target altitude. When the current altitude of the aircraft (while its flight

mode is V/S target mode) reaches the capture start altitude, the Altitude Capture

mode is automatically triggered and the aircraft starts to capture the target altitude.

The confusion occurs when the pilot changes the MCP target altitude value while the

autopilot is in the Altitude Capture mode. If the MCP target altitude is reset to a

value ahead of the capture start altitude, the autopilot will transit to the V/S target

mode with the new MCP target value. However, if the MCP target value is reset to

a value less than the capture start altitude, the newly set altitude will be ignored,

and the autopilot will autonomously enter the V/S free mode. The transition to the

V/S free mode makes the aircraft fail to capture the newly set altitude intended by

the pilot.

Consider the following real incident scenario (ASRS report #113722) [124]: “On

climb to 27,000 feet and leaving 26,500 feet, Memphis Center gave us a clearance

to descend to 24,000 feet. The aircraft had gone to “Altitude Capture” mode when
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Figure 6.4. Logical behavior between vertical flight modes related to
“kill the capture” example

the first officer selected 24,000 feet on the MCP altitude setting. This disarmed

the altitude capture and the aircraft continued to climb at approximately 300 feet-

per-minute. There was no altitude warning and this “altitude bust” went unnoticed

by myself and the first officer, due to the slight rate-of-climb. At 28,500, Memphis

Center asked our altitude and I replied 28,500 and started an immediate descent to

24,000 feet”. In this scenario, the new target altitude (24,000 feet) was set during

the Altitude Capture mode toward 27,000 feet. However, the vertical mode switched

from the Capture mode to the V/S free mode, because the new target altitude was

set less than the capture start altitude. This resulted in the unconstrained climb of

the aircraft (see Figure 6.5).
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Figure 6.5. Schematic of “kill the capture” example

Intent Set

In this example, the intent in the vertical dimension is of interest, because only

the aircraft’s vertical motion is related to this example. In this sense, the overall

intent I is represented only by iv, and the intent set I is defined as:

I ∈ I = {Climb, Descend, Constant Altitude} (6.25)

Automation Model

The automation’s behavior depicted in Figure 6.4 is modeled as a hybrid system as

follows. First, the continuous state x(k) is defined as x(k) := [h(k) ḣ(k)]T ∈ X ⊂ R2,

where h and ḣ are the altitude and the altitude rate of the aircraft, respectively. The

discrete state q(k) ∈ Q = {1, 2, 3} is defined as q = 1 : Altitude Hold mode; q = 2:

V/S mode (note that the two V/S modes denoted by the V/S target and the V/S

free have the same continuous motion (i.e., either climb or descend), so that they are

represented by one discrete mode); and q = 3 : Altitude Capture mode. For each

flight mode, the continuous state dynamics and the measurement equation are given
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by

1) q = 1 : Altitude Hold mode


h(k + 1)

ḣ(k + 1)


 =


 1 0

0 0




h(k)

ḣ(k)


+ w1(k) (6.26)

2) q = 2 : V/S mode


h(k + 1)

ḣ(k + 1)


 =


 1 Ts

0 1




h(k)

ḣ(k)


+ w2(k) (6.27)

3) q = 3 : Altitude Capture mode


h(k + 1)

ḣ(k + 1)


 =


 1 Ts

β2Ts 1




h(k)

ḣ(k)


+


 0

−β2TsHf


+ w3(k) (6.28)

where β is the capture rate [143], Hf is the target altitude for the capture, Ts is

the sampling rate, and w1, w2, and w3 are zero mean white Gaussian noises for each

dynamics that represent uncertainties in the aircraft’s motion. For all the flight modes

q = 1, 2, 3, the measurement vector y(k) = [y1(k) y2(k)]T ∈ R2 is given by

y(k) = I2×2x(k) + u(k) (6.29)

where I2×2 denotes the 2×2 identity matrix and u(k) is the zero-mean white Gaussian

noise. The continuous control input by the pilot zc ∈ Zc ⊂ R is zc = ‘the MCP target

altitude set by the pilot, Hf ’, and the discrete control input zd ∈ Zd = {1, 2} is

defined as zd = 1 : ‘engage V/S mode switch’, and zd = 2 : ‘disengage V/S mode
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switch’. The logical behavior between the flight modes is then described by the mode

transition function γ whose guard conditions G(i, j), ∀i, j ∈ {1, 2, 3} are defined as:

G(1, 1) = X× Zc × Zd\ (G(1, 2) ∪G(1, 3))

G(1, 2) = {
[
[h ḣ] Hf zd

]T
|h 6= Hf , zd = 1}

G(1, 3) = ∅

G(2, 1) = ∅

G(2, 2) = X× Zc × Zd\ (G(2, 1) ∪G(2, 3))

G(2, 3) = {
[
[h ḣ] Hf zd

]T
|sgn(ḣ)(h−Hc) ≥ 0}

G(3, 1) = {
[
[h ḣ] Hf zd

]T
| − h+Hf = 0}

G(3, 2) = {
[
[h ḣ] Hf zd

]T
| |h−Hf | ≥ S}

G(3, 3) = X× Zc × Zd\ (G(3, 1) ∪G(3, 2))

(6.30)

where Hc is the capture start altitude computed by Hc = Hf − sgn(ḣ)S, given Hf

and a design parameter S; ∅ denotes the empty set; and sgn is the sign function.

For example, the guard condition G(1, 2) describes that only when the pilot engages

the V/S mode switch (zd = 1) and inputs a new target altitude Hf which is different

from the current altitude h, the flight mode transitions from the Altitude Hold mode

(q = 1) to the V/S mode (q = 2).

The continuous and the discrete behaviors of the automation are then abstracted

to the flight intent Ia ∈ I by the following intent mapping µ(x, q) : X×Q → I:

µ(x, q) =





Climb, if q = 2 or 3, and ḣ > 0

Descend, if q = 2 or 3, and ḣ < 0

Constant Altitude, if q = 1

(6.31)
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Pilot Model

The behavior of the pilot is represented by a discrete event system whose state

is the intent of the pilot Ip ∈ I. The transitions between the pilot’s intents are

determined by the transition function g as:

1) when Ip(k) = Climb

Ip(k+1) =





Climb, otherwise

Descend, if zc(k + 1) 6= zc(k), zc(k + 1) < h(k + 1),

and zd(k + 1) = 1

Constant Altitude, if zc(k + 1) = h(k + 1)

(6.32)

2) when Ip(k) = Descend

Ip(k+1) =





Climb, if zc(k + 1) 6= zc(k), zc(k + 1) > h(k + 1),

and zd(k + 1) = 1

Descend, otherwise

Constant Altitude, if zc(k + 1) = h(k + 1)

(6.33)

3) when Ip(k) = Constant Altitude

Ip(k+1) =





Climb, if zc(k + 1) 6= zc(k), zc(k + 1) > h(k + 1),

and zd(k + 1) = 1

Descend, if zc(k + 1) 6= zc(k), zc(k + 1) < h(k + 1),

and zd(k + 1) = 1

Constant Altitude, otherwise

(6.34)

This pilot model characterizes the pilot’s behavior (i.e., the generation of the pilot’s

inputs, zc and zd) in terms of their flight intents (in this example, the vertical flight

intents).

Using the pilot and the automation models, the actual trajectory of the “kill the

capture” example can be simulated. Figure 6.6 shows the histories of the MCP target
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Figure 6.6. Simulated “kill the capture” incident scenario

altitude set by the pilot and the aircraft’s actual altitude. In this simulation, the

mode confusion incident occurs at 148 sec as the pilot newly sets a lower MCP target

altitude (24,000 ft) while the automation is in the Altitude Capture mode.

Real-Time Mode Confusion Detection based on Intent Inference

The proposed mode confusion detection algorithm first infers the pilot’s and the

automation’s intents using the measurements such as y(k), zc(k), and zd(k). With

noisy measurements, the hybrid states of the automation (aircraft) are estimated

using the SDTHE. Figure 6.7 shows the estimation accuracy of the continuous states

for a single run (the Monte Carlo simulation results are summarized in Table 6.2),

where the altitude estimation error eest,h and the altitude rate estimation error eest,ḣ

are defined as:

eest,h(k) ≡ |h(k)− ĥ(k)|

eest,ḣ(k) ≡ |ḣ(k)− ˆ̇h(k)|
(6.35)
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Figure 6.7. Estimation accuracy of the continuous state estimates (h and ḣ)

and the altitude measurement error emea,h and the altitude rate measurement error

emea,ḣ are defined as:

emea,h(k) ≡ |h(k)− y1(k)|

emea,ḣ(k) ≡ |ḣ(k)− y2(k)|
(6.36)

As shown in Figure 6.7 and Table 6.2, the estimation errors are smaller than

the measurement errors for both the altitude and the altitude rate, which indicates

the effectiveness of the SDTHE algorithm in filtering out the noise in the sensor

measurement data. In Figure 6.8, the estimated flight mode probability mj(k), j =

1, 2, 3, and the corresponding estimated flight mode q̂(k) (obtained using (6.11)) are

presented for a single run (the Monte Carlo simulation results are summarized in

Table 6.2). Figure 6.8 shows that we can accurately estimate the actual flight mode

with little delay which is caused by the uncertainties both in the dynamics and the
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sensor measurements. Also, it is noted that the mode probability for the Altitude

Hold mode decreases to near zero, which is consistent with the fact that the Altitude

Hold mode was never engaged in this scenario.

Once ĥ(k), ˆ̇h(k), and q̂(k) are computed, the next step is to infer the intents of the

pilot (using (6.32), (6.33), and (6.34)) and the automation (using (6.31)) using those

estimates. Figure 6.9 represents the inferred intents of the pilot and the automation

where the values 1, 0,−1 in the vertical axis denotes Climb, Constant Altitude, and

Descend intents, respectively. Finally, the mode confusion is detected by identifying

the conflicts between the inferred intents of the pilot and the automation as shown

in Figure 6.10. In the figure, when the pilot changes the MCP target altitude (i.e.,

intent change), the automation keeps climbing (i.e., no intent change), and therefore,

their intents do not match with each other. The “kill the capture” mode confusion,

which is reflected as a mismatch in the inferred intents, is accurately detected by the

proposed algorithm. This timely identification of the mode confusion can prevent

the aircraft’s undesirable behavior (as presented in the real scenario), and therefore,

reduce the risk of accidents or incidents, enhancing the aviation safety.

6.4.2 Mode Confusion Example 2: “airspeed reset problem in the vertical

navigation (VNAV) mode”

Mode Confusion Incident Scenario

In this example, the mode confusion is related to the combined behavior of both

the vertical and the auto-throttle flight modes. When the pilot assigns a specific

target airspeed during a certain vertical mode, the speed (SPD) auto-throttle mode

is engaged to maintain the target airspeed. When the VNAV mode (in this ver-

tical mode, the aircraft automatically follows the predefined vertical trajectory) is

engaged, the airspeed target value is reset to the value computed by the Flight Man-

agement System (FMS) to achieve the most economical maneuver. If the previous

target airspeed is assigned by an Air Traffic Controller (ATC) (and set into the MCP
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by the pilot) and required to be constant unless a new speed clearance is given, the

autonomous change of the target speed value at the beginning of the VNAV mode

can cause a conflict with respect to the ATC speed restriction. Consider the follow-

ing real incident scenario [123]: “The aircraft was climbing to 11,000 feet per ATC

instructions. During the climb (at about 10,500 feet), ATC instructed the crew to

reduce speed to 240 knots. The first officer entered the speed, specified by ATC,

via the MCP as a new reference parameter. As the aircraft neared 11,000 feet, it

started the level-off maneuver through the “Altitude Capture” mode. Once at 11,000

feet, the “Altitude Capture” mode was disengaged and the “Altitude Hold” mode

was engaged automatically. During and after the maneuver, the speed was kept at

240 knots. Shortly after, ATC instructed the crew to climb to 14,000 feet. The first

officer reached up to the MCP and engaged the “Vertical Navigation” mode in order

to initiate the climb. However, instead of climbing at a speed of 240 knots (as was

still required by ATC), the aircraft speed defaulted to 300 knots (computed by the

FMS). The crew violated the ATC speed restriction because they assumed that the

“Vertical Navigation” mode would “remember” the speed reference parameter entered

previously into the MCP. However, the “Vertical Navigation” mode defaulted to the

economy speed (about 300 knots in this case)”. In this scenario, the target speed was

set to 240 knots as required by ATC during the early stage of the flight. When the

pilot started a new vertical maneuver using the VNAV mode, the target speed was

automatically reset to 300 knots which was computed by the FMS. This resulted in

the violation of ATC speed restriction.
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Intent Set

Because the aircraft’s vertical and speed motions are of interest in this example,

the overall intent I is represented as a 2-tuple of iv and is. The intent set I is then

defined as:

I ∈ I = {(Climb, Accelerate), (Climb, Decelerate), (Climb, Constant Speed),

. . . , (Descend, Decelerate), (Descend, Constant Speed)}
(6.37)

Automation Model

Because the automation’s vertical behavior is presented in detail in the previous

example, only the behavior in the speed dimension is described in this example. The

continuous state x(k) is defined as x(k) := [v(k) v̇(k)]T ∈ X ⊂ R2, where v and v̇

are the airspeed and the airspeed rate of the aircraft, respectively. The discrete state

q(k) ∈ Q = {1, 2} is defined such that q = 1: Speed Change mode, and q = 2: Speed

Hold mode. For each mode, the continuous state dynamics are given by

1) q = 1: Speed Change mode


v(k + 1)

v̇(k + 1)


 =


 1 Ts

0 1




v(k)

v̇(k)


+ w1(k) (6.38)

2) q = 2: Speed Hold mode


v(k + 1)

v̇(k + 1)


 =


 1 0

0 0




v(k)

v̇(k)


+ w2(k) (6.39)

where Ts is the sampling rate, and w1 and w2 are zero mean white Gaussian noises.

For all the modes q = 1, 2, the measurement vector y(k) = [y1(k) y2(k)]T ∈ R2

is given by (6.29). The continuous control input zc ∈ Zc by the pilot is zc =

‘the MCP target airspeed, Vt’, and the discrete control input zd ∈ Zd is defined as

zd = 1 : ‘engage VNAV mode switch’, and zd = 2 : ‘disengage VNAV mode switch’.
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The mode transition is then described by defining the guard conditions G(i, j),∀i, j ∈
{1, 2} as:

G(1, 1) = X× Zc × Zd\G(1, 2)

G(1, 2) = {[v v̇] Vt zd]
T |v − Vt = 0}

G(2, 1) = {[v v̇] Vt zd]
T |v 6= Vt, zd = 1}

G(2, 2) = X× Zc × Zd\G(2, 1)

(6.40)

The automation’s flight intent Ia ∈ I is then determined by the following intent

mapping µ(x, q) : X×Q → I (because the intent mapping for the vertical motion is

presented in the previous example, only the intent mapping for the speed intent, is,

is described in this example):

µ(x, q) =





Accelerate, if q = 1 and v̇ > 0

Decelerate, if q = 1 and v̇ < 0

Constant Speed, if q = 2

(6.41)

Pilot Model

The transitions of the pilot’s intents are determined by defining the transition

function g as:

1) when Ip(k) =Accelerate

Ip(k + 1) =





Accelerate, otherwise

Decelerate, if zc(k + 1) 6= zc(k), zc(k + 1) < v(k + 1)

Constant Speed, if zc(k + 1) = v(k + 1)

(6.42)

2) when Ip(k) =Decelerate

Ip(k + 1) =





Accelerate, if zc(k + 1) 6= zc(k), zc(k + 1) > v(k + 1)

Decelerate, otherwise

Constant Speed, if zc(k + 1) = v(k + 1)

(6.43)
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Figure 6.11. Simulated airspeed reset incident scenario

3) when Ip(k) =Constant Speed

Ip(k + 1) =





Accelerate, if zc(k + 1) 6= zc(k), zc(k + 1) > v(k + 1)

Decelerate, if zc(k + 1) 6= zc(k), zc(k + 1) < v(k + 1)

Constant Speed, otherwise

(6.44)

Using the pilot and the automation models, the real incident scenario is simulated as

shown in Figure 6.11 where the MCP target airspeed set by the pilot and the aircraft’s

actual airspeed are presented. In this simulation, the mode confusion incident occurs

at 100 sec when the pilot engages the VNAV mode while not changing the MCP

target airspeed value.

Real-Time Mode Confusion Detection based on Intent Inference

First, using SDTHE, the hybrid states are estimated with the noisy measurements

y(k). The estimation accuracy for a single run is shown in Figure 6.12 (the Monte
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Carlo simulation results are summarized in Table 6.3), where the airspeed estimation

error eest,v and the airspeed rate estimation error eest,v̇ are defined as:

eest,v ≡ |v(k)− v̂(k)|

eest,v̇ ≡ |v̂(k)− ˆ̇v(k)|
(6.45)

and the airspeed measurement error emea,v and the airspeed rate measurement error

emea,v̇ are defined as:

emea,v ≡ |v(k)− y1(k)|

emea,v̂ ≡ |v̇(k)− y2(k)|
(6.46)

The estimated mode and the actual mode are presented in Figure 6.13 (the Monte

Carlo simulation results are summarized in Table 6.3). With v̂(k), ˆ̇v(k), and q̂(k),

the intents of the pilot and the automation are estimated as in Figure 6.14, where

the values 1, 0,−1 in the vertical axis denotes Accelerate, Constant Speed, and De-

celerate intent, respectively. In Figure 6.15, the estimated intents of the pilot and

the automation are compared to each other and the mismatches between the intents

are detected. Unlike the previous mode confusion example, due to severe noise in the

airspeed measurement data, there are errors in estimating the intent of the automa-

tion (Figure 6.12(b)) and therefore, the false mismatches are identified as shown in

Figure 6.15. However, the duration of the false conflicts are less than few seconds (the

distribution of the durations of the false conflicts are computed through the Monte

Carlo simulation, and the results are presented in Table 6.3), and therefore, they can

be filtered out by setting an appropriate threshold. As shown in Figure 6.15, the

speed-related mode confusion which happens at 100 sec is accurately detected as a

long conflict between the intents.
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Figure 6.14. Inferred intents of the pilot and the automation for Example 2
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7. SUMMARY

In this thesis, we have discussed challenges in information inference for Cyber-Physical

Systems (CPSs) and developed new inference algorithms that effectively overcome

the challenges. The developed algorithms have been applied to information infer-

ence problems of various CPSs such as air traffic control systems, space surveillance

systems, and pilot-automation integrated systems.

we have considered the event-based state estimation problem for CPSs where mea-

surements are available only when some events happen. First, a general framework

for the event-based state estimation problem has been developed in an attempt to

derive general filtering equations that can be applied to various event-based estima-

tion problems. Then, a numerical algorithm which is based on the Markov chain

approximation method has been proposed to solve the filtering equations. Unlike

the existing methods which perform the measurement update only when new mea-

surement data arrives, the proposed approach systematically uses the information

generated between the two consecutive measurement arrivals. The improvement of

the estimation accuracy obtained by the proposed algorithm has been demonstrated

using an illustrative state estimation example of bistable nonlinear system.

The event-based state estimation framework has been extended to CPSs that

have the complex hybrid system structure. An event-based hybrid state estimation

algorithm has been proposed that utilizes the idea of the interacting multiple model

(IMM) approach to reduce the exponentially growing computational complexity, and

the pseudo-measurement generation based approximation method for evaluating the

multivariate integral required in the computation of the likelihood function. While the

conventional IMM approach cannot solve the multivariate integral nor incorporate the

implicit information that the measurements of sensors which do not send their data to

the estimator should remain in a certain range, the proposed algorithm systematically
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exploits them to improve the estimation accuracy. The improvement of the estimation

accuracy obtained by the proposed algorithm has been demonstrated by an aircraft

tracking problem in the air traffic control application.

State estimation problem for CPSs whose states are subject to abrupt changes

has been discussed with its application to space situational awareness (SSA). As an

example, the tracking problem of impulsively maneuvering spacecraft has been con-

sidered. To account for the unknown magnitude and time of occurrence of impulsive

maneuvers, a new state-dependent adaptive estimation algorithm has been proposed.

To deal with abrupt changes in the spacecraft’s motion due to the impulsive ma-

neuvers, two dynamical models have been developed, each of which accounts for the

spacecraft’s motion with or without the maneuvers. In addition, to incorporate the

useful information that the maneuvers occur when the state of the spacecraft satisfies

certain conditions, a state-dependent transition probability has been derived and used

to blend the two dynamical models. The proposed algorithm has been demonstrated

with two illustrative satellite tracking problems.

Another important information inference problem in the SSA application, called

the uncertainty propagation problem has been discussed for satellite formation fly-

ing systems. An analytical closed-form solution has been developed for uncertainty

propagation in the satellite relative motion near general elliptic orbits. To deal with

difficulties in finding the analytical solution, we have proposed to use an adjoint

system associated to the Tschauner-Hempel equations and the binomial series ex-

pansion. Since the analytical solution does not require any numerical integration, it

allows satellite onboard computers having low computational capability to perform

necessary computations efficiently. Similarly, the analytical solution also benefits the

calculation of the collision probability that must be carried out in a timely manner.

Finally, the developed analytical solution can play an important role as the foun-

dation based on which a solution for uncertainty propagation using more complex

relative dynamic models can be developed.
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Information inference algorithms for pilot-automation integrated systems have

been developed to identify safe-critical issues due to malicious interaction between

the pilot and automation. The behaviors of the pilot-automation system have been

characterized using the hybrid system and discrete event system modeling approaches.

The anomalous interaction issues happen when the goals of the pilot and that of the

automation are different. To represent the goals of the pilot and the automation, the

concept of intents has been introduced. The anomalous interaction of the combined

system is then identified by comparing the inferred intents of the automation and

pilot. Through illustrative real mode confusion examples, it has been demonstrated

that the proposed algorithm can accurately detect pilot-automation interaction issues

in a timely manner. Therefore, the developed interaction issue detection algorithm

can enhance the safety of aircraft operation.
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A. Design of Transition Probabilities π in Chapter 2

How to choose the transition probabilities of the Markov chain is a design problem

[145]. In this appendix, an example of how to design the appropriate π in (2.22) is

presented. For simplicity, we consider a two-dimensional case of (2.1) (i.e., n = 2)

whose state is X = [X1 X2]T ∈ R2 and whose evolution is governed by the following

SDE:

dXi = ai(X, t)dt+ bi(X, t)dWi for i = 1, 2 (A.1)

where a1, a2, b1, and b2 are scalar functions, and W = [W1 W2]T is the standard

two-dimensional Brownian motion. Let {Qj} be the Markov chain to approximate

X(t) and denote the Markov chain’s state by q = [q1 q2]T ∈ Z2. Define

π+
1 : = π(q1 + 1, q2) =

1

C1

exp

(
ε1a1(q)

(b1(q))2

)

π0
1 : = π(q1, q2) =

1

C1

(
2

λ(b1(q))2
− 2

)

π−1 : = π(q1 − 1, q2) =
1

C1

exp

(
− ε1a1(q)

(b1(q))2

)

π+
2 : = π(q1, q2 + 1) =

1

C2

exp

(
ε2a2(q)

(b2(q))2

)

π0
2 : = π(q1, q2) =

1

C2

(
2

λ(b2(q))2
− 2

)

π−2 : = π(q1, q2 − 1) =
1

C2

exp

(
− ε2a2(q)

(b2(q))2

)

(A.2)
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where C1 and C2 are normalizing constants such that π+
1 + π0

1 + π−1 = 1 and π+
2 +

π0
2 + π−2 = 1. Then, the transition probabilities π can be obtained by

Pr{Qj+1 = q + [1 1]T |Qj = q} = π+
1 π

+
2

Pr{Qj+1 = q + [0 1]T |Qj = q} = π0
1π

+
2

Pr{Qj+1 = q + [−1 1]T |Qj = q} = π−1 π
+
2

Pr{Qj+1 = q + [1 0]T |Qj = q} = π+
1 π

0
2

Pr{Qj+1 = q + [0 0]T |Qj = q} = π0
1π

0
2

Pr{Qj+1 = q + [−1 0]T |Qj = q} = π−1 π
0
2

Pr{Qj+1 = q + [1 − 1]T |Qj = q} = π+
1 π
−
2

Pr{Qj+1 = q + [0 − 1]T |Qj = q} = π0
1π
−
2

Pr{Qj+1 = q + [−1 − 1]T |Qj = q} = π−1 π
−
2

(A.3)

The transition probabilities designed above satisfy the convergence conditions of The-

orem 2.3.1.



147

B. Proof of Theorem 3.3.1 in Chapter 3

To prove Theorem 3.3.1, let us consider the following definitions and theorem which

are related to quasi-Monte Carlo approximation.

Definition B.0.1 (Discrepancy [78]) Consider the s-dimensional unit cube [0, 1]s

in Rs. The Discrepancy DN of a set of N points y1, y2, . . . , yN ∈ [0, 1]s is defined as:

DN = sup
J⊂[0,1]s

∣∣∣∣
number of points in J

N
− volume(J)

∣∣∣∣ (B.1)

where J is a rectangular subspace in [0, 1]s with sides parallel to the coordinate axes

and with one vertex at 0.

Definition B.0.2 (Hardy and Krause Total Variation [78]) Let f is a smooth

function on Rs. For all k ≤ s and all sets of k integers such that 1 ≤ i1 < i2 < · · · <
ik ≤ s, define the quantity

V k(f ; i1, . . . , ik) =

∫

[0,1]k

∣∣∣∣
∂kf

∂xi1 . . . ∂xik

∣∣∣∣
xj=1,j 6=i1,...,ik

dxi1 · · · dxik (B.2)

Then, the variation of f on [0, 1]s in the sense of Hardy and Krause is defined as:

V (f) =
s∑

k=1

∑

1≤i1<i2<···<ik≤s

V (k)(f ; i1, . . . , ik) (B.3)

Theorem B.0.1 (Koksma-Hlawka Inequality [77]) If f has bounded variation

V (f) on [0, 1]s in the sense of Hardy and Krause, then, for any y1, y2, . . . , yN ∈ [0, 1]s,

∣∣∣∣∣

∫

[0,1]s
f(x)dx− 1

N

N∑

n=1

f(yn)

∣∣∣∣∣ ≤ V (f)DN (B.4)

Theorem B.0.1 indicates that when the deterministic points have a lower dis-

crepancy, the corresponding approximation error for the integral of f is bounded

by a smaller value. Therefore, in order to prove Theorem 3.3.1, we need to show
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that the designed grid points (i.e., pseudo-measurements) in (3.17)-(3.20) have a

discrepancy which is inversely proportional to the sizes of Ni, i = 1, 2, . . . , nS(k).

Without loss of generality, assume that the domain of integral (3.15) is scaled to

[0, 1]nS(k) with a proper transformation, and thus, the grid size εl in (3.17) is now 1
Nl

for l = 1, 2, . . . , nS(k). Then, the following lemma computes the discrepancy of the

designed grid points.

Lemma B.0.1 The discrepancy of the set of the grid points
{
ydpseudo

}
designed in

(3.17)-(3.20) is

DNtot =

∏nS(k)

j=1 (Nj − 1)−∏nS(k)

j=1 Nj∏nS(k)

j=1 Nj

(B.5)

Proof For a given grid point d := [d1, d2, . . . , dnS(k)
]T ∈ NnS(k) such that 1 ≤ dj ≤

Nj − 1 for j = 1, 2, . . . , nS(k), consider a rectangle J0 in [0, 1]nS(k) (with sides parallel

to the coordinate axes and with one vertex at 0) whose length along each axis is

1
Nj
×dj. So, the rectangle J0 contains

∏nS(k)

j=1 dj grid points. Define J ′ as the rectangle

whose volume is largest among rectangles only containing the same grid points as J0.

Therefore, the length of J ′ along each axis is less than 1
Nj
× (dj + 1). Now consider

an arbitrary rectangle J such that J0 ⊆ J ⊆ J ′. Then, we have

0 ≤
∣∣∣∣
number of points in J

Ntot

− volume(J)

∣∣∣∣ <
∣∣∣∣∣

∏nS(k)

j=1 dj

Ntot

−
∏nS(k)

j=1 (dj + 1)

Ntot

∣∣∣∣∣ (B.6)

This is true for all the grid points, and the bound (the rightmost term in Eq. (B.6)) has

the largest value when dj = Nj − 1 for j = 1, 2, . . . , nS(k). Therefore, the discrepancy

of the set of the grid points is

DNtot =

∏nS(k)

j=1 (Nj − 1)−∏nS(k)

j=1 Nj∏nS(k)

j=1 Nj

(B.7)

which is decreasing as the sizes of Ni, i = 1, 2, . . . , nS(k) are increasing.

Using Theorem B.0.1 and Lemma B.0.1, we have

ε ≤ V (p(y(k)|x(k), q(k) = j, Ik−1))DNtot

= V (p(y(k)|x(k), q(k) = j, Ik−1))

(∏nS(k)

i=1 (Ni − 1)−∏nS(k)

i=1 Ni∏nS(k)

i=1 Ni

) (B.8)
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Because the integrand p(y(k)|x(k), q(k) = j, Ik−1) is a Gaussian function, its variation

V (p(y(k)|x(k), q(k) = j, Ik−1)) is finite. In addition, we have

lim
Ni→∞,i=1,...,nS(k)

(∏nS(k)

i=1 (Ni − 1)−∏nS(k)

i=1 Ni∏nS(k)

i=1 Ni

)
= 0 (B.9)

Therefore, the approximation error ε converges to zero asNi →∞ (i = 1, 2, . . . , nS(k)).
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C. Explicit Expression for K(E) in Chapter 5

In this appendix, the elements of K(E) are explicitly presented. First, note that U

is symmetric and thus can be defined by

U ≡




U11 U12 U13

U12 U22 U23

U13 U23 U33




Then, using (5.9), (5.37), and (5.38), each element Kij in the ith row and jth column

of K(E) can be obtained as:

K11 = ζ1U22, K12 = K21 = −ζ2U12 + (ζ3 + ζ4)U22, K13 = K31 = ζ5U23

K14 = K41 = −ζ3U12 + (−ζ2 − ζ5)U22, K15 = K51 = (3eζ6 − 2ζ1)U12 + 3ζ7U22

K16 = K61 = ζ4U23, K22 = ζ8U11 + (−2ζ9 − 2ζ10)U12 + (ζ11 + 2ζ12 + ζ13)U22

K23 = K32 = −ζ14U13 + (ζ10 + ζ15)U23

K24 = K42 = ζ9U11 + (ζ8 − ζ12 − ζ11 + ζ14)U12 + (−ζ9 − 2ζ10 − ζ15)U22

K25 = K52 = (2ζ2 − 3eζ16)U11 + (3eζ17 − 2ζ4 − 3ζ18 − 2ζ3 + 3eζ19)U12

+3(ζ20 + ζ21)U22

K26 = K62 = −ζ10U13 + (ζ12 + ζ13)U23, K33 = ζ22U33,

K34 = K43 = −ζ10U13 + (−ζ14 − ζ22)U23

K35 = K53 = (3eζ23 − 2ζ5)U13 + 3ζ24U23, K36 = K63 = ζ15U33

K44 = ζ11U11 + (2ζ9 + 2ζ10)U12 + (ζ8 + 2ζ14 + ζ22)U22
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K45 = K54 = (2ζ3 − 3eζ17)U11 + (2ζ2 + 2ζ5 − 3ζ20 − 3eζ16 − 3eζ23)U12

+(−3ζ18 − 3ζ24)U22

K46 = K64 = −ζ12U13 + (−ζ10 − ζ15)U23

K55 = (4ζ1 − 12eζ6 + 9e2ζ25)U11 + (18eζ26 − 12ζ7)U12 + 9ζ27U22

K56 = K65 = (3eζ19 − 2ζ4)U13 + 3ζ21U23, K66 = ζ13U33

where

ζ1 =
−(e cosE − 1)3

(1− e2)7/2
, ζ2 =

(e− cosE)(e cosE − 1)

(1− e2)5/2
,

ζ3 =
− sinE(e cosE − 1)

(1− e2)2
ζ4 =

sinE(e cosE − 1)2

(1− e2)3
,

ζ5 =
−(e− cosE)(e cosE − 1)2

(1− e2)7/2

ζ6 =
sinE(e cosE − 1)(E0 − E − e sinE0 + e sinE)

(1− e2)7/2
,

ζ7 =
(e cosE − 1)(E0 − E − e sinE0 + e sinE)

(1− e2)3

ζ8 =
−(e− cosE)2

(1− e2)3/2(e cosE − 1)
, ζ9 =

sinE(e− cosE)

(1− e2)(e cosE − 1)
,

ζ10 =
− sinE(e− cosE)

(1− e2)2
ζ11 =

cos2E − 1

(1− e2)1/2(e cosE − 1)
,

ζ12 =
sin2E

(1− e2)3/2
, ζ13 =

(cos2E − 1)(e cosE − 1)

(1− e2)5/2

ζ14 =
(e− cosE)2

(1− e2)5/2
, ζ15 =

sinE(e− cosE)(e cosE − 1)

(1− e2)3

ζ16 =
− sinE(e− cosE)(E0 − E − e sinE0 + e sinE)

(1− e2)5/2(e cosE − 1)

ζ17 =
sin2E(E0 − E)− e sin2E(sinE0 − sinE)

(1− e2)2(e cosE − 1)
,

ζ18 =
−(e− cosE)(E0 − E − e sinE0 + e sinE)

(1− e2)2(e cosE − 1)

ζ19 =
− sin2E(E0 − E) + e sin2E(sinE0 − sinE)

(1− e2)3
,

ζ20 =
sinE(E0 − E − e sinE0 + e sinE)

(1− e2)3/2(e cosE − 1)
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ζ21 =
− sinE(E0 − E − e sinE0 + e sinE)

(1− e2)5/2
,

ζ22 =
−(e− cosE)2(e cosE − 1)

(1− e2)7/2

ζ23 =
sinE(e− cosE)(E0 − E − e sinE0 + e sinE)

(1− e2)7/2
,

ζ24 =
(e− cosE)(E0 − E − e sinE0 + e sinE)

(1− e2)3

ζ25 =
− sin2E(E0 − E − e sinE0 + e sinE)2

(1− e2)7/2(e cosE − 1)
,

ζ26 =
− sinE(E0 − E − e sinE0 + e sinE)2

(1− e2)3(e cosE − 1)

ζ27 =
−(E0 − E − e sinE0 + e sinE)2

(1− e2)5/2(e cosE − 1)
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