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Ab 48 Cross-sectional area of reinforcing bar (= πdb
2/4) 

AF 25 
Factor used to adjust amplitude of frequencies in Fourier 

domain 
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CoV 33 Coefficient of variation (= standard deviation / mean) 

CRC 4 Conventional reinforced concrete 

d’ 13 Depth to closest layer of reinforcing steel 

d 2 Effective depth; depth to farthest layer of reinforcing steel 
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e 47 Elongation of bar 

Ec 2 Modulus of elasticity of concrete (measured to 40% f’c) 
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f 65 Frequency 
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Acceleration amplification factor in Newmark’s region of 

nearly constant acceleration 
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fy 1 Yield stress of steel 
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Unit vector in in-plane direction  

(for transforming Optotrak coordinates) 

k 20 Lateral stiffness 
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Parameter used in Menegotto-Pinto (1973) steel model to 

define slope of stress-strain curve (= Es∞/Es) 
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Peak drift estimated using PGA and from Lepage’s expression 
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Tmeas 63 Measured initial first-mode period 

Ts 19 
Secant period calculated based on stiffness from origin to 

yield point 

U 48 Elastic potential energy 

Verti,Vertk,Vertk 30 
Unit vector in vertical direction  
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Γ 9 First-mode participation factor 
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εs
* 16 Normalized steel strain 

θ 47 Average rotation of columns, also known as drift ratio (=Δ/L) 

ρl 1 Longitudinal reinforcement ratio (=4Ab/bh) 
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Steel stress at intersection of initial modulus line and tangent 

modulus at ultimate 
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ABSTRACT 

Laughery, Lucas Alan. Ph.D., Purdue University, August 2016. Response of High-Strength Steel 

Reinforced Concrete Structures to Simulated Earthquakes. Major Professor: Santiago Pujol. 

 

In reinforced concrete (RC) structures expected to resist earthquake demands, substituting smaller 

amounts of high-strength steel for conventional steel reinforcement can help reduce reinforcement 

congestion and placement costs while keeping strength unchanged. 

Provided cross-sectional dimensions remain unchanged, reducing the amount of longitudinal steel 

in a member will result in a member with similar initial stiffness but lower post-cracking 

stiffness. Nominal strength can be kept nearly the same if this reduction in the amount of steel is 

accompanied by a corresponding increase in the strength of the steel. The topic of this investigation 

is whether two frames with the same initial stiffness and nominal strength, but different post-

cracking stiffnesses, reach comparable peak drift during a given ground motion. This is a question 

about drift demand, not drift capacity. The impact of changes in steel strength on drift capacity has 

been examined by others and is not the subject of this study. 

Four nominally identical reinforced concrete frames were tested on a unidirectional earthquake 

simulator. In two frames, conventional reinforcing steel was used in the columns at a reinforcement 

ratio of 1.8%. In the other two frames, high-strength reinforcing steel was used in the columns at a 

reinforcement ratio of 0.8%. Each frame was subjected to one of two series (or sequences) of five 

ground motions. The first four motions were of either increasing intensity (series 1) or decreasing 

intensity (series 2). The last motion was the strongest used in this study, and had a peak ground 

acceleration of 1 g, a peak ground velocity of 11 in./sec, and a peak ground displacement of 1.3 in. 
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Comparisons of frames with different post-cracking stiffness, and comparisons of similar frames 

subjected to different ground motion sequences supported the hypothesis that the dominant factor 

driving peak drift is initial period calculated using gross cross-sectional properties. To examine 

further the idea that initial period drives peak drift in RC structures subjected to earthquake 

demands, a dataset was compiled using results from more than 160 dynamic tests of RC structures 

and the measured responses of 3 instrumented RC buildings. This dataset was used to evaluate an 

expression proposed by Sozen (2003) indicating that peak drift is directly proportional to the 

product of peak ground velocity and initial period (calculated from gross cross-sectional 

properties). Comparisons of measured-to-estimated peak drift revealed that, for ground motions 

with PGV/PGA > 0.03 sec, the studied expression produced reasonable and safe estimates of peak 

drift. Ground motions outside this range have been used in laboratory tests but are unlikely to occur 

frequently in the field. 

All the evidence examined suggest that peak drift caused by earthquake demands is proportional to 

initial period. It follows that replacing conventional steel reinforcing bars with fewer or smaller 

bars of higher strength is unlikely to result in consistent increases in drift demand, provided the 

cross-sectional dimensions remain unchanged. 
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CHAPTER 1. INTRODUCTION 

Seismic design provisions for structural concrete in the United States limit the nominal yield stress 

(fy) of longitudinal reinforcement to 60,000 psi [ACI 318 (2014)]. This limitation can lead to steel 

congestion in members where high longitudinal reinforcement ratios are required to resist 

earthquake demands (Figure 1-1). Congestion complicates construction, increases labor, and can 

lead to poor concrete consolidation and honeycombing (Figure 1-2). There are two apparent 

solutions to the problem of steel congestion in a structural concrete member: (1) increase the 

member dimensions to accommodate the steel, or (2) decrease the longitudinal reinforcement ratio 

(ρl) of the member. The former solution has the added advantage of increasing the gross stiffness 

of the member, but is often disagreeable to building owners and architects, who seek to maximize 

floor area. To achieve the same nominal member strength, the latter solution can only be 

accomplished within the same cross section with a corresponding increase in steel yield stress (fy). 

Because of the limitation on fy set by ACI 318 (2014), this is not currently permitted in the United 

States. Before high-strength longitudinal steel (fy ≥ 80,000 psi) can be used safely in seismic 

regions, the behavior of members reinforced using it must be studied and understood. Note that the 

term high-strength steel reinforced concrete (HSSRC) as it is used here refers to reinforced concrete 

in which the longitudinal steel is high-strength. The use of high-strength steel as transverse 

reinforcement is already permitted in seismic regions (up to fy = 100,000 psi) and is not the focus 

of the present investigation. 

When designing a structure, there are two aspects to consider: capacity and demand. Much work 

has been done to understand the capacity of HSSRC members. This work is described in Chapter 

2. By comparison, relatively little research has been conducted to understand demand on HSSRC 
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structures during strong ground motions. The work that has been done to understand demand on 

HSSRC structures has been limited to numerical investigations such as Rautenberg (2011). To date 

(and the author’s knowledge), no dynamic test has been conducted on a HSSRC structure. The 

purpose of this investigation is to make up for the lack of data from dynamic tests. 

When a reinforced concrete member is subjected to a lateral demand, its response can be separated 

into three regions: (1) pre-cracking, (2) post-cracking / pre-yielding, and (3) post-yielding. In region 

1, the flexural stiffness of a member is governed by two properties: the modulus of elasticity of the 

concrete (Ec) and the gross moment of inertia of the cross section (Ig).1 In region 2, the flexural 

stiffness of a member is driven by the cracked moment of inertia, which is dominated by the 

longitudinal reinforcement ratio (ρl), and the depths to layers of reinforcement (d). That is: 

k1 ∝ EcIg Equation 1-1 

k2 ∝ dρl Equation 1-2 

where k1 is flexural stiffness in the pre-cracking range of response (i.e. initial flexural stiffness), 

and k2 is the flexural stiffness in the post-cracking/pre-yielding range of response. From Equation 

1-1, it is clear that two members with the same concrete and cross-sectional dimensions will have 

the same initial flexural stiffness. From Equation 1-2, it is clear that if one of the cross sections has 

less reinforcing steel, it will have less post-cracking flexural stiffness. This would be the case if 

high-strength steel was substituted in reduced amounts for conventional steel. There are concerns 

that, during an earthquake, such a reduction in post-cracking flexural stiffness could lead to more 

drift demand in HSSRC frames when compared with equivalent conventionally-reinforced frames. 

Dynamic tests of HSSRC frames are needed to examine this possibility.  

                                                      

1 Transformed moment of inertia (It) may be used, but Ig provides comparable values for lightly-reinforced 

sections without requiring knowledge of reinforcing details. 
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The objective of this investigation was to test whether two nominally-identical reinforced concrete 

frames with comparable design strengths and comparable initial stiffnesses, but different post-

cracking stiffnesses will reach similar peak drift during a given ground motion. This was 

accomplished by testing four reinforced concrete frames with equal dimensions but different 

column longitudinal reinforcement – two containing Grade 60 reinforcing bars, and two containing 

smaller bars with higher strength – on an earthquake simulator. 

In Chapter 2, findings are presented from past dynamic tests of conventional reinforced concrete, 

static tests of HSSRC, and numerical investigations of HSSRC. In Chapter 3, the hypothesis 

underlying this investigation is presented and the experimental program is described. This includes 

details of the test specimens, test setup, ground motions, and test procedure. In Chapter 4, 

observations from the experiments are presented. These include consistency of the ground motions, 

response of the specimens, and derived force-drift envelopes. In Chapter 5, differences in the 

response of the specimens are discussed. In Chapter 6, an expression for estimating peak drift is 

evaluated using a dataset of laboratory experiments and the response of buildings to earthquakes. 

In Chapter 7, conclusions are presented. 
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CHAPTER 2. LITERATURE REVIEW 

This chapter is divided into three parts: (1) static tests of high-strength steel reinforced concrete 

(HSSRC) structural members, (2) dynamic tests of conventional reinforced concrete (CRC) 

structures, and (3) numerical investigations. Research presented in the first section examines the 

capacity of HSSRC members and their behavior under static demands. The dynamic tests of CRC 

presented in the second section provide a frame of reference for the possible behavior of HSSRC 

in a dynamic environment. The numerical investigations presented in the third section supplement 

these dynamic tests and provide a basis for the hypothesis presented in Chapter 3. 

2.1. Static Tests 

For more than 50 years, lateral monotonic and cyclic experiments have been conducted on HSSRC 

members. An overview of investigations and major findings is presented in Table 2-1. The focuses 

of these investigations have varied. Some were: (1) flexural crack control, (2) flexural behavior, 

(3) shear behavior, (4) response to displacement reversals, (5) the effect of variable axial load, and 

so forth. Overall, the tests show that, given proper detailing, members reinforced with high-strength 

steel possess adequate toughness to maintain their strengths during cycles at drift ratios up to 4%. 

For non-masonry structures four stories or lower, the American Society of Civil Engineers’ 

“Minimum Design Loads for Buildings and Other Structures” [ASCE 7 (2010)] limits story drift 

ratio to 2.5% or less for the lowest risk category, and to 2% or less for higher risk categories. For 

structures more than four stories tall, these limits are reduced to 2% and 1.5% [ASCE 7 (2010)]. 

Based on these limits, the ability of well-detailed HSSRC members to maintain their strengths at 

drift ratios up to 4% is sufficient from a design standpoint. 



5 

  

5
 

Another observation from past cyclic tests of HSSRC members pertains to the shape of their 

hysteresis loops. The unloading slope of HSSRC members is consistently lower than that of 

equivalent CRC members. This is illustrated in Figure 2-1, which was generated using test data 

from Rautenberg (2011). The black line is from a test of a CRC column; the gray line is from a test 

of a HSSRC column. When the two columns were unloaded from comparable drifts, the HSSRC 

column unloading curve was less steep, leading to a “pinched” appearance and less area within the 

hysteresis loops. 

2.2. Dynamic Tests 

To date, there are no publications describing dynamic tests of HSSRC structures. Nevertheless, for 

more than 40 years dynamic tests have been conducted on CRC specimens. A summary of these 

tests and major findings is presented in Table 2-2. Two of particular interest to the current 

investigation are discussed in detail in the following sections. 

2.2.1. Otani and Sozen (1972) 

In 1972, Otani and Sozen published findings from dynamic tests of three pairs of 3-story 1-bay 

frames. A typical frame is illustrated in Figure 2-2. All frames had the same nominal dimensions 

and the same longitudinal steel reinforcement. In each test series, two identical frames were 

oriented parallel to one another and connected by a mass at each level. Each pair of frames was 

then subjected to a series of ground motions of increasing demand. The demand of each ground 

motion was measured using spectrum intensity at 20% critical damping (SI20).  

Spectrum intensity was calculated as the area under the velocity response spectrum for periods 

ranging from 0.1 sec to 2.5 sec: 

SIβ = ∫ Sv(β, T)dT
2.5

0.1

 Equation 2-1 
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where Sv is the velocity response spectrum, β is the damping ratio as a percent of critical damping 

(20% in this case), and T is the period of a linear elastic oscillator. This velocity response spectrum 

was calculated using the measured acceleration of the simulator platform for each test. The ground 

motions were adapted from records obtained during the El Centro (1940) and Taft (1952) 

earthquakes. 

In Series 1, a pair of frames was subjected to six ground motions of increasing demand. In Series 

2, a different pair of identical frames was subjected to four ground motions of increasing demand. 

The ground motion used in the fourth test in Series 1 was identical to that of the first test in Series 

2. The two ground motions registered nearly the same peak accelerations (0.88 g and 0.86 g, 

respectively) and had comparable spectrum intensities (SI20 = 15.7 and 15.8, respectively). Before 

this “common ground motion” (i.e. ground motion of equal spectrum intensity), Series 1 frames 

had sustained damage from three ground motions. In contrast, Series 2 frames were expected to be 

pristine. Having sustained damage during previous tests, Series 1 frames were softer than Series 2 

frames before the “common ground motion.” In spite of this softening, frames in Series 1 and 2 

reached nearly the same average peak roof drifts (1.06 in. for Series 1 compared with 1.08 in. for 

Series 2, corresponding to a drift ratio of approximately 2%). This suggests that softening of the 

frames in Series 1 as a result of damage from previous motions did not impact peak drift response. 

Stated differently, provided that the ground motion was the strongest the frames had experienced, 

softening as a result of damage from previous events did not affect peak drift response. 

2.2.2. Cecen (1979) 

In 1979 Cecen tested scaled, 10-story 3-bay reinforced concrete frames on an earthquake simulator. 

A typical frame is illustrated in Figure 2-3. Similar to what Otani had done, two identical frames 

were tested in parallel, connected at each story by a mass. Each pair of frames was subjected to a 
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series of scaled strong ground motions adapted from records obtained during the El Centro (1940) 

earthquake. 

Frames in Series 1 were subjected to three ground motions of increasing demand. Frames in Series 

2 were subjected to seven ground motions of increasing demand. The final ground motion in each 

test series was the same. Normalized by the spectrum intensity of this shared final ground motion, 

the relative intensities of ground motions in Series 1 were 32%, 70% and 100%. In Series 2, these 

relative intensities were 13%, 26%, 40%, 40%, 60%, 80%, and 100%. This means that, before the 

final ground motion, Series 2 frames had experienced three times as many ground motions as Series 

1 frames. Series 2 frames had also experienced stronger ground motions, and more displacement 

cycles at larger drift ratios. Nevertheless, the two systems reached comparable peak roof drifts (3.39 

in. for Series 1 versus 3.43 in. for Series 2, corresponding to a drift ratio of approximately 3.8%). 

This was consistent with previous observations by Otani and Sozen (1972). 

2.2.3. Application to HSSRC Frames 

The findings from dynamic tests of CRC can be extended to HSSRC. In both Otani’s and Cecen’s 

tests, the damaged frames had the same gross stiffness and design strength as the “pristine” frames 

(in the case of Cecen, the less damaged frames). This would also be the case if high-strength steel 

was substituted in reduced amounts for conventional steel, provided that the cross-sectional 

dimensions and reinforcement depths were maintained. In both Otani’s and Cecen’s tests, the 

damaged frames had lower stiffness than the “pristine” (less damaged) frames. That is, one pair of 

frames was softer than the other pair of frames before the common ground motion. This would also 

be the case if high-strength steel was substituted in reduced potions for conventional steel: the 

HSSRC structure would be expected to be softer after cracking, as ρl dominates post-cracking 

flexural stiffness. Stated differently, the reduction in stiffness associated with using less reinforcing 

steel can be thought of as similar to the reduction in stiffness associated with damage. 
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In Otani’s and Cecen’s tests, the two pairs of frames (damaged and pristine / less damaged) reached 

comparable peak drift during the same ground motion. Following the same line of thinking, CRC 

and HSSRC frames could be expected to reach comparable peak drifts, provided the same 

conditions are met: 

(1) The ground motion to which the frames are subjected is the strongest the frames have 

experienced 

(2) The frames have the same masses and member dimensions [i.e. gross stiffnesses are equal] 

(3) The frames have the same nominal strengths [i.e. (ρlfyd)CRC = (ρlfyd)HSSRC] 

Condition 1 is simply a restriction based on what has been observed: no experiments have been 

conducted in which a pristine frame is subjected to progressively weaker ground motions. 

Condition 2 is also a restriction based on what has been observed. It ensures that the frames will 

have the same initial period. Condition 3 ensures that both frames will have adequate strength to 

endure the ground motions without failure. 

The tests described above point to initial period as the dominant factor driving the peak drift 

response of RC frames. This idea is examined in the next section. 

2.3. Numerical Investigations 

In 1997, Lepage compiled results from tests of 33 small-scale, multistory RC structures subjected 

to simulated earthquakes. Using these results, he proposed the following expression for estimating 

peak roof drift in a reinforced concrete structure: 

Sda =
Fa ∗ PGA ∗ g ∗ Tg

(2π)2
∗ Teff ∗ Γ Equation 2-2 

where  Sda = peak roof drift estimated using ground acceleration (Dmax in original formulation) 
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 Fa = acceleration amplification factor (Sa/PGA, where Sa is spectral acceleration) 

 PGA = peak ground acceleration (α in original formulation) 

 g = gravitational acceleration 

 Tg = characteristic period of ground motion 

Teff = effective initial period of vibration of the system (T in original formulation), taken 

as √2 times the first mode period based on uncracked sections, Ti 

Γ = participation factor for the first mode shape  

[may be taken as 5/4 for multi-degree-of freedom (MDOF) structures with 

uniform story heights and stiffnesses] 

This expression was reported to provide a reasonable upper bound estimate of peak roof drift for 

structures with base shear coefficients meeting a minimum threshold.  

Later, the following expression was proposed by Sozen (2003) as an estimate of peak roof drift: 

Sdv =
PGV

√2
∗ Ti ∗ Γ Equation 2-3 

where Sdv is peak roof drift estimated using ground velocity, PGV is peak ground velocity, Ti is 

first mode period based on uncracked sections, and Γ is first mode participation factor. Both 

equations share one common feature: initial period as the characteristic describing the structure. 

Because HSSRC frames have comparable initial stiffness to CRC frames with the same nominal 

dimensions, this implies that the two frames should experience comparable peak drift during a 

given ground motion. This idea has since been investigated via numerical simulations. 

In 2011, Rautenberg conducted simulations of CRC and HSSRC frames. He modeled the frames 

using LARZ, a nonlinear reinforced concrete analysis program developed by Saiidi and Sozen 

(1979). Two types of 3-, 6-, 12-, and 20-story buildings were modeled. In one type, columns were 
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reinforced using conventional (Grade 60) steel. In the other type, columns were reinforced using a 

reduced amount of high-strength (Grade 120) steel. The nominal dimensions and masses of the 

models were otherwise the same. Differences in the flexural behavior of the two column types were 

captured by altering moment-curvature diagrams and unloading stiffness coefficients. The reduced 

post-cracking stiffness of HSSRC columns was captured by increasing yield curvature (Figure 2-

4). The “pinched” appearance of HSSRC column hysteresis loops was captured by using a larger 

unloading stiffness coefficient (0.5 for Grade 120 models versus 0.4 for Grade 60 models). 

Each building model was subjected to a suite of ground motions, with its peak roof drift recorded 

for each.  In Figure 2-5, the peak roof drift of HSSRC frames is plotted against that of CRC frames. 

For all simulations, the average ratio of peak roof drift in HSSRC frames to peak roof drift in CRC 

frames was 1.03. Because the common characteristic of the frames was their initial stiffness, this 

finding supports the idea that initial stiffness (and initial period) – not post-cracking stiffness – 

drives the peak drift response of RC frames. 

The purpose of the present investigation was to test experimentally this idea: that initial stiffness 

drives the peak drift response of RC frames. 
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CHAPTER 3. EXPERIMENTAL DESIGN AND PROGRAM 

3.1. Scope of Work 

The experimental program described in this chapter was conducted to test the following hypothesis: 

Two reinforced concrete frames with columns having similar nominal design strengths and 

initial stiffnesses, but different post-cracking stiffnesses, reach the same peak drift response 

during the same strong ground motion, provided this motion is the strongest each frame 

has experienced. 

A single-degree-of-freedom (SDOF) system subject to unidirectional motion at its base was used 

to test this hypothesis. The system was not a prototype of any full-scale structure. Instead, it was 

designed and proportioned to test an idea.  

The system comprised a reinforced concrete portal frame with a lumped mass at the top. Two 

different types of frames were built, the only difference being column longitudinal reinforcement. 

In type C frames, columns contained conventional steel. In type H frames, columns contained a 

reduced amount of high-strength steel. High-strength steel provided a convenient method for testing 

the stated hypothesis because two frames having nearly equal nominal strengths and initial 

stiffnesses but different post-cracking stiffnesses could be built by keeping member dimensions 

identical while varying the grade and size of reinforcing bars. 

The specimens were tested one at a time on the earthquake simulator. Each frame was subjected to 

five simulated earthquakes, the strongest of which had a peak ground acceleration of 1 g, a peak 

ground velocity of 11 in./sec, and a peak ground displacement of 1.3 in. In Series 1, frames C1 and 
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H1 were subjected to four ground motions of increasing demand (25%, 50%, 75%, and 100% of 

the strongest ground motion considered in this study), followed by a repeat of the strongest ground 

motion (100%). In Series 2, frames C2 and H2 were subjected to four ground motions of decreasing 

demand (100%, 75%, 50%, and 25%), followed by a repeat of the strongest ground motion (100%). 

Varying the order of testing ensured that frames in one series had always experienced more or 

stronger ground motions than the frames in the other series. For example, Series 1 frames were 

undamaged before the 25% motion,  having experienced no earthquakes. In contrast, Series 2 

frames had experienced 3 stronger motions and were damaged as a result. For another example, 

before the first 100% motion, Series 1 frames were damaged (having experienced 3 weaker motions 

previously), whereas Series 2 frames were undamaged. 

Having experienced more demanding ground motions, the frames in one series were expected to 

be more damaged (and softer) than frames in the other series before the same ground motion. This 

allowed the hypothesis that initial stiffness drives peak drift to be evaluated not just by comparing 

the response of type H frames with that of type C frames, but also by comparing the response of 

Series 2 frames with that of Series 1 frames of the same type. The response of the same frame to 

subsequent 100% ground motions provided a third point of comparison. These comparisons are 

similar to those described in Section 2.2.  

Details of the specimens, setup, ground motions, and test procedure are described in the following 

sections. Additional details can be found in the Appendices. 

3.2. Test Specimens 

Four specimens were built and tested. The specimens were portal frames with an out-of-plane 

thickness of 5-in. The lower and upper beams of the frames had depths of 12 in. and 10 in. Each 
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frame had two square columns with clear heights of L = 42 in. and cross sections measuring 5 in. 

by 5 in. (Figure 3-1). Attributes of the frames and test program are summarized in Table 3-1. 

The frames were nominally identical except for column longitudinal reinforcement, of which there 

were two configurations (illustrated in Figure 3-2). In both configurations, the depths to 

longitudinal reinforcement layers were approximately d’ = 1 in. and d = 4 in. In type C frames, 

column longitudinal reinforcement consisted of four 3/8-in. diameter, conventional deformed steel 

bars (ρl =1.8%). Stress-strain curves for these bars are presented in Figure 3-3 alongside a model 

curve (discussed in Section 3.2.1). These conventional bars had a 0.2% offset yield stress of 

approximately 65 ksi and a strength of approximately 100 ksi. In type H frames, column 

longitudinal reinforcement consisted of four approximately 1/4-in. diameter (6.5-mm actual), high-

strength undeformed steel rods (ρl =0.8%). Stress versus strain curves for these bars are presented 

in Figure 3-4 alongside a model curve. This steel had a 0.2% offset yield stress of approximately 

160 ksi and a strength of nearly 190 ksi.  

For the columns to reach their strengths, longitudinal reinforcement needed to develop its strength 

along two lengths: [1] in the beams, from the end of the hooked bar to the beam-column interface 

(22 in.), and [2] in the columns, from the point of inflection near mid-height to the beam-column 

interface (21 in.). These lengths are illustrated in Figure 3-5. In Type C frames, these lengths 

corresponded to 58db and 56db (db = diameter of the longitudinal bar). In type H frames, these 

lengths corresponded to 88db and 84db (because high-strength steel bars had smaller diameter). 

In spite of the higher ratio of embedment length to bar diameter in type H frames, there was concern 

that the smooth high-strength steel rod would slip before reaching its yield stress. For this reason, 

the high-strength steel rods were corroded to improve bond with the surrounding concrete. This 

was done by spraying a 10% solution of hydrochloric acid (HCl) on the bars and then storing them 



14 

  

1
4

 

in a moist curing room (i.e. a humidity chamber). After 72 hours, the bars were removed from the 

room and their surfaces were cleaned to remove excess rust. The resulting bars had a roughened 

surface.  

In addition to corroding their surfaces, the rods were anchored in the beams using assemblies 

consisting of prestressing anchors and plates. Schematics of these assemblies are shown in Figure 

3-6, and a photograph is provided in Figure 3-7. These assemblies were devised after conducting 

pullout tests on specimens with different bar anchorage details (described in the Appendices). The 

anchor chucks used in these assemblies were engaged by adjusting nuts on the threaded rods that 

were placed between the steel plates. These nuts pushed the two plates apart, engaging the anchor 

chucks.  

Transverse reinforcement was the same in all specimens (Figure 3-6). All hoops were built using 

3/16-in. diameter smooth steel wire with a yield and ultimate stresses of approximately 74 ksi and 

82 ksi, respectively. Beam hoops were rectangular with 135 degree hooks at each end. Column 

hoops were square with 135 degree hooks at each end. Column hoops were spaced at 1 in. on center 

over the first 12 in. from the face of each beam (s = d/4 for 3d). In the center 18 in. of the columns, 

the hoops were spaced at approximately 1-13/16 in. on center (1-5/8 in. clear). Spirals were placed 

in the beam-column joints to improve confinement.  

All specimens were cast on their sides on the same day using a grout mix with a maximum 

aggregate size of 3/8 in. The mix had an average compressive strength on test days of f’c = 3,800 

psi. A grout mix was used instead of concrete with large aggregate for two reasons. The first was 

to reduce problems with consolidation and honeycombing due to the tight spacing of transverse 

reinforcement. Second, the elimination of large aggregate was expected to reduce the modulus of 

elasticity of the concrete. This would in turn reduce the stiffness of the frames, allowing them to be 
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pushed further into their nonlinear range of response using ground motions that were within the 

capacity of the earthquake simulator. A summary of material properties measured on test days is 

presented in Table 3-1. Additional details about the mix and development of compressive strength 

during curing are available in the Appendices. 

3.2.1. Moment-Curvature Relationships of the Columns 

Moment-curvature relationships 2  were generated for each column type using FLECHA, a 

spreadsheet developed by Pujol (2001). FLECHA idealizes the stress-strain behavior of concrete 

using Hognestad’s formulation (1951). In Hognestad’s formulation, the strain at peak compressive 

stress is defined as: 

εc0 =
2fc
′

Ec
 Equation 3-1 

where f’c is the compressive strength of the concrete and Ec is the modulus of elasticity of the 

concrete. Concrete stress is defined in three regions: (1) tension less than the tensile strength, (2) 

compression at strains less than εc0, and (3) compression at strains between εc0 and the ultimate 

strain, εcu. For tension defined as negative, the stresses in each of these regions are given as: 

σc = εcEc for  ft/Ec < εc < 0 Equation 3-2 

σc = fc
′ (
2εc
εc0

− (
εc
εc0
)
2

) for 0 < εc < εc0 Equation 3-3 

σc = fc
′ (1 − Z ∗ (

εc
εc0
)) for εc0 < εc < εcu Equation 3-4 

where  εc = concrete strain 

σc = concrete stress 

f’c = concrete compressive strength (3,800 psi from measurements) 

                                                      

2 Moment-curvature relationship refers to the variation of bending moment with unit curvature. 
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Ec = concrete modulus of elasticity (2,700 ksi from measurements) 

ft = concrete tensile strength (420 psi from measurements) 

Z = 0.15*(εcu - εc0), where εcu is assumed to be 0.0038 [from Hognestad (1951)] 

Using these equations, the stress-strain relationship for the concrete is plotted in Figure 3-8.  

Neither type of longitudinal steel exhibited a well-defined yield plateau during coupon tests, so the 

Menegotto-Pinto (1973) steel model was used for each. The original formulation by Menegotto and 

Pinto simplifies to the following two expressions:  

εs
∗ = |

εs
εs0
| 

Equation 3-5 

σs = (ksεs
∗ +

(1 − k𝑠)εs
∗

(1 + εs
∗R)

1/R
)σs0 Equation 3-6 

where  εs = steel strain 

σs = steel stress 

εs
* = normalized steel strain 

εs0 = steel strain at intersection of initial modulus line and tangent modulus at ultimate 

σs0 = steel stress at intersection of initial modulus line and tangent modulus at ultimate 

ks = Es∞ / Es, ratio of tangent modulus at ultimate to initial modulus 

R = parameter defining the shape of the curve 

The variables εs0, σs0, ks, and R were adjusted until agreement was reached with measured stress-

strain curves from coupon tests. Representative stress-strain relationships obtained from this 

process are shown in Figure 3-9. 

Using these material formulations, moment-curvature diagrams were generated using FLECHA. 

These moment-curvature diagrams are shown in Figure 3-10. There are three features worth noting 

about these idealized relationships. First, the initial slopes – representing the uncracked flexural 
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stiffnesses of the cross sections – are approximately equal. This is expected because both sections 

have nearly the same gross moment of inertia (Ig) and modulus of elasticity of concrete (Ec). The 

second notable feature is that, after cracking at approximately 11 kip-in., the tangential slope of 

type H columns is smaller than that of type C columns. That is, type H columns have lower post-

cracking flexural stiffness. This is also expected because type H columns have a lower longitudinal 

reinforcement ratio than type C columns. The third notable feature in Figure 3-10 is that the two 

column types have comparable nominal strengths (within 10% of each other), because the product 

ρlfyd is comparable. 

3.2.2. Trilinear Approximations 

Trilinear approximations were made for the moment-curvature diagram for use later in numerical 

models. These approximations required three bending moments to be estimated: (1) at cracking, 

(2) at yielding (along with the corresponding curvature), and (3) at ultimate (along with the 

corresponding curvature). The cracking moment of each column Mcr  can be estimated as: 

Mcr =
frbh

2

6
 Equation 3-7 

where fr is the modulus of rupture of the concrete, b is the width of the column, and h is the total 

depth of the column. The concrete had a very high modulus of rupture (850 psi ≈ 14√f𝑐
′). As a 

result the estimated cracking moment was high (17.7 kip-in.) relative to the point at which cracking 

occurred in the FLECHA idealization (11 kip-in.). This is because cracking in FLECHA is based 

on the tensile strength of the concrete (ft = 420 psi). For consistency with FLECHA, a cracking 

moment of 11 kip-in. was assumed instead of the moment calculated from fr. 

The ultimate curvature was taken as the curvature corresponding to the maximum bending moment 

(which occurred at a concrete strain of 0.004). The bending moment at yield was taken as 95% of 

this maximum bending moment. The curvature at yield was more difficult to define because neither 
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steel exhibited a well-defined yield plateau. Values of yield curvature were adjusted until visual 

agreement was reached with the moment-curvature diagram from FLECHA. The curvatures and 

bending moments for this idealized trilinear approximation are summarized in Table 3-2. 

3.2.3. Expected Behavior of Frames 

Frames resist lateral demand through flexure in their columns and beams. In the case of a portal 

frame in its elastic range of response, an idealized bending moment diagram for this is shown in 

Figure 3-11(a). In this idealization, moment (and curvature) in the columns varies with height from 

maxima at column-beam interfaces to zero near mid-height. Similarly, moment (and curvature) in 

the beam varies from maxima at the column-beam interface to zero near midspan. As the frame 

displaces sideways, moments at critical sections increase until the plastic moment of each section 

is reached, Mp (i.e. the point at which an increase in curvature produces no corresponding increase 

in resistance). Curvature concentrates near the ends of members in regions called “plastic hinges” 

[Figure 3-11(b)]. It is desirable for these hinges to form in beams rather than columns to prevent 

the formation of story mechanisms that can lead to collapse in buildings. To accomplish this, in 

modern reinforced concrete frames engineers design columns framing into a joint to have more 

nominal flexural strength than beams. This is commonly referred to as “strong column weak beam” 

design.  

The frames tested in this investigation did not follow the “strong column weak beam” design. 

Instead, the columns were weaker than the beams so that the dynamic behavior of the system would 

be driven by the columns. Consequently, this “weak column strong beam” design meant that hinges 

were expected to form at the tops and bottoms of the columns.  

 



19 

  

1
9

 

Assuming hinges formed at the top and bottom of both columns, the lateral strength of the frames 

can be estimated as: 

Fp =
4Mp

L
 

Equation 3-8 

where Fp is lateral strength (i.e. base shear strength), Mp is the plastic moment of the columns, and 

L is the length (clear height) of the columns (42 in.). For the frames in this investigation, Mp was 

approximately 65 kip-in. This resulted in an expected base shear strength of approximately 6.2 kip. 

3.2.4. Dynamic Properties of the Frames 

Each specimen had a lumped mass fastened to its upper beam before testing. The weight of this 

mass, the hardware needed to secure it to the specimen (shown in Figure 3-12), and the upper beam 

of the specimen was approximately 4,860 lb. According to Biggs (1964), to idealize this system as 

a single-degree-of-freedom, two-thirds of the self-weight of the columns (2/3Wc) should also be 

added to this lumped mass (Wml) to determine an effective mass (Wme): 

Wme = Wml + 2/3Wc Equation 3-9 

This results in an effective mass with a weight of approximately 5,000 lb. A detailed account of 

components contributing to this mass is shown in Table 3-3. Several estimates of the period of the 

test frames can be obtained using this effective mass and different estimates of flexural stiffness 

(EI) calculated using different line segments on the moment-curvature diagram. Three of particular 

interest in this investigation are: 

(1) Initial period, Ti: defined using the gross cross-sectional moment of inertia (EcIg)  

(2) Secant period, Ts: defined using EI as the slope from the origin to the point at yield [(EI)s] 

(3) Post-cracking period, Tcr: defined using EI as the slope from the point at cracking to the 

point at yield [(EI)cr] 
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These stiffnesses are illustrated in Figure 3-10 and are listed in Table 3-2. Lateral flexural stiffness, 

k, was estimated using the following expression for a frame with 2 columns fixed at each end: 

k = 2 ∗
12EI

L3
 Equation 3-10 

where k = lateral flexural stiffness  

 EI = flexural stiffness defined using one of three segments described before 

 L = clear length of the columns (i.e. height, 42 in.) 

This estimate of lateral stiffness assumes fixed end conditions and double curvature in the columns. 

In reality, perfect fixed end conditions are not possible and the actual stiffness can be expected 

lower than the stiffness estimated from Equation 3-10. Reasons for the lower actual stiffness are 

discussed in more detail in Section 5.1. Because quantifying this reduction in stiffness is difficult, 

from the design viewpoint it is simpler to assume fixed-end conditions. 

The periods of the frames were estimated as: 

T = 2π√
Wme
gk

 Equation 3-11 

where g = gravitational acceleration (386 in./sec2), Wme is effective mass, and k is stiffness defined 

using one of the aforementioned methods. The initial period obtained from Equation 3-10 and 

Equation 3-11 is approximately 0.1 sec. The secant periods of the frames were estimated to be 

approximately 0.19 sec (type C) and 0.23 sec (type H). The estimated post-cracking periods of the 

frames were comparable to secant periods. These and other properties of each specimen type are 

summarized in Table 3-2. 

In Section 3.2.3, the base shear strength of the frames was estimated to be approximately Fp = 6.2 

kips. For an effective mass of 5 kips, the base shear strength coefficient was 1.2 (6.2 kips / 5 kips). 
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This value is much larger than typical base shear coefficients for reinforced concrete special 

moment frame buildings, which are permitted to be designed for base shears of 1/8 (special moment 

frame) and 1/5 (intermediate moment frame) of the shear force from a linear analysis [ASCE 7 

(2010)]. Because the goal of the experiments was to test an idea – not to represent a prototype of 

an actual structure – this large base shear coefficient was deemed acceptable. 

3.2.5. Numerical Models 

Models of both frame types were created using LARZ, a nonlinear analysis program for reinforced 

concrete structures. LARZ was developed by Saiidi and Sozen (1979), and has since been updated 

[Lopez and Sozen (1988)]. In past investigations, it has been found to have good agreement with 

experimental results [Saiidi and Sozen (1979); Lepage (1997)]. A concise list of simplifying 

assumptions used in LARZ was compiled by Rautenberg (2011). 

Each frame was modeled using the simplified trilinear moment curvature relationship shown in 

Figure 3-10. Zero slip was assumed. If slip had been assumed, the effect would have been to shift 

the moment-curvature relationship to the right (i.e. larger curvature for a given moment), resulting 

in lower flexural stiffnesses for both systems. Leaving slip out of the LARZ models allowed the 

force-drift relationships of frames to be compared against an “ideal” force-drift relationship. 

The frames were modeled as single-degree-of-freedom systems, with massless columns and a 

concentrated 5-kip mass at the top of the top beam. The modulus of elasticity of the concrete was 

assumed to be 2,700 ksi based on measurements obtained during the test program (summarized in 

Table 3-1). 

The model geometry is shown in Figure 3-13. For simplicity, the bottom beam was not modeled. 

Instead, it was assumed that the columns were fixed at their bases. The columns were modeled as 

47 in. tall, with a rigid length of 5 in. at the top (clear height = 47 in. – 5 in. = 42 in.), where  they 
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intersected with the lower half of the top beam (depth = 10 in.). The top beam was modeled as 37 

in. long, with rigid lengths of 2.5 in. at each end where it intersected with half of each column (5 

in. /2). 

LARZ was used to create reference force-drift curves.  Lateral force versus displacement curves 

for both frame types are shown in Figure 3-14. Like moment-curvature diagrams, these show the 

test specimens with similar initial stiffnesses and similar nominal strengths, but type H frames 

having lower post-cracking stiffness. 

3.3. Test Setup 

The frames were tested on the unidirectional earthquake simulator at Bowen Laboratory for Large-

Scale Civil Engineering Research. The simulator has operating limits of ±2 in. stroke,  

2 g acceleration, and 12 in./sec velocity. Its platform measures 12 ft by 12 ft and has a grid of  

1/2 in. threaded holes at 12 in. on center in both directions for fastening components. Additional 

details of the simulator as it was constructed are available in Sozen et al. (1969). 

A schematic of the test setup is shown in Figure 3-15. The earthquake simulator is oriented in 

Bowen Laboratory such that motion is in the north-south direction (left-to-right in this figure). Each 

specimen was placed at the center of the platform in the east-west direction, and 6 in. north of 

center in the north-south direction. South of each specimen, an instrumentation truss was installed. 

On the east and west sides, steel posts were installed with arms and slide bearings to limit out-of-

plane movement during testing. The following sections describe these components of the test setup. 

More details can be found in the Appendices. 
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3.3.1. Specimen and Mass 

The specimens were tested one at a time. Each specimen was positioned such that its plane was 

concentric with the axis of the hydraulic actuator driving the table. A thin layer of Hydrostone® 

gypsum cement was placed between the simulator platform and the lower beam of the frame to 

level the specimen and provide a uniform contact surface. Likewise, thin layers of Hydrostone® 

were used elsewhere on the setup on contact surfaces where components were fastened to the 

specimen. 

Each specimen was fastened to the platform using 21 steel threaded rods (Figure 3-12). Seven 

threaded rods went through the lower beam of the specimen and into threaded openings in the 

platform. These rods passed through steel angles that reacted against the top of the lower beam, 

transverse to the direction of motion (Figure 3-12 south elevation). These angles allowed two outer 

rows of threaded openings to be used to fasten the specimen to the platform. Steel pipes were placed 

beneath the angles on these outer rows. Each threaded rod on these outer rows passed through the 

angle and pipe. Nuts were tightened on each rod until contact was made between the angles and 

pipes (typically 5/6 of a turn). This created an outrigger system that provided resistance against 

out-of-plane movement. Two steel L8x8x7/8 angles were used to provide additional resistance to 

out-of-plane movement. These angles were positioned parallel to the direction of motion on the 

east and west sides of the lower beam (Figure 3-12). The angles were clamped to the sides of the 

lower beam using threaded rods. A reusable reinforced concrete mass was used in all tests. This 

mass straddled the top beam of the specimen (Figure 3-12). The mass was fastened to this beam 

using steel threaded rods and plates. 

3.3.2. Out-of-plane Bracing 

A system was devised to limit out-of-plane movement of each specimen during testing. This system 

comprised two W14x99 posts fastened to the simulator platform, one on each side of the specimen. 
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These posts were oriented with their strong axis in the direction of motion. Each post had two steel 

channels extending towards the added mass at the level of its center of gravity. At the end of these 

channels, steel angles with PTFE (Polytetrafluoroethylene, similar to Teflon®) slide bearings were 

installed. These slide bearings bore against stainless steel plates attached to the sides of the added 

mass. Before testing, the assembly was adjusted to provide a 1/8-in. gap between the bearings and 

the stainless steel plates.  

3.3.3. Instrumentation 

An instrumentation plan is shown in Figure 3-16. The specimens were instrumented with linear 

variable differential transformers (LVDTs), accelerometers, and optical tracking targets. 

Accelerometers and LVDTs were sampled at a rate of 1,000 Hz. Optical targets were sampled at a 

rate of 50 Hz by a separate system from accelerometers and LVDTs.  

Four accelerometers were installed: two on the simulator platform (northwest and south of the 

specimen), one on top of the lower beam of the specimen, and one on top of the mass above the 

north column. Ten LVDTs were installed. One LVDT was connected to the north face of the lower 

beam of the specimen to measure whether there was slip of the base of the specimen. The remaining 

nine were installed along the height of the specimen on its south side. Seven of these nine LVDTs 

were connected along the height of the south column, starting at a height of 3 in. above the top 

surface of the base beam and spaced at 6 in. thereafter. The remaining two LVDTs were used to 

measure the top displacement of the specimen. One was connected to the south face of the top 

beam; the other was connected to the south face of the mass. 

Sixty-four Optotrak optical tracking targets were placed on the west face of the test setup [Northern 

Digital (2011)]. Fifty-six of these were installed on the column faces as shown in Figure 3-16. Two 

were installed on the mass to measure the top displacement of the specimen, as well as out-of-plane 
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and vertical movement. The remaining six were installed on the simulator platform, instrumentation 

truss, and one bracing post. The main optical tracker unit was positioned approximately 13 ft west 

of the simulator platform. 

Videos were recorded by cameras positioned at two different positions (Figure 3-17). One camera 

was setup above the optical tracker to the west of the earthquake simulator. Another camera was 

setup northwest of the simulator platform. The second camera had in its field of view a LED that 

was strobed by the main data acquisition system during the test. 

3.4. Ground Motion Profiles 

All motions were adapted from the east-west component of the ground motion measured at the Sun 

Valley – Roscoe Boulevard station during the 1994 Northridge earthquake. The record was selected 

after running dozens of different scaled ground motions on the earthquake simulator with different 

added masses. Criteria for choosing this record are described in the Appendices.  

The record was scaled by dividing the original time step (0.01 sec) by 3 and by multiplying the 

accelerations by 3.9. Adjustments were then made to the frequency content of the record to 

smoothen the displacement response spectrum in the constant velocity region of Newmark’s 

idealized trilinear spectrum [Newmark (1973)]. This was to reduce peaks and valleys and make the 

linear response spectrum fit an idealized spectrum more closely [Figure 3-18(a)].  

The modification process consisted of transforming the record into the Fourier domain and 

adjusting the amplitudes at periods where peaks and valleys were observed. At periods around 

peaks, Fourier amplitudes were reduced by multiplying by a factor AF < 1 [Figure 3-18(b)]. Around 

valleys, Fourier amplitudes were multiplied by a factor AF > 1. Everywhere else, Fourier amplitudes 

were multiplied by a factor AF = 1. This process is described in detail in the Appendices. The 
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resulting linear displacement response spectrum from this modified acceleration record had peaks 

and valleys that were less prominent, lower response in the high frequency range (Figure 3-19), 

and an acceleration history that was similar to the unmodified history (Figure 3-20).  

The modified ground acceleration record was numerically integrated twice (using trapezoidal rule) 

to obtain a displacement profile with which to control the earthquake simulator. This displacement 

profile, representing the strongest motion that could be reproduced within the limits of the 

simulator, is referred to as the “100%” ground motion. It had a peak acceleration of 1 g, a peak 

velocity of 11 in./sec, and a peak displacement of 1.3 in. Plots showing the acceleration, velocity, 

and displacement  histories for this “100%” motion are shown in Figure 3-21. Weaker motions 

were obtained by multiplying the amplitude of this “100%” displacement profile by a factor less 

than one (i.e. the 25% motion was obtained by multiplying by 0.25, etc.). These displacement 

profiles, which were used to define a program to control the simulator, are referred to hereafter as 

the “ideal” profiles. 

3.5. Control of Earthquake Simulator 

The earthquake simulator was operated using a MTS FlexTest™ FT60 digital controller. This 

controller provided two channels of data. One channel reported the command displacement to the 

actuator; the other channel reported the feedback displacement. Both channels were sampled by the 

main data acquisition system at a rate of 1,000 Hz. 

3.6. Test Procedure 

Specimens were subjected to horizontal base motion parallel to their planes. Two series of tests 

were conducted  (summarized at the bottom of Table 3-1). In Series 1, specimens were each 

subjected to four ground motions of increasing relative amplitude (i.e. 25%, 50%, 75%, 100%), 
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followed by a final motion at 100%. In Series 2, specimens were subjected to four ground motions 

of decreasing relative amplitude (100%, 75%, 50%, 25%), followed by a final motion at 100%. 

These sequences were selected to measure the effect of softening on the peak drift response of the 

frames. Table 3-4 summarizes the ideal motion characteristics of these four scaled ground motions 

(i.e. peak acceleration, peak velocity, and peak displacement). Linear response spectra for the 

motions are presented in Figure 3-22 through Figure 3-24 (for 2% critical damping). In Figure 3-

24, the y-axis shows both spectral drift (Sd) in inches and spectral drift ratio (Sd/L, where L = 42 

in.) in percent. For the strongest ground motion, the expected drift ratio of a linear oscillator with 

a period between 0.1 and 0.2 sec was between 0.7% and 3%.  

The test protocol is summarized in Table 3-5. Before the first test, free vibration tests were 

conducted to determine the initial period of each frame. During these tests, the frame was struck 

multiple times by a 4-lb dead-blow hammer at the top beam parallel to the axis of motion of the 

ground motion tests. This process was repeated five times. The actuator driving the earthquake 

simulator was then pressurized, first to low pressure and then to high pressure. This pressurization 

caused the platform to jolt. This jolt provided another free vibration test with which to measure 

period. The frame was then subjected to a single ground motion. After this, the simulator was 

depressurized and another hammer test was conducted to determine the final period of the frame. 

This hammer test was taken as the measure of the starting period for the following test. The results 

from these free vibration tests are presented in Section 4.3. After each test, the frame was inspected 

for cracks. Cracks were marked, mapped, photographed, and measured using a crack-width gauge.  

These damage maps are presented in Section 4.6.
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CHAPTER 4. OBSERVED RESPONSE 

Each test was designated using a combination of letters and numbers. The first letter and number 

indicate the frame type (either C or H) and Series (either 1 or 2). The second number, separated by 

a hyphen from the first, denotes the relative amplitude of the ground motion. For example, C1-50 

was the test of frame C1 at 50% of the maximum ground motion, and H2-100 was the test of frame 

H2 at 100% of the maximum ground motion. For the second test in a series at 100% of the 

maximum motion, the number 2 was appended to the end in parenthesis. For example, H2-100(2) 

denotes the second time frame H2 was subjected to the motion at 100%. 

4.1. Data Processing 

Different methods were used to process measurements from the main data acquisition system and 

Optotrak. These processing methods are described in the following sections. 

4.1.1. Main Data Acquisition System 

After applying zero offsets and calibration constants to the raw data, all records were smoothed 

using an unweighted 5-point moving average. That is, for a given measurement x recorded at time 

i, the smoothed value of this measurement y was taken as: 

yi =
1

5
(xi−2 + xi−1 + xi + xi+1 + xi+2) Equation 4-1 

This was similar to applying to a simple lowpass filter. A similar method was used by Otani and 

Sozen (1972), who used a combination of weighted 3-point and 11-point moving averages when 

processing data.  
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After smoothing, records from the accelerometers were filtered using a fourth-order Butterworth 

bandpass filter with highpass and lowpass frequencies of of 0.5 Hz and 60 Hz, respectively. The 

highpass frequency (0.5 Hz) was selected because the minimum frequency measurable by the 

accelerometers was 0.5 Hz. The lowpass frequency (60 Hz) was selected based on previous 

experience operating the earthquake simulator (described in the Appendices). During trial runs a 

lowpass filter of 60 Hz was observed to reduce noise caused by rattling of the components of the 

simulator platform, and a highpass filter of 0.5 Hz was found to reduce signal drift.  

4.1.2. Optotrak 

Optotrak output consists of arrays of x, y, and z coordinates for each target at each point in time. 

The measured coordinates were transformed to the experiment coordinate system illustrated in 

Figure 4-1. This transformation required three transformation vectors: one in-plane, one out-of-

plane, and one vertical. 

The out-of-plane vector shown in Figure 4-1 was perpendicular to a plane fitted (using least 

squares) to include all targets on the columns. This vector was normalized to a unit length. 

The in-plane vector was derived using the targets attached to the simulator platform (Figure 3-15). 

This vector was defined using the position of each target on the platform relative to its starting 

position. First, the magnitudes of relative displacements were calculated for each target at every 

point in time:  

Drel,i = √(xUi − xU0)
2 + (yUi − yU0)

2 + (zUi − zU0)
2 ∗ sign(yUi − yUo) Equation 4-2 

 

where {xUi,yUi,zUi} are untransformed coordinates (i.e. Optotrak coordinate system) of a target at 

the ith time step. The sign was based on y-axis relative displacement because the Optotrak y-axis 

was nearly parallel to the experiment in-plane axis. These signed relative displacements were 
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processed to find the two points with (a) opposite sign, and (b) the smallest difference in absolute 

value (as a percent of the relative displacement). That is, these two points satisfied the following 

criteria: 

 
Drel,n

Drel,m
< 0 

Equation 4-3 

 
|Drel,n|−|Drel,m|

(|Drel,n|−|Drel,m|)/2
    is minimized 

Equation 4-4 

The vector between these two points was normalized to a unit length. This process was repeated 

for the three targets connected to the simulator platform to obtain three in-plane unit vectors. The 

average of these unit vectors was used as the in-plane vector.  The vertical vector was defined as 

the cross product of the in-plane and out-of-plane unit vectors. With all three vectors obtained, 

Optotrak measurements were transformed to the experiment coordinate system using a 

transformation matrix: 

 𝑇𝑟𝑎𝑛𝑠 =

[
 
 
 
𝑉𝑒𝑟𝑡𝑖 𝑉𝑒𝑟𝑡𝑗 𝑉𝑒𝑟𝑡𝑘 0

𝐼𝑃𝑖 𝐼𝑃𝑗 𝐼𝑃𝑘 0

𝑂𝑂𝑃𝑖 𝑂𝑂𝑃𝑗 𝑂𝑂𝑃𝑘 0

0 0 0 1]
 
 
 
 Equation 4-5 

where <Verti, Vertj, Vertk> is the vertical unit vector, <IPi, IPj, IPk> is the in-plane unit vector, and 

<OOPi, OOPj, OOPk> is the out-of-plane unit vector. Relative positions and movements of each 

target in the experiment coordinate system were then calculated by subtraction. 

In Figure 4-3, the ideal platform displacement is compared with in-plane displacement measured 

by Optotrak and feedback from the MTS controller for test C2-100. The MTS feedback was from 

an internal LVDT in the hydraulic ram that drove the simulator platform. This figure shows that 

measurements obtained using Optotrak were consistent with those recorded by the main data 

acquisition system and with the ideal profile. 
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4.2. Ground Motions 

It was critical that the ground motions in the test program be reproducible. That is, the ground 

motion at 25% for frame C1 needed to be the same as the ground motion at 25% for the other 

frames (and likewise for other motions). In this section, the reproducibility of the motions is 

discussed. 

4.2.1. Ground Motion Histories and Summary Properties 

Peak ground acceleration (PGA) was computed as the average of the maximum absolute 

accelerations recorded by the three accelerometers on the base of the test setup. In two test runs 

(C1-25, C1-50), the accelerometer attached to the lower beam of the specimen malfunctioned and 

was excluded from this averaging process. Velocity histories were obtained for each accelerometer 

by integrating the acceleration histories with respect to time. The average of the peak velocities 

from these velocity histories was taken as the peak ground velocity (PGV) for that test run. Peak 

ground displacement (PGD) was taken as the peak displacement from the MTS feedback channel.  

Values of measured PGD, PGV, and PGA are presented in Table 4-1 for all tests alongside target 

values (i.e. expected based on the input motion). Measured PGDs were comparable to target PGDs, 

and were consistent for tests of the same ground motion amplitude (i.e. tests at 25% were similar, 

tests at 50% were similar, and so forth). Similarly, PGVs computed from acceleration histories 

were comparable to target PGVs and were consistent for tests of the same ground motion amplitude. 

Measured PGAs were consistent for tests of the same ground motion amplitude, but were much 

larger than target PGAs (as much as 3.7 times larger). The large measured PGAs were the result of 

high frequency components in the measured acceleration response, particularly with frequencies 

from 15 and 50 Hz.  
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These high frequency components can be attributed to several causes: dynamic modes of the 

earthquake simulator, mechanical vibrations (i.e. “rattle”) caused by interaction of simulator 

components, and so forth. By reducing the lowpass frequency of the bandpass filter, these high 

frequency components can be filtered out. Examples of the effect on PGA and PGV of reducing 

the lowpass cutoff frequency are summarized in Table 4-2. Statistics for these data are presented 

in Figure 4-4 (for PGA) and Figure 4-5 (for PGV). These figures show that PGA decreased when 

using lower lowpass cutoff frequencies, but PGV was relatively insensitive to changes in lowpass 

cutoff frequencies (within the range considered). This is because sharp (i.e. short duration, high 

amplitude) pulses in an acceleration history have little effect on the corresponding velocity history 

obtained from integration. Table 4-2 also shows that PGAs were consistent for tests of the same 

ground motion amplitude, regardless of the lowpass frequency chosen. Because they required less 

alteration to the measured data (i.e. less filtering), the values of PGA and PGV obtained after 

applying a bandpass filter from 0.5 to 60 Hz are used throughout the remainder of this document 

(as reported in Table 4-1).  

Overall, comparisons of PGD, PGV, and PGA indicate that the ground motions to which the frames 

were subjected were consistent throughout the test program.  

4.2.2. Linear Response Spectra 

The acceleration histories recorded at the base of the test setup were used to compute linear 

response spectra for each test (for 2% damping). The average displacement response spectrum for 

each test is presented in Figure 4-6 through Figure 4-10 alongside the target spectra. Only 

displacement response spectra are shown because the focus of this investigation is drift response.  

One consistent feature of all spectra is amplification of response compared with the target response 

spectra. In the range of periods of interest (0.1 sec to 0.4 sec), this amplification ranged from 10% 
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to 23% for ground motion amplitudes ranging from 25% to 100%. The amplification is higher in 

the low period (< 0.1 sec) range. Similar amplification at low periods (high frequencies) has been 

observed in previous tests on this earthquake simulator and can be attributed to the displacement 

control method used [Otani and Sozen (1972)]. Suppose the displacement control signal was 

expanded into a Fourier series. The corresponding acceleration signal would be the Fourier series 

of the displacement signal multiplied by circular frequency squared. As a result, if there is noise in 

the displacement signal, the corresponding noise in the acceleration signal is proportional to the 

noise in the displacement signal multiplied by the circular frequency squared. This means that high-

frequency noise is amplified by larger factors than low frequency noise. This accounts for the high-

frequency noise observed during both trial runs of the earthquake simulator and tests of the 

specimens. 

The coefficients of variation (CoVs) of the displacement response spectra were taken as a measure 

of repeatability of the tests. Using the motion at 25% as an example, this process was as follows: 

for each test (C1-25, H1-25, C1-25, and C2-25), calculate an average displacement response 

spectrum by averaging the spectra obtained from the three platform accelerometers at each period. 

For the resulting four average displacement response spectra, calculate the mean and standard 

deviations at each period. Next, calculate the coefficient of variation of the spectra at each period 

as the standard deviation divided by the mean. Table 4-3 presents a summary of average CoVs for 

each motion. The CoV is larger for low periods. This can be attributed to the lower denominator 

(spectral displacement) for weaker ground motions and amplification of high frequency noise. For 

periods ranging from 0.1 sec to 0.4 sec (the range of interest in this investigation), the CoV ranged 

from 7% for the weakest ground motion to 4% for the strongest ground motion. This indicates that 

the motions to which the frames were subjected were consistent. 
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4.3. Free Vibration Tests 

Hammer tests and platform jolts were both used to measure the period of the frames, as described 

in Section 3.6. Period was measured by counting the zero crossing rate of the displacement response 

measured at the top of the frame. Initial periods are summarized in Table 4-4 alongside the peak 

displacement in the interval over which period was calculated. Other periods (pre- and post-test) 

are listed in the respective summary tables for each frame (Table 4-5 through Table 4-8). 

4.4. Specimen Response Histories 

Summaries of peak input motion characteristics and test specimen responses are presented in Table 

4-5 through Table 4-8. These summaries include PGA, PGV, and PGD, as well as peak in-plane 

response at the top of the frame (acceleration, velocity, and drift). Peak in-plane drift, out-of-plane 

displacement, and vertical displacement for all tests are summarized in Table 4-9. 

4.4.1. In-Plane Motion 

The in-plane responses of the frames were measured using Optotrak targets attached to the mass, 

two LVDTs (one attached to the top girder and the other attached to the mass), and an accelerometer 

atop the mass. Response histories for each frame obtained from these sensors are presented in 

Figure 4-11 through Figure 4-30.  

These figures are organized by frame and from weakest to strongest ground motion. The following 

ranges correspond to each frame: 

- Specimen C1: Figure 4-11 – Figure 4-15 

- Specimen C2:   Figure 4-16 – Figure 4-20 

- Specimen H1:  Figure 4-21 – Figure 4-25 

- Specimen H2:  Figure 4-26 – Figure 4-30 
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The acceleration histories shown in these figures were obtained from the top accelerometer, and 

are absolute accelerations. Some of these acceleration histories have high frequency components 

and sharp peaks. The high frequency components can be attributed to high frequency components 

in the motion produced by the simulator, as discussed in Section 4.2.1. The sharp peaks can be 

attributed to collisions between the mass and out-of-plane bracing during testing. Both had little 

effect on the velocity histories, which were obtained by integrating relative accelerations (absolute 

acceleration minus base acceleration). The displacement histories were obtained from the 3-in. 

LVDT connected at the top of the test structure.  

As a check, the displacement histories obtained from the LVDTs were differentiated to generate 

velocity histories to compare with the velocity histories obtained by integrating relative 

acceleration. One example of this is shown in Figure 4-31. Overall, the velocity histories obtained 

using these two methods showed good agreement, lending credibility to the measurements obtained 

using both sensor types. 

4.4.2. Curvature Distributions 

Column curvature distributions were calculated for selected relative peak displacements throughout 

the response of each frame. This was done to aid in understanding how the frames deformed as a 

result of lateral demand from the ground motions. Plots showing column curvature distributions at 

selected relative peak displacements are presented alongside displacement response histories in 

Figure 4-32 through Figure 4-35 for the first motion at 100%. Because the mass overhang covered 

the top beam, it was not possible to place Optotrak targets on this beam with which to measure 

strains at the tops of the columns. It is expected that unit curvature at this location was opposite in 

sign but similar magnitude to the corresponding unit curvature at the bottom. 



   36 

  

3
6

 

Unit curvatures were calculated using the relative movement of the Optotrak targets attached to 

each column face. Figure 4-36 illustrates Optotrak targets on a column in the undeformed and 

deformed states. In the undeformed state, lines AB and CD lie parallel to each other and 

perpendicular to lines AD and BC. As the top of the frame displaces laterally, line BC contracts 

and line AD extends. Unit curvature was calculated by summing the mean compressive strain on 

line BC with the mean tensile strain on line AD and dividing by the initial perpendicular distance 

between these two lines. 

4.4.3. Out-of-Plane Motion 

Out-of-plane motion was observed during all tests. For the first test at 100% of each frame, out-of-

plane displacement of the mass (measured by two Optotrak targets attached to the mass) is plotted 

alongside in-plane displacement in Figure 4-37 through Figure 4-40. The maximum measured was 

approximately 1/4 in. 

4.4.4. Vertical Motion 

As the mass displaced laterally in-plane it also experienced vertical displacement. This was the 

result of crack opening in the columns. The two Optotrak targets attached to the mass provided 

information about the magnitude of this vertical displacement. For the first test at 100% of each 

frame, Figure 4-41 through Figure 4-44 show the average vertical movement of the two targets 

connected to the mass alongside the top in-plane displacement. It should be noted that the 

earthquake simulator platform experiences vertical movement during testing (up to approximately 

1/32 in. for the strongest motions in the test program). This motion has been removed from these 

vertical displacements (i.e. they are relative displacements). For the strongest motions in the test 

program, the peak vertical displacement of the mass was on the order of 1/8 in. 
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4.5. Inertial Force versus Drift Envelopes 

The development of force-drift envelopes is described below. Starting with the equation of motion 

for a single-degree-of-freedom (SDOF) system subject to base acceleration:  

mẍ + cẋ + kx = −z̈ Equation 4-6 

where  m = effective mass of the system (Wme divided by gravitational acceleration, g)  

 c = damping constant of the system 

 k = stiffness of the system 

 x = relative displacement of oscillator (dots indicate differentiation with respect to time t) 

 z̈ = base acceleration 

This equation was rearranged to obtain: 

m(ẍ + z̈) + cẋ + kx = 0 Equation 4-7 

where (ẍ + z̈) is absolute acceleration. At points of zero velocity (�̇�=0), displacement is maximized 

and this equation simplifies to: 

m(ẍ + z̈) + kx = 0 |ẋ=0  Equation 4-8 

The first term is inertial force in the system. The second term contains relative in-plane 

displacement (x, or drift). This equation can be restated as: 

Wme(ẍ + z̈)⏟      
F

+ kx = 0 |ẋ=0  →  F + kx = 0 |ẋ=0 Equation 4-9 

Using Equation 4-9, inertial force versus drift plots were created for each test. The y-axis on these 

plots was calculated as the product of effective mass and absolute acceleration. The x-axis was drift 

measured by the top 3-in. LVDT. 

For each frame, an inertial force versus drift envelope was obtained by overlaying the force-drift 

curves from each of the five tests and connecting the uppermost points. These envelopes are 

presented in Figure 4-45. They are also presented beside force-drift curves obtained using LARZ 

in Figure 4-46 (C1 and C2) and Figure 4-47 (H1 and H2). Overall, type C frames showed good 
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agreement with estimates, whereas type H frames had lower lateral stiffness and resistance than 

expected. These obervations are discussed in more detail in Chapter 5. 

4.6. Damage 

After each test, cracks were marked and mapped. Crack maps of the specimens are presented in 

Figure 4-48 through Figure 4-51. These figures also show the maximum crack width measured on 

both columns following each ground motion. An account of damage propagation in each frame 

follows. 

4.6.1. Frame C1 (Figure 4-48) 

After the initial motion at 25%, flexural cracks were visible along both columns, with closer spacing 

near column ends. All cracks were less than 0.005 in. wide. After the subsequent motion at 50%, 

additional cracks were observed. These new cracks were located primarily near the ends of the 

columns. The maximum crack width measured after this test was 0.005 in. During the motion at 

75%, fewer new cracks formed. Cracks that formed were typically extensions of cracks from the 

previous two motions. Existing cracks at the column ends were as wide as 0.015 in. after this test, 

and some spalling was visible. After the first motion at 100%, almost no new cracks appeared, but 

existing cracks at the column ends were as wide as 0.035 in. and some cracks along the length of 

the column were as wide as 0.020 in. Again after the second motion at 100%, almost no new cracks 

appeared. The cracks that appeared connected existing cracks from previous motions. Additional 

spalling was visible at the column-beam interface. The largest crack width was 0.035 in. 

4.6.2. Frame C2 (Figure 4-49) 

After the initial motion at 100%, nearly all the cracks that would form for the remainder of the test 

series were visible. Like frame C1, flexural cracks were distributed along the length of both 

columns, with closer spacing near the ends. The maximum crack width was 0.025 in. (at the colum 
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ends). During the subsequent motion at 75%, some new cracks formed, most of which were 

extensions of cracks from the previous run. Spalling was also observed at the column ends. The 

widest crack remained 0.025 in. at the same location where the widest crack was observed after the 

previous test. Elsewhere, crack widths were observed to be wider. After the test at 50%, few new 

cracks formed. Most new cracks were extensions of existing cracks. The maximum crack width 

increased to 0.030 in. and some other cracks on the columns widened to as much as 0.025 in. After 

the motion at 25%, only a single new crack was visible. The maximum crack width narrowed to 

0.025 in. After the second and final motion at 100%, the maximum crack width increased again to 

0.030 in.  

4.6.3. Frame H1 (Figure 4-50) 

After initial motion at 25%, horizontal cracks were observed at the top and bottom of each column 

(at the column ends). A horizontal crack also was observed on the south side of the south column. 

The maximum crack width was 0.005 in. During the subsequent motion at 50%, existing cracks at 

the top and bottom of each column widened and extended, and some spalling was observed. The 

maximum crack width increased to 0.010 in. No new cracks were observed along the length of the 

columns. After the motion at 75%, a few new cracks were observed, once again only at the ends of 

the columns. The maximum crack width increased again to 0.015 in. After the first motion at 100%, 

spalling was observed at the column ends. The maximum crack width remained 0.015 in. After the 

second and final test at 100% no new cracks were observed, although some spalling was visible. 

The maximum crack width increased to 0.020 in. 

4.6.4. Frame H2 (Figure 4-51) 

After the initial motion at 100%, cracks were observed only at the top and bottom of each column, 

with a maximum width of 0.015 in. Spalling was also visible in these regions. Following the 

subsequent test at 75%, two new cracks were observed in the same regions. The maximum crack 
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width increased to 0.020 in. After the next test at 50%, additional spalling at the column-beam 

intersection was observed and the maximum crack width narrowed to 0.010 in. After the next 

motion (25%), additional spalling was observed (in fact, one Optotrak target on the north column 

was found to be on a dislodged piece of concrete). The maximum crack width was found to be 

wider at one location (0.015 in.) although elsewhere the crack widths remained nearly the same. 

After the second and final ground motion at 100%, additional spalling was observed and the 

maximum crack width increased to 0.020 in.
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CHAPTER 5. DISCUSSION OF OBSERVED RESPONSE 

The objective of this investigation was to test the hypothesis that two frames with (1) similar initial 

stiffness, (2) similar strength, and (3) different post-cracking stiffnesses, would reach comparable 

peak drift during the same ground motion. In Sections 5.1 through 5.3, the stiffnesses and strengths 

of the test frames are compared. In Section 5.4, the resistance mechanisms of the frames are 

examined. In Section 5.5, the hypothesis that initial stiffness drives peak drift is evaluated by 

comparing the drift responses of: (1) type C frames with type H frames, (2) Series 1 frames with 

Series 2 frames, and (3) the first motion at 100% with the second motion at 100% for each frame. 

5.1. Initial Stiffness 

Because the frames had the same mass, initial period was used as a measure of initial stiffness. 

Initial period was calculated from the displacement response at the top of each frame for three 

different cases: (1) hammer tests, (2) testing platform jolts, and (3) the initial response of each 

frame to its first ground motion. The first two cases are referred to as “small-displacement” periods 

because the maximum drift reached during these cases was 0.004 in. (0.01% drift ratio). The last 

case is referred to as a “large-displacement” period because the maximum drift reached during this 

case was 0.035 in. (0.08% drift ratio). Peak drifts and calculated initial periods for these three cases 

for each frame are summarized in Table 4-4. 

On average, small-displacement periods were 0.15 sec for type C frames and 0.12 sec for type H 

frames. Average large-displacement periods were 0.19 sec for type C frames and 0.18 sec for type 

H frames. The initial period of the frames was calculated to be 0.1 sec based on gross cross-



   42 

  

4
2

 

sectional properties and fixed-end conditions (Section 3.2.4). For all frames, calculated initial 

period underestimated measured initial period (using both small- and large-displacements). 

Similar underestimates of initial period have occurred for past dynamic tests of reinforced concrete 

structures. Calculated and measured initial periods for past tests of SDOF reinforced concrete 

structures are summarized in Table 5-1. Calculated initial periods in this table are based on gross 

cross-sectional properties. Measured initial periods in this table are from free vibration tests, which 

would be comparable to the small-displacement methods in this investigation (which included free 

vibration after either a hammer impact or platform jolt). For all tests in this table, the average ratio 

of measured-to-calculated initial period was 1.23. For the tests most similar to the tests conducted 

in this investigation (Gulkan’s portal frames), this ratio was as high as 1.9, with an average of 1.64.  

Underestimates of initial period have also been observed for multi-degree-of-freedom systems. In 

Table 5-2 and Table 5-3, calculated and measured initial periods are listed for past studies of 

reinforced concrete systems with and without walls. In these tables, calculated period was based on 

gross cross-sectional properties (i.e. uncracked sections). Details of the procedures used to calculate 

period are discussed in Lepage (1997). For structures with walls, the average ratio of measured-to-

calculated initial period was 1.26 and the maximum was 1.76. For structures without walls, these 

ratios were 1.17 and 1.63. Overall, the underestimates in this investigation fell within ranges 

observed in past investigations of both SDOF and MDOF systems. 

The mentioned systematic underestimation of initial period can be attributed to two causes: 

underestimating effective mass, or overestimating lateral stiffness (in Equation 3-10). Because the 

mass was known from weighing components before testing, overestimating the stiffness of the 

system is a more likely cause. The as-built frames and test setup may have been less stiff than 

expected because of: (a) flexibility of connections and the testing platform, (b) indentation of the 
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column into the beam at small deformations, and (c) fine cracks that may not have been visible to 

the eye. Regarding item (a), it is impossible to achieve perfect fixed end conditions. The 

components used to fasten the frames to the platform and the added mass were not rigid. Flexibility 

of these fastening components would have permitted deformation of the top and bottom beams 

which would have reduced the lateral stiffness of the system. This has been observed in past 

investigations of RC columns [Matamoros (1999)]. Because the same setup was used for all tests, 

any contributions of the flexibility of the setup to the flexibility of the system would have been 

similar for all tests. Regarding item (b), as the columns deformed, the compressed regions at their 

ends bore against the concrete in the beams. Being a compressible material, the concrete at these 

sections would have deformed as a result, permitting more drift and reducing the lateral stiffness 

of the system. Regarding item (c), it is possible that volumetric shrinkage of the concrete could 

have induced fine cracks that were invisible to the eye. Although care was exercised when moving 

the frames, it is also possible that fine cracks could have formed when the frames were tilted up to 

vertical from their sides (the frames were cast on their sides), or when the frames were moved 

around the laboratory. Any of these causes could have reduced the initial stiffnesses of the systems. 

Overall, although calculated initial periods differed from measured initial periods, when using the 

same measurement method (i.e. small- or large-displacement) the measured initial periods of the 

two frame types were comparable. For small-displacement methods (<0.004 in.), the periods of 

type C and H frames were within 25% of one another. For large-displacement methods (<0.035 

in.), the periods were within 5% of one another. 

5.2. Post-Cracking Stiffness 

At a lateral inertial force of approximately 1 kip, the force-drift envelopes for three out of four 

frames (C1, H1, and H2) showed a sudden reduction in tangential stiffness (Figure 4-46 and Figure 

4-47). Based on this sudden reduction in stiffness, this point is thought to mark the onset of cracking 
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in the columns and is referred to as the “apparent” cracking point. The force at apparent cracking 

was 1.7 times lower than the force that would have been calculated based on a modulus of rupture 

of fr = 850 psi (Section 3.2.1), but was consistent with estimates from FLECHA. One plausible 

explanation for the lower apparent cracking force is that there were too few points with low drifts 

in the force-drift envelope to capture the cracking moment. For example, in the envelope for type 

C frames, points jump from approximately 0.02 in. or less to nearly 0.1 in. Another plausible 

explanation is that fine cracks at a cross-section may have reduced the magnitude of bending 

moment required to crack the section (i.e. b or h in the estimate of Mcr may have been less than 

gross dimensions as a result of fine cracks). Regardless of the source of the difference between 

calculated and apparent force at cracking, the test specimens generally showed a reduction of 

stiffness at the same point (1 kip).  

The post-cracking stiffnesses of the frames can be estimated by drawing a secant line from the point 

at cracking (approximately 0.02 in.) to a second point before yielding was expected. Based on the 

LARZ models (Figure 3-14), yielding was expected to start in type C frames at 0.5 in. and in type 

H frames at 0.6 to 0.7 in. If the second point is set to 0.4 in. (below both of these), then the average 

post-cracking stiffness of type C frames was approximately 10.7 kip/in. and the average post-

cracking stiffness of type H frames was 4.4 kip/in. (nearly 60% lower than type C). Based on 

moment-curvature diagrams created using FLECHA, the post-cracking stiffness of type H frames 

was expected to be no more than 40% less than type C frames. This means that the as-tested type 

H frames had lower post-cracking stiffness than was estimated assuming perfect bond. One possible 

reason for the added flexibility in type H frames is slip of longitudinal reinforcement. This is 

discussed in Section 5.4.2. 
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5.3. Strength 

The two frame types were designed to have equal flexural strengths, but because no frames were 

tested to failure, it is impossible to know the strengths of the frames. On average, type C frames 

reached a peak resisting force of 7.9 kips, whereas type H frames reached an average peak resisting 

force of only 3.8 kips (Figure 4-45). It is possible that type H frames could have reached higher 

resisting force at higher drifts, but within the range of drifts reached, type H frames reached just 

half the force of type C frames.  

5.4. Lateral Resistance 

5.4.1. Type C 

The LARZ estimates represent what would be computed assuming perfect bond of reinforcing steel 

with surrounding concrete. In the range of drifts reached, the resisting forces of type C frames were 

similar to the estimated force from LARZ (Figure 4-46). Initial and post-cracking stiffnesses of the 

two were comparable to a drift of 0.3 in., after which measured resisting forces were 10–20% lower 

than estimated resisting forces. Although the comparison is not perfect, these similarities suggest 

that the assumption of perfect bond in LARZ models was a reasonable representation of the 

behavior of type C frames. This is supported by curvature distributions and crack patterns in type 

C frames. Curvature distributions derived from measurements for the first tests at 100% of type C 

frames are presented alongside displacement response histories in Figure 4-32 and Figure 4-33. 

These curvature distributions are similar in shape to the expected curvature distributions shown in  

Figure 3-11(b). Differences between derived and expected curvature distributions can be attributed 

to the formation of cracks at discrete locations that were not always between Optotrak targets. The 

fact that the derived curvature distributions were similar in shape to expected distributions indicates 

that type C columns experienced deformations along their length during testing. The crack maps in 
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Figure 4-48 and Figure 4-49 support this idea, with transverse cracks along the length of the 

columns.  

5.4.2. Type H 

Force-drift envelopes for type H frames are presented alongside LARZ estimates in Figure 4-47. 

Until cracking (marked by a sudden reduction in stiffness at approximately 1 kip), measurements 

and estimates from LARZ showed good agreement. But after cracking, the measured force in type 

H frames was 50% or less of the force estimated by LARZ, which assumes perfect bond. One 

plausible explanation is that the undeformed, high-strength steel bars slipped along the length of 

the column. Slip of the high-strength bars would have reduced the stiffness of type H frames to less 

than what was expected based on perfect bond. This idea is examined in detail in this section. 

Bars in type H frames were corroded to roughen their surfaces in order to improve bond. They were 

also anchored into the beams using mechanical assemblies. Along the 21 in. length from the 

expected point of inflection at column mid-height to the joint face, to reach yield a 1/4 in. diameter 

bar with a yield stress of approximately 160 ksi would be required to develop a uniform bond stress 

on the order of 500 psi. At fracture, a uniform bond stress of nearly 600 psi along the same length 

would have been required. In past tests, undeformed reinforcing bars have been observed to reach 

maximum bond stresses of 450 psi, with slip initiating at approximately 270 psi [Abrams (1913)]. 

The estimated uniform bond stresses at yield and at ultimate (500 psi, 600 psi) were 10% and 33% 

more than this maximum value (450 psi), and 80% and 120% more than the value at which slip can 

be expected to initiate (270 psi). Slip would have resulted in the additional flexibility observed 

during the tests. 

Curvature distributions and damage patterns support the idea that high-strength bars slipped and 

subsequently reduced the post-cracking stiffness of type H frames below what would be calculated 
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assuming perfect bond. Unlike type C frames – in which curvature varied along the height of the 

columns – in type H frames there was almost no curvature along the columns except at the ends 

(Figure 4-34 and Figure 4-35). Similarly, cracks were observed only at the ends of the columns 

(Figure 4-50 and Figure 4-51). This suggests that type H frames worked similar to concrete 

elements with unbonded reinforcement, except that friction along the reinforcement in type H 

frames is likely to have been relatively high. As a check, virtual work was used to estimate the peak 

force reached by type H frames within the displacement range reached.  

If a portal frame is subjected to a lateral force at the top F causing an in-plane displacement Δ, then 

the work done by this force is: 

Wext = F∆ Equation 5-1 

If yielding is reached at the column ends (Figure 5-1), then the internal work is: 

Wint = 4Mpθ Equation 5-2 

where 4 is the number of plastic hinges (2 columns x 2 hinges each), Mp is the plastic moment of 

the columns, and θ is rotation of each hinge. Equating internal work to external work (Wext = Wint) 

results in the following relationship: 

FΔ = 4Mpθ Equation 5-3 

The term θ can be expressed as a function of in-plane displacement as θ = Δ/L, where L is the 

length (height) of the columns. Substituting this into Equation 5-3, and solving for F results in: 

F =
4Mp

L
 Equation 5-4 

This equation overestimates the peak resisting force reached by type H frames by 50% within the 

range of displacements reached. If the steel is assumed to slip along the height of the column (Figure 

5-2), then the total elongation of each bar is nearly: 

e = θ(d + d′) Equation 5-5 
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where d is the depth to the farthest layer of longitudinal reinforcement and d’ is the depth to the 

closest layer of longitudinal reinforcement. 

Assuming the bars remain elastic, the potential energy associated with this elongation can be 

expressed as: 

U = 1/2 ∗
EsAb
L

∗ e2 Equation 5-6 

where  U = elastic potential energy 

Es = modulus of elasticity of steel 

Ab = area of a bar 

L = height of the column 

e = elongation of the steel bars  

Substituting elongation (Equation 5-5) into Equation 5-6 yields: 

U = 1/2 ∗
EsAb
𝐿

∗ [θ(d + d′)]2 Equation 5-7 

This is the potential energy in each bar as a function of rotation angle. There are 2 bars per layer of 

reinforcing steel, 2 layers of steel per column, and 2 columns per frame, so this equation must be 

multiplied by 8 to obtain the total internal work of the frame. Again, θ=Δ/L can be substituted to 

express internal work as a function of drift instead of rotation: 

Wint,slip = 4 ∗
EsAb
𝐿

∗ [
Δ

L
(d + d′)]

2

 Equation 5-8 

Equating internal work with external work (Wint,slip = Wext = FΔ), and solving for F results in: 

F = 4 ∗
EsAb
LΔ

∗ [
Δ

L
(d + d′)]

2

 

    

F = 4 ∗
EsAbΔ

L3
∗ (d + d′)2 

 

Equation 5-9 
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Assuming: 

 Es = 30,000 ksi (based on coupon tests) 

 Ab = 0.051 in.2 = π/4*(0.255 in.)2 (area of each bar) 

 L = 42 in. (height of columns) 

 d = 4 in., d’ = 1 in. (depths to each layer of steel) 

 Δ = 1.6 in. (the peak drift reached by type H frames) 

yields an estimated lateral resistance of 3.3 kips. This is just 10% less than the measured resistance 

at this drift (3.65 kips). Although this estimate is simplistic, it supports the plausibility that high-

strength longitudinal steel in type H columns slipped.  

The purpose of these experiments was to compare two frames with similar initial stiffnesses, but 

where one frame (type H) had approximately half the post-cracking stiffness of the other (type C). 

Bar slip caused the post-cracking stiffness of type H frames to be less than what was calculated 

assuming perfect bond. As a result, the hypothesis was tested in a more demanding scenario than it 

would have had slip not occurred. 

5.5. Drift Response  

In the following sections, dynamic responses of the frames are compared using the following 

metrics: (a) peak drifts, (b) mean effective periods, and (c) counts of the number of excursions past 

a given drift ratio. Side-by-side comparisons of drift histories are illustrated in the following 

figures: 

(1) Type C vs. Type H: 

 C1 vs. H1: Figure 5-3 – Figure 5-7 

 C2 vs. H2: Figure 5-8 – Figure 5-12 
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(2) Series 1 vs. Series 2: 

 C1 vs. C2: Figure 5-13 – Figure 5-17 

 H1 vs. H2: Figure 5-18 – Figure 5-22 

(3) First vs. Second motion at 100% 

 C1, C2, H1, H1:  Figure 5-23 – Figure 5-26  

Peak drifts reached during each test are compared in Figure 5-27 through Figure 5-30. Two types 

of drift are presented in these figures: in-run and cumulative. In-run drift is measured relative to 

the position of the frame at the start of each test. It does not include permanent drift from previous 

motions. Cumulative drift is measured relative to the initial position of each frame before the first 

test of that frame. It includes permanent drift from previous motions. Percent differences in peak 

drifts for each comparison (C vs. H, Series 1 vs. 2, first vs. second motion at 100%) are summarized 

in Table 5-5 through Table 5-7. 

Mean effective periods were estimated as two times the duration of motion divided by the number 

of zero crossings (from the 3-in. LVDT). For all tests, the duration of motion was defined from t = 

1.5 sec to 11 sec. This corresponds to 0.5 sec after the ground motion began to when the ground 

motion ended (Figure 3-21). The values of mean effective period obtained are listed in Table 5-4 

and are plotted in Figure 5-31.  

Plots of the number of excursions beyond a given drift ratio provide information about how many 

cycles each frame experienced beyond different drifts. These “excursion plots” can be used to see 

whether two frames that reached similar peak drifts also reached a similar number of cycles at other 

drift ratios, or if one consistently reached smaller (or larger) drifts than the other throughout the 

rest of its response. Excursion plots are presented for each ground motion in Figure 5-32 through 

Figure 5-36. The x-axis in these plots is in-run drift ratio, and the y-axis is the number of excursions 

a frame experienced past that drift ratio. 
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5.5.1. Type C vs. Type H 

On average, mean effective periods of type H frames were approximately 30% longer than type C 

frames in the same test series. The longer effective period of type H frames may be attributed to 

their lower post-cracking stiffness caused by: (a) the reduced longitudinal reinforcement ratio, and 

(b) bar slip. This increase in effective period did not lead consistently to increases in peak drift (as 

shown in Figure 5-27 and Figure 5-28), but did lead to fewer displacement cycles as shown in the 

excursion plots. Based on these findings, the hypothesis that a reduction in post-cracking stiffness 

would not lead to consistently larger drifts was supported. 

5.5.2. Series 1 vs. Series 2 

In the previous section, the effect on drift response of reduced post-cracking stiffness caused by 

lower longitudinal reinforcement ratio and bar slip was discussed. In this section, the effect of 

damage from previous ground motions on drift response is examined. This is done by comparing 

the response of frames of the same type, but from different series. These comparisons are organized 

by the relative amplitude of the ground motions, from 25% to 100%. A summary of the load 

histories of Series 1 frames and Series 2 frames before each ground motion is presented below: 

 25%: Series 1 frames were uncracked, Series 2 frames had experienced three stronger 

motions (100%, 75%, 50%) 

 50%: Series 1 frames had experienced one weaker motion (25%), Series 2 frames had 

experienced two stronger motions (100%, 75%) 

 75%: Series 1 frames had experienced two weaker motions (25%, 50%), Series 2 frames 

had experienced one stronger motion (100%) 

 100% (1): Series 1 frames had experienced three weaker motions (25%, 50%, 75%), Series 

2 frames were uncracked 

 100% (2): both series had experienced the same ground motions, but in different order 
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5.5.2.1. 25% Motion 

Series 1 frames experienced no ground motions before this test. In contrast, Series 2 frames had 

experienced three stronger ground motions (100%, 75%, and 50%) and sustained damage as a result 

of these motions. This damage included cracking, and sometimes also included spalling and 

permanent drift. 

Drift histories from tests C1-25 and C2-25 are compared in Figure 5-13. On average, frame C2 

responded with a longer period than frame C1 (0.42 sec vs. 0.28 sec). This can be attributed to 

damage from the previous test runs, which led to softening of frame C2. Drift histories from tests 

H1-25 and H2-25 are compared in Figure 5-18. Similar to what was observed for type C frames, 

frame H2 responded with a longer period than frame H1 as a result of softening caused by damage 

(0.61 sec vs. 0.28 sec). 

Comparing peak drifts, frame C2 reached a peak in-run drift nearly 40% larger than frame C1, and 

a peak cumulative drift nearly 170% larger than frame C1 (Table 5-6). This large difference in peak 

cumulative drift is the result of permanent drift from the first test of frame C2 (test C2-100), which 

had a permanent drift of 0.3 in. Frames H1 and H2 reached comparable peak in-run drifts (within 

15% of one another, Figure 5-29), and comparable peak cumulative drifts (within 18% of one 

another, Figure 5-30).  

5.5.2.2. 50% Motion 

Before the test at 50%, Series 1 frames experienced one weaker ground motion (25%). These 

frames were cracked as a result of this motion, but had negligible permanent drift (<0.01 in.) and 

no spalling. On the other hand, Series 2 frames had experienced two stronger ground motions 

(100%, 75%), the strongest of which was four times stronger than what Series 1 frames had 
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experienced. Frame C2 had over 0.3 in. of permanent drift going into the test at 50%, whereas 

frame H2 had only 0.03 in. 

Drift histories from tests C1-50 and C2-50 are compared in Figure 5-14. The frames had similar 

response for t < 2 sec, but after this point the responses of the frames diverged.  On average over 

the entire test, frame C1 responded with a period within 15% of that of frame C2. Drift histories 

from tests H1-50 and H2-50 are compared in Figure 5-19. Like type C frames, type H frames had 

similar response for t < 2 sec. Unlike the test at 25%, frame H2 responded with the same effective 

period as frame H1. 

Comparing peak drifts, frame C2 reached a peak in-run drift within 16% of frame C1 (0.78 in. for 

C1 vs. 0.90 for C2). Type H frames also reached similar in-run drifts (within 14% of one another). 

Comparing cumulative drifts, frame C2 reached a peak over 50% larger than frame C1. Like the 

25% motion, this difference was the result of permanent drift from the first test of frame C2 (C2-

100). Frames H1 and H2 reached similar peak cumulative drifts during this test (within 6% of one 

another).  

5.5.2.3. 75% Motion 

Before the test at 75%, Series 1 frames had experienced two weaker ground motions (25%, 50%), 

whereas Series 2 frames had experienced one stronger ground motion (100%). Frames from both 

series were damaged, but to different extents. Both type C frames had cracking along the height of 

the columns, but the maximum crack width was four times wider in frame C2 than frame C1 (0.020 

in. versus 0.005 in.). Concrete spalling also was observed in one column of frame C2. Type H 

frames had cracks only at the ends of the columns. In frame H2, the maximum crack width was 

three times wider than in frame H1 (0.015 in. versus 0.005 in.). 
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Drift histories from tests C1-75 and C2-75 are compared in Figure 5-15. The two frames responded 

with similar effective (within 11%). Although frame C2 was more damaged – evidenced by larger 

cracks and spalling – its peak in-run drift was within 18% of the peak in-run drift of frame C1 and 

its peak cumulative drift was within 15%.  

Drift histories from tests H1-75 and H2-75 are compared in Figure 5-20. As was observed for type 

C frames, type H frames had drift histories that were similar in shape, and had the same average 

period. Given these similarities, it is not surprising that the two type H frames reached comparable 

peak drifts (both in-run and cumulative were within 3% of one another). 

5.5.2.4. First 100% Motion 

Before the first test at 100%, Series 1 frames had experienced three weaker ground motions (25%, 

50%, and 75%) and sustained damage as a result. Series 2 frames, on the other hand, had 

experienced no previous motions. This is opposite to the comparison for the ground motion at 25%, 

where frames in Series 1 were undamaged and frames in Series 2 were damaged. 

Drift histories from tests C1-100 and C2-100 are compared in Figure 5-16. The two frames 

responded with similar effective periods. They also reached the same peak in-run drifts (1.7 in.) 

and comparable peak cumulative drifts (frame C1 reached a peak just 7% larger than frame C2).  

Drift histories from tests H1-100 and H2-100 are compared in Figure 5-21. The two profiles 

illustrated in this figure are different in shape for t < 4 sec. After the pulse at approximately  

t = 4 sec (where the two frames reached their peak drifts), the responses of the two frames 

“synchronized” and became nearly the same for the remainder of the tests. The effective period of 

frame H1 was 25% longer than H2 (owing to its longer period at the beginning of the test). In spite 

of this difference, type H frames reached similar peak in-run and peak cumulative drifts (within 3% 

of one another). 
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5.5.2.5. Second 100% Motion 

Before the final test at 100%, Series 1 and Series 2 frames had both experienced the same four 

ground motions, but in different order. Frames C1 and C2 had cracks along the height of the 

columns and spalling near the ends of the columns, the extent of which was more severe in C2 (see 

Figure 4-48 and Figure 4-49). The maximum crack width in frame C1 was 0.035 in., compared 

with 0.020 in. for frame C2. Frames H1 and H2 had cracks and spalling only at the ends of the 

columns. In both type H frames, the maximum crack width was 0.015 in. 

Drift histories from frames C1 and C2 for this ground motion were nearly identical in shape (Figure 

5-17). The two frames also had comparable average periods and reached comparable excursions 

past each drift ratio (Figure 5-36). Despite these similarities, frame C2 reaced a peak in-run drift 

22% larger than frame C1, and a peak cumulative drift 28% larger. This shows that even two 

systems that are nominally identical and that have experienced the same load history (albeit in 

different order), can have peak drifts that differ by as much as 28%.  

Drift histories from tests H1-100(2) and H2-100(2) were also nearly identical in shape (Figure 5-

22), differing only by an offset of approximately -0.15 in. The two frames also reached peak in-run 

drifts within 10% of one another and peak cumulative drifts within 4% of one another during this 

test. 

5.5.3. First vs. Second 100% Motion 

In the previous section, the drift responses of two nominally identical frames subjected to the same 

ground motions (but different order) were compared. In this section, the drift responses of the same 

frame subjected to a repetition of the same ground motion at 10% are compared. This is similar to 

the comparison of Series 1 and 2 frames, because if peak drift response is insensitive to softening 
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from previous ground motions, then repetitions of the same ground motion should not lead to more 

drift for a given frame.  

Table 5-7 summarizes the percent change in peak drift response of each frame from the first to the 

second motion at 100%. This table shows that repetitions of the same strong ground motion did not 

lead to larger peak drifts. Peak in-run drifts reached during the second motion at 100% were within 

20% of peak-in run drifts reached during the first motion at 100%. The same was observed for peak 

cumulative drifts. This suggests that the reduction in secant stiffness as a result of damage from 

prior ground motions did not lead to larger drifts.  

5.6. Summary 

The hypothesis underlying the experimental work in this investigation was: 

Two reinforced concrete frames with columns having similar nominal design strengths and 

initial stiffnesses, but different post-cracking stiffnesses, reach the same peak drift response 

during the same strong ground motion, provided this motion is the strongest each frame 

has experienced. 

The frames tested had initial periods within 5% to 25% of one another (depending on whether large-

displacement or small-displacement periods are compared). Nominal strengths were within 10% of 

each other, but type H frames did not reach their strength within the range of drifts reached. The 

post-cracking stiffness of type H frames was approximately 40% of the post-cracking stiffness of 

type C frames because of reduced longitudinal reinforcement ratio and bar slip. This was lower 

than would have been obtained based on assumptions of perfect bond. As a result, the experiments 

were more demanding tests of the hypothesis. 
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The idea that initial stiffness – not post-cracking or secant stiffness – drives peak drift response was 

evaluated from three perspectives. First, type C frames were compared with type H frames (Table 

5-5). This comparison examined whether the reduction in post-cracking stiffness associated with 

reduced reinforcement ratio and bar slip would lead to more drift in type H frames. For all but the 

weakest ground motion, peak in-run drifts ranged from 18% smaller to 18% larger for type H 

frames compared with type C frames (mean difference: 0%). Similarly, for all but the weakest 

ground motion, peak cumulative drifts ranged from 25% smaller to 12% larger for type H frames 

compared with type C frames, with a mean difference of -12% (type H lower). Only for the weakest 

ground motion did type H frames reach larger cumulative drifts than type C frames. These 

comparisons suggest that the lower reinforcement ratios – and post-cracking stiffnesses – of type 

H frames did not consistently lead to larger peak drift.  

Second, frames tested in Series 1 were compared with frames tested in Series 2 (Table 5-6). This 

examined whether softening (and a reduction in secant stiffness) caused by previous motions would 

lead to more drift. In past investigations, softening caused by damage from previous motions has 

not been observed to lead to a consistent increase in peak drift [Otani and Sozen (1972), Cecen 

(1979)]. Comparisons of frames tested in Series 1 with frames tested in Series 2 in this investigation 

showed similar results. In 8 out of 10 comparisons, peak in-run drifts of frames tested in Series 2 

were within 15% of peak in-run drifts of frames tested in Series 1. Similar results were obtained 

when comparing peak cumulative drifts. In 7 out of 10 comparisons, peak cumulative drifts in 

Series 2 were within 20% of Series 1 peaks. Of the remaining 3 cases, peak cumulative drifts in 

Series 2 exceeded peak cumulative drifts in Series 1 by 167% [C2-25], 55% [C2-50], and 28% [C2-

100(2)]. These results suggest that softening caused by damage from preceding motions did not 

have a consistent impact on peak cumulative drift. 
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Last, the responses of the frames to their first and second motions at 100% were compared (Table 

5-7). In this comparison, no systematic increase in peak drift was observed for frames subjected to 

repetitions of the same strong ground motion. This was consistent with observations from the 

comparisons of Series 1 and 2 frames. 

These test results suggest that a common property of the frames drove their peak drift responses. 

The one property that the frames had in common was initial stiffness (and period), calculated based 

on gross cross-sectional properties. This is not the first time calculated initial period has been 

identified as the dominant factor driving peak drift response of RC structures subjected to strong 

ground motions. Since the 1990s, expressions have been proposed that state peak drift in terms of 

calculated initial period and parameters that describe the intensity of the ground motion [Lepage 

(1997), Sozen (2003)]. These expressions are the result of decades of research on the response of 

RC structures to earthquakes. In the next chapter, the most recent expression [Sozen (2003)] is 

evaluated against results from the tests conducted in this investigation, more than 140 tests reported 

by others, and measurements from three instrumented buildings that experienced earthquakes.
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CHAPTER 6. EVALUATION OF ESTIMATES OF PEAK DRIFT 

In this chapter, an expression proposed by Sozen (2003) as an upper bound estimate of peak drift 

is evaluated using results from more than 160 tests. This expression is the product of more than 40 

years of research on the response of RC structures to earthquakes [Sozen (2003)]. It states that peak 

drift reached by a RC structure during an earthquake is proportional to the product of PGV and the 

calculated initial period of the structure. That peak drift is linearly proportional to calculated initial 

period is consistent with both the hypothesis and with the test results obtained in this investigation.  

The history of thinking that led to the development of Sozen’s expression is presented in Section 

6.1. In Section 6.2, the dataset used to evaluate the expression is presented. In Section 6.3, the 

expression is evaluated and findings are discussed. 

6.1. History of Simple Expressions for Peak Inelastic Response 

In 1974, Shibata and Sozen proposed a procedure for estimating design forces in RC structures 

subjected to earthquake demands. This procedure revolved around a simple idea: that the inelastic 

response of a RC structure subjected to earthquake demands could be approximated from the linear 

response of a “substitute” structure having lower stiffness and higher damping. The flexural 

stiffness of each member in this “substitute” structure was defined as the product of the stiffness of 

the corresponding member in the actual structure and a coefficient less than one. This coefficient 

was a function of “damage ratio,” which is similar (but not identical) to ductility ratio, μ (the ratio 

of maximum-to-yield rotation). Larger damage ratios resulted in larger reductions in stiffness. 

Similarly, the damping ratio of each member in the substitute structure was related to the ductility 
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ratio of the member, with higher ductility ratios resulting in more damping. Both ideas went on to 

influence future thinking on the topic of inelastic response. 

After a series of experiments on RC portal frames in the early 1970s, Gulkan and Sozen (1974) 

proposed a method for estimating design base shear for RC structures. This method was based on 

a similar idea to that of Shibata and Sozen (1974): that inelastic response of a RC structure could 

be estimated from elastic response of a “substitute” RC structure. Gulkan defined the period of this 

“substitute” structure as Ti√μ, where Ti was the calculated initial period of the structure and μ was 

ductility ratio. The damping coefficient was defined using a similar procedure to Shibata. For 

example, for μ=2, the period was Ti√2 and the damping coefficient was 8% of critical. Using these 

values, the design base shear of the structure – which was at the center of the design procedure at 

the time – could be read from a linear response acceleration spectrum.  

Later, the focus shifted from force to drift. In 1980, Sozen stated “drift control should be centerpiece 

of design methods for multi-story buildings rather than presented as simply another check on the 

completed designs.” He also presented results from tests of 16 small-scale, multi-story RC 

structures subjected to simulated earthquakes at the University of Illinois Urbana-Champaign 

(these tests are included in the dataset described in Section 6.2). The peak drift ratios reached by 

these structures were plotted against spectrum spectrum for each test. This plot – reproduced in 

Figure 6-1 – shows peak drift ratio increasing almost linearly with increasing spectrum intensity. 

Spectrum intensity was defined as the area under the spectral velocity curve for a damping factor 

of 20% over periods from T = 0.04 to 1.0 sec (the assumed region of nearly constant velocity for 

the scaled ground motions used). The work of Newmark (1973) implies this area is proportional to 

PGV. The basis was there for estimating peak drift in terms of PGV and period, but it would be 

another 23 years before an expression was proposed in terms of PGV.  
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In 1984, Shimazaki and Sozen proposed a procedure for estimating peak drift in RC buildings 

subjected to strong ground motions causing deformations in the nonlinear range of response. In this 

method, they defined three dimensionless ratios: strength ratio (SR), displacement ratio (DR), and 

period ratio (TR). Strength ratio was defined as the ratio of base shear coefficient to PGA. 

Displacement ratio was defined as the ratio of peak displacement of a nonlinear oscillator with an 

initial period Ti to the peak displacement of a linear oscillator with the same period (note that Ti 

was T0 in the original formulation). Period ratio was defined as the ratio of the period of the 

structure to the “characteristic period” of the ground motion. This characteristic period 

corresponded approximately to the period separating the constant acceleration region from the 

constant velocity region in the trilinear spectrum defined by Newmark (1973), as shown in Figure 

6-2. Shimazaki and Sozen concluded that, for systems with TR+SR≥1, DR was nearly equal to 1 

regardless of the hysteresis model assumed. This suggested that the peak drift of a structure, (a) 

expected to enter its nonlinear range of response during a ground motion, and (b) with a period in 

the constant velocity region, could be estimated using a linear response spectrum. For structures 

with TR+SR<1, DR was not nearly equal to one and Shimazaki and Sozen suggested the use of 

detailed dynamic analysis to determine peak drift.  

Building on the work of Shimazaki and Sozen and in search for a simple method for estimating 

peak drift for systems with TR+SR<1, in 1997 Lepage proposed a new expression for estimating 

peak drift. This expression was presented in Section 2.3 (Equation 2-2), and states peak drift in 

terms of the initial period of the structure (Ti), the characteristic period of the ground motion (Tg), 

and peak ground acceleration (PGA). Lepage evaluated his procedure against results from tests of 

RC structures and the measured response of the Van Nuys Holiday Inn building during the 1971 

San Fernando earthquake. For the cases considered, Equation 2-2 was found to provide a reasonable 

upper bound estimate of peak drift. Lepage also stated that the expression could be simplified for 
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a ground motion with the following properties: acceleration amplification factor for 2% damping 

Fa = 3.7, PGA = 0.5 g, and characteristic period Tg = 0.55 sec (representative of El Centro 1940 NS 

normalized to 0.5 g). For ground motions meeting these criteria, peak drift (in mm) could be 

estimated as 250T, where 250 is in mm/sec and Ti is in sec.  

Later, Sozen (2003) proposed the following expression as a simpler alternative: 

Sdv =
PGV

√2
∗ Ti ∗ Γ Equation 6-1 

where Sdv is peak roof drift estimated using ground velocity, PGV is peak ground velocity, Ti is 

calculated initial period, and Γ is first-mode participation factor. This expression builds on the idea 

that peak drift in a RC structure that enters its nonlinear range of response can be estimated as the 

peak drift of a linear system with a longer period. It also builds on three other ideas: (1) that the 

demand from a given ground motion can be expressed in terms of PGV, (2) that spectral velocity 

can be related to PGV using a constant amplification factor, and (3) that pseudo spectral velocity 

can be related to spectral displacement through circular frequency. The first idea can be traced to 

Westergaard, who suggested in 1933 that earthquake demand be expressed in terms of PGV instead 

of PGA. The second can be traced to Newmark (1973), who sought to construct idealized linear 

response spectra from PGA, PGV, and PGD by applying amplification factors to these parameters 

in each range of assumed nearly constant response. The third comes from what is known about 

periodic functions (i.e. the relationship between pseudo spectral velocity and spectral 

displacement). 

This chapter focuses on the evaluation of Equation 6-1 using a dataset comprising: (1) results from 

the 20 tests in this investigation, (2) results from more than 140 previous tests by others, and (3) 

the measured responses of 3 instrumented RC buildings to 4 earthquakes.  
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6.2. Dataset 

The dataset is presented in the following tables: 

 Table 6-1: SDOF tests in laboratories 

 Table 6-2: MDOF tests in laboratories 

 Table 6-3: MDOF buildings in the field subjected to earthquakes 

Each case in the dataset corresponds to a single test of a single structure. Like the tests conducted 

in this investigation, each test was often one of many conducted on a structure. For that reason, 

although the dataset contains more than 160 tests, it contains only five dozen structures. Lepage 

(1997) created a similar dataset when he proposed Equation 2-2. His dataset included tests 

conducted at the University of Illinois Urbana-Champaign between 1971 and 1989 as well as the 

Van Nuys Holiday Inn building, which experienced three earthquakes. Lepage’s dataset is a subset 

of the dataset presented in this chapter, with intersecting cases noted. 

6.2.1. Parameters 

To use Equation 6-1, the following parameters were needed for each case: 

 Initial first-mode period calculated using gross cross-sectional properties (Ti), also referred 

to as Tcalc to distinguish it from measured initial first mode period (Tmeas) 

 First-mode participation factor calculated for gross cross-sectional properties (Γ) 

 Peak ground velocity (PGV) 

To evaluate the equation, the peak drift reached by the uppermost floor of each structure, Dmax, to 

also was needed. Other parameters were also recorded for the purpose of organizing and plotting 

the data, including degrees of freedom, height of the structure, ground motion time compression, 

and peak ground acceleration (PGA).  
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The parameters were obtained from one of the following sources. The sources are ordered by 

precedence, and the parameter obtained from the source is noted afterwards in brackets. 

1. Test data [PGA, PGV, Dmax] 

2. Lepage’s (1997) dataset [Ti, Γ, PGA, Tg, Dmax] 

3. Corresponding literature (i.e. publications and theses) [Ti, Γ, PGA, PGV, Dmax] 

4. Figures (extracted, as discussed in Sections 6.2.1.1 and 6.2.1.2) [Dmax, PGV] 

5. Calculated (discussed in Section 6.2.1.3) [Ti, Γ] 

If test data were available for a case, parameters were obtained from these data. The most frequently 

available data were base acceleration records, from which PGA and PGV were obtained. The 

ground acceleration history was first baseline-corrected in Seismosignal v5.1.2 [Seismosoft (2016)] 

to remove initial offset that can cause the signal to drift. Peak ground acceleration (PGA) was taken 

as the maximum absolute value of this baseline-corrected ground acceleration record. Peak ground 

velocity (PGV) was taken as the maximum absolute value of the velocity history, which was 

obtained after integrating the baseline-corrected acceleration history. In some cases, roof drift 

histories were also available and were used to obtain Dmax (the maximum absolute value of the drift 

history). 

If test data were unavailable but the cases were included in Lepage’s dataset, parameters were 

obtained from Lepage (1997) and checked against the literature. If test data were unavailable and 

the cases were not included in Lepage’s dataset, parameters were obtained from the corresponding 

literature. Most often, parameters were summarized in tables or the body of corresponding 

literature. When parameters were not reported explicitly, they had to be either extracted from 

figures or calculated. These procedures and the parameters obtained with them are described in the 

following subsections. 
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6.2.1.1. Figure Extraction: Reading PGA and Dmax from Histories 

In this procedure, a figure was clipped and pasted into Inkscape [Bah et al. (2016)], an open-source 

vector graphics software. There, the clipped figure was scaled and the peak value of the parameter 

was read from the scaled figure.   

6.2.1.2. Figure Extraction: PGV from Linear Response Spectra 

This procedure stems from work done by Newmark. In 1973, Newmark examined 14 sets of ground 

motion records from earthquakes that occurred on the west coast of the United States between 1940 

and 1971. Linear response spectra were developed for the 28 horizontal components of these 

ground motion recordings (each recording had 2 horizontal components and 1 vertical). These 

linear response spectra were organized into regions of nearly constant acceleration, nearly constant 

velocity, and nearly constant displacement response (Figure 6-2). In each range of nearly constant 

response, an amplification factor was calculated. For example, the velocity amplification factor, Fv 

was calculated as the ratio of average spectral velocity in the constant velocity region to PGV. 

These amplification factors were tabulated for different damping ratios and percentiles. This 

allowed linear response spectra to be generated for different combinations of ground motion 

properties (PGA, PGV, PGD), damping ratios (from 0.5% to 10% critical damping), and percentiles 

(from 50% to 95%). This work was expanded later to include more ground motion records [Hall et 

al. (1976), Newmark and Hall (1982)]. The amplification factors reported in the latter investigation 

are reproduced in Table 6-4 for damping ratios of 2%, 5% and 10%.  

The work of Newmark and Hall was done so that linear response spectra could be constructed from 

ground motion characteristics. It is used here in reverse: to estimate ground motion characteristics 

(PGVs) from linear velocity response spectra. To do so first requires a range to be defined for the 

constant velocity region. Hall et al. (1976) used T = 0.33 to 3.33 sec (f = 0.3 to 3.0 Hz). The same 

range is adopted here. 



   66 

  

6
6

 

The amplification factors in Table 6-4 were developed for unscaled ground motion records. In most 

cases in the dataset, ground motion records were scaled with respect to time (i.e. the durations of 

the records were compressed) because of testing constraints. Some examples of these constraints 

are simulator limits on PGA, PGV, PGD, and payload limits that restrict the size of specimens that 

can be tested. To account for this compression, the period range defining the constant velocity 

region was shifted in proportion to the scale (compression) factor. For example, if a record was 

compressed by a factor of 3, the constant velocity range must be shifted down from T = 0.33 - 3.33 

sec to T = 0.11 – 1.11 sec. The average spectral velocity, Sv,avg, was calculated over this shifted 

period range, and PGV was calculated as: 

PGV =
Sv,avg

Fv
 Equation 6-2 

The value of Fv depended on the percentile and the damping coefficient of the spectrum. The mean 

(50%) was used for the percentile. The preferred damping coefficient was 2%, for which Fv = 2.03 

was used. If 2% spectra were unavailable, 5% spectra were used instead with  Fv = 1.65. 

In contrast to the method described in Section 6.2.1.1 (which required only a single value to be read 

from each figure), this procedure required a range of values to be extracted from each velocity 

spectrum for averaging. To accomplish this, each figure was clipped and imported to DataThief 

[Van Der Laan and Huyser (2015)]. Using DataThief, the coordinate system was defined, the curve 

was traced, and the trace was exported as X-Y coordinates. The average spectral velocity, Sv,avg, 

was calculated from these data. 

For tests conducted on the University of Illinois earthquake simulator, an upper limit of 15 in./sec 

was set on PGVs calculated using the method described above. This was based on the reported 

velocity limits of the simulator (15 in./sec) as reported in Sozen et al. (1969).  
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6.2.1.3. Calculation of Ti and Γ 

Initial periods (based on gross cross-sections) and/or modal participation factors were sometimes 

not reported. In these cases, if the structure had no walls and had fewer than N = 10 stories, then 

Rayleigh’s method for frames was used to determine Ti and Γ [Biggs (1964), Ch.3]. Story stiffness 

estimates for Rayleigh’s method were guided by Schultz (1992). 

For N > 10, as was the case for the test of a 20-story structure in Japan (see Section 6.2.3.3), Ti and 

Γ were calculated using SAP2000 v17 [Computers and Structures, Inc. (2015)]. This software was 

used so that axial deformations in the columns would be included.  

6.2.2. SDOF Tests 

The following SDOF tests were included in the dataset: 

 Tests by Gulkan and Sozen (1971) of scaled, 1-bay portal frames 

 Tests by Bonacci (1989) of flexural cantilevers 

 Tests by Elwood and Moehle (2003) of scaled, 2-bay portal frames 

 Tests from this investigation 

Specimens in these tests ranged in calculated initial period from 0.02 sec to 0.27 sec. Both Gulkan’s 

and Bonacci’s tests were included in Lepage’s dataset (1997). 

6.2.2.1. Gulkan and Sozen (1971) 

The specimens tested by Gulkan and Sozen (1971) were similar to the frames tested in this 

investigation. They consisted of one-bay planar frames with columns measuring either 2.5 x 2.5 x 

13 in. (type H), or 5 x 5 x 26 in. (type F). The frames are illustrated in Figure 6-3. Each frame was 

subjected to a series of ground motions of increasing demand along one axis. These motions were 

modeled after records obtained from two different earthquakes. The first was the north-south 

component of the recording at El Centro obtained during the 1940 Imperial Valley earthquake 
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(referred to hereafter as El Centro 1940 NS), compressed in time by a factor of 8. The second was 

the N21E component of the recording at Taft Lincoln School obtained during the 1952 Kern County 

earthquake (Taft 1952 N21E), compressed in time by a factor of 5. Test data were not available. 

6.2.2.2. Bonacci (1989) 

Most specimens in the dataset were frame structures, wall structures, or frame-wall structures. The 

specimens tested by Bonacci (1989) were more idealized. They consisted of a mass that pivoted 

about a hinge connected to the simulator platform, with a flexural member on one side that resisted 

lateral demand through single curvature (Figure 6-4). The flexural member was 8 in. deep and 4 in. 

wide, with a length that varied by specimen. Each specimen was subjected to three different ground 

motions along one axis. The first motion was modeled after the N21E component of the recording 

at Castaic obtained during the 1971 San Fernando earthquake (Castaic 1971 N21E). The second 

was modeled after El Centro 1940 NS. The third was modeled after the S48E component of the 

recording at Santa Barbara Courthouse obtained during the 1952 Kern County earthquake (Santa 

Barbara 1952 S48E). All records were compressed in time by a factor of 2. Acceleration recordings 

were available for these tests [Sozen et al. (2015)]. 

6.2.2.3. Elwood and Moehle (2003) 

The specimens tested by Elwood and Moehle were two-bay planar frames with a clear height of 58 

in. (Figure 6-5). The outermost columns in these frames were circular, with a diameter of 10 in. 

The innermost was square with a 9 in. x 9 in. cross section. The frames were subjected to ground 

motions along one axis. The input motion was modeled after a recording from Viña del Mar, 

obtained during the 1985 Chile earthquake. This record was compressed in time by a factor of √2. 

Columns in both specimens failed in shear during the ground motion. They are included in the 

dataset, but marked using an X in plots. Data were unavailable for these tests. 



   69 

  

6
9

 

6.2.3. MDOF Tests 

Investigations of MDOFs included in this dataset that also are compiled in Lepage (1997) include: 

 Tests by Otani and Sozen (1972) of scaled, 3-story 1-bay frames 

 Tests by Aristizabal and Sozen (1976) of scaled, 10-story coupled walls 

 Tests by Lybas and Sozen (1977) of scaled, 6-story coupled walls 

 Tests by Healey and Sozen (1978) of scaled, 10-story 3-bay frames with a soft first story  

 Tests by Moehle and Sozen (1978) of scaled, 10-story 3-bay frames with a soft first story 

and discontinuous first-level beam 

 Tests by Abrams and Sozen (1979) of scaled, 10-story 3-bay frames in parallel with walls 

 Tests by Cecen (1979) of scaled, 10-story 3-bay frames 

 Tests by Moehle and Sozen (1980) of scaled, 9-story 3-bay frames in parallel with walls 

of varying height (no wall, 1-story wall, 4-story wall, or 9-story wall) 

 Tests by Wolfgram (1984) of scaled, 7-story 3-bay frames with infilled RC walls 

 Tests by Schultz (1985) of scaled, 9-story 3-bay frames with yielding columns 

 Tests by Eberhard and Sozen (1989) of scaled, 9-story 3-bay frame wall structures 

These structures were all tested on the unidirectional earthquake simulator at the University of 

Illinios Urbana-Champaign [Sozen et al. (1969)]. This is the same earthquake simulator used to test 

the frames in this investigation (although some of its components have been changed since its 

installation at Bowen Laboratory). Structures in the aforementioned studies had 3 to 10 stories and 

first-mode periods ranging from 0.09 sec to 0.22 sec. Summaries for the structures tested in these 

investigations have been compiled by Lepage (1997).  

  



   70 

  

7
0

 

Tests in the dataset that were not in Lepage’s dataset include: 

 Tests by Shahrooz and Moehle (1987) on a scaled, 6-story, 2-bay by 2-bay frame building 

with setbacks 

 Tests by Panagiotou et al. (2007) on a full-scale, 7-story building slice with shear walls 

and frames 

 Tests reported on by Sugimoto et al. (2016) on a scaled 20-story, 3-bay by 2-bay frame 

building 

The structures in these studies had 6 to 20 stories and first-mode periods ranging between 0.26 to 

0.57 sec. 

6.2.3.1. Shahrooz and Moehle (1987) 

The structure tested by Shahrooz and Moehle was a 1/4-scale model of a two-bay by two-bay, 6-

story moment resisting frame building. The structure is illustrated in Figure 6-6. Stories 4, 5, and 6 

were setback so that there was only a single bay in the longitudinal direction on these levels. In the 

longitudinal direction, 7 in. x 5 in. (depth x width) beams spanned 75 in. (center-to-center). In the 

transverse direction, 7.5 in. x 4 in. beams spanned 45 in. (center-to-center). Floor slabs were 1.75 

in. thick throughout. Each story of the frame measured 36 in. from top-of-slab to top-of-slab. The 

columns on the first story measured 6.5 in. x 5 in. (dimensions: longitudinal x transverse). The 

columns were fixed at their base into foundation blocks measuring 16 in. x 16 in. x 12 in. (length 

x width x depth). These foundation blocks were fastened to the simulator platform. The average 

concrete compressive strength was 4,200 psi. The average modulus of elasticity was approximately 

3,100 ksi. 

The structure was tested at the University of California, Berkeley. Before testing, additional lead 

masses were fastened to each level to simulate service dead load. On the second through fourth 

floor slabs, the weight of added masses was approximately 10.9 kips. On the fifth floor, sixth floor, 
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and roof slabs (which had less area than the other floors), the weight of added masses was 

approximately 6 kips. 

The structure was subjected to ten simulated earthquakes. During phase 1 of testing, ground 

motions were applied along the longitudinal direction of the structure. During phase 2, the structure 

was rotated 45 degrees on the platform and motions were applied along this 45 degree axis. Only 

the motions from phase 1 were included in the dataset. These motions were modeled after the El 

Centro 1940 NS record, compressed in time by a factor of 2. Test data were available for this 

structure and were used to determine PGA, PGV, and Dmax. For Ti and Γ, values reported in 

Shahrooz and Moehle (1987) were used. 

6.2.3.2. Panagiotou et al. (2007) 

The structure tested by Panagiotou et al. (2007) was a full-scale slice of a 7-story prototype 

residential building. The structure is illustrated in Figure 6-7. It incorporated shear walls in both 

directions, gravity columns on the north and south sides, and a post-tensioned segmental piers on 

the west side. In the north-south direction, lateral resistance was provided by a shear wall and post-

tensioned concrete columns. The shear wall was 16 ft long with a thickness of 8 in. on the first 

story and 6 in. on the second through seventh stories. Each post-tensioned column was 18 in. x 18 

in. The two post-tensioned columns were connected by a web wall 48 in. long and approximately 

8 in. thick. In the east-west direction, lateral resistance was provided by a shear wall with a length 

of 12 ft. This wall was 8 in. thick on the first and seventh stories, and 6 in. thick on the second 

through sixth stories. 

Each level had a slab measuring 12 ft x 26 ft x 8 in. thick. Each story had a clear height of 100 in. 

(108 in. top-of-slab to top-of-slab). All vertical members were terminated in foundation blocks 

fastened to the simulator platform. The average concrete compressive strength was 5,500 psi. 
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Added masses ranged from 52.2 kip on the seventh floor to 69.5 kips on the first floor. The structure 

was tested at the University of California, San Diego on the Large High Performance Outdoor 

Shake Table (LHPOST). It was subjected to four simulated earthquakes of increasing demand. The 

first motion was the longitudinal component of the recording at Van Nuys obtained during the 1971 

San Fernando earthquake. The second motion was the transverse component from the same station 

and earthquake. The third motion was the longitudinal component of the recording at Woodland 

Hills Oxnard Boulevard obtained during the 1971 San Fernando earthquake. The final motion was 

the NS component of the recording from Sylmar Olive View Medical Center obtained during the 

1994 Northridge earthquake. Test data were available for this structure, but could not be interpreted 

with certainty so values from reports were used instead. 

6.2.3.3. Sugimoto et al. (2016) 

Reports about this structure date back to 2013, but these early reports are available only in Japanese. 

The first report available in English was published by Sugimoto et al. (2016).  

The structure was a 1/4-scale model of a three-bay by two-bay, 20-story frame building as shown 

in Figure 6-8. In both directions, 7.9 in. x 5.9 in. beams spanned 64 in. center-to-center. Floor slabs 

were 3.15 in thick throughout. Each story had a height of 29.5 in. from top-of-slab to top-of-slab. 

Columns were 8.9 in. square throughout, with a clear height of 21.6 in. The columns were fixed at 

their base into foundation blocks that were fastened to the simulator platform. The concrete 

compressive strength ranged from 12,300 psi on the bottom eight floors to 6,300 psi on the top top 

four floors. The modulus of elasticity ranged from 5,700 ksi on the bottom eight floors to 3,700 ksi 

on the top four floors. 

The structure was tested on the E-Defense shake table in Miki City, Japan. The total mass at each 

level was 38.9 kips. It was subjected to five simulated earthquakes. In phase 1, ground motions 
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were applied in three directions (longitudinal, transverse, and vertical). These motions were 

modeled after the Tokyo Observed Wave recorded on 2011-March-11. The original records were 

compressed in time by a factor of 2. The transverse and vertical components were kept at a constant 

amplitude while the longitudinal component was increased in amplitude from 100% (test 1), to 

200% (test 2), to 300% (test 3). During phase 2, motions were applied in only the longitudinal 

direction. The motion profiles during this phase were not from a recording obtained during an 

earthquake. Instead, they were artificial recordings referred to as the “Tsushima Artificial Wave.” 

These motions were applied at amplitudes of 150% (test 4) and 200% (test 5). 

Test data were available for all tests in this structure and were used to determine PGA, PGV, and 

Dmax [NIED (2016)]. The initial period and mode shape were obtained from models created in 

SAP2000 [Computers and Structures, Inc. (2015)]. Details of the models for this building are 

described in the Appendices.  

One irregularity was observed for the artificial ground motions used in tests 4 and 5. The PGVs 

obtained from the acceleration histories for these tests were 7.4 in./sec and 9.8 in./sec respectively. 

The average spectral velocities in the nearly constant velocity region of response were 30 in./sec 

and 40 in./sec, respectively (for 2% critical damping). These correspond to velocity amplification 

factors of nearly 4.1. This is twice the mean typical velocity amplification factor Fv = 2.03 proposed 

by Newmark in 1982 (discussed in Section 6.2.1.2). To obtain a better representation of the spectra 

that governed the response of the structure, the values of PGV used in Equation 6-1 were obtained 

as Sv,avg /2.03. The values obtained by integrating ground acceleration were ignored. 
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6.2.4. Instrumented Buildings 

Instrumented buildings offer few, but valuable, data points. The following instrumented buildings 

were included in the dataset: 

 Van Nuys Holiday Inn, Van Nuys, California, United States 

 Millikan Library, California Institute of Technology, Pasadena, California, United States 

 Building of the Department of Civil Engineering and Architecture, Tohoku University, 

Sendai, Japan 

These buildings had 7 to 9 stories and their first mode periods ranged from 0.4 to 1 sec (considering 

both longitudinal and transverse directions).  

6.2.4.1. Van Nuys Holiday Inn 

The Van Nuys Holiday Inn is a 7-story RC frame building that was constructed in 1966. It 

experienced earthquakes in 1971 (San Fernando), 1987 (Whittier), and 1994 (Northridge). The 

structure and its response to these earthquakes are detailed in Lepage (1997). 

Plan and elevation views of the building are shown in Figure 6-9. The building is rectangular in 

shape with no setbacks. In the longitudinal direction (east-west), the building has 8 bays at 18 ft 9 

in. each (center-to-center). In the transverse direction (north-south), the building has 3 bays with 

spans of 20 ft, 20 ft 10 in., and 20 ft. The first story is 13 ft 6 in. tall (top-of-slab to top-of-slab). 

The second through seventh stories are approximately 8 ft 8 in. tall. Exterior columns are 14 in. x 

20 in. on all stories. Interior columns are 20 in. x 20 in. on the first story, and 18 in. x 18 in. on 

upper stories. Beam depths are 30 in. on the first floor, and 22.5 in. on the upper floors. The roof 

beams are 22 in. deep. Slab thicknesses are 10 in. for the second floor, 8.7 in. for the third 

through seventh floors, and 7.9 in. for the roof slab. Concrete compressive strength ranged from 

4,900 psi in the columns on the first floor to 3,000 psi at the roof.  
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Accelerometers on the ground floor, third floor, and roof recorded the 1971 San Fernando 

earthquake. Later, additional accelerometers were installed on additional intermediate floors. These 

accelerometers were present during the 1987 Whittier earthquake and the 1994 Northridge 

earthquake. The building experienced minor structural damage during the 1971 San Fernando 

earthquake and was repaired using epoxy [Blume and Associates (1973)]. All parameters used in 

the dataset were obtained from Lepage (1997). 

6.2.4.2. Millikan Library 

The Millikan Library is a 9-story RC frame building that was constructed in 1967. It has been a 

subject of much investigation, with detailed reports by Kuroiwa (1967), who studied the building 

using vibration generators during and after construction, and by Iemura and Jennings (1973), who 

studied the response of the building during the 1971 San Fernando earthquake.  

The main portion of the building is 75 ft x 69 ft (east-west x north-south). Additional enclosures 

on the east and west ends include curved walls. In the north-south direction, lateral resistance is 

provided by 12-in. thick reinforced concrete shear walls on the exterior of the building. In the east-

west direction, lateral resistance is provided by a box of 12-in. thick shear walls that form the 

service core of the building. The first story is 16 ft tall. Upper stories are 14 ft tall. Slabs are 10 in. 

thick throughout, and beams are 36 in. x 24 in. (depth x width) throughout. 

Before the 1971 San Fernando earthquake, the building was instrumented with triaxial 

accelerometers in the basement and on the roof. Only the response of the building to this earthquake 

was included in the dataset. All parameters were obtained from the report by Iemura and Jennings 

(1973). 
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6.2.4.3. Building of the Department of Civil Engineering and Architecture 

The Building of the Department of Civil Engineering and Architecture was built in 1969. It was a 

9-story steel-reinforced concrete (SRC) structure with a 2-story podium (Figure 6-11). The building 

experienced earthquakes in 1978 (Miyagi-Ken-Oki) and in 2011 (Tohoku). Between these events, 

the building was retrofitted by replacing shear walls in the north-south direction. For this reason, 

only the response of the building to the earthquake in 1978 is considered in this dataset. The 

building is described in Shiga et al. (1981), Wang et al. (2012), and Wang and Pujol (2014). 

The building footprint was approximately 210 ft x 110 ft (east-west x north-south, 64 m x 33.6 m).  

In the lower two stories (i.e. the podium), the floor plan was eight bays by four bays. In the upper 

seven stories, the floor plan was five bays by two bays. Lateral resistance in the north-south 

direction was provided by a combination of frames and exterior shear walls bounded by columns. 

These shear walls were approximately 9.8 in. thick and 22 ft long. Columns were 33.5 in. square. 

In the east-west direction, lateral resistance was provided by frames and shear walls around a 

service core. Story heights were approximately 16.4 ft (first story), 14.1 ft (second story), 12.5 ft 

(third story), and 10.8 ft (remaining stories).  

Accelerometers installed on the first and ninth stories recorded response of the building to 

earthquakes in 1978 and 2011. Parameters for the dataset were obtained from the reports by Wang 

et al. (2012) and Wang and Pujol (2014). 
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6.3. Evaluation 

A plot of measured versus estimated peak drift ratio (obtained from Equation 6-1) is presented in 

Figure 6-12. In nearly half of the cases, peak drift was underestimated. To examine possible sources 

of this lack of conservativism, the ratio of measured-to-estimated peak drift (Dmax/Sdv) was plotted 

against: 

 Peak ground acceleration (PGA) in Figure 6-13 

 Peak ground velocity (PGV) in Figure 6-14 

 The ratio of measured-to-calculated initial first-mode period (Tmeas/Tcalc) in Figure 6-15 

 Measured drift ratio (Dmax/H, where H is structure height) in Figure 6-16  

None of these figures shows a clear and consistent trend, prompting the need to consider other 

combinations of parameters. 

In a study of more than 80 ground motions recorded on the west coast of the United States, Hall et 

al. (1976) observed a minimum ratio of PGV/PGA = 0.03 sec. In the dataset compiled in this study, 

nearly half the cases had PGV/PGA ratios below this value. This is because, for small-scale 

structural models (which constitute a large portion of the dataset), experimental constraints such as 

scale and capacities of the earthquake simulator often lead to the need to use “compressed” ground 

motions that can have lower PGV/PGA ratios than full-scale motions. Compressed ground motions 

are created by decreasing the time step of the original acceleration record. This leads to records 

with the same PGA, but lower PGV, than the full-scale source record. The result is a record with a 

lower ratio of PGV/PGA than the full-scale source record. 

In Figure 6-17 and Figure 6-18, Dmax/Sdv is plotted against PGV/PGA. The minimum and median 

ratios of PGV/PGA observed by Hall et al. (1976) for ground motions with PGA > 0.2 g are also 
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shown in these figures. A downward trend of Dmax/Sdv with increasing PGV/PGA can be seen in 

both figures, crossing the 1:1 line at approximately PGV/PGA = 0.03 sec. This crossing was used 

to separate the dataset into two parts: (1) tests with PGV/PGA < 0.03 sec, and (2) tests with 

PGV/PGA ≥ 0.03 sec.  

Statistics are presented in Table 6-5 for these two ranges of PGV/PGA ratios. In Figure 6-19, 

measured drift ratio is plotted against estimated drift ratio (from Equation 6-1).  For 64% of the 

cases with PGV/PGA < 0.03 sec, peak drifts were underestimated (i.e. estimated unconservatively). 

In contrast, for 80% of the cases with PGV/PGA > 0.03 sec, peak drifts were overestimated (i.e. 

estimated conservatively). In the latter case (PGV/PGA > 0.03 sec), the mean ratio of Dmax/Sdv was 

0.85 and the standard deviation was 0.23. This suggests that Equation 6-1 would produce 

reasonable and safe estimates for full-scale structures, which supports the idea that drift demand is 

proportional to initial period (calculated from gross cross-sectional properties). This idea in turn 

supports the hypothesis stated in Section  3.1. 

The scatter in Figure 6-17 suggests that a simplification could be made to Equation 6-1 for MDOF 

structures without adversely affecting the results: 

Sdv = PGV ∗ Ti Equation 6-3 

Using this expression, peak roof drift was recalculated for MDOF structures in the dataset. The 

new ratios of Dmax/Sdv obtained from this process are plotted in Figure 6-20 (SDOF cases are shown 

in gray because calculated Sdv were unchanged for SDOFs). Summary statistics are presented in 

Table 6-6. The trend was similar to what was observed for Equation 6-1. For the 85 cases with 

PGV/PGA > 0.03 sec, peak drift was overestimated 85% of the time using this simplified equation. 

The mean ratio of Dmax/Sdv was 0.81, and the standard deviation was 0.22.  
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In Equation 6-3, the sole parameter describing the structure is calculated initial period based on 

gross cross-sectional properties. That peak drift was estimated safely in 85% of cases with 

PGV/PGA > 0.03 sec, and that the mean was 0.81 provides additional support that peak drift is 

driven by initial period (and stiffness). 

6.4. Ground Motions with Low PGV/PGA Ratios 

To examine in more detail the effect of low PGV/PGA ratios on peak drift, bilinear numerical 

models of SDOF systems were subjected to eight full-scale (i.e. uncompressed) ground motion 

records. Two types of records were used: (1) with PGV/PGA more than 0.1 sec, and (2) with 

PGV/PGA approximately 0.03 sec or lower. For (1), El Centro 1940 NS and EW were used. For 

(2), both components of three records obtained during three different earthquakes were used. These 

records and the criteria for selecting them are described next. 

All records were obtained from the PEER NGA database [Chiou et al. (2008)]. This database 

includes more than 20,000 ground motion recordings from around the world. Of these, 

approximately 100 had PGV/PGA ratios of 0.03 sec or lower and PGAs more than 0.1 g (<0.5% of 

all entries in the database). Of these, 37 had PGAs of 0.2 g or more (<0.2% of all entries in the 

database). 

The database was searched to locate records meeting the following criteria: (1) PGV/PGA 

approximately 0.03 sec or less, (2) PGA larger than 0.2 g, and (3) recorded on the west coast of the 

United States. The last criterion was set because the lower bound of PGV/PGA = 0.03 sec was 

based on a study of ground motions recorded on the west coast the United States [Hall et al. (1976)]. 

Of the recordings meeting these criteria, the three with the largest PGVs were seleced for use. The 

selected records and their characteristics are summarized in Table 6-7. The acceleration histories 

from these records and the El Centro 1940 records were scaled in amplitude so that each would 
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produce a PGV of 20 in./sec when integrated. The resulting records are referred to as “PGV-

normalized” records. Displacement response spectra for these “PGV-normalized” records are 

presented in Figure 6-21. At periods below T=0.3 sec, spectral drifts for records with low 

PGV/PGA ratios were larger than those with higher PGV/PGA ratios (i.e. El Centro 1940 records). 

Above T=0.3 sec, spectral drifts for records with higher PGV/PGA ratios continued to increase, 

while spectral drifts for records with low PGV/PGA ratios decreased and then flattened out. This 

suggested that structures with short periods – below 0.3 sec – could be expected to reach higher 

drifts when subjected to motions with low PGV/PGA ratios than if subjected to records with higher 

PGV/PGA ratios. 

To study this in more detail, the program PRISM  [Jeong et al. (2016)] was used to examine the 

drift response of numerical models of SDOF systems to each “PGV-normalized” record. The 

models were bilinear, with periods of 0.1, 0.2, 0.3, 0.4, or 0.5 sec. Two base shear coefficients were 

considered: 0.2 and 0.3. After each model reached its base shear strength, its stiffness reduced to 

2% of its initial stiffness. The peak drifts reached by the models for each ground motion are 

summarized in Table 6-8. These drifts are plotted Figure 6-22 and Figure 6-23 against period. For 

models with periods less than 0.3 sec, peak drifts were larger for motions with low PGV/PGA 

ratios. But for models with periods more than 0.3 sec, peak drifts were larger for records with higher 

PGV/PGA ratios. This was consistent with the shapes of the linear response spectra. 

Overall, the shapes of the displacement response spectra and analyses of bilinear SDOFs suggest 

that structures with low periods that experience ground motions with low PGV/PGA ratios can 

reach larger peak drifts than if they had experienced ground motions with the same PGV but higher 

PGV/PGA ratios. In addition, the scarcity of strong ground motions with PGV/PGA ratios less than 

0.03 sec shows that strong ground motions with PGV/PGA < 0.03 sec occur infrequently. 
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6.5. Summary 

In this chapter, an equation proposed by Sozen (2003) as an estimate of peak drift in RC structures 

subjected to ground motions was evaluated using results from more than 160 tests of reinforced 

concrete structures on earthquake simulators and the measured responses of three instrumented 

buildings. This equation expresses peak drift in terms of PGV and initial period. Overall, the 

equation was found to provide safe and reasonable estimates for peak drift for RC structures 

subjected to ground motions with PGV/PGA ratios above 0.03 sec. Ground motions with 

PGV/PGA ratios below this have been observed, but are expected to occur infrequently. The 

findings suggest that initial period (and by association, initial stiffness) calculated from gross cross-

sectional properties is a dominant factor driving the peak drift response of RC structures. 
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CHAPTER 7. SUMMARY AND CONCLUSIONS 

This investigation was conducted to test the idea that initial stiffness drives the peak drift response 

of reinforced concrete (RC) structures subjected to strong ground motions. Experiments were 

conducted to test the hypothesis that two RC structures with similar initial stiffness and nominal 

strength, but different post-cracking stiffnesses, would reach similar peak drift during a given 

ground motion. The results of these experiments prompted the need to evaluate an expression for 

estimating peak drift in terms of initial period and peak ground velocity [Sozen (2003)].  

7.1. Experimental Work  

Four reinforced concrete portal frames were tested on an earthquake simulator. The frames were 

identical except for column longitudinal reinforcement. In type C frames, conventional reinforcing 

steel was used at a reinforcement ratio of 1.8%. In type H frames, high-strength reinforcing steel 

was used at a reinforcement ratio of 0.8%. The frames were tested in two series. In Series 1, frames 

C1 and H1 were subjected to four ground motions of increasing demand, followed by a fifth motion 

at the strongest demand. In Series 2, frames C2 and H2 were subjected to four ground motions of 

decreasing demand, followed by a fifth motion at the strongest demand. 

The as-tested frames had similar initial periods, but on average type H frames had less than half the 

post-cracking stiffness and reached half the peak resistance of type C frames. In spite of these 

differences, peak drifts in type H frames were not systematically larger than in type C frames. In 

eight out of ten comparisons (all but the weakest ground motion), peak drifts of the two frame types 

were within 20% of one another. In four out of ten comparisons, peak drifts were smaller in type H 

frames. Similarly, frames that experienced previous ground motions reached comparable peak 
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drifts to otherwise identical frames that had experienced fewer or weaker ground motions before 

the same event. In short, lower post-cracking stiffness, lower strength, and softening caused by 

damage from previous motions were not observed to lead consistently to larger peak drifts. These 

results suggest that peak drift was driven by the initial stiffness of the frames. 

7.2. Dataset to Evaluate Equation for Estimating Peak Drift 

Initial stiffness (or period) has been suggested before as one of the dominant factors that drives 

peak drift response [Sozen (2003)]. The peak drifts of the frames tested here exceeded (by as much 

as 120%) the estimated peak drifts obtained from the following expression [Sozen (2003)]: 

Sdv = PGV ∗ Ti ∗ Γ / √2 Equation 7-1 

where Sdv is estimated peak drift, PGV is peak ground velocity, Ti is calculated initial first-mode 

period, and Γ is first-mode participation factor. This expression was proposed as a reasonable upper 

bound estimate of peak drift caused by earthquake demands in the nonlinear range of response. The 

fact that the expression did not provide an upper bound estimate of peak drifts for the frames tested 

here prompted the need for further investigation. To that end, a dataset was created containing 

summary test results from more than 160 tests of five dozen RC structures, three of which were 

instrumented buildings. Peak drift estimates obtained from Equation 7-1 were compared to 

measured peak drifts for each test (or event, in the case of instrumented buildings). 

Equation 7-1 was found to provide an upper bound estimate of peak drift for 80% of cases with 

PGV/PGA > 0.03 sec. This lower bound corresponds to the minimum PGV/PGA ratio observed 

for dozens of full scale ground motion records [Hall et al. (1976)]. For small-scale structural models 

like those tested in this study, experimental constraints often require the use of “compressed” 

ground motion records, in which the duration of motion is shortened by decreasing the time step. 

In the dataset used to evaluate Equation 7-1, compression factors as large as 8 were considered. 
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Compression of ground motion records can lead to PGV/PGA ratios less than 0.03 sec (i.e. lower 

than what are commonly seen for full-scale records). For tests with PGV/PGA < 0.03 sec (including 

the tests conducted as part of this investigation), measured peak drift exceeded Sdv in 64% of cases, 

by as much as 145%. This suggests that, although Equation 7-1 did not provide a conservative 

estimate of drift for scaled structures with PGV/PGA < 0.03 sec, it should produce reasonable and 

safe estimates for full-scale RC structures. 

7.3. Conclusions 

The tests described here supported the hypothesis that peak drift response of a RC structure is 

dominated by the initial stiffness (and period) of the structure, estimated from gross cross-sectional 

properties. This implies that the reduction in reinforcement ratio from substituting a reduced 

amount of higher grade steel reinforcement should not lead to consistently larger peak drifts, 

because such a substitution does not lead to a large change in initial stiffness. It also implies that 

softening as a result of damage from previous motions should not consistently lead to larger peak 

drifts. Evaluation of the expression proposed by Sozen (2003), which states peak drift in terms of 

initial period and PGV, supported this idea. 
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Table 2-1: Summary of previous quasi-static investigations of high-strength steel reinforced concrete members. 

Year 
First 

Author 
Specimens Study Focus Primary Variables 

Longitudinal 

fy range 
Major Findings 

1962 Hognestad 

36 

rectangular 

beams  

Flexural crack 

control 

Longitudinal bar yield 

stress, bar diameter, 

specimen length, concrete 

strength, concrete cover, 

reinforcement ratio 

45 – 110 ksi 

• Crack width is proportional to 

steel stress 

• Deformed bars are effective 

for crack control 

2002 Ansley 
8 rectangular 

beams 

Flexural and 

shear behavior, 

splice length 

Longitudinal bar yield 

stress, splice length, 

specimen geometry, 

transverse reinforcement, 

load protocol 

not reported 

• HSSRC has comparable 

flexural and shear performance 

• Grade-60 lap splices and 

embedments may not be 

adequate for high-strength 

2003 Yotakhong 
4 rectangular 

beams 

Flexural 

behavior, 

response to 

displacement 

reversals 

Longitudinal bar yield 

stress, reinforcement ratio, 

load protocol 

63 – 124 ksi  

• All HSSRC specimens 

exhibited ductile behavior  

• Flexural behavior can be 

modeled using current 

reinforced concrete theories 

• Better crack control after 

yielding in HSSRC specimens 

2003 Okamoto 
4 rectangular 

columns 

Response to load 

reversals 

Longitudinal bar yield 

stress, concrete strength 
52 – 103 ksi 

• More yield displacement in 

HSSRC specimens  

• Reduced equivalent damping 

in HSSRC specimens 

2006 Restrepo 
2 circular 

columns* 

Response to load 

reversals 

Longitudinal bar yield 

stress, bar diameter, 

reinforcement ratio 

60 – 135 ksi 

• Bridge columns built using 

HSSRC can form plastic hinges 

• Columns built with HSSRC 

can sustain drifts up to 4% 
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Table 2-1 (continued): Summary of previous quasi-static investigations of high-strength steel reinforced concrete. 

Year 
First 

Author 
Specimens Study Focus Primary Variables 

Longitudinal 

fy range 
Major Findings 

2009 Ousalem 
3 square 

columns 

Response to 

varying axial 

load and 

displacement 

reversals 

Longitudinal bar yield 

stress, Column axial load 
107 – 174 ksi 

• Higher ductility and lower 

residual deformation in 

specimen with higher strength 

longitudinal bars 

2011 Rautenberg 

11 

rectangular 

columns 

Response to 

displacement 

reversals 

Longitudinal bar yield 

stress, longitudinal 

reinforcement ratio, 

transverse reinforcement 

ratio, volume fraction of 

steel fibers 

64 – 134 ksi 

• HSSRC specimens sustained 

drifts from 4% to 8% 

• Lower energy dissipation in 

HSSRC specimens 

2011 Tavallali 
7 rectangular 

beams 

Response to 

displacement 

reversals 

Longitudinal bar yield 

stress, longitudinal 

reinforcement ratio, 

transverse reinforcement 

ratio, volume fraction of 

steel fibers 

65 – 97 ksi 

• HSSRC specimens had drift 

ratio capacities comparable to 

CRC specimens 

• HSSRC specimens showed 

approximately 25% more yield 

displacement than CRC 

specimens 

2015 Ou 
8 square 

columns 

Shear behavior 

of HSSRC 

columns under 

low axial load 

Column axial load, 

concrete compressive 

strength, transverse 

reinforcement ratio 

107 ksi 

• Specimens failed in shear 

before longitudinal yielding, as 

they were designed to 

*Transverse reinforcement welds in HSSRC specimen failed before test completion 
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Table 2-1 (continued): Summary of previous quasi-static investigations of high-strength steel reinforced concrete. 

Year 
First 

Author 
Specimens Study Focus Primary Variables 

Longitudinal 

fy range 
Major Findings 

2012 Pfund 
4 rectangular 

beams 

Response to 

displacement 

reversals 

Longitudinal bar yield 

stress, longitudinal 

reinforcement ratio, 

transverse reinforcement 

ratio, volume fraction of 

steel fibers 

65 – 125 ksi 

• HSSRC sustained drift 

cycles of 5% without failure 

• Calculated maximum 

probable strength for HSSRC 

specimens based on 1.5fy was 

within 5% of the measured 

value 

2012 Tretiakova 
2 rectangular 

columns 

Response to 

displacement 

reversals 

Transverse reinforcement 

ratio, volume fraction of 

steel fibers 

97 ksi 

• Specimens maintained more 

than 80% of their capacity 

while sustaining drift cycles 

up to 5% 

• Specimen crack widths were 

larger than crack widths of 

equivalent sections reinforced 

with conventional steel** 

**Equivalent conventionally-reinforced sections were tested by Rautenberg (2011) 
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Table 2-2: Summary of previous dynamic investigations of conventionally reinforced concrete. 

Year 
First 

Author 

Dynamic 

Specimens 
Study Focus Primary Variables 

Base 

Motion* 
Major Findings 

1970 Takeda 
3 rectangular 

cantilevers 

Earthquake 

response 

development of 

hysteretic 

models 

Base motion source, base 

motion history, base 

motion intensity 

S, P, E 

• Dynamic response can be 

estimated satisfactorily using static 

force-displacement information 

• Hysteretic model developed 

1971 Gulkan 

7 one-story 

one-bay 

frames 

Effect of 

material 

nonlinearity on 

earthquake 

response 

Frame geometry, column 

reinforcement, base 

motion source, base 

motion history intensity 

S, E 

• Maximum response may be 

estimated using linear response 

spectrum with reduced stiffness and 

increased equivalent damping 

• Slip of anchored reinforcement 

contributes significantly to total drift 

1972 Otani 

3 pairs three-

story one-bay 

frames 

Earthquake 

response of 

multistory 

frames 

Frame strength, base 

motion source, base 

motion history intensity 

E 

• First mode equivalent viscous 

damping factors ranged from 4 - 7% 

of critical even after severe damage 

• Maximum displacements 

calculated from first mode agree 

favorably with those from response-

history analysis 

1979 Cecen 

2 pairs ten-

story three-

bay frames 

Elastic and 

inelastic 

response of 

multistory 

frames 

Base motion history 

intensity 
E 

• The same base motion will yield 

same response regardless of load 

history, provided that previous load 

history intensity does not exceed 

load history under consideration 

*Base Motion Types :: S = sinusoidal, P = pulse, E = earthquake 
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Table 2-2 (continued): Summary of previous dynamic investigations of conventionally reinforced concrete. 

Year 
First 

Author 

Dynamic 

Specimens 
Study Focus Primary Variables 

Base 

Motion* 
Major Findings 

1987 Morrison 

3 plate-

column 

assemblies 

Static and 

dynamic 

response of 

plate-column 

assemblies 

Slab reinforcement ratio, 

amount of vertical load, 

loading protocol  

S, E 

• Because of strain rate, dynamic 

specimens displayed 20-30% 

increase in strength compared to 

static specimens  

1989 Bonacci 

15 

rectangular 

cantilevers 

Drift response 

estimation 

Specimen strength and 

initial period, base motion 

source, base motion 

intensity 

E 

• Idealized linear response spectrum 

with 2% damping provides a good 

estimate of overall drift response 

2000 Dodd 

14 circular 

cantilever 

columns 

Strength and 

ductility 

capacity of 

circular columns 

Column aspect ratio, axial 

load, base flexibility, base 

motion, base motion 

history 

E 

Dynamic specimens displayed 10% 

minimum increase in strength 

compared to static specimens 

Analytical models developed from 

static tests can be used to predict 

dynamic behavior of columns 

2012 Ghannoum 

1 three-story 

three-bay 

frame 

Dynamic 

response of 

strong-beam 

weak-column 

type 

construction 

Base motion history 

intensity 
E 

Column shear and axial behavior 

was affected by large past 

deformations and small deformation 

cycling 

*Base Motion Types :: S = sinusoidal, P = pulse, E = earthquake 
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Table 3-1: Selected properties of four test specimens. 

Category  
Frame  

C1 C2 H1 H2 

Test series   1 2 1 2 

Column  b in. 5 5 5 5 

    Dimensions h in. 5 5 5 5 

 L in. 42 42 42 42 

 d in. 4 4 4 4 

 d’ in. 1 1 1 1 

Longitudinal db in. 3/8 3/8 1/4 1/4 

   Reinforcement ρl % 1.8 1.8 0.8 0.8 

 fy ksi 65 65 162 162 

 fu ksi 102 102 187 187 

 ρlfy ksi 1.17 1.17 1.3 1.3 

Transverse  dt in. 3/16 3/16 3/16 3/16 

   Reinforcement s in. 1 1 1 1 

Concrete f’c psi 3,930 3,860 3,660 3,840 

   Properties ft psi 410 430 420 400 

 fr psi -- 860 850 -- 

 Ec ksi -- 2,620 2,760 -- 

Series : 1 – motion order:   25%, 50%, 75%, 100%, 100% 

2 – motion order:   100%, 75%, 50%, 25%, 100%  

b : Width of compression face of column 

h : Overall thickness of column 

L : Clear height of column 

d : Distance from extreme compression fiber to farthest longitudinal steel layer 

d’ : Distance from extreme compression fiber to nearest longitudinal steel layer 

db : Diameter of longitudinal reinforcing bar 

ρl : Longitudinal reinforcement ratio based on gross cross-sectional area 

fy : Measured yield stress of longitudinal reinforcement (0.2% offset method) 

fu : Measured strength of longitudinal reinforcement 

ρlfy : Product of longitudinal reinforcement ratio and measured yield stress 

dt : Diameter of transverse reinforcing bars 

s : Spacing of transverse reinforcing bars from end of columns to distance 3d 

f’c : Measured compressive strength of concrete (established on test day) 

ft : Measured tensile strength of concrete (established on test day) 

fr : Measured modulus of rupture of concrete (established on test day) 

Ec : Measured modulus of elasticity of concrete (established on test day) 
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Table 3-2: Selected calculated properties of test specimens (used in LARZ models). 

Property  Type C Type H 

Modulus of elasticity Ec ksi 2,700 2,700 

Column moment of inertia  Ig in.4 52 52 

Column trilinear approximation     

   Bending moment Mcr kip-in. 11 11 

 My kip-in. 64 65 

 Mu kip-in. 67 68 

   Curvature ϕy 1/in. 1.5e-3 2.1e-3 

 ϕu 1/in. 3.5e-3 3.2e-3 

   Flexural stiffness (EI)g kip-in.2 140,400 140,400 

 (EI)s kip-in.2 42,700 31,000 

 (EI)cr kip-in.2 37,300 26,700 

Effective mass m kip-sec2/in. 0.013 0.013 

Fundamental period of frame Ti sec 0.11 0.11 

 Ts sec 0.19 0.23 

   Tcr sec 0.21 0.24 

Ig : Gross moment of inertia, = bh3/12 

Mcr : Moment at cracking (from FLECHA M-ϕ relationship assuming ft=f’c/10) 

My : Moment at yielding (from FLECHA, trilinear M-ϕ approximation) 

Mu : Moment at ultimate (from FLECHA, trilinear M-ϕ approximation) 

ϕcr : Curvature at cracking = Mcr/EcIg  

ϕy : Curvature at yielding (from FLECHA, trilinear M-ϕ approximation) 

ϕu : Curvature at ultimate (from FLECHA, trilinear M-ϕ approximation) 

(EI)i : Initial stiffness = EcIg 

(EI)s : Secant stiffness to yielding = My / ϕy 

(EI)cr : Cracked stiffness = (My - Mcr)/( ϕy - ϕcr) 

m : Effective mass of system, = Wme/g, where Wme = 5 kip 

Ti : Initial first-mode period corresponding to gross stiffness, = 2𝜋√
𝑚𝐿3

2∗12(𝐸𝐼)𝑔
 

Ts : Initial first-mode period corresponding to secant stiffness, = 2𝜋√
𝑚𝐿3

2∗12(𝐸𝐼)𝑠
 

Tcr : Initial first-mode period corresponding to cracked stiffness, = 2𝜋√
𝑚𝐿3

2∗12(𝐸𝐼)𝑐𝑟
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Table 3-3: Breakdown of components adding up to effective mass of system. 

Component Quantity 
Weight 

each total 

Reusable mass 1 4,060 4,060 

Lower steel plate (in portal) 1 180 180 

Plates: PL7x7x1.75 (on top) 6 24 144 

Plates: PL9x5x5x2 (underside @ ends) 2 25 50 

End threaded rods (1.5"-6) 2 18 36 

Portal threaded rods (1.25"-7) 4 12 48 

Large nuts (1.5"-6) 4 1.3 5.2 

Smalle nuts (1.25"-7) 8 0.8 6.4 

Top beam 1 330 320 

Two-thirds of columns 1 120 120 

Total weight of effective mass, Wme =  4,980 

 

Table 3-4: Summary of target ground motion characteristics for each base motion. 

Characteristic 
Ground Motion Amplitude* 

25% 50% 75% 100% 

Peak ground acceleration 

(PGA), g 
0.25 0.50 0.74 1.0 

Peak ground velocity 

(PGV), in./sec 
2.7 5.5 8.2 11 

Peak ground displacement 

(PGD), in. 
0.32 0.65 0.97 1.3 

*As a ratio of the strongest ground motion used in this investigation 
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Table 3-5: Typical sequence of test procedure. 

Task Nr. Reps Task Description 

t0 (as needed) Test instrumentation function 

*t1 1 Open manifold 

t2 1 Turn on low pressure 

t3 1 Turn on high pressure 

t4 3 Take zeroes 

t5 1 Earthquake motion 

t6 3 Take final position measurements 

t7 1 Turn pressure off (to low, then off) 

t8 5 Hammer tests (5 blows per repetition)* 

*Before the first test of a frame, a hammer test was conducted.  

For subsequent motions on a given frame, the hammer tests conducted after 

the previous motion were used to compute the initial stiffness of the frame 

for the run. 
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Table 4-1: Measured properties of ground motions during each test. 

Property 
Ground 

Motion 
Target 

Frame Statistics 

C1 C2 H1 H2 Mean CoV* 

PGA, g 

25% 0.25 0.86 0.89 0.86 0.93 0.89 3.7% 

50% 0.50 1.52 1.32 1.28 1.37 1.37 4.3% 

75% 0.74 1.58 1.93 1.82 1.68 1.75 7.4% 

100% 1.0 2.10 2.58 2.02 1.91 2.15 14.5% 

100% (2) 1.0 1.98 1.98 1.98 1.94 1.97 2.5% 

PGV, in./sec 

25% 2.7 3.7 3.5 3.4 3.4 3.5 4.0% 

50% 5.5 6.9 6.9 6.5 6.3 6.7 4.5% 

75% 8.2 9.0 9.2 9.1 9.0 9.1 1.1% 

100% 11 11.3 11.9 11.6 11.4 11.6 2.3% 

100% (2) 11 11.8 11.4 11.8 11.1 11.5 3.0% 

PGD, in. 

25% 0.32 0.32 0.32 0.32 0.32 0.32 0% 

50% 0.65 0.64 0.65 0.65 0.65 0.65 0.8% 

75% 0.97 0.97 0.97 0.97 0.97 0.97 0% 

100% 1.3 1.3 1.3 1.3 1.3 1.3 0% 

100% (2) 1.3 1.3 1.3 1.3 1.3 1.3 0% 

*CoV = Coefficient of variation, the ratio of the standard deviation to the average 
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Table 4-2: Effect of reducing lowpass filter frequency on PGA and PGV. Values generated from 

acceleration data using Butterworth bandpass filter with highpass frequency 0.5 Hz and lowpass 

frequency as specified below. 

Parameter: PGA, g PGV, in./sec 

Lowpass 

frequency: 15 Hz 30 Hz 45 Hz 60 Hz 15 Hz 30 Hz 45 Hz 60 Hz 

2
5

%
 M

o
ti

o
n
 

C1 0.34 0.55 0.73 0.86 3.55 3.73 3.74 3.74 

C2 0.42 0.62 0.79 0.89 3.24 3.54 3.52 3.50 

H1 0.36 0.59 0.76 0.86 3.22 3.36 3.41 3.43 

H2 0.39 0.66 0.84 0.93 3.06 3.42 3.40 3.42 

Average 0.38 0.61 0.78 0.89 3.26 3.51 3.52 3.52 

CoV 9% 7% 6% 4% 6% 5% 4% 4% 

5
0
%

 M
o
ti

o
n
 

C1 0.60 1.00 1.31 1.52 6.82 6.84 6.85 6.86 

C2 0.64 0.94 1.18 1.32 6.53 6.74 6.82 6.85 

H1 0.65 0.92 1.12 1.28 6.02 6.30 6.44 6.49 

H2 0.65 0.94 1.20 1.37 6.22 6.29 6.32 6.34 

Average 0.64 0.95 1.20 1.37 6.40 6.54 6.61 6.63 

CoV 4% 4% 7% 8% 5% 4% 4% 4% 

7
5
%

 M
o
ti

o
n
 

C1 0.90 1.22 1.45 1.58 8.85 8.97 9.01 9.03 

C2 1.01 1.43 1.72 1.93 9.05 9.30 9.25 9.22 

H1 0.93 1.34 1.65 1.82 8.82 8.95 9.04 9.07 

H2 0.89 1.16 1.49 1.68 9.00 9.04 9.02 9.02 

Average 0.93 1.29 1.58 1.75 8.93 9.07 9.08 9.09 

CoV 6% 9% 8% 9% 1% 2% 1% 1% 

1
0

0
%

 M
o
ti

o
n

 (
1
) C1 1.16 1.65 1.93 2.10 11.14 11.12 11.22 11.25 

C2 1.30 1.98 2.38 2.58 12.01 11.92 11.89 11.87 

H1 1.19 1.55 1.78 2.02 11.46 11.52 11.54 11.55 

H2 1.22 1.62 1.81 1.91 11.42 11.38 11.40 11.42 

Average 1.22 1.70 1.98 2.15 11.51 11.49 11.52 11.52 

CoV 5% 11% 14% 14% 3% 3% 2% 2% 

1
0

0
%

 M
o

ti
o

n
 (

2
) C1 1.15 1.52 1.76 1.98 11.70 11.76 11.79 11.80 

C2 1.16 1.60 1.84 1.98 11.39 11.38 11.37 11.39 

H1 1.13 1.45 1.75 1.98 11.59 11.66 11.76 11.80 

H2 1.22 1.60 1.73 1.94 11.01 10.96 11.04 11.09 

Average 1.17 1.54 1.77 1.97 11.42 11.44 11.49 11.52 

CoV 4% 5% 3% 1% 3% 3% 3% 3% 
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Table 4-3: Coefficients of variation for linear displacement response spectra (across all tests). 

Ground 

Motion 

Period Range 

0.03 sec - 0.1 sec 0.1 sec - 0.4 sec 

25% 19% 7% 

50% 15% 6% 

75% 14% 4% 

100% 14% 4% 

100% (2) 12% 4% 

 

Table 4-4: Calculated and measured initial periods. 

Parameter 
Specimen 

C1 C2 H1 H2 

Period, sec     

  Calculated 0.1 0.1 0.1 0.1 

  Hammer test* ** 0.15 ** 0.12 

  High-pressure jerk 0.16 0.15 0.13 0.12 

  First test run 0.19 0.19 0.18 0.18 

Max displacement considered, in.     

  Hammer test* ** 0.004 ** 0.003 

  High-pressure jerk 0.002 0.003 0.002 0.002 

  First test run 0.032 0.032 0.029 0.035 

*Average from multiple tests 

**Frames C1 and H1 were subjected to hammer tests without lumped mass attached to 

the top beam. See Section A7.1 
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Table 4-5: Measured in-plane response, specimen C1 (Figure 4-11 through Figure 4-15). 

Parameter 

Test ID 

C1-25 

(run 1/5) 

C1-50 

(run 2/5) 

C1-75 

(run 3/5) 

C1-100 

(run 4/5) 

C1-100(#2) 

(run 5/5) 

Test Date (2015-) Sep-12 Sep-12 Sep-17 Sep-21 Sep-27 

Base Motion      

Peak acceleration, g 0.86 1.52 1.58 2.10 1.98 

Peak velocity, in./sec 3.7 6.9 9.0 11.3 11.8 

Peak displacement, in. 0.32 0.64 0.97 1.3 1.3 

Response      

Acceleration (abs.)      

   Peak value, g 1.26 1.28 1.72 1.94 1.32 

   Time at peak, sec 2.88 3.28 4.69 4.03 5.44 

Velocity      

   Peak value, in./sec 9.5 17 30 38 27 

   Time at peak, sec 3.20 4.75 4.79 4.11 4.03 

Displacement      

   Peak value, in.* 0.27 0.78 1.25 1.69 1.37 

   Time at peak, sec 3.64 4.79 6.07 4.06 5.66 

   Residual drift at end  

       of run, in. 
0 0.05 -0.17 -0.16 0 

   Cumul. residual  

       drift, in. 
0 0.05 -0.12 -0.28 -0.28 

Period      

   Before run, sec 0.16** 0.30 0.32 0.32 0.47 

   After run, sec 0.30 0.32 0.32 0.47 0.55 

*Single amplitude peak 

**Hammer test was only conducted without mass for this specimen. This value is taken from 

the platform jolt at the beginning of the test. 
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Table 4-6: Measured in-plane response, specimen C2 (Figure 4-16 through Figure 4-20). 

Parameter 

Test ID 

C2-25 

(run 4/5) 

C2-50 

(run 3/5) 

C2-75 

(run 2/5) 

C2-100 

(run 1/5) 

C2-100(#2) 

(run 5/5) 

Test Date (2015-) Dec-22 Dec-22 Dec-23 Dec-23 Dec-23 

Base Motion      

Peak acceleration, g 0.89 1.32 1.93 2.58 1.98 

Peak velocity, in./sec 3.5 6.9 9.2 11.9 11.4 

Peak displacement, in. 0.32 0.65 0.97 1.29 1.29 

Response      

Acceleration (abs.)      

   Peak value, g 0.20 0.87 1.15 1.74 1.50 

   Time at peak, sec 4.11 6.54 6.49 4.06 4.07 

Velocity      

   Peak value, in./sec 8.3 16 21 39 33 

   Time at peak, sec 4.05 4.72 4.70 4.10 4.03 

Displacement      

   Peak value, in.* 0.45 0.90 1.06 1.70 1.67 

   Time at peak, sec 3.94 6.35 6.49 5.41 3.91 

   Residual drift at end  

       of run, in. 
-0.02 -0.03 -0.02 -0.31 -0.04 

   Cumul. residual  

       drift, in. 
-0.38 -0.36 -0.33 -0.31 -0.42 

Period      

   Before run, sec 0.45 0.45 0.43 0.16 0.47 

   After run, sec 0.47 0.45 0.45 0.43 0.50 

*Single amplitude peak 

 

  



99 

  

9
9

 

Table 4-7: Measured in-plane response, specimen H1 (Figure 4-21 through Figure 4-25). 

Parameter 

Test ID 

H1-25 

(run 1/5) 

H1-50 

(run 2/5) 

H1-75 

(run 3/5) 

H1-100 

(run 4/5) 

H1-100(#2) 

(run 5/5) 

Test Date (2015-) Jul-15 Jul-16 Jul-29 Aug-04 Aug-06 

Base Motion      

Peak acceleration, g 0.86 1.28 1.82 2.02 1.98 

Peak velocity, in./sec 3.4 6.5 9.1 11.6 11.8 

Peak displacement, in. 0.32 0.65 0.97 1.29 1.29 

Response      

Acceleration (abs.)      

   Peak value, g 0.48 0.68 0.70 0.76 1.31 

   Time at peak, sec 5.42 4.75 4.75 4.58 4.05 

Velocity      

   Peak value, in./sec 10 16 21 28 29 

   Time at peak, sec 4.11 4.70 4.69 4.71 4.04 

Displacement      

   Peak value, in.* 0.45 0.87 1.10 1.43 1.61 

   Time at peak, sec 5.41 4.74 4.74 4.59 3.94 

   Residual drift at end  

       of run, in. 
-0.005 -0.007 0.017 -0.032 0.023 

   Cumul. residual  

       drift, in. 
-0.005 -0.012 0.005 -0.027 0 

Period      

   Before run, sec 0.13** 0.22*** 0.46 0.48 0.42 

   After run, sec N/A 0.46 0.48 0.42 0.42 

*Single amplitude peak 

**Hammer test was only conducted without mass for this specimen. This value is taken from the 

platform jolt at the beginning of the test. 

***This value taken from platform jolt because no hammer test after test H1-25. 
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Table 4-8: Measured in-plane response, specimen H2 (Figure 4-26 through Figure 4-30). 

Parameter 

Test ID 

H2-25 

(run 4/5) 

H2-50 

(run 3/5) 

H2-75 

(run 2/5) 

H2-100 

(run 1/5) 

H2-100(#2) 

(run 5/5) 

Test Date (2015-) Dec-05 Dec-05 Dec-06 Dec-06 Dec-06 

Base Motion      

Peak acceleration, g 0.93 1.37 1.68 1.91 1.94 

Peak velocity, in./sec 3.4 6.3 9.0 11.4 11.1 

Peak displacement, in. 0.32 0.65 0.97 1.29 1.29 

Response      

Acceleration (abs.)      

   Peak value, g 0.17 0.40 0.58 0.89 0.73 

   Time at peak, sec 3.95 3.95 4.61 4.58 3.94 

Velocity      

   Peak value, in./sec 7.0 15 21 26 28 

   Time at peak, sec 4.05 4.06 4.70 4.69 4.03 

Displacement      

   Peak value, in.* 0.51 0.99 1.25 1.39 1.48 

   Time at peak, sec 3.96 3.95 4.60 4.60 3.94 

   Residual drift at end  

       of run, in. 
0.03 0.09 -0.03 -0.04 -0.11 

   Cumul. residual  

       drift, in. 
0.05 0.02 -0.07 -0.04 -0.06 

Period      

   Before run, sec 0.48 0.38 0.41 0.13 0.49 

   After run, sec 0.49 0.48 0.38 0.41 0.42 

*Single amplitude peak 
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Table 4-9: Summary of peak displacement response for each test. 

Parameter 
Ground 

motion 

Frame Statistics 

C1 C2 H1 H2 Mean CoV 

Peak drift, in. 

25% 0.27 0.38 0.45 0.51 0.40 26% 

50% 0.78 0.90 0.87 0.99 0.89 10% 

75% 1.25 1.06 1.10 1.25 1.17 9% 

100% 1.69 1.70 1.43 1.39 1.55 11% 

100% (2) 1.37 1.67 1.61 1.48 1.53 9% 

Peak vertical   

  displacement, in. 

25% 0.04 0.04 0.04 0.03 0.04 13% 

50% 0.06 0.08 0.08 0.04 0.07 29% 

75% 0.09 0.08 0.10 0.06 0.08 21% 

100% 0.09 0.15 0.09 0.12 0.11 26% 

100% (2) 0.10 0.07 0.10 0.08 0.09 17% 

Peak out-of-plane  

  displacement, in. 

25% 0.08 0.04 0.13 0.06 0.08 50% 

50% 0.07 0.17 0.11 0.13 0.12 35% 

75% 0.18 0.22 0.15 0.13 0.17 23% 

100% 0.18 0.17 0.15 0.12 0.16 17% 

100% (2) 0.17 0.16 0.14 0.17 0.16 9% 

Note: All values are relative to position at start of test run (i.e. in-run drift) 
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Table 5-1: Calculated versus measured initial periods (from free vibration tests) for past dynamic 

tests of SDOF reinforced concrete structures. 

Study and 

Specimen 

Calculated 

(Tcalc), sec 

Measured 

(Tmeas), sec 

Tmeas
Tcalc

 

Bonacci (1989)   1.12 

  B-01 0.10 0.11 1.07 

  B-02 0.15 0.15 1.04 

  B-03 0.10 0.12 1.16 

  B-04 0.18 0.19 1.07 

  B-05 0.15 0.18 1.22 

  B-06 0.15 0.17 1.16 

  B-07 0.18 0.18 1.01 

  B-08 0.18 0.17 0.98 

  B-09 0.15 0.15 1.02 

  B-10 0.18 0.21 1.18 

  B-11 0.10 0.11 1.14 

  B-12 0.10 0.14 1.39 

  B-13 0.10 0.11 1.15 

  B-14 0.10 0.12 1.17 

  B-15 0.15 0.16 1.05 

Gulkan and 

Sozen (1971) 

  1.64 

  HD1 0.023 - - 

  HD2 0.023 0.036 1.58 

  HE1 0.023 0.038 1.69 

  HE2 0.023 0.043 1.90 

  FD1 0.040 0.063 1.55 

  FE1 0.040 0.062 1.55 

  FE2 0.040 0.064 1.60 

Overall average = 1.27 

Notes:  

Underlined values indicate averages.  

Dashes indicate that the value was not measured.  

Modulus of elasticity was taken as the reported value from 

the investigation.  
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Table 5-2: Calculated versus measured initial first mode periods (from free vibration tests) for 

past dynamic tests of MDOF reinforced concrete structures with walls [adapted from Lepage 

(1997)]. 

Study and Specimen 
Calculated 

(Tcalc), sec 

Measured 

(Tmeas), sec 

Tmeas
Tcalc

 

Abrams and Sozen 

(1979)   1.69 

  FW1 0.19 0.31 1.69 

  FW2 0.17 0.30 1.76 

  FW3 0.19 0.31 1.69 

  FW4 0.18 0.29 1.62 

Aristizabal and Sozen 

(1976)   1.12 

  D1 0.19 0.22 1.16 

  D2 0.19 0.21 1.08 

  D3 0.19 0.21 1.08 

  M1 0.19 0.22 1.16 

Lybas and Sozen 

(1977)   1.27 

  D1 0.09 0.08 0.94 

  D2 0.09 0.13 1.38 

  D3 0.10 0.13 1.34 

  D4 0.10 0.14 1.51 

  D5 0.10 0.12 1.19 

Moehle and Sozen 

(1980)   1.08 

  FFW 0.18 0.20 1.12 

  FHW 0.19 0.19 1.04 

  FSW 0.19 0.20 1.08 

Wolfgram (1984)   1.05 

  NS1 0.09 0.10 1.09 

  NS2 0.09 0.09 1.00 

  NS3 0.09 0.10 1.06 

Overall average = 1.26 

Note: Underlined values indicate averages. 
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Table 5-3: Calculated versus measured initial first mode periods for past dynamic tests of MDOF 

reinforced concrete structures without walls [adapted from Lepage (1997)]. 

 

 

 

 

 

  

Study and Specimen 
Calculated 

(Tcalc), sec 

Measured 

(Tmeas), sec 

Tmeas
Tcalc

 

Cecen (1979)   1.35 

  H1 0.20 0.33 1.63 

  H2 0.21 0.23 1.07 

Eberhard and Sozen 

(1989)   1.00 

  ES1 0.17 0.18 1.05 

  ES2 0.17 0.16 0.95 

Healey and Sozen 

(1978)    

  MF1 0.20 0.31 1.53 

Moehle and Sozen 

(1978)    

  MF2 0.21 0.23 1.07 

Moehle and Sozen 

(1980)    

  FNW 0.22 0.24 1.10 

Otani and Sozen 

(1972)   1.20 

  D1 0.15 0.18 1.16 

  D2 0.15 - - 

  D3 0.15 0.19 1.25 

Schultz (1985)   1.14 

  SS1 0.21 0.26 1.23 

  SS2 0.21 0.22 1.04 

Wood (1985)   1.08 

  STEPPED 0.16 0.17 1.07 

  TOWER 0.16 0.18 1.09 

Overall average = 1.17 

Note: Underlined values indicate averages. Dashes indicate that 

the value was not measured. 
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Table 5-4: Mean effective periods calculated using zero crossing rate from t = 1.5 – 11 sec. 

Specimen 
Ground Motion 

Mean 
25% 50% 75% 100%(1) 100%(2) 

C1 0.28 0.34 0.37 0.39 0.42 0.36 

C2 0.42 0.39 0.41 0.37 0.40 0.40 

H1 0.28 0.46 0.44 0.50 0.54 0.44 

H2 0.61 0.46 0.50 0.40 0.56 0.51 

Comparison: Type       

H1/C1 1.00 1.35 1.19 1.28 1.29 1.22 

H2/C2 1.45 1.18 1.22 1.08 1.40 1.27 

Comparison: Series       

C2/C1 1.50 1.15 1.11 0.95 0.95 1.13 

H2/H1 2.18 1.00 1.14 0.80 1.04 1.23 

 

Table 5-5: Percent difference* in peak drift for frame type C versus frame type H. 

Drift Type Series 
Ground Motion 

Mean 
25% 50% 75% 100%(1) 100%(2) 

In-run 

1 67% 11% -12% -16% 18% 14% 

2 35% 10% 18% -18% -11% 7% 

Mean 51% 11% 3% -17% 3% 10% 

Cumulative 

1 67% 12% -7% -21% 0% 10% 

2 -27% -23% -12% -18% -25% -21% 

Mean 20% -6% -9% -20% -13% -5% 
* Percent difference = ΔH / ΔC – 1, negative indicates less drift in type H 

 

 

Table 5-6: Percent difference** in peak drift for frames in Series 1 versus Series 2. 

Drift Type Type 
Ground Motion 

Mean 
25% 50% 75% 100%(1) 100%(2) 

In-run 

C 39% 15% -15% 0% 22% 12% 

H 13% 14% 14% -3% -8% 6% 

Mean 26% 15% -1% -1% 7% 9% 

Cumulative 

C 167% 55% 15% -6% 28% 52% 

H 18% 6% 9% -3% -4% 5% 

Mean 92% 30% 12% -5% 12% 29% 
** Percent difference = ΔSeries2 / ΔSeries1 – 1, negative indicates less drift in Series 2 
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Table 5-7: Percent change*** in peak drift for a given frame type from first 100% motion to 

second 100% motion. 

Drift Type 
Frame  

Mean 
C1 C2 H1 H2 

In-run -19% -2% 13% 7% 0% 

Cumulative -13% 20% 11% 10% 7% 
*** Percent change = Δ100%(2) / Δ100%(1) – 1, negative indicates less drift in run 2 

 



 

  

1
0
7

 

Table 6-1: Summary of single-degree-of-freedom experiments. 

Reference 

D

O

F 

Structure Run 

Parameters Peak Drift Sources 

Ti,calc Γ PGV PGA 
Meas. 

(Dmax) 

Calc. 

(Sdv) 

Dmax 

Sdv Ti,calc Γ PGV PGA 

sec  in./sec g in. in.  

Gulkan 

and 

Sozen 

(1971) 

1   HE1 1 0.02 1 10.9 1.18 0.10 0.2 0.56 C N/A E R 

2 0.02 1 15.0 - - - - C N/A E R 

  HE2 2 0.02 1 10.8 1.45 0.32 0.2 1.81 C N/A E R 

3 0.02 1 10.8 1.51 0.28 0.2 1.59 C N/A E R 

  FE1 1 0.04 1 15.0 2.20 0.65 0.4 1.53 C N/A E R 

2 0.04 1 15.0 2.54 0.70 0.4 1.66 C N/A E R 

3 0.04 1 15.0 2.50 0.66 0.4 1.56 C N/A E R 

4 0.04 1 15.0 2.40 0.66 0.4 1.56 C N/A E R 

  FE2 1 0.04 1 15.0 4.20 0.85 0.4 1.99 C N/A E R 

2 0.04 1 15.0 2.60 0.81 0.4 1.92 C N/A E R 

3 0.04 1 15.0 3.94 0.86 0.4 2.02 C N/A E R 

4 0.04 1 15.0 2.90 0.97 0.4 2.29 C N/A E R 

5 0.04 1 15.0 3.05 1.04 0.4 2.44 C N/A E R 

6 0.04 1 15.0 2.90 1.04 0.4 2.45 C N/A E R 

Bonacci 

(1989) 

1 B01 R1 0.10 1 12.6 1.35 0.58 0.9 0.66 R N/A D D 

R2 0.10 1 14.6 2.41 1.08 1.0 1.06 R N/A D D 

B02 R1 0.15 1 11.8 0.94 1.08 1.2 0.87 R N/A D D 

R2 0.15 1 15.3 3.38 2.12 1.6 1.32 R N/A D D 

B03 R1 0.10 1 11.8 0.88 0.62 0.8 0.75 R N/A D D 

R2 0.10 1 16.1 3.29 1.59 1.1 1.41 R N/A D D 

B04 R1 0.18 1 11.7 0.94 1.40 1.5 0.95 R N/A D D 

R2 0.18 1 14.1 3.21 2.08 1.8 1.18 R N/A D D 

B05 R1 0.15 1 13.0 0.96 1.10 1.4 0.81 R N/A D D 

R2 0.15 1 15.3 3.50 1.88 1.6 1.17 R N/A D D 

Sources: R – Obtained from reference publication (i.e. reports, theses)  |  L – Obtained from Lepage (1997) 

D – Obtained from original test data  |  E – Extracted from figures  |  C – Calculated (continued next page) 
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Table 6-1 (cont’d): Summary of single-degree-of-freedom experiments. 

Reference 

D

O

F 

Structure Run 

Parameters Peak Drift Sources 

Ti,calc Γ PGV PGA 
Meas. 

(Dmax) 

Calc. 

(Sdv) 

Dmax 

Sdv Ti,calc Γ PGV PGA 

sec  in./sec g in. in.  

Bonacci 

(1989) 

1 B06 R1 0.15 1 4.9 0.43 0.39 0.5 0.76 R N/A D D 

R2 0.15 1 9.4 0.90 0.90 1.0 0.92 R N/A D D 

B07 R1 0.18 1 11.1 0.66 0.72 1.4 0.52 R N/A D D 

R2 0.18 1 15.5 1.33 1.50 1.9 0.78 R N/A D D 

B08 R1 0.18 1 6.7 0.34 0.59 0.8 0.70 R N/A D D 

R2 0.18 1 10.1 0.60 1.73 1.3 1.37 R N/A D D 

B09 R1 0.15 1 8.6 0.42 0.49 0.9 0.55 R N/A D D 

R2 0.15 1 14.0 1.17 2.14 1.5 1.45 R N/A D D 

B10 R1 0.18 1 8.5 0.56 1.10 1.1 1.03 R N/A D D 

R2 0.18 1 13.4 1.42 1.68 1.7 1.00 R N/A D D 

B11 R1 0.10 1 3.6 0.40 0.28 0.3 1.10 R N/A D D 

R2 0.10 1 9.8 0.87 0.71 0.7 1.04 R N/A D D 

B12 R1 0.10 1 7.0 0.58 0.49 0.5 1.00 R N/A D D 

R2 0.10 1 10.5 1.03 0.63 0.7 0.85 R N/A D D 

B13 R1 0.10 1 11.2 0.75 0.42 0.8 0.53 R N/A D D 

R2 0.10 1 15.8 1.61 0.70 1.1 0.63 R N/A D D 

B14 R1 0.10 1 8.8 0.55 0.25 0.6 0.41 R N/A D D 

R2 0.10 1 14.6 1.28 0.85 1.0 0.83 R N/A D D 

B15 R1 0.15 1 7.9 0.50 0.51 0.8 0.62 R N/A D D 

R2 0.15 1 14.6 1.30 1.14 1.5 0.74 R N/A D D 

Elwood  

and 

Moehle 

(2003) 

1 
Spec. 1 1 0.27 1 15.5 0.79 3.50 3.0 1.18 R N/A R R 

Spec. 2 1 0.27 1 15.2 0.73 4.20 2.9 1.45 R N/A R R 

Sources: R – Obtained from reference publication (i.e. reports, theses)  |  L – Obtained from Lepage (1997) 

D – Obtained from original test data  |  E – Extracted from figures  |  C – Calculated (continued next page) 
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Table 6-1 (cont’d): Summary of single-degree-of-freedom experiments. 

Reference 

D

O

F 

Structure Run 

Parameters Peak Drift Sources 

Ti,calc Γ PGV PGA 
Meas. 

(Dmax) 

Calc. 

(Sdv) 

Dmax 

Sdv Ti,calc Γ PGV PGA 

sec  in./sec g in. in.  

Laughery 

(this 

study)  

1 C1 C1-25 0.10 1 3.7 0.86 0.27 0.3 1.02 C N/A D D 

C1-50 0.10 1 6.9 1.52 0.78 0.5 1.61 C N/A D D 

C1-75 0.10 1 9.0 1.58 1.25 0.6 1.95 C N/A D D 

C1-100 0.10 1 11.2 2.10 1.69 0.8 2.13 C N/A D D 

C1-100(2) 0.10 1 11.8 1.98 1.37 0.8 1.64 C N/A D D 

C2 C2-25 0.10 1 3.5 0.89 0.38 0.2 1.52 C N/A D D 

C2-50 0.10 1 6.8 1.32 0.90 0.5 1.86 C N/A D D 

C2-75 0.10 1 9.2 1.93 1.06 0.7 1.63 C N/A D D 

C2-100 0.10 1 11.9 2.58 1.70 0.8 2.03 C N/A D D 

C2-100(2) 0.10 1 11.4 1.98 1.67 0.8 2.08 C N/A D D 

H1 H1-25 0.10 1 3.4 0.86 0.45 0.2 1.86 C N/A D D 

H1-50 0.10 1 6.5 1.28 0.87 0.5 1.89 C N/A D D 

H1-75 0.10 1 9.1 1.82 1.10 0.6 1.71 C N/A D D 

H1-100 0.10 1 11.6 2.02 1.43 0.8 1.75 C N/A D D 

H1-100(2) 0.10 1 11.8 1.98 1.61 0.8 1.93 C N/A D D 

H2 H2-25 0.10 1 3.4 0.93 0.51 0.2 2.11 C N/A D D 

H2-50 0.10 1 6.3 1.37 0.99 0.4 2.21 C N/A D D 

H2-75 0.10 1 9.0 1.68 1.25 0.6 1.96 C N/A D D 

H2-100 0.10 1 11.4 1.91 1.39 0.8 1.72 C N/A D D 

H2-100(2) 0.10 1 11.1 1.94 1.48 0.8 1.89 C N/A D D 

Sources: R – Obtained from reference publication (i.e. reports, theses)  |  L – Obtained from Lepage (1997) 

D – Obtained from original test data  |  E – Extracted from figures  |  C – Calculated  
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Table 6-2: Summary of multiple-degree-of-freedom experiments. 

Reference 

D

O

F 

Structure Run 

Parameters Peak Drift Sources 

Ti,calc Γ PGV PGA 
Meas. 

(Dmax) 

Calc. 

(Sdv) 

Dmax 

Sdv Ti,calc Γ PGV PGA 

sec  in./sec g in. in.  

Otani and 

Sozen 

(1972) 

3 D1 D1-1 0.15 1.26 4.0 0.24 0.34 0.5 0.63 L L E R 

D1-2 0.15 1.26 6.1 0.40 0.55 0.8 0.67 L L E R 

D1-3 0.15 1.26 9.4 0.53 0.79 1.3 0.62 L L E R 

D1-4 0.15 1.26 14.7 0.84 1.22 2.0 0.62 L L E R 

D1-5 0.15 1.26 15.0 1.42 1.57 2.0 0.78 L L E R 

D1-6 0.15 1.26 15.0 3.16 1.95 2.0 0.96 L L E R 

D2 D2-1 0.15 1.26 14.0 0.86 1.26 1.8 0.69 L L E R 

D2-2 0.15 1.26 15.0 1.10 1.70 2.0 0.86 L L E R 

D2-3 0.15 1.26 15.0 1.21 1.91 2.0 0.97 L L E R 

D2-4 0.15 1.26 15.0 3.43 2.27 2.0 1.16 L L E R 

D3 D3-1 0.15 1.26 10.6 0.61 1.06 1.4 0.74 L L E R 

D3-2 0.15 1.26 15.0 1.10 1.65 2.0 0.81 L L E R 

D3-3 0.15 1.26 15.0 0.93 1.92 2.0 0.95 L L E R 

D3-4 0.15 1.26 15.0 2.14 2.23 2.0 1.10 L L E R 

Aristizabal 

and Sozen 

(1976) 

10 D1 D1-1 0.19 1.44 4.4 0.51 1.12 0.9 1.31 L L D D 

D1-2 0.19 1.44 10.9 1.98 1.82 2.1 0.85 L L D D 

D2 D2-1 0.18 1.44 6.1 0.41 1.16 1.1 1.03 L L E R 

D2-2 0.18 1.44 12.0 0.94 2.13 2.2 0.96 L L E R 

D2-3 0.18 1.44 15.0 1.72 2.96 2.8 1.07 L L E R 

D3 D3-1 0.19 1.44 6.2 0.46 0.95 1.2 0.78 L L E R 

D3-2 0.19 1.44 12.2 1.06 1.48 2.4 0.62 L L E R 

M1 M1-1 0.19 1.44 9.2 0.91 2.05 1.8 1.14 L L D D 

Sources: R – Obtained from reference publication (i.e. reports, theses)  |  L – Obtained from Lepage (1997) 

D – Obtained from original test data  |  E – Extracted from figures  |  C – Calculated (continued next page) 
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Table 6-2 (cont’d): Summary of multiple-degree-of-freedom experiments. 

Reference 

D

O

F 

Structure Run 

Parameters Peak Drift Sources 

Ti,calc Γ PGV PGA 
Meas. 

(Dmax) 

Calc. 

(Sdv) 

Dmax 

Sdv Ti,calc Γ PGV PGA 

sec  in./sec g in. in.  

Lybas and 

Sozen (1977) 

6 D1 D1-1 0.09 1.29 1.2 0.12 0.06 0.1 0.61 L L E R 

D1-2 0.09 1.29 2.5 0.22 0.15 0.2 0.74 L L E R 

D1-3 0.09 1.29 4.8 0.50 0.28 0.4 0.72 L L E R 

D1-4 0.09 1.29 9.2 1.06 0.50 0.7 0.67 L L E R 

D1-5 0.09 1.29 15.0 2.20 1.07 1.2 0.88 L L E R 

D2 D2-1 0.09 1.29 6.0 1.28 0.45 0.5 0.88 L L E R 

D2-2 0.09 1.29 12.0 3.59 1.36 1.0 1.34 L L E R 

D3 D3-1 0.10 1.29 9.0 1.12 0.46 0.8 0.57 L L E R 

D3-2 0.10 1.29 14.0 2.10 1.00 1.3 0.80 L L E R 

D4 D4-1 0.10 1.29 7.0 1.12 0.50 0.6 0.81 L L E R 

D4-2 0.10 1.29 15.0 2.40 1.13 1.3 0.86 L L E R 

D5 D5-1 0.10 1.29 7.0 1.07 0.48 0.6 0.75 L L E R 

D5-2 0.10 1.29 15.0 2.10 1.19 1.4 0.87 L L E R 

Healey and 

Sozen (1978) 

10 MF1 R1 0.20 1.33 5.2 0.41 0.94 1.0 0.94 L L D D 

R2 0.20 1.33 9.0 0.93 2.01 1.7 1.16 L L D D 

R3 0.20 1.33 9.3 1.42 2.68 1.8 1.50 L L D D 

Moehle and 

Sozen (1978) 

10 MF2 R1 0.21 1.31 6.0 0.37 0.94 1.2 0.80 L L D D 

R2 0.21 1.31 10.2 0.83 1.73 2.0 0.86 L L D D 

R3 0.21 1.31 11.8 1.28 2.28 2.3 0.99 L L D D 

Sources: R – Obtained from reference publication (i.e. reports, theses)  |  L – Obtained from Lepage (1997) 

D – Obtained from original test data  |  E – Extracted from figures  |  C – Calculated (continued next page) 
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Table 6-2 (cont’d): Summary of multiple-degree-of-freedom experiments. 

Reference 

D

O

F 

Structure Run 

Parameters Peak Drift Sources 

Ti,calc Γ PGV PGA 
Meas. 

(Dmax) 

Calc. 

(Sdv) 

Dmax 

Sdv Ti,calc Γ PGV PGA 

sec  in./sec g in. in.  

Abrams and 

Sozen (1979) 

10 FW1 R1 0.19 1.36 6.1 0.55 1.10 1.1 1.02 L L D D 

R2 0.19 1.36 10.5 1.84 1.50 1.9 0.80 L L D D 

R3 0.19 1.36 11.6 2.41 2.68 2.1 1.30 L L D D 

FW2 R1 0.17 1.36 6.5 0.48 1.10 1.1 1.02 L L D D 

R2 0.17 1.36 10.6 0.92 1.69 1.8 0.96 L L D D 

R3 0.17 1.36 8.9 1.10 2.20 1.5 1.49 L L D D 

FW3 R1 0.19 1.36 5.7 0.43 0.67 1.0 0.66 L L D D 

R2 0.19 1.36 - 0.92 1.89 - - L L N/A N/A 

FW4 R1 0.18 1.36 6.9 0.47 0.71 1.2 0.59 L L D D 

R2 0.18 1.36 12.5 0.95 1.81 2.2 0.83 L L D D 

R3 0.18 1.36 11.3 1.26 2.56 2.0 1.29 L L D D 

Cecen (1979) 10 H1 R1 0.20 1.31 5.2 0.37 1.14 1.0 1.16 L L D D 

R2 0.20 1.31 10.9 0.84 2.05 2.1 0.99 L L D D 

R3 0.20 1.31 13.7 1.57 4.06 2.6 1.57 L L D D 

H2 R1 0.21 1.31 2.0 0.19 0.37 0.4 0.96 L L D D 

R2 0.21 1.31 3.8 0.34 0.71 0.7 0.95 L L D D 

R3 0.21 1.31 6.2 0.51 0.94 1.2 0.77 L L D D 

R4 0.21 1.31 6.2 0.48 1.02 1.2 0.84 L L D D 

R5 0.21 1.31 8.9 0.72 1.54 1.8 0.87 L L D D 

R6 0.21 1.31 11.7 1.01 2.28 2.3 0.99 L L D D 

R7 0.21 1.31 14.6 2.61 3.91 2.9 1.36 L L D D 

Sources: R – Obtained from reference publication (i.e. reports, theses)  |  L – Obtained from Lepage (1997) 

D – Obtained from original test data  |  E – Extracted from figures  |  C – Calculated (continued next page) 
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Table 6-2 (cont’d): Summary of multiple-degree-of-freedom experiments. 

Reference 

D

O

F 

Structure Run 

Parameters Peak Drift Sources 

Ti,calc Γ PGV PGA 
Meas. 

(Dmax) 

Calc. 

(Sdv) 

Dmax 

Sdv Ti,calc Γ PGV PGA 

sec  in./sec g in. in.  

Moehle and 

Sozen (1980) 

9 FNW R1 0.22 1.25 5.4 0.43 1.02 1.1 0.97 L L D D 

R2 0.22 1.25 9.3 0.74 1.73 1.8 0.95 L L D D 

R3 0.22 1.25 14.0 1.22 3.61 2.7 1.31 L L D D 

FSW R1 0.19 1.31 5.1 0.36 0.87 0.9 0.97 L L D D 

R2 0.19 1.31 9.6 0.57 1.57 1.7 0.94 L L D D 

R3 0.19 1.31 15.3 1.11 2.99 2.7 1.12 L L D D 

FHW R1 0.19 1.32 5.6 0.41 0.91 1.0 0.93 L L D D 

FFW R1 0.18 1.34 5.0 0.32 1.02 0.9 1.20 L L D D 

Wolfgram 

(1984) 

7 NS1 R1 0.09 1.41 - 0.60 0.71 - - L L N/A R 

R2 0.09 1.41 - 1.80 1.85 - - L L N/A R 

NS2 R1 0.09 1.41 7.3 0.59 0.59 0.7 0.86 L L D D 

R2 0.09 1.41 - 1.00 1.14 - - L L N/A R 

R3 0.09 1.41 - 1.60 1.14 - - L L N/A R 

R4 0.09 1.41 - 1.50 2.20 - - L L N/A R 

NS3 R1 0.09 1.41 6.9 0.49 0.55 0.6 0.86 L L D D 

R2 0.09 1.41 10.2 0.82 0.91 0.9 0.96 L L D D 

R3 0.09 1.41 14.4 1.54 0.94 1.3 0.71 L L D D 

R4 0.09 1.41 - 1.50 1.97 - - L L N/A R 

Sources: R – Obtained from reference publication (i.e. reports, theses)  |  L – Obtained from Lepage (1997) 

D – Obtained from original test data  |  E – Extracted from figures  |  C – Calculated (continued next page) 
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Table 6-2 (cont’d): Summary of multiple-degree-of-freedom experiments. 

Reference 

D

O

F 

Structure Run 

Parameters Peak Drift Sources 

Ti,calc Γ PGV PGA 
Meas. 

(Dmax) 

Calc. 

(Sdv) 

Dmax 

Sdv Ti,calc Γ PGV PGA 

sec  in./sec g in. in.  

Schultz 

(1985) 

9 SS1 R1 0.21 1.26 6.2 0.35 0.98 1.2 0.85 L L D D 

R2 0.21 1.26 5.7 0.34 0.87 1.1 0.82 L L D D 

R3 0.21 1.26 8.5 0.53 1.26 1.6 0.80 L L D D 

R4 0.21 1.26 15.7 1.44 2.17 2.9 0.74 L L D D 

SS2 R1 0.21 1.26 5.4 0.35 0.91 1.0 0.89 L L D D 

R2 0.21 1.26 5.3 0.40 1.10 1.0 1.10 L L D D 

R3 0.21 1.26 5.0 0.35 0.87 0.9 0.92 L L D D 

Shahrooz and 

Moehle 

(1987) 

6 6F 

Setback 

EC7.7L 0.26 1.25 1.4 0.08 0.27 0.3 0.82 R 0 D D 

EC16.6L 0.26 1.25 3.2 0.17 0.61 0.7 0.82 R 0 D D 

EC49.3L 0.26 1.25 9.0 0.49 2.48 2.1 1.19 R 0 D D 

Eberhard and 

Sozen (1989) 

9 ES1 R1 0.17 1.3 5.0 0.36 0.71 0.8 0.90 L L D D 

R2 0.17 1.3 7.5 0.52 1.22 1.2 1.03 L L D D 

R3 0.17 1.3 9.8 0.62 1.69 1.6 1.09 L L D D 

ES2 R1 0.17 1.3 4.8 0.35 0.67 0.8 0.89 L L D D 

R2 0.17 1.3 7.2 0.52 1.26 1.1 1.13 L L D D 

R3 0.17 1.3 9.6 0.61 1.61 1.5 1.08 L L D D 

Panagiotou et 

al.  (2007) 

7 7F slice EQ1 0.50 1.46 10.2 0.15 1.97 5.3 0.37 R R R R 

EQ2 0.50 1.46 12.6 0.27 5.51 6.5 0.85 R R R R 

EQ3 0.50 1.46 16.9 0.35 6.30 8.7 0.72 R R R R 

EQ4 0.50 1.46 40.2 0.91 15.75 20.7 0.76 R R R R 

Sources: R – Obtained from reference publication (i.e. reports, theses)  |  L – Obtained from Lepage (1997) 

D – Obtained from original test data  |  E – Extracted from figures  |  C – Calculated (continued next page) 
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Table 6-2 (cont’d): Summary of multiple-degree-of-freedom experiments. 

Reference 

D

O

F 

Structure Run 

Parameters Peak Drift Sources 

Ti,calc Γ PGV PGA 
Meas. 

(Dmax) 

Calc. 

(Sdv) 

Dmax 

Sdv Ti,calc Γ PGV PGA 

sec  in./sec g in. in.  

Sugimoto et 

al. (2016) 

20 20F #1-5long 0.55 1.38 3.9 0.06 1.92 2.1 0.92 C C D D 

#1-5tran 0.61 1.4 3.8 0.07 1.33 2.3 0.58 C C D D 

#2-2long 0.55 1.38 8.3 0.13 2.91 4.5 0.65 C C D D 

#2-2tran 0.61 1.4 3.8 0.07 1.20 2.3 0.52 C C D D 

#2-6long 0.55 1.38 13.0 0.19 4.37 7.0 0.63 C C D D 

#2-6tran 0.61 1.4 3.9 0.07 1.37 2.4 0.58 C C D D 

#3-2long 0.55 1.38 14.7 0.14 6.32 7.9 0.80 C C E D 

#3-5long 0.55 1.38 19.8 0.19 9.39 10.6 0.88 C C E D 

Sources: R – Obtained from reference publication (i.e. reports, theses)  |  L – Obtained from Lepage (1997) 

D – Obtained from original test data  |  E – Extracted from figures  |  C – Calculated  

    

  



 

  

1
1
6

 

Table 6-3: Summary of instrumented buildings that experienced earthquakes. 

Reference 

D

O

F 

Structure Run 

Parameters Peak Drift Sources 

Ti,calc Γ PGV PGA 
Meas. 

(Dmax) 

Calc. 

(Sdv) 

Dmax 

Sdv Ti,calc Γ PGV PGA 

sec  in./sec g in. in.  

Lepage 

(1997) 

7 Van 

Nuys 

Holiday 

Inn 

Whittier 

1987 NS 0.97 1.3 3.2 0.16 1.10 2.9 0.38 L L D D 

Northridge 

1994 NS 0.97 1.3 15.8 0.39 9.84 14.1 0.70 L L D D 

Northridge 

1994 EW 0.89 1.28 20.1 0.45 9.45 16.2 0.58 L L D D 

Iemura and 

Jennings 

(1973) 

9 Millikan 

Library 

San 

Fernando 

1971 EW 

0.66 1.44 9.0 0.19 2.40 6.0 0.40 R R R R 

Wang et al. 

(2012) 

9 Bldg of 

Dept of 

Civ Eng. 

1978 

Miyagi-

Ken-Oki 

NS 

0.40 1.52 14.6 0.26 8.27 6.3 1.32 R R R R 

Sources: R – Obtained from reference publication (i.e. reports, theses)  |  L – Obtained from Lepage (1997) 

D – Obtained from original test data  |  E – Extracted from figures  |  C – Calculated  
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Table 6-4: Amplification factors for selected damping coefficients [reproduced from Newmark 

and Hall (1982)]. 

Damping, 

% critical 

One Sigma (84.1%) Median (50%) 

Fa Fv Fd Fa Fv Fd 

2% 3.66 2.92 2.42 2.74 2.03 1.63 

5% 2.71 2.30 2.01 2.12 1.65 1.39 

10% 1.99 1.84 1.69 1.64 1.37 1.20 

 

Table 6-5: Summary of Dmax/Sdv ratios for different PGV/PGA ranges. 

PGV/PGA 

Range 

Dmax/Sdv Number of cases 

min mean max 
Std. 

Dev. 
Total 

Underestimated 

(% total) 

Overestimated 

(% total) 

< 0.03 sec 0.56 1.31 2.45 0.50 87 
56  

(64%) 

31  

(36%) 

> 0.03 sec 0.37 0.85 1.45 0.23 85 
17  

(20%) 

68  

(80%) 

ALL 0.37 1.08 2.45 0.45 172 
73  

(42%) 

99  

(58%) 

 

Table 6-6: Summary of Dmax/Sdv ratios for different PGV/PGA ranges if Γ=√2 is assumed for 

MDOF systems. 

PGV/PGA 

Range 

Dmax/Sdv Number of cases 

min mean max 
Std. 

Dev. 
Total 

Underestimated 

(% total) 

Overestimated 

(% total) 

< 0.03 sec 0.52 1.28 2.45 0.52 87 
54  

(62%) 

33  

(38%) 

> 0.03 sec 0.35 0.81 1.45 0.22 85 
13  

(15%) 

72  

(85%) 

ALL 0.35 1.05 2.45 0.46 172 
67  

(39%) 

105  

(61%) 
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Table 6-7: Ground motion records used for analyses of bilinear SDOF systems. 

Earthquake 
Imperial 

Valley 
Parkfield Stone Canyon Coalinga 

Date & Time 1940-05-19 
2004-09-28, 

17:15 
1972-09-04 

1983-05-09, 

02:49 

Station 
El Centro 

Array #9 

Parkfield –  

Fault Zone 11 

Melendy 

Ranch 

Oil Fields, 

Skunk Hollow 

Component 0 90 90 360 61 331 90 0 

Time step (dt), sec 0.01 0.01 0.005 0.005 0.02 0.02 0.005 0.005 

PGA, g* 0.28 0.21 0.60 1.13 0.48 0.52 0.35 0.30 

PGV, in./sec* 12.2 12.3 6.0 10.9 6.1 5.0 4.0 3.8 

PGV/PGA, sec 0.11 0.15 0.026 0.025 0.033 0.025 0.029 0.033 

*Unscaled value 

 

Table 6-8: Summary of peak drifts from analyses of bilinear SDOF systems with specified initial 

periods and base shear coefficients. 

Earthquake 
Imperial 

Valley 
Parkfield Stone Canyon Coalinga 

Station 
El Centro 

Array #9 

Parkfield –  

Fault Zone 11 

Melendy 

Ranch 

Oil Fields, 

Skunk Hollow 

Component 0 90 90 360 61 331 90 0 

Period, sec Peak drift, systems with base shear coefficient = 0.2 

     0.1 0.8 0.5 1.5 1.0 1.1 1.1 1.2 1.3 

     0.2 1.0 1.3 2.7 1.0 1.2 1.9 1.5 1.6 

     0.2 1.9 2.5 3.4 1.5 1.0 2.7 1.9 1.1 

     0.4 2.4 2.9 3.0 1.9 0.9 2.9 2.4 1.2 

     0.5  3.3 3.2 2.6 1.7 1.5 2.7 2.3 1.3 

Period, sec Peak drift, systems with base shear coefficient = 0.3 

     0.1 0.4 0.1 1.2 0.8 1.1 1.0 1.1 1.3 

     0.2 0.7 0.5 2.4 1.1 1.3 1.5 1.5 1.8 

     0.2 1.3 1.6 3.3 1.3 1.0 1.8 2.1 1.5 

     0.4 2.4 2.5 3.0 1.6 1.4 1.9 2.1 1.3 

     0.5  3.0 2.3 2.5 1.6 1.6 1.9 2.2 1.3 
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Figure 1-1: Reinforcement congestion at a beam-column joint [Risser and Hoffman (2011)]. 

 

Figure 1-2: Honeycombing as a result of reinforcement congestion [from Kenai and Bahar 

(2003)]. 
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Figure 2-1: Comparison of hysteresis loops for HSSRC (gray) and CRC (black) columns, with 

HSSRC exhibiting a lower unloading stiffness [from Rautenberg (2011)]. 

 

 

 
Figure 2-2: Illustration of frames tested by Otani and Sozen (1972). 
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Figure 2-3: Illustration of frames tested by Cecen (1979). 
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Figure 2-4. Qualitative moment-curvature diagrams for Rautenberg’s (2011) two column types. 

(Note: EI is flexural stiffness, subscript “g” denotes gross stiffness  

and “cr” denotes post-cracking stiffness) 

 
Figure 2-5: Comparison of computed mean roof drift ratios in multi-degree-of-freedom models 

using Gr.-60 steel and models using Gr.-120 steel in the columns [from Rautenberg (2011)].  
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Figure 3-1: Test structure elevation view. 

 

 
Figure 3-2: Typical column cross-section. 
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Figure 3-3: Measured stress-strain curves for conventional steel alongside model curve. 

 

  
Figure 3-4: Measured stress-strain curves for high-strength steel alongside model curve. 

(Note: Extensometer was removed at 0.03 in./in. for samples 2, 3, and 4). 
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Figure 3-5: Column longitudinal reinforcement development lengths. 

 
Figure 3-6: Column reinforcement plans showing anchorage assemblies in type H columns.
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Figure 3-7: Photograph of anchorage assembly in type H frame. 
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Figure 3-8: Concrete stress-strain model used in FLECHA. 

 

 
Figure 3-9: Model stress-strain curves for column longitudinal reinforcing steel. 
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Figure 3-10: Idealized trilinear moment curvature relationships for columns  

(axial load = 0.025Agf’c). 
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Figure 3-11: Elastic bending moment diagram for a portal frame subject to lateral load at the top. 

 

 
Figure 3-12: Renderings of specimen, mass, and connection components. 
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Figure 3-13: Assumed geometry for LARZ models. 

 

 

  
Figure 3-14: Lateral force versus displacement curves for C and H frames (from LARZ). 
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Figure 3-15: Rendering of west elevation of test setup highlighting primary components. 

 

 

Figure 3-16: Instrumentation layout. 

 



132 

 

1
3
2

 

 
Figure 3-17: Plan view of setup showing camera and Optotrak positions. 

 

 
 

Figure 3-18: Fourier spectrum modification process used to smoothen displacement spectrum. 
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Figure 3-19: Comparison of linear displacement spectra of modified and original ground motions. 

 

 
Figure 3-20: Comparison of original and modified acceleration histories.
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Figure 3-21: Ground motion histories for target 100% motion.
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Figure 3-22: Linear acceleration response spectra for scaled ground motion records (2% damped). 

 

 
Figure 3-23: Linear velocity response spectra for scaled ground motion records (2% damped). 
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Figure 3-24: Linear displacement (drift) response spectra for scaled ground motion records  

(2% damped). 
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Figure 4-1: Illustration of experiment coordinate system vectors. 

 

 

 
Figure 4-2: Method for obtaining in-plane transformation vector for Optotrak targets.
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Figure 4-3: Comparison of ideal platform displacement with Optotrak and feedback.
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Figure 4-4: Effect on PGA of reducing lowpass frequency from 60 Hz to 15 Hz. 

 
Figure 4-5: Effect on PGV of reducing lowpass frequency from 60 Hz to 15 Hz. 
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Figure 4-6: Comparison of linear displacement response spectra obtained from 25% runs with 

target spectrum (2% damped). 

 

 
Figure 4-7: Comparison of linear displacement response spectra obtained from 50% runs with 

target spectrum (2% damped). 
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Figure 4-8: Comparison of linear displacement response spectra obtained from 75% runs with 

target spectrum (2% damped). 

 
Figure 4-9: Comparison of linear displacement response spectra obtained from first 100% runs 

with target spectrum (2% damped). 
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Figure 4-10: Comparison of linear displacement response spectra obtained from second 100% 

runs with target spectrum (2% damped). 
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Figure 4-11: Response histories for specimen C1, 25% run (first of five runs). 
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Figure 4-12: Response histories for specimen C1, 50% run (second of five runs). 
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Figure 4-13: Response histories for specimen C1, 75% run (third of five runs). 
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Figure 4-14: Response histories for specimen C1, 100% run (fourth of five runs). 
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Figure 4-15: Response histories for specimen C1, second 100% run (fifth of five runs). 
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Figure 4-16: Response histories for specimen C2, 25% run (fourth of five runs). 
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Figure 4-17: Response histories for specimen C2, 50% run (third of five runs). 
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Figure 4-18: Response histories for specimen C2, 75% run (second of five runs). 

-2

-1

0

1

2

-20

-10

0

10

20

0 2 4 6 8 10 12

-2

-1

0

1

2

D
is

p
la

ce
m

en
t,

 i
n

.
V

el
o

ci
ty

, 
in

./
se

c
A

cc
el

er
at

io
n

 (
ab

s.
),

 g

Time, sec

C2-75 top response

Run 2/5



 

 

1
5
1

 

 
Figure 4-19: Response histories for specimen C2, 100% run (first of five runs). 
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Figure 4-20: Response histories for specimen C2, second 100% run (fifth of five runs). 
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Figure 4-21: Response histories for specimen H1, 25% run (first of five runs). 
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Figure 4-22: Response histories for specimen H1, 50% run (second of five runs). 
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Figure 4-23: Response histories for specimen H1, 75% run (third of five runs). 
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Figure 4-24: Response histories for specimen H1, 100% run (fourth of five runs). 
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Figure 4-25: Response histories for specimen H1, second 100% run (fifth of five runs). 

-2

-1

0

1

2

-20

-10

0

10

20

0 2 4 6 8 10 12

-2

-1

0

1

2

D
is

p
la

ce
m

en
t,

 i
n

.
V

el
o

ci
ty

, 
in

./
se

c
A

cc
el

er
at

io
n

 (
ab

s.
),

 g

Time, sec

H1-100(2) top response

Run 5/5



 

 

1
5
8

 

 
Figure 4-26: Response histories for specimen H2, 25% run (fourth of five runs). 
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Figure 4-27: Response histories for specimen H2, 50% run (third of five runs). 
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Figure 4-28: Response histories for specimen H2, 75% run (second of five runs). 
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Figure 4-29: Response histories for specimen H2, 100% run (first of five runs). 
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Figure 4-30: Response histories for specimen H2, second 100% run (fifth of five runs). 
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Figure 4-31: Comparison of velocity history derived from accelerometers to velocity history 

derived from LVDT (C2-75).
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Figure 4-32: Curvature distributions at selected times for test C1-100. [Note: Top curvatures could not be measured.]  
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Figure 4-33: Curvature distributions at selected times for test C2-100. [Note: Top curvatures could not be measured.]
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Figure 4-34: Curvature distributions at selected times for test H1-100. [Note: Top curvatures could not be measured.] 
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Figure 4-35: Curvature distributions at selected times for test H2-100. [Note: Top curvatures could not be measured.]
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Figure 4-36: Diagram showing method of calculating curvatures using optical targets. 
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Figure 4-37: Out-of-plane movement measured during test C1-100. 
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Figure 4-38: Out-of-plane movement measured during test C2-100. 
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Figure 4-39: Out-of-plane movement measured during test H1-100. 
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Figure 4-40: Out-of-plane movement measured during test H2-100. 
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Figure 4-41: Vertical movement measured during test C1-100. 
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Figure 4-42: Vertical movement measured during test C2-100. 
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Figure 4-43: Vertical movement measured during test H1-100. 
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Figure 4-44: Vertical movement measured during test H2-100. 
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Figure 4-45: Envelopes derived from response histories. 
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Figure 4-46: LARZ predicted envelope alongside measured envelopes for specimens C1 and C2 

(measured are uppermost points from positive and negative directions). 

 

 
Figure 4-47: LARZ predicted envelope alongside measured envelopes for specimens H1 and H2 

(measured are uppermost points from positive and negative directions). 
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Figure 4-48: Crack map for specimen C1, west face. 
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Figure 4-49: Crack map for specimen C2, west face. 
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Figure 4-50: Crack map for specimen H1, west face. 
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Figure 4-51: Crack map for specimen H2, west face.
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Figure 5-1: Illustration of expected limit state for portal frames (based on flexural behavior). 

 
Figure 5-2: Illustration of possible limit state for type H frames (assuming slip). 
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Figure 5-3: Comparison of top drift responses of tests C1-25 and H1-25. 

 

 
Figure 5-4: Comparison of top drift responses of tests C1-50 and H1-50. 
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Figure 5-5: Comparison of top drift responses of tests C1-75 and H1-75. 
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Figure 5-6: Comparison of top drift responses of tests C1-100 and H1-100. 
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Figure 5-7: Comparison of top drift responses of tests C1-100(2) and H1-100(2). 

 

 
Figure 5-8: Comparison of top drift responses of tests C2-25 and H2-25. 
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Figure 5-9: Comparison of top drift responses of tests C2-50 and H2-50. 
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Figure 5-10: Comparison of top drift responses of tests C2-75 and H2-75. 
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Figure 5-11: Comparison of top drift responses of tests C2-100 and H2-100. 
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Figure 5-12: Comparison of top drift responses of tests C2-100(2) and H2-100(2). 
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Figure 5-13: Comparison of top drift responses of tests C1-25 and C2-25. 

 

 
Figure 5-14: Comparison of top drift responses of tests C1-50 and C2-50. 
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Figure 5-15: Comparison of top drift responses of tests C1-75 and C2-75. 
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Figure 5-16: Comparison of top drift responses of tests C1-100 and C2-100. 
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Figure 5-17: Comparison of top drift responses of tests C1-100(2) and C2-100(2). 

 

  
Figure 5-18: Comparison of top drift responses of tests H1-25 and H2-25. 
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Figure 5-19: Comparison of top drift responses of tests H1-50 and H2-50. 
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Figure 5-20: Comparison of top drift responses of tests H1-75 and H2-75. 
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Figure 5-21: Comparison of top drift responses of tests H1-100 and H2-100. 
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Figure 5-22: Comparison of top drift responses of tests H1-100(2) and H2-100(2). 
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Figure 5-23: Comparison of top drift responses of tests C1-100(1) and C1-100(2). 
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Figure 5-24: Comparison of top drift responses of tests C2-100(1) and C2-100(2). 
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Figure 5-25: Comparison of top drift responses of tests H1-100(1) and H1-100(2). 
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Figure 5-26: Comparison of top drift responses of tests H2-100(1) and H2-100(2). 
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Figure 5-27: Measured peak in-run drift of H frames vs. C frames. 

 
Figure 5-28: Measured peak cumulative drift of H frames vs. C frames. 
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Figure 5-29: Measured peak in-run drift of Series 2 frames vs. Series 1 frames. 

 
Figure 5-30: Measured peak cumulative drift of Series 2 frames vs. Series 1 frames.
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Figure 5-31: Comparison of mean effective periods for each test. 
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Figure 5-32: Excursions beyond drift versus drift for tests at 25%. 
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Figure 5-33: Excursions beyond drift versus drift for tests at 50%. 
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Figure 5-34: Excursions beyond drift versus drift for tests at 75%. 
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Figure 5-35: Excursions beyond drift versus drift for tests at 100%. 
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Figure 5-36: Excursions beyond drift versus drift for second tests at 100%(2). 

 

  



197 

 

1
9
7

 

 
Figure 6-1: Reproduction of Sozen’s (1980) plot of peak drift ratio versus spectrum intensity. 

 

 

 
Figure 6-2: Illustration of idealized constant acceleration, velocity, and displacement regions of 

response (based on 1940 El Centro 180 component). 
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Figure 6-3: Frames tested by Gulkan and Sozen (1971). 

 

 

 

Figure 6-4: Schematic showing idealized response of specimens tested by Bonacci  

[from Bonacci (1989), Fig. 2.2]. 
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Figure 6-5: Frames tested by Elwood and Moehle (2003). Outer columns are circular, inner 

column is square [from Elwood and Moehle (2003), Fig. B-1]. 
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Figure 6-6: Schematics of building tested by Shahrooz and Moehle  

[from Shahrooz and Moehle (1987), Fig. 2.1]. 
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Figure 6-7: Elevation and plan view of building slice tested by Panagiotou et al. 

[from Panagiotou et al. (2007), Fig. 2.1]. 
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Figure 6-8: Building tested at E-Defense [from Sugimoto et al. (2016), Fig. 2]. 
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Figure 6-9: Plan and elevation views of Van Nuys Holiday Inn [from Lepage (1997), Fig. 5.1]. 
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Figure 6-10: Floor plan of Millikan Library [from Kuroiwa (1967), Fig. 1.1].
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Figure 6-11: Floor plan of the Building of the Department of Civil Engineering (dimensions in mm) [from Wang et al. (2012), Fig. 2]. 
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Figure 6-12: Measured versus estimated peak drift  

(Dmax = measured peak roof drift, Sdv = estimated peak roof drift, H = height of structure). 

 
Figure 6-13: Ratio of measured-to-estimated peak drift versus PGA. 
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Figure 6-14: Ratio of measured-to-estimated peak drift versus PGV. 

 
Figure 6-15: Ratio of measured-to-estimated peak drift versus ratio of measured-to-estimated 

period. 
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Figure 6-16: Ratio of measured-to-estimated peak drift versus measured peak drift ratio. 

 

 

 
Figure 6-17: Ratio of measured-to-estimated peak drift versus PGV/PGA. 
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Figure 6-18: Close-up: ratio of measured-to-estimated peak drift versus PGV/PGA. 
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Figure 6-19: Measured versus estimated peak drift ratio  

for ground motions with PGV/PGA > 0.03 sec. 
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Figure 6-20: Ratio of measured-to-estimated peak drift versus PGV/PGA if  

Γ=√2 is assumed for MDOF systems. 
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Figure 6-21: Displacement response spectra for records with low PGV/PGA  

compared with El Centro 1940. 
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Figure 6-22: Peak drift response of bilinear oscillators with base shear coefficients of 0.2  

and initial period indicated on x-axis. 

 

 
Figure 6-23: Peak drift response of bilinear oscillators with base shear coefficients of 0.3  

and initial period indicated on x-axis. 
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APPENDICES 

These appendices contain additional details of the experimental investigation and datset. It 

comprises the following sections: 

A1: Materials 

 A2: Pullout Tests 

 A3: Test Structures 

 A4: Test Setup 

 A5: Control and Instrumentation 

 A6: Ground Motion Selection and Modification 

 A7: Test Notes 

 A8: Dataset Details 

 A9: Suggestions for Future Tests  

The data from this work were uploaded to DataHub and are available at the following link: 

https://datacenterhub.org/resources/14094  
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A1. MATERIALS 

This section describes the properties of the materials used in the test specimens and the test methods 

used to obtain these properties. 

A1.1. Grout Mix  

The specimens were cast using grout with a maximum aggregate size of 3/8 in. All specimens were 

cast from the same batch on 2014-August-19. The mix proportions of the as-delivered grout are 

listed in Table A1-1. The sand was INDOT #23 (INDOT, 2014), with gradation requirements 

shown in Table A1-2. 

Specimens, cylinders, and rupture beams were cured for 60 days under moist burlap covered by 

plastic. During this time period, cylinders were tested periodically to monitor concrete compressive 

strength. These tests were conducted in accordance with ASTM C39 (2012). Results from these 

tests are listed in Table A1-3 and are plotted in Figure A1-1. After 60 days, the plastic was removed 

and the burlap was allowed to dry gradually before being removed. 

The specimens were tested between July and December 2015. Material properties were measured 

throughout the test program. Specimens were tested in the following order: H1, C1, H2, C2. On the 

first day of testing for each frame, concrete compressive strength and tensile strength were 

measured in accordance with ASTM C39 (2012) and ASTM C496 (2012). On the first and last 

testing days in the program (i.e. for frames H1 and C2), rupture modulus and modulus of elasticity 

were measured also (in accordance with ASTM C78 (2010) and ASTM C469 (2010). All measured 

properties of the grout from test days are summarized in Table A1-4. 
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A1.2. Longitudinal Reinforcement 

Three 36-in. long samples were selected at random from among the Grade 60, 3/8-in. deformed 

reinforcing bars used in the specimens. Four samples were selected from among the 1/4-in. high-

strength steel bars. These samples were marked at 6 in., 14 in., 22 in., and 30 in. from one end and 

tested to failure in a tension testing machine. Over the middle 8-in. length of each sample, an 

extensometer with a gage length of 8 in. was used to measure strain (Epsilon Technology, model 

3543-0800-200T-ST). The samples were tested in a Baldwin 120-kip universal testing machine 

with an Instron data acquisition system (Figure A1-2). After each test ended, the segment in which 

fracture occurred was measured to determine ultimate strain. These results are summarized in Table 

A1-5. Stress-strain diagrams for each sample are provided in Figure 3-3 (conventional steel) and 

Figure 3-4 (high-strength steel). 

Data from the tension tests was used to generate representative steel profiles for the reinforcement. 

Representative steel models were created using the Menegotto-Pinto model (1973), as described in 

Chapter 3. This relationship is: 

εs
∗ = |

εs
εs0
| Equation A1-1 

σs = (ksεs
∗ +

(1 − k𝑠)εs
∗

(1 + εs
∗R)

1/R
)σs0 Equation A1-2 

where  εs = steel strain 

σs = steel stress 

εs
* = normalized steel strain 

εs0 = steel strain at intersection of initial modulus line and tangent modulus at ultimate 

σs0 = steel stress at intersection of initial modulus line and tangent modulus at ultimate 

ks = Es∞ / Es, ratio of tangent modulus at ultimate to initial modulus 

R = parameter defining the shape of the curve 
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The values of εs0, σs0, ks, and R were adjusted until visual agreement was reached with the measured 

curves. The values used for each type of steel are specified in Table A1-6. 

A1.3. Transverse Reinforcement 

Transverse reinforcement in the specimens consisted of 3/16-in. 12L14 steel wire. Because of its 

small size, this wire could not be tested in the same machine as the longitudinal reinforcement. This 

was because (1) no grips were available for the Baldwin testing machine at that size, and (2) the 

expected strength of the bars was less than 2% of the capacity of the Baldwin. Instead, the wire was 

tested using a Sintech 30/D Tensile Tester (30-kip capacity). Three 20-in. pieces were selected at 

random from among the 3/16-in. wires. Over the middle 2-in. length of each coupon, an 

extensometer with a gage length of 2 in. was used to record strain (MTS model 634.25E-54). Slip 

of the extensometer on the smooth surfaces of the wire after the steel reached a yield plateau made 

it impossible to determine the 0.2% offset yield stress of the first two samples. But it was still 

possible to determine modulus of elasticity and strength from these tests.  

A summary of the test results is presented in Table A1-7. The stress-strain curve from the third 

sample is presented in Figure A1-3. The yield stress from the third sample was 74 ksi. The average 

strength of all three samples was 82 ksi, and the average modulus of elasticity was 25,400 ksi. All 

samples fractured near the one of the grips. Based on measurements of this segment before and 

after testing, the average elongation at fracture was 8.4%. But because the wires were gripped at 

their ends over a length of approximately 2 in., it is possible that the percent elongation at failure 

could have been higher. 

The wire was bent into rectangular hoops with 135 degree hooks at both ends. Figure A1-4 shows 

a photograph of the hoops in the lower beam. The hoops were corroded to improve bond with the 

concrete using the process described in Section A1.4.  
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A1.4. Corrosion of Reinforcement to Improve Bond 

To provide surface roughness and improve bond with concrete, a corrosion process was used on 

both the high-strength steel bars and 12L14 steel wire. Reinforcement was first bent into the desired 

shape and cleaned using paint thinner. A 10% solution of hydrochloric acid (HCl) was then sprayed 

onto the reinforcement. The reinforcing bars were then wrapped in moist burlap and stored in a 

moist curing room. The acid and humid environment caused the surfaces of the bars to corrode. 

After 72 hours elapsed, the bars were removed and loose rust was removed using a sponge. The 

resulting bar surface had small indentations as a result of corrosion. A visual comparison of non-

corroded and corroded 12L14 steel wire is shown in Figure A1-4. A visual comparison of non-

corroded and corroded high-strength reinforcement is shown in Figure A1-5. 
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A2. PULLOUT TESTS 

As discussed in the main body of this document, the longitudinal steel used in type H columns was 

expected to experience high bond stresses because of its high strength and small diameter. 

Combined with the lack of surface deformations, there were concerns that the bars might pull out 

of the beams before reaching their yield stress. For this reason, “pullout” specimens were built to 

test different anchorage configurations. Three types were tested. Two types were modeled after a 

portion of the top beam of the test frames:  

(1) Hook: with the bars terminating in 135-degree hooks with a total length of 22 in. as shown 

in Figure A2-1(a)3 

(2) Plate: with the ends of the bars threaded and anchored into plates [Figure A2-1(b)] 

These specimens were cast with concrete similar to what was used in the test frames. They were 3 

in. thick, 10 in. deep, and 19 in. wide. Single-leg transverse reinforcement was included in the 

hooked specimen to represent the transverse reinforcement in the beams of the frames. A hook with 

a 135 degree bend was selected over a 90 degree hook because a 135 degree hook was expected to 

perform better. Whereas the first two types were cast with concrete, the third type was not. The 

third specimen type comprised a single high-strength bar terminating in an assembly consisting of 

plates and prestressing anchor chucks [Figure A2-1(c) and Figure A2-2]. This was referred to as 

                                                      

3 Specimens with hooks at 90 degrees were also built, with tie-wire wrapping around the entire length of the 

hook to the adjacent longitudinal steel in the beam. But the labor involved in constructing specimens with 

this detail was deemed prohibitive, so this detail was not considered. 
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the “anchor” specimen. All specimens were tested in the Instron-Baldwin testing machine described 

in Section A1.2. Details of the test setups and results are described in the following sections. 

A2.1. Hook Specimen 

This specimen is illustrated in Figure A2-1(a). The specimen was positioned in the Instron-Baldwin 

universal testing machine as shown in Figure A2-3(a) and Figure A2-4. Angles were fastened to 

both sides of the concrete block portion of the specimen. These angles were then clamped to the 

lower crosshead of the testing machine. A steel plate was placed between the concrete block and 

the bottom surface of the lower crosshead to provide a larger bearing area. The high-strength steel 

rod extending from the specimens ran vertically through this plate, through the opening in the lower 

crosshead, and into grips in the upper crosshead. As the upper crosshead moved up during the test, 

it pulled the steel rod and the concrete block bore against the bottom surface of the lower crosshead.  

Applied force and extension of the upper crosshead were recorded. Bar stress was calculated by 

dividing applied force by the area of the bar. In Figure A2-5, bar stress is plotted against crosshead 

extension. Superimposed on this figure are stress-extension curves measured from the coupon tests 

described in Section A1.2. In this figure, the initial extension without an increase in stress is the 

crosshead moving before the specimens are fully seated. More critical in this plot is stress. The 

hook specimen reached a peak stress of approximately 92 ksi, when the bar slipped and resistance 

dropped to just 5 ksi. As the test progressed, stress increased to approximately 50 ksi before 

dropping again to nearly 40 ksi. From this point onward, the stress increased gradually to a peak of 

nearly 65 ksi before decreasing gradually again. The test was ended at an extension of 1 in. These 

test results show that a 135 degree hook with a length of 22 in. was insufficient for the high-strength 

bars to develop their yield stress without slipping, let alone to develop their strength. It follows that 

a 90 degree hook would also have been insufficient. 
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A2.2. Plate Specimen 

The setup and testing procedure of this specimen was the same as the hook specimen (described in 

the previous section). Bar stress from this test is plotted against elongation Figure A2-6 alongside 

stress-elongation curves from high-strength coupon tests. In contrast to the hook specimen, the bar 

in the plate specimen developed its yield stress (approximately 160 ksi). But before the bar could 

develop its strength, it fractured (at approximately 170 ksi). This fracture can be attributed to the 

reduction in cross-sectional area of the bars where threads were cut. This suggested that any method 

involving threading of the bars would introduce the risk of premature bar fracture at the threads as 

a result of reduced cross-section. 

A2.3. Anchor Specimens 

Neither of the previous configurations successfully anchored the bars. An anchorage system was 

needed that did not rely on a hook alone and that did not require the bars to be threaded. Because 

of similarities between the bars and prestressing steel (high strength, small diameter, and smooth 

surfaces), prestressing anchor chucks were considered next for anchoring the bars.  

Instead of constructing forms and casting concrete, a simpler specimen was built. This system 

comprised steel plates, prestressing anchor chucks, and threaded rods with nuts [Figure A2-2]. An 

anchor chuck was placed on the bar in reversed direction (i.e. pulling on the bar would not engage 

the chuck), followed by an assembly consisting of two plates separated by a gap with threaded rods 

and nuts in between. After this, an anchor chuck  was placed in the typical direction (i.e. pulling on 

the bar would engage the chuck). Turning the nuts on the threaded rods pushed the plates apart and 

seated the anchor chucks. After seating the anchor chucks, the gap between the plates was filled 

with Hydrostone® gypsum cement. The first two anchor specimens were built with reusable 1/4-

in. anchor chucks donated by Prestress Supply, Inc. The third anchor specimen was built with 
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anchor chucks that were designed to be left in place after casting concrete. These anchor chucks – 

and the anchor chucks that were used in the specimens – were donated by Precision-Hayes 

International. 

Because anchor specimens were different in shape than both hook and plate specimens, they were 

setup differently in the testing machine. Figure A2-3(b) shows a schematic of how the specimens 

were setup in the testing machine. Stress-elongation curves for the anchor specimens are shown in 

Figure A2-7. In all tests of this specimen type, the bars were able to develop their strength. For this 

reason, this method was selected for use in type H frames. Details showing the anchorage 

assemblies used in type H frames are shown in Figure 3-6.
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A3. TEST STRUCTURES 

A3.1. Overall Dimensions 

Nominal dimensions of the structures are shown in Figure A3-1, and an isometric is shown in 

Figure A3-2. To connect the specimens to the other components of the test setup, the specimens 

were cast with holes in the top and bottom beams. These holes were created by casting PVC pipe 

into the sections. After the concrete hardened, the PVC pipes were removed.  

To lift the specimens after cast and place them on the simulator platform, anchors were cast into 

the top beam. The anchors were HILTI HCI-WF cast-in anchors with a nominal internal diameter 

of 1/2 in. (13 thread).  

After the concrete was cast, the specimens were measured. As-built dimensions are reported in 

Table A3-1. The accompanying schematic for these as-built dimensions is Figure A3-3. 

A3.2. Reinforcing Details 

Reinforcing details of the frames are shown in Figure A3-4 and are listed in Table A3-2. The top 

and bottom beams in both specimen types were longitudinally reinforced using conventional 

(Grade 60) 3/8 in. deformed bars. Column longitudinal reinforcement consisted of either 

conventional conventional 3/8 in. deformed bars (type C specimens), or 1/4 in. high-strength steel 

pencil rod (type H specimens), as discussed in the main body of this document.  

In type C frames, column longitudinal reinforcement terminated in 90-degree hooks extending a 

total of 22 in. into the top and bottom beams (including hook). In type H frames, these hooks were 
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bent to approximately 105 degrees to accommodate the anchorage assemblies at the ends of the 

reinforcing bars. These anchorage assemblies were installed to preclude slip of column longitudinal 

bars out of the beams. Details of the anchorage assemblies are discussed in the next section. 

The reinforcing cages were held in place using plastic rebar spacer wheels. Formwork and 

reinforcing cages were photographed alongside a tape measure before casting concrete to document 

spacing. Measurements also were taken of the hoop spacing in the columns before casting concrete 

and are reported in Table A3-3.  

A3.3. Anchorage of High-Strength Steel 

The anchorage assemblies comprised cast-in prestressing steel anchor chucks separated by plates 

(Figure 3-6). Two anchors were placed near the end of each rod in the beam opposite one another. 

The anchors were separated by two 3/4-in. thick steel plates, with threaded rods and nuts placed in 

between. The threaded rods and nuts were adjusted to provide an initial gap between the plates of 

3/4 in. After making the assembly snug by pressing the anchors towards one another, the nuts were 

turned to push the plates apart (and towards the anchor chucks). Pushing the plates apart seated the 

anchor chucks. Had this seating process not been done, there could have been some slip of the bars 

as the anchor chucks were seated. 
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A4. TEST SETUP COMPONENTS 

An isometric of the setup is shown in Figure A4-1. A west elevation with components called out is 

shown in Figure A4-2. The following is a list of major test components and the sections in which 

they are discussed: 

 Reusable concrete mass: Section A4.1 

 Specimen base connection components: Section A4.2 

 Out-of-plane bracing: Section A4.3 

 Instrumentation truss: Section A4.4 

Before testing, drag tests were conducted to estimate the coefficient of friction between the 

simulator platform and concrete. These tests are described in Section A4.5. 

A4.1. Reusable Concrete Mass 

A reusable reinforced concrete mass was used in all tests. It was sized so that the effective mass of 

the system would be approximately 5,000 lb including connection components and the contribution 

of two-thirds of the weight of the columns. The mass was shaped like an extruded “n” as shown in 

Figure A4-3. It was cast with vertical holes in it to facilitate post-tensioning to each frame. These 

vertical holes were created by casting the mass with PVC pipes in it. 

Reinforcing details of the mass are shown in Figure A4-3. Longitudinal reinforcement consisted of 

twelve 3/8-in. Grade-60 reinforcing bars. Twelve 3/8-in. Grade-60 transverse hoops were provided 

at uniform spacing on either side of the straddle point along its length connected by additional 
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transverse bars. Around each pipe opening, 3/16-in., 12L14 steel wire spirals were provided to 

improve concrete confinement. 

The mass was placed atop each frame so that it straddled the top beam (Figure A4-2). Before 

lowering the mass into place, a thin layer of Hydrostone® gypsum cement was spread atop the 

beam. Two rods passed through the mass and the ends of the top beam. Both rods were tightened 

to a force of approximately 32 kips. At the center, four threaded rods passed through the mass and 

a steel plate (PL16x16x2.5), which straddled the underside of the top beam. Each of these rods was 

tightened to 12 kips. In total, the clamping force connecting the mass to each specimen was 

approximately 112 kips. 

A4.2. Specimen Base Connection Components 

The base connection of the specimen is described in Section 3.3.1. Twenty-one 1/2-in., high-

strength steel threaded rods were used to fasten each specimen to the simulator platform (Figure 3-

12). These rods threaded into helicoil inserts on the simulator platform. They reacted against steel 

angles (L5x5x3/4) that laid across the top surface of the bottom beam, transverse to the direction 

of motion. Each threaded rod was tightened to a force of approximately 10 kips using turn-of-the-

nut method (calibrated beforehand using a load cell). After making them snug by hand, the nuts 

were tightened in 1/6-turn increments, starting with the center nut, then the west nut, then the east 

nut on a given angle. The order in which angles were tightened is illustrated in Figure A4-2. For 

additional lateral support, steel L8x8x7/8 angles were fastened to the sides of the lower beam as 

described in Section 3.3.1. 
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A4.3. Out-of-plane Bracing 

A bracing system was constructed to limit out-of-plane movement of the system during testing. 

This system comprised steel W14x99 posts on the east and west sides of the setup, each with two 

steel channels “arms” extending towards the mass (Figure A4-4). At the ends of these extension 

arms, steel angles with PTFE bearing pads were installed. Each bearing pad bore against a stainless 

steel contact plate attached to the side of the reusable mass. The PTFE bearing pads and stainless 

steel contact plates were donated by Voss Engineering, Inc. out of Lincolnwood, Illinois. 

Connections between the posts and extension arms, and between the extension arms and angles 

were bolted. The bolt holes were slotted to allow the extension-arm-and-bearing-pad assemblies to 

be adjusted). Before each test, the assembly was adjusted to provide a 1/8-in. gap between the PTFE 

bearing pads and the stainless steel plates. In the event of out-of-plane motion during testing, the 

PTFE pads bore against the stainless steel plates, limiting out-of-plane movement with little in-

plane pullback force.  

A4.4. Instrumentation Truss 

An instrumentation truss was constructed to hold LVDTs. It was critical that the truss have a low 

period to minimize in-plane displacement response during testing. To achieve this objective, the 

truss was designed to have high stiffness and low mass.  

An annotated photograph of the truss is shown in Figure A4-5. The main portion comprised three 

steel angles connected at their ends using A490 bolts in slip-critical connections. Transverse to the 

direction of motion, a channel was attached at the base to add out-of-plane resistance. 

Approximately 40 in. above the simulator platform, transverse to the direction of motion, a 

L3x3x3/8 angle was bolted to the truss. This angle had four assemblies installed along its length 

for connecting to an outrigger system comprised of 5/8 in. threaded rods. These assemblies 
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connected to the ends of four 5/8-in. diameter steel threaded rods. The threaded rods were 

connected at their other ends to four points on the simulator platform. This created a system of 

threaded rod outriggers for the instrumentation truss that added stiffness (both in- and out-of-plane) 

with little added mass. Before testing, outrigger threaded rods were tightened to increase the 

stiffness of the system.  

As an extra precaution, optical targets were affixed to the instrumentation truss near its top and 

bottom to monitor movement of the truss during testing (Figure 3-16). This was to enable readings 

from LVDTs to be adjusted for movement of the truss during testing, if such movement were to 

occur. At times, these optical targets went outside the visible range of the Optotrak. Nevertheless, 

for all tests in which both targets were visible, the maximum relative movement of the targets never 

exceeded 0.01 in. Because of this, it was not necessary to adjust LVDT readings to account for 

movement of the truss. 

The bodies of the LVDTs were held in place using rectangular HDPE (high-density polyethylene) 

mounts (Figure A4-6). These mounts were tightened around the LVDT body using 1/4-in. threaded 

rods with nuts. The cores of the LVDTs were threaded onto 4-40 brass threaded rods. These brass 

threaded rods threaded into metal clips that were epoxied to the concrete surfaces of the test frames.  

A4.5. Friction Tests 

Before the first test on an earthquake simulator, drag tests were conducted to estimate the static 

coefficient of friction between the simulator platform and concrete. A dynamometer (Chatillon 

Model 719-10, 10 lb range) and a concrete cylinder were used for these tests. The cylinder had a 

diameter of 6 in. and a height of 12 in., and was cast from the same mix as the specimens. A rope 

was tied around the cylinder at mid-height, and it was placed on the simulator platform. The 

dynamometer was hooked to the rope and pulled until the cylinder began to slide. At this point, the 
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force in the dynamometer was read. This process was repeated at various locations on the simulator 

platform. The cylinder was then weighed and the static coefficient of friction between the concrete 

and platform was calculated as the ratio of the pulling force in the dynamometer to the weight of 

the cylinder. Values obtained from this process are summarized in Table A4-1. For all tests, the 

dynamometer reached its maximum force (10 lb) before sliding initiated, meaning the static 

coefficient of friction between the platform and concrete was more than 0.25. 
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A5. CONTROL AND INSTRUMENTATION 

A5.1. Control 

The hydraulic actuator driving the simulator platform is displacement controlled. This actuator was 

controlled using a MTS FlexTest™ 60 controller (Series 793) with Station Manager v5.9A 6026 

installed on the computer. MultiPurpose TestWare® was used to define a procedure to control the 

actuator. This procedure had two main parts: (1) a ramp to bring the table to zero displacement, (2) 

the ground motion displacement profile. The latter was formatted as a BLK file (ASCII text) with 

the following information in the header: 

 “FileType= Block-Arbitrary” – tells MTS system the input format 

 “Date= 21-Mar-2015” – the date when the file was created 

 “Description= RoscoeE, 3x @ 100p, SpecMod” – user-assigned description 

 “Channels= 1” – number of channels to be controlled 

 “Channel(1)= Displacement” – channel number and type (i.e. force or displacement) 

 “Max=1.2965 in” – maximum displacement command 

 “Min=-1.2194 in” – minimum displacement command 

 time=0.0033 Sec – time step 

 Level1 – channel to be controlled 

 in – units of command signal 

After these header rows was the command displacement profile, with one value per row. This file 

has been uploaded to the dataset at DataHub. 
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A5.2. Instrumentation 

Test structures were instrumented with linear variable differential transformers (LVDTs), 

accelerometers, an optical motion tracking system, and two or more cameras. A detailed 

instrumentation plan is shown in Figure A5-1. This plan shows the names and channel assignments 

for all sensors on the test setup. The prefix “Ch” signifies that the sensor was sampled by the main 

data acquisition system. The prefix “OT” signifies that the sensor was sampled by the optical 

tracking system. An overhead view of the setup is shown in Figure A5-2. This figure shows the 

positions of the accelerometers in more detail.  

In addition to these digital sensors, dial gauges were installed on the laboratory floor between the 

simulator platform pedestal and the pedestal on which the actuator was mounted (Figure A5-3).4 

This was to measure relative movement of the pedestals in the north-south direction. A camera 

recorded both dial gauges during testing. Review of the videos recorded by this camera showed 

that there was no movement of the base pedestals during testing. 

A5.2.1. Primary Data Acquisition System 

The main data acquisition system (DAQ) recorded signals from LVDTs, accelerometers, command 

displacement to the actuator, and feedback displacement from the actuator. It also sent signals to 

illuminate an LED that faced towards the northwest of the test setup. This LED was installed to 

facilitate syncing of data with videos. A breakdown of the sensors handled by the main DAQ, 

channel assignments, and locations is presented in Table A5-1. 

                                                      

4 These gauges were installed only after tests H1-25, H1-50, and H1-75 had been conducted.  
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National Instruments hardware was used for the main DAQ system. Hardware connectivity is 

summarized in Table A5-2. LVDT and accelerometers were not powered by National Instruments 

hardware. Instead, external systems were used to provide power to these sensors.  

Labview 2010 was used to interface with the main DAQ hardware. Data were sampled at a rate of 

1,000 Hz. Data were recorded as raw voltages and saved as TDMS files. This filetype was selected 

because it allowed the data to be sampled at a high rate with minimal demand on the DAQ PC. 

After testing, the files were converted to ASCII (text) for processing. 

A5.2.1.1. LVDTs 

Ten LVDTs were used on the test setup (Figure A5-1). At the base of each specimen, an LVDT 

was positioned to measure slip of the specimen. This LVDT had a range of 1 in. (±1/2 in.). Along 

the height of the south face of the south column, seven LVDTs were placed. These LVDTs had 

ranges of 4 in. (±2 in.). They were spaced starting at a height of 3 in. above the top of the bottom 

beam (15 in. above the simulator platform surface), and 6-in. thereafter. Two LVDTs measured the 

top displacement of the frames. The first had a range of 4 in. (±2 in.). This LVDT was connected 

to the centerline of the south face of the top beam. Another LVDT with a range of 6 in. (±3 in.) was 

connected to the mass adjacent to the first LVDT. This was to ensure drifts larger than 3 in. could 

be measured. All LVDTs were manufactured by Schaevitz Sensors, with serial numbers listed in 

Table A5-3. All LVDTs were powered externally using a custom-built power supply unit.  

A5.2.1.2. Accelerometers 

Four accelerometers were used on the test setup: two on the platform, one on top of the lower beam, 

and one on top of the mass above the north column (Figure A5-2). These accelerometers were held 

in place by mounts that were attached to the respective components using super glue. 
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All accelerometers were Piezotronics model 333B52, with model numbers listed in Table A5-3 

[PCB Piezotronics (2013a)]. These accelerometers have a range of ±5 g and a minimum measurable 

frequency of 0.5 Hz. The accelerometers were all powered by a PCB482A22 signal conditioner 

[PCB Piezotronics (2013b)]. 

A5.2.2. Optical Tracking System 

An Optotrak PROseries optical tracking system was used for all tests [Northern Digital (2011)]. 

This system allowed the motion of the test setup and specimens to be tracked in three dimensions 

using targets affixed to the setup. The Optotrak system was positioned west of the test setup. The 

targets were sampled at a rate of 50 Hz. 

An instrumentation plan showing target locations, channel numbers, and names is shown in Figure 

A5-1. Each column had 28 targets attached: two columns of fourteen rows. The naming convention 

for these targets was as follows: the first letter (capital N or S) indicated to which column the target 

was attached, the second letter (lower case n or s) indicated the column (there were two columns 

of targets per specimen column), the number indicated the row (from 1 to 14). For example, Ns14 

was the the southmost target attached to the north column on row 14 (bottom row). 

A5.2.3. Cameras 

Each experiment was recorded using two or more cameras. Cameras to the northwest and west of 

the test setup recorded all tests (Figure 3-17). For all tests except H1-25, H1-50, and H1-75, a 

camera was situated  between the actuator and simulator platform pedestals. This camera monitored 

the dial gauges that measured relative movement of the pedestals.
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A6. GROUND MOTION SELECTION AND MODIFICATION 

Before the test series, the simulator was run repeatedly to determine its behavior with different 

payloads and different ground motion profiles. It was run with no added weight, and with 2 kips, 4 

kips, and 6 kips added. Different ground motion profiles also were run to find the ground motion 

that could be reproduced most consistently. These ground motions were downloaded from the 

PEER NGA Ground Motion Database [Chiou et al. (2008)] and the CESMD Strong-Motion Virtual 

Data Center [CESMD (2016)]. Dozens of records were considered, including “classic” records 

obtained from the 1940 El Centro earthquake, the 1952 Kern County (Taft) earthquake, and the 

1971 San Fernando earthquake (all of which have been used in previous earthquake simulation 

tests). Before running a record on the earthquake simulator, the record was processed to determine: 

(1) To what extent the record could be compressed without exceeding the limits of the 

simulator (i.e. without exceeding the 2 g, 12 in./sec, and ± 2 in. ranges of the actuator) 

(2) The zero crossing rate (ZCR) of the record, defined as the average number of times the 

acceleration sign changes during the record (i.e. the number of reversals per second) 

(3) The “smoothness” and average slope of the displacement response spectrum in the period 

range of interest (T = 0.1 – 0.4 sec, from 1 to 4 times expected initial period based on gross 

cross-sectional properties) 

The first item was to ensure that the motion could be reproduced without damaging the hydraulic 

actuator driving the simulator. The second item was observed to have an effect on the repeatability 

of the tests. As more ground motions were run on the simulator, records with lower ZCRs were 

found to have: (a) less high-frequency noise, (b) lower amplification of the linear displacement 
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response spectrum calculated from measured accelerations when compared to the target spectrum, 

and (c) improved repeatability. Repeatability was measured using the coefficient of variation of the 

displacement response spectra measured from repetitions of the same motion, as discussed in 

Section 4.2.2. The third item related to the shape of the displacement response spectrum. It was 

desirable to use a ground motion that would produce a response spectrum similar in appearance to 

an idealized spectrum [Newmark (1973)], with assumed regions of nearly constant acceleration, 

velocity, and displacement (Figure A6-1). As discussed in Section 3.4, spectra without prominent 

“peaks” and “valleys” were desirable. 

The final record chosen for this investigation was the east-west component of the recording 

obtained at Sun Valley – Roscoe Boulevard during the 1994 Northridge earthquake. This record 

was chosen because (1) it fit within the limits of the simulator, (2) it had good repeatability 

compared to other ground motions considered, and (3) based on its displacement response 

spectrum, it was expected to produce peak drift ratios of up to 2% in the test specimens.5 Details of 

the selected record (its source, site characteristics, etc.) are presented in the next section. 

A6.1. Details of Selected Record 

The acceleration profile used in this study was based on the east-west component of the recording 

obtained at Sun Valley – Roscoe Boulevard during the 1994 Northridge earthquake. The record 

was downloaded from the PEER NGA Database [Chiou et al. (2008)], along with characteristics 

about the site and station. This station was located at the ground level of a 2-story building at 

34.221°N, 118.421°W. The subsurface comprised Holocene medium alluvium with a coarse grain 

size. The shear wave velocity in the top 30 m of the subsurface (Vs30) was approximately 300 m/sec.  

                                                      

5 Before the test series, peak drift ratio in the specimens was estimated using Sozen’s (2003) expression, as 

given in Equation 6-1. The initial period was estimated to be 0.1 sec and a PGV of 11 in./sec was used. 
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A6.2. Modification of Selected Record 

The record obtained from the PEER NGA Database had been pre-processed by the Pacific 

Earthquake Engineering Research Center (PEER) using a bandpass filter with a lowpass frequency 

of 30 Hz and a highpass frequency of 0.1 Hz. The original time step of the record was 0.01 sec. 

The original PGA, PGV, and PGD were 0.30 g, 8.7 in./sec, and 3.09 in. This corresponds to a 

PGV/PGA ratio of 0.074 sec. The record was compressed in time by a factor of three by reducing 

the time step to 0.0033 sec, and was then scaled by multiplying by a factor 3.9. The resulting record 

had a PGA, PGV, and PGD of 1.18 g, 11.2 in./sec, and 1.31 in. Compressing and scaling the record 

reduced the PGV/PGA ratio to 0.025 sec.  

Displacement response spectra for the original and scaled records are shown in Figure A6-2 (up to 

a period of 6 sec). This figure shows how scaling and compressing a record shifted the shape of the 

displacement response spectrum to a lower period range. In Figure A6-3, a close-up of this spectra 

is shown (up to T = 1 sec). In the period range of interest (T = 0.1 – 0.4 sec), a peak can be seen at 

T = 0.22 sec. As discussed in the main body of this document, it was desirable to use a record that 

produced a displacement response spectrum without prominent peaks (or valleys).  

To reduce the prominence of peaks and valleys in the period range of interest, the acceleration 

record was modified by adjusting amplitudes in the Fourier domain (Figure 3-18). The frequency 

ranges and amplitudes used to adjust amplitudes in the Fourier domain are shown in Table A6-1. 

After making these adjustments, a final highpass filter of 0.5 Hz was applied to the record and it 

was baseline corrected using Seismosignal [Seismosoft (2016)]. The reason for this final filter was 

to remove frequency content that could not be measured by the accelerometers (which have a 

frequency range of 0.5 to 3000 Hz). The resulting acceleration profile was integrated twice to obtain 

a displacement profile with which to operate the simulator.
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A7. TEST NOTES 

Text files accompany the data from each shake table test. These files contain notes about the 

procedure of each test, conditions in the laboratory, whether sensors malfunctioned, and so forth. 

This section contains additional notes from the test program. 

A7.1. Frames C1 and H1: Initial Period 

Frames C1 was subjected to hammer tests before the mass was connected to the top beam. This 

was to estimate its initial period (and stiffness) without added mass. The frame was placed upright 

on the strong floor of Bowen Laboratory. A layer of Hydrostone® gypsum cement was spread 

between the floor and bottom beam of the frame. Steel threaded rods were used to fasten the base 

of the specimen to the strong floor. Two accelerometers were installed on top of the top beam: one 

above each column. Like the hammer tests described in Section 3.6, the top beam of the specimen 

was struck in-plane repeatedly using a 4 lb dead-blow hammer. Period was estimated from the zero 

crossing rate of the measured acceleration response. The period estimated from these hammer tests 

was 0.034 sec. Using Equation 3-11 with a reduced effective mass (only the top girder and 2/3 of 

the columns), the estimated initial period based on gross cross-sections is 0.036 sec. This is within 

6% of the period estimated from the hammer tests.  

Like frame C1, hammer tests were conducted on frame H1 before the mass was installed. But 

whereas frame C1 was fastened to the strong floor of the laboratory for these tests, frame H1 was 

fastened to the earthquake simulator platform. Otherwise, hammer tests were conducted in the same 

manner as for frame C1. The period estimated from these hammer tests was 0.033 sec. This is 
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comparable to the period obtained from similar hammer tests of frame H1 (0.034 sec), and to the 

estimated initial period for the system with reduced mass (0.036 sec). 

A7.2. Videos 

In addition to videos recorded from the west and northwest of the setup, in several cases additional 

videos were captured during testing. A detailed listing of videos captured is presented in Table A7-

1. In the sections below, the additional videos are described.  

A7.2.1. Dial Gauge 

Frame H1 was the first frame tested in this investigation. Some additions were made to the testing 

protocol based on experience from this test. One addition was the dial gauge and camera setup to 

measure whether there was relative movement of the actuator and simulator platform pedestals. For 

tests H1-25, H1-50, and H1-75, these dial gauges were not installed and there is no corresponding 

video. This setup was installed after test H1-75, and dial gauge videos are available from that test 

onward. 

A7.2.2. GoPro 

Video was captured of the bottom of the north column (east face) using a GoPro during tests H1-

100 and H1-100(2). Before these tests, a speckled pattern was drawn in this region using permanent 

marker. This was to facilitate using the video later to measure strain. The GoPro was mounted to a 

steel angle immediately east of the bottom of the north column and recorded deformation of the 

joint during these tests. It was not necessary to process the videos for the current investigation, but 

they are uploaded along with the rest of the data. 
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A7.2.3. Drone 

Towards the end of the investigation, an unmanned aerial drone became available for recording the 

tests. This drone was a DJI Phantom 3 Professional. It recorded the west side of the test setup. Like 

the GoPro videos, it was not necessary to process these videos for the current investigation. 

Nevertheless, they are uploaded along with the rest of the data.  

A7.3. Sensor Malfunctions 

During tests C1-25 and C1-50, the accelerometer on the bottom beam of frame C1 malfunctioned. 

As a result, measurements from this accelerometer were not included in analysis of tests C1-25 and 

C1-50. The accelerometer was replaced for subsequent tests, including the remaining three tests of 

frame C1 and all tests of frames C2 and H2.
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A8. DATASET DETAILS 

This section provides additional details about how Ti and Γ were calculated for structures for which 

these values were unavailable in reports. 

A8.1. Rayleigh’s Method 

Rayleigh’s method is a simple iterative method of analysis that can be used to estimate the period, 

modeshape, and modal participation factors of a structure [Biggs (1964), Ch. 3]. To estimate these 

values, the following parameters must be defined: 

 Initial assumed modeshape of the structure: This is used as a starting point for other 

calculations. Iterations are performed until the modeshape converges. 

 Mass of each story: This is needed along with modeshape to estimate story shear. 

 Stiffness of each story: This is needed to estimate the deflection of each story given the 

calculated story shear. 

The initial modeshape was assumed to be triangular, from 0 to 1 in 1/N increments, where N is the 

number of stories of the structure. The mass of each story was taken from corresponding 

documentation. Story stiffnesses were estimated using expressions from Schultz (1992). These 

expressions include flexibility of all the columns on a given story and the girders above and below 

that story. Gross cross sections were used for all calculations of moment of inertia. Column heights 

were taken as clear heights. Similarly, girder lengths were taken as clear lengths. In some 

experiments, specimens were cast in multiple parts. As a result, concrete in some parts of a structure 

had a lower modulus of elasticity than in other parts. In these cases, the reduced modulus of 

elasticity was incorporated into the estimated story stiffnesses.  
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A8.2. SAP2000 Model of 20-Story Structure 

When Rayleigh’s method was used to estimate the initial first-mode period of the 20-story structure 

tested in Japan [Sugimoto et al. (2016)], the estimated period was much smaller than both the 

estimated period from the literature and the measured period. This is thought to be because 

Rayleigh’s method considers only shear deformations at each story, but in tall buildings axial 

deformations in the exterior columns can lead to longer periods of vibration than would be expectd 

based on shear deformations alone. For this reason, a model was built in SAP2000 to estimate the 

initial period of this structure.  

Model geometry and materials were defined from drawings and tables in Sugimoto et al. (2016). 

Instead of modeling the entire building, a single interior frame was modeled in each direction 

(Figure A8-1 and Figure A8-2). Floor-to-floor heights were 750 mm. Columns were all 225 x 225 

mm. The same T-beam cross-section was used in both directions. These T-beams were defined 

using the SAP2000 section designer. The effective width of the top of beams was established by 

projecting up at 45 degrees from the bottom face of the beam (Figure A8-3). This led to an effective 

width of 390 mm. Center-to-center spans were 1625 mm in both directions.  

The test specimen was cast in four parts: (1) floors 1 through 8, (2) floors 9 through 13, (3) floors 

14 through 17, and (4) floors 18 through 20. Different concrete was used in each part, with the 

strongest concrete at the lowest levels. To account for this, four different concrete material models 

were defined, with material properties summarized in Table A8-1. According to Sugimoto et al. 

(2016), the total weight of each floor of the structure was 177 kN. Three parallel frames resisted 

demands in the X-direction (longitudinal). Because only one frame was modeled in this direction, 

a mass of 177 kN/3 = 59 kN was assigned to each floor level in the model. Four parallel frames 

resisted lateral demands in the Y-direction (transverse). Because only one frame was modeled in 

this direction, a mass of 177 kN/4 = 44.3 kN was assigned to each floor level in the model. 
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Fixed end conditions were assigned to the bases of the columns on the first floor. The following 

degrees of freedom were unlocked: lateral displacement, vertical displacement, and in-plane 

rotation. Modal analyses were conducted including modes 1 through 10. From these modal 

analyses, the first-mode initial period was found to be 0.55 sec in the X-direction, and 0.61 sec in 

the Y-direction. These showed fair agreement with the measured initial first-mode period from 

Sugimoto (2016), which was approximately 0.6 sec.  



  249 

 

2
4
9

 

A9. SUGGESTIONS FOR FUTURE TESTS 

A9.1. Anchorage of High-strength Steel 

The high-strength steel in type H frames slipped along the height of the column, reducing the post-

cracking stiffness of type H frames. Although this was not detrimental to the present investigation 

– it actually made for a more demanding test of the hypothesis – it could be detrimental to other 

investigations of HSSRC. For this reason, the author recommends paying close consideration not 

only to anchorage of high-strength longitudinal steel within beams, but also along the length of 

members. 

A9.2. Reusable Mass 

The reusable mass used in this investigation covered the full depth of the top beam. This prevented 

Optotrak targets from being installed, and prevented strains from being measured at the top beam-

column joint. Had the reusable mass been constructed with a chamfered inner edge or had it been 

made less deep, an Optotrak target could have been installed on the upper beam. This would have 

allowed strains to be measured at the top beam-column joint.
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Table A1-1: Grout mix proportions (as-delivered, per cubic yard). 

Material Weight, lb Specification 

#23 Sand 2,760 ASTM C33 (2013) and INDOT 2014 Standard Specification 

§904.02h 

Cement 620 ASTM C150 (2012), Type I 

Water 410 n/a 

 

 

 

Table A1-2: Gradation of INDOT #23 sand [from INDOT (2014) Standard Specification 

§904.02h)]. 

Sieve Size Percent Passing 

3/8 in. 100 

No. 4 95-100 

No. 6 -- 

No. 8 80-100 

No. 16 50-85 

No. 30 25-60 

No. 50 5-30 

No. 80 -- 

No. 100 0-10 

No. 200 0-3 
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Table A1-3: Concrete compressive strength progression through end of curing. 

Cylinder test 

date 

Age, 

days 

Compressive strength, psi 

Each Average 
Coefficient 

of variation 

2014-Aug-22 3 

1,850 

1,830 5.4% 1,920 

1,720 

2014-Aug-26 7 

2,490 

2,430 3.8% 2,470 

2,324 

2014-Sep-02 14 

3,010 

2,880 4.5% 2,870 

2,750 

2014-Sep-16 28 

3,090 

3,040 2.7% 2,940 

3,080 

2014-Sep-30 42 

3,340 

3,340 1.8% 3,400 

3,280 

2014-Oct-28 70 
3,520 

3,500 0.6% 
3,480 

 

Table A1-4: Summary of concrete material properties established on test days. 

Property 
Specimen Overall 

Average C1 C2 H1 H2 

Compressive 

strength, psi 

Each 

4,040 

3,840 

3,900 

3,940 

3,810 

3,830 

3,740 

3,550 

3,680 

3,720 

3,940 

3,860 

-- 

Avg. 3,930 3,860 3,660 3,840 3,800 

Tensile  

strength, psi 

Each 
370 

450 

420 

450 

470 

370 

420 

370 
-- 

Avg. 410 430 420 400 410 

Modulus of 

rupture, psi 

Each -- 

780 

910 

890 

890 

800 

880 

-- -- 

Avg. -- 860 850 -- 860 

Modulus of 

elasticity, ksi 

Each -- 

2,470 

2,770 

-- 

2,840 

2,680 

3,320 

-- -- 

Avg. -- 2,620 2,760 -- 2,700 

Date established (2015-) Sep-12 Dec-23 Jul-15 Dec-06 -- 
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Table A1-5: Longitudinal reinforcing steel sample test results. 

 

Bar ID 
Elastic 

modulus, ksi 

0.2% offset 

yield stress, 

ksi 

Ultimate 

stress, ksi 

Elongation in 

8 inches, % 

CA  26,300  65   100  15 

CB  29,100   65   104  12 

CC  30,800   66   101  11 

Average  28,700   65   102  12 

HS1  30,700   168   184  5 

HS2  31,000   162   185  6 

HS3  29,300   159   189  7 

HS4  28,900   159   190  7 

Average  30,000   162   187  6 

 

Table A1-6: Values of parameters used in ideal Menegotto-Pinto (1973) relationship. 

Type of Steel εs0 σs0 ks R 

Conventional 0.003 90 0.006 1.5 

High-strength 0.006 182 0.004 3.3 

 

Table A1-7: Transverse reinforcing steel sample test results. 

Wire ID 
Elastic 

modulus, ksi 

0.2% offset 

yield stress, 

ksi 

Ultimate 

stress, ksi 

Elongation at 

fracture**, % 

W1 25,600 * 81 8.4% 

W2 25,500 * 84 8.9% 

W3 25,200 74 80 7.9% 

Average 25,400 74 82 8.4% 

*could not be determined because of slip of extensometer 

**All samples fractured near the grips. These strains are computed over the 

full 6 in. gauge at the ends, but because the grips would have supported a 

portion of this length, the percent elongation at fracture may have been 

higher. 
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Table A3-1: As-built measurements of frame dimensions (see Figure A3-3 for key). All 

measurements are in inches. 

Beam 

Depths 
C1 C2 H1 H2 Nom. 

D1 10 10 10 10 10 

D2 10 10 10 9 15/16 10 

D3 10 10 10 9 15/16 10 

D4 12 12  1/16 12 1/8 12 12 

D5 12 12 12  1/16 12 12 

D6 12 12 12 12 12 

Lengths C1 C2 H1 H2 Nom. 

LT 76 1/8 76  1/16 76 1/8 76 1/8 76 

T1 17  1/16 16 15/16 17  1/16 17  1/16 17 

T2 5 4 31/32 4 31/32 5 5 

T3 32  1/16 32 1/8 32     32 1/8 32 

T4 5 4 15/16 5 5 5 

T5 17 17 17  1/16 17  1/16 17 

LB 84  1/16 84 84 83 15/16 84 

B1 21  1/16 21 1/8 21 21 21 

B2 4 31/32 4 15/16 4 15/16 5 5 

B3 32 32 1/8 32  1/16 32 1/8 32 

B4 5 5 4 15/16 5 5 

B5 21 21 21 1/8 21 21 

Heights C1 C2 H1 H2 Nom. 

H1 42  1/16 42  1/16 42 42  1/16 42 

H2 42  1/16 42  1/16 42 42  1/16 42 

H3 42  1/16 42  1/16 42 42  1/16 42 

H4 42  1/16 42  1/16 42 42 42 

Thicknesses 

(in | out) 
C1 C2 H1 H2 Nom. 

O1 5 1/8 | 5 1/8 5 3/32 | 5 5 1/16 | 5 5 3/32 | 5 1/8 5 

O2 5 1/8 | 5 3/32 5 3/32 | 5 1/16 5 3/32 | 5 1/8 5 3/32 | 5 1/16 5 

O3 5 1/8 | 5 1/16 5 3/32 | 5 1/16 5 1/16 | 5 1/16 5 3/32 | 5 3/32 5 

O4 5 3/32 | 5 3/32 5 1/16 | 5 1/16 5 1/16 | 5 3/32 5 1/8 | 5 1/8 5 
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Table A3-2: Specimen reinforcement summary. 

Component 
Longitudinal Reinforcement Transverse 

Reinforcement Type C Type H 

Columns 

4 x 3/8-in. 

Gr.-60 

deformed 

4 x 1/4-in.  

(6.5 mm meas.) 

high-strength 

smooth 

35 x 3/16-in.  

12L14 

smooth hoops 

Bottom beam 4 x 3/8-in., Gr.-60 

30 x 3/16-in.  

12L14 

smooth hoops 

Top beam 4 x 3/8-in., Gr.-60 

31 x 3/16-in.  

12L14 

smooth hoops 

Note: In all beam column joints, 3/16-in. 12L14 spirals were provided. 

These spirals had an inside diameter of approximately 3-3/8 in. and a 

spacing of approximately 1-1/4 in. In addition, two rectangular hoops were 

provided in all joints. See figures for details. 
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Table A3-3: As-built measurements of column hoop spacing. 

Row 

Number 

C1 C2 

A B C D A B C D 

(1) 1 1 1  1/16 1 15/16 1 1  1/16 1 

(2) 2 2 2  1/16 2 2 2  1/16 2 2 

(3) 3 3 3 3 3 3  1/16 3 3 

(4) 4 4 4 4 4  1/16 4 4 4  1/16 

(5) 5 5 5 5 5 5 5  1/16 5  1/16 

(6) 6 6 6 6 6  1/16 6 6 6  1/16 

(7) 7 7 7 7  1/16 7  1/16 7 7 7 

(8) 8 8 8 8 1/8 8  1/16 8 8 8 

(9) 9 9 9 9  1/16 9 9 9  1/16 9 

(10) 10 10 10 10  1/16 10  1/16 10 10  1/16 10 

(11) 11 11 11 11  1/16 11 11 11 10 15/16 

(12) 12 12 12 12  1/16 12  1/16 12  1/16 12  1/16 12 

(13) 13 13 13 12 7/8 13 13  1/16 13  1/16 13 

(14) 14 3/4 14 7/8 14 7/8 14  7/8  14 13/16 14 13/16 14 7/8 14 13/16 

(15) 16 11/16 16 3/4 16 13/16 16 1/2 16 5/8 16 3/4 16 3/4 16  9/16 

(16) 18  9/16 18  7/16 18 11/16 18  7/16 18 1/2 18 5/8 18 1/2 18 1/2 

(17) 20 1/2 20 3/8 20  7/16 20  3/16 20  5/16 20 1/2 20 1/2 20  5/16 

(18) 22 3/8 22  3/16 22  5/16 22  5/16 22 1/4 22 1/2 22 3/8 22 3/8 

A:  North column, from top of bottom layer of beam longitudinal steel down to top of hoops in column 

B:  North column, from bottom of top layer of beam longitudinal steel up to bottom of hoops in column 

C:  South column, from top of bottom layer of beam longitudinal steel down to top of hoops in column 

D:  South column, from bottom of top layer of beam longitudinal steel up to bottom of hoops in column 

 



   

 

2
5
6

 

Table A3-3 (continued): As-built measurements of column hoop spacing. 

Row 

Number 

H1 H2 

A B C D A B C D 

(1) 1 1 1 1 1 1 1 1 

(2) 2 2 2 2 2  1/16 2 2 2 

(3) 3 3 3 3 3 3 3 3 

(4) 4 4 4 4 4 4 4 4 

(5) 5 5 5 5 5 5 5 5 

(6) 6 6 6 6 6 6  1/16 6 6 

(7) 7 7 7 7 7 7  1/16 7 7 

(8) 8 8 8 8 8 8  1/16 8 8 

(9) 9 9 9 9 9  1/16 9 1/8 9 9 

(10) 10 10 10 10 10 10  1/16 10 10 

(11) 11 11 11 11 11  1/16 11 11 11 

(12) 12 12 12 12 12 12  1/16 12 12 

(13) 13 13 13 13 13       13  1/16 13 13 

(14) 14 13/16 14 13/16 14 13/16 14 13/16 14 13/16 14 13/16 14 13/16 14 13/16 

(15) 16 11/16 16 3/4 16 3/4 16 3/4 16 3/4 16 3/4 16 3/4 16 11/16 

(16) 18 3/4 18 11/16 18 5/8 18 11/16 18 1/2 18 5/8 18 5/8 18 1/2 

(17) 20 1/2 20 5/8 20 3/8 20 5/8 20  5/16 20 1/2 20 1/2 20  7/16 

(18) 22 3/8 22 1/2 22 3/8 22 1/2 22 1/4 22 1/4 22 7/8 22 3/8 

A:  North column, from top of bottom layer of beam longitudinal steel down to top of hoops in column 

B:  North column, from bottom of top layer of beam longitudinal steel up to bottom of hoops in column 

C:  South column, from top of bottom layer of beam longitudinal steel down to top of hoops in column 

D:  South column, from bottom of top layer of beam longitudinal steel up to bottom of hoops in column 
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Table A4-1: Summary of drag tests (conducted on 2015-July-13). 

Object 
Object 

weight, lb 

Location on 

platform 

Dynamometer 

force at sliding, lb 

Estimated 

Friction 

Coefficient 

Concrete cylinder 24.9 

Southeast corner 

 

10+ (no sliding) > 0.25 

Concrete cylinder 24.9 

East-center 

 

10+ (no sliding) > 0.25 

Concrete cylinder 24.9 

Northeast corner 

 

10+ (no sliding) > 0.25 

Concrete cylinder 24.9 

Southwest corner 

 

10+ (no sliding) > 0.25 

Concrete cylinder 24.9 

West-center 

 

10+ (no sliding) > 0.25 

Concrete cylinder 24.9 

West of south 

column 

 

10+ (no sliding) > 0.25 

Concrete cylinder 24.9 

East of north column 

 

10+ (no sliding) > 0.25 
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Table A5-1:Channels assignments on main DAQ system. All sensors are connected parallel to the 

axis of excitation and sample at 1000 Hz. 

Channel 

Nr. 

Channel 

Name 
Units Description 

1 D0_3in in. LVDT connected to south face of mass near top beam. 

2 D1Slip in. LVDT connected to north face of bottom beam. 

3 D15 in. 
LVDT connected to south face of south column at 15 in. 

above platform surface (3 in. above bottom beam). 

4 D21 in. 
LVDT connected to south face of south column at 21 in. 

above platform surface (9 in. above bottom beam). 

5 D27 in. 
LVDT connected to south face of south column at 27 in. 

above platform surface (15 in. above bottom beam). 

6 D33 in. 
LVDT connected to south face of south column at 33 in. 

above platform surface (21 in. above bottom beam). 

7 D39 in. 
LVDT connected to south face of south column at 39 in. 

above platform surface (27 in. above bottom beam). 

8 D45 in. 
LVDT connected to south face of south column at 45 in. 

above platform surface (33 in. above bottom beam). 

9 D51 in. 
LVDT connected to south face of south column at 51 in. 

above platform surface (39 in. above bottom beam). 

10 D57top in. LVDT connected to south face of top beam. 

11 MTS_disp in. Feedback signal from earthquake simulator actuator. 

12 MTS_cmd in. Command signal to earthquake simulator actuator. 

13 Acc1west g Accelerometer on simulator platform, northwest corner. 

14 Acc2base g Accelerometer on top surface of frame lower beam. 

15 Acc3south g Accelerometer on simulator platform, south center. 

16 Acc4top g Accelerometer on top of mass above frame north column. 

17 Time*10 sec 
Time multiplied by 10. Used as part of process that sent signal 

to LED. 

18 LED_Square V 
Signal that indicate whether LED on northwest of simulator 

platform was ON/OFF (>1, 0). 

 

 

  



  259 

 

2
5
9

 

Table A5-2: Overview of main data acquisition system. 

 

PCI 

Card 
Chassis Module Accessory 

Power 

Supply 

Ch. 

Nr 
Channel Name 

6033E SCXI-1000 

SCXI-1520 SCXI 1314 
External  

non-National 

Instruments 

(“Tango”) 

1 D0_3in 

2 D1Slip 

3 D15 

4 D21 

5 D27 

6 D33 

7 D39 

8 D45 

SCXI-1520 SCXI 1314 
9 D51 

10 D57top 

SCXI-1520 -- -- -- -- 

SCXI-1121 SCXI 1321 
n/a 11 MTS_disp 

n/a 12 MTS_cmd 

6259 n/a n/a SCB 68 

PCB 482A22 

signal 

conditioner 

13 Acc1west 

14 Acc2base 

15 Acc3south 

16 Acc4top 

n/a 17 Time*10 

SCB 68 18 LED_Square 

 

Table A5-3: Model and serial numbers of instrumentation used. 

Sensor type Manufacturer 
Model 

number 

Serial 

number 
Range 

Channel 

ID 

LVDT Schaevitz Sensors 

DC-E 500 23618 ± 1/2 in. D1Slip 

DC-EC 2000 J7578 ± 2 in. D15 

2000 DC-E 8860 ± 2 in. D21 

2000 DC-E 8862 ± 2 in. D27 

DC-EC 2000 J7491 ± 2 in. D33 

DC-EC 2000 J7579 ± 2 in. D39 

2000 DC-E 7324 ± 2 in. D45 

DC-E 2000 J7250 ± 2 in. D51 

DC-E 2000 8859 ± 2 in. D57top 

3000 DC-E 1684 ± 3 in. D0_3in 

Accelerometer PCB Piezotronics 333B52 

34452 ± 5 g Acc1west 

34453 

(replaced 

with 34415) 

± 5 g Acc2base 

34411 ± 5 g Acc3south 

34454 ± 5 g Acc4top 
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Table A6-1: Ranges and factors used to modify Fourier amplitudes of acceleration record. 

Frequency range  

(Period range) 

Sine 

Cycle 
Amp. Shape of AF Reason 

4 – 6 Hz 

(0.17 – 0.25 sec) 
Full -0.8 

 

Reduce peak and 

valley in spectral 

displacement 

2 – 6 Hz 

(0.17 – 0.5 sec) 
Half 0.2 

 

Increase spectral 

displacement in 

range of interest 

2 – 7 Hz 

(0.14 – 0.5 sec) 
Half 0.4 

 

Increase spectral 

displacement in 

range of interest 
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Table A7-1: List of videos recorded during test program. 

Test 
Video 

West Northwest Dial Gauges GoPro Drone 

Frame H1      

 H1-25 ✓ ✓    

 H1-50 ✓ ✓    

 H1-75 ✓ ✓    

 H1-100 ✓ ✓ ✓ ✓  

 H1-100(2) ✓ ✓ ✓ ✓  

Frame C1      

 C1-25 ✓ ✓ ✓   

 C1-50 ✓ ✓ ✓   

 C1-75 ✓ ✓ ✓   

 C1-100 ✓ ✓ ✓   

 C1-100(2) ✓ ✓ ✓   

Frame H2      

 H2-25 ✓ ✓ ✓   

 H2-50 ✓ ✓ ✓   

 H2-75 ✓ ✓ ✓   

 H2-100 ✓ ✓ ✓   

 H2-100(2) ✓ ✓ ✓   

Frame C2      

 C2-25 ✓ ✓ ✓   

 C2-50 ✓ ✓ ✓   

 C2-75 ✓ ✓ *  ✓ 

 C2-100 ✓ ✓ ✓  ✓ 

 C2-100(2) ✓ ✓ ✓   

*Camera battery died during test.  
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Table A8-1: Summary of concrete material properties used in SAP2000 model. 

SAP2000 Concrete 

Model Name 

Modulus of 

Elasticity (Ec), MPa 

Compressive 

strength (f’c), MPa 

SAP2000 Sections to 

which material assigned 

Conc01-08 39,200 85.1 
Col01-08 

TBm01-08 

Conc09-13 31,500 60.8 
Col09-13 

TBm09-13 

Conc14-17 26,700 50.3 
Col14-17 

TBm14-17 

Conc18-20 25,800 43.5 
Col18-20 

TBm18-20 
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Figure A1-1: Development of concrete strength during and after curing process. 
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Figure A1-2: Baldwin 120-kip universal testing machine used to test reinforcing bars. 
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Figure A1-3: Measured stress-strain relationship of 12L14 steel wire used as specimen transverse 

reinforcement (extensometer was removed at 1% elongation to prevent damage to it). 
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Figure A1-4: Comparison of (a) non-corroded, and (b) corroded transverse reinforcement. 

 

  

Figure A1-5: Comparison of (a) non-corroded, and (b) corroded high-strength steel. 
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 Figure A2-1: Pullout test specimen types. 
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Figure A2-2: Anchor specimen details. 
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Figure A2-3: Schematic of pullout test setup. 
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Figure A2-4: Photograph of pullout test setup (plate specimen). 
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Figure A2-5: Stress-extension curve for hook pullout specimen. 

 

 

  
Figure A2-6: Stress-extension curve for plate pullout specimen. 
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Figure A2-7: Stress-extension curve for anchor pullout specimens. 

 
Figure A3-1: Overall dimensions of frames. 
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Figure A3-2: Isometric of frames. 
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Figure A3-3: Schematic for as-built dimensions. 
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Figure A3-4: Comparison of specimen reinforcement details. 
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Figure A4-1: Isometric of test setup (for clarity, threaded rods, nuts, and plates are not shown). 
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Figure A4-2: Test component details.
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Figure A4-3: Mass reinforcement details. 
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Figure A4-4: Out-of-plane bracing system. 
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Figure A4-5: Annotated photograph of instrumentation truss.
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Figure A4-6: Schematic of LVDT mount.
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Figure A5-1: Master instrumentation plan (west face of test setup).  
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Figure A5-2: Overhead view of instrumentation plan. 
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Figure A5-3: Photograph showing location where dial gauges were installed.  
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Figure A6-1: Idealized displacement response spectrum. 

 

 

 
Figure A6-2: Displacement response spectra of original and compressed/scaled record. 
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Figure A6-3: Close-up of displacement response spectra of original  

and compressed/scaled record. 
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Figure A8-1: SAP2000 models of 20-story frames tested in Japan, X-direction. 
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Figure A8-2: SAP2000 models of 20-story frames tested in Japan, Y-direction. 
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Figure A8-3: Gross dimensions of members in SAP2000 models.
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