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ABSTRACT 

 

Kharangate, Chirag Rajan, Ph.D., Purdue University, August 2016. Experimental, 
Theoretical and Computational Modeling of Flow Boiling, Flow Condensation and 
Evaporating Falling Films. Major Professor: Dr. Issam Mudawar, School of Mechanical 
Engineering. 
 

The transition from single-phase to two-phase thermal systems in future space vehicles 

demands a thorough understanding of phase change methods in reduced gravity, including 

microgravity.  In this study, phase change methods like flow boiling, flow condensation 

and evaporative falling-films are investigated experimentally, theoretically and 

computationally. 

The experimental part of the study consists of an investigation of the influence of inlet 

subcooling and two-phase inlet on flow boiling heat transfer and critical heat flux in a 

horizontal 2.5-mm wide by 5-mm high rectangular channel in different orientations with 

respect to Earth gravity using FC-72 as working fluid.  High-speed video imaging is used 

to identify dominant interfacial characteristics for different combinations of inlet 

conditions and heating configurations.  Gravity is shown having a dominant influence on 

interfacial behavior at low mass velocities, while inertia dwarfs gravity effects at high mass 

velocities.  CHF variation between different orientations with respect to Earth gravity is 

large for low mass velocities and diminishes for high mass velocities. 
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In the theoretical part of the study, a consolidated investigation of the complex trends 

of flow boiling CHF in a rectangular channel in both microgravity and for different 

orientations in Earth gravity are performed.  Separate theoretical models are constructed to 

investigate subcooled inlet flows and saturated two-phase inlet flows. It is shown that the 

Interfacial Lift-off Model provides good predictions of CHF data for both gravitational 

environments, both single-sided and double-sided heating, and both subcooled and 

saturated inlet conditions.   

In the computational part of the study, CFD models are constructed for two separate 

phase change configurations. First, turbulent, free-falling liquid films subjected to 

evaporative heating, and second, annular flow condensation in vertical upflow 

configuration.  Implemented in FLUENT, the models are used to predict variations of 

various flow and thermal parameters and compare the results with available experimental 

data. Energy transfer at the two-phase interface are implemented successfully with the aid 

of appropriate phase change models. For both phase change configurations, the CFD model 

was able to capture complex flow behavior observed in experiments and predict heat 

transfer coefficients with reasonable accuracy.  Also included in this part is a 

comprehensive review of literature on computational modeling of various boiling and 

condensation applications. This part of the study is laying the groundwork for future 

implementation of CFD models in capturing more complicated flow boiling and CHF 

phenomena.  
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CHAPTER 1. INTRODUCTION 

 

1.1 Flow Boiling 

1.1.1 Flow Boiling Critical Heat Flux (CHF) 

For decades, single-phase thermal management systems have been used to remove heat 

from temperature sensitive devices in a broad variety of applications.  However, as heat 

fluxes from devices began to escalate, interest has shifted to two-phase thermal 

management.  Examples of these systems include electronic data centers, hybrid vehicle 

power electronics, avionics, and laser and microwave directed energy systems [1].  The 

shift to two-phase thermal management is rooted in the ability of these systems to offer 

orders of magnitude enhancement in heat transfer performance compared to single-phase 

counterparts.  This enhancement is the result of utilization of the coolant’s sensible and 

latent heat content rather than sensible heat alone.  With a firm commitment to utilize two-

phase thermal management, interest quickly shifted to selecting a suitable two-phase 

cooling configuration.  Simplicity of design and operation, and low cost rendered pool-

boiling-based thermosyphons as the primary thermal management solutions for many 

applications [2,3].  Where pool boiling failed to meet cooling targets, interest shifted to 

channel flow boiling, including the use of mini/micro-channels, to take advantage of fluid 

motion to enhance cooling performance [4-6].  And when channel flow boiling could not 

handle cooling needs, thermal designer engineers opted for more aggressive cooling 



2 

 
 

schemes, including jet-impingement [7,8] and spray cooling [9-11].  Recently, there have 

been efforts to further enhance cooling performance by combining the benefits of different 

phase-change cooling schemes using hybrid cooling configurations such as micro-

channel/jet-impingement cooling [12]. 

Regardless of which two-phase cooling scheme is selected for a given application, it is 

essential to maintain nucleate boiling by allowing liquid to replenish the surface of the heat 

dissipating device to replace the vapor generated by evaporation.  The concern here is that 

intense vapor nucleation, growth and coalescence at high fluxes might culminate in 

formation of an insulating vapor layer on the surface, which may interrupt bulk liquid 

access to it.  This process is the foundation for occurrence of critical heat flux (CHF), which 

signals unsteady rise in surface temperature to levels that may cause device overheating or 

even physical burnout.  This is precisely why CHF constitutes the most important design 

limit for any two-phase thermal management system [13]. 

 

1.1.2 Application of Flow Boiling in Future Space Systems 

Future manned space missions are expected to increase in scope, size and duration.  

Associated with these increases will be a commensurate increase in vehicle power as well 

as rate of rejection of waste heat.  These trends are also expected to have a profound adverse 

impact on the vehicle’s size and weight.  To tackle these issues, Fission Power Systems 

(FPSs), which feature both very high power and very low mass to power ratios, have been 

recommended for long-duration manned missions using a Rankine power cycle [14,15].  

This technology involves many complex flow boiling and condensation processes.  

Additional reductions in vehicle size and weight are possible by replacing present single-
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phase Thermal Control Systems (TCSs) with two-phase counterparts [14].  These systems 

play a vital role in life support in a space vehicle by controlling the temperature and 

humidity of the internal environment.  They are comprised of three subsystems that tackle 

(1) heat acquisition from heat-dissipating sources, (2) heat transport from the sources, and 

(3) heat rejection to the outside environment.  In most space vehicles, including space 

shuttles, these tasks have been tackled by a single-phase (liquid only) TCS.  The two-phase 

TCS designs now being projected for use on future vehicles greatly decrease size and 

weight by capitalizing upon the orders-of-magnitude enhancement in flow boiling and 

condensation heat transfer coefficients compared to those possible with a single-phase 

TCS.   

The transition to two-phase technologies requires a thorough understanding of two-

phase flow and both flow boiling and condensation heat transfer in reduced gravity, 

especially microgravity.  Reduced gravity can be simulated in a number of platforms, 

including above ground Drop Towers or below ground Drop Shafts, Sounding Rockets and 

Parabolic Flight Aircraft [14,15].  The latter has been especially populer for their ability to 

provide 15 – 30 s of microgravity, perform multiple tests in a single flight, and ability to 

accommodate larger experiment packages and permit direct interaction of the operator with 

the experimental package; they can also simulate both Lunar and Martian gravities.  The 

International Space Station (ISS) provides an ideal environment for microgravity two-

phase flow and heat transfer experiments, providing long test durations, operator access, 

and both automatic and remote control capabilities.  Unforuately ISS experiments are both 

very expensive and require many years of development and safety certification. 
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The vast majority of published works concerning two-phase flow and heat transfer 

comes from parabolic flight experiments.  These include a number of adiabatic two-phase 

flow studies, such as those of Dukler et al. [16], Colin et al. [17], Reinarts [18], Bousman 

et al. [19,20], and Choi et al. [21] that were aimed at understanding the influence of 

microgravity on two-phase flow patterns as well as the transitions between different flow 

patterns.  Parabolic flight flow boiling studies include flow patterns in both subcooled and 

saturated flow boiling by Misawa [22], impact of bubble detachment and coalescence on 

flow pattern development by Saito et al. [23] and Ohta et al. [24], flow boiling frictional 

pressure drop in flow boiling by Brutin et al. [25], and subcooled flow boiling heat transfer 

and CHF by Ma and Chung [26].  More recently, a collaborative effort between the Purdue 

University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) and NASA Glenn 

Research Center has been focussed mostly on flow boiling CHF.  Findings from this 

specific effort will be discussed later in this paper. 

Aside from the high-cost microgravity platforms, researchers often capitalize upon the 

relative simplicity and low cost of testing in Earth gravity.  The effects of reduced gravity 

on flow boiling are simulated by tilting the flow channel relative to Earth gravity.  This 

yields a reduced component of gravity perpendicular to the heated wall.  But a primary 

limitation with these tests is the inability to isolate the influence of this gravity component 

and simultaneously eliminate the component of gravity along the direction of fluid flow.  

Nonetheless, this testing approach is widely used to amass large data bases and video 

records in pursuit of a mechanistic model for the influence of gravity on both pool boiling 

[27] and flow boiling CHF; the latter will be discussed in detail in the present paper.  

Investigators at PU-BTPFL have adopted this testing approach to complement parabolic 
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flight tests in an attempt to acquire a comprehensive understanding of the influence of 

gravity on flow boiling CHF. 

 

1.1.3 Single–Sided and Double-Sided Heating in a Rectangular Channel 

Of the different boiling schemes, channel flow boiling has received the most attention 

for space applications because of its simplicity and suitability to thermal management of 

multiple heat sources.  Most prior reduced gravity flow boiling studies have been 

concentrated on CHF measurement [24,26], particularly in rectangular flow channels that 

are heated along one side [28,29].  The key reason for relying on single-sided heating is to 

isolate the effects of reduced or Earth gravity perpendicular to, and parallel to the heated 

wall.   

Figures 1.1(a) and 1.1(b) depict flow boiling near CHF at low flow velocities in a 

horizontal rectangular heated channel with heated top wall and bottom wall, respectively, 

at 1 ge.  These figures illustrate fundamental differences in liquid-vapor interfacial behavior 

between these two orientations.  Top wall heating is shown accumulating vapor against the 

top wall, culminating in the formation of a thick insulating layer and fairly low CHF.  

Bottom wall heating benefits form gravity aiding in both vapor removal from the heated 

wall, and liquid replenishment to the wall.  Flow boiling in a horizontal channel that is 

heated on both top and bottom walls (i.e., double-sided heating) is far more complex, as 

gravity simultaneously plays a negative role along the top wall, and a positive role along 

the bottom wall. This behavior is depicted in Fig. 1.1(c), where the flow boiling behaviors 

for separately heated top wall, Fig. 1.1(a), and bottom wall, Fig. 1.1(b) are more or less 

superimposed in the same channel. A recent study by Konishi et al. [30,31] involving flow 
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boiling of FC-72 in the microgravity environment of parabolic flight showed double-sided 

heating provides higher CHF values in comparison with single-sided heating for velocities 

ranging from 0.1 to 1.9 m/s.   

 

1.1.4 Effects of Inlet Subcooling and Heat Utility Ratio 

Flow boiling heat transfer and CHF are highly dependent on fluid state at the inlet to 

the flow channel.  Three types of inlet conditions are possible:  highly subcooled liquid, 

slightly subcooled liquid, and saturated liquid-vapor mixture.  High inlet subcooling 

enhances CHF appreciably by enabling the coolant to absorb a considerable portion of the 

wall heat flux in the form of sensible heat instead of by latent heat alone.  Strong support 

for the merits of subcooled inlet conditions over two-phase inlet conditions comes from a 

number of studies involving single-sided heating in both microgravity [28-31] and Earth 

gravity [32-35]. 

To understand the effects of subcooling on flow boiling CHF, it crucial to quantify the 

influence of heat utility ratio, defined as the ratio of CHF associated with both sensible and 

latent heat to that with latent heat alone.  This is perhaps one of the most challenging 

endeavors in two-phase heat transfer literature, despite many previous correlative attempts 

[36-40], where subcooled flow boiling was described as a superposition of single phase 

forced convection and pool boiling.  More recently, Zhang et al. [28] combined 

experimental results from their own experiments and those of Sturgis and Mudawar [32,33] 

to develop an empirical correlation for the heat utility ratio.  

 

 



8 

 
 

1.1.5 Predictive Flow Boiling CHF Models 

 Like most two-phase phenomena, researchers rely heavily on empirical correlations 

to predict flow boiling CHF.  However, correlations are valid for specific fluids and limited 

ranges of operating and flow parameters, and there is great uncertainty when attempting to 

determine CHF for other fluids or beyond the validity range of individual parameters [41-

44].  

Very few theoretically based, mechanistic models have been constructed for flow 

boiling CHF, and these models are intended mostly for vertical upflow.  As discussed in a 

recent review article by Konishi et al. [45] and depicted schematically in Fig.1.2(a), these 

models are based on four competing mechanisms:  Boundary Layer Separation, Bubble 

Crowding, Sublayer Dryout and Interfacial Lift-off.  Postulated by Kutateladze and 

Leont’ve [46], the Boundary Layer Separation Model is based on analogy between vapor 

production and gas injection from a permeable wall into a turbulent boundary layer.  In the 

same manner a turbulent boundary layer is separated when the injection velocity exceeds 

a threshold value, CHF is postulated to occur when the rate of vapor production 

perpendicular to the wall is increased to a level that greatly decreases the bulk liquid 

velocity near the wall, causing liquid stagnation at the wall and preventing adequate liquid 

replenishment of the wall.  Proposed by Weisman and Pei [47], the Bubble Crowding 

Model is described by formation of a dense bubbly layer close to the wall at CHF, which 

renders turbulent fluctuations in the bulk liquid flow, which they postulated as the main 

source of liquid replenishment, too weak to penetrate the bubbly layer and reach the wall.  

Lee and Mudawar [48] proposed the Sublayer Dryout Model, which states that CHF will 

occur when the enthalpy of bulk liquid supplied to liquid sublayers that are trapped beneath  
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large vapor blankets at the wall falls short of dissipating the heat supplied at the wall.  

Galloway and Mudawar [49,50] proposed the Interfacial Lift-off Model based on detailed 

high-speed video records of interfacial features of flow boiling in a flow channel associated 

with CHF occurrence.  Prior to CHF, vapor bubbles were observed to coalesce into a wavy 

vapor layer that propagated along the heated wall while allowing liquid contact with the 

wall in wetting fronts corresponding to the wave troughs.  At CHF, intense vapor 

momentum in these wetting fronts caused the interface in the troughs to be lifted from the 

wall, extinguishing any further liquid access. 

 

1.1.6 Influence of Fluid Flow and Heated Wall Orientations on CHF 

Aside from enabling the study of reduced gravity influence on flow boiling, 

experiments performed by tilting the flow channel relative to Earth gravity also provide the 

flexibility of one-sided or two-sided wall heating.  While these two wall heating 

configurations can greatly complicate the influence of gravity on CHF, they also provide 

the opportunity for a more detailed mechanistic assessment of this influence.  This 

assessment is a key objective of the present study. 

Single-sided heating is borne out of the need to simulate cooling of electronic or power 

sources using flow boiling in a rectangular channel [51,52].  Using similar single-sided 

heating, Zhang et al. [53] studied the influence of flow orientation on CHF for subcooled 

inlet conditions.  Using FC-72 as working fluid, they showed that the influence of 

orientation, and therefore gravity, on CHF diminishes monotonically with increasing flow 

velocity, becoming virtually independent of orientation above a threshold of 1.5 m/s.  

Similar trends were measured by Konishi et al.[54] for two-phase inlet conditions, xe,in ≥0.   
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Originally proposed by Galloway and Mudawar [49,50], the Interfacial Lift-off Model 

has been validated in several studies that were performed in both Earth gravity [53-55] and 

microgravity [56,30-31] over a wide range of operating conditions using both CHF data 

and high-speed video. Shown in Fig. 1.2(b) are images of the wavy vapor layer captured 

by Zhang et al. [56] before, during, and shortly after CHF for single-sided heating of FC-

72 in microgravity at inlet liquid velocities of U = 0.15 and 1.5 m/s.  These images depict 

the wavy vapor layer development prior to wetting front dryout that accompanies CHF 

occurrence.   

 

1.2 Falling Films  

Free-falling liquid films are found in a variety of industries, including chemical, 

pharmaceutical, and power generation.  These films provide high heat transfer coefficients 

while capitalizing on gravity to achieve liquid motion.  Heat exchangers utilizing falling 

films rely on either sensible or evaporative heating of the film.  With sensible heating, the 

heat absorbed from the wall gradually increases the mean liquid temperature in the flow 

direction.  On the other hand, evaporative heating is achieved once the film’s interface 

reaches saturation temperature.  Evaporating liquid films in practical applications are 

typically turbulent and capitalize upon the added mixing provided by interfacial waves to 

achieve very attractive heat transfer performance.  

Most of the published falling-film studies concern laminar and turbulent fluid flow in 

adiabatic films.  And, while studies concerning heat transfer to films are relatively sparse, 

far more data are available for sensible heating than evaporation.    Table 1.1 provides the
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Table 1.1: Heat transfer coefficient correlations for falling films. 
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summary of popular falling-film correlations for both sensible heating and evaporative 

heating derived from measurements by different researchers.  For evaporative films, early 

works include a study by Struve [64], who presented heat transfer data for R11.  Chun and 

Seban [62] performed fairly extensive measurements of evaporating water films and 

recommended heat transfer coefficient correlations for both laminar and turbulent films.  

Fujita and Ueda [65] also performed evaporative heating experiments with water at 1 

atmosphere and compared their data to Chun and Seban correlations.  Shmerler and 

Mudawar [63] performed experiments with turbulent free-falling water films and 

recommended an alternative correlation for the heat transfer coefficient.  

 

1.3 Flow Condensation 

The vast majority of recent studies concerning two-phase thermal management have 

been focused on heat acquisition through evaporation or boiling, while the number of 

studies addressing heat rejection by condensation is relatively small.  And most of the 

published condensation studies concern vertical downflow, a flow orientation that provides 

fairly stable condensate film motion aided by gravity.  This configuration was explored in 

great detail by Park et al. [66] both experimentally and theoretically.  However, because of 

volume and packaging constraints, it is impractical to design condensers utilizing the 

vertical downflow orientation alone.  Most condensers adopt a serpentine design, with flow 

often alternating between vertical downflow and vertical upflow.  Therefore, understanding 

vertical upflow condensation is crucial for the design of condensers used in two-phase 

thermal management systems.  
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Vertical upflow condensation is substantially more complicated than vertical downflow 

because of the opposing influences of vapor shear and gravity on the motion of the 

condensate film.  As indicated in [67], several distinct flow regimes are encountered in 

vertical upflow condensation.  At low inlet flow rates, the liquid film is driven downwards 

by gravity as the upward vapor shear is too weak to influence the film’s motion; this flow 

behavior is categorized as the falling film regime.  Increasing the flow rate causes the flow 

to transition to an oscillating film regime, corresponding to the liquid film alternating 

between upflow and downflow.  A further increase in flow rate results in flooding, where 

vapor shear becomes strong enough to just balance the weight of the liquid film, causing 

the film to begin its ascent.  Further flow rate increases cause the vapor shear to overcome 

garvity effects and the liquid film to flow upwards; this behavior is categorized as the 

climbing film regime.  

 

1.4 Computational Methods for Phase Change Processes 
 

Developing two-phase heat transfer facilities and performing experiments using 

different fluids and over broad ranges of operating parameters in order to measure heat 

transfer parameters is a very costly endeavor.  This explains the present growing interest 

in utilizing computational methods to determine the same parameters.  Use of 

computational tools to predict fluid flow and heat transfer in phase change system has been 

the subject of intense study only during the past two decades.  Researchers have suggested 

different interfacial models to predict mass, momentum and heat transfer in phase change 

systems.  Three main types of phase change models have been widely used for this purpose.  
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Early works conducted in the 1990’s were based on the sharp interface model, which 

uses the Rankine-Hugoniot jump condition [68] for energy conservation at the interface.  

Micro-scale mass transfer is neglected and the liquid-vapor interface is maintained at 

saturation temperature.  This allows mass transfer rate to be determined from energy 

conservation at the interface according to the relation 

    
 " .i i fgq k T n mh , (1.1) 

where m  [kg/m2s] is the mass flux due to phase change at the interface.  The volumetric 

mass source term, S [kg/m3s], for the individual phases is determined from  
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where keff is the effective thermal conductivity determined from the volume fractions and 

thermal conductivities of the liquid and vapor.  In effect, this model uses all energy crossing 

the interface for mass transfer.   

The second popular approach is based on a model by Schrage [69], which in turn is 

based on the Hertz-Knudsen equation [70] that allows for interfacial jump in temperature 

and pressure, where Tsat (pf) = Tf ≠ Tsat (pg) = Tg.  The net mass flux across the interface, 

m  [kg/m2s], is determined by the difference between liquid to vapor and vapor to liquid 

mass fluxes,  
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where R = 8.314 J/mol.K is universal gas constant, γ the fraction of molecules transferred 

from one phase to the other during phase change, and 1γ the fraction of molecules 

reflected at the interface.  The subscripts c and e in Eq. (1.3) refer to condensation and 
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evaporation, respectively, and γe = 1 and γc = 1 represent complete evaporation and 

complete condensation, respectively [71].  Many investigators use equal values of γc and 

γe by setting γc = γe = γ in phase change simulations, and refer to γ as the “accommodation 

coefficient.”  Tanasawa [72] simplified Eq. (1.3) by setting the interfacial temperature 

equal to Tsat, and assuming the heat flux is linearly dependent on temperature jump between 

the interface and the vapor.  For evaporation, their modified model is expressed as 
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where Tsat is based on local pressure, p, and the volumetric mass source term is determined 

from  

    g f gS S m . (1.5) 

This model is applicable only to the liquid-vapor interface, and has been used mostly 

to tackle evaporating and condensing films, and film boiling.   

The third popular approach is based on a phase change model proposed by Lee [73].  

This model has been widely used in condensation studies, but is applicable to both 

condensation and boiling.  The Lee model is based on the assumption that mass is 

transferred at a constant pressure and a quasi thermo-equilibrium state, and obtained from 

the relations 

  for condensation (T < Tsat) (1.6a) 

and  for evaporation (T > Tsat), (1.6b) 
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where ri is an empirical coefficient called the “mass-transfer intensity factor,” and has the 

units of s-1.  This model is the least physical of the three models but has the simplest form.  

Equations (1.6a) and Eq. (1.6b) reveal that this model relies on some form of weighting 

factor to determine mass transfer.  It is important to note that the Lee model does not set 

physical limits on the coefficient ri.  With this model, phase change is defined both at the 

liquid-vapor interface and the phase being changed, i.e., liquid phase for boiling and vapor 

phase for condensation.   

The Appendix A reviews the large pool of articles addressing computational 

simulations of boiling and condensation.  This includes (1) popular two-phase 

computational schemes and key differences between schemes, (2) surface tension 

modeling in conjunction with different schemes, (3) different approaches to predicting 

interfacial mass, momentum and energy transfer, and (4) boiling and condensation articles 

involving comparison of predictions of computational schemes with experiments and 

correlations.  This review also provides key recommendations for improving predictive 

capabilities of computational schemes. 

 

1.5 Objective of Study 

The present study is a part of a NASA project that was initiated in 2012 with the 

ultimate goal of developing the Flow Boiling and Condensation Experiment (FBCE) for 

the International Space Station (ISS).  Main objectives of this study are: 

1. Address the combined complex effects of (i) inlet thermodynamic state (highly 

subcooled, slightly subcooled or saturated), (ii) mass velocity, and (iii) heating 

configuration (top wall heating, bottom wall heating and double-sided heating) on both 
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local and spatially averaged heat transfer coefficient and CHF for different orientations in 

Earth gravity.  High-speed video imaging is used to capture dominant interfacial patterns 

for the different combinations of inlet conditions, mass velocity and heating configuration.   

2. Model, for all flow orientations, the complex influence of Earth gravity components 

perpendicular to the heated wall and parallel to the direction of fluid flow on CHF for FC-

72 in a rectangular channel with single-sided and double-sided heating.  Separate models 

will be developed for both subcooled inlet flow and saturated two-phase inlet flow. It will 

be shown how the Interfacial Lift-off Model possesses both the flexibility and rigor to 

predict the effects of flow velocity and wall heating in both Earth gravity and microgravity.   

3. Develop computational models for evaporating turbulent free-falling liquid films 

and annular flow condensation.  An appropriate phase change model will be adapted to 

predict the fluid flow and heat transfer characteristics for each of those situations.  The 

predictive accuracy of the model will be assessed against experimental data corresponding 

to a broad range of Reynolds numbers.  Another objective of this study is to help lay a 

foundation for future computational modeling of more complicated boiling processes.  
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CHAPTER 2. EXPERIMENTAL METHODS 

 

2.1 Flow Boiling Module and Heated Wall Construction 

A highly instrumented flow boiling module is designed for the present experiments.  

This exact design is planned to be used in the future for experiments on the International 

Space Station. As shown in Figs. 2.1(a) and (b), the flow boiling module designed for this 

study consists mainly of three transparent polycarbonate plastic (Lexan) plates.  A 2.5-mm 

wide and 5.0-mm high rectangular flow channel is milled into the middle Lexan plate as 

depicted in Fig. 2.1(c).  Slots are milled into the top and bottom Lexan plates to 

accommodate two 15.5-mm wide, 114.6-mm long and 1.04-mm thick oxygen-free copper 

heating slabs.  O-ring seals are fitted into shallow grooves in the Lexan plates to guard 

against leaks.  The three Lexan plates are sandwiched together between two aluminum 

support plates.  The flow channel features an inlet honeycomb flow straightener followed 

by an entry length upstream of the heated walls 100 times the hydraulic diameter to ensure 

fully developed flow.  Pressure is measured at the channel inlet, just upstream and just 

downstream of the copper slabs.  Fluid temperature is measured by type-E thermocouples 

inserted in the channel inlet and exit.  Figure 2.1(c) shows important dimensions of the 

flow channel. 

The two copper slabs are used as heating walls for the flow channel.  Figures 2.1(d) 

and  2.1(e) depict the detailed construction and instrumentation of the walls,   respectively.  
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Fig. 2.1: (a) Exploded view of flow boiling module.  (b) Assembled view of flow 
boiling module.  (c) Key dimensions of flow channel.  (d) Construction of heated walls 
and thick-film resistors.  (e) Thermocouple layout in two heated walls. 
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Six 188-Ω, 4.5-mm wide, and 16.4-mm long thick-film resistors are soldered to the back 

of each copper slab.  The resistors are connected electrically in parallel and powered by a 

variable voltage source to produce uniform heat flux along each wall.  A previous study by 

Zhang et al. [56] showed that a minimum ‘asymptotic wall thickness’ is necessary to ensure 

that the measured CHF is both wall thickness independent and representative of real heat 

exchanger surfaces.  For FC-72, they showed that the minimum thickness for a copper 

surface is 0.40 mm.  Using a much larger thickness also has the disadvantage of delaying 

the attainment of steady state after supplying electrical power to the resistors.  Hence, a 

copper slab thickness of 1.04 mm is adopted in the present study.  Each copper slab features 

two parallel sets of seven shallow holes that are drilled between the resistors for insertion 

of type-E thermocouples.  One set is used to make temperature measurements while the 

second set is used to trigger an electric relay and cut off power supply to the resistors once 

CHF is detected.  Figure 2.1(e) shows axial positions of the measurement thermocouples.  

The thermocouples are designated as Twm,,n, where m represents the heated wall (b for top 

heated wall Hb or a for bottom heated wall Ha), and n the axial thermocouple location.    

 

2.2 Two-Phase Loop 

Depicted in Fig. 2.2, the two-phase loop is constructed to supply FC-72 to the flow 

boiling module at a prescribed flow rate, pressure and either temperature for subcooled 

inlet or thermodynamic equilibrium quality for saturated two-phase inlet.  The FC-72 is 

deaerated in a separate degassing facility before being supplied to the flow loop.  It is 

circulated within the loop with the aid of a magnetically coupled gear pump,  downstream 
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Fig. 2.2: Schematic diagram of the flow loop. 
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of which are a filter, Coriolis flow meter, electric pre-heater, and the flow boiling module.  

Exiting the module, the two-phase mixture passes through a water-cooled condenser to 

return the fluid to liquid state.  An air-pressurized accumulator is situated between the 

condenser and pump, serving the dual purpose of setting a low pressure reference junction 

and compensating for any volume expansion or contraction (due to temperature changes or 

vapor production/collapse) throughout the loop.  The entire flow boiling facility, including 

the flow loop components, data acquisition system, power and instrumentation cabinets, 

and high-speed camera, are mounted onto an optical table. 

 

2.3 Flow Visualization Techniques 

 A high-speed camera-link imaging system utilizing a full 10-tap camera-link 

camera, ATX computer and PCI-Express frame grabber is used to capture the two-phase 

interfacial features along the heated portion of the flow channel.  A fixed frame rate of 

2000 frames per second (fps) and pixel resolution of 2040 x 174 are used to capture the 

entire heated length for each test run.  Each video image sequence consists of 3000 frames, 

or 1.5 s of flow visualization data per test run.  Illumination is provided from the back of 

the flow channel by an array of LEDs, with a light shaping diffuser (LSD) situated between 

the LEDs and the channel to distribute the light uniformly over the flow channel.  

 The imaging system is operated using commercial-off-the-shelf (COTS) imaging 

software provided by the frame grabber company to set the imaging parameters, including 

the area of interest, exposure time and frame rate.  The imaging system is manually 

triggered to acquire and store the 3000-frame image sequence once the flow boiling 

achieves steady state.  Since each image is 2040 pixel elements x 174 pixel elements x 1 
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byte, the image occupies approximately 355,960 bytes of memory.  At 2000 fps, the image 

data transfer rate from the camera through the frame grabber and into the host random 

access memory (RAM) is approximately 710 MB/s.  Due to the data bandwidth limitations 

of the solid-state hard drives (~500 Mb/s write speed), image sequences are first buffered 

to the host RAM before they are saved to a solid-state hard drive for archiving and post-

acquisition analysis purposes. 

 

2.4 Operating Conditions, Procedure, and Measurement Uncertainty 

The operating conditions for the study are as follows: FC-72 inlet mass velocity of G = 

183.5 – 3211.6 kg/m2s, inlet temperature of Tin = 28.4 – 81.3°C (for subcooled flow: inlet 

subooling of ∆Tsub,in = 3.3 – 31°C and for saturated flow: inlet equilibrium quality of xe,in = 

0.00 – 0.69), and inlet pressure of pin= 97.1 – 191.8 kPa (14.1– 27.8 psi).   

For every experiment, an initial waiting period is required to achieve steady state at the 

inlet to the flow boiling module.  Thereafter, data measurements are saved using a Labview 

program in conjunction with an NI SCXI-1000 data acquisition system.  Power to the 

specific flow boiling heated wall(s) (Ha or Hb or both) is then turned on depending on the 

prescribed heating configuration for the test.  The power is increased in small increments, 

followed by a waiting period after each increment to achieve steady state, after which the 

high-speed camera system is triggered to record flow visualization data.  The next power 

increment is then applied and measurements repeated in the same manner.  Over the course 

of a single experiment, the mass flow rate is maintained constant by adjusting pump speed 

following every power increment.      The heated wall relay is set to automatically cut off  
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power supply to the resistors once any of the wall temperatures exceed 130°C, indicating 

CHF.  

Fluid and heated wall temperatures throughout the facility are measured with type-E 

thermocouples having an accuracy of ±0.5°C.  STS absolute pressure transducers having 

an accuracy of ±0.05% are used to measure pressure at several locations along the flow 

boiling module and the flow loop.  The Coriolis flow meter has an accuracy of ±0.1%.  The 

wall heat input is measured with an accuracy of ±0.5 W, and the uncertainty in heat transfer 

coefficient measurement is ±8%. 
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CHAPTER 3. FLOW BOILING EXPERIMENTAL RESULTS 

 

3.1 Flow Visualization Results 

Figures 3.1(a)-(f) show individual images of flow boiling along the entire heated 

portion of the channel for top wall heating, top and bottom wall heating, and bottom 

wall heating for heat fluxes up to CHF and three different inlet flow conditions: 24.5 – 

25.6°C subcooling (highly subcooled), 3.3 – 5.1°C subcooled (slightly subcooled), and 

inlet equilibrium quality of 0.03 – 0.18 (saturated), corresponding to two different mass 

velocities.  Figures 3.1(a) and (b) show images for G = 408.6 – 469.8 kg/m2s (U = 0.25 

– 0.29 m/s) and G = 1592.5 – 1601.3 kg/m2s (U = 0.98 – 0.99 m/s), respectively, for 

the highly subcooled cases.  For top wall heating and the lower velocity, Fig. 3.1(a) 

shows a wavy vapor layer along the heated wall, with liquid appearing to reach the wall 

in the wave troughs.  Weak flow inertia allows buoyancy to stratify the vapor along the 

upper wall.  For bottom wall heating, Fig. 3.1(a) shows both discrete and larger 

coalescent bubbles emanating from the heated wall and projecting towards the opposite 

wall in the absence of strong flow inertia.  This causes bulk liquid to flow downwards, 

uninterrupted, to compensate for the released vapor, which explains the higher CHF for 

the bottom heated wall (31.8 W/cm2) compared to the top heated wall (26.3 W/cm2).  

For double-sided heating, the top wavy vapor layer appears to interrupt the bubble 

formation, coalescence and liquid return along the bottom wall, which is manifest in a 



 
 

 
 

 
27 
27 

 
 

59%

82%

CHF (31.8 W/cm2)

56%

80%

CHF (26.3 W/cm2)

59%

90%

CHF (18 W/cm2)

Bottom Wall 
Heated

Top Wall 
Heated

Top & Bottom
 Walls Heated

Flow
ge

G = 408.6 – 469.8 kg/m2s (U = 0.25 - 0.29 m/s) 
ΔTsub,in = 25.5 - 25.7°C 

(a)

(c)

(e)

(b)

(d)

(f)

48%

75%

CHF (39.5 W/cm2)

55%

86%

CHF (34.7 W/cm2)

51%

87%

CHF (37.1 W/cm2)

Bottom Wall 
Heated

Top Wall 
Heated

Top & Bottom
 Walls Heated

Flow
ge

G = 1592.5 – 1601.3 kg/m2s (U = 0.98 - 0.99 m/s) 
ΔTsub,in = 24.5 – 25.0°C 

51%

85%

CHF (28.2 W/cm2)

51%

87%

CHF (9.3 W/cm2)

59%

86%

CHF (18 W/cm2)

Bottom Wall 
Heated

Top Wall 
Heated

Top & Bottom
 Walls Heated

Flow
ge

G = 394.8 – 403.4 kg/m2s (U = 0. 25 m/s) 
ΔTsub,in = 3.6 - 5.1°C 

51%

85%

CHF(28.2 W/cm2)

47%

87%

CHF(23.1 W/cm2)

49%

89%

CHF(29.6 W/cm2)

Bottom Wall 
Heated

Top Wall 
Heated

Top & Bottom
 Walls Heated

Flow
ge

G = 1536.1 – 1570.3 kg/m2s (U = 0.97 - 0.98 m/s) 
ΔTsub,in = 3.3 – 5.0°C 

53%

84%

CHF (27.1 W/cm2)

61%

83%

CHF (12.2 W/cm2)

46%

85%

CHF (16.2 W/cm2)

G = 396.4 – 404.1 kg/m2s, xe,in = 0.17 – 0.18 

Bottom Wall 
Heated

Top Wall 
Heated

Top & Bottom
 Walls Heated

Flow
ge

45%

79%

CHF (23.8 W/cm2)

59%

86%

CHF (18.1 W/cm2)

45%

88%

CHF (24 W/cm2)

G = 800.6 – 803.2 kg/m2s , xe,in = 0.03 – 0.08 

Bottom Wall 
Heated

Top Wall 
Heated

Top & Bottom
 Walls Heated

Flow
ge

Fig. 3.1: Variations of interfacial behavior with increasing heat flux for top wall heating, double-sided heating, and bottom wall 
heating for (a) G = 408.6 – 469.8 kg/m2s and ΔTsub,in = 25.5 – 25.7°C, (b) G = 1592.5 – 1601.3 kg/m2s and ΔTsub,in = 24.5 – 25.0°C, 
(c) G = 394.8 – 403.4 kg/m2s and ΔTsub,in = 3.6 - 5.1°C, (d) G = 1536.1 – 1570.3 kg/m2s and ΔTsub,in = 3.3 – 5.0°C, (e) G = 396.4 – 
404.1 kg/m2s and xe,in = 0.17 – 0.18, and (f) G = 800.6 – 803.2 kg/m2s and xe,in = 0.03 - 0.08. 
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CHF value (18 W/cm2) smaller than that for both top and bottom wall heating.  Overall, 

gravity appears to play a dominant role for this low inertia case. 

Figure 3.1(b) shows images for similarly high inlet subcooling (24.5 – 25°C) but higher 

mass velocity of G = 1592.5 – 1601.3 kg/m2s (U = 0.98 – 0.99 m/s).  Here, higher inertia 

appears to (i) move boiling activity downstream and (ii) greatly reduce the thickness of the 

vapor layer along the top heated wall.  For bottom wall heating, increased inertia compared 

to Fig. 3.1(a) confines boiling activity to the bottom wall.  For double-sided heating, the 

flow appears to combine the vapor behaviors of the top wall and bottom wall heating in the 

absence of appreciable interaction of top and bottom wall vapor layers.  Overall, higher 

inertia appears to negate much of the gravity-dominated behavior captured in Fig. 3.1(a), 

which helps explain why CHF values for all three heating configurations are close to one 

another.  Another important outcome of the combination of higher inertia and high 

subcooling, which is manifest by confinement of vapor activity to the respective heated 

walls, is the likelihood of high inequilibrium across the channel, with the liquid saturated 

near the heated wall and potentially highly subcooled in the core. 

Figures 3.1(c) and 3.1(d) show images of the flow for G = 394.8 – 403.4 kg/m2s (U = 

0.25 m/s) and G = 1536.1 – 1570.3 kg/m2s (U = 0.97 – 0.98 m/s), respectively, for low 

subcooling cases with ΔTsub,in = 3.3 – 5.1°C.  For top wall heating and U = 0.25 m/s, Fig. 

3.1(c) shows a wavy vapor layer developing along the top wall and growing in both 

thickness and wavelength with increasing heat flux.  Notice how the downstream of the 

two wave trough regions, where the liquid contacts the wall, is virtually eliminated at CHF.  

For bottom wall heating, the influence of gravity is quite apparent, as vapor generated along 

the bottom wall quickly detaches and moves towards the top wall while being replaced by 
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a downflow of liquid towards the lower wall.  While this behavior is also observed in Fig. 

3.1(a) for higher subcooling, the low subcooling in Fig. 3.1(c) is shown allowing greater 

vapor production as well as vapor mixing with the bulk liquid, and an appreciable increase 

in CHF for bottom wall heating compared to top wall heating.  High vapor production is 

also shown inducing significant vapor-liquid mixing in Fig. 3.1(c) for the double-sided 

heating.  CHF is greatly enhanced with double-sided heating in comparison to top and 

bottom wall heating because of axial flow acceleration resulting from the increased void 

fraction.  Figure 3.1(d) shows flow behavior for U = 0.97 – 0.98 m/s, where inertia appears 

to dwarf gravity effects, resulting in more or less similar wavy vapor layer behavior for 

both top wall heating and bottom wall heating, and the double-sided heating combining 

vapor behaviors of the two walls when heated separately.  Another effect of the inertia 

dominated flow is a narrower range of CHF values for the three wall heating configurations 

compared to Fig. 3.1(c).  

Figures 3.1(e) and 3.1(f) show images of the flow for G = 396.4 – 404.1 kg/m2s and G 

= 800.6 – 803.2 kg/m2s, respectively, for inlet quality ranging from 0.03 – 0.18.  With a 

positive inlet quality, vapor is observed entering the heated portion of the flow channel.  

For top wall heating at G = 396.4 – 404.1 kg/m2s, Fig. 3.1(e) shows a very thick wavy 

vapor layer, consisting of both the incoming vapor and the vapor generated by heating, 

propagating along the top wall.  The thickness of the vapor layer increases with increasing 

heat flux until the vapor appears to engulf the entire cross-section at CHF.  For bottom wall 

heating, high flow acceleration resulting from the large void fraction confines vapor 

activity to the bottom wall.  This implies that the dominant role of gravity observed in Figs. 

3.1(a) and 3.1(c) is greatly compromised with saturated inlet conditions.  For double-sided 
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heating, a three-layer separated flow is established with wavy vapor layers covering both 

top and bottom walls, and a middle liquid layer in between.  Notice that the top wall vapor 

layer is much thicker than the bottom wall vapor layer.  This can be explained by buoyancy 

effects accumulating both incoming and generated vapor towards the top wall.  Figure 

3.1(f) shows flow behavior for G = 800.6 – 803.2 kg/m2s and xe,in = 0.03 – 0.08.  A lower 

inlet quality for this case compared to Fig. 3.1(e) is shown reducing the amount of incoming 

vapor.  There is also better symmetry in wavy vapor layer development along the top heated 

and bottom heated walls because of the high mass velocity.  Additionally, high inertia helps 

achieve closer CHF values for the three wall heating configurations in Fig. 3.1(f) compared 

to those in Fig. 3.1(e).  

Figure 3.2 shows 15 sequential images of the flow spaced 1.5 ms apart at 74-86% CHF 

for top wall heating (with only Hb on), for G = 400.3 – 1597.2 kg/m2s (U = 0.25 – 0.98 

m/s) and three types of inlet conditions: highly subcooled, slightly subcooled, and 

saturated.  For high inlet subcooling of ΔTsub,in = 25.6°C and U = 0.29 m/s, bubble 

nucleation commences downstream of the inlet, and the bubbles coalesce into a wavy vapor 

layer.  Increasing the velocity to U = 0.98 m/s for the same high subcooling greatly reduces 

the thickness of the vapor layer.  For low inlet subcooling of ΔTsub,in = 3.6°C, bubbles are 

seen nucleating closer to the inlet and coalescing into a thick wavy vapor layer.  Increasing 

the velocity to U = 0.98 m/s for similarly small inlet subcooling decreases the wavelength 

of the vapor layer while increasing the number of wetting fronts in between.  For saturated 

inlet conditions with  xe,in =  0.08 – 0.17, the vapor layer is initiated at the inlet where it is 
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G = 803.2 kg/m2s, xe,in = 0.08, 76% CHF (CHF = 18.1 W/cm2)   G = 400.3 kg/m2s, xe,in = 0.18, 77% CHF (CHF = 12.2 W/cm2) 

Flow

ge

G = 469.8 kg/m2s (U = 0.29 m/s), ΔTsub,in = 25.6°C 
80% CHF (CHF = 26.3 W/cm2) 

G = 1597.2 kg/m2s (U = 0.98 m/s), ΔTsub,in = 24.9°C 
86% CHF (CHF = 34.7 W/cm2) 

G = 403.4 kg/m2s (U = 0.25 m/s), ΔTsub,in = 3.6°C 
74% CHF (CHF = 9.3 W/cm2) 

G = 1570.3 kg/m2s (U = 0.98 m/s), ΔTsub,in = 3.3°C 
79% CHF (CHF = 23.1 W/cm2) 

Fig. 3.2:  Sequential high-speed video images from top wall heating experiments for 
different mass velocities, inlet subcoolings, and inlet qualities.  
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fed by the incoming vapor.  The combination of incoming vapor and the vapor generated 

due to heating results in a comparatively very thick vapor layer along the top heated wall. 

Figure 3.3 shows 15 sequential images of the flow spaced 1.5 ms apart at 75-85% CHF 

for bottom wall heating (with only Ha on) for G = 396.4 – 1601.3 kg/m2s (U = 0.25 – 0.99 

m/s) and three types of inlet conditions: highly subcooled, slightly subcooled, and 

saturated.  For high inlet subcooling of ΔTsub,in = 25.5°C and U = 0.25 m/s, small vapor 

bubbles are seen forming upstream and both growing and coalescing as they propagate 

along the bottom wall.  Relatively weak inertia allows gravity to draw the vapor across the 

channel towards the top wall.  Some of these bubbles are seen to condense in the highly 

subcooled liquid.  For a similar subcooling and a higher velocity of U = 0.99 m/s, the vapor 

formation is pushed farther downstream and the vapor layer is much thinner and, because 

of the high inertia, well confined to the lower wall.  For low inlet subcooling of ΔTsub,in = 

5.1°C and U = 0.25 m/s, a thick vapor layer is seen forming along the bottom wall growing 

in thickness while approaching the top wall.  Increasing the velocity to U = 0.98 m/s for a 

similarly low inlet subcooling increases the importance of inertia relative to buoyancy, 

which is manifest by a lesser tendency of the bottom wall’s vapor layer to reach the top 

wall.  For saturated inlet conditions with xe,in = 0.03 – 0.18, the flow is comprised of three 

layers at the inlet as described by Kharangate et al. [34], with a very thin top layer of 

incoming vapor, a middle liquid layer and the newly generated vapor layer along the 

bottom wall.  This behavior is less discernible downstream because of the high vapor void 

fraction.   
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G = 408.6 kg/m2s (U = 0.25 m/s), ΔTsub,in = 25.5°C 
82% CHF (CHF = 31.8 W/cm2) 

G = 1601.3 kg/m2s (U = 0.99 m/s), ΔTsub,in = 24.5°C  
75% CHF (CHF = 39.5 W/cm2) 

G = 400.5 kg/m2s (U = 0.25 m/s), ΔTsub,in = 5.1°C 
85% CHF (CHF = 28.2 W/cm2) 

G = 1567.4 kg/m2s (U = 0.98 m/s), ΔTsub,in = 3.8°C  
75% CHF (CHF = 28.2 W/cm2) 

G = 396.4 kg/m2s, xe,in = 0.18, 77% CHF (CHF = 27.1 W/cm2) G = 802.0 kg/m2s, xe,in = 0.03, 79% CHF (CHF = 23.8 W/cm2) 

Fig. 3.3:  Sequential high-speed video images from bottom wall heating experiments for 
different mass velocities, inlet subcoolings and inlet qualities.  
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      Figure 3.4 shows 15 sequential images spaced 1.5 ms apart at 75-83% CHF for double-

sided heating (with Ha and Hb simultaneously turned on) for G = 394.8 – 1592.5 kg/m2s (U 

= 0.25 – 0.98 m/s) and the three types of inlet conditions: highly subcooled, slightly 

subcooled, and saturated.  For high inlet subcooling of ΔTsub,in = 25.6°C and U = 0.25 m/s, 

there are clear differences in vapor formation along the top and bottom walls.  For the 

bottom wall, small bubbles are generated along the bottom wall, which, because of 

relatively strong gravity effects at this low velocity, travel across towards the top wall 

where they accumulate into the top walls’ wavy vapor layer.  Increasing the velocity to U 

= 0.98 m/s for the same high inlet subcooling strengthens inertia relative to gravity, which 

is manifest by thinner vapor layers and lessened vapor accumulation along the top wall.  

For low inlet subcooling of ΔTsub,in = 4.9°C and U = 0.25 m/s, the flow appears to combine 

the vapor layer behaviors exhibited by the two walls when heated separately as shown in 

Figs. 3.2 and 3.3 for similar inlet conditions.  Increasing the velocity to U = 0.97 m/s for a 

similarly low inlet subcooling results in wavy vapor layers along the top and bottom walls 

exhibiting a wavy ‘meshing’ behavior, where the wave peak from one of the heated walls 

grows towards the trough (wetting front) between two wave peaks on the opposite wall, 

which is reminiscent of gear meshing as discussed by Konishi et al. [30,31] for flow boiling 

in microgravity at U = 0.1 – 1.9 m/s.  For saturated inlet conditions with xe,in = 0.07 – 0.17, 

vapor enters the heated portion of the channel attached to the top wall.  This causes large 

differences between the thicknesses of the top and bottom layers, especially for the lower 

mass velocity of G = 404.1 kg/m2s. 
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G = 408.6 kg/m2s (U = 0.25 m/s), ΔTsub,in = 25.7°C 
83% CHF (CHF = 18 W/cm2) 

G = 800.6 kg/m2s, xe,in = 0.07, 79% CHF (CHF = 24 W/cm2) 

Flow

ge

G = 1592.5 kg/m2s (U = 0.98 m/s), ΔTsub,in = 25.0°C 
81% CHF (CHF = 37.1 W/cm2) 

G = 394.8 kg/m2s (U = 0.25 m/s), ΔTsub,in = 4.9°C 
 76% CHF (CHF = 18 W/cm2) 

G = 1536.1 kg/m2s (U = 0.97 m/s), ΔTsub,in = 5.0°C 
81% CHF (CHF = 29.6 W/cm2) 

G = 404.1 kg/m2s, xe,in = 0.17, 75% CHF (CHF = 16.2 W/cm2) 

Fig. 3.4:  Sequential high-speed video images from double-sided heating experiments for 
different mass velocities, inlet subcoolings, and inlet qualities.  
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3.2 Experimental Results 

3.2.1 CHF Trends 

Figure 3.5(a) shows the variation of CHF with mass velocity for top wall heating, 

bottom wall heating, and double-sided heating configurations and the three inlet conditions 

of highly subcooled (ΔTsub,in = 24.5 – 31°C), slightly subcooled (ΔTsub,in = 3.3 – 7.7°C), and 

saturated (xe,in = 0.03 – 0.18).   

For the low subcooling and saturated inlet cases, CHF for G < 800 kg/m2s is lowest for 

top wall heating due to vapor accumulation along the top wall by the relatively strong 

buoyancy effects as observed in Figs. 3.1(c) and 3.1(e).  Also for G < 800 kg/m2s, bottom 

wall heating is shown to yield the highest CHF because of the strong buoyancy effects that 

assist vapor removal from the bottom heated wall towards the top unheated wall and 

increase mixing as well as bulk liquid access to the bottom heated wall.  For the low 

subcooling and saturated inlet cases, double-sided heating yields CHF values for G < 800 

kg/m2s that are in between those for top wall heating and bottom wall heating.  The double-

sided configuration could be viewed as a superposition of the two other heating 

configurations.  For low inlet subcooling (ΔTsub,in = 3.3 – 7.7°C) and G > 1600 kg/m2s, 

double-sided heating outperforms the other two configuration.  As shown earlier in Fig. 

3.1(d), this inertia dominated range tends to confine vapor during double-sided heating to 

the individual walls, while also capitalizing on the heat transfer enhancement resulting 

from greater axial flow acceleration compared to individually heated walls.  Notice also 

for low inlet subcooling that CHF values for all three heating configurations converge 

around G = 3200 kg/m2s, where the vapor layers become quite thin and axial acceleration 

quite low. For saturated inlet (xe,in = 0.03 – 0.18), CHF values for all three heating configs.
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Fig. 3.5:  Variations of CHF with (a) mass velocity, (b) inlet quality, and (c) inlet subcooling for top wall heating, bottom wall 
heating and double-sided heating.   
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converge around 1600 kg/m2s.  With respect to the high inlet subcooling (Tsub,in = 24.5 – 

31°C) cases, Fig. 3.5(a) also shows that bottom wall heating outperforms the other heating 

configurations for lower mass velocities, in this case G < 1600 kg/m2s.  However, unlike 

the low subcooling and saturated inlet cases, CHF for double-sided heating is lower than 

for top wall heating for G < 1600 kg/m2s.  This behavior can be explained by examining 

Fig. 3.1(a), which shows double-sided heating allowing vapor generated from the bottom 

wall to accumulate along the top wall, resulting in further thickening of the top wall vapor 

layer.  Convergence of CHF values for the three heating configurations for the high 

subcooling cases occurs around G = 2400 kg/m2s.  Overall, it is worth noting that flow 

acceleration is low for high subcooling, which may explain some of the differences in CHF 

trends between high subcooling cases on one hand and both low subcooling and saturated 

cases on the other. 

Figure 3.5(b) shows the variation of CHF with inlet equilibrium quality, xe,in, for top 

wall heating, bottom wall heating, and double-sided heating configurations, and mass 

velocities of G = 394.6 – 469.8 kg/m2s, 793.3 – 836.8 kg/m2s and 1536.1 – 1601.3 kg/m2s.  

In the subcooled region where xe,in < 0, CHF is seen to decrease monotonically with 

increasing xe,in, (i.e., decreasing inlet subcooling).  Bottom heating and double-sided 

heating show CHF continuing to decrease with increasing xe,in for xe,in > 0, which is to be 

expected since reduced liquid content decreases the energy required to trigger CHF.  

However, top wall heating does not follow this trend and CHF increases with increasing 

xe,in for xe,in > 0.  This reversal in trend relative to the two other heating configurations can 

be explained by the high positive xe,in values producing appreciable flow acceleration, 
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which increase inertia compared to gravity effects, eliminating the detrimental effects of 

vapor accumulation along the top wall.  

Figure 3.5(c) shows the variation of CHF with inlet subcooling for only the highly 

subcooled and slightly subcooled cases.  CHF increases monotonically with increasing 

subcooling for all cases because of the need to overcome the liquid’s increasing sensible 

heat deficiency prior to evaporation.  CHF variations among the three different heating 

configurations for a given velocity are consistent with those of CHF versus xe,in for xe,in < 

0 in Fig. 3.5(b). 

 

3.2.2 Flow Boiling Curves 

As shown earlier in Fig. 2.1(e), the heated walls are fitted each with seven 

thermocouples for wall temperature measurements.  The temperatures are designated as 

Tw1,n and Tw2,n, where 1 and 2 refer to top heated wall Hb and bottom heated wall Ha, 

respectively, and n thermocouple axial location along the respective heated wall.  Figures 

3.6(a) – 3.6(c) show boiling curves for G = 394.8 – 1601.3 kg/m2s (U = 0.25 – 0.99 m/s) 

for top wall heating, bottom wall heating, and double-sided heating, respectively, for highly 

subcooled, slightly subcooled and saturated inlet conditions.  The wall heat flux, q”w, is 

plotted against the difference between average wall temperature, Tw,avg, and inlet saturation 

temperature, Tsat,in.  All curves exhibit trends observed in a typical boiling curve, with the 

slope increasing as the flow transitions from single phase to nucleate boiling, then 

decreasing sharply just before CHF.  However, the transition points differ for different inlet 

conditions and heating configurations.  For top wall heating and high inlet subcooling of 

ΔTsub,in = 24.9 – 25.6°C, Fig. 3.6(a) shows increasing G from 469.8 to 1597.2 kg/m2s shifts 
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Fig. 3.6:  Boiling curves for different mass velocities, inlet subcoolings, and inlet qualities for (a) top wall heating, 
(b) bottom wall heating, and (c) double-sided heating. 
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the entire boiling curve upwards.  An even more profound upward shift in the boiling curve 

is achieved with increasing G for both low inlet subcooling of ΔTsub,in = 3.3 – 3.6°C and 

saturated inlet with xe,in = 0.04 – 0.18.  Increased sensitivity to G with low subcooling and 

saturated inlet conditions reflects the strong negative influence of gravity in the form of 

substantial thickening of the vapor layer along the top wall for low G, compared to a more 

inertia dominated flow thinning the same vapor layer for high G.  For bottom wall heating, 

Fig. 3.6(b) shows overall trends similar to those for top wall heating, with the main 

difference that the overall influence of G is abated compared to Fig. 3.6(a), especially for 

the low subcooling and saturated inlet conditions.  For double-sided heating, Fig. 3.6(c), 

where the flow is influenced by vapor layer development along both walls, the effect of G 

is exacerbated as for top wall heating, Fig. 3.6(a).  This effect is most pronounced for the 

saturated inlet cases with xe,in = 0.03 – 0.17.  Another observation in Fig. 3.6(c) is that the 

boiling curves for the individual walls in the double-sided configuration are more or less 

reflective of trends of same walls in single-sided heating configurations, Figs. 3.6(a) and 

3.6(b).  A notable difference for double-sided heating versus both top wall and bottom wall 

heating is a steeper slope in the nucleate boiling region, which, as discussed earlier, is a 

reflection of greater flow acceleration with double-sided heating.  

 

3.2.3 Heated Wall Temperatures 

Figures 3.7(a) – 3.7(c) show temporal records of the heated wall temperatures for G = 

1536.1 – 1601.3 kg/m2s for top wall heating, bottom wall heating, and double-sided heating 

during the CHF transient for highly subcooled (ΔTsub,in = 24.5 – 25°C), slightly subcooled
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(a)

(b)

(c)

Fig. 3.7:  Temporal records of wall thermocouples during CHF transient for different mass velocities and top wall heating, 
bottom wall heating, and double-sided heating for (a) ∆Tsub,in  = 24.5 – 25°C, (b) ∆Tsub,in  = 3.3 – 5.0°C, and (c) xe,in = 0.03 – 
0.04.  
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 (ΔTsub,in = 3.3 – 5.0°C), and saturated (xe,in = 0.03 – 0.04) inlet conditions, respectively.  

The x-axis in these plots indicates the time in seconds starting the instant the last heat flux 

increment that culminated in CHF is initiated.  As discussed earlier, power input to the 

heaters is automatically cut off once any of the relay thermocouples exceeds 130°C.  A 

common trend observed for most cases and all three heating configurations is temperatures 

increasing from the leading edge of the heated wall (Tw1,1, Tw2,1) to a maximum immediately 

downstream from the middle (Tw1,5 or Tw1,6, Tw2,5 or Tw2,6), before decreasing again towards 

the exit (Tw1,7, Tw2,7).  This can be explained by the fact that flow acceleration and increased 

vapor layer thickness counter act to give the heat transfer trends observed.  Figure 3.7(a) 

shows CHF is triggered over a much shorter time span for high inlet subcooling of ΔTsub,in 

= 24.5 – 25°C compared to both slightly subcooled inlet, Fig. 3.7(b), and saturated inlet, 

Fig. 3.7(c).  

 

3.2.4 Heat Transfer Coefficients 

The local heat transfer coefficient at a thermocouple location along a heated wall is 
obtained from the relation  
 h

m,n


q
w

T
wm ,n

T
f 

, (3.1) 

where q”w is the wall heat flux, Twm,n the wall temperature measured along heated wall m 

(m = a for Ha and b for Hb), n the thermocouple location, and Tf the bulk fluid temperature.  

For double-sided heating, the bulk fluid temperatures for the subcooled and saturated 

regions are given, respectively, by 
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and  T
f
T

sat   for  0 ≤ xe ≤ 1. (3.2b) 

The above equations are also used for single-sided heating by setting q”w1 = 0 for bottom 

wall heating, or q”w2 = 0 for top wall heating.  A single value of the heat transfer coefficient 

is determined for each thermocouple location, and the values for all thermocouples along 

a heated wall are then spatially averaged to determine havg. 

Figures 3.8(a) – 3.8(c) show the variations of havg with q”w for G = 394.8 – 1601.3 

kg/m2s and ∆Tsub,in = 0 – 25.6°C and xe,in = -0.31 – 0.18, for top wall heating, bottom wall 

heating, and double-sided heating, respectively.  For top wall heating, Fig. 3.8(a) shows 

havg increases with increasing G for each set of inlet conditions.  For ∆Tsub,in = 24.9 – 

25.6°C, the variation of havg with q”w is rather subdued.  For ∆Tsub,in = 3.3 – 3.6°C and xe,in 

= 0.04 – 0.18,  havg increases to a peak value, and then decreases until CHF is reached.  For 

xe,in = 0.04 – 0.18, havg is substantially higher than for ∆Tsub,in = 24.9 – 25.6°C.  This 

difference can be explained by the highly subcooled flow inhibiting bubble nucleation 

along the heated length, which compromises heat transfer effectiveness.  Figures 3.8(b) 

and 3.8(c) show fairly similar trends of havg versus q”w for bottom heating and double-

sided heating, respectively.  Overall, Figs. 3.8(a) - 3.8(c) show that the influence of G on 

havg is relatively small for highly subcooled inlet, more significant for slightly subcooled 

inlet, and quite substantial for saturated inlet.  For top wall heating and double-sided 

heating, the influence of G on havg is apparent for both slightly subcooled and saturated 

inlet cases, while for bottom heating, this influence is limited to saturated inlet cases only.  

The variations of havg with q”w for double-sided heating in Fig. 3.8(c) bare some similarity
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(a) (b)

(c)

Fig. 3.8:  Variations of average heat transfer coefficient with wall heat flux for different inlet mass velocities, inlet subcoolings, and 
inlet qualities for (a) top wall heating, (b) bottom wall heating, and (c) double-sided heating.  
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to the variations of respective individually heated top wall, Fig. 3.8(a), and bottom wall, 

Fig. 3.8(b), though overall heat transfer performance is higher than for single-sided heating.  

Comparing these trends with those for CHF in Figs. 3.5(a) – 3.5(c) show that increasing 

subcooling enhances CHF but decreases havg significantly. 

Thus far, double-sided heating appears to combine the effects of single-sided heating 

configurations.  To further explore this trend, it is useful to examine the axial variations of 

the local heat transfer coefficient, h, for the double-sided heating.  Figures 3.9(a) – 3.9(c) 

show these variations for G = 1536.3 – 1592.6 kg/m2s for high subcooled inlet (∆Tsub,in = 

25°C), slightly subcooled inlet (∆Tsub,in = 5.0°C), and saturated inlet (xe,in = 0.03), 

respectively.  For ∆Tsub,in  = 25°C, Fig. 3.9(a) shows the variation of h with z is rather flat, 

but shifted upwards with increasing q”w.  For ∆Tsub,in = 5°C, Fig. 3.9(b) shows a similarly 

flat variation of h with z for low heat fluxes.  And while there is an upwards shift with 

increasing q”w, there are appreciable axial variations in h for high heat fluxes, especially 

close to CHF.  These spatial variations are the result of wavy vapor layer formation and 

development along the channel. 

For saturated inlet with xe,in = 0.03, Fig. 3.9(c) shows variations of h with z for heat 

fluxes ranging from 50% CHF to 96% CHF.  Here, h is highest at the inlet to the heated 

portion of the channel and decreases appreciably with z before increasing again 

downstream.  The upstream decrease is apparently the result of appreciable thickening of 

the incoming vapor layers along both walls due to vapor generation by heating.  However, 

h begins to increase downstream due to intensified flow acceleration brought about by the 

vapor production.  Figure 3.9(c) also shows h increasing with increasing q”w up to 73% 

CHF,  because  of  the  benefits  of  added  flow  acceleration,  and  decreasing  as  CHF  is 
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(a) (b)

(c)

Fig. 3.9:  Variations of local heat transfer coefficient along the channel for double-sided heating with increasing heat flux for G 
= 1536.1 – 1592.6 kg/m2s and (a) ∆Tsub,in = 25°C, (b) ∆Tsub,in = 5°C, and (c) xe,in = 0.03.  
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approached as the detrimental effects of thicker insulating vapor layers begin to outweigh 

the merits of acceleration. 

Figures 3.10(a) – 3.10(c) show the variations of h with z for double-sided heating and 

different mass velocities for high subcooled inlet (∆Tsub,in = 25 – 27.4°C), slightly 

subcooled inlet (∆Tsub,in = 4.9 – 6.7°C), and saturated inlet (xe,in  = 0.03 – 0.17), respectively.  

The values of wall heat flux in these figures correspond to those that yield peak havg values 

as depicted earlier in Figs. 3.8(a) – 3.8(c).  In Fig. 3.10(a), the variation of h with z for 

∆Tsub,in = 25 – 27.4°C is rather flat and shifted upwards with increasing G.  For ∆Tsub,in = 

4.9 – 6.7°C, Fig. 3.10(b) shows h values increase appreciably compared to those in Fig. 

3.10(a), but the axial variations are more complex, reflecting the aforementioned effects of 

both vapor layer development and flow acceleration.  For xe,in = 0.03 – 0.17, Fig. 3.10(c) 

shows improvement in overall heat transfer performance, with the highest h occurring at 

the upstream edge, and downstream variations reflecting both vapor layer development and 

flow acceleration effects.  One notable trend in Fig. 3.10(c) is the significant difference in 

heat transfer performance between the top and bottom heating walls at the leading edge for 

G = 404.1 kg/m2s.  This trend can be attributed to the combined effects of incoming vapor 

and strong buoyancy accumulating vapor mostly against the top wall for this low mass 

velocity.  Figs. 3.10(a) and 3.10(c) show that heat 2.04 m/s) are quite close.  This apparent 

anomaly can be explained as follows.  For low inlet subcooling, there is a trade-off when 

comparing heat transfer results for different mass velocities at the same wall heat flux, 

where a lower velocity yields higher vapor void, especially downstream, offsetting the 

benefits of  higher  velocity.   The absence of  this  anomaly  for  ∆Tsub,in  =  25  –  27.4°C, 
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(a) (b)

(c)

Fig. 3.10:  Variations of local heat transfer coefficient along the channel for double-sided heating and different mass velocities for 
(a) ∆Tsub,in = 25 – 27.4°C, (b) ∆Tsub,in = 4.9 – 6.7°C, and (c) xe,in = 0.03 – 0.17.  
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Fig.  3.10(a),  and  xe,in =  0.03  –  0.17,   Fig. 3.10(c),  points to the complexity of assessing 

the combined influence of inlet quality and mass velocity on heat transfer and CHF. 

 

3.2.5 Effects of Subcooling on CHF 

A series of prior studies by Galloway and Mudawar [49,50], and Sturgis and Mudawar 

[32,33] have culminated in a theoretical Interfacial Lift-off Model for flow boiling CHF 

corresponding to zero subcooling that yields 
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where b,   and c , are, respectively, the ratio of wetting front length to wavelength, mean 

vapor layer thickness, and critical wavelength, all determined at axial location z* (extent of 

upstream wetting front) using a two-phase slip flow model.  The same model was later 

proven by Zhang et al. to be highly effective at predicting CHF for different flow 

orientation relative to Earth gravity [53] as well as for flow boiling in microgravity [56].  

Zhang et al. [28] later extended this model to highly subcooled conditions according to 
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where ΔTsub,out is the outlet subcooling, and   the heat utility ratio.  Two key criteria 

concerning the magnitude of this parameter are 0 ≤   ≤ 1 for subcooled flow, and   = 1 

for saturated flow.  Zhang et al. [28] developed the following empirical relation for    
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where D is the channel’s hydraulic diameter.   
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Figure 3.11(a) shows the variation of heat utility ratio according to Eq. (3.5) for U = 

0.25, 0.5, 1 and 1.5 m/s, and a saturation pressure of 150 kPa.  The heat utility ratio has a 

value of ε = 1 for ΔTsub,out = 0, and decreases with increasing subcooling.  From Eq. (3.4), 

it is evident that CHF increases with decreasing ε, i.e., with increasing subcooling.  Figure 

3.11(a) shows a 20 – 45% decrease in ε at 30°C subcooling, depending on flow velocity.  

This behavior is consistent with the trend of CHF increasing monotonically with increasing 

subcooling (albeit inlet rather than outlet) captured in Fig.3.5(c) for the present data.  

Another important trend that is manifest in Fig.3.11(a) is the steepening of negative slope 

of ε, or positive slope for CHF, with increasing velocity, a trend also captured in Fig. 3.5(c) 

for bottom wall heating and double-sided heating, but not top wall heating.  This is a 

reflection of the fact that the influence of heat utility ratio on CHF according to Eqs. (3.4) 

and (3.5) is intended to account for the effects of subcooling and velocity but not gravity 

[28].  For top wall heating, CHF is highly influenced by gravity for low velocity and inertia 

for high velocity, which leads to a less than monotonic variation of CHF versus velocity.   

Dividing the expression for CHF for subcooled outlet conditions, Eq. (3.4), by the 

expression for zero outlet subcooling, Eq. (3.3), and substituting the expression for ε, Eq. 

(3.5), yields the dimensionless relation 

 CHFsub

CHF
sat



1
c

p, f
T

sub,out

h
fg













1 0.00285


f


g

c
p, f
T

sub,out

h
fg


f
U 2 D













0.2

. (3.6)



   52 
 

 
 

Fig. 3.11: (a) Variation of heat utility ratio with outlet subcooling for U = 0.25 – 1.5 m/s, 
and (b) Comparison of CHF ratio of subcooled outlet to saturated outlet with 
experimental data. 
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Using pairs of inlet subcooling conditions with the same flow velocity for each of the three 

heating configurations, Fig. 3.11(b) compares the measured CHF ratio for subcooled flow 

to saturated flow at the exit with predictions according to Eq. (3.6).  Note that the curves 

for top wall heating and bottom wall heating in Fig. 3.11(b) overlap.  Overall, the measured 

trends are similar to those predicted by Eq. (3.6), however, the predictions show 

measureable divergence from the data that increases with increasing subcooling.  Better 

predictions are achieved with top wall heating compared to both bottom wall and double-

sided heating.   

Future studies with more extensive data may both refine this comparison and yield 

more accurate correlations that are heating configuration dependent.  These endeavors must 

take advantage of sophisticated instrumentation methods to measure local liquid velocity 

[74] as well as interface location and temperature distribution across the channel [75].  

 

3.3 Conclusions 

This section explored the influence of inlet subcooling and two-phase inlet on flow boiling 

and CHF in a rectangular channel for top wall heating, bottom wall heating and double-

sided heating configurations.  FC-72 was used as a working fluid with three inlet 

conditions: highly subcooled liquid (ΔTsub,in = 24.5 – 31°C), slightly subcooled liquid 

(ΔTsub,in = 3.3 – 7.7°C), and saturated two-phase mixture (xe,in = 0.03 – 0.18) for mass 

velocities of G = 205.1 – 3211.6 kg/m2s.  High-speed video imaging was also used to 

identify dominant interfacial characteristics for different combinations of inlet conditions 

and heating configurations.  Key findings from the study are as follows.  
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(1)  Overall, gravity plays a dominant role on interfacial behavior for low mass velocities 

around 400 kg/m2s.  This role is manifest in vapor removal from the bottom wall and vapor 

accumulation along the top wall.  For mass velocities around 1600 kg/m2s, inertia takes 

over, leading to formation of similar wavy vapor layers along the top and bottom walls 

when heated individually, and to double-sided heating appearing as a superposition of 

vapor layer behaviors observed in the single-sided heating configurations. 

(2)  Highly subcooled inlet produces a wavy vapor layer along the top wall for low mass 

velocities compared to thin vapor layers confined to the heated walls at high mass 

velocities.  For slightly subcooled inlet, a higher rate of vapor generation is observed with 

distinct wavy vapor layers generated along the heated walls.  Saturated two-phase inlet 

results in a complicated flow pattern due to interaction of vapor entering the channel with 

the vapor generation by heating.  

(3)  The average heat transfer coefficient increases with increasing heat flux to a peak value 

before degrading as CHF is approached.  Heat transfer is improved significantly as inlet 

conditions are changed from highly subcooled to slightly subcooled to saturated.   

(4)  Overall, CHF increases considerably with increasing inlet subcooling.  Bottom wall 

heating provides the best performance for gravity-dominated low velocity conditions, 

while double-sided heating outperforms both top wall and bottom wall heating for inertia-

dominated high velocity conditions.    

(5)  Despite some divergence between predicted and measured CHF values at high 

subcooling, heat utility ratio provides an effective means for assessing the influence of inlet 

subcooling on CHF. 
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CHAPTER 4. EXTENSIVE INVESTIGATION OF FLOW BOILING 

EXPERIMENTAL RESULTS FOR TWO-PHASE SATURATED INLET 

CONDITIONS 

 

4.1 Flow Visualization Results 

4.1.1 Flow Orientation Nomenclature 

Figures 4.1(a) and 4.1(b) illustrate the four flow orientations examined in this study for 

single-sided and double-sided heating, respectively.  For all these orientations, the flow is 

shown entering from the center and radiating outwards.  Three directions are tested:  

horizontal flow (θ = 0° and 180°), vertical upflow (θ = 90°), and vertical downflow (θ = 

270°).  For horizontal flow, two different orientations are tested for single-sided heating: 

upward-facing heated wall (θ = 0°) and downward-facing heated wall (θ = 180°).  For 

horizontal flow with double-sided heating, the orientations θ = 0° and θ = 180° are identical 

due to symmetry, so only θ = 0° is tested.  

Flow visualization at high mass velocities and high inlet qualities did not provide clear 

video images of the flow because high vapor shear at these conditions greatly reduced the 

thicknesses of the individual liquid and vapor layers adjacent to the heated wall, rendering 

identification of any near-wall effects quite elusive.  Therefore, flow visualization results 

from only the low flow rate and low inlet quality tests are presented in this study. 
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Fig. 4.1: Flow orientation and heater nomenclature for (a) single-sided heating and 
(b) double-sided heating in Earth gravity. 
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4.1.2 Flow Visualization Results for Horizontal Flow 

Using the schematics in Fig. 4.2(a) as guide, individual images of flow boiling along 

the entire heated portion of the channel are provided in Figs. 4.2(b) – 4.2(g) for horizontal 

flow with top wall heating, top and bottom wall heating, and bottom wall heating, and 

increasing heat flux (up to 91% CHF), at mass velocities of G = 192.5 – 420.0 kg/m2s with 

qualities at the inlet to the heated portion ranging from xe,in = 0.00 to 0.25.  At G = 199.5 – 

217.9 kg/m2s and xe,in = 0.00 – 0.02, Fig. 4.2(b), top wall heating shows vapor generated 

along the top wall combining with incoming elongated vapor bubbles, further increasing 

vapor accumulation along the heated wall.  Top and bottom wall heating show similar 

behavior along the top wall, with small bubbles from the bottom wall migrating across the 

channel toward the top wall.  For bottom wall heating, relatively large vapor bubbles 

generated along the bottom wall are seen mixing with the incoming vapor, especially when 

the heat flux is increased.  It is important to note that, for bottom wall heating, the heat flux 

values, including CHF, are substantially greater for bottom wall heating than the two other 

heating configurations.  This behavior is caused by buoyancy aiding vapor removal from 

the bottom wall and wall replenishment with liquid, as described in Chapter 3 for a wide 

range of inlet conditions including xe > 0.  Similar interfacial behavior is observed for all 

three heated wall configurations for xe,in = 0.07 – 0.10, Fig. 4.2(c).  But as inlet quality is 

increased to xe,in = 0.16 – 0.21 for fairly similar mass velocities, Fig. 4.2(d), the incoming 

vapor flow exhibits longer vapor bubbles and shorter liquid slugs.  A further increase in 

inlet quality to xe,in = 0.22 – 0.25, also at about the same mass velocity, Fig. 4.2(e), triggers 

liquid-vapor stratification along the entire channel, and heating along any or both walls 

causes the generated vapor to combine with the incoming stratified vapor.    Figures 4.2(f) 
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Fig. 4.2: (a) Heated wall configurations for horizontal flow, and corresponding variations 
of interfacial behavior with increasing heat flux for (b) G = 199.5 – 217.9 kg/m2s and xe,in = 
0.00 – 0.02, (c) G = 198.4 – 209.5 kg/m2s and xe,in = 0.07 – 0.10 , (d) G = 192.5– 210.3 
kg/m2s and xe,in = 0.16- 0.21, (e) G = 198.5 – 207.5 kg/m2s and xe,in = 0.22 – 0.25, (f) G = 
399.7 – 409.9 kg/m2s and xe,in = 0.03 – 0.04, and (g) G = 405.9 – 420.0 kg/m2s and xe,in = 
0.06 – 0.07. 
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and 4.2(g) show images corresponding to higher mass velocity in the range of G = 399.7 – 

420.0 kg/m2s.  While the boiling behavior is not significantly different from that observed 

at the lower velocities in Figs. 4.2(b) – 4.2(e), there are signs of inertia sweeping interfacial 

features along the channel with greater intensity. 

 

4.1.3 Flow Visualization Results for Vertical Upflow 

The schematics in Fig. 4.3(a) serve as guide for the two heating configurations 

associated with vertical upflow.  Figures 4.3(b) – 4.3(e) shows individual images of flow 

boiling along the entire heated portion of the channel for vertical upflow with single-sided 

and double-sided heating for mass velocities in the range of G = 210.6 to 236.3 kg/m2s and 

two heat fluxes, with the inlet quality gradually increased from xe = 0.00 – 0.02, Fig. 4.3(b), 

to xe,in = 0.17 – 0.19, Fig. 4.3(e).  Both single-sided and double-sided heating configurations 

show bubbles nucleating along the heated wall(s), with the increasing heat flux yielding 

larger coalescent vapor masses along the channel.  The increase in inlet quality is shown 

culminating in elongated vapor bubbles entering the channel, which are shown growing 

and being distorted by the vapor generated along the heated wall(s).  Figure 4.3(f) shows 

similar interfacial behavior for the higher mass velocity of G = 406.1 – 409.0 kg/m2s.  

Overall, the main difference between vertical upflow and horizontal flow is a tendency for 

vapor in the former to flow symmetrically along the channel with no apparent bias towards 

either wall, while the vapor in horizontal flow has a clear tendency to stratify towards the 

top wall.  
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Fig. 4.3: (a) Heated wall configurations for vertical upflow, and corresponding variations of interfacial behavior with increasing 
heat flux for (b) G = 221.0 – 225.6 kg/m2s and xe,in = 0.00 – 0.02, (c) G = 224.9 – 231.8 kg/m2s and xe,in = 0.06, (d) G = 234.8 – 
236.3 kg/m2s and xe,in = 0.09, (e) G = 210.6 – 222.3 kg/m2s and xe,in = 0.17 – 0.19, and (f) G = 406.1 – 409.0 kg/m2s and xe,in = 
0.03. 
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4.1.4 Flow Visualization Results for Vertical Downflow 

 Figure 4.4(a) serves as guide for the two heating configurations used in conjunction 

with vertical downflow.  Figures 4.4(b) and 4.4(c) show individual images of flow boiling 

along the entire heated portion of the channel for vertical downflow with single-sided and 

double-sided heating at mass velocities in the range of G = 205.2 – 217.9 kg/m2s and two 

heat fluxes, the main difference being a relatively low quality of xe,in = 0.01 – 0.03 in Fig. 

4.4(b), compared to a higher quality of xe,in = 0.09 in Fig. 4.4(c).  Both inlet quality ranges 

exhibit vapor coalescence in the heated portion of the channel into a large bubble.  Figures 

4.4(d) and 4.4(e) show images for a higher mass velocity range of G = 405.4 – 422.0 

kg/m2s, with xe = 0.04 – 0.05 and 0.07 – 0.08, respectively.  With no heating, vapor is seen 

forming a large vapor bubble marred by many ripples along the vapor-liquid interface, 

which are caused by buoyancy acting opposite (upwards) to the main downflow direction.  

Increasing the heat flux for both heated wall configurations is reflected in increased vapor 

void along the heated portion of the channel.  

 

4.2 Experimental Results 

4.2.1 Flow Boiling Curves 

4.2.1.1 Flow Boiling Curves for Horizontal Flow 

Figures 4.5(a) shows flow boiling curves for horizontal flow with single-sided heating 

and different combinations of mass velocity and inlet quality.  The boiling data are 

presented as variations of wall heat flux, q”w, with the difference between average wall 

temperature, Tw,avg, and inlet saturation temperature, Tsat,in. The data exhibit typical flow 

boiling curve trends  with  the  slope  increasing  appreciably  around  the region of initial 
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Fig. 4.4: (a) Heated wall configurations for vertical downflow, and corresponding variations of interfacial behavior with 
increasing heat flux for (b) G = 205.2 – 217.9 kg/m2s and xe,in = 0.01 – 0.03, (c) G = 210.8 – 214.6 kg/m2s and xe,in = 0.09, (d) G 
= 405.3 – 422.0 kg/m2s and xe,in = 0.04 – 0.05, and (e) G = 416.6 – 421.1 kg/m2s and xe,in = 0.07 – 0.08. 
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Fig. 4.5: Boiling curves for different inlet mass velocities for (a) single-sided 
heated horizontal flow, (b) double-sided heated horizontal flow, (c) single-sided 
heated vertical upflow and downflow, (d)  double-sided heated vertical upflow, 
and (e) double-sided heated vertical downflow.   
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bubble nucleation, and the wall temperature increasing sharply in an unsteady manner at 

CHF.  Increasing the mass velocity is shown shifting the boiling curve to the left, indicating 

an enhancement in the heat transfer coefficient, as well as increasing CHF.  Notice the 

large differences in heat transfer data for bottom wall heating compared to top wall heating, 

especially for the lowest mass velocities of G = 198.4 – 206.2 kg/m2s.  The top wall heating 

is shown yielding far more inferior heat transfer performance, which can be explained by 

the appreciable vapor stratification along the top wall as shown earlier in Fig. 4.2(c).  

Increasing the mass velocity in Fig. 4.5(a) is reflected by the top wall heating and bottom 

wall heating acquiring fairly equal slope, and the differences in heat transfer performance 

decreasing because of the increasing magnitude of flow inertia compared to buoyancy. 

Figure 4.5(b) shows flow boiling curves for horizontal flow with double-sided heating.  

While the top wall shows slightly higher heat transfer performance and triggers CHF 

consistently for all mass velocities, there is closer agreement in heat transfer data between 

the two heated walls for each mass velocity compared to those in Fig. 4.5(a).  This trend 

can be explained by the two heated walls increasing void fraction, thereby increasing flow 

acceleration and better combating buoyancy effects compared to a single heated wall.   

 

4.2.1.2 Flow Boiling Curves for Vertical Upflow 

Figure 4.5(c) shows flow boiling curves for both vertical upflow and vertical downflow 

with single-sided heating and different combinations of mass velocity and inlet quality.  

For vertical upflow, there is a monotonic enhancement in heat transfer performance and 

CHF with increasing mass velocity.  A similar trend is observed in Fig. 4.5(d), which shows 

boiling curves for vertical upflow with double-sided heating.  Because of symmetry, there 
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is some randomness regarding which of the two walls provides the better performance in 

two-sided heating.   

 

4.2.1.3 Flow Boiling Curves for Vertical Downflow 

The boiling data for vertical downflow with single-sided heating is shown on Fig. 

4.5(c), which reflects the same trends as those for vertical upflow with single-sided heating.  

This lack of differences between vertical upflow and vertical downflow is attributed to the 

saturated inlet conditions producing a central elongated vapor core that grows along the 

heated portion of the channel due to vapor production, while pushing liquid against both 

the heated and insulated walls, as observed in Fig. 4.3(c) for vertical upflow and Fig. 4.4(c) 

for vertical downflow.  One major exception is a large difference in CHF for the lowest 

mass velocity, which can be explained by buoyancy playing a more significant role at low 

velocity compared to flow inertia.  Figure 4.5(e) shows general trends for double-sided 

vertical downflow resemble those for single-sided heating.  Because of similarity in both 

the flow and heating boundaries, there is randomness as to which of the two walls provides 

the better performance.   

 

4.2.2 Heat Transfer Coefficient 

4.2.2.1 Average Heat Transfer Coefficient 

In this study, the FC-72 enters the channel as a saturated two-phase mixture at Tsat, and 

this temperature is maintained along the entire heated portion of the channel.  The local 

heat transfer coefficient at each thermocouple location along the heated wall is defined as
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sat , where q”w is the wall heat flux, Twm,n the wall temperature 

measured along heated wall m (m = a for Ha and b for Hb), and n the thermocouple location.  

The local heat transfer coefficient values are then spatially averaged to obtain havg.   

Figures 4.6(a) and 4.6(b) show variations of havg with wall heat flux for horizontal flow 

with single-sided heating and inlet qualities ranging from xe,in = 0.03 to 0.63 for two ranges 

of mass velocity, G = 387.0 – 419.0 kg/m2s and G = 784.4 – 804.0 kg/m2s, respectively.  

Overall, these figures show havg increasing monotonically with increasing wall heat flux.  

For the lower mass velocity range, Fig. 4.6(a) shows inlet quality having a measurable 

influence on havg for top wall heating, but a much weaker influence for bottom wall heating.  

The heat transfer performance for top wall heating at the highest inlet quality of xe,in = 0.63 

is especially intriguing.  Its behavior is drastically different in comparison with top wall 

heating with at an inlet quality of xe,in = 0.31. Two effects are acting together as we increase 

the inlet quality of the incoming fluid. These two effects are increase in fluid and vapor 

velocity due to flow acceleration and increase in vapor quality of the fluid. The increase in 

quality causes a scarcity of liquid in the incoming flow, and therefore a very thin, high 

velocity film is formed along the top wall, resulting in a very high havg value at low wall 

fluxes. But as the heat flux increases, partial dryout in the same liquid film drastically 

compromises havg, also paving the way for early CHF occurrence. Figure 4.6(b) shows that 

increasing mass velocity provides better agreement between top wall and bottom wall 

heating, presumably because of increased flow inertia compared to buoyancy. 
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(a) (b)

(c) (d)

Fig. 4.6: Variations of average heat transfer coefficient with wall heat flux for single-sided 
heating with different inlet qualities for (a) horizontal configurations with G = 387.0 – 
419.0 kg/m2s, (b) horizontal configurations with G = 784.4 – 804.0 kg/m2s, (c) vertical 
configurations with G = 400.3 – 428.8 kg/m2s, and (d) vertical configurations with G = 
780.8 – 863.6 kg/m2s. 
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Figures 4.6(c) and 4.6(d) show havg results for vertical upflow and vertical downflow 

with single-sided heating with qualities in the range of xe,in = 0.03 – 0.63 and two ranges 

of mass velocity, G = 400.3 – 428.8 kg/m2s and G = 780.8 – 863.6 kg/m2s, respectively.  

For the lower mass velocity range, Fig. 4.6(c) shows far closer agreement in havg between 

vertical upflow and vertical downflow than horizontal flow, Fig. 4.6(a), proving these 

operating conditions correspond to flows dominated by inertia.  With even stronger inertia 

for G = 780.8 – 863.6 kg/m2s, Fig.4.6(d) shows even closer agreement between vertical 

upflow and vertical downflow.  

Figures 4.7(a) and 4.7(b) show variations of havg with wall heat flux for horizontal flow 

with double-sided heating and inlet qualities from xe,in = 0.03 to 0.63 for two ranges of 

mass velocity, G = 393.3 – 404.5 kg/m2s and G = 777.4 – 786.4 kg/m2s, respectively.  

Figures 4.7(c) and 4.7(d) show havg variations for vertical upflow with double-sided heating 

and inlet qualities from xe,in = 0.03 to 0.61 for G = 391.7 – 409.0 kg/m2s and G = 786.4 – 

809.1 kg/m2s, respectively.  Similarly, Figs. 4.7(e) and 4.7(f) shows havg plots for vertical 

downflow with double-sided heating and inlet qualities from xe,in = 0.03 to 0.61 for G = 

394.9 – 427.3 kg/m2s and G = 782.1 – 844.7 kg/m2s, respectively.  Overall, all these double-

sided heating plots show heat transfer performance improving with increasing heat flux 

before suddenly declining at CHF.  They also show the increase in mass velocity increasing 

the slope of havg versus wall heat flux.  Figures 4.7(a) – 4.7(f) also show only minor 

differences in havg values between different orientations.  Overall, these trends point to 

double-sided heating aiding vapor  production and, therefore, flow acceleration, rendering 
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.7: Variations of average heat transfer coefficient with wall heat flux for double-
sided heating with different inlet qualities for (a) horizontal flow with G = 393.3 – 
404.5 kg/m2s, (b) horizontal flow with G = 777.4 – 786.4 kg/m2s, (c) vertical upflow 
with G = 391.7 – 409.0 kg/m2s, (d) vertical upflow with G = 786.4 – 809.1 kg/m2s, (e) 
vertical downflow with G = 394.9 – 427.3 kg/m2s, and (f) vertical downflow with G = 
782.1 – 844.7 kg/m2s. 
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inertia more effective at combating gravity effects. It is important to also see that there are 

some variations in heat transfer between the walls. The slight differences in resistance 

between the two heaters is responsible for variation in heat flux input and therefore the 

average heat transfer coefficients between the two walls.  Physically, the two walls in 

vertical upflow and vertical downflow configurations, are supposed to be symmetric and 

hence should give similar heat transfer coefficient performance. In most cases, slight 

differences between the walls with the top wall outperforming the bottom wall in heat 

transfer is observed. But in some cases like in both Fig. 4.7(c) and 4.7(d), at higher qualities 

we see that top and bottom wall performances might switch. This behavior is due to 

uncertainty in heat transfer measurement and not related to any physical phenomenon. 

 

4.2.2.2 Local Heat Transfer Coefficient Results 

Figures 4.8(a), 4.8(b) and 4.8(c) show variations of the local heat transfer coefficient, 

h, with distance, z, along the heated length for horizontal double-sided heating with G = 

387.6 - 417.7 kg/m2s and different wall heat fluxes, with inlet qualities of xe,in = 0.06, 0.25, 

and 0.63, respectively.  These figures show h increases monotonically with increasing heat 

flux at each thermocouple location.  There is an appreciable decline in h in the inlet region, 

followed by a rather flat variation in the middle region, and a large increase in the exit 

region.  The decrease in the inlet region is attributed to thermal boundary layer 

development, while the downstream increase is most likely the result of appreciable flow 

acceleration towards the exit.  It is difficult to quantify the effect of flow acceleration just 

by looking at the local heat transfer variation.  But, acceleration in flow is expected in flow
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(a)

(b)

Fig. 4.8: Variations of local heat transfer coefficient along heated length of the 
channel for double-sided heating in horizontal orientation with increasing heat flux 
for G = 387.6 – 417.7 kg/m2s and (a) xe,in = 0.06, (b) xe,in = 0.25, and (c) xe,in = 0.63.
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boiling configurations when there is an increase in heat flux and increase in inlet flow 

quality. Firstly, for each configuration, local variations show that increase in heat flux shifts 

curves up which can be attributed to flow acceleration. Secondly, between the three plots, 

increase in inlet quality also shows that at a higher quality a higher increase is observed in 

the exit region, which can also be attributed to flow acceleration. Overall, the three different 

inlet qualities show fairly similar performances. 

 

4.2.2.3 Influence of Orientation on Heat Transfer Coefficient 

A key objective of the present study is to assess the influence of gravity for different 

operating conditions.  This is best achieved by comparing heat transfer results for the 

different flow orientations.  Shown in Figs. 4.9(a), 4.9(b), and 4.9(c) are polar plots for 

peak havg (obtained from Figs. 4.6(a) – 4.6(d)) for single-sided heating over a broad range 

of mass velocity, and inlet qualities of xe,in = 0.04 – 0.10, 0.14 – 0.22 and 0.30 – 0.36, 

respectively.  For the lowest xe range, Fig. 4.9(a) shows drastic differences in peak havg for 

horizontal bottom wall heating (θ = 0°) compared to top wall heating (θ  = 180°) for the 

two lowest mass velocities.   These differences are attributed to the stratification to the 

heated wall for θ = 0°, and compromise both for θ  = 180°.  These differences diminish 

with increasing mass velocity.  Notice that peak havg values for vertical upflow (θ  = 90°) 

and vertical downflow (θ  = 270°) are about equal for the entire range of mass velocities, 

and values for all four orientations (θ  = 0°, 90°, 180°, and 270°) are about equal above G 

=  794.7  -  826.3 kg/m2s, indicating inertia  around this mass velocity range is effective at 
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(a)

(b)

(c)

Fig. 4.9: Polar plots showing variations of peak heat transfer coefficient with orientation 
relative to Earth gravity for single-sided heating and different mass velocities, with (a) 
xe,in = 0.04-0.10, (b) xe,in = 0.14-0.22, and (c) xe,in = 0.30-0.36. 
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negating any gravity effects.  Fairly similar trends can be seen in Figs. 4.9(b) and 4.9(c) 

corresponding to xe,in = 0.14 – 0.22 and 0.30 – 0.36, respectively.  Therefore, for single-

sided heating, the ability to negate gravity effects is determined mostly by mass velocity 

rather than inlet quality. 

Figures 4.10(a), 4.10(b), and 4.10(c) show polar plots for peak havg for double-sided 

heating over a broad range of mass velocity, and inlet qualities of xe,in = 0.02 – 0.09, 0.13 

– 0.19, and 0.30 – 0.36, respectively.  A major fundamental feature of these plots is 

symmetry around the vertical axis.  All three figures show fairly similar trends relative to 

mass velocity, with values for the lowest mass velocity range of G = 200.9 - 235.9 kg/m2s 

showing the greatest variations relative to orientation.  Notice for these low mass velocities 

how vertical upflow (θ = 90°) and vertical downflow (θ = 270°) yield fairly equal peak havg 

values, which are significantly greater than those for horizontal flow (θ = 0° and 180°).  

The two horizontal orientations are quite unique in that they simultaneously combine heat 

transfer enhancement for the bottom heated wall and relatively poor heat transfer along the 

top heated wall.  The polar trends in Figs. 4.10(a) – 4.10(c) for the lowest G range suggest 

bottom heated wall enhancement is too weak to compensate for the poor performance of 

the top heated wall.  All three quality ranges show the influence of orientation on peak havg 

greatly diminishing with increasing G.  Additionally, peak havg values begin to converge 

for all orientations at xe,in = 0.02 – 0.09, Fig. 4.10(a), and 0.13 – 0.19, Fig. 4.10(b), around 

the same range of G = 781.1 - 812.5 kg/m2s.  However, the highest inlet qualities of xe,in = 

0.30 – 0.36, Fig. 4.10(c), reduce the influence of orientation for the lowest mass velocity 

range of G = 200.9 – 214.6 kg/m2s compared to the two lower quality ranges, presumably 
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(a)

(b)

(c)

Fig. 4.10:  Polar plots showing variations of peak heat transfer coefficient with orientation 
relative to Earth gravity for double-sided heating and different mass velocities for (a) xe,in = 
0.02-0.09, (b) xe,in = 0.13-0.19, and (c) xe,in = 0.30-0.36. 
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because of the higher flow acceleration provided by higher inlet quality.  But equally 

interesting is how the highest inlet qualities of xe,in = 0.30 – 0.36 preserve a rather weak 

influence of orientation for other mass velocities.  Overall, Figs. 4.10(a) – 4.10(c) prove 

that orientation effects are dictated mostly by mass velocity and, to a far lesser extent, by 

inlet quality. 

 

4.2.3 Pressure Drop 

As indicated earlier, fluid pressure in the flow boiling module is measured at the 

module’s inlet and outlet, as well as at several locations along the flow channel.  These 

include one pressure measurement just upstream, and another just downstream of the 

heated wall.  Those two measurements are used to measure pressure drop, Δp, across the 

heated portion of the channel.  To determine the influences of mass velocity, inlet quality, 

heating configuration, and orientation, the pressure drop values are compared for equal 

values of wall heat flux.  Figures 4.11(a), 4.11(b), and 4.11(c) show polar plots of Δp for 

single-sided heating configurations over a broad range of mass velocity and inlet qualities 

of xe,in = 0.04 – 0.07, 0.19 – 0.25, and 0.40 – 0.45, respectively.  For the lowest quality 

range of xe,in = 0.06 – 0.07, Fig. 4.11(a) shows the lowest mass velocity ranges of G = 405.9 

- 421.1 and 794.7 – 826.3 kg/m2s yielding higher Δp for vertical upflow (θ = 90°) and 

vertical downflow (θ = 270°) than the two horizontal flows (θ = 0° and 180°).  Equally 

intriguing is that the two vertical flows show fairly equal Δp, even though the direction of 

gravity is reversed.  Additionally, the two horizontal flows show equal Δp despite the 

opposite orientations of the heated walls.  The fairly equal Δp values for vertical upflow 

and   vertical  downflow  can  be  explained  by  the  relative  contributions  of   individual
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(c)

(a)

(b)

(c)

Fig. 4.11:  Polar plots showing variations of pressure drop across heated portion of 
channel with orientation relative to Earth gravity for single-sided heating and different 
mass velocities for (a) xe,in = 0.04-0.07, (b) xe,in = 0.19-0.25, and (c) xe,in = 0.40-0.45. 
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components of Δp.  Two-phase pressure drop is comprised of three components, friction, 

acceleration and gravitation, and the influence of orientation is reflected in the magnitude 

of the gravitational component, which is approximately proportional to the product of mean 

two-phase mixture density, Earth gravity, and length of heated portion of the channel.  

Given the large void fraction associated with these two orientations as discussed earlier in 

conjunction with the flow visualization results, the two-phase mixture density is quite 

small, rendering the contribution of the entire gravitational component negligible.  The 

larger values for Δp for vertical upflow and vertical downflow compared to the two 

horizontal orientations can be explained by higher accelerational pressure drop for the 

vertical orientations.  Notice how the influence of orientation on Δp decreases with 

increasing G.  For the two higher inlet quality ranges of xe,in = 0.19 – 0.25 and 0.40 – 0.45, 

Figs. 4.11(b) and 4.11(c), respectively, show Δp values converge for all orientations around 

G = 786.6 - 800.8 kg/m2s, compared to a higher mass velocity of G = 1177.0 – 1212.5 

kg/m2s for the lowest quality range of xe,in = 0.04 – 0.07 as shown in Fig. 4.11(a).  Overall, 

Figs. 4.11(a) – 4.11(c) prove that orientation effects are dictated mostly by mass velocity 

and, to a lesser extent, by inlet quality. 

 Figures 4.12(a), 4.12(b), and 4.12(c) show polar plots for Δp for double-sided heating 

over a broad range of mass velocity at inlet qualities of xe,in = 0.02 – 0.08, 0.18 – 0.26, and 

0.39 – 0.43, respectively.  A fundamental feature of these plots is symmetry around the 

vertical axis.  For the lowest quality range, Fig. 4.12(a) shows that Δp values at G = 400.4 

- 417.8 kg/m2s for vertical upflow (θ = 90°) and vertical downflow (θ = 270°) are greater    

than for the  two horizontal orientations,  and  the influence of orientation diminishes with
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(a)

(b)

(c)

Fig. 4.12: Polar plots showing pressure drop across heated portion of channel with 
orientation relative to Earth gravity for double-sided heating and different mass velocities 
for (a) xe,in = 0.02-0.08, (b) xe,in = 0.18-0.26, and (c) xe,in = 0.39-0.43. 
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increasing G.  While this trend is similar to that for single-sided heating, Fig. 4.11(a), two-

sided heating decreases the influence of orientation for G = 781.1 – 812.5 kg/m2s.  The 

polar plots for the double-sided heating at xe,in = 0.18 – 0.26, Fig. 4.12(b), and xe,in = 0.39 

– 0.43, Fig. 4.12(c), exhibit similar trends, with the influence of orientation becoming quite 

small starting around G = 781.8 – 805.5 kg/m2s.  Once again, these trends prove that 

orientation effects are dictated mostly by mass velocity rather than inlet quality. 

Comparing the Δp results for double-sided heating, Figs. 4.12(a), 4.12(b), and 4.12(c), 

to those for single-sided heating, Figs. 4.11(a), 4.11(b), and 4.11(c), reveals that, for 

identical values of G, xe,in and wall heat flux, Δp is generally higher for two-sided heating.  

This tend can be explained by the nearly twice the amount of vapor produced with double-

sided heating.   

 

4.2.4 CHF Results 

4.2.4.1 Orientation Effects on CHF 

Figures 4.13(a)-4.13(d) show polar plots of CHF for single-sided heating over a range 

of mass velocities at inlet qualities of xe,in = 0.00 – 0.05, 0.07 – 0.15, 0.19 – 0.25, and 0.62 

– 0.69, respectively.  For the lowest inlet quality range of xe,in = 0.00 – 0.05, Fig. 4.13(a) 

shows CHF values for the lowest mass velocity of G = 197.1 - 226.5 kg/m2s are lowest for 

top-wall heating ( = 180°) due to vapor stratification along the heated wall, while vertical 

upflow ( = 90°) and vertical downflow ( = 270°) show better performances, a trend 

shared with heat transfer coefficients and pressure drops in sections 4.2.2 and 4.2.3. The 

CHF for vertical upflow shows slightly higher values in comparison to vertical downflow.
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(a) (b)

(c) (d)

Fig. 4.13: Polar plots showing variations of CHF with orientation relative to Earth gravity for single-sided heating and different 
mass velocities with (a) xe,in = 0.00-0.05, (b) xe,in = 0.07-0.15, (c) xe,in = 0.19-0.25, and (d) xe,in = 0.62-0.69. 
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This is due to flow direction assisting vapor removal while the opposite being true for 

vertical downflow. The effect is not a significant factor even at low mass velocities as 

incoming vapor due to saturated conditions increases inertial forces in comparison to 

gravity. Horizontal flow with bottom-wall heating ( = 0°) shows the best performance, 

which can be attributed to strong buoyancy effects aiding vapor removal from, and liquid 

replenishment of the heated wall.  For the same low quality range of xe,in = 0.02, Fig. 4.13(a) 

shows increasing mass velocity to G = 1214.3 – 1252.3 kg/m2s completely negates the 

influence of orientation and therefore body force.  Figures 4.13(b), 4.13(c), and 4.13(d) 

show the mass velocities at which the effects of orientation on CHF are completely negated 

at xe,in = 0.07 – 0.15, 0.19 – 0.25, and 0.62 – 0.69 are G = 784.4 - 815.5, 794.4 - 800.8, and 

400.4 - 412.2 kg/m2s, respectively.  Therefore, increasing inlet quality decreases the mass 

velocity required for inertia to overcome gravity effects.  This can be explained by higher 

xe,in increasing liquid and vapor velocities and, therefore, flow inertia upstream of the 

heated portion of the channel. 

Figures 4.14(a)- 4.14(d) show polar plots of CHF for double-sided heating over a range 

of mass velocities at inlet qualities of xe,in = 0.00 – 0.04, 0.06 – 0.14, 0.18 – 0.26, and 0.61 

– 0.68, respectively.  Notice that, because of double-sided heating, CHF values are 

symmetrical around the vertical axis.  For example, horizontal flows at  = 0° and 180° 

both include top-wall and bottom-wall heating, rendering the two orientations identical.  

For xe,in = 0.00 – 0.02 and G = 217.9 - 221.0 kg/m2s, Fig. 4.14(a) shows vertical upflow ( 

= 90°) and vertical downflow ( = 270°) greatly outperforming the horizontal orientations 

( = 0° and 180°).  The relatively inferior performances of the horizontal orientations can 
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(a) (b)

(c) (d)

Fig. 4.14: Polar plots showing variations of CHF with orientation relative to Earth gravity for double-sided heating and different 
mass velocities for (a) xe,in = 0.00-0.04, (b) xe,in = 0.06-0.14, (c) xe,in = 0.18-0.26, and (d) xe,in = 0.61-0.68. 
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be explained by their reliance on both top-wall and bottom-wall heating, which 

compromises their overall performance by vapor stratification along the top wall.  The 

mass velocities at which the effects of orientation on CHF are fully negated for xe,in = 0.00 

– 0.04, 0.06 – 0.14, 0.18 – 0.26, and 0.61 – 0.68 are G = 786.4 - 844.5, 777.4 - 800.3, 387.6 

- 403.9, and 401.5 - 418.2 kg/m2s, respectively.  Like the trend for single-sided heating, 

Figs. 4.13(a) – 4.13(d), the results in Figs. 4.14(a) – 4.14(d) for double-sided heating show 

increasing xe,in decreases the mass velocity required for inertia to overcome gravity.  Here, 

again, the higher xe,in is believed to increase the velocities of both vapor and liquid at the 

inlet, which increases flow inertia upstream of the heated portion of the channel.  But the 

main difference between single-sided and double-sided results is the increased flow 

acceleration and inertia with double sided heating, where vapor is generated along both 

walls.  This difference is reflected in a lower mass velocity range of G = 786.4 - 844.7 

kg/m2s corresponding to full negation of orientation effects at xe,in = 0.00 – 0.04, Fig. 

4.14(a), compared to G = 1214.3 – 1252.3 kg/m2s for xe,in = 0.02, Fig. 4.13(a).  

 

4.2.4.2 Inlet Quality Effects on CHF 

Figures 4.15(a)-4.15(c) show variations of CHF for double-sided heating with xe,in over 

a range of mass velocities for horizontal flow ( = 0 and 180°), vertical upflow ( = 90°) 

and vertical downflow ( = 270°), respectively.  For all three orientations, CHF for a fixed 

xe,in is shown increasing monotonically with increasing G.  A very interesting trend for all 

three orientations at low mass velocities is CHF first increases with increasing xe,in, reaches 

peak value, and decreases thereafter.  The initial increase can be explained by the increased
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(a)

(b)

(c)

Fig. 4.15: Variations of CHF for double-sided heating with inlet quality for different mass 
velocities in (a) horizontal flow, (b) vertical upflow, and (c) vertical downflow. 
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xe,in increasing inlet velocities of both the liquid and vapor.  Downstream from the peak 

value, the benefits of those increases are counterbalanced by an appreciable increase in 

vapor volume and corresponding scarcity of liquid along the channel.  For horizontal flow 

( = 0 and 180°), Fig. 4.15(a) shows peak CHF values for G = 183.5 - 217.9 and 387.6 - 

417.7 kg/m2s are achieved around xe,in = 0.35.  The inlet quality corresponding to peak 

value decreases to around xe,in = 0.15 for 777.4 – 796.9 kg/m2s, and xe,in = 0 for all higher 

mass velocities.  For vertical upflow ( = 90°), Fig.4.15(b) shows CHF variations with xe,in 

for different mass velocities are less pronounced than those for horizontal flow.  It is 

difficult to assign a value for xe,in corresponding to peak CHF for the lowest mass velocity 

range of G = 197.1 – 236.3 kg/m2s.  However, peak CHF is achieved around xe,in = 0.15 

for G = 391.7 – 409.0 kg/m2s, and close to xe,in = 0 for G = 786.4 – 809.1 kg/m2s, and CHF 

variations with xe,in are similar to those for vertical upflow, Fig. 4.15(c), with some 

variations in xe,in values corresponding to peak CHF.   

 

4.3 Conclusions 

This section explored flow boiling of FC-72 along a rectangular channel with one wall 

or two opposite walls heated.  Experiments were performed in three channel orientations: 

horizontal, vertical upflow, and vertical downflow over broad ranges of mass velocity, inlet 

quality and wall heat flux, aided by high-speed video capture of interfacial features.  This 

study focused on the influence of gravity, and therefore orientation, on interfacial behavior 

during flow boiling, boiling curve, local and average heat transfer coefficients, and pressure 

drop and CHF results.  Key findings from this part are as follows: 
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(1)  For horizontal flow, the effects of gravity are reflected in appreciable stratification 

across the channel.  For the bottom heated wall, gravity aids vapor removal from, and liquid 

return to the bottom wall.   On the other hand, gravity leads to vapor accumulation along 

the top heated wall.  For vertical upflow and vertical downflow, with both single-sided and 

double-sided heating, there is far better symmetry in vapor formation along the channel, 

with no apparent bias towards either wall.  

(2)  Gravity has a strong influence on the boiling curve for horizontal flow at low mass 

velocities, but differences in heat transfer performance between bottom wall and top wall 

heating decrease with increasing mass velocity.  On the other hand, there are only minor 

differences in boiling performance between vertical upflow and vertical downflow. 

(3)  For all orientations, the local heat transfer coefficient shows an appreciable decline in 

the inlet region, followed by a rather flat variation in the middle region, and a large increase 

in the exit region.  The decrease in the inlet region is attributed to thermal boundary layer 

development, while the downstream increase is most likely the result of appreciable flow 

acceleration towards the exit.   

(4)  For horizontal flows, large differences in peak heat transfer coefficient are observed 

between top wall and bottom wall heating for low mass velocities because of the 

aforementioned stratification phenomenon.  On the other hand, peak heat transfer 

coefficient values are about equal for all orientations above G   800 kg/m2s, proving 

inertia around this mass velocity is effective at negating any orientation effects.  Overall, 

gravity effects are governed mostly by mass velocity and, to a far lesser extent, by inlet 

quality. 
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(5)  Pressure drops at low mass velocities are fairly equal for vertical upflow and vertical 

downflow, but greater than for horizontal flows.  However, equal pressure drop is achieved 

for all orientations above G   800 kg/m2s for all inlet qualities excepting the case with 

single-sided heating and low quality of xe,in = 0.04 – 0.07, for which the transition mass 

velocity is G   1200 kg/m2s. 

(6)  For both single-sided heating and double-sided heating, mass velocity and inlet quality 

decreases the influence of orientation on CHF, with identical CHF values achieved at high 

mass velocities irrespective of orientation.  Also, increasing inlet quality serves to decrease 

the mass velocity required for inertia to negate gravity effects. 

(7) For double-sided heating and low mass velocities, all three orientations show CHF first 

increases with increasing quality, reaches peak value, and decreases thereafter.  Higher 

mass velocities exhibit peak CHF value for inlet quality values close to zero.  CHF 

variations with quality are more pronounced for the horizontal orientation compared to 

vertical upflow and vertical downflow. 
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CHAPTER 5. CRITICAL HEAT FLUX MODEL FOR SUBCOOLED INLET FLOW 

 

5.1 Interfacial Lift-off Model 

Figure 5.1(a) illustrates the interfacial complexity resulting from wall heating 

configuration (top-wall heating, bottom-wall heating, double-sided heating) for horizontal 

flow in Earth gravity.  Clearly, more complex flow regimes are encountered in other 

orientations, and it is the goal of this section to utilize the Interfacial Lift-off Model to 

explore the influence of flow orientation, flow velocity and heating configuration on 

interfacial instability, as well as to predict CHF. 

 

5.1.1 Single-Sided Heating 

Zhang et al. [53] developed a control-volume-based separated flow model for single-

sided heating.  As subcooled liquid enters the heated section of the channel, a vapor film 

begins to form near the leading edge.  Due to phase change occurring along the channel, 

the vapor layer grows monotonically in thickness in the axial direction.  The model is based 

on slip flow assumptions, i.e., uniform velocity in the liquid and vapor layers, while 

allowing for velocity differences between the two layers.  The separated flow model also 

assumes  pressure  is  uniform  across  the  flow area.   This model is used to determine the 
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Fig. 5.1: (a) Depiction of horizontal flow boiling near CHF for a rectangular channel with 
top-wall heating, bottom-wall heating, and double-sided heating.  (b)  Hydrodynamic 
instability of wavy vapor layers along heated walls of double-sided heated channel at 
CHF- for inclined channel in Earth gravity and for microgravity. 
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variations of mean velocities and thicknesses of the liquid and vapor layers along the 

channel.  These parameters are used to determine the critical wavelength for instability of 

the vapor layer.  For an unstable interface along heated wall Ha, the critical wavelength, 

λca, is given by  

 kca 
2
ca


 fa ga Uga U f 2

2  fa
 ga  

 fa ga Uga U f 2

2  fa
 ga 
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 f  g gna


’ (5.1) 

where  fa , ga , Uf, Uga and gna are the modified liquid density, modified vapor density, 

mean velocity of the liquid layer, mean velocity of the wavy vapor layer, and component 

of gravity normal to the heated wall; the latter given by  

 gna  ge cos . (5.2) 

Using the Interfacial Lift-off Model, Zhang et al. [53] determined CHF according to 

the relation    
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where b,  ,  a
 and z

a
*  are the ratio of wetting front length to critical wavelength, heat 

utility ratio, mean vapor layer thickness along heated wall Ha, and axial location where 

vapor layer thickness and critical wavelength are determined.  CHF for horizontal flow 

with bottom-wall and top-wall heating is calculated by setting θ = 0 and 180°, espectively.  

The key equations for the CHF model for single-sided heating are provided in Tables 5.1 

and 5.2.  
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Table 5.1:  Summary of separated flow model and Interfacial Lift-off Model relations for 
single-sided heating (Zhang et al. [53]). 
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Table 5.2:  Summary of relations used in conjunction with the separated flow model and 
Interfacial Lift-off Model for single-sided wall heating (Zhang et al. [53]) and double-

sided wall heating (Konishi et al. [31]). 

Single-sided heating quality relation for vapor layer: 
xa 

g Uga a

G  
 

Double-sided heating quality relations for individual vapor layers: 
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 ≤ 2100), C1 = 

0.0054, C2 = 2.3 x 10-8 and C3 = -2/3 for transitional flow (2100 < 
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5.1.2 Double-Sided Heating 

Konishi et al. [31] extended the model by Zhang et al. [53] to double-sided heating for 

subcooled inlet conditions.  As subcooled liquid enters the heated section of the channel, 

two vapor layers begin to form at the leading edges of both heated walls surrounding a 

middle liquid layer.  Using slip flow assumptions similar to those adopted for single-sided 

heating, momentum and energy conservation relations are used to determine mean 

velocities and thicknesses for the three layers.  Critical wavelength is calculated using the 

same relation as for single-sided heating, the major difference being gravity components 

perpendicular to the heated wall.  In Earth gravity, the gravity components normal to the 

upward-facing heated wall and downward-facing heated wall are expressed, respectively, 

as  

 gna  ge cos  (5.4a) 

and g
nb
 g

e
cos     g

e
cos . (5.4b) 

The differences in critical wavelength between the upward-facing and downward-facing 

walls are illustrated in Fig. 5.1(b).  In Earth gravity, the normal component tends to stabilize 

the interface along the downward-facing wall and destabilize the interface along the 

upward-facing wall.  This causes CHF for the upward-facing wall to be larger than for the 

downward-facing wall.  The differences in CHF decrease monotonically with increasing 

inlet velocity as inertia tends to overcome body force effects, ultimately leading to 

convergence of CHF values for the two heated wall orientations.  For microgravity, 

identical interfacial behavior is encountered on both walls, which leads to equal CHF 

values regardless of inlet velocity.  The key equations of the model for double-sided heating 
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are summarized in Table 5.3.  Table 5.2 provides relations used in conjunction with the 

separated flow model and the Interfacial Lift-off Model to predict CHF for both single-

sided and double-sided heating.   

 

5.2 Model Results and Discussions 

5.2.1 Seperated Flow Model Predictions 

Figures 5.2(a) – 5.2(d) show predictions of the separated flow model for horizontal double-

sided heating in Earth gravity with U = 1.0 m/s, pin = 150 kPa, ΔTsub,in = 3°C, and q”w = 30 

W/cm2.  Figure 5.2(a) shows variations of thicknesses of the separated layers along the 

heated section of the channel.  The two vapor layers are shown beginning to form at the 

leading edges and grow monotonically along the heated walls on the expense of a gradually 

consumed middle liquid layer.  The phase layer thicknesses are needed to calculate the 

modified phase densities,  f
 and g

, in the relation for critical wavelength, Eq. (5.1).  

Another parameter that is important to calculating the critical wavelength is phase velocity 

difference.  Figure 5.2(b) shows the variations of the phase velocities and velocity 

difference between the vapor layers and middle liquid layer.  The liquid layer is faster than 

the two vapor layers at z = 0, but is quickly overtaken by the vapor layers over a short 

distance from the leading edges of the heated walls.  The distance where the vapor layers 

overtake the liquid layer is z = zo, which is an important parameter in the Interfacial Lift-

off Model.  Figures 5.2(c) and 5.2(d) show predictions of pressure and quality, respectively, 

along the heated section of the channel.  Notice that the equilibrium quality starts with a 

negative value at z = 0 because of the subcooled inlet conditions but becomes positive 

downstream along the heated section.  
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Table 5.3:  Summary of separated flow model and Interfacial Lift-off Model relations for 
double-sided heating (Konishi et al. [31]). 

Momentum conservation:  
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(a) (b)

(c) (d)

Fig. 5.2:  Separated flow model predictions of (a) phase layer thicknesses, (b) phase velocities, (c) pressure, and (d) quality. 
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The results from the separated flow model are used to compute CHF.  Because the 

heated walls face opposite orientations of the perpendicular component of Earth gravity, 

two different CHF values are determined, one for each heated wall.  Even though the model 

predicts two CHF values, only the lower of the two is physically relevant since, in the 

actual experiments, power input to both heated walls is cut off once CHF is detected in 

either wall.   

 

5.2.2 CHF Predictions 

To assess the effectiveness of the Interfacial Lift-off Model, predictions are compared 

to experimental data for single-sided and double-sided heating in both Earth gravity and 

microgravity.  Figure 5.3(a) compares CHF predictions to experimental horizontal flow 

data for single-sided and double-sided heating in Earth gravity for slightly subcooled inlet 

conditions.  The model predicts a stable interface below U = 1.0 and 0.5 m/s for top-wall 

heating and double-sided heating configurations, respectively, and an unstable interface for 

bottom-wall single-sided heating.  A stable interface, which will be discussed later in this 

study, corresponds to low CHF values beyond the validity range of the Interfacial Lift-off 

Model.  The experimental results showed that bottom-wall heating below U = 0.5 m/s 

yields conditions resembling pool boiling that are dominated by gravity, and for which the 

wavy vapor layer is not observed.  The velocity ranges associated with a stable interface 

(U ≤ 1.0 m/s for top-wall heating and U ≤ 0.5 m/s for double-sided heating) and pool 

boiling behavior (U ≤ 0.5 m/s for bottom-wall heating) impose lower limits for validity of 

the Interfacial Lift-off Model, as indicated in Fig. 5.3(a).   Above these velocity limits, the 
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(a)

(b)

Fig. 5.3:  Comparison of Interfacial Lift-off Model predictions to CHF data for (a) 
horizontal top-wall, bottom-wall and double-sided heating in Earth gravity, and (b) 
double-sided heating in microgravity and vertical upflow in Earth gravity.   Figure (b) 
has been adapted from [31]. 
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predictive accuracy of the model is accessed using mean absolute error (MAE), which is 

defined as, 

 MAE 
1
N

CHF
pred

 CHFexp

CHFexp
 . (5.5) 

For bottom-wall heating and double-sided heating, Fig. 5.3(a) shows good model 

predictions both in magnitude and trend, evidences by MAEs of 5.6% and 8.1%, 

respectively.  For bottom-wall heating, the model predicts a transition from gravity-

dominated to inertia-dominated flow, with the slope of CHF versus U changing from 

negative to positive around 1.5 m/s.  For top-wall heating, the model is able to capture the 

trend of CHF increasing with increasing U, albeit with a higher MAE of 27.4%.  In a 

previous study by Konishi et al. [31], good agreement was demonstrated between the 

model predictions and experimental results for double–sided heating in both microgravity 

and vertical upflow in Earth gravity, as shown in Fig. 5.3(b).  In summary, Figs. 5.3(a) and 

5.3(b) demonstrate the effectiveness of the Interfacial lift-off Model in modeling both 

single-sided and double-sided heating in both Earth gravity and microgravity. 

 

5.2.3 Liquid-Vapor Interfacial Behavior 

 Figures 5.4(a) and 5.4(b) show the eight flow orientations that are examined for 

single-sided and double-sided heating in Earth gravity.  For all these orientations, the flow 

enters from the center and radiates outwards.  The orientation angle dictates whether the 

channel is incurring upflow or downflow relative to Earth gravity,  while the placement of 
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(a)

(b)
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Fig. 5.4:  Flow orientation and heater nomenclature for (a) single-sided 
heating and (b) double-sided heating in Earth gravity. 
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the heated wall decides if the wall is upward-facing or downward-facing.  Due to 

symmetry, double-sided heating in Earth gravity requires the flow channel to span only 

half a full circle (θ = 0 - 360°) from vertical upflow to vertical downflow to cover all 

orientations.  But for consistency between single-sided and double-sided heating 

configurations, results are presented below for the entire range of θ = 0 - 360°.  Figures 

5.4(a) and 5.4(b) indicate the locations of the heated walls Ha and Hb.  For double-sided 

heating, Fig. 5.4(b) also indicates where Ha and Hb are either upward-facing or downward-

facing.   

As indicated earlier, Zhang et al. [53] performed extensive studies on the effects of 

orientation on interfacial behavior and CHF for single-sided heating in Earth gravity.  They 

compared interfacial behavior at CHF- for ΔTsub,out = 3°C for flow velocities between U = 

0.1 and 1.5 m/s.  Large variations of interfacial behavior were observed with different 

orientation at 0.1 m/s, which should have a profound influence on CHF mechanism and 

magnitude.  For U = 1.5 m/s, a significant increase in inertia yielded virtually identical 

wavy vapor layer interfacial behavior over the entire range of orientations.  In the 

experimental results from this study we observed the same wavy vapor layer behavior for 

both single-sided and double-sided heating in horizontal flow in Earth gravity for U ≥ 1 

m/s.  In another study, Konishi et al. [30] observed the same wavy vapor layer behavior in 

microgravity for 0.1 < U < 1.9 m/s. 

 

5.2.4 Effect of Orientation on Critical Wavelength 

The interfacial behavior captured with high-speed video and the CHF predictions 

provide ample support of the validity of the Interfacial Lift-off Model.  Predicted results 
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hereafter are obtained using the Interfacial Lift-off Model for FC-72 for near-saturated inlet 

conditions, ΔTsub,in = 3°C, and an inlet pressure of pin = 100 kPa.  As discussed earlier, the 

critical wavelength is a key parameter of the Interfacial Lift-off Model.  It is calculated 

using Eq. (5.1) by utilizing the liquid and vapor layer thicknesses and velocities predicted 

using the separated flow model.  Several of the flow visualization studies discussed earlier 

have confirmed the existence of a wavy vapor layer along the heated wall, with contact of 

the bulk liquid with the wall maintained at CHF- only in wetting fronts corresponding to 

the wave troughs.  Clearly, hydrodynamic instability of the liquid-vapor interface is crucial 

to formation of both the wavy vapor layer and the wetting fronts. 

An iterative procedure discussed in detail by Konishi et al. [31] is adopted to calculate 

CHF.  In this procedure, an input heat flux to the heated walls is assumed, which is used to 

calculate the key output parameters of the separated flow model.  These parameters are 

then used to calculate the critical wavelength and CHF using equations provided in Table 

5.1 and 5.3 for single-sided and double-sided heating, respectively.  Bisection method is 

used to achieve convergence between the assumed heat flux and computed CHF.  

In this section, this iterative procedure is used to determine the variations of critical 

wavelength corresponding to the convergent CHF value with orientation and velocity in 

Earth gravity, and with velocity in microgravity.  These variations are then used to gain 

insight into the influence of critical wavelength on CHF trends. Figures 5.5(a) and 5.5(b) 

show,  for different velocities, the variation of critical wavelength,  λca,  for heated wall Ha 
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(a)

(b)

Fig. 5.5:  Variation of predicted critical wavelength with orientation relative to Earth 
gravity for (a) single-sided heating and (b) double-sided heating. 
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with orientation relative to Earth gravity for single-sided and double-sided heating, 

respectively.  Notice in Fig. 5.5(a) the existence of a region between θ = 180° and 270° for 

U = 0.5 m/s, where the interface is stable; this is where the Interfacial Lift-off Model is 

invalid.  Increasing the velocity to U = 1 m/s, the interface becomes unstable and the critical 

wavelength is predicted over the entire range of orientations. Increasing the velocity 

further, λca exhibits little variation with  orientation.  This can be explained mathematically 

by examining the two terms under the radical in Eq. (5.1), which account for inertia and 

gravity effects.  High velocity allows inertia to dwarf gravity effects, and the second term 

becomes negligible, leading to convergence of λca values for a given velocity regardless of 

orientation.  Figure 5.5(a) also shows that λca decreases with increasing velocity, which 

implies wetting fronts become more remote from one another with decreasing velocity, a 

behavior that is confirmed experimentally in this study. 

Fig. 5.5(b) shows similar trends for double-sided heating.  One significant difference 

is that, while a stable orientation region is predicted with single-sided heating at U = 0.5 

m/s, this region is nonexistent for double-sided heating at 0.5 m/s, but is encountered at a 

lower velocity of 0.25 m/s.  These differences can be attributed to double-sided heating 

producing more vapor and resulting in higher flow acceleration, which causes inertia to 

dwarf gravity effects at lower velocities than for single-sided heating.   

 

5.2.5 Effects of Orientation on CHF 

Figure 5.6(a) shows, for  a  range  of  velocities, a polar plot  of CHF  predictions  with 

orientation relative to Earth gravity for single-sided heating.   Notice how the influence of 
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(a)

(b)

Fig. 5.6:  Polar plots of predicted CHF with orientation relative to Earth gravity 
for different inlet velocities for (a) single-sided heating and (b) double-sided 
heating.   
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orientation is more pronounced for lower velocities and gradually abates with increasing 

velocity.  The lowest CHF values in this figure correspond to θ = 225°, which is consistent 

with experimental results [53,54] that showed this orientation to yield the worst CHF 

performance.  Overall, CHF values are both highest and less sensitive to orientation for 

upflow and upward-facing heated wall orientations (θ = 0 - 90°), and both significantly 

smaller and very sensitive to orientation for downflow and downward-facing heated wall 

orientations (θ = 0 - 90°); the influence of orientation, especially for the latter range, is 

shown diminishing with increasing velocity. 

Figure 5.6(b) shows CHF polar plots for double-sided heating in Earth gravity.  CHF 

predictions are shown for both upward-facing and downward-facing heated walls for all 

orientations.  Recall that, during the experiments, power to the heated walls is cut off once 

either wall reaches CHF.  But the Interfacial Lift-off Model is used here to predict CHF for 

both heated walls, which is useful to understanding the differences in underlying physical 

mechanisms between the two wall orientations.  With reference to the flow orientation 

nomenclature, Fig. 5.6(b) distinguishes CHF for upward-facing and downward-facing 

heated walls using solid and dashed line, respectively.  Notice how, as shown earlier in Fig. 

5.4(b), a heated wall that is upward-facing for θ = 45, 0, and 315° becomes downward-

facing for θ = 135, 180 and 225°, and visa versa, which explains the symmetry in Fig. 

5.6(b).  Each double-sided heating orientation includes two heated walls that are subjected 

to opposite gravity components, and CHF is lower for a downward-facing wall than one 

upward-facing.  This behavior is explained by buoyancy tending to remove vapor away 

from the upward-facing wall and towards the downward-facing wall, and decreasing liquid 

access to the latter.  Increasing velocity is shown increasing CHF for both upward-facing 
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and downward-facing walls, and the difference between the two wall orientations also 

decreases with increasing velocity, ultimately leading to convergence of CHF values for 

both wall orientations at high velocities.   

Figures 5.7(a) and 5.7(b) show alternative representations of CHF predictions over the 

entire range of orientations in Earth gravity, as well as in micro-gravity for single-sided 

heating and double-sided heating, respectively.  For microgravity, orientation effects are 

inconsequential and CHF values are shown falling between the maxima and minima for 

Earth gravity.  This is an important finding since it implies that performing terrestrial 

experiments for the entire range of orientations will provide a CHF range that encompasses 

that for microgravity at the same velocity.  Moreover, CHF value for microgravity at a 

given velocity is close to the mean for all terrestrial orientations, and the microgravity and 

mean terrestrial values converge with increasing velocity.  For double-sided heating, Fig. 

5.7(b) shows the predicted CHF for microgravity and for heated walls Ha and Hb as well 

as minimum of the two for Earth gravity; the minimum is the value anticipated in actual 

experiments since power input to both walls is cut off once CHF is detected in either wall.   

It is also useful to examine the influences of velocity and orientation on important 

parameters of Interfacial Lift-off Model.  These parameters are examined with respect to 

heated wall Ha during double-sided heating to demarcate the influences of gravity on both 

flow orientation and heated wall orientation.  Figures 5.8(a) shows the variation of CHF 

with inlet velocity. It shows CHF increases with increasing U, with orientations in the range  
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(a)

(b)

Fig. 5.7:  Variation of predicted CHF with orientation in Earth gravity and microgravity 
for (a) single-sided heating and (b) double-sided heating. 
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Fig. 5.8:  Variations of (a) CHF and (b) z0a, λca (za*) and za* versus inlet velocity for 
heater wall Ha in double-sided heating in Earth gravity and microgravity. 
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of θ = 0 - 90° clearly out-performing θ = 180 - 270°.  This confirms what was stated earlier, 

that upflow with upward-facing heated wall orientations out-performs downflow with 

doward-facing orientations, but CHF values tend to converge with increasing U.  CHF 

values for microgravity fall midway between the maxima and minima for Earth gravity. 

Figure 5.8(b) shows variations of computed values for other parameters of the 

Interfacial Lift-off Model with U.  They include streamwise distance, z0a, where Ug = Uf, 

extent of continuous upstream wetting region, z
a
* , and critical wavelength, λca ( z

a
* ).  z0a is 

both quite small and increases very slowly with increasing U, proving that the vapor 

velocity surpasses the liquid velocity very close to the upstream edge of the heated wall.  

Both z
a
*  and λca ( z

a
* ) are shown decreasing with increasing U.  These two parameters are 

highest at θ = 270°, followed by 180, 90 and 0°.  Like CHF, the magnitudes of both 

parameters for different orientations tend to converge with increasing U.  Here too, the 

parameters for microgravity fall midway between the maxima and minima for different 

orientations in Earth gravity.  Overall, Figs. 5.8(a) and 5.8(b) point to the need to increase 

velocity above ~ 1.5 m/s to negate the influence of orientation in Earth gravity. 

These findings clearly demonstrate the effectiveness of the Interfacial Lift-off Model in 

describing interfacial behavior at CHF- as well as the trigger event for CHF for both Earth 

gravity and microgravity.  Further validation of the model may benefit from future 

experiments involving detailed tracking of the vapor-liquid interface as well as local, 

instantaneous velocity measurements as discussed in refs. [74] and [75].  
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5.3 Conclusions 

This section is a consolidated investigation of the diverse and complex trends 

associated with flow boiling CHF in a rectangular channel in microgravity and for different 

orientations in Earth gravity.  Several previous databases for FC-72 corresponding to 

slightly subcooled inlet conditions are used to assess the accuracy of the Interfacial Lift-

off Model in capturing the CHF trends for both single-sided and double-sided wall heating.  

Key findings from the study are as follows.  

(1)  The Interfacial Lift-off Model shows good accuracy in predicting experimental CHF 

data for both Earth gravity and microgravity with both single-sided and double-sided wall 

heating. 

(2)  For Earth gravity, CHF mechanism is highly sensitive to flow orientation at very low 

velocities, but is consistent with the wavy vapor layer depiction of the Interfacial Lift-off 

Model at higher velocities.  The model predicts a stable vapor-liquid interface for flow 

orientations between θ = 180 and 270° for U < 0.5 m/s for single-sided wall heating, and 

U < 1 m/s for double-sided heating.  A wavy liquid-vapor interface is predicted for all other 

orientations and velocities, the critical wavelength for which decreases with increasing 

velocity and become independent of orientation above ~ 1.5 m/s. 

(3)  For single-sided heating in Earth gravity, predicted CHF values for upflow with an 

upward-facing heated wall (θ = 0 - 90°) are greater than those for downflow with a 

downward-facing wall (θ = 180 - 270°).  For double-sided heating, lower CHF is predicted 

for downward-facing than upward-facing walls. 

(4)  CHF values for microgravity fall about midway between the maxima and minima for 

Earth gravity.  This is an important finding since it implies that, for a given inlet velocity, 
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performing terrestrial experiments over the entire range of orientations will provide a range 

that encompasses CHF for microgravity.  

(5)  Overall, the Interfacial Lift-off Model shows that the values of CHF and key interfacial 

parameters for all orientations in Earth gravity and for microgravity converge together 

above ~ 1.5 m/s, where inertia begins to effectively negate gravity effects. 
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CHAPTER 6. CRITICAL HEAT FLUX MODEL FOR SATURATED TWO-PHASE 

INLET FLOW 

 

6.1 Separated Flow Model 

A separated flow model is constructed to predict key flow variables necessary for 

development of a mechanistic CHF model.  For the saturated inlet conditions (xe,in > 0) of 

the present study, the FC-72 is supplied to the heated portion of the channel as a vapor-

liquid mixture.  Excepting horizontal flows at low mass velocities, where the inlet mixture 

is stratified, the fluid for most operating conditions and orientations enters the channel fully 

separated with a liquid layer covering the entire perimeter, surrounding a central vapor 

core.  Recently, Konishi et al. [54] and Kharangate et al. [35] provided the framework for 

a separated flow model with those same inlet conditions, but for only single-sided heating.  

In the present model, which is intended for single-sided and double-sided heating, a similar 

framework is adopted, using slip flow assumptions, i.e., with flat velocity profiles for the 

individual liquid and vapor layers, but different velocities between the phases, and uniform 

pressure across the flow area.  As shown in Figs. 6.1(a) and 6.1(b) for single-sided and 

double-sided heating, respectively, identical inlet flow patterns are assumed, with a liquid 

layer with uniform thickness εin surrounding a central vapor core with inlet void fraction 

in.    This void fraction is determined by applying momentum conservation to differential 
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Fig. 6.1: Schematics of different layers in (a) single-sided heating and (b) double-sided 
heating configurations. 
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control volumes of vapor and liquid of axial length z in the adiabatic region upstream of 

the heated portion of the channel, which yields the following relations, 
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where p, w,f, i, A, Pw,f and Pi are the pressure, wall shear stress, interfacial shear stress 

between the liquid and vapor layers, cross-sectional area of the channel, wall perimeter, 

and interfacial perimeter.  The  sign in Eq. (6.2) takes into account variations in shear 

stress direction depending on the relative velocities of the liquid and vapor layers.  The 

inlet liquid layer thickness, εin, is related to in by the relation 
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HW
.  (6.3) 

For the heated portion of the channel, a new vapor layer is initiated along the heated 

wall as shown in Fig. 6.1(a) for single-sided heating and Fig. 6.1(b) for double-sided 

heating.  The present separated flow model assumes the liquid layer continues to maintain 

uniform thickness, ε, on all four sides of the channel’s perimeter.  For single-sided heating, 

Fig. 6.1(a) shows the flow consisting of three layers: vapor layer (a) generated along the 

heated wall, liquid layer (c), and vapor core (d).  For double-sided heating, Fig. 6.1(b) 

shows the flow consisting of four layers:  vapor layer (a) along heated wall Ha, vapor layer 

(b) along heated wall Hb, liquid layer (c), and central vapor core (d).  The model assumes 

the heat supplied at the wall is consumed entirely by vapor formation in layer (a) for single-
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sided heating, or layers (a) and (b) for double-sided heating.  In other words, phase change 

between the liquid layer and vapor core is neglected, which is justified by the fact that these 

two layers enter the flow at the same saturation temperature.  Therefore, the mass of the 

central vapor core is conserved, i.e., xd = xe,in.  The present separated flow model deviates 

from the model in [35] in the treatment of the liquid layer, where only the portion of the 

liquid layer adjacent to the heated wall(s) was allowed to change phase.  With this 

assumption, the previous model constrained the ability of liquid along the insulated walls 

from feeding the near-wall liquid and compensating for the evaporated liquid.  Besides, the 

assumption in the previous model was observed to lead to divergence in the numerical 

solution.  The present model is therefore modified to employ the aforementioned 

assumption of a circumferentially uniform liquid layer thickness.  

Tables 6.1 and 6.2 provide summaries of momentum and energy conservation 

equations for the heated portion of the channel for single-sided and double-sided heating, 

respectively.  Table 6.3 provides additional relations that are used in conjunction with the 

conservation equations in Table 6.1 and Table 6.2 to calculate key flow parameters.   

Figures 6.2(a) – 6.2(d) show predictions of the separated flow model for horizontal 

double-sided heating in Earth gravity for phase layer thicknesses, phase layer velocities, 

pressure, and quality, respectively, along the heated portion of the channel with G = 800 

kg/m2s, pin = 150 kPa, xe,in = 0.05, and q”w = 20 W/cm2.  Figure 6.2(a) shows the vapor 

layers generated along the heated walls grow axially in thickness along the channel.  The 

liquid layers are shown thinning gradually due to both loss of mass by evaporation and 

axially increasing shear forces.    The central vapor core also grows smaller because of the 
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Table 6.1:  Summary of separated flow model relations for single-sided heating. 
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Table 6.2:  Summary of separated flow model relations for double-sided heating. 

Momentum conservation: 
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Table 6.3:  Summary of relations used in conjunction with the separated flow model and 
Interfacial Lift-off Model. 

Single-sided heating quality relations for vapor layers: 
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Wall shear stress relations: 
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where k = fc, ga, gb or gd.  C1 = 0, C2 = 16 and C3 = 1 for laminar flow (
		
Re

Dk
 ≤ 2100), C1 

= 0.0054, C2 = 2.3 x 10-8 and C3 = -2/3 for transitional flow (2100 < 
		
Re

Dk
  ≤ 4000), and 

C1 = 0.00128, C2 = 0.1143 and C3 = 3.2154 for turbulent flow (
		
Re

Dk
  > 4000) [76], where 

Dk = 4 Ak / Pk 

 
Interfacial shear stress relations:
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(a) (b)

(c) (d)

Fig. 6.2:  Separated flow model predictions of (a) phase layer thicknesses, (b) phase velocities, (c) pressure, and (d) quality.  



   122 
 

 
 

increasing shear despite its mass flow rate being conserved.  In the separated flow model, 

the liquid layer is continuous around the central vapor core, but is shown in Fig. 6.2(a) 

divided into two layers.  Figure 6.2(b) shows the variations of velocities of the individual 

layers along with velocity difference between the newly generated vapor layers and the 

liquid layer.  The vapor core is faster than the other layers at z = 0.  However, the newly 

generated vapor layer, with velocities Uga and Ugb, overtake the vapor core along the heated 

portion of the channel.  The liquid layer is quickly overtaken by the two newly generated 

vapor layers a short distance from the leading edges of the heated walls; this trend is also 

reflected in the axial variation of velocity difference, U, between the two vapor layers 

and the liquid layer.  Figures 6.2(c) shows the expected monotonic decrease in pressure 

along the heated portion of the channel.  Figure 6.2(d) shows thermodynamic equilibrium 

quality increasing axially with a constant slope because of the uniform heat supply to the 

two-phase mixture by the two heated walls. 

 
6.2 Interfacial Lift-off Model 

The Interfacial Lift-off Model originally proposed by Galloway and Mudawar [49,50] 

has been confirmed in studies spanning two decades and including CHF for short and long 

heated walls, flat and curved walls, horizontal, vertical, and inclined channels, and flow 

boiling in both Earth gravity and microgravity [49,50,53,54,56,77-83].  This model is also 

adopted here to predict the present CHF data.  

This model is based on a detailed depiction of interfacial behavior just prior to CHF as 

well as the trigger event for CHF.  As heat fluxes approaches CHF, a wavy vapor layer is 

postulated to form along the heated wall, which buffers most liquid from contacting the 
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wall except in wetting fronts corresponding to troughs in the vapor wavy layer.  Sustained 

boiling in the wetting fronts provides the last opportunity for cooling of the wall.  The 

trigger event for CHF is postulated to occur as follows.  The liquid contact in the wave 

troughs – wetting fronts - is maintained by curvature of liquid streamlines inducing a net 

pressure force on liquid towards the wall.  This pressure force is resisted by momentum of 

vapor emanating within the wetting fronts normal to the wall.  CHF is therefore triggered 

when the last increment in wall heat flux intensifies vapor momentum to a level that just 

exceeds the pressure force.  This causes the wave trough to lift from the wall, and the 

wetting front to be extinguished as a source of cooling for the wall.  As a wetting front is 

extinguished, the heat supplied from the wall attempts to conduct heat away from this 

wetting front to neighboring wetting fronts.  The neighboring wetting fronts now face even 

greater heat flux, rendering them more likely to be extinguished by lifting from the wall.  

Wetting fronts are therefore extinguished in succession in an unstable manner, causing the 

classical unsteady rise in wall temperature associated with CHF. 

Flow boiling with saturated inlet conditions poses great difficulty capturing near-wall 

interfacial behavior by high speed video because a liquid film is formed along the channel’s 

perimeter surrounding a central vapor core.  However, the wavy vapor layer has been 

clearly captured in the near-wall region in the present flow visualization experiments.  The 

main difference between the present flows with saturated inlet conditions versus subcooled 

inlet conditions is the existence of the vapor core for the former.  The wavy vapor layer 

behavior for saturated inlet conditions is depicted for single-sided and double-sided heating 

in  Figs. 6.3(a) and 6.3(b), respectively, and the interfacial lift-off condition in Fig. 6.3(c). 
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(a) (b)

(c)

Fig. 6.3:  Hydrodynamic instability of wavy vapor layers along heated walls for 
inclined channel just before CHF for (a) single-sided heating and (b) double-sided 
heating configurations.  (c) Schematic representation of interfacial lift-off from 
heated wall in wetting front at CHF.  
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As with the original Interfacial Lift-off Model [49,50], the wavy interfacial behavior is 

described using classical instability theory [84,85].  A sinusoidal liquid-vapor interface is 

assumed between the liquid layer and wall vapor layer(s), resulting from velocity 

differences between the two layers, gravity component acting normal to the interface, and 

surface tension along the interface.  The wavy interface is described by the perturbation 

function  z ,t  0
ei km zcmt  , where 0  is the wave amplitude, km the wave number, and 

cm the wave speed.  The wave speed is expressed cm = cr,m + i ci,m, where cr,m, and ci,m are 

real and imaginary components, respectively.  As shown in Fig. 6.3(a) and 6.3(b), the real 

component defines the actual propagation speed of the interface, while the imaginary 

component is associated with amplification or decay of the interfacial perturbation.  

The interfacial instability model yields the following relation for the imaginary 

component, 

 c
i,m 
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gm
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f
 

gm 2 


f
 

gm 

f
 

gm 
g

nm

k
m


 k

m


f
 

gm  ,  (6.4) 

where  f
"  and gm

"  are modified density terms.  The interface is deemed stable when ci,m 

< 0, implying the interfacial perturbation will decay with time, which would prevent the 

formation of wetting fronts.  On the other hand, the interface is rendered unstable when ci,m 

> 0, meaning the perturbation would amplify, allowing wetting fronts to form along the 

wall.  The onset of interfacial stability corresponding to ci,m = 0 constitutes the minimum 

requirement for the perturbation to begin forming wetting fronts, and is therefore used in 

the Interfacial Lift-off Model to determine interfacial wavelength.  Setting ci,m given by 
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Eq. (6.4) equal to zero yields the following relation for critical wave number, kc,m, and 

critical wavelength, λc,m, 
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where 
f
 

f
coth 2  

c,m  and 
gm
 

g
coth 2

m


c,m  .  For double-sided heating, however, 

critical wavelengths are different for the two opposite heated walls because of opposite 

directions of gravity components perpendicular to these walls.  In Earth gravity, the gravity 

components normal to the upward-facing heated wall and downward-facing heated wall 

are expressed, respectively, as  

 g
na
 g

e
cos  (6.6a) 

and g
nb
 g

e
cos     g

e
cos . (6.6b) 

 According to the Interfacial Lift-off Model, based on extensive evidence from flow 

visualization experiments, a continuous wetting front region of axial length z
m
*  is formed 

along the leading edge of the heated wall, which is given by  

 z
m
*  z0,m  c,m z

m
*  , (6.7) 

where z0 is the distance from the leading edge to the axial location where heated wall vapor 

layer velocity just exceeds liquid layer velocity. Zhang et al. [53] statistically analyzed 

video segments captured just prior to CHF, and showed that waves generated at z
m
*  have a 

tendency to preserve curvature as they propagate downstream. Therefore, in this study, the 
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curvatures of waves at CHF anywhere along the heated wall are assumed identical to that 

at z
m
* . 

 Illustrated in Fig. 6.3(c) is the trigger event for CHF according to the Interfacial 

Lift-off Model, where the normal momentum of vapor generated in the wetting front just 

exceeds the pressure force induced by streamline curvature that pushes the interface toward 

the heated wall. Zhang et al. [28] showed that the average pressure difference at the wetting 

front is given by  

 
		

p
f
 p

g

4 

m

b
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sin b  . (6.8) 

With the fluid entering the channel as a two-phase mixture, the heat flux, qw ,w
" , required 

to convert saturated liquid to saturated vapor for incoming liquid in the wetting front can 

be expressed as 
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 (6.9) 

where Awm,w is the wetting front’s area and Ugm,n the velocity of vapor normal to the heated 

wall.  Equating the normal vapor momentum, 
g
U
gm ,n
2 , to the average pressure difference 

acting on the interface in the wetting front, Eq. (6.8), and substituting into Eq. (6.9), yield 

the following relation for lift-off heat flux in the wetting front, 
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 (6.10) 

High speed video analysis of near-wall interfacial behavior by Sturgis and Mudawar 

[32,33] showed that the wetting front maintains an axial length as a fixed fraction b = 0.20 

of the local wavelength.  As liquid is converted to vapor only in the wetting fronts, CHF is  

calculated by multiplying the wetting front’s lift-off heat flux by this fraction,
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Combining Eqs. (6.10) and (6.11) yields the following analytical expression for CHF, 
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.  (6.12) 

For double-sided heating, CHF is calculated for both upward-facing and downward 

facing walls separately.  Then, CHF for a test case is chosen as the minimum of the two 

predicted CHF values,  

  , ,min , .pred pred a pred bCHF CHF CHF  (6.13) 

 

6.3 CHF Model Predictions 

Before comparing CHF data to predictions of the Interfacial Lift-off Model, it is 

important to identify the range of operating conditions associated with formation of a wavy 

vapor layer.  For subcooled inlet conditions, in Chapter 3 it was shown that CHF for an 

upward-facing heated wall yields interfacial behavior resembling that of pool boiling rather 

than exhibiting a wavy vapor layer for G < 800 kg/m2s.  They also observed a vapor layer 

with a stable interface for a downward-facing heated wall for G < 800 kg/m2s.  

Additionally, the flow visualization results discussed earlier in the present study prove that 

the interfacial behavior for certain orientations is entirely gravity dominated for G ≤ 400 

kg/m2s.  Therefore, in the present study, only CHF data corresponding to G ≥ 800 kg/m2s 

are compared to predictions of the interfacial Lift-off Model.  

Figures 6.4(a)-6.4(c) compare variations of CHF predictions and CHF data for single- 

sided heating with orientation for different mass velocities, and inlet qualities of xe,in = 0.0
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(a) (b)

(c) (d)

Fig. 6.4:  Comparison of measured and predicted CHF with single-sided heating for (a) xe,in = 0.00-0.04, (b) xe,in = 0.07-0.13, and 
(c) xe,in = 0.19-0.22.  (d)  Predicted versus measured CHF for all test cases with single-sided heating. 
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– 0.04, 0.07 – 0.13, and 0.19 – 0.22, respectively.  For G = 790.7 – 863.6 kg/m2s and xe,in 

= 0.03 – 0.04, Fig. 6.4(a) shows both predicted and measured CHF are highest for θ = 0° 

and lowest for combinations of downflow and downward-facing heated wall orientations 

(θ = 180° to θ = 270°).  At higher mass velocities, the CHF data do not exhibit significant 

variations with orientation, yet the model predictions still follow the trends for G = 790.7 

– 863.6 kg/m2s.  Highest discrepancy between predictions and experiments was observed 

for lowest mass velocity G = 790.7 – 863.6 kg/m2s at θ = 180°. As stated earlier in this 

section, only CHF data corresponding to G ≥ 800 kg/m2s are applicable to the interfacial 

Lift-off Model.  As we are in the transition mass velocity range with the lowest inlet quality, 

the experimental observations are not able to be captured here.  As inlet quality is increased, 

Figs. 6.4(b) and 6.4(c), the model predictions improve in both magnitude and trend, 

excepting the orientation θ = 0° in Fig. 6.4(b).  Figure 6.4(d) compares the predictions of 

the Interfacial Lift-off Model with CHF data for single-sided heating for G ≥ 800 kg/m2s.  

The predictive accuracy of the model is assessed using mean absolute error (MEA), which 

is defined as  

 MAE 
1
N

CHFpred  CHFexp

CHFexp
 . (6.14) 

Overall, vertical upflow (θ = 90°) and vertical downflow (θ = 270°) show the best 

agreement, with MAEs of 5.8% and 4.7%, respectively, and horizontal upward-facing 

heated wall (θ = 0°) and horizontal downward-facing heated wall (θ = 180°) showing 

slightly higher MAEs of 14.0% and 10.4%, respectively. 
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Figures 6.5(a)-6.5(c) compare variations of CHF predictions and CHF data for double-

sided heating with orientation for different mass velocities, and inlet qualities of xe,in = 0.00 

– 0.04, 0.06 – 0.12, and 0.18 – 0.22, respectively.  For the lowest xe,in range, Fig. 6.5(a) 

shows peak predicted CHF values for vertical upflow (θ = 90°), followed by vertical 

downflow (θ = 270°), and minimum values for horizontal flows (θ = 0° and 180°).  While 

the model does capture the data trends in Fig. 6.5(a), it predicts a stronger orientation 

influence.  However, the model shows better agreement with the data for the two higher 

quality ranges, Figs. 6.5(b) and 6.5(c).  Figure 6.5(d) compares predictions of the Interfacial 

Lift-off Model with CHF data for double-sided heating for G ≥ 800 kg/m2s.  The model 

shows good overall predictions, with MAEs for horizontal flows (θ = 0° and 180°), vertical 

upflow (θ = 90°), and vertical downflow (θ = 270°) of 11.8%, 10.6% and 6.4%, 

respectively.  

These results demonstrate that the combination of separated flow model and Interfacial 

Lift-off Model is as effective at predicting CHF for saturated inlet conditions as it is for 

subcooled inlet conditions in many prior studies [49,50,53,56,77-83].  In fact, the model 

shows better predictive accuracy for both single-sided and double-sided heating with 

higher inlet qualities than with lower qualities or subcooled inlet conditions.  

 

6.4 Conclusions 

This study explored flow boiling modelling of critical heat flux (CHF) of FC-72 along 

a rectangular channel with either one wall or two opposite walls heated for saturated inlet 

conditions.  With an overall MAE ≤ 14%, this study shows that the combination of 

separated flow model and Interfacial Lift-off Model is very effective at predicting CHF for
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(a) (b)

(c) (d)

Fig. 6.5:  Comparison of measured and predicted CHF with double-sided heating for (a) xe,in = 0.00-0.04, (b) xe,in = 0.06-0.12, and 
(c) xe,in = 0.18-0.22.  (d) Predicted versus measured CHF for all test cases with double-sided heating. 
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saturated inlet conditions as it did for subcooled inlet conditions in prior studies.  Increasing 

inlet quality improves CHF predictions for both single-sided and double-sided heating.  
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CHAPTER 7. COMPUTATIONAL MODELING OF TURBUELNT EVAPORATING 

FALLING FILMS 

 

7.1 Computational Methods 

7.1.1 Computational Domain 

The data used to assess the accuracy of the computational model are obtained using the 

Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) falling film 

facility depicted in Fig. 7.1(a).  Fig. 7.1(b) shows a schematic diagram of the flow loop that 

delivered deionized water at the desired flow rate, pressure and temperature to the test 

chamber containing the falling-film test section.  Figure 7.2(a) shows the construction of 

the test chamber.  Fig. 7.2(b) shows the provisions adopted to obtain accurate inner wall 

temperature measurements.  Detailed information about the experimental facility can be 

found in the study by Shmerler and Mudawar [63].  Fig. 7.3 shows the domain used in the 

computational model.  Because of the symmetrical construction of the test section and 

small ratio of film thickness to distance between the test section and test chamber walls, 

the flow is assumed axisymmetric and two-dimensional.  The computational domain 

consists of the inlet reservoir, porous film distributor, and 1835-mm long annulus formed 

between the outer wall of the 25.4-mm test section and Lexgard chamber.  FLUENT 

Analysis System in the Toolbox of ANSYS Workbench  12.1 [86]  is used to compute the 



   

 
 

 

135 
135 

 

(a)

(b)

Fig. 7.1: (a)  Photo of falling film facility.  (b)  Schematic diagram of flow loop. 
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Fig. 7.2: (a) Cut-away view of test chamber.  (b) Cross-sectional view of inner wall thermocouples.  
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Fig. 7.3:   Computational domain. 
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fluid flow and heat transfer parameters.  The complete analysis is performed in the Project 

Schematic of Workbench, including geometry creation, meshing, processing and post-

processing. 

 

7.1.2 Governing Equations 

The present model employs the standard two-equation k   turbulent model with shear 

stress transport (SST) formulation as prescribed in the ANSYS Guide [86].  A key reason 

for using the k   model is its ability to tackle turbulence dampening at the interface, 

which is key to obtaining accurate temperature profiles adjacent to the interface, a feature 

not available with other models, such as the popular k   model.  A turbulence dampening 

factor of 10 is prescribed.  Two-phase treatment follows the Volume of Fluid (VOF) model 

[87], and solid–liquid interfaces are governed by continuities of both temperature and heat 

flux.  The VOF model in FLUENT is used to compute conservation equations for liquid 

and vapor while also accounting for mass transfer between the two phases.  The continuity 

equations are expressed as [86] 

liquid phase:  (7.1a) 

vapor phase: . (7.1b) 

The momentum and energy equations, which are applied to the combined phases, are 

expressed, respectively, as  

momentum: 
t

 u    u u   p  
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uT 
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F   (7.2) 

energy:       E u E p k T Q
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where E [J/kg] is the energy per unit mass, which is determined from  

 E 
 f  f E f g g Eg

 f  f g g

, (7.4) 

where    f  f g g, (7.5a) 

    f  f g g, (7.5b) 

and f f g gk k k   . (7.5c) 

In the present computations, mass transfer due to evaporation is accounted for by using 

the appropriate mass source terms, Sf and Sg, and the corresponding energy transfer term is 

accounted for as 

 Q  hfg S f . (7.6) 

 
 
7.1.3 Phase Change Model 

The phase change model by Lee [73] commonly used with boiling and condensation 

situations attempts to maintain saturation conditions at the interface while allowing for 

mass and energy transfer in one of the phases.  Physically, use of αk multipliers in Eqs. 

(1.6a) and (1.6b) implies that mass transfer can occur only where phase k exists as long as 

the temperature condition is satisfied.  Figure 7.4(a) shows the region where the source 

term is valid when using the Lee model for evaporation.  Notice that phase change is 

allowed in the liquid phase and at the interface when T > Tsat.  However, this is not 

physically what is expected in an evaporating falling film.  By maintaining the wall heat 

flux at least 25% below the onset of boiling, phase change will take place at the film’s 

interface but nowhere else within the liquid domain. 
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(a)

(b)

Fig. 7.4:  Differences in enforcement of phase change source terms 
during evaporation using (a) Lee model [73], and (b) sharp interface and 
Tanasawa models [72]. 
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      Tanasawa model [72] (which is a simplified form of the Schrage [69] model) are better 

suited to the present situation because they allow mass transfer to occur only at the 

interface.  Figures 7.4(b) shows where the source terms are valid when using the sharp 

interface model and Tanasawa model for evaporation.  This domain is the result of the 

 multiplier yielding non-zero source terms in Eqs. (1.2) and (1.5) only at the interface.  

The sharp interface model converts any energy crossing the interface to phase change; this 

energy is not defined by the problem but realized in the solution.  This solution can be 

different for different situations depending on how much energy crosses the interface 

versus being carried away by the liquid.  What is being sought in the present evaporating 

film situation is the ability to predict and specify this energy so that Tsat is maintained at 

the interface.  The sharp interface model can be utilized here if the temperatures of the 

interface and surrounding vapor are manually maintained at Tsat, or if energy transfer is 

confined to the interface with the vapor temperature maintained at Tsat.  On the other hand, 

Tanasawa’s model does not require placing any of these restrictions for the present 

situation, and is therefore the most convenient option, provided an appropriate value of γ 

is used.  The Tanasawa’s model is therefore adopted in all the present computations.  Marek 

and Straub [71] determined the value of γ based on published data.  They recommended γ 

= 0.1 - 1 for dynamically renewing water surfaces such as jets or moving films, and γ < 0.1 

for stagnant surfaces.  Hardt and Wondra [88] set γ = 1 for film boiling, and Magnini et al. 

[89] also set γ = 1 for laminar flow boiling based on a recommendation by Rose [90].  On 

the other hand, Kartuzova and Kassemi [91] used a relatively low value of γ = 0.01 in their 

simulation of ventless pressurization of a cryogenic storage tank.   

g
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It is observed that a low value of γ yields interfacial temperatures higher than Tsat.  After 

testing different values of γ in the present study, it is determined that γ = 0.1 helps maintain 

interfacial temperature at Tsat with reasonable accurately.  It is also worth noting that some 

of cases examined here are successfully modeled with γ values as high as 1, but these results 

are realized at the expense of reduced stability of the numerical solution.  On the other 

hand, γ < 0.1 resulted in deviation of interfacial temperature from Tsat for several cases.  

Therefore, a constant value of γ = 0.1 is deemed most appropriate based on its ability to 

maintain interfacial temperature at Tsat ± 0.1°C for all test cases.  Another reason for using 

this small value of γ is that it requires minimal energy to maintain Tsat.  Using γ = 0.1, the 

mass flux obtained from Eq. (1.4) is used to calculate the mass source terms, Sg and Sf, 

according to Eq. (1.5), and the corresponding energy source term due to evaporation, Q 

[W/m3], according to Eq. (7.6). 

 

7.1.4 Grid Size 

The grid system used in the present study consists of 1,397,474 nodes and 1,467,562 

cells.  Two finer grid systems, with 2,273,821 and 3,057,589 cells, were attempted and 

found to provide minimal influence on the computed results.  The grid used is non-uniform, 

having greater density in the porous zone and near the wall and film interface, especially 

for the heated portion of the test section, in pursuit of superior accuracy in resolving key 

flow parameters.  Turbulence is captured accurately near the wall by using a minimum of 

five cells within y+ < 5. 
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7.2 Computational Results 

7.2.1 Interfacial Waves 

Interfacial waviness is an inherent feature of falling liquid films that influences mass, 

momentum and heat transfer characteristics.  The waves can be assessed by examining both 

the temporal and spatial variations of the film thickness.  The present computations are 

performed for film Reynolds numbers of Re = 4990 – 37,620 and Prandl numbers of Prf = 

1.75 – 5.42.  Most cases are successfully modeled except those associated with low Re and 

low Prf numbers.  At lower Prf numbers, it is found that it is very difficult to create the film 

for smaller Re cases.  Hence, only 10 of the 13 cases tested yielded convergent solutions.   

Figure 7.5 shows instantaneous film profiles for three different Re values and Prf = 5.42.  

Notice that the average film thickness decreases with decreasing Re.  The highest Re case 

also features a well-defined film substrate with the interface potentially masking high 

frequency perturbations.  On the other hand, the lowest Re case shows more pronounced 

long waves with large fluctuations in substrate thickness.  It should be noted that film 

formation at lower Re, especially for the lowest Prf of 1.75, is both more difficult to 

compute and prone to appreciable film breakup.  

 

7.2.2 Heat Transfer Coefficient 

The evaporation heat transfer coefficient is computed using local time averaged values 

of 

 hE x   1
t x 

hE0

 t x  x, t dt .   (7.7)
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Fig. 7.5:   Interfacial waves at axial distance centered 0.75 m from inlet of heated 
length for three Reynolds numbers and Prf = 5.42.   
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The period Δt is carefully chosen to include at least 30 periods of the dominant film profile.  

After a steady film is formed, it is observed that a 0.2-s period is sufficient to provide 

repeatable heat transfer values as explained in a recent study by Mascarenhas and Mudawar 

[92] involving turbulent falling films subjected to sensible heating.   

Figures 7.6(a) – 7.6(d) show axial variations of the dimensionless evaporation heat 

transfer coefficient,  

 h*
E 

hE  f
2/3

k f g1/3
,  (7.8) 

along the heated length for different Reynolds numbers and Prf = 1.72, 3.07, 4.52 and 5.42, 

respectively.  For each combination of Re and Prf, the plots show the experimental data, 

curve fit to the experimental data, and computed variations.  For all cases, the data show a 

thermal development region persisting to over one half the heated length.  Thermal 

development lengths are also evident in the computed variations, but they are prolonged 

for most cases compared to the data.  Lack of a clearly defined downstream fully developed 

region is attributed to the inability of the phase change model to accurately account for 

interfacial energy transfer.  Different values of γ in Eq. (1.4) provide different mass fluxes 

and therefore different energy transfer rates at the interface.   

These results bring into question the choice of optimum value of γ as discussed earlier.  

A constant value of γ = 0.1 is used in the present study to achieve both numerical stability 

and uniformity in solution method.  But using a constant value might be responsible, at 

least in part, for the prolonged thermal entrance lengths in the computed variations in Figs.  
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(a) (b)

(c) (d)

Fig. 7.6:   Variations of measured and predicted dimensionless heat transfer coefficients along heated length of test section for 
different Reynolds numbers and (a) Prf = 5.42, (b) Prf = 4.53, (c) Prf = 3.07, and (d) Prf = 1.75. 
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7.6(a) – 7.6(d).  Notice also that there is some departure between predicted and measured 

values in the upstream part of the thermal development region.  The predicted values show 

a steeper drop near x = 0, compared to a milder drop for the experimental data.  This 

difference might be related to the design of the test section, specifically at x = 0 and x = L, 

where the stainless steel tube is soldered to short copper cylinders that act as electrical 

terminals for the current supplied through the stainless steel wall.  Axial heat conduction 

along the stainless steel wall towards the terminal blocks compromise the uniformity of 

wall heat flux at these locations and mask the sharp drop in wall temperature near x = 0.  

Overall, the computed results show reasonable agreement for the Prf = 3.07, 4.52 and 5.43 

cases, but appreciable departure for the lowest Pr = 1.72 cases, where liquid viscosity is 

lowest.   

The developing nature of the film makes it difficult to determine a universal correlation 

for the fully developed evaporation heat transfer coefficient.  Shmerler and Mudawar [63] 

determined fully developed hE
*  by averaging values measured at x/L = 0.576, 0.704 and 

0.832, outside the upstream thermal development region and the exit region.  Using the 

same axial range of x/L = 0.576-0.832, the computed values are spatially averaged to yield 

the following dimensionless relation for “fully developed” evaporation heat transfer 

coefficient,   

 hE
*  0.00044Re0.598Prf

0.975,  (7.9) 

as shown in Fig. 7.7(a), where all fluid properties are based on saturation conditions.  

Figure 7.7(b) shows this relation falling mostly between the correlations of Chun and Seban 

[62], and Shmerler and Mudawar [63].   
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(a)

(b)

Fig. 7.7: (a) Comparison of measured and computed variations of dimensionless fully-
developed evaporation heat transfer coefficient with Reynolds number for Re = 4990-
37,620 and Prf = 1.75-5.42.  (b)  Comparison of computed variation of dimensionless 
fully-developed evaporation heat transfer coefficient with prior correlations for Prf = 
1.75 and 5.42. 
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7.2.3 Eddy Diffusivity and Velocity Profiles 

Analytical modeling of the film’s fluid flow and heat transfer depends highly on the 

ability to accurately model turbulence structure across the film.  Turbulence effects are 

reflected in the variation of eddy momentum diffusivity, , and eddy heat diffusivity, , 

across the film.  For a turbulent falling film, the variations of shear stress and heat flux 

across the film are expressed as  

    f 1 m

 f










u

y
   (7.10) 

and q  kf 1
Prf

Prf ,T

m

 f










T

y
, (7.11) 

where Prf,T = m

h




is the turbulent Prandtl number. 

 Eddy diffusivity across a turbulent boundary layer is often modeled with the aid of 

a modified Van Driest formulation [93].  But eddy diffusivity profiles commonly utilized 

with internal or external flows single-phase flows [94,95] lack the ability to account for the 

dampening influence of surface tension on turbulence eddies near a liquid-vapor interface.  

Mills and Chung [96], Seban and Faghri [97], Hubbard et al. [98], and Mudawar and El-

Masri [99] recommended different formulations to account for the dampening of eddy 

diffusivity near the interface.  Mudawar and El-Masri developed a single continuous eddy 

diffusivity profile incorporating the Van Driest model near the wall, an experimental 

profile derived from open channel flow data for the bulk region of the film, and a 

dampening multiplier for interface region.  The Mudawar and El-Masri profile is given by 

m h
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22 1/2 1/222 0.865 Re1 1 1 4 1 1 exp 1 1
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, (7.12) 

where K = 0.4, A= 26, and Recrit  97 Ka0.1 for sensible heating or Recrit  0.04 Ka0.37  

for evaporative heating.  They also recommended the following relation for turbulent 

Prandtl number, 

  ,Pr 0.66 1.4 exp 15f T
l

y







 
   

 
.  (7.13) 

Figure 7.8 compares the average eddy diffusivity profile across the film at an axial 

location of x = 0.75 m from the inlet of the heated length determined from the 

computational model with the Mudawar and El-Masri profile for three different cases.  The 

average profile is obtained by averaging eddy diffusivity profiles for different subintervals 

within a period of a single dominant wave, as explained by Mascarenhas and Mudawar 

[92] for turbulent falling films subjected to sensible heating.  Notice that, like the empirical 

profile, the computed eddy diffusivity is zero both at the wall and the film interface.  There 

is also good overall agreement between the computed and empirical profiles in both shape 

and magnitude, evidenced by R-square fits of 0.96, 0.92 and 0.88 for Re = 37,620 and Prf 

= 1.75, Re = 15,240 and Prf = 3.07, and Re = 9510 and Prf = 5.42, respectively.  These 

trends are also similar to those of the eddy diffusivity profiles computed by Mascarehnas 

and Mudawar for sensible heating.   

Figure 7.9 shows x-velocity profiles across the film computed at x = 0.75 m for two 

cases: Re = 37,620 and Prf = 1.75, and Re = 9510 and Prf = 5.42.   These velocity profiles 
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Fig. 7.8:   Comparison of predicted eddy diffusivity profiles with Mudawar and El-Masri’s [99] at axial distance 0.75 
m from inlet of heated length for different Reynolds and Prandtl numbers. 
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Fig. 7.9:  Computed x-velocity profiles at axial distance 0.75 m from inlet to heated length for Re = 9510 and Prf 
= 5.42, and Re = 37,620 and Prf = 1.75. 
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are representative of turbulent boundary layer profiles with the higher velocity displaying 

steeper slope near the wall.  

 

7.2.4 Temperature Profile 

Eddy diffusivity and Prf,T are also essential for analytical determination of temperature 

profile across the film.  For a thermally fully developed film, the heat flux across the film 

is constant and equal to the wall heat flux, qw .  Equation (7.11) shows

that, at least for the fully developed region, temperature profile across the film acquires a 

large slope where m

f




tends to zero, and a small slope where m

f




 tends to a maximum.  This 

behavior is explained with the aid of Figs. 7.10(a) and 7.10(b).  An eddy diffusivity profile 

is shown in Fig. 7.10(a) having zero values both at the wall and the interface, and a 

maximum somewhere in between, as depicted earlier in Fig. 7.8.  Figure 7.10(b) shows the 

temperature profile acquires large slope both at the wall, where T = Tw, and the interface, 

where T = Tsat.  The temperature profile displays an unusual temperature gradient at the 

interface, which is not commonly observed with turbulent thermal boundary layers for 

other flow situations. 

Figs. 7.11(a) and (b) depict computed non-dimensional temperature profiles across the 

liquid film computed at four axial locations for Re = 9510 and Prf = 5.42, and Re = 37,620 

and Prf = 1.75, respectively.  The phase change model employed in this study is clearly 

capable of capturing the aforementioned temperature profile trends.  Notice how the 

temperature profile features a sharp gradient near the interface, implying a finite heat flux 

is dissipated at the interface,   and that the computed interface temperature is very close to
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Fig. 7.10:   Schematic representations of (a) eddy momentum diffusivity profile across 
the liquid film, and (b) influence of interfacial dampening of eddy momentum diffusivity 
on temperature profile. 
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Fig. 7.11:  Predicted development of temperature profiles along heated length for (a) 
Re = 9510 and Prf = 5.42, and (b) Re = 37,620 and Prf = 1.75. 
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 Tsat.  Additionally, the gradient near the interface is shown increasing axially, which 

suggests a larger fraction of the wall heat flux is being dissipated at the interface as the film 

flows downstream.  These trends demonstrate that the phase change model adopted in this 

study is able to replicate the physical phenomena quite well.  It is worth indicating that the 

same phase change model would have failed to capture the interfacial temperature gradient 

without the dampening of eddy diffusivity at the interface.  On the other hand, the 

interfacial temperature gradient can be achieved without the complete dampening of eddy 

diffusivity at the interface if the heat flux at the interface is artificially increased.  However, 

following the minimum energy principle, it is physically more realistic if the eddy 

diffusivity is a minimum. 

Overall, these facts and temperature trends prove that the two-equation k   turbulent 

model, with shear stress transport (SST) formulation and a turbulence dampening factor of 

10, is able to capture all the physical phenomena quite well, and therefore well suited for 

turbulent evaporating falling films. 

The influence of interfacial dampening of eddy diffusivity is reflected in fundamental 

differences between sensible and evaporative heating of turbulent falling films.  For 

sensible heating, the wall heat flux is absorbed by the film rather than dissipated at the 

interface.  With a small heat flux at the interface, Eq. (7.11) indicated that the temperature 

profile will not acquire a steep gradient at the interface where m

f




 tends to zero.  Figure 

7.12 highlights the differences between temperature profiles for sensible and evaporative 

heating of turbulent falling films along the heated length.  Sensible heating is shown 

yielding a steep gradient at the wall but not at the interface.  Whereas, evaporative heating  
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Fig. 7.12:  Differences in thermal development between hydrodynamically fully 
developed falling films subjected to sensible heating and evaporative heating. 
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is shown yielding steep gradients both at the wall and the interface.  Once the evaporating 

film becomes thermally fully developed, it is able to transfer all the wall energy across the 

film and to the interface without increasing the wall or film temperatures. 

 

7.3 Conclusions 

This section examined fluid flow and heat transfer characteristics of turbulent, free-

falling liquid film subjected to evaporative heating.  A computational model was developed 

for two-dimensional axisymmetric film flow on a vertical circular tube, with both the 

computational domain and operating conditions matching those of an experimental 

database for evaporating water films.  Implemented in FLUENT, the model incorporates a 

phase change model suggested by Tanasawa [72], and is used to predict variations of the 

evaporative heat transfer coefficient along the heated length, as well as profiles of eddy 

diffusivity, flow velocity, and temperature across the film.  Key findings from the study 

are as follows. 

(1) Energy transfer at the film’s interface is captured successfully with the aid of the 

Tanasawa phase change model.  An accommodation coefficient of γ = 0.1 is successful at 

maintaining the film interface at saturation temperature for all the cases tested. 

(2) The model predicts variations of the heat transfer coefficient along the heated length 

similar to those measured experimentally, but with a broader thermal development region. 

(3) Predicted heat transfer coefficients for a broad range of Reynolds numbers and Prandtl 

numbers between 3.07 and 5.43 fall between predictions of two prior experimental 

correlations. 
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(4) The model predicts eddy diffusivity is fully dampened at the film interface.  The 

predicted eddy diffusivity profile resembles the empirical profile recommended by 

Mudawar and El-Masri [99] for falling films in both trend and magnitude.  The predicted 

velocity profiles follow expected trends. 

(5) The temperature profile across the liquid film features a steep gradient near the film 

interface, which is attributed to the dampening of turbulence coupled with energy loss at 

the film interface.   

(6) The two-equation  turbulent model, with shear stress transport (SST) formulation 

and a turbulence dampening factor of 10 in FLUENT successfully capture the physics of 

falling films subjected to evaporative heating. 

(7) This work points to the need for more sophisticated and miniaturized diagnostic tools 

to measure liquid film thickness, liquid velocity, liquid temperature and turbulence to 

refine phase change models and further assess the accuracy of computational techniques 

for study of phase change processes. 

k 
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CHAPTER 8. COMPUTATIONAL INVESTIGATION OF VERTICAL UPFLOW 

CONDENSATION 

 

8.1 Experimental Methods 

The data used to assess the accuracy of the computational model are obtained using the 

PU-BTPFL flow condensation facility depicted in Fig. 8.1(a).  Figure 8.2(b) provides a 

schematic of the flow loop that is used to supply FC-72 vapor to the condensation module.  

The system consists of three flow loops, a primary FC-72 condensation loop and two water 

cooling loops.  Heat is extracted from the FC-72 first via the condensation module utilizing 

the first water loop, and again via a separate condenser utilizing the second water loop.  

Two separate FC-72 condensation modules are used, both utilizing tube-in-tube 

construction, and within which the FC-72 vapor is condensed by rejecting heat to water 

that is supplied in counterflow.   

Illustrated schematically in Fig. 8.2(a), the first condensation module is used for heat 

transfer measurements.  Superheated FC-72 vapor is supplied through the inner 304 

stainless steel tube metallic tube and is cooled by water supplied in counterflow through 

the outer annulus.  The inner tube has an 11.89-mm i.d. and wall thickness of 0.41 mm, 

while the outer tube, also made from 304 stainless steel, has a 22.48-mm i.d.  This module 

features a condensation length of 1,259.8 mm.  The small wall thickness of the inner tube, 

coupled  with  the  relatively  low  thermal  conductivity  of  stainless  steel,  is intended to
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Fig. 8.1: (a) Photo of condensation facility.  (b) Schematic of 
flow loop. 
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Fig. 8.2: (a) Condensation module for heat transfer measurements.  (b) Condensation 
module for flow visualization. 
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minimize axial conduction along the condensation length.  Two sets of diametrically 

opposite type-T thermocouples are attached to the outer surface of the inner tube at 14 axial 

locations to measure the outer wall temperature.  The water temperature is also measured 

at the same 14 different axial locations.  FC-72 pressure is measured at the inlet and outlet 

of the condensation length.  The operating conditions for the condensation module used for 

heat transfer measurements are provided in Table 8.1.  These are the same conditions used 

in the computational model. 

Shown in Fig. 8.2(b), the flow visualization module also features a tube-in-tube 

construction, with the FC-72 flowing through the inner tube and water through the outer 

annulus.  The inner borosilicate glass tube has a 10.16-mm i.d. and a wall thickness of 1.8 

mm.  The outer polycarbonate (Lexan) plastic tube has an inner diameter of 19.05 mm.  

This module features a condensation length of 1,219.0 mm.  The inlets and outlets for the 

FC-72 and water are fitted with Type-T thermocouples and pressure transducers.  Flow 

visualization is achieved with the aid of a high-speed Photron Fastcam Ultima APX video 

camera system.   

 

8.2 Computational Methods 

Governing equation used in this section for flow condensation are the same as that used 

for evaporating falling films. For complete formulation please refer to section 7.1.2. 

 

8.2.1 Computational Domain and Mesh Size Independence 

Figures 8.3(a) and 8.3(b) show the geometry adopted in modeling upflow annular 

condensation,  and  computational  domain,  respectively.  Figure  8.3(b)  also  shows  the 
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Table 8.1: Operating conditions for the test cases from the experimental study also used 
in the computational simulation. 

 
 

Test 
case 

G pin Tin xe,in Gw Tw,in Tw,out q
wall ,avg  

[kg/m2s] [kPa] [K]  [kg/m2s] [°C] [°C] [W/cm2] 
1 58.4 104.5 345.3 1.15 55.5 293.1 303.6 -2.15 

2 116.7 108.0 347.7 1.16 92.5 294.4 303.4 -3.10 

3 194.3 114.2 342.2 1.09 154.2 295.1 302.1 -3.85 

4 271.5 124.6 345.0 1.09 215.8 295.1 301.6 -5.23 
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(b)

(a)

Fig. 8.3: (a) Cylindrical domain for the computational model.  (b) 2-D 
axisymmetric domain modeled in the present study. 
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boundary conditions used in the computational model.  The flow is assumed axisymmetric 

and two-dimensional.  The width of the domain is half the hydraulic diameter, Dh/2 = 5.945 

mm, and the computational condensation length used is L = 0.8 m; this length is shorter 

than the actual length of the experimental test section as thermocouple measurements were 

only available up to L = 0.8 m.  The actual length of the domain is set longer to avoid any 

end effects at the outlet.  The mesh used has quadrilateral shape with uniform grid size in 

most of the domain, but with gradual refinement in a region adjacent to the condensing 

wall to accurately capture the formation of the liquid film and local turbulence as depicted 

in Fig. 8.3(b). 

Figure 8.4(a) shows computed values of the heat transfer coefficient spatially averaged 

over the region 0.2 m < z < 0.8 m for test case 4 in Table 8.1 corresponding to G = 271.5 

kg/m2s, the highest mass velocity tested.  The region z < 0.2 m is intentionally excluded 

from the averaging due to relatively poor prediction in the two-phase developing region by 

FLUENT as discussed later.  Figure 8.4(a) shows asymptotic values of the average heat 

transfer coefficient are realized for mesh sizes below about 10 μm.  In the present study, a 

minimum size of Δc = 2 μm is used near the wall, which resulted in a minimum of five 

cells near the wall within y+ < 5.  For the same case of G = 271.5 kg/m2s, Fig. 8.4(b) shows 

the variation of wall y+ (i.e., y+ corresponding the first cell nearest to the wall) along the 

condensing length.  The values shown are representative of wall y+ values used to achieve 

convergence for all the operating conditions given in Table 8.1.  
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Fig. 8.4: (a) Analysis of grid independence based on spatially averaged 
condensation heat transfer coefficient.  (b) Variation of wall y+ along condensation 
length for test case 4 in Table 8.1. 
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8.2.2 Initialization and Boundary Conditions 

In both the experiments and computational model, FC-72 enters the circular channel as 

pure vapor superheated 9 − 16°C, and inlet velocity is determined as u = G/g based on 

inlet conditions provided in Table 8.1.  Turbulence intensity, I, is estimated using the 

following formula derived from an empirical correlation for pipe flows [86] 

 
		
I 

u
u
0.16 Re

Dh 1 8 . (8.1) 

The wall heat flux profile is provided as boundary condition at the wall using user 

defined functions (UDFs) in FLUENT.  The wall heat flux is determined from the local 

differential sensible heat rise of the cooling water between consecutive waterside 

thermocouples,   

 . (8.2) 

Figures 8.5(a) and 8.5(b) show, respectively, axial variations of the experimentally 

determined wall heat flux, and both water and wall temperatures for the four FC-72 mass 

velocities given in Table 8.1.  Surface conditions consisting of roughness height, roughness 

constant and contact angle were set to default values of 0 m, 0.5 and 90°, respectively; a 

sensitivity study showed these parameters have minimal influence on computed values of 

the condensation heat transfer coefficient. 

 As indicated in a recent study by Lee et al. [100], it is very difficult to initiate a 

continuous liquid film in the upstream developing region of the flow channel.  Following 

their computational technique, a very thin liquid film of thickness δi is initially applied 

from z0 (where xe = 1)  along the entire condensation length to expedite convergence time.  
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Fig. 8.5: Experimentally determined axial variations of (a) wall heat flux and (b) water 
temperature and outer wall temperature for four test conditions. 
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Applying this initial thickness to the entire condensation length is crucial for vertical 

upflow since the combination of a highly turbulent vapor core and gravity opposite to the 

flow direction would shear the film faster than with vertical downflow.  Additionally, phase 

change models are incapable of predicting the location where liquid film is initiated.  To 

overcome this difficulty, as suggested by Lee et al., an average liquid film thickness is 

obtained from an annular flow model [101] for the developing length between z = z0 and z 

= 0.05 m to determine δi.  The location z0 corresponding to xe = 1 for each of the four test 

cases is determined from the simple energy balance  

 x
e
1

c
p ,g
T
g
T

sat 
h
fg

. (8.3) 

The calculated initial liquid film thicknesses are in the range of δi = 35 − 60 μm, which 

are less than 0.6% of the channel diameter.  The computed convergent thickness is 

observed to be significantly greater than the initial thickness estimated from upstream 

conditions.    

 

8.3 Computational Results 

8.3.1 Interfacial Behavior 

Interfacial waviness, liquid entrainment and liquid deposition are inherent features of 

annular flow condensation.  Figure 8.6(a) shows predicted interfacial behavior for G = 

271.5 kg/m2s and a segment of the channel centered at z = 590 mm; individual images in 

the sequence are t = 0.0004 s apart.  The predictions show complicated interfacial 

behavior in the liquid film along the wall.  Waves in the film’s interface generate small 

liquid masses that are first entrained into the vapor core and then deposited back upon the 
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Fig. 8.6: (a) Computed sequential images of climbing film in outlet region centered at z 
= 590 mm for G = 271.5 kg/m2s and Gw = 215.8 kg/m2s; individual images in the 
sequence are separated by 0.0004 s.  (b) Enlarged view of features in the circular area of 
the fist image in Fig. 8.6(a).  (c) Variation of axial velocity across section A in Fig. 
8.6(b). (d) Variation of radial velocity across section A.  (e) Variation of pressure across 
section A.  (f) Variation of axial velocity across section B in Fig. 8.6(b).  (g) Variation of 
radial velocity across section B.  (h) Variation of pressure across section B. 
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liquid film.  Other interfacial features include liquid ligaments from the liquid film that are 

elongated, creating a necking region, before snapping and being pushed away from the 

wall.  These latter features appear to possess sufficient radial momentum to be pushed 

towards the centerline rather than be re-deposited upon the wall liquid film.  These features 

are captured in the circular areas in Fig. 8.6(a), where an elongated liquid protrusion is 

captured with an adjoining small liquid mass upstream.  The small liquid mass is shown 

being quickly re-deposited upon the wall liquid film, while the liquid ligament jets forward 

and away from the wall, creating a necking region, before being pinched away and 

projected towards the centerline.  The axisymmetric domain produces vapor radial motion 

towards the centerline, causing liquid to accumulate around the centerline rather than be 

dispersed uniformly in the vapor core.  The rectangular areas in Fig. 8.6(a) show liquid 

breaking away from the centerline region and being projected towards the wall.  Overall, 

the present computations show both the wall and centerline are primary locations for liquid 

accumulation.  Previous studies on turbulent two-phase flow with entrained bubbles have 

shown a tendency of the bubbles to move away from the wall because of decreased 

effectiveness of bubble-induced skin friction drag reduction (BDR) [102].  In another study 

[103], numerical simulations of liquid droplets in turbulent vapor flow have shown a 

tendency of droplet migration away from the wall. 

The near wall interfacial features discussed in the previous section are explained 

quantitatively using Fig. 8.6(b), which depicts an enlargement of features captured in the 

circular area within the first image in Fig. 8.6(a).  Figures 8.6(c), 8.6(d) and 8.6(e) show 

local variations of axial velocity, radial velocity and pressure, respectively, across section 

A in Fig. 8.6(b), which includes the wall liquid film and extended liquid ligament.  The 
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axial velocity profile in Fig. 8.6(c) shows the liquid ligament lying in the relatively high 

velocity region of the turbulent vapor core.  Figure 8.6(d) shows the radial velocity of the 

liquid ligament is positive, indicating a tendency for the ligament to be projected towards 

the centerline.  Figure 8.6(e) shows pressure decreases across the liquid ligament, which is 

further evidence of the ligament tending to move away from the wall. 

Figures 8.6(f), 8.6(g) and 8.6(h) show the local variations of axial velocity, radial 

velocity and pressure, respectively, across section B in Fig. 8.6(b), which includes the wall 

liquid film and small entrained liquid mass.  The axial velocity profile in Fig. 8.6(f) shows 

this mass lying in the relatively high velocity region of the turbulent vapor core, similar to 

the ligament in section A.  Figure 8.6(g) shows the radial velocity of the liquid mass is 

close to zero but mostly negative, which implies a tendency to be deposited back upon the 

wall liquid film.  Figure 8.6(h) shows a local rise in pressure across the liquid mass within 

a region of mostly increasing pressure away from the wall, another indication of a tendency 

of this liquid to de deposited upon the wall liquid film. 

Figures 8.7(a) show sequential images of FC-72 condensing along the inner wall of the 

glass tube of the flow visualization test module, centered at z = 190 mm, for G = 53.3 

kg/m2s.  Figure 8.7(b) shows computed images at the same location for G = 58.4 kg/m2s, 

test case 1 in Table 8.1, obtained from the heat transfer measurements test module.  As 

discussed by Park et al. [67], this condition is representative of the onset of flooding 

according to the Wallis relation [104].  The interface in the flow visualization sequence 

shows the liquid film exhibiting a combination of small ripples and large waves, with liquid 
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Fig. 8.7: (a) Experimentally obtained sequential images of liquid film in inlet region (centered at z = 190 mm) of flow visualization 
module with G = 53.3 kg/m2s and Gw = 73.4 kg/m2s corresponding to flooding conditions.  (b)  Computed sequential images of film 
at same axial location with G = 58.4 kg/m2s and Gw = 55.5 kg/m2s.  Individual images in both sequences are separated by 0.0125 s.
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ligaments emanating towards the centerline.  The computational images show large waves 

with liquid ligaments, with smaller ripples superimposed on the large waves. 

Figure 8.8(a) shows sequential images of FC-72 condensing along the inner wall of the 

glass tube of the flow visualization test module, centered at z = 987 mm, for G = 106.5 

kg/m2s, which correspond to climbing film conditions, as indicated by Park et al. [67].   

Because heat flux data from the heat transfer measurements module that are used as 

boundary condition for the computations are only available up to the last thermocouple 

location at z = 0.80 m, it is impossible to directly compare computed versus flow 

visualization results for z = 987 mm.  However, conditions upstream of z = 0.80 m are also 

associated with climbing film conditions [67].  Figures 8.8(b) and 8.8(c) show computed 

images for G = 116.7 and 271.5 kg/m2s, respectively, centered at z = 590 mm.  Both 

experimental results, Fig. 8.8(a), and computed results, Figs. 8.8(b) and 8.8(c), show shear 

driven flow with the liquid film flowing firmly upwards, with both interfacial ripples and 

small liquid masses entrained in the vapor core. 

 

8.3.2 Heat Transfer Results 

Figure 8.9(a) shows the computed instantaneous variation of the heat transfer 

coefficient along the flow direction for G = 194.3 kg/m2s.  Notice the large local 

fluctuations, given the complex interfacial behavior of the thin annular film.  These 

fluctuations are extremely difficult to capture experimentally because of wall temperature 

dampening provided by the thermal mass of the stainless steel tube.  In recent 

computational studies involving sensible heating [92] and evaporative heating of turbulent 

free-falling films in Chapter 7, heat transfer plots were comparatively smoother. While free
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Fig. 8.8: (a) Experimentally obtained sequential images of of liquid film in outlet region (centered at z = 952 mm) of flow 
visualization module with G = 106.5 kg/m2s and Gw = 97.8 kg/m2s corresponding to climbing film flow.  (b) Computed sequential 
images of film in outlet region (centered at z = 590 mm) with G = 116.7 kg/m2s and Gw = 92.5 kg/m2s.  (c) Computed sequential 
images of film in outlet region (centered at z = 590 mm) with G = 271.5 kg/m2s and Gw = 215.8 kg/m2s.  Individual images in all 
three sequences are separated by 0.0125 s.   
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Fig. 8.9: (a) Axial variations of instantaneous computed local condensation heat transfer 
coefficients. (b) Axial variations of computed local condensation heat transfer coefficients 
averaged over different time periods. (c) Variation of average local heat transfer coefficients with 
averaging time period. 
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-falling films also exhibit complex interfacial waviness, any wall temperature fluctuations 

resulting from these waves are greatly reduced by the relatively large thickness of a free-

falling film compared to the much smaller thickness of a shear-driven film in annular 

condensing flows.  Interfacial waves in the latter are felt immediately at the wall, while 

waves in falling films are more remote from the wall. 

Hence, it is important to assess the significance of the relatively large fluctuations in 

Fig. 8.9(a) by time-averaging the computed heat transfer coefficient results.  An averaging 

time period is defined as 

   L

U
g ,in

, (8.4) 

where L = 0.8 m is the modeled condensation length and Ug,in the inlet vapor velocity of 

the superheated FC-72.  The local condensation heat transfer coefficient is averaged over 

period τ according to relation  

 
  
h z   1


h

0



 z,t dt .   (8.5) 

Figure 8.9(b) shows heat transfer coefficient plots averaged over periods τ, 2τ and 3τ.  

Notice the gradual decline in fluctuations that result from increasing the averaging period.  

Figure 8.9(c) shows the spatial average of the heat transfer coefficient over the region 0.2 

m < z < 0.8 m is fairly insensitive to averaging period.  This proves that the spatial average 

of the heat transfer coefficient is captured quite consistently, even on an instantaneous 

basis.  This is especially important given the large computational time required to compute 

an average over a very long period. 

Figures 8.10(a), 8.10(b), 8.10(c) and 8.10(d) compare axial variations of the computed 

local condensation heat transfer coefficient, time-averaged over period , to experimentally
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Fig. 8.10: Comparison of experimental and computed local condensation heat transfer coefficients for (a) G = 58.4 kg/m2s, (b) G 
= 116.7 kg/m2s, (c) G = 194.3 kg/m2s, and (d) G = 271.5 kg/m2s. 
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-determined variations for four FC-72 mass velocities of G = 58.4, 116.7, 194.3, and 271.5 

kg/m2s, respectively.  As indicated earlier, the computations are initiated where xe = 0 rather 

than the superheated inlet.  Overall, there is fair agreement in the downstream region but 

not the inlet region.  Additionally, predictions in the downstream region appear to improve 

with increasing mass velocity, with G = 271.5 kg/m2s showing the best downstream 

agreement.  Overall, local values are under-predicted upstream and over-predicted 

downstream for all mass velocities.  The deviation between the experimental and 

computational results can be attributed to the inability of the computational model to 

accurately capture film thickness and turbulence in the inlet region, while doing a better 

job as the film gets thicker.  In the inlet region, as discussed earlier, the phase change model 

is not able to initiate the liquid film, leading the authors to use an initial film thickness, δi, 

which affects the accuracy in this region.  Nonetheless, the computational model is able to 

capture the spatially averaged measured values over the region 0.2 m < z < 0.8 m quite well 

as shown in Fig. 8.11.  

 

8.3.3 Wall and Film Temperature Results 

Figures 8.12(a), 8.12(b), 8.12(c) and 8.12(d) compare axial variations of computed 

local time-averaged wall temperature with experimental data for G = 58.4, 116.7, 194.3, 

and 271.5 kg/m2s, respectively.  The time-averaging period is the same as that used for the 

heat transfer plots in Figs. 8.10(a) to 8.10(d).  For all four cases, the experimental wall 

temperatures exhibit an almost linear decline with z, while the computational result feature 

more significant variations, which under-predict the data upstream and over-predict 

downstream.     When compared to the experimental data, predicted wall temperatures are
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Fig. 8.11: Comparison of experimental and computed spatially averaged condensation 
heat transfer coefficient versus mass velocity. 
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Fig. 8.12: Comparison of experimental and computed local wall temperature for (a) G = 58.4 kg/m2s, (b) G = 116.7 kg/m2s, (c) G 
= 194.3 kg/m2s, and (d) G = 271.5 kg/m2s. 
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seen to increase along the channel.  The under prediction of heat transfer data in the inlet 

region and improvement in the downstream region, as discussed earlier, cause a similar 

trend in the predicted wall temperatures.  However, as shown in Fig. 8.13, the 

computational model shows good accuracy in capturing the spatially averaged measured 

wall temperatures over the region 0.2 m < z < 0.8 m.  

Figures 8.14(a), 8.14(b), 8.14(c), and 8.14(d) show, for G = 58.4, 116.7, 194.3, and 

271.5 kg/m2s, respectively, temperature variations across the liquid and vapor phases at 

two axial locations of z = 390 and 590 mm.  For the lowest flow rate of G = 58.4 kg/m2s, 

Fig. 8.14(a), almost the entire cross-section is covered with liquid at both axial locations.  

Once the flow has changed phase completely to liquid, no more mass transfer can occur as 

heat is being extracted from the FC-72, which is why the saturation temperature is not 

achieved across the channel for this lowest mass velocity.  Predicting complete phase 

change to liquid can also be in part a result of the mass intensity factor of ri = 10,000 being 

too high for this low mass velocity.  In both axial locations of z = 390 and 590 mm, the 

interfacial temperature for all three higher mass velocities of G = 116.7, 194.3 and 271.5 

kg/m2s is maintained within only ± 3°C of saturation temperature.  Also for the same three 

mass velocities, there is an appreciable temperature drop across the liquid-vapor interface.  

Predicting a temperature across the vapor core close to saturation and capturing a 

temperature drop at the interface are both crucial to validating the phase change model.  

These same interfacial temperature trends were captured in Chapter 7 and also in the study 

by Lee et al. [100] to validate phase change models for falling film evaporation and 

downflow condensation, respectively.  In Chapter 7, I reasoned that the large temperature 

drop across the liquid film interface is caused by interfacial dampening of eddy diffusivity
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Fig. 8.13: Comparison of experimental and computed spatially averaged wall 
temperature versus mass velocity. 
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185 Fig. 8.14: Variation of computed fluid temperature with radial distance from the wall at two axial locations for (a) G = 58.4 

kg/m2s, (b) G = 116.7 kg/m2s, (c) G = 194.3 kg/m2s, and (d) G = 271.5 kg/m2s. 
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due to surface tension.  The temperature is seen to drop near the center of the channel and 

is lower than saturation temperature.  As discussed in \relation to Fig. 8.6, this is caused by 

entrained liquid from the wall, where the temperature is lower than saturation, tending 

towards the center of the channel.  

 

8.4 Conclusions 

This study explored condensation of FC-72 in vertical upflow both experimentally and 

computationally.  The computational model incorporates Lee’s phase change model [73] 

in FLUENT and is used to predict variations of void fraction, condensation heat transfer 

coefficient, wall temperature and temperature profile across the liquid film.  The key 

findings from the study are as follows. 

(1) The computational model is capable of capturing the observed complex flow behavior 

across the condensing tube, including interfacial waviness, liquid entrainment in the vapor 

core and liquid deposition upon the film corresponding to flooding and climbing film 

conditions.  

(2) The model under-predicts the local measured condensation heat transfer coefficient in 

the upstream region of the condensation tube and over-predicts downstream.  However, the 

measured spatially averaged condensation heat transfer coefficient is captured with good 

accuracy.  

(3) The model also under-predicts the local measured wall temperature in the upstream 

region of the condensation tube and over-predicts downstream.  Nonetheless, the measured 

spatially averaged wall temperature is predicted quite accurately. 
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(4) Predicted film temperature profiles show an appreciable temperature gradient at the 

liquid-vapor interface while also maintaining saturation temperature in the vapor core, 

which help validate the effectiveness of Lee’s phase change model [73] in capturing 

interfacial mass transfer. 

(5) Further enhancement of predictive accuracy will acquire switching from 2-D to 3-D 

modeling.  Equally important is the need for more sophisticated diagnostic tools to measure 

velocity field and temperature within the wall liquid film, as well as map the interfacial 

waviness of the film.  
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CHAPTER 9. FUTURE WORK 

 

Researchers at the Purdue University Boiling and Two-Phase Flow Laboratory 

(PU-BTPFL) have been working in collaboration with the NASA Glenn Research Center 

to study the influence of gravity on both flow boiling and condensation.  The present study 

investigated different phase change methods experimentally, theoretically and 

computationally, that are associated with this collaborative effort.  Future studies are 

expected to accomplish the following tasks. 

(1) Assist collaborators from the NASA Glenn Research Center in conducting future 

parabolic flight experiments for flow condensation and flow boiling, as well as preparations 

for experiments onboard the International Space Station. 

(2) Investigate transient flow and thermal loop behavior to understand various flow 

instabilities observed in a two-phase flow loop. 

(3) Extend the computational models for evaporating falling films and flow 

condensation to study flow boiling, and investigate interfacial behavior and temperature 

profiles and compare predictions to experimental data. Use the extensive review in 

Appendix A to choose computational schemes that best meet the specific application 

requirement.  An ultimate objective is working toward a possibility of being able to predict 

all complicated two-phase phenomena. 

 



   189 
 

 
 

(4) Develop new computational strategies in multiphase flows and phase change for 

flow boiling, flow condensation, evaporating falling films and film boiling. 
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APPENDIX A. REVIEW OF COMPUTATIONAL STUDIES ON BOILING AND 

CONDENSATION  

 

A.1 Introduction 

A.1.1 Addressing the Myriad of Important Boiling and Condensation Configurations 

For many decades, thermal management systems in many applications have employed 

single-phase methods to meet specific cooling requirements.  These systems include both 

natural convection and forced convection configurations.  However, the recent rapid rise 

in rate of heat dissipation in many applications, coupled with the need to decrease the size 

of cooling hardware, has rendered single-phase systems incapable of meeting cooling 

requirements.  This trend includes applications such as computer electronics and data 

centers, medical x-ray equipment, hybrid vehicle power electronics and heat exchangers 

for hydrogen storage in automobiles, fusion reactor blankets, particle accelerator targets, 

magnetohydrodynamic generator electrode walls, defense radars, rocket engine nozzles, 

and both laser and microwave directed-energy weapons [1,105,106].  Lack of effectiveness 

of single-phase methods has spurred a transition to two-phase systems to capitalize upon 

the high heat transfer coefficients associated with both boiling and condensation.  The 

cooling advantages of two-phase systems are derived from their reliance on both sensible 

and latent heat of the working fluid compared to sensible heat alone for single-phase 

systems. 
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Early implementation of phase change cooling was focused on passive heat pipes that 

rely on capillary forces in a wicking structure to circulate coolant between evaporating 

(heat acquisition) and condensing (heat rejection) terminals of a closed tubular structure.  

But several fundamental limitations of heat pipes, especially small coolant flow rate, place 

stringent upper performance limits that fall short of cooling requirements in many 

emerging technologies [105].  This shortcoming shifted interest to other passive, unwicked 

cooling schemes, especially pool-boiling thermosyphons, which rely on buoyancy to 

circulate coolant between a lower boiling (heat acquisition) and upper condensing (heat 

rejection) sections of a closed vessel [2,3,107].  Here too, limited cooling performance 

spurred new innovations in passive cooling, such as the use of a pumpless loop consisting 

of two vertical tubes connected atop to a liquid reservoir fitted with a condenser [5,108].   

In this system, the boiler is connected to one of the vertical tubes, and large vapor void 

reduces fluid density in the boiler tube compared to the other liquid tube, causing static 

pressure imbalance and triggering fluid circulation within the loop.  The added benefits of 

coolant motion in the pumpless loop are also realized in semi-passive falling film cooling 

systems [59,63], where liquid from a small reservoir falls by gravity as a thin film along 

the heat dissipating surface, and vapor is lifted by buoyancy to the upper condensation 

section; the liquid is recollected in the reservoir passively by vapor condensation, assisted 

by a small pump to maintain constant liquid level in the reservoir.  Further improvements 

in cooling performance involve the use of mechanically driven pumped loops to enhance 

cooling performance by increasing coolant velocity along the boiling surface.  The simplest 

pumped loop configuration relies on flow boiling along a flow channel [52].  This 

configuration evolved in recent years to loops utilizing mini- or micro-channels, which 
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offer the advantages of increased heat transfer coefficient, compact and lightweight cooling 

hardware, and small coolant inventory [4,6,109].  Two pumped-loop competitors to 

mini/micro-channel cooling are jet-impingement cooling [7,8,110] and spray cooling 

[9,10].  The main difference between the two is that coolant in jet impingement is supplied 

to the heat-dissipating surface in liquid form, but broken into small liquid droplets prior to 

impact in spray cooling.  Yet, additional enhancement in cooling performance of pumped 

loops is achieved with “hybrid” cooling configurations that combine the merits of micro-

channel and jet-impingement cooling [12].   

In a closed system, enhanced boiling performance often requires commensurate 

improvements in heat rejection by condensation using a variety of configurations, such as 

drop-wise condensation [111], falling film condensation on tubes [112] and vertical 

surfaces [99], and flow condensation in tubes [113].  Often cited as complicating factors in 

modeling film condensation, both external and internal, are interfacial waves and 

suppression of turbulence along the liquid-vapor interface [99]. 

One important conclusion that can be drawn from trends in the development of thermal 

management systems is the myriad of possible boiling and condensation configurations, 

which greatly complicate efforts to develop universal predictive tools for system design 

and optimization. 

 

A.1.2 Predictive Methods for Two-Phase Flow and Heat Transfer 

Undoubtedly, the most popular approach to predicting boiling and condensing flows is 

the use of empirical or semi-empirical correlations.  A key drawback to this approach is 

most correlations are limited to one or a few fluids, and to narrow ranges of geometrical 
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and flow parameters.  Most thermal management system designers are compelled to 

extrapolate predictions to other fluids or conditions beyond the validity range of a given 

correlation, which often leads to highly erroneous design decisions.  A more effective tool 

is the use of “universal correlations” that are derived from large databases encompassing 

many coolants and very broad ranges of both geometrical and flow parameters [114-116].   

 Another approach to predicting two-phase behavior is the use of theoretical models.  

Unfortunately, only a few such models are available, which are limited to very basic flow 

configurations such as falling films [99], annular flow condensation [117], and annular 

flow boiling [118]. 

Because of limitations of both empirical correlations and theoretical models, there is 

now a great deal of interest in the use of computational fluid dynamics (CFD) simulations 

to predict phase-change processes.  The main advantages of this technique are the ability 

to predict transient fluid flow and heat transfer behavior, and provide detailed spatial and 

temporal distributions of phase velocities and temperatures, and void fraction.  However, 

while CFD simulations have shown great success and versatility in predicting single-phase 

flows, their effectiveness for two-phase flows has not been fully realized.  Presently, 

despite some recent promising results, two-phase simulations are quite expensive, very 

time consuming, and limited to only simple flow configurations. 

 

A.1.3 Review Objectives 

The main goal of this paper is to review the large pool of articles addressing CFD 

simulations of boiling and condensation.  This includes (1) popular two-phase 

computational schemes and key differences between schemes, (2) surface tension 
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modeling in conjunction with different schemes, (3) different approaches to predicting 

interfacial mass, momentum and energy transfer, and (4) boiling and condensation articles 

involving comparison of predictions of CFD schemes with experiments and correlations.  

This review will be concluded with key recommendations for improving predictive 

capabilities of computational schemes. 

 

A.2 Two-Phase Computational Schemes 

A.2.1 Solution of Continuum Two-Phase Conservation Equations 

Modeling two-phase flow and heat transfer requires accurate prediction of the behavior 

of each phase and interactions along the interface between phases.  Several numerical 

methods are available for this purpose.  Most popular CFD methods involve solving 

conservation equations using macroscopic depiction of the fluids, where fluid matter is 

described as consisting of a sufficiently large number of molecules that continuum 

hypothesis for fluid properties is valid.  The mass, momentum and energy equations are 

expressed, respectively, as 

 , (A.1) 

 , (A.2) 

and . (A.3) 

While most popular methods are based on this macroscopic depiction, there is now 

increasing interest in computational methods at the mesoscale, where fluid matter is 

considered a collection of atoms, which is much smaller than macroscale but larger than 
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single atom (“atomistic” scale).  This section will discuss the different methods used in 

two-phase simulations with focus on those employing conservations equations at the 

macroscale. 

 

A.2.2 Moving Mesh and Lagrangian Methods 

Early approaches to simulating two-phase flows included use of separate, boundary-

fitted grids for each phase.  Using this Lagrangian scheme, Ryskin and Leal [119] 

simulated the rise of a buoyancy-driven deformable bubble in quiescent liquid.  Governing 

equations were solved separately for each phase and boundary conditions along the 

interface matched iteratively.  While Ryskin and Leal employed a 2-D axisymmetric 

domain, Takagi and Matsumoto [120] simulated unsteady bubble rise in 3-D domain.  

Methods using boundary-fitted grids provide the highest accuracy in predictive capability 

among the different computational methods.   

An alternative moving-mesh Lagrangian method allows the grid to follow boundaries 

of phases during interface deformation as illustrated in Fig. A.1(a).  Studies using this 

method include deformation of a buoyant bubble by Shopov et al. [121], and droplet 

impacting a solid wall by Fukai et al. [122].  Overall, Lagrangian and moving-mesh 

methods involve  very  complex  formulations  and  hence  have  only been applied to very 

simple two-phase flow configurations. 
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Fig. A.1: Interfacial computational grids for (a) Lagrangian moving-mesh method, (b) 
Eulerian volume-of-fluid simple line interface calculation (VOF-SLIC) method, (c) 
Eulerian volume-of-fluid piecewise linear interface calculation (VOF-PLIC) method, 
(d) Eulerian level-set (LS) method with finite thickness interface, and (e) 
Lagrangian/Eulerian interface front-tracking (FT) method.  
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A.2.3 Interface-Capturing Methods 

Common Eulerian schemes used to simulate two-phase flows are termed interface-

capturing methods.  Most popular among these are the volume of fluid (VOF) method [87] 

and the level-set (LS) method [123].   

 

A.2.3.1 Volume of Fluid (VOF) Method 

The VOF method captures the interface using a color function C representing volume 

fraction with a value between 0 and 1, where 0 implies the cell is completely occupied by 

one phase, and 1 by the other, and the interface is identified by cells having values between 

0 and 1.  For flows without phase change, the color function is advected by velocity field 

according to the equation 

 . (A.4) 

The velocity field is obtained by solving the momentum (Navier-Stokes) equation.  

Because the interface is tracked by 0 to 1 color value, VOF methods are inherently 

conservative, which is a major advantage when solving conservation equations.  However, 

they suffer inability to capture the interface accurately.   

VOF methods can be divided into two categories: those that do not use interface 

reconstruction and others that do.  Methods not requiring interface reconstruction include 

donor-acceptor scheme by Hirt and Nicholas [87], flux corrected transport (FCT) scheme 

by Rudman [124], and compressive interface capturing scheme for arbitrary meshes 

(CICSAM) by Ubbink and Issa [125].  These schemes use a color value of 0 to indicate 

one phase and 1 the other phase, with the interface identified by a value of 0.5.  The 
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transition from 0 to 1 occurs across a finite thickness interface encompassing multiple cells.  

In these schemes, Eq. (A.4) is modified for incompressible fluids as 

 , (A.5) 

which can be solved by different combinations of upwind and/or downwind schemes.  

After solving Eq. (A.5), the interface appears smeared across multiple cells and set to a 

finite thickness. 

The second and more popular category of VOF methods involves interface 

reconstruction, where interface shape is solved using piecewise constant or piecewise 

linear schemes.  Unlike the first category of VOF methods, these schemes capture the 

interface with zero thickness.  They include simple line interface calculation (SLIC) [126], 

which is a piecewise constant scheme, and piecewise linear interface calculation (PLIC) 

[127], a piecewise linear scheme.   As shown in Fig. A.1(b), the interface in SLIC is 

orientated with x- or y-axis of domain (sidewalls of rectangular mesh cell).  On the other 

hand, as shown in Fig. A.1(c), the interface in PLIC is set by a straight line/plane whose 

direction is dictated by vector normal to the interface.  Orientation of the normal vector for 

a specific cell containing the interface is obtained by interrogating volume fractions of all 

neighboring cells.  Once the direction of the interface is computed, this vector is oriented 

in such a manner that the volume fraction of the cell is maintained.  Although the original 

PLIC scheme by Youngs [127] is still widely used, alternative PLIC schemes have also 

been recommended [128,129].  A key concern with PLIC schemes is interface 

discontinuity (jump) between cells as depicted in Fig. A.1(c).  Some improvements to the 

PLIC scheme have been proposed that depart from piecewise linear formulation [130,131].  
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In all interface reconstruction schemes, once interface reconstruction is completed, the 

advection step given by Eq. (A.4) is performed to proceed with the numerical solution.   

In VOF methods, the density, viscosity and thermal conductivity of the fluid are 

determined, respectively, as  

  
g
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g  f
, (A.6a) 
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where  g  is the volume fraction, which is related to the color function, C, by the relation 

and  
1
V

C dV .
V
  (A.7) 

 

A.2.3.2 Level-Set (LS) Method 

The second type of interface-capturing methods is the Level-set (LS) method.  This 

method uses a function,  , to define distance from the interface as shown in Fig. A.1(d).  

This function has a value of   = 0 at the interface (called zero level set), and is positive in 

one phase and negative in the other.  In the absence of phase change, this function is 

advected by velocity field according to the equation 

 . (A.8) 

With the LS method, interface location is known only implicitly by the given values of 

, therefore its location is captured by interpolating   values on the grid.  This method is 
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able to capture complicated interface topologies quite well, but with time evolution,   

cannot maintain the property of a signed distance function and therefore might not remain 

a smooth function.  This leads to error in interface curvature calculations, as well as causes 

serious mass conservation errors.  To correct this problem,   needs to be re-initialized 

every few time steps, and is transformed into a scalar field that satisfies the property of the 

signed function with the same zero level set.  This is commonly achieved by a technique 

recommended by Sussman et al. [123] involving iterative solution of the following 

relations  

 
t


 0

 0
2  h2

1    (A.9) 

and  x,0   0
, (A.10) 

where h is cell width, which is used to preclude zero denominator in Eq. (A.9).  Russo and 

Smereka [132] showed the re-initialization step could cause errors in the solution, and 

suggested improvements to the method of Sussman et al. to correct the problem.  Overall, 

the mass conservation errors are compounded for relatively long time durations.  To correct 

this problem, investigators resort to employing explicit methods to force mass conservation 

[133,134].   

Son and Dhir [135] used the following relations to determine fluid properties in their 

LS scheme: 

  g f g H      , (A.11a) 

 1  
g
1  

f
1  

g
1 H , (A.11b) 

and k 1  k
g
1  k

f
1  k

g
1 H , (A.11c) 



230 
 

 
 

where kg is assumed to be zero, and H is the smoothed Heaviside function proposed earlier 

by Sussman et al.  Use of harmonic mean, Eqs. (A.11b) and (A.11c), instead of arithmetic 

mean, Eqs. (A.6a)-(A.6c), is not uncommon even for VOF methods.  Smoothing of the 

Heaviside function in LS methods serves to remove numerical instabilities that arise from 

discontinuities in fluid properties, and is accomplished by using the following relations: 

 H = 1 for  1.5h , (A.12c) 

 H = 0 for  1.5h, (A.12b) 

and H  0.5  
3h


1

2
sin 2 

3h






 for 

		
 1.5h .  (A.12c) 

This technique sets interface thickness equal to 3h, or three cell widths, as shown in Fig. 
A.1(d).  

Notice that properties are smeared out across multiple cells when using the Heaviside 

function.  A key concern with this smearing effect is that phase change occurs only at the 

interface.  To help resolve this issue, Fedkiw et al. [136] introduced the ghost fluid (GF) 

method, which involves including an additional artificial fluid cell implicitly representing 

the Rankine-Hugoniot jump condition at the interface.  Kang et al. [137] used this GF 

method in conjunction with the LS scheme to study incompressible multiphase flows. 

To tackle both mass conservation errors of the LS method and inaccurate interface 

capture of the VOF method, an improved Coupled Level-set/Volume of Fluid (CLSVOF) 

method [138,139] has been proposed.  This method combines the merits of both earlier 

methods, while minimizing their errors.  With the CLSVOF method, the distance function 

advection equation is solved first, followed by interface reconstruction using the LS 

method, which corrects the inaccuracies in interface capture of the VOF method.  The VOF 
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method is used to re-initialize  , thus tackling the mass conservation issues of the LS 

method.  Another similar yet simpler approach is the Coupled Volume of Fluid and Level-

set (VOSET) method [140].  This method only solves for C advection, Eq. (A.4), in the 

VOF method, but calculates LS function   using a simple iterative geometric operation, 

which is then used to calculate only geometric parameters and fluid properties at the 

interface. 

 

A.2.4 Interface Front-Tracking Methods 

Interface front-tracking (FT) methods combine the advantages of both the Lagrangian 

and Eulerian perspectives by using fixed and moving grids.  Using the FT scheme, Grimm 

et al. [141] treated both phases separately, but Unverdi and Tryggvason [142] and 

Tryggvason et al. [143] used one set of equations for both phases.  Unverdi and 

Tryggvason’s FT method, which is illustrated in Fig. A.1(e), employs a regular structured 

grid to track the flow in both phases, and a finer marker cell grid to track the interface.  

Location of the finer grid is advected by velocity field according to the following equation: 

 , (A.13) 

where 
 
is the position of the front, and  the velocity of the front at that position, 

interpolated from the fixed grid.  While FT methods do a good job calculating interface 

curvatures and handling multiple interfaces, they require explicit treatment for interface 

breakup and coalescence [144].  Property variations in Unverdi and Tryggvason’s FT 

method are given by  
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where I is the indicator function, which, like the Heaviside function discussed earlier, is 

used to smooth properties across the interface. 

 

A.2.5 Other Methods 

Other methods that have been developed for fixed grids include the constrained 

interpolation profile (CIP) method [145] and phase-field (PF) method [146].  Yabe et al. 

[145] developed the CIP method for multiphase flows to tackle loss of information inside 

the computational grid resulting from the discretization process, and conserves mass 

accurately at the interface.  This method transforms the color function into a smooth 

function by using a Lagrangian invariant solution scheme for advection.  While most finite 

interface thickness schemes discussed earlier employ mathematical functions to smooth 

fluid properties across multiple cells, the PF method is based on the concept of diffuse 

interface with finite thickness [146].  The phases are defined by a phase-field parameter, 

CPF, which, in contrast with the color function, C, is a physical parameter, and is constant 

within each phase and varies across the interface.  Interface tracking is achieved by solving 

the following advection-diffusion equation: 

  , (A.15) 

where  m
 is the diffusion parameter and   the chemical potential defining the rate of 

change of free energy.   
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Yet another vastly different solution method, which is based on mesoscale formulation, 

is the Lattice-Boltzmann (LB) method [147,148].  Instead of solving the Navier–Stokes 

equation, the LB method involves solving discrete Boltzmann equation.  To recover 

macroscopic fluid motion, the mesoscale physics is reduced to simplified microscopic 

models or mesoscopic kinetic equations.  In contrast with methods requiring solution of 

the non-linear Navier–Stokes equation, the LB method solves semi-linear equations; it also 

does not require explicit tracking of the interface.  This method is beyond the scope of the 

present study, and therefore excluded from further review. 

 

A.3 Surface Tension Modeling 

Accurate capture of the interface requires a method for modeling surface tension force 

effects.  The most popular method to addressing these effects is the Continuum Surface 

Force (CSF) model proposed by Brackbill et al. [149].   When solving the momentum 

equation  

  (A.16) 

with fixed grid methods, the surface tension force, , according to the CSF model for 

constant surface tension is defined as  

 , (A.17) 

where  s  is the Dirac delta function, which has finite value at the interface and zero values 

everywhere else away from the interface,  

 
 (A.18a) 
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 , (A.18b) 

and c is a parameter defined based on the method used.  With the LS method, c is replaced 

by distance function, .  Because  is a continuous function, the interface normal vector 

according to Eq. (A.18a) can be calculated quite accurately.  With the VOF method, on the 

other hand, c is replaced by volume fraction α.  Because of surface discontinuities, this 

model precludes accurate determination of the normal vector.  With the FT method, Eq. 

(A.17) uses interfacial curvature along the finer grid to calculate surface tension force.  The 

force is then distributed over the fixed grid using Peskin’s immersed boundary method 

[150] to conserve force when moving across grids.   

Another promising method to calculating surface tension force effects is the Continuum 

Surface Stress (CSS) model by Lafaurie et al. [151], which has certain advantages 

compared to the CFS model.  The CSS model features conservative formatting, and does 

not require explicit calculation of curvature, rendering it especially useful for sharp corners. 

 Even though surface tension models have been successfully used in numerical 

schemes, they are known to artificially induce spurious currents when capturing the 

interface.  These are non-physical vortex currents induced close to the interface, resulting 

in unrealistic deformations and therefore compromising interface curvature calculations.  

These currents are caused mostly by inability to balance pressure gradient with surface 

tension force.  Recently, investigators have recommended methods to suppress these 

spurious currents [152,153] 

While finite thickness schemes are solved using surface tension force, the PF method 

uses fluid free energy.     An example of this approach is a study  by  Jacqmin et al. [146],  
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where surface tension force is calculated according to 

 , (A.19) 

  being the chemical potential defining the rate of change of free energy.  

 

A.4 Implementing Mass Transfer in Two-Phase Schemes 

A.4.1 Different approaches to Solving Conservation Equations and accounting for 

Interfacial Mass, Momentum and Energy Transfer 

Phase change methods add multiple complications to two-phase schemes developed to 

track or capture the interface.  In the presence of interfacial mass transfer, interface 

topology tends to be less stable, and numerical schemes must be able to tackle this issue.  

Phase change methods also require accurate estimation and implementation of mass, 

momentum, and heat transfer across the interface.  With phase change, mass transfer rate, 

, normal to the interface, which is positive for evaporation and negative for 

condensation, is given by  

  (A.20) 

The jump conditions for velocity, momentum transfer rate, and energy transfer rate across 

the interface are given, respectively, by  

 , (A.21) 

 , (A.22) 

and   (A.23) 
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where I is an Idemfactor, and the energy jump relation accounts only for latent heat transfer 

transfer.  

In a two-phase scheme with phase change, the above jump conditions are usually used 

at the interface, while the mass, momentum and energy conservation equations given by 

Eqs. (A.1), (A.2) and (A.3), respectively, are solved for the interior of each phase.   The 

VOF method employs separate conservation equations for liquid and vapor that account 

for mass transfer between phases using mass source and mass sink terms.  The continuity 

equations in the VOF method are expressed as 

 , (A.24) 

where subscript k refers to either liquid, f, or vapor, g, and Sk [kg/m3s] is the mass source 

term for phase k associated with the phase change.   

As will become evident from the large pool of studies to be reviewed below, there  

is no universal approach to formulating a numerical solution to a two-phase flow problem 

involving phase change.  When working with a fixed grid and using separate continuity 

equations for the two phases, phase change is accounted for using mass source and mass 

sink terms, or mass jump conditions are applied to the two phases separately.  If the 

momentum equations are solved in combined form for both phases, as given by Eq. (A.2), 

then only surface tension forces need to be included in the governing equation, and the 

other terms in Eq. (A.22) need not be used.  This is because pressure, shear stress and 

momentum flux due to mass transfer are already accounted for.  Like the continuity 

equation, when the energy equation is solved in combined form, energy transfer due to 

phase change can be accounted for with either source terms or jump conditions along the 
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interface.  Son and Dhir [135] adopted a yet different approach is which mass source was 

used in the continuity equation, but not the energy equation.  They solved the energy 

equation by setting the temperature of the saturated phase equal to saturation temperature 

to ensure that energy transfer at the interface due to phase change is correctly account for. 

Therefore, it is important to identify differences between solution procedures adopted 

by different researchers and appreciate the physical basis behind these procedures.   

 

A.4.2 Mass Transfer Models 

A.4.2.1 Energy Jump Condition 

One of the most popular tools to account for interfacial phase change is the Rankine-

Hugoniot jump condition [68].  Here, mass transfer rate is based on net energy transfer 

across the interface, including heat transfer due to conduction in the two phases to or from 

the interface.  

 , (A.25) 

where  [kg/m2s] is the mass flux due to phase change at the interface.  Eq. (A.25) neglects 

the small kinetic energy contributions affecting micro-scale mass transfer.  A substitute 

version for Eq. (A.25) is [154]  

  (A.26) 

The volumetric mass source term, S [kg/m3s], is determined according to the relation 

  (A.27) 
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where 
 
for a particular cell of the computational domain is obtained from  

      int1
,g g

A
dV

V V
 (A.28) 

where Ai is the interfacial area in the cell and V the cell volume.  

In simplified form, Nichita and Thome [155] determined the volumetric mass source 

term from gradients of temperature and void fraction of liquid in the interfacial cell, 
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,  (A.29) 

where k is the effective thermal conductivity given by Eq. (A.6c).  Ganapathy et al. [156] 

used a similar formulation for the source term.  Eq. (A.29) is less accurate than Eqs. (A.25) 

and (A.26) because of the simplifying assumptions used.  For example, use of effective 

thermal conductivity is not physical for calculating phase change at the interface since mass 

transfer should not depend on conductivity of the saturated phase.  During boiling, the 

liquid phase is saturated and vapor phase unsaturated, as it can be superheated.  During 

condensation, the vapor phase is saturated and liquid phase unsaturated, as it can be 

subcooled.  To correct this error for both condensation and boiling situations, where 

saturated and unsaturated phases are present, Sun et al. [157] recommended an alternative 

simplified form based on the assumptions of negligible heat conduction in the saturated 

vapor (ksat = 0) due to constant vapor temperature, and linear temperature variation in the 

subcooled liquid near the interface,   
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Use of simplified source term models is quite common because they simplify source 

term calculation and implementation in commercial software packages, since they rely only 

on volume fraction and temperature gradient information within the current cell.  Because 

these models are based on specific assumptions, they should only be used after confirming 

the suitability of these assumptions to the specific phase change problem being addressed. 

While the phase change model based on the Rankine-Hugoniot jump condition is 

physically based and therefore free from empiricism, it does not account for kinetic energy 

contributions.  Also, notice that  in Eq. (A.27) is non-zero only at the interface, which 

limits mass transfer at the interface.  This condition cannot tackle subcooled inlet boiling 

and superheated inlet condensation situations with no preexisting interfaces.  Use of this 

model has been seen in situations involving nucleate pool boiling, film boiling, flow 

boiling, and flow condensation. 

 

A.4.2.2  Schrage Model 

Schrage [69] used kinetic theory of gases to propose a mass transfer model in the 1950s 

based on the Hertz-Knudsen equation [70].  He assumed vapor and liquid are in saturation 

states, but allowed for jump in temperature and pressure across the interface, i.e., Tsat (pf) 

= Tf,sat  ≠ Tsat (pg) = Tg,sat.  Kinetic theory of gases was used to relate the flux of molecules 

crossing the interface during phase change to the temperature and pressure of the phases.  

A fraction γ is used to define the number of molecules changing phase and transferring 

across the interface, and 1 – γ the fraction reflected.  Relations for γc and γe, corresponding 

to situations involving condensation and evaporation, where defined, respectively, as  


g
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c

number of molecules absorbed by liquid phase
number of molecules impinging on liquid phase

 (A.31a) 

and  e

number of molecules transferred to vapor phase
number of molecules emitted from liquid phase

. (A.31b) 

According to the above definitions, γc = 1 corresponds to perfect condensation, where 

all impinging molecules are absorbed by the liquid phase.  Conversely, γe = 1 represents 

perfect evaporation, where all emitted molecules are transferred to the vapor phase.  The 

net mass flux across the interface,  [kg/m2s], is determined from the difference between 

liquid-to-vapor and vapor-to-liquid mass fluxes,   

  (A.32) 

where R is the universal gas constant (8.314 J/mol.K), M the molecular weight, pg and Tg,sat 

are the vapor’s pressure and saturation temperature at the interface, and pf and Tf,sat the 

liquid’s pressure and saturation temperature, also at the interface.  Generally, the 

evaporation and condensation fractions are considered equal and represented by a single 

accommodation coefficient γ.  This simplifies Eq. (A.32) to the following form: 

  (A.33) 

A major difficulty in using the above relation is that γ is an unknown quantity, and a 

few investigators have attempted to determine its value by comparing model predictions to 

experimental data.  For example, using published data, Marek and Straub [71] concluded 

that γ is between 0.1 to 1 for jets and moving films, and below 0.1 for stagnant liquid 

surfaces.  Also using information from published literature, Paul [158] recommended a 
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value between 0.02 and 0.04 for water during evaporation.  Rose [90] recommended a 

value close to unity for dropwise condensation based on a review of available experimental 

data.  Wang et al. [159] suggested an experimentally determined value of γ = 1 for non-

polar liquids.  Hardt and Wondra [88] and Magnini et al. [89] also used γ = 1 for film 

boiling.  For evaporating falling films, as discussed in Chapter 7, I recommend a value of 

γ = 0.1, but indicate that higher values in the range of γ = 0.1 - 1 do not compromise the 

model’s predictive accuracy, but do influence numerical stability.  Doro [160] used γ = 0.5 

for evaporating falling films.  Kartuzova and Kassemi [91] recommended a low value of γ 

= 0.01 for turbulent phase change in a cryogenic storage tank in microgravity.  Huang et 

al. [161] used a value of γ = 0.03 for bubbly flow of R141b in a serpentine tube.  

Tanasawa [72] further simplified the Schrage model by suggesting that, for small 

interfacial temperature jump, mass flux is linearly dependent on temperature jump between 

the interface and vapor phase.  This simplifies the model to the form 

 , (A.34) 

where Tsat is determined at local pressure.  The volumetric mass source term for both the 

Schrage model, Eq. (A.32), and Tanasava model, Eq. (A.34), is given by 

. 

Tansawa’s model is a good approximation of the original Schrage formulation for most 

phase change phenomena other than at micro and nano scales, where interfacial 

temperature jump cannot always be neglected.  At those scales, interfacial curvature can 

cause appreciable Laplace pressure, and Vander Walls forces on solid-liquid interfaces can 

become sufficiently significant to cause non-equilibrium between the phases [162].  In their 
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investigation of evaporation across a liquid-vapor interface, Hardt and Wondra [88] 

provided a simple method to assess deviation of interfacial temperature from Tsat.  As 

shown in Fig. A.2, they plotted the deviation of dimensionless interfacial temperature 

versus the dimensionless parameter , where  is the evaporation heat transfer 

coefficient given by 
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,  (A.35) 

and d the distance of the liquid-vapor interface from the wall.  Using the example of water 

evaporation at atmospheric conditions with an accommodation coefficient of  = 0.1, they 

showed deviation of interfacial temperature increases with decreasing d.  The 

dimensionless deviation is close to 0.01 at d ≈ 81 μm, and increases to 0.1 at d ≈ 7 μm.  It 

is therefore important to assess such deviations in interfacial temperature before opting to 

use Tanasawa’s simplified formulation to model micro- and nano-scale phenomena. 

Overall, the Schrage model is both physically based and accounts for kinetic energy 

effects.  As indicated earlier, a key challenge in using this model is deciding which value 

to use for the accommodation coefficient in the range of 0 < γ ≤ 1.  The optimum value for 

this coefficient is obtained from experimental data.  In chapter 7, I recommended another 

procedure to setting the value of γ based on deviation of interfacial temperature from Tsat.  

This procedure is initiated by setting γ = 0, then gradually increasing γ until the deviation 

between  interface  temperature  and  Tsat  is  minimized  to  an  acceptable  level.  Another 

challenge in using the Schrage model is the dependence of volumetric mass source term on 

,    which has non-zero value only at the interface,    allowing phase change to occur  

x 
e
d /k

f

e


g
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Fig. A.2: Variation of deviation of dimensionless interface temperature 
with dimensionless distance from the wall to the interface.  Adapted from 
Hardt and Wondra [88].  
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only along the two-phase interface.  This model tends to maintain Tsat because deviation of 

interfacial temperature from Tsat increases the rate of mass transfer along the interface, 

which in turn reduces the temperature deviation.  The Schrage model has been used to 

investigate nucleate pool boiling, flow boiling, film boiling, and evaporating falling films. 

 

A.4.2.3 Lee Model 

Lee [73] developed a simplified saturation model for evaporation and condensation 

processes.  The key premise of this model is that phase change is driven primarily by 

deviation of interfacial temperature from Tsat, and phase change rate is proportional to this 

deviation.  Therefore, phase change occurs while maintaining temperatures of the saturated 

phase and interface equal to Tsat.  The model assumes mass is transferred at constant 

pressure and quasi-thermo-equilibrium state according to the following relations: 
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 for condensation (T < Tsat) (A.36a) 

and 
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sat 

T
sat

 for evaporation (T > Tsat), (A.36b) 

where ri is an empirical coefficient called mass transfer intensity factor and has the units 

of s-1.  While the Lee model consistently aims to decrease the deviation from Tsat, there is 

great variability in the choice of ri value.  Researchers have used a very wide range of 

values, ranging from 0.1 to 1x107 s-1, in attempts to achieve least deviation.  Overall, 

optimum value of ri depends on many factors, including, but not limited to, specific phase-

change phenomenon, flow rate, mesh size, and computational time step.  A key challenge 

in using the Lee model is that different ri values have been recommended by different 
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researchers for similar experimental configurations, depending on specific setup of 

numerical model used. 

Chen et al. [163] suggested a substitute version to the Lee model, given by 
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sat  for condensation (T < Tsat), (A.37a) 

and 
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f

f
T T

sat  for evaporation (T > Tsat), (A.37b) 

eliminating Tsat from numerators of the source terms, and employing a modified mass 

transfer intensity factor, ri,m.  

While many researchers have used the Lee model in simulations, some [164-166] have 

shown that this model is essentially a derivative of the Schrage model.  Overall, the Lee 

model is a simplified saturation model that does not set limits on the value of mass transfer 

intensity factor ri.  While this lack of specificity is advantageous in that it allows 

investigators to assign their own optimum value, it also points to a lack of strong physical 

basis for the model.  The model’s tendency to maintain saturation temperature in both the 

saturated phase and along the interface serves as a good starting point to investigating 

rather complicated phase change phenomena without delving into the complex physics of 

the configuration in question.  Unlike the Schrage model, which allows phase change only 

along the interface, the Lee model allows for phase change both along the interface and 

within the saturated phase.  This is evidenced by the use of void fraction multipliers in the 

source terms, rendering the Lee model capable of accommodating phase change both 

within the vapor phase and along the interface for condensation, Eq. (A.36a), and within 

the liquid phase and along the interface for evaporation, Eq. (A.36b).  This feature allows 
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the model to simulate full scale flow boiling and flow condensation processes with relative 

ease, albeit with rather reduced accuracy.   

A summary of the three mass transfer models discussed in sections A.4.2.1-A.4.2.3, 

along with their important assumptions and applications, is provided in Table A.1. 

 

A.4.2.4 Other Techniques for Simulating Mass Transfer 

Other methods have also been used to simulate phase change, which rely on 

experimental data or heat transfer correlations.  Zhuan and Wang [167] used a Marangoni 

heat flux correlation [168,169] to calculate mass transfer rate during the initial phase of 

nucleate boiling, and a bubble growth rate correlation [170,171] to estimate mass transfer 

during the subsequent phase.  Jeon et al. [172] used an experimental heat transfer 

correlation developed by Kim and Park [173] for condensation to estimate source terms in 

their investigation of subcooled boiling.  Krepper et al. [174] used the following simple 

relations for mass transfer flux to model subcooled flow boiling: 

                       for subcooled liquid at the interface (T < Tsat), (A.38a) 

and                 for superheated liquid at the interface (T > Tsat), (A.38b) 

where hi is the heat transfer coefficient given by Ranz and Marshall [175].  Because these 

methods are correlation based, they should only be applied to the range of, and with fluids 

for which these correlations were developed.  Zu et al. [176] adopted a different empirical
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Table A.1:  Popular mass transfer models used in phase change simulations.  

Mass Transfer 
Model 

Energy jump condition [68] Schrage model [69] Lee model [73] 

General form 
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for condensation (T < Tsat)  
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for evaporation (T > Tsat). 
Simplified form 
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fg

  [155]   [72]  

Basis - Physics-based model relying on 
energy jump across vapor-liquid 
interface 

- Physics-based model based on kinetic theory of 
gases 

- Simplified model with phase 
change defined such that 
saturating conditions at the 
interface can be achieved 

Kinetic energy 
contribution 

- Does not account for kinetic energy 
contribution 

- Accounts for kinetic energy contribution - Does not account for kinetic 
energy contribution 

Interfacial 
temperature  

- Different methods/assumptions in 
numerical scheme used to maintain 
interfacial temperature at Tsat  

- Aims to maintain interfacial temperature at Tsat 

with the aid of empirical coefficient  
 

- Aims to maintain interfacial 
temperature at Tsat with the aid 
of empirical coefficient ri  

 
Source term 
implementation 

- Implemented at vapor-liquid 
interface 

- Requires identifiable interface for 
model to predict phase change 

- Implemented at vapor-liquid interface 
- Requires identifiable interface for model to 

predict phase change 

- Implemented at vapor-liquid 
interface and in saturated phase  

- Can perform bulk phase 
change calculations 

- Does not require preexisting 
interface 
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Table A.1:  Continued 

Mass Transfer 
Model 

Energy jump condition [68] Schrage model [69] Lee model [73] 

Empirical 
coefficients 

 - Empirical coefficient   needs to be assigned 
- Value of   is usually based on experimental 

data 

- Empirical coefficient ri needs 
to be assigned 

- Value of ri is based on 
minimizing deviation of 
interface temperature from Tsat 

Phase change 
configurations 
addressed in 
literature 

- Nucleate pool boiling 
- Film boiling 
- Flow boiling 
- Condensation 

- Nucleate pool boiling 
- Film boiling 
- Flow boiling 
- Evaporating falling films 

- Flow boiling 
- Condensation 
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approach to model “pseudo-nucleate boiling,” where vapor was artificially injected 

through an inlet located on the heated wall to simulate a nucleation site, followed by vapor 

generation at the bubble and superheated wall contact area based on experimental 

observations [177].  Using the VOF model to capture the interface during flow 

condensation, Zhang et al. [178] incorporated a large artificial source term to force 

interface temperature to Tsat, then calculated energy and mass source terms using the 

updated temperature field. 

Overall, while empirical models do simplify numerical solutions, they are often derived 

for specific fluids and valid over specific ranges of flow parameters.  They are also based 

on specific assumptions that may not be valid for phase change configurations different 

from the ones they are based upon.  

 

A.4.3 Incorporating Source Terms at Two-Phase Interface 

There are multiple ways in which source terms are incorporated in the computational 

grid.  A common method is to include them in cells crossing the interface.  This method 

was used in conjunction with the VOF scheme by Welch and Wilson [179], who calculated 

the mass source term by combining interfacial relations for heat transfer and continuity 

across the interface.  

  (A.39) 

where the mass flux source term is given by qi
" h

fg  . 
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Another common method is to smear the source term across a finite thickness of the 

interface. This is the method that was adopted by Son and Dhir [135] in their LS scheme. 

The mass flux source term, , appears in the following continuity equation:  

  (A.40) 

where H is the Heaviside function described earlier.  Because H in their study varies across 

three cells, the mass term is smeared across the same three cells.  Another approach to 

smearing the source term was recently recommended by Hardt and Wondra [88].  They 

first mathematically smeared source and sink terms across multiple cells on the grid around 

the interface. They then artificially shifted the source and sink terms towards the individual 

phases. Figure A.3(a) shows how Kunkelmann [180] smeared the source and sink terms 

using the Hardt and Wondra technique.  The smearing process is initiated with a sharp 

interface, with the source and sink terms concentrated at the interface.  After the smearing 

process is completed, the source (positive) terms and sink (negative) terms are shifted away 

from the interface.  Figure A.3(b) provides a 1-D depiction of cells around the interface, 

with source and sink terms after the smearing.  Figures A.3(c) and A.3(d) show volume 

fraction and corresponding mass source and sink terms across multiple cells, respectively.  

During evaporation, for example, the generated mass of vapor is concentrated on the vapor 

side of the grid, and the lost mass of liquid on the liquid side.  While this method correctly 

conserves mass, it is not physically correct, since it artificially shifts the mass generation 

or loss that occur at the interface towards the respective phases.  Nonetheless, this method 

does appear to improve stability of numerical schemes. This method can also be applied to  
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Fig. A.3: (a) Illustration of smearing process around two-phase interface.  (b) 1-D 
control volume of smeared interface.  (c) Variation of volume fraction in control 
volume depicted in part (b).   (d) Source term distribution in control volume depicted in 
part (b).   Adapted from Kunkelmann [180]. 
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condensation configurations by shifting the generated mass of liquid to liquid side, and lost 

mass of vapor to vapor side.   

A third approach to implementing mass transfer was adopted by Juric and Tryggvason 

[181], who solved iteratively for velocity of the interface markers.  This method can 

accurately capture interfacial topologies in simple two-phase situations, but less so in 

complicated scenarios like flow boiling.  

 

A.4.4 Early Implementation of Phase Change across Numerical Schemes 

The past few decades have witnessed widespread implementation of phase change 

models into a variety of computational schemes.  A variety of test cases have been 

investigated to assess the validity of the phase change models used.  They include 1-D 

Stephan problem [68,88,135,179,182], 1-D sucking interface problem [179,182,183] 2-D 

horizontal film boiling [135,179,181], 2-D and/or 3-D growth of spherical vapor bubble in 

superheated liquid [182,183], 2-D and/or 3-D bubble growth due to gravity [182], and 2-D 

and/or 3-D bubble growth and departure from heated wall [182-184]. 

Welch and Wilson [179] used the VOF method with Youngs’ enhancement [127] for 

interface advection and phase change based on energy jump condition to solve the 1-D 

Stephan problem, 1-D sucking interface problem, and 2-D film boiling problem.  Son and 

Dhir [135] used the LS method developed by Sussman et al. [123] and phase change based 

on energy jump condition to investigate interface evolution during film boiling.  While use 

of Continuum Surface Force (CSF) model in the VOF and LS methods works well in flows 

without phase change, it is less accurate with phase change.   To solve problems with CSF, 

Nguyen et al. [185] and Gibou et al. [68] used the ghost-fluid (GF) model in conjunction 
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with the LS scheme and phase change based on energy jump condition.  As indicated 

earlier, the GF model involves implicit representation of the Rankine-Hugoniot jump 

condition at the interface by adding an artificial fluid cell.  For Lagrangian schemes, Welch 

[186] and Son and Dhir [187] implemented phase change using triangular grid and moving 

coordinate scheme, respectively.  Welch used a phase change model based on energy jump 

condition.  Tomar et al. [188] implemented phase change in the CLSVOF scheme to 

investigate film boiling and bubble formation.  Juric and Tryggvason [181] extended the 

FT scheme to film boiling with phase change based on Tanasawa’s model.  Shin and Juric 

[154] used the FT scheme with level contour reconstruction in 3-D domain with phase 

change based on energy jump condition to investigate film boiling.  Sato and Niceno [182] 

implemented phase change using the mass-conservative CIP method to simulate bubble 

growth and nucleate boiling with phase change based on energy jump condition.  Jamet et 

al. [189] constructed a phase-field model for liquid-vapor flows with phase change.  Dong 

et al. [190] implemented phase change in the phase-field LB method by calculating heat 

and mass transfer using the thermal LB method by Inamuro et al. [191] combined with a 

multiphase model by Zheng et al. [192].  Zhang and Chen [193] implemented phase change 

in a pseudopotential LB approach to model nucleate boiling. 

 

A.5 Applications in Boiling and Condensation 

A.5.1 Boiling 

A.5.1.1 Bubble Nucleation, Growth and Departure 

The nucleate boiling process is characterized by liquid-to-vapor phase change from 

nucleation sites on a heated wall.  A finite degree of wall superheat is necessary for 



254 
 

 
 

nucleation to commence at the onset of nucleate boiling (ONB).  Nucleate boiling at low 

heat fluxes is characterized by discrete bubbles growing and departing from the nucleation 

sites.  High heat fluxes increase active nucleation site density, with bubbles showing 

tendency to merge laterally.  Important considerations necessary to simulate these flows 

include nucleation site density and heated wall thermal response, in addition of course to 

bubble dynamics and heat and mass transfer. Table A.2 summarizes published studies 

concerning simulation of bubble nucleation, growth, and departure during boiling.   

In their numerical study of bubble growth, Lee and Nydahl [227] used simplified 

depiction where the bubble was assumed to acquire hemispherical shape, trapping a wedge-

shaped liquid micro-layer at the wall, whose thickness was based on a model by Cooper 

and Lloyd [228].  Welch [229] used a finite-volume method and a moving unstructured 

mesh in conjunction with an interface tracking scheme to predict bubble growth, but did 

not simulate micro-layer formation.  In most studies, the thin liquid micro-layer is 

considered a region of extremely high heat transfer coefficient [195].   

Dhir and co-workers published a series of very successful simulations of bubble growth 

and departure in pool boiling, including the first complete simulation of saturated nucleate 

pool boiling by Son et al. [184].  They used the LS scheme and implemented phase change 

based on energy jump condition in 2-D axisymmetric domain that was subdivided into 

micro and macro regions as shown in Fig. A.4(a).  This is a form of multiscale modeling, 

where a separate model is used to solve the high-resolution portion of the domain, avoiding 

the need for finer mesh in this region.  Lubrication theory [194,195] was used to model 

radial variation of the micro-layer thickness.  Conservation of mass, momentum and energy
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Table A.2:  Summary of computational studies related to bubble nucleation, growth and departure in boiling processes.  

Author(s) Boiling 
Configuration 

Test 
Fluid 

Multiphase 
Scheme  

Mesha Mass Source Termsb  Remarks 

Level-Set (LS) Method 

Son et al. 
(1999) [184]  

Single bubble, 
nucleate pool 
boiling 

Water LS in 2-D 
axisymmetric 
domain 

R/lo × H/lo: 1 × 3 
where lo is characteristic 
length defined as 

l0 


g 
f
 

g 
 

Mesh: 96 × 288 
 

 

where k 1  k
f
1H   

and H is Heaviside function from Sussman 
et al. [123] 
 

 First paper involving complete 
numerical simulation of bubble 
growth, including micro-layer 
effects 

 Uses lubrication theory [194,195] to 
simulate micro-layer evaporation 

 Predicts cyclical variations in wall 
heat flux  

 Bubble growth pattern compares 
well with experimental observations 

 Shows bubble growth rate increases 
with wall superheat 

Singh  and 
Dhir (2000) 
[196]  

Single bubble, 
subcooled nucleate 
pool boiling 

Water LS in 2-D 
axisymmetric 
domain 

R/lo × H/lo: 1 × 3 
Mesh: 96 × 288 
 

 

where k 1  k
f
1H   

 

 Bubble growth investigated by 
modifying earlier model [184] to 
account for subcooling effects 

 Predicts higher subcooling 
decreases bubble growth rate and 
departure diameter, and increases 
bubble growth period 

Abarajith and 
Dhir (2002) 
[197]  

Single bubble, 
nucleate pool 
boiling with varying 
contact angle 

Water,  
PF 5060 

LS in 2-D 
axisymmetric 
domain 

R/lo × H/lo: 1 × 4 
Mesh: 98 × 298 
 

 

where k 1  k
f
1H   

 

 Bubble growth investigated by 
modifying earlier model [184] to 
account for contact angle (1-90°) 
effects  

 Predicts increasing contact angle 
increases bubble departure diameter  

 Good agreement achieved with 
Fritz correlation [198] 

 Because of small contact angle of 
PF 5060, smaller departure diameter 
predicted for PF 5060 compared to 
water 
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Table A.2: Continued 

Son et al. 
(2002) [199]  

Multiple bubble 
vertical merging, 
nucleate pool 
boiling  

Water LS in 2-D 
axisymmetric 
domain 

Domain: 2.5 mm × 10 
mm 
Mesh cell width: 26 μm 

 

where k 1  k
f
1H   

 

 Studied bubble growth and merger 
from same nucleation site using 
model similar to [184] 

 Bubble vertical merger lead to 
premature bubble departure of lower 
bubble  

 Bubble merger process compares 
well experimental observations 

 Increasing wall superheat increases 
vapor removal rate 

Mukherjee and 
Dhir (2004) 
[200]  

Multiple bubble 
lateral merging, 
nucleate pool 
boiling  

Water LS in 3-D 
domain 

L/lo × W/lo× H/lo: 1 × 1 × 
2 
Mesh: 72 × 72 × 144 
 

 

uses k 1  k
f
1H   

in energy equation 
 

 Studied bubble growth and merger 
laterally across multiple nucleation 
sites using model similar to [184] 

 Different lateral bubble orientations 
investigated 

 Bubble merger predicted to increase 
heat transfer rate 

 Good agreement in bubble shape and 
growth rate with experimental 
observations 

Aparajith et al. 
(2006) [201]  

Single bubble and 
multiple bubbles, 
nucleate pool 
boiling in reduced 
gravity 

Water,  
PF 5060 

LS in 3-D 
domain 

For 1×10-5ge:  
Domain: 114 mm × 114 
mm × 229 mm 
Mesh:  96 × 96 × 192  
 
For 1×10-2ge:  
Domain: 7.34 mm × 7.34 
mm × 14.68 mm 
Mesh: 192 × 192 × 384  

 

where k 1  k
f
1H   

 

 Studied bubble growth rate and 
merger in reduced gravity using 
model similar to [184] 

 Numerical results show, for water, 
departure diameter Dd ≈ g-0.5 and 
growth time, td ≈ g-0.93 , and, for PF 
5060, Dd ≈ g-0.42 and td ≈ g-0.82 

 Bubble departure diameter and time 
period reduced with reduced cavity 
spacing, with minimum around 0.25 
Dd (departure diameter for single 
bubble) 

 Similar Nusselt numbers achieved 
for two gravity cases  
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Table A.2: Continued 

Li and Dhir 
(2007) [202]  

Single bubble, 
nucleate flow 
boiling 

Water LS in 3-D 
domain 

Mesh: 144 × 96 × 48 
 

 

where k 1  k
f
1H   

 

 Studied bubble growth in slow flow 
boiling using model similar to [184] 

 Velocity of liquid varied from 0.076 
– 0.23 m/s, orientations from 
horizontal to vertical upflow,  gravity 
from 0.0001ge to 1ge 

 Upstream and downstream contact 
angles provided as input to model 

 Bubble motion captured well by 
model 

 Showed bubble diameter decreases 
with increasing flow velocity, but 
increases when gravity component 
perpendicular to flow direction is 
decreased 

 Showed high flow velocity negates 
effect of gravity on bubble liftoff 
diameter and growth period 

Son and Dhir 
(2008) [203]  

Nucleate pool 
boiling at high 
heat fluxes 

Water LS with ghost 
fluid (GF) 
method in 2-D 
and 3-D 
domains 

Non-uniform grid away 
from wall 
For 2-D domain: 
L/lo × H/lo: 2 × 50 
Mesh: 192 × 4800 
For 3-D domain:  
L/lo × W/lo × H/lo: 2 × 2 
× 20 
Mesh: 64 × 64 × 640 

 

uses k1  k
f
1F  

in energy equation, where F  is fractional 

function [203] 
 

 Studied nucleate boiling using model 
similar to [184] in fine 2-D and 
coarse 3-D domains 

 Showed high wall superheat of 25°C 
causes multiple bubble mergers, 
leading to formation of large vapor 
columns 

 Heat flux predictions in 2-D domain 
within ±25% of correlation 

Lee et al. 
(2010) [204]  

Nucleate pool 
boiling from 
microcavity 

Water LS with ghost 
fluid (GF) 
method in 2-D 
axisymmetric 
domain 

Non-uniform grid away 
from wall 
Domain: 5 mm × 14.2 
mm 
Mesh cell spacing: 0.01 
mm 

 

uses k 1  k
f
1F  

in energy equation 
 

 Studied nucleate boiling on 
microcavity including simplified 
micro-layer model [183] and effects 
of solid wall 

 Different cavity shapes compared, 
and truncated conical cavity found 
more effective for nucleation than 
cylindrical and conical cavities 
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Table A.2: Continued 

Lee and Son 
(2011) [205]  

Nucleate pool 
boiling on 
microstructured 
surface 

Water LS with ghost 
fluid (GF) 
method in 2-D 
axisymmetric 
domain 

Domain: 1.92 mm × 5.76 
mm 
Mesh cell spacing: 0.01 
mm 

 

where k1  k
f
1F  

and F  is fractional function 

 

 Studied nucleate boiling on 
microstructured surface using model 
similar to [204] 

 Varying cavity diameter between 0.1 
to 0.6 mm showed little influence on 
boiling heat transfer 

 Multistep cavity showed best 
performance, and microstructured 
cavities provided 43-81% 
enhancement in boiling heat transfer 

Nam et al. 
(2011) [206]  

Single bubble, 
nucleate pool 
boiling on 
superhydrophilic 
surface (φ = 10°) 

Water  LS in 2-D 
axisymmetric 
domain 

R/lo × H/lo: 1 × 3 
Mesh: 96 × 288 
 

 

where k 1  k
f
1H   

 

 Bubble growth investigated by 
modifying earlier model [184] to 
account for effects of 
superhydrophilic surface (φ = 10°)  

 Experiments showed bubble 
departure diameter is ~2.5 times 
smaller, and growth period ~4 time 
shorter on superhydrophilic surface 
compared to oxidized hydrophilic Si 
surface  

 Predictions of bubble shape and 
growth history agree well with 
experimental results  

Wu  and Dhir 
(2011) [207]  

Single bubble, 
subcooled nucleate 
pool boiling with 
non-condensables 

Water LS in 2-D 
axisymmetric 
domain, and 
moving mesh 
method [208] 

R/lo × H/lo: 1 × 2 
Mesh: 128 × 256 
 

 

where k 1  k
f
1H   

 

 Bubble growth investigated to 
account for effects of micro-layer 
and non-condensables in 5°C 
subcooled liquid  

 Predicts increasing non-condensables 
increases bubble equivalent diameter 
at any time during bubble growth 

 Non-condensables found to have 
minor effect on Nusselt number  

 Predicts reduced gravity causes 
upward flow of liquid at top of 
bubble  
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Table A.2: Continued 

Lee et al. 
(2012) [209]  

Nucleate pool 
boiling on 
microfinned 
surface 

Water LS with ghost 
fluid (GF) 
method in 2-D 
axisymmetric 
domain 

Non-uniform grid away 
from wall 
Domain: 1.28 mm × 
5.12 mm 
Mesh cell spacing: 0.01 
mm 
 

 

uses k
e
1  k

f
1F F  k

s
1(1 F ) 

in energy equation, where F  is fractional 

function and F
 additional LS fractional 

function between liquid and solid 

 Studied nucleate boiling on 
microcavity between microfins using 
model similar to [204] 

 Microfinned surface increased 
boiling heat transfer by 40-60% 
compared to plain surface 

 Bubble enhancement pronounced 
when bubble fin contact occurs, 
which increases liquid micro-layer 
area 

Dhir et al. 
(2012) [210]  

Single bubble, 
nucleate pool 
boiling in micro-
gravity 

Perfluoro-
n-hexane 

LS in 2-D 
axisymmetric 
domain 

R/lo × H/lo: 1 × 3 
Mesh: 96 × 288 
 

 

where k 1  k
f
1H   

 

 Studied bubble growth in 
microgravity using model similar to 
[184] and effect of dissolved gas 
[207] 

 Bubble shown to grow with no 
tendency to depart, similar to 
experimental observations 

 At high superheat, multiple bubble 
mergers observed, consistent with 
experiments 

Zhao et al. 
(2012) [211]  

Single bubble, 
nucleate pool 
boiling in micro-
gravity 

Water LS in 2-D 
axisymmetric 
domain 

R/lo × H/lo: 1 × 3 
Mesh: 100 × 300 
 

 

where k 1  k
f
1H   

 

 Studied bubble growth in varying 
gravity including effect of micro-
layer 

 Departure diameter decreases and 
growth period increases with 
decreasing wall superheat 

 Growth period and departure 
diameter decrease with decreasing 
contact angle and increase with 
decreasing gravity 

 Area averaged heat flux proportional 
to 1.5th power of wall superheat for 
different gravities  
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Table A.2: Continued 

Aktinol and 
Dhir (2012) 
[212]  

Single bubble, 
nucleate pool 
boiling, solid wall 
included in 
simulations 

Water LS in 2-D 
axisymmetric 
domain 

Domain: 2.5 mm × 10 
mm 
R/lo × H/lo: 1 × 4 
 

 

where k 1  k
f
1H   

 Studied bubble growth by including 
effects of solid wall, using model 
similar to [184] 

 Iterative procedure used to match 
temperature and heat flux at solid 
wall 

 Time dependent heat flux 
distribution varied by four orders of 
magnitude, with peak near triple 
point where micro-layer evaporation 
occurs 

 Waiting time decreases with 
increasing superheat; wall thickness 
has significant impact on waiting 
time 

Kunkelmann 
and Stephan 
(2009) [183]  

Single bubble, 
nucleate pool 
boiling 

HFE-7100 VOF in fine 2-
D axisymmetric 
domain (using 
OpenFOAM) 

Domain: 2 mm × 4 mm 
 e 

2
2

hfg
2

2R
gas

g

T
sat
3 2

 

where γ = 1 

 

Procedure to smear mass source term is 
similar to that by Hardt and Wondra [88] 

 Simulated nucleate boiling for single 
bubble including simplified model 
for micro-layer from [213] 

 Bubble growth and departure 
predictions provided 

 No comparisons made with 
experiments 

Kunkelmann 
and Stephan 
(2010) [214]  

Single bubble, 
nucleate pool 
boiling 

HFE-7100 VOF with LS 
for interface 
reconstruction 
in a 2-D 
axisymmetric 
domain (using 
OpenFOAM) 

Non-uniform grid 
Finest mesh cell size: 4 
μm 

 

Procedure to smear mass source term is 
similar to that by Hardt and Wondra [88] 

 Simulated nucleate boiling, 
including micro-layer model and 
transient conduction in solid wall  

 Using LS method helped resolve 
issues with VOF at three-phase 
contact line, and also reduced mesh 
reqd. 

 Bubble growth rate and departure 
diameter agree with experiments 
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Table A.2: Continued 

Kunkelmann 
and Stephan 
(2010) [215]  

Single bubble and 
multiple bubbles, 
nucleate pool 
boiling 

HFE-7100 VOF with LS in 
3-D domain 
(using 
OpenFOAM) 

Non-uniform grid 
Finest mesh cell size: 4 
μm 

 

Procedure to smear mass source term is 
similar to that by Hardt and Wondra [88] 

 Investigated nucleate boiling of 
single bubble and multiple bubbles 
using formulation similar to [214] 

 Predictions for single bubble growth 
and departure show reasonable 
agreement with experimental data  

 Lateral bubble merger shown to form 
droplets inside merged bubble as 
observed in experiments 

Kunkelmann 
and Stephan 
(2012) [216]  

Single bubble, 
nucleate pool 
boiling in reduced 
gravity, 
microlayer 
evaporation 

FC-72 VOF with LS in 
2-D domain  
(using 
OpenFOAM) 

Non-uniform grid 
Finest mesh cell size: 4 
μm 

 

Procedure to smear mass source term is 
similar to that by Hardt and Wondra [88] 

 Investigated nucleate boiling of 
single bubble at 0.2 ge, using three-
phase contact line formulation from 
[214]  

 Predictions for advancing and 
receding contact lines agree well 
with experimental observations  

 Predictions reveal heat transfer at 
three-phase contact line governed by 
micro-layer evaporation and transient 
conduction 

Sielaff et al. 
(2015) [217]  

Multiple bubbles, 
nucleate pool 
boiling, bubble 
coalescence 

FC-72 VOF in 3-D 
domain (using 
OpenFOAM) 

Domain: 2 mm × 2 mm× 
2 mm 
Mesh cell size at 
interface:  5 μm 
 

 

Procedure to smear mass source term is 
similar to that by Hardt and Wondra [88] 

 Investigated nucleate boiling during 
coalescence of two bubbles at 
different pressures, with micro-layer 
effects accounted for using 
simplified formulation similar to 
[183] 

 Predicted residual droplet formation 
in merged bubble for certain 
pressures  

 Heat transfer predictions compare 
well with experiments 
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Table A.2: Continued 

Chen and 
Utaka (2015) 
[218]  

Single bubble, 
nucleate pool 
boiling 

Water VOF in 2-D 
axisymmetric 
domain (using 
Fluent) 

Domain: 6 mm radius, 
10 mm fluid, 2 mm solid 
height 
Minimum mesh cell size:  
2.5 μm 
 


e


2
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h
fg
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g

T
sat
3 2

 

where γ = 1 
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where Δl is normal distance between 
superheated liquid cell and interface 

 

 Investigated nucleate bubble growth, 
with micro-layer evaporation 
accounted for as source term 

 Simulated bubble growth to 
detachment  

 Predictions of maximum micro-layer 
radius agree with experiments 

 Predicts micro-layer becomes thinner 
during bubble growth, followed by 
dryout commencing at center of 
micro-layer and growing outwards 

Jia et al. 
(2015) [219]  

Single bubble, 
nucleate pool 
boiling  

R113 VOF in 2-D 
domain 

Domain: 2.5 mm × 4 
mm 
Mesh cell size:  50 μm 
 


e


2
2

h
fg
2

2R
gas


g

T
sat
3 2

 

where γ = 1 

 

 

Procedure to smear mass source term is 
similar to that by Hardt and Wondra [88] 

 Investigated nucleate bubble growth, 
including micro-layer evaporation as 
in [213] 

 Bubble shape predictions agree well 
with experiment, but departure time 
is over-predicted 

Other Methods 

Yoon et al. 
(2001) [220]  

Single bubble, 
subcooled 
nucleate pool 
boiling  

Water Mesh free 
(MPS-MAFL) 
method in 2-D 
domain  

Domain: 10 mm × 15 
mm 
Number of initial 
computing points: 4393 

Evaporation and condensation rates 
calculated based on interface heat flux 

 Used mesh free method to simulate 
bubble growth and departure, 
without accounting for micro-layer 
effects 

 Bubble growth rate compares well 
with prior experiments; bubble 
dynamics follow Fritz correlation 
[198] 
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Table A.2: Continued 

Shin et al. 
(2005) [221]  

Single bubble, 
nucleate pool 
boiling 

Water Level contour 
reconstruction 
method 
(LCRM) in 3-D 
domain  

L/lo × W/lo × H/lo: 6.44 × 
6.44 × 5.6  
Mesh: 46 × 46 × 40 
  
L/lo × W/lo × H/lo: 4.2 × 
4.2 × 5.6  
Mesh: 30 × 30 × 40 
 
L/lo × W/lo × H/lo: 3.08 × 
3.08 × 5.6 
Mesh: 22 × 22 × 40 

 

 

 Used LCRM method to simulate 
bubble nucleation, without 
accounting for micro-layer effects 

 Effects of nucleation site density 
incorporated in model  

 Good agreement with Nusselt 
number correlations achieved 

Sato and 
Niceno (2013) 
[182]  

Nucleate pool 
boiling, bubble 
growth and 
departure from 
single cavity 

Water Mass 
conservative 
constrained 
interpolation 
profile (CIP) 
method in 3-D 
domain 

Domain: 8 mm × 8 mm× 
16 mm 
Minimum mesh cell size 
(for three separate 
grids): 0.125 mm, 0.083, 
0.063 mm  

 

 

 

 Investigated nucleate boiling using 
mass conservative method, including 
micro-layer effects [213] 

 Predicted bubble shapes and bubble 
departure rates compare well with 
experimental data 

 Mass conservation strictly followed 

Sato et al. 
(2013) [222]  

Single bubble, 
horizontal and 
vertical nucleate 
flow boiling, 
bubble growth and 
departure 

Water Mass 
conservative 
constrained 
interpolation 
profile (CIP) 
method in 3-D 
domain 

Horizontal Flow: 
Domain: 12 mm × 8 mm 
× 10 mm 
 
Vertical Flow: 
Domain: 32 mm × 8 mm 
× 10 mm 
 
Minimum mesh cell 
size: 62.5 μm 

 

where kT is turbulent thermal conductivity 

 

 

 Investigated nucleate flow boiling in 
horizontal and vertical orientations, 
incorporating turbulence effects in 
earlier model [182]  

 Bubble shape, lift-off time, and lift-
off diameter investigated 

 Predictions show good agreement 
with prior experiments and 
simulations by Li and Dhir [202] 
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Table A.2: Continued 

Ling et al. 
(2014) [223]  

Single bubble and 
two bubbles, 
nucleate pool 
boiling, bubble 
merger 

Water Coupled 
volume-of-fluid 
and level set 
(VOSET) 
method in 2-D 
domain 

Domain: 10 mm × 10 
mm 
Minimum mesh cell 
size:  1/8 mm 
 

 

 

 Investigated nucleate bubble growth 
and departure for single bubble and 
multiple bubbles, including micro-
layer effects according to model by 
Ma et al. [224] 

 Employed temperature interpolation 
method at interface instead of 
constant vapor temperature 
assumption made in many studies 

 Heat flux predictions agree well 
prior with correlation 

Tryggvason 
and Lu (2014) 
[225]  

Nucleate pool and 
flow boiling, 
bubble growth and 
departure from 
single cavity 

Water Front-tracking 
(FT) method in 
3-D domain  

Domain: 7.5 mm × 7.5 
mm × 7.5 mm 
Mesh: 64 × 64 × 64  

 

 

 Used FT method to simulate bubble 
nucleation from single nucleation 
site, without accounting for micro-
layer effects 

 Preliminary results obtained for 
vertical orientation with and without 
flow  

Lal et al. 
(2015) [226]  

Horizontal 
subcooled flow 
boiling, bubble 
growth and 
departure from 
single cavity 

Water Mass 
conservative 
constrained 
interpolation 
profile (CIP) 
method in 3-D 
domain 

Domain: 12 mm × 8 
mm× 10 mm 
Number of mesh cells:  
1,244,160 
 

 

 

 

 Investigated nucleate bubble growth 
and departure for subcooled flow 
boiling 

 Simulations capture bubble 
elongation and enhanced cooling due 
to bubble motion  

 Bubble equivalent diameter and 
bubble base diameter overpredicted 

 Simulations compare well with 
experimental observations of bubble 
growth 

a  Indicated mesh sizes are optimum sizes chosen by original authors in simulations  
b  (1) Positive and negative signs of mass source term may differ from those used by original authors due to differences in definition used.  (2) Some 

variations in mass source terms are expected due to scalar versus vector definitions.  (3) Only source term formulations are described in this table; exact 
usage in continuity equations should be obtained from original sources.  (4) Micro-layer formulation is not included in description of source term in this 
table. 
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Fig. A.4: (a) Computational domain used for simulation of bubble nucleation in pool boiling with micro and macro regions.  (b) 
Bubble shape predictions using 2-D axisymmetric model with LS scheme and energy jump condition, compared to captured 
image for water with ΔTw = 8.5°C and φ  = 50°.  (c) Effects of wall superheat on bubble growth, and bubble shape at departure for 
water with φ  = 38°.   Adapted from Son et al. [184].   
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in the micro-layer were presented, respectively, as 

  (A.41) 

  (A.42) 

and  



" .w i
f

T T
q k  (A.43) 

In the macro region, they used the LS scheme for interface tracking.  The vapor 

temperature was set equal to Tsat, and effective conductivity was dependent on conductivity 

of liquid alone and given by  

 k1  k
f
1H . (A.44) 

Son et al. used this approach to investigate bubble shape during growth and departure 

from a single nucleation site.  For a wall superheat of 8.5°C, simulation results of bubble 

growth compare well with experimental data, as shown in Fig. A.4(b), though slight 

differences are evident in the neck region.  They were also successful in predicting the 

effects of superheat on bubble growth rate and departure diameter as shown in Fig. A.4(c).  

Singh and Dhir [196] extended the model to subcooled nucleate pool boiling and showed 

that increased subcooling decreases bubble growth rate and departure diameter and 

increases growth period.  Abarajith and Dhir [197] extended this model to investigate the 

influence of fluid properties, surface wettability, and contact angle.  They showed that 

dielectric fluid PF-5060, whose surface tension is much smaller than that for water, 

produces smaller growth rate and smaller departure diameter than water.  Nam et al. [206] 

studied bubble dynamics of water on a superhydrophilic surface and, once again, showed 

good agreement with experiments.  By adding the species conservation equation to earlier 
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formulations, Wu and Dhir [207] investigated the effects of noncondensables on subcooled 

pool boiling using the coupled level set and moving mesh method developed by Wu et al. 

[208].  They found that noncondensables have minimal influence on heat transfer.  

Aparajith et al. [201] extended the 2-D model of Son et al. [184] to 3-D, and numerically 

simulated bubble growth for water and PF-5060 in reduced gravity, concluding that 

departure diameter and bubble growth time vary with gravity according to Dd ~ g-0.5 and td 

~ g-0.9, respectively.  Dhir et al. [210] then studied bubble growth of perfluoro-n-hexane 

for g/ge = 1x10-7 and showed excellent agreement with experimental data.  Studies by a 

different group showed that decreasing gravity increases growth time and departure 

diameter [211].  Son et al. [199] and Mukherjee and Dhir [200] simulated vertical bubble 

merger from a single nucleation site in 2-D domain, and lateral bubble merger from 

separate nucleation sites in 3-D domain, respectively, and, in both cases, achieved good 

agreement with experimental data.  All earlier studies by Dhir and co-workers employed 

constant wall temperature, thereby neglecting thermal response of the wall.  Aktinol and 

Dhir [212] incorporated wall response in their simulations and concluded that wall heat 

flux varies by up to four orders of magnitude during bubble growth.  They also found that 

wall thickness and material have a significant impact on waiting time between successive 

nucleations.   

More recently, Dhir and co-workers also addressed the influence of slow fluid motion 

on bubble growth and departure.  Li and Dhir [202] simulated single bubble nucleation in 

horizontal flow and vertical upflow for liquid flow velocities from 0.076 to 0.23 m/s in 3-

D domain, using experimental contact angle data as input to the model.  Fig. A.5(a) and 

A.5(b)  compare  experimental  results  and numerical predictions of volume fraction for a
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Fig. A.5: Predictions of bubble shape for single bubble during flow boiling of water at 
0.076 m/s and ΔTw = 5.3°C using LS scheme in 3-D domain and energy jump 
condition, and corresponding experimental images for (a) horizontal orientation, and 
(b) vertical upflow orientation.  Adapted from Li and Dhir [202]. 

(a) (b) 
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liquid velocity of 0.076 m/s and 5.3°C wall superheat for horizontal flow and vertical 

upflow, respectively.  They achieved good agreement for horizontal flow, with the bubble 

initially assuming spherical shape and then getting tilted in the flow direction and growing 

asymmetrically.  For vertical upflow, reasonable agreement was achieved in terms of 

bubble location and shape, sliding motion, and eventual lift-off from the wall.  More 

recently, Son and Dhir [203] revisited the problem of nucleate pool boiling, by addressing 

high wall heat fluxes.  By implementing the GF method and LS scheme, they used 2-D and 

3-D simulations to demonstrate a significant increase in bubble merger in both vertical and 

lateral directions at high heat fluxes.   

Using a simulation approach similar to that of Dhir and co-workers but with a 

simplified micro-layer model from [183], Lee et al. [204] investigated bubble growth on a 

microcavity.  Lee and Son [205] and Lee et al. [209] continued pursuing this approach to 

study boiling heat transfer enhancement on microstructured and microfined surfaces, 

respectively.  

Kunkelmann and Stephan [183] simulated bubble growth using the VOF scheme in the 

CFD software OpenFOAM in 2-D axisymmetric domain, with phase change based on 

Tanasawa’s model.  Unlike the approach used by Dhir and co-workers, Kunkelmann and 

Stephan used a micro-layer model developed by Stephan and Busse [213] to study bubble 

growth and departure on a heated wall.  They complemented this study with simulations of 

nucleate boiling of HFE-7100 using a coupled VOF and LS model in OpenFOAM, but 

with phase change based on energy jump condition [214,215].  This approach greatly 

reduced mesh refinement requirements at the interface.  They examined single bubble 

growth and departure, and lateral bubble merger, while also including micro-layer effects 
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at the three-phase contact line.  In a separate study, Kunkelmann et al. [216] investigated 

both experimentally and numerically the effects of three-phase contact line on evaporative 

heat transfer.  Sielaff et al. [217] used a VOF scheme similar to [183], with phase change 

based on energy jump condition, to study lateral bubble coalescence; their simulations were 

able to capture residual droplets in merged bubbles.  Chen and Utaka [218] solved micro-

layer evaporation separately using experimentally measured micro-layer thickness, and 

implemented computed mass, momentum and energy source terms in the VOF scheme.  Jia 

et al. [219] used the micro-layer formulation by Stephan and Busse [213] in their VOF 

scheme. 

Sato and Niceno [182] studied nucleate boiling using the mass conservative constrained 

interpolation profile (CIP) scheme in 3-D domain, including a micro-layer treatment 

similar to that of Kunkelmann and Stephan [183], with phase change based on energy jump 

condition.  Figure A.6(a) shows a sample of Sato and Niceno’s bubble growth sequence 

during nucleate boiling in water, along with the temperature and velocity fields.  Bubbles 

are depicted growing and departing, followed by emergence of a new bubble at the 

nucleation site.  Figure A.6(b) shows corresponding temporal variations of integrated wall 

heat flux and bubble radius, which also shows minimum heat flux coinciding with bubble 

departure from the wall.  Figure A.6(c) shows predictions agree quite well with 

experimental results in terms of bubble shape and bubble departure period.  Sato et al. 

[222] later extended the model to vertical and horizontal flow boiling by incorporating in 

the phase change model turbulent thermal conductivity according to 

  (A.45) 
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Fig. A.6: Predictions of bubble growth in saturated nucleate pool boiling of water 
computed using mass conservative CIP scheme in 3-D domain and energy jump 
condition.  (a) Temporal variations of area averaged wall heat flux and bubble 
radius.  (b) Comparison of computed and experimental bubble shape.  (c) Bubble 
growth predictions, with right half of bubble showing bubble shape and left half 
temperature field; total duration of sequence is approximately 0.027 s.  Adapted 
from Sato and Niceno [182].  
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and demonstrated reasonable agreement with experiments.  Lal et al. [226] investigated 

near-saturated flow boiling using Sato and Niceno’s [182] model, but used a very fine grid, 

and were therefore able to account for turbulence without using Eq. (A.45).  They achieved 

good overall agreement of bubble shape and diameters with experimental data.  It should 

be mentioned that this CIP method conserves mass, while the FT and LS methods do not. 

In another study, Ling et al. [223] studied nucleate boiling of a single bubble, two-

bubbles, and bubble mergers using the VOSET scheme in 2-D domain with the micro-layer 

model of Ma et al. [224].  There have also been a number of studies of bubble nucleation, 

growth and departure that do not account for micro-layer evaporation effects.  Among 

those, Aus der Wiesche [230] simulated nucleate pool boiling with the VOF scheme.  

Kunugi et al. [231] used a different method for interface reconstruction called Multi-

Interface Advection and Reconstruction Solver (MARS) developed in [232] in the VOF 

scheme to study bubble nucleation in pool boiling and flow boiling.  Tryggvason and Lu 

[225] used the FT scheme to simulate nucleate boiling in 3-D domain.  Shin et al. [221] 

extended the LCRM method also to simulate nucleate boiling in 3-D domain.  Yoon et al. 

[220] used the mesh free technique (MPS-MAFL) developed by Koshizuka et al. [233] to 

simulate bubble growth, departure and rise in nucleate pool boiling.  Some bubble 

nucleation simulations have also been performed using LB methods [234-236].  

 

A.5.1.2 Film Boiling 

Film boiling involves formation of a continuous vapor film on the heated wall, blocking 

any wetting of the wall by liquid.  Therefore, the wall heat transfer coefficient is 

considerably poorer than in nucleate boiling.  Here, vapor bubbles are released with rather 
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uniform frequency from the wavy liquid-vapor interface, rather than from the wall, which 

is why film boiling is easier to model than nucleate boiling.  This relative simplicity has 

spurred a large number of studies aiming to simulate film boiling as a precursor to future, 

more complex phase change phenomena. Table A.3 provides a summary of prior studies 

involving simulations of film boiling.     

Early film boiling simulations were performed by Son and Dhir’s [187], who adopted 

a moving body-fitted coordinate system.  They used 2-D axisymmetric domain and 

modeled surface tension using the continuum surface force (CSF) model by Brackbill et 

al. [149].  Son and Dhir’s model showed good predictions of bubble size and breakoff 

diameter, while Nusselt number predictions were lower than experimental data.  However, 

this model is applicable only as long as a single interface is present.  Therefore, once the 

bubble detaches, and multiple interfaces are formed, the computation is brought to an end.  

Also using a moving body-fitted coordinate system, Banerjee and Dhir [248,249] 

investigated subcooled film boiling on a horizontal disc in 2-D axisymmetric domain.  

They achieved good agreement with experiments in terms of interface shape, temporal 

position of interface, interface growth rate, and wall heat flux.   

Juric and Tryggvason [181] simulated film boiling using the FT scheme in 2-D domain, 

with phase change based on Tanasawa’s model [72], but did not encounter the disjointed 

interface problem.  By inputting wall heat flux as boundary condition instead of wall 

temperature (as was used in many other studies), they studied growth of initial instability 

of the film along with bubble departure.   Figure A.7(a)  shows  predictions  for  a  Morton 
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Table A.3.  Summary of numerical studies on film boiling. 

Author(s) Two-phase 
system 

Test 
Fluid 

Multiphase 
Scheme  

Mesha Mass Source termsb Remarks 

FT Method 

Juric and 
Tryggvason 
(1998) [181]  

Film boiling on a 
horizontal 
surface 

Hydrogen 
(Morton 
number 
defined 
separately) 

FT in 2-D 
domain 

For Morton number Mo =1e-
3: L/ls × H/ls: 57.4 × 180 
where ls is length scale 

defined as 

1/32

2

f

s

fe

l
g





 
 
 

 

Mesh: 150 × 300 
 
For Morton number Mo =1e-
6: L/ls × H/ls: 121 × 363 

3 2

2 1
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fg
e

g g satgas

h

v v TR


 


 

 

where γ = 1 

g em f  

Where f is a function of different 
parameters including the interface 
temperature and saturation 
temperature. The complete form for 

gm  can be found in [181] 

 Studied film boiling by providing a 
wall heat flux boundary condition  

 Used an iterative procedure to 
calculate the interface velocity and 
interface temperatures 

 Simulations predicted bubble growth 
and departure pattern which did not 
exactly match experimental 
observations 

 Overall predicted heat transfer rates 
and wall temperatures showed good 
agreement with experiments 

Shin and Juric 
(2002) [154]  

Film boiling on a 
horizontal 
surface 

unknown fluid FT with level 
contour 
reconstruction 
method in 3-D 
domain 

Domain 1: 0.08 m × 0.08 m × 
0.16 m  
Mesh: 30 × 30 × 60  
 
Domain 2: 0.16 m × 0.16 m × 
0.32 m 
Mesh: 60 × 60 × 120 
 
 

i f g
f g

T T
q k k

n n

       
   

i
g

fg

q
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 Studied film boiling on horizontal a 
horizontal surface to understand 
single bubble and multiple bubble 
interactions by removing the iterative 
procedure by [181] 

 Results showed method is able to 
capture interface merging and 
breakup during film boiling 

Esmaeeli and 
Tryggvason 
(2004) [237]  

Film boiling on a 
horizontal 
surface 

Water FT in 3-D 
domain 

Domain: λd3 × λd3× 2λd3,  
where λd3 is 3-D most 
dangerous wavelength 
defined as 

3 22d d  , 

where λd2 is 2-D most 
dangerous wavelength 
defined as 

 2
32d

f gg

 
 




 

Mesh: 96 × 96× 192 

i f g
f g

T T
q k k

n n

       
   

i
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q
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 Studied film boiling on a horizontal 
plate by removing the iterative 
procedure by [181] 

 Predictions obtained for bubble 
growth  

 For high superheats, as the bubble 
grows, mushroom shaped behavior 
was observed 

 
 
 



 
 

 
 

 
275 

Table A.3: Continued 

Esmaeeli and 
Tryggvason 
(2004) [238]  

Multimode film 
boiling across a 
horizontal 
surface  

Water FT in 2-D and 3-
D domain 

For 2-D domain: 
10λd2 × 2λd2 
Mesh: 1280 × 256 
 
For 3-D domain 1:  
λd3 × λd3× 2λd3 Mesh: 96 × 
96× 192  
 
For 3-D domain 2:  
1.4λd3 × 1.4λd3× 1.4λd3 
Mesh: 128 × 128× 128 

i f g
f g

T T
q k k

n n

       
   

i
g

fg

q
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h


  

 Studied film boiling on a horizontal 
plate using the method by [237] and 
simulated multimode film boiling 

 Predicted bubble distribution 
behavior for bubbles generated at 
multiple nodes in the domain 

 High superheats showed interaction 
between vapor jets generated at 
different nodes 

 Nusselt number predictions agreed 
well with correlation  

Esmaeeli and 
Tryggvason 
(2004) [239]  

Film boiling on a 
single horizontal 
cylinder and 
multiple 
cylinders  

Water and 
unknown 
fluidc 

FT in 3-D 
domain 

Domain: 0.06 m × 0.06 m × 
0.15 m 
Mesh: 64 × 64× 160 
 

i f g
f g

T T
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n n
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 Studied film boiling on horizontal 
cylinder/s using the method by [237] 
and included effect of immersed solid 

 Results qualitatively matched 
expected film boiling behavior 

LS Method 
Son and Dhir 
(1998) [135]  

Film boiling on a 
horizontal 
surface 

Water LS in 2-D 
axisymmetric 
domain 

Domain: Width is 

22 / 2d  with node 

center and antinode center 
being the endpoints.  
Mesh: 128 × 256 
 

g
fg

k T
m

h


   

where 1 1 (1 )gk k H     

and H is Heaviside function from 
Sussman et al. [123] 
 

 Studied film boiling near critical 
pressures for varying wall superheats 

 For low superheats, interface rises, 
bubbles break off, and the interface 
drops down alternatively at the nodes 
and the antinodes 

 At high superheats, stable vapor jets 
are formed at the both nodes and 
antinodes, and bubbles are released at 
the top of vapor columns 

 Interface behavior was in good 
agreement with experimental 
observations  

 Nusselt number predictions agreed 
well with correlations 

Bazdidi-Tehrani 
and Zaman 
(2002) [240]  

Film boiling on a 
vertical surface 

Water LS in 2-D 
axisymmetric 
domain 

Domain: λd,KH × λd,KH/2 where 
λdKH is the most dangerous 
Kelvin–Helmholtz instability 
wavelength. 
Mesh: 256 × 128 
 

g
fg

k T
m

h


   

where 1 1 (1 )gk k H     

 Studied film boiling in vertical 
orientation 

 Predicted heat transfer coefficients 
show reasonable agreement with 
analytical model and experimental 
data 
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Table A.3: Continued 

Son and Dhir 
(2007) [241]  

Film boiling on a 
horizontal 
cylinder 

Water LS with ghost 
fluid method in 
2-D 
axisymmetric 
domain and 3-D 
domain 

Non-uniform grid away from 
cylinder  
 
For 2-D domain:  
|L/lo| ≤ 3.3 and -3.6 ≤ H/lo ≤ 
11.5 
where lo is the characteristic 
length defined as 

l0 


g 
f
 

g 
. 

Minimum mesh cell size: 
0.005lo 
 
For 3-D domain: 
|L/lo| ≤ 3.3, -3.6 ≤ H/lo ≤ 11.5 
and |W/lo| ≤ 3  
Minimum mesh cell size: 
0.085lo 

 .i f f g gq n k T k T    
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 Studied film boiling on a horizontal 
cylinder and included effect of 
immersed solid 

 Nusselt number predictions 
compared well with correlations 
available in literature 

Son and Dhir 
(2008) [242]  

Film boiling on a 
horizontal 
cylinder  

Water LS with ghost 
fluid method in 
3-D domain 

Non-uniform grid away from 
cylinder 
 
Domain: |L/lo| ≤ 3.3, -3.6 ≤ 
H/lo ≤ 11.5 and |W/lo| ≤ 
0.5cλdF 
where λdF is the most 
dangerous wavelength for a 
flat plate and c was varied 
from 0 to 1. 
Minimum mesh size in x and 
y direction: 0.01lo. Minimum 
mesh size in z direction: 
0.057lo 

 .i f f g gq n k T k T    
  

i
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fg
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 Studied film boiling simulation on a 
horizontal cylinder  

 For large diameters, bubbles were 
released at different circumferential 
locations of the cylinder. For small 
diameters, discrete bubbles are 
observed being released on the top of 
the cylinders. For even smaller 
diameters, bubble mergers were 
observed  

 Nusselt number predictions 
compared well with correlation 

Gibou et al. 
(2007) [68]  

Film boiling on a 
horizontal 
surface 

unknown 
fluidc 

LS with ghost 
fluid method in 
2-D domain 

Domain: λd2 × 3λd2 
Mesh: 140 × 420 
 
 

 .i f f g gq n k T k T    
  

i
g

fg

q
m

h


  

  

 Studied film boiling on a horizontal 
surface 

 Results showed correct qualitative 
behavior expected in film boiling 

 Long vapor jets with vapor bubbles at 
its top are observed which matches 
with prior studies like [179] 
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Table A.3: Continued 

Kim and Son 
(2013) [243]  

Film boiling 
during circular 
jet impingement 
on a horizontal 
surface 

Water  LS in 2-D 
axisymmetric 
domain with a 
thin film model 
close to the wall 

Domain: 6.4 mm × 15 mm 
Minimum mesh cell sizes (for 
three separate grids): 0.01 
mm, 0.005 mm, 0.001 mm  

 (1 ) .i a f f g gq n k T k T    
  

where αa is void fraction of 
surrounding air. 

i
g

fg

q
m

h


  

 

 Studied film boiling during jet 
impingement on a flat surface 

 Coarser meshes were used along with 
a thin film model, and results were 
compared well to finer meshes where 
the thin film model was not required 

 Obtained good agreement between 
both approaches 

VOF Method 
Welch and 
Wilson (2000) 
[179]  

Film boiling on a 
horizontal 
surface 

unknown 
fluidc 

VOF in 2-D 
domain 

For wall superheat of 5 K and 
10 K: 
Domain 1: λd2/2 × 3λd2/2  
Mesh: 64 × 192 
 
Domain 2: λd2/2 × 3λd2 
Mesh: 64× 384 
 
For high heat flux case: 
Domain: Test case by Juric 
and Tryggvason [181] was 
studied.  
Mesh:  64 × 320 

i f g
f g

T T
q k k

n n

       
   

 i
g

fg

q
m

h


  

 

 Studied saturated film boiling on a 
horizontal surface 

 Results showed correct qualitative 
behavior expected in film boiling 

 Nusselt number predictions 
compared well with correlation 

 For high heat flux test case, results of 
bubble shape, velocity field and 
temperature field are similar to those 
obtained by [181]   

Welch and 
Rachidi (2002) 
[244]  

Film boiling on a 
horizontal 
surface including 
effect of the solid 
wall 

Water VOF in 2-D 
domain 

Fluid domain: λd2/2 × λd2,  
Solid domain: λd2/2 × λd2/2 
Mesh for fluid domain: 180× 
360  
 

 

i f g
f g

T T
q k k

n n

       
   

 i
g

fg

q
m

h


  

 

 Studied film boiling simulation on a 
horizontal surface including 
conjugate heat transfer near critical 
pressures 

 Results showed solid increasing the 
temperature fluctuations at the solid 
boundary 

 Predicted quasi-steady periodic 
Nusselt numbers agreed reasonably 
with correlations   

Agarwal et al. 
(2004) [245]  

Film boiling on a 
horizontal 
surface 

Water VOF in 2-D 
domain 

Domain: λd2/2 × λd2 
Mesh: 180× 360  
 
 

i f g
f g

T T
q k k

n n

       
   

 i
g

fg

q
m

h


  

 

 Studied film boiling on a horizontal 
surface  

 Captured typical behavior of bubble 
growth and departure with its 
periodic nature was  

 Maximum heat transfer was directly 
related to minimum film thickness 

 Nusselt numbers were slightly under-
predicted when compared to 
correlations 
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Table A.3: Continued 

Hardt and 
Wondra (2008) 
[88]  

Film boiling on a 
horizontal 
surface 

unknown 
fluidc 

VOF in 2-D 
domain 

Domain: λd2/2 × 3λd2 
Mesh 1: 64 × 192 
Mesh 2: 100 × 300 
 

2

3 2

2
2 2

fg g
e

satgas

h

TR


 




 

where γ = 1 
 e sat

g
fg

T T
m

h

 
  

Mass source term was smeared 
across the interface using a new 
scheme  

 Studied film boiling on a horizontal 
surface  

 Mushroom shaped bubbles connected 
to vapor jets were identified  

 Behavior matched what was observed 
by  [68] 

Yuan et al. 
(2008) [246]  

Natural and 
forced 
convection film 
boiling around a 
sphere 

Water VOF in 2-D 
domain with 
body fitted 
coordinates 

Domain: 0.1 m × 0.2 m 
Mesh: 120 × 120 
 

i f g
f g

T T
q k k

n n

            
 

 

Where  is radiation heat transfer 
participating in phase change 

 i
g

fg

q
m

h


  

 

 Studied natural convection and 
forced convection film boiling 
around a sphere  

 Energy term included the effect of 
radiation heat transfer 

 Interface movement agreed well with 
experimental observations 

 Heat transfer coefficients were 
consistent with experimental data and 
correlations 

Sun et al. (2012) 
[157]  

Film boiling on a 
horizontal 
surface 

unknown 
fluidc 

VOF in 2-D 
domain (using 
Fluent) 

Domain: λd2/2 × λd2 
Mesh: 64 × 128 
 

 2 unsat unsat
sat unsat

fg

k T
S S

h

 
  

 

i sat fgQ S h  
 

 Studied film boiling to check validity 
of new proposed mass and energy 
source terms  

 Nusselt number predictions agreed 
well with correlation in literature 

Arevalo et al. 
(2014) [247]  

Film boiling on a 
spherical surface 

Water VOF in 2-D 
domain (using 
Fluent) 

Domain: 0.05 mm × 0.1 mm 
Sphere diameter = 0.0127 m 
Mesh no. of cells: 24,000 
 

 f

g f
fg

k T
S S

h

 
    

where (1 )g g g fk k k     

i f fgQ S h  

 Studied film boiling around a sphere 
 Predictions showed wavy vapor 

behavior of the interface and 
generation and detachment of vapor 
slugs 

 Predicted heat flux data was 
consistent with experimental data and 
correlations 
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Table A.3: Continued 

Other Methods 

Son and Dhir 
(1997) [187]  

Film boiling on a 
horizontal 
surface 

Water, 
benzene and 
R113 

Moving 
coordinate 
system method in 
2-D 
axisymmetric 
domain 

Width of domain is 

22 / 2d  where λd2 is the 

2-D most dangerous 
wavelength 
with node center and antinode 
center being the endpoints.  
Mesh size: 81 × 84 

2 2
,

Pr Re
p g

g
fg g g

c T x y
m

h J
 


 

  

where J is Jacobian, ε and η are 
transformed coordinates  

 First study on saturated film boiling 
with two bubble system, one at node 
and another at antinode 

 Results captured spatial and temporal 
variations of the interface 

 Simulation could not handle multiple 
interfaces and hence ended when 
bubble broke off 

 Heat transfer was under predicted 
when compared to prior correlation 

Banerjee and 
Dhir (2000) 
[248,249]  

Subcooled film 
boiling on a 
horizontal 
surface 

Water and PF 
5060 

Moving 
coordinate 
system method in 
2-D 
axisymmetric 
domain 

Width of domain is 

2 / 2d  .  
Mesh in vapor domain: 42 × 
22.  
 
For saturated case: 
Mesh in liquid domain: 42 × 
42  
 
For subcooled case: 
Mesh in liquid domain: 42 × 
72  

Modified version of non-
dimensionless mass source used by 
[187] to include effect of 
subcooling. 

 Studied subcooled film boiling using 
model similar to [187] 

 Condensation was observed on the 
top portion of the interface while 
evaporation in the thin film region 
close to the wall 

 Numerical simulations did a good job 
in predicting different parameters 
related to bubble growth and wall 
heat flux for PF 5060 

Tomar et al. 
(2005) [188]  

Film boiling on a 
horizontal 
surface 

Water and 
R134a 

CLSVOF in 2-D 
domain 

Domain: λd2/2 × λd2 
Mesh: 180 × 360 
 

i f g
f g

T T
q k k

n n

       
   

 i
g

fg

q
m

h


  

 

 Studied film boiling on a flat surface 
 Bubbles were formed alternatively at 

the nodes and antinodes 
 Above certain superheats, long vapor 

columns with bubbles on top were 
observed like that obtained in other 
studies 

 Near critical pressures, frequency of 
bubble detachment is higher for 
R134a in comparison to water 

 Space averaged Nusselt number is 
highest at the point of bubble 
detachment 
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Table A.3: Continued 

Welch and 
Biswas (2007) 
[250]  

Film boiling on a 
horizontal 
surface including 
effect of electric 
field 

Water  CLSVOF in 2-D 
domain 

Domain: λd2/2 × λd2/2 
Mesh: 200 × 200 
 

i f g
f g

T T
q k k

n n

       
   

 i
g

fg

q
m

h


  

 

 Studied film boiling including effects 
of electrohydrodynamics. 

 Results showed correct qualitative 
behavior  

 Alternate bubble generations at node 
and antinode were captured 

Tomar et al. 
(2009) [251]  

Multimode film 
boiling on a 
horizontal 
surface including 
effect of electric 
field  

Water and 
R123a 

CLSVOF in 2-D 
domain 

Domain 1: 3λd2 × λd2  
Mesh cell size: λd2/214  
 
Domain 2: 5λd2 × λd2 
Mesh cell size: λd2/248 
 
 

i f g
f g

T T
q k k

n n

       
   

 i
g

fg

q
m
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 Studied multimode film boiling 
including effects of 
electrohydrodynamics. 

 Wavelength of instability was a 
function of electric field 

 Low gravity was tested and it 
effected density of bubble formation 
sites  

 Bubbles shapes were effected by 
strong electric fields 

 Numerical results showed electric 
field increasing Nusselt numbers and 
bubble release frequency 

Guo et al. (2011) 
[252]  

Film boiling on a 
horizontal 
surface 

Water and 
unknown 
fluidc 

VOSET in 2-D 
domain 

Domain 1: λd2× λd2  
Mesh cell size: 64 × 64  
 
Domain 2: λd2× 3λd2 
Mesh cell size: 64 × 192 
 

 

 

 Studied film boiling on a horizontal 
surface  

 Predicted Nusselt numbers agreed 
with correlations 

 Film boiling of water near critical 
pressures agreed qualitatively with 
experimental observations 

Tsui et al. (2014) 
[253]  

Film boiling on a 
horizontal 
surface and a 
cylindrical 
surface 

Water  Modified VOF in 
2-D domain 

For horizontal surface:  
Domain λd2 × λd2/2 
Mesh: 180 × 360 
 
For cylindrical surface: 
Domain: 7D × 15D, D = 
0.213 mm 
Mesh no. of cells in half 
domain: 48800 

i f g
f g

T T
q k k

n n

       
   

 i
g

fg

q
m

h


  

 

 Studied film boiling on flat and 
circular surfaces 

 For flat surface film boiling was 
captured well and Nusselt numbers 
compared well with semi-empirical 
correlation 

 For cylindrical surface, qualitative 
boiling behavior was captured well, 
but not the Nusselt numbers 

a  Indicated mesh sizes are optimum sizes chosen by original authors in simulations  
b  (1) Positive and negative signs of mass source term may differ from those used by original authors due to differences in definition used.  (2) Some 

variations in mass source terms are expected due to scalar versus vector definitions.  (3) Only source term formulations are described in this table; exact 
usage in continuity equations should be obtained from original sources.   

c  Please refer to original article for fluid properties used  
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Fig. A.7: Simulations of hydrogen film boiling using FT scheme in 2-D domain with 
Tanasawa phase change model for different times: (a) Mo = 1×10-3 

and q”* = 10.  (b) 
Mo = 1×10-6 and q”* = 20.  The vapor-liquid interface is shown as solid black line, 
with temperature field plotted to the left and velocity vectors to the right of domain.  
Adapted from Juric and Tryggvason [181]. 
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number of Mo = 1x10-3 with a relatively low value of dimensionless heat flux of q"* = 

10 at different dimensionless times t*.
  

Shown is the liquid-vapor interface undergoing a 

Rayleigh-Taylor instability, and the vapor bubble subsequently pinching-off and rising.  

For a lower Mo = 1x10-6 and higher q"* = 20, Fig. A.7(b) shows the vapor being converted 

into a mushroom shaped bubble, preventing pinch-off of its stem.  While the predicted 

bubble shape did not exactly match experiments, both heat transfer rate and wall 

temperature showed good agreement with correlations.  Shin and Juric [154] simulated 

film boiling on a horizontal surface in 3-D domain using the level contour reconstruction 

method assuming interface is maintained at Tsat, with phase change based on energy jump 

condition.  Their approach eliminated the iterative procedure used by Juric and Tryggvason 

to match interface velocity.  Esmaeeli and Tryggvason [237,238] also eliminated the 

iterative procedure in simulations of film boiling on a horizontal surface using 3-D domain, 

with phase change based on energy jump condition.  Later, they used the same scheme to 

investigate film boiling on a single horizontal cylinder and multiple cylinders [239], by 

incorporating an immersed boundary method [254] to tackle uneven surfaces.  Figure A.8 

shows their predictions for a bubble pinching off from the cylinder in 3-D domain.  Notice 

how, as vapor is generated and bubble grows, the upper half portion becomes tighter and 

lower half thinner.  Eventually, the bubble is pinched off and surface tension pulls the 

interface back, re-initiating the process is a repeatable manner.
 

Son and Dhir [135] investigated film boiling using the LS method in 2-D axisymmetric 

domain with phase change based on energy jump condition, but unlike their earlier work 

[187], the newer model was capable of tackling multiple interfaces.  They assumed constant 
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Fig. A.8: Simulations of film boiling on a horizontal cylinder using the FT method in 3-D domain with energy jump condition. 
Domain size is 0.06 m × 0.06 m × 0.15 m, and simulation parameters are ΔTw = 10°C, ρf / ρ g = 40, μf /μ g = 10, kf /kg = 40, cp,f 
/cp,g = 10, hfg = 10 kJ/kg.  Adapted from Esmaeeli and Tryggvason [239].  
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liquid temperature equal to Tsat, and an effective conductivity dependent on conductivity 

of vapor alone,   

 k 1  k
g
1(1 H ). (A.46) 

Figure A.9(a) shows evolution of the interface in water for three wall superheats of ΔTw 

= 10, 22, and 30°C.  Notice, for all superheats, how discrete bubbles are released at 

interfacial nodes and antinodes.  At the higher superheat, long vapor jets form 

simultaneously below the bubbles at the nodes and antinodes.  The numerical simulations 

predict average wall heat flux values of q
w
"

 = 9.28, 21.60 and 29.90 W/cm2 for ΔTw = 10, 

22, and 30°C, respectively.  The computed modes bear reasonable similarity with 

experimental results by Reimann and Grigull [255] corresponding to q
w
"

 = 16.21, 21.49, 

and 27.10 W/cm2, as shown in Fig. A.9(b).  In addition, Nusselt number predictions are 

within those based on the Berenson [256] and Klimenko [257] correlations.  Bazdidi-

Tehrani and Zaman [240] extended the LS method to saturated film boiling on a vertical 

wall.  Son and Dhir [241] used the ghost fluid (GF) method in conjunction with their LS 

scheme to investigate film boiling on a horizontal cylinder in 2-D and 3-D domains, also 

accounting for the cylinder wall.  Son and Dhir [242] the explored the effects of decreasing 

cylinder diameter on film boiling in 3-D domain, and the simulated trends were consistent 

with prior experimental data.  Gibou et al. [68] also implemented the GF method in 

conjunction with the LS scheme to study film boiling in 2-D domain and obtained good 

qualitative results.  Kim and Son [243] investigated film boiling in a simple jet 

impingement configuration.  
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Fig. A.9: (a) Simulation results for film boiling of water using LS scheme in 2-D 
domain with energy jump condition for ΔTw = 10, 22, and 30°C.  (b) Experimental 
results for film boiling of water for different heat fluxes.  Adapted from Son and 
Dhir [135].  
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Welch and Wilson [179] were the first to implement the VOF method in boiling 

situations, with phase change based on energy jump condition, and tested their approach 

with film boiling in 2-D domain.  Their simulation results compare well with those of Son 

and Dhir [135] and Juric and Tryggvason [181], who used different numerical schemes.  

Figures A.10(a) and A.10(b) show simulation results for bubbles pinching off the vapor-

liquid interface, and corresponding temporal variations of Nusselt number, respectively.  

Figure A.10(b) shows the time-averaged Nusselt number agrees with predictions based on 

the Berenson correlation [256].  Simulations at higher heat flux predicted mushroom 

shaped behavior similar to that from [181].  Welch and Rachidi [244] extended the Welch 

and Wilson model by incorporating the solid wall in the computational domain, therefore 

incorporating all three phases: liquid, vapor, and solid.  Agarwal et al. [245] also used the 

VOF scheme to investigate bubble growth and heat transfer in film boiling in 2-D domain, 

but Nusselt number was under-predicted compared to predictions based on the Berenson 

[256] and Klimenko’s [257] correlations.  Hardt and Wondra [88] used the VOF scheme 

with Tanasawa’s phase change model to study film boiling in 2-D domain.  They developed 

a different mass source term smearing scheme at the interface to decrease numerical 

instabilities as discussed earlier.  Their simulations produced mushroom shaped bubbles 

with long jets connecting the bubbles to the vapor film at the wall.  Yuan et al. [246] used 

the VOF scheme to investigate both natural convection and forced convection film boiling 

on a sphere in non-orthogonal body-fitted coordinates.  Sun et al. [157] studied 2-D film 

boiling  using  the  VOF  scheme  along  with  their  simplified  conductivity  formulation.  
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Fig. A.10: (a) Simulation results of film boiling using VOF scheme in 2-D domain 
with energy jump condition.  (b) Comparison of simulation results of Nusselt number 
and prediction of prior correlation.  Operating conditions for simulations are: Tsat = 
500 K, psat = 1.013x105 Pa, σ = 0.1 N/m, hfg = 10 kJ/kg, ΔTw = 10°C, ρf = 200 kg/m3, 
ρg = 5 kg/m3, cp,f = 400 J/kg.K, cp,g = 200 J/kg.K, kf = 40 W/m.K, kg = 1 W/m.K, μf = 
0.1 Pa.s, and μg = 0.005 Pa.s.  Adapted from Welch and Wilson [179].  
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Another example of VOF-based simulation is an investigation of film boiling on a spherical 

surface by Arevalo et al. [247].      

Several other methods have also been used to simulate film boiling.  Using the 

CLSVOF scheme, Tomar et al. [188] showed bubbles generating alternatively at nodes and 

anti-nodes and, above certain superheat values, captured long vapor jets below the bubbles, 

similar to simulation results of Son and Dhir [135].  They studied film boiling of both 

R134a and water, and found that bubble frequency is higher for R134a.  Welch and Biswas 

[250] and Tomar et al. [251] explored the effects of applying an electric field on film 

boiling by coupling electrohydrodynamics with the CLSVOF method.  Guo et al. [252] 

simulated film boiling on a horizontal wall using the VOSET method.  Tsui et al. [253] 

used a modified VOF method to simulate horizontal film boiling.  Li et al. [258] used a 

hybrid LB scheme, where the LB method was used to simulate fluid flow, but the energy 

equation was solved using a traditional finite difference scheme.  They were able to 

simulate, not only film boiling, but the entire boiling curve, including nucleate, transition, 

and film boiling, and demonstrated quantitative agreement with experimental results.  

 

A.5.1.3 Flow Boiling 

In the studies discussed above, it is quite obvious that investigators have focused most 

two-phase computational efforts on relatively simple and elemental nucleate pool boiling 

(and very slow flow boiling) and film boiling phenomena.  However, these phenomena do 

serve as important test cases for validation of numerical schemes and phase change models, 

and constitute an important foundation for addressing more complicated two-phase 
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phenomena.  As discussed in the Introduction, most modern heat transfer applications 

involve far more complicated phase change phenomena, which include high flow 

velocities, turbulence, and many discrete moving interfaces. 

Flow boiling is characterized by liquid-to-vapor phase change along a heated wall 

where flow velocity plays a crucial role in maintaining heat flux above incipient boiling, 

but safely below CHF.  There is also a gradual axial increase in vapor production, which 

increases void fraction and results in several transitions between two-phase flow patterns.  

For example, vertical upflow in a long heated circular tube with subcooled inlet produces 

a succession of flow patterns, including pure liquid, bubbly, slug, annular, mist, and pure 

vapor.  However, changes in any of the system parameters, such as inlet pressure, inlet 

quality, mass velocity, heat flux, tube diameter, or orientation relative to gravity, can have 

a drastic influence on transport behavior within each flow pattern, as well as transitions 

between patterns, hence on pressure drop, heat transfer coefficient, and CHF. 

By examining the progress made with direct numerical simulations of nucleate boiling 

and film boiling, it is evident that their adaptability to flow boiling scenarios of practical 

interest requires extremely high grid resolution, rendering computations practically 

impossible.  This is why investigators attempting full-scale simulation of flow boiling, such 

as in micro-channels, usually rely on simple models with coarser grid.  Reviewed below 

are these flow boiling simulation efforts. Table A.4 provides a useful summary of these 

studies. 

Mukherjee and Kandlikar [259] studied vapor bubble growth in water along a micro-

channel  using  the  LS  method  in  3-D  domain, with phase change based on energy jump 
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Table A.4:  Summary of computational studies on flow boiling. 

Author(s) Two-phase 
System 

Test 
Fluid 

Multiphase 
Scheme  

Mesha Mass Source Termsb  Remarks 

LS Method 

Mukherjee and 
Kandlikar 
(2005) [259]  

Single bubble 
growth in 
rectangular micro-
channel during 
flow boiling 

Water LS in 3-D domain Domain: 4.95ls × 0.99ls 
× 0.99ls 

ls = 200 μm  
Mesh: 480× 96 × 48 
(half domain with 
symmetry wall) 

 

where k 1  k
f
1H   

 

 Studied single bubble growth in superheated 
liquid placed at the center of the cross-section 
of a microchannel during flow boiling 

 Initial growth rate was constant but once it 
filled the cross-section the growth rate 
increased rapidly due to high evaporation rate 
caused by the thin layer of liquid between the 
bubble and the wall 

 Bubble growth rate increases with increase in 
superheat and decrease in Reynolds number 

 Gravity played an insignificant role on bubble 
growth 

 Bubble behavior qualitatively similar to 
experimental observations 

Lee and Son 
(2008) [260] 

Single bubble 
dynamics in 
rectangular micro-
channel during 
flow boiling 

Water LS in 3-D domain Domain 1: 0.4 mm × 0.4 
mm × 10 mm 
Mesh: 0.0125 mm cell 
size 
 
Domain 2: 3 mm × 3 
mm× 10 mm 
Mesh: 0.094 mm cell 
size 

 

where k 1  k
f
1H   

 

 Studied bubble dynamics during flow boiling 
in microchannel using a simplified model for 
microlayer evaporation 

 Bubble growth rate and heat transfer 
increased significantly when channel size was 
smaller than departure diameter 

 Contact angle affected the heat transfer in the 
thin liquid layer between the bubble and the 
wall 

 Obtained good agreement of bubble growth 
rate with experiments from literature 

Suh et al. 
(2008) [261]  

Flow boiling in 
multiple parallel 
rectangular micro-
channels  

Water LS in 3-D domain Domain: 0.2 mm × 0.4 
mm× 10 mm 
Mesh: 0.0125 mm cell 
size 

 

where k 1  k
f
1H   

 

 Studied flow boiling in parallel 
microchannels using method similar to [260] 
including the effect of immersed solid 

 When bubble formation is not simultaneous in 
parallel channels, backward bubble expansion 
causing reverse flow was observed  

 More reverse flow was observed for smaller 
contact angle and higher wall superheat 

 There was an overall reduction in average 
heat transfer with backward flow when 
compared with single microchannel with no 
backward flow  
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Table A.4: Continued 

Mukherjee 
(2009) [262]  

Single bubble 
growth on heated 
wall in rectangular 
micro-channel 
during flow boiling 

Water LS in 3-D domain Domain: 4.95ls × 0.99ls 
× 0.99ls 

ls = 200 μm  
Mesh: 320 × 80 × 40 
(half domain with 
symmetry wall) 

 

where k 1  k
f
1H  

 Studied bubble growth in flow boiling and 
compared with pool boiling 

 Increase in contact angle increased heat 
transfer in nucleate boiling but not so much in 
flow boiling 

 The receding bubble interface performed 
better than advancing bubble interface in term 
of heat transfer 

 Thin-film evaporation was observed to be the 
primary heat transfer mechanism 

Mukherjee and 
Kandlikar 
(2009) [263] 

Single bubble 
growth on heated 
wall with 
restriction at inlet 
in rectangular 
micro-channel 
during flow boiling 

Water LS in 3-D domain Domain: 3.96ls × 0.99ls 
× 0.99ls 

ls = 200 μm  
Mesh: 512 × 128 × 64 
(half domain with 
symmetry wall) 

 

where k 1  k
f
1H   

 Studied single bubble growth in flow boiling 
with constrained inlet 

 The heat transfer performance was seen to 
reduce significantly only when they reached a 
restriction where only 4% inlet area was open  

 Results were consistent with experiments 

Mukherjee et 
al. (2011) [264] 

Single bubble 
growth on heated 
wall in rectangular 
micro-channel 
during flow boiling 

Water LS in 3-D domain Domain: 3.96ls × 0.99ls 
× 0.99ls 

ls = 200 μm  
Mesh: 320 × 80 × 40 
(half domain with 
symmetry wall) 
 

 

where k 1  k
f
1H   

 Performed a parametric study to understand 
effects on single bubble growth during flow 
boiling 

 Bubble growth rate and shape compared well 
with experimental observations 

 Wall heat transfer increased with superheat 
but did not change with flow rate 

 Surface tension did not affect bubble growth  
 Bubble with the lowest contact angle showed 

highest growth rate and wall heat transfer 
 Wall heat transfer increased significantly due 

to movement of liquid-vapor interface 

Zhou et al. 
(2013) [265] 

Flow boiling in 
micro-channel  

Water LS in 2-D domain 
(using COMSOL) 

Domain: 107 μm × 40 
mm 
Mesh: 250,000 cells 

S
g
 r

c


f

T Tsat 
T

sat

 

where r
c

 is mobility factor, which 

is proportionally increased 
depending on interface temperature 
deviation from Tsat 

Q  S
g
h

fg


s
 

 Studied flow boiling in a microchannel 
 Boiling regimes were identified and validated 

with analytical model and experimental data 
 CHF was said to occur when liquid layer at 

the wall diminishes completely 
 Effect of reentrant cavities was included and 

it was observed to enhance CHF 
 Investigated non-uniform heating 

configurations and CHF was observed to be 
higher for microchannel with upstream 
heating  
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Table A.4: Continued 

VOF Method 

Yang et al. 
(2008) [266] 

Horizontal flow 
boiling in coiled 
tube with circular 
cross-section 

R141b VOF in 3-D domain 
(using Fluent) 
Turbulence: 
Realizable k-ε 
model 

Domain: D = 6 mm, coil 
length = 70 mm, bend 
radius = 28 mm 
Mesh: 118,800 cells 

	
S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
 S

f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

ri
 = 100 s-1 

Q  S
f
h

fg
 

 Studied flow boiling in a horizontal coiled 
tube 

 Phase distribution agreed with experimental 
observations 

 Flow velocities behaved as expected with 
bubbly flow showing similar velocities in 
both phases, while stratified flow showing 
strong differences between velocity of phases. 

De Schepper et 
al. (2009) [165] 

Flow boiling in 
convection section 
of steam cracker 
with circular cross-
section 

Gasoil VOF in 3-D domain 
(using Fluent) 
Turbulence: 
Standard k-ε model 

Domain: D = 0.0525 m, 
each tube has 4 passes 
with 11.3 m length each 
Mesh: 1,993,648 cells 

	
S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
 S

f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

r
i

 = 0.1 s-1 

Q  S
f
h

fg
 

 Studied flow boiling in a convection section 
of a steam cracker 

 Various flow boiling regimes like bubbly, 
slug, wavy and stratified were captured in the 
simulations 

Fang et al. 
(2010) [267] 

Flow boiling in 
vapor-venting 
rectangular micro-
channel 

Water VOF in 3-D domain 
(using Fluent) 

Domain: 
Fluid: 5 mm × 150 μm × 
300 μm  
Mesh: 330 × 20 × 25  
 
Membrane: 5 mm × 150 
μm × 50 μm 
Mesh: 330 × 20 × 4  

	
S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
 S

f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

r
i

 = 100 s-1 

Q  S
f
h

fg
 

 Studied flow boiling in microchannel with 
vapor-venting capability 

 Vapor-venting channel gave much lower 
pressure drop in comparison to conventional 
channel 

 Vapor venting significantly inhibited liquid 
film rupture and local dryout 

 Superhydrophobic membrane increased 
vapor-venting efficiency but some 
condensation on the membrane compromised 
part of the performance 
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Table A.4: Continued 

Zhuan and 
Wang (2010) 
[167]  

Flow boiling in 
rectangular micro-
channel 

Water VOF in 3-D domain  Domain: 275 μm × 636 
μm × 25,400 μm 
Mesh: 2,593,674 cells 
Uniform and non-
uniform grids 
 
 

For first stage:  

q
i

 based on Marangoni heat flux 

correlation [168.169] 
For second stage: 

 is related to the 

growth rate and R defined in 
[170,171] 

 

 Studied flow boiling in microchannel  
 Correlations were uses to calculate heat flux 

and corresponding interfacial mass flux 
 Bubble generation, growth, departure, 

combining and shrinking was displayed in 
numerical results 

 Results showed qualitative agreement with 
prior experimental data 

Wei et al. 
(2011) [268] 

Subcooled vertical 
upflow boiling in 
rectangular 
channel under 
swing motion  

Water VOF in 3-D domain Domain: 2 mm × 20 
mm × 5 mm  
Mesh: 675,000 cells 	

S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
 S

f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

r
i

 = 100 s-1 

Q  S
f
h

fg
 

 Studied flow boiling in a vertical channel 
with additional inertial forces induced by 
swing motion 

 Bubble sliding along the wall, growth of 
bubbles and multiple bubbles mergers were 
observed  

 Smaller bubbles with higher pressure were 
sucked into the bigger bubble with lower 
pressure 

 Growth curves for bubbles and wall 
temperatures near ONB agreed well with 
correlations 

 Swing motion effected bubble sliding, bubble 
detachment, pressure drop, and heat transfer 

Zhuan and 
Wang (2011) 
[269]  

Subcooled flow 
boiling in 
rectangular micro-
channel  

HFE-
7100 

VOF in 3-D domain  Domain: 235.2 μm × 
578.8 μm × 1 cm 
Mesh: 1,367,834,  
452,866 cells 

Bubble growth in wall superheated 
region:  

 related to growth rate 

and R defined in [170,171] 

 

Bubble condensation in subcooled 
liquid:  

qi  hi Tg Tf   

hi
 is heat transfer coefficient from 

correlation [270] 

 Studied bubble growth, condensation, and 
collapse in subcooled microchannel flow 
boiling 

 Bubbles grew at the superheated region close 
to the wall, departed from the wall, and then 
started condensing in the subcooled flow 

 This condensing behavior is different from 
what is observed in saturated boiling where 
the bubble will continue to grow or transition 
to slug flow 

 At high subcooling, surface tension was 
shown to effect evolution of subcooled 
boiling behavior 

 Flow patterns compared well with 
experiments  
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Table A.4: Continued 

Zu et al. (2011) 
[176] 

Single bubble 
growth in 
rectangular 
mini/micro-
channel during 
flow boiling 

Water VOF in 3-D domain 
Turbulence: 
Standard k-ε model 

Domain: 40 mm × 1.6 
mm × 0.38 mm  
Mesh: 225 × 50 × 20 

Pseudo nucleation used to inject 
vapor from wall to simulate mass 
transfer 

 Studied bubble growth in a mini/micro-
channel using a simplified model for mass 
transfer 

 Experimental observation was used to define 
growth rate 

 Results reproduced experimental observation 
of bubble distortion and its trajectory  

Jeon et al. 
(2011) [172]  

Subcooled vertical 
upflow boiling in 
rectangular 
channel to study 
single condensing 
bubble 

Water VOF in 3-D domain 
(using Fluent) 

Domain: 15 mm × 15 
mm × 30 mm  
Mesh: cell size at 
interface = 1/16th initial 
bubble diameter  
 

S
f
 S

g


hi

h
fg

(Tsat Ti, j )Ab g , j


j


g , j
V

j

 

j is interfacial cell and hi interfacial 
heat transfer coefficient from [173]. 

Q
i
 S

f
h

fg
 

 Studied single condensing bubble during 
subcooled flow boiling in vertical upflow 
configuration 

 Predicted bubble volume compared well with 
experimental volume which was analyzed 
using technique in [271] 

 Results showed condensation increases the 
bubble velocity but decreases the rise distance 
due to a shorter lifespan 

 Velocity gradient in the flow accelerated the 
bubble lateral motion 

Zhuan and 
Wang (2012) 
[272]  

Flow boiling in 
circular micro-
channel 

R134a, 
R22 

VOF in 3-D domain  Domain: D = 0.5 mm, L 
= 70.7 mm 
Mesh: 1,436,298 cells, 
20 μm cell size 
 

 related to growth 

rate, R defined in [170,171] 

 

 Studied flow regimes and flow regime 
transitions in a circular microchannel 

 Effects of heat flux, saturated temperature, 
and mass velocity on bubble growth, 
coalescence, incipience point, and flow 
regime transition was captured 

 Predicted flow patterns and bubble 
distribution at the end of the channel agreed 
well with experiments 

Pan et al. 
(2012) [273]  

Subcooled vertical 
upflow boiling in 
rectangular 
channel to study 
single condensing 
bubble 

Water VOF in 3-D domain 
(using Fluent)  

Domain 1: 2 mm × 10 
mm × 5 mm  
Mesh: 457,413 cells 
 
Domain 2:  15 mm × 30 
mm × 15 mm  
Mesh: 432,000 cells 
 

S
f
 S

g


hi

h
fg

(T
sat
T

i, j
)A

b


g , j


j


g , j
V

j

 

j is interfacial cell and hi given by  

h
i


k
f

Nu
b

D
b

 

where 
(R e , P r , , )b b f b iN u f Ja F o , 

bi denotes initial bubble diameter 

Q  S
f
h

fg
 

 Studied single condensing bubble during 
subcooled flow boiling in vertical upflow 
configuration in two separate channels 

 The bubble lifetime and bubble size history 
agreed well with prior experiments 

 Results of bubble deformations agreed with 
experiments.  

 Initial bubble size, liquid subcooling and 
system pressure significantly influenced 
bubble deformation 

 



 
 

 
 

295 

Table A.4: Continued 

Magnini et al. 
(2013) [89]  

Flow boiling of 
single elongated 
bubble in circular 
micro-channel  

R113, 
R245f, 
R134a 

VOF in 2-D 
axisymmetric 
domain, modified 
with height function 
reconstruction 
algorithm (using 
Fluent) 

Domain: D = 0.5 mm, 
adiabatic length = 8D to 
16D, heated length = 
12D to 56D  
Mesh: D/300 minimum 
cell size  

 

where γ = 1 

 

Q  S
g

h
fg
T c

pg
 c

pf    

Procedure to smear mass source 
term is similar to that of Hardt and 
Wondra [88] 

 Studied flow boiling of elongated bubble as 
they move in the heated microchannel during 
flow boiling  

 In heated section, bubble nose was observed 
to accelerate following an exponential time 
law which agreed with theoretical models 

 Film evaporation was the primary heat 
transfer mechanics, but heat transfer 
enhancement was also observed in the wake 
region 

Magnini et al. 
(2013) [274]  

Flow boiling of 
back-to-back 
elongated bubbles 
in circular micro-
channel  

R113, 
R245fa  

VOF in 2-D 
axisymmetric 
domain, modified 
with height function 
reconstruction 
algorithm (using 
Fluent) 

Domain: D = 0.5 mm, 
adiabatic length = 8D to 
50D, heated length = 
12D to 22D  
Mesh: D/300 minimum 
cell size 

 

where γ = 1 

 

  , ,g fg p g p fQ S h T c c     

Procedure to smear mass source 
term is similar to that of Hardt and 
Wondra [88] 

 Studied flow boiling of back to back 
elongated bubble in the heated microchannel  

 Trailing bubble in the heated section 
exhibited different behavior than the leading 
bubble because of the long thermal 
disturbance behind the first bubble 

 Overlap of effects of two bubbles increased 
average heat transfer in comparison to the 
case with single bubble 

Bahreini et al. 
(2015) [164]  

Subcooled flow 
boiling to study 
single condensing 
bubble 

Water VOF in 2-D domain 
(using OpenFOAM) 

Domain: 10 mm × 20 
mm  
Mesh: 200 × 400  

S
g
 r

i


f


f

Tin Tsat 
T

sat

 

where r
i

 = 100 s-1 

Q  S
g
h

fg
 

 Studied condensing bubble in subcooled flow 
boiling 

 Predicted condensing behavior compared well 
with experiments 

 Results showed condensation increased the 
bubble velocity and the bubble covers longer 
path than an adiabatic bubble 

 Increase in subcooling reduced bubble life 
span 

 Velocity gradient in the flow accelerated the 
bubble lateral motion towards higher velocity 
flow 
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Table A.4: Continued 

Lorenzini and 
Joshi (2015) 
[275] 

High heat flux 
flow boiling in 
rectangular micro-
channel  

Water VOF in 3-D domain 
(using Fluent) 

Domain: 300 μm × 150 
μm, adiabatic length = 
0.5 mm, heated length = 
4.5 mm.  
Mesh: 267,900 cells 
 

	
S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
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f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

r
i

 = 0.1 s-1 

Q  S
f
h

fg
 

 Studied flow boiling in a rectangular 
microchannels 

 Effect of non-uniform heat flux was 
compared to uniform heat flux  

 For cases with more heat rejection 
downstream, large temperature gradients were 
observed due to accumulation of vapor in that 
region 

 

Lee et al. 
(2016) [276] 

Flow boiling in 
micro-channel 
specially designed 
for extreme heat 
fluxes  

Methanol VOF in 3-D domain 
(using Fluent) 
Turbulence: 
Standard k-ε model 

Domain: fluid between 
fins: 10 μm × 90 μm, 
separate inlet and outlet 
sections 
Mesh: 2,301,160 cells, 1 
μm minimum cell size 

	
S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
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f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

r
i

 = 10,000 – 50,000 s-1 

Q  S
f
h

fg
 

 Studied flow boiling in extreme heat flux 
microchannels 

 Void fraction contours as well as pressure and 
temperatures of the wall were investigated 

Pan et al. 
(2016) [277] 

Single bubble 
growth during flow 
boiling in circular 
and square micro-
channels 

R113 VOF in 2-D 
axisymmetric and 
3-D domains (using 
Fluent) 

Domain: 
For 2-D: D = 0.5 mm, 
adiabatic length = 8D, 
heated length = 14D  
Mesh: 68,780 cells 
 
For 3-D: W = 0.5 mm, 
adiabatic length = 6W, 
heated length = 10W 
Mesh: 634,260 cells 

   , ,g g p g sat f f p f satc T T c T T
Q

t

     




 

S
g
 ‐S

f
 ‐Q/h

fg
 

Using non-iterative time 
advancement (NITA) scheme in 
Fluent, energy source term 
isiteratively set to Tsat after every 
time step 
 

 Studied flow boiling in circular and square 
microchannel  

 Excellent quantitative agreement is observed 
for bubble motion, bubble growth rate, liquid 
film thickness and heat transfer coefficient 
with literature in the 2-D case 

 
 



 
 

 
 

297 

Table A.4: Continued 

Magnini and 
Thome (2016) 
[278]  

Slug flow during 
flow boiling in 
circular micro-
channel 

R245fa VOF in 2-D 
axisymmetric 
domain (using 
Fluent) 

Domain: D = 0.5 mm, 
adiabatic length = 8D, 
heated length = 22D  
Mesh: 1.65 μm cell size 

 

γ = 1 

 

  , ,g fg p g p fQ S h T c c     

Procedure to smear mass source 
term is similar to that of Hardt and 
Wondra [88] 

 Studied slug flow in a circular microchannel 
 Vapor bubbles were patched in the inlet 

region with a constant generation frequency 
 Behavior of multiple bubbles was seen to be 

significantly different from single bubble 
 Behaviors like recirculating flow in liquid 

slug and interfacial waviness at the vapor 
bubble tail were captured  

 Results were used to advance theoretical 
model developed to predict bubble velocity 
and film thickness 

Other Methods 

Wu et al. 
(2007) [279] 

Horizontal flow 
boiling in 
serpentine tube 
with circular cross-
section 

R141b Eulerian multiphase 
flow model in 3-D 
domain (using 
Fluent) 
Turbulence: 
Realizable k-ε 
model 

Domain: D = 10 mm, 4 
heated sections 80 mm 
long, with unheated 
straight and round 
sections 

	
S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
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f
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i


f

f
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sat 

T
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for evaporation (T > Tsat) 

r
i

 = 0.1 s-1 

Q  S
f
h

fg
 

 Studied flow boiling in serpentine tube 
 Experimental observations and numerical 

predictions were consistent with each other 
 Horizontal channel showed stratification of 

phases pointing to gravity dominance. Bends 
showed redistribution of phases causing vapor 
to go towards the inside part of the tube. 

Nichita and 
Thome (2010) 
[155] 

Single bubble 
growth during flow 
boiling in 
rectangular micro-
channel 

Water, 
R134a 

CLSVOF in 3-D 
domain (using 
Fluent) 

Domain: 800 μm × 200 
μm × 200 μm 
Mesh: 320 × 80 × 80  
 

S
g
 S

f


k T 
f 

h
fg

 

k  
g

k
g
 (1

g
)k

f
 

Q  S
f
h

fg
 

 Studied bubble growth during flow boiling in 
microchannel 

 Simplified source terms were used 

a  Indicated mesh sizes are optimum sizes chosen by original authors in simulations  
b  (1) Positive and negative signs of mass source term may differ from those used by original authors due to differences in definition used.  (2) 

Some variations in mass source terms are expected due to scalar versus vector definitions.  (3) Only source term formulations are described 
in this table; exact usage in continuity equations should be obtained from original sources.  (4) Micro-layer formulation is not included in 
description of source term in this table. 
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condition.  A spherical vapor bubble was initiated at the center of a square 200-μm micro-

channel with superheated liquid flowing around it.  Using a constant contact angle, they 

found that bubble growth rate increases with increasing superheat and decreases with 

increasing flow rate.  Figure A.11 depicts bubble growth for Tin = 102°C and wall superheat 

of ΔTw = 7°C.  The initial bubble maintains spherical shape while growing until it reaches 

the size of the channel’s cross-section, following which it begins to grow axially into 

oblong shape, a behavior that is qualitatively consistent with experimental observations.  

Mukherjee [262] extended this model to bubble growth in flow boiling of along the wall 

of a micro-channel.  His simulations suggest the effect of contact angle on a moving 

meniscus in flow boiling is far less significant than in nucleate pool boiling.  Mukherjee 

and Kandlikar [263] extended this model further to flow boiling in a micro-channel with 

inlet flow constriction, and showed that the restriction decreases bubble growth and 

increases flow reversal.  Mukherjee et al. [264] also examined wall heat flux during vapor 

bubble growth along a micro-channel.  Their simulations yielded good agreement of bubble 

growth rate with experiments, and wall heat flux was shown to increase with increasing 

superheat, unaffected by changes in flow rate.   

Magnini et al. [89] incorporated the height function interface reconstruction method in 

the VOF scheme, with phase change according to Tanasawa’s model, to simulate growth 

of a Taylor bubble during flow boiling in micro-channel.  The model was solved in Fluent 

using 2-D domain for three different fluids, R113, R134a, and R245fa.  Fig. A.12(a) shows 

axial growth of an R113 bubble for G = 600 kg/m2s and q
w

" = 9 kW/m2.  Fig. A.12(b) 

shows velocity contours along with variations of axial and radial velocities, and Fig. 

A.12(c)  temperature  contours  and  corresponding  heat  transfer  coefficient variations as
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Fig. A.11: Simulation results for vapor bubble growth in water flow boiling along a 
200-μm micro-channel using LS scheme in 3-D domain with energy jump condition for 
Tin = 102°C, ΔTw = 7°C, Re = 100, and g = 0.  Adapted from Mukherjee and Kandlikar 
[259].   
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Fig. A.12: (a) Simulation results for bubble growth in flow boiling of R113 along a 0.5-mm channel at G = 600 kg/m2s using VOF 
scheme in 2-D axisymmetric domain with Tanasawa phase change model (dashed line marks entrance to heated region).  (b) 
Average liquid axial and radial velocities (above) and velocity contours (below); the thick solid black line indicates bubble 
interface.  (c) Heat transfer coefficient (above) and temperature contours (below).  Adapted from Magnini et al. [89].  
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compared to single-phase flow.  Magnini et al.  performed single-phase computations 

separately with single-phase liquid domain.  Based on the computed flow and temperature 

field variations around the bubble, they identified four separate heat transfer regions: wake 

region downstream from the bubble (z/D = 8-10), wake region near the bubble (z/D = 10-

12.5), liquid film region (z/D = 12.5-19), and liquid region upstream of the bubble (z/D > 

19).  Magnini et al. [274] extended this work to two elongated Taylor bubbles, and showed 

how bubble overlap improves heat transfer compared to a single bubble.  In another study, 

Magnini and Thome [278] investigated back-to-back vapor bubbles that are generated at 

fixed frequency. 

Lee and Son [260] studied flow boiling of water in a micro-channel using the LS 

method in 3-D domain, with phase change based on energy jump condition, by 

incorporating a simplified model for micro-layer evaporation as in [183], and achieved 

good agreement of predicted bubble growth rate with experiments.  They showed that both 

bubble growth rate and wall heat transfer rate increase when channel size is smaller than 

bubble departure diameter.  Suh et al. [261] extended the same model to parallel micro-

channels, accounting also for the solid wall.  They captured the backward bubble expansion 

responsible for flow reversal that occurs when bubbles do not form concurrently in the 

separate channels.  They also showed that the backward bubble growth reduces wall heat 

transfer rate in multiple micro-channels compared to a single micro-channel. 

Zu et al. [176] studied flow boiling of water in a micro-channel using the VOF method 

in 3-D domain by approximating phase change using a method they termed “pseudo-

boiling”.  They injected vapor artificially through a small hole on the wall to simulate 

nucleation.  Then bubble growth was defined by a fixed rate of vapor generation at the 
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contact area between the bubble and the superheated wall; the vapor injection and 

generation rate were based on experimental observations [177].  This method was shown 

to reproduce experimental observations of bubble distortion and trajectory.  Zhuan and 

Wang [167] studied nucleate boiling of water in a micro-channel using the VOF method in 

3-D domain, along with correlations to define interfacial mass and energy transfer for 

different stages of boiling, and achieved qualitative agreement with prior experiments.  

Zhuan and Wang [272] extended this model to flow boiling of R134a and R22 in a micro-

channel with mass velocities ranging from 350-2000 kg/m2s, and demonstrated good 

agreement of predicted flow patterns and flow pattern transitions with experimental data.   

Bubble growth in subcooled flow boiling is undoubtedly more complicated that in 

saturated flow boiling.  Here, superheated liquid is present close to the heated wall, and 

subcooled liquid in the central core, causing bubbles departing from the wall to incur 

condensation in the core.  Zhuan and Wang [269] studied the effects of subcooled boiling 

of water on bubble growth, condensation and collapse using the VOF model with bubble 

condensation rate based on a heat transfer coefficient correlation by Warrier et al. [270].  

The predicted flow patterns corresponded well with experimental observations, but heat 

transfer coefficient predictions were less accurate.  Jeon et al. [172] investigated 

condensation of a bubble in subcooled water in a channel with rectangular cross section in 

vertical upflow using the VOF method in 3-D domain, with phase change based on an 

interfacial heat transfer correlation from [173].  Figure A.13(a) compares predicted 

temporal variations of bubble shape alongside actual bubble images.  Since initial 

conditions  affect  bubble  shape,   they were not able to compare exact bubble shape with 



303 
 

 
 

 

Fig. A.13: (a)  CFD simulations of void fraction for condensation in subcooled 
water flow using VOF scheme in 3-D domain with phase change based on heat 
transfer correlation, compared to experimentally captured images.  (b) Comparison 
of temporal variations of predicted and experimental bubble volume.  Adapted from 
Jeon et al. [172].  
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experiments.  However, as shown in Fig. A.13(b), bubble volume agrees well with 

experimental data, an indication of the effectiveness of the model in capturing mass transfer 

rate.  Pan et al. [273] also studied condensation of water bubbles in a vertical channel using 

the VOF scheme in 3-D domain, and formulated phase change based on heat transfer 

coefficient /i f bh k Nu D , where (Re , Pr , , )b b f biNu f Ja Fo , and Reb, Prf, Ja, and Fobi 

are, respectively, the bubble Reynolds number, liquid Prandtl number, Jacob number, and 

Fourier number evaluated using initial bubble diameter.  Their predictions of bubble size, 

deformation and lifetime compare well with prior experiments.  Bahreini et al. [164] 

studied bubble condensation in subcooled water flow using the VOF scheme in 2-D domain 

with phase change based on the Lee model [73], and their predictions show consistency 

with prior experimental observations.   

Several researcher teams [165,266-268,275,276,279] have relied on the Lee model [73] 

to simulate phase change during flow boiling using 3-D domain.  Wu et al. [279] used the 

Eulerian multiphase phase model in Fluent.  Unlike the VOF model, this model solves 

continuity and momentum equations separately for the two phases, and coupling at the 

interface is achieved through pressure and interphase exchange coefficients.  Wu et al. 

studied flow boiling of R141b in a horizontal serpentine tube with heating along only the 

straight sections, where flow enters the tube 3°C subcooled and exits saturated.  They 

accounted for turbulence using Realizable k-ε model, and showed good agreement of 

predictions with experiments.  Yang et al. [266] simulated flow boiling of R141b in heated 

coiled tube with circular cross section, with the flow entering the tube 8.5-10.5°C 

subcooled.  They used the VOF scheme in Fluent using 3-D domain and, like Wu et al., 

used Realizable k-ε model for turbulence.  They captured experimentally observed flow 
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regimes, including bubbly, churn, slug, stratified, and wavy, in order of increasing flow 

quality.  As shown in Fig. A.14, both simulations and experiments show increasing flow 

rate for fixed heat flux delays transition to higher quality flow regimes, while increasing 

heat flux for fixed flow rate promotes earlier transition to high quality regimes.  De 

Schepper et al. [165] simulated hydrocarbon feedstock of the convection section of a steam 

cracker in 3-D domain using standard k-ε model for turbulence, and were able to capture 

flow regimes from earlier literature.   Fang et al. [267] simulated flow boiling of water in 

a vapor venting micro-channel with 3°C inlet subcooling using VOF model in Fluent, and 

assumed laminar flow because of low Reynolds numbers.  They showed that the vapor 

venting micro-channel produces lower pressure drop than a micro-channel without venting 

for the entire range of heat fluxes below critical value, which defines when vapor 

generation rate exceeds vapor venting capacity of the channel, but pressure drops are 

similar above this value.  Wei et al. [268] simulated subcooled flow boiling of water in a 

vertical rectangular channel with single-sided heating using the VOF scheme, and achieved 

good agreement with correlations from literature.  They also induced inertia by swing 

motion and, as expected, found pressure to increase in comparison to motionless 

conditions.  Lee et al. [276] investigated void fraction patterns, temperature, and pressure 

in specially designed micro-channels for GaN-on-SiC semiconductor devices.  Lorenzini 

and Joshi [275] studied the effects of non-uniform heating on high-flux micro-channel flow 

boiling. 

Other noteworthy simulations of micro-channel boiling flow include a study by Nichita 

and Thome [155], who used CLSVOF with a simplified source term based on energy jump 

condition to study bubble growth and departure in a micro-channel.    Using the Level Set
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Fig. A.14: Comparison of simulation predictions and experimental results for axial variations of flow regimes and void fraction 
for horizontal flow boiling of R141b along a 6-mm diameter serpentine tube.   Simulations are based on VOF scheme in 3-D 
domain and Lee phase change model.  The tube has a centerline length of 70 mm and 28 mm pitch.   Dark color in simulation 
results represents vapor-liquid interface and not vapor phase.  Adapted from Yang et al. [266].  
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Two-Phase Flow Mode available in Chemical Engineering Module in the commercial finite 

element analysis software COMSOL, Zhou et al. [265] performed both steady state and 

transient computations of flow boiling to explore both bubble flow patterns and flow 

transitions.  They also showed how reentrant cavities increase dryout heat flux.  Pan et al. 

[277] defined a new source term for phase change based on energy required for the cell 

containing the interface to achieve saturation conditions.  They defined the energy and 

mass source terms as  

    , ,g g p g sat f f p f satc T T c T T
Q

t

     



 (A.47) 

and  ‐ ‐ / .g f fgS S Q h  (A.48) 

They tested this method with saturated flow boiling in circular and square micro-channels 

using 2-D and 3-D domains, respectively.  They used the non-iterative time advancement 

(NITA) scheme in Fluent and iteratively solved the energy equation to set interfacial 

temperature to Tsat, and showed good agreement with prior findings. 

As an example of other simulation approaches, Krepper et al. [174] studied subcooled 

flow boiling in a channel of a nuclear fuel assembly in commercial software CFX using a 

two-fluid Eulerian approach.  This approach requires validation and improvement in 

interfacial source/sink terms and results are very application specific.  Krepper et al. 

adopted the wall boiling model by Kurul and Podowski [280] and compared predictions to 

experimental data by Bartolomej and Chanturiya [281] and Bartolomej et al. [282] for 

preliminary model validation.  Krepper and Rzehak [283] and Krepper et al. [284] further 

improved this model for vertical upflow boiling of R12 in a heated circular pipe.   
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A.5.2 Condensation 

Condensation is commonly encountered in heat exchange devices tasked with rejecting 

heat from a closed two-phase loop, and is associated with conversion of vapor to liquid.  

Common condensation configurations include film condensation with and without flow, 

dropwise condensation, and internal flow condensation.  Film condensation involves 

formation of a liquid on a wall whose temperature is below saturation, and the film 

increases in thickness and flow rate in the direction of gravity in the absence of vapor flow, 

or in the flow direction in the presence of high vapor shear.  This form of condensation is 

encountered mostly on tubes or vertical walls.  Dropwise condensation is characterized by 

droplets covering the wall, which range in thickness from a few micrometers to larger, 

more visible liquid masses.  Flow condensation occurs within a tube and involves a 

succession of flow patterns including pure vapor, annular, slug, bubbly and pure liquid 

[285] in order of decreasing quality.  In the literature, numerical simulations have been 

focused on film condensation and internal flow condensation.  This is why the review 

below will be focused on these configurations, with relevant works summarized in Table 

A.5. 

Early simulations of flow condensation were performed by Zhang et al. [178] in an 

investigation of capillary blockage in mini-channel.  Using the VOF scheme in 2-D 

domain, they applied an artificial source term to force the interface to Tsat, then calculated 

an energy source term and corresponding mass source term using the newly updated 

temperature field.   Their results show that increasing flow velocity increases the length 

required to achieve full condensation,   and higher flow rates increase interfacial waviness.  
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Table A.5:  Summary of computational studies on condensation. 

Author(s) Two-phase 
System 

Test 
Fluid 

Multiphase 
Scheme  

Mesha Mass Source Terms  Remarks 

VOF Method 

Zhang et al. 
(2001) [178]  

Horizontal flow 
condensation in 
miniature circular 
channel and 
between parallel 
plates 

Water VOF in 2-D 
domain 

Domain: (R or H) × L = 1.5 
mm × 1 cm 
Mesh: 32 × 42 
 

Artificially large source term used to 
set temperature of interface to Tsat, 
Q  based on newly updated 
temperature field from energy 
equation 

S
f


Q

h
fg

 

 Studied flow condensation to understand 
capillary blocking 

 Predicts condensation length increases 
with increasing velocity; change in 
saturation temperature for same velocity 
does not have significant influence on 
condensation length 

 Predicts film thickness and condensation 
length decease with decreasing hydraulic 
diameter or distance between plates 

 Predicts higher velocities produce 
waviness at liquid film interface 

Yuan et al. 
(2006) [286]  

Vertical 
downflow 
condensation 
between parallel 
plates  

Water Derivative of 
VOF model in 2-
D domain, where 
fluid fraction is 
defined in terms 
of total enthalpy  

Domain: W × L = 4 cm × 20 
cm (half domain of 2 cm × 
20 cm used) 
Mesh: 18 × 70 for half 
domain 

Artificially large source term used to 
set temperature of interface to Tsat, 
Q

f
 based on liquid water fraction 

factor f defined in terms of total 
enthalpy 

S f 


f


g

Q
f

h
fg

 

 Studied vertical downflow film 
condensation between parallel plates 

 Surface tension effects not included in 
simulations 

 Predicts velocity strongly influences 
interfacial behavior 

Da Riva and 
Del Col (2010) 
[287] 

Flow 
condensation in 
circular mini-
channel in 
multiple 
orientations 

R134a VOF in 2-D 
axisymmetric 
and 3-D domains 
(using Fluent) 
Turbulence: k-ω 
SST model  

Domain: D = 1 mm, L = 1 m 
For 2-D domain: 
Mesh: 25,000 cells 
 
For 3-D domain: 
Mesh: 1,150,000 cells 

	
S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
 S

f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

r
i

 = 7.5×105 - 107 s-1 

Q  S
f
h

fg
 

 Studied flow condensation in circular 
mini-channel in horizontal flow, vertical 
downflow, and in microgravity 

 Predicts flow is gravity dominated at low 
mass velocity of G = 100 kg/m2s, 
resulting in large variations among three 
flow configurations 

 Predicts flow is inertia dominated at high 
mass velocity of G = 800 kg/m2s due to 
strong interfacial shear, resulting in 
similar behavior among three flow 
configurations 
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Table A.5: Continued 

Alizadehdakhel 
et al. (2010) 
[288] 

Simultaneous 
evaporation and 
condensation in 
vertical 
thermosyphon 

Water VOF in 2-D 
domain (using 
Fluent) 

Domain: bottom evaporator 
length = 40 cm, adiabatic 
length = 20 cm, top 
condenser length = 40 cm, D 
= 1.75 cm for fluid domain, 
with 1.9 cm outer diameter 
solid shell domain  
Mesh: 47,124 cells in inner 
fluid domain, 14,361 in 
outer solid domain 

S
g
 S

f
 r

i
x

water


g


g

T Tsat 
T

sat

  

for condensation (T < Tsat), 
xwater is mole fraction of water in gas 
phase 

S
g
 S

f
 r

i


f


f

T Tsat 
T

sat

 

for evaporation (T > Tsat) 

r
i

 = 0.1 s-1 

Q  S
f
h

fg
 

 Studied evaporation and condensation in 
vertical thermosyphon 

 Temperature profiles predicted for entire 
length compare well with experiments 

 Liquid and vapor void fraction contours 
accurately captured in both condensation 
and evaporation sections 

Liu et al. 
(2012) [166] 

Vertical 
downflow 
condensation 
between parallel 
plates 

Water VOF in 2-D 
domain 

Domain: W × L = 4 cm × 40 
cm (half domain of 2 cm × 
40 cm used) 
Mesh: 500,000 cells for half 
domain 

	
S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

r
i

 = 5000 s-1 

Q  S
f
h

fg
 

 Studied vertical downflow film 
condensation between parallel plates 

 Predicts film starts laminar upstream and 
turns wavy laminar downstream 

 Predicts heat transfer is enhanced with 
increasing difference between wall 
temperature and inlet vapor temperature 

Ganapathy et 
al. (2013) [156] 

Flow 
condensation in 
rectangular 
micro-channel  

R134a VOF in 2-D 
domain (using 
Fluent) 

Domain: H = 100 μm, L = 
0.03 m 
Mesh: cell size = 2 μm 

S
g
 S

f


k T 
g 

h
fg

  

k is effective thermal conductivity 

Q  S
f
h

fg
 

 Studied flow condensation in micro-
channel 

 Good agreement achieved between 
predicted two-phase frictional pressure 
drop and Nusselt number, and 
correlations from the literature  

 Good qualitative agreement achieved 
between predicted and experimental flow 
regimes 

Chen et al. 
(2014) [163] 

Horizontal flow 
condensation in 
rectangular 
micro-channel 

FC-72 VOF in 3-D 
domain (using 
Fluent) 
Turbulence: 
Realizable k-ε 
model 

Domain: square, W = 1 mm, 
L = 30 cm 
Mesh: 200,000 cells   

Sg  S f  ri,m gg T Tsat    

for condensation (T < Tsat) 
Sg  S f  ri,mi f  f T Tsat   

for evaporation (T > Tsat) 

r
i,m

 = 100 s-1 
Q  S

f
h

fg

 

 Studied flow condensation in micro-
channel in horizontal orientation 

 Simulations capture bubbly, slug, 
transition, wavy annular, and smooth 
annular flow regimes  

 Predicted flow regimes agree well with 
prior experimental data 
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Table A.5: Continued 

Yin et al. 
(2014) [289] 

Horizontal flow 
condensation in 
circular mini-
channel 

Water VOF in 3-D 
domain (using 
Fluent) 

Domain: D = 1 mm, L = 50 
mm 
Mesh: 1.54×106 cells  	

S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
 S

f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

r
i

 = 5×104 s-1 

Q  S
f
h

fg
 

 Studied flow condensation in horizontal 
orientation with and without non-
condensable gases 

 Predicts heat transfer coefficient is not 
affected by degree of superheat or flow 
rate 

 Predicts annular flow is prevalent with 
vapor fraction decreasing along channel  

 Predicts significant reduction in heat 
transfer coefficient when non-
condensable gases are present, as gas 
layer is generated between vapor and 
liquid  

Qiu et al. 
(2014) [290] 

Vertical upflow 
condensation in 
circular channel 

Water VOF in 3-D 
domain (using 
Fluent) 
Turbulence: 
Reynolds Stress 
model 

Domain: developing length 
= 1.8 m, test section length 
= 0.2 m, D = 12 mm 
Mesh: 630,000,  980,000 
cells  

	
S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
 S

f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

ri
 = 104 s-1 

Q  S
f
h

fg
 

 Studied flow condensation in circular 
tube in vertical upflow 

 Predictions of frictional pressure drop and 
heat transfer compare well with 
correlations 

 Predicts bubbly, slug, churn, whispy 
annular, and annular flow regimes, which 
match flow regime map from the 
literature 

 Predicts eddy behavior in slug and churn 
flow regimes 

Lee et al. 
(2015) [100] 

Vertical 
downflow 
condensation in 
circular channel 

FC-72 VOF in 2-D 
axisymmetric 
domain (using 
Fluent) 
Turbulence: k-ω 
SST model 

Domain: L = 0.8 m, D = 
11.89 mm 
Mesh: minimum cell size = 
1.3 μm  

	
S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
 S

f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

ri
 = 104 s-1 

Q  S
f
h

fg
 

 Studied flow condensation in circular 
tube in vertical downflow  

 Predictions of heat transfer coefficient 
agree well with experiments 

 Predicts significant dampening of eddy 
diffusivity and steep temperature gradient 
at interface  

 Predicts wavelength and amplitude of 
interfacial disturbances increase along the 
channel 
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Table A.5: Continued 

Qiu et al. 
(2015) [291] 

Flow 
condensation in 
upright spiral 
tube 

Propane VOF in 3-D 
domain (using 
Fluent) 
Turbulence: 
Reynolds Stress 
model 

Domain: hydraulic 
developing length = 1.4 m, 
thermal developing length = 
0.4, test section length = 0.2 
m, D = 14 mm, curvature 
diameter of tube = 2 m, 
inclination angle = 10°. 
Mesh: 980,000 cells  

	
S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
 S

f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

r
i

 = 104 s-1 

Q  S
f
h

fg
 

 Studied flow condensation in upright 
spiral tube 

 Predicts stratified, annular, and mist flow 
regimes, which agree with experiments 

 Predicts heat transfer coefficient and 
frictional pressure drop increase with 
increasing flow rate and/or vapor quality 

 Predictions agreed well with 
experimental results and prior 
correlations 

Zhang et al. 
(2016) [292] 

Horizontal flow 
condensation in 
circular 
mini/micro-
channel 

R410a VOF in 3-D 
domain (using 
Fluent) 
Turbulence: k-ω 
SST model  

Domain: D = 0.25 – 4 mm, L 
= 100D 
Mesh: 1,340,000 cells for 
half-domain 

	
S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
 S

f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

r
i

 = 1.5×106 s-1 

Q  S
f
h

fg
 

 Studied flow condensation in mini/micro 
circular tube in horizontal orientation 

 Predicts heat transfer is enhanced with 
increasing mass velocity and/or vapor 
quality, and decreasing tube diameter 
and/or saturation temperature 

 Predicts liquid film thickness increases 
with increasing saturation temperature 
due to reduction in surface tension 

 Predictions of heat transfer coefficient 
and pressure gradient compare well with 
empirical correlations 
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Table A.5: Continued 

Kharangate  
[Chapter 8, 
current work] 

Vertical upflow 
condensation in 
circular channel 

FC-72 VOF on 2-D 
axisymmetric 
domain (using 
Fluent) 
 
Turbulence: k-ω 
SST model with 
turbulence 
dampening of 10 

Domain: L = 0.8 m, D = 
11.89 mm 
Minimum cell size = 2 μm 	

S
g
 S

f
 r

i


g

g

T T
sat 

T
sat

  

for condensation (T < Tsat) 

	
S
g
 S

f
 r

i


f

f

T T
sat 

T
sat

 

for evaporation (T > Tsat) 

ri
 = 104 s-1 

Q  S
f
h

fg
 

 Studied flow condensation in circular 
tube in vertical upflow 

 Predicts complex interfacial behavior 
corresponding to climbing film and 
flooding regimes  

 Local heat transfer coefficients are 
underpredicted upstream and 
overpredicted downstream 

 Predictions of average heat transfer 
coefficient and average wall temperature 
compare well with experimental data 

 Predicts sharp gradient in film 
temperature at interface due to 
dampening of eddy diffusivity  

a Indicated mesh sizes are optimum sizes chosen by original authors in simulations 
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Yuan et al. [286] studied film condensation between parallel plates in vertical downflow 

in 2-D domain using an approach to achieve Tsat at the interface similar to that of Zhang et 

al., along with the traditional VOF scheme, but defined fluid fraction in terms of total 

enthalpy.  Liu et al. [166] also studied vertical downflow film condensation between 

parallel plates using the VOF method in 2-D domain, but with phase change based on the 

Lee model [73].  They showed the condensing film is initiated in smooth laminar state and 

becomes wavy laminar downstream due to increases in both Reynolds number and film 

thickness as depicted shown in Fig A.15.  

Da Riva and Del Col [287] used the VOF scheme with phase change based on the Lee 

model [73] to study flow condensation of R134a in a circular micro-channel at different 

orientations relative to gravity and in microgravity.   Gravity dominance was observed at 

low mass velocity of G = 100 kg/m2s, with large differences in flow and heat transfer 

behaviors corresponding to different orientations.  Differences were significantly reduced 

as mass velocity was increased to G = 800 kg/m2s, where inertia began to dominate gravity.  

Ganapathy et al. [156] studied flow condensation of R134a in a micro-channel using the 

VOF scheme with phase change based on a simplified form of energy jump condition, and 

achieved qualitative agreement with flow patterns captured in prior experiments as shown 

in Fig A.16.  They also achieved good agreement of two-phase frictional pressure drop and 

Nusselt number predictions with prior correlations from the literature.  In another study, 

Chen et al. [163] used the VOF scheme to simulate flow condensation of FC-72 in a micro-

channel, and their predictions of two-phase flow patterns agreed quite well with prior 

experiments.  Yin et al. [289] and Zhang et al. [292] studied flow condensation in 

horizontal tubes.    Yin et al. [289]  studied  the  effect  of  non-condensable gases on flow
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 Fig. A.15: Void fraction predictions for film condensation of water during vertical downflow 
between parallel plates using VOF scheme in 2-D domain and Lee phase change model.  
Adapted from Liu et al. [166].  
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Fig. A.16: Comparison of numerically predicted condensation flow regimes for R134a along a 100-μm wide micro-channel 
using VOF scheme in 2-D domain and Lee phase change model, and experimental images from the literature.  Adapted from 
Ganapathy et al. [156].  
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condensation in horizontal micro-tubes using the VOF scheme and showed how heat 

transfer is significantly compromised in the presence of air.   Zhang et al. [292] investigated 

flow condensation of R410a in horizontal tubes ranging in diameter from 0.25 to 4 mm.  

Using the VOF scheme, they achieved good agreement of predicted heat transfer 

coefficients and pressure drops with empirical correlations.  

Internal flow condensation studies at the macro scale include vertical downflow by Lee 

et al. [100] and vertical upflow by Qiu et al. [290] and by me in Chapter 8 of current work; 

all of whom used the VOF scheme with phase change based on the Lee model [73].  In 

Chapter 8, I investigated high heat flux vertical upflow condensation of FC-72 by rejecting 

heat to water flowing in counter-flow through an outer annulus.  I used the k-ω model with 

Shear Stress Transport (SST) and a turbulence dampening factor of 10 as defined in the 

ANSYS Guide [86] to account for turbulence across the annular liquid film and the vapor 

core.  The simulations yielded predictions of axial variations of void fraction, radial 

temperature profile, and heat transfer coefficient.  Figure A.17(a) compares predicted and 

measured annular film flows corresponding to the climbing (upward moving) film regime.  

They both show interfacial ripples along the liquid film’s interface, and liquid droplets 

entrained in the vapor core.  Figure A.17(b) shows good agreement between predicted and 

measured average heat transfer coefficient for a broad range of mass velocities.  Another 

important aspect of their study is the temperature distribution across the liquid film and 

influence of interfacial dampening of eddy diffusivity at the interface due to surface 

tension, as shown in Fig. A.17(c).  This important interfacial dampening phenomenon will 
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Fig. A.17: (a)  Void fraction predictions using VOF scheme in 2-D axisymmetric domain 
and Lee phase change model of climbing film regime during vertical upflow 
condensation of FC-72, and experimental images. (b) Comparison of experimental and 
computed spatially averaged condensation heat transfer coefficient versus mass velocity. 
(c) Variation of computed fluid temperature with radial distance from the wall at two 
axial locations for GFC = 271.5 kg/m2s.  Adapted from Chapter 8 of current work.  
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be addressed in more detail later in this paper.  In another study, Qiu et al. [291] used the 

VOF scheme to study flow condensation of propane in an upright spiral tube.  

Alizadehdakhel et al. [288] used the VOF scheme in 2-D domain, with phase change based 

on the Lee model, to investigate simultaneous evaporation and condensation of water in a 

thermosyphon.  Figure A.18(a) shows predicted wall temperature along the evaporation, 

adiabatic, and condensation sections of the thermosyphon, alongside closely matched 

experimental data.  Figure A.18(b) shows the computational domain and vapor void 

fraction contours captured in the three sections.  

Other noteworthy investigations are two simulation studies by Liu and Cheng 

[293,294], who used the LB method to model both film and dropwise condensation. 

 

A.6 Future Needs and Recommendation 

A.6.1 Overriding Needs 

Clearly, investigators have achieved many noteworthy breakthroughs in simulating 

boiling and condensation systems.  However, there is broad diversity in the methods used, 

and computations are presently limited to rather simple configurations, unlike the many 

diverse configurations found in systems of practical interest as discussed in the 

Introduction.  Looking forward, it is universally acknowledged that computational tools 

will play a vital role in two-phase flow and heat transfer research, in departure from the 

present practice of relying on empirical correlations and costly experimental work.  

However, several important tasks must be undertaken before investigators can achieve the 

long-term objective of developing a more unified, physically based, accurate, and 

computationally efficient methodology.  Key among these tasks are:  



320 
 

 
 

 

Fig. A.18: Simulation results for water thermosyphon using VOF scheme in 2-D domain 
and Lee phase change model.  (a) Comparison of predicted and measured wall 
temperatures.  (b) Void fraction predictions.  Adapted from Alizadehdakhel et al. [288].  
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(1) New experiments designed specifically for validation of simulation models of 

boiling and condensation, and involving simultaneous use of state-of-the-art diagnostics 

tools. 

(2) New or improved interface tracking schemes that conserve mass and accurately 

capture complex interface topologies. 

(3) New or improved mass transfer models that capture the true physics of mass and 

energy transfer at the interface. 

(4) New or improved turbulence models that accurately account for dampening of 

eddies across the liquid-vapor interface. 

(5) More aggressive computational modeling of complicated phase-change 

configurations prevalent in modern applications. 

 

A.6.2 Validation Experiments and Better Diagnostics Tools 

Like experiments that have already been used to validate prior simulation work, future 

experiments must be carefully designed for the specific purpose of validating future 

simulations.  Use of state-of-art diagnostic tools will play a vital role in these experiments.  

Aside from maximizing the use of conventional pressure, temperature, and flow rate 

measurement instrumentation, phase change experiments intended for validation of 

simulation models will require implementation of sophisticated diagnostic tools to measure 

volume fraction as well as both velocity and temperature contours.  It is obvious from 

studies reviewed earlier that investigators have relied heavily on high-speed video imaging 

of the interface as a means of assessing the validity of two-phase schemes.  This non-

intrusive method of image capture and analysis has been used to determine interface shape 
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and in many cases used to infer void fraction.  But, while high-speed video will continue 

to play a vital role in most phase change experiments, investigators often face difficulty 

resolving accurate void fraction information in situations involving multiple overlapping 

interfaces or reflection from the heated wall.  Some researchers [295,296] have employed 

a ‘total reflection method’ to mitigate reflection problems, by visualizing the boiling 

process from behind a completely transparent heated wall, with a silicon oil layer used 

beneath the wall.  However, a key drawback of this approach is it precludes testing realistic 

metallic surfaces when performing boiling experiments, given that lateral conduction plays 

a key role in all boiling situations.  Temperature measurements can be made with probes 

embedded directly in the heated wall and in the flow.  But most temperature measurements 

suffer from spatial resolution issues and relatively slow response time.  Temperature 

sensors with fast response and higher spatial resolution have been developed by Heng et 

al. [297] and Moghaddam and Kiger [298], respectively.  Multi-sensor conductivity and 

optical probes by Barrau et al. [299] and Kim et al. [300], and wire mesh probes by Prasser 

et al. [301] have been used to measure bubble diameter and velocity in pool boiling.  Lyu 

and Mudawar [75,302,303] used a thin blade fitted with an array of micro-thermocouples 

to measure instantaneous temperature profile across a wavy, free-falling water film, 

simultaneously with measurements of film thickness and wave speed using thermal 

conductance sensors.  Mudawar and Houpt [304,305] used laser Doppler velocimetry 

(LDV) to measure velocity profile (including turbulent fluctuations) across a free-falling 

film simultaneously with film thickness, the latter using an electrical conductance probe.  

This technique facilitated detailed mapping of liquid velocity streamlines relative to 

interfacial waves.  A key limitation of many of the instruments just mentioned is their 
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intrusive nature.  A very promising tool for velocity measurements is micro-particle image 

velocimetry (μ-PIV), which was used by Qu et al. [74] to measure liquid velocity profile 

in a micro-channel, and infrared (IR) thermography, used by Theofanous et al. [306,307] 

to capture thermal patterns on a heated wall.  Khodaparast et al. [308] employed another 

type of μ-PIV called micro-particle shadow velocimetry (μ-PSV) to measure micro-channel 

flows.  Further improvements in velocity measurements for boiling and condensing flows 

are possible with 3D PIV [309,310].   For micro-channel measurements, two noteworthy 

examples of studies involving simultaneous use of multiple diagnostic tools are 

experiments by Gerardi et al. [311] and Duan et al. [312].  These recent studies are good 

examples of the type of experiments and diagnostics tools that are needed for validation of 

future simulations of boiling and condensation. 

 

A.6.3 Improving Interface Tracking Methods 

Reviewed earlier in this article were several methods of interface tracking along with 

their advantages and disadvantages.  Overall, it is crucial for numerical schemes to 

accurately conserve mass as well as capture interface topologies accurately.  Even though 

several advances have been made towards accomplishing these goals, further 

improvements are necessary to tackle complex phase change scenarios.  One aspect of 

interface tracking is the treatment of interface thickness.  Some models use zero thickness 

[179], but are numerically difficult to solve, while others use an artificial thickness to 

smooth properties across multiple cells [88,135].  

While different methods are available to account for surface tension, spurious currents 

must be avoided.  Phase-field methods [146] take into account physical interactions at the 
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molecular level better than VOF, LS, and FT methods, hence improvements in those 

methods may be needed to better capture interfacial physics and surface tension effects.  

Computing requirements are perhaps the biggest obstacle in computational modeling 

of phase change processes, and are the main impetus for preferring 2-D over 3-D 

simulations.  However, two-phase flows are inherently highly three-dimensional and 

involve complex interface topologies that cannot be accurately resolved with 2-D 

simulations.  Limitations of 2-D simulations have spurred the development of methods that 

combine multiscale (adaptive) meshes [135,313], where, to reduce computing 

requirements, analytical models are employed in certain regions of the grid where 

computations would have otherwise demanded very fine mesh.  Overall, while researchers 

continue to develop new or improved methods for interface capturing, further validation of 

these methods is required using simulations of more complex phase change processes. 

 

A.6.4 Improving Mass Transfer Models 

The different phase change models that have been developed and/or adopted thus far 

fall short in both accuracy and ability to capture the true physics of mass and energy transfer 

at the interface.  Simplifying assumptions such as constant temperature in the entire 

saturated phase, interface maintaining saturation temperature, and zero conductivity of one 

of the phases, preclude model closure and jeopardize predictive accuracy.  In the short 

term, new or improved adaptive phase change schemes are needed that can accurately 

maintain interfacial temperature depending on local temperature deviation of the interface 

cell.  The empirical coefficients in models like those of Tanasawa [72] and Lee [73] could 

be adjusted locally and not kept constant in simulations.  In the long term, new or improved 
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phase change models are needed that can more accurately estimate both mass and energy 

transfer at the interface, which is lacking is current models.     

 

A.6.5 Better Account of Turbulence Effects 

Turbulence is prevalent in most practical two-phase flow and heat transfer processes.  

Moreover, two-phase flow generally promotes transition to turbulent flow at much lower 

Reynolds numbers than single-phase flow.  Even though Direct Numerical Simulations 

(DNS) provide the highest accuracy, computing requirements are a major obstacle to 

implementing this method for full-scale phase change simulations.  Many of the phase 

change studies involving turbulent modeling that were discussed earlier in this article 

employ Reynolds-averaged Navier-Stokes (RANS) models like the 2-equation, k-ε and k-

ω models.  While standard k-ε model is the most widely used turbulent model, it cannot 

accurately resolve momentum and thermal boundary layers in the vicinity of the wall, 

which is why low Reynolds number k-ε model is used in those locations.  The standard k-

ω model and k-ω model with Shear Stress Transport (SST) are also good models for 

momentum and thermal boundary layers.  Using either low Reynolds number k-ε model or 

k-ω models in simulations requires high resolution mesh in locations like the wall or near 

a liquid-vapor interface. 

An important aspect of turbulence in two-phase flows is dampening of turbulent 

fluctuations at the liquid-vapor interface by surface tension force: [100], Chapter 7 and 

Chapter 8 of current work.  This phenomenon is illustrated in Fig. A.19(a) for a thin, free-

falling film undergoing interfacial evaporation.  As discussed in Chapter 7, turbulence 

intensity is reflected in the magnitude of eddy momentum diffusivity, εm.  Near the wall, 
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εm  0, which, in the presence of a fairly constant heat flux across the thin film, produces 

large temperature gradient near the wall. A large increase in εm in the middle region of the 

film greatly decreases temperature gradient, resulting in fairly constant liquid temperature 

in the middle region.  However, turbulent eddies are suppressed at the liquid-vapor 

interface by surface tension, and with εm  0 at the interface, a second large temperature 

gradient is produced near the interface.  Figure A.19(b) shows temperature profiles across 

the film at different axial locations predicted using VOF scheme in 2-D axisymmetric 

domain and Tanasawa’s phase change model.  To generate the temperature profiles in Fig. 

A.19(b), I used the k-ω model with Shear Stress Transport (SST), with a turbulence 

dampening factor of 10.  The large interfacial temperature gradient is clearly captured for 

downstream locations.  A similarly large interfacial temperature gradient is captured in 

annular condensing films [Chapter 8 of current work] as was shown earlier in Fig. A.17(c).   

As discussed in Chapter 7 of current work, the large interfacial gradient can in fact be used 

to assess the accuracy of phase change models used.  

Moving forward, a shift to higher accuracy simulations like Large Eddy Simulations 

(LES) would constitute an important step towards improving predictive accuracy of 

computational models involving turbulent boiling and condensing flows. 

A.6.6 Simulating more Complex Phase-Change Configurations Prevalent in Modern 

Applications 

It is obvious from the studies reviewed in this article that phase change simulation 

efforts have been focused on rather simple pool boiling, film boiling, flow boiling and flow 
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Fig. A.19: (a)  Schematic representations of eddy momentum diffusivity profile across free-falling evaporating water film, and 
influence of interfacial dampening of eddy momentum diffusivity on temperature profile.  (b) Temperature profiles across 
evaporating film at different axial locations predicted using VOF scheme in 2-D axisymmetric domain with Tanasawa phase 
change model.  Adapted from Chapter 7 of current work.   
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condensation configurations. While some attempts  have  been  made  to  address  more 

complex phase change problems, including falling films [160, Chapter 7 of current work], 

heat pipes [314], jet impingement [315] and cryogenics [91,316], there is now a need to 

undertake more aggressive steps to tackle several important phenomena that have received 

significant attention in experimental studies and/or are crucial to design of modern phase 

change devices and systems.  Following is a summary of such phenomena: 

(1) As shown in Fig. A.20(a), two distinct mechanisms have been proposed as 

dominating flow boiling heat transfer in micro-channel heat sinks: nucleate boiling and 

convective boiling.  And recommendations have been made in numerous, mostly 

experimental studies regarding operating conditions that render dominant one mechanism 

versus the other [317,318].  Clearly, computational models might play a crucial role in 

capturing detailed interfacial behavior associated with each.  

(2)  Flow boiling CHF is one of the most important design parameters for heat-flux-

controlled two-phase cooling systems.  For the most common configuration of flow boiling 

in a tube, experimental evidence points to formation of a wavy insulating vapor layer prior 

to CHF,  with cooling  provided  only  in  ‘wetting fronts’ correspond to the wave troughs, 

Fig. A.20(b), with CHF triggered by lift-off of the troughs from the wall [45].  This 

depiction of interfacial behavior lends itself well to computational modeling. 

(3)  Two-phase micro-channel heat sinks are susceptible to different types of 

instabilities,      including  severe  pressure  drop  oscillations  and  mild  parallel  channel
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FC-72, G = 1536.1 kg/m2s (U = 0.97 m/s), ΔTsub,in = 5.0°C  
81% CHF (CHF = 29.6 W/cm2) 

Vapor Layer   

Liquid

λ
z

c

Wetting
Front

(a)

(b)

(c) (d)

(e) (f)

Fig. A.20: Examples of phase change phenomena that are crucial to design of modern 
devices and systems, and which can benefit greatly from computational modeling.  (a) 
Dominant flow boiling heat transfer mechanisms in micro-channels [317,318].  (b)  
Flow boiling CHF in tubes [45].  (c) Instabilities and premature CHF in micro-channels 
[1].  (d)  Liquid splashing and dryout in free jet impingement [319].  (e)  spray cooling 
and liquid film buildup [106,320].  (f)  Leidenfrost phenomenon [321]. 
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oscillations, and these instabilities have been shown to trigger pre-mature CHF [1], as 

shown in Fig. A.20(c).  While, as discussed earlier, some investigators have simulated the 

problem of bubble backflow in micro-channels, more aggressive computational efforts are 

needed to address these important phenomena. 

(4)  While jet impingement has been the target of a few computational efforts, important 

phenomena such as splashing of liquid away from the heated wall and ensuing wall dryout 

[319], Fig. A.20(d), warrant more aggressive computational modeling efforts.  

(5)  Impact of individual droplets with dry or wet surfaces has been the subject of a 

substantial number of computational efforts.  However, a very important application of 

droplet impact is spray cooling, where liquid supplied through a nozzle undergoes breakup 

into a large number of droplets with broad range of trajectories as shown in Fig. A.20(e) 

[106,320].  Admittedly, computational modeling of spray cooling is a formidable task, 

given its flow complexity and large number of discrete interfaces.  Nonetheless, 

computational efforts might shed light on crucial mechanisms associated with liquid film 

buildup on the heated wall, and its impact on spray cooling. 

(6)  The Leidenfrost point is one of the most important phenomena in the production 

of metal alloys, which is encountered during the quench phase of heat treating [321].  As 

the metal alloy part is cooled from very high temperature, this point marks a transition from 

slow cooling in the film boiling regime to fast cooling, as the surface enters the transition 

boiling regime.  This behavior, which is depicted in Fig. A.20(f), has a strong bearing on 

alloy microstructure and hence mechanical properties of the part produced.  Accurate 

computational modeling of the Leidenfrost point will therefore have a profound practical 

impact on the entire heat treating industry. 
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A.7 Concluding Remarks 

 This article reviewed published papers concerning computational fluid dynamics 

simulations of boiling and condensation.  Two-phase schemes and surface tension models 

adopted by different research teams were discussed, followed by thorough discussion on 

implementation of mass transfer across the two-phase interface.  Also included was a 

comprehensive review of articles covering a variety of boiling and condensation 

configurations, along with the computational methods used, examples of their predictions, 

and comparisons with experimental data.  The article was concluded with identification of 

future research needs to improve predictive capabilities, as well as crucial phase change 

phenomena that warrant significant attention in future computational studies.  
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