
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2016

Model-Free Variable Screening, Sparse Regression
Analysis and Other Applications with Optimal
Transformations
Qiming Huang
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Statistics and Probability Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Huang, Qiming, "Model-Free Variable Screening, Sparse Regression Analysis and Other Applications with Optimal Transformations"
(2016). Open Access Dissertations. 774.
https://docs.lib.purdue.edu/open_access_dissertations/774

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/774?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F774&utm_medium=PDF&utm_campaign=PDFCoverPages






MODEL-FREE VARIABLE SCREENING, SPARSE REGRESSION ANALYSIS AND

OTHER APPLICATIONS WITH OPTIMAL TRANSFORMATIONS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Qiming Huang

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2016

Purdue University

West Lafayette, Indiana



ii

To my family.



iii

ACKNOWLEDGMENTS

My first and foremost thanks go to my advisor, Professor Michael Yu Zhu. His far-

reaching vision, valuable guidance, and inspirational encouragement have helped me ex-

plore and develop ideas and overcome incredible challenges throughout my PhD. Michael

has spent a tremendous amount of time and energy on guiding me through interesting re-

search questions and helping me develop as a researcher. This dissertation would not be

possible without his guidance and patience. Thank you for being a fantastic advisor and

friend.

I deeply appreciate insightful comments and encouragements from Professor Hyonho

Chun, Professor Chuanhai Liu and Professor Hao Zhang who serves as members of my

thesis committee.

I’d like to thank Professor Anirban DasGupta and Professor Chuanhai Liu for their

extraordinary courses. I’d like to thank Professor Todd Kelley, Professor Louis Tay, Pro-

fessor Brenda Capobianco and Dr. Chell Nyquist for their guidances and collaborations on

psychometrics and SLED project with four-year financial supports. My thanks go to Dr.

Sergey Kirshner and Professor Olga Vitek for their supervisions and supports at the early

stage of my PhD. Thanks also go to all members of my research group: Longjie Cheng,

Zhaonan Sun, Han Wu, Pan Chao, Bing Yu, Rongrong Zhang, for their critical discussions

and helps on various research topics.

I’d like to thank all my friends at Purdue. A big thank you goes to Jeff Li for being a

great mentor, roommate and friend; You are like a brother to me. I am very grateful for the

generous helps from Jin Xia, Youran Fan, Cheng Liu, Han Wu and Bowen Zhou. It’s quite

an unforgetable memory preparing for qualifying exams with Yang Zhao and Xiaoguang

Wang. I’m fortunate to have Xiaosu Tong as my intern partner and thank you for the

wonderful and fruitful summer we had together. I had lots of fun fishing with Wei Sun. I

learned a lot from various short chats with Zach Haas, Whitney Huang, Qi Wang, Yixuan



iv

Qiu and Wei Sun. I want to thank Zhuo Chen, Shuqian Zhang, Weiwei Zhang and Bingrou

Zhou for all the wonderful meals and their hospitality.

Last, but not least, I would like to thank my beloved parents, my brother Jeff, my

sister-in-law Kami, and my dearest wife Emily, for their amazing support, tolerance, un-

derstanding, and love.



v

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Optimal Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Applications of Optimal Transformations . . . . . . . . . . . . 4

1.2 Review on Variable Screening Methods . . . . . . . . . . . . . . . . . 7
1.2.1 Sure Independence Screening (SIS) . . . . . . . . . . . . . . . 8
1.2.2 Nonparameteric Independence Screening (NIS) . . . . . . . . . 8
1.2.3 Distance Correlation-based Sure Independence Screening (DC-SIS) 9

1.3 Review of Variable Selection Method in Regression . . . . . . . . . . . 10
1.3.1 The Lasso and Its Variants . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Variable Selection in Additive Models . . . . . . . . . . . . . . 12

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Model-Free Sure Screening via Maximum Correlation . . . . . . . . . . . . . 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Independence Screening via Maximum Correlation . . . . . . . . . . . 18

2.2.1 Maximum correlation and optimal transformation . . . . . . . . 18
2.2.2 B-spline estimation of optimal transformations . . . . . . . . . 20
2.2.3 MC-SIS procedure . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.4 Sure Screening Property . . . . . . . . . . . . . . . . . . . . . 23

2.3 Tuning Parameter Selection . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5.1 On Tuning Parameter Selection . . . . . . . . . . . . . . . . . 40
2.5.2 On Marginal Screening Procedure . . . . . . . . . . . . . . . . 42

2.6 Technical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.2 Bernstein’s Inequality and Four Facts . . . . . . . . . . . . . . 44
2.6.3 Proof of Lemma 2.2.1 . . . . . . . . . . . . . . . . . . . . . . 45
2.6.4 Proof of Eight Basic Results . . . . . . . . . . . . . . . . . . . 45



vi

Page
2.6.5 Proof of Theorem 2.2.2 . . . . . . . . . . . . . . . . . . . . . 54
2.6.6 Proof Sketch of Theorem 2.2.3 . . . . . . . . . . . . . . . . . 56

3 Sparse Optimal Transformation . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Notations and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Sparse Optimal Transformations . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Sparse Optimal Transformation Problem . . . . . . . . . . . . 61
3.3.2 SICA Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.3 Monotone Transformation on Response . . . . . . . . . . . . . 64
3.3.4 SPOT Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.1 Effectiveness on Synthetic Data . . . . . . . . . . . . . . . . . 71
3.5.2 Role of Parameter a in Variable Selection . . . . . . . . . . . . 75
3.5.3 Real Data Application . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.7 Technical Proofs and More Simulation Examples . . . . . . . . . . . . 81

3.7.1 Technical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.7.2 More Simulation Examples . . . . . . . . . . . . . . . . . . . 85

4 Maximum Correlation-based Statistical Dependence Measures . . . . . . . . 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Maximum Correlation Coefficient and Optimal Transformation . . . . . 90
4.3 Dependence Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.1 Univariate Case: BMC and T-BMC . . . . . . . . . . . . . . . 91
4.3.2 Multivariate Case: MBMC and T-MBMC . . . . . . . . . . . . 98

4.4 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.1 Simulation Results for BMC/T-BMC . . . . . . . . . . . . . . 103
4.5.2 Simulation Results for MBMC/T-MBMC . . . . . . . . . . . . 104

4.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6.1 On Dependence Measures . . . . . . . . . . . . . . . . . . . . 107
4.6.2 On Application to Sufficient Dimension Reduction . . . . . . . 108

4.7 Technical Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.7.1 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . 109
4.7.2 Proof of Theorem 4.3.2 . . . . . . . . . . . . . . . . . . . . . 109
4.7.3 Proof of Theorem 4.3.6 . . . . . . . . . . . . . . . . . . . . . 109

5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



vii

LIST OF TABLES

Table Page

2.1 Average MMS and RSD (in parentheses) for Example 2.4.1 . . . . . . . . . 34

2.2 Average MMS and RSD (in parentheses) for Example 2.4.2 . . . . . . . . . 35

2.3 Average MMS and RSD (in parentheses) for Example 2.4.3 . . . . . . . . . 37

2.4 Top ranked (Rank 1 and Rank 2) genes for Example 2.4.4 . . . . . . . . . . 38

2.5 Adjusted R2 (in percentage) of fitting 3 different models for Example 2.4.4 . 39

3.1 Comparison of different methods on simulated data from Example 3.5.1. . 73

3.2 Comparison of different methods on simulated data from Example 3.5.2. . 74

3.3 Average percentages of times that the true model can be selected by SPOT-
SICA with different choices of a. The last column corresponds to the result
from SPOT-LASSO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Comparison of different methods on simulated data from Example 3.7.1. . 87

3.5 Comparison of different methods on simulated data from Example 3.7.2. . 88



viii

LIST OF FIGURES

Figure Page

2.1 A example of cubic B-spline basis functions . . . . . . . . . . . . . . . . . 21

3.1 Plot of SICA penalty functions for a few a values. . . . . . . . . . . . . . . 63

3.2 Transformations of Y and X
1

to X
5

obtained from SPOT-SICA (a = 1) in
Example 3.5.2 (p = 50, t = 0). The black line is the estimated transforma-
tion from original data, red lines are estimated transformations from 20 boot-
strapped samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Impact of a on selection consistency of SPOT under different correlation struc-
ture controlled by t. Comparison between result from a = 1 and a =1, where
a =1 corresponds to the L

1

penalty. . . . . . . . . . . . . . . . . . . . . 77

3.4 Estimated transformations of the response (MEDV) and selected predictors
(RM, DIS, TAX, PTRATIO, LSTAT) by SPOT-SICA for the Boston Housing
Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 Estimated transformations of the response and 10 selected predictors by SPOT-
SICA for the Communities and Crime Data. The labels above each graph cor-
responds to the orders of the covariates in the original data. The last graph is the
plot of the estimated response transformation against the sum of all estimated
transformations of selected variables. . . . . . . . . . . . . . . . . . . . . 80

4.1 Power of different measures on detecting dependence for different bivariate
relationships, as noise level increases. . . . . . . . . . . . . . . . . . . . . 105

4.2 Power of different measures on detecting dependence for different multivariate
relationships, as noise level increases. . . . . . . . . . . . . . . . . . . . . 106



ix

ABBREVIATIONS

ACE Alternating Conditional Expectation

BMC B-spline-based Maximum Correlation, using the largest eigenvalue

CV Cross Validation

DC-SIS Distance Correlation-based Sure Independence Screening

IQR Inter-Quantile Range

LLA Local Linear Approximation

MBMC Multivariate version of B-spline-based Maximum correlation, using

the largest eigenvalue

MC-SIS Maximum Correlation-based Sure Independence Screening

MMS Mimimal Model Size

MSE Mean Squared Error

NIS Nonparametric Independence Screening

RKHS Reproducing Kernel Hilbert Space

RSD Robust Standard Deviation

SICA Smooth Integration of Counting and Absolute deviation

SIS Sure Indepedence Screening

SPAM SParse Additive Model

SPOT SParse Optimal Transformation

SPOT-LASSO SParse Optimal Transformation with L
1

penalty

SPOT-SICA SParse Optimal Transformation with SICA penalty

T-BMC B-spline-based Maximum Correlation, using Trace

T-MBMC Multivariate version of B-spline-based Maximum Correlation, using

Trace



x

ABSTRACT

Huang, Qiming PhD, Purdue University, August 2016. Model-Free Variable Screening,
Sparse Regression Analysis and Other Applications with Optimal Transformations . Major
Professor: Michael Yu Zhu.

Variable screening and variable selection methods play important roles in modeling

high dimensional data. Variable screening is the process of filtering out irrelevant vari-

ables, with the aim to reduce the dimensionality from ultrahigh to high while retaining all

important variables. Variable selection is the process of selecting a subset of relevant vari-

ables for use in model construction. The main theme of this thesis is to develop variable

screening and variable selection methods for high dimensional data analysis. In particular,

we will present two relevant methods for variable screening and selection under a unified

framework based on optimal transformations.

In the first part of the thesis, we develop a maximum correlation-based sure indepen-

dence screening (MC-SIS) procedure to screen features in an ultrahigh-dimensional set-

ting. We show that MC-SIS possesses the sure screen property without imposing model

or distributional assumptions on the response and predictor variables. MC-SIS is a model-

free method in contrast with some other existing model-based sure independence screening

methods in the literature. In the second part of the thesis, we develop a novel method called

SParse Optimal Transformations (SPOT) to simultaneously select important variables and

explore relationships between the response and predictor variables in high dimensional

nonparametric regression analysis. Not only are the optimal transformations identified by

SPOT interpretable, they can also be used for response prediction. We further show that

SPOT achieves consistency in both variable selection and parameter estimation.

Besides variable screening and selection, we also consider other applications with op-

timal transformations. In the third part of the thesis, we propose several dependence mea-

sures, for both univariate and multivariate random variables, based on maximum correlation



xi

and B-spline approximation. B-spline based Maximum Correlation (BMC) and Trace BMC

(T-BMC) are introduced to measure dependence between two univariate random variables.

As extensions to BMC and T-BMC, Multivariate BMC (MBMC) and Trace Multivariate

BMC (T-MBMC) are proposed to measure dependence between multivariate random vari-

ables. We give convergence rates for both BMC and T-BMC.

Numerical simulations and real data applications are used to demonstrate the perfor-

mances of proposed methods. The results show that the proposed methods outperform

other existing ones and can serve as effective tools in practice.
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1. INTRODUCTION

One common goal for data analysis is to discover the underlying dependence structure be-

tween the response Y and predictor vector X = (X
1

, X
2

, . . . , X
p

)

T , which can be fully

captured by the conditional distribution P (Y |X). Different regression models have been

proposed to characterize the dependence structure, from a limited sample of Y and X.

Regression models differ in several aspects, such as model flexibility, interpretability, com-

putational efficiency and prediction accuracy.

Model flexibility and interpretability have been recognized to play key roles in practical

data analysis. A general nonparametric regression model,

Y = f(X, ✏), (1.1)

or a simplified version Y = f(X) + ✏ where ✏ is a random error, is the most flexible model

in regression setting. It assumes no structure constraints on the function f , and can accom-

modate any possible interactions among those predictor variables. However, this approach

suffers severely from the curse of dimensionality, and would generally result in poor esti-

mation efficiency. Moreover, the generation process of the response is described much like

a ’black-box’ mechanism by the single joint multivariate function f which consists of all

covariates, making the model hard to be interpretable. A linear model

Y =

pX

j=0

�
j

X
j

+ ✏, (1.2)

on the other extreme, is highly interpretable due to its assumed linear additive structure.

Moreover, the additive structure provides a convenient assessment of the individual con-

tribution from each predictor variable. However, a reliance on the rigid parametric form

limits its ability to model nonlinear effects of the predictor variables.

Different approaches have been proposed to remedy the disadvantages of general non-

parametric regression models and linear models, which can achieve a higher degree of
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model flexibility than linear models, and obtain better interpretability and computation ef-

ficiency than nonparametric regression models. One approach is to transform response Y

such as Box-Cox transformations, which lead to

T (Y ) =

pX

j=0

�
j

X
j

+ ✏. (1.3)

Box and Cox (1964) proposed a family of power transformations on the response for T (Y ),

which aims to make the assumptions of linearity, normality and homogeneous variance in

linear models more appropriate after transformation. Additive models in Stone (1985),

Y =

pX

j=1

f
j

(X
j

) + ✏, (1.4)

which are different from Box-Cox transformations, allow transformations on each predic-

tor variable. Additive models assume that each additive component is a univariate smooth

function of a single predictor variable, thus providing nonparametric extensions of linear

models and can offer a higher degree of flexibility. And the additive combination of uni-

variate functions is more interpretable and easier to fit than general nonparametric models.

Despite the popularity of Box-Cox transformations and additive models, their effectiveness

are still vulnerable to model mis-specifications, and they could be ineffective for simple

cases like Y = log(X
1

+ X2

2

+ ✏). In addition, another drawback of Box-Cox transfor-

mations is that the parametric form of transformation on the response can be restrictive in

some applications.

To further improve the model flexibility and interpretability from Box-Cox transforma-

tions and additive models, transformation models are proposed, where general nonparamet-

ric transformations are applied to both Y and X. Transformation models are formulated

as

h(Y ) =

pX

j=1

f
j

(X
j

) + ✏, (1.5)

where h and f
j

, j = 1, . . . , p, are arbitrary measurable functions of corresponding random

variables. Under certain conditions, it is shown that transformations h and f
j

, j = 1, . . . , p,

are identifiable and different estimation procedures have been proposed (Linton et al., 2008;
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Chiappori et al., 2015). With the strengths provided by nonlinear transformations and ad-

ditive structure, transformation models achieve a good balance in model flexibility and

interpretability.

For data analysis, it is an ideal case that the underlying dependence structure between

Y and X is known so that a precise model can be specified and corresponding model pa-

rameters can be accurately estimated. However, such prior knowledge is seldom given in

practice. To explore their relationship, it is a common practice to apply different model

structures to approximate the true structure. The choice of a specific model involves dif-

ferent considerations over various factors such as model flexibility, interpretability, compu-

tational efficiency, prediction accuracy, etc. To combine the advantages of both nonlinear

transformation and the additive structure as in (1.5), we consider optimal transformation

defined in Breiman and Friedman (1985) and propose several methods in the areas of vari-

able screening, variable selection, dependence measure, sufficient dimension reduction,

etc.

1.1 Optimal Transformation

1.1.1 Formal Definition

Breiman and Friedman (1985) proposed to apply general nonparametric transforma-

tions to both Y and X and considered optimal transformations by solving a minimization

problem.

min

h2L2
(PY ),fj2L2

(PXj
)

E

h
{h(Y )�

pX

j=1

f
j

(X
j

)}2
i
,

s.t. E[h(Y )] = E[f
j

(X
j

)] = 0;

E[h2

(Y )] = 1,E[f 2

j

(X
j

)] <1.

(1.6)

Here, P
Y

and P
Xj denote the marginal distributions of Y and X

j

, respectively, and L2

(P )

denotes the class of square integrable functions under the measure P. We denote the solu-

tion to (1.6) as h⇤ and f ⇤
j

(j = 1, . . . , p), which are referred to as the optimal transforma-



4

tions for Y and X, respectively. Problem (1.6) tries to find transformations that produce

the best-fitting additive model. Knowledge of such transformations can aid in the interpre-

tation and understanding the relationship between the response and predictors. From the

aspect of applying transformation, both Box-Cox transformations and additive models can

be considered as special cases of optimal transformations.

A set of sufficient conditions is given in Breiman and Friedman (1985, Section 5.2)

for the existence of optimal transformations. Note that under some restrictive conditions,

the optimal transformations from (1.6) are equivalent to the transformations in regression

model (1.5). However, the equivalence property does not hold in general. The necessary

conditions which ensure the equivalence property is still an open research question. Despite

this theoretical gap, the optimal transformation approach is still a useful statistical tool in

exploring the relationship between the response and predictor variables. In addition, it

provides a general framework under which several methods can be proposed.

1.1.2 Applications of Optimal Transformations

Based on optimal transformation, we propose several methods to deal with different

statistical problems in next few chapters, including variable screening, sparse nonparamet-

ric regression, dependence measure and sufficient dimension reduction. Here, we briefly

introduce these methods and show their connections with optimal transformations.

Variable Screening

Variable screening is the process of filtering out irrelevant variables, with the aim to re-

duce the dimensionality from ultrahigh to high while retaining all important variables prior

to model building. In Chapter 2, we propose a screening procedure based on a dependence

measure maximum correlation (Rényi, 1959), which is defined by

⇢⇤(Y,X) = sup

✓,�

{⇢ (✓(Y ),�(X)) : 0 < E{✓2(Y )} <1, 0 < E{�2

(X)} <1}, (1.7)



5

where ⇢ is the Pearson correlation, and ✓ and � are Borel-measurable functions of univariate

random variables Y and X .

Breiman and Friedman (1985) derived the relationship between the optimal transfor-

mations from (1.6) and maximum correlation. For bivariate cases where p = 1, the opti-

mal transformations are equivalent to the transformations that yield maximum correlation.

Since maximum correlation is a measure that can sensitively capture dependence between

the response and the predictor variable in univariate cases, we build a screening procedure

which ranks the predictor variables according to their marginal maximum correlations with

the response. Maximum correlation is not directly computable because the maximization

in (1.7) is taken over infinite-dimensional spaces. Therefore, we approximate the optimal

transformations in order to numerically evaluate maximum correlation. The resulting pro-

cedures are essentially proposed based on optimal transformations for univariate cases with

p = 1.

Sparse Nonparametric Regression

Optimal transformations only enjoy good statistical and computational behaviors when

the number of variables p is not large to the sample size n, their usefulness is limited in

the high dimensional setting. In Chapter 3, we extend optimal transformations to deal

with high dimensional problems by proposing a sparse version of optimal transformations,

which penalizes the sum of L
2

norm of each function component f
j

in (1.6). The resulting

optimal transformations encourage parsimonious solutions and perform model selection

and parameter estimation simultaneously. To make the optimal transformation interpretable

and suitable for regression analysis, we further consider monotone transformation on the

response Y .

Dependence Measures

Due to the fact that maximum correlation between random variables X and Y is zero

if and only if X and Y are independent, maximum correlation can be applied in testing the
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hypothesis “random variables X and Y are independent”. Beside the maximum correlation

r
1

and the optimal transformations ✓
1

,�
1

defined by

r
1

= max

✓1,�12L2(P )

⇢ (✓
1

(Y ),�
1

(X)) , (1.8)

one can also define subsequent maximum correlations and optimal transformations. For

functions {✓
i

,�
i

; i = 1, 2, . . .} with bounded positive second moments, let

r
i

= max

✓i,�i2L2(P )

⇢ (✓
i

(Y ),�
i

(X)) ,

h✓
i

(Y ), ✓
j

(Y )i
L2(PY )

= 0,

h�
i

(X),�
j

(X)i
L2(PX)

= 0,

(1.9)

for all j = 1, . . . , i�1. Here, h·, ·i is the inner product defined in corresponding L
2

spaces.

Under independence of random variables X and Y , all the values of r
i

’s are zero. Based

on this property, we propose several independence measures. Since all correlations r
i

are

not directly computable, we again approximate optimal transformations in order to numer-

ically evaluate maximum correlation. Under the framework of optimal transformations, we

develop dependence measures by approximating optimal transformations using B-spline

basis functions. Given a sample, the optimal transformations are obtained by solving an

equivalent eigen problem. Additionally, eigenvalues from the eigen problem correspond to

the values of r
i

’s. In Chapter 4, we apply the leading eigenvalue, as well as the sum of all

eigenvalues for measuring dependence.

Sufficient Dimension Reduction

The goal of a traditional linear sufficient dimension reduction procedure is to find a few

linear combinations �>
1

X, . . . , �>
d

X that can fully represent X, without loss of information

on Y . It is required that those linear combinations satisfy the constraints,

Y ?? X|{�>
1

X, . . . , �>
d

X}.

That is, Y is conditionally independent of X given {�>
1

X, . . . , �>
d

X}. Equivalently, the

dependence structure of Y on X is expressed by the regression model

Y = f(�>
1

X, . . . , �>
d

X, ✏).
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Li (1991) proposed Sliced Inverse Regression (SIR) that can recover the space spanned

by �
1

, . . . , �
d

under some mild conditions. SIR is connected to a maximization problem as

follows. Define

R2

(b) = max

T

⇢(T (Y ), b>X) (1.10)

where ⇢ is the Pearson correlation, T is any squared integrable function, and b is a vector

of length p. We look for the direction b
1

which maximizes R2

(b), and continue to find

subsequent directions b
2

, . . . , b
d

, satisfying the following conditions.

Cov(b>
i

X, b>
j

X) = 0, for i 6= j

R2

(b
i

) = max

b

R2

(b)
(1.11)

It is shown in Chen and Li (1998) that the resulting directions b
1

, . . . , b
d

are equivalent

to the directions obtained by SIR. Therefore, solving the maximization problem above can

be viewed as a procedure to recover the space spanned by {�
1

, . . . , �
d

}.

One possible way to improve SIR is to generalize dimension reduction from linear to

nonlinear cases, where we consider additive terms of transformed X instead of its linear

combinations. We apply the optimal transformations and extract the transformations of X

successively, similar to the procedure described in (1.8) and (1.9) of extracting the sequence

of maximum correlations. This direction of research is briefly discussed at the end of

Chapter 4.

For comparison purposes, we review some existing methods on variable screening and

variable selection in high dimension data analysis.

1.2 Review on Variable Screening Methods

In a seminar paper, Fan and Lv (2008) proposed Sure Independence Screening (SIS)

for screening variables in linear models. More screening procedures are developed after

SIS for other specific models, including screening methods for generalized linear models

(Fan and Song, 2010), multi-index models (Zhu et al., 2011) and additive models (Fan

et al., 2011), varying coefficient models (Fan et al., 2014), etc. Another kind of screening

procedures is developed without imposing any specific model assumption, for example, the



8

distance correlation-based sure independence screening Li et al. (2012b). In this section,

we review three typical screening methods.

1.2.1 Sure Independence Screening (SIS)

Consider a linear regression model

Y =

pX

j=0

�
j

X
j

+ ✏ (1.12)

where ✏ is a random error. Fan and Lv (2008) suggested ranking all predictors according

to their marginal Pearson correlations with the response and select the top predictors with

relatively larger Pearson correlation values with a given sample. Let w
j

= ⇢(Y,X
j

) where

⇢ denotes the Pearson correlation, and cw
j

be its sample estimates from n observations. SIS

retains the following set of predictors.

dM
�

= {1  j  p : |cw
j

| is among the first [�n] largest of all}

where � is a pre-defined constant with � 2 (0, 1), and [�n] denote the integer part of �n.

For linear model (1.12), the true set of important predictors is defined as

M
?

= {1  j  p : �
j

6= 0}.

Under some regularity conditions, Fan and Lv (2008) showed that SIS possesses the sure

screening property in the ultrahigh dimensional setting, that is,

Pr(M
?

✓dM
�

)! 1, as n!1.

1.2.2 Nonparameteric Independence Screening (NIS)

To screening features in ultrahigh dimensional additive model

Y =

pX

j=0

m
j

(X
j

) + ✏ (1.13)

where E{m
j

(X
j

)} = 0. Fan et al. (2011) proposed to rank all predictors according to

E{f 2

j

(X
j

)} where f
j

(X
j

) = E(Y |X
j

) is the projection of Y on X
j

. Given data {Y
i

}n
i=1
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and {X
ij

}n
i=1

, the function f
j

(X
j

) can be estimated through any basis expansion methods

such as B-splines. Denote its sample estimate as cf
nj

, NIS retains the following set of

predictors.
dM

⌫

= {1  j  p : ||cf
nj

||2
n

� ⌫
n

}

where ||cf
nj

||2
n

= n�1

P
n

i=1

cf
nj

(X
ij

) and ⌫
n

is a pre-specified value. For additive model

(1.13), the true set of important predictors is defined as

M
?

= {1  j  p : Em2

j

(X
j

) > 0}.

Under some regularity conditions, Fan et al. (2011) showed that NIS possesses the sure

screening property for additive models.

1.2.3 Distance Correlation-based Sure Independence Screening (DC-SIS)

Both SIS and NIS are proposed for targeted classes of specified models and may be-

come ineffective when the model is mis-specified. To overcome this difficulty, Li et al.

(2012b) proposed a model-free screening procedure, DC-SIS, to screen features in the ul-

trahigh dimensional setting, without imposing any specific model assumptions. DC-SIS

uses a dependence measure called distance correlation introduced in Szekely et al. (2007) to

rank the predictor variables. The distance correlation between two random vector u 2 Rdu

and v 2 Rdv is defined by

dcorr(u,v) =
dcov(u,v)p

dcov(u,u)dcov(v,v)

where dcov(·, ·) is called distant covariance and defined as follows.

dcov

2

(u,v) =

Z

R

du+dv

k�u,v(t, s)� �u(t)�v(s)k2 w(t, s) dt ds

where �u(t) and �v(s) are the respective characteristic functions of the random vectors u

and v, �u,v(t, s) is the joint characteristic function of u and v, and

w(u,v) = {c
ducdv ||t||1+du

du
||s||1+dv

dv
}�1

with c
d

= ⇡(1+d)/2/�{(1 + d)/2} and � being the Gamma function.
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Distant correlation is a generalization of the Pearson correlation and can be used to cap-

ture nonlinear relationships between any two random vectors. Denote the sample estimates

of distant correlation between Y and X
j

by [
dcorr(Y,X

j

), DC-SIS ranks the predictors

according to [
dcorr

2

(Y,X
j

) and retains the set of predictors

cM = {1  j  p :

[
dcorr

2

(Y,X
j

) � cn�}.

Define the true set of important predictors by

M
?

= {1  j  p : F (Y |X) functionally depends on X
j

},

Li et al. (2012b) proved that DC-SIS has the sure screening property under some regularity

conditions, without imposing any specific model assumptions.

1.3 Review of Variable Selection Method in Regression

Classical variable selection procedures, which differ from variable screening, perform

model selection and parameter estimation simultaneously. The majority of these procedures

select variables by minimizing a penalized objective function with the following form.

Loss function + Penalization (1.14)

The most popular choices of loss functions are least squares, negative log-likelihood, and

their variants. The penalization part penalizes model complexity and encourages sparsity

in the final model. Early methods of variable selection include best subset selection or step-

wise (forward/backward) selection with a criterion like Akaike information criterion (AIC)

(Akeike, 1973), Bayesian information criterion (BIC) (Schwarz et al., 1978), Mallow’s C
p

(Mallows, 1973), etc. These methods are computational expensive and quickly becomes

infeasible as dimensionality grows. Furthermore, the subset selection approaches suffer

from instability and their theoretical properties are difficult to examine (Breiman, 1996).

In high dimensional data analysis, regularization methods have been proposed to overcome

these difficulties. We review some popular methodologies on variable selection in both

linear models and additive models.
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1.3.1 The Lasso and Its Variants

For linear models (1.2), a standard way of performing variable selection is to penalized

least square with a proper choice of the penalty function. One example is the bridge estima-

tor (Frank and Friedman, 1993) which uses the `
q

-norm (q > 0) of the slope coefficients.

When 0 < q  1, some slope estimate can be exactly zero with proper choices of tuning

parameters.

Among all bridge estimators with different choices of q, the most popular estimator is

the one with q = 1, known as the least shrinkage and selection operator (Lasso) proposed in

Tibshirani (1996). The Lasso estimates of the coefficients are the solution to the following

optimization problem.

min

�1,...,�p

E

2

4
 
Y �

pX

j=0

�
j

X
j

!
2

3

5 subject to
pX

j=1

|�
j

|  L; (1.15)

which is also equivalent to the standard form as in (1.14),

min

�1,...,�p

E

2

4
 
Y �

pX

j=0

�
j

X
j

!
2

3

5
+ �

pX

j=1

|�
j

|; (1.16)

where L and � are tuning parameters.

Least Angle Regression (LARS) algorithm (Efron et al., 2004) gives the entire solution

path of the Lasso estimate. In addition, Lasso estimates can also be computed efficiently

via coordinate descent algorithms (Fu, 1998; Friedman et al., 2007). It is shown that Lasso

can consistently select the true model under the Irrepresentable Condition (Zhao and Yu,

2006).

Other variants of Lasso includes the grouped lasso (Yuan and Lin, 2006), the elastic net

(Zou and Hastie, 2005), the fussed lasso (Tibshirani et al., 2005), the adaptive lasso (Zou,

2006), etc. Beside the `
1

penalty, other penalty functions are investigated in the literature,

examples include the SCAD (Fan and Li, 2001) and MCP (Zhang, 2010).
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1.3.2 Variable Selection in Additive Models

There are several approaches to generalize variable selection from linear to non-linear

models, in particular, the additive models (1.4). One typical example is the Sparse Additive

Model (SPAM) proposed in Ravikumar et al. (2007). They consider a modification of

standard additive model optimization problem as follows.

min

gj2HXj

E

2

4
 
Y �

pX

j=1

�
j

g
j

(X
j

)

!
2

3

5

s.t.
pX

j=1

|�
j

|  L,E[g2
j

(X
j

)] = 1;

(1.17)

where L is a pre-defined constant.

Denote � = (�
1

, . . . , �
p

)

>. Then, the constraint that � lies in the `
1

ball {� : ||�||
1

 1}
encourages sparsity of the estimated �, just as for the Lasso (Tibshirani, 1996).

Let f
j

= �
j

g
j

, we can re-express the minimization problem (1.17) in the following

equivalent Lagrangian form:

1

2

E

2

4
 
Y �

pX

j=1

�
j

f
j

(X
j

)

!
2

3

5
+ �

pX

j=1

q
E[f 2

j

(X
j

)] (1.18)

where � is the regularization parameter.

Ravikumar et al. (2007) developed a backfitting algorithm, named SPAM, to estimate

the functions f
j

(j = 1, . . . , p) for a given sample. They further showed that SPAM can

consistently select all important functional components under some regularity conditions.

Other approaches of variable selection in additive models include Meier et al. (2009),

Huang et al. (2010) and Balakrishnan et al. (2012), where different penalty functions are

used to produce sparse estimates of the functional components.

1.4 Outline

In this thesis, we study and propose several new methodologies for variable screening,

sparse nonparametric regression, dependence measures and dimension reduction, under
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the unified framework with optimal transformations. In Chapter 2, we develop a maximum

correlation-based sure independence screening (MC-SIS) procedure to screen features in

an ultrahigh-dimensional setting. In Chapter 3, we develop a novel method called SParse

Optimal Transformations (SPOT) to simultaneously select important variables and explore

relationships between the response and predictor variables in high dimensional nonpara-

metric regression analysis. In Chapter 4, we propose several dependence measures based

on maximum correlation and B-spline approximation, and discuss the application of opti-

mal transformations in nonlinear sufficient dimension reduction. Chapter 5 summaries the

results of this thesis.



14



15

2. MODEL-FREE SURE SCREENING VIA MAXIMUM

CORRELATION

2.1 Introduction

With the rapid development of modern technology, various types of high-dimensional

data are collected in a variety of areas such as next-generation sequencing and biomedical

imaging data in bioinformatics, high-frequency time series data in quantitative finance, and

spatial-temporal data in environmental studies. In those types of high-dimensional data,

the number of variables p can be much larger than the sample size n, which is referred to as

the ‘large p small n’ scenario. To deal with this scenario, a commonly adopted approach is

to impose the sparsity assumption that the number of important variables is small relative

to p. Based on the sparsity assumption, a variety of regularization procedures have been

proposed for high-dimensional regression analysis such as the lasso (Tibshirani, 1996),

the smoothly clipped absolute deviation method (Fan and Li, 2001), and the elastic net

(Zou and Hastie, 2005). All these methods work when p is moderate. However, when

applied to analyze ultrahigh-dimensional data where dimensionality grows exponentially

with sample size (e.g., p = exp(n↵

) with ↵ > 0), their performances will deteriorate

in terms of computational expediency, statistical accuracy and algorithmic stability (Fan

et al., 2009). To address the challenges of ultrahigh dimensionality, a number of marginal

screening procedures have been proposed under different model assumptions. They all

share the same goal that is to reduce dimensionality from ultrahigh to high while retaining

all truly important variables. When a screening procedure achieves this goal, it is said to

have the sure screening property in the literature.

Fan and Lv (2008) proposed to use the Pearson correlation for feature screening and

showed that the resulting procedure possesses the sure screening property under the lin-

ear model assumption. They refer to the procedure as the Sure Independence Screening
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(SIS) procedure. Fan and Song (2010) extended SIS from linear models to generalized

linear models by using maximum marginal likelihood values. Fan et al. (2011) developed

a Nonparametric Independence Screening (NIS) procedure and proved that NIS has the

sure screening property under the additive model. Li et al. (2012b) proposed to use dis-

tance correlation to rank the predictor variables, and showed that the resulting procedure,

denoted as DC-SIS, has the sure screening property without imposing any specific model

assumptions. Compared with the other screening procedures discussed previously, DC-SIS

is thus model-free. Distance correlation was introduced in Szekely et al. (2007), which

uses joint and marginal characteristic functions to measure the dependence between two

random variables. We briefly review the SIS, NIS, DC-SIS procedures here.

From the review above, it is clear that the standard approach to developing a valid

screening procedure consists of two steps. First, a proper dependence measure between

the response and predictor variables needs to be defined and further used to rank-order all

the predictor variables; and second, the sure screening property needs to be established

for the screening procedure based on the dependence measure. The screening methods

discussed previously differ from each other in these two steps. For example, SIS uses the

Pearson correlation as the dependence measure and possesses the sure screening property

under linear models, whereas NIS uses the goodness of fit measure of the nonparametric

regression between the response and predictor variable as the dependence measure and

possesses the sure screening property under additive models.

For the purpose of screening in an ultrahigh dimensional setting, we argue that an ef-

fective screening procedure should employ a sensitive dependence measure and satisfy the

sure screening requirement without model specifications. The goal of screening is not to

precisely select the true predictors, instead, it is to reduce the number of predictor vari-

ables from ultrahigh to high while retaining the true predictor variables. Therefore, false

positives or selections can be tolerated to a large degree, and sensitive dependence mea-

sures are more preferred than insensitive measures. In ultrahigh dimensional data, there

usually does not exist information about the relationship between the response and predic-

tor variables, and it is extremely difficult to explore the possible relationship due to the
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presence of a large number of predictors. Therefore, model assumptions should be avoided

as much as possible in ultrahigh dimensional screening, and we should prefer screening

procedures that possess the sure screening property without model specifications. In other

words, model-free sure screening procedures are more preferable. Among the existing

screening procedures discussed previously, only DC-SIS is model-free because it does not

require any restrictive model assumption. However, the distance correlation measure used

by DC-SIS may not be sensitive especially when the sample size is small, because empirical

characteristic functions are employed to estimate distance correlations.

A more sensitive dependence measure between the response and a predictor variable is

the maximum correlation, which was originally proposed by Gebelein (1941) and studied

by Rényi (1959) as a general dependence measure between two random variables. Rényi

(1959) listed seven fundamental properties that a reasonable dependence measure must

have, and maximum correlation is one of a few measures that can satisfy this requirement.

The definition and estimation of maximum correlation involve maximizations over func-

tions (see Section 2.2.1), and thus it is fairly sensitive even when the sample size is small.

Recently, there have been some revived interests in using maximum correlation as a proper

dependence measure in high-dimensional data analysis (Bickel and Xu, 2009; Hall and

Miller, 2011; Reshef et al., 2011; Speed, 2011).

We propose to use maximum correlation as a dependence measure for ultrahigh dimen-

sional screening, and prove that the resulting procedure has the sure screening property

without imposing model specifications (see Theorem 2.2.2 in Section 2.2.4). We adopt the

B-spline functions-based estimation method from Burman (1991) to estimate maximum

correlation. We refer to our proposed procedure as the Maximum Correlation-based Sure

Independence Screening procedure, or in short, the MC-SIS procedure. Numerical results

show that MC-SIS is competitive to other existing model-based screening procedures, and

is more sensitive and robust than DC-SIS when the sample size is small or the distributions

of the predictor variables have heavy tails.

The rest of this chapter is organized as follows. In Section 2.2, we introduce maximum

correlation and the B-spline functions-based method for estimating maximum correlation,
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propose the MC-SIS procedure, and establish the sure screening property for MC-SIS. In

Section 2.3, we develop a three-step procedure for selecting tuning parameters for MC-SIS

in practice. Section 2.4 presents results from simulation studies and a real life screening

application. Section 2.5 provides additional remarks on the screening methods and future

research directions. The proofs of the theorems are given in Section 2.6.

2.2 Independence Screening via Maximum Correlation

In this section, we formally introduce the proposed screening procedure MC-SIS, which

uses maximum correlation as the dependence measure. We first introduce its connection

to optimal transformation in Section 2.2.1, and then propose to use B-spline function to

approximate optimal transformation in Section 2.2.2, which leads to a proper approximated

evaluation of maximum correlation. Based on the approximation, we propose MC-SIS in

Section 2.2.3. Sure screening property of MC-SIS is established in Section 2.2.4.

2.2.1 Maximum correlation and optimal transformation

Recall that Y is the response variable and X = (X
1

, . . . , X
p

) the vector of predictor

variables. We assume the supports of Y and X
j

(j = 1, . . . , p) are compact, and they are

further assumed to be [0,1] without loss of generality. For any given j, consider a pair

of random variables (X
j

, Y ). The maximum correlation coefficient between X
j

and Y ,

denoted as ⇢⇤
j

, is defined as follows.

⇢⇤
j

(X
j

, Y ) = sup

✓,�

{⇢ (✓(Y ),�(X
j

)) : 0 < E{✓2(Y )} <1, 0 < E{�2

(X
j

)} <1}, (2.1)

where ⇢ is the Pearson correlation, and ✓ and � are Borel-measurable functions of Y and

X
j

. We further denote ✓⇤
j

and �⇤
j

as the optimal transformations that attain the maximum

correlation.

Maximum correlation coefficient enjoys the following properties given in Rényi (1959):

(a) 0  ⇢⇤
j

(X
j

, Y )  1;

(b) ⇢⇤
j

(X
j

, Y ) = 0 if and only if X
j

and Y are independent;
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(c) ⇢⇤
j

(X
j

, Y ) = 1 if there exist Borel-measurable functions ✓⇤ and �⇤ such that ✓⇤(Y ) =

�⇤
(X

j

);

(d) if X
j

and Y are jointly Gaussian, then ⇢⇤
j

(X
j

, Y ) = |⇢(X
j

, Y )|.

Some other properties of maximum correlation coefficient are discussed in Szekely and

Mori (1985), Dembo et al. (2001), Bryc and Dembo (2005), and Yu (2008). Due to Property

(d), it is clear that maximum correlation is a natural extension of the Pearson correlation.

Note that the Pearson correlation does not possess Properties (b) and (c). For Property (c),

there are cases that the Pearson correlation coefficient can be as low as zero when Y is

functionally determined by X
j

. For example, if Y = X2

1

where X
1

⇠ N (0, 1), the Pearson

correlation between Y and X
1

is zero, whereas the maximum correlation is one. Therefore,

maximum correlation is a more proper measure of the dependence between two random

variables than the Pearson correlation.

Rényi (1959) established the existence of maximum correlation under certain sufficient

conditions, and a different set of sufficient conditions are given in Breiman and Friedman

(1985). Breiman and Friedman (1985) also showed that optimal transformations ✓⇤
j

and �⇤
j

can be obtained via the following minimization problem.

min
✓j ,�j2L2(P )

e2
j

= E[{✓
j

(Y )� �
j

(X
j

)}2],

subject to E{✓
j

(Y )} = E{�
j

(X
j

)} = 0;

E{✓2
j

(Y )} = 1.

(2.2)

Here, P denotes the joint distribution of (X
j

,Y ) and L
2

(P ) is the class of square integrable

functions under the measure P. Let e⇤2
j

be the minimum of e2
j

. Breiman and Friedman

(1985) derived two critical connections between e⇤2
j

, squared maximum correlation ⇢⇤2
j

,

and optimal transformation �⇤
j

, which we state as Fact 0 below.

Fact 0. e⇤2
j

= 1� ⇢⇤2
j

; (2.3a)

E(�⇤2
j

) = ⇢⇤2
j

. (2.3b)
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Fact 0 suggests that the minimization problem (2.2) is equivalent to the optimization

problem (2.1). Furthermore, the squared maximum correlation coefficient is equal to the

expectation of the squared optimal transformation �⇤
j

.

Various algorithms have been proposed in the literature to compute maximum corre-

lation, including Alternating Conditional Expectations (ACE) in (Breiman and Friedman,

1985), B-spline approximation in Burman (1991), and polynomial approximation in Bickel

and Xu (2009) and Hall and Miller (2011). Equation (2.3b) indicates that maximum cor-

relation coefficient ⇢⇤
j

can be calculated through the optimal transformation �⇤
j

. In this

chapter, we apply Burman’s approach to first estimate �⇤
j

, and then estimate ⇢⇤
j

, which will

be further used in screening.

2.2.2 B-spline estimation of optimal transformations

Let S
n

be the space of polynomial splines of degree ` � 1 and {B
jm

,m = 1, . . . , d
n

}
denote a normalized B-spline basis with ||B

jm

||
sup

 1, where ||·||
sup

is the sup-norm. We

have ✓
nj

(Y ) = ↵>
j

B
j

(Y ), �
nj

(X
j

) = �>
j

B
j

(X
j

) for any ✓
nj

(Y ),�
nj

(X
j

) 2 S
n

, where

B
j

(·) = (B
j1

(·), . . . , B
jdn(·))> denotes the vector of d

n

basis functions. Additionally, we

let k be the number of knots where k = d
n

�`. One example of the B-spline basis functions

is depicted in Figure 2.1.

The population version of B-spline approximation to the minimization problem (2.2)

can be written as follows.

min
✓nj ,�nj2Sn

E[{✓
nj

(Y )� �
nj

(X
j

)}2],

subject to E{✓
nj

(Y )} = E{�
nj

(X
j

)} = 0;

E{✓2
nj

(Y )} = 1.

(2.4)

Burman (1991) applied a technique to remove the first constraint E{✓
nj

(Y )} = E{�
nj

(X
j

)} =

0 in the optimization problem above as follows. First, let z
1

, . . . , z
dn�1

(z
i

= (z
i1

, . . . , z
idn)

>

for i = 1, . . . , d
n

�1) be d
n

-dimensional vectors which are orthogonal to each other, orthog-

onal to the vector of 1’s and zT
i

z
i

= 1 for i = 1, . . . , d
n

�1. Second, obtain matrix D
j

with

the (s,m)-entry D
j,sm

= z
sm

/(kb
jm

) where b
jm

= E{B
jm

(X
j

)}, for s = 1, . . . , d
n

� 1
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Figure 2.1. A example of cubic B-spline basis functions

and m = 1, . . . , d
n

. Third, let �
nj

(X
j

) = ⌘>
j

 
j

(X
j

) where  
j

(X
j

) = D
j

B
j

(X
j

).

With this construction, it is easy to verify that E{�
nj

(X
j

)} = 0, and the minimization

of E[{✓
nj

(Y ) � �
nj

(X
j

)}2] subject to E{✓2
nj

(Y )} = 1 ensures that E{✓
nj

(Y )} = 0. Bur-

man (1991) showed the equivalence between the optimization problem (2.4) and the one

stated below.
min

✓nj ,�nj2Sn

E[{✓
nj

(Y )� �
nj

(X
j

)}2],

subject to E{✓2
nj

(Y )} = 1.

(2.5)

For fixed ✓
nj

(Y ) (i.e., fixed ↵
j

), the minimizer of (2.5) with respect to ⌘
j

and �
nj

(X
j

)

are
⌘
j

= [E{ 
j

(X
j

) >
j

(X
j

)}]�1

E{ 
j

(X
j

)B>
j

(Y )}↵
j

,

�
nj

(X
j

) =  >
j

(X
j

)[E{ 
j

(X
j

) >
j

(X
j

)}]�1

E{ 
j

(X
j

)B>
j

(Y )}↵
j

.
(2.6)

By plugging �
nj

(X
j

) back in (2.5), we obtain the following maximization problem,
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max

↵j2Rdn
↵>

j

E{B
j

(Y ) >
j

(X
j

)}[E{ 
j

(X
j

) >
j

(X
j

)}]�1

E{ 
j

(X
j

)B>
j

(Y )}↵
j

,

subject to ↵>
j

E{B
j

(Y )B>
j

(Y )}↵
j

= 1.

(2.7)

Following the notation in Burman (1991), we denote

A
j00

= E{B
j

(Y )B>
j

(Y )}, A
jXX

= E{ 
j

(X
j

) >
j

(X
j

)},

A
jX0

= E{ 
j

(X
j

)B>
j

(Y )}, and A
j0X

= A>
jX0

.

It is clear that (2.7) is a generalized eigenvalue problem, which can be solved by the

largest eigenvalue and its corresponding eigenvector of A�1/2

j00

A
j0X

A�1

jXX

A
jX0

A
�1/2

j00

. We

denote the largest eigenvalue by �⇤
j1

, which is equal to ||A�1/2

j00

A
j0X

A�1

jXX

A
jX0

A
�1/2

j00

||,
where || · || is the operator norm, and further denote the corresponding eigenvector by

↵⇤
j

. Let �⇤
nj

(X
j

) =  >
j

(X
j

)[E{ 
j

(X
j

) >
j

(X
j

)}]�1

E{ 
j

(X
j

)B>
j

(Y )}↵⇤
j

. �⇤
nj

can be

considered the spline approximation to the optimal transformation �⇤
j

defined previously.

Note that the target function in (2.7) is E(�⇤2
nj

), and we also have E(�⇤2
nj

) = �⇤
j1

.

Given the data {Y
u

}n
u=1

and {X
uj

}n
u=1

, we estimate A
j00

, A
jXX

, A
jX0

, and A
j0X

as

follows.

dA
j00

= n�1

nX

u=1

B
j

(Y
u

)B>
j

(Y
u

), \A
jXX

= n�1

nX

u=1

b 
j

(X
uj

)

b >
j

(X
uj

),

[A
jX0

= n�1

nX

u=1

b 
j

(X
uj

)B>
j

(Y
u

), and [A
j0X

=

[A
jX0

>
,

where b 
j

(X
uj

) =

cD
j

B
j

(X
uj

), the (s,m)-entry of cD
j

is bD
j,sm

= z
sm

/(kcb
jm

), and cb
jm

=

n�1

P
n

u=1

B
jm

(X
uj

), for s = 1, . . . , d
n

� 1 and m = 1, . . . , d
n

. Then, �⇤
j1

is estimated by

c�⇤
j1

= ||dA
j00

�1/2[A
j0X

\A
jXX

�1[A
j0X

> dA
j00

�1/2

||,

and ↵⇤
j

is estimated by the eigenvector of dA
j00

�1/2[A
j0X

\A
jXX

�1[A
j0X

> dA
j00

�1/2

corre-

sponding to c�⇤
j1

, which we denote as c↵⇤
j

. Therefore, the optimal transformation of Y is

estimated by c✓⇤
nj

=

c↵⇤
j

>
B

j

(Y ). Furthermore, based on (2.6), the optimal transformation of

X
j

can be obtained by c�⇤
nj

=

c⌘⇤
j

>
 

j

(X
j

) with c⌘⇤
j

=

\A
jXX

�1[A
jX0

c↵⇤
j

.

Based on the two relationships (i) E(�⇤2
j

) = (⇢⇤
j

)

2 and (ii) E(�⇤2
nj

) = �⇤
j1

, and the fact

that �⇤
nj

is the optimal spline approximation to �⇤
j

, we propose to screen important variables

using the magnitudes of c�⇤
j1

for 1  j  p.
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2.2.3 MC-SIS procedure

Let ⌫
n

be a pre-specified threshold, and dD
⌫n the collection of selected important vari-

ables. Then, our proposed screening procedure can be defined as

dD
⌫n = {1  j  p : c�⇤

j1

� ⌫
n

}. (2.8)

Empirically, the threshold value ⌫
n

is often set so that |dD
⌫n | = n or [n/ lnn] as in Fan and

Lv (2008) and Fan et al. (2011), where |dD
⌫n | is the cardinality of dD

⌫n and [a] denotes the

integer part of a. Since c�⇤
j1

is the estimate of �⇤
j1

, which is an approximation to the squared

maximum correlation coefficient ⇢⇤2
j

, we refer to the procedure as the MC-SIS procedure.

2.2.4 Sure Screening Property

We establish the sure screening property of the MC-SIS procedure in this section. The

sure screening property is a property under the asymptotic regime that the sample size n

goes to infinity and the number of predictor variables (denoted as p
n

) may grow with n.

The regime with a fixed number of predictor variables, which is p
n

= p for all n > 0, can

be considered a special case. We first introduce some notations.

For any given n, following Li et al. (2012b), we use F
n

(Y |X) to denote the conditional

distribution of Y given X. Note that the subscript n in F
n

is used to indicate that the

conditional distribution of Y given X can depend on n because both Y and X depend on

p
n

and p
n

may grow with n. Define A
n

= {j : F
n

(y|X) functionally depends on X
j

} and

E
n

= {j : ⇢⇤
j

(Y,X
j

) > 0}. Let Ac

n

= {j : F
n

(y|X) does not functionally depend on X
j

}
and Ec

n

= {j : ⇢⇤
j

(Y,X
j

) = 0}. Note that both A
n

and E
n

can change with n as n goes to

infinity.

The predictor variables in A
n

are the true predictors that jointly affect the response

variable Y . The predictor variables in E
n

are those that have positive maximum correlations

with Y . In some cases, A
n

is a subset of E
n

, whereas in some other cases, A
n

is not a

subset of E
n

. It is known that a predictor variable can be a true predictor variable, but it

is marginally independent of Y ; When this happens, like other existing marginal screening
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procedures in the literature, our proposed MC-SIS procedure will fail to retain the true

predictor variable. Define D
n

= A
n

\ E
n

, and Dc

n

= Ac

n

[ Ec

n

. We refer to the predictor

variables in D
n

as the active predictor variables, and those in Dc

n

the inactive predictor

variables.

The goal of the MC-SIS procedure is to retain the active predictor variables. Recall

that dD
⌫n is the collection of predictor variables selected by MC-SIS. The probability that

dD
⌫n contains D

n

, which is Pr(D
n

✓ dD
⌫n), is not expected to be one when based on a

finite sample. Instead, we aim to identify reasonable sufficient conditions under which the

probability Pr(D
n

✓dD
⌫n) converges to one as n goes to infinity. This property is referred

to as the sure screening property in the literature.

We first consider the special case in which the active set D
n

is fixed. Under this special

case, there exists a positive constant c, such that min

j2Dn ⇢
⇤
j

(Y,X
j

) > c > 0 for any n,

indicating that the marginal maximum correlation coefficients between the response and

active predictor variables are always bounded away from zero by the constant c. For this

special case, we can show that as the sample size n goes to infinity and some additional

conditions hold, the probability that MC-SIS can retain D
n

converges to one; In other

words, MC-SIS possesses the sure screening property.

We next consider the general case in which the active set D
n

can change and diverge

as n increases. For each n, define c
n

= min

j2Dn ⇢
⇤
j

(Y,X
j

). Clearly, c
n

is the smallest

maximum correlation coefficient between the response and the active predictor variables for

given n. Under the assumption that there exists a constant c > 0 such that asymptotically

c
n

is bounded away from zero by the constant c, that is, lim inf

n!1 c
n

> c, the sure

screening property of MC-SIS can be established. Although this assumption is broader

than the special case discussed previously, it is still too restrictive.

When the sample size increases, we should allow the possibility that c
n

may decrease

to zero. The rate at which c
n

decreases to zero plays a critical role in determining whether

MC-SIS possesses the sure screening property. If the rate is too fast, the correlation between

the response and some active predictor variables becomes too weak, and MC-SIS may

fail to retain those active predictor variables, and thus MC-SIS fails to possess the sure
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screening property. On the other hand, d
n

, which is the number of B-spline basis functions

used in MC-SIS, critically affects the performance of MC-SIS. The success of MC-SIS

hinges on the interplay of d
n

and c
n

as n goes to infinity. In this article, we impose a

mild condition on this interplay between c
n

and d
n

, which controls the relative rates of

c
n

and d
n

as n goes to infinity. This condition is listed as Condition 5 or (C5) below.

Under (C5) and other regularity conditions, we show that MC-SIS indeed possesses the

sure screening property (see Theorem 2.2.2). Note that the two special cases discussed

above automatically satisfy (C5); Therefore, Theorem 2.2.2 implies that MC-SIS is a sure

screening procedure for these two special cases.

Before stating the theorems regarding the theoretical properties of MC-SIS, we first list

the conditions below.

(C1) If the transformations ✓
j

and �
j

with zero means and finite variances satisfy

✓
j

(Y ) + �
j

(X
j

) = 0 a.s., then each of them is zero a.s.

(C2) The conditional expectation operators E{�
j

(X
j

) | Y } : H
2

(X
j

) ! H
2

(Y ) and

E{✓
j

(Y ) | X
j

} : H
2

(Y ) ! H
2

(X
j

) are all compact operators. H
2

(Y ) and H
2

(X
j

) are

Hilbert spaces of all measurable functions with zero mean, finite variance and usual inner

product.

(C3) The optimal transformations {✓⇤
j

,�⇤
j

}p
j=1

belong to a class of functions F , whose

rth derivative f (r) exists and is Lipschitz of order ↵
1

, that is, F = {f : |f (r)(s)� f (r)(t)| 
K|s � t|↵1 for all s, t} for some positive constant K, where r is a nonnegative integer and

↵
1

2 (0, 1] such that d = r + ↵
1

> 0.5.

(C4) The joint density of Y and X
j

(j = 1, . . . , p) is bounded and the marginal densi-

ties of Y and X
j

are bounded away from zero.
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(C5) The number of B-spline basis functions d
n

satisfies that d
n

 min

j2Dn

(⇢⇤2
j

)/(2c
1

n�2

),

for some constant c
1

> 0 and constant  where 0   < d/(2d+ 1).

(C6) There exist positive constant C
1

and constant ⇠ 2 (0, 1) such that d�d�1

n


c
1

(1� ⇠)n�2/C
1

.

Conditions (C1) and (C2) are adopted from (Breiman and Friedman, 1985), which en-

sure that the optimal transformations exist. Conditions (C3) and (C4) are from Burman

(1991), but modified for our two-variable scenario. Condition (C5) above is similar to

Condition 3 in Fan and Lv (2008), Condition C in Fan et al. (2011), and Condition (C2)

in Li et al. (2012b), which all require that the dependence between the response and active

predictor variables cannot be too weak. As discussed earlier in this section, this condition

is necessary since a marginal screening procedure will fail when the marginal dependence

between the response and an active predictor variable is too weak.

The following lemma shows that the maximum correlations achieved by B-spline-based

transformations are at the same level as the original maximum correlations.

Lemma 2.2.1 Under conditions (C3) – (C6), we have min

j2Dn

�⇤
j1

� c
1

⇠d
n

n�2.

Based on condition (C1) – (C6), we establish the following sure screening property for

MC-SIS.

Theorem 2.2.2 (a) Under conditions (C1) – (C4), for any c
2

> 0, there exist positive

constants c
3

and c
4

such that

Pr(max

1jp

|c�⇤
j1

� �⇤
j1

| � c
2

d
n

n�2

)  O (p⇣(d
n

, n)) . (2.9)

where ⇣(d
n

, n) = d2
n

exp(�c
3

n1�4d�4

n

) + d
n

exp(�c
4

nd�7

n

).
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(b) Additionally, if conditions (C5) and (C6) hold, by taking ⌫
n

= c
5

d
n

n� with c
5


c
1

⇠/2, we have that

Pr(D
n

✓dD
⌫n) � 1�O (s⇣(d

n

, n)) , (2.10)

where s is the cardinality of D
n

.

Note that Theorem 2.2.2 is stated in terms of a fixed number of predictor variables p.

In fact, the same theorem holds for a divergent number of predictor variables, which is

denoted as p
n

. As long as p
n

⇣(d
n

, n) goes to zero asymptotically, MC-SIS can possess the

sure screening property. We remark that the number of basis functions d
n

affects the final

performance of MC-SIS. To obtain the sure screening property, an upper bound of d
n

is

o(n1/7

). Since d
n

is determined by the choices of the degree of B-spline basis functions

and the number of knots, different combinations of degree and the number of knots can

lead to different screening results. Additionally, knots placement can further affect the

behavior of B-spline functions, and in practice, knots are usually equally spaced or placed

at sample quantiles. In next section, we will propose a data-driven three-step procedure for

determining d
n

for MC-SIS in practice. The optimal choice of d
n

and knots placement are

beyond the scope of this thesis and can be an interesting topic for future research.

The sure screening property from Theorem 2.2.2 guarantees that MC-SIS retains the

active set. The size of the selected set can be much larger than the size of the active set.

Therefore, it is of interest to assess the size of the selected set. Following an approach in

Fan et al. (2011), we establish such a result for MC-SIS and state it in the next theorem.

Theorem 2.2.3 Under Conditions (C1) – (C6), we have that for any ⌫
n

= c
5

d
n

n�, there

exist positive constants c
3

and c
4

such that

Pr{|dD
⌫n |  O

�
n2�

max

(⌃)

�
} � 1�O (p

n

⇣(d
n

, n)) , (2.11)

where |dD
⌫n | is the cardinality of dD

⌫n , �
max

(⌃) is the largest eigenvalue of ⌃, ⌃ = E(  >
),

 = ( >
1

, . . . , >
pn
)

>, p
n

is the divergent number of predictor variables, and ⇣(d
n

, n) is
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defined in Theorem 2.2.2.

From Theorem 2.2.3, we have that when �
max

(⌃) = O(n⌧

), the cardinality of the

selected set by MC-SIS will be of order O(n2+⌧

). Thus, by applying MC-SIS, we can

reduce dimensionality from the original exponential order to a polynomial order, while

retaining the entire active set.

2.3 Tuning Parameter Selection

In the previous section, we show that in order to achieve the sure screening property

of MC-SIS, we need to impose several conditions on the choice of d
n

. Recall d
n

= k +

`, where k is the number of knots and ` is the degree of the B-spline basis functions.

These conditions are of theoretical interest, but cannot be directly implemented in practice.

It is well known that the performance of B-spline functions in nonparametric regression

depends on the choices of k and ` as well as the placement of knots. This is also the case

for the performance of MC-SIS under a given finite sample.

Several rules of thumb have been proposed to choose d
n

for B-spline basis functions

when used for the purpose of screening in the literature. For example, cubic splines with

d
n

=

⇥
n1/5

⇤
+ 2 were used in Fan et al. (2011), and cubic splines with d

n

=

⇥
2n1/5

⇤

were proposed in Fan et al. (2014), and in both works, the knots were placed at the sample

quantiles. These rules of thumb can also be applied to MC-SIS, however, we found their

performances are not so satisfactory in some models we have experimented with. In this

section, we propose a more effective approach for selecting ` and k (or d
n

) of the B-spline

basis functions for MC-SIS.

There are two major factors in the use of B-spline basis functions, which affect the

performance of MC-SIS. The first factor is the complexity of the B-spline basis functions

characterized by ` and k. The larger ` and k are, the more complex the B-spline basis

functions. Using more complex basis functions can clearly lead to the overfitting problem

for inactive predictor variables, many of which may be retained due to their falsely inflated
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empirical correlations with the response variable. On the other hand, using less complex

basis functions with small ` and k can lead to the underfitting problem for active predictor

variables, that is, the maximum correlations between the response variable and active pre-

dictor variables may be underestimated, and some active predictor variables may be ranked

lower due to underestimated maximum correlations. Therefore, the proper selection of `

and k hinges on the balance between the overfitting and underfitting problems.

The other factor that affects the performance of MC-SIS is whether the same choices

of ` and k are used for all predictor variables, which is referred to as the unified scheme, or

different choices of ` and k are used for different predictor variables, which is referred to as

the separate scheme. The unified scheme treats all predictor variables the same way and is

relatively simple, but it may be appropriate for some variables while being inappropriate for

other variables. It is difficult to find a unified scheme that simultaneously fits all predictor

variables. On the other hand, the separate scheme allows individual variables to choose

their most suitable basis functions, but it has two drawbacks. The first drawback is that it

may exacerbate the overfitting problem for inactive predictor variables, and the second is

that its computational demand is high.

Based on the discussion above, it is clear that for the purpose of screening, an ideal

scheme for choosing basis functions for MC-SIS is to use the unified scheme with simple

basis functions for inactive predictor variables and the separate scheme with complex basis

functions for active predictor variables. This ideal scheme is not feasible in practice because

we do not know which predictor variables are active and which are inactive ahead of time.

In what follows next, we instead propose a data-driven three-step approach to approximate

the ideal scheme. Because B-spline basis functions of degree higher than three are seldom

used in practice, we only consider ` 2 {1, 2, 3}. Furthermore, we always place knots at

sample quantiles.

In the first step, we use the unified scheme with B-spline basis functions of degree

one. In other words, we fix ` = 1. The number of knots k is then determined as follows.

Consider a set of candidate values for k, for example, K
1

 k  K
2

, where K
1

and

K
2

are pre-specified integers. For each k, we first calculate the maximum correlations
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between the response variable and the predictor variables using k knots and ` = 1, and

then we fit a two-component Gaussian mixture distribution to the calculated maximum

correlations and denote the resulting component means as µ
1

(k) and µ
2

(k), respectively.

The Gaussian mixture distribution is used to cluster predictor variables into two groups

with one group including large maximum correlations and the other including small ones.

Let d(k) = |µ
1

(k) � µ
2

(k)|, which is a measure of separability of those two groups. The

larger d(k) is, the more separable the two groups are. We want to choose the value of k that

can separate the two groups the most. A natural choice is ˜k = min

K1kK2 d(k). Then,

we apply MC-SIS with ` = 1 and k =

˜k to all of the predictor variables, and retain B
1

predictor variables with the largest B
1

maximum correlations, where B
1

is a pre-specified

number. The purpose of using the unified scheme with linear B-spline basis functions

in this step is to avoid the overfitting problem and screen out a large number of inactive

predictor variables.

In the second step, we employ the separate scheme. For each remaining predictor

variable, an M -fold Cross-Validation (CV) procedure is used to select ` 2 {1, 2} and k

(where K
1

 k  K
2

), where M is a pre-defined integer. The maximum correlation

between the predictor variable and the response variable is then calculated using B-spline

basis functions with the selected ` and k. Subsequently, we rank-order the predictors using

their corresponding maximum correlations and retain the top B
2

predictor variables, where

B
2

is a pre-specified number. The M -fold CV procedure uses the correlation between the

response variable and the predictor variable as the score function. The purpose of using the

separate scheme and B-spline basis functions of higher degree is to correct the under-fitting

problem possibly suffered by the active predictor variables in the first step.

The third step is similar to the second step. The only difference is that the degree `

for B-spline basis functions is selected from {1, 2, 3} instead of {1, 2}. In other words,

for individual remaining predictor variables, B-spline basis functions of degree up to three

may be used to calculate their maximum correlations. The purpose of using cubic spline

basis functions is to provide sufficient capacity to calculate the maximum correlations of

active predictor variables.
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The maximum correlations for all pairs of (Y,X
j

) are calculated based on their selected

tuning parameters. The predictor variables are then sorted, and the top B
3

are retained as

the final output of MC-SIS, where B
3

is a pre-specified number.

Note that the three-step procedure proposed above requires three pre-specified num-

bers, B
1

, B
2

and B
3

. The choices of B
1

, B
2

and B
3

can vary from one problem to another

and depend on a number of factors, including the sample size n, the number of predictor

variables p, the signal strengths of the active variables, the noise level, etc. How to opti-

mally determine B
1

, B
2

and B
3

is beyond the scope of this thesis. Here, we instead provide

some general guidelines for the user in practice. Suppose the user has a conservative lower

bound, denoted as q
1

, for the number of predictor variables that are independent of the re-

sponse, and a conservative upper bound, denoted as q
2

, for the number of active variables.

For example, suppose there are 500 predictor variables in an application problem. Apply-

ing the sparsity principle, the user believes that a half of the predictors are independent of

the response variable. Then, q
1

can be assumed to be 200. Furthermore, the user believes

that the number of true variables is less than 20. Then, q
2

can be set as 20.

The goal of the first step in the three-step procedure is to screen out inactive predictor

variables which are independent of the response, and B
1

is the number of predictor vari-

ables that can enter the second step. A proper choice of B
1

is B
1

= p� q
1

. In the previous

example, B
1

then becomes 300, and is conservative in that the first step eliminates 200 out

of all 250 predictors that are independent of the response. Similarly, B
2

is the number of

predictor variables that can enter the third step so that the maximum correlations of active

predictor variables can be accurately evaluated. In order to not leave out any active vari-

ables from the third step, a proper choice of B
2

is B
2

= q
2

. Again in the previous example,

B
2

is set to be 20. Because B
3

is the number of predictor variables that are retained in the

output set dD
⌫n defined in Section 2.2.3, the choice of B

3

is equivalent to the choice of ⌫
n

.

Therefore, B
3

can be chosen in the same way as ⌫
n

as discussed in Section 2.2.3.
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2.4 Numerical Results

We illustrate the MC-SIS procedure by studying its performance under different model

settings and distributional assumptions of the predictor variables. For all examples, we

compare MC-SIS with SIS, NIS, and DC-SIS. As mentioned at the end of Section 2.2.1,

the ACE algorithm in Breiman and Friedman (1985) can also be used to calculate the

maximum correlation coefficient. Therefore, the ACE algorithm can also be used to per-

form maximum correlation-based screening, and we refer to the resulting procedure as the

ACE-based MC-SIS procedure. We also include the ACE-based MC-SIS procedure in our

simulation study. To avoid confusion, we refer to our proposed procedure as the B-spline-

based MC-SIS procedure in this section. For each simulation example, we set p = 1000

and choose n 2 {200, 300, 400}.

Following Fan and Lv (2008) and Fan et al. (2011), we measure the effectiveness of

MC-SIS using average minimum model size (MMS) and robust estimate of its standard de-

viation (RSD). MMS is defined as the minimum number of selected variables, i.e., the size

of the selected set, that is required to include the entire active set. The average MMS is the

average of MMS over 100 replicated simulation runs. RSD is defined as IQR/1.34, where

IQR is the interquartile range of MMS. When constructing B-spline basis functions, we

choose the degree and the number of knots according to the procedure proposed in Section

2.3, and set K
1

= 3, K
2

= 6, B
1

= 200, B
2

= 50 and M = 10.

Example 2.4.1 (1.a): Y = �⇤>X + ", with the first s components of �⇤ taking values

±1 alternatively and the remaining being 0, where s = 3, 6 or 12; X
k

are independent

and identically distributed as N (0, 1) for 1  k  950; X
k

=

P
s

j=1

X
j

(�1)j+1 /5 +

(1 � s"
k

/25)1/2 where "
k

are independent and identically distributed as N (0, 1) for k =

951, . . . , 1000; and " ⇠ N (0, 3). Here, D
n

= {1, . . . , s}.
(1.b): Y = X

1

+X
2

+X
3

+ ", where X
k

are independent and identically distributed

as N (0, 1) for k = 1, and 3  k  1000; X
2

= X3

1

/3 + "̃, and "̃ ⇠ N (0, 1); and
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" ⇠ N (0, 3). Here, D
n

= {1, 2, 3}.

The first example is from Fan et al. (2011) and the simulation results are presented

in Table 2.1. Under model (1.a), SIS demonstrates the best performance across all cases,

which is expected since SIS is specifically developed for linear models. Under the models

(1.a) with s = 3 or 6, when n = 200, MC-SIS underperforms all other methods. However,

when sample size increases to 300 or 400, MC-SIS becomes comparable to others. For the

case with s = 12, MC-SIS underperforms other methods for all choices of n. The cause

for the relatively poor performance of MC-SIS is due to the weak signal. With s = 12, it

requires more samples for MC-SIS to estimate maximum correlation coefficient, without

taking advantages of linearity assumptions.

In model (1.b), SIS fails because there exists a nonlinear relationship between X
1

and

X
2

. NIS demonstrates the best performance as NIS is designed for dealing with nonpara-

metric additive models. The ACE-based MC-SIS procedure demonstrates the second best

performance. The B-spline-based MC-SIS procedure performs better than DC-SIS.

Example 2.4.2 (2.a): Y = X
1

X
2

+X
3

X
4

+ "; D
n

= {1, 2, 3, 4}; (2.b): Y = X2

1

+X3

2

+

X2

3

X
4

+ "; D
n

= {1, 2, 3, 4}; (2.c): Y = X
1

sin(X
2

) + X
2

sin(X
1

) + "; D
n

= {1, 2};

(2.d): Y = X
1

exp(X
2

) + "; D
n

= {1, 2}; (2.e): Y = X
1

ln(|c
0

+X
2

|) + "; D
n

= {1, 2};

(2.f): Y = X
1

/(c
0

+ X
2

) + "; D
n

= {1, 2}. Here X
1

, . . . , X
1000

and ✏ are generated

independently from N (0, 1), and c
0

= 10

�4.

The eight models considered in this example are non-additive, and the simulation re-

sults are presented in Table 2.2. Due to the presence of non-additive structures, we notice

that SIS and NIS fail in all models, and increasing sample size does not help improve the

performances of SIS and NIS for most models. Both MC-SIS and DC-SIS work well in

this example, but MC-SIS outperforms DC-SIS for almost all the models in terms of MMS.

Even when the sample size is as small as 200, MC-SIS can effectively retain the active set
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Table 2.1.
Average MMS and RSD (in parentheses) for Example 2.4.1

Model n SIS NIS DC-SIS MC-SIS MC-SIS

(ACE) (B-spline)

1.a 200 5.8(3.0) 6.4(3.0) 6.8(3.2) 11.9(7.7) 36.6(20.7)

(s = 3) 300 4.6(0.9) 4.9(1.5) 5.1(1.5) 5.9(3.0) 15.0(6.7)

400 3.3(0.0) 3.4(0.0) 3.6(0.8) 3.6(0.8) 6.8(3.7)

1.a 200 57.4(2.4) 68.7(9.7) 60.2(3.7) 140.5(60.8) 175.0(50.2)

(s = 6) 300 56.0(0.0) 58.2(0.2) 57.1(0.0) 67.4(5.2) 94.7(27.8)

400 55.8(0.0) 55.9(0.0) 55.9(0.0) 56.8(0.8) 68.0(9.0)

1.a 200 119.4(42.9) 250.6(133.2) 195.2(55.8) 484.6(181.9) 500.4(197.4)

(s = 12) 300 73.4(7.5) 120.6(35.3) 80.3(10.6) 211.2(108.4) 248.9(103.9)

400 64.5(0.8) 82.21(6.7) 69.7(1.5) 118.2(90.8) 178.2(41.2)

1.b 200 443.6(455.2) 26.5(6.7) 136.1(113.4) 56.8(32.8) 115.7(84.7)

300 394.5(379.7) 7.3(0.0) 59.9(48.5) 21.9(5.4) 51.9(27.4)

400 410.0(361.2) 3.2(0.0) 41.1(36.8) 5.6(0.8) 20.0(4.7)
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Table 2.2.
Average MMS and RSD (in parentheses) for Example 2.4.2

Model n SIS NIS DC-SIS MC-SIS MC-SIS

(ACE) (B-spline)

2.a 200 709.3(239.0) 651.5(285.5) 440.6(231.2) 248.7(242.5) 324.3(228.2)

300 724.1(194.6) 631.2(251.7) 350.5(186.0) 117.8(88.3) 197.8(152.6)

400 795.3(194.8) 636.5(256.3) 280.0(148.9) 59.3(26.1) 118.2(92.2)

2.b 200 617.5(308.2) 300.5(298.7) 186.5(132.5) 104.2(103.0) 176.5(135.1)

300 608.5(305.0) 277.8(250.0) 163.6(150.2) 78.4(44.6) 125.1(71.6)

400 597.4(291.6) 262.0(228.9) 114.7(103.7) 54.9(13.9) 63.8(32.1)

2.c 200 574.5(352.2) 511.7(389.0) 113.6(80.2) 18.1(2.24) 30.9(15.1)

300 616.4(342.2) 521.8(321.6) 51.0(30.0) 8.4(0.8) 9.6(3.2)

400 622.4(306.3) 547.8(337.9) 21.4(14.0) 13.0(0.0) 4.8(2.2)

2.d 200 536.5(285.1) 181.8(168.5) 2.0(0.0) 2.3(0.8) 9.7(3.2)

300 268.6(307.1) 172.8(190.9) 2.0(0.0) 2.0(0.0) 6.4(3.0)

400 272.1(331.0) 176.3(178.7) 2.0(0.0) 2.0(0.0) 4.7(2.2)

2.e 200 580.2(152.8) 512.2(405.6) 191.0(152.8) 55.1(20.3) 26.6(14.2)

300 588.7(299.4) 641.0(295.3) 107.1(70.3) 40.7(1.5) 11.5(4.5)

400 602.1(258.4) 568.0(311.9) 66.2(44.6) 19.8(0.0) 7.6(3.7)

2.f 200 928.8(59.3) 654.5(417.9) 140.5(123.5) 30.0(9.9) 40.8(11.9)

300 936.7(37.7) 768.8(292.0) 61.6(46.6) 23.4(2.2) 17.5(6.0)

400 942.0(39.9) 821.7(175.2) 60.9(22.8) 17.8(0.8) 12.6(3.7)

under models (2.c), (2.e) and (2.f). This example demonstrates the advantages of MC-SIS

and DC-SIS over SIS and NIS for non-additive models as well as the effectiveness of MC-

SIS over DC-SIS.
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Example 2.4.3 The models considered in this example are modifications of the models con-

sidered in Example 2.4.2. First, the error term ✏ in each original model is removed; and

second, the predictor variables X
1

, . . . , X
p

are drawn independently from Cauchy(0, 1)

instead of N (0, 1). The resulting models are denoted as (3.a)-(3.f), correspondingly. Sim-

ulation results based on these models are presented in Table 2.3.

Intuitively, the absence of the error terms in the models is expected to help the screening

methods, but the use of heavy-tailed distributions for the predictor variables is expected to

hinder the methods. The exact performance of a screening method in this example depends

on the trade-off between those two changes. Comparing Table 2.3 with Table 2.2, we can

see that the performances of SIS and NIS have improved, though they are still far from

being satisfactory. The performance of DC-SIS has improved in models (3.a) and (3.c), but

has much deteriorated in the other models, which indicates that DC-SIS is susceptible to

heavy-tailed distributions. In the presence of heavy tails, Condition (C1) in Li et al. (2012b)

is violated, and DC-SIS may not have the sure screening property. The performances of

ACE-based and B-spline-based MC-SIS are better over DC-SIS in most models, which

indicates the robustness of MC-SIS towards heavy-tailed distributions.

Example 2.4.4 In this example, we consider a real data set from Segal et al. (2003), which

contains the expression levels of 6319 genes and the expression levels of a G protein-

coupled receptor (Ro1) in 30 mice. The same data set has been analyzed in Hall and

Miller (2009) and in Li et al. (2012b) using DC-SIS. The goal is to identify the most influ-

ential genes for Ro1.

We apply SIS, NIS, DC-SIS, ACE-based MC-SIS and B-spline-based MC-SIS to select

the top two most important genes, separately. For B-spline-based MC-SIS, as the number

of observations is small, we set K
1

= 1, K
2

= 4, B
1

= 100, B
2

= 30 and M = 3 for

the tuning parameter selection procedure in Section 2.3. B-spline-based MC-SIS ranks

Msa.2437.0 and Msa.26751.0 as the top two genes. We note that gene Msa.2437.0 is
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Table 2.3.
Average MMS and RSD (in parentheses) for Example 2.4.3

Model n SIS NIS DC-SIS MC-SIS MC-SIS

(ACE) (B-spline)

3.a 200 338.8(284.3) 296.6(175.4) 90.3(54.3) 124.1(39.2) 78.7(26.5)

300 310.2(241.6) 310.8(253.7) 64.6(32.5) 72.2(14.7) 44.6(9.1)

400 273.3(242.4) 303.1(260.6) 48.3(29.9) 41.5(7.1) 34.5(6.0)

3.b 200 617.5(305.2) 617.5(256.7) 478.9(286.6) 117.8(36.6) 79.6(56.0)

300 665.8(348.3) 689.2(256.2) 511.2(258.8) 72.0(8.6) 42.1(6.2)

400 619.8(297.0) 696.8(250.0) 507.8(265.1) 32.7(6.7) 32.2(6.9)

3.c 200 136.5(80.2) 106.6(70.7) 23.7(12.7) 11.9(5.2) 22.8(6.9)

300 116.1(82.1) 90.1(56.2) 13.4(6.3) 8.7(4.5) 17.3(6.2)

400 90.4(36.0) 67.9(39.2) 9.9(4.7) 7.3(3.2) 13.7(5.2)

3.d 200 409.5(367.0) 434.8(409.0) 412.3(401.1) 15.4(3.7) 19.3(6.0)

300 485.1(320.0) 486.7(411.0) 493.8(397.0) 7.8(2.4) 14.1(3.7)

400 460.8(342.0) 493.4(360.1) 480.7(407.3) 12.5(0.0) 11.5(3.7)

3.e 200 252.2(193.8) 250.2(228.5) 124.0(99.1) 55.8(11.4) 39.6(8.2)

300 332.9(332.7) 340.0(289.0) 188.7(120.9) 42.9(4.5) 36.1(7.5)

400 314.3(315.5) 334.6(308.6) 121.1(98.0) 37.8(4.1) 22.8(6.0)

3.f 200 779.8(172.0) 737.0(244.2) 507.7(249.6) 37.5(6.9) 27.4(6.0)

300 808.4(149.8) 855.7(120.9) 498.6(336.0) 28.7(4.5) 20.7(5.2)

400 806.7(149.1) 837.6(143.5) 432.6(281.9) 34.3(3.7) 17.3(3.9)
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Table 2.4.
Top ranked (Rank 1 and Rank 2) genes for Example 2.4.4

SIS NIS DC-SIS MC-SIS MC-SIS

(ACE) (B-spline)

Rank 1 gene Msa.2877.0 Msa.2877.0 Msa.2134.0 Msa.8081.0 Msa.2437.0

Rank 2 gene Msa.964.0 Msa.1160.0 Msa.2877.0 Msa.2437.0 Msa.26751.0

ranked in the second place by ACE-based MC-SIS and in the 15th place by NIS. Gene

Msa.26751.0 is ranked in the 22nd place by ACE-based MC-SIS and in the 41st place by

SIS. Additionally, we note that almost all of the procedures considered here, including B-

spline-based MC-SIS, consistently ranked Msa.741.0, Msa.2134.0 and Msa.2877.0 among

the top genes. The top-ranked two genes by individual procedures are reported in Table

2.4.

To further compare the performances of the screening procedures, we fit regression

models for the response, which is the expression level of Ro1, using the top two genes

selected by the procedures. Three different models are considered, which are the linear

regression model Y = �
0

+�
1

X
1

+�
2

X
2

+", the additive model Y = `
1

(X
1

)+`
2

(X
2

)+",

and the optimal transformation model ✓⇤(Y ) = �⇤
1

(X
1

) + �⇤
2

(X
2

) + ", where ✓⇤, �⇤
1

and �⇤
2

are the optimal transformations in Breiman and Friedman (1985). For each procedure, all

three models are fitted using the top ranked one gene as well as using the top ranked two

genes, and the resulting adjusted R2 values are reported in Table 2.5.

Under the linear model, as expected, SIS achieves the largest adjusted R2 values,

whereas the adjusted R2 values of MC-SIS are rather poor. The major cause of the dif-

ference between SIS and MC-SIS is that the former is specifically developed for screening

under the linear model, whereas the latter is for screening under the optimal transforma-

tion model. Under the additive model, when the top one gene is used, NIS achieves the

largest adjusted R2 value; and when the top two genes are used, DC-SIS achieves the

largest adjusted R2 value. Under the optimal transformation model, both ACE-based and
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Table 2.5.
Adjusted R2 (in percentage) of fitting 3 different models for Example 2.4.4

SIS NIS DC-SIS MC-SIS MC-SIS

(ACE) (B-spline)

Model top 1 top 2 top 1 top 2 top 1 top 2 top 1 top 2 top 1 top 2

Linear 74.5 82.3 74.5 75.8 58.4 77.6 13.8 16.9 12.7 40.5

Additive 80.0 84.2 80.0 84.5 65.7 96.8 58.9 68.7 68.5 68.8

Transformation 84.5 88.1 84.5 88.0 90.0 94.7 94.1 96.9 94.1 96.2
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B-spline-based MC-SIS achieve the largest adjusted R2 values with the top one gene as

well as top two genes. When plotting the expression levels of Ro1 against the expression

levels of various selected genes, different patterns including linear and nonlinear patterns

emerge for different screening methods. In practice, we believe that the top ranked genes

by different methods are all worth further investigation.

2.5 Discussions

2.5.1 On Tuning Parameter Selection

The performances and results of B-spline-based MC-SIS depend on the choice of de-

gree and the number of knots for B-spline basis functions. In this chapter, we have devel-

oped a data-driven three-step procedure to construct B-spline basis functions for MC-SIS

in practice. The proposed procedure demonstrates satisfactory performance in simulation

study as well as real data application. We plan to investigate and characterize the theoretical

property of the procedure in future research.

Most existing marginal screening procedures under nonparametric model assumptions,

including MC-SIS, make use of independent measures, whose estimation typically involves

nonparametric model fitting and tuning parameter selection. Nonparametric methods are

known to be sensitive to tuning parameter selection. Therefore, this can also become a

drawback for those screening procedures. On the other hand, there are various indepen-

dence measures that are based on cumulative distribution functions, and the estimation of

those measures does not involve nonparametric fitting and tuning parameter selection. Two

examples include Hoeffding’s test in Hoeffding (1948) and Heller-Heller-Gorfine(HHG)

tests in Heller et al. (2012). It will be of interest to explore further on the application of

the parameter-free measures for screening and the potential of using these methods for

variable selection after screening. As an example of dependence measure without tuning

parameters, we briefly review the recently proposed HHG tests.
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HHG Tests and associated screening procedure

The main idea of HHG tests is described as follows. Let d(·, ·) be a pre-specified

distance measure, and (x
1

, y
1

), . . . , (x
n

, y
n

) be a given sample of (X, Y ). For any pair

of observations (x
i

, y
i

) and (x
j

, y
j

) (j 6= i), the remaining n� 2 observations are classified

to four categories based on their coordinate-wise distances to (x
i

, y
i

) as follows. Let

A
11

(i, j) = {(x
k

, y
k

) : d(x
i

, x
k

)  d(x
i

, x
j

) and d(y
i

, y
k

)  d(y
i

, y
j

)},

A
12

(i, j) = {(x
k

, y
k

) : d(x
i

, x
k

)  d(x
i

, x
j

) and d(y
i

, y
k

) > d(y
i

, y
j

)},

A
21

(i, j) = {(x
k

, y
k

) : d(x
i

, x
k

) > d(x
i

, x
j

) and d(y
i

, y
k

)  d(y
i

, y
j

)},

A
22

(i, j) = {(x
k

, y
k

) : d(x
i

, x
k

) > d(x
i

, x
j

) and d(y
i

, y
k

) > d(y
i

, y
j

)}.

The frequences of A
11

(i, j),A
12

(i, j),A
21

(i, j),A
22

(i, j) are denoted as A
11

(i, j), A
12

(i, j),

A
21

(i, j), A
22

(i, j), which form a 2⇥2 contingency table as follows:

A
11

(i, j) A
12

(i, j)

A
21

(i, j) A
22

(i, j)

Denote A
1·(i, j) = A

11

(i, j) + A
12

(i, j), A·,1(i, j) = A
11

(i, j) + A
21

(i, j), A
2·(i, j) =

A
21

(i, j) + A
22

(i, j) and A·2(i, j) = A
12

(i, j) + A
22

(i, j). If the two random variables X

and Y are independent, we have that E[A
kl

(i, j)] = E[A
k·(i, j)]E[A·l(i, j)]/(n � 2) for

k, l = 1, 2. Therefore, Pearson’s �2 test can be used to test the independence between

X and Y , and the test statistic based on the 2⇥2 contingency table above is denoted by

S(i, j). Heller et al. (2012) proposed to combine S(i, j) of all possible pairs (x
i

, y
i

) and

(x
j

, y
j

), and use the sum as a test statistic, which is T =

P
n

i=1

P
n

j=1,j 6=i

S(i, j). The

sampling distribution of T is difficult to obtain, so Heller et al. (2012) further proposed to

use permutation distributions to calculate p-values.

One can develop a screening procedure based on HHG tests similar to other existing

screening procedures. In particular, one can use the p-values of the observed test statistics

to rank and screen variables. The HHG tests demonstrate powerful performances in hypoth-

esis testing problems (Heller et al., 2012). However, when applied in variable screening,

the HHG-based screening procedure may have two major drawbacks. First, the procedure
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is extremely computationally intensive because the p-values are calculated from permuta-

tion distributions, which is time-consuming to obtain. Second, the purposes of screening

and testing are different. The former aims to reduce the dimensionality from ultrahigh to

high while retaining the active variables, therefore, screening can tolerate false positives

to a certain degree in order to gain in speed. Most of existing screening procedures do

not employ formal testing. After screening, formal testing methods can be further used to

single out the active variables.

2.5.2 On Marginal Screening Procedure

Similar to other existing screening procedures, MC-SIS may fail to retain predictor vari-

ables that are functionally related to, but marginally independent of, the response variable.

Under the linear regression model, Fan and Lv (2008) proposed an iterative procedure to

recover such predictor variables. Similarly, we have developed an iterative version of MC-

SIS with the hope to recover active predictor variables missed by MC-SIS.

Iterative MC-SIS

To overcome the drawback that MC-SIS fails to identify important predictors that are

marginally independent with the response, we adopt an iterative approach originally pro-

posed in Zhu et al. (2011). This approach relies on iteratively applying MC-SIS, which is

given as follows.

1. Apply MC-SIS to data {Y,X} where Y = (Y
1

, Y
2

, . . . , Y
n

)

T and X is an n⇥ p data

matrix (X
uj

)

1un,1jp

. Suppose p
1

predictors are selected. Denote the selected set

by cD
1

, its corresponding n⇥ p
1

data matrix by XcD1
, and the remaining n⇥ (p� p

1

)

data matrix as Xc

cD1
.

2. Regress Xc

cD1
on XcD1

to obtain the residuals as

Xr = {In �XcD1
(XT

cD1
XcD1

)

�1XT

cD1
}Xc

cD1
.
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Apply MC-SIS to data {Y,Xr}. Suppose p
2

predictors are selected, and denote this

selected set by cD
2

. Update cD
1

with cD
1

ScD
2

.

3. Repeat step 2 until the total number of selected predictors reaches N .

Here, N is a pre-defined value for the size of the selected set. And the number of the

selected predictors in each iteration can be either pre-specified or determined by the number

of the predictors with marginal maximum correlations exceeding a user-specified threshold

value.

In step 2, we compute the residuals of the remaining variables against the selected vari-

ables, which are the projection of the remaining variables onto the orthogonal complement

space of the variables selected in the previous steps. This step serves two purposes. First, it

can make a previously undetectable active variable, due to its marginal independence with

the response, detectable; and second, it can decrease the correlation between irrelevant

variables and the response, and thus make the selection of the remaining active variables

easier.

2.6 Technical Proofs

2.6.1 Notation

n : sample size

p : dimension size

` : degree of polynomial spline

k : number of knots

d
n

: dimension of B-spline basis

D
n

: active set

Dc

n

: inactive set

✓
j

: transformation of response Y for pair (X
j

, Y ), j = 1, . . . , p

�
j

: transformation of X
j

for pair (X
j

, Y )

⇢
j

: the Pearson correlation of pair (X
j

, Y )
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e2
j

: squared error by regressing �
j

on ✓
j

✓⇤
j

: optimal transformation of response Y for pair (X
j

, Y )

�⇤
j

: transformation of X
j

for pair (X
j

, Y )

⇢⇤
j

: maximum correlation of pair (X
j

, Y )

e⇤2
j

: squared error by regressing �⇤
j

on ✓⇤
j

✓⇤
nj

: spline approximation to optimal transformation ✓⇤
j

�⇤
nj

: spline approximation to optimal transformation �⇤
j

s : cardinality of active set D
n

||·|| : operator norm

||·||
sup

: sup norm

2.6.2 Bernstein’s Inequality and Four Facts

Lemma 2.6.1 (Bernstein’s inequality, Lemma 2.2.9, (Van der Vaart and Wellner, 1996))

For independent random variables Y
1

, . . . , Y
n

with bounded ranges [�M,M ] and 0 means,

Pr (|Y
1

+ . . .+ Y
n

| > x)  2 exp[�x2/{2(v +Mx/3)}]

for v � var(Y
1

+ . . .+ Y
n

).

Under conditions (C3) and (C4), the following four facts hold when ` � d.

Fact 1. (Burman (1991)) There exists a positive constant C
1

such that

E{(�⇤
j

� �⇤
nj

)

2}  C
1

k�d (2.12)

Fact 2. (Stone et al. (1985); Huang et al. (2010)) There exists a positive constant C
2

such that

E{B2

jm

(·)}  C
2

d�1

n

(2.13)

Fact 3. (Burman (1991); Zhou et al. (1998)) There exist positive constants c
11

, c
12

such

that

c
11

d�1

n

 �
min

�
E{B

j

(·)B>
j

(·)}
�
 �

max

�
E{B

j

(·)B>
j

(·)}
�
 c

12

d�1

n

c
11

k�1  �
min

�
E{ 

j

(X
j

) >
j

(X
j

)}
�
 �

max

�
E{ 

j

(X
j

) >
j

(X
j

)}
�
 c

12

k�1

(2.14)
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Fact 4. (Burman (1991); Faouzi et al. (1999)) There exists a positive constant C
3

such

that

C
3

k�1  b
jm

 1, 0  cb
jm

 1

(2.15)

Remark 2.6.1 The choice of knots plays a role in establishing the sure screening property.

When the knots of the B-splines are placed at the sample quantiles, cb
jm

is positive. When

knots are uniform placed, cb
jm

can be zero with a small probability. According to Burman

(1991, section 6a), when the marginal density f
Xj(x) > �

0

> 0 by Condition (C4) for

each X
j

, we have Pr(

cb
jm

= 0 for some m = 1, . . . , d
n

)  k exp(��
0

n/k). The results

in Burman (1991) are based on equally spaced knots, and our proof for MC-SIS use the

same choice of knots, as the probability of cb
jm

being zero is a small probability, we just

acknowledge cb
jm

> 0 in the proof. In fact, sure screening property still hold when the

event cb
jm

= 0 is included.

Remark 2.6.2 With ` fixed, k and d
n

are of the same order, we replace k with d
n

in the

following proof for convenience.

2.6.3 Proof of Lemma 2.2.1

Proof By Cauchy-Schwarz inequality, we have

E(�⇤2
j

)  2E{(�⇤
j

� �⇤
nj

)

2}+ 2E(�⇤2
nj

)

Therefore,

E(�⇤2
nj

) � 1

2

E(�⇤2
j

)� E{(�⇤
j

� �⇤
nj

)

2}

Lemma 2.2.1 follows from condition (C5) together with E(�⇤2
nj

) = �⇤
j1

.

2.6.4 Proof of Eight Basic Results

We list and prove eight results (R1) – (R8) which together form the major parts in prov-

ing sure screening property of MC-SIS. For the rest of this chapter, we use P
n

to denote the
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sample average.

R1. With c
11

in Fact 3, we have that,

||A�1/2

j00

||  c�1/2

11

d1/2
n

(2.16)

Proof ||A�1/2

j00

|| = ��1/2

min

(A
j00

), result follows by Fact 3.

R2. There exist positive constant c
13

such that

||A
j0X

||  c
13

d�1/2

n

(2.17)

Proof Let u = (u
1

, . . . , u
dn)

> 2 Rdn with
P

dn

m=1

u2

m

= 1.

u>
E{B

j

(X
j

)B>
j

(Y )}E{B
j

(Y )B>
j

(X
j

)}u =

dnX

i=1

"Z
{

dnX

m=1

u
m

B
jm

(X
j

)}B
ji

(Y )dF

#
2


Z

{
dnX

m=1

u
m

B
jm

(X
j

)}2dF ⇥
dnX

i=1

{
Z

B2

ji

(Y )dF}

 �
max

[E{B
j

(X
j

)B>
j

(X
j

)}]⇥ d
n

max

i

E{B2

ji

(Y )}

Then, ||E{B
j

(Y )B>
j

(X
j

)}||  (c
12

C
2

/d
n

)

1/2 by Fact 2 and Fact 3.

It can be easily shown that, for u 2 Rdn�1 with
P

dn�1

i=1

u2

i

= 1,

u>D
j

D>
j

u =

dnX

m=1

1

k2b2
jm

 
dn�1X

i=1

u
i

z
im

!
2

 C�2

3

dnX

m=1

 
dn�1X

i=1

u
i

z
im

!
2

 C�2

3

which indicates ||D>
j

||  C�1

3

.

Then, ||A
j0X

||  ||E{B
j

(Y )B>
j

(X
j

)}|| ||D>
j

||  c
13

d�1/2

n

with c
13

= (c
12

C
2

)

1/2C�1

3

.

R3. For any given constant c
4

, there exists a positive constant c
8

such that

Pr{||dA
j00

�1/2

|| �
�
(c

8

+ 1)c�1

11

d
n

�
1/2}  2d2

n

exp(�c
4

nd�3

n

) (2.18)
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Proof Since ||dA
j00

�1/2

|| =
q
||[P

n

{B
j

(Y )B>
j

(Y )}]�1||. R3 can be obtained via equa-

tion (26) in Fan et al. (2011), which is Pr{||[P
n

{B
j

(Y )B>
j

(Y )}]�1|| � (c
8

+ 1)c�1

11

d
n

} 
2d2

n

exp(�c
4

nd�3

n

).

R4. There exist some positive constants c
6

, c
7

such that,

Pr{||[A
j0X

|| � c
6

d�1/2

n

}  4d2
n

exp(�c
7

nd�2

n

) (2.19)

Proof As ||[A
j0X

|| = ||P
n

{B
j

(Y )B>
j

(X
j

)}cD
j

>
||  ||P

n

{B
j

(Y )B>
j

(X
j

)}|| ||cD
j

>
||,

we firstly deal with ||P
n

{B
j

(Y )B>
j

(X
j

)}||.
For any square matrix A and B, ||A+B||  ||A||+ ||B||. We have

||A||� ||B||  ||A�B|| and ||B||� ||A||  ||B�A||

Then,

| ||A||� ||B|| | ||A�B||

Let V
j

= P
n

{B
j

(Y )B>
j

(X
j

)}� E{B
j

(Y )B>
j

(X
j

)}. It follows that,

| ||P
n

{B
j

(Y )B>
j

(X
j

)}||� ||E{B
j

(Y )B>
j

(X
j

)}|| | ||V
j

||

It is easy to verify that,

| ||P
n

{B
j

(Y )B>
j

(X
j

)}||� ||E{B
j

(Y )B>
j

(X
j

)}|| | d
n

||V
j

||
sup

Since ||B
jm

(·)||
sup

 1 and using Fact 2, we have

var(B
jm1(Y )B

jm2(Xj

))  E{B2

jm1
(Y )B2

jm2
(X

j

)}  E{B2

jm1
(Y )}  C

2

d�1

n

By Bernstein’s inequality, for any � > 0,

Pr{|(P
n

� E){B
jm1(Y )B

jm2(Xj

)}| � �/n}  2 exp{� �2

2(C
2

nd�1

n

+ 2�/3)
} (2.20)

Therefore,

Pr{| ||P
n

{B
j

(Y )B>
j

(X
j

)}||�||E{B
j

(Y )B>
j

(X
j

)}|| |� d
n

�/n}  2d2
n

exp{� �2

2(C
2

nd�1

n

+ 2�/3)
}
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Recalling R2, we have,

Pr{||P
n

{B
j

(Y )B>
j

(X
j

)}|| � d
n

�/n+ (c
12

C
2

/d
n

)

1/2}  2d2
n

exp{� �2

2(C
2

nd�1

n

+ 2�/3)
}

By taking � = c
8

(c
12

C
2

)

1/2nd�3/2

n

, we obtain that for some positive constant c
4

,

Pr{||(P
n

{B
j

(Y )B>
j

(X
j

)})|| � (c
8

+ 1)(c
12

C
2

/d
n

)

1/2}  2d2
n

exp(�c
4

nd�2

n

) (2.21)

Next we deal with ||cD
j

>
||. Using Bernstein’s inequality, we obtain that,

Pr{|cb
jm

� b
jm

| � �/n}  2 exp{� �2

2(C
2

nd�1

n

+ 2�/3)
} (2.22)

Since b
jm

� C
3

k�1, by taking � = C
3

w
1

nd�1

n

for w
1

2 (0, 1), we have that there exists

some positive constant c
5

such that

Pr{cb
jm

 C
3

(1� w
1

)d�1

n

}  2 exp(�c
5

nd�1

n

) (2.23)

For u = (u
1

, . . . , u
dn�1

)

> 2 Rdn�1 with
P

dn�1

i=1

u2

i

= 1,

u>cD
j

cD
j

>
u =

dnX

m=1

1

k2cb
jm

2

 
dn�1X

i=1

u
i

z
im

!
2

 max

m

1

k2cb
jm

2

(2.24)

Combing (2.22), (2.23) and (2.24), we have that

Pr{||cD
j

>
|| � C�1

3

(1� w
1

)

�1}  Pr{max

m

1

kcb
jm

� C�1

3

(1� w
1

)

�1}

 Pr{min

m

cb
jm

 C
3

(1� w
1

)k�1}

 2d
n

exp(�c
5

nd�1

n

)

(2.25)

Combining (2.21), (2.25), and ||[A
j0X

||  ||P
n

{B
j

(Y )B>
j

(X
j

)}|| ||cD
j

>
||, we have

Pr{||[A
j0X

|| � (c
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+ 1)(c
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C
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)
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(1� w
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(Y )B>
j

(X
j

)}|| � (c
8

+ 1)(c
12

C
2

)
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n

}+ Pr{||cD
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>
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(1� w
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)

�1}

 2d2
n

exp(�c
4
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n

) + 2d
n

exp(�c
5

nd�1

n

)

(2.26)

Result in R4 follows by choosing c
6

, c
7

accordingly.
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R5. There exist some positive constants c
9

, c
10

such that, for any � > 0,

Pr{||[A
j0X

�A
j0X

|| � c
9

d2
n

�2/n2

+ c
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d
n

�/n}
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exp{� �2
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)

(2.27)

Proof It is easy to derive

||[A
j0X

�A
j0X

|| = ||P
n

{B
j

(Y )B>
j

(X
j

)}cD
j

>
� E{B

j
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j
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)}|| ||cD
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>
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j
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+ ||(P
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j
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)}|| ||D
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It is proved in R2 that ||E{B
j

(Y )B>
j

(X
j

)}||  (c
12

C
2

/d
n

)

1/2 and that ||D
j

>||  C�1

3

.

Combining (2.20) and the fact that
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(Y )B>
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n
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� E){B
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,

we have that,
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For u 2 Rdn�1 with
P
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i=1
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i

= 1,
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(2.30)

From (2.22), (2.23) and (2.30), we have that,
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Therefore, together with (2.28), (2.29), (2.31) and union bound of probability, we have
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Result in R5 can be obtained by adjusting the values of c
9

and c
10

.

R6. For given c
4

and c
5

, there exist positive constants c
15

and c
16

such that,
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Proof Follow the proof in Lemma 5 of Fan et al. (2011), we have that,
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Due to the facts that
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By following a similar argument in proving inequality (26) in NIS Fan et al. (2011), we
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Similarly, it is easy to obtain
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Due to the fact that �
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Together with (2.34) and (2.35), we can obtain that
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Therefore, R6 follows by choosing c
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.
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R7. For any � > 0, given positive constant c
4

, there exists a positive constant c
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such that,
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Proof Using perturbation theory from Katō (1995), it is proved in Burman (1991,

Lemma 6.3) that for some c
18

> 0,
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where �̃ is the minimum of the smallest eigenvalues of dA
j00

and A
j00

. �̃ is positive by

definition. Therefore,
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From Fact 3 and R3, we have,

c�1

12

d
n

 ||A�1

j00

||  c�1

11

d
n

(2.38a)

Pr{||[P
n

{B
j

(Y )B>
j

(Y )}]�1|| � (c
8

+ 1)c�1

11

d
n

}  2d2
n

exp(�c
4

nd�3

n

) (2.38b)

Combining (2.38a) and (2.38b) yields
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Additionally, as proved in equation (33) in Fan et al. (2011), we have large deviation

bound for ||(P
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By (2.37), (2.39), (2.40) and under the union bound of probability, we have that,
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Therefore, R7 follows by choosing c
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= c
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R8. For any � > 0, given positive constant c
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Proof It’s obvious that
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From the similar reasoning in proving (2.21) and (2.29), it is easy to obtain that
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With c
19

chosen properly, results in R8 follows by combining Fact 3, (2.31), (2.32),

(2.43), (2.44), (2.45), (2.46) and the fact ||D>
j

|| < C�1

3

.
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2.6.5 Proof of Theorem 2.2.2

Proof of Theorem 2.2.2. Recall that

�⇤
j1

= ||A�1/2

j00

A
j0X

A�1

jXX

A
jX0

A
�1/2

j00

||

and that
c�⇤
j1

= ||dA
j00

�1/2[A
j0X

\A
jXX

�1[A
j0X

> dA
j00

�1/2

||

Let a = A
�1/2

j00

, b = A
j0X

, H = A�1

jXX

, an =

dA
j00

�1/2

, bn =

[A
j0X

, Hn =

\A
jXX

�1

,

c�⇤
j1

� �⇤
j1

= ||an
>bn

>Hnbnan||� ||a>b>Hba||

 ||(a
n

� a)>b>
n

H
n

b
n

(a
n

� a)||+ 2||(a
n

� a)>b>
n

H
n

b
n

a||+ ||a>
(b>

n

H
n

b
n

� b>Hb)a||

, S
1

+ S
2

+ S
3

(2.47)

We denote the terms in r.h.s as S
1

, S
2

and S
3

respectively. Furthermore, we let the r.h.s

of inequalities (2.19),(2.27),(2.32),(2.36),(2.42) as Q
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, Q
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, Q
8

.
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By (2.19),(2.32),(2.36), we have that there exists a positive constant c
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such that,
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As to S
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As to S
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Note that
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By (2.27),(2.32), we have that there exists a positive constant c
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By (2.17),(2.42), we have that there exists a positive constant c
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Combining (2.16),(2.52),(2.53),(2.55),(2.57), we have
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By properly choosing the value of � (i.e., taking � = c
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The first part of Theorem 2.2.2 follows via the union bound of probability.

To prove the second part, we define an event
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Then, the probability bound for the second part of Theorem 2.2.2 is attained.

2.6.6 Proof Sketch of Theorem 2.2.3

Proof of Theorem 2.2.3. From subsection 2.2.2, we have that �⇤
j1

= E(�⇤2
nj

) and c�⇤
j1

=

P
n

(�⇤2
nj

).

From equation (2.5), after obtaining ✓⇤
nj

where var(✓⇤
nj

) = 1, �⇤
nj

can be obtained via

the following optimization problem.

arg min
�nj2Sn

E[{✓⇤
nj

(Y )� �
nj

(X
j

)}2], where �
nj

(X
j

) = ⌘>
j

 
j

(X
j

).

Therefore, �⇤
nj

=  >
j

E

�
 

j

 
j

>��1

E 
j

✓⇤
nj

.

We notice that the only difference between our proof and the proof of Theorem 2.2.3

in Fan et al. (2011) is the role of Y . As MC-SIS essentially uses a transformation of Y ,

we can not deal directly with Y . However, from the formulation above, ✓⇤
nj

here plays the

same role as Y in Fan et al. (2011). With this connection, our proof follows immediately

by replacing Y in the proof of Theorem 2.2.3 in Fan et al. (2011) with ✓⇤
nj

.



57

3. SPARSE OPTIMAL TRANSFORMATION

3.1 Introduction

Regression analysis is arguably one of the most commonly used tools for data analysis

in practice. Suppose Y is the response variable of interest and X = (X
1

, . . . , X
p

) is the

vector of p predictor variables. Based on a finite sample of Y and X, regression analysis

is commonly used to discover how and to which degree the predictor variables X
j

’s affect

Y . In its generality, regressing Y against X is to infer the dependence structure of Y on X.

However, most existing regression methods are usually focused on certain characteristics of

Y such as the mean (i.e. E(Y |X)), median (i.e. 50th percentile of Y |X), or other quantiles

of Y |X. These methods are useful when the chosen characteristics are of primary interests,

but may fail to capture the full dependence structure of Y on X. A number of attempts were

made in the literature to directly estimate the conditional distribution P (Y |X) (Rosenblatt,

1969; Fan et al., 1996; Sugiyama et al., 2010). The resulting approaches, unfortunately,

suffer severely from the curse of dimensionality and are thus not practical (Efromovich,

2007).

Another approach to exploring the dependence of Y on X is to first apply transfor-

mations to Y and X and then perform regression analysis to the transformed variables.

Intuitively, different transformations can lead to the discovery of different aspects of the

dependence structure of Y on X. The well-known Box-Cox transformation and additive

model can be considered two such approaches. Box and Cox (1964) proposed to apply

power transformation to the response variable Y in regression analysis, which aims to

make the assumptions of linearity, normality, and homogeneity more appropriate. Differ-

ent from the Box-Cox transformation, the additive model assumes that Y depends on the

transformations of individual predictor variables in an additive fashion, and fitting the ad-

ditive model is to identify those transformations (Hastie and Tibshirani, 1990). Despite the
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popularity of the Box-Cox transformation and additive model, their effectiveness can be

compromised due to their susceptibility to model mis-specification. For example, both will

fail in simple cases like Y = log(X
1

+X2

2

+ ✏).

Breiman and Friedman (1985) proposed to apply general nonparametric transforma-

tions to both Y and X, and further to identify the optimal transformations that achieve

the maximum correlation between them. The optimal transformations can be equivalently

stated as the solution to the following least squares problem.

min

h2L2
(PY ),fj2L2

(PXj
)

E

h
{h(Y )�

pX

j=1

f
j

(X
j

)}2
i
,

s.t. E[h(Y )] = E[f
j

(X
j

)] = 0;

E[h2

(Y )] = 1,E[f 2

j

(X
j

)] <1.

(3.1)

Here, P
Y

and P
Xj denote the marginal distributions of Y and X

j

, respectively, and L2

(P )

denotes the class of square integrable functions under the measure P. We denote the solu-

tion to (3.1) as h⇤ and f ⇤
j

(j = 1, . . . , p), which are referred to as the optimal transformations

for Y and X, respectively. A set of sufficient conditions are given in Breiman and Friedman

(1985, Section 5.2) for the existence of optimal transformations.

Breiman and Friedman further developed the Alternating Conditional Expectation (ACE)

algorithm to compute the optimal transformations. Although in general, the optimal trans-

formations are not expected to fully capture the dependence structure of Y on X, they

represent in a certain sense the most important features of the dependence structure. No-

tice that the transformed predictors are additive for the transformed response. This additive

structure is important because it ensures the interpretability of the captured dependence,

that is, it shows how the predictors jointly affect the transformed response. In order to un-

cover the remaining dependence, intuitively, the idea of transformation can be iteratively

applied. In this thesis, however, we will focus on the optimal transformations only.

The optimal transformations are subject to two limitations. Firstly, without any shape

constraint, the transformation on the response h⇤
(Y ) may not be easily interpretable. In
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many real life applications such as modeling utility functions in economics, h⇤
(Y ) may

not be meaningful if the order of the observations cannot be preserved after transforma-

tion. The problem becomes worse if the primary interest after transformation is to predict

Y instead of h⇤
(Y ). Secondly, despite the additive structure, the estimation of optimal

transformations can suffer from the curse of dimensionality when the number of predictor

variables p is large. Even when the optimal transformations can be effectively estimated,

the retention of a large number of spurious predictors can compromise their interpretability

and prediction capacity.

To overcome those two limitations of the optimal transformations, in this chapter, we

first propose to impose the monotonicity constraint on the transformation of Y . This con-

straint ensures that the transformed response variable is interpretable and invertible, and

subsequently the prediction of Y can be performed. Second, in order to eliminate the

spurious predictor variables, we regularize the estimation procedure of the optimal trans-

formations by using a special type of penalty called the Smooth Integration of Counting and

Absolute deviation (SICA) penalty (Lv and Fan, 2009). We refer to the resulting optimal

transformations as the SParse Optimal Transformations or SPOT in short.

Existing methods that are closely related to SPOT include those developed for sparse

additive models. Lin and Zhang (2006) proposed the COSSO procedure, which assumes

that each component function belongs to a Reproducing Kernel Hilbert space (RKHS).

COSSO uses the sum of the RKHS norms of the component functions as a penalty for

simultaneous variable selection and model fitting. Ravikumar et al. (2007) introduced an

approach called SPAM that penalizes the sum of L
2

norms of the component functions

and is effectively a functional version of the group lasso Yuan and Lin (2006). Meier et al.

(2009), Huang et al. (2010) and Balakrishnan et al. (2012) also developed different methods

for sparse high-dimensional additive models by using different types of penalty functions.

Our proposed approach SPOT is distinct from the existing methods in two main aspects.

Firstly, SPOT considers transformations on both Y and X with former being subject to the

monotonicity constraint. The monotone transformation can be crucial for the cases where

the usual additive model for Y does not hold. For such cases, the existing methods may
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fail to identify the dependence of Y on X, whereas SPOT can still be successful. The

monotone transformation clearly includes the identity function as a special case, therefore,

SPOT is expected to work well when the additive model for Y indeed holds. Secondly, the

SICA penalty used in SPOT enjoys many advantages over other types of penalty existing

in the literature. The family of SICA functions proposed by Lv and Fan (2009) forms

a smooth homotopy between the L
0

and L
1

types of penalty, and include the L
0

and L
1

penalty as limiting cases. SICA can avoid the drawbacks of the L
0

and L
1

penalties while

combining their strengths and lead to more stable estimates of model parameters and less

stringent conditions under which variable selection consistency can be established (See

Section 3.3.2 for more details).

Due to the use of monotone transformation on Y and the SICA penalty, SPOT produces

sparse optimal transformations that are interpretable and can be further used for prediction.

We extended the ACE algorithm to compute the estimates of the sparse optimal transfor-

mations. Furthermore, we establish the consistency results for SPOT under various regu-

larity conditions and assumptions. Our simulation study and real data application provide

convincing evidence of SPOT’s effectiveness in performing variable selection, exploring

complex dependence structures, and performing prediction for the response. We believe

SPOT can become an effective tool for high dimensional exploratory regression analysis in

practice.

The rest of the chapter is organized as follows. Section 3.2 introduces basic notations

used in this chapter. In Section 3.3, we formally define the sparse optimal transformation

problem, propose the SICA penalty and the monotone transformation, and further develop

the algorithm for estimating the sparse optimal transformations. The theoretical results

on the estimation and selection consistency of sparse optimal transformation are given in

Section 3.4. Experimental results based on simulation study and real data applications are

reported in Section 3.5. Section 3.6 provides some discussions of the proposed methods.

The proofs of the theorems and more simulations results are included in Section 3.7.
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3.2 Notations and Assumptions

Let h(Y ) and f
j

(X
j

) denote the transformations of Y and X
j

, j = 1, . . . , p. We assume

the supports of Y and X
j

’s are compact, and they are further assumed to be [0,1] without

loss of generality. Throughout this chapter, {X
i

, Y
i

}n
i=1

is assumed to be an i.i.d. sample of

X and Y .

For each j = 1, . . . , p, let HXj denote the Hilbert space of measurable functions f
j

(X
j

)

with E[f
j

(X
j

)] = 0 and the inner product hf
j

, f 0
j

i = E(f
j

f 0
j

), where f 0
j

is an arbitrary

function in HXj . Note that the expectations are taken over the probability distribution of

X
j

and E[f 2

j

(X
j

)] < 1. Let H+

X = HX1 � HX2 � · · · � HXp be the Hilbert space of

functions of X that take an additive form: f(X) =

P
p

j=1

f
j

(X
j

), with f
j

2 HXj . Let

L2

[0, 1] be the Hilbert space of square integrable functions under the Lebesgue measure

and { 
jk

: k = 1, 2, . . .} denote a uniformly bounded, orthonormal basis of L2

[0, 1]. To

impose smoothness on each f
j

, we only consider f
j

2 T
j

, where T
j

is the Sobolev ball

of order two, that is, T
j

= {f
j

2 HXj : f
j

=

P1
k=1

�
jk

 
jk

,
P1

k=1

�2

jk

k4  C2} for some

0 < C <1. To impose smoothness on h, we require that h should be r times continuously

differentiable and its r-th derivative be Hölder continuous: |h(r)

(y
1

)�h(r)

(y
2

)|  c|y
1

�y
2

|v

for all y
1

and y
2

, for some 0 < v  1 and c > 0. We use M to denote the set of functions

satisfying this condition.

3.3 Sparse Optimal Transformations

3.3.1 Sparse Optimal Transformation Problem

Different from SPAM, we consider an additional transformation on the response Y ,

which aims to model more complex structures from data. As discussed in the Section

3.1, in order to make the transformation of Y interpretable and suitable for prediction, the

transformation h needs to be a monotone function. Without loss of generality, we require h
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to be monotone increasing in this thesis. Then, the sparse optimal transformation (SPOT)

problem can be defined as follows.

min

h2M,f :fj2Tj
L(h, f) + �⌦ (f) ,

s.t. E[h2

] = 1, h0 � 0;

(3.2)

where

L(h, f) = 1

2

E

2

4
 
h(Y )�

pX
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f
j
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j
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!
2

3

5 ,

⌦(f) =

pX

j=1

⇢
⇣q

E[f 2

j

(X
j

)]

⌘

Here, M, T
j

are the function spaces defined previously in Section 3.2, � is the regulariza-

tion parameter and ⇢ is a pre-specified penalty function.

3.3.2 SICA Penalty

As discussed in the Introduction, we choose to use the SICA penalty as ⇢, which is

denoted as ⇢ := ⇢
a

(t) where

⇢
a

(t) =

✓
t

a+ t

◆
I(t 6= 0) +

✓
a

a+ t

◆
t, t 2 [0,1), (3.3)

and
⇢
0

(t) = lim

a!0+

⇢
a

(t) = I(t 6= 0);

⇢1(t) = lim

a!1
⇢
a

(t) = t.

A visulization for the SICA penalty for a few a values are depicted in Figure 3.1.

It is clear that ⇢
0

(·) and ⇢1(·) correspond to the L
0

and L
1

penalty functions, respec-

tively. As a changes from zero to infinity, ⇢
a

(·) forms a smooth homotopy between the L
0

and L
1

penalty functions. Therefore, the SICA penalty with 0 < a <1 represents a com-

promise between the L
0

and L
1

penalty functions, while the L
0

and L
1

penalty functions

can be considered the limiting cases.

Regularized regression methods using the L
0

penalty demonstrate different perfor-

mances in parameter estimation, variable selection and computing than those using the
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Figure 3.1. Plot of SICA penalty functions for a few a values.

L
1

penalty. The L
0

penalty is directly imposed on the number of variables, and thus is the

original measure of model complexity. The L
0

penalty does not cause bias in estimation

and can lead to consistency in variable selection under fairly general conditions (e.g. BIC of

Schwarz (1978)). It however suffers from the instability problem (Breiman, 1996) and can

become quickly infeasible in computing when the number of variables increases. On the

other hand, as a convex relaxation of the L
0

penalty, the L
1

penalty enjoys the advantages

of stability and simplicity in computing (Tibshirani, 1996), but it can lead to noticeably

large bias in estimation (Fan and Li, 2001) and achieve variable selection consistency only

under stringent conditions such as the irrepresentable condition for the lasso (Zhao and Yu,

2006).

From (3.3), it can be seen that the SICA penalty in some sense can be considered a com-

bination of the L
0

and L
1

penalty with the weights being dependent on t, and the tuning



64

parameter a determines where the SICA penalty stands between the L
0

and L
1

penalty. Lv

and Fan (2009) proposed a unified framework for regularizing least squares-based meth-

ods using the SICA penalty and investigated the properties of the resulting estimator under

the linear model. It turns out that the SICA penalty possesses a number of advantages.

Firstly, not like the L
0

penalty, the SICA penalty is continuous in t, therefore, stable and

efficient algorithms can be developed to solve the SICA-regularized least squares problem.

Secondly, the condition under which the SICA penalty can lead to variable selection con-

sistency is much less restrictive than the irrepresentable condition under the L
1

or lasso

penalty. The fundamental reason for the second advantage is given as follows. When the

tuning parameter a approaches to zero, the SICA penalty approaches the L
0

penalty, and

helps the regularized method explore a broader solution or model space. (We note that a

cannot get too close to zero in practice; otherwise, the computation will start to become

unstable.) In summary, the SICA penalty manages to combine the strengths of the L
0

and

L
1

penalty while avoiding their limitations. We believe that the SICA penalty is not simply

a variant of the popularly used L
1

penalty, and it is in fact a significant improvement and

should be widely adopted in practice. Other good properties related the SICA penalty can

be found in Nikolova (2000), Lin and Lv (2013) and Lv and Liu (2014).

When the tuning parameter a is sufficiently large, the behavior of the SICA penalty is

very similar to the L
1

penalty, and in such a case, we propose to directly use the L
1

penalty.

Therefore, we include both the SICA penalty and the L
1

penalty when we implement SPOT

in a computing package. When the SICA penalty is used, we refer to our procedure as

SPOT-SICA, and when the L
1

penalty is used, we refer to our procedure as SPOT-LASSO.

We remark that SPOT-LASSO can be considered a special case of SPOT-SICA with a =

1, and SPAM a special case of SPOT-LASSO with h(Y ) = Y .

3.3.3 Monotone Transformation on Response

Let S
q`n be the space of polynomial splines of degree q � 1 with equally-spaced knots.

Let {B
m

,m = 1, . . . , `
n

} denote a normalized B-spline basis with ||B
m

||
sup

 1, where
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||·||
sup

is the sup-norm. Then, eh(Y ) =

P
`n

m=1

↵
m

B
m

(Y ) for any eh(Y ) 2 S
q`n . One

example of the B-spline basis functions is depicted in Figure 2.1.

It is shown in De Boor (2001) that for any h 2M defined in Section 3.2, there exists

a function ˜h 2 S
q`n such that ||˜h � h||

sup

= O(`�(r+v)

n

), with q � r + v. The constraint

that the transformation h is monotone increasing in the SPOT problem (3.2) can be readily

accommodated in B-spline approximation. According to Schumaker (1981), a sufficient

condition for a polynomial spline ˜h(Y ) to be monotone increasing is that its coefficients

satisfy the linear constraints ↵
m

� ↵
m�1

for m = 2, . . . , `
n

. When using the centered

B-spline basis, the linear constraints become ↵
1

� 0,↵
m

� ↵
m�1

for m = 2, . . . , `
n

. Let

↵ = (↵
1

, . . . ,↵
`n)

>. The linear constraints can be further written as D>↵ � 0, where D

is the `
n

⇥ `
n

matrix defined as

D = I
`n�1

�

2

4
0
`n�1

I
`n�1

0 0>
`n�1

3

5.

Here, I
k

is the k ⇥ k identity matrix, and 0
`n�1

is the `
n

� 1 dimensional vector of 0’s.

Denote B as the n⇥ `
n

matrix where B(i, k) = B
k

(Y
i

). Then, in terms of the sample, we

have ˜h(Y) = B↵ where ˜h(Y) = (

˜h(Y
1

), . . . , ˜h(Y
n

))

>.

3.3.4 SPOT Algorithm

Recall that { 
jk

: k = 1, 2, . . .} is an orthonormal basis and f
j

=

P1
k=1

�
jk

 
jk

. We

use ef
j

=

P
dn

k=1

�
jk

 
jk

to approximate f
j

, where d
n

is a truncation parameter. Thus, ef
j

is a smoothed approximation to f
j

. It is well-known that for the second order Sobolev

ball T
j

, we have ||f
j

� ef
j

||2
2

= O(1/d4
n

) for f
j

2 T
j

. Let  
j

denote the n ⇥ d
n

matrix

where  
j

(i, k) =  
jk

(X
ij

) and �
j

:= (�
j1

, . . . , �
jdn)

>. We have ef
j

(X
j

) =  

j

�
j

where
ef
j

(X
j

) = (

ef
j

(X
1j

), . . . , ef
j

(X
nj

))

>. Recall that ˜h(Y) = B↵ and D defined in Section
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3.3.3. The sample version of the SPOT problem (3.2) with the SICA penalty can be written

as follows.

min
↵2R`n

�j2Rdn

1

2n

�����B↵�
pX

j=1

 

j

�
j

�����

2

2

+ �
n

pX

j=1

⇢
a

✓k 
j

�
j

k
2p

n

◆

s.t.
1

n
↵>B>B↵ = 1; D>↵ � 0.

(3.4)

We develop a coordinate descent procedure to solve (3.4). The estimation procedure is

summarized in Algorithm 1. To facilitate the calculation of the SICA penalty, we apply the

local linear approximation (LLA) method proposed in Zou and Li (2008) to ⇢
a

(t), which is

⇢
a

(t) ⇡ ⇢0
a

(t
0

)t+ ⇢
a

(t
0

)� ⇢0
a

(t
0

)t
0

and ⇢0
a

(t
0

) = a(a+ 1)/(a+ t
0

)

2 in a neighborhood of

t
0

. We explain the two main components of Algorithm 1 below.

Suppose the current estimates of transformations are given as ˆh(0), ˆf (0)

1

, . . . , ˆf (0)

p

, and

we want to update f
j

next. Denote ˆR(0)

j

=

ˆh(0) �
P

k 6=j

ˆf (0)

k

. Applying the LLA method,

the objective function in (3.4) can be simplified to

1

2n

��� ˆR(0)

j

� 
j

�
j

���
2

2

+ �
n

w
j

1p
n
k 

j

�
j

k
2

, (3.5)

where w
j

= a(a + 1)/(a + t
j

)

2 and t
j

=

1p
n

|| ˆf (0)

j

||
2

. Notice that w
j

only depends on the

current estimate ˆf (0)

j

. Therefore, updating �
j

in (3.5) is essentially equivalent to solving

a weighted group lasso problem (Huang et al., 2012) with respect to one group, and the

update of �
j

admits an explicit expression as follows.

ˆ�
j

=

"
1� �

n

w
j

p
n

|| 
j

( 

>
j

 

j

)

�1

 

>
j

ˆR(0)

j

||
2

#

+

( 

>
j

 

j

)

�1

 

>
j

ˆR(0)

j

where [·]
+

denotes the positive part. Therefore, f
j

can be updated as

ˆf
j

=  

j

ˆ�
j

=

"
1� �

n

w
j

p
n

|| ˆP (0)

j

||
2

#

+

ˆP (0)

j

(3.6)

where ˆP (0)

j

=  

j

( 

>
j

 

j

)

�1

 

>
j

ˆR(0)

j

.

Note that the objective function for SPOT-LASSO is equivalent to (3.5) with w
j

= 1. In

such a case, we do not need to use the LLA method, and Algorithm 1 can be used directly

to calculate SPOT-LASSO by specifying w
j

= 1.
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After updating f
j

for j = 1, . . . , p, we fix ˆf =

ˆf
1

+ . . . + ˆf
p

and further update h (i.e.,

update ↵). Problem (3.4) becomes

min
↵2R`n

1

2n

���B↵� ˆf
���
2

2

s.t.
1

n
↵>B>B↵ = 1;

D>↵ � 0;

(3.7)

which is equivalent to a typical quadratic programing problem. Standard numeric packages,

such as the R package “quadprog”, can be used to solve problem (3.7), and we obtain b↵ as

the estimate of ↵.

Algorithm 1 SPOT-SICA Coordinate Descent Algorithm
1: Input: Data {X

i

, Y
i

}n
i=1

, tuning parameters �, a

2: Initialize ˆh = Y/||Y ||
2

, ˆf
j

= 0 for j = 1, . . . , p

3: Iterate (I) - (II) until convergence:

4: (I) Update ˆf
j

, for each j = 1, . . . , p;

5: Compute the residual: bR
j

=

ˆh�
P

k 6=j

ˆf
k

6: Calculate bP
j

=  

j

( 

>
j

 

j

)

�1

 

>
j

bR
j

7: Compute weight w
j

:

w
j

= a(a+ 1)/(a+ || ˆf
j

||
2

/
p
n)2 for finite a

w
j

= 1 for a =1 (L
1

penalty)

8: Soft thresholding, ˆf
j

=

h
1� �w

j

p
n/|| bP

j

||
2

i

+

bP
j

9: Centering, ˆf
j

=

ˆf
j

�mean (

ˆf
j

)

10: (II) Update ˆh;

11: Solve b↵ in problem (3.7) by Quadratic Programming

12: Obtain ˆh = Bb↵/||Bb↵||
2

13: Output: Fitted functions ˆh and ˆf
j

, j = 1, . . . , p
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3.4 Theoretical Properties

In this section, we discuss the theoretical properties of SPOT-SICA in variable se-

lection and parameter estimation. In particular, we establish the consistency of SPOT-

SICA under the transformation model and a given estimate of the response transformation.

We assume that observations of (Y,X) come from the following transformation model

h⇤
(Y ) =

P
p

j=1

f ⇤
j

(X
j

) + ✏, where h⇤ and f ⇤
j

are the optimal transformations. Rewriting

the transformation model in terms of an orthonormal basis { 
jk

}, we have that

h⇤
(Y ) =

pX

j=1

1X

k=1

�⇤
jk

 
jk

(X
j

) + ✏. (3.8)

The transformation model is a general model that encompasses a broad class of models in

both statistics and econometrics (Linton et al., 2008; Jacho-Chávez et al., 2010; Chiappori

et al., 2015). We use the transformation model to facilitate our theoretical discussion, and

show that under the transformation model, SPOT-SICA can recover the true model with

probability approaching one asymptotically. In the case that the true distribution of X and

Y is more complex, the transformation model can also be used as an approximate model

due to its flexibility, and our numerical results show that SPOT-SICA can still be used as

an effective tool for variable selection.

Let S denote the set of true variables S = {j, f ⇤
j

6= 0}, and s
n

the cardinality of S, and

Sc its complement. We show that SPOT-SICA can correctly identify S and consistently

estimate �⇤
j

in (3.8) for j 2 S.

Recall that  
j

is the n⇥ d
n

matrix obtained from the sample, we use  
S

to denote the

n⇥ s
n

d
n

matrix formed by stacking the matrices  
j

, j 2 S one after another. We state the

assumptions under which the main results hold.

Assumption 1 We assume that the following assumptions hold.

(A) Let ⌧
n

= min

j2S || j

�⇤
j

||/pn. It holds that n↵⌧
n

!1 with ↵ 2 (0, 1/2).

(B) It holds that ⇢0(⌧
n

/2) = o(n�↵d�1

n

��1

n

s�1/2

n

) and sup

t�⌧n/2
⇢00(t) = o(��1

n

).
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(C) There exists a positive constant c
0

such that

c
0

 min

j2S
⇤

min

✓
1

n
 

>
j

 

j

◆
 ⇤

max

✓
1

n
 

>
S

 

S

◆
 c�1

0

where ⇤
min

and ⇤
max

are the smallest and largest eigenvalues of a matrix, respectively.

(D) It holds that

max

j2Sc

��
 

j

( 

>
j

 

j

)

�1

 

>
j

 

S

( 

>
S

 

S

)

�1

��
1,2


p
c
0

2

p
n

⇢0(0+)

⇢0(⌧
n

/2)
(3.9)

where for a matrix A, ||A||1,2

= sup||x||1=1

||Ax||
2

with x being a vector.

(E) The errors ✏
i

, i = 1, . . . , n, are independent and identically distributed as N(0, �2

).

This set of assumptions is adopted from Fan et al. (2015). Assumption (A) places a

lower bound on the decaying rate of the signal strength of the true predictors j 2 S. As-

sumption (B) can be satisfied by penalty functions with flat tails. Assumption (C) assumes

that eigenvalues for the design matrix corresponding to true predictors are bounded from

below and above. If  
S

is orthogonal, Assumption (C) is satisfied with c
0

= 1. Assump-

tion (D) is similar to the Irrepresentable Condition for L
1

penalty that ensures selection

consistency of Lasso (Zhao and Yu, 2006). When a ! 0 (e.g., a = o(⌧
n

)), Condition (D)

is automatically satisfied. More detailed discussions on these assumptions can be found in

Fan et al. (2015, Appendix B).

It is worth noting that equation (3.9) reflects the restriction on the design matrix for

SPOT-SICA to be consistent in variable selection. For fixed sample size n, the quantify

⇢0(0+)/⇢0(⌧
n

/2) plays a critical role in Assumption (D). For the SICA penalty, we have

⇢0(0+)/⇢0(⌧
n

/2) = (1 + ⌧
n

/(2a))2. The smaller a is, the less restrictive Assumption (D)

becomes. As a ! 0, ⇢0(0+)/⇢0(⌧
n

/2) approaches 1. Therefore, for any given fixed de-

sign matrix, Assumption (D) will eventually be satisfied when a is sufficiently small, and

SPOT-SICA will have a high probability of selecting the true model. On the other hand,

as a ! 1, ⇢
a

approaches the L
1

penalty ⇢1, and ⇢0(0+)/⇢0(⌧
n

/2) approaches 1; In other
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words, the right hand side of (3.9) becomes smaller and smaller, and Assumption (D) be-

comes more and more restrictive. When a is too large, Assumption (D) may fail to hold,

and SPOT-SICA or its limiting version SPOT-LASSO may fail to select the true variables.

In theory, it appears that a small a should always be preferred. Unfortunately, this is not

true, because as we remarked previously, when a is too small, the SICA penalty in general

will incur computational instability and produce inferior results.

Assumption 2 There exits an L1-consistent estimate ˆh⇤ of h⇤ and ||ˆh⇤�h⇤||
L1 = sup

y2[0,1] |ˆh⇤
(y)�

h⇤
(y)| = O

p

(�
n

) for some sequence �
n

= o(�
n

), where �
n

is the regularization parameter

in (3.4).

Assumption 2 assumes that there exists a good estimate of the transformation h⇤. This

assumption is valid since there are several procedures proposed for obtaining such an esti-

mate in the literature (Linton et al., 2008; Chiappori et al., 2015). In particular, Chiappori

et al. (2015) showed that under certain conditions, h⇤ can be estimated at the parametric

rate for high dimensional data. For ease of presentation, we do not present the details along

that direction but instead state it as an assumption.

Theorem 3.4.1 Assume that d
n

+log p = O(n�2
n

), �
n

n↵d
n

p
s
n

! 0, log(pd
n

) = o(n1�2↵s�1

n

d�2

n

),

and s
n

d�2

n

+ ⌫
n

= o(�
n

). Then under Assumptions 1 and 2, with probability approaching

one as n goes to infinity, there exits a local minimizer ˆ� of (3.4) such that:

(1) ˆ�
S

c
= 0;

(2) || ˆ�
S

� �⇤
S

||1  c1/2
0

n�↵d�1/2

n

;

where || · ||1 stands for the infinity norm of a vector.

Theorem 3.4.1 establishes the weak oracle property for SPOT-SICA in that SPOT-SICA

not only identifies the true model, but also estimates the true coefficients consistently. The

sketch of the proof is given in Section 3.7.1 and the main idea of the proof follows Fan

et al. (2015).
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Remark 3.4.1 Although Theorem 3.4.1 states a result of a local minimizer, it has been

proved in Loh and Wainwright (2015) that any local minimizer will fall within statistical

precision of the true parameter vector under appropriate conditions on the penalty func-

tion. Therefore, the results are extensible to all local minimizers with suitable constraints

on the penalty.

3.5 Numerical Results

In this section, we compare the performances of SPOT-SICA, SPOT-LASSO and SPAM

in variable selection and prediction through both synthetic and real-life examples. For

SPAM, we use its implementation in the R package “SAM”. Similar to the implementation

of SPAM, we use B-spline bases for function approximation in SPOT-SICA and SPOT-

LASSO.

3.5.1 Effectiveness on Synthetic Data

We test the methods using data sampled from two types of models, the additive model

and the transformation model. In the first example, we consider an additive model where

SPAM is expected to work well. In the second example, a typical transformation model is

considered. For each training data set, we also generate a validation data set and a test data

set. Validation datasets are used to choose the tuning parameters � and a, and test datasets

are used to measure the prediction accuracy of the estimated models in terms of mean

squared error (MSE). The goal of using separate validation datasets and test datasets is to

facilitate fair comparisons of different methods. We replicate each simulation 100 times,

and report the averages and standard deviations (in parentheses) of precisions, recalls, sizes

of the selected variables, F
1

scores, as well as MSEs of the estimated models on the test

datasets. More simulation examples can be found in Section 3.7.2.

Example 3.5.1 (Additive Model)

Y =

P
p

j=1

f
j

(X
j

)+✏where ✏ ⇠ N(0, 8/9); The functions are given by f
1

(x) = �2 sin(2x),
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f
2

(x) = x2, f
3

(x) =

2 sin(x)

2�sin(x)

, f
4

(x) = exp(�x), f
5

(x) = x3

+ 1.5(x � 1)

2, f
6

(x) = x,

f
7

(x) = 3 sin(exp(�0.5x)), f
8

(x) = �5�(x, 0.5, 0.82), and f
j

= 0 for j � 9. Here,

�(·, µ, �2

) is the Gaussian cumulative distribution function with mean µ and standard de-

viation �.

We generate covariates with a compound symmetry covariate structure as follows. Each

covariate X
j

= (W
j

+ tU/3)/(1 + t/3), j = 1, . . . , p, where W
1

, . . . ,W
p

and U are from

Unif(�2.5, 2.5). As t increases, the correlation between any two predictors will increase,

which renders the variable selection problem more difficult in general. The sample size is

n = 200, and we consider the dimension of covariates p = 50 and 200. Each component

function f
j

(j = 1, . . . , 8) are appropriately scaled as in Ravikumar et al. (2007) and Yin

et al. (2012).

The simulation results are summarized in Table 3.1. We can see from Table 3.1 that

SPOT-SICA always outperforms SPAM and SPOT-LASSO in terms of both F
1

score and

prediction accuracy. The superior performance of SPOT-SICA is due to the use of SICA

penalty for variable selection and estimation. Because of the advantages of SICA discussed

in Section 3.3.2, SPOT-SICA can simultaneously screen out more spurious variables and

produce less biased estimates of the function components, thus achieve better selection

precision and lower prediction error. The performances of SPAM and SPOT-LASSO are

mostly comparable in variable selection, because they both use the L
1

penalty. In terms

of prediction, SPAM and SPOT-LASSO perform similarly in the cases when the predictors

are sampled independently (t = 0). When data are sampled from more complex structures

(t = 3 and t = 6), SPAM outperforms SPOT-LASSO, since SPOT-LASSO does not utilize

the additive structure of the model.

Example 3.5.2 (Transformation Model)

Y = log

�
4 + sin(2⇡X

1

) + |X
2

|+X2

3

+X3

4

+X
5

+ ✏
�
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Table 3.1.
Comparison of different methods on simulated data from Example 3.5.1.

p t Method Precision Recall Size F
1

score MSE

50 0 SPAM 0.31 (0.07) 1.00 (0.00) 27.28 (5.72) 0.47 (0.08) 1.60 (0.21)

50 0 SPOT-LASSO 0.43 (0.13) 1.00 (0.00) 20.46 (6.04) 0.59 (0.12) 1.56 (0.22)

50 0 SPOT-SICA 0.83 (0.24) 1.00 (0.00) 11.23 (5.80) 0.88 (0.17) 1.37 (0.20)

50 3 SPAM 0.28 (0.06) 1.00 (0.00) 29.44 (5.63) 0.44 (0.07) 1.59 (0.22)

50 3 SPOT-LASSO 0.26 (0.08) 1.00 (0.00) 32.55 (7.70) 0.41 (0.09) 1.93 (0.36)

50 3 SPOT-SICA 0.84 (0.21) 1.00 (0.00) 10.83 (5.58) 0.89 (0.16) 1.40 (0.21)

50 6 SPAM 0.26 (0.05) 1.00 (0.00) 31.76 (5.68) 0.41 (0.06) 1.63 (0.22)

50 6 SPOT-LASSO 0.26 (0.10) 0.96 (0.09) 32.97 (9.81) 0.40 (0.10) 2.20 (0.33)

50 6 SPOT-SICA 0.75 (0.19) 0.95 (0.08) 11.14 (4.27) 0.82 (0.13) 1.58 (0.31)

200 0 SPAM 0.20 (0.05) 1.00 (0.00) 43.41 (11.13) 0.33 (0.07) 1.76 (0.24)

200 0 SPOT-LASSO 0.32 (0.11) 1.00 (0.00) 29.84 (16.17) 0.47 (0.13) 1.66 (0.30)

200 0 SPOT-SICA 0.85 (0.22) 1.00 (0.00) 11.18 (8.28) 0.90 (0.17) 1.36 (0.24)

200 3 SPAM 0.17 (0.04) 1.00 (0.00) 50.98 (12.96) 0.28 (0.06) 1.77 (0.28)

200 3 SPOT-LASSO 0.14 (0.06) 1.00 (0.00) 67.87 (31.14) 0.25 (0.10) 2.33 (0.47)

200 3 SPOT-SICA 0.89 (0.15) 1.00 (0.00) 9.44 (3.33) 0.94 (0.10) 1.39 (0.22)

200 6 SPAM 0.15 (0.03) 0.99 (0.03) 53.79 (12.25) 0.27 (0.05) 1.86 (0.28)

200 6 SPOT-LASSO 0.21 (0.18) 0.85 (0.16) 55.73 (36.24) 0.29 (0.16) 2.48 (0.37)

200 6 SPOT-SICA 0.70 (0.22) 0.89 (0.12) 11.84 (6.09) 0.75 (0.14) 1.75 (0.39)

where ✏ ⇠ N(0, 1/4). We sample covariates according to the same procedure in Example

3.5.1, except that we sample W
1

, . . . ,W
p

and U now from Unif(�1, 1). The change is to

ensure that the term in the log-function is positive.

The simulation results are summarized in Table 3.2. We see that it is consistent in all

cases that SPOT-SICA outperforms SPOT-LASSO, and SPOT-LASSO outperforms SPAM,

in both variable selection precision and prediction accuracy. In addition, although the re-
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Table 3.2.
Comparison of different methods on simulated data from Example 3.5.2.

p t Method Precision Recall Size F
1

score MSE

50 0 SPAM 0.28 (0.11) 1.00 (0.00) 19.84 (5.89) 0.43 (0.11) 3.49 (0.46)

50 0 SPOT-LASSO 0.39 (0.17) 1.00 (0.02) 15.44 (7.04) 0.54 (0.16) 2.22 (0.45)

50 0 SPOT-SICA 0.83 (0.28) 1.00 (0.04) 8.00 (6.68) 0.87 (0.22) 2.08 (0.36)

50 3 SPAM 0.27 (0.08) 0.99 (0.05) 19.62 (5.36) 0.42 (0.09) 2.62 (0.37)

50 3 SPOT-LASSO 0.37 (0.16) 0.97 (0.08) 15.62 (6.24) 0.51 (0.15) 2.06 (0.29)

50 3 SPOT-SICA 0.78 (0.27) 0.95 (0.10) 7.67 (5.11) 0.82 (0.20) 1.95 (0.29)

50 6 SPAM 0.29 (0.11) 0.94 (0.10) 18.34 (6.37) 0.43 (0.11) 2.66 (0.37)

50 6 SPOT-LASSO 0.32 (0.16) 0.92 (0.13) 17.91 (8.26) 0.44 (0.14) 2.12 (0.29)

50 6 SPOT-SICA 0.70 (0.27) 0.86 (0.15) 8.09 (5.60) 0.72 (0.18) 2.00 (0.34)

200 0 SPAM 0.20 (0.09) 1.00 (0.00) 29.22 (10.92) 0.32 (0.11) 3.75 (1.23)

200 0 SPOT-LASSO 0.31 (0.19) 1.00 (0.02) 23.63 (18.69) 0.45 (0.20) 2.25 (0.83)

200 0 SPOT-SICA 0.79 (0.32) 1.00 (0.00) 10.68 (13.23) 0.84 (0.27) 2.06 (0.65)

200 3 SPAM 0.19 (0.08) 0.96 (0.09) 30.32 (12.71) 0.30 (0.11) 2.74 (0.43)

200 3 SPOT-LASSO 0.31 (0.22) 0.92 (0.13) 25.04 (21.33) 0.42 (0.20) 2.17 (0.36)

200 3 SPOT-SICA 0.79 (0.27) 0.94 (0.11) 8.12 (7.50) 0.82 (0.21) 1.93 (0.31)

200 6 SPAM 0.16 (0.06) 0.86 (0.15) 29.80 (11.37) 0.27 (0.08) 2.80 (0.45)

200 6 SPOT-LASSO 0.22 (0.13) 0.83 (0.17) 25.82 (15.54) 0.32 (0.13) 2.19 (0.37)

200 6 SPOT-SICA 0.62 (0.33) 0.81 (0.16) 11.19 (10.71) 0.63 (0.24) 2.04 (0.37)

sults on the average size of estimated supports are similar for SPAM and SPOT-LASSO,

SPAM is much worse compared to SPOT-LASSO in terms of prediction accuracy. This ob-

servation supports the claim that the additional transformation on Y in SPOT is providing

more flexibility in capturing the complex dependence structure. One sample of the esti-

mated optimal transformations from SPOT-SICA is visualized in Figure 3.2, which match

the true functions well. To further assess the variability of the transformation estimates, we



75

Figure 3.2. Transformations of Y and X
1

to X
5

obtained from SPOT-SICA
(a = 1) in Example 3.5.2 (p = 50, t = 0). The black line is the estimated
transformation from original data, red lines are estimated transformations from
20 bootstrapped samples.

run SPOT-SICA on bootstrapped samples and plot resulting transformations in Figure 3.2,

as suggested in Breiman and Friedman (1985).

3.5.2 Role of Parameter a in Variable Selection

In this experiment, using the same model as in Example 3.5.2, we investigate the role

played by the tuning parameter a in the SICA penalty in model selection accuracy. As

discussed in Section 3.4, SPOT-SICA can achieve variable selection consistency under

Assumption (D). The smaller a is, the less restrictive the assumption is. To demonstrate

this effect, we choose two values of a, a = 1 and1, and compare their performances under



76

different design matrices. We vary t from {1, 2, 3, 4, 5, 6} to represent different levels of

variable selection difficulty.

For any fixed a and a given sample, the performance of SICA depends on the regulariza-

tion parameter �. SPOT-SICA is declared to have a success if there exists a � under which

SPOT-SICA correctly select all true variables. For each value of t, we simulate 10 samples

of X that leads to 10 design matrices. For each design matrix, we randomly sample the

error term 100 times, and then apply SPOT-SICA and record their successes and failures.

Consequently, we obtain 10 success rates, each over 100 random replicates. We plot these

success rates at each value of t in Figure 3.3. From Figure 3.3, we see that SPOT-SICA

(a = 1) outperforms SPOT-LASSO (a = 1) by consistently selecting the correct model.

As expected, when t increases, selecting the correct model becomes more difficult for both

values of a. However, SPOT-SICA still has a higher chance to select the correct model

even when SPOT-LASSO fails.

Next, we choose two fixed values of t, which are t = 0 and t = 2, but vary a from

{0.05, 0.10, 0.50, 1.00, 2.00, 5.00}. For each fixed pair of t and a, we repeat the previous

procedure and record the average success rate. Results are presented in Table 3.3. Results

from the L
1

penalty (a = 1) are also recorded in the last column. We see that as a be-

comes larger, the performance of the SICA penalty is approaching that of the L
1

penalty.

When a gets closer to zero, the chance of selecting a true model will first increase and

then decrease, this suggests that the computational difficulty increases as the SICA penalty

approaches the L
0

penalty. The pattern exists for both t = 0 and t = 2. This phenomenon

has also been pointed out in Lv and Fan (2009).
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Figure 3.3. Impact of a on selection consistency of SPOT under different cor-
relation structure controlled by t. Comparison between result from a = 1 and
a =1, where a =1 corresponds to the L

1

penalty.

Table 3.3.
Average percentages of times that the true model can be selected by SPOT-
SICA with different choices of a. The last column corresponds to the result
from SPOT-LASSO.

a 0.05 0.10 0.50 1.00 2.00 5.00 1

t=0 0.945 0.967 0.982 0.947 0.903 0.834 0.781

t=2 0.573 0.632 0.679 0.578 0.427 0.318 0.256
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3.5.3 Real Data Application

We apply SPOT-SICA to two real datasets from the UCI Machine Learning Reposi-

tory1, which are the Boston Housing Data2 and the Communities and Crime Data3.

Boston Housing Data

The Boston Housing Data was collected to study the house values in the suburbs of

Boston; The dataset contains n = 506 observations with p = 10 covariates, which are

RM, AGE, DIS, TAX, PTRATIO, BLACK, LSTAT, CRIM, INDUS, NOX. To explore the

variable selection property of SPOT-SICA, we follow the approach of Ravikumar et al.

(2007) and add 20 noise variables in the analysis. The first ten noise variables are randomly

drawn from Unif(0, 1), and the other ten noise variables are a random permutation of the

original ten covariates.

We adopt the commonly used “one-standard-error” rule with 10-fold cross-validation

to select the tuning parameters � and a, where we choose the most parsimonious model

whose error is no more than one standard error above the error of the best model. We

apply the SPOT-SICA to the 30-dimensional dataset with the selected tuning parameters.

SPOT-SICA correctly zeros out both types of irrelevant variables, and it identifies five

nonzero components out of the original ten covariates. The important variables are RM,

DIS, TAX, PTRATIO, LSTAT. The estimated transformation functions are depicted in Fig-

ure 3.4. From Figure 3.4, we found that the monotone transformation of the response may

be needed to yield a better-fitted model. Furthermore, aside from the commonly recognized

important variables, which are RM, TAX, PTRATIO and LSTAT, SPOT-SICA suggests that

DIS is also important, which exhibits a clear nonlinear effect on the response MEDV.
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Figure 3.4. Estimated transformations of the response (MEDV) and selected
predictors (RM, DIS, TAX, PTRATIO, LSTAT) by SPOT-SICA for the Boston
Housing Data.

Communities and Crime Data

The Communities and Crime Data was first collected in Redmond and Baveja (2002)

and it combines socio-economic data (the 1990 US Census), law enforcement data (the

1990 US LEMAS survey), and crime data (the 1995 FBI Uniform Crime Reporting) from

several communities within the United States. The dataset consists of 1994 observations

from 128 variables including ethnicity proportions, income, poverty rate, divorce rate etc.,

and was previously analyzed by Maldonado and Weber (2010); Song et al. (2011). We

consider modeling the violent crime rate from other covariates in the dataset. By removing

the covariates with missing values, we narrow down to 98 covariates.
1http://archive.ics.uci.edu/ml/
2https://archive.ics.uci.edu/ml/datasets/Housing
3http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
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Figure 3.5. Estimated transformations of the response and 10 selected predic-
tors by SPOT-SICA for the Communities and Crime Data. The labels above
each graph corresponds to the orders of the covariates in the original data. The
last graph is the plot of the estimated response transformation against the sum
of all estimated transformations of selected variables.
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We apply SPOT-SICA to the dataset, with tuning parameters selected by 10-fold cross-

validation and the “one-standard-error” rule. As a result, SPOT-SICA selects 10 variables,

which is fewer than 24 variables reported in Maldonado and Weber (2010). Moreover, the

resulting estimates from SPOT-SCIA exhibit a higher prediction accuracy, with an average

out-of-bag mean absolute error smaller than 0.093, which is better than the results from

the proposed method in Maldonado and Weber (2010). Figure 3.5 shows the estimated

transformations from applying SPOT-SICA. It is interesting to observe a clear nonlinear

transformation of the response. Additionally, most selected variables exhibit nonlinear

effects on the transformed response and a few others have nearly linear effects. Thus, our

method effectively reduces the dimensionality of the data and is able to capture sensible

linear and nonlinear relationships between the response and covariates.

3.6 Discussions

In this chapter, we develop a novel method called SPOT for exploring the dependence

structure between the response Y and the predictor vector X in high dimensional data anal-

ysis. SPOT can consistently select important variables and automatically generate mean-

ingful optimal transformations, under which the dependence structure can be best explored.

SPOT demonstrates promising results on both simulated and real data in terms of selection

consistency, estimation accuracy, prediction power, and interpretability.

One interesting direction to improve SPOT is to consider further transformations in

addition to the optimal transformations, in order to capture the dependence of Y and X

missed by optimal transformations. Another future direction is to investigate more relaxed

conditions under which SPOT can possess selection and estimation consistency. We will

pursue research in these two directions in the near future.

3.7 Technical Proofs and More Simulation Examples

We provide the proof sketch of Theorem 3.4.1 in Section 3.7.1. More simulation exam-

ples and results are included in Section 3.7.2.
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3.7.1 Technical Proofs

Proof of Theorem 3.4.1

Proof Given ˆh⇤, SPOT-SICA minimizes the following objective function
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Proof see Lemma 1 in Fan et al. (2015).
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3.7.2 More Simulation Examples

We consider more simulations on transformation models in Example 3.7.1 and some

general models in Example 3.7.2 to test the performances of the proposed methods on

variable selection and prediction.

Example 3.7.1 (More transformation models)

Let V = 4 + sin(2⇡X
1

) + |X
2

| +X2

3

+X3

4

+X
5

+ ✏, where ✏ ⇠ N(0, 1/4). We consider

the following transformation models,

(A.1) Y = 20/V ;

(A.2) Y = 10

p
V ;

(A.3) Y = V 2/5;

(A.4) Y = exp{V/3};

(A.5) Y = 10 exp{1/V }.

All predictors X
j

are generated independently from Unif(�1, 1). Sample size is n = 200.

Results for p = 50 and p = 200 from all models in Example 3.7.1 are summarized in Table

3.4.
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The results are consistent with the statement in Example 3.5.2. That is, SPOT-SICA

consistently outperforms SPOT-LASSO, and SPOT-LASSO outperforms SPAM, in both

variable selection precision and prediction accuracy.

Example 3.7.2 (Some general models)

We consider the following general models.

(B.1) Y = exp(X
1

) +X2

2

✏;

(B.2) Y = (1 +X
1

)

X2
+ 0.1✏;

(B.3) Y = X3

1

+X2

2

X
3

+ 0.1✏;

(B.4) Y = X
1

+X
2

+ (X
3

+X
4

)

3

+ 0.1✏;

where ✏ ⇠ N(0, 1).

All four models considered here do not belong to transformation models. In particular,

Model (B.1) represents one case that heterogeneity exists in the model; Model (B.3) incor-

porates the interaction terms of X
2

and X
3

, or it can be considered that X
2

and X
3

form

a group in the model; Model (B.4) represents another group structure in the model, where

the additive term X
3

+X
4

can be considered to be in one function. We test our methods on

these models to see how they perform under more general model settings.

All predictors X
j

are generated independently from Unif(�1, 1). Sample size is n =

200. Results for p = 19 from all models in Example 3.7.2 are summarized in Table 3.5.

It is expected that variable selection is more difficult in these models compared to additive

models in Example 3.5.1 and transformation models in Examples 3.5.2 and 3.7.1. However,

we see from the results that even when the assumption on the transformation model does

not hold, our proposed method can still be applied as a fairly effective tool for variable

selection.
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Table 3.4.
Comparison of different methods on simulated data from Example 3.7.1.

Model p Method Precision Recall Size F
1

score MSE

A.1 50 SPAM 0.28 (0.10) 1.00 (0.00) 20.11 (7.11) 0.43 (0.12) 1.08 (0.38)

A.1 50 SPOT-LASSO 0.39 (0.24) 1.00 (0.03) 17.95 (10.63) 0.53 (0.22) 0.71 (0.37)

A.1 50 SPOT-SICA 0.70 (0.30) 0.99 (0.03) 9.89 (7.67) 0.78 (0.24) 0.64 (0.23)

A.2 50 SPAM 0.28 (0.10) 1.00 (0.00) 19.88 (6.29) 0.43 (0.11) 3.61 (0.41)

A.2 50 SPOT-LASSO 0.41 (0.19) 1.00 (0.00) 14.58 (6.07) 0.56 (0.17) 2.21 (0.32)

A.2 50 SPOT-SICA 0.84 (0.26) 1.00 (0.00) 7.51 (5.95) 0.88 (0.20) 2.07 (0.34)

A.3 50 SPAM 0.28 (0.10) 1.00 (0.00) 19.85 (6.54) 0.43 (0.11) 2.62 (0.34)

A.3 50 SPOT-LASSO 0.40 (0.18) 1.00 (0.00) 14.70 (5.57) 0.55 (0.17) 1.59 (0.21)

A.3 50 SPOT-SICA 0.89 (0.20) 1.00 (0.00) 6.17 (2.63) 0.93 (0.14) 1.49 (0.22)

A.4 50 SPAM 0.28 (0.10) 1.00 (0.00) 19.81 (6.25) 0.43 (0.11) 2.49 (0.41)

A.4 50 SPOT-LASSO 0.40 (0.18) 1.00 (0.00) 14.84 (6.14) 0.55 (0.17) 1.52 (0.24)

A.4 50 SPOT-SICA 0.85 (0.24) 1.00 (0.00) 6.94 (4.16) 0.90 (0.18) 1.42 (0.23)

A.5 50 SPAM 0.28 (0.10) 1.00 (0.04) 20.36 (7.75) 0.43 (0.12) 0.56 (0.34)

A.5 50 SPOT-LASSO 0.39 (0.24) 1.00 (0.03) 18.34 (11.09) 0.52 (0.22) 0.38 (0.28)

A.5 50 SPOT-SICA 0.68 (0.30) 0.98 (0.07) 10.23 (7.83) 0.76 (0.24) 0.35 (0.23)

A.1 200 SPAM 0.19 (0.08) 0.99 (0.04) 29.67 (11.33) 0.32 (0.11) 1.26 (0.93)

A.1 200 SPOT-LASSO 0.30 (0.20) 1.00 (0.02) 28.14 (23.10) 0.43 (0.23) 0.82 (0.72)

A.1 200 SPOT-SICA 0.73 (0.29) 0.99 (0.06) 9.66 (9.95) 0.80 (0.23) 0.76 (0.70)

A.2 200 SPAM 0.18 (0.07) 1.00 (0.00) 30.10 (9.46) 0.31 (0.09) 3.84 (0.46)

A.2 200 SPOT-LASSO 0.30 (0.16) 1.00 (0.02) 24.61 (23.95) 0.44 (0.18) 2.33 (0.37)

A.2 200 SPOT-SICA 0.80 (0.29) 1.00 (0.00) 9.76 (12.51) 0.85 (0.24) 2.10 (0.30)

A.3 200 SPAM 0.18 (0.07) 1.00 (0.02) 30.77 (9.89) 0.30 (0.09) 2.76 (0.32)

A.3 200 SPOT-LASSO 0.29 (0.14) 1.00 (0.02) 21.79 (15.64) 0.44 (0.16) 1.66 (0.26)

A.3 200 SPOT-SICA 0.80 (0.30) 1.00 (0.02) 8.73 (7.29) 0.85 (0.24) 1.50 (0.21)

A.4 200 SPAM 0.18 (0.07) 0.99 (0.03) 30.96 (10.94) 0.30 (0.09) 2.62 (0.40)

A.4 200 SPOT-LASSO 0.28 (0.15) 1.00 (0.00) 23.40 (16.55) 0.42 (0.17) 1.59 (0.31)

A.4 200 SPOT-SICA 0.82 (0.27) 0.99 (0.04) 7.95 (6.71) 0.87 (0.21) 1.45 (0.29)

A.5 200 SPAM 0.20 (0.09) 0.98 (0.06) 29.55 (12.41) 0.32 (0.11) 0.98 (2.86)

A.5 200 SPOT-LASSO 0.31 (0.23) 0.99 (0.04) 29.56 (24.76) 0.43 (0.24) 0.74 (2.62)

A.5 200 SPOT-SICA 0.68 (0.28) 0.98 (0.07) 9.90 (9.02) 0.76 (0.22) 0.71 (2.62)
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Table 3.5.
Comparison of different methods on simulated data from Example 3.7.2.

Model Method Precision Recall Size F
1

score MSE

B.1 SPAM 0.33 (0.21) 0.73 (0.25) 5.92 (3.25) 0.42 (0.20) 0.21 (0.04)

B.1 SPOT-LASSO 0.54 (0.28) 0.74 (0.25) 3.33 (1.78) 0.60 (0.25) 0.21 (0.04)

B.1 SPOT-SICA 0.58 (0.30) 0.76 (0.25) 3.28 (1.97) 0.63 (0.26) 0.21 (0.04)

B.2 SPAM 0.45 (0.36) 0.88 (0.26) 7.64 (6.42) 0.50 (0.29) 12.84 (37.45)

B.2 SPOT-LASSO 0.44 (0.33) 0.94 (0.23) 7.62 (6.35) 0.53 (0.32) 11.55 (34.64)

B.2 SPOT-SICA 0.58 (0.36) 0.94 (0.20) 5.81 (5.61) 0.65 (0.32) 11.29 (34.29)

B.3 SPAM 0.33 (0.15) 0.84 (0.17) 8.81 (3.52) 0.46 (0.15) 0.05 (0.01)

B.3 SPOT-LASSO 0.61 (0.32) 0.76 (0.15) 5.28 (3.44) 0.62 (0.21) 0.05 (0.01)

B.3 SPOT-SICA 0.79 (0.30) 0.74 (0.14) 3.63 (2.48) 0.72 (0.18) 0.04 (0.01)

B.4 SPAM 0.37 (0.13) 1.00 (0.00) 11.88 (3.57) 0.53 (0.13) 0.64 (0.11)

B.4 SPOT-LASSO 0.81 (0.28) 1.00 (0.00) 6.24 (4.03) 0.86 (0.21) 0.56 (0.12)

B.4 SPOT-SICA 0.93 (0.19) 1.00 (0.02) 4.81 (2.56) 0.95 (0.14) 0.53 (0.12)
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4. MAXIMUM CORRELATION-BASED STATISTICAL

DEPENDENCE MEASURES

4.1 Introduction

How to measure dependence between random variables is a classical problem in statis-

tics and machine learning. Pearson correlation is one commonly used dependence measure,

which is defined between two univariate random variables and is a powerful tool to cap-

ture linear dependence. Since the invention of Pearson correlation, many other measures

have been developed to measure not only linear but also nonlinear dependence between

both univariate variables and multivariate variables. Examples include Maximum Corre-

lation (Lancaster, 1957), COnstraint COvariance (COCO) (Gretton et al., 2004), Kernel

Canonical Correlation (KCCA) (Gretton et al., 2005b), Hilbert-Schmidt Information Cri-

teria (HSIC) (Gretton et al., 2005a), Distance Correlation (dCor) (Szekely et al., 2007),

Maximal Information Coefficient (MIC) (Reshef et al., 2011), Randomized Dependence

Coefficient (RDC) (Lopez-Paz et al., 2013), and Copula Dependence Coefficient (CDC)

(Jiang and Ding, 2014). Additionally, there are other dependence measures developed in

the feature screening literature, which focus more on detecting associations under specific

models; see Fan et al. (2011), Fan and Song (2010), Hall and Miller (2009), Li et al.

(2012a), Shao and Zhang (2014), and others.

Of those dependence measures, maximum correlation is gaining resurgent interests. A

number of algorithms have been proposed to approximate maximum correlation, including

Alternating Conditional Expectation (ACE) (Breiman and Friedman, 1985), B-spline ap-

proximation (Burman, 1991), and polynomial approximations (Bickel and Xu, 2009; Hall

and Miller, 2011). Additionally, KCCA can also be used to approximate maximum correla-

tion when measuring dependence between univariate random variables, as long as a proper

kernel is chosen. Recently, RDC is developed as an estimator of maximum correlation for
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multivariate random variables; and CDC, which is based on maximum correlation, is also

proposed to measure dependence in multivariate cases.

In this chapter, we introduce dependence measures based on maximum correlation,

in both univariate and multivariate cases. In univariate cases, we first introduce B-spline

based Maximum Correlation (BMC), where we estimate maximum correlation by directly

approximating optimal transformations using B-splines. The problem of estimating max-

imum correlation turns out to be a generalized eigenvalue problem, and maximum corre-

lation can be approximated by the largest eigenvalue of the generalized eigenvalue prob-

lem. One variant (T-BMC) using all the eigenvalues is constructed to obtain a more robust

measure of independence, which is also computationally faster. In multivariate cases, we

propose MBMC and T-MBMC by making use of tensor product B-splines to approximate

optimal transformations for multivariate random variables.

This chapter is organized as follows. Section 4.2 reviews the concepts of maximum

correlation, optimal transformation and their connection introduced in Chapter 2. Based on

the connection, dependence measures (BMC, T-BMC, MBMC, T-MBMC) using B-splines

are defined and their properties are discussed in Section 4.3. Hypothesis testing procedures

are proposed in Section 4.4. Numerical examples are given in Section 4.5 to validate the

empirical performances of proposed measures.

4.2 Maximum Correlation Coefficient and Optimal Transformation

In Chapter 2, we have introduced the concepts of maximum correlation and optimal

transformation. We briefly reviewed them as follows.

The maximum correlation coefficient between univariate random variables X and Y is

defined as

⇢⇤(X, Y ) = sup

✓,�

{⇢(✓(Y ),�(X)) : 0 < E|✓(Y )|2 <1, 0 < E|�(X)|2 <1}

where ⇢(X, Y ) is the Pearson correlation, ✓ and � are Borel-measurable functions of Y

and X . Furthermore, ✓⇤ and �⇤ are often denoted as optimal transformations that attain

the maximum correlation. The existence of maximum correlation is guaranteed through
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conditions similar to Conditions (C1) and (C2) in Chapter 2. For simplicity, we assume

that maximum correlation we consider always exist throughout this chapter. Breiman and

Friedman (1985) showed that ✓⇤ and �⇤ in maximum correlation can be obtained via the

optimal transformation problem defined in (2.2), which is restated as follows.

min
✓,�2L2(P )

e2 = E[{✓(Y )� �(X)}2],

subject to E{✓(Y )} = E{�(X)} = 0;

E{✓2(Y )} = 1.

(4.1)

Let e⇤2 be the minimum of e2. Breiman and Friedman (1985) showed that

e⇤2 = 1� ⇢⇤2; (4.2a)

E(�⇤2
) = ⇢⇤2. (4.2b)

Therefore, we can estimate maximum correlation coefficient by approximating either

minimized regression error or the optimal transformations. Due to the flexibility and nice

theoretical property of B-spline compared with other algorithms stated in the Introduction,

we choose it as our main tool in estimating maximum correlation coefficient. Moreover, we

propose several other efficient dependence measures based on the spline approximation.

4.3 Dependence Measure

In this section, we first summarize the procedure of B-spline approximation of max-

imum correlation coefficient as introduced in Chapter 2, and then propose a more robust

version based on it. Extensions to multivariate cases are also developed.

4.3.1 Univariate Case: BMC and T-BMC

As defined in Section 2.2.2, S
n

is the space of polynomial splines of degree ` � 1

and B(·) = (B
1

(·), . . . , B
dn(·))T denotes the vector of d

n

normalized basis functions with

||B
m

||
sup

 1. We have ✓
n

(Y ) = ↵TB(Y ), �
n

(X) = �TB(X) for any ✓
n

(Y ),�
n

(X) 2 S
n

.
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BMC: B-spline-based Maximum Correlation

The population version of B-spline approximation to the minimization problem (4.1)

can be written as follows.

min
✓n,�n2Sn

E[{✓
n

(Y )� �
n

(X)}2],

subject to E{✓
n

(Y )} = E{�
n

(X)} = 0;

E{✓2
n

(Y )} = 1.

(4.3)

Given sample {x
i

, y
i

}n
i=1

, an empirical version of optimization problem (4.3) becomes

min
↵,�2Rdn

1

n

nX

i=1

⇥
↵TB(y

i

)� �TB(x
i

)

⇤
2

,

subject to
1

n

nX

i=1

⇥
↵TB(y

i

)

⇤
=

1

n

nX

i=1

⇥
�TB(x

i

)

⇤
= 0;

1

n

nX

i=1

⇥
�TB(y

i

)

⇤
2

= 1.

(4.4)

Algorithm 2 summarizes the procedure of solving optimization problem (4.4), more

detailed derivations can be found in Chapter 2.

The output in Algorithm 2 is the estimate of E(�⇤2
n

). We denote the population version

of largest eigenvalue as �
1

:= E(�⇤2
n

), and its sample estimate as b�
1

. Then, the square

root of the �
1

is the B-spline approximation to maximum correlation coefficient, and the

square root of b�
1

is the sample estimate of maximum correlation. We thus call �
1

B-spline

based Maximum Correlation (BMC). It has been shown in Chapter 2 that the screening

procedure based on BMC enjoys some nice theoretical properties for screening variables

in ultrahigh dimensional data analysis. We next discuss the theoretical properties of BMC

as a dependence measure.

Theoretical Properties of BMC

Theoretical properties of BMC and its sample estimates rely on the following two con-

ditions.
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Algorithm 2 BMC: B-spline estimate of maximum correlation between univariate random

variables

Require: data x
u

,y
u

, size n, spline degree ` , knots size k

1: Construct B(x
u

) and B(y
u

): B-splines for each observation x
u

and y
u

(u = 1, . . . , n)

with degree ` and knots number k. B(x
u

) and B(y
u

) are vectors of length k + `.

2: Centering B(x
u

) and B(y
u

):

B(x
u

) � B(x
u

)� n�1

P
n

u=1

B(x
u

),

B(y
u

) � B(y
u

)� n�1

P
n

u=1

B(y
u

).

3: Calculate A
yy

= n�1

P
n

u=1

B(y
u

)BT

(y
u

),

A
yx

= n�1

P
n

u=1

B(y
u

)BT

(x
u

),

A
xx

= n�1

P
n

u=1

B(x
u

)BT

(x
u

).

4: Decompose A
yy

by SVD: A
yy

= RTDR due to symmetry of A
yy

, and RTR = I.

5: Return the largest eigenvalue of the objective matrix D� 1
2RA

yx

A�1

xx

AT

yx

RTD� 1
2 .

Condition 1. The optimal transformations {✓⇤,�⇤} belong to a class of functions

F , whose r-th derivative f (r) exists and is Lipschitz of order ↵
1

, that is, F = {f :

|f (r)(s) � f (r)(t)|  K|s � t|↵1 for all s, t} for some positive constant K, where r is a

nonnegative integer and ↵
1

2 (0, 1] such that w = r + ↵
1

> 0.5.

Condition 2. The joint density of Y and X is bounded and the marginal densities of Y ,

X are bounded away from zero on their support.

Theorem 4.3.1 (Independence) When two random variables X and Y are independent,

�
1

= 0.

Under Condition 1 and Condition 2, when �
1

= 0,

⇢⇤2  O
⇣
1/
p
k
⌘

.
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where k is the number of knots which increases with n.

There is no standard way to determine the optimal value of k, theoretically, it is set to

be O (n�

) with 0 < � < 1. We see that when �
1

= 0, ⇢⇤2 ! 0 as n increases, which makes

BMC a good dependence measure under all circumstances.

Theorem 4.3.2 (Distance between �
1

and ⇢⇤2) Under Condition 1 and Condition 2, with

the same constants c
1

and w in the proof of Theorem 4.3.1,

|�
1

� ⇢⇤2|  c
1

k�w

+ 2

p
c
1

k�w.

Lemma 4.3.3 (Consistency of b�
1

to �
1

) Define ⇣(d
n

, n) = d2
n

exp(�c
3

n1�4d�4

n

) +

d
n

exp(�c
4

nd�7

n

) for positive constants c
3

, c
4

and  2 [0, w/(2w + 1)). Under Condi-

tion 1 and Condition 2, for any c
2

> 0,

Pr

⇣
| b�

1

� �
1

| � c
2

d
n

n�2

⌘
 O (⇣(d

n

, n)) . (4.5)

Here,  is an important parameter which determines the optimal rate of d
n

. According

to Condition 1, w > 1/2. Therefore, the upper end limit of ’s range is at least 1/4 and at

most 1/2. For the choice of d
n

, on one hand, we want d
n

as large as possible to fit the splines

well; but on the other hand, d
n

is required to be of o(n1/7

) in order to ensure estimation

consistency in Lemma 4.3.3. Further from Lemma 4.3.3, we see that d
n

should be no

greater than min{o(n1/7

), o(n2

)}. Therefore, the exact value of  is not that important as

long as it is larger than 1/14, and the optimal rate of d
n

can be as large as o(n1/7

).

As | b�
1

� ⇢⇤2|  | b�
1

� �
1

| + |�
1

� ⇢⇤2|, the following theorem is a direct result by

combining Theorem 4.3.2 and Lemma 4.3.3.

Theorem 4.3.4 (Consistency of b�
1

to ⇢⇤2) Under Condition 1 and Condition 2, with the

same notations in Theorem 4.3.1 and Theorem 4.3.3,

Pr

⇣
| b�

1

� ⇢⇤2| � c
2

d
n

n�2

+ c
1

k�w

+ 2

p
c
1

k�w

⌘
 O (⇣(d

n

, n)) . (4.6)
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T-BMC: Trace of BMC

Let B(Y ) and B(X) be the random vectors from B-spline functions of random vari-

ables Y and X , from a specified choice of knots with size d
n

. From canonical correlation

analysis (Anderson, 1984; Johnson and Wichern, 2007), we know that square root of �
1

is the largest canonical correlation between B(Y ) and B(X). Let b�
i

be the i-th largest

eigenvalue of D� 1
2RA

yx

A�1

xx

AT

yx

RTD� 1
2 , and �

i

be its counterpart in population version

of B-spline space. In Fact, square root of �
i

is the i-th cannonical correlation between

B(Y ) and B(X). That is, for any given 1  i  d
n

,

�1/2
i

= max

↵i,�i2Rdn
⇢
�
↵T

i

B(Y ), �T

i

B(X)

�
(4.7)

where ⇢
�
↵T

i

B(Y ),↵T

j

B(Y )

�
= 0 and ⇢

�
�T

i

B(X), �T

j

B(X)

�
= 0 for all j = 1, . . . , i� 1.

The counterparts of �1/2
i

in the original L
2

space can be defined as follows. For func-

tions {✓
i

,�
i

; i = 1, 2, . . .} with bounded positive second moments, let

r
i

= max

✓i,�i2L2(P )

⇢ (✓
i

(Y ),�
i

(X)) ,

where h✓
i

(Y ), ✓
j

(Y )i
L2(PY )

= 0 and h�
i

(X),�
j

(X)i
L2(PX)

= 0 for all j = 1, . . . , i � 1.

Here, h·, ·i is the inner product defined in corresponding L
2

spaces.

From the definition above, it is clear that �1/2
i

is just a spline approximation to r
i

defined

in L
2

space. We notice that while maximum correlation ⇢⇤ (or equivalently, r
1

) captures

the first layer of dependence, it excludes other information on the dependence which can

be characterized by r
i

(i = 2, 3, . . .). Thus, making use of the subsequent r
i

(i = 2, 3, . . .)

can provide more comprehensive understandings on the overall dependence level. In this

sense, according to equation (4.7), �
i

(i 6= 1) may contain extra information besides the

largest eigenvalue �
1

in quantifying the association between X and Y . As �
1

and �
i

(i =

2, . . . , d
n

) all preserve certain information on the internal dependence, measures which

combine both �
1

and subsequent �
i

(i = 2, . . . , d
n

) are intuitively better than those which

only make use of partial information (such as BMC).

In order to obtain a better measure of independence, we need to make use of the en-

tire spectrum of the objective matrix D� 1
2RA

yx

A�1

xx

AT

yx

RTD� 1
2 , instead of using only
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the largest one in Algorithm 2. Various procedures can be proposed via making different

use of all eigenvalues to achieve better measures of independence. One such example is

to sum up all the eigenvalues, which is equivalent to the trace of that matrix. Similar to

the development from COCO (Gretton et al., 2004) to HSIC (Gretton et al., 2005a), this

extension makes use of trace, we therefore name it by T-BMC. We show later that asymp-

totically T-BMC, which sums up all eigenvalues, is indeed a robust measure than BMC for

independent cases, and a more sensitive measure in terms of signal to noise ratio (SNR) for

dependent cases.

The procedure to calculate T-BMC between univariate random variables is summarized

in Algorithm 3. Another advantage of T-BMC over BMC is that T-BMC is faster than

BMC in computation, since calculating trace is computationally much easier than obtain-

ing the largest eigenvalue, especially for a large matrix. Similar to the notations of BMC,

we denote the population version of T-BMC by ⌘ :=

P
dn

i=1

�
i

, and its sample estimate by

b⌘ :=

P
dn

i=1

b�
i

.

Algorithm 3 Calculate T-BMC

• Step 1 s Step 5 in Algorithm 2.

• Return trace of D� 1
2RA

yx

A�1

xx

AT

yx

RTD� 1
2 .

Theoretical Properties of T-BMC

T-BMC has at least two main advantages over BMC, summarized as follows.

First, from Theorem 4.3.1, we have that for cases where random variables X and Y are

independent, the corresponding largest eigenvalue will be zero. Since the matrix we con-

struct is semi-positive definite, all its eigenvalues are non-negative. Therefore, all eigen-

values will be zero. In certain cases, the largest eigenvalue may be falsely enlarged, due to

limited sample size or presence of outliers. Adding all eigenvalues (i.e., using the trace) is

more stable than using any single eigenvalue (e.g., the largest eigenvalue).



97

Second, under dependence cases, the asymptotic behavior of eigenvalues for fixed

d
n

:= d can be similar to that of a random covariance matrice, which is characterized

by the following theorem.

Lemma 4.3.5 (Distribution of eigenvalues, Johnson and Wichern (2007))

For a covariance matrix ⌃ of a p-dimensional random variable from a normal population,

if its eigenvalues are distinct and positve so that �
1

> �
2

> . . . ,�
p

> 0, then approximately

each estimate of �
i

behaves independently and identically from Gaussian distribution, and

p
n(b�

i

� �
i

) ⇠ N
p

�
0, 2�2

i

�
.

By analogy, under certain conditions, the estimate for each positive eigenvalue �
i

of the

matrix D� 1
2RA

yx

A�1

xx

AT

yx

RTD� 1
2 behaves approximately independent, following normal

distribution with variance 2�2
i

/n. We can calculate the SNR for BMC by

�
1p

2�2
1

/n
=

r
n

2

.

The SNR for T-BMC for fixed d
n

= d is
r

n

2

�
1

+ ...+ �
dp

�2
1

+ ...+ �2
d

,

which is greater than that for BMC.

Therefore, by using the trace, T-BMC is more sensitive than BMC in detecting depen-

dence, which is a desired property for confirming dependence.

Consistency property of T-BMC can also be established.

Theorem 4.3.6 (Consistency of b⌘ to ⌘) With the same ⇣(d
n

, n) in Lemma 4.3.3. Under

Condition 1 and Condition 2, for any c
2

> 0,

Pr

�
|b⌘ � ⌘| � c

2

d2
n

n�2

�
 O (d

n

⇣(d
n

, n)) . (4.8)
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One generalization of T-BMC is to use weighted sum of all eigenvalues, which can be

written as
P

dn

i=1

w
i

�
i

, where (w
1

, . . . , w
dn) are the weights which sum up to 1. T-BMC

is obtained (up to a factor of d
n

) by choosing equal weight for all eigenvalue (that is,

w
i

= 1/d
n

for i = 1, . . . , d
n

). We note that while using a weighted sum of all eigenvalues

is more flexible than using trace as in T-BMC, tuning parameters (w
1

, . . . , w
dn) becomes

another issue, which makes this extension more complex. Moreover, this extension forfeits

the computational advantage of T-BMC (unless it is T-BMC), and computation complexity

will be no less than that of BMC.

4.3.2 Multivariate Case: MBMC and T-MBMC

In multivariate cases, given random vectors X = (X
1

, X
2

, . . . , X
p

) and Y = (Y
1

, Y
2

, . . . , Y
q

),

one can measure the marginal dependence between every single X
i

and Y
j

. However,

marginal dependence measure may fail to capture the dependence structure. Similar to

equation (4.1), we have the following problem.

min
✓,�2L2(P )

e2 = E[{✓(Y)� �(X)}2],

subject to E{✓(Y)} = E{�(X)} = 0;

E{✓2(Y)} = 1.

(4.9)

we can approximate functions ✓(Y) and �(X) by tensor product B-splines. For exam-

ple, ✓(Y) can be approximated by ✓
n

(Y) = ↵TB(Y) where B(Y) = B(Y
1

)⌦· · ·⌦B(Y
q

)

1.

With tensor product B-splines, maximum correlation can be easily extended to measure de-

pendence in multivariate cases.

Given n samples x
u

= (x
u,1

, x
u,2

, . . . , x
u,p

) and y
u

= (y
u,1

, y
u,2

, . . . , y
u,q

) where u =

1, 2, . . . , n, we summarize the measures for mutlivariate cases as in Algorithm 4. Similar

to the notations of BMC and T-BMC, we name the corresponding new measures as MBMC

and T-MBMC.

By tensor product B-splines, the size of B(Y) is dq
n

if the size of each B(Y
j

) is d
n

,

which will yield trivial solutions (i.e., MBMC = 1, independent of data) when dq
n

> n.
1Tensor product: (a1, a2, . . . , as)T ⌦ (b1, b2, . . . , bt)T = (a1b1, a1b2, . . . , a1bt, . . . , asb1, asb2, . . . , asbt)T
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Algorithm 4 Calculate MBMC/ T-MBMC

• Construct B(x
u

) and B(y
u

) by tensor product B-splines,

B(x
u

) = B(x
u,1

)⌦ · · ·⌦B(x
u,p

),

B(y
u

) = B(y
u,1

)⌦ · · ·⌦B(y
u,q

).

• Step 2 s Step 5 in Algorithm 2.

• Return the largest eigenvalue / trace of the matrix

D� 1
2RA

yx

A�1

xx

AT

yx

RTD� 1
2 .
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This problem can be alleviated when further assumptions are imposed. For example, if we

consider additive structures on the transformations of ✓(Y) and �(X) in (4.9), where

✓(Y) = ✓
1

(Y
1

) + . . .+ ✓
q

(Y
q

),

�(X) = �
1

(X
1

) + . . .+ �
p

(X
p

).

Then, splines B(X) and B(Y) in Algorithm 4 can be constructed by combining B-

spline bases for each individual variable, where

B(X) =

�
BT

(X
1

), · · · ,BT

(X
p

)

�
T ,

B(Y) =

�
BT

(Y
1

), · · · ,BT

(Y
q

)

�
T .

Then, under additive structures of ✓(Y) and �(X), the size of B(X) and B(Y) will be

reduced to pd
n

and qd
n

, respectively. Given samples, the algorithms for obtaining MBMC

and T-MBMC under additive structures are summarized in Algorithm 5.

Algorithm 5 Calculate MBMC/T-MBMC, additive cases

• Construct B(x
u

) and B(y
u

) by tensor product B-splines,

B(x
u

) =

�
BT

(x
u,1

), · · · ,BT

(x
u,p

)

�
T ,

B(y
u

) =

�
BT

(y
u,1

), · · · ,BT

(y
u,q

)

�
T .

• Step 2 s Step 5 in Algorithm 2.

• Return the largest eigenvalue / trace of the matrix

D� 1
2RA

yx

A�1

xx

AT

yx

RTD� 1
2 .

4.4 Hypothesis Testing

Consider the hypothesis “variables X and Y are independent”, which implies that

�
1

= 0 from Theorem 1, two testing procedures can be proposed to address this hypothesis

testing problem.
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Bartlett’s approximation

In canonical correlation analysis, Bartlett’s approximation (Mardia et al., 1979; Lopez-

Paz et al., 2013) can be used for testing of independence between random variables X =

(X
1

, X
2

, . . . , X
p

) and Y = (Y
1

, Y
2

, . . . , Y
q

). Under normality assumptions and for large

sample size, if X and Y are independent,

�
✓
n� p+ q + 3

2

◆
log

min{p,q}Y

i=1

(1� b⇢
i

2

) ⇠ �2

pq

,

where b⇢
i

is the i-th sample canonical correlation between X and Y. Generally, theoretical

distributions for {b�
i

}dn
i=1

are difficult to obtain. From equation (4.7), we have that under

certain assumptions, Barrlett’s approximation holds for b�
i

. That is, if variables X and Y

are independent,

�
✓
n� 2d

n

+ 3

2

◆
log

dnY

i=1

(1� b�
i

) ⇠ �2

d

2
n

While Bartlett’s approximation provides a computationally easy procedure to test the

independence, it is common that the underlying assumptions are difficult to validate, or the

sample size is limited. In those cases, Bartlett’s approximation test will not be efficient. A

more commonly used testing procedure which relaxes the distributional assumptions can

be developed.

Permutation test

Here, we summarize the procedures of permutation test for BMC in Algorithm 6. Per-

mutation test procedures for T-BMC, MBMC and T-MBMC can be developed similarly.

We reject the hypothesis that “variables X and Y are independent” if b�
1

caculated from

the original data exceeds the (1 � ↵)-th quantile of { b�b
1

}B
b=1

, where ↵ is usually set to be

0.05 or 0.1.
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Algorithm 6 Permutation test of independence for BMC

1: Compute the BMC value for original observations {x
i

, y
i

}n
i=1

by Algorithm 1, to obtain
b�
1

.

2: For b = 1, . . . , B

permute the data by shuffling {y
i

}n
i=1

to obtain b-th permuted data {x
i

, ey
i

b}n
i=1

, and

compute BMC values for {x
i

, ey
i

b}n
i=1

by Algorithm 1, to obtain b�b
1

.

Return { b�b
1

}B
b=1

.
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4.5 Numerical Results

In this section, we demonstrate the empirical performances of two proposed measures,

BMC and T-BMC, on detecting dependence over different models. Power of a dependence

measure is defined in Lopez-Paz et al. (2013) as the ability to discern between dependent

and independent samples that share equal marginal forms. We use the same criteria and

apply the same strategy here in evaluating our proposed measures.

4.5.1 Simulation Results for BMC/T-BMC

Pearson correlation, Kendall’s ⌧ coefficient, Distance Correlation, ACE, RDC and CDC

are included for comparison. For BMC and T-BMC, we only reported the best results from

a selective candidate of knots choices as an indication that, with proper parameter tuning

(like cross-validation procedure in subsection ??), our proposed methods can achieve better

performance than other methods. Parameters for all other measures were set to the default

values under the following considerations: Pearson correlation, Kendall’s ⌧ coefficient and

Distance Correlation have no tuning parameters, ACE is fairly stable to its tuning parame-

ters (Breiman and Friedman, 1985), CDC uses ACE for calculation, and the RDC authors

stated that RDC is robust against the number of random features (i.e. its tuning parameters).

Example 4.5.1 We consider ten different types of bivariate relationships as follows,

1. Y = X + L✏/10;

2. Y = 4(X � 1/2)2 + L✏/10;

3. Y = 80(X � 1/3)2 � 12(X � 1/3) + L✏;

4. Y = sin(16⇡X) + L✏/10;

5. Y = sin(4⇡X) + L✏/5;

6. Y = X1/4

+ L✏/10;

7. Y = (2V � 1)

p
1� (2X � 1)

2

+ L✏/40;

8. Y = I{X > 1/2}+ L✏/2;

9. Y = XI{U > 1/2}+ (1�X)I{U  1/2}+ L✏/2;
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10. Y = I{1/4  X  3/4}+ L✏/2.

Here X,U ⇠ Unif [0, 1], ✏ ⇠ N [0, 1], V ⇠ Bernoulli(1
2

), and L 2 {1, 2, . . . , 30}. The

true models without error terms (L = 0) are depicted inside small boxes in Figure 4.1.

For each model above, we first generated 500 datasets (positive datasets), each contains

320 data points (n = 320). Next, we re-generated input variable randomly, and combined it

with the same response variable in positive datasets, to obtained another 500 datasets (neg-

ative datasets). For each dependence measure, we obtain 500 dependence values from the

positive datasets, and another 500 dependence values from the negetive datasets. Denote

the 95 percent quantile of those values obtained from negetive datasets by m
1

. In spirit

of Simon and Tibshirani (2014), we have an empirical evaluation of power as “the pro-

portion of those 500 values from positive datasets exceeding m
1

”. We repeated the above

procedures for every L 2 {1, 2, . . . , 30}. Figure 4.1 shows results of power curves for each

relationship type, as the noise level L increases. In most of the relationships, BMC and

T-BMC consistently achieve higher power or the best power in detecting the dependence,

especially for Quadratic, Cubic, Circle, Sinusoidal (both high- and low-frequency) types.

4.5.2 Simulation Results for MBMC/T-MBMC

To test the efficiency of MBMC and T-MBMC (with additive structure) in measing

dependence for high dimensional data, we adopt the same eight experiment settings as in

(Jiang and Ding, 2014).

Example 4.5.2 Consider the following models:

1. y
1

= x
1

x
2

, y
2

= x
2

x
3

, y
3

= x
3

x
1

2. y = x
2

x
1

+ log(x2

3

)x2

2

+ sin(x
1

)(x
3

� 5)

2

3. y
1

= log(x2

1

)x
2

+ x
3

, y
2

= log(x2

2

) sin(x
1

) + x2

1

, y
3

= log(x2

3

)x
1

4. y
1

= cos(x
2

(1 + x
1

)x
3

), y
2

= sin(6⇡x2

2

), y
3

= sin(x
2

) cos(x
3

(1 + x
2

))

5. y
1

= cos(x
1

) cos(x
2

) + x
1

x
2

, y
2

= sin(x
2

) sin(x
3

) + x
2

x
3

, y
3

= cos(x
3

) sin(x
1

) + x
1

x
3

6. y
1

= x
1

, y
2

= x2

2

, y
3

= x3

3

7. y
1

= sin(x
2

)2

x3
+ 3x

2

x3

1

, y
2

= 4x
2

log(x2

1

) + x2

1

, y
3

= sin(x
3

) log(x
1

) + 4x2

1
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Figure 4.1. Power of different measures on detecting dependence for different
bivariate relationships, as noise level increases.
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8. y
1

= 2x
1

x
2

+ x3

1

sin(x
2

), y
2

= cos(x
2

) + 5x
2

log(x2

1

) + x2

1

, y
3

= sin(x
2

) log(x
3

) + 5x
2

where x
1

, x
2

, x
3

⇠ Unif [0, 1], and sample size n = 320. We measure the dependence

between multivariate variables y = (y
1

, y
2

, y
3

) and x = (x
1

, x
2

, x
3

). Power is calculated

using the same procedure as stated in Section 5 in the main paper.
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Figure 4.2. Power of different measures on detecting dependence for different
multivariate relationships, as noise level increases.
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4.6 Discussions

4.6.1 On Dependence Measures

We introduced four dependence measures based on B-splines and maximum correla-

tion. For univariate random variables, BMC and T-BMC are introduced, and their asymp-

totic convergence rates are investigated. Multivariate counterparts (MBMC and T-MBMC,

respectively) to BMC and T-BMC are also introduced, by using tensor product B-splines.

Special cases for MBMC and T-MBMC under additive assumptions are discussed.

As mentioned in Section 4.3.1 when defining T-BMC, the development of T-BMC from

BMC follows the same idea of developing HSIC from COCO, aiming at constructing a

robust indication of dependence by making use of the full spectrum (all singular values)

rather than only the largest singular value. As population versions of HSIC and COCO are

both well-defined in corresponding RKHS, and population counterpart of BMC in L
2

space

is the maximum correlation, we explicitly constructed the counterpart of T-BMC in general

L
2

space in Section 4.3.1.

Here, we point out several interesting relations between commonly used measures. For

univariate cases, the proposed dependence measure BMC has essential connections with

KCCA and RDC. In fact, they all can be represented using the following form,

sup
↵,�2Rm

⇢
�
↵TB(Y ), �TB(X)

�
(4.10)

The differences among BMC, KCCA and RDC are due to different choices of structure

and size for basis functions, as showed in expression (4.10). When samples are given,

KCCA utilizes the basis (it can be showed that B(Y ) and B(X) are just Gram matrix of

the corresponding samples) of the same length with the sample size, that is, m = n in

(4.10). Due to this choice, regularization is needed in calculating KCCA to avoid trivial

solutions. RDC, on the other hand, is flexible in choosing the basis size. However, as RDC

is using random projections, structure on its basis is not well-studied. From this point of

view, BMC is a better choice in making use of a both flexible and well-structured basis.
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4.6.2 On Application to Sufficient Dimension Reduction

Recall that in linear dimension reduction, one aims to find a few linear combinations

�>
1

X, . . . , �>
d

X, so that

Y ?? X|{�>
1

X, . . . , �>
d

X}.

We consider to extend the linear combinations of X to nonlinear cases, where we hope to

find additive functional components f
1

, . . . , f
d

satisfying

Y ?? X|{f
1

(X), . . . , f
d

(X)},

where f
i

(X) =

P
p

j=1

f
ij

((X
j

).

Similar to the SIR procedure described in (1.10) and (1.11), which recovers the space

spanned by �
1

, . . . , �
d

, we propose to use optimal transformations to recover f
1

, . . . , f
d

. Let

g
1

be the sum of optimal transformations of the predictor variables, we solve successive

transformations by
e2(h

i

,g
i

) = min

h,g
e2(h,g)

Cov(h
i

, h
j

) = 0,

Cov(g
i

,g
j

) = 0, for j = 1, . . . , i� 1;

(4.11)

where

min

h,g
e2(h,g) = E

h
{h(Y )�

pX

j=1

g
j

(X
j

)}2
i
,

s.t. E[h(Y )] = E[g
j

(X
j

)] = 0;

E[h2

(Y )] = 1,E[g2
j

(X
j

)] <1.

and g(X) =

P
p

j=1

g
j

((X
j

).

It is known that the resulting directions {b
1

, . . . , b
d

} obtained by SIR in (1.10) and

(1.11) may not be exactly �
1

, . . . , �
d

, but their column spaces are equivalent. Similarly, we

do not expect g
1

, . . . ,g
d

from the procedure above being equal to f
1

, . . . , f
d

. It will be an

interesting future research to explore their relationships.
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4.7 Technical Proofs

4.7.1 Proof of Theorem 4.3.1

Proof If X and Y are independent, it is known that cov(f(Y ), g(X)) = 0 for each

pair of (f, g) of bounded continious functions. Therefore, cov(✓
n

(Y ),�
n

(X)) = 0 for

spline functions (✓
n

,�
n

). As variances of ✓
n

,�
n

are restricted to be positive, we have

⇢(✓
n

(Y ),�
n

(X)) = 0. Therefore, �
1

= 0.

When �
1

= 0, we have E(�⇤2
n

) = 0 since �
1

= E(�⇤2
n

). According to equation (2b),

E(�⇤2
) = ⇢⇤2. From Burman (1991), we have E{(�⇤� �⇤

n

)

2}  c
1

k�w for constant c
1

> 0

and w > 1/2. Then, ⇢⇤2 = E(�⇤2
)  2E{(�⇤ � �⇤

n

)

2}+ 2E(�⇤2
n

)  2c
1

k�w.

4.7.2 Proof of Theorem 4.3.2

Proof With �
1

= E(�⇤
n

)

2 , ⇢⇤2 = E(�⇤2
), E{(�⇤ � �⇤

n

)

2}  c
1

k�w, we have

|E(�⇤
n

)

2�E(�⇤2
)| = |E(�⇤

n

� �⇤
+ �⇤

)

2 � E(�⇤
)

2|

= |E(�⇤
n

� �⇤
)

2

+ 2E{(�⇤
n

� �⇤
)�⇤}|

 |E(�⇤
n

� �⇤
)

2

+ 2

p
E(�⇤

n

� �⇤
)

2

E(�⇤2
)

 E(�⇤
n

� �⇤
)

2

+ 2

p
E(�⇤

n

� �⇤
)

2

 c
1

k�w

+ 2

p
c
1

k�w

4.7.3 Proof of Theorem 4.3.6

Proof Similar to the proof of Theorem 2.2.2 in Chapter 2, we can easily generalize the

consistency result for each of the eigenvalue b�
i

to �
i

. In fact, the result in Theorem 2.2.2

applies to any of the eigenvalues, which is,

Pr

✓
max

1idn

|b�
i

� �
i

| � c
2

d
n

n�2

◆
 O (⇣(d

n

, n)) .

Theorem 6 follows by combining it and the fact that |b⌘ � ⌘|  d
n

max

1idn |b�i � �i|.
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5. SUMMARY

In high dimensional data analysis, noises accumulated by a large number of spurious pre-

dictor variables can make the real signals difficult to be discovered, resulting in model

inaccuracy and poor prediction capability. Effective variable screening and variable se-

lection methods are important tools to reduce the size of predictor variables, which aid in

efficient model building. In general, a sparse model can lead to higher prediction accuracy

by reducing the number of spurious variables.

In this thesis, we first present a screening method, MC-SIS, to reduce the dimension-

ality from ultrahigh to relatively high dimension prior to model building. MC-SIS ranks

all predictor variables according to their marginal maximum correlations with the response

and selects the top predictors with relatively large maximum correlation values. It is the-

oretically justified that MC-SIS is a model-free sure screening procedure, which enjoys

the sure screening property without imposing any specific model assumptions. Numerical

experiments further show that MC-SIS can outperform other existing screening methods

when their model assumptions are violated, and remain competitive when the model as-

sumptions are satisfied. Another method, SPOT, is introduced to simultaneously select

important variables and explore relationships between the response and predictor variables

in high dimensional nonparametric regression analysis. SPOT combines the advantages of

optimal transformations in producing the best-fitting additive models, and SICA penalty

functions in selecting the important variables. SPOT can also be used for response predic-

tion due to the monotone constraint on the response transformation. Numerical experiments

demonstrate that SPOT achieves better variable selection performance and higher predic-

tion accuracy. Therefore, it can serve as an effective tool in both variable selection and

exploratory regression analysis.

Both MC-SIS and SPOT are developed under the framework of optimal transforma-

tions. MC-SIS makes use of the maximum correlation which has an equivalent form by
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using optimal transformations in bivariate case. SPOT is a sparse and constrained version

of optimal transformations.

Many useful methodologies can be developed under the same framework of optimal

transformation besides the ones proposed for variable screening and selection. In the the-

sis, we also consider applying optimal transformations to develop novel methods for depen-

dence measures and nonlinear sufficient dimension reduction. In developing dependence

measures, we notice that using additional transformations besides optimal transformations

would provide more comprehensive understandings of dependence between the response

and predictor variables. The same strategy could be potentially applied to develop mean-

ingful tools for nonlinear sufficient dimension reduction.

Another interesting research direction is to consider shape constraints in optimal trans-

formations, where each transformation can be restricted to certain classes of functions, such

as monotone, concave/convex, linear/nonlinear, etc.



REFERENCES



113

REFERENCES

Akeike, H. (1973). Information theory and an extension of the maximum likelihood prin-

ciple. In Second International Symposium on Information Theory, pages 267–281.

Akademinai Kiado.

Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis. Wiley, New

York, NY, second edition.

Balakrishnan, S., Puniyani, K., and Lafferty, J. D. (2012). Sparse additive functional and

kernel cca. In Proceedings of the 29th International Conference on Machine Learning

(ICML-12), pages 911–918.

Bickel, P. J. and Xu, Y. (2009). Discussion of: Brownian distance covariance. The Annals

of Applied Statistics, 3(4):1266–1269.

Box, G. E. and Cox, D. R. (1964). An analysis of transformations. Journal of the Royal

Statistical Society. Series B (Methodological), pages 211–252.

Breiman, L. (1996). Heuristics of instability and stabilization in model selection. The

Annals of Statistics, pages 2350–2383.

Breiman, L. and Friedman, J. H. (1985). Estimating optimal transformations for

multiple-regression and correlation. Journal of the American Statistical Association,

80(391):580–598.

Bryc, W. and Dembo, A. (2005). On the maximum correlation coefficient. Theory of

Probability & Its Applications, 49(1):132–138.

Burman, P. (1991). Rates of convergence for the estimates of the optimal transformations

of variables. Annals of Statistics, 19(2):702–723.



114

Chen, C.-H. and Li, K.-C. (1998). Can sir be as popular as multiple linear regression?

Statistica Sinica, 8(2):289–316.

Chiappori, P.-A., Komunjer, I., and Kristensen, D. (2015). Nonparametric identification

and estimation of transformation models. Journal of Econometrics, 188(1):22–39.

De Boor, C. (2001). A practical guide to splines, revised edition, vol. 27 of applied mathe-

matical sciences.

Dembo, A., Kagan, A., and Shepp, L. A. (2001). Remarks on the maximum correlation

coefficient. Bernoulli, 7(2):343–350.

Efromovich, S. (2007). Conditional density estimation in a regression setting. The Annals

of Statistics, pages 2504–2535.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004). Least angle regression.

The Annals of statistics, 32(2):407–499.

Fan, J., Feng, Y., and Song, R. (2011). Nonparametric independence screening in sparse

ultra-high-dimensional additive models. Journal of the American Statistical Association,

106(494):544–557.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its

oracle properties. Journal of the American Statistical Association, 96(456):1348–1360.

Fan, J. and Lv, J. (2008). Sure independence screening for ultrahigh dimensional feature

space. Journal of the Royal Statistical Society, Series B, 70(5):849–911.

Fan, J., Ma, Y., and Dai, W. (2014). Nonparametric independence screening in sparse

ultra-high-dimensional varying coefficient models. Journal of the American Statistical

Association, 109(507):1270–1284.

Fan, J., Samworth, R., and Wu, Y. (2009). Ultrahigh dimensional feature selection: beyond

the linear model. The Journal of Machine Learning Research, 10:2013–2038.



115

Fan, J. and Song, R. (2010). Sure independence screening in generalized linear models

with np-dimensionality. Annals of Statistics, 38(6):3567–3604.

Fan, J., Yao, Q., and Tong, H. (1996). Estimation of conditional densities and sensitivity

measures in nonlinear dynamical systems. Biometrika, 83(1):189–206.

Fan, Y., James, G. M., and Radchenko, P. (2015). Functional additive regression. The

Annals of Statistics, 43(5):2296–2325.

Faouzi, E., Eddin, N., et al. (1999). Rates of convergence for spline estimates of additive

principal components. Journal of Multivariate Analysis, 68(1):120–137.

Frank, L. E. and Friedman, J. H. (1993). A statistical view of some chemometrics regres-

sion tools. Technometrics, 35(2):109–135.
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