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ABSTRACT 

Halfacre, John W. Ph.D., Purdue University, August 2016. Studies of Arctic 

Tropospheric Ozone Depletion Events Through Buoy-Borne Observations and 

Laboratory Studies. Major Professor: Paul Shepson. 

 

 

 The photochemically-induced destruction of ground-level Arctic ozone in the 

Arctic occurs at the onset of spring, in concert with polar sunrise.  Solar radiation is 

believed to stimulate a series of reactions that cause the production and release of molecular 

halogens from frozen, salty surfaces, though this mechanism is not yet well understood.  

The subsequent photolysis of molecular halogens produces reactive halogen atoms that 

remove ozone from the atmosphere in these so-called “Ozone Depletion Events” (ODEs).  

Given that much of the Arctic region is sunlit, meteorologically stable, and covered by 

saline ice and snow, it is expected that ODEs could be a phenomenon that occurs across 

the entire Arctic region.  Indeed, an ever-growing body of evidence from coastal sites 

indicates that Arctic air masses devoid of O3 most often pass over sea ice-covered regions 

before arriving at an observation site, suggesting ODE chemistry occurs upwind over the 

frozen Arctic Ocean.  However, outside of coastal observations, there exist very few long-

term observations from the Arctic Ocean from which quantitative assessments of basic 

ODE characteristics can be made. 

 This work presents the interpretation of ODEs through unique chemical and 

meteorological observations from several ice-tethered buoys deployed around the Arctic 
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Ocean.  These observations include detection of ozone, bromine monoxide, and 

measurements of temperature, relative humidity, atmospheric pressure, wind speed, and 

wind direction.  To assess whether the O-Buoys were observing locally based depletion 

chemistry or the transport of ozone-poor air masses, periods of ozone decay were 

interpreted based on current understanding of ozone depletion kinetics, which are believed 

to follow a pseudo-first order rate law.  In addition, the spatial extents of ODEs were 

estimated using air mass trajectory modeling to assess whether they are a localized or 

synoptic phenomenon.  Results indicate that current understanding of the responsible 

chemical mechanisms are lacking, ODEs are observed primarily due to air mass transport 

(even in the Arctic Ocean), or some combination of both.  Air mass trajectory modeling 

was also used in tandem with remote sensing observations of sea ice to determine the types 

of surfaces air masses were exposed to before arriving at O-Buoys.  The impact of surface 

exposure was subsequently compared with local meteorology to assess which variables had 

the most effect on O3 variability.  For two observation sites, the impact of local 

meteorology was significantly stronger than air mass history, while a third was 

inconclusive. 

 Finally, this work tests the viability of the hypothesis that initial production of 

molecular halogens from frozen saline surfaces results from photolytic production of the 

hydroxyl radical, and could be enhanced in the presence of O3.  This investigation was 

enabled by a custom frozen-walled flow reactor coupled with chemical ionization 

spectrometry.  It was found that hydroxyl radical could indeed promote the production and 

release of iodine, bromine, and chlorine, and that this production could be enhanced in the 

presence of ozone. 
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 INTRODUCTION 

1.1 Introduction 

The continuing increases in global average temperatures has affected no part of the 

earth more dramatically than the Arctic.  While the year 2015 was reported to be the hottest 

year in recorded history, with a global average surface temperature increase of 1.0oC since 

the late 19th century, temperatures in the Arctic region have increased 2.9oC over the same 

amount of time (Brown et al., 2016; Overland et al., 2015).  The direct consequences of a 

warming Arctic include drastic reductions in sea ice coverage and volume, which will lead 

to decreases in the albedo of the planet (Perovich and Polashenski, 2012), and shifts in 

Arctic wildlife ecosystems (Post et al., 2013).  Often less considered are the consequences 

for the unique chemistry that occurs between frozen surfaces and the Arctic atmosphere.  

In this thesis, I will briefly describe specifically the chemistry of ozone in the Arctic 

boundary layer, and new insights gained as a result of my Ph.D. work. 

 

1.2 Oxidation Chemistry within the Boundary Layer 

The lowest layer of the atmosphere is known as the troposphere (Figure 1.1).  

Extending vertically from the surface to ~11 km at midlatitudes (≤ 10% of the entire 

vertical scale of the atmosphere), the troposphere is characterized by decreasing 
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temperatures with height and contains close to 80% of the mass (~4.8 x 1018 kg), or ~90% 

of the molecules, of the atmosphere (Wallace and Hobbs, 2006).   

Figure 1.1 Vertical profile of earth’s atmosphere, showing temperature changes (x-axis) 

with respect to altitude (left y-axis) and pressure (right y-axis).  Layers are divided based 

on changes in the temperature gradient with height.  The lowest layer of the atmosphere, 

the troposphere, is outlined in red.  Figure repurposed from Seinfeld and Pandis (2012). 
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Virtually all known life exists in the lowest portion of the troposphere that serves 

as a boundary between the surface and the rest of the atmosphere: the so-called boundary 

layer (BL), seen in Figure 1.2.    

 

 

Figure 1.2 Visualization of the troposphere and the planetary BL. The height of the 

boundary layer, shown here as zi, varies throughout the day.  Figure taken from Wallace 

and Hobbs (2006). 

  

 

The BL is a dynamic system, constantly changing in height (from as low as 200 m to as 

high as 3 km) as a function of absorbance and emission of radiation from the earth’s surface.  

This heating also in part enables the movement of gases throughout the BL via advection 

and turbulence (Stull, 1988).  The vertical distribution of turbulent activity can be modeled 

in terms of eddy diffusivity (Kz), which parameterizes the diffusion rate in the boundary 
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layer.  One such model is shown by Figure 1.3, which shows how Kz varies with height 

above a homogeneous surface (Kumar and Sharan, 2012). 

  

 

 

 

It can be seen here that turbulent mixing increases with altitude until it reaches ~30% of 

the BL height, and then begins decreasing, converging at Kz ≈ 0 at the top of the boundary 

layer.    A “capping” temperature inversion forms at the top of the BL when rising air cools 

enough to become saturated with water vapor, leading to its condensation as clouds.  This 

Figure 1.3 Modeled relationship between normalized boundary-layer height (z/h) and 

normalized eddy diffusivity (Kz).  Here, h represents the height of the BL, while z 

represents altitude.  Kz is modeled here as function of the height at which production of 

turbulence from buoyancy begins to dominate that produced by wind shearing (i.e., 

Monin-Obukhov length, L).  Figure modified from Kumar and Sharan, (2012). 
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condensation releases latent heat at the top of the boundary layer.  When a relatively cooler 

(more dense) air mass meets the warm air mass (less dense) at this height, further vertical 

transport of air masses is inhibited (except for especially long-lived, stable compounds). 

This inversion limits turbulent mixing to the BL, which combined with the high 

concentration of molecules at the surface (2.46 x 1019 molecules cm-3 at 298 K) makes the 

chemistry within the BL more active than the rest of the troposphere (i.e., the free 

troposphere, or free atmosphere), which is only intermittently turbulent. 

Gaseous pollution released from the surface typically stays in the troposphere until 

it is either oxidized or permanently removed by depositing onto a surface.  Atmospheric 

oxidation chemistry is controlled by ozone (O3), which serves as the primary precursor to 

the atmosphere’s primary oxidant, hydroxyl radical (OH) (Thompson, 1992).  The 

hydroxyl radical can react favorably with volatile organic compounds (VOCs) via reactions 

analogous to R1.1 – R1.6: 

 

•OH + CO → CO2 + •H        R1.1 

•H + O2 → HO2•         R1.2 

•OH + RH → H2O + •R        R1.3 

•R + O2 → RO2•         R1.4 

RO2• + NO• → RO• + NO2        R1.5 

RO• + O2 → HO2• + R'CHO•        R1.6 
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 Though OH is a critical atmospheric cleansing agent, the oxidation capacity of the 

atmosphere is actually controlled by its primary precursor, ozone (O3) (Thompson, 1992), 

which forms OH via Reactions R1.7-R1.8.   

 

O3 + hν → •O(1D) + O2        R1.7 

•O(1D) + H2O → 2•OH        R1.8 

 

The scientific community is therefore interested in the processes that control ambient 

production and removal of O3.  Reactions R1.7-R1.8 are generally thought to dominate O3 

loss processes (~75%) at mid-latitudes and in the marine boundary layer (Horowitz et al., 

2003; Read et al., 2008).  Additionally, O3 itself is a potent oxidizer and can efficiently 

remove alkenes from the atmosphere.  Major sources of tropospheric O3 include the 

photolysis of NO2 and the periodic turbulent intrusion of stratospheric air, rich in O3 formed 

from the photolysis of oxygen (R1.9-R1.11) (Blacet, 1952; Chapman, 1930; Finlayson-

Pitts and Pitts, 2000). 

 

NO2 + hν (λ ≤ 420 nm) → NO + O(3P)     R1.9 

O2 + hν (λ ≤ 242 nm) → 2 O(3P)      R1.10 

O(3P) + O2 + M → O3        R1.11 

 

However, O3 can also react with NO to reproduce NO2 (R1.12), which essentially makes 

R1.9-R1.11 a null cycle: 
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NO• + O3 → NO2 + O2        R1.12 

 

Net O3 production from NO2 photolysis therefore only occurs when NO2 is formed by 

alternative processes, such as R1.5 or R1.13: 

 

HO2• + NO• → •OH + NO2        R1.13 

 

 The earliest measurements of surface-level O3 from the latter half of the 19th century 

at various locations across the world yielded O3 mole fractions peaking at 10 nmol mol-1 

(Volz and Kley, 1988).  Modern O3 mole fractions can range anywhere between 20-50 

nmol mol-1 in clean, remote air (Marenco et al., 1994), depending on location and time of 

year.  A time series of spring hourly O3 trends at the remote observatory in Mauna Loa, HI, 

is seen in Figure 1.4 (Ridley et al., 1992), while monthly average O3 in remote regions can 

be found in Figure 1.5 (Oltmans and Levy, 1994).  Finally, annual O3 average trends since  

(Cooper et al., 2014), and average hourly variations in remote regions can be seen in Figure 

1.6.   
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Figure 1.4 Hourly time series of O3 at Mauna Loa Observatory during May 1988.  Figure 

reproduced from Ridley et al (1992). 
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Figure 1.5 Whisker plots of O3 at various remote tropospheric sites in the northern 

hemisphere.  Central tendencies included are median (dot), mean (bar), inner 50th percentile 

(box), and inner 90th percentile (whiskers).  Figure reproduced from Oltmans and Levy 

(1994). 
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Figure 1.6 Annual trends in ozone at remote sites around the northern hemisphere.  

Figure taken from Cooper et al. (2014). 

 

 

While these O3 levels are not harmful to humans, O3 can begin to cause respiratory issues 

and plant damage at levels above 55 nmol mol-1 (Hewitt et al., 1990; Hubbell et al., 2005).  

High mole fractions of O3 are found most often in urban environments, and has even been 

detected in amounts exceeding 100 nmol mol-1 in Mexico City (Raga and Raga, 2000), and 

approaching 300 nmol mol-1 in Los Angeles, CA, during the 1970s (Parrish and Zhu, 2009).  

This increase in O3 levels can be attributed to increasing NOx (NOx = NO + NO2) levels, a 

perturbation largely resulting from growing anthropogenic use of fossil fuels (Chameides 

et al., 1992).   
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1.3 Arctic Ozone Depletion 

Because O3 can act as an atmospheric cleaning agent, a greenhouse gas, and a 

poison to humans, it is of great scientific interest to understand the processes that produce 

and remove tropospheric ozone (Mickley et al., 1999; Myhre et al., 2013).  Modern 

chemical models are largely able to simulate the major characteristics of the global 

distribution of O3 (sources / sink uncertainties ranging from 10-20%), though there remain 

discrepancies in simulating changes associated with emissions and changes in climate 

(Solomon et al., 2007).  It would then be expected that simulating O3 in remote, pristine 

regions (e.g., over oceans) could be done with relatively high accuracy in regions separated 

from pollution, where the chemistry is expected to be less complex, and O3 loss would be 

dominated by photolysis and water vapor. 

Until the 1980s, the above reasoning was extended to the polar regions, which are 

dry and far-removed from local sources of anthropogenic pollution.  Interest in studying 

the atmospheric chemistry of these regions piqued on the discovery of the depletion of 

stratospheric ozone over Antarctica (Farman et al., 1985).   This phenomenon is caused by 

the reaction of O3 with reactive chlorine atoms (R1.14), originating from the photolysis of 

long-lived chlorofluorocarbons (Molina and Rowland, 1974).   

 

Cl• + O3 → ClO• + O2       R1.14 

 

The Cl atom in the ClO produced in R1.14 can chemically recycle in a number of ways 

(both in the gas phase and heterogeneously on the surface of ice crystals), and subsequently 

catalytically destroy more O3.  The chemical mechanisms specific to stratospheric ozone 
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depletion are beyond the scope of this thesis, but the interested reader is referred to the 

excellent review by Solomon (1999). 

 Concurrent with investigations of the stratospheric ozone depletion, a mysterious 

brown “haze” was being studied in the Arctic troposphere during springtime.  It was 

learned that this haze is caused by light scattering off Eurasian pollutants (specifically 

sulfate aerosol) that travel to the Arctic during the dark winter months, enabled by cold 

temperatures, a stable boundary layer (i.e., temperatures increase with height, preventing 

vertical movement), and atmospheric circulation patterns (Barrie et al., 1981, 1989; Worthy 

et al., 1994).   

A serendipitous result of monitoring trace gases in the Arctic was the unexpected 

discovery that boundary-layer O3 episodically depletes from “clean,” background mole 

fractions of 40 nmol mol-1 to near zero for periods ranging from hours to weeks (Figure 

1.7).   

 

 

 

Figure 1.7 Representative time series of boundary-layer O3 behavior in the Arctic from 

Barrow, AK.  Figure reproduced from Oltmans et al (1989). 
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As illustrated by Figure 1.7, the gross variability in O3 mole fractions coincides with the 

onset of polar sunrise, and typically ceases in late May / early June.  It can be seen from 

Figure 1.5 that the change in O3 variability during these months at Barrow is considerably 

more dramatic than other at remote sites.  It was also noticed at Alert, NU, another high 

Arctic observation site, that the behavior of O3 during these periods was strongly 

anticorrelated with Br-species collected on filters, as seen in Figure 1.8 (Barrie et al., 1988).  

This suggests the possible involvement of reactive halogen species in a manner resembling 

stratospheric ozone depletion, described above.   

 

 

Figure 1.8 Comparison of daily mean ground level O3 and filterable Br concentrations at 

Alert, NU, Canada in April 1986. 
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The discovery of these Ozone Depletion Events (ODEs) inspired intensive scientific 

studies aimed at elucidating their fundamental characteristics, including the underlying 

chemistry, the corresponding kinetics, and their spatial extent (i.e., could they be an Arctic-

wide phenomenon?).  What follows is a brief summary of current knowledge regarding 

ODEs: 

When the sun rises in the Arctic spring, molecular halogens are believed to be produced 

within a quasi-brine layer (QBL) that exists on frozen, saline surfaces like snow (Cho et 

al., 2002; Pratt et al., 2013).  Once these halogens desorb and enter the boundary layer, 

they photolyze and react to remove boundary layer O3 via Reactions R1.15- 1.16 below, 

where X = Cl, Br, I: 

 

X2 + hν → 2 X•        R1.15 

X• + O3 → XO• + O2        R1.16 

 

BrO species was the first XO species unambiguously detected by differential optical 

absorption spectroscopy in the Arctic at Alert during the Polar Sunrise Experiment 1992 

(Hausmann and Platt, 1994).  XO species are photolabile and can reform O3 in a null cycle 

(R1.17, R1.11). 

 

XO• + hν → X• + O        R1.17 

 

Therefore, O3 is only truly destroyed when XO reacts with another species (e.g. YO, where 

Y = Cl, Br, or I; or HO2), and not reform O3. Ozone-destruction therefore is propagated by 
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the regeneration of reactive halogen species.   In the gas phase, R1.18 has traditionally been 

believed to be the rate limiting step in O3 destruction when atmospheric concentrations of 

XO/YO are high, while R1.19 occurs when they are lower (Hausmann and Platt, 1994; Le 

Bras and Platt, 1995; Piot and von Glasow, 2008). 

 

XO• + YO• → X• + Y• + O2       R1.18a 

XO• + YO• → XY + O2       R1.18b 

XO• + HO2• → HOX + O2       R1.19 

 

Reaction R1.18a directly reproduces reactive halogen radicals that can continue depleting 

additional O3, while the XY and the HOX produced by R1.18b and R1.19 must first 

undergo photolysis (R1.15, R1.20).   

 

HOX• + hν → X• + •OH       R1.20 

 

In addition, the nitrogen oxides NO and NO2 (NOx) have been detected in ambient 

Arctic air at levels between 10 and 100 pmol mol-1 (Honrath et al., 2002; Ridley et al., 

2000), with its primary source originating from photochemistry within the Arctic snowpack 

(Beine et al., 2002; Honrath et al., 1999; Ridley and Orlando, 2003).  The reaction of NO 

with XO can reproduce X, while NO2 reacts with XO to produce XONO2 (R1.21-R1.24) 

(Cao et al., 2014; Evans et al., 2003; Morin et al., 2007, 2012).  XONO2 is soluble and can 

enter the QBL of snow surfaces or the aqueous phase on sea salt aerosol (Bartels-Rausch 

et al., 2014; Koop et al., 2000). 
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XO• + NO• → X• + •NO2       R1.21 

XO• + •NO2 → XONO2       R1.22 

XONO2(g) → XONO2(aq)       R1.23 

XONO2(aq)
 + H2O → HOX + HNO3      R1.24 

 

The production of HOX (R1.19 and R1.24) is also the first step in an autocatalytic 

reaction sequence known generally as the “halogen explosion,” which is believed to be 

responsible for the exponential buildup of halogen concentrations at high enough levels to 

enable the efficient destruction of O3 (Fan and Jacob, 1992; Pratt et al., 2013; Tang and 

McConnell, 1996; Vogt et al., 1996; Wennberg, 1999a; Wren et al., 2013).    

 

HOX(g) → HOX(aq)        (R1.25) 

HOX(aq) + Y- + H+ → XY(aq) + H2O      (R1.26) 

XY(aq) → XY(g)        (R1.27) 

 

Per R1.25-R1.26, HOX diffuses into the QBL that exists on frozen surfaces and reacts with 

halides to produce dihalogen species.  The dihalogens return to the gas phase (R1.27), 

photolyze (R1.15), and react with O3 (R1.16), after which the sequence can reinitialize 

until some required reagent depletes.  A recent modeling study by Thompson et al. (2016) 

found that most bromine atoms are generated through Br2 photolysis rather than directly 

from other reservoirs (i.e., R1.18a, R1.20, R1.21), because XO termination is very effective 

(Thompson et al., 2016).  This suggests, therefore, that the rate limiting steps in O3 
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depletion are actually those steps that produce X2 or XY, such as Reactions R1.18 and R 

1.26. 

While Cl-, Br-, and I-related species are all involved with O3-depletion chemistry 

to some degree (Thompson et al., 2015), it has been traditionally expected that Br-species 

are the most relevant based on relative abundances and kinetic favorability for reactions 

with O3 over hydrocarbons.  While Cl atoms react most favorably with O3 (typical 

conversion time of ~0.1 sec) relative to Br or I (typical conversion time of ~1 sec), the 

relatively low concentrations ([Cl] has been estimated to range from 4.8 x 104 to 1.7 x 105 

molecules cm-3 (Keil and Shepson, 2006)) and slow photolysis rate of Cl2 (typical spring 

lifetime of ~8 min, while Br2 lifetime is ~20 seconds (Thompson et al., 2015)), combined 

with the high reactivity of Cl toward the large abundance of tropospheric hydrocarbons 

mitigates its role in ODEs (Simpson et al., 2007b).  For example, at a typical Arctic 

springtime [Br]/[Cl] ratio of 550 (Keil and Shepson, 2006), the X=Br version of R1.16 still 

proceeds at a rate ~33 times faster than that for the Cl reaction (Thompson et al., 2015).   

In addition, even though Cl2 has recently been observed at mole fractions briefly peaking 

above 400 pmol mol-1, it was still only estimated to account for as much as 21% of the 

observed O3 depletion in that study (Liao et al., 2014).  Until recently, most evidence for 

the presence of reactive I-species in the Arctic was based on the springtime peaks in 

filterable iodine measurements (Sturges and Barrie, 1988), total gaseous iodine (Martinez 

et al., 1999), and active differential optical absorption spectroscopy observations of IO at 

levels peaking at 1 pmol mol-1 (Zielcke, 2015).  Most model studies testing our 

understanding of ODE chemistry have thus been designed considering R1.14-R1.20 in 

terms of Br and Cl-based chemistry.  In these cases, O3 is expected to deplete from  
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background levels to near zero on a timescale on the order of days  (e.g., Cao et al., 2014; 

Hausmann and Platt, 1994) as illustrated by Figure 1.9.  In fact, the disappearance of O3 

within an air mass is usually observed on timescales much faster than 24-hours (Halfacre 

et al., 2014), which would require the co-observation of >30 pmol mol-1 of BrO on average 

throughout an ODE if it is Reaction R1.16 that limits the chemical rate of O3 depletion 

(discussed in greater detail within Chapter 3).  While the largest recorded surface BrO mole 

fraction is 41 pmol mol-1 (Pöhler et al., 2010), BrO levels rarely rises above 30 pmol mol-

1 for extended periods of time.  When bromine chemistry cannot account for the observed 

rate of O3 depletion, the apparent O3 depletion is generally attributed to the transport of an 

Figure 1.9 Example model time series simulation of ODEs considering only bromine-

based mechanisms.  In this particular simulation, the bromine compounds originate from 

aerosol or snowpacks, and are shown to deplete 40 nmol mol-1 (ppb) of O3 to 0 nmol  

mol-1 over the course of 7 days.  Figure taken from Cao et al. (2014) 
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already O3-devoid air mass that chemically depleted upwind.  Alert, NU, Canada is an 

example of where this behavior is believed to occur often.   

In 1992, a major effort was made to study ODEs during the Polar Sunrise 

Experiment (PSE) campaign that occurred near Alert (Barrie et al., 1994c).  A map of this 

area can be seen in Figure 1.10.  The surrounding terrain is described as steeply rolling 

with frequent deep ravines and high cliffs.  The observation site (labeled BAPMoN in 

Figure 1.10) is located on a plateau approximately 200 m above sea level. Hopper and Hart 

(1994) report that meteorological measurements in this area are difficult because they are 

significantly affected by the surrounding topography.  The prevailing winds are channeled 

from the surrounding mountains, resulting in predominately southerly winds.  However, 

when winds originated from the north or east (i.e., air that had traveled over the ocean), 

Hausmann and Platt (1994) noted ODEs and increases in BrO (time series in Figure 1.11). 
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They also noted rapid changes in O3 concentrations, corresponding to 1.5 nmol mol-1 hr-1 

to 40 nmol mol-1 hr-1.  In both cases, O3 can deplete from an upper limit of 35 nmol mol-1 

to near zero in less than 24 hours.  Hausmann and Platt (1994) subsequently calculated the 

relationships between the lifetime of O3 and the corresponding BrO required to achieve 

Figure 1.11 Relationship between O3 and BrO during the Polar Sunrise Experiment 1992.  

Top – time series between O3, BrO, and filterable bromine.  Bottom – relationship 

between the lifetime of O3 and the [BrO] required to obtain this lifetime. Figure adapted 

from Hausmann and Platt (1994).  
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this Figure 1.11, bottom).  If the typical amounts of BrO observed at Alert are considered 

in this respect (1 x 108 – 5 x 108 cm-3), the corresponding O3 lifetimes range between 180 

days (if R1.19 is limiting) and 7 days (when R1.18 is limiting).  In addition, analyzed 

periods of O3 depletion were observed under low wind speeds (< 5 m/s), suggesting a stable 

boundary layer.  A scenario is then developed by which O3 completely depletes within an 

airmass upwind over the Arctic Ocean, and the rate of observed O3 depletion is a function 

of the spatial extent of the transition range between background O3 (at the edge of an air 

mass) and depleted O3. 

Similarly, a scenario of meteorologically induced O3 recovery was clearly observed 

by Morin et al. (2005), which observed sudden variations in O3 levels were accompanied 

by similar changes in wind speed and direction, water vapor, concentrations, temperature, 

and BrO mole fractions (Figure 1.12). 
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As very few studies have actually claimed to have observed local scale chemical 

ODEs (Boudries and Bottenheim, 2000; Jacobi et al., 2006), a question is then raised of 

where the ODE chemistry is occurring.  Given that the Arctic Ocean is generally covered 

by frozen saline surfaces during the Arctic spring, it is reasonable to hypothesize that large 

amounts of halogens could be produced from its surface.  Utilizing air mass trajectory 

Figure 1.12 Time series measurements of (top) wind speed, wind direction, (middle) 

water mole fractions, snowpack and ambient temperature, and (bottom) O3 and BrO mole 

fractions.  Period (P) 1 shows a period of depleted O3 and elevated BrO.  In P2, a sudden 

shift is noted across all variables, indicative of the transport of an air mass with strikingly 

different composition from that in P1.  In P3, variables return to resembling P1. OOTI 

represents ice-based observations 5 km off the coast of Alert, NU, while SST represents 

coastal observations from Alert.  Figure taken from Morin et al. (2005). 
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modeling methods (discussed further in Chapters 3 and 4), Simpson et al. (2007a) found 

that during periods of enhanced BrO, air masses often passed over Arctic Ocean sea ice 

before arriving at observation sites (Figure 1.13, left).  Similarly, Bottenheim and Chan 

(2006) found that air masses with low amounts of O3  

 

 

 

originate predominantly from over the Arctic Ocean before arriving at the coastal 

observatories used in their study (Figure 1.13, right).  

Finally, additional evidence of ODE chemistry occurring over the Arctic Ocean 

comes in the form of satellite-borne observations of BrO, which have been shown to be 

Figure 1.13 Example back trajectory during a high BrO event.  Trajectory starts in 

Barrow, AK, and travels backward in time over first year ice, and subsequently multi-

year ice.  Right – Aggregation of 10 years of back trajectories from Barrow, AK, 

according to O3 mole fractions.  Cooler colors represent lower O3 mole fractions.  Figure 

adapted from Simpson et al. (2007a) and Bottenheim and Chan (2006). 
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particularly enhanced over the frozen ocean (Begoin et al., 2010; Richter et al., 1998) 

(Figure 1.14).  However, deriving surface information concerning BrO from these total 

column observations is still the subject of ongoing research (Choi et al., 2012; Salawitch 

et al., 2010; Theys et al., 2009, 2011). 

 

 

 

 

The majority of in situ O3 and halogen observations come from coastal sites around 

the Arctic, such as Barrow, Alert, and Zeppelin Station (Svalbard), which all have year 

Figure 1.14 The Global Ozone Monitoring Experiment (GOME) satellite observations of 

BrO.  As can be seen, enhanced regions of BrO include the Arctic Ocean and the Canadian 

archipelago.  Figure adapted from Richter et al. (1998). 
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round O3 monitoring stations as a part of the World Meteorological Organization’s Global 

Atmospheric Watch (GAW) program (Schultz et al., 2015).   For reasons of logistics, safety 

and cost, long-term studies of O3 over the Arctic Ocean are difficult.  The only long-term 

study of O3 above the Arctic Ocean occurred from the drifting schooner, TARA (Figure 

1.15) (Bottenheim et al., 2009).  

 

 

 

 

Bottenheim et al. (2009) observed essentially sustained O3 depletion above 80o N during 

March – May 2007 (Figure 1.16), but lacked other chemical information (i.e., BrO) 

necessary to interpret the chemistry.  Long-term studies from the Arctic Ocean surface are 

Figure 1.15 Photograph of the drifting schooner TARA (left) and its drift track (right) 

during its 2007 expedition.  Photograph of TARA reproduced from 

oceans.taraexpeditions.org/, drift track reproduced from Bottenheim et al. (2009). 
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necessary, though, if the community is to obtain a full understanding of O3 chemistry in the 

Arctic.  Most recently, Knepp et al (2010) described the construction of a buoy-based 

observatories.  These “O-Buoys” were built to observe O3, BrO, CO2, and a suite of 

meteorological variables.  Since the construction of this first buoy, a total of 19 buoy 

deployments have occurred across the Arctic Ocean for the purpose of observing in situ O3 

depletion events in order to better understand the chemistry, the corresponding kinetics, 

and to produce data that can be used to test our understanding of these properties using 

models.   

Figure 1.16 Time series measurements of O3 obtained from (top) TARA (the Arctic 

Ocean), Zeppelin Station, Barrow, and Alert (bottom).  Relative to the coastal sites in the 

lower panels, O3 observed by TARA is effectively completely depleted from mid-March 

until late May.  Figure obtained from Bottenheim et al. (2009). 
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There also exists the possibility that more ODEs have been observed locally at 

coastal sites, but the community does not fully understand the chemistry enough to explain 

the kinetics.  As mentioned above, the majority of field and model studies to date consider 

Br- and Cl-containing compounds while discounting I-species due to a lack of observations 

above limits of detection.  However, during a recent field campaign by our research group, 

Raso et al. (2016) detected I2 within snowpack interstitial air at peak mole fractions of ~5 

pmol mol-1 under natural illumination.  Using a peak Br2 value of 250 pmol mol-1, Raso et 

al (2016) used a 0-D model to assess that this small amount of I2 can account for almost 

10% of the total simulated O3 depletion, consistent with previous model studies (Calvert 

and Lindberg, 2004; Thompson et al., 2015).  Further, Thompson et al. (2015) found in 

their 0-D model, constrained to real-world observations from Barrow, AK, in Spring 2009, 

that adding an artificial 0.2 pmol mol-1 of I2 could supplement Br-species to reduce O3-

depletion timescales to around 8 hours.  However, more field observations of I2 and the 

full dissemination of O-Buoy observations through analysis and modelling are required to 

understand the role of iodine species in ODEs.   

One additional outstanding question related to ODE chemistry concerns what 

physical environments (i.e., snowpacks, aerosols) halogen species are initially produced at 

polar sunrise to deplete O3 via R1.15-R1.27.  As seen in Figure 1.17, ODEs are typically 

only observed within the lowest few hundred meters of the troposphere  
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(Bottenheim et al., 2002b; Oltmans et al., 2012), leading researchers to believe that the 

corresponding halogen chemistry was similarly located.  Indeed, Tackett et al. (2007) found 

Figure 1.17 Time series of sonde-based vertical profiles of O3 in Barrow, AK, during 

Spring of 2009.  Bottom: Surface-based time series of O3. Figure adapted from Oltmans et 

al. (2012). 
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from balloon-based measurements of oxygenated hydrocarbons that halogen chemistry 

was most active within the lowest 100-200 m of the atmosphere, concluding that halogens 

are likely emitted from snowpacks.  While Br2 and BrCl had been observed within 

snowpacks previously (Foster et al., 2001; Spicer et al., 2002), recent field studies from 

our group have used chemical ionization mass spectrometry (CIMS) to detect Br2 (Pratt et 

al., 2013), Cl2 (Custard et al., 2016) and I2 (Raso et al., 2016) within the interstitial air of 

acidic, surface snowpacks around Barrow, AK.  The halogen behavior within the snowpack 

as observed by these CIMS-based studies is consistent: when light is introduced to acidic 

snowpacks, molecular halogen production is observed.  Seemingly contrary to some 

laboratory studies (e.g., Oldridge and Abbatt, 2011; Oum et al., 1998a; Wren et al., 2013), 

addition of O3 without light caused no significant halogen production, but enhanced 

halogen production when light was present.  These researchers suggested a photochemical 

mechanism by which condensed-phase OH, photochemically formed from either nitrite or 

hydrogen peroxide (France et al., 2012), oxidizes halides to molecular halogens.  These 

halogens can then exit the snowpack and enter the atmosphere through a combination of 

diffusion and wind-pumping, as originally proposed by a previous model study 

(Michalowski et al., 2000).  However, these researchers could not prove that this 

mechanism was operative, and thus this mechanism requires explicit testing. 

 

1.4 Research Objectives 

In this thesis, I will discuss my efforts to improve our understanding of fundamental 

Arctic O3 chemistry through buoy-based (Chapters 2-4) and laboratory-based observations 

(Chapter 5).  Specifically, the following broad scientific questions were addressed: 
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1) Do long-term, ocean based O3 and BrO observations behave as would be 

expected from numerous attempts to model ODE chemistry (Chapter 3)? 

2) What are the spatial extents of ODEs across the Arctic (Chapter 3)? 

3) Can variability in O3 levels be statistically explained by the types of surfaces 

(e.g., first year ice, multi-year ice, snow covered, open water, etc) over 

which an air mass traversed before arriving at the observation site (Chapter 

4)?    

4) Can condensed phase OH-radicals induce production of molecular halogens 

from halides present in the QBL found on frozen saline acidic surfaces 

(Chapter 5)? 

The investigations of Questions 1-3 were only made possible by the (to-date) 19 

deployments of O-Buoys, the design of which has been modified and improved since first 

described by Knepp et al. (2010).  These changes are described in Chapter 2.  Questions 1 

and 2 are approached in Chapter 3 using a combination of O-Buoy observations, basic first-

order kinetic relationships, and the air mass trajectory model, HYSPLIT.  These results are 

expanded on in Chapter 4, where HYSPLIT is used to assess ODE air mass history and its 

trajectory over sea ice and snow before arriving at the O-Buoy.  Finally, a custom-

fabricated, ice-coated wall flow tube was used in tandem with CIMS to confirm whether 

the photochemical, OH-initiated production mechanisms for Cl2, Br2, and I2, proposed by 

Pratt et al. (2013), Custard et al. (2016), and Raso et al. (2016) are plausible (Chapter 5). 
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  BUOY-BASED ARCTIC OCEAN OBSERVATIONS OF OZONE: THE 

O-BUOY PROJECT 

2.1 Introduction 

Since the discovery of Arctic tropospheric ozone depletion events (ODEs) in the mid-

1980s, there has been great scientific effort toward fully understanding the complex 

chemistry and physical conditions that promote this phenomenon, discussed in more detail 

in Chapter 1.  Crucial to this endeavor are field observations under a variety of conditions.  

The majority of such observations have been based at coastal sites during intensive Arctic 

campaigns, such as ALERT2000 (Bottenheim et al., 2002a), Ocean Air Sea Ice Snowpack 

Study (OASIS; http://www.oasishome.net/), or the BRomine, Ozone, and Mercury 

EXperiment (BROMEX; Nghiem et al., 2013).  Though these campaigns have been able 

to produce the most complete set of relevant observations yet, including O3, meteorology, 

and a large number of the halogenated compounds relevant to ODEs, a growing body 

evidence suggests that halogen activity and air masses devoid of O3 originate over the 

Arctic Ocean (Bottenheim et al., 2009; Bottenheim and Chan, 2006; Gilman et al., 2010; 

Jacobi et al., 2006; Richter et al., 1998; Simpson et al., 2007a).  Attempts to study O3 

behavior over the ocean have been conducted on ice floes (e.g., Hopper et al., 1994, 1998; 

Moore et al., 2014), by aircraft (e.g., Jaeschke et al., 1999; Koo et al., 2012; Leaitch et al., 

1994; Neuman et al., 2010; Ridley et al., 2003; Seabrook et al., 2013; Sheridan et al., 1993), 
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and by ship (e.g., Bottenheim et al., 2009; Gilman et al., 2010; Jacobi et al., 2006; Nghiem 

et al., 2012a; Pöhler et al., 2010; Seabrook et al., 2011).  However, few of these Arctic 

Ocean studies yielded the long-term data required for seasonal analyses of O3.    

Recently, a sea-ice tethered buoy-based observatory was developed to overcome 

the logistical obstacles required for long-term trace gas trace measurements over the Arctic 

Ocean (Knepp et al., 2010).  These “O-Buoys” were designed for the purpose of observing 

ODEs from the sea ice surface by detecting O3, BrO (chemical indicative of active ODE 

chemistry; see R2.1, and Chapter 1), and various meteorological parameters, including 

temperature, wind speed, wind direction, relative humidity, and atmospheric pressure 

(Figure 2.1).   

 

O3 + Br → BrO + O2         R2.1 

 

The buoys then transmit this data hourly via Iridium communications to a data repository 

where it undergoes preliminary processing and can be viewed by the O-Buoy team 

scientists.  Since the testing of the first O-Buoy in Elson Lagoon, Barrow, AK, in 2009, a 

total of 19 different deployments have occurred between 2009 and 2015 at various regions 

across the Arctic Ocean.  The O-Buoy design is largely the same as when first described 

by Knepp et al. (2010) and Knepp (2010).  Below, I provide a brief description of the O-

Buoy instruments and components, and summarize deployment performances.  Although 

the O-Buoy also features a carbon dioxide sensor, these data will not be discussed herein, 

though the interested reader is referred to Knepp (2010).  
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2.2 Design 

Figure 2.2 shows a schematic of the O-Buoy hull, which contains critical buoy 

instrumentation.  The hull is a water-tight, 2.4 m long, 0.3 m diameter cylinder constructed 

from 1/4'' aluminum by the United States Army Corps of Engineers Cold Regions Research 

and Engineering Laboratory (CRREL).  Once deployed, the hull is surrounded by a 

combination of sea ice and the underlying sea water in order to provide a stable, low power-

cost, temperature-controlled environment for the components within (i.e., ~ -1.8 oC, which 

is a typical temperature of sea water beneath sea ice).  These components include three 

lithium battery backs, Iridium communications equipment, two carbon dioxide calibration 

cylinders, a data logger (Campbell Scientific Instruments CR1000), power controller, O3 

sensor (Sect. 2.2.1), carbon dioxide sensor (customized LI-COR 820 IR), and a Multi-AXis 

Figure 2.1 Left – photograph of lifted O-Buoy.  Middle – photograph of deployed O-

Buoy.  Note that the hull of the buoy is installed within the sea ice in order to maintain 

effectively constant temperatures for the instruments.  Right – close up of O-Buoy mast 

attachments as of 2015.   All photographs are representative of the O-Buoy design as of 

2015. 
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Differential Optical Absorption Spectrometer (Sect. 2.2.2).  Buoy operation is governed by 

a “Supervisory Computer” (SC; Technologic Systems TS-7260 Single Board Computer).  

The SC responds to user commands sent via Iridium communications or direct connections 

via the RS232 port on the O-Buoy mast.  With minor exceptions (described in Section 2.3), 

the SC still operates as described by Knepp (2010).  
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Figure 2.2 Schematic drawing of the aluminum O-Buoy hull (left) and instrument tray 

(right).  Instrument tray reflects actual instrument placement within the hull.  Figure 

modified from Knepp (2010). 



37 

 

Installed above the instrument hull is a 2 m tall mast, also machined by CRREL 

(photograph in Figure 2.1, schematic in Figure 2.3).   

 

 

Figure 2.3 Schematic drawings of the O-Buoy mast and the collar connecting the mast 

with the hull.  Figure adapted from Knepp (2010), reflecting the updated orientation of 

the MAX-DOAS scanning telescope (labeled as “DOAS” in the figure). 
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The mast arms hold the inlets for the O3 and carbon dioxide sensors, the Iridium antenna 

by which communications phoned “home,” the global positioning system (GPS), and the 

meteorological sensors (Sect. 2.2.3).  Also mounted on the mast are a camera, an RS232 

connector for direct computer communications, an “on” switch, and the MAX-DOAS 

scanhead/telescope unit.  Electrical connections between the mast attachments and the hull 

components were made using Amphenol Class E Environmental connectors, interfaced at 

the bulkhead between the mast and the hull. 

In total, the dimensions of a fully assembled O-Buoy are 4.2 m tall, 1.1 m wide, 

and a total mass of 474 kg (O-Buoys 1-4), heavier than the 280 kg model (O-Buoy 1) first 

reported by Knepp et al. (2010).  However, summertime camera imagery received from the 

first two ocean-based deployments of O-Buoys (deployed during the previous Fall) 

apparently showed the buoys tip over once enough ice had melted (Figure 2.4).   

 

Figure 2.4 Camera images received from O-Buoy1 (left) and O-Buoy2 (right) during the 

summer melt.  Images indicate the buoys were tipping over shortly before losing all 

communication.   
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This problem was corrected by installing a 90 kg counter-weight (Figure 2.5) to the bottom 

of the instrument hull immediately before deployments, increasing the total mass of the 

buoy to 564 kg (O-Buoy5 – O-Buoy15).  This container is ~0.5 m in length, thus increasing 

the length of the buoy to 4.7 m. 

  

 

The buoy is also able to float in open water if the surrounding ice melts because of a yellow 

flotation collar (Gillman Corporation Type 1000) which is rated at 671 kg of buoyancy.  It 

holds four, rechargeable lead-acid batteries (Concorde AGM) that are connected to, and 

subsequently charged by, four solar panels (SunWize SW-S85P) that surround the lower 

portion of the mast (see Figure 2.1).  

Figure 2.5 Counter-weight is an aluminum container filled with lead shot, acting as a 

ballast.  Left- ballast is connecting to the bottom of the O-Buoy hull with threaded rod 

and secured into place with the winged bar.  Right – Photograph of the ballast attached 

to the bottom of the O-Buoy hull. 
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2.2.1 Ozone Instrument 

Ozone was quantified using customized 2B Technologies model 205 dual-beam O3 

monitors.  These instruments operate on the principle of ultraviolet light absorption 

according to the Beer-Lambert Law (Equation 2.1).  

 

𝐴 =  − ln (
𝐼

𝐼0
) =  𝜎 ∗ 𝑁 ∗ 𝑏        E2.1 

 

A corresponds to absorbance, I0 is the intensity of incoming light into an absorbing 

molecule, and I is the intensity of light transmitted through the absorber.  Additionally, σ 

is the absorption cross section (effective area seen by incoming photons), N is the number 

density of absorbers (molecules cm-3), and b is the effective path length.  In the 2B 

instrument, a low-pressure mercury lamp emits photons at 254 nm, corresponding to the 

 

Figure 2.6 Absorption cross sections of ozone at 298K.  Figure reproduced from Molina 

and Molina (1986).  
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 wavelength of maximum absorption for O3 (Figure 2.6).  At this wavelength, O3 has an 

absorption cross section of 1.2 x 10-17 cm2 molecule-1 at 263 K (Molina and Molina, 1986).    

The major sources of chemical interference from this method comes from other 

molecules that absorb significantly at this wavelength.  This includes primarily 

polyaromatic hydrocarbons (PAHs) and mercury.  PAHs have been found in ice core and 

surface snow samples on the Greenland ice cap in amounts consistent with the historical 

record of petroleum production (Ma et al., 2013).  Indeed, ambient concentrations of PAHs 

are the result primarily of fossil fuel combustion and biomass burning (Jia and Batterman, 

2010).  The smallest and most volatile PAH (and therefore likely to be found in the Arctic 

atmosphere) is naphthalene (C10H8).  At λ = 254 nm, naphthalene has an absorption cross 

section of 1.1 x 10-17 cm2 molecule-1 (Grosch et al., 2015), almost identical to that of O3.  

However, ambient concentrations of naphthalene over the Arctic Ocean are considerably 

lower than that of O3 (average – 3400 pg m-3 (Ma et al., 2013), corresponding to 0.6 pmol 

mol-1, and results in a 0.06% interference if O3 was found at 10 nmol mol-1).  If instead 

napthalene was considered at concentrations found in urban environments (e.g., 11 μg m-3 

outside of a south China landfill (Jia and Batterman, 2010)), ambient naphthalene would 

then result in an interference of an additional 2.1 nmol mol-1 to the reported O3 value (20% 

interference if O3 were found at 10 nmol mol-1).  Given that the O-Buoys are deployed in 

remote sites over the Arctic Ocean, it is expected this interference is negligible.  

Additionally, gaseous elemental mercury (GEM) has an absorption cross section 3 orders 

of magnitude greater than that of O3 at 254 nm (2.4 x 10-14 cm2 atom-1 (Faïn et al., 2010)) 

and is known to undergo depletion chemistry analogously to O3 in the Arctic (e.g., Steffen 

et al., 2008, 2014).  Again, Arctic ambient levels of GEM at Barrow, AK, (~1.8 ng m-3, or 
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about 0.2 pmol mol-1) are considerably lower than O3
 (ranging from < 1-40 nmol mol-1).  If 

we again consider an ambient O3 level of 10 nmol mol-1, the quotient of (σHg * NHg) / (σO3 

* NO3) is equal to 4.4%.  This indicates that GEM, under typical Arctic conditions would 

only significantly contribute to observed O3 levels as O3 approaches near zero levels, 

similarly to naphthalene. 

Instrumental flow schematics can be seen in Figure 2.7 (relevant to O-Buoys 1-4), 

and Figure 2.8 (relevant to O-Buoys 5-15), with the only difference being the presence of 

a latching valve in the earlier models.  Ozone is quantified based on the attenuation of light 

 

 

Figure 2.7 O-Buoy ozone sensor flow schematic representative of those used in O-

Buoys 1-4. 

 

Intake 
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(I/I0) through two 15-cm (b) long absorption cells.  Transmitted light is measured by 

photodiodes that have been outfitted with interference filters centered at 254 nm.   

 The flow rate through a new 2B 205 instrument is generally around 2 L min-1, 

though gradually falls over the course of the pump’s lifetime (ranging between 6 months 

to 10 months in Arctic conditions).  Sample air is split such that air travels through both a 

pathway that scrubs the sample of O3 (thereby acting as a reference sample, I0) and a 

pathway that does not (I).  The role of the two cells, acting to measure I or I0, is switched 

every two seconds by solenoid valves.  In the first second after the solenoid switch, the 

cells are flushed with new sample air.  After this, a one second measurement is made for 

each cell before the solenoids switch again.  This method is largely flow rate independent 

as long as the flow rate is great enough to flush the cell before the measurement is taken 

Figure 2.8 O-Buoy ozone sensor flow schematic representative of those used in O-Buoys 

5-15. The primary difference between this schematic in that of Figure 2.8 is the removal 

of the latching valve. 

 

 

Intake 
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(Figure 2.9).  In practice, this minimum flow rate was found to be approximately 500 mL 

min-1.  It should be noted that while the 2B 205 instruments include their own digital 

flowmeters, the reported flow rates were found to differ from those measured by bubble 

meters or calibrated mass flow controllers. Therefore, the 2B-reported flow rates can only 

be used for qualitative purposes and assessing pump and instrument health. 

 Once I/I0 is generated by the photodiodes, the 2B microprocessor solves Equation 

2.1 for number density of O3 (N, molecules cm-3), and subsequently converts it into a mole 

fraction (nmol mol-1) using the measured cell temperature and pressure.   

 

 

 

 

Figure 2.9 Demonstration of the effect of flow rate on 2B 205 O3 data.  In this test, an O-

Buoy 2B 205 ozone monitor sampled from a calibrated 2B 306 ozone calibrator set to 

output 30 nmol mol-1 of O3.  Flow through the 2B 205 instrument was controlled 

accurately by installing a calibrated mass flow controller between the instrument pump 

and the detection cell (see Figures 2.8 and 2.9). 
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Customizations from the commercially available instruments include one backup 

pump, an additional O3 scrubber for the scrubbed path, a lamp heater, and modified 

firmware to control the instrument remotely.  The O3 instrument response did not display 

any statistically significant temperature-dependence during pre-deployment O3 

calibrations (performed using a 2B 306 Ozone Calibration Source) as long as the cell 

temperature of the instrument was stable (Figure 2.10), consistent with previous findings 

(Knepp, 2010).  Cell temperature stabilization generally occurs 20-30 minutes after a cold-

startup, and the first 30 minutes of O3 data during these warm-up periods were excluded 

from data analysis.  

Figure 2.10 Sample laboratory calibration curves for an individual 2B held at room 

temperature (top) and at -15 oC.  Standard deviations from calibration point averages (N= 

10 for each concentration) range from 0.6 – 1.3 nmol mol-1.  Comparable results were 

obtained for the other two instruments. 
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The instrument has a manufacturer specified limit of detection of 1 nmol mol-1, and 

individual measurement uncertainty was calculated to range from 2.1 – 3.5 nmol mol-1.  

Blank measurements are performed everyday.  In this mode, the first solenoid the sample 

contacts in the flow path is activated, sending the entirety of the sample through an ozone 

scrubber (Figure 2.7 and 2.8).  In this way, the overall measurement variance can be 

estimated.  This uncertainty was calculated as a sum of the averages of daily blanks from 

deployed instruments (average of 2.1 nmol mol-1 across all deployments) and the relative 

standard error of the slopes, sm (Equations 2.2-2.5) of laboratory, pre-deployment 

calibration curves across instruments (average slope of 1.0 (± 1.8%) across all 

deployments).  Therefore, the uncertainty in a given O3 measurement based on the 2B itself 

is 1.8% * [O3] + 2.1 nmol mol-1. 

 

𝑆𝑥𝑥 =  ∑(𝑥𝑖 − �̅�)2         E2.2 

𝑆𝑦𝑦 =  ∑(𝑦𝑖 − �̅�)2         E2.3 

𝑠𝑟 =  √𝑆𝑦𝑦−𝑚2𝑆𝑥𝑥

𝑁−2
          E2.4 

𝑠𝑚 =  √
𝑠𝑟

2

𝑆𝑥𝑥
           E2.5 

 

Sxx and Syy are the squared sums of residuals, m represents the slope of the calibration curve, 

and N represents the number of points that make the calibration curve.  Additional 

uncertainty is introduced by the O3 intake filter holder installed on the O-Buoy mast, 

approximately 1.5 m above its base (Figure 2.11).  The filter holder has been improved 

from the design of Knepp (2010) by maximizing the sample’s contact time with Teflon and 
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minimizing its contact time with metal.   Two stainless steel clamps hold together a Teflon 

cup on which a Teflon filter (90 mm, PTFE, ZITEX) rests, thereby maintaining the 

durability of the original design, minimizing sample air contact with metal, and 

maximizing contact time with Teflon (inert to O3).  Using a Teflon chamber continuously 

filled with constant O3, it was found that air sampled through this filter holder results in an 

overall measurement percent error of -2.8 ± 0.8% when compared with air sampled directly 

from the chamber itself.  The corrected O3 values can then be calculated from Equation 2.7, 

and its uncertainty is propagated by Equation 2.8. 

 

𝑠𝑂3𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = (1.8%  [O3]𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)  +  2.1     E2.6 

([𝑂3]𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  ±  𝑠𝑂3𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑) = ([O3]𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ± 𝑠𝑂3𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑) + 

((2.8 ± 0.8)% × ([O3]𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ± 𝑠𝑂3𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ))  E2.7 

𝑠𝑂3𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = √(2.8% × [𝑂3]𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  √(
𝑠𝑂3𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

 [O3]𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
)

2

+ (
0.8%

2.8%
)

2

)

2

+ (
𝑠𝑂3𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

 [O3]𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
)

2

 E2.8 

 

The flow path of boundary layer air to the 2B ozone monitors is shown in Figure 

2.11.  The tubing diameters in this Figure are representative of the most recent 

configuration, and apply to O-Buoys 9-15.  O-Buoys 1-4, 6-8 utilized a 0.16'' – 0.32'' tubing 

configuration, while O-Buoy 5 used a 1/8''– 1/4'' configuration in order to use standard tubing 

sizes.  Despite up to a 50% reduction in flow rate compared with using straight 1/4'' tubing, 

these smaller tubing sizes did not significantly affect the calibration curves of the 

measurements.   
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 Finally, 12V DC-DC converters were installed on the instruments to ensure that the 

2Bs were consistently performing at a nominal 12V.  Because the rechargeable lead 

acid/AGM batteries provide variable current to the sensors, it is suspected this provides 

added stress to the pumps and general operation of the instrument at voltages other than 12 

V.  This behavior is described in more detail in Section 2.3.

Figure 2.11 Top – flow schematic following sample air from the atmosphere through the 

O3 filter holder to the 2B.  Bottom left – Disassembled O3 filter holder (labeled inlet on 

top portion of figure).  Bottom middle – Assembled O3 filter holder.  Bottom right – 

drawing of the O3 bulkhead connector. 
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2.2.2 MAX-DOAS BrO Instrument 

Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) was 

employed by the O-Buoy as a means of detecting BrO, though it is additionally capable of 

detecting other trace gases (e.g., IO, O3, NO2, HONO) (Carlson et al., 2010; Hönninger et 

al., 2004b; Peterson, 2015). The MAX-DOAS instrument observes scattered sunlight 

within a spectral region where a molecule of interest absorbs (346-364 nm in this case) as 

a function of the elevation angle at which a telescope receives light (90, 20, 10, 5, 2, and 

1o).  The spectra obtained include the impacts of all of the chemical absorbers in a slanted 

column and are thus retrievals result in a quantity called slant column densities (SCDs; 

units of molecules cm-2).  However, observations at all elevation angles have absorption 

features originating from gases in the free troposphere, and stratosphere.  To remove these 

possible interferences, the 90o SCD, which sees minimal tropospheric / boundary layer 

absorption, acts as a blank that can be subtracted from SCDs at lower elevation angles.  

These differential slant column densities (dSCDs) have enhanced sensitivity to boundary 

layer gases and can be inverted to retrieve vertical profile information on molecules of 

interest.  Separation of gases with overlapping absorption bands is achieved using software 

(Fayt et al., 2011) to fit a linear combination of possible absorbing spectra at each elevation 

angle.  With the exception of the different scanning angles, this technique is similar to the 

commonly used Long Path DOAS (LP-DOAS), both of which are commonly used to detect 

average BrO activity in the Arctic over some path length with comparable precision (e.g., 

Frieß et al., 2011; Hausmann and Platt, 1994; Hönninger et al., 2004a, 2004b; Liao et al., 

2011; Peterson et al., 2016b).  Because they detect average species amounts over the spatial 

extent of the path length, concentrations obtained from DOAS techniques can differ from 
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those obtained from in situ techniques, such as chemical conversion/resonance 

fluorescence, though are found to be consistent when considered over similar averaging 

lengths (Avallone et al., 2003). 

The subsequent inversion of dSCDs to obtain vertical profile information 

concerning BrO is a two-step procedure.  The first step is to model the aerosol particle 

extinction vertical profile using the well-known vertical profile of the O2 collision dimer, 

O4, which has a dSCD highly dependent on atmospheric visibility and light scattering 

(Greenblatt et al., 1990; Hönninger et al., 2004b).  Based on the observed dSCD values of 

O4, a radiative transfer model (Rozanov et al., 2005) can be used to estimate particle 

extinction profiles based on viewing angles and aerosol light scattering properties.  Once 

this profile is obtained, it is input into a separate Monte Carlo radiative transfer model 

(Deutschmann et al., 2011) that can simulate BrO dSCDs as a function of a variable BrO 

concentration profile (Peterson, 2015).  The vertical profile of BrO is varied to give the 

best fit by optimal estimation.  

The MAX-DOAS system is closely related to the original O-Buoy system as 

described by Carlson et al. (2010) and Knepp et al. (2010) (Figure 2.12).  It consists of two 

major components: a scanhead telescope and the computer/spectrometer unit.  The 

scanhead telescope, which takes in the scattered light, is mounted on the very top of the O-

Buoy mast (Figure 2.1 and Figure 2.3), and transfers this light signal to the 

computer/spectrometer unit, located in the O-Buoy hull (Figure 2.2), by a fiber optic 

connection.  The computer/spectrometer unit consists of a low-power single-board 

computer (Technologic Systems TS-7260), a stepper motor driver (Stepperboard BC2D20), 
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interface electronics, and a miniature spectrometer (Avantes).  Additionally, a tilt-sensing 

system was included such that the tilt of the scan head could be both measured using a 

digital inclinometer (Smart Tool Technologies ISU-S), and corrected (up to 20o) to 

maintain accurate alignment of the viewing direction with the true horizon.  Additionally, 

a tiltmeter (SignalQuest SQ-SI-360DA-3.3R-HMP-HP-IND-S) has been added directly 

onto the moving telescope (moved from the scanhead housing in the original design) such 

that direct measurement of the elevation angle is possible.  

Figure 2.12 Schematic drawing of the light path for the MAX-DOAS system used in O-

Buoys.  Figure modified from Carlson et al. (2010) with updated spectrometer 

information. 
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For more details on the principles of MAX-DOAS, as well as the methods used for 

processing the data, the reader is referred to Hönninger et al. (2004b), Carlson et al. (2010), 

and Peterson (2015) 

 

2.2.3 Other Sensors 

The O-Buoy is equipped with several, commercially available meteorological 

sensors.  These include a wind monitor (RM Young Model 05103-45) and a temperature / 

relative humidity probe (Vaisala HMP155A), which are both installed on the mast (Figure 

2.1), and a barometer (Vaisala PTB110), which is connected to the carbon dioxide 

instrument.  These data are logged as five-minute averages to a Campbell data logger (CR-

1000; Figure 2.3), as are instrument current draws and battery power / voltages. 

Additionally, the O-Buoy mast included a global positioning system (Hemisphere V100), 

a camera (Logitech Vision Pro), and an Iridium antenna for interaction with the science 

team.  

 

2.3 Summary of Deployments and Observations 

In total, 15 O-Buoys have been constructed for a total of 19 deployments as of the 

writing of this thesis.   

Table 2.1 summarizes the deployment locations and dates of active operation, and 

the spatial data coverage is shown in Figure 2.13.  In addition, a summary of the data 

available during deployments is presented in Figure 2.14. 
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 Table 2.1 Summary of O-Buoy deployment locations and dates of active operation as of 
June 2016.

 

 

O-Buoy Number Deployment Region Months Active 

1 Barrow, AK Feb 2009 - May 2009 

1 Beaufort Sea Oct 2009 - Jul 2010 

2 Beaufort Sea Oct 2010 - Dec 2010, Mar 2011 - Jul 2011 

3 Hudson Bay Feb 2010 - Mar 2010 

3 Hudson Bay Feb 2011 - Apr 2011 

4 Borden Island, Nunavut, Canada Apr 2010 

4 North Pole Sept 2011 - Aug 2012 

5 Beaufort Sea Aug 2011 - Jan 2012 

6 North Pole Apr 2012 - Oct 2012 

7 Beaufort Sea Aug 2012 - Nov 2012, Jun 2013 - Aug 2013 

8 Beaufort Sea Aug 2012 - Jan 2013, Jun 2013 - Aug 2013 

8 East Siberian Sea Sept 2015 - Feb 2016 

9 East Siberian Sea Sept 2013 - Sept 2015 

10 Beaufort Sea Aug 2013 - Jan 2016, Mar 2015 - Sept 2015 

11 Beaufort Sea Oct 2014 - Sept 2015 

12 Beaufort Sea Oct 2014 - Sept 2015 

13 Beaufort Sea Sept 2015 - Apr 2016 

14 Beaufort Sea Oct 2015 - Jun 2016 

15 East Siberian Sea Sept 2015 - Feb 2016 

Figure 2.13 Summary of the spatial coverage of all deployments.  Map is updated in real-

time and can be viewed online at http://obuoy.datatransport.org/ 

http://obuoy.datatransport.org/
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The majority of O-Buoy observations are from the Beaufort Sea, which consists of 

a heterogeneous mixture of seasonal and multi-year ice types.  O-Buoys deployed here 

include OB 1, 2, 5, 7, 8, 10-14, all deployed by helicopter.  Remaining deployment 

locations include Barrow, AK (OB1; deployed by tripod), Hudson Bay (OB3; deployed by 

helicopter), the North Pole (OB4, OB6; both deployed by helicopter), Borden Island (OB4; 

deployed by helicopter), and the East Siberian Sea (OB8, OB9, and OB15; deployed using 

icebreaker’s crane).Sampling schedules differ for the different sensors.  The 

Figure 2.14 Visualization of temporal data coverage of all O-Buoy deployments.  Data 

are current as of June 2016.  Figure courtesy of William R. Simpson. 
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meteorological sensors are active throughout the entire deployment and updated as five 

minute averages.  The MAX-DOAS scans through its elevation angles in a duty cycle 

lasting approximately 30 minutes, but is typically only active during springtime periods 

when the sun has risen, and the rechargeable batteries are able to maintain its power load.  

The 2B O3 sensor operates on a reduced sampling schedule (total of 4 hours every three 

days) during winter while the buoy is operating from Lithium batteries, such that they are 

able to power the rest of the buoy throughout the winter.  Toward the end of 

February/beginning of March, when halogen chemistry is anticipated to begin, this 

sampling schedule is increased to 4 hours daily.  Once it is apparent depletion chemistry is 

occurring, and it appears either the Lithium batteries can handle the charge, or there is 

evidence the AGMs are beginning to charge, O3 sampling is increased to 24-hours. 

As can be seen in Figure 2.12 and Table 2.1, there are periods when individual 

instruments fail, as well as periods when the power system fails.  We consider first failures 

of the O3 and MAX-DOAS instruments.  Issues with the 2B O3 have most often involved 

the O3 signal suddenly dropping to zero in concert with the flow rate (Figure 2.11; affected 

O-Buoys 3, 4, 6, 7, and 9).  While the O-Buoy 4 O3 instrument eventually recovered, no 

further data were received from O-Buoys 3, 6, 7, and 9 after this flow rate / O3 value 

behavior.  The actual cause for this behavior has yet to be confirmed.  However, much was 

learned about the behavior of the 2B instruments while attempting to diagnose this issue.  

In the case of O-Buoy 3 and O-Buoy 4, it was noted that there was a coincident increase in 

current draw during the period in which the flow rate was zero.  Laboratory tests indicated 

that complete flow restrictions through either the O3 monitor inlet or exhaust lines caused 

an increase in current draw (~100 milliamps if flow is completely restricted).  This led us 
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to conjecture whether a blockage had formed as a result of the expansion of humid air into 

the instrument, which is at lower pressure, causing water to condense. This scenario would 

cause this water to subsequently freeze in the sampling tubing if temperatures are low 

enough.  Indeed, laboratory freezer tests replicating the 2B sample line (Figure 2.11) 

showed that it was possible for ice to form downstream of the O3 filter holder when 

sampling humidified air.  It was found that this ice formation could be significantly reduced 

(though not completely eliminated) by using the larger 1/4'' and 1/2'' tubing, utilized on O-

Buoys 9-15.   

In the cases of O-Buoys 6, 7, and 9, however, proper function of the O3 instrument 

was never restored.  Typically, the 2B instrument draws a current of ~500 milliamps.  

Interestingly in these cases, a temporary raise, or “spike” of ~100 milliamps in current 

above the baseline is observed alongside the falling flow rates and O3 mole fractions.  

Following this spike, the current draw permanently drops to ~100 milliamps below baseline 

current (Figure 2.15), and the instrument ceases to communicate with the supervisory 

computer upon the next power cycle, despite still drawing current.  The brief spike in  
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 current suggests a blockage could have formed in the Teflon tubing, similarly to O-Buoy 

4.  The subsequent drop in current and flow rate leads us to believe that the pump likely 

failed.  That the instrument stopped communicating with the supervisory computer is 

suggestive of a circuit board failure.  While diagnosing this issue, it was noticed that the 

2B pump’s flow rate correlated with the voltage provided by the O-Buoy’s power source 

Figure 2.15 Data representative of O-Buoy O3 instrument failure.  These data are from 

O-Buoy 7, but similar behavior was also observed for O-Buoys 6, 8, and 9. 
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(either Lithium batteries or AGMs; Figure 2.16).  That is, a higher voltage causes the pumps 

installed on the 2B to perform using a higher flow rate, thereby decreasing the useful 

lifetime of the pump.  Voltage changes are typically very gradual when the O-Buoy is 

utilizing a single power source.  As the AGMs begin the recharge in the springtime when 

solar radiation increases, the O-Buoy begins to automatically switch between power 

sources.  As can be seen in the bottom panel of Figure 2.16, this switching can be very 

rapid (e.g., beginning about 6:00PM) until the AGMs can produce at least 11 V consistently.  

Figure 2.16 O-Buoy 10 O3 instrument flow rate (top) plotted above O-Buoy 10 power 

source voltages. 
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It was suspected that these rapid voltage fluctuations were stressful for the pumps and at 

least partially responsible for the failures.  Consequently, voltage regulators were added to 

the design of the circuit boards such that the 2B operates under a nominal, consistent 12 V 

regardless of what is supplied by the O-Buoy’s power source.  However, unless / until one 

of these O3 instruments that exhibited this behavior are recovered, it is only possible to 

speculate what actually caused these issues. 

Two further apparent unique instrument failures relative to those described above 

were experienced by O-Buoys 10 and 12.  In the case of O-Buoy10 (Figure 2.17), O3 values 

gradually fell from levels of 30 nmol mol-1 to below limits of detection in the month of 

July, which is a month under which ODEs are not typically observed.   

 

 

Figure 2.17 Time series of O-Buoy 10 ozone (black trace) and its reported flow rate 

(blue).  Note that on August 24, the onboard O3 generator installed on the 2B instrument 

was activated, which should have produced O3 mole fractions approaching 1,000 nmol 

mol-1, though this is clearly not observed. 
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This was observed to occur in correlation with decreasing flow rates, though there is still 

indication of flow.  However, we reiterate these 2B-reported flow rates are largely 

inaccurate.  To test whether the instrument’s detector was still active, we enabled the 

onboard O3 generator but saw no response in the O3 signal, suggesting the instrument had 

lost its ability to detect O3.  In the case of O-Buoy 12, the instrument suddenly stopped 

communicating without any warning.  In both of these cases, all instrument diagnostics 

(including current draws, flow rates, cell pressures) looked nominal and completely healthy.  

Fortunately, O-Buoy 10 was recovered in 2015, and interestingly cannot power up.  We 

intend to work with 2B Technologies to investigate how the instrument failed in order to 

improve any future endeavors regarding O3 observations over the Arctic Ocean. 

Usable MAX-DOAS data was obtained from all deployments except for O-Buoy 1 

in the Beaufort Sea (2009-2010), O-Buoy 3 in Hudson Bay (2010), and O-Buoy4 at Borden 

Island (2010).  In these cases, the accurate azimuthal orientation of the buoy could never 

be established, making adequate radiative transfer modeling nearly impossible.  

Additionally, the Ocean Optics spectrometers used on buoys 1-6 were found to be 

extremely temperature sensitive, needing the optics to be aligned exactly at 0oC.  The 

Avantes models were found to be much more stable, and yield equal-to-greater light 

sensitivity compared with the Ocean Optics units, and were utilized on all subsequent 

deployments. 

Finally, we discuss cases in which the buoys stopped communicating.  For O-Buoy 

2, data transmission ceased approximately two months after deployment.  Investigation of 

battery voltages showed that only one Lithium battery displayed increased load when the 

O3 instrument was activated every three days, suggesting only one of these batteries was 
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working properly.  However, once the sun rose, the rechargeable AGMs resumed function 

and the buoy was able to resume full operation.   

A similar, though decidedly different, problem arose in the cases of O-Buoys 7 and 

8 (2012-2013).  O-Buoy 7 stopped transmitting 4 days into its deployment, while O-Buoy 

8 stopped approximately four months into its deployment.  For reasons that were never 

fully diagnosed, the Lithium battery packs drained sooner than expected.  For O-Buoys 

deployed between 2009 and 2012 (OB1-8), the supervisory computer (SC) monitored the 

battery voltages and decided from which power source to draw, according to Figure 2.18.  

Should the AGM batteries fall below 11.5 V, the SC would switch the buoy’s power source 

to the Lithium batteries.  It was also noticed in the case of O-Buoy 8 that the AGM batteries 

were continuing to see a load despite the O-Buoy utilizing the Lithium batteries as its 

primary power source.  To alleviate this behavior, the “load-disconnect” feature of the O-

Buoy’s power controller (MorningStar) was utilized (Figure 2.19).  Before O-Buoy 9 

(deployed in 2013), the AGM batteries were always exposed to the O-Buoy instrument’s 

current load, whether or not the AGMs were being used as the primary power source, 

thereby gradually draining any charge they may have.  This is disadvantageous, because 

charge is needed on the AGMs to operate the power controller, which allows the AGMs to 

recharge.  The load-disconnect feature of the power controller disconnects the AGMs from 

the circuit and thus the load when battery voltage falls below 11.5 V, as before.  However, 

in this case, the AGMs are completely shielded from the current load by the power 

controller.  When this occurs, a new hardware circuit (called “polar bear circuit,” in case a 

polar bear destroyed the solar panels and power controller) now automatically recognizes 

that the AGMs are no longer supplying power to the buoy and subsequently enables the 
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FET in between the Lithium batteries and the instruments.  This switch then completes the 

circuit to the Lithium batteries, allowing the buoy to remain powered.  Once the AGM 

voltage returns above 12.5 V, the power controller reengages the AGMs, which is 

recognized by the SC and disengages the Lithium current.  While the issue of premature 

drainage of the Lithium batteries was never resolved, no such issues were observed in the 

deployments of O-Buoys 9-15 and the second deployment of O-Buoy 8. 
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Figure 2.18 Schematic diagram of O-Buoy power going from the battery source to 

the relevant instrument.  This schematic is relevant to O-Buoys deployed prior to 

2013 (O-Buoys 1-8) 
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Figure 2.19 Schematic diagram of O-Buoy power going from battery source to the 

relevant instruments.  This schematic is relevant to O-Buoys deployed beginning in 

2013 (O-Buoys 9-15, and the 2nd deployment of O-Buoy 8 in 2015). 
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Remaining data gaps have been simpler to diagnose.  In the cases of O-Buoy 5 

(2011-2012), 8 and 15 (2015-2016), it is expected that storms caused the premature 

destruction of these buoys due to ice floe collisions and ice ridging. 

 

2.4 Conclusions 

Since first described by Knepp et al. (2010), the O-Buoy has undergone many more 

deployments and obtained much unique data that deserve analysis.  Additionally, there 

have been many learning opportunities through instrument failures that have allowed the 

O-Buoy Team to improve on its design.  While the issues regarding O-Buoy tilting, MAX-

DOAS, and power consumption appear to have been largely resolved, it remains unclear 

why so many O3 instruments have failed.  The recovery of one of these instruments (from 

O-Buoy 10) will be useful in determining some possible modes of failure and possible 

design improvements.  However, diagnosing possible modes of failure has been difficult 

due to the inability to retrieve these failed instruments, as well as the inability to analyze 

and evaluate the instruments’ circuit boards as they are proprietary.  The success of future 

buoy-based O3 observations would benefit from a new O3 monitor specifically designed 

and built to withstand operating under harsh conditions in remote environments.  At Purdue, 

this would be most effectively done either by fully commissioning the Jonathan Amy 

Facility for Chemical Instrumentation (JAFCI), or through a joint effort between 2B 

Technologies and JAFCI.  In this way, we know completely how the instrument is built, 

the quality/grade of the components, and are able to evaluate possible modes of failure 

based on field-observed symptoms. 
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 THE TEMPORAL AND SPATIAL CHARACTERISTICS OF OZONE 

DEPLETION EVENTS FROM BUOY-BASED MEASUREMENTS IN THE 

ARCTIC 

3.1 Introduction 

As discussed in Chapter 1, global tropospheric oxidation is generally controlled by 

ozone (O3), which is a major greenhouse gas (Gauss et al., 2006) and the most important 

precursor to the primary atmospheric oxidant, hydroxyl radical (OH) (Seinfeld and Pandis, 

2012; Thompson, 1992).  When the sun rises in the Arctic during springtime (typically 

around mid-March), boundary layer O3 drops precipitously from background mole 

fractions of ~40 nmol mol-1 (ppbv) to near zero levels for periods of hours, or even days, 

before recovering (Anlauf et al., 1994; Barrie et al., 1988; Bottenheim et al., 1986).  During 

these ozone depletion events (ODEs), the prominent regional tropospheric oxidation 

pathways for hydrocarbons at the surface are driven by species other than OH radicals, 

notably Cl and Br atoms (Cavender et al., 2008; Jobson et al., 1994).   

ODEs occur when O3 reacts with reactive halogen radicals, reactions which are 

traditionally thought to be very bromine-centric (Reactions R3.1-R3.2) (Simpson et al., 

2007b). 

 

Br2 + hν 
 

→ 2Br         R3.1    

Br + O3

 
→ BrO + O2         R3.2    
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O3 is removed in Reaction R3.2 by Br to produce bromine monoxide (BrO).  However, 

BrO is photolabile and can reproduce O3 and Br in a null cycle.  Therefore, the rate at which 

O3 is destroyed is ultimately limited by the rate at which BrO reacts with another species 

to not reform O3, such as in Reactions R3.3-R3.5. 

 

BrO + BrO 
 

→ 2Br + O2                  R3.3 

BrO + ClO 

 
→ BrCl +  O2 

                  R3.4a 

        
 

→ Br + Cl +  O2  
                     R3.4b 

BrO + HO2

 
→ HOBr + O2                  R3.5 

 

Note that R3.4 can also produce OClO + Br, but is not listed above as OClO primarily 

regenerates O3 in a null cycle via photolysis.   

Ozone destruction is therefore propagated by the regeneration of reactive halogen 

species.  In the gas phase, Reactions R3.3 and R3.4 are believed to dominate at high BrO 

concentrations, while R3.5 is believed to play a larger role as BrO decreases (Le Bras and 

Platt, 1995; Piot and von Glasow, 2008).  Reactions R3.3 and R3.4 directly reproduce 

reactive Br atoms, while the HOBr formed by Reaction R3.5 must first undergo photolysis.  

Additionally, Reaction R3.5 is involved in a series of heterogeneous, autocatalytic 

reactions referred to as the “bromine explosion”, which are believed to supply net 

atmospheric reactive bromine (Fan and Jacob, 1992; Tang and McConnell, 1996; Vogt et 

al., 1996; Wennberg, 1999b).  The “bromine explosion” involves the production of HOBr 

as above (R3.5), or through halogen reactions with oxidized nitrogen species (Aguzzi and 

Rossi, 2002; Hanson and Ravishankara, 1995).  Uptake of this HOBr onto acidic, bromide-
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containing frozen surfaces produces Br2 (Adams et al., 2002; Huff and Abbatt, 2002), 

which can then undergo the O3 destroying reactions once photolyzed (R3.1).  This series 

of reactions will exponentially increase Br2 levels until some required reagent runs out.  

Hypothesized sources of reactive halogens include saline frozen surfaces found 

across the Arctic Ocean, such as the snowpack, blowing snow, and sea salt-derived aerosols 

(Abbatt et al., 2012; Fan and Jacob, 1992; Frieß et al., 2011; Jones et al., 2009; Simpson et 

al., 2005; Yang et al., 2008).  Recent in situ experiments showed that saline, acidic surface 

snowpacks (above sea ice or tundra) can act as sources of Br2, I2, and Cl2, showing that a 

more generalized “halogen explosion” can occur within the interstitial air of the snowpack.  

These halogens would then release into the boundary layer via wind pumping and diffusion 

(Custard et al., 2016; Pratt et al., 2013; Raso et al., 2016).  Conditions leading to the release 

of reactive halogens are explored in more detail in Chapter 5.   

Despite our increasing understanding of the role of halogens in ODEs, basic ODE 

characteristics, such as their temporal and spatial scales, remain uncertain (Jacobi et al., 

2010; Simpson et al., 2007b; Zeng et al., 2003).  Current knowledge of the aforementioned 

O3 depletion chemical mechanisms (CM) and the corresponding kinetics estimate the 

timescale for O3 destruction to be on the order of days (Cao et al., 2014; Hausmann and 

Platt, 1994; Jobson et al., 1994; Piot and von Glasow, 2008, 2009; Tuckermann et al., 1997).  

However, there are few reports of Arctic ODEs that are believed to have been observed 

primarily as a result of local scale CM (Boudries and Bottenheim, 2000; Jacobi et al., 2006).  

ODEs can also be observed primarily due to air mass transport mechanisms (TM) in which 

air masses depleted of O3 (via CM upwind) advect over the measurement site (Morin et al., 

2005; Simpson et al., 2007b) and are detected as “ozone depletion events.”  Given that the 
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Arctic Ocean surface is sunlit, stable against vertical mixing, and ice-covered during the 

spring (Lehrer et al., 2004), it has been hypothesized that O3-depleted surface air could be 

the norm in the Arctic boundary layer during this time, and that O3 is only observed at the 

surface due to turbulent vertical mixing in an otherwise stable boundary layer.  This vertical 

mixing can temporarily transport free tropospheric O3 from aloft to the surface, raising the 

surface level mole fractions to between 30 and 40 nmol mol-1 (Bottenheim et al., 2009; 

Hopper et al., 1998; Jacobi et al., 2010; Moore et al., 2014; Peterson et al., 2016a; Strong 

et al., 2002; Zeng et al., 2003).  Regarding the spatial scales of individual O3-depleted air 

masses, Ridley et al. (2003) reported Arctic ODEs extending between 600 and 900 km in 

length from flights during the Tropospheric Ozone Production about the Spring Equinox 

experiment.  Recently, Jones et al. (2013) reported the observation of multiple ODEs from 

a network of ten O3 monitors spread over the Droning Maud Land sector of Antarctica, 

some of which extended at least 1200 km in horizontal dimension.  However, no such 

network of O3 monitors has yet been established for the Arctic to make analogous 

observations. 

In a study of long-term Arctic coastal measurements, Tarasick and Bottenheim  

(2002) observed that ODEs most often occurred at temperatures of less than 253 K, leading 

to the proposal that such low temperatures could be necessary for the initiation of ozone 

depletion.  This hypothesis was strengthened by Adams et al. (2002), who reported that 

frozen NaCl/NaBr surfaces efficiently uptake and react with HOBr to both form and release 

gas phase Br2 at temperatures below 253 K.  This observation has been hypothesized to 

occur due to the precipitation of NaCl2H2O at temperatures less than 252 K, which then 

requires a greater concentration of Br- to maintain the surface brine layer (Cho et al., 2002); 
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when Cl- precipitates, the volume of the brine water must decrease to maintain the ionic 

concentration needed for the appropriate freezing point depression.  Boundary layer BrO 

enhancements have been correlated with low temperatures (Nghiem et al., 2012a; Zeng et 

al., 2003), and apparently linear increases in maximum BrO concentrations have been 

observed with decreasing temperatures, below 258 K (Pöhler et al., 2010).  Further, strong 

positive correlations between O3 concentration and potential temperature have been 

reported (Seabrook et al., 2011; Strong et al., 2002).  However, Bottenheim et al. (2009) 

and Neuman et al. (2010) observed ODEs at temperatures as high as 267 K, emphasizing 

uncertainty in the temperatures required for the observation of an O3-depleted air mass.  In 

addition, Koo et al. (2012) report that it is perhaps the temperature variability that has a 

greater effect on O3 variability, an idea that is also explored in Chapter 4 of this thesis. 

ODEs have often been associated with a calm, stable boundary layer.  Those 

observed under high wind speeds (faster than 10 m s-1) are generally attributed to TM.  

Yang et al. (2008) hypothesized that saline snow atop sea ice could disperse during periods 

of high wind and become a source of both sea-salt aerosol and bromine, consequently 

initiating ODEs.  Indeed, there have been coastal-based studies in which increased BrO 

and aerosol were observed during periods of elevated wind speeds (> 5 m s-1), and O3 

depletion sometimes, but not always, followed (Frieß et al., 2011; Jones et al., 2009).  

Alternatively, higher wind speeds could also lead to better ventilation of the snowpack in 

which Br2 is produced (Albert et al., 2002; Foster et al., 2001; Michalowski et al., 2000; 

Pratt et al., 2013; Toyota et al., 2011).  Michalowski et al. (2000) discussed that the rate at 

which HOBr reacts with Br- during Br2 production in the “bromine explosion” was 

dependent on the time scale for turbulent diffusive transport of HOBr to the snowpack 
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surface, which would be wind-speed dependent.  However, due to few coincident 

observations of wind speeds, aerosol, O3, and BrO, the dependence of ODEs on wind speed 

remains unclear.   

Arctic air masses depleted in O3 typically spend a significant amount of time over 

the Arctic Ocean before arriving at coastal measurement sites, suggesting that the ice-

covered ocean is the most probable site of ODE initiation (Bottenheim and Chan, 2006; 

Gilman et al., 2010; Jacobi et al., 2006; Simpson et al., 2007a).  In-situ chemical and 

meteorological data from the Arctic Ocean are, however, sparse.  Most long-term Arctic 

tropospheric O3 measurements have been made at coastal sites, and thus most observed 

ODEs have been attributed to TM.  Attempts to study ODEs over the Arctic Ocean have 

been conducted on ice floes (e.g., Hopper et al., 1994, 1998), aircraft (e.g., Jaeschke et al., 

1999; Leaitch et al., 1994; Neuman et al., 2010; Ridley et al., 2003; Seabrook et al., 2013; 

Sheridan et al., 1993), and ships (e.g., Bottenheim et al., 2009; Gilman et al., 2010; Jacobi 

et al., 2006; Nghiem et al., 2012a; Pöhler et al., 2010; Seabrook et al., 2011).  However, 

few of these studies have produced the long-term data required for in-depth studies of the 

temporal and spatial scales of ODEs.  

Recently, a series of ice-tethered buoys were deployed to observe ODEs over the 

Arctic Ocean (Knepp et al., 2010).  The buoys have been installed in sea ice for automated, 

continuous, several-month surface measurements of O3, BrO (Carlson et al., 2010), carbon 

dioxide, and local meteorological conditions.  The data generated by the O-Buoys represent 

the first long-term measurements of these chemical species directly over the surface of the 

ice-covered Arctic Ocean.  Using the initial results from this unique dataset, we estimate 

the timescales of O3 depletion, examine the state of our understanding of the chemistry 
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involved, and estimate the spatial extents and meteorological conditions supporting O3-

depleted air masses. 

 

3.2 Methods 

 

3.2.1 Instrumentation 

Surface O3 and meteorology measurements discussed herein were collected during 

five separate deployments of O-Buoys (Table 3.1), visualized in Figure 3.1. 

 

Table 3.1 O-Buoy deployment locations and time periods of continuous measurements 

relevant to this study .   

O-Buoy 

Number 

Latitude Longitude General Area Dates of Continuous 

Measurements 

Number of ODEs 

observed 

1 71˚N  156˚W Barrow, AK 02 Mar 2009 – 19 May 

2009 

13 

1 77˚N 135˚W Beaufort Sea 22 Mar 2010 – 14 Jul 

2010 

13 

2 74˚N 142˚W Beaufort Sea 11 Apr 2011 – 22 Jul 

2011 

6 

3 60˚N 90˚W Hudson Bay 22 Feb 2010 – 27 Mar 

2010 

3 

4 78˚N 112˚W Borden Island, 

Nunavut, Canada 

04 Apr 2010 – 30 Apr 

2010 

3 



73 

 

 

Details of the O-Buoy design and operation are discussed extensively by Knepp et al. 

(2010) and in this thesis (Chapter 2), but a brief description of details relevant to this 

study are provided here.  At the time of data analysis, BrO data were available from both 

O-Buoy1 during its 2009 Barrow, AK, deployment, and O-Buoy 2 from the Beaufort Sea 

to compare with O3 depletion timescales.  The full spring O-Buoy 2 time series, including 

O3, BrO, and temperature, is presented in Figure 3.2.   

 

 

 

 

Figure 3.1 Map of locations at which various O-Buoys (abbreviated OB) were deployed 

between 2009-2011.  For the coordinates, see Table 3.1.  Sea ice extent image is for the 

month of March 2011.  Map courtesy of Google Earth, and sea ice image courtesy of 

the National Snow and Ice Data Center. 
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The O-Buoys begin 24 hour sampling every day close to, or shortly after the time of polar 

sunrise, typically near the end of February or early March.  Though the O-Buoys are also 

active during fall, winter, and late summer months, we focus mostly on springtime and 

early summer data herein (dates presented in Table 3.1). 

Temperature was measured using a Vaisala model HMP45C temperature and 

relative humidity probe.  Wind speed was measured using a RM Young Model 05103 

anemometer.   The range of wind speeds observed across the four O-Buoys deployed was 

0–15 m s-1.  It was observed in the 2009 Barrow, AK, O-Buoy1 deployment, however, that 

the anemometer was susceptible to icing, which would impede its ability to spin freely and 

provide accurate measurements.  This effect was most prominent during the same 

Figure 3.2 Example time series of O3, BrO, and temperature from O-Buoy2 during its 

deployment in the Beaufort Sea.   
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deployment, in which wind speed fell from a mean of about 2 m s-1 to 0 m s-1 for a period 

of four days.  To mitigate the impact of this effect on the interpretation of the results, wind 

data were not utilized in our analysis when wind speed was measured as 0 m s-1.  While 

there is reason to believe that wind speeds are indeed low during these periods, the actual 

wind speed is unknown.  Thus, if the average wind speed calculated during an ODE 

contained > 50% of such values, the wind data for that event were not included in the data 

analysis.  We also acknowledge that an icing effect could create a measurement bias toward 

lower values.  However, as discussed in the text (Section 3.3.3), on average this appears to 

be a minor issue in terms of our use of the anemometer data (e.g. to calculate ODE spatial 

scales) as we find effectively equivalent results using our anemometer wind speeds and 

those estimated using the HYSPLIT backwards trajectory model (Sect. 3.2.3).   

Ozone was measured using custom-built 2B Technologies model 205 dual-beam 

O3 monitors.  Customizations include one backup pump, one backup O3 scrubber, a lamp 

heater, and modified firmware to control the instrument remotely.  The instrument inlet, 

which contained a 90 mm quartz fiber filter (Pall Life Sciences) to prevent intake of large 

particles, is located on the mast of the buoy ~2 m above the sea ice, while the instrument 

itself is located inside the hull of the buoy beneath the sea ice such that it operates under a 

near constant temperature (~ -1.5 °C). Sample averaging by the ozone monitors differed 

between buoy deployments: O-Buoy 1 used 10 second averages, O-Buoy 3 used two 

second averages, and both O-Buoy 2 and O-Buoy 4 used one minute averages.  For analysis, 

all data were smoothed to 5 minute moving averages.  

BrO was detected using a multi-axis differential optical absorption spectroscopy 

(MAX- DOAS) instrument.  The scan head telescope, located at the top of the buoy mast, 
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collects scattered radiation and sends it through a fiber optic cable to the 

computer/spectrometer module, which consists of a single board computer (Technologic 

Systems TS-7260), a stepper motor driver (Stepperboard BC2D15), interface electronics, 

and a miniature spectrometer (Ocean Optics HR2000, 318-455 nm).  The scan elevation 

angle is controlled by the O-Buoy’s supervisory computer and observes light at angles of 

90 (zenith), 20, 10, 5, 2, and 1 degree(s) over a period of 30 minutes (Carlson et al., 2010).  

The zenith spectrum from a 30-minute data measurement period was used as the reference 

spectrum for the lower elevation angle spectra, which minimizes the differential absorption 

by stratospheric species.  To obtain differential slant column densities (dSCD), the QDOAS 

software was used (Fayt et al., 2011) to fit both the logarithm of the ratio of each low 

elevation spectra and zenith spectra in the wavelength region 346-364 nm (convolved 

absorber cross sections detailed in Table 3.2), as well as a 3rd order polynomial to account 

for broadband features and a spectral offset to account for stray light.   

 

 

Table 3.2 Cross sections used in spectral analysis.  Each cross section is convolved using 

an instrument function determined by the 334 nm Hg peak. 

Species Cross Section Reference 

BrO (228 K) Wilmouth et al. (1999) 

O3
 (243 K) Malicet et al. (1995) 

NO2
 (220 K) Vandaele et al. (1998) 

O4 Hermans et al. (2001) 

Ring Determined from zenith spectra using Chance and Spurr (1997) 
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Fit residuals for both O-Buoy1 and O-Buoy2 were less than 1 x 10−3 resulting in 

BrO dSCD errors less than 4 x 1013 molecules cm-2 and O4 dSCD errors of less than 1x1042 

molecules2 cm-5.  Retrieval of BrO mole fractions from dSCD data is a two-step inverse 

problem.  First, the aerosol profile is determined from O4 dSCDs using both the 

SCIATRAN radiative transfer model as a forward model, and the estimation techniques 

detailed in Frieß et al. (2006).  Then, a vertical profile of BrO mole fractions from the 

ground to 2 km (100 m intervals) was obtained using both the radiative transfer model 

McArtim (Deutschmann et al., 2011) as a forward model, and similar optimal estimation 

techniques detailed in Frieß et al. (2011).  Because we are only considering surface O3 

measurements, only the average BrO mole fractions in the lowest 100 m were used in 

subsequent portions of this study. 

The BrO detection limit is a function of the geometry of the observation 

and the state of the atmosphere at the time of the measurement.  We estimated a range for 

the detection limit (2σ) of 3.7 x 1012 (clear sky) to 1.5 x 1013 mol cm-2 (impaired visibility) 

for the total integrated column BrO through 2km (VCD2km) by looking at the distribution 

of VCD2km values over a month in late summer where no BrO was observed.  To evaluate 

the error associated with the retrieved surface mole fractions, it is necessary to consider 

both dSCD measurement error and smoothing error (Rodgers, 2000).  Smoothing error 

calculations quantify the error resulting from the inability of the instrument to observe fine 

structure in the vertical profile.  The smoothing error was estimated through considering 

the mean of an ensemble of profiles retrieved in late summer ( �̅� ) when the dSCD 

measurements indicated no measurable BrO.  This allowed us to assume the actual profile 

(xa) is given by 0 pmol mol-1 (pptv) BrO through 2 km.  The average surface mole fraction 
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smoothing errors (ϵs) for the entire O-Buoy2 campaign were estimated using Equation 3.1, 

where A represents the averaging kernel matrix and I is the identity matrix (Rodgers, 2000). 

  

𝜖𝑠 = (𝐴 − 𝐼)(�̅� − 𝑥𝑎)          E3.1 

 

Individual surface mole fraction errors due to smoothing error averaged 0.3 pmol 

mol-1 for the O-Buoy2 campaign.  Including individual mole fraction errors due to 

propagated dSCD measurement error, total surface mole fraction errors range from 0.7 to 

6.9 pmol mol-1, with average and median errors corresponding to ~3.0 and 3.3 pmol mol-1 

respectively.  Due to the timing of the O-Buoy1 deployment, we were unable to estimate 

smoothing error in the manner described above.  Therefore, only errors due to propagated 

dSCD measurement error were considered.  For O-Buoy1, total surface mole fraction errors 

range from 0.7 to 4.5 pmol mol-1, with average and median errors corresponding to ~2.5 

and 2.6 pmol mol-1 respectively. 

 

3.2.2 ODE Definition 

 Several definitions of ODE conditions can be found throughout the literature.  For 

example, some studies define an ODE, partial or severe, as when O3 mixing ratios are 

below 20 nmol mol-1 (Ridley et al., 2003), 10 nmol mol-1 (Tarasick and Bottenheim, 2002), 

5 nmol mol-1 (Bottenheim et al., 2009; Frieß et al., 2011; Jacobi et al., 2010), or 4 nmol 

mol-1 (Piot and von Glasow, 2008, 2009; Ridley et al., 2003).  For this study, a specific set 

of ODE criteria, defined below, were developed to examine ODEs identified using the O-

Buoy data set.  We define and distinguish periods of “major” ozone depletion events 



79 

 

 

(MODEs; defined differently here than originally defined by Ridley et al. (2003) (see 

below)) from a less severe ODE term to enable us to compare and contrast the temporal 

and spatial differences between them.  Note that as defined below, any ODE can include 

the shorter periods of MODEs, but the MODE criteria are not necessary for an event to be 

defined as an ODE.  These criteria are visually illustrated in Figure 3.3 using sample O-

Buoy data. 

 

 

 

Figure 3.3 a) Example ODE from O-Buoy2 deployment in the Beaufort Sea with ODE 

definitions illustrated.  The brief resurgence of O3 on 17 April does not rise above 25 nmol 

mol-1 for longer than 12 hours and is thus not considered as separating two ODEs.  Error 

bars are not displayed to more clearly show the time series.  As discussed in Sect. 3.2.1, 

individual measurement errors for O3 ranged from 2.1 to 3.5 nmol mol-1, and BrO 

measurement errors ranged from 0.7 to 6.9 pmol mol-1 (median and average error ~3 pmol 

mol-1).  b) Example of O3 depletion timescale calculation based on the depletion range 

(ODE start time – O3 decrease end time) from a).  The natural logarithm of the O3 values 

is plotted against time, and the inverse slope of this plot represents the O3 depletion 

timescale. 
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 Background O3 conditions were established if O3 mole fractions stayed above 25 

nmol mol-1 for longer than 12 hours.  If O3 dropped below 15 nmol mol-1 for longer than 

one hour, the event was considered to be an ODE.  The ODE start time is defined as the 

time at which O3 drops below 90% of its local maximum concentration prior to depletion.  

If O3 subsequently rose above 25 nmol mol-1 for longer than 12 hours, the ODE was 

considered terminated; the ODE end time was defined as the time when O3 reached 90% 

of the local maximum O3 mole fraction after rising above 25 nmol mol-1 for more than 12 

hours.  It should be noted that the increase in O3 mole fraction on 17 April 2011 seen in 

Figure 3.3 does not recover above 25 nmol mol-1 for longer than 12 hours, and its 

subsequent decrease does not represent a new ODE.  For the calculation of the O3 depletion 

timescale, an O3 decrease stop time was defined as the time at which O3 first reached 10% 

of the difference of the preceding maximum and ultimate minimum O3 mole fractions 

during the ODE. 

MODEs are cases for which O3 dropped below 10 nmol mol-1 for longer than one 

hour, with the start time defined as the time at which O3 fell below 10 nmol mol-1.  If O3 

then increased above 10 nmol mol-1 for longer than 12 hours, the MODE is considered 

terminated, with the MODE stop time defined as the time at which O3 recovered above 10 

nmol mol-1. 

 

3.2.3 Air Mass Trajectory Analysis 

The NOAA HYSPLIT air mass trajectory model (Draxler et al., 2012; Draxler and 

Hess, 1998; Draxler and Rolph, 2003) was utilized to examine backward trajectories during 

O3-depleted conditions, as defined in Sect. 3.2.2.  Backward air mass trajectories were 
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calculated starting from a height of 10 m above ground level using the ODE stop time as 

the start time of the model (note that three events, one from each O-Buoy 2, 3, and 4, did 

not have well defined ODE stop times, and thus were not analyzed here).  Isobaric 

trajectories were chosen because the stable surface air in which the ODEs occur is typically 

well isolated from the air aloft (Oltmans et al., 2012; Seabrook et al., 2013); as long as O3 

is in ODE conditions, the air is likely to be surface layer air.  The trajectory run lengths 

were defined by the ODE durations (ODE stop time – ODE start time; see Figure 3.4 for 

the distribution of ODE time lengths), such that the final point of the backward trajectories 

corresponded to the defined ODE start times.   

 

  

Figure 3.4 Time lengths of ODEs as defined by the ODE start time and the O3 

decrease stop time. 
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ODE spatial scales were defined as the maximum distance between any two points 

of the backward air mass trajectory, as this would represent an upper limit to an event’s 

spatial size (illustrated visually in Figure 3.5).  This analysis was performed for both the 

broader ODE definition and MODEs.   

 

 

 

 

Figure 3.5 Example HYSPLIT backward air mass trajectory.  The HYSPLIT model was 

run backward starting from the ODE end time until the ODE start time.  ODE spatial 

dimensions were determined by calculating the maximum Great Circle distance between 

any two points along the trajectory.   
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Of the ODE air masses modeled isobarically, all but one remained near the surface (below 

200 m above ground level) throughout the course of the trajectory.  The outlier ODE air 

mass, occurring during O-Buoy1 2009 at Barrow, AK, rose above 800 m and likely did not 

represent surface layer air; this event was therefore excluded from HYSPLIT analyses.  For 

comparison, we also estimated the ODE spatial scales by the same method using isentropic 

back trajectories (starting height of 10 m above ground level); by determining the distance 

between the start and end points for each isobaric trajectory; and by using Equation 3.2: 

 

𝐷ODE =  𝑣wind  ×  𝑡ODE        E3.2 

 

where DODE is the ODE diameter, vwind is the average local wind speed from the 

anemometer, and tODE is the duration of the ODE. 

The HYSPLIT model was also used to estimate some meteorological parameters at 

each position along the isobaric backward trajectories.  For this analysis, the average and 

minimum air temperatures along each trajectory were compared with the temperatures 

recorded by the O-Buoy during each ODE.  The path lengths and time lengths of individual 

trajectories were used to estimate the average wind speeds of the air masses, which were 

compared with the wind speeds obtained from the O-Buoy anemometer.  Wind rose plots 

were created based on the quadrant in which the air mass trajectory spent the most time 

during a given ODE (north (315˚-45˚), south (135˚-225˚), east (45˚-135˚), and west (225˚-

315˚)).  Only four quadrants were used in the wind rose plots because there is a large level 

of uncertainty associated with using a back trajectory model for this purpose (Kahl, 1993).  
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The angles used were obtained by calculating the bearing between the O-Buoy and each 

point along each back trajectory for each ODE. 

 

3.2.4 Monte Carlo Experiment 

A Monte Carlo experiment was performed to determine whether it was a 

statistical possibility that the observed ODEs resulted primarily from TM, given the 

estimated size distribution.  In the limit of an ODE as large as the Arctic Ocean, the ODE 

would be observed at the O-Buoy primarily due to local CM.  Thus, for some ODE size 

limit, it is not feasible for all ODE observations to result from TM.  For this simulation 

experiment, we estimated the probability that assumed circular depletion regions overlap 

with a point of interest (an O-Buoy) when randomly placed about a defined area 

represented by the ice-covered Arctic Ocean.  The diameters of the circles were defined 

by the ODE size distribution estimated from Beaufort Sea (O-Buoy1 and O-Buoy2) 

observations (Section 3.2.3); these particular ODEs were chosen for this exercise because 

of the similar locations and drift trajectories of the buoys, providing the needed statistics 

for the analysis.  Nineteen ODEs were observed between the two deployments (in 2010 

and 2011), with ODE sizes ranging from 210 - 3532 km (see Sect 3.3.2). The circles, 

with sizes taken from the observed size distribution (Section 3.2.3), were simultaneously 

and randomly placed in an area defined by the average sea ice extent of the Arctic Ocean 

between March 2010 and 2011 ( 

Figure 3.6), as reported by the National Snow & Ice Data Center 

(http://www.nsidc.org/).   

 

http://www.nsidc.org/
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Figure 3.6 Visualization of one iteration out of 2000 of the Monte Carlo experiments.  The 

area of interest within the Arctic is defined by the green outline.  Blue circles represent 

ODE air masses.  The red star represents the average location of the O-Buoy between O-

Buoys1 and 2.  Seventeen different sized air masses were randomly placed simultaneously 

within the area of interest. 

 

 

We note, however, two O-Buoy2 events were excluded from this analysis.  The first was 

removed due to an undefined ODE spatial scale (discussed in Sect. 3.2.3).  The other 

ODE size excluded (diameter of 3532 km) was estimated to be larger than the defined 

area.  Thus, a total of 17 circles were used in these simulations. The number of circles 

that overlapped with the location of the buoy (assumed to be 74.75˚ N, 142˚ W, an 
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approximate location of both O-Buoys 1 and 2) was determined for multiple iterations of 

the experiments.  

Figure 3.6 represents one iteration of the experiment, which was repeated 2000 times in 

order to obtain a statistical distribution of the number of overlaps.  Additionally, a sequence 

of similar Monte Carlo experiments was repeated for individual ODE sizes 1000 times to 

obtain the probability that each circle size overlaps with the location of the buoy.  This 

simulation experiment was conducted to examine the relationship between ODE size and 

the probability that the ODE would only be observed due to TM. 

 

3.3 Results and Discussion 

 

3.3.1 Ozone Depletion Timescale 

For O-Buoys 1–4, a total of 38 ODEs were observed between the months of 

February and June (see Table 3.1 for breakdown of each O-Buoy).  On the assumption that 

O3 decrease is an exponential decay process, and to express the observed depletion time 

scales in an objective manner, the apparent O3 depletion timescale (τO3
) at the beginning 

of an ODE was estimated as the reciprocal of the slope of ln[O3] versus time (during the 

period ODE start time - O3 decrease stop time, as discussed in Sect. 3.2.2; Figure 3.3b). 

This timescale is observed due to a combination of both CM and TM, though the extent to 

which each factor affects τO3
is unknown.  Because we are analyzing the slopes, this 

analysis is mostly insensitive to the ODE start / depletion stop times as long as the depletion 

range of the plot constitutes the majority of the defined timeframe.  As seen in Figure 3.7a, 
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τO3
 ranged from 30 minutes to longer than 50 hours (maximum of 14 days), with the 

majority (76%) shorter than 24 hours (median τO3
 of 11 hours).   

 

Figure 3.7 a) Histogram of the distribution of calculated O3 depletion timescales during 

ODEs. To more clearly show the majority of events, the six events with 𝛕𝐎𝟑
 greater than 

50 hours are grouped together on the histogram. b) Calculated BrO concentrations are 

shown for the observed ODEs, assuming local chemistry, considering BrO and an 

assumed ClO mole fraction of 6 pmol mol-1, and other O3 destruction pathways, using 

Equation 3.6 as discussed in Sect. 3.3.1.  The mode calculated BrO mole fraction is 15 

pmol mol-1.  Measured BrO for O-Buoy2 is shown as the blue hatched bar, and the 

corresponding BrO required to account for the observed ozone depletion rates for O-

Buoy2 events are shown as solid red diagonal bars. 
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These timescales correspond to O3 decrease rates (−

d[O3]

dt
) that range between 0.02 

and 30 nmol mol-1 hr-1 (average and standard deviation: 3.5 ± 5.4 nmol mol-1 hr-1).  By 

comparison, Tuckermann et al. (1997) reported O3 decrease rates ranging from 0.24 to 7 

nmol mol-1 hr-1
 from their measurements in Ny-Ålesund, Spitsbergen.  Removing coastal 

site data (O-Buoy1 2009, deployed in Barrow, AK) from the histogram did not significantly 

alter the τO3
distribution.  For the six ODEs with τO3

 equal to 50 hours or longer, two cases 

occurred in June after changes in O3 levels had become much more gradual, relative to the 

sporadic and episodic nature of the preceding months (Feb. through May).  Apart from 

these two events, which occurred at higher temperatures, there was no clear difference in 

the local average wind speeds or temperatures that was unique to the remaining four of 

these six events.  However, a likely cause for these extended events is poor vertical mixing 

in the absence of frontal passages.  Recent work by Moore et al. (2014) and Peterson et al. 

(2016) provides evidence of coastal O3 recovery to background levels when air passes over 

open leads.  This recovery is hypothesized to occur due to increased convective mixing and 

downward transport of ozone from aloft.  Thus, a longer depletion timescale may also 

imply a large-scale ice-covered surface. 

If the observed ODEs were indeed dominated by the CM at the location of the O-

Buoys (i.e. TM is minimized in the apparent τO3
), it is surprising that the majority of cases 

featured such short apparent timescales of O3-depletion (τO3
< 12 h).  As discussed in 

Section 3.3.1, previous model estimates of O3-depletion timescales due to chemistry are 

typically on the order of days (Hausmann and Platt, 1994; Jobson et al., 1994; Piot and von 
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Glasow, 2008, 2009; Tuckermann et al., 1997).  Generally, fast τO3
 observed at coastal 

sites have been attributed to TM.  In these cases, O3 is hypothesized to be chemically 

destroyed upwind (i.e. over the Arctic Ocean), and the apparent τO3
is a function of both 

the rate at which the O3-depleted air mass travels across the measurement site, and the 

horizontal concentration gradient at the edges of those air masses.  For example, Morin et 

al. (2005) observed O3 levels to fall from mole fractions of ~30 nmol mol-1 to less than 5 

nmol mol-1 in around 3 minutes from over the Arctic Ocean, 6 km off the coast of Alert, 

Canada.  However, fast O3 depletion attributed to local chemistry has been previously 

reported: using measurements from aboard the icebreaker RV Polarstern in the Arctic 

Ocean, Jacobi et al. (2006) observed a decrease in O3 from 40 nmol mol-1 to < 1 nmol mol-

1 in less than 7 hours. 

To interpret the results from the O-Buoys, we first explore the extent to which 

known chemical mechanisms could account for the observed τO3
 values (i.e. the CM 

dominates while the TM is minimal).  Rates of O3 loss during ODEs have been previously 

thought to be limited by Reactions R3.3-R3.4 at high BrO levels, estimated by Equation 

3.3 below (Le Bras and Platt, 1995; Platt and Janssen, 1995). 

 

(−
d[O3]

dt
) = 2𝑘BrO+BrO[BrO]2 + 2𝑘BrO+ClO[BrO][ClO]      E3.3  

 

Recently, Liao et al. (2012a) and Liao et al. (2014) report that R3.3 and R3.4 only account 

for around 40% of the total O3-depletion chemistry observed during the 2009 OASIS field 

campaign.  Thompson et al. (2016), using a 0-D model constrained by chemical data 



90 

 

 

collected during the same campaign, found that Br-atom destruction of O3 has a low 

homogeneous gas phase radical propagation chain length (close to 1).  Because of this 

small chain length, the dominant source of Br atoms that destroy O3 appears to be the 

photolysis of Br2 and BrCl emitted from the surface or aerosols, and thus most of the BrO 

that is produced terminates via reaction with HO2 (R3.5) (or NO2 for more polluted areas, 

such as Barrow, AK).  Indeed, estimating the rate using Equation 3.3 assumes that all Br 

atoms are produced from Reactions R3.3 and R3.4, which is inconsistent with the observed, 

often large concentrations of Br2 (Liao et al., 2012a).  The BrO termination pathways would 

result in more heterogeneous recycling of Br atoms.  They then compared 
d[O3]

dt
 as 

calculated by both Equation 3.3 and by the net chemical O3-destruction rate (Equation 3.4). 

 

(−
d[O3]

dt
) = 𝑘[Br][O3] + 𝑘[Cl][O3] + 𝑘[O(1D)][H2O]    E3.4 

          + 𝑘[OH][O3] + 𝑘[HO2][O3] − 𝑘[BrO][NO] 

         −𝐽[BrO] − 𝑘[ClO][NO] − 𝐽[ClO]       

 

In calculating 
d[O3]

dt
, a regression between the rates showed that using only Equation 3.3 

underestimates the net 
d[O3]

dt
 (from Equation 3.4) by a factor of 4.1 on average by neglecting 

other chemical pathways (Thompson et al., 2015).  Therefore, we estimate the BrO mole 

fractions required to cause the observed τO3
 according to Eqs. 3.5 and 3.6 below.  These 

equations include the factor of 4.1 that accounts for the production of bromine atoms via 

Br2 and BrCl photolysis, two molecular halogens derived from heterogeneous recycling of 

species such as HOBr and BrONO2 on halide-containing aerosols or the saline snowpack 
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(Abbatt et al., 2012; Simpson et al., 2007b).  A constant ClO concentration of 1.7 x 108 

molecules cm-3 (6 pmol mol-1 at 248 K and atmospheric pressure) was assumed based on 

average concentrations measured during the 2009 OASIS campaign (Stephens, 2012). 

 

(−
d[O3]

dt
) = 4.1 ×  (2𝑘BrO+BrO[BrO]2 + 2𝑘BrO+ClO[BrO][ClO])       E3.5  

τO3
=

[O3]avg

4.1 × (2𝑘[BrO]2+2𝑘[BrO][ClO])
       E3.6 

 

Because Thompson et al. (2015, 2016) utilized a temperature of 248 K in their 

model, consistent with average local temperatures at Arctic coastal sites in the springtime, 

we also use this temperature for our BrO mole fraction estimations.  The rate constants 

kBrO+BrO = 3.8 x 10-12 cm3 molecules-1 s-1 and kBrO+ClO = 8.2 x 10-12 cm3 molecules-1 s-1 were 

calculated based on Sander et al. (2011) and Atkinson et al. (2007), respectively.  However, 

it should be noted that the rate constants change by only < 8% when calculated at 273K 

(kBrO+BrO = 3.5 x 10-12 cm3 molecules-1 s-1 and kBrO+ClO = 7.6 x 10-12 cm3 molecules-1 s-1).  

We note that kBrO+ClO includes both R3.4a and R3.4b.  The calculated BrO mole fractions 

corresponding to the estimated τO3
range from ~1 pmol mol-1 (τO3

 = 356 hours) to 115 pmol 

mol-1 (τO3
= 28 minutes), with a median of 16 pmol mol-1 (Figure 3.7b).   The majority of 

the calculated distribution of BrO required is fairly comparable to previously reported 

enhanced surface BrO mole fraction ranges, which often peak around 20-40 pmol mol-1 

(Hausmann and Platt, 1994; Hönninger et al., 2004b; Pöhler et al., 2010; Tuckermann et 

al., 1997).  Indeed, 32 out of 38 events were calculated to require less than 40 pmol mol-1 

of BrO for O3 depletion.  If, however, expected BrO were calculated based on Equation 3.6 
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without the factor of 4.1 (i.e. expected BrO based R3.3 and R3.4), this number decreases 

to 20 out of 38 events.  For the O-Buoy1 (Barrow, AK) and O-Buoy2 deployments, MAX-

DOAS BrO data are available for comparison with the calculated BrO estimations (Figure 

3.7b; Table 3.3). 

 

 

Table 3.3 Average BrO mole fractions during periods of O3 decrease from O-Buoy2 

MAX-DOAS, the corresponding propagated errors, and the estimated BrO required for 

the observed O3 depletion timescales based on Equation 3.6 (Sect. 3.3.1). 

ODE start time 

(UTC) 

O3 decrease stop 

time (UTC) 

Observed 

𝛕𝐎𝟑
(hours) 

Average 

observed BrO 

(pmol mol-1) 

Measurement 

uncertainty 

(pmol mol-1) 

Estimated 

BrO required 

from 

observed 𝛕𝐎𝟑
 

(pmol mol-1) 

15 Apr 2011 18:47 16 Apr 2011 06:41 10.5 7.2 3.5 17.5 

19 Apr 2011 04:15 19 Apr 2011 04:53 0.5 5.4 3.5 114.7 

26 Apr 2011 14:46 26 Apr 2011 22:29 16.2 5.2 3.2 14.8 

03 May 2011 11:37 03 May 2011 14:50 1.6 2.6 2.3 33.5 

06 May 2011 12:58 07 May 2011 21:32 11.8 5 3.5 15.1 

26 May 2011 21:22 28 May 2011 00:59 40.6 0.9 3.2 9.7 

 

 

Though these observed BrO mole fractions exhibit maxima higher than 20 pmol mol-1 (ex. 

Figure 3.2), the average BrO mole fractions during periods of O3 decrease (ODE start time 

– O3 decrease stop time; Sect. 3.2.2) were found to be much less than 20 pmol mol-1 (Table 

3.3). 
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The amount of MAX-DOAS data available during the 2009 deployment of O-

Buoy1 in Barrow was limited by the amount of solar radiation present.  The solar elevation 

angle remained low enough such that there can exist substantial gaps between subsequent 

periods of BrO measurements.  In spite of these gaps, the average BrO mole fractions 

during three ODEs were comparable to the calculated BrO required for the observed ozone 

depletion timescale (Table 3.4). 

 

 

Table 3.4 Average BrO mole fractions during periods of O3 decrease from O-Buoy1 at 

Barrow, AK, MAX-DOAS, the corresponding propagated errors, and the estimated BrO 

required for the observed O3 depletion timescales based on Equation 3.5. 

ODE start time 

(UTC) 

O3 decrease  

stop time (UTC) 

Observed 

𝛕𝐎𝟑
 (hours) 

Average 

observed BrO 

(pmol mol-1) 

Measurement 

uncertainty  

(pmol mol-1) 

Estimated 

BrO 

required 

from 

observed 

𝛕𝐎𝟑
 (pmol 

mol-1) 

30 Mar 2009 20:06 31 Mar 2009 19:20 24.3 8.5 3.2 9.0 

12 Apr 2009 06:18 14 Apr 2009 11:22 71.7 13.0 3.2 4.0 

02 May 2009 05:51 02 May 2009 23:00 18.7 13.1 3.0 15.2 

 

 

In the events starting 30 Mar 2009 (Figure 3.8a) and 12 Apr 2009 (Figure 3.8b), O3 levels 

can be seen to decrease as BrO begins to rise before the several hour BrO data gaps.  As 
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can be seen from Table 3.4, the average BrO observed during this period was 8.5 pmol 

mol-1 and 13.0 pmol mol-1 for 30 Mar and 12 Apr, respectively, while the observed rate of 

O3 depletion was calculated to require 9.0 pmol mol-1 and 4.0 pmol mol-1, respectively.  

The 30 Mar event occurred with relatively steady winds (between 6 and 8 m s-1), while the 

12 Apr event wind speeds gradually fell from 10 m s-1.  Both events occurred under fairly 

steady temperatures.  The third event (02 May 2009) required 15.2 pmol mol-1 BrO, while 

the observed BrO was 13.1 pmol mol-1.  This event also occurred under steadily decreasing 

temperatures and calm winds (≤5 m s-1; Figure 3.8c).  While there are no BrO data at the 

onset of O3 depletion, there was a noticeable increase in BrO levels in the mid-afternoon.  

Forty-eight hour HYSPLIT backward trajectories (Draxler, 1999) were computed every 2 

hours during the period of O3 decrease, starting from the O3 decrease stop time (Figure 

3.8d,e, f).  For the 30 Mar and 12 Apr events, the trajectories agreed that the air masses  
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Figure 3.8 Periods of O3 decrease from O-Buoy1 at Barrow and corresponding 48 hour 

HYSPLIT backward trajectories (computed every two hours during these time periods).  

Decrease starts at a, b) 20:06 30 Mar 2009; c, d) 06:18 12 Apr 2009; and e, f) 05:51 02 

May 2009.  Transparent black bars represent the ODE start time and O3 decrease stop 

time as defined in Sect. 3.2.2. 
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travel near the coast of the Canadian archipelago, an area for which satellites have observed 

enhanced BrO (Choi et al., 2012; Koo et al., 2012; Richter et al., 1998; Salawitch et al., 

2010).  The trajectories during the 02 May O3 decrease showed that air had traveled from 

across the sea ice in the Beaufort and Chuckchi Seas. 

It would be expected that Barrow, a coastal location, would observe ODEs 

primarily due to the advection of O3 depleted air, given the evolution of the solar elevation 

angle during polar spring and findings from previous studies (Bottenheim and Chan, 2006; 

Koo et al., 2012; Oltmans et al., 2012).  The observations here are not inconsistent with 

these ODEs initiating locally relative to the O-Buoy given the presence of BrO; in the 

absence of O3, the lifetime of BrO is controlled by its photolysis, which is about 100 

seconds (Lehrer et al., 2004; Simpson et al., 2007), and thus observations of local BrO in 

the boundary layer should be indicative of active O3 destruction chemistry.  However, the 

gaps in the BrO data prevent us from making any further conclusions. 

For the cases in which there were enough BrO data to make comparisons, observed 

BrO levels were found to be lower than the calculated BrO required by Eqs. 3.5 and 3.6, 

even when considering the propagated measurement error (Table 3.3; described in Section 

3.2.1).  Indeed, in two of the O-Buoy2 cases, the observed BrO levels are less than a tenth 

of that required.  This result is surprising since the Arctic Ocean is the assumed originating 

site for ODEs.  At least for O-Buoy2, the observed BrO, assumed 6 pmol mol-1 ClO, and 

factor of 4.1 cannot account for the apparent τO3
. 

Possible reasons for the observed small τO3
 values can be summarized by the 

following two hypotheses:  
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1) There are chemical mechanisms for O3 destruction that are currently not being 

considered, or other radical levels (e.g. IO, ClO, HO2) are higher than assumed 

here. 

2) Most ODEs chemically initiate upwind of the O-Buoys such that the observed 

τO3
 largely result from TM, as discussed above.   

Concerning the first hypothesis, the presence of I2 has been directly observed only recently 

at the coastal site of Barrow, AK (Raso et al., 2016).  Models have shown that iodine 

chemistry has the potential to have a significant impact on O3 destruction chemistry due to 

the very fast rate constant for IO reaction with BrO (~32 times faster than Reaction R3.3) 

(Atkinson et al., 2007; Calvert and Lindberg, 2004).  In a photochemical box model, Saiz-

Lopez et al. (2007) found the ozone loss rate increased by a factor of 4 when iodine was 

included with bromine chemistry to destroy ozone (via IO + BrO, kIO + BrO = 1.2 x 10-10 cm3 

molecule-1 s-1 at 248 K).  Additionally, the enhanced salinity of first year ice could be a 

reason for enhanced chlorine radical production as compared to coastal (e.g. Barrow) 

observations, or snowpack sources of HOx (HONO (Zhou et al., 2001), HCHO (Sumner et 

al., 2002; Sumner and Shepson, 1999), or H2O2 (Hutterli et al., 2001; Jacobi et al., 2002)) 

could enhance HO2 levels and thus reactivity. 

We can potentially test for O3-depletion chemistry missing from Equations 3.4-3.6 

by examining the distribution of the ozone tendency, (
d[O3]

dt
), with and without the 

calculated component from the chemistry included in Equation 3.5.  First, the observed 

short-term ozone tendency was calculated for values of dt between consecutive BrO 

measurements (currently O-Buoy1 at Barrow, and O-Buoy2 in the Beaufort Sea) and 
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plotted in Figure 3.9.  Both distributions are zero centered (average Barrow: 0.15 nmol 

mol-1 hr-1; average Beaufort: 0.01 nmol mol-1 hr-1) with heavy tails on each side.   

 

Then, 
d[O3]

dt
 was calculated using Equation 3.5, as above (Figure 3.9c, d); this represents the 

component of the observed 
d[O3]

dt
 resulting from O3 depletion chemistry.  By subtracting 

these two results, we obtain the distribution of ozone tendencies not accounted for by the 

considered chemical mechanisms (Figure 3.9e, f).  These two distributions (representing 

Figure 3.9 Histogram of the O3 tendency for observations from O-Buoy1 at Barrow, AK 

(a,c,e), and O-Buoy2 in the Beaufort Sea (b,d,f).  Top plots (a, b) show the distributions 

of observed O3 tendencies between consecutive BrO measurement points. Middle plots 

(c, d) represent the O3 tendency distribution based on the depletion chemistry accounted 

for by Equation 3.5.  Bottom plots (e, f) result from the difference of the observed O3 

tendency (a, b) and the contributions of the chemistry accounted for by Equation 3.5 (c, 

d). 
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all observations, and those with known chemistry removed) do differ significantly after 

this subtraction at the 95% confidence level according to the Kolmogorov-Smirnov test (p-

value = 4.9 x 10-4 and 1.4 x 10-6 for the O-Buoy1 and 2 results, respectively).  Both 

distribution averages become more shifted from zero, with an average 
d[O3]

dt
 of -0.43 nmol 

mol-1 hr-1 for O-Buoy1, and -0.18 nmol mol-1 hr-1 for O-Buoy2.  However, it can be shown 

that the overall symmetry does slightly improve after subtraction by calculating skewness 

(Equation 3.7), 

 

skewness =  
∑ (𝑥𝑖−�̅�)𝑁

𝑖=1

3

(𝑁−1)𝑠3         E3.7 

 

where N represents the number of measurements and s represents the standard deviation of 

a sample.  Skewness decreases in magnitude from -0.38 to -0.25 for the O-Buoy1 at Barrow 

case, and from -0.82 to -0.80 in the O-Buoy2 in the Beaufort Sea case.  Springtime chemical 

O3 production in the Arctic boundary layer has been found to be essentially negligible 

(Helmig et al., 2009, 2012), and so it is likely the positive portions of these distributions 

result from air mass transport and vertical mixing.  This analysis then produces a result not 

inconsistent with the idea that the remainder of the negative 
d[O3]

dt
 represents air mass 

transport. 

Hypothesis two, in which the TM dominates the observed τO3
, is in line with those 

of many previous studies (e.g., Bottenheim et al., 2009; Hausmann and Platt, 1994; Jacobi 

et al., 2010; Morin et al., 2005).  As discussed in these studies, fast O3 depletion can often 

be attributed to changes in air mass flow, and surface O3 mole fractions can return to 
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background levels upon the passage of low-pressure systems, with associated enhanced 

vertical mixing.  The idea that most of the negative side of the ozone tendency distribution 

results from transport and not local chemistry is statistically possible only if the average 

spatial scale of an ODE region is below some critical size (discussed below in Sect. 3.3.2). 

   

3.3.2 ODE Spatial Scales 

To estimate the spatial scales of ODEs, we combined O-Buoy observations with 

backward air mass trajectory analysis (Sect. 3.2.3).  This analysis assumes O3 depletes 

within an air mass upwind via CM, and this air mass subsequently roams across the 

measurement site; the size of this O3-depleted air mass can be estimated from the length of 

time O3 is depleted and the wind speed (i.e., TM dominates the CM at the observation site).  

We emphasize, however, that the observations likely involve some combination of both 

TM and in situ CM, given O-Buoy detection of BrO, which is indicative of active O3 

depletion chemistry.  It is of course conceptually possible that other transport scenarios 

exist; for instance, conditions could exist in some region upwind that result in the 

continuous depletion of O3-containing air masses that pass over this region.  This depleted 

air may then pass over the buoy.  If the depleted air remains intact, however, the spatial 

scale calculations would still apply. 

As shown in Figure 3.10, the median of the one-dimensional length for the ODEs 

was 877 km. While the estimated size distribution of the MODEs (O3 < 10 nmol mol-1) 

showed no clear mode, it is clear that the distribution contains mostly (relatively) smaller 

events, with a median size of 282 km.   
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The distribution of results is also consistent with observations by Jones et al. (2013) 

and Ridley et al. (2003), who both reported ODEs of spatial dimensions of at least 1200 

km and between 600 and 900 km, respectively.  The results presented here strongly suggest 

that large areas of the Arctic are at least partially depleted during Arctic springtime with 

local embedded areas that are more depleted.  While these isobaric trajectories likely 

Figure 3.10 a) Histogram of ODE dimensions for all ODEs.  The median of the 

distribution is 877 km.  b) Histogram of dimensions of MODEs.  The median of the 

distribution is 282 km. 
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represent the near-surface transport path of depleted air (Seabrook et al., 2013), we also 

estimated the ODE spatial scales using isentropic back trajectories (starting at 10 m above 

ground level) and the local wind speeds using the O-Buoy anemometer (Equation 3.2).  

The means for the isobaric- (1013 ± 379 km), isentropic- (1260 ± 279 km), and local wind 

speed-based (1154 ± 341 km) spatial scale distributions were statistically similar at the 95% 

confidence level (confidence intervals reported here).  Additionally, spatial scale 

estimation using the distance between the isobaric trajectory start and end points yielded 

comparable results (mean 947 ± 238 km). 

As discussed in Sect. 3.3.1, known chemical mechanisms could not account for the 

observed τO3
 values, suggesting these fast τO3

values were due in large part to TM.  A 

Monte Carlo simulation experiment was conducted with the aim of examining the 

statistical possibility that all observed ODEs, based on the general ODE definition (O3 ≤ 

15 nmol mol-1), could have occurred upwind of the buoy and were observed because of 

TM.  As described in Sect. 3.2.4, the simulations were conducted by randomly placing 

circles (hypothetical ODEs/source regions) across an area the size of the Arctic Ocean sea 

ice.  These circles were defined using the distribution of ODE spatial scales determined 

from the 17 events observed by the O-Buoy1 and O-Buoy2 deployments (Figure 3.11).   
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We note that assuming circular regions for ODEs could underestimate the ODE 

size since it assumes the center of the event passes over the buoy, when in fact a secant is 

more likely.  Additionally, the area could be overestimated if the true ODE shapes are 

actually elliptical or irregular in shape.  For this statistical exercise, we made the 

assumptions that the circles could appear (initiate) anywhere across the Arctic Ocean, and 

that the circles could also represent possible sizes of ODE source regions.  While there is 

evidence to suggest the existence of specific source regions favorable to ODE formation 

(Bottenheim et al., 2009; Bottenheim and Chan, 2006; Koo et al., 2012; Simpson et al., 

2007a; Theys et al., 2011), no definitive conclusions have yet been made from in-situ 

observations regarding either the locations or the sizes of such regions.  We also assume 

Figure 3.11 Distribution of ODE sizes utilized in the Monte Carlo experiments (subset of 

those estimates in Figure 3.10).  These 18 sizes come from O3 data observed from O-

Buoy1 in 2010 and O-Buoy2 in 2011, both deployed in the Beaufort Sea.  Note that this 

distribution includes the largest ODE size that was excluded from the Monte Carlo 

simulations. 
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that that the circle must be contained wholly within the bounds shown in Figure 3.6 in order 

to equally represent all sizes from the distribution.  We acknowledge that this assumption 

could overestimate the frequency with which ODEs overlap with the buoy, as ODEs have 

been observed in sub-Arctic regions, such as Kangerlussuaq, Greenland (67˚N, 51˚W) 

(Miller et al., 1997), and Hudson Bay (55˚N, 75˚W; Hönninger et al., 2004a).  However, 

this approach could also underestimate the frequency of overlap, as ODEs that initiate 

remotely from the buoy would be less likely to be part of the observed distribution of events; 

in other words, it is also possible that the study region for the Monte Carlo simulation could 

be too large.  It is also assumed that the circles represent fully formed O3-depleted air 

masses or source regions, and that a circle overlapping with the buoy represents “local” 

ODE initiation relative to the O-Buoy. 

The Monte Carlo simulations show that the randomly placed circles most often do 

not overlap with the measurement site (Figure 3.12a).  In fact, only very large sizes (larger 

than ~1750 km) were likely to intercept the O-Buoy location with a significant probability 

(> 10%), as shown in Figure 3.12b.  Specifically, none of the 17 circles overlapped with 

the O-Buoy site in 58% of the 2000 simulation iterations, and only one circle (in 17) 

overlapped with the O-Buoy site in 33% of iterations.  For the median ODE size, the 

probability of any individual event overlapping the Buoy was less than 1%, as shown in  
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Figure 3.12b.  Therefore, the spatial statistics exercise supports the possibility that the 

overwhelming majority of ODEs observed by the O-Buoys in the Beaufort Sea could have 

been observed primarily due to TM, and ODEs initiated upwind.  We emphasize that this 

Monte Carlo exercise does not prove that this is the case, only that this hypothesis is not 

inconsistent with the observed ODE spatial scales.  The practical question is then raised as 

to how many buoys (observation sites) must be present to increase the probability of 

observing an ODE primarily due to local chemistry (with the assumption of equal 

probability of initiation across the Arctic Ocean and that ODE sizes represent source 

regions, as assumed for the Monte Carlo experiment).  If, for example, two additional O-

Buoys were deployed near North Pole (86˚ N, 54˚ W) and in the East Siberian Sea (75˚ N, 

170˚ E), both potential sites of future O-Buoy deployments, repeating the simulations 

Figure 3.12 Results from Monte Carlo simulation experiment.  a) Based on the size 

distribution as defined by the ODE definition (O3 ≤ 15 pmol mol-1), circular areas were 

shown to not overlap with the site of the O-Buoy 58% of the time (mode = 0), followed 

by an overlap of one circle 33% of the time. b) Plot of the probability that an individual 

circle overlaps with the measurement site vs the size of the circle. 
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showed that five out of 17 circles overlapped with at least one measurement site, with no 

simulation iterations resulting in zero circle overlaps (Figure 3.13).   

 

 

Figure 3.13 Results from Monte Carlo simulation experiment with three observation sites.  

Histogram shows the number of times a circular air mass overlapped with at least one 

observation site out of 2000 iterations. 
 

 

This result emphasizes the need for multiple, simultaneous deployments of O-Buoys across 

different geographical regions to ensure that local scale chemistry is observed within one 

deployment season.  

To examine if there is a consistent upwind region from which ODEs travel, wind 

rose plots were constructed for the ODEs observed by O-Buoy1 and O-Buoy2 in the 

Beaufort Sea, as shown in Figure 3.14.   
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As above, the O-Buoys deployed in the Beaufort Sea were chosen because of their 

similar locations and drift trajectories, providing the needed statistics for the analysis.  

During ODEs (Figure 3.14a), air masses most commonly traveled from the north (~39% 

of cases), followed by the east (~33% of cases) and the west (~22% of cases).  For the 

MODE air masses, the trajectories most often originated from the eastern sector (~41% of 

cases; Figure 3.14b), and the northern and western sectors accounted for ~27% of cases 

each.  Finally, for cases in which O3 was not depleted (non-ODE cases; Figure 3.14c), the 

eastern and western sectors each accounted for 35% of cases, and the north accounted for 

24%. Only one event in each case showed an air mass originating from the south, toward 

the Alaskan and Canadian coasts.  The results presented are consistent with a hypothesis 

that all regions that are sea-ice covered can support ODE chemistry.  Notably, the region 

to the east of the buoys (i.e. from the Canadian archipelago and eastern Beaufort Sea) 

features sea ice that historically contains a high fraction of multi-year ice (Kwok et al., 

2009), and GOME satellite imagery has previously shown large amounts of BrO to be 

Figure 3.14 Wind rose plots based on the HYSPLIT backward air mass trajectories 

showing measured wind direction (degrees) and frequency (%), for a) ODEs, b) 

MODEs, and c) non-ODEs observed during the two O-Buoy Beaufort Sea deployments 

(see Figure 3.1 and Table 3.1). 

 

 



108 

 

 

present in this region (Choi et al., 2012; Koo et al., 2012; Richter et al., 1998; Salawitch et 

al., 2010).  Using backward air mass trajectories originating from the coastal sites of Alert, 

Canada, and Zeppelinfjellet, Svalbard, Bottenheim and Chan (2006) suggested that ODE 

air mass source regions could be in the East Siberian Sea, an area to the northwest of the 

O-Buoys that features first year ice that breaks up in spring.  It should be noted, however, 

that Bottenheim and Chan (2006) only reported trends during the month of April, as 

opposed to this study that examined ODEs from as early as February to as late as June 

(Table 3.1 and Figure 3.2).  Unfortunately, there were not enough events per month here 

to observe any clear monthly source region trends.  Additionally, while the ODE and 

MODE cases show slight preferences for northern or eastern winds, respectively, the non-

ODE cases do not appear to differ significantly from the ODE and MODE cases.  As 

recently presented by Moore et al. (2014), it is also possible that O3 recovers when air 

passes over open sea ice leads due to convective mixing, and air that passed over unbroken 

ice was more often O3-depleted, and thus local sea ice conditions and the overlying 

snowpack could have a more direct impact on O3 levels than the wind direction. 

 

3.3.3 Temperature and Wind Speed during ODEs 

Figure 3.15 shows the distribution of average temperatures that applied during the 

ODEs in this study.   
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Local average temperatures during ODEs ranged between 243 K and 273 K (Figure 3.15a; 

median 257 K).  The apparent mode of the distribution (261 K) is 8 K warmer than the 

hypothesized required upper limit temperature for rapid ozone depletion (253 K).  Indeed, 

~66% of the ODEs occurred at average temperatures greater than 253 K.  An illustrative 

event is shown in Figure 3.2; the O-Buoy2 ODE occurring in early June shows a noticeable 

increase in BrO while temperatures average around 270 K.  The temperatures for MODEs 

resulted in a similar distribution (Figure 3.15b).  If, however, ODEs most often originate 

upwind from the site of O-Buoys, the local temperatures could be irrelevant, as the actual 

depletion chemistry may have taken place at a location where the temperature was much 

lower.  To examine this, the isobaric HYSPLIT backward air mass trajectories were utilized 

Figure 3.15 Histograms of the average ambient temperature measured by the O-Buoys 

during a) ODEs and b) MODEs.  Histograms of the average temperature along the 

HYSPLIT backward air mass trajectories for c) ODEs and d) MODEs. 
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to estimate the average temperatures experienced by the observed air mass upwind.  In 

Figure 3.15c and Figure 3.15d, we present histograms of the average temperatures from 

each air mass trajectory for both ODEs and MODEs, which were observed to be very 

similar (medians: ~258 K and 257 K for ODE and MODE, respectively) and not 

significantly different from those measured at the O-Buoys.  As with the local observations, 

~2/3 of the trajectory temperature averages were above 253 K, though we acknowledge 

that there is a high level of uncertainty associated with using an air mass back trajectory 

model for such a purpose in a data sparse region (Kahl, 1993).  Additionally, we analyzed 

the minimum temperatures observed by the O-Buoy and from HYSPLIT trajectories during 

the same depletion periods.  The median minimum temperatures observed at the O-Buoy 

are 251 K and 253 K for the ODE and MODE cases, respectively.  Similarly, the median 

minimum temperatures obtained from HYSPLIT trajectories are 250 K and 254 K for the 

ODE and MODE cases, respectively.  In both cases, it is interesting that only about half of 

the events were observed with minimum temperatures less than the eutectic temperature of 

NaCl (252 K), consistent with the results above.  This analysis reveals no apparent 

temperature threshold for O3 depletion, and shows that temperatures below 253 K were not 

necessary to observe ozone-depleted air masses, corroborating the conclusions of 

Bottenheim et al. (2009) and Jacobi et al. (2010). 

 Recent reports discuss the possibility that ODEs can be initiated after blowing snow 

events (Frieß et al., 2011; Jones et al., 2009; Yang et al., 2008, 2010), which presumably 

produce the availability of new saline surfaces, whether in suspended aerosol form, or 

through redeposition of sea salt aerosol to the physical surface.  Blowing snow events occur 

during periods of higher wind speeds (> 8 m s-1) (Frieß et al., 2011), implying that there 
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might be a relationship between wind speed and ODEs.  We thus performed an analysis for 

wind speeds analogous to the temperatures using both local O-Buoy data and HYSPLIT 

backward trajectories.  Figure 3.16 shows that ODEs observed at the O-Buoy were 

characterized by low measured wind speeds (median of 3.6 m s-1 and a mode of 3.5 m s-1), 

relative to what is needed for blowing snow.   

 

 

 

Figure 3.16 a) Histogram of the average wind speed measured by the O-Buoys during 

ODEs. b) Histogram of average wind speeds from O3-depleted air masses, as determined 

from the HYSPLIT backward air mass trajectories. 

 

 

However, there is also a difficulty in this analysis in that, under these circumstances, when 

the air is most of the time at least partly depleted, such a histogram may reflect, at least in 

part, the normal distribution of wind speeds found in the Arctic troposphere.  Therefore, 

for comparison, periods when O3 was not depleted (non-ODEs) were examined.  As shown 

in Figure 3.17, there was no apparent difference in the modes for non-ODEs relative to the 

depleted cases.   
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Figure 3.17 a) Histogram of the average wind speed measured by the O-Buoys during non-

ODEs. b) Histogram of average wind speeds from non-ODEs, as determined from the 

HYSPLIT backward air mass trajectory. 

 

 

We reiterate that the O-Buoy wind speed measurements reported here could be biased low 

(see Sect. 3.2.1); thus, we compare this distribution to one determined by the HYSPLIT 

method below. 

The distribution of average wind speeds along the HYSPLIT trajectories (Figure 

3.16b) reveals a faster median wind speed of 4.9 m s-1, potentially consistent with ODEs 

occurring at somewhat higher wind speeds.  However, the distribution showed no clear 

preference for higher wind speeds for ODEs.  During non-ODE periods (Figure 3.17), we 

found the majority of wind speeds to be between 3 and 6 m s-1, similar to that for the ODE 

cases, showing that the wind speeds characterizing the upwind air masses observed for 

ODEs are not different from those for non-depleted conditions.  From this analysis, we 

found that elevated wind speed appeared to be neither a prerequisite, nor a defining 

characteristic for ODEs, as also found by Helmig et al. (2012) and Solberg et al. (1996). 
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3.4 Conclusions 

The O-Buoy was developed in part to enable the observation of ODEs at the 

hypothesized location of their initiation, the frozen Arctic Ocean surface.  Surface 

measurements of ambient O3, BrO, temperature, and wind speed from five separate O-

Buoy deployments were utilized to gain insights into the characteristics of ODEs observed 

over the Arctic Ocean.    

The apparent timescales of O3 depletion during ODEs, based on both CM and TM, 

were calculated to be shorter (median of 11 hours) than previous modeled chemical 

estimates (e.g., Hausmann and Platt, 1994) by a factor of two or more.  This observation 

suggests the O3 depletion timescales are dominated by TM, accelerated chemical 

mechanisms involving higher radical levels, or novel chemical mechanisms.  Given recent 

observations of up to 5 pmol mol-1 of I2 within coastal Arctic snowpacks, chemical 

modeling of O-Buoy data will be able to more thoroughly interrogate whether chemistry 

can account for the ODE kinetics. 

If TM are assumed to dominate local observations, spatially, the majority of the 

Arctic Ocean marine boundary layer is likely at least partially depleted in O3 during spring, 

suggesting that O3-depleted air masses remain intact for long periods of time after halogen 

chemistry has subsided.  Regions of MODEs (O3 < 10 nmol mol-1) were, on average, 

smaller, with a median of 282 km, compared to a median of 877 km for ODEs (O3 ≤ 15 

nmol mol-1).  An expanded network of O3 monitors across the Arctic Ocean is required to 

effectively capture the spatial extent of the small, actively O3-depleting air masses, as well 

as that of the larger, depleted air masses.  Monte Carlo simulations supported the possibility 

that these spatial ODE sizes are consistent with depletion upwind of the O-Buoy, followed 
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by air mass transport to the buoy.  However, the degree to which process dominates local 

observations of ODEs (TM vs. CM) is unknown, as O-Buoy observations of BrO indicate 

that there is generally always some degree of chemistry involved.  Thus, to further address 

the question of the O3 depletion timescales, more long-term O3 and halogen measurements 

over the Arctic Ocean sea ice are necessary, particularly in locations such as the East 

Siberian and Chukchi Seas. 

There was no apparent temperature dependence observed for the presence of an 

ODE, and low temperatures (i.e. less than 253 K) were not required for the observation of 

an ODE.  The distribution of wind speeds local to the O-Buoy was moderately low during 

ODEs (mode of ~3.5 m s-1), showing that ODEs were primarily observed under relatively 

calm conditions.  While higher average wind speeds (median ~5 m s-1) were estimated for 

the course of the backward air mass trajectory, we did not observe a clear preference for 

ODEs occurring during higher wind speeds.  Concurrent measurements of blowing snow, 

sea salt aerosol, ozone, and halogens, in addition to wind speed, are required to better 

understand the relationship between wind speed and ODEs.  
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 AIR MASS HISTORIES AND METEOROLOGY DURING PERIODS 

OF OZONE DEPLETION EVENTS FROM ARCTIC OCEAN-BASED 

MEASUREMENTS 

4.1 Introduction 

The rise of the springtime sun in polar regions causes the rapid and episodic 

depletion of boundary layer O3 concentrations (Anlauf et al., 1994; Barrie et al., 1988; 

Bottenheim et al., 1986).  These so-called ozone depletion events (ODEs) cause shifts in 

regional tropospheric oxidation pathways for pollutants, such as hydrocarbons, that must 

be driven by species other than OH radicals, particularly Cl and Br atoms (Cavender et al., 

2008; Jobson et al., 1994).  The chemistry underlying this phenomenon is believed to be 

driven by halogen radicals (i.e., X = Br, I, and Cl), as shown below (R4.1-2). 

 

X2 + hν 
 

→ 2X         R4.1    

X + O3

 
→ XO + O2         R4.2     

  

Molecular halogens (X2) are believed to enter the Arctic atmosphere through the 

oxidation of halide ions within acidic brines or brine-like layers (quasi brine layer, QBL) 

that exists on the surfaces of surface-level snowpacks and aerosol
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 (Barrie et al., 1994a; Custard et al., 2016; Fan and Jacob, 1992; Michalowski et al., 2000; 

Pratt et al., 2013; Raso et al., 2016; Roberts et al., 2008; Tang and McConnell, 1996; Vogt 

et al., 1996, 1999).  This chemistry is detailed more thoroughly in Chapter 5, though the 

relevant reactions are presented below.  It is hypothesized that during polar sunrise, the 

flux of photons into the snowpack photolyzes hydrogen peroxide and nitrite within snow 

grains to produce hydroxyl radicals, as in Reactions 4.3-4.5 (Chu and Anastasio, 2003, 

2005; France et al., 2012). 

 

HOOH + hν → 2 OH         R4.3 

NO2
− + hν → NO +  O−        R4.4 

O− + H+  → OH         R4.5 

 

The OH radicals formed from these reactions react with halides, which ultimately form 

molecular halogens (R.4.6-4.10; Raso et al., 2016). 

 

OH + X− ↔ HOX−         R4.6 

HOX− + H+ → X + H2O         R4.7 

X + X− ↔ X2
−          R4.8 

2X2
− → X3

− + X−                     R4.9 

X3
− ↔ X− + X2          R4.10 
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In addition, heterogeneous processes can allow for the exponential buildup of halogens in 

the atmosphere through a series of reactions known as the “halogen explosion.” 

   

XO + HO2 → HOX + O2         R4.11 

HOX(g) → HOX(aq)          R4.12 

HOX(aq) 
+ X− + H+ → X2(𝑎𝑞) + H2O       R4.13 

X2(𝑎𝑞) → X2(𝑔)          R4.14 

 

In this series of reactions one gas phase X atom (in the form of HOX) enters the QBL / 

brine, while two are ejected back into the atmosphere.   

ODEs have been believed to require a source of bromine atoms, sunlight (R4.1), 

surfaces (e.g., frozen saline surfaces like snow or ice, or sea salt aerosol) that promote 

halogen recycling (i.e., the halogen explosion), low temperatures (e.g., < -20oC) (Tarasick 

and Bottenheim, 2002), and a stably stratified boundary layer (Anderson and Neff, 2008; 

Anlauf et al., 1994; Bottenheim et al., 2002b; Jacobi et al., 2010; Lehrer et al., 2004).  While 

bromine atoms are critical to O3 depletion, recent modeling and field results indicate that 

low levels of iodine could possibly be contributing significantly to this ODE chemistry 

(Calvert and Lindberg, 2004; Raso et al., 2016; Saiz-Lopez et al., 2007; Thompson et al., 

2015; Vogt et al., 1999).  With regard to low temperatures, multiple laboratory studies have 

found efficient production of Br2 when frozen halide surfaces are exposed to HOBr at 

temperatures below -20oC via R-4.12 - 4.14 (Adams et al., 2002; Huff and Abbatt, 2002).  

Because the eutectic point of NaCl•2H2O is -21oC, it is expected that the Cl- reservoir from 
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the quasi-brine layer (QBL) that exists on frozen surfaces is depleted by precipitation.  To 

maintain the presence of a QBL, freezing point depression dictates that the liquid volume 

of the QBL must decrease, thereby increasing the concentration of the remaining ions in 

solution (i.e., enhancing available surface Br-) (Koop et al., 2000) and enhancing 

atmospheric interactions.  Recent studies, however, note that low temperatures are not 

required for the observation of O3-depleted air (e.g., Bottenheim et al., 2009; Halfacre et 

al., 2014; Koo et al., 2012).  It has recently been proposed that it is not the actual 

temperature that affects O3 as much as the variation in temperature (Koo et al., 2012).  This 

would be consistent with studies observe recoveries in O3 associated with rising 

temperatures (e.g., Bottenheim et al., 2009) and depletions in O3 associated with decreasing 

temperatures (e.g., Zeng et al., 2003).  However, this, in combination with changes in 

pressure, suggest changes in air mass flow and possibly indicate O3 changes are the results 

of air masses with differing O3 mole fractions and temperatures (Jacobi et al., 2010).  

Finally, stable boundary layers are characterized by temperature inversions, which can be 

characterized when temperature increases with height in the boundary layer (Stull, 1988) 

(Figure 4.1).  In these cases, cooler, denser air is found closer to the surface and vertical 

transportation of air is inhibited, thereby limiting O3 depleted air masses to the surface. 
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There exists a large body of evidence to suggest ODE chemistry occurs 

predominantly over the frozen Arctic Ocean (and coastal Antarctic Southern Ocean).  The 

earliest extensive field studies of this chemistry, occurring at the coast of Alert, NU. 

Canada (see Figure 4.2), found correlations between low O3 concentrations and wind 

directions arriving from the north and northeast (Anlauf et al., 1994; Barrie et al., 1988; 

Bottenheim et al., 1990).   

Figure 4.1 Example of low ozone mole fraction during a temperature inversion (noted by 

increasing potential temperature with height) at Alert, NU (Figure 4.2).  Figure 

reproduced from Bottenheim et al. (2002). 
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These are directions associated with the Arctic Ocean.  In addition, an 18-day study 

on an ice floe 160 km northwest of Alert found no clear trends in wind direction and ODEs, 

but found that O3 depletion remained below limits of detection for longer periods of time 

than concurrent measurements at Alert (Hopper et al., 1994).  Early reports from Barrow, 

AK, did not show such a clear relationship; while higher O3 values at Alert were associated 

with free troposphere air mixed down to the surface by winds blowing over the nearby 

surrounding rough and elevated terrain, the area surrounding Barrow is relatively flat.  

Figure 4.2 Map of O-Buoy drift tracks relevant to this study.  O-Buoy 2 (OB2) was 

deployed in and drifted around the Beaufort Sea.  O-Buoy 4 (OB4) was deployed near the 

North Pole, and drifted south through the Fram Strait.  Icelander 2 (IL2) was installed on 

an ice floe to the west of Barrow, AK. 
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Oltmans et al. (1989) found that while ODEs were not associated with southerly winds at 

Barrow (i.e., winds traveling over land), southerly winds are generally infrequent during 

the Arctic spring along Alaska's north slope region.  Since these initial reports, a number 

of studies have utilized backward air mass trajectory modeling to further investigate the 

relationship between ODEs and their potential origin over the Arctic Ocean.  Concerning 

coastal sites, Solberg et al. (1996) found that ODEs at Zeppelin Mountain were most 

frequent when air traveled over the Arctic Ocean before arriving at the observation site.  

Simpson et al. (2007a) and Peterson et al. (2016b) both found that air masses with enhanced 

BrO concentrations arriving at Barrow exhibited some previous correlation with sea ice 

contact (R = 0.74 and 0.39, respectively).  In the most extensive ODE backward trajectory 

study to date, Bottenheim and Chan (2006) modeled air masses based on nine years of 

April coastal O3 data from Alert, NU, Canada; Zeppelin Mountain, Svalbard; and Barrow, 

AK (Figure 4.3).   
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It is clearly seen in each case that the lowest O3 values originate from air masses that spent 

time over the Arctic Ocean.  Low O3-containing air masses arriving at the Barrow site most 

often arrived within 1 day’s travel upwind, while similarly depleted air arriving at Mount 

Zeppelin and Alert were from several days upwind, with the most depleted air traveling 

over the East Siberian Sea.  In addition, several backward trajectory analyses have been 

conducted for ship-based observations, but no common ODE “source” region has been 

identified beyond those areas covered by sea ice (Bottenheim et al., 2009; Gilman et al., 

2010; Jacobi et al., 2006).  In addition, high levels of BrO have been observed over the 

Arctic Ocean by satellite observations (Richter et al., 1998; Theys et al., 2009, 2011). 

 There exist several different surface types in the Arctic region.  First year ice (FYI) 

is newly formed ice over the Arctic winter.  Because it is formed directly from ocean water, 

Figure 4.3 Results from the backward air mass analysis by Bottenheim and Chan (2006).  

Cool colors represent lower O3 concentrations, while hotter colors represent higher O3 

concentrations.  Figure reproduced from Bottenheim and Chan (2006). 
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FYI is characterized as being highly saline and is thought to act as a large reservoir of 

halogens to the atmosphere.  Multi-year ice (MYI) is ice that has existed for more than one 

year and survived the summer melt season.  Because it has already interacted with the 

atmosphere, MYI is typically not as saline as FYI. However, areas predominantly covered 

by MYI have been associated with sustained ODEs (Bottenheim et al., 2009; Jacobi et al., 

2010), while ODEs over or near regions dominated by FYI or mixed ice types (including 

coastal sites) appear to be more intermittent (e.g., Halfacre et al., 2014).  Open water is 

believed to be a source of sea salt aerosols, which are thought to contribute to ODEs by 

supplying additional sources of halides and reactive surfaces to the Arctic atmosphere 

(Michalowski et al., 2000; Simpson et al., 2005).  Alternatively, cracks in the sea ice, called 

leads (Figure 4.4), have been recently linked with the recovery of O3 levels by inducing 

turbulent vertical mixing (Moore et al., 2014).  This mixing occurs because of the large 

temperature gradient that exists between open water (typically around -1.8oC) and the 

overlying atmosphere (temperatures ranging from -40oC to -10oC until late May, when 

ODEs begin to cease).  Finally, ODEs have also been observed over land (e.g., Peterson et 

al., 2016a), and halogen explosions have been observed within snowpacks atop the frozen 

tundra (e.g., Pratt et al., 2013).  However, inland sites are not generally considered to be 

associated with ODE conditions, as they are less influenced by air of marine origin, and 

can be more influenced by O3 rich air masses from southern latitudes, partially as a result 

of increased mechanical turbulence (Helmig et al., 2012). 
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In this study, we utilize the unique, long-term Arctic Ocean dataset provided by O-

Buoys (see Chapters 2, 3; Halfacre et al., 2014; Knepp et al., 2010) to expand on the above 

work to further clarify a) what external variables (i.e., air mass history, local meteorological 

parameters, underlying surface type) contribute to ozone variability, and b) whether a 

specific source region conducive to ODE chemistry region can be located from “in situ” 

Arctic Ocean observations. 

 

Figure 4.4 Example of an open lead.  Leads are cracks in sea ice that form as stress relief.  

Photo courtesy Alek Petty (NASA Goddard Space Flight Center / University of 

Maryland).. 
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4.2 Methods 

 

4.2.1 Instrumentation 

In situ surface O3 and meteorology measurements were obtained by O-Buoys.  For 

a detailed description, see Chapter 2, 3, and Knepp et al. (2010).  Briefly, O3 was detected 

using a custom 2B Technologies 205 dual beam O3 monitor.  This instrument operates on 

the principal of ultraviolet light absorption at 254 nm, based on the wavelength of 

maximum absorption of O3 (Molina and Molina, 1986).  Meteorological sensors include a 

wind monitor for wind speed and direction, (RM Young Model 05103-45) a 

temperature/relative humidity probe (Vaisala HMP155A), and a barometer (Vaisala 

PTB110).  We note that the wind monitor propeller was susceptible to icing, calling into 

question its accuracy at low wind speeds (Halfacre et al., 2014; Knepp et al., 2010).  All 

wind data with recorded values of 0 m/s were removed from analysis.  Radiation data 

(relative to the maximum value observed within a buoy’s deployment) used herein 

originate from inverted O-Buoy MAX-DOAS observations of radiative intensity at 360 nm 

(see Chapter 3 for a description of the inversion procedure).   In addition, data will be used 

from an O-Buoy derivative, called "Icelanders," that were active during the 2012 BRomine, 

Ozone and Mercury EXperiment at Barrow, AK (Nghiem et al., 2013).  Icelanders utilize 

the same instrumentation as O-Buoys, but were designed to lay atop sea ice (opposed to 

being installed within the ice itself).   

 O-Buoys utilized in this analysis include O-Buoys 2 and 4.  O-Buoy 2 was deployed 

in multi-year ice in the Beaufort Sea (77oN, 135oW) on 8 October 2010, and drifted around 

the Beaufort Gyre (circular, wind-driven ocean current in the Beaufort Sea) until it ceased 
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transmission on 22 July 2011.  O-Buoy 4 was deployed near the North Pole (88oN, 157oW) 

and drifted south until its ultimate recovery on 25 August 2012 (drift tracks in Figure 4.2).   

Icelander 2 was installed atop sea ice west of Barrow, AK (71oN, 156oW), and drifted 

westward until it ceased transmission on 12 June 2012. 

 

4.2.2  Air Mass Trajectory Analysis 

The NOAA HYSPLIT air mass trajectory model (Draxler et al., 2012; Draxler and 

Hess, 1998; Draxler and Rolph, 2003) was utilized to examine backward trajectories 

throughout each of these measurement campaigns.  Starting from the time the Arctic Ocean 

O3 sampling frequency was switched to 24-hours, 24-hour backward trajectories were 

calculated for each hour until June 1.  In each trajectory, 10,000 hypothetical particles were 

released and tracked backward in time for 24 hours according to 1o resolution 

meteorological fields derived from the National Centers for Environmental Prediction 

Global Data Assimilation System modeling.  The average spatial particle concentrations 

during these times were obtained for 0.25o (i.e.~30km) x 0.25o x 50 m (height) box sizes.  

A height of 50 m was chosen as the top of the model to represent air that interacts with the 

surface.  Additionally, the particle concentrations were converted to number of particles by 

multiplying by volume (0.25o x 0.25o x 50 m) for statistical analyses (Section 4.3.2). 

 

4.2.3  Satellite Surface Type Observations 

 Two different satellite surface products were used herein.  Daily sea ice coverage 

and type were assessed using the scatterometer installed on the Oceansat-2 satellite 

(Nghiem et al., 2012b).  Its principal of operation is scatterometry, in which the 
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scatterometer transmits electromagnetic radiation (frequency of 13.4 GHz) to the surface, 

and measures the radiation scattered back from the snow and ice below (backscatter).  The 

energy of these waves are functions of the electrical properties and roughness of the surface 

from which the scattering took place, and can be directly related to the type of surface on 

which the scattering occurred based on the polarization of the beam and the incidence angle 

(Ezraty and Cavanié, 1999).  In the case of Oceansat-2, these surfaces include land, open 

water, first year ice (FYI), multi-year ice (MYI), and mixed ice types at a 2-dimensional 

resolution of 0.25o x 0.25o. 

 Arctic Ocean snow depth and coverage was also assessed daily using a data product 

based on observation from the passive microwave sensors: Scanning Multichannel 

Microware Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I).  In 

contrast to the active scatterometry instruments used with Oceansat-2, the SMMR and 

SSM/I instruments detect microwave radiation directly emitted from snow and ice and 

operate over several frequencies.   Snow and sea ice are distinguished on the basis of snow 

emissivity.  In fact, snow depth can only be estimated over FYI because the microwave 

signature between snow and MYI is too similar for unambiguous separation (Comiso et al., 

2003).  The available surface characteristics include snow depth (0-100 cm), land, open 

water, multi-year ice, and grids where some summer snow melt is observed.  Given the 

coarseness of the data and the heterogeneity of snow depth (e.g., Webster et al., 2014), the 

snow depths were divided into three classes for this analysis: shallow snow depth (1-9 cm), 

moderate snow depth (10-17 cm), and deep snow depth (18 – 100 cm).  Data were obtained 

from the NASA Goddard Cryospheric Sciences website in 25 km polar stereographic grids 

(http://neptune.gsfc.nasa.gov/csb/index.php?section=53).   

http://neptune.gsfc.nasa.gov/csb/index.php?section=53
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 The HYSPLIT results were spatially and temporally matched with the satellite 

retrievals.  Temporally, this was done by matching the date of the trajectory start time with 

the date of the satellite retrieval.  The Oceansat-2 grids, obtained at 0.25o resolution, were 

matched directly with the HYSPLIT output.  Conversely, the snow depth data were re-

gridded to 0.25o x 0.25o grids by matching a snow depth datum to the nearest corresponding 

location on this new grid.  If, however, a grid cell was greater than 30 km from the nearest 

snow depth known location, the grid was considered to have missing data. 

 To relate the satellite observations with the HYSPLIT results, the number of 

particles over each type of surface were summed for each individual trajectory.  In this way, 

a time series of the surface composition seen by an air mass before arriving at the 

observation site can be assessed statistically.  This can be seen in Figure 4.5 - Figure 4.7 

based on the satellite sea ice retrievals. 



129 

 

 

Figure 4.5 Time series of O-Buoy2 observations and HYSPLIT results.  Top – O3 mole 

fractions plotted over the particle distribution as determined by HYSPLIT and Oceansat-

2 satellite imagery.  Middle – Temperature (red trace), relative humidity (blue trace), and 

atmospheric pressure as observed by O-Buoy 2.  Bottom – Wind speed (black trace) and 

wind direction (gray trace) as observed by O-Buoy 2. 
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Figure 4.6 Time series of O-Buoy4 observations and HYSPLIT results.  Top – O3 mole 

fractions plotted over the particle distribution as determined by HYSPLIT and Oceansat-

2 satellite imagery.  Middle – Temperature (red trace), relative humidity (blue trace), and 

atmospheric pressure as observed by O-Buoy 4.  Bottom – Wind speed (black trace) and 

wind direction (gray trace) as observed by O-Buoy 4. 
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Figure 4.7 Time series of Icelander 2 observations and HYSPLIT results.  Top – O3 mole 

fractions plotted over the particle distribution as determined by HYSPLIT and Oceansat-

2 satellite imagery.  Middle – Temperature (red trace), relative humidity (blue trace), and 

atmospheric pressure as observed by Icelander 2.  Bottom – Wind speed (black trace) 

and wind direction (gray trace) as observed by Icelander 2. 
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4.3 Results 

 

4.3.1 Air Mass History and Surface Composition 

Figure 4.5-Figure 4.7 present time series observations of O3 and the types of 

surfaces (as observed by Oceansat-2) in contact with air masses 24 hours before arriving 

at the observation sites.  Starting first with O-Buoy 2 results (Figure 4.5), it is clear that air 

travels across a heterogeneous mixture of FYI and MYI, though some amount of FYI 

exposure is present across all measurements.  This is not unexpected, as the Beaufort Sea 

is known for having a large amount of seasonal ice (Melling et al., 2005) with decreasing 

amounts of MYI (Krishfield et al., 2014).  Interestingly, there appears to exist some amount 

of general anti-correlation between O3 concentrations (black trace) and multi-year ice 

exposure (white) prior to 15 April.  For instance, before 10 April, the initial O3 decrease is 

met with increasing exposure to MYI and mixed ice, while the brief rise in O3 

concentrations on 7 April can be characterized by a decrease in relative mixed ice / MYI 

exposure.  Later in the season, beginning on 15 May, there is substantial O3 recovery that 

occurs in concert with an increasing fraction of air exposure to land, and later water (20 

May).  This would seem to be consistent with previous observations of convective mixing 

events that inject O3-rich free tropospheric air into the boundary layer.  Such events have 

been observed over open leads (Moore et al., 2014; Peterson et al., 2016b) and land (Strong 

et al., 2002).  However, this relationship is not consistent throughout the time series.  For 

instance, sudden O3 recoveries occur during 14 April, 17 April, and 18 April, at times when 

exposure to mixed ice types is increasing.  In addition, the increase in land and water 

exposure in May seems to be associated with increasing O3 despite the majority of particles 
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originating over sea ice.  It is possible these “recovery events” are also associated with 

downward mixing that injects greater concentrations of O3 from the free troposphere into 

the boundary layer.  If this is indeed the case, it is clear that O3 levels cannot be explained 

by air mass history alone and will require additional consideration of the local meteorology 

observed by O-Buoys, discussed below. 

At O-Buoy4, air travels over predominantly MYI before arriving at the O-Buoy, 

and some of the O3 variability is temporally coincident with more heterogeneity in the 

surface composition (Figure 4.4).  If air mass exposure to MYI is more indicative of O3-

depletion chemistry than other surface types, one might expect O3 levels to be generally 

lower for O-Buoy 4 than O-Buoy 2.  Indeed, 86% of the O-Buoy 4 O3 observations in April 

were less than 10 nmol mol-1, opposed to 70% of observations from O-Buoy 2 (Figure 4.8).   
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Plots of exposure to different ice types against O3 mole fractions reveal that this 

relationship is not straightforward (Figure 4.9), as both low and high ozone values are 

observed for varying amounts of exposure to each ice type.  If, however, ODEs can be 

observed over any ice surface (presumably because of saline snow coverage), and because 

these observation sites are obviously surrounded by ice, ice coverage could be negligible 

as an ODE predictor at observation sites over the Arctic Ocean. 

 

Figure 4.8 Cumulative frequencies of ozone concentrations from both coastal sites (Alert 

and Barrow) and Arctic Ocean sites (O-Buoy 2 and 4, Icelander 2) during April.  Data 

from Alert courtesy Jan Bottenheim, data from Barrow, AK, courtesy Sam Oltmans 

(NOAA). 

 

 



135 

 

 

 

F
ig

u
re

 4
.9

 S
ca

tt
er

 p
lo

ts
 o

f 
p
ar

ti
cl

es
 o

v
er

 a
 s

u
rf

ac
e 

ty
p
e 

(y
-a

x
es

) 
ag

ai
n
st

 O
3
 l

ev
el

s 
fo

r 
O

-B
u
o

y
 2

 (
le

ft
; 

1
 A

p
ri

l 
–
 1

 J
u
n
e 

2
0
1
1
),

 

O
-B

u
o

y
 4

 (
m

id
d
le

; 
4
 M

ar
ch

 –
 1

 J
u
n
e,

 2
0
1
2
),

 a
n
d
 I

ce
la

n
d
er

 2
 (

ri
g
h
t;

 8
 M

ar
ch

 –
 1

 J
u
n
e,

 2
0
1
2
).

 



136 

 

 

 The results from the Icelander appear to be more complicated than the O-Buoys 

(Figure 4.7).  In this case, increasing FYI exposure would appear to yield lower O3, while 

MYI and mixed ice types appear to correspond to greater amounts of O3.  In addition, 

exposure to land masses appeared to greatly affect O3 variability observed by O-Buoys, 

while increases in O3 at the Icelander would appear to be influenced less by land.  However, 

O3 is found below 10 nmol mol-1 for only 68% of observations during April (Figure 4.8).  

Analyzing the sea ice type against O3 mole fractions (Figure 4.9) displays no obvious trends. 

 

4.3.2  Explaining O3 Variability 

 A series of basic statistical methods were employed to investigate what variables 

affect O3 variability at Arctic Ocean observation sites.  First, Pearson correlation 

coefficients (r) were calculated for individual variables as they relate to O3 observations 

across all platforms according to Equation 4.1. 

 

𝑟𝑂3,𝑌 =  
𝑠𝑂3,𝑌

𝑠𝑂3𝑠𝑌
          E4.1 

 

Here r represents the correlation coefficient, sO3,y is the covariance between O3 and the 

explanatory variable, and sO3 and sY represent the standard deviations for O3 and the 

explanatory variable, respectively.  The results are summarized in Figure 4.10. 
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From these calculations, it is seen that O3 has positive correlation with temperature, relative 

humidity, wind speed, and periods when air has at least some contact with land and open 

water.  These variables can all be associated with turbulence.  For instance, simultaneous 

increases in temperature, relative humidity, and wind speeds could be indicative of air 

passing over open leads.  Due to the large temperature gradient that exists between open 

Figure 4.10 Correlation coefficients calculated between O3 mole fractions and other 

explanatory variables.  “Ice” represents the sum of all ice types. 
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water and the overlying atmosphere, increases in sensible and latent heat fluxes induce 

convective mixing that could increase O3 levels by mixing down O3-rich free tropospheric 

air (Moore et al., 2014).  Additionally, air masses traveling over land can be subjected to 

turbulence induced by mechanical shearing of wind across irregular surfaces (Stull, 1988).  

Across datasets, temperature has the most positive correlation with O3 among variables (r 

= 0.74, 0.51, 0.20 for O-Buoy 2, O-Buoy 4, and Icelander 2, respectively). Relative 

radiation data is not available from Icelander 2, but O-Buoys 2 and 4 both show that O3 is 

positively correlated with radiation, which can also be a driver of turbulent mixing.  

Conversely, O3 is shown to be negatively correlated with atmospheric pressure, and 

exposure to ice.  Low pressure systems can be related to high ozone either by the presence 

of storms, or by the transport of high ozone air from southerly latitudes (Jacobi et al., 2010). 

Inconsistent observations are seen in the cases of wind direction and air that has passed 

over FYI and Mixed Ice types.   

 To probe how well variables could explain variance in O3, linear models were first 

developed for each independent variable using O3 mole fractions as the dependent variable, 

followed by multivariate linear models evaluating O3 against combinations of independent 

variables.  The power of these models is evaluated using the adjusted R2 (Equation 4.2), 

where n is the number of observations and p is the total number of explanatory variables 

in the model. 

 

  �̅�2 =  1 − (1 − 𝑅2)
𝑛−1

𝑛−𝑝
        E4.2 
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Considering first the series of individual linear regressions, all explanatory variables were 

statistically significant (p < 0.05) with the exceptions of O-Buoy 2 relative radiation and 

MYI exposure for Icelander 2.  Adjusted R2 values are presented in Figure 4.11.  Exposure 

to various ice types appears to be only weakly related to O3 levels at all sites, explaining at 

most 4% of the total variation in O3 at O-Buoy 2 (due to MYI exposure), 8% at O-Buoy 4 

(due to exposure to mixed ice types), and 9% at Icelander 2 (due to exposure to any ice at 

all).  In the case of the O-Buoys, temperature and relative humidity are the most powerful 

predictors, explaining 54% and 21% of O3 variability, respectively, at O-Buoy 2, and 25% 

and 22% of variability, respectively, at O-Buoy 4.  Remaining relatively strong predictors 

include air mass exposure to land and open water at O-Buoy 2 (R2 = 0.19, 0.17, 

respectively), atmospheric pressure at O-Buoy 4 (R2 = 0.12), and wind speed at O-Buoys 

2 and 4 (R2 = 0.10 in both cases).  All other variables have R2 values that explain less than 

10% of the variance individually.   
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 Multivariate linear regressions were also performed to discover how well these 

explanatory variables together can account for O3 variance (Multiple R2 displayed in Figure 

4.12).  A set of three different linear models were created that attempt to model O3 as a 

function of the following variables: 

Figure 4.11 Adjusted R2 values for linear models relating O3 to individual explanatory 

variables (x-axis).  All bars represent cases in which the corresponding variable was 

found to be significant (p < 0.05). 
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1) local meteorology (relative radiation, temperature, relative humidity, 

atmospheric pressure, wind speed, and wind direction)  

2) surface types over which air traveled (land, open water, FYI, mixed ice types, 

and MYI)  

3) combined model (both local meteorology and surface types) 

 

It is clear from Figure 4.12 that the meteorological parameters are more powerful 

explanatory variables than is the exposure to various surface types at the O-Buoy sites, 

while they are nearly equivalent at the site of the Icelander.  Additionally, using both 

meteorological and surface type variables only increases the R2 of the models by 0.03-0.05 

over using only meteorology.  For O-Buoy 2, temperature was the most powerful variable 

in predicting O3 variability, as shown in Figure 4.10Figure 4.11.  In these multivariate 

Figure 4.12 Adjusted R2 values from the models represented by Equations 4.3-4.6.  

Values are listed within each bar. 
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models, wind speed and wind direction were found to not be significant predictors in each 

model in which they were included, likely due to both having moderate correlations with 

temperature (rtemp,wind speed = 0.37, rtemp,wind direction = -0.30), meaning they only add marginal 

additional explanatory power if temperature is included in the model.  Additionally, when 

only the satellite surface types are considered together, mixed ice types are not found to be 

significant because of its correlation with FYI (rFYI,Mixed Ice = -0.48).  When the model is 

expanded to include meteorology, mixed ice is once again found to be significant.  

 In the case of O-Buoy 4, wind direction is not found to be significant in any model, 

while land and FYI exposure are found to be insignificant predictors in the combined model 

(3), perhaps because the overwhelming majority of observations do not feature these 

surface types.  In terms of meteorology, both these surface types have the strongest 

correlation with wind direction (rland,wind direction =  -0.12, rFYI,wind direction = -0.20), suggesting 

that they provide even less predictive power than wind direction.  Given the significance 

of meteorology in tandem with the low amounts of O3 at Arctic Ocean observatories 

(Figure 4.8), there is thus evidence to suggest that O3-depleted air is the norm during the 

Arctic spring time over sea ice covered areas in the Arctic Ocean, absent significant 

influence of land. 

 For Icelander 2, wind speed and exposure to open water were not significant 

predictors in any of the models.  It should be noted, of course, that the air approaching 

Icelander 2 had little exposure to open water (Figure 4.7). In addition, relative humidity 

was not significant in the combined model when FYI was included as a predictor (rFYI, relative 

humidity = -0.38).  Land exposure, while deemed not significant under Model 1, was found 

to be significant in the combined model.  However, this area is traditionally covered by 
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both thin, FYI and an abundance of open leads (Röhrs and Kaleschke, 2012) that do not 

often appear in the coarse satellite imagery used in this study. 

 

4.4 Discussion 

 Numerous studies have performed backward air mass trajectory analysis to find 

strong correlations between low O3 values and air that has passed over areas of sea ice 

before arriving at coastal observation sites (e.g., Bottenheim and Chan, 2006; Gilman et 

al., 2010).  In this study, utilizing observations obtained in areas surrounded predominately 

by sea ice, only very weak relationships were found between air mass history and ambient 

O3 mole fractions (|r| ≤ 0.3).  In addition, averaging the particle concentrations by their 

spatial locations when O3 < 10 nmol mol-1 for each observation site shows no particular 

trends or source region beyond the majority of particles traveling over ice covered regions 

before arriving at the site of the O-Buoy (Figures 4.10-12). 

 

 

 

 

 

 

 

 

 

 



144 

 

 

 

 

 

 

 

 

 

Figure 4.13 For O-Buoy 2, average particle concentrations during periods when O3 

levels fall below 10 nmol mol-1.   
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Figure 4.14 For O-Buoy 4, average particle concentrations and positions during periods 

when O3 levels fall below 10 nmol mol-1.   
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Because these instrument platforms are surrounded by ice, it stands to reason that the power 

of ice as a predictor is lessened if ODEs do in fact initiate over any ice-covered region.  

However, ice during the Arctic springtime is largely covered by snow (Webster et al., 2014), 

which has previously been shown to be an efficient producer of molecular halogens when 

exposed to sunlight under acidic conditions via R4.3-R4.10, and even more effective than 

sea ice (Custard et al., 2016; Foster et al., 2001; Pratt et al., 2013; Raso et al., 2016).  A 

parameter possibly more powerful than ice coverage in predicting O3 variability is snow 

coverage and/or snow depth because the pH of snow is expected to be lower with greater 

physical separation from the buffered sea-ice brine (pH~8.2).  Comiso et al. (2003) report 

Figure 4.15 For Icelander 2, average particle concentrations during periods when O3 

levels fall below 10 nmol mol-1.   
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satellite retrievals of average snow depth (0-100 cm) at a resolution of 12.5 km (available 

at http://neptune.gsfc.nasa.gov/csb/index.php?section=53), though such products have not 

yet been used to compare with ODEs.  If the snowpack depth is a powerful predictor of 

ODE-favorable conditions, it would be expected that ODEs would initiate over snowpack 

at some minimum depth.  This is because brine on sea ice, which is alkaline, can migrate 

upward at least 8 – 18 cm into the snow (Dominé et al., 2004), thereby reducing its potential 

for halogen production (Pratt et al., 2013).  In addition, the snowpacks MYI are regarded 

as having deeper snowpack depths than for seasonal ice (Webster et al., 2014), and 

therefore may be regions more conducive to halogen production chemistry.  However, this 

analysis assumes broadly that surface snowpacks across the Arctic are largely acidified (by 

deposition of acidic sulfate aerosol, or of acidic gases such as HCl, HBr, and HNO3 (Barrie 

et al., 1994a, 1994b; Li et al., 1994)), which may not be true.  Regardless, it is clear that 

snowpack depth is important information to include as a potentially important variable.   

 Based on Figure 4.8, our results are consistent with an Arctic Ocean that is largely 

O3 depleted.  It is clearly seen that the ice-based observatories (O-Buoy 2 (2011), O-Buoy 

4 (2012), and Icelander 2 (2012)) have substantially higher numbers of observations below 

10 nmol mol-1 (86, 70, and 68%, respectively) than do coastal-based observatories for the 

same periods of time (30 and 54% at Barrow during 2011 and 2012, and 22% and 28% at 

Alert during 2011 and 2012).   As local-scale meteorological variables appear to account 

for much more O3 variability than air mass history, we hypothesize that increases in O3 

above the Arctic Ocean in spring reflects transport of high O3 from aloft to the surface 

(point of measurement) as a result of turbulent events.   For O-Buoys 2 and 4, the most 

powerful explanatory variable with regard to O3 was temperature.  Positive correlations 

http://neptune.gsfc.nasa.gov/csb/index.php?section=53
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between O3 and temperature related to ODEs has been an ongoing area of discussion.  It 

had been previously thought that low temperatures (i.e., < -20oC) could be required to 

initiate ODEs (Seabrook et al., 2011; Tarasick and Bottenheim, 2002).  This is due to 

freezing dynamics associated with saltwater.  As seawater freezes, it excludes impurities 

to a brine layer on its exterior surfaces (Bartels-Rausch et al., 2014).  As temperatures 

continue to decrease, the volume of the quasi-brine layer (QBL) decreases (Figure 4.16), 

to maintain a concentration of ions in the QBL consistent with that needed for that amount 

of freezing point depression.  This behavior can be represented quantitatively by Equation 

E4.3 (Kuo et al., 2011). 

 

𝑥𝑠 = 1 − (1 − 𝑥𝑠,0)exp [
−∆𝐻𝑤

𝑓𝑢𝑠

𝑅
(

1

𝑇
−

1

𝑇𝑚
)]      E4.3 

 

In Equation 4.3, xs is the mole fraction of solute in the QBL, xs,0 is the solute mole fraction 

in the melted solution, R is the gas constant, ∆𝐻𝑤
𝑓𝑢𝑠

 is the enthalpy of fusion of water, T is 

the temperature of the system, and Tm is the bulk melting temperature of ice.  Below the 

NaCl•2H2O eutectic point, however, NaCl•2H2O(s) precipitates out of the QBL (Figure 

4.17).  
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Figure 4.16 Molecular dynamics simulation demonstrating the thickness of the 

disordered surface on frozen water based on temperature.  Tm represents the melting 

temperature of the simulated ice.  Figure reproduced from Bartels-Rausch et al. (2014). 
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As can be seen in Figure 4.17a, lower temperatures correspond to increasing concentrations 

of halides in the QBL.  At the NaCl•2H2O eutectic point, the increasing anion concentration 

with decreasing temperature must then derive from Br- ions (Koop et al., 2000).  As 

discussed in Chapter 5, this behavior increases the relative surface enhancement of Br- ions 

Figure 4.17 Effects of temperature on the concentration and ionic strength in the QBL. 

Eutectic points of different species are listed on the top axis.  a) individual ion molality 

changes as a function of temperature for sea salt. b) Effects of temperature on the total 

solution molality and ionic strength.  Figure reproduced from Koop et al. (2000). 
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(relative to Cl-) and their potential for atmospheric interactions and ODE chemistry.  Thus, 

it has been hypothesized that ODEs will be more prevalent below 251K (e.g., Tarasick and 

Bottenheim, 2002) 

It is also now accepted that ODEs can actually occur under a wide range of 

temperatures, including up to 0oC (Bottenheim et al., 2009; Halfacre et al., 2014; Jacobi et 

al., 2010; Neuman et al., 2010).  A similar relationship has also been noted between BrO 

and temperature by Pöhler et al. (2010).  They postulated that it is the temperature gradient 

that controls BrO release, as cold air moving over relatively warm open leads causes 

turbulent mixing. This enables the release of more reactive bromine from snow and 

allegedly sea ice into the atmosphere that undergoes R4.1-R4.2 to produce BrO and enable 

ODEs.  However, Moore et al. (2014) proposed that these same dynamics were often 

associated with the downward mixing of O3-rich free tropospheric air from aloft, resulting 

in the recovery of ambient O3 levels.  Of course, these chemical concentration increases 

are not mutually exclusive, as increasing ambient concentrations of both O3 and Br is 

certain to produce more BrO without necessarily causing an ODE until the boundary layer 

stabilizes again.  It would thus appear that higher temperatures appear important as they 

relate to turbulent mixing, discussed below. 

The relationship with the remaining significant variables (i.e., positive correlation 

with wind speed, negative correlation with pressure) are possibly indicative of turbulent or 

stable conditions.  Atmospheric stability is typically determined by vertically profiling the 

temperature gradient in the atmosphere.  Under dry conditions, the “dry adiabatic lapse 

rate” is typically -9.8oC km-1 (Stull, 1988) (i.e., temperature decreases with altitude).   When 

the actual lapse rate is less than this, or when temperatures increase with height, the 
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atmosphere is considered stable.  These conditions can be generally associated with calm 

winds, high pressure, and low surface temperature (if the temperature of the surface cools 

faster than the air slightly aloft, a temperature inversion will develop) (Boylan et al., 2014; 

Jacobi et al., 2010).  Air above snow and ice is often stable, because snow and ice are near-

perfect black body radiators in the IR.  These conditions are not conducive to the vertical 

transport of air, and it would be expected that surface-based halogen chemistry could cause 

rapid O3 depletion in this regime, in the presence of sunlight.  Conversely, when pressure 

is low, wind speeds are high, and/or surface temperatures are warm (relative to the 

surrounding air), these are conditions that are indicative of atmospheric instability (Boylan 

et al., 2014), and conducive to the downward mixing of O3-rich air from aloft (above the 

depleted region) due to low Arctic boundary layers (typically ranging between 200-500 m 

above ground level) (Bottenheim et al., 2002b; Boylan et al., 2014; Hopper and Hart, 1994; 

Oltmans et al., 2012).  Unfortunately, without vertical temperature information we cannot 

definitively confirm the state of the boundary layer during these time periods. 

 Alternatively, Jacobi et al. (2010) used mappings of geopotential height and sea 

level pressure to interpret a similar set of Arctic Ocean data.  They determined that 

increases in O3 levels could be associated with the passing of warm fronts originating from 

lower latitudes, often accompanied with warmer temperatures and lower local atmospheric 

pressure.  Because of this they ascertained that these warm fronts were associated with the 

advection of O3 rich air from southerly latitudes. While these relationships are consistent 

with a largely O3 depleted Arctic Ocean, interrupted by intermittent turbulent mixing from 
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aloft or advection, additional vertical profile information, as well as synoptic scale 

meteorological data are needed for further interpretation. 

 

4.5 Conclusions 

Observations of O3, meteorology, and surfaces were used in this study to both assess 

under what conditions O3 depleted air masses arrived at measurement sites.  68%, 70%, 

and 86% of the ozone observations during April were less than 10 nmol mol-1 for Icelander 

2, O-Buoy2, and O-Buoy 4, respectively.  ODEs observed at both O-Buoy 2 and Icelander 

2 mostly traveled over FYI, while the air arriving at O-Buoy 4 had been exposed to mostly 

MYI.  However, interactions with surfaces only accounted for up to 33% of O3 variability 

(O-Buoy 2), and as little as 10% at Icelander 2.  In the cases of O-Buoy 2 and 4, local 

meteorology was much more powerful for this purpose, with particular regard to 

temperature.   

 The results presented here are consistent with an Arctic Ocean that is largely O3 

depleted during the springtime, interrupted by the occasional downward mixing of free 

tropospheric O3, or the advection of O3 rich air from southern latitudes.  However, this 

work is yet incomplete, and there is more information to be derived.  The statistical analysis 

was performed on observation periods as a whole, though it may be more appropriate to 

perform it solely on periods of O3 variation above some minimum standard deviation.  As 

different mechanisms can control the rise of O3 levels (e.g., wind speed, turbulent mixing), 

higher amounts of correlation and R2 could be obtained if periods of O3 variation are 

analyzed individually.  In addition, it should be investigated whether a statistically 

significant relationship exists between air mass exposure to snow covered surfaces and O3 
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levels, given the observation of halogen explosions occurring in acidic snowpack 

interstitial air, and the amount of Arctic Ocean that is potentially covered by snow-covered 

ice (i.e., ~1.4 x 106 km; https://nsidc.org/). 
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 LABORATORY STUDIES OF OXIDATIVE RELEASE OF 

MOLECULAR CHLORINE, BROMINE, AND IODINE FROM FROZEN 

SURFACES 

5.1 Introduction 

It is now well-established that gas-phase halogen species influence the oxidation 

capacity of the atmosphere (Barrie and Platt, 1997; Carpenter et al., 2013; Platt and 

Hönninger, 2003; Saiz-Lopez and von Glasow, 2012; Simpson et al., 2007b, 2015; and 

references therein).  In polar regions during springtime, the photolysis of molecular 

halogens causes dramatic depletion of surface-level O3 (Reactions R5.1-R5.2, where X 

represents Cl, Br, or I), and simultaneously converts Hgo to low volatility oxidation 

products that deposit to the surface (Steffen et al., 2008, 2014). 

 

X2 + hν →  2X          R5.1 

X + O3 → XO + O2          R5.2 

 

XO produced in Reaction R5.2 rapidly photolyzes to regenerate O3 and X2 in a null cycle, 

or react with another halogen oxide to irreversibly remove ambient O3.  Alternatively, XO 

can react with HO2 to form HOX (Reaction R5.3), which can react heterogeneously with 

salt-laden surfaces, including sea-salt aerosol particles (McConnell et al., 1992) and the 

“disordered interface” (also referred to as a quasi-liquid or quasi-brine layer) that exists on 
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 frozen saline surfaces (Bartels-Rausch et al., 2014; Cho et al., 2002) to exponentially 

increase atmospheric concentrations of X2 (Reaction R5.4) (Garland and Curtis, 1981; 

Tang and McConnell, 1996; Vogt et al., 1996; Wennberg, 1999a).  

 

XO + HO2 → HOX + O2          R5.3 

HOX + X− + H+ → X2 + H2O         R5.4 

 

This exponential increase in halogen concentrations is generally referred to as the “halogen 

explosion,” and is hypothesized to be the major mechanism by which halogen 

concentrations increase in the atmosphere.  While Br, I, and Cl atoms can theoretically  can 

all participate in O3 destruction (Simpson et al., 2015; Thompson et al., 2015), this 

“explosion” has traditionally been considered in terms of a "bromine explosion," as 

bromine has been assessed to be the primary agent for the rapid destruction of O3 and Hg 

(Simpson et al., 2007b; Stephens et al., 2012).  Additionally, this mechanism is believed to 

be enhanced under acidic conditions, consistent with laboratory studies of condensed 

(Fickert et al., 1999) and frozen surfaces (e.g., Wren et al., 2013). 

   Iodine has the potential to increase the rate of O3 destruction (Thompson et al., 

2015).  However, at estimated levels in the atmosphere, it is suggested to only slightly 

enhance Br-induced depletions (Raso et al., 2016).  Finally, Cl reacts faster with 

hydrocarbons than does O3, and therefore, it dominates the oxidation of volatile organic 

compounds in the polar boundary layer  (Atkinson et al., 2006; Jobson et al., 1994).  
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While much is known about the possible atmospheric chemistry of 

halogens/halogenated radicals in relation to O3 destruction, the chemical mechanisms by 

which molecular halogens are produced on snow surfaces are not clearly understood (Liao 

et al., 2014; Pratt et al., 2013).  However, there have been recent reports of in situ, light-

induced production of Cl2 (Custard et al., 2016), Br2 (Pratt et al., 2013; Raso et al., 2016), 

and I2 (Raso et al., 2016) within snowpack interstitial air, and this production is enhanced 

following the addition of O3. The Br2-producing snowpacks studied by Pratt et al. (2013) 

were characterized as having larger surface area, lower pH (≤ 6.3), greater [Br-]/[Cl-] molar 

ratios (≥ 1/148), and lower salinity relative to the other frozen samples collected near 

Barrow, Alaska. The proposed mechanism for this chemistry is based on laboratory studies 

of condensed-phase hydroxyl radical-mediated halogen oxidation (Reactions R5.5-R5.12), 

followed by partitioning of the molecular halogen to the gas phase (Abbatt et al., 2010; 

Knipping et al., 2000; Oum et al., 1998b). 

 

HOOH + hν → 2 OH          R5.5 

NO2
− + hν → NO +  O−         R5.6 

O− + H+  → OH          R5.7 

OH + X− ↔ HOX−          R5.8 

HOX− + H+ → X + H2O          R5.9 

X + X− ↔ X2
−                     R5.10 

2X2
− → X3

− + X−                                R5.11 



158 

 

 

X3
− ↔ X− + X2                     R5.12 

 

Direct, light-induced halogen production from frozen surfaces in the presence of OH has 

been previously demonstrated in the laboratory for Br2 and possibly for I2 (Abbatt et al., 

2010), but analogous chemistry for Cl2 has yet to be observed.  Additionally, 

photochemical production of I2 has been directly observed in the absence of hydroxyl 

radicals (Kim et al., 2016).  Employing cavity ring-down spectroscopy, Kim et al. (2016) 

reported photochemical production of I2 from a frozen solution independent of OH, a 

process that was enhanced by known aqueous-phase chemistry (R5.13-5.14, R5.10-R5.12).  

This proposed photochemical mechanism involves an (I--O2)
  charge-transfer complex 

(Levanon and Navon, 1969). 

 

O2(aq) + 4H+ + 6I− → 2I3
− + 2H2O       R5.13 

I− + O2 → (I−O2)
hν
→ I + O2

−
        R5.14 

I + I− ↔ I2
−           R5.10 

2I2
− → I3

− + I−          R5.11 

I3
− ↔ I− + I2           R5.12 

 

A question is thus raised regarding the necessity of or impact of OH for I2 production under 

environmentally-relevant conditions. 
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 Similarly, the role of O3 in halogen production is unclear.  Previous laboratory 

studies have demonstrated that halide-doped frozen surfaces exposed to O3 can directly 

lead to Br2 production (independently of radiation, R15-R16) (Oldridge and Abbatt, 2011; 

Oum et al., 1998a; Wren et al., 2013).   

 

O3 + Br− ↔ BrO− + O2        R5.15 

BrO− + H+ ↔ HOBr         R5.16 

HOBr + Br−/Cl− + H+ → Br2/BrCl + H2O     R5.4 

 

Wren et al. (2013) found that Cl2 production in their experiment was produced primarily 

via heterogeneous recycling of HOCl, resulting from BrCl photolysis.  However, the 

observation that O3 induces halogen production is somewhat in contrast to the above field 

observations of snowpacks, in which O3 was not shown to produce halogens on its own 

(i.e., in the dark).  Rather, the presence of O3 was shown to provide additional production 

only in the presence of light (Custard et al., 2016; Pratt et al., 2013; Raso et al., 2016), 

raising a question of whether O3 is more important for initial halogen release, or in a gas 

phase propagation/recycling capacity (i.e., per the halogen explosion). 

 In this study, we utilize a custom coated-wall flow reactor in tandem with chemical 

ionization mass spectrometry (CIMS) to increase our understanding of Br2, Cl2, and I2 

production from ice surfaces that mimic sea ice.  The effects of photochemically produced 

OH radical, O3 addition, and pH are tested as they related to the yields of these halogens. 
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5.2 Methods 

 

5.2.1 Materials 

Sample solutions were composed to mimic the halide composition of seawater, 

either through dissolved Instant Ocean (Spectrum Brands) or commercially available 

halide salts at a composition that mimics Instant Ocean (for consistency) in solutions 

referred to hereafter as “saltwater.”  Except for Instant Ocean, all chemicals were purchased 

from Sigma Aldrich.  Halide salts include solid NaCl (puriss. p.a. grade, ≥99.5% purity), 

NaBr (puriss. grade, >99% purity), KI (puriss. p.a. grade, ≥99.5% purity).  The halide 

concentrations in these solutions are 0.56M Cl-, 7.2 x 10-4 M Br-, and 1.9 x 10-6 M I-).  We 

note that such an iodide concentration can be 1-2 orders of magnitude greater than those 

found in actual seawater (Herring and Liss, 1974; Tsunogai and Sase, 1969), which 

contains Cl-, Br-, and I- at ratios of 1:1/660:
1/200,000.  Solutes were dissolved in nano-grade 

“Ultrapure” water (Weaver, 2015).  This water is characterized as having less than 225 

parts per trillion of total organic carbon, and less than 15 pmol mol-1 of boron, the most 

likely ionic contaminant (typically present as B(OH)4
-) (Hilal et al., 2011). 

 While previous investigators have adjusted the pH of their samples, it is very 

difficult to know the pH in the disordered interface (Bartels-Rausch et al., 2014; Wren and 

Donaldson, 2012) of frozen samples, since ions are excluded into it.  To obviate this 

problem, the aqueous solutions were buffered so that upon freezing, the same pH will exist 

in the QBL.  All solutions were buffered by either 20 mM acetic acid (ACS reagent grade, 

≥99.7% purity)/acetate (puriss. p.a. grade) buffer (pH ≈ 4.5-4.7), or 20 mM bisulfate 

(ReagentPlus grade, 99% purity)/sulfate (ReagentPlus grade, ≥ 99.0% purity) buffer (pH 
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≈1.7 – 2.0).  pH values of sample solutions were determined before and after experiments, 

with no significant changes observed. 100 μM of either hydrogen peroxide (trace analysis 

grade, ≥ 30% purity) or sodium nitrite (ReagentPlus grade, ≥ 99.0% purity) were included 

as photolytic hydroxyl radical precursors, via reactions R5, and R6-7. 

5.2.2  Flow tube 

Experiments were carried out in a 150 cm long, 2.5 cm ID frozen-walled Pyrex 

flow tube contained within a temperature-controlled cooling jacket.  In each experiment, 

80.0 mL of sample solution was poured into the tube, which was subsequently sealed.  The 

flow tube was then rotated on motorized rollers within a 170 cm x 50 cm x 50 cm, insulated 

wooden cooling chamber.  Crushed dry ice was placed along the bottom of the chamber, 

and fans were used to circulate the air such that the flow tube was evenly cooled.  After 

~30 minutes, the sample was evenly frozen (ice thickness of 0.9 mm).  The flow tube was 

subsequently transferred to a 156 cm x 50 cm x 50 cm wooden, Mylar-lined experiment 

chamber, and connected to a chiller set to 258 K (i.e., above the NaCl•2H2O eutectic point).  

The cooling liquid used for the chiller was a mixture of 60% ethylene glycol and 40% 

distilled water.  Six UVA-340 solar simulator lamps (Q-Labs) were installed in the 

experiment box (two on each side except bottom), and each side was lined with reflective 

Mylar material to ensure the flow tube was evenly irradiated on all sides when the lamps 

were illuminated. A flow schematic representing typical experiments is shown in Figure 

5.1.  
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Figure 5.1 Experimental schematic representing the majority of experiments.  Purple bars 

represent powered solar simulator bulbs.  The green shading around the flow tube or flow 

reactor represents cooling liquid (60% ethylene glycol, 40% water) circulated through the 

chiller.  The flow reactor region itself has an inner diameter of 2.5 cm. 

  The carrier gas (Air, Ultra Zero grade, Praxair) was scrubbed of hydrocarbons 

(using activated charcoal) and water by travelling through coiled stainless steel tubing 

surrounded by crushed dry ice (replaced throughout the course of an experiment).  Before 

entering the experiment coated-wall flow tube, the carrier gas travels through a commercial 

O3 generator (2B Technologies model 306).  Carrier gas air entered the tube near room 

temperature (20oC).  At the start of experiments, the O3 generator was set to 0 nmol mol-1.   

Carrier gas then enters the flow tube in the dark experiment chamber.  In most experiments, 

the carrier gas was regulated to a volumetric flow rate of 4.0 L/min, which yields a flush 

time in the flowtube of ~12 seconds.  On exiting the flow tube, sample air was characterized 
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using a Thermo Environmental 49i O3 monitor (flow rate of ~1.5 L/min) and a chemical 

ionization mass spectrometer (CIMS, sampling flow rate of ~1.7 L/min, described below 

in Sect. 2.3).  Excess flow air was vented away.  At various times in the experiment, the 

solar simulator bulbs are activated, and O3 was added to the system by powering the O3 

generator. 

5.2.3  CIMS 

Halogen species were detected using a chemical ionization mass spectrometer 

(CIMS), described previously by Liao et al. (2011) and Pratt et al. (2013).  Chemical 

ionization is achieved by ion-molecule reactions that occur between iodide-water clusters 

(I(H2O)n)
- and the sample gas.  The iodide-water clusters are formed when iodide ions, 

generated by flowing 5 ppm methyl iodide through a 210Po ionizer (NRD) combine with 

water in the humidified flow tube region of the CIMS (note: this flow tube region is specific 

to the CIMS and is different from the experimental flow tube described in Sect 5.2.2). 

A typical CIMS sampling cycle consisted of an 8.35 second duty cycle.  Dwell 

times for all monitored species were 250 milliseconds with the exception of the iodide 

water cluster (which is used as an internal standard, detected as m/z 147, I(H2
18O)-), which 

was set to a dwell time of 100 milliseconds.   Thirty-three species in total were scanned 

during this duty cycle (full list can be found in Table 1), but the majority of our results 

concern masses related to Br2 (m/z 285 and 287: I79Br79Br- and I81Br79Br-, respectively), 

Cl2 (m/z 197 and 199: I35Cl35Cl- and I37Cl35Cl -), and I2 (m/z 381: I3
-).   
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Table 5.1 Table 1: List of species monitored by chemical ionization mass spectrometry 

(I(H2O)n- as reagent ion) with corresponding m/z values. 

Species m/z 

IH2
18O- 147 

I79Br- 206 

I81Br- 208 

I79Br79Br- 285 

I79Br81Br- 287 

I35Cl- 162 

I37Cl- 164 

I35Cl35Cl- 197 

I35Cl37Cl- 199 

I79Br35Cl- 241 

I81Br35Cl- / I79Br37Cl- 243 

I3
- 381 

I79BrO- 222 

I81BrO- 224 

I35ClO- 178 

I37ClO- 180 

IIO- 270 

IHO79Br 223 

IHO81Br 225 

IHO35Cl- 179 

IHO37Cl- 181 

IHOI- 271 

I35ClNO2
- 208 

I37ClNO2
- 210 

 

The presence of Br2 and Cl2 was confirmed by measuring the ratios between the 

two isotope signals for each mass, compared to the natural abundances (i.e., 1.95 for m/z 

287:285, and 1.54 for m/z 197:199).  Background-subtracted signals not within ±25% of 

these naturally occurring isotopic ratios were deemed invalid and removed from analysis.  
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As the introduction of O3 to the experimental system significantly increases the background 

signal for the primary Cl2 isotope (m/z 197, I35Cl35Cl-), much of the Cl2 data in these O3 

regions was similarly deemed invalid.  Additionally, full mass scans (ranging from m/z 10 

to m/z 400) were performed one time per hour throughout the majority of experiments, to 

look for all major products. 

CIMS calibrations were performed using I2, Br2, and Cl2 permeation devices (VICI) 

at the start and conclusion of each experiment.  Br2 and Cl2 permeation outputs were 

quantified using the spectrophotometric method described in Liao et al. (2012b).  The I2 

permeation output was quantified according to Raso et al. (2016).  The output gas of the I2 

permeation device was flowed through an impinger with a NaHCO3 (30mM)/NaHSO3 

(5mM) reducing solution.  This solution quantitatively reduces I2 to I-, which was then 

determined using a Dionex DX500 ion chromatography system.  Permeation rates were 

calculated for each experiment and found to be (1.9±0.1) x 10-11, (5.5±0.1) x 10-10, and 

(8.6±0.1) x 10-10 moles per minute of I2, Br2, and Cl2, respectively (uncertainties 

representing standard error of the mean).  Sensitivities were then determined by dividing 

the CIMS response signal by the permeation source concentration outputs.  However, 

sensitivities for each species were found to statistically vary between experiments, and so 

overall sensitivities were calculated for individual experiments based on the average of the 

sensitivities calculated at the start and completion of each experiment.  Corresponding 

uncertainties for these calibration factors thus represent the 1σ standard deviation of the 

mean sensitivity.  In addition, the sensitivity for HOBr- species was estimated based on the 

Br2 sensitivity, using a factor of 0.5 ± 25% that of  the sensitivity for m/z 287 (Liao et al., 

2012b). Background measurements were also performed before and after the experiment 
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by passing the carrier gas through the experimental flow tube (without O3, in the dark) 

through a glass wool scrubber, previously shown by Raso et al. (2016) to effectively 

eliminate halogenated compounds.  The average background values were subtracted from 

the raw signals.  Average limits of detection (3σ) across all experiments for the halogens 

are 1.8 ± 0.4, 1.2 ± 0.3, and 9.0 ± 2.0 pmol mol-1 for Br2, Cl2, and I2 respectively 

(uncertainties representing standard error of the mean). 

 

5.3 Results  

In the discussion of the experiments that follow, we address whether OH can 

produce I2, Br2, and Cl2 from frozen saline surfaces, as hypothesized from recent field 

experiments (Pratt et al., 2013; Raso et al., 2016), as well as the role of pH.  In addition, 

we test whether O3 can enhance this production. Typical experimental timeseries can be 

seen in Figure 5.2.   
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Figure 5.2 Representative experiments.  Top: Saltwater experiment (SW2) at pH=4.5.  

Middle: Instant Ocean experiment (IO4) at pH = 1.8.  Bottom: NaCl experiment (CL1) at 

pH = 1.8.  Timescale represents hours from the activation of the lights, and the yellow 

shading represents presence of radiation from solar simulator bulbs. Gaps in data 

represent periods when the isotopic ratios in a species were deemed invalid (outside of 

±25% of naturally occurring abundances).  Note: Cl2 signal before time =0 was 

artificially added. 
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The flow tube was connected to the CIMS under dark conditions and without O3.  

Once signals stabilized, lights were activated (defining t=0 in plots) for 1-2 hours, after 

which, ~50 nmol mol-1 of O3 was added to the system.  Results from all experiments can 

be found in Table 5.2-Table 5.5, and major results are discussed below.  Individual 

experiments are identified by IO#, SW#, or CL#, where IO refers to dissolved Instant 

Ocean based samples, SW refers to samples composed of dissolved reagent-grade salts, 

and CL refers to the sample composed of dissolved NaCl.   Unless otherwise specified, 

integrated halogen yields represent the yields over the course of 1 hour.  In the case of Sect 

5.3.1, this hour occurs from t=0 (i.e., lights on) until t=1, whereas in Sect 5.3.2, the starting 

integration time indicates the time at which O3 was activated.  Additionally, reported 

uncertainties are calculated as the integrated sum multiplied by the relative uncertainty in 

the sensitivity. 

 

5.3.1 Effects of the Hydroxyl Radical 

Photochemical halogen production was observed for I2, Br2, and Cl2 as seen in 

Figure 5.2.  Relative to Br2 and Cl2, I2 was observed most readily when [I-]/[Br-] was close 

to the initial ratio in the dark of 2.6 x 10-3, per the halide concentrations found in Instant 

Ocean (Sect. 5.2.1).  In the presence of HOOH we find that I2 mole fractions increase 

rapidly once the lights are activated (e.g., Figure 5.2 top).  Of the four experiments 

performed at pH ≈4.7 (IO1, IO2, SW1, SW2) with HOOH, three produced statistically 

similar I2 yields after the lights had been activated for one hour (7.7 ± 1.6 nmol, 

experiments IO1, SW1, SW2).   
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Table 5.2 List of experiments performed using an explicit OH source (i.e., HOOH or 

NO2
-).  Yields represent the integrated total moles of gas-phase molecular halogens 

produced up to 1 hour after turning on the solar simulator lamps.  sx represent the 

propagated uncertainty from these integrations, resulting primarily as a function of the 

uncertainty in the sensitivity (Sect. 5.2.3).   

Experiment 

Oxidant pH 

I2 yield 

(nmol) 

sI2 

(nmol) 

Br2 yield 

(nmol) 

sBr2 

(nmol) 

Cl2 yield 

(nmol) sCl2 (nmol) 

IO1 HOOH 4.7 9.1 3.1 0.0021 0.0002   

IO2 HOOH 4.7 0.65 0.01 0.034 0.002   

IO3 NO2
- 2.0 6.7 0.2 0.081 0.002   

IO4 HOOH 1.7 0.82 0.22 5.5 0.1   

IO5 HOOH 1.7 0.33 0.04 3.5 0.8   

SW1 HOOH 4.7 5.9 1.1 0.021 0.001   

SW2 HOOH 4.5 8.1 3.9 0.018 0.003   

SW3 NO2
- 1.8 4.0 0.1 0.013 0.001   

SW4 NO2
- 2.2 0.16 0.07 5.4 0.9   

SW5 HOOH 1.8 0.75 0.13 6.0 1.2   

CL1 HOOH 1.8 0.10 0.01 0.10 0.01 0.093 0.003 

 

 

It appears that a factor of 10 less I2 was produced by IO2 based on the times chosen for 

integration.  On connecting the flow tube to the CIMS in this experiment, there appeared 

to be already I2 within the tube, possibly induced by room light during the transfer of the 

flow tube from the cooling box to the experimental light box.  However, this production is 

believed to be minimal relative to the production from the solar simulator bulbs in the 

photolysis box.  This is based on the relative absorption spectrum for hydrogen peroxide, 

which ceases significant absorption above 400 nm (Phibbs and Giguère, 1951), and 

emission spectrum of typical fluorescent lights, which begin significant emission above 

400 nm (Figure 5.3).    
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Figure 5.3 Absorption coefficients hydrogen peroxide and emission spectrum for General 

Electric “Cool White” fluorescent bulb. Top plot was reproduced from data provided 

from Phibbs and Giguère (1951), and bottom plot was taken from the website of General 

Electric (http://www.gelighting.com/LightingWeb/na/resources/tools/lamp-and-

ballast/spectral-power-distribution-curves.jsp) 
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When the solar simulator bulbs were activated, this I2 signal quickly returned to the 

baseline, before rising and exhibiting the same qualitative features as Figure 5.2 (top panel).  

If instead the limits of integration are chosen starting when the I2 signal begins rising (i.e., 

during a period that resembles the other experiments), the integrated I2 yield (1.1 ± 0.6 

nmol) more closely resemble the aforementioned experiments.  Conversely, in the absence 

of OH (Table 5.3), integrated I2 yields over the course of one hour are significantly lower.  

At pH=4.7, IO7 (dissolved Instant Ocean) produced 0.11 ± 0.06 nmol of I2, while our two 

saltwater experiments (SW6, SW7) produced an average of 0.028 ± 0.011 nmol of I2 

without the presence of HOOH or NO2
-.  Neither Br2 nor Cl2 were produced above limits 

of detection. 

 

 

 

Table 5.3 List of experiments performed using an explicit OH source (i.e., HOOH or 

NO2
-).  Yields represent the integrated totals of halogens 1 hour after turning on the O3 

generator. sx represent the propagated uncertainty from these integrations, resulting 

primarily as a function of the uncertainty in the sensitivity (Sect. 5.2.3). 

Experiment Oxidant pH I2 yield (nmol) sI2 (nmol) Br2 yield (nmol) sBr2 (nmol) 

IO6 NA 4.7 0 0 0 0 

IO7 NA 4.7 0.11 0.06 0 0 

IO8 NA 2.0 14 3 0 0 

SW6 NA 4.7 0.020 0.006 0 0 

SW7 NA 4.5 0.036 0.001 0 0 

SW8 NA 1.8 6.0 0.2 0 0 

 

 

After initiating the lights, we note that I2 does begin increasing after the course of ~30 

minutes, but it is at a much lower rate than when HOOH is present in solution.  This 

production likely stems from the mechanisms outlined by Kim et al. (2016) (R5.13-14, 
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R5.10-12), which require only light, oxygen, and acidic conditions.  In fact, we find that 

further increasing the acidity of solution appears to greatly enhance this production 

(discussed below).  At least in the case of the Instant Ocean solutions, is also possible that 

an NO3
- contaminant exists in the salt, which could act as an OH source analogously to 

NO2
- (R5.6-5.7).  While the manufacturer reported concentration is 0 ppm, we could not 

quantitatively confirm this using ion chromatography due to the high ionic strength of our 

solutions.  

At lower pH (<2), large amounts of I2 were found to exit the tube upon connection 

to the CIMS (i.e., in the absence of light and O3).  There are two possible sources of this 

production.  As indicated above, transferring the flow tube from the cooling box could have 

generated OH radicals that subsequently produced I2.  Alternatively, a dark reaction 

mechanism between HOOH and I- could have occurred: 

 

I− + H2O2 ↔  HOI + OH−       R5.17 

HOI + I− + H+ → I2 + H2O         R5.7 

 

This reaction sequence is often considered when discussing marine biota biochemistry 

(Küpper et al., 1998), but is not often referenced when considering Arctic chemistry which 

can have acidic surfaces with HOOH present (e.g., Anastasio et al., 2007).  Integrating the 

I2 mole fractions from the moment the tube is connected to the CIMS until the lights are 

activated, an average of 59 ± 41 nmols of I2 were released in the dark during experiments 

IO4, IO5, and SW5, corresponding to 39% of the initial 150 nmol of I- in solution.  After 
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this time, we saw little, if any, photochemical production of I2, perhaps due to the depletion 

of available I- at the ice surface.  For comparison with the experiments involving HOOH, 

we employed NO2
- as an alternative source of OH (R5.6-7).  We note that NO2

-, along with 

hydrogen peroxide, has been assessed to account for 96% of photochemical OH formation 

at Barrow, AK (France et al., 2012).  Though NO2
- has been shown to produce aqueous 

H2ONO+ that produces trihalide species (which exist in equilibrium with X2 as in R5.12) 

under acidic conditions in the dark (O’Driscoll et al., 2006, 2008; O’Sullivan and Sodeau, 

2010), and some dark I2 production was observed here, we were still able to observe 

photochemical I2 production in these cases.  Integrated Instant Ocean and saltwater I2 yields 

in these cases were comparable after exposure to light (6.7 ± 0.2 and 4.0 ± 0.1 nmol I2 for 

IO3 and SW3, respectively).  Interestingly in cases without OH precursors, photochemical 

I2 production yields (14 ± 3 nmol for IO8, and 6.0 ± 0.2 nmol for SW8) were within a factor 

of 2 of the I2 produced by NO2
- photolysis.  As referred to above, this production likely 

stems from the mechanisms outlined by Kim et al. (2016) (R5.13-14, R5.10-R12).  While 

the Kim et al. (2016) mechanism would appear to occur at a slower rate than OH-mediated 

production at pH ≈ 4.7, it is possible at low pH that significant dark oxidation of I- still 

occurs with H2ONO+ as described above, thereby reducing available I- for reaction and 

retarding the rate of OH-mediated production.  Conversely, without OH precursors, I- 

would not deplete in the dark, which enables the Kim et al. (2016) mechanism to proceed 

at an apparently comparable rate in these experiments. 

 When [I-]/[Br-] resembles the initial conditions of Instant Ocean (i.e., IO1-IO3, 

SW1-SW3), Br2 is not observed as readily as I2.  At pH ≈ 4.7, Br2 remains below limits of 

detection (average 1.8 ± 0.4 pmol mol- 1 across experiments) in just the presence of light 
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and HOOH.  As discussed above, especially at pH < 2, substantial amounts of I2 are 

produced in the dark in reactions with hydrogen peroxide, thus decreasing the [I-]/[Br-].  In 

these low pH cases, Br2 is the dominant photochemical product, yielding an average of 4.5 

± 0.5 nmol from IO4 and IO5, and 6.0 ± 1.2 nmol from SW5, which used HOOH as an OH 

precursor, and 5.4 ± 0.9 nmol from SW4, which used NO2
- as an OH precursor.  While we 

cannot provide an accurate estimate of the [I-]/[Br-] at pH < 2, we can roughly estimate 

how much I2 evolved before turning on the lights to assess the remaining moles of I- in the 

quasi-brine layer, and essentially provide upper limits toward what [I-]/[Br-] was during 

Br2 release.  Though highly uncertain, we estimate [I-]/[Br-] at low pH in solutions with 

hydrogen peroxide the moment before the lights turn on to have an average value of (1.6 ± 

0.7) x 10-4, which leads to photochemical production of Br2.  This is about an order of 

magnitude less than the starting [I-]/[Br-] of 2.6 x 10-3. 

 Photochemical chlorine production was only observed from a frozen solution of 

NaCl (CL1) and hydrogen peroxide at low pH (1.8), as shown in Figure 5.2c.  After one 

hour, 0.93 ± 0.03 pmol of Cl2 was detected by CIMS, as was 100 ± 10 pmol of Br2.  

However, as shown in Fig 2c, significant changes are not apparent until hour 1. Note that 

the sudden rise at t=0 is an artifact, as before this point the isotopic ratios were not 

consistent with Cl2.  Integrating instead from t=0 until t=2 hours, the Cl2 yield is equal to 

190 ± 10 pmol, while the Br2 yield increases to 310 ± 20 pmol.  The Br- impurity of this 

NaCl salt solution, quantified by ion chromatography, was determined to be (4.5 ± 0.3) x 

10-6 M, meaning Cl2 production was observed at [Br-]/[Cl-] of 8.1 x 10-6 (1/124,000).  As a 

point of reference, this ratio is possibly similar to the one used by Wren et al. (2013), who 

observed O3 and photochemical-induced Cl2 production using NaCl salt with 0.001% Br- 
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impurity ([Br-]/[Cl-] ≤ 1/134,000).  A key difference between this work and Wren et al. (2013) 

is that the Cl2 produced here occurred in the absence of both O3 and associated gas phase 

recycling chemistry, but with a condensed phase OH source. These results are possibly 

(though not necessarily) more representative of what was observed in situ within the 

snowpack by Custard et al. (2016), where O3 levels tend to be lower than the overlying air 

(Albert et al., 2002; Helmig et al., 2012).  However, Liao et al. (2014) reported that ambient 

Cl2 concentrations correlate with both light and O3.  The roles of both OH-mediated and 

O3-mediated X2 production are further explored in Sect. 5.4. 

 Thus, we see a similar result for Br2 production in the presence of I-, and Cl2 

production in the presence of Br-.  Specifically, Br2 is not observed until I2 production 

decreases the I-/Br- ratio, and Cl2 is not observed until/unless the Br-/Cl- ratio is sufficiently 

low.  It is worth noting that as discussed by Gladich et al. (2011) larger more polarized 

halide ions tend to be enriched at the ice-air interface .  

 Given that OH has been demonstrated to dominate the photochemical production 

of these halogens, at least at moderate pH, effective relative rate constants (kX-/kY-) for 

production under these experimental conditions can be calculated from experiments in 

which simultaneous halogen production is observed, assuming that the flux out of the ice 

is proportional to the production rate: 

 

FluxX2

FluxY2

=
kX−[X−][OH][H+]

kY−[Y−][OH][H+]
        E5.1 
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Flux is calculated as the integrated sum of X2 divided by integration time (t=0-3 minutes, 

starting from the moment the lights turn on) and the surface area of the ice coverage in the 

flow tube.  While we do not know the actual concentration of OH, it is identical within 

individual experiments and thus cancels here, as does surface area.  The remaining 

variables are the halide ion concentrations, defined in Section 5.2, thus allowing us to solve 

for the effective relative rate constant, kX-/kY-.  At pH = 1.8, we estimate kBr-/kCl- = (2.4 ± 

0.2) x 105 from experiment CL1, or, in other words, production of Br2 is 240,000 times 

more efficient from OH radical reaction than is production of Cl2 via OH + Cl-.  Across the 

six experiments performed at low pH using Instant Ocean (IO3, IO4, IO5) and salt water 

(SW3, SW4, SW5), we calculate an average kI-/kBr- of (8.9 ± 4.0) x 103 (reported 

uncertainty is the standard error of the mean) at an average pH of 1.85.  Thus, we can 

speculate that for these experiments, the dominant sink for OH is reactions with halide ions.  

This is supported by the fact that I2 and Br2 production are not significantly different 

between Instant Ocean and saltwater solutions (i.e., the organic matter in Instant Ocean 

does not appear to be the dominant OH sink).  Therefore, OH radicals are readily consumed 

by I-, and thus [OH] is too low for significant oxidation reaction with Br-.  As I- is consumed, 

HOOH continues to photolyze, thereby increasing [OH] such that Br2 production becomes 

apparent.  Similarly, [OH] is too low for significant Cl2 production, until/unless [Br-] / [Cl-] 

is very low.  
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5.3.2  Effects of O3 

The addition of O3 to the irradiated sample in the flow tube causes additional 

production of I2 and Br2, as seen in Figure 5.2 (top) and Figure 5.2 (middle) under both pH 

conditions (Table 5.4Table 5.5).   

 

 

Table 5.4 List of experiments performed without using an explicit OH source (i.e., 

without HOOH or NO2
-).  Yields represent the integrated totals of halogens 1 hour after 

turning on the solar simulator lamps (t = 0 through t=1hr).  sx represent the propagated 

uncertainty from these integrations, resulting primarily as a function of the uncertainty in 

the sensitivity (Sect. 5.2.3).   

Experiment Oxidant pH 

I2 yield 

(nmol) 

sI2 

(nmol) 

Br2 yield 

(nmol) 

sBr2 

(nmol) 

IO1 HOOH 4.7 6.9 2.4 0.014 0.001 

IO2 HOOH 4.7 21 1.0 0.038 0.002 

IO4 HOOH 1.7 0.042 0.012 12 1 

IO5 HOOH 1.7 0.11 0.01 9.2 2.0 

SW1 HOOH 4.7 51 9.0 0.024 0.002 

SW2 HOOH 4.5 51 25 0.027 0.004 

SW3 NO2
- 1.8 1.1 0.1 0.46 0.01 

SW4 NO2
- 2.2 0 0 13 2 

SW5 HOOH 1.8 0.018 0.003 15 3 

 

 

Table 5.5 List of experiments performed without using an explicit OH source (i.e., 

without HOOH or NO2
-). Yields represent the integrated totals of halogens 1 hour after 

turning on the O3 generator.  sx represent the propagated uncertainty from these 

integrations, resulting primarily as a function of the uncertainty in the sensitivity (Sect. 

5.2.3).  

Experiment Oxidant pH 

I2 yield 

(nmol) 

sI2 

(nmol) 

Br2 yield 

(nmol) sBr2 (nmol) 

IO6 NA 4.7 26 9 0.015 0.001 

IO7 NA 4.7 47 29 0.0063 0.0006 

IO8 NA 2.0 2.6 0.5 0.14 0.03 

SW6 NA 4.7 55 18 0.0021 0.0003 

SW7 NA 4.5 48 2 0.0042 0.0001 

SW8 NA 1.8 38 1 0.93 0.02 
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In experiments with higher pH (where [Br-]/[I-] remains low), exposure to O3 causes a 

sharp increase in I2 (as in Figure 5.2a).  As the I2 signal decays, the corresponding Br2 

signals gradually increase, consistent with the interpretation above.  In the presence of OH 

precursors, after one hour of O3 exposure in the flow tube, I2 yields are comparable for 

Instant Ocean (IO1, IO2) and saltwater (SW1, SW2), with an average of 14 ± 10 nmol and 

51 ± 1 nmol, respectively, as were the yields of Br2 (0.026 ± 0.017 and 0.026 ± 0.002 nmol).  

When pH < 2, the effects of O3 vary according to the remaining availability of I-.  In cases 

where the I- reservoir has been reduced from dark reactions with HOOH (R19), exposure 

to O3 causes a much smaller, or non-detectable, increase in the I2 signal (ranging from 

below limits of detection, (average of 9.0 ± 2.0 pmol mol-1 across all experiments), to 0.11 

± 0.06 nmol in IO5), which is at least an order of magnitude less than what was observed 

at the higher pH.  However, O3 did cause additional Br2 production after one hour (average 

of 11 ± 2 nmol for IO4 and IO5, and 14 ± 2 nmol for SW4 and SW5).  In contrast, for SW3 

(using NO2
- as an OH source), there is relatively little initial consumption of I- by dark 

reaction.  When O3 was added in this case, an I2 yield of 1.1 ± 0.1 nmol was observed, 

comparable to what was observed at the higher pH.  Br2 (0.46 ± 0.01 nmol) was also 

significantly less than observed when I- was initially depleted.  Unfortunately, the addition 

of O3 introduced a strong interference for the signal observed at m/z 197 (I35Cl35Cl-) 

rendering Cl2 isotopic ratios invalid during these times, and hence no information regarding 

the relationship between chlorine and O3 could be ascertained in this work. 

In experiments without an OH source, I2 yields are greatest when O3 is introduced 

to the illuminated tube in both pH regimes (Table 5.5).  This likely originates from a 

combination of the mechanism proposed by Kim et al. (2016), heterogeneous recycling, 
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and the favorable aqueous reaction between O3 and I- (k = 2.0 x 10-12 cm3 molecules-1 s-1 

(Liu et al., 2001))  discussed further below.   

 

5.4 Discussion 

The ability of the hydroxyl radical to convert I-, Br-, and Cl- to I2, Br2, and Cl2, 

respectively, from frozen saline surfaces was demonstrated above.  Under the halide 

compositions of Instant Ocean, I2 production was observed under all experimental 

conditions in the presence of light and O3 (with the exception of the experiments using only 

NaCl salt (negligible I- impurity)).  Bromine production was observed at moderately acidic 

pH (~4.7) in low amounts only after O3 was introduced in the presence of light.  This O3-

induced production was seemingly not affected by the presence or absence of an explicit 

OH source.  At lower pH (when I- had depleted from dark reactions) Br2 production was 

readily observed in the presence of lights, and enhanced when the samples were exposed 

to O3.  However, if I- was not substantially depleted before exposing the samples to 

radiation, I2 remained the dominant product.  Finally, Cl2 was only observed 

photochemically (in the absence of O3) at low pH using high-grade NaCl salt ([Br-]/[Cl-] = 

8.1 x 10-6) in the presence of HOOH, i.e. largely in the absence of both I- and Br-.  We 

again note that our observations do not mean O3 cannot produce Cl2, only that it introduced 

an interfering signal at m/z 197, rendering us unable to obtain such information. 

These results appear to be consistent with an acid-enhanced production mechanism 

in which the dominant products are largely dependent on relative halide ratios.  It is 

expected that I2 is produced most readily in frozen solutions given the high polarizability 

and surface affinity of I- in aqueous solutions (Gladich et al., 2011).  That is, surface 
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concentrations will be relatively enhanced with larger, more polarizable anions, which 

favors production of I2 over Br2, and Br2 over Cl2, until the larger ions are depleted through 

oxidation, and then the next largest ion becomes more readily oxidized.  More importantly, 

in terms of relative reaction rates, the oxidation potentials for I-, Br-, and Cl- are 

significantly different (e.g., it is a much lower energy process to oxidize I- relative to the 

other halogens).  The standard reduction potentials for Cl2, Br2, and I2 are 1.360, 1.098, and 

0.620V for Cl2, Br2, and I2, respectively (Chemical Rubber Company and Lide, 2005). This 

is reflected in the estimated relative kI-/kBr- of (8.9 ± 4.0) x 103 (calculated for pH=1.9), and 

that for kBr-/kCl- = (2.4 ± 0.2) x 105 (calculated for pH=1.8).   

Though in situ frozen surfaces largely vary with regard to composition due to 

atmospheric processing and variable uptake (Krnavek et al., 2012), molecular halogen 

levels have been previously observed at concentrations within the snowpack gas phase 

within a factor of 2-10 of each other.  For instance, Br2 has been observed at peak levels of 

35 pmol mol-1 (Custard et al., 2016), I2 up to 5 pmol mol-1 (Raso et al., 2016), and Cl2 levels 

ranging from 0-20 pmol mol-1 (Custard et al., 2016).  Despite substantially lower natural 

abundances of I-, especially if sea salt aerosol is presumed to be the dominant source of I- 

to these surfaces in the Arctic (Simpson et al., 2005), I2 is still observed at levels 

approaching those typical of Cl2 and Br2.  The relative rate constants (ease of X-oxidation 

by OH radicals) we calculate would then appear to explain that the reactivity of the larger 

ions compensate for the low abundances, leading to comparable production rates in our 

laboratory experiments, and comparable snowpack gas phase concentrations.  Using a 

modified version of Eq. 5.1, we can estimate relative in situ OH-mediated halogen 
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production rates using published halide ratios from melted in situ snow samples from 

Barrow, AK (Eq. 5.2). 

 

d[X2]

dt
d[Y2]

dt

=
kX−[X−][OH][H+]

kY−[Y−][OH][H+]
         E5.2 

 

Using the maximum and minimum reported [Br-]/[Cl-] values of 0.026 ± 0.20 and 0.0068 

± 0.04 from Pratt et al. (2013), we find a corresponding range for 

𝑑[𝐵𝑟2]

𝑑𝑡
𝑑[𝐶𝑙2]

𝑑𝑡

 of (6.3 ± 48) x 103 

to (1.6 ± 10) x 103.  Similarly for Raso et al. (2016), who reported [Br-]/[Cl-] values ranging 

from 0.014 ± 0.003 and 0.077 ± 0.130,  

𝑑[𝐵𝑟2]

𝑑𝑡
𝑑[𝐶𝑙2]

𝑑𝑡

 is found to range (3.4 ± 0.8) x 103 to (1.8 ± 

3.1) x 104.    

𝑑[𝐼2]

𝑑𝑡
𝑑[𝐵𝑟2]

𝑑𝑡

 can additionally be estimated from Raso et al. (2016).  In this case, where 

0.020 ± 0.004 ≤  [I-]/[Br-] ≤ 0.090 ± 0.081,   

𝑑[𝐼2]

𝑑𝑡
𝑑[𝐵𝑟2]

𝑑𝑡

values are found to range from 1.8 ± 1.0 

x 102 to 8.0 ± 7.5 x 102.  Finally, [I-]/[Cl-] ranging from (5.1 ± 0.7) x 10-4 to (5.1 ± 0.7) x 

10-3, we obtain 

𝑑[𝐼2]

𝑑𝑡
𝑑[𝐶𝑙2]

𝑑𝑡

 values of (1.1 ± 0.5) x 106 to (8.1 ± 3.7) x 106.  Note that even though 

simultaneous production of I2 and Cl2 was not observed herein, kI-/kCl-
 was calculated by 

multiplying kI-/kBr- by kBr-/kCl-.  The results of these calculations indicate that the observed 

relative rates of production more than compensate for the relative halide abundances.  

However, they are inconsistent with the observed relative snowpack interstitial air 

abundances from field observations, which show similar (within a factor 10) abundances 

in irradiated snowpack interstitial air.  We thus draw the following conclusions:  
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 1. There exist important competing loss processes of Br2 and I2 after initial 

production. 

 2. Other Cl2 production pathways account for the majority of ambient 

concentrations. 

Concerning hypothesis 1, one likely loss process includes aqueous inter-halogen 

partitioning, as in R5.18 (where X = I or Br, and Y = I, Br, or Cl): 

X2 +  Y− ↔ X2Y− ↔  XY +  X−         R5.18 

Photolysis of X2 is faster for the larger molecular halogens. For example, Thompson et al., 

(2015) report 𝐽𝑋2
 = 0.15, 4.4 x 10-2, and 2.1 x 10-3 s-1 for I2, Br2, and Cl2, respectively during 

solar noon in March at Barrow, AK, or photolytic lifetimes of 7s, 23s, and 476s, 

respectively.  Thus faster photolysis of the larger halogens in the snowpack air will 

contribute to leveling the production rate differences, given penetration of actinic radiation 

into the snowpack (King and Simpson, 2001). 

There also exists much evidence to support hypothesis 2.  Most recently, Wren et 

al. (2013) observed substantial Cl2 production from their artificial snow samples in the 

presence of both O3 and light, invoking the “halogen explosion” mechanism described in 

Sect. 1.  In this scenario, HOI or HOBr can liberate Cl from the QBL to produce ICl or 

BrCl, which can undergo R5.1-4 to produce HOCl that ultimately produces Cl2 (i.e., via 

R5.4). 

 

HOCl + Cl− + H+ → Cl2 + H2O         R5.4 
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 Liao et al. (2014) observed results consistent with this mechanism above the snowpack in 

Barrow, AK, reporting a strong correlation between Cl2 levels, O3 levels, and solar 

radiation.  This pathway is certainly viable for producing Cl2 in our experiments, given the 

flow tube was flushed with a residence time of 12 seconds.  While our experimental 

conditions focus on the processes that initiate production of Br2 and I2, rather than the 

recycling chemistry (R5.1-4), heterogeneous recycling can help explain the observed 

enhancements in Br2 and I2 in the presence of radiation and O3.   

While O3-mediated halogen production has been observed directly from frozen 

surfaces in previous laboratory studies of frozen surfaces (Oldridge and Abbatt, 2011; Oum 

et al., 1998a; Wren et al., 2013), experiments on samples in the Arctic have not exhibited 

similar behavior without light, which raises a question of the role of O3 in initial halogen 

release in the Arctic spring.  Ozone was found to stimulate additional and substantial I2 and 

Br2 production in the experiments herein, as shown in Sect 5.3.2.  This additional 

production could possibly result from the combination of several mechanisms.  First, as 

discussed above, O3 can react with halides on frozen saline surfaces to produce molecular 

bromine or iodine per reactions R5.13-14, R5.4 (Carpenter et al., 2013; Gladich et al., 2015; 

Hayase et al., 2010; Oum et al., 1998a; Shaw and Carpenter, 2013; Wren et al., 2013).  

Evidence supporting this mechanism is represented by CIMS signals corresponding to 

HOX (formed by R16) and IHOX- (Figure 5.4-Figure 5.5).   
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Figure 5.4 HOX signals from experiment IO2. Vertical lines represent time when O3 is 

introduced to the system. a) red traces correspond to Br2 mole fractions (calibrated signal 

at m/z 287, I79Br81Br-), and black trace to HOBr (calibrated signal at m/z 225: IHO81Br-). 

Note that the HOBr signal, while calibrated, should be used only for qualitative purposes 

as its identity could not be confirmed using isotopic ratios with m/z 223 due to relatively 

large background.  b) blue trace corresponds to I2 (calibrated signal at m/z 381), and black 

corresponds to HOI (m/z 271: IHOI-).   
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Figure 5.5 HOX signals from experiment SW5. a) red traces correspond to Br2 mole 

fractions, and greyscale signals to HOBr m/z 225 - IHO81Br-).  Note that the HOBr signal, 

while calibrated, should be used only for qualitatively purposes as its identity could not be 

confirmed using isotopic ratios with m/z 223. b) blue trace corresponds to I2 mole fractions, 

and black corresponds to HOI (m/z 271 – IHOI-). 
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Figure 5.4 shows the pH=4.7 experiment using saltwater (Figure 5.2a).  In the top portion, 

it can be seen that the addition of O3 at hour 2 corresponds to the sudden increase of Br2.  

However, corresponding HOBr production is not observed in this case, perhaps either due 

to limits of detection, or the relatively low abundance of Br2, limiting production of HOBr.  

In the bottom portion, large increases in I2 and HOI are readily observed.  Conversely, in 

the low pH cases (corresponding to the experiment in the middle panel of Figure 5.2) when 

substantial portions of I- had already reacted prior to activating the lights, the addition of 

O3 at hour 1 produces negligible I2 or HOI (Figure 5.5, bottom).  However, HOBr (m/z 

225) is apparently produced following the addition of O3, together with rising Br2 

concentrations.  We note in this case that m/z 223, representative of 79HOBr, does not 

appear to show an enhancement when O3 is added to the system, but it is noted to have a 

much higher background signal than m/z 225, possibly as the result of an interference.  

However, it is more likely that HOX is formed in the gas phase from reactions R5.1-R5.3.  

Commercial-grade sea-salts contain organic material, the photolysis of which can produce 

HOx precursors such as HCHO, which after production could volatilize from the ice, and 

then photolyze (Dominé and Shepson, 2002; Sumner and Shepson, 1999).  Given a flow 

tube flush time of 12 seconds, gas phase production of HOX is possible, and could 

potentially enhance X2 production, given a timescale for molecular diffusion of 6.5 seconds 

for HOBr from the center of the tube to the ice surface.  At this flow rate, there is enough 

time for 1-2 heterogeneous reaction cycles.   

Since it has been shown that halogen activation is pH-dependent, this raises the 

question of the pH of relevant Arctic surfaces.  Sulfate aerosol pH in the Arctic is estimated 

to be about 0 (Fan and Jacob, 1992), while in the continental United States, it is typically 
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0.5-3 (e.g., Guo et al., 2015).  Pratt et al. (2013) indicate that for Arctic surface production 

of Br2, the snow pH must be acidic, and that no production is observed from well-buffered 

ice brine or other highly saline surfaces.  However, the actual snowpack surface pH is 

unknown, as the freeze-concentration effect tends to concentrate ions at the surface in the 

QBL.  Thus, given the prevalence of HOOH on surfaces (deposited from gas-phase 

production, R5.19), and with low pH, reactions R5.17 and R5.4 could subsequently lead to 

I2 production in the dark, which could then be present during polar sunrise.   

 

2HO2 → HOOH + O2        (R5.19) 

 

This is consistent with a peak in I- levels from aerosol measurements that occurs in Spring 

and Fall (Barrie and Hoff, 1985).  Sturges and Barrie (1988) report that I in Arctic aerosols 

is enriched relative to sea salt by a factor of 103 – 104.  There must then be active in situ 

photochemistry and recycling on surfaces.  It is likely that both Br2 and Cl2 are produced 

via OH radical initiation, but that bromine explosion chemistry (and similar chemistry for 

chlorine) dominates after this initial production, and is more important to producing Cl2 

(via HOCl).  The work of Pratt et al. (2013) proposes the role of O3 in accelerating Br2 

production in the snowpack interstitial air via HOBr production and subsequent deposition 

on surfaces, and that also likely occurs for chlorine (Liao et al., 2014; Wren et al., 2013).   

 

5.5 Summary and Conclusions 

It has been shown herein that the hydroxyl radical can act as an effective halide ion 

oxidant for I2, Br2, and Cl2 under acidic conditions.  Rates of release appear to be 
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influenced by both pH and relative halide amounts, in which the observed product is 

highly influenced by which ions are enhanced at the ice surface.  An opportunity exists to 

further explore this chemistry via surface interrogation methods, for which recent 

developments have been shown to effectively characterize the surface composition of 

frozen solutions of sodium chloride under near atmospherically relevant conditions 

(Orlando et al., 2016).  While OH can produce Br2 and I2 most rapidly, it appears that 

heterogeneous recycling of HOCl could be a more dominant mechanism behind 

production of gas phase Cl2. We find the addition of O3 provides additional production of 

at least Br2 and I2, probably through gas-phase production of HOX.  These results lend 

support for the mechanisms proposed by the recent in situ snowpack experiments near 

Barrow, AK (Custard et al., 2016; Pratt et al., 2013; Raso et al., 2016).  Additionally, 

they indicate the need to canvas snow pH to ascertain how widespread the potential is for 

halogen chemistry around the Arctic. 
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 CONCLUSIONS 

 

The work presented in this thesis contributes to our understanding of the behavior 

of surface-level ozone in the Arctic during springtime.  Ozone depletion events (ODEs) 

have been long believed to initiate over the Arctic Ocean since their discovery in the late 

1980s (Oltmans and Komhyr, 1986), though very few long-term field observations are 

available to study ODEs “in situ.”  Here, the first analyses of long-term Arctic Ocean-based 

O3 measurements from buoy-based observatories have been used to ascertain “in situ” 

timescales of O3 decay (median 11 hours), the spatial extents of ODEs (median diameter 

of ~900 km), as well as the temperatures (range of 243 – 273 K) and wind speeds (<1 – 7.5 

m/s) under which ODEs are observed (Chapter 3).  Even though a major finding of Chapter 

3 was that the ODEs could still be observed due primarily because of air mass transport, as 

is often claimed at coastal sites (e.g., Bottenheim et al., 1986, 2002b; Hausmann and Platt, 

1994; Tuckermann et al., 1997) it was found in Chapter 4 that sea ice surface types had 

only minor influence on O3 variability over local meteorology.  Paired with the observation 

that the majority of Arctic Ocean based measurements are below 10 nmol mol-1, this 

suggests that the Arctic is largely O3 depleted during springtime, and possibly only 

interrupted during periods of turbulent activity.  While these results improve our 
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knowledge of  ODEs as they occur over the Arctic Ocean, they more importantly illuminate 

the need for future work to fully understand their underlying mechanisms.  As discussed in 

Chapter 3, a recent modelling study by Thompson et al. (2015) finds that the inclusion of 

very small amounts of iodine (0.025 – 0.5 pmol mol-1) to a 0-D chemical model constrained 

to actual observations of O3, chlorine, and bromine species at Barrow, AK, can deplete O3 

from 35 nmol mol-1 to 5 nmol mol-1 at timescales resembling those in Chapter 3.  A similar 

modeling study constrained to O-Buoy observations can be undertaken to determine what 

concentrations of reactive halogens are required to mimic those results.  Further, as has 

been discussed throughout this thesis, advances in mass spectrometry have enabled 

quantitative measurements of low levels of molecular halogens.  While this technique has 

been employed at Barrow, AK, (Custard et al., 2016; Liao et al., 2011, 2012a, 2014; Pratt 

et al., 2013; Raso et al., 2016), and in aircraft studies off the Alaskan coast (Neuman et al., 

2010), there is a need to expand CIMS observations to the Arctic Ocean, possibly at ice 

camps, to confirm the presence of I2 activity and thus its role in ODEs.   

In addition, there is some difficulty in interpreting the effects of O-Buoy 

meteorology as it relates to O3 variability.  Are sudden changes in temperature and pressure 

a localized event, possibly related to the opening of a nearby lead, while O3 levels in the 

Arctic at large remain depleted?  Could they instead be more indicative of a synoptic scale 

event or storm, and ODE chemistry must once again occur before on a large scale before 

low O3 is observed again?  While the O-Buoy project has so far seen 19 buoy deployments 

as of this writing, concurrent deployments without catastrophic failures of at least the O3 

instrument are limited to OB11-12 (deployed in Fall 2014), and OB13-14 (deployed in Fall 

2015), both sets of which were deployed in the Beaufort Sea.  In addition, we have the 
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coincident observations of OB4 and Icelander 2 in 2012, though they were separated by 

more than 2000 km.  Further effort should be placed into concurrent buoy deployments at 

multiple sites around the Arctic Ocean, though securing spots on multiple icebreakers and 

securing capital for ship time is certainly a non-trivial task. 

 The mechanism and conditions by which molecular halogens are introduced into 

the boundary layer remains a subject of debate, though a hydroxyl radical based chemical 

mechanism has been recently proposed from field observations of snowpack interstitial air 

(Pratt et al., 2013; Raso et al., 2016).  The photolysis of hydroxyl radical precursors was 

demonstrated to produce molecular chlorine, bromine, and iodine from frozen acidic 

surfaces in Chapter 5.  Similar to the field based results, bromine and iodine production 

were further enhanced in the presence of O3, though we cannot comment on O3’s influence 

on chlorine production.   Not only have we improved our understanding of fundamental 

halogen chemistry, the relative rates of halogen production quantified in this work are 

likely to benefit chemical models that attempt to simulate the onset of ODEs during polar 

spring. 

 In closing, there still exists much work to be done before our understanding of ODE 

chemistry can be considered “full.”  While the Arctic is far removed from the majority of 

human life, it is highly likely the chemistry discussed herein also occurs in snow-covered 

mid-latitude regions during wintertime, which has yet to be seriously considered in its 

effects on the mid-latitude O3 budget.  Though the Arctic is undergoing rapid change that 

will likely soon cause an end to Arctic ODE chemistry entirely, it remains our best 

laboratory for investigating this phenomenon given its pristine condition, and evaluating 

how these chemical pathways may ultimately affect human life and the rest of the planet. 
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Abstract. Following polar sunrise in the Arctic springtime,
tropospheric ozone episodically decreases rapidly to near-
zero levels during ozone depletion events (ODEs). Many
uncertainties remain in our understanding of ODE charac-
teristics, including the temporal and spatial scales, as well
as environmental drivers. Measurements of ozone, bromine
monoxide (BrO), and meteorology were obtained during
several deployments of autonomous, ice-tethered buoys (O-
Buoys) from both coastal sites and over the Arctic Ocean;
these data were used to characterize observed ODEs. De-
tected decreases in surface ozone levels during the onset of
ODEs corresponded to a median estimated apparent ozone
depletion timescale (based on both chemistry and the ad-
vection of O3-depleted air) of 11 h. If assumed to be dom-
inated by chemical mechanisms, these timescales would cor-
respond to larger-than-observed BrO mole fractions based
on known chemistry and assumed other radical levels. Using
backward air mass trajectories and an assumption that trans-
port mechanisms dominate observations, the spatial scales
for ODEs (defined by time periods in which ozone lev-

els ≤ 15 nmol mol−1) were estimated to be 877 km (me-
dian), while areas estimated to represent major ozone de-
pletions (< 10 nmol mol−1) had dimensions of 282 km (me-
dian). These observations point to a heterogeneous bound-
ary layer with localized regions of active, ozone-destroying
halogen chemistry, interspersed among larger regions of pre-
viously depleted air that retain reduced ozone levels through
hindered atmospheric mixing. Based on the estimated size
distribution, Monte Carlo simulations showed it was statisti-
cally possible that all ODEs observed could have originated
upwind, followed by transport to the measurement site. Local
wind speed averages were low during most ODEs (median of
∼3.6 m s−1), and there was no apparent dependence on local
temperature.
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1 Introduction

Global tropospheric oxidation is generally controlled by
ozone (O3), a major greenhouse gas (Gauss et al., 2006)
and the most important precursor to the primary atmospheric
oxidant, hydroxyl radical (OH) (Seinfeld and Pandis, 2006;
Thompson, 1992). When the sun rises in the Arctic spring-
time (typically around mid-March), boundary layer O3 of-
ten drops precipitously from background mole fractions of
∼40 nmol mol−1 (ppbv, parts per billion by volume) to near
zero levels for periods of hours, or even days, before recover-
ing (Anlauf et al., 1994; Barrie et al., 1988; Bottenheim et al.,
1986, 2002). During these ozone depletion events (ODEs),
the prominent regional tropospheric oxidation pathways for
hydrocarbons at the surface are driven by species other than
OH radicals, notably Cl and Br atoms (Cavender et al., 2008;
Jobson et al., 1994).

ODEs are considered to start by the reaction of O3 with
photolytically active halogens, particularly bromine (R1, R2)
(Simpson et al., 2007b).

Br2 + hν −→ 2Br (R1)

Br + O3 −→ BrO + O2 (R2)

O3 is removed in Reaction (R2) by Br to produce bromine
monoxide (BrO). However, BrO is photolabile and can repro-
duce O3 and Br in a null cycle. Therefore, the rate at which
O3 is destroyed is ultimately limited by the rate at which BrO
reacts with another species to not reform O3, such as in Re-
actions (R3–R5).

BrO + BrO −→ 2Br + O2 (R3)

BrO+ClO −→ BrCl+O2 (R4a)

−→ Br + Cl+O2 (R4b)

BrO + HO2 −→ HOBr + O2 (R5)

Note that BrO + ClO (Reaction R4) can also produce
OClO + Br; however, this pathway is not listed above since
OClO primarily regenerates O3 in a null cycle via photoly-
sis. Ozone destruction is propagated by the regeneration of
reactive halogen species. In the gas phase, Reactions (R3)
and (R4) are believed to dominate at high halogen-oxide
concentrations, while R5 is believed to play a larger role at
smaller BrO levels (Le Bras and Platt, 1995; Piot and von
Glasow, 2008). Reactions (R3) and (R4) directly reproduce
reactive Br atoms, while the HOBr formed by Reaction (R5)
must first undergo photolysis (Simpson et al., 2007b, and
references therein). Additionally, Reaction (R5) is involved
in a series of heterogeneous, autocatalytic reactions referred
to as the “bromine explosion”, which are believed to sup-
ply net atmospheric reactive bromine (Fan and Jacob, 1992;
Tang and McConnell, 1996; Vogt et al., 1996; Wennberg,
1999). The “bromine explosion” involves the production of

HOBr as above (R5), or through halogen reactions with oxi-
dized nitrogen species (e.g., Aguzzi and Rossi, 2002; Hanson
and Ravishankara, 1995). Uptake of this HOBr onto acidic,
bromide-containing frozen surfaces produces Br2 (Adams et
al., 2002; Huff and Abbatt, 2002), which can then undergo
the O3-destroying reactions once photolyzed (R1). This se-
ries of reactions will exponentially increase Br2 levels until
some required reagent runs out.

Hypothesized sources of reactive halogens include saline
frozen surfaces found across the Arctic Ocean, such as the
snowpack, blowing snow, and sea salt-derived aerosols (Ab-
batt et al., 2012; Fan and Jacob, 1992; Frieß et al., 2011;
Jones et al., 2009; Simpson et al., 2005; Yang et al., 2008).
Recent in situ experiments showed that saline, acidic sur-
face snowpacks (above sea ice or tundra) can act as efficient
sources of Br2, and that the “bromine explosion” can occur
within the interstitial air of the snowpack, followed by re-
lease of reactive bromine into the boundary layer via wind
pumping and diffusion (Pratt et al., 2013).

Despite our increasing understanding of the role of halo-
gens in ODEs, basic ODE characteristics, such as their tem-
poral and spatial scales, remain uncertain (Jacobi et al., 2010;
Simpson et al., 2007b; Zeng et al., 2003). Current knowledge
of the aforementioned O3 depletion chemical mechanisms
(CM) and the corresponding kinetics estimate the timescale
for O3 destruction to be on the order of days (Hausmann
and Platt, 1994; Jobson et al., 1994; Piot and von Glasow,
2008, 2009; Tuckermann et al., 1997). However, there are
only a few reports of Arctic ODEs that are assumed/known
to have been observed primarily as a result of local-scale
CM (Boudries and Bottenheim, 2000; Jacobi et al., 2006).
ODEs can also be observed primarily due to air mass trans-
port mechanisms (TM) in which air masses depleted of O3
(via CM upwind) advect over the measurement site (Morin et
al., 2005; Simpson et al., 2007b) and are detected as “ozone
depletion events”. Given that the Arctic Ocean surface is sun-
lit, stable against vertical mixing, and ice-covered during the
spring (Lehrer et al., 2004), it has been hypothesized that O3-
depleted surface air could be the norm in the Arctic bound-
ary layer during this time, and that O3 is only observed at
the surface due to turbulent vertical mixing in an otherwise
stable boundary layer. This vertical mixing can temporar-
ily transport free tropospheric O3 from aloft to the surface,
raising the surface-level mole fractions to between 30 and
40 nmol mol−1 (Bottenheim et al., 2009; Hopper et al., 1998;
Jacobi et al., 2010; Moore et al., 2014; Strong et al., 2002;
Zeng et al., 2003). Regarding the spatial scales of individual
O3-depleted air masses, Ridley et al. (2003) reported Arc-
tic ODEs extending between 600 and 900 km in length from
flights during the Tropospheric Ozone Production about the
Spring Equinox experiment. Recently, Jones et al. (2013) re-
ported the observation of multiple ODEs from a network of
10 O3 monitors spread over the Droning Maud Land sector of
Antarctica, some of which extended at least 1200 km in hori-
zontal dimension. However, no such network of O3 monitors
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has yet been established in the Arctic to make analogous ob-
servations.

In a study of long-term Arctic coastal measurements, Tara-
sick and Bottenheim (2002) observed that ODEs most of-
ten occurred at temperatures of less than 253 K, leading
to the proposal that such low temperatures could be neces-
sary for the initiation of ozone depletion. This hypothesis
was strengthened by Adams et al. (2002), who reported that
frozen NaCl / NaBr surfaces efficiently uptake and react with
HOBr to both form and release gas phase Br2 at temperatures
below 253 K. This observation has been hypothesized to oc-
cur due to the precipitation of NaCl · 2H2O at temperatures
less than 252 K, which then requires a greater concentration
of Br− to maintain the surface brine layer (Cho et al., 2002);
when Cl− precipitates, the volume of the brine water must
decrease to maintain the ionic concentration needed for the
appropriate freezing point depression. Boundary-layer BrO
enhancements have been correlated with low temperatures
(Nghiem et al., 2012; Zeng et al., 2003), and apparently lin-
ear increases in maximum BrO concentrations have been ob-
served with decreasing temperatures, below 258 K (Pöhler et
al., 2010). Further, strong positive correlations between O3
concentration and potential temperature have been reported
(Seabrook et al., 2011; Strong et al., 2002). However, Botten-
heim et al. (2009) and Neuman et al. (2010) observed ODEs
at temperatures as high as 267 K, emphasizing uncertainty
in the temperatures required for the observation of an O3-
depleted air mass.

ODEs have often been associated with a calm, stable
boundary layer. Events observed under high wind speeds
(faster than 10 m s−1) are generally attributed to TM (Simp-
son et al., 2007b). Yang et al. (2008) hypothesized that
saline snow atop sea ice could disperse during periods of
high wind and become a source of both sea-salt aerosol
and bromine, consequently initiating ODEs. Indeed, there
have been coastal-based studies in which increased BrO
and aerosol were observed during periods of elevated wind
speeds (> 5 m s−1), and O3 depletion sometimes, but not al-
ways, followed (Frieß et al., 2011; Jones et al., 2009). Alter-
natively, higher wind speeds could also lead to better ventila-
tion of the snowpack in which Br2 is produced (Albert et al.,
2002; Foster et al., 2001; Michalowski et al., 2000; Pratt et
al., 2013; Toyota et al., 2011). Michalowski et al. (2000) dis-
cussed that the rate at which HOBr reacts with Br− during
Br2 production in the “bromine explosion” was dependent
on the timescale for turbulent diffusive transport of HOBr to
the snowpack surface, which would be wind-speed depen-
dent. However, due to few coincident observations of wind
speeds, aerosol, O3, and BrO, the dependence of ODEs on
wind speed remains unclear.

Arctic air masses depleted in O3 typically spend a signif-
icant amount of time over the Arctic Ocean before arriving
at coastal measurement sites, suggesting that the ice-covered
ocean is the most probable site of ODE initiation (Botten-
heim and Chan, 2006; Gilman et al., 2010; Jacobi et al.,

Figure 1. Map of locations at which various O-Buoys (abbreviated
OB) were deployed between 2009 and 2011. For the coordinates,
see Table 1. Sea ice extent image is for the month of March 2011.
Map courtesy of Google Earth, and sea ice image courtesy of the
National Snow and Ice Data Center.

2006; Simpson et al., 2007a). In situ chemical and meteo-
rological data from the Arctic Ocean are, however, sparse.
Most long-term Arctic tropospheric O3 measurements have
been made at coastal sites, and thus most observed ODEs
have been attributed to TM. Attempts to study ODEs over the
Arctic Ocean have been conducted on ice floes (e.g., Hopper
et al., 1994; Hopper et al., 1998), aircraft (e.g., Jaeschke et
al., 1999; Leaitch et al., 1994; Neuman et al., 2010; Ridley et
al., 2003; Seabrook et al., 2013; Sheridan et al., 1993), and
ships (e.g., Bottenheim et al., 2009; Gilman et al., 2010; Ja-
cobi et al., 2006; Nghiem et al., 2012; Pöhler et al., 2010;
Seabrook et al., 2011). However, few of these studies have
produced the long-term data required for in-depth studies of
the temporal and spatial scales of ODEs.

Recently, a series of ice-tethered buoys were deployed as
part of the Arctic Observing Network program to observe
ODEs over the Arctic Ocean (Knepp et al., 2010). The buoys
have been installed in sea ice for automated, continuous,
several-month surface measurements of O3, BrO (Carlson et
al., 2010), carbon dioxide, and local meteorological condi-
tions. The data generated by the O-Buoys represent the first
long-term measurements of these chemical species directly
over the surface of the ice-covered Arctic Ocean. Using this
unique data set, we estimate the timescales of O3 depletion,
examine the state of our understanding of the chemistry in-
volved, and estimate the spatial extents and meteorological
conditions supporting O3-depleted air masses.
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Figure 2. Example time series of O3, BrO, and temperature from O-Buoy2 during its deployment in the Beaufort Sea.

2 Experimental

2.1 Instrumentation

Surface O3 and meteorology measurements discussed herein
were collected during five separate deployments of O-Buoys
(Table 1). Buoy deployment locations are shown in Fig. 1.
Details of the O-Buoy design and operation are discussed
extensively by Knepp et al. (2010), but a brief description
of the meteorological, O3, and BrO instruments are given
herein. At the time of data analysis, BrO data were available
from both O-Buoy1 (Barrow, Alaska, 2009 deployment) and
O-Buoy2 (Beaufort Sea, 2010–2011 deployment) to com-
pare with O3 depletion timescales. The O-Buoy2 time se-
ries, including O3, BrO, and temperature, is presented in
Fig. 2. During winter months, O-Buoys are set to operate on
an abbreviated sampling schedule to conserve power, typi-
cally sampling for a total of 4 h once every 1–3 days. The
O-Buoys were switched to daily 24 h sampling close to the
time of polar sunrise, typically near the end of February or
early March. The MAX-DOAS (multiaxis differential opti-
cal absorption spectroscopy) instrument was an exception to
this sampling schedule as it was kept unpowered during the
winter months, and turned on during the springtime switch
to 24 h sampling. Though the O-Buoys are also active dur-
ing fall, winter, and late summer months, we focus mostly on
springtime and early summer data herein (dates presented in
Table 1).

Temperature was measured using a Vaisala model
HMP45C temperature and relative humidity probe. Wind
speed was measured using a RM Young Model 05103
anemometer. The range of wind speeds observed across the
four O-Buoys deployed was 0–15 m s−1. It was observed dur-
ing the 2009 Barrow, Alaska, O-Buoy1 deployment, how-

ever, that the anemometer was susceptible to icing, which
would impede its ability to spin freely and provide accurate
measurements. This effect was most prominent during the
same deployment, in which wind speed fell from a mean of
about 2 to 0 m s−1 for a period of 4 days. To mitigate the im-
pact of this effect on the interpretation of the results, wind
data were not utilized in our analysis when wind speed was
measured as 0 m s−1. While there is reason to believe that
wind speeds are indeed low during these periods, the actual
wind speed is unknown. Thus, if the average wind speed cal-
culated during an ODE contained > 50 % of such values, the
wind data for that event were not included in the data anal-
ysis. We also acknowledge that an icing effect could create
a measurement bias toward lower values. However, as dis-
cussed in the text (Sect. 3.3), on average this appears to be a
minor issue in terms of our use of the anemometer data (e.g.,
to calculate ODE spatial scales) as we find effectively equiv-
alent results using our anemometer wind speeds and those
estimated using the HYSPLIT backwards trajectory model
(Sect. 2.3).

Ozone was measured using custom-built 2B Technologies
model 205 dual-beam O3 monitors. Customizations include
one backup pump, one backup O3 scrubber, a lamp heater,
and modified firmware to control the instrument remotely.
The instrument inlet was located on the mast of the buoy 2 m
above the sea ice and contained a 90 mm quartz fiber filter
(Pall Life Sciences) to prevent intake of large particles. The
instrument itself is located inside the hull of the buoy beneath
the sea ice such that it operates under a near constant temper-
ature (∼ −1.5 ◦C). The O3 instrument did not display a tem-
perature dependence during laboratory, pre-deployment O3
calibrations as long as the cell temperature of the instrument
was stable; cell temperature stabilization generally occurred
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Table 1. O-Buoy deployment locations and time periods of continuous measurements focused on herein.

O-Buoy Latitude Longitude General area Dates of continuous Number of ODEs
number measurements observed

1 71◦ N 156◦ W Barrow, Alaska 2 Mar 2009–19 May 2009 13
1 77◦ N 135◦ W Beaufort Sea 22 Mar 2010–14 Jul 2010 13
2 74◦ N 142◦ W Beaufort Sea 11 Apr 2011–22 Jul 2011 6
3 60◦ N 90◦ W Hudson Bay 22 Feb 2010–27 Mar 2010 3
4 78◦ N 112◦ W Borden Island, Nunavut, Canada 04 Apr 2010–30 Apr 2010 3

Table 2. Cross sections used in spectral analysis. Each cross section
is convolved using an instrument function determined by the 334 nm
Hg peak.

Species Cross section reference

BrO (228 K) Wilmouth et al. (1999)
O3 (243 K) Malicet et al. (1995)
NO2 (220 K) Vandaele et al. (1998)
O4 Hermans et al. (2001)
Ring Determined from zenith spectra

using Chance and Spurr (1997)

after 20–30 min, and the first 30 min of O3 data during these
warm-up periods were excluded from data analysis. The in-
strument has a manufacturer specified limit of detection of
1 nmol mol−1, and individual measurement uncertainty was
calculated to range from 2.1 to 3.5 nmol mol−1. Ozone mon-
itor averaging times differed between buoy deployments: O-
Buoy1 used 10 s averages, O-Buoy3 used 2 s averages, and
both O-Buoy2 and O-Buoy4 used 1 min averages. For analy-
sis, all data were smoothed to 5 min moving averages.

BrO was detected using a MAX- DOAS instrument. The
scan head telescope, located at the top of the buoy mast,
collects scattered radiation and sends it through a fiber op-
tic cable to the computer/spectrometer module, which con-
sists of a single board computer (Technologic Systems TS-
7260), a stepper motor driver (Stepperboard BC2D15), in-
terface electronics, and a miniature spectrometer (Ocean Op-
tics HR2000, 318–455 nm). The scan elevation angle is con-
trolled by the O-Buoy’s supervisory computer and observes
light at angles of 90 (zenith), 20, 10, 5, 2, and 1◦ over a period
of 30 min (Carlson et al., 2010). The zenith spectrum from a
30 min data measurement period was used as the reference
spectrum for the lower elevation angle spectra, which min-
imizes the differential absorption by stratospheric species.
To obtain differential slant column densities (dSCD), the
QDOAS software was used (Fayt et al., 2011) to fit both the
logarithm of the ratio of each low elevation spectra and zenith
spectra in the wavelength region 346–364 nm (convolved ab-
sorber cross sections detailed in Table 2), as well as a third-
order polynomial to account for broadband features and a
spectral offset to account for stray light. Fit residuals for both

O-Buoy1 and O-Buoy2 were less than 1 × 10−3 resulting
in BrO dSCD errors of less than 4 × 1013 molecules cm−2

and O4 dSCD errors of less than 1 × 1042 molecules2 cm−5.
Retrieval of BrO mole fractions from dSCD data is a two-
step inverse problem. First, the aerosol profile is determined
from O4 dSCDs using both the SCIATRAN radiative trans-
fer model as a forward model, and the estimation techniques
detailed in Frieß et al. (2006). Then, a vertical profile of BrO
mole fractions from the ground to 2 km (100 m intervals) was
obtained using both the radiative transfer model McArtim
(Deutschmann et al., 2011) as a forward model, and similar
optimal estimation techniques detailed in Frieß et al. (2011).
Because we are only considering surface O3 measurements,
only the average BrO mole fractions in the lowest 100 m were
used in subsequent portions of this study.

The BrO detection limit is a function of the geome-
try of the observation and the state of the atmosphere at
the time of the measurement. We estimated a range for
the detection limit (2σ ) from 3.7 × 1012 (clear sky) to
1.5 × 1013 mol cm−2 (impaired visibility) for the total inte-
grated column BrO through 2km (VCD2km) by looking at the
distribution of VCD2km values over a month in late summer
where no BrO was observed. To evaluate the error associated
with the retrieved surface mole fractions, it is necessary to
consider both dSCD measurement error and smoothing error
(Rodgers, 2000). Smoothing error calculations quantify the
error resulting from the inability of the instrument to observe
fine structure in the vertical profile. The smoothing error was
estimated through considering the mean of an ensemble of
profiles retrieved in late summer (x) when the dSCD mea-
surements indicated no measurable BrO. This allowed us to
assume the actual profile (xa) is given by 0 pmol mol−1 (pptv,
parts per trillion by volume) BrO through 2 km. The average
surface mole fraction smoothing errors (εs) for the entire O-
Buoy2 campaign were estimated using Eq. 1, where A repre-
sents the averaging kernel matrix and I is the identity matrix
(Rodgers, 2000).

εs = (A−I )(x − xa) (1)

Individual surface mole fraction errors due to smoothing er-
ror averaged 0.3 pmol mol−1 for the O-Buoy2 campaign. In-
cluding individual mole fraction errors due to propagated
dSCD measurement error, total surface mole fraction errors
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Figure 3. (a) Example ODE from O-Buoy2 deployment in the Beaufort Sea with ODE definitions illustrated. The brief resurgence of O3
on 17 April does not rise above 25 nmol mol−1 for longer than 12 h and is thus not considered as separating two ODEs. Error bars are
not displayed to more clearly show the time series. As discussed in Sect. 2.1, individual measurement errors for O3 ranged from 2.1 to
3.5 nmol mol−1, and BrO measurement errors ranged from 0.7 to 6.9 pmol mol−1 (median and average error ∼3 pmol mol−1). (b) Example
of O3 depletion timescale calculation based on the depletion range (ODE start time – O3 decrease end time) from (a). The natural logarithm
of the O3 values is plotted against time, and the inverse slope of this plot represents the O3 depletion timescale.

range from 0.7 to 6.9 pmol mol−1, with average and me-
dian errors corresponding to ∼3.0 and 3.3 pmol mol−1 re-
spectively. Due to the timing of the O-Buoy1 deployment
at Barrow, we were unable to estimate smoothing error in
the manner described above. Therefore, only errors due to
propagated dSCD measurement error were considered. For
O-Buoy1, total surface mole fraction errors range from 0.7 to
4.5 pmol mol−1, with average and median errors correspond-
ing to ∼2.5 and 2.6 pmol mol−1 respectively.

2.2 ODE definition

Ozone depletion events and “major” ozone depletion events
(MODEs) are defined when O3 drops below 15 and
10 nmol mol−1, respectively, for longer than 1 h. The MODE
acronym was also utilized by Ridley et al. (2003), and we
emphasize that our definition differs from theirs (a larger
discussion of ODE definitions in the scientific literature is
presented in the Supplement). The ODE start time is the
time at which O3 falls from background (O3 mole frac-
tion > 25 nmol mol−1 for at least 12 h) to below the 90 %
value of the mole fraction range during depletion. The ODE
stop time is defined by the time when O3 recovers to 90 %
of the local maximum O3 mole fraction after rising above
25 nmol mol−1 (if background concentrations will ultimately
be reestablished). For MODEs, the start time is the time at
which O3 falls below 10 nmol mol−1, and the stop time is
the time when O3 rises above 10 nmol mol−1 (if the O3 mole
fraction will stay above 10 nmol mol−1 for at least 12 h). Fi-
nally, for the calculation of the O3 depletion timescale, an O3
decrease stop time was defined as the time at which O3 first

reached 10 % of the O3 mole fraction range during O3 de-
pletion. These definitions are illustrated by Fig. 3a, and are
further discussed in the Supplement. It should be noted that
the increase in O3 mole fraction on 17 April 2011 seen in
Fig. 3 does not recover above 25 nmol mol−1 for longer than
12 h, and its subsequent decrease does not represent a new
ODE.

2.3 Air mass trajectory analysis

The NOAA HYSPLIT (Hybrid Single Particle Lagrangian
Integrated Trajectory) air mass trajectory model (Draxler and
Hess, 1997, 1998; Draxler, 1999) was utilized to examine
backward trajectories during O3-depleted conditions, as de-
fined in Sect. 2.2. Backward air mass trajectories were calcu-
lated starting from a height of 10 m above ground level using
the ODE stop time as the start time of the model (note that
three events, one from each O-Buoy2, 3, and 4, did not have
well-defined ODE stop times, and thus could not undergo
this analysis). Isobaric trajectories were chosen because the
stable surface air in which the ODEs occur is typically well
isolated from the air aloft (Oltmans et al., 2012; Seabrook
et al., 2013); as long as O3 is in ODE conditions, the air
is likely to be surface layer air. The trajectory run lengths
were defined by the ODE durations (ODE stop time − ODE
start time; see Fig. S1 in the Supplement for the distribu-
tion of ODE time lengths), such that the final point of the
backward trajectories corresponded to the defined ODE start
times. ODE spatial scales were defined as the maximum dis-
tance between any two points of the backward air mass tra-
jectory, as this would represent an upper limit to an event’s
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spatial size (illustrated visually in Fig. 4). This analysis was
performed for both the broader ODE definition and MODEs.
Of the ODE air masses modeled isobarically, all but one re-
mained near the surface (below 200 m above ground level)
throughout the course of the trajectory. The outlying ODE air
mass, occurring during O-Buoy1 2009 at Barrow, AK, rose
above 800 m and likely did not represent surface layer air;
this event was therefore excluded from HYSPLIT analyses.
For comparison, we also estimated the ODE spatial scales
by the same method using isentropic back trajectories (start-
ing height of 10 m above ground level); by determining the
distance between the start and end points for each isobaric
trajectory; and by using Eq. (2):

DODE = vwind×tODE, (2)

where DODE is the ODE diameter, vwind is the average local
wind speed from the anemometer, and tODE is the duration of
the ODE.

The HYSPLIT model was also used to estimate some me-
teorological parameters at each position along the isobaric
backward trajectories. For this analysis, the average and min-
imum air temperatures along each trajectory were compared
with the temperatures recorded by the O-Buoy during each
ODE. The path lengths and time lengths of individual trajec-
tories were used to estimate the average wind speeds of the
air masses, which were compared with the wind speeds ob-
tained from the O-Buoy anemometer. Wind rose plots were
created based on the quadrant in which the air mass trajectory
spent the most time during a given ODE (north (315–45◦),
south (135–225◦), east (45–135◦), and west (225–315◦)).
Only four quadrants were used in the wind rose plots because
there is a large level of uncertainty associated with using a
back trajectory model for this purpose (Kahl, 1993). The an-
gles used were obtained by calculating the bearing between
the O-Buoy and each point along each back trajectory for
each ODE.

2.4 Monte Carlo experiment

A Monte Carlo experiment was performed to determine
whether it was statistically possible that the observed ODEs
resulted primarily from TM, given the estimated size distri-
bution. In the limit of an ODE as large as the Arctic Ocean,
the ODE would be observed at the O-Buoy primarily due to
local CM. Thus, for some ODE size limit, it is not feasible
for all ODE observations to result from TM. For this simu-
lation experiment, we estimated the probability that assumed
circular depletion regions overlap with a point of interest (an
O-Buoy) when randomly placed about a defined area rep-
resented by the ice-covered Arctic Ocean. The diameters of
the circles were defined by the ODE size distribution esti-
mated from Beaufort Sea (O-Buoy1 and O-Buoy2) observa-
tions (Sect. 2.3); these particular ODEs were chosen for this
exercise because of the similar locations and drift trajectories
of the buoys, providing the needed statistics for the analy-

Figure 4. Example HYSPLIT backward air mass trajectory. The
HYSPLIT model was run backward starting from the ODE end time
until the ODE start time. ODE spatial dimensions were determined
by calculating the maximum great circle distance between any two
points along the trajectory.

Figure 5. Visualization of one iteration out of 2000 of the Monte
Carlo experiments. The area of interest within the Arctic is defined
by the green outline. Blue circles represent ODE air masses. The
red star represents the average location of the O-Buoy between O-
Buoys1 and 2. Seventeen different-sized air masses were randomly
placed simultaneously within the area of interest.

sis. Nineteen ODEs were observed between the two deploy-
ments (in 2010 and 2011), with ODE sizes ranging from 210
to 3532 km (Supplemental Information Fig. S2). The circles,
with sizes taken from the observed size distribution, were si-
multaneously and randomly placed in an area defined by the
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average sea ice extent of the Arctic Ocean between March
2010 and 2011 (Fig. 5), as reported by the National Snow &
Ice Data Center (http://www.nsidc.org/). We note, however,
two O-Buoy2 events were excluded from this analysis. The
first was removed due to an undefined ODE spatial scale (dis-
cussed in Sect. 2.3). The other ODE size excluded (diameter
of 3532 km) was estimated to be larger than the defined area.
Thus, a total of 17 circles were used in these simulations.
The number of circles that overlapped with the location of the
buoy (assumed to be 74.75◦ N, 142◦ W, an approximate loca-
tion of both O-Buoy 1 and 2) was determined for multiple it-
erations of the experiments. Figure 5 represents one iteration
of the experiment, which was repeated 2000 times in order
to obtain a statistical distribution of the number of overlaps.
Additionally, a sequence of similar Monte Carlo experiments
was repeated for individual ODE sizes 1000 times to obtain
the probability that each circle size overlaps with the location
of the buoy. This simulation experiment was conducted to ex-
amine the relationship between ODE size and the probability
that the ODE would only be observed due to TM.

3 Results and discussion

3.1 Ozone depletion timescale

For O-Buoys 1–4, a total of 38 ODEs were observed between
the months of February and June (see Table 1 for breakdown
of each O-Buoy). On the assumption that O3 decrease is an
exponential decay process, and to express the observed de-
pletion timescales in an objective manner, the apparent O3
depletion timescale (τO3) at the beginning of an ODE was
estimated as the reciprocal of the slope of ln[O3] versus time
(during the period ODE start time – O3 decrease stop time,
as discussed in Sect. 2.2; Fig. 3b). This timescale is observed
due to a combination of both CM and TM, though the ex-
tent to which each factor affects τO3 is unknown. Because we
are analyzing the slopes, this analysis is mostly insensitive to
the ODE start/depletion stop times as long as the depletion
range of the plot constitutes the majority of the defined time
frame. As seen in Fig. 6a, τO3 ranged from 30 min to longer
than 50 h (maximum of 14 days), with the majority (76 %)
shorter than 24 h (median τO3 of 11 h). These timescales
correspond to O3 decrease rates (− d[O3]

dt
) that range be-

tween 0.02 and 30 nmol mol−1 h−1 (average and standard de-
viation: 3.5 ± 5.4 nmol mol−1 h−1). By comparison, Tucker-
mann et al. (1997) reported O3 decrease rates ranging from
0.24 to 7 nmol mol−1 h−1 from their measurements in Ny-
Ålesund, Spitsbergen. Removing coastal site data (O-Buoy1
2009, deployed in Barrow, AK) from the histogram did not
significantly alter the τO3 distribution. For the six ODEs with
τO3 equal to 50 h or longer, two cases occurred in June af-
ter changes in O3 levels had become much more gradual,
relative to the sporadic and episodic nature of the preceding
months (February–May). Apart from these two events, which

occurred at higher temperatures, there was no clear differ-
ence in the local average wind speeds or temperatures that
was unique to the remaining four of these six events. How-
ever, a likely cause for these extended events is poor vertical
mixing in the absence of frontal passages. Recent work by
Moore et al. (2014) provides evidence of coastal O3 recov-
ery to background levels when air passes over open leads.
This recovery is hypothesized to occur due to increased con-
vective mixing and downward transport of ozone from aloft.
Thus, a longer depletion timescale may also imply a large-
scale ice-covered surface.

If the observed ODEs were indeed dominated by the CM at
the location of the O-Buoys (i.e., TM is minimized in the ap-
parent τO3), it is surprising that the majority of cases featured
such short apparent timescales of O3 depletion (τO3 < 12 h).
As discussed in Sect. 1, most previous model estimates of
O3 depletion timescales due to chemistry are on the order of
days (Hausmann and Platt, 1994; Jobson et al., 1994; Piot
and von Glasow, 2008, 2009; Tuckermann et al., 1997). Gen-
erally, fast τO3 observed at coastal sites have been attributed
to TM. In these cases, O3 has been hypothesized to be chem-
ically destroyed upwind (i.e., over the Arctic Ocean), and the
apparent τO3 is a function of both the rate at which the O3-
depleted air mass travels across the measurement site and the
horizontal concentration gradient at the edges of those air
masses. For example, Morin et al. (2005) observed O3 levels
to fall from mole fractions of ∼30 nmol mol−1 to less than
5 nmol mol−1 in around 3 min from over the Arctic Ocean,
6 km off the coast of Alert, Canada. However, fast O3 de-
pletion attributed to local chemistry has been previously re-
ported: using measurements from aboard the icebreaker RV
Polarstern in the Arctic Ocean, Jacobi et al. (2006) observed
a decrease in O3 from 40 to < 1 nmol mol−1 in less than 7 h.

To interpret the results from the O-Buoys, we first explore
the extent to which known chemical mechanisms could ac-
count for the observed τO3 values (i.e., the CM dominates
while the TM is minimal). Rates of O3 loss during ODEs
have been previously thought to be limited by Reactions (R3,
R4) at high BrO levels, estimated by Eq. (3) below (Le Bras
and Platt, 1995; Platt and Janssen, 1995).

(−d[O3]
dt

) = 2kBrO+BrO[BrO]2 + 2kBrO+ClO[BrO][ClO] (3)

Recently, Liao et al. (2012) and Liao et al. (2014) report that
(R3) and (R4) only account for around 40 % of the total O3
depletion chemistry during the 2009 OASIS field campaign.
Thompson et al. (2014), using a 0-D model constrained by
chemical data collected during the same campaign, found
that Br-atom destruction of O3 has a low homogeneous gas
phase radical propagation chain length (close to 1). Because
of this small chain length, the dominant source of Br atoms
that destroy O3 appears to be the photolysis of Br2 and BrCl
emitted from the surface or aerosols (Thompson et al., 2014),
and thus most of the BrO that is produced terminates via re-
action with HO2 (Reaction R5) (or NO2 for more polluted
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areas, such as Barrow, AK). Indeed, estimating the rate using
Eq. (3) assumes that all Br atoms are produced from Reac-
tions (R3) and (R4), which is inconsistent with the observed,
often large concentrations of Br2 (Liao et al., 2012). The BrO
termination pathways would result in more heterogeneous re-
cycling of Br atoms. They then compared d[O3]

dt
as calculated

by both Eq. (3) and by the net chemical O3-destruction rate
(Eq. 4).
(

−d[O3]
dt

)
= (4)

k [Br] [O3] + k [Cl] [O3] + k[O
(

1D
)
] [H2O]+

k [OH][O3] + k [HO2][O3] − k [BrO][NO]−
J [BrO] − k [ClO][NO] − J [ClO]

In calculating d[O3]
dt

, a regression between the rates showed

that using only Eq. (3) underestimates the net d[O3]
dt

(from
Eq. 4) by a factor of 4.1 on average by neglecting other
chemical pathways (Thompson et al., 2014). Therefore, we
estimate the BrO mole fractions required to cause the ob-
served τO3 according to Eqs. (5) and (6) below. These equa-
tions include the factor of 4.1 that accounts for the pro-
duction of bromine atoms via Br2 and BrCl photolysis,
two molecular halogens derived from heterogeneous recy-
cling of species such as HOBr and BrONO2 on halide-
containing aerosols or the saline snowpack (Abbatt et al.,
2012; Simpson et al., 2007b). A constant ClO concentra-
tion of 1.7 × 108 molecules cm−3 (6 pmol mol−1 at 248 K
and atmospheric pressure) was assumed based on average
concentrations measured during the 2009 OASIS campaign
(Stephens, 2012).
(

−d[O3]
dt

)
= 4.1 × (2kBrO+BrO[BrO]2+ (5)

2kBrO+ClO [BrO][ClO])

τO3 = [O3]avg

4.1 × (2k[BrO]2 + 2k [BrO][ClO])
(6)

Because Thompson et al. (2014) utilized a temperature of
248 K in their model, consistent with average local temper-
atures at Arctic coastal sites in the springtime, we also use
this temperature for our BrO mole fraction estimations. The
rate constants kBrO+BrO = 3.8 × 10−12 cm3 molecules−1 s−1

and kBrO+ClO = 8.2 × 10−12 cm3 molecules−1 s−1 were cal-
culated based on Sander et al. (2011) and Atkinson et
al. (2007), respectively. However, it should be noted that
the rate constants change by only ∼7–8 % when calculated
at 273 K (kBrO+BrO = 3.5 × 10−12 cm3 molecules−1 s−1 and
kBrO+ClO = 7.6 × 10−12 cm3 molecules−1 s−1). We also note
that kBrO+ClO includes the rate constants for both Reac-
tion (R4a) and (R4b). The calculated BrO mole fractions
corresponding to the estimated τO3 range from ∼1 (τO3 =
356 h) to 115 pmol mol−1 (τO3 = 28 min), with a median of

16 pmol mol−1 (Fig. 6b). The majority of the calculated dis-
tribution of BrO required is fairly comparable to previously
reported enhanced surface BrO mole fraction ranges, which
often peak around 20–40 pmol mol−1 (Hausmann and Platt,
1994; Hönninger et al., 2004b; Pöhler et al., 2010; Tucker-
mann et al., 1997). Indeed, 32 out of 38 events were calcu-
lated to require less than 40 pmol mol−1 of BrO for O3 de-
pletion. If, however, the expected BrO were calculated based
on Eq. (6) without the factor of 4.1 (i.e., expected BrO based
Reactions (R3) and (R4)), this number decreases to 20 out
of 38 events. For the O-Buoy1 (Barrow, AK) and O-Buoy2
deployments, MAX-DOAS BrO data are available for com-
parison with the calculated BrO estimations (Fig 6b, c; Ta-
ble 3). Though these observed BrO mole fractions exhibit
maxima higher than 20 pmol mol−1 (ex. Fig. 2), the average
BrO mole fractions during periods of O3 decrease (ODE start
time − O3 decrease stop time; Sect. 2.2) were found to be
much less than 20 pmol mol−1 (Table 3).

The amount of BrO data available was dependent on the
length of daylight, as the MAX-DOAS is a passive instru-
ment (Carlson et al., 2010). In the case of O-Buoy1 at Bar-
row, there were not enough BrO data available for most pe-
riods of O3 decrease to produce solid conclusions. However,
observed BrO levels for three events were not inconsistent
with the calculated BrO levels required for the observed τO3

(see Table S1 and Fig. S3 in the Supplement). While these
three events do not have enough BrO data to merit an in-
depth discussion, they are discussed in more detail in the
Supplement. For the remaining O-Buoy1 and all O-Buoy2
cases in which there were enough BrO data to make com-
parisons, observed BrO levels were found to be lower than
the calculated BrO required by Eqs. (5) and (6), even when
considering the propagated measurement error (Table 3; de-
scribed in Sect. 2.1). Indeed, in two of the O-Buoy2 cases,
the observed BrO levels are less than a tenth of that required.
This result is surprising since the Arctic Ocean is the as-
sumed originating site for ODEs. At least for O-Buoy2, the
observed BrO, assumed 6 pmol mol−1 ClO, and factor of 4.1
(Thompson et al., 2014) cannot account for the apparent τO3.

Possible reasons for the observed small τO3 values can be
summarized by the following two hypotheses:

1. There are chemical mechanisms for O3 destruction that
are currently not being considered, or other radical lev-
els (e.g., IO, ClO, HO2) are higher than assumed here.

2. Most ODEs chemically initiate upwind of the O-Buoys
such that the observed τO3 largely result from TM, as
discussed above.

Concerning the first hypothesis, iodine radical chemistry has
been observed in Antarctica (Saiz-Lopez et al., 2007) and
in the sub-Arctic at Hudson Bay (Mahajan et al., 2010).
Models have shown that iodine chemistry has the potential
to have a significant impact on O3 destruction chemistry
due to the very fast rate constant for IO reaction with BrO
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Table 3. Average BrO mole fractions during periods of O3 decrease from O-Buoy2 MAX-DOAS, the corresponding propagated errors, and
the estimated BrO required for the observed O3 depletion timescales based on Eq. (6) (Sect. 3.1; UTC – Coordinated Universal Time).

ODE start time (UTC) O3 decrease stop time (UTC) Observed τO3 Average observed Measurement uncertainty Estimated BrO required
(hours) BrO (pmol mol−1) (pmol mol−1) from observed

τO3 (pmol mol−1)

15 Apr 2011 18:47 16 Apr 2011 06:41 10.5 7.2 3.5 17.5
19 Apr 2011 04:15 19 Apr 2011 04:53 0.5 5.4 3.5 114.7
26 Apr 2011 14:46 26 Apr 2011 22:29 16.2 5.2 3.2 14.8
3 May 2011 11:37 3 May 2011 14:50 1.6 2.6 2.3 33.5
6 May 2011 12:58 7 May 2011 21:32 11.8 5 3.5 15.1
26 May 2011 21:22 28 May 2011 00:59 40.6 0.9 3.2 9.7

Figure 6. (a) Histogram of the calculated O3 depletion timescale
distribution during ODEs. To more clearly show the majority of
events, the six events with τO3 greater than 50 h are grouped to-
gether on the histogram. (b) Calculated BrO concentrations are
shown for the observed ODEs. These values were calculated using
Eq. (6) with an assumed ClO mole fraction of 6 pmol mol−1 and
other O3 destruction pathways (discussed in Sect. 3.1). The calcu-
lated BrO mole fraction mode is 15 pmol mol−1. Measured BrO for
O-Buoy2 is shown as the blue hatched bar, and the corresponding
BrO required to account for the observed ozone depletion rates for
O-Buoy2 events are shown as solid red diagonal bars.

(∼32 times faster than Reaction (R3)) (Calvert and Lindberg,
2004; Atkinson et al., 2007). In a photochemical box model,
Saiz-Lopez et al. (2007) found the ozone loss rate increased
by a factor of four when iodine was included with bromine
chemistry to destroy ozone (via IO + BrO, kIO + BrO =
1.2 × 10−10 cm3 molecule−1 s−1 at 248 K). Though previous
studies have indicated the presence of active iodine chem-
istry through enhanced levels of total iodine (Martinez et al.,
1999) and filterable iodine (Barrie et al., 1994; Schall and
Heumann, 1993), there are currently no measurements of IO
in the high Arctic above long-path DOAS limits of detection
as low as 0.3 pmol mol−1 (Pöhler et al., 2010), nor are there
estimates of I2 mole fractions for the Arctic Ocean region.
Thus, this possible mechanism remains speculative. Addi-
tionally, the enhanced salinity of first year ice could be a
reason for enhanced chlorine radical production as compared
to coastal (e.g., Barrow) observations, or snowpack sources
of HOx (HONO (Zhou et al., 2001), HCHO (Sumner and
Shepson, 1999; Sumner et al., 2002), or H2O2 (Hutterli et
al., 2001; Jacobi et al., 2002)) could enhance HO2 levels and
thus reactivity.

We can potentially test for O3 depletion chemistry missing
from Eqs. (4–6) by examining the distribution of the ozone
tendency, ( d[O3]

dt
), with and without the calculated compo-

nent from the chemistry included in Eq. (5). First, the ob-
served short-term ozone tendency was calculated for values
of dt between consecutive BrO measurements (currently O-
Buoy1 at Barrow, and O-Buoy2 in the Beaufort Sea) and
plotted in Fig. 7a and b. Both distributions are zero cen-
tered (average Barrow: 0.15 nmol mol−1 h−1; average Beau-
fort: 0.01 nmol mol−1 h−1) with heavy tails on each side.
Then, d[O3]

dt
was calculated using Eq. (5), as above (Fig. 7c,

d); this represents the component of the observed d[O3]
dt

re-
sulting from O3 depletion chemistry. By subtracting these
two results, we obtain the distribution of ozone tendencies
not accounted for by the considered chemical mechanisms
(Fig. 7e, f). These two distributions (representing all obser-
vations, and those with known chemistry removed) do dif-
fer significantly after this subtraction at the 95 % confidence
level according to the Kolmogorov-Smirnov test (p value =
4.9 × 10−4 and 1.4 × 10−6 for the O-Buoy1 and 2 results, re-
spectively). Both distribution averages become more shifted
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Figure 7. Histogram of the O3 tendency for observations from O-Buoy1 at Barrow, AK (a, c, e), and O-Buoy2 in the Beaufort Sea (b, d, f).
(a, b) show the distributions of observed O3 tendencies between consecutive BrO measurement points. Middle plots (c, d) represent the O3
tendency distribution based on the depletion chemistry accounted for by Eq. (5). (e, f) result from the difference of the observed O3 tendency
(a, b) and the contributions of the chemistry accounted for by Eq. (5) (c, d).

from zero, with an average d[O3]
dt

of −0.43 nmol mol−1 h−1

for O-Buoy1, and -0.18 nmol mol−1 h−1 for O-Buoy2. How-
ever, it can be shown that the overall symmetry does slightly
improve after subtraction by calculating skewness (Eq. 7):

skewness =
∑N

i=1 (xi−x)3

(N − 1)s3
, (7)

where N represents the number of measurements and s repre-
sents the standard deviation of a sample. Skewness decreases
in magnitude from −0.38 to −0.25 for the O-Buoy1 at Bar-
row case, and from −0.82 to −0.80 in the O-Buoy2 in the
Beaufort Sea case. Springtime chemical O3 production in
the Arctic boundary layer has been found to be essentially
negligible (Helmig et al., 2009; Helmig et al., 2012), and so
it is likely the positive portions of these distributions result
from air mass transport and vertical mixing. This analysis
then produces a result not inconsistent with the idea that the
remainder of the negative d[O3]

dt
represents air mass transport.

Hypothesis two, in which the TM dominates the observed
τO3, is in line with those of many previous studies (e.g., Bot-
tenheim et al., 2009; Hausmann and Platt, 1994; Jacobi et al.,
2010; Morin et al., 2005). As discussed in these studies, fast
O3 depletion can often be attributed to changes in air mass
flow, and surface O3 mole fractions can return to background
levels upon the passage of low-pressure systems, with asso-
ciated enhanced vertical mixing. The idea that most of the
negative side of the ozone tendency distribution results from
transport and not local chemistry is statistically possible only

if the average spatial scale of an ODE region is below some
critical size (discussed below in Sect. 3.2).

3.2 ODE spatial scales

To estimate the spatial scales of ODEs, we combined O-
Buoy observations with backward air mass trajectory model
(Sect. 2.3). This analysis assumes O3 depletes within an air
mass upwind via CM, and this air mass subsequently roams
across the measurement site; the size of this O3-depleted air
mass can be estimated from the length of time O3 is de-
pleted and the wind speed (i.e., TM dominates the CM at
the observation site). We emphasize, however, that the obser-
vations likely involve some combination of both TM and in
situ CM, given O-Buoy measurements of BrO levels greater
than 0 pmol mol−1 (indicative of active O3 depletion chem-
istry). It is of course conceptually possible that other trans-
port scenarios exist; for instance, conditions could exist in
some region upwind that result in the continuous depletion
of O3-containing air masses that pass over this region. This
depleted air may then pass over the buoy. If the depleted air
remains intact, however, the spatial-scale calculations would
still apply.

As shown in Fig. 8, the median of the one-dimensional
length for the ODEs was 877 km. While the estimated size
distribution of the MODEs (O3 < 10 nmol mol−1) showed no
clear mode, it is clear that the distribution contains mostly
(relatively) smaller events, with a median size of 282 km.
The distribution of results is also consistent with observa-
tions by Jones et al. (2013) and Ridley et al. (2003), who
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Figure 8. (a) Histogram of ODE dimensions for all ODEs. The me-
dian of the distribution is 877 km. (b) Histogram of dimensions of
MODEs. The median of the distribution is 282 km.

both reported ODEs of spatial dimensions of at least 1200 km
and between 600 and 900 km, respectively. The results pre-
sented here strongly suggest that large areas of the Arctic are
at least partially depleted during Arctic springtime with local
embedded areas that are more depleted. While these isobaric
trajectories likely represent the near-surface transport path of
depleted air (Seabrook et al., 2013), we also estimated the
ODE spatial scales using isentropic back trajectories (start-
ing at 10 m above ground level) and the local wind speeds
using the O-Buoy anemometer (Eq. 2). The means for the
isobaric (1013 ± 379 km), isentropic (1260 ± 279 km), and
local wind-speed-based (1154 ± 341 km) spatial-scale distri-
butions were statistically similar at the 95 % confidence level
(confidence intervals reported here). Additionally, spatial-
scale estimation using the distance between the isobaric tra-
jectory start and end points yielded comparable results (mean
947 ± 238 km).

As discussed in Sect. 3.1, known chemical mechanisms
with reasonable levels of other radicals could not account
for the observed τO3 values, suggesting these fast τO3 values
were due in large part to TM. A Monte Carlo simulation ex-
periment was conducted with the aim of examining the statis-
tical possibility that all observed ODEs, based on the general
ODE definition (O3 ≤ 15 nmol mol−1), could have occurred
upwind of the buoy and were observed because of TM.
As described in Sect. 2.4, the simulations were conducted
by randomly placing circles (hypothetical ODEs/source re-
gions) across an area the size of the Arctic Ocean sea ice.
These circles were defined using the distribution of ODE spa-
tial scales determined from the 17 events observed by the O-
Buoy1 and O-Buoy2 deployments (Fig. S2), which observed

O3-depleted air ∼60 % of the time between late March and
May 2010 and ∼65 % of the time between mid April and
May 2011, respectively. We note that assuming circular re-
gions for ODEs could underestimate the ODE size since it
assumes the center of the event passes over the buoy, when
in fact a secant is more likely. Additionally, the area could
be overestimated if the true ODE shapes are actually ellip-
tical or irregular in shape. For this statistical exercise, we
made the assumptions that the circles could appear (initiate)
anywhere across the Arctic Ocean, and that the circles could
also represent possible sizes of ODE source regions. While
there is evidence to suggest the existence of specific source
regions favorable to ODE formation (Bottenheim and Chan,
2006; Bottenheim et al., 2009; Koo et al., 2012; Simpson et
al., 2007a; Theys et al., 2011), no definitive conclusions have
yet been made from in situ observations regarding either the
locations or the sizes of such regions. We also assume that
that the circle must be contained wholly within the bounds
shown in Fig. 5 in order to equally represent all sizes from
the distribution. We acknowledge that this assumption could
overestimate the frequency with which ODEs overlap with
the buoy, as ODEs have been observed in sub-Arctic regions,
such as Kangerlussuaq, Greenland (67◦ N, 51◦ W; Miller et
al., 1997), and Hudson Bay (55◦ N, 75◦ W; Hönninger et al.,
2004a). However, this approach could also underestimate the
frequency of overlap, as ODEs that initiate remotely from the
buoy would be less likely to be part of the observed distribu-
tion of events; in other words, it is also possible that the study
region for the Monte Carlo simulation could be too large. It
is also assumed that the circles represent fully formed O3-
depleted air masses or source regions, and that a circle over-
lapping with the buoy represents “local” ODE initiation rel-
ative to the O-Buoy.

The Monte Carlo simulations show that the randomly
placed circles most often do not overlap with the measure-
ment site (Fig. 9a). In fact, only very large sizes (larger
than ∼1750 km) were likely to intercept the O-buoy location
with a significant probability (> 10 %), as shown in Fig. 9b.
Specifically, none of the 17 circles overlapped with the O-
Buoy site in 58 % of the 2000 simulation iterations, and only
one circle (in 17) overlapped with the O-Buoy site in 33 %
of iterations. For the median ODE size, the probability of
any individual event overlapping the Buoy was less than 1 %,
as shown in Fig. 9b. Therefore, the spatial statistics exercise
supports the possibility that the overwhelming majority of
ODEs observed by the O-Buoys in the Beaufort Sea could
have been observed primarily due to TM, and ODEs initi-
ated upwind. We emphasize that this Monte Carlo exercise
does not prove that this is the case, only that this hypothe-
sis is not inconsistent with the observed ODE spatial scales.
The practical question is then raised as to how many buoys
(observation sites) must be present to increase the probability
of observing an ODE primarily due to local chemistry (with
the assumption of equal probability of initiation across the
Arctic Ocean and that ODE sizes represent source regions,

Atmos. Chem. Phys., 14, 4875–4894, 2014 www.atmos-chem-phys.net/14/4875/2014/

228



J. W. Halfacre et al.: Temporal and spatial characteristics of ozone depletion events 4887

a b 

Figure 9. Results from Monte Carlo simulation experiment. (a) Based on the size distribution as defined by the ODE definition
(O3 ≤ 15 pmol mol−1), circular areas were shown to not overlap with the site of the O-Buoy 58 % of the time (mode = 0), followed by
an overlap of one circle 33% of the time. (b) Plot of the probability that an individual circle overlaps with the measurement site vs. the size
of the circle.

Figure 10. Wind rose plots based on the HYSPLIT backward air mass trajectories showing measured wind direction (degrees) and frequency
(%), for (a) ODEs, (b) MODEs, and (c) non-ODEs observed during the two O-Buoy Beaufort Sea deployments (see Fig. 1; Table 1).

as assumed for the Monte Carlo experiment). If, for exam-
ple, two additional O-Buoys were deployed at the North Pole
(86◦ N, 54◦ W) and in the East Siberian Sea (75◦ N, 170◦ E),
both potential sites of future O-Buoy deployments, repeating
the simulations showed that five out of 17 circles overlapped
with at least one measurement site, with no simulation iter-
ations resulting in zero circle overlaps (Fig. S4). This result
emphasizes the need for multiple, simultaneous deployments
of O-Buoys across different geographical regions to ensure
that local-scale chemistry is observed within one deployment
season.

To examine if there is a consistent upwind region from
which ODEs travel, wind rose plots were constructed for
the ODEs observed by O-Buoy1 (2010 deployment) and O-
Buoy2 in the Beaufort Sea, as shown in Fig. 10. As above, the
O-Buoys deployed in the Beaufort Sea were chosen because
of their similar locations and drift trajectories, providing the
needed statistics for the analysis. During ODEs (Fig. 10a),
air masses most commonly traveled from the north (∼39 %
of cases), followed by those from the east (∼33 % of cases)
and the west (∼22 % of cases). For the MODE air masses,
the trajectories most often originated from the eastern sec-

tor (∼41 % of cases; Fig. 10b), and the northern and western
sectors accounted for ∼27 % of cases each. Finally for cases
in which O3 was not depleted (non-ODE cases; Fig. 10c), the
eastern and western sectors each accounted for 35 % of cases,
and the north accounted for 24 %. Only one event in each
case showed an air mass originating from the south, toward
the Alaskan and Canadian coasts. The results presented are
consistent with a hypothesis that all regions that are sea-ice
covered can support ODE chemistry. Notably, the region to
the east of the buoys (i.e., from the Canadian archipelago and
eastern Beaufort Sea) features sea ice that historically con-
tains a high fraction of multiyear ice (Kwok et al., 2009), and
GOME satellite imagery has previously shown large amounts
of BrO to be present in this region (Choi et al., 2012; Koo et
al., 2012; Richter et al., 1998; Salawitch et al., 2010). Using
backward air mass trajectories originating from the coastal
sites of Alert, Canada, and Zeppelinfjellet, Svalbard, Botten-
heim and Chan (2006) suggested that ODE air mass source
regions could be in the East Siberian Sea, an area to the north-
west of the O-Buoys that features first-year ice that breaks
up in spring. It should be noted, however, that Bottenheim
and Chan (2006) only reported trends during the month of
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Figure 11. Histograms of the average ambient temperature measured by the O-Buoys during (a) ODEs and (b) MODEs. Histograms of the
average temperature along the HYSPLIT backward air mass trajectories for (c) ODEs and (d) MODEs.

April, as opposed to this study that examined ODEs from as
early as February to as late as June (Table 1 and Fig. 2). Un-
fortunately, there were not enough events per month here to
observe any clear monthly source region trends. Addition-
ally, while the ODE and MODE cases show slight prefer-
ences for northern or eastern winds, respectively, the non-
ODE cases do not appear to differ significantly from the
ODE and MODE cases. As recently presented by Moore et
al. (2014), it is also possible that O3 recovers when air passes
over open sea ice leads due to convective mixing, and air that
passed over unbroken ice was more often O3-depleted, and
thus local sea ice conditions could have a more direct impact
on O3 levels than the wind direction.

3.3 Temperature and wind speed during ODEs

Figure 11 shows the distribution of average temperatures
that applied during the ODEs in this study. Local average
temperatures during ODEs ranged between 243 and 273 K
(Fig. 11a; median 257 K). The apparent mode of the distri-
bution (261 K) is 8 K warmer than the hypothesized required
upper limit temperature for rapid ozone depletion (253 K).
Indeed, ∼66 % of the ODEs occurred at average tempera-
tures greater than 253 K. An illustrative event is shown in
Fig. 2; the O-Buoy2 ODE occurring in early June shows a no-
ticeable increase in BrO while temperatures average around
270 K. The temperatures for MODEs resulted in a similar
distribution (Fig. 11b). If, however, ODEs most often orig-
inate upwind from the site of O-Buoys, the local tempera-
tures could be irrelevant, as the actual depletion chemistry
may have taken place at a location where the temperature
was much lower. To examine this, the isobaric HYSPLIT

backward air mass trajectories were utilized to estimate the
average temperatures experienced by the observed air mass
upwind. In Fig. 11c and d, we present histograms of the av-
erage temperatures from each air mass trajectory for both
ODEs and MODEs, which were observed to be very simi-
lar (medians: ∼258 and 257 K for ODE and MODE, respec-
tively) and not significantly different from those measured at
the O-Buoys. As with the local observations, approximately
two-thirds of the trajectory temperature averages were above
253 K, though we acknowledge that there is a high level of
uncertainty associated with using an air mass back trajec-
tory model for such a purpose in a data sparse region (Kahl,
1993). Additionally, we analyzed the minimum temperatures
observed by the O-Buoy and from HYSPLIT trajectories dur-
ing the same depletion periods. The median minimum tem-
peratures observed at the O-Buoy are 251 and 253 K for the
ODE and MODE cases, respectively. Similarly, the median
minimum temperatures obtained from HYSPLIT trajectories
are 250 and 254 K for the ODE and MODE cases, respec-
tively. In both cases, it is interesting that only about half of
the events were observed with minimum temperatures less
than the eutectic temperature of NaCl (252 K), consistent
with the results above. This analysis reveals no apparent tem-
perature dependence for O3 depletion and shows that tem-
peratures below 253 K were not necessary to observe ozone-
depleted air masses, corroborating the conclusions of Botten-
heim et al. (2009) and Jacobi et al. (2010).

Recent reports discuss the possibility that ODEs can be
initiated after blowing snow events (Frieß et al., 2011;
Jones et al., 2009; Yang et al., 2008; Yang et al., 2010),
which presumably produce the availability of new saline
surfaces, whether in suspended aerosol form, or through
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Figure 12. (a) Histogram of the average wind speed measured by the O-Buoys during ODEs. (b) Histogram of average wind speeds from
O3-depleted air masses, as determined from the HYSPLIT backward air mass trajectories.

redeposition of sea salt aerosol to the physical surface. Blow-
ing snow events occur during periods of higher wind speeds
(> 8 m s−1) (Frieß et al., 2011), implying that there might be
a relationship between wind speed and ODEs. We thus per-
formed an analysis for wind speeds analogous to the temper-
atures using both local O-Buoy data and HYSPLIT backward
trajectories. Figure 12a shows that ODEs observed at the
O-Buoy were characterized by low measured wind speeds
(median of 3.6 m s−1 and a mode of 3.5 m s−1), relative to
what is needed for blowing snow. However, there is also a
difficulty in this analysis in that, under these circumstances,
when the air is most of the time at least partly depleted, such
a histogram may reflect, at least in part, the normal distribu-
tion of wind speeds found in the Arctic troposphere. There-
fore, for comparison, periods when O3 was not depleted
(non-ODEs) were examined (see Supplement). As shown in
Fig. S5, there was no apparent difference in the modes for
non-ODEs relative to the depleted cases. We reiterate that
the O-Buoy wind speed measurements reported here could
be biased low (see Sect. 2.1); thus, we compare this distribu-
tion to one determined by the HYSPLIT method (described
in the Supplement) below.

The distribution of average wind speeds along the HYS-
PLIT trajectories (Fig. 12b) reveals a faster median wind
speed of 4.9 m s−1, potentially consistent with ODEs occur-
ring at somewhat higher wind speeds. However, the distri-
bution showed no clear preference for higher wind speeds
for ODEs. During non-ODE periods, we found the majority
of wind speeds to be between 3 and 6 m s−1, similar to that
for the ODE cases (Fig. S5b in the Supplement), showing
that the wind speeds characterizing the upwind air masses
observed for ODEs are not different from those for non-
depleted conditions. From this analysis, we found that ele-
vated wind speed appeared to be neither a prerequisite, nor a
defining characteristic for ODEs, as also found by Helmig et
al. (2012) and Solberg et al. (1996).

4 Conclusions

The O-Buoy was developed in part to enable the observation
of ODEs at the hypothesized location of their initiation, the
frozen Arctic Ocean surface. Surface measurements of ambi-
ent O3, BrO, temperature, and wind speed from five separate
O-Buoy deployments were utilized to gain insights into the
characteristics of ODEs observed over the Arctic Ocean.

The apparent timescales of O3 depletion during ODEs,
based on both CM and TM, were calculated to be shorter
(median of 11 h) than previous modeled chemical estimates
(e.g., Hausmann and Platt, 1994) by a factor of two or more.
This observation suggests the O3depletion timescales are
dominated by TM, accelerated chemical mechanisms involv-
ing higher radical levels, or novel chemical mechanisms. If
TM are assumed to dominate local observations, spatially,
the majority of the Arctic Ocean marine boundary layer is
likely at least partially depleted in O3 during spring, suggest-
ing that O3-depleted air masses remain intact for long peri-
ods of time after halogen chemistry has subsided. Regions
of MODEs (O3 < 10 nmol mol−1) were, on average, smaller,
with a median of 282 km, compared to a median of 877 km
for ODEs (O3 ≤ 15 nmol mol−1). An expanded network of
O3 monitors across the Arctic Ocean is required to effectively
capture the spatial extent of the small, actively O3-depleting
air masses, as well as that of the larger, depleted air masses.
Monte Carlo simulations supported the possibility that these
spatial ODE sizes are consistent with depletion upwind of the
O-Buoy, followed by air mass transport to the buoy. How-
ever, the degree to which process dominates local observa-
tions of ODEs (TM vs. CM) is unknown, as O-Buoy obser-
vations of BrO indicate that there is generally always some
degree of chemistry involved. Thus, to further address the
question of the O3 depletion timescales, more long-term O3
and halogen measurements over the Arctic Ocean sea ice are
necessary, particularly in locations such as the East Siberian
and Chukchi seas.

There was no apparent temperature dependence observed
for the presence of an ODE, and low temperatures (i.e.,
less than 253 K) were not required for the observation of an
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ODE. The distribution of wind speeds local to the O-Buoy
was moderately low during ODEs (mode of ∼3.5 m s−1),
showing that ODEs were primarily observed under relatively
calm conditions. While higher average wind speeds (median
∼5 m s−1) were estimated for the course of the backward
air mass trajectory, we did not observe a clear preference
for ODEs occurring during higher wind speeds. Concurrent
measurements of blowing snow, sea salt aerosol, ozone, and
halogens, in addition to wind speed, are required to better
understand the relationship between wind speed and ODEs.

The Supplement related to this article is available online
at doi:10.5194/acp-14-4875-2014-supplement.
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