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PREFACE

This dissertation grew out of an enthusiasm for linguistics in general and

computational linguistics specifically that I discovered while working on my masters

degree.

The core of this work centers around Ontological Semantics Technology, a

form of natural language processing which uses an ontology to structure its semantic

meaning. I became interested in how this might leverage other, parallel

developments in machine learning. To that end I began a series of experiments to

determine empirically how ontology-based natural language processing performs

when compared to established approaches used in statistical machine learning.
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ABSTRACT

Falk, Courtney Ph.D., Purdue University, August 2016. Knowledge Modeling of

Phishing Emails. Major Professors: Victor Raskin and Julia Taylor.

This dissertation describes the knowledge modeling necessary to semantically

understand phishing emails. Samples of both good, non-malicious emails and

phishing, malicious emails are processed manually. The results of the processing is

analyzed for indicators in the semantic structure that might aid in the identification

of phishing emails.
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CHAPTER 1. INTRODUCTION

One would soon go mad if one took

such coincidences too seriously. One

might be led to suspect that there

were all sorts of things going on in

the Universe which he or she did

not thoroughly understand.

Kurt Vonnegut

Bluebeard

This chapter introduces the reader to the basic concepts involved with the

problem of phishing, how phishing attacks work, and the current scope of the

problem.

Trends in cyber attacks ebb and flow. But phishing is a class of cyber

attacks that spans these trends. What makes phishing a perennially attractive

choice for attackers? The reason is because the key component to the success of any

phishing attack, the human user, will always be reachable. Firewalls can stop

remote exploits from reaching vulnerable servers, and armed guards are a good

deterrent against physical intruders, but humans need to communicate in order to

work effectively and these communications channels are all the opening needed to

create a successful phishing attack.

1.1 Definition

In order to sign up for America Online (AOL) a person must provide a credit

card number. But in the early days of AOL there was a flaw in their account

creation system; the credit card numbers were not confirmed as being active. This
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meant that someone could create a valid credit card number, one that didn’t match

an existing account, and use it to create an AOL account. Even in the early 1990s

the software existed and was widely available to generate credit card numbers.

Hackers would use this technique to get initial access to online services and then use

that first account to pivot, stealing other, legitimate accounts in order to maintain

an online presence. It was these stolen accounts of paying members that were called

“phish”, and the act of stealing the accounts was called “phishing.”

In January of 1996, user “Weapon X” on the alt.2600 newsgroup explained

the motivation of the phishing attack sequence:

First off, WHY would you want to go back to AOL once you get a real

inet acct? I was stupid enough to bother with that fake acct/phishing

period back in the day, but right now, from what i hear, the best way is

to use the generated cc#s, and use the maybe 5-10 minutes you have,

and go phishing... Then from that phish, keep phishing from that one

(use side accts of coarse [sic]...) Weapon X (1996)

Eventually manual phishing on AOL was automated thanks to the AOHell

tool (Langberg, 1995). AOHell offered hackers a graphical interface tool to

facilitate multiple different acts of mischief on AOL, not the least of which was the

phishing for other users’ credentials.

The term “phishing” creates a vivid analogy: The attacker is the fisherman,

casting a baited hook out to where he suspects it will be noticed by victims. These

victims are the fish, entranced by a shiny bauble and suckered into taking the bait.

When the fish bite onto the hook then the angler reels them in to complete the

attack.

Even the way that “phishing” is spelled gives clues to its origin. The correct

spelling is with an “f”, pronounced as a fricative. There are places in English

orthography where the “ph” consonant cluster also is pronounced as a fricative, but

in these cases it suggests a Greek origin for the word. “Fishing” is not one of those

words. So why the spelling tweak?
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Phreaking was a hacker activity that predates phishing by decades going all

the way back into the 1970s when “Captain Crunch” (John Draper), Steve Jobs,

and Steve Wozniak were creating hardware to defraud the telephone companies of

free long distance service (Wozniak & Smith, 2006).

The term, “phreaking,” is a portmanteau of “phone” and “freaking”. Over

time hackers began substituting “ph” for “f” in arbitrary places, creating leetspeak

slang. But in the case of phishing the “ph” has a stronger tie back to the original

intent of phreaking as an inherently social activity that requires reaching out to

other human users (Sterling, 1993).

Over time semantic drift caused the meaning of the phish- neologisms to

change. “Phishing” now means the act of using social engineering to coerce a user

into giving up personal information or access to personal resources.

Social engineering itself is just a modern day confidence scam with successful

conmen like Kevin Mitnick gaining celebrity status within both the hacker and

information security communities (Mitnick & Simon, 2002).

1.2 Unsolicited Email

Phishing emails are sometimes discussed in conjunction with spam

emails (James, 2005). The two categories do share one unifying attribute in that

they are both unsolicited contacts. But there are substantive differences between

the two.

Spam

Phishing

Non-Content

Content

Figure 1.1. The relationship between spam and phishing concepts.
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The key different between spam emails and phishing attack emails is the

intended end action on the part of the targeted user. With spam emails a company

hires an intermediary spam marketer to deluge large numbers of email addresses

with unsolicited offers for products and services. Some of these products and

services are of dubious legality and quality. But the spammer only cares about the

raw number of spam emails set and their conversion rate into hits on the client’s

web site.

Phishers, as opposed to spammers, are serving their own goals. If a phisher

sends out a phishing email then he/she wants to collect the targeted user’s

information or resources for personal use. Sometimes the attack itself belies the

intended use of the user’s information or resource. A phishing email that requests

details of financial accounts likely wants to use that information to steal money out

of the account in question. Whereas a phishing email that tries to exploit a software

vulnerability on a user’s computer wants the resources that come with being able to

run software on someone else’s machine; bandwidth and disk space to name two.

1.2.1 Spam

Spam is the unsolicited emailing of offers for products and services. The

users receiving the spam emails may not be of the target audience for the products

and services in question.
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Figure 1.2. The sequence of events in a spam campaign.

Figure 1.2 shows the events and messages involved in an end-to-end spam

email campaign. In this example, a third party has hired a spammer to send

unsolicited product offers to email addresses across the Internet. The goal is to

entice some number of spam recipients into paying customers of the third party.

The target user doesn’t need to ever interact again with the spammer again.

1.2.2 Phishing for Credentials

The theft of user login credentials is where phishing began. Once an attacker

had a user’s login name and password the attacker could log in as that user and

steal whatever resources that account might have access to. In the case of the AOL

account theft described previously, the attacker wants to steal Internet access.

With the advent of online banking came the specter of phishing for bank

login credentials (Sangani, 2003). Once an attacker can log into a bank online as a

victim there is very little keeping the attacker from transferring the entire balance of

the victim’s accounts to accounts that belong to the attacker. This fraud is

sometimes reimbursed by the victim’s bank. The reimbursement costs get passed on

to all the users of the bank by way of increased fees.
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Phisher Target Bank

Phish

Bite

Withdraw

Figure 1.3. Phishing for account information.

Figure 1.3 makes it immediately obvious what the difference between

spamming and phishing. The phisher wants to steal a target user’s information for

the purposes of making fraudulent withdrawals from the target’s bank account.

1.2.3 Phishing to Exploit Computers

As hackers became more savvy about computer security and reverse

engineering they began to better exploit software vulnerabilities. Then the

underground hacker magazine, Phrack, released an article with detailed instructions

on how buffer overflow vulnerabilities could be exploited (Aleph One, 1996). This

led to a proliferation in exploits for vulnerabilities in software of all types.
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Phisher Target

Phish

Bite

Exploit

Implant

Persist

Collect

Figure 1.4. Phishing for computing resources.

There is a difference in the technical requirements for a phishing attack that

only wants to steal information and a phishing attack that targets computing

resources. The former interacts only with the human user and can use the same

phishing script through email, instant message, or social network. A phishing attack

that relies on malware to steal computing resources has added technical

requirements. An exploit requires certain operating system and software versions,

and can be defeated by anti-virus software and other defensive measures. Both

types of phishers need to have at least an understanding of the targets’ language

and culture.

Phish

Exploit

AttachmentLink

Browser Local

Request

Web SiteE-Mail

Response Form

Account Resource

Web site

Figure 1.5. A brief taxonomy of four types of phishing attacks.
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Figure 1.5 shows a taxonomy of how different types of phishing attacks are

related. At the top level of the taxonomy, the distinction between Request and

Exploit phishing attacks is that the Request attack is targeting account information

(“Account”) while the Exploit attack wants to appropriate someone else’s computer

resources (“Resource”).

Request-type attacks divide into E-Mail and Web Site subtypes. The

differentiating factor is how the attacker desires for the victim to complete the

attack. In E-Mail attacks the victim writes a response email with the included

account information. In Web Site attacks the victim follows a URL to a web page

that is mocked up to look legitimate. For instance, if the phishing email claims to

be from Bank of America then the URL will lead to a phony web page made to look

like the actual Bank of America login page. The victim enters his/her account

credentials and the attack is complete.

The Exploit attack is subdivided into Link and Attachment types. Link-type

exploit attacks try to entice a user to follow a URL in the email that opens a

malicious web page which will in turn attempt to exploit that user’s web

browser (Howard, 2012). Local-type exploit attacks include the exploit code as a

component of the message either encoded in the body text or as an attachment,

depending on the type of vulnerability targeted by the exploit.

Figure 1.5 includes a dotted line between the Web Site and Link attack

subtypes. This signifies that both types of attacks lure the victim to a web site. The

dotted line then indicates this commonality between the two attacks. The difference

between Web Site and Link attacks is explained in the taxonomy by how they

branch off from the different Request and Exploit attack types respectively. But

these two attacks are not mutually exclusive. In fact, a savvy phisher might include

both forms of attack on the same web page so that even if a victim gets cold feet

before entering the account information there is still the chance that the embedded

exploit has worked, giving the phisher remote access to the victim’s computer.
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1.3 Quantifying The Problem

Several public security companies record and report data concerning phishing

attacks. The trends that these reports describe is not encouraging.
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Figure 1.6. Number of reported phishing emails collected by APWG.

The chart in Figure 1.6 shows the trend of phishing emails reported to

APWG in the period beginning first quarter of 2008 and ending after the first

quarter of 2016. The numbers reported by (RSA, 2014) for the same period of 1Q

2013 show an increase in phishing activity, which contradicts the APWG data.

Allowing for a certain amount of volatility still highlights a trend of increasing

number of phishing attacks.

One tool utilized by phishers is the PDF exploit. The PDF document format

is a popular vector for several reasons. First, the design goal of PDF is to be

cross-platform so PDF readers exist for every major operating system, including
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mobile operating systems. Second, the PDF file format is text-based, and

text-based parsers are frequently subject to bugs in their source code that lead to

code execution vulnerabilities.
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Figure 1.7. The trend in the number of PDF vulnerabilities over time,

independent of product.

Figure 1.7 above shows the trend of reported PDF vulnerabilities according

to MITRE’s CVE database (MITRE, 2016). These data are for vulnerabilities

disclosed prior to July, 2016. Also note that the exploits do not belong to any one

particular product such as Adobe Reader, but rather belong to a variety of different

pieces of PDF rendering software. A total of 411 different PDF vulnerabilities were

reported.

Unique PDF vulnerabilities peak in 2009. What changed in 2009 was that

Adobe instituted a regular, quarterly patch cycle followed by improvements in the

security model used for the Adobe Reader software package (Adobe Product

Security Incident Response Team, 2012). After the improvements of 2009 the
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current trend is for PDF vulnerabilities to maintain a steady average around 30 per

year with 2016 on track to meet or exceed that number.

1.4 Ransomware

Ransomware is a subclass of malware with a particular method of operation.

After a computer is infected by ransomware the program begins encrypting different

types of files like documents and spreadsheets. The user is then unable to access

their own files. The ransomware alerts the user to the compromise and provides a

series of steps necessary to decrypt the affected files (Microsoft Malware Protection

Center, 2016).

Phishing attacks are a popular vector for delivering ransomware. Phishing

data collected by PhishMe for the month of March 2016 that shows over half the

malware taken from phishing emails is ransomware (2016).

One solution to being infected with ransomware is simple: pay the ransom.

Hollywood Presbyterian Medical Center succeeded with this approach. They paid

their ransomers 40 bitcoins (around $17,000 at the time of writing1) and received a

cryptographic key for use in decrypting their ransomed files (Winton, 2016).

But paying the ransom is no guarantee of relief. Because ransomware is a

crime so there is no contract in place to enforce that the ransomer will in fact follow

through on his/her of the bargain. This is exactly what happened to another

hospital, Kansas Heart Hospital in Wichita. They paid their ransom only to have

the criminals turn around and demand even more cash (Sun, 2016).

1.5 Research Question

Phishing continues to be a serious problem for the information security

community. Research into the phishing problem is ongoing and discussed in more

detail in the following chapter. But much of this research looks at the language of

1Bitcoin’s value relative to other currencies is highly volatile.
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the phishing email as a secondary indicator, or somehow less important than the

unambiguous technical details that are provided via the SMTP protocol. And those

research projects that do look into phishing language stay at the shallow end of

natural language processing. There is a lack of research into the semantic meaning

behind phishing emails. Having insight into the structured meaning underpinning

these phishing emails could provide better, more flexible solutions in fighting them.

There are two parts to the research question for this dissertation. The first

part is: What would the semantic representation of known good emails and phishing

emails look like? And second: Do the semantics differ enough between the two to

enable semantic analysis and distinction? The end goal for the second part of the

research question would be a system that could automatically distinguish between

good and phishing emails based on their semantic parses. But building a complete

system to do this is outside the scope of this dissertation.

1.6 Delimitations

Delimitations, as opposed to limitations, are explicit decisions on the part of

the researcher that restrict the scope of the research.

One important delimitation in this research is the focus on phishing emails

with malicious PDF attachments. The reason for this delimitation is two-fold. First,

PDF files capable of exploiting a vulnerability in the software on a user’s machine

do not occur at random. The odds of such an occurrence are statistically impossible

due to the sheer number of complementary changes needed to a valid file. The

attaching of a malicious PDF file is there a guaranteed sign that the goal of the

email is to make a phishing victim out of the end user. Second, PDF files are

primarily text documents. Focusing on a particular type of file means limiting the

number of action verbs related to that file type. A user doesn’t “execute” or “run”

a PDF the way one would a PE32 .exe binary. Or a user wouldn’t “listen to” or

“play” a PDF in the same way as an MP3 audio file. Since the goal of this
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dissertation is to search for and identify triggers in the text that would cause a user

to complete the phishing attack, it seems prudent to limit the number of variables

involved. In this case, one of the variables is the set of all possible action verbs.

1.7 Limitations

Limitations are present in any research endeavor. Understanding and

explaining the limitations of the chosen approaches is necessary in supporting the

arguments that naturally follow. A researcher who cannot explain the model or

theory used may have built the entire research program on faulty assumptions and

bad logic.

There are limitations inherent with using a knowledge-base approach such as

that of ontological semantics. The expressive power of the ontology and lexicon may

prove insufficient to describe all possible text found in phishing emails. No one

individual has enough time or energy to define all the necessary resources. That

commitment is certainly outside the time frame of any dissertation.

The proposed solution to this limitation is to create concepts and lexemes,

from the ontology and lexicon respectively, on the fly as the email messages are

analyzed. This makes the assumption that the way these resources are defined is

both coherent and valid within the scope of ontological semantics. Such an

approach would make for an inefficient way to acquire resources in the long run due

to the additional work necessary to scaffold together all the disparate pieces.

1.8 Summary

This introduction chapter presented the basic concept of phishing emails. It

then established why phishing emails continue to be an important problem in the

field of information security. After establishing the severity of the problem, the

proposed dissertation research is described in regards to its goals, limitations, and
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delimitations. The following chapters continue to build on and expand on these

themes.
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CHAPTER 2. REVIEW OF RELEVANT LITERATURE

Like all men of the Library, I have

traveled in my youth; I have

wandered in search of a book,

perhaps the catalogue of

catalogues...

Jorge Luis Borges

“The Library of Babel”

This chapter addresses the review of literature relevant to the dissertation.

The literature review covers several different topics due to the different solutions to

phishing that were proposed over time. The goal of this chapter is then to provide a

narrative for these previous works and explain their importance to the original work

described later.

2.1 Information Security

This dissertation addresses a problem central to information security. The

past decade has seen an increase in the general awareness regarding information

security problems. Dr. Matt Bishop of the University of California, Davis authored

the first authoritative and comprehensive textbook on information security (Bishop,

2002). Bishop’s text covers a wide range of topics from information security to

cryptography and malware. Once the theoretical basis of information was

established the next logical question was: What real world information security

questions might be answered via the experimental method. Long after Bishop, Dr.

Josiah Dykstra wrote the text on how information/cyber security might become an
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experimental science (Dykstra, 2016). Dykstra’s book begins with the scientific

method and then describes different scenarios for its application.

One way of understanding security is to begin by understanding the

attackers. In 2011, Lockheed Martin produced a paper where they borrowed the

concept of the “kill chain” from the military and applied it to cyber

defense (Hutchins, Cloppert, & Amin, 2011). The original military idea of a kill

chain was the set of procedures necessary to identify and destroy a time-sensitive

target as embodied by the unwieldy acronym, F2T2EA (“Find, Fix, Track, Target,

Engage, Assess,” Tirpak, 2000).

The cyber kill chain identifies the steps of a cyber attack in terms of

increasing level of severity beginning at target reconnaissance and ending with a

hacker remotely interacting with the target machine. Each step in the cyber kill

chain has different indicators of activity and as such has different preventative and

remediative measures available.
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Command

and

Control

Installation Exploitation

Actions on Target

Figure 2.1. The Lockheed Martin cyber kill chain model.

Phishing attacks would sit at step three of the cyber kill chain, delivery. The

phisher has already identified targets and prepared an attack. Now all that needs to

happen for the attack to succeed is for the victim to perform some action. If the

potential victim does not perform that action then the attack fails and all further

steps in the cyber kill chain are prevented. Prevention of this attack can be

accomplished by education and awareness training and/or technical preventative

measures that either keep the phishing email from reaching the intended recipient or
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prevent the attack portion from succeeding despite the victim performing the

attacker’s desired action (Kumaraguru, Sheng, Acquisti, Cranor, & Hong, 2010).

2.1.1 Social Engineering

Kevin Mitnick was a successful computer criminal until his

arrest (Shimomura, 1996). He has since parlayed his high profile court case into a

security consulting and speaking career. Many of Mitnick’s successes as a hacker

came not from superior technical tools or know-how, but rather from social

engineering the necessary information for his attacks from the victims themselves.

Social engineering itself is a modern euphemism for a confidence scam. In

fact, when Mitnick wrote a book on social engineering with several case studies on

different attacks he concluded each attack with a section headlined, “Analyzing the

Con.” (Mitnick & Simon, 2002) Chapter seven of that book is titled, “Phony Sites

and Dangerous Attachments,” and addresses specifically the social engineering

involved with phishing attacks.

Even creating phishing emails for the attack phase can be done using

automated tools. SpearPhisher from TrustedSec (2013) is intended for use by

information security professionals who conduct penetration testing as a part of their

regular responsibilities. Metasploit, the popular crowd-sourced exploit framework

produced by Rapid7 (2012) also facilitates the creation of phishing emails. What

these tools have in common is their ability to incorporate a template email message

with a list of name-email address tuples and a malicious payload. The tool

generates all desired email with a minimum of interaction on the part of the

phisher. This removes the skill requirement for phishing attacks, lowering the

barrier to entry, and enabling more attackers.
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2.1.2 Software Exploits

Computer software can contain flaws that are otherwise known as “bugs” in

computer science parlance. The more complex the software product the more likely

it is to contain bugs (Mayer, 2012). When such a bug is exposed to the outside

world it creates a vulnerability that threatens not just the individual piece of

software in question but the system that software is running on and perhaps the

entire network that that system belongs to. Exploits are pieces of software specially

crafted to use one or more vulnerabilities in order to manipulate a computer system

into functioning in an unintended way (Koziol et al., 2004).

Not all vulnerabilities are the same. Some vulnerabilities leak information

used by the vulnerable software or stored elsewhere on the system (Tsipenyuk,

Chess, & McGraw, 2005). Other vulnerabilities cause the software to crash or

become unresponsive when exploited. These kinds of bugs can create denials of

service where system availability is compromised. But the most severe type of

vulnerability (Microsoft Security TechCenter, 2012) is the kind that when exploited

allows the attacker to execute arbitrary instructions on the system in a kind of

“weird machine state” (Dullian, 2011). These remote execution vulnerabilities give

hackers from distant networks potentially unrestricted access to the system and all

of its resources (Open Web Application Security Project, 2013).

2.1.3 Exploit Kits

Exploit kits are just one type of tool used by phishers (Segura, 2015). The

kits collect together software exploits that target vulnerabilities in web browsers or

other web browser components. Examples of popular exploit kits include Angler,

Nuclear, Magnitude, and Neutrino (J. C. Chen & Li, 2015; Howard, 2012). The

phisher establishes a publicly accessible web server somewhere on the Internet.

Then attack emails are sent out with links back to the exploit kit server in the

hopes that users follow the link using a vulnerable browser and get their computer
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exploited. This is an effective way to deliver malicious PDF attachments such as

those being examined in this research (Stock, Livshits, & Zorn, 2015).

Sometimes these kits include OPSEC features to help protect the phisher’s

investment in infrastructure and increase the number of successful attacks. For

example, the malicious link to the exploit kit server might embed a unique

identifier. The first time the server receives a connection request using that ID it

will attempt an exploit. But subsequent attempts using a previously seen ID will

simply serve innocuous content and attempt no exploitation. This way, if the link is

forwarded to a security professional for in-depth analysis, it is less likely that the

professional can trigger the server into openly demonstrating its malicious behavior.

2.1.4 Related Attacks

Examiners of phishing have subdivided this class of cyber attack into smaller

pieces over the years based on differing sets of criteria. One subclass of phishing

attack that has reached the public media is that of spear phishing.

Spear fishing, the original and properly spelled term, differs from more

common rod and reel fishing in that the fisherman must pierce a single fish with a

lengthy spear. To do that the fisherman must first identify and target a particular

fish. The angler doesn’t necessarily target a specific fish but rather casts the bait

out and waits for any fish at all to take the bait and hook themselves. Spear

phishing when compared to the more general type of phishing attack is analogous to

the real world distinction between the two types of fishing. Whereas a phisher sends

large amounts of emails with the hopes of catching a few victims, the spear phisher

targets a single particular target and crafts the message of the phishing attack to

that one target.

Whaling is spear phishing with a narrower focus. The targets of whaling, the

“whales”, are determined by the attacker to have a higher value than the other
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users, which in this analogy are common fish to be ignored. CEOs, politicians, or

celebrities are all potential whales.

On the African savanna water is a scarce and valuable resource. Seasonal

water holes offer temporary sources of water to any animal fortunate enough to find

them. Predators know this fact as well. Lions, alligators, and other apex predators

stake out these water holes, waiting for prey animals to feel the pang of thirst and

wander into striking distance. Water hole cyber attacks are analogous to the kind of

attacks that these African predators execute. A water hole attack begins when the

attacker identifies a web site or other Internet-based resource frequented by many

users. The attack then compromises the site via vulnerabilities in the host system

and inserts his/her own malicious content into what was originally hosted. Now all

the attacker has to do is wait for unsuspecting users to visit the compromised site

and fall prey to the software exploit waiting for them.

2.2 Knowledge-Based Theory

When beginning to research a new field it is often helpful to have a definitive

text of that field to use as a starting point. For knowledge representation the

foundational text is Sowa (2000). John Sowa presents a large and diverse number of

theories in the realm of knowledge representation and discusses each in turn as to

its expressive power and other attributes.

2.3 Machine Learning

Machine learning is the field of computer science that applies algorithms to

data sets in order to automatically find patterns that are not obvious to humans

either due to the complexity of the pattern or the large amount of data involved.

ML itself is considered a subfield of artificial intelligence (AI) where the goal

is the computational generation of models. The basic theory and foundation of AI is

established well by Russell and Norvig in Artificial Intelligence: A Modern
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Approach (2003). The broad range of material presented in the book, along with the

mixture of theoretical grounding combined with practical examples, make this text

the book of choice for many university artificial intelligence courses.1

The learning part of machine learning is grouped into three general

categories: supervised, unsupervised, and semi-supervised.

Unsupervised Training data is provided as-is without any labels.

Supervised All training data is labeled.

Semi-supervised A combination of unsupervised and supervised training

methods. Often use when there is a large amount of data or labeling data is

expensive or time-consuming.

Supervised learning approaches typically perform better than unsupervised

approaches for the same data/problem. This fits the intuition that being able to

better describe your input data produces more accurate results when the trained

model is applied to test data. But sometimes a complete structure of the data is

unknown. Or a sufficient labeled corpus doesn’t exist. In these situation

unsupervised ML can provide an answer.

Data mining is another subfield of AI and is closely related to ML. The key

different between data mining and ML is that data mining prioritizes the search

aspects examining data while ML takes the techniques and tools of data mining to

utilize large amounts of data. Together the two subfields work synergistically.

Witten, Eibe, and Hall establishes the ideas and techniques of data mining and

machine learning (2011). If the authors’ names sound familiar it would be because

they are three of the creaters of the WEKA machine learning toolkit that will prove

of central importance to this research (Hall et al., 2009).

Different ML algorithms perform better on particular kinds of features.

Investigating this in regards to semantic features is part of the focus of this

1UC Berkeley maintains a list of universities that use this book on their web site at:
http://aima.cs.berkeley.edu/adoptions.html
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research. An alternative to a single ML technique that performs well on all types of

features is combining different ML techniques together in order to derive the best

aspects of the different parts. Combined ML algorithms together is known as

ensemble machine learning.

There exist a wide variety of ensemble ML techniques. In a voting ensemble

approach the component ML algorithms all get a “vote” in the resulting classifier.

Random forests build a single classifier from a collection of decision trees each

trained on a random subset of samples (Breiman, 2001). There is also boosting, a

technique that focuses on taking a collection of “weak” classifiers and assembling

them together into a single, “strong” classifier (Breiman, 1998). These are just a

sample of the various ensemble techniques currently available.

2.4 Phishing Detection

Phishing detection is an area of ongoing research. No definitive solution has

been found to date. This is likely due to the fact that phishing attacks succeed or

fail on their ability to interact with a real human, and processing and analyzing text

in a way similar to how humans perform those tasks remains an unsolved problem.

Still, there are a few different avenues being pursued.

First addressed is general machine learning (ML). There are several useful

contributions that ML-based phishing detection approaches make.

The next area is natural language processing (NLP). Many current NLP

approaches use ML techniques. But while the preceding ML section focuses on

solutions that use features derived from email meta data, NLP approaches extend

the research into looking for useful feature derived from email message bodies.

2.4.1 Features

Sometimes the features chosen for ML aren’t just linguistic but also include

meta data. Meta data would be information not explicitly stated in the content but
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rather gained by examining the artifact in which the text is presented.

CANTINA+ (Xiang, Hong, Rose, & Cranor, 2011), and its preceding version,

CANTINA Yue, Hong, and Cranor (2007), rely on these kinds of meta data features.

The goal of CANTINA+ is to identify phishing web pages. These are web

pages that mimic existing web pages of companies such as banks and email

providers. An unsuspecting user is directed to the phishing page via an email

prompt to log in. The phishing web page interceptions the user login credentials,

allowing the phisher to log in as the victim. Because phishing web pages are often

scraped versions of legitimate web pages, using content-based features won’t

distinguish them from their good counterparts. CANTINA+ focuses on meta data

features such as:

1. Domain - Aspects of the URL used for the web page such as the number of

subdomains, if an IP address is used in the URL, or embedding other domain

names as a part of the larger phishing domain name.

2. HTML - The relative location of validation scripts for the web page form or

when the anchor text mismatches with the corresponding tag’s URL.

3. Web - How long ago the domain name was registered, Google PageRank score,

or TF-IDF scores for the suspect page versus the page given as the top search

result for the same brand name.

The first two types of features, domain and HTML, are fairly static. That is

to say, evaluating a given web page against these features will not generate different

feature scores over different periods of time. However, the third type of feature,

web, is dynamic sensitive to changes because it has external dependencies on

web-based services such as search. Running a search to retrieve scores for the

features will likely generate different results over time. This makes replicating the

research results difficult and possibly complicates generalizing the results.

Another interesting point to note about the evolution from CANTINA to

CANTINA+ is that in CANTINA the researchers wrote their own metric by hand.
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They could do this because the number of features they were using was relatively

small. When dealing with small numbers of features it is possible for a human to

manually write a metric or heuristic that performs competitively. But with the

CANTINA+ project the number of features used grew, as suggested by the article

title. When working on CANTINA+ the researchers decided that they needed to

use ML techniques to develop classifiers using this large assortment of features on

hand. Their work utilized naive Bayes, logistic regression, and SVM to train

classifiers among other algorithms.

The two CANTINA projects are frequently cited by other phishing research

efforts. But their focus is on identifying web pages used to steal user credentials in

phising attacks. Refer back to the model depicted in Figure 1.5 to see how this type

of phishing fits in the bigger picture of phishing attacks.

CANTINA+ inspired a number of different follow-on research projects to

include PILFER (Fette, Sadeh, & Tomasic, 2007), phishGILLNET (Ramathan &

Wechsler, 2012), and PhishAri (Aggarwal, Rajadesingan, & Kumaraguru, 2012).

Where PhishAri differs from PILFER and phishGILLNET is its focus on phishing

via the web site, Twitter, instead of the more general task of identifying phishing

web pages.

2.4.2 Natural Language Processing

Language poses an additional set of problems for ML approaches. Years of

linguistic research has shown different types of structure present in language. For

ML to perform NLP well it needs to needs to account for these structures via some

kind of model.

Noted linguist Dan Jurafsky writes extensively on NLP. His text, Speech and

Language Processing, serves as an excellent bridge from the Russell and Norvig’s

more general, Artificial Intelligence: A Modern Approach.
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Ontological semantics, the language-centric knowledge-base approach to NLP

utilized in this research, is not a newcomer to the problems of information security.

Theoretical foundations exist for a number of information assurance and security

problems such as watermarking, anonymization, and document sanitization (Raskin,

Hempelmann, Triezenberg, & Nirenburg, 2001; Raskin, Nirenburg, Atallah,

Hempelmann, & Triezenberg, 2002; Raskin & Taylor, 2013).

Just as there are several levels of evaluation used in linguistics, so too are

there several comparable levels of features that an NLP solution might utilize.

2.4.2.1. Surface Features

ML approaches for NLP often begin with what are known as surface

features. These are strings of text extracted from the target corpus. The attraction

to surface features is that they’re very easy to extract in an automated fashion with

a minimum of prior training or supervision.

N-grams are one of the most commonly used types of surface features where

the gram is just a word. The N parameter defines how many words concatenated

together should be considered as a single feature. A unigram model (or 1-gram)

would create a feature for each and every word in the text. A bigram model (or

2-gram) creates a feature for each possible two word sequence. For example, the

text, “How now brown cow,” would generate four unigram features or three bigram

features. Usually trigrams are the longest size of gram chosen due to the fact that

increasingly longer grams failed to provide improved results.

Some experiments also combine different sizes of N. Both unigram and

bigram features might be considered together if they are shown to improve the

results produced by the model.

N-gram language models can create an explosion of features. A larger

number of features slows processing and potentially decreases the accuracy of the
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Table 2.1

An example of different length N-grams.

“How now brown cow”

Unigrams “How”, “now”, “brown”, “cow”

Bigrams “How now”, “now brown”, “brown cow”

Trigrams “How now brown”, “now brown cow”

model. To help lower the number of features and remove features of the language

model that contribute little to the accuracy, ML practitioners turn to morphological

analysis and filtering.

Morphological analysis is one processing technique that can help cut down on

the number of grams generated. Linguists describe written words according to basic

units called morphemes. Many languages allow changes and additions to these basic

morphemes in order to derive new meaning without having to create an entirely new

word. Reversing these additions in order to obtain the core morpheme of the gram

is how morphological analysis works. Analysis techniques differ from language to

language and require a scientific level of linguistic research in order to develop.

In addition to morphological analysis, ML techniques might also filter out

what are known as stop words as a pre-processing technique. These are common

words in a language, often belonging to closed classes of words such as articles and

prepositions. Stop words usually serve a functional purpose and stand in contrast to

content words from which most meaning is derived.

Aggarwal, Kumar, and Sundarsan (2014) improve on their prior work on the

PhishAri project (Aggarwal et al., 2012), by examining linguistic features in

addition to the meta data features previously used. The approach is largely

enumerative:

1. Monetary terms and symbols
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2. Words like “reply” and related synonyms

3. Time-sensitive words and synonyms thereof (urgency)

The ability to use synonyms comes from relying on the WordNet database.

WordNet is a large collection of English words with connections between

synonyms (Princeton University, 2010). Its popularity among researchers comes

from its free cost, its large coverage of words within the English language, and the

associated linguistic meta data about connections between words. These connections

are often used in NLP approaches that advocate semantic levels of processing.

2.4.2.2. Syntactic Features

Gilchan Park of Purdue University took a step beyond linguistic surface

features (Park, 2013). Stop word filtering. Park’s work was inspired by another

project at Purdue University, PhishNet (Prakash, Kumar, Kompella, & Gupta,

2010). The focus on the research is identifying salient action verbs. A part of speech

(POS) tagger is applied to the token stream to identify which words are most likely

the verbs. These potential verbs are checked against a like of action verbs and their

synonyms.

Park himself didn’t stop with his masters thesis. A 2014 paper conducted an

empirical study comparing both machine learning classifiers to humans assigned

with the same task (Park, Taylor, Stuart, & Raskin, 2014). Human responses were

collected via Amazon’s Mechanical Turk micro crowdsourcing application. This

study showed an advantage on the part of machines to outperform untrained users

on the phishing detection task.

Park and Taylor also took Park’s earlier work and developed it into more

detail (Park & Taylor, 2015). This later research focused on the various ways in

which syntactic phrase structures might generate machine learning features.

Syntactic connections between the set of action verbs, and their subjects and
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objects. This is another small step away from NLP surface features into meaningful,

semantic features.

2.4.2.3. Semantic Features

Semantics is a less frequently examined topic in phishing research. Vector

semantics (Salton, Wong, & Yang, 1975) appears most often when studying

ML-based semantic NLP. Both the previously mentioned

phishGILLNET (Ramathan & Wechsler, 2012) project and other work such as that

of L’Huillier, Hevia, Weber, and Ros (2010) utilizes latent semantic analysis as the

primary ML tool.

But this kind of semantics is fundamentally different from knowledge-base

forms of semantics. Latent semantic analysis and latent Direchlet allocation both

take input texts and cluster the individual words according to what their latent

meaning or semantics. The space in which these word clusters exist expresses the

hidden or latent semantics. But discovering what exactly is the specific meaning

behind these clusters still remains a task for humans.

The WordNet project out of Princeton University offers another approach to

semantics. WordNet is just as its name suggests; a network of words (Princeton

University, 2010). The network is made up by describing how the words are

interrelated via hypernyms, hyponyms, synonyms, and other lexical features. These

connections are something of a projection of the underlying semantics but they are

still lexical and language-specific. For instance, Arabic has single words that

distinguish between maternal and paternal aunts and uncle. English makes no such

distinction so the hypernymic/hyponymic relations between the words in the two

languages would necessarily differ.

Meaning-based machine learning (MBML) is a research program outlined by

Falk and Stuart to improve traditional machine learning by infusing it with actual,
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human meaning (Falk & Stuart, 2016). The hypothesis behind MBML is that only

by providing semantically meaningful data as input to a ML system will the output

be meaningful. This stands in direct contrast to vectors in semantic space or

networks of lexemes.

2.5 Summary

This chapter identified the existing literature that is relevant to the

dissertation. There are several different, related fields at work in this research.
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Table 2.2

A list of anti-phishing academic research projects.

Solution Source Media Classifier(s)

AntiPhish 2005 Web page Custom heuristic

“Approximate string” 2014 URL Custom heuristic

CANTINA 2007 Web page Custom heuristic

CANTINA+ 2011 Web page SVM, logistic regression,

Bayesian network, J48,

random forest, AdaBoost

“Distributed software agents” 2013 Web page Multi-agent system

“Experimental comparison” 2000 Email Naive Bayes

“Genetic algorithm” 2010 Web page Genetic algorithms

GoldPhish 2010 Web page Custom heuristic

LinkGuard 2006 URL Custom heuristic

PILFER 2007 Email SVM, rule-based, decision

tree, Bayesian

PhishAri 2012 Twitter Naive Bayes, decision trees,

random forest

PhishCatch 2009 Email Custom heuristic

phishGILLNET 2012 Email Probabilistic latent

semantic analysis,

AdaBoost

PhishNet 2010 URL Custom heuristic

Phishpin 2009 Web page Custom heuristic

PhishTackle 2014 Web page SVM, customer heuristic

Phishwish 2009 Email Custom heuristic

PhishZoo 2011 Web page Custom heuristic

SpoofGuard 2004 Web page Custom heuristic

Web Wallet 2006 Web page Custom heuristic
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Figure 2.2. Viewing the citations of the references from Table 2.2 as a

network.

Half of the foundation of this dissertation is information security. In the last

ten to twenty years there were written several foundational texts on the topic.

Newer, more specific topics have arisen since then such as complex web exploit kits.
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If information security is half the foundation of this dissertation then

knowledge representation is the other half. Knowledge representation concerns itself

with the representation, storage, and retrieval of information stored in forms similar

to how humans represent knowledge to themselves. These theories of knowledge

representation play a key role in modern technologies such as natural language

processing and the Semantic Web.

Machine learning is a suite of tools and techniques designed to find patterns

in large amounts of data. ML originally grew out of the wider field of artificial

intelligence. There are several different ways to compare ML techniques such as

whether or not the input data is tagged or the ways the algorithm represent the

pattern internally. ML plays a key role in this dissertation by providing the tools for

comparing differing sets of data, and understanding how ML works is the first step

towards meeting that goal.

The final field addressed by the literature review is that of phishing

detection. Phishing attacks are not new, and they are a fairly well-studied field by

this point. There exists research covering all the different varieties of phishing

attacks, how to train users to recognize them, and the impacts that successful

attacks have on the economy. Because this dissertation specifically focuses on using

ML for identifying phishing emails it is useful to know the prior research in this area

and what approaches were already tried.
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CHAPTER 3. THEORY

In theory, there is no difference

between theory and practice. But

in practice, there is.

Yogi Berra

This chapter describes the relevant theories that underpin the experiments to

follow. These theories are developed into formalisms used to transform input text

into meaningful output structures. For an OST-based system the end output of

processing is known as a text meaning representation (TMR). The TMR is a graph

structure that represents the totality of information presented in the input corpus.

A gold standard TMR would be one that is as close as possible to the

understanding that a speaker would take away from reading it.

Ontological Semantics Technology (OST) is a frame-based system for

processing natural language text (Taylor, 2010). OST recognizes the ambiguity

inherent in natural language and doesn’t constrain itself to being processable by

first-order logic the way that pure ontology systems like the Semantic Web

does (Berners-Lee, Hendler, & Lassila, 2001). Recanati makes a parallel distinction

with “linguistic semantics” and “real semantics” where the former is necessary for

handling the difficulties of natural language before passing the results on to the

latter (Recanati, 2006). Work in the form of the OntoSem2OWL project looks to

build a one-way bridge from the kind of ontology practice by OST and the kind of

ontology practiced by the Semantic Web (Java et al., 2007).

One of the goals of OST is to use microtheories as a way to build its

knowledge representation and processing capabilities out to meet the need of

natural language. While the descriptions of linguistic phenomena in this paper do
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not meet the criteria of a formal microtheory they do provide a starting point for

reasoning and describing aspects of the natural world.

3.1 Text Meaning Representation

The TMR represents the totality of knowledge available in a text. The facts,

instantiated from abstract concepts, connect to one another via their slots.

In OntoSem, a RELATION is a subclass of PROPERTY where both domain

and range are concepts. Properties with non-concept ranges would fall under the

ATTRIBUTE property. Another feature of a RELATION that distinguishes it from

an ATTRIBUTE is the ability for it to have its own INVERSE property. INVERSE

is itself a type of RELATION. When a RELATION is connected to another

RELATION via the INVERSE property then the domain of the first RELATION

becomes the range of the second, and the range of the first RELATION becomes the

domain of the second. This essentially creates a bidirectional link between the

domain and range facts.

The sentence in Example 1 serves as a way of illustrating the high-level

stages that text goes through in order to become a TMR.

(1) “Bob put down the book that he was reading.”

Through a series of processing steps the resulting S-expression might look

something as follows in Figure 3.1:

Figure 3.1 shows how concepts gleaned from the example form a nested

structure. The same structure might also be represented as a tree as shown in

Figure 3.3. This tree is an intermediate step in the formation of a TMR. But what

the tree shows, that the TMR lacks, is the structure with which the information was

originally presented in the text. In many ways this concept tree parallels syntax

trees. For comparison purposes, Figure 3.1 shows one possible interpretation of a

phrase structure.
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(PUT−DOWN−22

(AGENT (VALUE (HUMAN−41)))

(THEME (VALUE (BOOK−3

(PRINTS−CONTENT (VALUE (BOOK−CONTENT−7)))

(THEME−OF (VALUE (READ−189

(AGENT (VALUE (HUMAN−41)))

) ) )

) ) )

)

Figure 3.1. An intermediate TMR represented as an S-expression.

TP

VP

PrtP

CP

C′

TP

T′

V

reading

T

was

PRN

he

C

that

DP

N

book

D

the

Prt

down

V

put

PN

Bob

Figure 3.2. Phrase structure representation of Example 1.
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PUT-DOWN-22

BOOK-3

READ-189

HUMAN-41

AGENT

BOOK-CONTENT-7

PRINTS-CONTENT THEME-OF

HUMAN-41

AGENT THEME

Figure 3.3. The tree structure of Figure 3.1.

There is a key piece of information about the ontology that is necessary to

know before the Figure 3.3 concept tree makes sense. While the example sentence

contains a single word, “book”, this could have two possible renderings according to

the ontology (Guarino & Welty, 2002b). First, there is the physical, printed book

in which strings of characters are written in ink on paper and bound together.

Second, there is the content being presented in the book which instead of being

physical is treated as a mental object, intangible and invisible. These two different

concepts are connected by a relation that explains how the mental book content is

attached to the physical book. What happens in the example is that both concepts

are invoked in one utterance. In the main clause, “Bob put down the book”, the

book in question is physical because it is the THEME of a physical event,

PUT-DOWN. But in the relative clause, “the book that he was reading”, the

meaning is now understood to be the mental BOOK-CONTENT object because it

is the THEME of the mental event, READ. Therefore, the resulting concept tree

must instantiate both of these two concepts and connect them together with the

aforementioned PRINTS-CONTENT relation.
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This concept tree only shows one direction of the relations between concepts.

The TMR is a graph that includes all explicit information like that presented in the

concept tree, and the implicit information contained in the INVERSE relations. For

instance, the concept tree in Figure 3.3 states that BOOK-3 is connected to

BOOK-CONTENT-7 via the PRINTS-CONTENT relation. But it is also true, yet

not explicitly stated, that BOOK-CONTENT-7 is also connected to BOOK-3 via

the INVERSE relation of PRINTS-CONTENT, IN-PRINTED-CONTENT.

READ-189

HUMAN-41

BOOK-

CONTENT-7
BOOK-3

PUT-

DOWN-22

AGENT

THEME

AGENT-OF

AGENT-OF

THEME-OF
IN-PRINTED-

CONTENT

AGENT

THEME

PRINTS-CONTENT

THEME-OF

Figure 3.4. The complete TMR derived from the intermediate TMR in

Figure 3.3.

3.2 Modeling Linguistic Phenomena

There exist several linguistic phenomena that warrant consideration when

generating a TMR. The most important phenomena are structural in nature.

Surface phenomena such as orthography and morphology aren’t addressed in this

paper.

Any automated solution for generating TMRs should address each of these

phenomena. This paper doesn’t devote space to discussing what such a solution
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might look like. So no assumptions are made about how the interactions between

phenomena might translate into algorithmic implementations.

3.2.1 Syntax

Syntax is arguable the most difficult topic to cover. This is due in part to the

gray area called the syntax-semantics interface; it is not clear where the area defined

by syntax ends and the area defines by semantics begins, and vice versa.

The approach described in this paper looks at dependency syntax. This

aligns well with the existing SYN-STRUC formalism (Nirenburg & Raskin, 2004).

Note that this doesn’t necessarily the dependency approach empirically better. It is

just easier to immediately use as a SYN-STRUC doesn’t describe the constituency

need for a universal grammar approach.

3.2.1.1. Plurality

Plurality is a deceptively simple syntactic phenomenon. One concept

instantiates into one fact. But how does a group of two instances of the same

concept get represented?

The original OntoSem work provides a formalism useful in instantiating

plural concepts. The SET structure offers a variety of parameters that combined

can represent the variety of plural forms found in languages around the

world (Nirenburg & Raskin, 2004).

(2) “A car.”

A noun with a numeral is the simplest case of English plural. The SET’s

TYPE parameter would be assigned the noun’s CONCEPT. In this situation “car”

has a SEM-STRUC with the AUTOMOBILE concept. The CARDINALITY

parameter is assigned the numeric value of the numeral, which is three. And finally
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(AUTOMOBILE−98)

Figure 3.5. A trivially simple intermediate TMR with a single instantiated

concept.

the COMPLETE parameter is assigned the TRUE value because Example 3 is

describing a finite set of cars.

(3) “Three cars.”

(SET−117

(TYPE (AUTOMOBILE) )

(CARDINALITY ( 3 ) )

(COMPLETE (TRUE) )

)

Figure 3.6. A set that describes three cars instantiated at once.

(4) “Cars.”

3.2.1.2. Case Roles

Case roles highlight one of the problems involved in defining the

syntax-semantics interface. Some syntactic approaches utilize features to mark

constraints on the objects of a verb. But these features only hint at the underlying

semantics. Below are the formally recognized case roles used by OST

systems (Nirenburg & Raskin, 2004):
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Table 3.1

The list of case roles as used by Ontological Semantics.

Case Role Definition

AGENT Entity responsible for an action.

BENEFICIARY Entity deriving benefit from an action.

DESTINATION Ending point of an action.

INSTRUMENT Object used to carry out an action.

LOCATION Place where an action occurs.

MANNER Style in which an action is done.

PATH Route taken during an action.

PATIENT Entity affected by an action.

SOURCE Starting point of an action.

THEME Entity manipulated by an action.
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(SET−203

(TYPE (AUTOMOBILE) )

(CARDINALITY (>1))

(COMPLETE (FALSE) )

)

Figure 3.7. A set describing one or more car instances.

Work from Dik defines a hierarchy of semantic roles available to syntactic

subjects. By default the subject of a sentence fills the AGENT slot of an event as

shown in Figure 3.8:

(5) “Bob sent the spam.”

(SEND−11

(AGENT (VALUE (HUMAN−73)))

(THEME (VALUE

(SPAM−EMAIL−MESSAGE−2)))

)

Figure 3.8. An intermediate TMR demonstrating a subject with agency

filling an AGENT role.

Case roles don’t necessarily map one-to-one with their syntactic positions. It

is possible that the subject of a sentence may actually be the instrument. This can

be determined by examining whether or not the subject has the necessary agency to

carry out the action in question.

(6) “The malware sent the spam.”
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(SEND−12

(AGENT (VALUE (MALWARE−793)))

(THEME (VALUE

(SPAM−EMAIL−MESSAGE−3)))

)

Figure 3.9. An intermediate TMR demonstrating a subject without

agency filling an INSTRUMENT role.

3.2.1.3. Anaphora and Ellipsis

Anaphora is a deceptive syntactic phenomenon. Understanding anaphora

requires resolving pro-form words to the entities they reference. There can be

reflexive pronouns serving as direct objects that refer back in the sentence to the

subject. Or the subject might be a dummy pronoun whose only purpose is to make

the sentence syntactically correct: “It is hot out today.”

Along with anaphora comes the phenomenon of ellipsis (McShane & Babkin,

2015). Ellipsis differs from anaphora in that ellipsis is the eliding, or deletion, of

words or entire phrases of text. This is often seen in question answering. “Did you

walk the dog today?” “I did [walk the dog today].”

Without proper handling of ellipsis the intermediate TMR of the response

might look as follows:

This is wrong for a few reasons. First and foremost, it omits both the object

of the sentence (“the dog”) and the adverb that modifies when the event occurred

(“today”). Secondly, instantiating the verb “did” as EVENT creates an overly

vague TMR. We know from the preceding utterance in the discourse that “did”

refers to the act of walking. A better intermediate TMR, one in which the available

information is used to resolve the ellipsis would look like:
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(EVENT−99

(AGENT (VALUE (HUMAN−1023)))

)

Figure 3.10. How the phrase, “I did,” might look without resolving the

ellipsis.

(WALK−PET−4

(AGENT (VALUE (HUMAN−1023)))

(PATIENT (VALUE (DOG−74)))

(TIME ( ‘ ‘2015−08−15 ’ ’))

)

Figure 3.11. The phrase, “I did,” with the ellipsis properly resolved.

3.2.2 Semantics

The core methodology described in this dissertation derives from the work

into ontological semantics (OntoSem) by Nirenburg and Raskin (2004). OntoSem

uses a frame-based ontology with inheritance rules for structuring its knowledge.

The ontology itself is language-independent. But each language gets its own lexicon

whose lexeme entries map back to and optionally extend the concepts specified in

the ontology.

One of the earliest OntoSem projects was the Mikrokosmos project at New

Mexico State University (Onyshkevich & Nirenburg, 1995). Mikrokosmos was

designed to support machine translation between English and Spanish. While not

without its faults (Guarino & Welty, 2002a), Mikrokosmos established several key

aspects that would feature prominently in later OntoSem work.
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The latest iteration of OntoSem is known as Ontological Semantics

Technology or OST (Taylor, 2010). OST continues on with the OntoSem program

and looks to improve on what components and theories were deemed lacking in the

prior versions.

Semantics is at the heart of this paper. Semantic information, in comparison

to pragmatics, is information that may be determined in absence of any kind of

context.

At the core of OST’s knowledge representation is the ontology. Concepts are

organized in a hierarchical fashion with child concepts inheriting properties from

their parent concept (Touretzky, 1986). These seemingly simple IS-A relations hide

potentially complex situations (Brachman, 1983).

3.2.2.1. Modality

Linguistic modality is similar to the modality found in first-order logic

systems in that it modifies what would otherwise be a standalone expression. The

sentence, “We eat Indian food,” is a simple declaration. Add in the modal auxiliary

verb “could” and the meaning changes to a statement of possibility, “We could eat

Indian food.”

OST defines a system of modalities consisting of seven different modal

qualifiers, some of which are familiar to first-order logic systems as described in

Table 3.2.
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Table 3.2

The list of modalities as used by Ontological Semantics.

Modality Definition

Epistemic Belief about the factualness.

Deontic Moral obligation and permission.

Volitive Degree of desirability.

Potential Ability to perform the action.

Epiteuctic Resulting success.

Evaluative Attitudes expressed.

Saliency Importance of the meaning.

There exist several problems with the current OST modalities not the least

of which is a formally blessed way of expressing negation. Negation could be

expressed as an epistemic modality with a value of 0.0. It seems more likely that

negation is a unary boolean modifier and not a continuously valued modal qualifier.

Another problem is that the deontic qualifier collapses and oversimplifies a

distinction between obligation and permission.

3.2.2.2. Social Roles

Social roles are an interesting semantic phenomenon. A concept can play a

social role without subclassing a new concept (Masolo et al., 2004). They are

completely different from the previously discussed case roles.

Take a student as an example. First and foremost, a student is a HUMAN

concept. If there were a separate STUDENT concept that inherited from HUMAN

then there would be the situation that when the human-as-a-student were referred

to it might be as the STUDENT-1 while when the very same individual were spoken
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of on his/her own it would be as the HUMAN-2 concept. The fact that there are

two separate and distinct facts suggest two distinct entities when this is directly

contrary to the information being conveyed.

(7) “The president is sworn into office.”

(SWEAR−IN−332

(AGENT (VALUE (PRESIDENT−4)))

(THEME (VALUE (POLITICAL−OFFICE−97)))

)

Figure 3.13. Instantiating a role instead of the individual playing the role.

(SWEAR−IN−332

(AGENT (VALUE (HUMAN−59

(PLAYS−ROLE (VALUE (PRESIDENT−4)))

) ) )

(THEME (VALUE (POLITICAL−OFFICE−97)))

)

Figure 3.14. Instantiating a role instead of the individual playing the role.

Instead, the student should be anchored with a HUMAN concept and use a

PLAYS-ROLE slot to connect it to a STUDENT concept. In the preceding

example, STUDENT inherited from HUMAN. But the improved way to handle it

would be for the STUDENT concept to inherit from a dedicated SOCIAL-ROLE

concept that in turn is a subclass of SOCIAL-OBJECT (as opposed to the

PHYSICAL-OBJECT that is a HUMAN).
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3.2.2.3. Complex Events

Complex events are given a brief treatment in the Nirenburg and Raskin

text (Nirenburg & Raskin, 2004). A complex event has a mereological relationship

with one or more other events that form parts of the larger complex

event (Fellbaum, 2002).

McDonough establishes some criteria for what distinguishes a complex event

from a simple, or atomic event (C. J. McDonough, 2000, p.32). An event should be

considered as a complex event if its frame specifies:

1. Sub-events or a mereonymic nature (as opposed to a taxonomic subclass).

2. Preconditions that must occur before the given event would happen.

3. Postconditions or results that come from the event’s completion.

Taking a step is one example of a complex event. There are three distinct

sub-events that make up a STEP event: 1) the foot is raised, 2) the foot is

repositioned, and 3) the foot is then set down. It should be noted that it is

necessary for it to be the same foot throughout all three sub-events otherwise the

STEP concept does not make sense. Without this additional constraint it would be

perfectly valid for the STEP complex event to involve three different feet; one each

for each sub-event.

Events are at the core of OST. When something happens, or an action is

performed, it is an event. Many events are atomic, which is to say that they are

self-contained and don’t require describing any other component events. Contrast

these simple, atomic events with complex events, whose definition requires other

events exist in order to make sense of the larger, complex event. These part events

may themselves be other complex events.



50

3.2.2.4. Scripts

The idea of scripts grew out of cognitive psychology research aimed at

bridging the gap with artificial intelligence (Schank & Abelson, 1977). Continued

development of scripts was done by Schank and Leake under the title of memory

organization packets Schank (1999).

Scripts are defined in comparison to events. Whereas an event is

self-contained and atomic, a script may contain several interacting components and

multiple different pathways to completion. Another distinction is that an event can

stand in isolation, but a script is only understood after studying multiple

occurrences of a phenomenon.

As an example, compare the event SHINE with the script ATTEND-PLAY.

SHINE is the physical emission of light. It’s instrument could be a LIGHT-BULB or

a CANDLE or even a CHEM-LIGHT. The external product is LIGHT.

The script for ATTEND-PLAY is fraught with more complications than the

SHINE event. For ATTEND-PLAY there may be the necessary precondition of

PURCHASE-TICKET. Only then can the HUMAN with the TICKET

corresponding to the DRAMATIC-PLAY in question enter the

PERFORMANCE-VENUE, find the SEAT assigned to them by the TICKET, SIT,

and then WATCH with rapt attention. Additional paths arise if we consider that

the play may be a free production and not require a ticket. Or the seating is general

admission so an assigned seat doesn’t exist. Somehow there must be a logical path

through the ATTEND-PLAY script that invokes one or more of these components

events.

Scripts are related to complex events, but differ in significant ways. While all

scripts are complex events, not all complex events are scripts. Scripts differ from

complex events in two important ways:
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1. A script is developed from repeated observations of common sequences of

events as they happen in the real world. Complex events can be described and

understood in a vacuum devoid of the context needed by scripts.

2. The component events of a script are causally connected. One component

event happens that flows into the next and so on. Complex events, on the

other hands, require all their component events to happen.

As an example of a complex event, take respiration, the process by which

many living objects obtain the oxygen they require in order to live. Respiration is a

complex event. Its part events are inhale, and exhale. Both inhalation and

exhalation must happen and must happen only in the specified order for the

complex respiration event to have occurred.

For a script example consider teaching. A treatment of the teach event is

found in Nirenburg and Raskin (2004). But according to the two differences

between complex events and scripts described above, teach would more accurately

be described as a script. The reason is because while teach might include

instruction on the part of a teacher and learning on the part of a student only the

former is required for the teach event to occur. Teaching might result in learning, so

the learn event follows causally from instruct, but learning is in reality only a

condition for success of teaching. If no learning occurs then the teaching still

occurred, but it was largely a failure.

Schank and Abelson (1977) offer the first formal treatment of both scripts

and plans. Plans can be treated as a more general case of scripts, but won’t play a

part in this dissertation. The goal of Schank and Abelson (1977) was to bridge

cognitive psychological research with that of computer science. This theory section

will expand to include a description of how scripts might fit into an OST system

along with a formalism useful for describing any scripts encountered in the

methodology chapter.
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So how do atomic events, complex event, and scripts differ? As a rule of

thumb, an atomic event can always be a complex event (C. McDonough, 2000). It

is always possible to describe an event in more detail. For instance, describing

walking as a sequence of steps using alternating feet. And steps being a sequence of

raising, moving, and then lowering the same foot. This is a situation where the level

of granularity in describing events is determined by the needs of the application. A

medical application might require an in-depth description of respiration while a

banking application might not.

The real question then is: how does a complex event differ from a script?

Recall that scripts are informed by repeated observations of common sequences of

events. One question an acquirer must ask themselves is: which parts of this

sequence might be abstracted away, and which parts are perhaps culture or

situation-specific? In many ways a script as defined by Schank and Abelson is more

pragmatic than purely semantic because it encodes details that aren’t universally

necessary or relevant. Think back to the teaching script example. Americans raised

in the 1950s might say that teaching involves students sitting at individual desks

with a teacher standing in front of a blackboard, lecturing them on a topic. This

teaching script stands in stark contrast to some more modern trends in teaching

espoused by teaching philosophies such as Montessori, Aurora, and other

“constructivist” schools.

There are then two basic tests for determining if an action is a complex event

or a script:

1. There are two or more paths that might be followed through the sequence of

events to reach an outcome that closes the script.

2. There are aspects of the script that are culture-specific or that otherwise don’t

generalize to all situations (either geographically or temporally).
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3.2.2.5. Metonymy

Metonymous speech is a common phenomenon where one proper noun

substitutes for another. Places can substitute for people who work there such as

when news reporting cite the executive mansion in place of the executive staff. “The

White House said today...” (Nirenburg & Raskin, 2004) The BUILDING concept

does not have the necessary agency to fill the AGENT slot of the SPEAK event.

The result as shown in Figure 3.15 is nesting a BUILDING instance beneath the

implied HUMAN instance, connecting the two by way of a WORKS-IN relation.

(SPEAK−71

(AGENT (VALUE (HUMAN−202

(WORKS−IN (VALUE (BUILDING−9)))

) ) )

(THEME (VALUE ( . . . ) ) )

)

Figure 3.15. Building standing in place of a worker.

Or an individual can stand in for their work. “I was reading Palahniuk

earlier...” The second HUMAN, Palahniuk, cannot fill the THEME slot of the

READ event. The resulting TMR shown in Figure 3.16 inverts the structure used in

Figure 3.15.

George Lakoff writes extensively on the topic of metonymy as it relates to

the wider field of metaphor (Lakoff, 1987). His list of English metonymous

relationships remains a staple and a solid foundation for beginning new knowledge

representation work:

1. PRODUCER standing in for PRODUCT - Nothing sounds as lovely as a

Stradivarius.
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(READ−23

(AGENT (VALUE (HUMAN−310)))

(THEME (VALUE (BOOK−47

(AUTHORED−BY (VALUE (HUMAN−311)))

) ) )

)

Figure 3.16. Author standing in place of their work.

2. OBJECT standing in for its USER - That taxi totally ignored me.

3. CONTROLLER standing in for something that is CONTROLLED - The pilot

nearly crashed.

4. INSTITUTION standing in for the responsible PEOPLE - Mossack Fonseca

helped a lot of people conceal their wealth.

5. PLACE standing in for the INSTITUTION - Number 10 Downing Street

released a statement today.

6. PLACE standing in for the EVENT - There should never be another

Hiroshima.

3.2.2.6. Mereology

Mereology is the study of parts and their relations to whole objects. For

instance, a wheel can stand on its own as a distinct concept, but car requires the

wheel part in order to be fully realized and understood. Having a proper

mereological structure for OST is necessary to accurately describe both objects and

events. It should be noted that this dissertation is more concerned with the latter.
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One avenue of mereology research distinguishes between structural and

segmental types of mereology (Pribbenow, 2002). Structural mereology looks at

how objects interconnect as parts in a larger structure. Contract that with

segmental mereology that aims to describe how a single, whole object might be

segmented up into parts as a function of natural language discourse.

3.3 Summary

The theory chapter of this dissertation outlines the linguistic, philosophical,

mathematical, and computational theories necessary to turn a piece of raw,

unstructured text into its TMR form.

This chapter began by describing exactly what a TMR is. It then proposed a

structure called an intermediate TMR that exists between the syntactic phrase

structure of a text and the full, formal TMR. This intermediate TMR is critical to

the subsequent machine learning experiments.

Finally, the chapter addressed a series of linguistic phenomena that

potentially affect how a TMR represents the meaning of a text. The list of linguistic

phenomena included here is by no means comprehensive, and bears some bias

towards the English language.
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CHAPTER 4. FRAMEWORK AND METHODOLOGY

Sometimes science is more art than

science. A lot of people don’t get

that.

Rick Sanchez

Rick and Morty

The methodology is proposed and a limited set of samples is examined. 10

samples each from known good and phishing emails were identified and used as

examples. All of these samples included at least one attachment that was a PDF

document. In the case of the phishing emails these attachments were malicious and

were handled in such a way as to avoid accidental infection of the computers used to

conduct the research.

Ten samples of known good emails were taken from the personal email

accounts of the author. Finding good email samples for analysis isn’t difficult in and

of itself. Corpora such as Spam Assassin and the 2005 TREC provide

samples (Cormack & Lynam, 2005). The difficulty comes in first finding sample

emails with their attachments included. More difficult was finding sample emails

whose attachments were specifically PDF documents. The Enron corpus was

another possibility (Cohen, 2015). But later changes to the published Enron corpus

include stripping out email attachments, which was a critical requirement for the

research question.

Finding phishing email corpora is also a complicated task. The APWG

willingly shares gigabytes of data with researchers who inquire. But the data require

filtering to remove text artifacts created when an APWG member forwards the

suspected phishing email to the group. After filtering there is still the task of parsing

the emails and identifying which, if any, include PDF documents as attachments.
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Table 4.1

Available email corpora.

Corpus Type Attachments Size Cost

APWG Phish Yes ˜94,000/mo. Free

Avocado Ham Yes 614,461 $1600

Clinton Emails Ham No 30,322 Free

ELRA-WC347 Phish Unknown 210 Unknown

Enron Ham No ˜500,000 Free

SpamAssassin Ham/Spam Yes 6047 Free

TREC 2007 Ham/Spam Yes 75,419 Free

W3C Ham Yes 174,311 Free

Wolverhampton Spam No 673 Free

The MIME::Parser module for Perl offers a simple and effective library for parsing

emails while simultaneously extracting their attachments (Eryq & Skoll, 2015).

Once all of this processing is complete, finding an email with a PDF attachment is

as simple as searching the corpus directory structure for files with a .pdf extension.

Alternatively, anti-virus tools like ClamAV can scan the directory structure and

identify malicious files, identifying phishing emails with previously seen malware

samples to which the anti-virus tool possesses a known signature (Kojm, 2013).

4.1 Sample Selection

The first step in analyzing emails is the collection of one or more email

corpora. To train a binary classifier there must be two corpora; a corpus of known

good emails and a corpus of phishing attack emails. Table 4.1 describes a number of

email corpora found during the initial stages of research.
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The Anti-Phishing Working Group (APWG) is an information security

industry group working to raise awareness and find solutions to phishing

attacks (Anti-Phishing Working Group, 2015). They have a steady stream of

sample emails that are forwarded to them by individual partners. The emails are

available for download free of charge after registering an account. Emails are

grouped by the month in which they were submitted with an average of over ninety

thousand (90,000) emails per month.

Avocado is the collected emails of an information technology company that

went out of business (Oard, Webber, Kirsch, & Golitsynskiy, 2015). The corpus is

available through the Linguistic Data Consortium (LDC) for a fee of $1600 if you

are not a LDC member. Multiple inquiries around the Purdue West Lafayette

campus failed to uncover anyone with an LDC membership that might be able to

acquire the emails free of charge.

The ELRA-WC347 corpus proved difficult to access. ELRA-WC347 is

advertised by the European Language Resources Association (ELRA). This

particular corpus collects 210 phishing emails from years 2004 and 2005. But the

corpus is not freely downloadable. Requests to ELRA for access went did little to

clear up the way to license or otherwise access the data.

The Enron email corpus is possibly the most well known of all email

corpora (Cohen, 2015). Following in the wake of a tumultuous bankruptcy and

federal criminal proceedings, the Enron corpus collects the corporate email

communications of the energy trading company before its failure. The corpus has

undergone several iterations with filtering for PII.

Hillary Clinton is the focus of an ongoing federal investigation regarding her

use of a personal email server for handling work emails during her tenure as U.S.

Secretary of State (O’Harrow, 2016). Some of these emails were revealed to contain

sensitive, confidential, or classified information. Several unclassified emails were

released in response to a Freedom of Information Act (FOIA) request (U.S.
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Department of State, 2014). They are available as PDFs on the U.S. State

Department web site but don’t include any attachments.

SpamAssassin is a spam email filtering software system. As a part of their

work, the SpamAssassin team assembled a corpus of ham and spam emails (2004).

The suggested uses of these emails are as training and testing aids, and they can be

downloaded separate from the SpamAssassin software package.

The Text Retrieval Conference (TREC) is a series of conferences devoted to

the testing and measuring of text analytics software. TREC 2007 included a

research problem focusing on correctly identifying spam emails. To that end, the

TREC organizes built a corpus collecting known good emails and spam emails.

Researchers would use this common resource as the means to test and compare their

current state-of-the-art approaches to machine learning.

The W3C corpus included in Table 4.1 was produced by Yejun Wu of the

University of Maryland, College Park (2005). The original source of the emails were

a set of email mailing lists maintained by the World Wide Web Consortium (W3C).

Wu’s purpose in cleaning and filtering the mailing lists was their use in the 2005

TREC Enterprise Track (TRECENT) competition. Wu wasn’t the only researcher

to clean and distribute a version of the corpus and other academics have similar

collections also available online.

Students at Wolverhamption University in the United Kingdom entered the

Language Resources and Evaluation Conference (LREC) 2002 (Krishnamurthy &

Orasan, 2002). As a part of their research they collected around fifteen hundred

spam emails, which filtered down to 673 unique emails. This spam email corpus is

freely available online from their Wolverhamption web page.

For the phishing samples it was decided to use the APWG data. The reason

is because the APWG corpus is open-ended, constantly collecting more data from

its partners. Since the sample emails needed to contain PDF documents as

attachments then it made sense to use a source that could be continually revisited

until a sufficient sample size was obtained.
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Forming the known good email sample set was more difficult. Phishing

emails, like spam emails, are unsolicited and sent to a large number of recipients

who are unknown to the sender. The sender can’t then personalize each and every

email. As a result these unsolicited emails have a certain business/impersonal

style (Yus, 2011). Therefore it was deemed necessary to find known good sample

emails that shared this impersonal writing style. One option was bulk emails such

as those sent to mailing lists. A request went out to academics at Purdue for emails

received from mailing lists with a PDF attachment. The responses comprised the

known good corpus for the subsequent research.

4.2 Pre-processing

All emails arrived as individual files. Each file is an RFC 822-encoded email

message (Crocker, 1982). To get just the message body itself these raw emails must

be individually parsed and the separate parts extracted. This process also includes

parsing out any and all attached files.

Several tools and libraries exist for a variety of programming languages to

parse emails. The final decision was to use the MIME::Parser module for the Perl

language (Eryq & Skoll, 2015). Perl was designed and implemented to be a fast

text processing language, which matches well with the text-focused task of

processing emails. Each email file was parsed into its own destination directory,

including any and all attachments.
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Figure 4.1. Histograms of the sample email size combined (upper-left),

known good emails (right) and phishing emails (below).

Figure 4.1 shows the size distribution of the resulting sets of samples. The

subsets of known good and phishing emails are broken out separately for

comparison purposes. All three distributions show similar left skews.
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4.3 Filtering

The APWG source for phishing emails provides far more samples than are

needed. It’s important therefore to filter and winnow down the raw corpus to a

manageable size.

Several problems were encountered when examining the emails provided by

APWG. Recall that APWG collects emails that are forwarded by participants. By

default many email clients prepend forwarded text with some string like “> ” or “| ”

to show that it is being cited by the email author. All this prepended text needed

removing from any sample phishing emails.

Some APWG participants took the opportunity to annotate or editorialize

the samples they were submitting. “Someone should let Microsoft know that their

trademarks are being misused,” suggested one participant. Other participants

weren’t even confident in their own submissions. Another asked, “Could someone

tell me if this is legitimate?” These extraneous interjections, just like the prepended

text inserted by the forwarding operations, must also be removed.

Another complication to the filtering task was that some APWG participants

would forward multiple phishing emails, including them all as attachments in a

single email sent to APWG. This caused problems because once the email file was

run through the MIME::Parser module it wouldn’t be apparent which extracted

attachments corresponded to which phishing emails. Because the original research

question focused on emails with PDF attachments, the inability to correctly connect

attachments to messages meant that any phishing emails submitted in this way had

to be discarded.

It is possible that the same phishing email was submitted by multiple

participants to the APWG archive. Deduplicating, or removing duplicate instances

of phishing emails, produces a set of unique samples. This smaller set of unique

samples is quicker to analyze.

Deduplication was conducted by producing an MD5 hash of the message

body for each email. Hashing just the message bodies removed many of the fields
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such as timestamps and destination email addresses that change with every email,

making the entire email appear different to a cryptographic hash function such as

MD5. But because MD5 is sensitive to minor input changes by design, it still wasn’t

a guaranteed way to provide 100% accurate deduplication. Even a single difference

in whitespace between two email message bodies would cause their hashes to be

different.

One of the original stated requirements of this research was focusing on

emails with PDF documents as attachments. Once the MIME::Parser module did

its work it was a simple matter of searching for files with a “.PDF” extension. The

message bodies corresponding to these PDF files were collected together for final

selection.

This research concerned itself only with English language texts.

Cross-lingual or multi-lingual research is outside of the scope considered. So only

English language emails would be used.

Each of the email message bodies corresponding to a PDF attachment were

examined in turn. The language was noted, and the general theme of the message

recorded. Identifying themes proved useful in the final deduplication phase. For

instance, several emails that survived the prior deduplication step all used the same

“Microsoft Online Sweepstakes” scam. Only one of these emails was needed in order

to avoid over-representing emails of this theme.

During this language identification/deduplication step there was an

interesting ancillary finding. The same theme and message appeared in three

different languages: English, Spanish, and Portuguese. This suggests that there was

an active phisher who took the time to produce the same attack script across

multiple languages in order to reach a broader base. Whether or not the

translations were done by a human or an automated service like Google Translate

remains outside the scope of this research and was not pursued further.
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4.3.1 Malware Detection

The final filtering step was scanning the candidate emails for malicious files.

This step used the ClamAV tool (Kojm, 2013). ClamAV is a freely available, open

source, signature-based anti-virus scanning platform. While ClamAV is usually

deployed on servers to perform automated scanning it can also be run manually

from the command line in the form of the clamscan tool.

None of the known good emails included malicious attachments. But four of

the phishing emails did: 04, 05, 08, and 13. All four of these samples were extremely

terse with none of them being larger than a kilobyte in size. It seems possible that

phishing emails with malicious attachments are deliberately shorter than phishing

emails that must elicit a response from a user. All the malicious attachment

phishing email needs is for the user to open the attachment in question. To do that

they provide a short, emotionally charged message meant to provoke the user into

action quickly without thinking too long about the possible consequences.

4.3.2 Visualization

Word clouds are a useful tool for visualizing a large collection of text. They

collect together the most frequently used words in a corpus with the most frequently

occurring words being sized larger than the less frequently occurring words. This

collection of differently sized words is then arranged both horizontally and vertically

together in an ellipsoid shape and presented to the user. The word cloud offers at a

glance a brief summary of the text statistics.

To visualize the text from the corpus at the end of the filtering stage, two

word clouds were generated; one for the known good email bodies and the other for

the phishing email bodies (Figures 4.3.2 and 4.3.2 respectively).
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Figure 4.2. A word cloud of the one hundred most frequently encountered

terms in the known good email set.

Figure 4.3.2 shows the word cloud for the known good (“ham”) email bodies.

Already there are some interesting indicators appearing. While generic terms such

as “please” and “will” appear largest, there are several academic-sounding terms
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that also appear such as “school,” “graduate” (whether this is a noun, adjective, or

verb sense is unclear at this time), and “purdue.”

Figure 4.3. A word cloud of the one hundred most frequently encountered

terms in the phishing email set.
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Figure 4.3.2 shows the word cloud for the phishing email bodies. There are

some superficial similarities to Figure 4.3.2 such as the terms “please” and “will”

appearing prominently. But the smaller terms differ greatly. The phishing word

cloud has several financial-sounding terms such as “transaction,” “bank,” and

“money.”

4.4 Analysis

Each of the sample emails was analyzed in turn. One TMR was generated

per email. The TMR describes the semantic information present in the email text

without making assumptions about the implied intent. Linguistic phenomena such

as anaphora and deixis are accounted for in the manual analysis. More complex

situations such as those invoking scripts are called out in notes in the analysis

without being explicitly marked in the TMR as such.

The analyses will appear superficially similar to the phrase structures present

in syntactic approaches like universal grammar (Radford, 2009). This is largely

coincident. While there exists evidence for connections between syntax and

semantics it is not explored in this dissertation. Use the sentence, The document is

a PDF, as an example. Figure 4.4 below shows an example tree of what the phrase

structure might look like under universal grammar. Compare and contrast that with

the OST-style semantic representation: (DOCUMENT-117

(HAS-DOCUMENT-TYPE (DOCUMENT-TYPE-43))) where

DOCUMENT-TYPE-43 refers to the PDF standard. Gone are the articles because

their semantic purpose was helping to understand how to instantiate the nouns.

The copular is is also gone because it served a purely syntactic function joining the

two noun clauses together, and serving no real semantic purpose.
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Figure 4.4. Phrase structure of the sentence, The document is a PDF.

There will not be an entire ontology and lexicon included as a part of the

research. It will be assumed that concepts described are structured in the ontology

according to best acquisition practices. Where doubt exists as to the correct

placement of concepts then a note is included with more information as to the

decision process.

There might be a need for recording the processing steps. Because the

phishing emails might be identifiable by the amount and types of processing

necessary when compared to ham.

4.4.1 Procedure

Ontological semantics distinguishes between an abstract concept and an

instance of that concept seen in a text. An instantiated concept is known as a fact.

The formalism used in ontological semantics is to provide the concept label in all

capital letters. A fact is then labeled the same as the concept it instantiates but

also includes a trailing hyphen followed by an ascending sequence number. As an

example, HUMAN would be the label for the concept abstractly describing any

human being while HUMAN-421 would be the 421st instance of the HUMAN

concept that the system created.
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Certain meta-data from the email, not present in the text of the message

body, is needed in order to make sense of the rest of the email. The following data

are used to instantiate concepts before the body analysis begins:

1. Speaker - The author of the email

2. Listener - The recipient of the email

3. Message - Every sample instantiates one email message and one or more

attachments associated with that message

4. Timestamp - When the email was sent

Senders and recipients, or speakers and listeners, are always assumed to be

two individual unknown to the analyst. This negates the need to cross-reference

email addresses between sample emails and hides personally identifiable information.

Timestamps are crucial for disambiguating utterances such as “today” or

“next week”. Without a specific anchor point for these references they will remain

ambiguous.

The message bodies are processed by first breaking up the whole text into

the individual sentences. Each sentence in turn gets a more in-depth level of

processing. Every sentence generates one or more propositions, a structure anchored

by an instantiated concept with zero or more properties coming off of it.

Table 4.2

Parameters changed from the default when using Weka’s

StringToWordVector class.

Parameter Value

outputWordCounts True

stemmer LovinsStemmer

useStopList True
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The first changed parameter is the outputWordCounts. By default this is set

to false , which means that instead of the numeric value of the attribute being the

number of times the word occurs (the count) it is instead either 1.0 if the word is

present or 0.0 if the word is absent.

Stemming is useful in statistical machine learning because it allows the

computer to recognize when the same word happens in multiple inflected senses.

For instance, “stemming,” “stemmed,” and “stem” are respectively the present

participle, past participle, and simple present forms of the verb “to stem.” It would

therefore be a mistake to count each as a separate word with a count of one each.

Instead, the “stem” word should have a count of three.

First of its kind, the Lovins stemmer described an algorithm for stemming

English words (1968). This Lovins stemmer was chosen as the most basic approach

to stemming words available in the Weka tool.

The third and final change to the default parameters was setting the

useStopList to true. Stop words are strings ignored by the parsing algorithm. The

motivation is to cut down on the number of total machine learning features by

ignoring words like function words (prepositions, determiners, etc.), pronouns, and

others. The actual stop list itself is the default option, the Weka−3−6 stop list.

4.5 Machine Learning

Training and testing of ML models was done with the Weka machine learning

framework Hall et al. (2009). Weka is the state of the art tool for machine learning.

It is written in Java and developed at the University of Waikato in New Zealand.

The ML experiments were conducted using three different algorithms. These

three algorithms each represent a different category of ML classifier. Choosing

multiple algorithms from differing categories provides the ability to examine

classifier performance both across data sets and across specific algorithms. Weka
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Table 4.3

Classifying the three different chosen algorithms.

Linear Non-linear

Generative Naive Bayes

Discriminative SVM J48

provides a variety of tools to include machine learning algorithms, visualization, and

data pipelining for experiments.

Three different algorithms available in Weka were chosen for training and

testing ML models. One algorithm each was chosen from different categories of

algorithm to see how the two different data sets performed against different

algorithms.

4.5.1 Naive Bayes

Naive Bayes is built upon the principles of Bayesian statistics. Recall that

Bayes’ theorem describes how the condition probability of an event based on

previously observed conditions as shown in (4.1).

P (A|B) =
P (B|A)P (A)

P (B)
(4.1)

The naive Bayes approach begins with the assumption of the conditional

independence of prior events (Russell & Norvig, 2003). Naive Bayes works well

despite this assumption, even for very small data sets such as those used in this

research (Salperwyck & Lemaire, 2011).

John and Langley took this research and showed experimentally how it

would function as a classifier (1995). It was this research that motivated the Weka

implementation of the naive Bayes classifier. And because the classifier is
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probabilistic it assigns a continuous probability value to its results, letting a machine

learning researcher examine how likely the algorithm things a certain class is.

X is the class of phishing emails

¬X is the class of non-phishing (known good) emails

wi is a word present in the classifier

D is the document being examined

ln
P (X|D)

P (¬X|D)
= ln

P (X)

P (¬X)
+
∑
i

ln
P (wi|X)

P (wi|¬X)
> 0 (4.2)

(4.2) shows the math involved in the naive Bayes classifier. So long as the

log-likelihood is greater than zero then the algorithm classifies document D as

belonging to class X, phishing emails.

4.5.2 SVM

Support vector machines (SVM) are a popular choice of ML algorithm for

NLP applications. For a binary classification problem, an SVM aims to draw a line

that can cleanly divide the two classes (Cortes & Vapnik, 1995). Figure 4.5

demonstrates what this might look like in 2D space. All items on one side of the

line belong to the first class of items and the items on the other side of the line

belong to the other class.

The SVM implementation for Weka comes as an external package,

LibSVM (Chang & Lin, 2011). Additional installation and configuration steps are

necessary to get Weka and LibSVM inter-operating. Versions 3.7 and later of Weka

feature package management software to facilitate the SVM installation.

SVM, unlike naive Bayes, is not probabilistic. All classifications done with

SVM are either true or false with no probability assigned to the result.

(4.3) shows the math involved in a soft-margin SVM. Soft-margin SVMs are

an extension of the basic SVM design. The changes allow an SVM to handle data
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Figure 4.5. SVM training with a valid hyperplane (dashed) and an optimal

hyperplane (solid).
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Figure 4.6. Data set where the two classes are not linearly separable.

where the classes are not linearly separable (it is not possible to draw a straight

line/hyperplane to separate two classes such as the case shown in Figure 4.6).

1

n

n∑
i

max(0, 1− yi(~w · ~xi − b)) + λ‖~w‖2 (4.3)

In (4.3), max(0, 1− yi(~w · ~xi − b)) is the hinge loss function that penalizes ~x

data points that violate the (~w, b) hyperplane. Increasing the λ parameter value up

from zero allows more flexibility in terms of violations of the margin.

4.5.3 J48

J48 is a Java-based implementation of the C4.5 algorithm (Quinlan, 1993).

Minor changes were necessary to avoid licensing issues involved with C4.5. In all

other regards the J48 and C4.5 algorithms are identical.

J48 is a decision tree classifier algorithm. The ML features are used to build

a decision tree model used for later testing and application. A benefit of the J48

algorithm over Naive Bayes and SVM is that the nodes in the decision tree contain
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Figure 4.7. An example with four data points for training a machine

learning regression model.

meaningful information as to the decision making process. More about this is

discussed in the following sections.

It is also worth noting that John and Langley used C4.5 decision trees in

their research into naive Bayes classifiers and found that sometimes naive Bayes did

in fact perform better (1995).

4.5.4 Cross Validation

Cross validation is a general ML technique designed to prevent overfitting.

Overfitting occurs in ML applications when a model fits the training data too

closely and then produces poor results when used against general production data.

A more desirable goal then is to train the model in such a way as to have a

generally applicable result at the expense of the testing score.

Figure 4.7 plots four data points. For this example the goal is to train a

regression model whose function generalizes well to production data.
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Figure 4.8. Machine learning regression model using a polynomial of

degree five.
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Figure 4.9. Machine learning linear regression model.

A polynomial function of degree five as seen in Figure 4.8 fits the data

exactly. Accuracy is one hundred percent. This would seen to be an ideal solution

according to the training data. However, the polynomial regression model is

actually overfitting the training data. The problem is not apparent at this point.

The simpler linear regression shown in Figure 4.9 doesn’t appear to fit the

training data nearly as well as the polynomial in Figure 4.8. Accuracy is not one

hundred percent and the function doesn’t pass through any single data point.

Technically the linear regression is underfitting the training data.

The problem of overfitting becomes apparent when taking a model trained

on one set of data and applying it to novel data. Figure 4.10 shows the same

polynomial regression model from Figure 4.8. None of the production data points

are falling exactly on the line. But the one hundred percent accuracy seen in

training would lead us to believe that this was a perfect model. Overfitting the data

caused this model to not generalize well.

The linear regression model initially seen in Figure 4.9 is now applied to the

same novel production data as Figure 4.10. Even though the training model didn’t
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Figure 4.10. Machine learning polynomial regression model applied to

production data.
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Figure 4.11. Machine learning linear regression model applied to

production data.
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produce a perfect accuracy score it does appear to fit the production data roughly

as well as it did the training data.

One approach to cross validation is called K-fold cross validation. In K-fold

cross validation a parameter value is chosen, K, and the training data is evenly

divided into K groups, or “folds.” For each of the K rounds a different fold is help

back for testing purposes while the other K-1 folds are used for training.

Table 4.4 shows how K-fold cross validation works when K=3. In this

example, the grayed fold is the data fold used for testing in that round while the

white folds are used for training.

Table 4.4

Illustrating K-fold cross validation training and testing with K=3.

K-Fold Cross Validation Train and Test

First Round Second Round Third Round

1 2 3 1 2 3 1 2 3

For the experiments in this dissertation the parameter K was set to four.

With twenty-eight samples in each of the two classes this meant that they could be

divided evenly into folds of seven samples each.

4.6 Testing Hypotheses

After the machine learning classifiers are trained then the next task is to

evaluate their performance. The unigram models serve as the baseline measure.

They represent what is currently known to work for NLP solutions. The TMR
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models are the semantics-based experiments. Since there were three algorithms used

to train both the unigram baseline and the TMR experimental models then there

will also be three statistical hypotheses tested.

The statistical hypothesis test used for all three algorithms is the comparison

of sample means where the sample means are the F1 scores for each model. The F1

score is used because it combines together both precision and recall into a single

metric. These statistical tests determine, with a specified level of confidence,

whether or not the results are meaningfully different.
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4.7 Summary

ham emails phish emails

manual
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TextDirectoryLoader

StringToWordVector

TMR parser unigram ARFF

TMR ARFF

WEKA results

Figure 4.12. Data flow diagram of the proposed methodology.

The methodology of this chapter begins with the collection of email samples

for the research process. It is important to note why certain types of emails were

chosen or excluded, and the overall number of samples chosen. These emails

underwent multiple filtering and processing steps before being passed on to later

stages of the methodology.

The core research question in this dissertation is concerned with whether or

not machine learning algorithms perform better when provided semantic structures
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as opposed to lexical n-grams. With a collection of samples assembled the next step

was to analyze the text comprising the message body of each email and render its

meaningful, semantic representation.

With the semantic data set in hand the third step was to train both baseline

and experimental machine learning classifiers. The baseline classifier was trained on

the uni-gram data set and the experimental classifier was trained on the semantic

data set. Three different algorithms were trained on each of the two data sets to

create a grand total of six different classifiers.

One final step remained, testing the performance of the machine learning

classifiers to determine whether or not they successfully answered the research

question. Statistical hypothesis tests comparing the sample means of the baseline

and experimental data sets for each of the three algorithms.
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CHAPTER 5. CONCLUSIONS

I am turned into a sort of machine

for observing facts and grinding out

conclusions.

Charles Darwin

The goal of this research was the identification of phishing emails using a

knowledge-based approach to natural language processing. Phishing is a general

class of computer attacks in which the attacker attempts to trick the target into

completing the attack. Completing the attack may be as simple as opening an

attached malicious file or opening a link to a malicious web page. Other times the

attack might elicit personally identifiable information from the victim such as

passwords or back accounts. The actual vector for the phishing attack is somewhat

less important. Attackers might send phishing messages via email, social network

posts, or cell phone text messages.

There is some overlap in the definitions of phishing and spamming. The key

difference between the two is that the latter is done to the benefit of the phishing

message sender (the attacker) and the latter is done for marketing purposes on

behalf of some other third party. The spammer gets paid for sending messages in

bulk regardless of the click-through rate (Krebs, 2014) while the phisher only

benefits based on the small number of people who willingly fall victim to the

phishing attack.

Overall this research was a success. It meets the original base goal set forth

to produce a machine learning model that is trained on semantic data and performs

better than random. The secondary goal of the semantic-based model performing

better than its unigram-based counterpart is possibly met but due to sample sizes

there can’t be statistical conclusions drawn from the data.
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5.1 Overall Results

There were six tests conducted in total. They were a cross between the two

different data sets (unigram and TMR) and the three machine learning algorithms

(naive Bayes, SVM, and J48). Table 5.1 below gives the empirical results for all six

of these tests according to six different commonly used metrics: true positive rate

(TP), false positive rate (FP), precision (Prec), recall (Rec), accuracy (F1), and the

area under the receiver operating characteristics curve (ROC).

Table 5.1

Results for all six tests scored against six different metrics.

Test TP FP Prec Rec F1 ROC

Uni-NB 0.800 0.404 0.673 0.800 0.723 0.741

Uni-SVM 0.754 0.207 0.813 0.754 0.762 0.773

Uni-J48 0.607 0.271 0.716 0.607 0.628 0.673

TMR-NB 0.864 0.261 0.776 0.864 0.813 0.905

TMR-SVM 0.832 0.286 0.771 0.832 0.786 0.773

TMR-J48 0.882 0.393 0.701 0.882 0.773 0.745

Table 5.1 calls out the results in two different ways. First, the top three tests

in each metric are bolded. Second, the best test in each metric is also underlined in

addition to being bolded.

TMR-based models rank higher in terms of the true positive rate and recall

while the unigram model scores better in terms of loser false positive rates and

improved precision. The relation between these measures makes sense after

understanding how the precision measure incorporates the false positive rate while

the recall measure incorporates the false negative rate.
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Table 5.2

Confusion matrices for all six combinations of data sets and algorithms.

Uni-NB Uni-SVM

Classified

Ham Phish

A
ct

u
al Ham 19 9

Phish 11 17

Classified

Ham Phish

A
ct

u
al Ham 19 9

Phish 5 23

Uni-J48 TMR-NB

Classified

Ham Phish

A
ct

u
al Ham 17 11

Phish 6 22

Classified

Ham Phish

A
ct

u
al Ham 22 6

Phish 8 20

TMR-SVM TMR-J48

Classified

Ham Phish

A
ct

u
al Ham 24 4

Phish 6 22

Classified

Ham Phish

A
ct

u
al Ham 23 5

Phish 12 16

The experimental results are presented below in two different figures.

Performance is measured in terms of accuracy, which is the F1 score. Accuracy was

chosen as the performance measure due to how it incorporates both precision and

recall.
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Figure 5.1. Accuracy of the machine learning models grouped by training

data set.

Figure 5.1 shows performance of the algorithm experiments. The dashed

horizontal line represents the accuracy of a random binary classifier (0.5 in this

case). Intervals are for a 95% confidence level.

Clearly all the TMR-based models perform better than random. There is

some statistical question about the performance of the unigram-based J48 model
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due to the lower end of the confidence interval dipping below 0.5. But that is not

the primary concern of this research.

It also appears that the TMR-based models outperform the same

unigram-based models. The mean accuracy of every TMR-based model is higher

than any of the unigram-based models. Whether or not we can be confident in this

conclusion is fodder for a statistical hypothesis test. Each of the three data set

pairings shown in Figure 5.1 should be compared with the unigram model being the

baseline and the TMR model being the experimental.

5.2 Statistical Hypothesis Test

The hypothesis, as expressed in (5.1), is that the TMR model (x̄1) performs

only as well or worse than the unigram model (x̄2). The alternative hypothesis

(5.1b) in this case is that the TMR model does in fact perform better than the

unigram model (Moore, McCabe, & Craig, 2014).

H0 : x̄1 ≤ x̄2 (5.1a)

Ha : x̄1 > x̄2 (5.1b)

The statistical hypothesis test is the comparison of the two sample means.

As an example of how the math works the values for the naive Bayes algorithm are

used as input to the equations. Results for calculations of all three algorithms are

given in Table 5.3.

The first step in the test is the calculation of the test statistic T as shown in

(5.2). The end result is a test statistic value of T = 0.236.
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T =
x̄1 − x̄2√
s21
N1

+
s22
N2

=
0.813− 0.723√

0.1022

56
+ 0.1262

56

=
0.09√

4.693 · 10−4

= 4.155

(5.2)

Next, the degrees of freedom is calculated as shown in (5.3). The degrees of

freedom value is necessary in later looking up the critical value. For the naive Bayes

algorithm sample means the degrees of freedom ends up rounding to v ≈ 105.

v =
(
s21
N1

+
s22
N2

)2

(
s21
N1

)2

N1−1 +
(
s22
N2

)2

N2−1

=
(0.102

2

56
+ 0.1262

56
)2

( 0.102
2

56
)2

55
+

( 0.126
2

56
)2

55

=
(4.693 · 10−4)2

(1.858·10−4)2+(2.835·10−4)2

55

=
2.202 · 10−7

2.089 · 10−9

= 105.429

≈ 105

(5.3)

Because the confidence intervals shown in Figures 5.1 and 5.2 are both

calculated at the 95% level then so too will the statistical hypothesis tests here. For

a 95% confidence interval the alpha level gets set to α = 0.05. This alpha, along

with the degrees of freedom calculated in (5.3) are used as parameters to look up

the relevant t-score: t1−α,v = t0.95,105 = 1.659.

Recall back to the alternate hypothesis (5.1b) where x̄1 > x̄2. So in order to

refute the null hypothesis (5.1a) T > t1−alpha,v must be true. In this example case of
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the naive Bayes data it is indeed correct that T = 4.155 > t1−α,v = t0.95,105 = 1.659.

Therefore we can disprove the null hypothesis.

This same procedure is repeated for the subsequent SVM and J48

comparisons with all results compiled in Table 5.1.

Table 5.3

Calculations for comparing two sample means.

Algorithm T
Degrees of
Freedom

Critical
Value

Naive Bayes 4.155 105 1.659

SVM 1.213 98 1.661

J48 5.982 95 1.661

In order to refute the null hypothesis(H0), the test statistic T has to be

greater than the critical value (t1−α,v). It is therefore trivial to see, using Table 5.3

as a reference, that in the cases of the naive Bayes classifier (4.155 > 1.659) and the

J48 classifier (5.982 > 1.661) we reject the null hypothesis. However, in the case of

the SVM classifier (1.213 ≯ 1.661) we fail to reject the null hypothesis.
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Figure 5.2. Accuracy of the machine learning models grouped by

algorithm.

Figure 5.2 presents the same data seen in Figure 5.1 but with the accuracy

scores grouped according to the algorithm their model was trained on. This second

view makes it easier to observe the improved performance of the TMR-based models

over their unigram-based counterparts. The numbers astride the middle points of

the pairings quantify the difference in median values.
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5.3 Misclassified Samples

Examining which files were misclassified by the machine learning algorithms

provides insight into underlying problems.

Misclassified Files

Algorithm
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Figure 5.3. A plot of training files where the darkness of the cell

corresponds to the confidence with which they were misclassified.

The graphic in Figure 5.3 shows at a glance how files were misclassified by

each algorithm. A white rectangle indicates that a file was classified correctly while
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a colored rectangle indicates that the file was misclassified. The darkness of the

rectangle gives an indication of the confidence with which the file was

misclassified (Tufte, 1990, pp.91-93). It should be noted that the naive Bayes and

J48 algorithms provide a probability with their classifications while the SVM

algorithm only provides a boolean yes/no classification so all the probabilities are

either 1.0 (misclassified) or 0.0 (correctly classified). A comprehensive table with all

probabilities explicitly stated is included in Appendix A.

Several interesting features from Figure 5.3 jump out. First, the TMR-based

algorithms misclassify ham emails far less than the unigram-based algorithms do.

This is apparent by the lower density of colored rectangles in the TMR/Ham

quadrant (upper-right) of the graphic. Second, the J48 classifiers are less confident

when they misclassify files. The largest variety of shades of gray are seen in the

unigram and TMR J48 classifiers. The naive Bayes classifier also return a

probability with its classification but the unigram and TMR naive Bayes classifier

cells are almost uniformly black.

Another, more quantifiable, way of analyzing the differences in misclassified

files is by using the Jaccard index. The Jaccard index is a value between 0 and 1

that describes the similarity between two sets where 0 means completely dissimilar

and 1 means identical (Jaccard, 1912):

J(A,B) = |A∩B|
|A∪B|

Applying the Jaccard index to misclassified files means that the performance

of two different algorithms can be compared to see if they’re misclassifying the same

or different files. Table 5.4 compares the same algorithm for its performance with

the unigram data set versus the semantic data set. Jaccard index values tell us that

the naive Bayes classifiers mostly misclassify the same files while the J48 decision

tree classifier performs very different on the two data sets. The SVM classifier is

evenly split with an index value of 0.500.



93

Table 5.4

Jaccard indices of misclassified files by algorithm.

Algorithm Intersection Union Jaccard

Naive Bayes 9 14 0.643

SVM 5 10 0.500

J48 3 17 0.176

There was only one situation in which all six data set/algorithm

combinations failed to correctly classify the email, and only two situations in which

give of the six combinations failed. All three of these files are phishing email

samples. Figure 5.2 and Figure 5.3 corroborate the fact that phishing samples are

those most consistently misclassified across algorithms.

Please review the attached invoice and pay this invoice at your

earliest convenience. Feel free to contact us if you have any

questions.

Thank you.

Figure 5.4. The email that was misclassified by all the models.
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CURRENCY:HAS-MONETARY-VALUE:VALUE:175.00

CORRUPT:THEME:VALUE:EMAIL-MESSAGE

EDUCATIONAL-CAMP:LOCATION:VALUE:BUILDING

WARN:STYLE-POLITENESS-1.0

ham(30.0/3.0)phish(2.0)

> 0 ≤ 0

phish(3.0)

> 0 ≤ 0

phish(11.0/1.0)

> 0 ≤ 0

phish(10.0)

> 0 ≤ 0

Figure 5.5. The J48 tree trained from semantic features.

The benefit of the output structure seen in Figure 5.5 is that it is

human-readable. The same cannot be said about the J48 tree generated from

unigrams in Figure 5.6. The following list describes the TMR tree nodes in

descending order:

1. There is an amount of currency number 175 of some undefined denomination.

2. An email message was corrupted.

3. An organized, educational camp is being held inside of a particular building.

4. A polite warning.
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Figure 5.6. The J48 tree trained from uni-gram features.

The J48 tree model shown in Figure 5.6 differs significantly from the tree

model shown in Figure 5.5 despite having the same number of nodes. Notice how

the unigram strings are sometimes legible such as in the cases of “student” and

“field” but other times the strings have garbled endings such as “lafayes”, “attens”,

and “purdu.” These garbled endings are artifacts of the stemming process applied

prior to generating the machine learning model.

So unlike the TMR-trained tree of Figure 5.5 the unigram-trained tree

doesn’t provide individual nodes that are easily understood by a human. In this

particular situation, however, the nodes when examined collectively can provide

some information about the experiment. More specifically, all the unigram strings

seem to be describing an academic theme centered around Purdue University. And
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the tree model uses this Purdue-centric terms to identify when an email is good (as

opposed to identifying when it is phishing as in the TMR tree). This suggests that

the known good emails overly represent language particular to Purdue and its

activities. Further studies would do well to try a more diverse sampling of known

good emails to avoid this problem.

5.4 Ontology

During the manual TMR generation process the accompanying ontology was

generated from scratch. The result was 560 unique concepts. This ontology is

parsimonious in the sense that it is the minimal ontology necessary to describe the

language seen in the sample data. It is unlikely that the ontology as it currently

exists is sufficient to describe new data without further additions. In this way the

current ontology is not generalizable.
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Figure 5.7. A histogram of the number of fact instances for a concept

based on its height in the ontology.

Figure 5.7 shows how frequently (in terms of the logarithm) a concept is

instantiated into a fact versus its height in the ontology. Height of a tree-like data

structure begins at zero for the leaf nodes. Because the ontology created is

single-parented (multiple inheritance is not utilized) then its taxonomic structure is

a tree. The only concept with a height of seven would be the special purposed ALL

concept, which should never be instantiated.
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The histogram shoes an exponential curve with the leaf concepts occurring

far more frequently than their more highly placed parents. This means that the

TMRs generated by the research use the most fine-grained, specific concepts

available instead of relying on more abstract concepts with a higher height. For

example, if ANIMAL is a concept and DOG is also a concept that is the child of

ANIMAL, and a leaf node concept, then this data would suggest that DOG would

occur more frequently.

These data support the intuition that leaf node concepts should be seen more

frequently than their parent concepts. An overuse of abstract concepts might

suggest a problem in the TMR generation process that is causing an over-reliance

on abstract concepts.

The following steps demonstrate the problems caused by using overly

abstract concepts. It begins with Example 8. This is the input sentence to the OST

system.

(8) “The cat climbs up the tree.”

The OST system renders this sentence into the following frame:

(CLIMB−3

(AGENT (VALUE (CAT−9)))

(THEME (VALUE (TREE−102)))

)

But what would happen if instead of CAT and TREE, more abstract

concepts were used? For this example it is assumed that CAT is the direct subclass

of MAMMAL and TREE is the direct subclass of PLANT. The more abstract frame

then becomes:

(CLIMB−3

(AGENT (VALUE (MAMMAL−29)))

(THEME (VALUE (PLANT−44)))

)
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To better illustrate the problems created, translate the abstracted frame

back into an English sentence. The result might be that seen in Example 9. This is

a distinctly different sentence from Example 8 that served as input.

(9) “The mammal climbs up the plant.”

The use of the frequency-versus-height statistic is one tool available to future

acquisition efforts to help them analyze the health of their knowledge base.

5.5 Economics

Manually processing input texts into intermediate TMRs is a time

consuming task. Part way through the processing stage of the research the idea was

suggested to record the amount of time taken in processing each email. Processing

times for the last twenty-three of the total fifty-six samples emails was recorded.

Figure 5.8 plots the size of each of the twenty-three emails against the time it

took to process them. The straight line through the scatter plot is a linear

regression to the data. The linear regression itself has a coefficient of determination

(r2) of 0.923, which suggests a good fit to the observations.
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Figure 5.8. Amount of time taken to manually process sample emails.

The regression line from Figure 5.8 has potential use outside of this

dissertation. Given a text corpus for manual processing, the regression can help

predict how long it would take to process all the texts. This overall time can be

divided by the number of available team members to determine how long such a

project might take. Multiple the overall time by an hourly salary and that is the cost

to process the corpus. Both values are useful items to include in a grant proposal.
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Figure 5.9. Unigram-Naive Bayes models converging as the sample size

increases.

5.6 Convergence

The overall results use all fifty-six samples. There is a secondary question

remains of how the different machine learning algorithms converge on their solutions

as the number of samples increases.

Three sample sizes were chosen at regular intervals: 18, 36, and 54. All

samples were evenly split between the two classes (9, 18, and 27 respectively). As in

the earlier tests cross-validation is used as a means to avoid over-fitting but this

time with K=3. The same six combinations of machine learning algorithms and

datasets were trained and tested on these three subsamples.

5.7 Future Work

There are several different ways in which the research in this dissertation

could be extended or improved. The obvious first choice is to get larger amount of
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Figure 5.10. Unigram-SVM models converging as the sample size

increases.

18 36 54
0

0.2

0.4

0.6

0.8

1

Subsample Size

A
cc

u
ra

cy
(F

1
S
co

re
)

Unigram-J48

Confidence Interval
Median

Figure 5.11. Unigram-J48 models converging as the sample size increases.
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Figure 5.12. TMR-Naive Bayes models converging as the sample size

increases.
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Figure 5.13. TMR-SVM models converging as the sample size increases.
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data. Some of the choices made for this research provided unnecessary and possibly

contributed to the small sample size.

5.7.1 Feature Space

This dissertation only scratches the surface of the features available for

training ML models. The ML models tested here were only trained on one possible

type of semantic feature.

1. Concept frequency

2. Local fact frequency

3. Two generations

4. Lexical mappings

Concept frequency Counting the frequency of individually occurring

concepts would be the simplest feature to take from a semantic understanding of a

phishing email. Concept counts weren’t utilized as features in this research due to

the possibility of them being virtually identical to unigrams. Recall that the text

used to generate the unigram language model was stripped of stop words. All the

remaining nouns, and the main verbs, would each have one concept that they map

to. Ignoring the auxiliary verbs, adjectives, and adverbs, this would have provided a

large degree of overlap between the unigram and TMR models.

Local fact frequency The currently used approach to identifying fact

instantiated from concepts is to give them globally unique identifiers. Thus,

HUMAN-43 in one document must be the same individual as HUMAN-43 in

another document. But there is also the possibility of facts with identifiers that are

unique only within the context of a specific text. The formalism suggested here to

to append an ascending letter sequence instead of a number to the end of a fact. So

a text referring to three different people would have HUMAN-A, HUMAN-B, and
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HUMAN-C in this text-local naming scheme as opposed to HUMAN-111,

HUMAN-112, and HUMAN-113 in the globally unique naming scheme.

This can help in identifying relations between individuals in an event. For

instance, the code block below shows a SPEAK event with globally unique facts.

(SPEAK−7

(AGENT (VALUE (HUMAN−88)))

(BENEFICIARY (VALUE (HUMAN−97)))

)

Compare that to this following code block, which uses only the concepts used

to instantiate the facts. If this frame is decomposed in quadruples then there is

〈SPEAK, AGENT, VALUE, HUMAN〉 and 〈SPEAK, BENEFICIARY, VALUE,

HUMAN〉. There is missing information to inform the machine learning software

that the two SPEAK instances are in fact the same one, and that the two HUMAN

instances are necessarily two different individuals.

(SPEAK

(AGENT (VALUE (HUMAN) ) )

(BENEFICIARY (VALUE (HUMAN) ) )

)

Text-specific fact labeling might solve that problem. Code block 5.7.1 shows

what this solution would look like.

(SPEAK−A

(AGENT (VALUE (HUMAN−A) ) )

(BENEFICIARY (VALUE (HUMAN−B) ) )

)

The resulting decomposed quadruples are then 〈SPEAK-A, AGENT,

VALUE, HUMAN-A〉 and 〈SPEAK-A, BENEFICIARY, VALUE, HUMAN-B〉,

which describe some of the distinctions between the facts.
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All of this begs the question of how to label these text-specific facts. The

initially proposed scheme is to label the facts with ascending letters according to

their descending frequency. So the fact appended with “-A” is the most frequently

occurring fact of that particular concept, “-B” is the second most frequently

occurring fact, so on and so forth.

Two generations The approach of decomposing intermediate TMRs into

quadruples used in this research could be described as looking at a single generation

of the TMR. A single generation in this case is connecting from a root concept to

the first filler. But a two generation feature would decompose an intermediate TMR

such that each feature connects from a root concept to the first filler and then on to

a second filler, that is in turn a filler of the first filler in the given feature. This

would be a 7-tuple, or a septuple.

(BUY−7

(AGENT (VALUE (HUMAN−3

(PLAYS−ROLE (VALUE (STUDENT−19)))

) ) )

)

The event in the above code block in the one generation ML feature scheme

would give two quadruples: 〈BUY-7, AGENT, VALUE, HUMAN-3〉 and

〈HUMAN-3, PLAYS-ROLE, VALUE, STUDENT-19〉. But in the two generation

scheme the same event generates only a single septuple: 〈BUY-7, AGENT, VALUE,

HUMAN-3, PLAYS-ROLE, VALUE, STUDENT-19〉. This two generation scheme

captures what might be necessary information that the one generation scheme does

not; that it is in fact a student making the purchase and not just a generic person.

This improved scheme is important for capturing formalisms such as social roles

where concepts used as fillers are further specified.

This multi-generational ML feature begs the question of when are there too

many generations. Increasing the number of generations used to produce ML

features could cause an explosion in the overall number of features. This is a
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situation of diminishing returns. The question of where to stop the number of

generations is to be determined experimentally. This is also a place where ML

might offer assistance with techniques like information gain and principle

component analysis (PCA) identifying which ML features are contributing the most

to a classifier’s performance.

Lexical mappings are the mappings from the word as it appears in the text

and the fact it instantiated in the TMR. Lexical mappings were not recorded for

this research. It is known in NLP research that for polysemous words there is

usually only one sense of that word used in any given document ??. A new research

question might be: Do phishing emails use one particular sense of a word more often

than non-phishing emails, and might that be an effective way to distinguish the two?

5.7.2 Graph Theory

A proper, finished TMR is essentially a graph. It stands to reason then that

tools used to analyze graphs, such as social network analysis, might be useful in

answering questions about the knowledge represented in a TMR.

Future work should investigate how the network structures between good

and phishing emails differ. Tools like Gephi and R facilitate social network analysis.

But to conduct a proper examination would require experience with both graph

theory and the generation of ML features from graph structures, which were both

lacking at the time of this research.

5.8 Summary

Overall this research is considered a success. It met its primary goal of

building ML classifiers on semantic features in such a way as the results were not

random. Furthermore, the majority of these classifiers performed better than their

unigram counterparts on the same data.
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Not all avenues that were explored proved to be fruitful. The data collected

to conduct the research was delimited to be emails with PDF attachments. The

question was if the language in the emails that referred to the attachments might be

key in distinguishing good from phishing. No such connection was identified. There

is possible future research to be done in comparing phishing emails with PDF

malware attachments to other phishing emails with PDF attachments that are not

malware. The phishing email corpus collected for this particular research project

totalled just twenty-eight with only four of these phishing emails having malicious

attachments. Larger amounts of data must be examined to find sufficient samples

for such a future work.

This research intentionally focused on just the language used in the bodies of

email messages. No real, commercial product would restrict itself to such a

constrained set of indicators. This delimitation may have artificially lowered the ML

scores seen in this chapter. But the goal of this research was never to create a

contrived situation for the purpose of incrementally increasing a simple score.

This research also serves the purpose of showing that OST has practical

applications. Phishing is just one particular application. Stylometry,

anonymization, and sentiment analysis are all problems that might benefit from a

semantic approach.

OST is a theory undergoing continued development and refinement. While

machine learning might not be able to help develop that theory it could serve as a

tool for measuring progress. As new ideas as formalized, the expanded OST

resource could undergo a kind of regression testing to compare ML results from the

new structures to the ML results of the old structures.

Perhaps it could be said that successful research just leads to more questions?
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CHAPTER A. PROBABILITY OF MISCLASSIFIED FILES
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00 1.000 1.000 0.875 1.000

01

02 1.000 0.913

03

04 1.000

05 0.622 1.000 1.000

06 1.000 0.987 1.000

07 1.000 1.000 1.000

08 1.000 0.913

09

10 1.000 1.000

11 1.000 1.000 1.000

12 1.000 0.913

13 1.000 1.000

14 1.000

15 1.000

16

17 0.875

18 1.000

19 1.000

20 1.000
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21 1.000 1.000 1.000

22
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24 1.000 1.000 1.000 1.000 1.000

25 1.000 1.000

26 1.000

27 0.913
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01 0.913
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04 1.000 0.870
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06

07 0.999 0.913

08 1.000 0.952 0.999
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12 0.999 0.840
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14 0.840
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18 1.000 0.952
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20 1.000
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25 1.000 1.000 1.000 1.000 0.870

26 1.000 1.000 1.000 0.913

27 0.913
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CHAPTER B. ANTLR GRAMMAR FOR INTERMEDIATE TMRS

This is the ANTLR grammar file that defines how an intermediate TMR file

used in this research must look. ANTLR is a parser generation tool for the Java

programming language. ANTLR will take this file as input and automatically

generate the necessary Java code for a parser. A programmer can then extend the

relevant classes in the ANTLR API to construct a walker that traverse the abstract

syntax tree created by the ANTLR-generated parser.

The grammar in this file is compatible with ANTLR version 4 (Parr, 2013).

ANTLR grammar definition files are not backwards compatible with previous

versions of ANTLR.

grammar Tmr ;

WS : [ \ t\ r\n]+ −> sk ip ;

LPAREN : ’ ( ’ ;

RPAREN : ’ ) ’ ;

NUMBER : [0−9 ]+( ’ . ’ [0−9]+)?;

RANGE OPERATOR : ’> ’ | ’>=’ | ’<=’ | ’< ’ ;

RANGE : RANGE OPERATOR NUMBER;

BOOLEAN : ’TRUE’ | ’FALSE ’ ;

TIME : ’TIME’ ;

TIME START : ’START’ ;

TIME END : ’END’ ;

FACET TYPE : ’VALUE’ | ’DEFAULT−MEASURE’ | ’NOT’ ;

SET : ’SET−’ NUMBER;

CARDINALITY : ’CARDINALITY’ ;
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LOGIC : ’LOGIC ’ ;

SUBSET : ’SUBSET−OF’ ;

LOGIC TYPE : ’AND’ | ’OR’ | ’NOT’ | ’XOR’ ;

MODALITY : ’MODALITY’ ;

MODALITY TYPE : ’EPISTEMIC’ | ’DEONTIC’ | ’VOLITIVE’

| ’POTENTIAL’ | ’EPITEUCTIC’ | ’EVALUATIVE’

| ’SALIENCY’ ;

STYLE : ’STYLE’ ;

STYLE TYPE : ’POLITENESS’ | ’COLOR’ | ’FORMALITY’ ;

ASPECT : ’ASPECT’ ;

PHASE : ’PHASE’ ;

ITERATION : ’ITERATION’ ;

STRING : ’” ’ ˜ [ ” ] ∗ ’ ” ’ ;

LABEL : [A−Z]+ ( ’− ’ [A−Z]+)∗ ;

FACT : LABEL ’− ’ NUMBER;

tmr : statement +;

statement : LPAREN statement core RPAREN;

s ta tement core : (FACT | s e t )

( s l o t | time | modality | s t y l e | aspect ) ∗ ;

s l o t : LPAREN LABEL f a c e t+ RPAREN;

f a c e t : LPAREN FACET TYPE f i l l e r + RPAREN;

f i l l e r : LPAREN f i l l e r v a l u e+ RPAREN;
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f i l l e r v a l u e : LPAREN f i l l e r v a l u e RPAREN

| s ta tement core | NUMBER | RANGE | LABEL | STRING

;

s e t : SET set parameter ∗ ;

s e t parameter : c a r d i n a l i t y | completeness | type | i n c l u d e s

| exc ludes | l o g i c | subset ;

c a r d i n a l i t y : LPAREN CARDINALITY LPAREN (RANGE+ | NUMBER)

RPAREN RPAREN;

completeness : LPAREN ’COMPLETE’ LPAREN BOOLEAN RPAREN RPAREN;

type : LPAREN ’TYPE’ LPAREN LABEL RPAREN RPAREN;

i n c l u d e s : LPAREN ’INCLUDES’ LPAREN (FACT | LABEL | SET)+

RPAREN RPAREN;

exc ludes : LPAREN ’EXCLUDES’ LPAREN (FACT | LABEL | SET)+

RPAREN RPAREN;

l o g i c : LPAREN LOGIC LPAREN LOGIC TYPE RPAREN RPAREN;

subset : LPAREN SUBSET LPAREN SET RPAREN RPAREN;

time : LPAREN TIME ( abso lu t e t ime | t ime range | r e l a t i v e t i m e

| t ime durat ion ) RPAREN;
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abso lu t e t ime : LPAREN STRING RPAREN;

t ime range : LPAREN s t a r t t i m e RPAREN (LPAREN end time RPAREN)?

| LPAREN end time RPAREN;

s t a r t t i m e : TIME START LPAREN

(STRING | r e f e r e n c e t i m e | r e l a t i v e t i m e ) RPAREN;

end time : TIME END LPAREN (STRING | r e f e r e n c e t i m e ) RPAREN;

r e l a t i v e t i m e : LPAREN ( ’PAST’ | ’PRESENT’ | ’FUTURE’ ) RPAREN;

r e f e r e n c e t i m e : (RANGE OPERATOR? FACT ’ . ’ TIME

( ’ . ’ (TIME START | TIME END))?)+;

t ime durat ion : LPAREN ’DURATION’ LPAREN LABEL LPAREN NUMBER

RPAREN RPAREN RPAREN;

moda l i ty pa i r : LPAREN MODALITY TYPE LPAREN (NUMBER | RANGE)

RPAREN RPAREN;

modal ity : LPAREN MODALITY ( moda l i ty pa i r )+ RPAREN;

s t y l e : LPAREN STYLE (LPAREN STYLE TYPE LPAREN (NUMBER | RANGE)

RPAREN RPAREN)+ RPAREN;

aspect : LPAREN ASPECT ( i t e r a t i o n | phase ) RPAREN;

i t e r a t i o n : LPAREN ITERATION LPAREN (NUMBER | ’FIRST ’ | ’LAST’ )
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RPAREN RPAREN;

phase : LPAREN PHASE LPAREN

( ’BEGIN’ | ’CONTINUE’ | ’END’ | ’OTHER’ ) RPAREN RPAREN;
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