
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

8-2016

A study of security issues of mobile apps in the
android platform using machine learning
approaches
Lei Cen
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Cen, Lei, "A study of security issues of mobile apps in the android platform using machine learning approaches" (2016). Open Access
Dissertations. 742.
https://docs.lib.purdue.edu/open_access_dissertations/742

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/742?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F742&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School Form
30 Updated 12/26/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

Lei Cen

A Study of Security Issues of Mobile Apps in the Android Platform Using Machine Learning Approaches

Doctor of Philosophy

Luo Si
Chair

Ninghui Li
 Co-chair

Elisa Bertino

David Gleich

Luo Si

Sunil Prabhakar 6/24/2016

A STUDY OF SECURITY ISSUES OF MOBILE APPS

IN THE ANDROID PLATFORM

USING MACHINE LEARNING APPROACHES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Lei Cen

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2016

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

First and foremost I would like to thank my advisor Prof. Luo Si. It has been an honor

to be Prof. Si’s Ph.D. student and he has taught me so much during this five years journey.

Prof. Si generously founded most of my researches and guided me step by step into so

many interesting topics. I appreciate all his time and patient with me and his contributions

made my Ph.D. experience much more productive and much less confusing. The profes-

sional spirit he showed to me stimulated and encouraged me in my Ph.D. pursuit during

my hardest times.

Prof. Ninghui Li provided enormous help and support as my co-advisor in the Android

security project, I realy appreciate it as I was new to security field. I would also like to

thank Prof. Elisa Bertino and Prof. David Gleich for joining my defence committee and

providing valuable comments to help me improve on this dissertation.

Prof. Si provided an excellent lab environment for research and I am grateful to all my

lab mates. The members of our IR lab have been a source of solid friendship and reliable

source of ideas and collaborations in research. It has been a joyful few year spent with you

all. Thank you Dr. Dan Zhang, Dr. Yi Fang, Dr. Dzung Hong, Dr. Suleyman Cetintas, Dr.

Qifan Zhang, Ning Zhang, Zhiwei Zhang, Tao Wu, Kexin Pei, Chang Li and Dr. Jingang

Wang.

Lastly, I would like to thank my parents for encouraging me for my pursuit and being

supportive for the whole time. It would not be possible for me if I was not raised with your

love and encouraging.

Lei Cen

July 1st, 2016

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . viii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Security Issues of Mobile apps and Machine Learning 1

1.1.1 Direct Analysis . 3
1.1.2 Indirect Analysis . 4
1.1.3 Comparison and Combination 4

1.2 Research Problems . 5

2 A PROBABILISTIC DISCRIMINATIVE MODEL FOR ANDROID MALWARE
DETECTION WITH DECOMPILED SOURCE CODE 6
2.1 Motivation . 6
2.2 Introduction and Related Works . 6

2.2.1 Introduction . 6
2.2.2 Related Works . 10

2.3 Algorithm . 14
2.3.1 Source Code Feature Extraction 14
2.3.2 Probabilistic Discriminative Model for Classification 18

2.4 Experiment . 23
2.4.1 Dataset Settings . 24
2.4.2 Evaluation Metric . 25
2.4.3 Experiments for Granularity of Source Code Features 27
2.4.4 Experiments for Source Code Feature Representation 28
2.4.5 Experiments for Feature Selection on Source Code Feature . . . 29
2.4.6 Experiments for Model Regularization 30
2.4.7 Model Comparison with Permission Feature 31
2.4.8 Model Comparison with Source Code Feature 33
2.4.9 Combination of Source Code and Permission Feature 34

2.5 Limitations . 34
2.6 Conclusion . 35

3 USER COMMENT ANALYSIS FOR ANDROID APPS AND CSPI DETEC-
TION WITH COMMENT EXPANSION 40
3.1 Motivation . 40

iv

Page
3.2 Introduction and Related Work . 40

3.2.1 Introduction . 40
3.2.2 Related Works . 42

3.3 Data Collection and Annotation . 43
3.3.1 CSPI Annotation . 44

3.4 Algorithm . 46
3.4.1 Feature Extraction . 46
3.4.2 Independent Logistic Regression (ILR) 47
3.4.3 Comment Expansion . 47
3.4.4 Post-Process with Label Correlation 49

3.5 Experiments . 50
3.5.1 Experiment Setting . 50
3.5.2 Results and Analysis . 51

3.6 Limitation & Future Work . 53
3.7 Conclusion . 53

4 MOBILE APP SECURITY RISK ASSESSMENT: A CROWDSOURCING RANK-
ING APPROACH FROM USER COMMENTS 57
4.1 Motivation . 57
4.2 Introduction and Related Work . 58

4.2.1 Introduction . 58
4.2.2 Related Works . 60

4.3 Algorithm Overview . 61
4.3.1 Problem Formalization . 61
4.3.2 Approch Overview . 61

4.4 Mathematical formulation . 65
4.4.1 Preliminary . 65
4.4.2 Proposed PCMC Model . 66
4.4.3 Alternating Optimization . 67
4.4.4 Discussions . 69
4.4.5 Applying the Model to Testing Data 70

4.5 Experiments . 71
4.5.1 Datasets . 71
4.5.2 Label System . 71
4.5.3 Methods in Comparison . 72
4.5.4 Evaluation Metrics . 72
4.5.5 Results & Discussion . 73

4.6 Limitations . 76
4.7 Conclusion . 77

5 AUTORBF: Automatically Understanding the Review-to-Behavior Fidelity for
Android Apps . 80
5.1 Motivation . 80

v

Page
5.2 Introduction and Related Works . 80

5.2.1 Introduction . 80
5.2.2 Related Works . 85

5.3 Problem Statement . 87
5.4 Overview of System Design . 89
5.5 Review-level Security Behavior Inference Engine (RLI) 91

5.5.1 Training Phase vs. Testing Phase 91
5.5.2 Security-related Feature Extraction and Selection 92
5.5.3 Semantic Expansion . 93
5.5.4 Sparse Machine Learning Classifier 95

5.6 App-Level Security Behavior Inference Engine (ALI) 97
5.6.1 Why Not Majority Voting? 98
5.6.2 Crowdsourcing by Giving More Credit to Trustworthy Users . . 99
5.6.3 Determination App-level Behavior via y`

i

. 100
5.7 Experiment . 101

5.7.1 Data Collection . 101
5.7.2 RQ1: Review-level Security-behavior Inference 103
5.7.3 RQ2: app-level Security Behavior Inference 106

5.8 Behavior Gap between AUTORBF and Code Analysis 108
5.8.1 Spamming . 109
5.8.2 Financial Issue . 111
5.8.3 Over-claimed Permission . 113
5.8.4 Data leakage . 114
5.8.5 Summary & Insight . 116

5.9 Conclusion . 117

6 SUMMARY . 121
6.1 Direct Analysis . 121
6.2 Indirect Analysis . 122

REFERENCES . 125

VITA . 132

vi

LIST OF TABLES

Table Page

2.1 Feature dimension of three granularities 16

2.2 Terms related in evaluation metrics and an example 25

2.3 Performance of different granularity of source code features in S5 27

2.4 Descriptions of datasets and experimental settings. The ⇤/2 notation means
using part of * at training set, and the other part at testing set. 37

2.5 Performance of different regularization in S5 38

2.6 Verifying the implementation of the models in [1] 38

2.7 Performance comparison using permission features. 38

2.8 Performance comparison using source code features (function level) in S5.
ACC is for accuracy. 38

2.9 Performance of combined source code (function level) and permission features
in S5 . 39

2.10 Confusion table for late fusion method in S5 39

3.1 Two dimensional label set . 54

3.2 Statistics and sample comment pieces on suspect set 55

3.3 Experiment results on suspect set. † shows the statistical significance based on
ILR. It is computed over ten different random splits of the training/testing sets,
using one-tailed pair-wise t test with ↵ = 0.05. 56

3.4 Detailed comparison in label level. The † is computed at ↵ = 0.05 with one-
tailed t test among 10 different training/testing set splits. 56

4.1 Datasets details. The Mean, Max and Min are statistics for the number of
comments per app. 71

4.2 DCG & nDCG comparisons on D1 & D2 datasets. 79

5.1 Security/privacy-related behaviors . 83

vii

Table Page

5.2 L Dataset details to validate the review-level security behaviors. The Mean, Max and
Min are statistics for the number of reviews for per app. The mean number of review
per app is small because we already filtered out those review with over 3 ratings, which
are the majority of them. 102

5.3 D Dataset details to validate the app-level security behaviors. The Mean, Max and
Min are statistics for the number of reviews for per app. The max number of reviews
(4, 000) is artificial, because our web crawler is set to crawl only the first 4000 reviews
for each app. 103

5.4 Evaluation on different metrics in AUTORBF. # size denotes the number of
positive samples with respect to the label, and ACC denotes accuracy. . . . 118

5.5 Evaluation on different metrics using key-word based approach. # size denotes the
number of positive samples with respect to the label, and ACC denotes accuracy. . 119

5.6 Sampled key-words used in “Key-word based approach”. 120

5.7 Performance difference between our approach and key-word based approach. O indi-
cates the performance difference in terms of different metrics. 120

viii

LIST OF FIGURES

Figure Page

2.1 Performance of source code feature representation in S5 28

2.2 Performance of binary function level feature representation for s5 using RLR
for classification . 29

2.3 Percentage of benign/malicious applications using the top 20 functions selected
by IG. 30

3.1 A simple view of the collected dataset. 43

4.1 Flowchart of security risk assessment from user comments. Given any app
(e.g., Facebook), the user comments are collected from Google Play

Store. In order to infer the security risk of apps, (1) crowdsourcing is used
to accumulate user comments into app-level features (shown as “feature ex-
traction”,“auto annotation” and “crowdsourcing”); (2) learning to rank model
is used to predict risk scores by utilizing these latent features, where pairwise
constraints are enforced between pairwise apps (shown as the relative risk lev-
els of Youtube and Facebook). 57

4.2 Methods comparison based on DCG and nDCG. 74

4.3 Convergence curve in D1 and D2 dataset. 75

5.1 Infer the security-related behaviors from users’ reviews. Overview of the framework
of AUTORBF : (a) Engine 1: Review-level security behavior inference engine; (b)
Engine 2: app-level security behavior inference engine. 83

5.2 The framework of review-level security behavior inference engine (solid lines are used
for the training process, and dashed line for the process of annotating new user re-
views). 90

5.3 The framework of app-level security behavior inference engine: infer the app-level
labeling via crowdsourcing. 97

5.4 Distribution of learned ↵ parameters for number of users in log scale. 108

5.5 Distribution of learned � parameters for number of users in log scale. 108

ix

ABSTRACT

Cen, Lei PhD, Purdue University, August 2016. A Study of Security Issues of Mobile Apps
in the Android Platform Using Machine Learning Approaches . Major Professors: Luo Si
and Ninghui Li.

Mobile app poses both traditional and new potential threats to system security and user

privacy. There are malicious apps that may do harm to the system, and there are mis-

behaviors of apps, which are reasonable and legal when not abused, yet may lead to real

threats otherwise. Moreover, due to the nature of mobile apps, a running app in mobile

devices may be only part of the software, and the server side behavior is usually not covered

by analysis. Therefore, direct analysis on the app itself may be incomplete and additional

sources of information are needed.

In this dissertation, we discuss how we can apply machine learning techniques in mul-

tiple tasks for security issues in regard of mobile apps in the Android platform. These

include malicious apps detection and security risk estimation of apps. Both direct sources

of information from the developer of apps and indirect sources of information from user

comments are utilized in these tasks. We also propose comparison of these different sources

in the task of security risk estimation to point out the necessity of usage of indirect sources

in mobile app security tasks.

1

1 INTRODUCTION

There has been a steady rise of smart mobile devices for both personal and business use.

These devices run applications (apps) that have unprecedented access to private informa-

tion, including contacts, emails, geo-location data, personal and business files, and much

more. There is also explicit monetary risk associated with these devices since phone calls,

messages, and data usage can cost money. More directly, these devices often have access

to users’ bank accounts through an application or as a means to authenticate to a bank, and

in the future it seems likely that phones may act as a digital wallet, directly accessing the

bank accounts as part of the functionality. While the existence of this information and ac-

cess creates much of the value found in a smart mobile device, it also makes these devices

attractive targets for malicious entities. Furthermore, the threats casted by the mobile App

security problem present new properties. On one hand, comparing with traditional software

markets, markets like Google Play and Apple Store have lower entry threshold for devel-

opers and faster financial payback, hence greatly encouraging more and more developers

to invest in this thriving business. One result out of this is the huge amount of mobile apps

with great diversity. Therefore controlling the quality of apps, especially the security risk

of them across the whole markets, becomes an important issue to all that involved. On the

other hand, public concerns about privacy issues with on-line activity and mobile phones

are also elevating, demanding a mobile environment with more respect to users’ privacy.

1.1 Security Issues of Mobile apps and Machine Learning

We may investigate the problem of mobile App security from two perspectives, in re-

garding of its properties compared to traditional security problems.

From the Security issue category perspective: One perspective is that the mobile App

security includes both issues which are more common to traditional software security, like

2

malicious App classification and permission control etc.; and those which are less common

like advertise abusing, unresolved In-App-Purchase (IAP) etc. While the former are clear

security threats, the later sometimes could only be seen as misbehavior that may lead to

real problems like phishing, fraud, privacy issues etc.

Real Threats Malware (malicious App) detection is an typical task in mobile security.

Many works have been done for this task, including code analysis (static and dy-

namic) permission analysis etc. Please refer to Section 2.2.2 for a more detailed

introduction.

Mis-behaviors Some behaviors are commonly discussed by users due to their potential

of leading to real threats. Advertising abusing in mobile phone may lead to phishing

attack (i.e. from pop-ups), unsolved IAP may be signs of fraud and permission over

requesting may lead to privacy information stealing. These behaviors, though could

be acceptable in many occasions, do cast potential threats and are worried and com-

plained by uses all the time. Therefore, it would be necessary to estimate the security

risk of mobile apps in regard of these misbehaviors.

From the source of analysis perspective: As software running in mobile phone, which

have much limited computation power and display capability, mobile apps usually consist

both the part that runs in mobile phones and the part supporting the functionality via Inter-

net. Therefore the analysis of security issues of a mobile App may consider both part of

it. However, due to the complication of communication between an App and its service, it

would be hard to analyze the outside part directly from the mobile devices. For example,

we may be able to detect an transaction of IAP in a game App, but it would be hard to track

whether the transaction succeed or not. If not, whether it is just a rare bug in the server side

or it is actually a case of fraud. Therefore when we gather source of information for the

analysis, it would be reasonable to include source that reflect the experience of App using

indirectly.

3

Direct Source We define the direct source of information of a mobile App as those infor-

mation released by the developer of the the App. These include the .apk App file, the

permission requested and App description etc.

Indirect Source We define the source of information of a mobile App as those information

that is not from the developer of the App, but from the user of the App. These include

mostly the comments made my the users of the App.

Machine learning technique have been introduced into mobile security by many works [1–

3], and it is very adaptive to different kind of task including classification for malware de-

tection and ranking / regression for risk estimation. With probabilistic machine leaning

model, the result of security analysis may adapt to more flexible interpretation and easier

for further analysis and integration. In our work, we mainly adopt probability machine

learning technique as our tool for the analysis.

1.1.1 Direct Analysis

Many works have been done to analysis the security issues of mobile apps directly from

the information released from the developer.

Code Analysis Code analysis tries analysis the security issues through analyzing the code

of the App. These includes static analysis that extract features from the executables

of mobile App, and dynamic analysis that utilize features captured while the App is

running.

Permission Analysis Permission analysis analyze mobile App by evaluating the permis-

sion requested and / or used of the App.

Please refer to Section 2.2.2 for a more detailed introduction for related works. Following

this line of work, we propose to conduct a experiment based work that utilized discrimi-

nated probabilistic model for detecting malicious mobile apps based on decompiled .apk

package and the permissions requested. Experiments demonstrate that our approach may

detect malicious mobile App in a over 95% manner in the measure of F1 value.

4

1.1.2 Indirect Analysis

Indirect source of mobile apps comes mostly from user comments submitted to online

App store (e.g. Google Play for Android apps). There have not been much indirect analysis

of mobile apps for the purpose of security concern. However, user comment analysis have

been utilized in many previous works (please refer to Section 3.2.2 for more detail).

By considering the user comments as an indirect source of information, we propose a

novel model for estimating the security risk of mobile apps. There are two steps of these

line of work which we separated into two tasks: how to extract relevant security topics

from user comments and how to estimate the security risk of apps from the security topics.

1.1.3 Comparison and Combination

Both direct and indirect source are valuable in analyzing security issues for mobile

apps, but the different perspectives may rise some interesting question when we compare

them. For example, the permission analysis task in many works[] compare the difference

of the requested permissions to the ones actually used in the code of the App, and predict

security risk by the difference of the two, but from the users’ point of view, the requested

permissions are always compared to the role and functionality of the App that the user

comprehended. We propose to compare the two perspective by comparing code analysis in

multiple security related tasked on mobile apps to user comment analysis on those similar

tasks, and identify the strength and weakness of both source.

Moreover, combining both source of direct and indirect provide a promising approach

in improving the performance of risk estimation of mobile apps. We propose a multi-view

learning approach to incorporate both source in a mobile App security risk estimation task,

and expect to show better performance from the combining of source than each individual

ones.

5

1.2 Research Problems

In this dissertation, my main focus is on how to solve the following research problems:

• How can we apply machine learning technique in traditional security problem, like

code analysis in malware detection, for Android apps?

• How can we utilize information from non-traditional perspective like the user com-

ments in security analysis for Android apps?

• How to compare the usage of code analysis and user comment analysis in mobile

App security.

• Can we combine information from both perspective and improve performance in

estimation mobile App security risk?

The rest of the dissertation will be organized as follows: Chapter 2 presents a experiment

based analysis on how to utilize discriminative probabilistic model on decompiled code of

mobile App for malware detection. Chapter 3 presents a novel method for extracting secu-

rity related topics from user comments of mobile apps. Furthermore, Chapter 4 proposes

a joint algorithm that estimates both the credibility of users who give comments and the

security risk of the apps. Moreover, Chapter 5 described our work that compare our user

comment based analysis to traditional code analysis based work with case studies. And

finally Chapter 6 will summarize the proposal.

6

2 A PROBABILISTIC DISCRIMINATIVE MODEL FOR ANDROID MALWARE

DETECTION WITH DECOMPILED SOURCE CODE

2.1 Motivation

In this chapter, we demonstrate how we can apply machine learning technique in de-

tecting malicious mobile apps. The task fall into the real threats category of security issues

and the source of information is the decompile code of apps. Without complicated code

analysis, this work treat decompiled code of apps as text document and extract function

name from it.

2.2 Introduction and Related Works

2.2.1 Introduction

There has been a steady rise of smart mobile devices for both personal and business

use. These devices run applications that have unprecedented access to private information,

including contacts, emails, geo-location data, personal and business files, and much more.

There is also explicit monetary risk associated with these devices since phone calls, mes-

sages, and data usage can cost money. More directly, these devices often have access to

users’ bank accounts through an application or as a means to authenticate to a bank, and

in the future it seems likely that phones may act as a digital wallet, directly accessing the

bank accounts as part of the functionality. While the existence of this information and ac-

cess creates much of the value found in a smart mobile device, it also makes these devices

attractive targets for malicious entities.

The paradigm for program distribution on these mobile devices also differs from that

of the traditional PCs. Many developers are releasing applications to one or a few central

application markets. While there are third party application stores, currently all popular

7

mobile device platforms have central application stores as the primary mechanism of appli-

cation distribution. Android has Google Play as the primary store, Kindle uses the Amazon

Appstore for Android, iOS has iTunes App Store, Windows RT has the Windows Store, and

BlackBerry has AppWorld. This new paradigm presents both challenges and opportunities

for malware defense. Instead of most programs coming from a relatively small number

of reputable vendors, which enables protection based on whitelisting and signed software

distributions, in mobile devices there are many more developers, many of which have in-

sufficient history to establish reputation. On the other hand, centralized markets provide

opportunities for techniques to analyze applications by extracting some set of measurable

features, and identifying potentially malicious applications in the set.

In [1–3], researchers have developed several approaches that use the permissions re-

quested by an Android application to identify whether the application is potentially ma-

licious. In [2], requesting a certain permission or a certain combination of two or three

permissions triggers a warning that the application is risky. In [3], requesting a critical per-

mission that is rarely requested is viewed as a signal that the application is risky. In [1], four

probabilistic generative models are used to to identify potentially malicious applications in-

cluding Basic Naive Bayes (BNB), Naive Bayes with informative Priors (PNB), Mixture

of Naive Bayes (MNB), and Hierarchical Mixture of Naive Bayes (HMNB). Experimen-

tal results show that these models significantly outperform prior approaches in [2, 3] using

the Area Under Curve (AUC) for the Receiver Operating Characteristic (ROC) curve as

evaluation metric.

However, permissions only provide a high-level and inaccurate view of the behavior

of an application. An application may request a permission without actually using the

permission [4]. Furthermore, a permission often controls multiple actions. For example,

the READ PHONE STATE permission gives access to the devices IMEI via getDeviceId()

which can be misused, the current caller is available via getCallerInfo(. . .) which has pri-

vacy implications, but this permission also grants access to more commonly used functions

and intents such as the “android.intent.action.PHONE STATE” intent to detect changes in

the network connection type and similar changes to phone state. On the other hand, we

8

observe that applications are generally distributed in a form that can be decompiled into

source code which enables more detailed analysis of the applications. In particular, mobile

platforms like the Android system provide rich and well-defined APIs with useful semantic

values for accessing the underlying rich types of data. If an application needs to access

a user’s contact information, it generally needs to achieve this goal via well-defined API

calls, which can be captured by the decompiled source code.

Therefore, we expect that using decompiled source code of Android applications can

provide more detailed information than the list of permissions that the applications request.

We thus hypothesize that properly designed probabilistic models with decompiled applica-

tion source code, either in place of or in addition to, permission data, are able to provide

highly accurate results in identifying potentially malicious applications.

Generative probabilistic models in [1] assume that some parameterized random process

generates the application data (i.e., permissions) and learn model parameters which opti-

mize the fit of the model to the applications used in training. Then one can compute the

probability of each application being generated by the models, and identify those with low

probabilities as potentially malicious applications. The strength of generative models is

that they work with unlabeled data, in other words without information on malicious ap-

plications. On the other hand, discriminative models have been shown to effectively utilize

labeled training data in many applications such as text categorization [5] and image classi-

fication [6]. Discriminative models maximize objective functions that reflect classification

accuracy with respect to labeled training data. As many malicious Android applications

have already been identified in previous work [7], the labeled training information may

enable discriminative learning to achieve more accurate results for Android malware de-

tection.

We propose a probabilistic discriminative model for Android malware detection as a

binary classification problem by using decompiled source code to generate features. In

particular, a Regularized Logistic Regression (RLR) model is designed to generate prob-

abilistic outputs that enable users to better interpret the probabilistic results of Android

9

malware detection, which may be more desired than alternative discriminative learning

models like support vector machine with non-probabilistic outputs.

One approach is to view decompiled source code as texts, and use techniques for docu-

ment classification for Android malware detection. However, source code is different from

documents, and this difference presents some interesting new questions. An interesting

question is what features to extract from the source code. For example, one can choose

to use a word-count representation commonly used in document classification or a binary

representation. In addition, one can choose features at different granularity such as the

package, class, or function level representation. When classes or functions are used, the

number of features may be very large. Feature selection techniques may prove benefi-

cial for accuracy and efficiency. Another interesting question is whether combining source

code with permissions can present better results than using source code and permissions

separately.

There are many options for an evaluation metric. AUC of ROC is a popular choice used

by many researchers [1,8]. However, AUC of ROC is reported to be “overly optimistic” of

the performance in case of a highly imbalanced dataset [9]. Therefore other metrics like F1

value may be considered as a more reliable metric, since in reality, malicious applications

are a very small portion of all the applications, and the precision metric used by F1 can

better reflect the performance under imbalanced data.

In summary, the research in this paper makes significant contributions for Android mal-

ware detection as follows:

• We propose a probabilistic discriminative model based on regularized logistic re-

gression for Android malware detection with decompiled source code, which can

generate much more accurate detection results than previous research with applica-

tion permissions or with source code.

• We discuss and present experiments to show that the F1 value is a better metric to

understand and compare the performance of malicious application detection.

10

• We provide thorough empirical studies and discussion for exploring desired represen-

tation of decompiled source code such as feature extraction, representation granular-

ity and feature selection and modeling strategies for effective and efficient Android

malware detection.

• We further extend the proposed discriminative probabilistic model for utilizing both

decompiled source code and permissions, which generates even better results for

Android malware detection. As far as we know, this is the first research work that

combines analysis of both source code and permissions for the task.

The rest of the paper is organized as follows. Section 2.2.2 reviews related research

work in Android malware detection. Section 2.3 proposes our new research for the task.

Section 2.4 presents an extensive set of experiments to demonstrate the advantage of pro-

posed research. Section 2.6 concludes the contribution of this paper.

2.2.2 Related Works

Malware Detection - Static: One issue for malware detection is to determine the right

features to extract from executables. One research thrust has focused on binary analysis,

looking at the bytes of the binary on disk or in memory. Kolter et al. [10] look at n-grams

from the binary for classification, where an n-gram is n consecutive bytes. They use these

features in conjunction with several machine learning techniques including naive Bayes,

decision trees, support vector machines (SVM) and boosting, and obtain reasonable per-

formance. BitShred [11] extends the previous idea while focusing on modern malware and

scalability, extracting features in several ways to handle encrypted code and using feature

hashing to compress the feature space effectively while still maintaining the performance

of standard machine learning techniques.

In the context of mobile, some work on static analysis has also been performed, typi-

cally focusing on all functions that are used by an application. One common problem in

third party application stores is piracy and malware. It is possible to buy an application,

repackage the application unchanged or with malicious code added, and then submit it to

11

a third party application store for others to install. Desnos [12] uses compression and dis-

tance on source code to find applications that have high overlap in order to detect piracy

and malware between the official market and third party markets. Schmidt et al. [8, 13]

use static function call analysis to detect mobile malware. They apply their technique to

both Symbian and Android to extract function calls from binaries and then perform basic

machine learning techniques such as nearest neighbor and clustering. They focus on tradi-

tional unix/linux elf binaries; however, most known mobile malware comes in the form of

an application, i.e. an .apk file, and not as an elf. Their focus on elf binaries is likely due

to the timing of the work, which precedes most known malware and comes shortly after

Android’s initial release.

Enck et al. [14] perform static data flow analysis on application files by decompiling

and analyzing the source code to detect data leaks. They find many applications that leak

information off the phone, but do not find any evidence of malicious applications in their

data. RiskRanker [7] and DroidRanger [15] focus on the task of finding malicious applica-

tions in various Android markets. They use a few detection techniques to identify possibly

risky behavior in an application, and then perform further analysis to identify true malicious

behavior and false positives. The detection techniques look for actions expected from mal-

ware: specific code signatures for known attacks, behavioral indicators such as sending an

SMS automatically and not associated with a user clicking a button, encrypted native code,

and dynamic code loading. These techniques are all basically signature based, looking for

pre-specified patterns or behavior. By contrast, our approach is data driven, using labeled

data to determine which features are important for classification.

Aafer et al. [16] perform static data flow analysis to extract feature from the bytecode of

applications. Both APIs and the parameters of the APIs in the bytecode are extracted and

APIs are filtered by the relative usage frequency between benign and malicious applica-

tions. K-nearest-neighbor method is proposed to work with these features and compared to

permission feature. To distinguish our work with theirs, we propose a probabilistic model

that could output meaningful probabilistic results and learns the weight of APIs and per-

missions automatically instead of picking the highest relatively frequent ones. We also

12

present results that combines both API feature and permission feature, which performs the

best in our experiments.

Malware Detection - Dynamic: Another major approach focuses on behavioral analysis

of malware. In the desktop setting, Christodorescu et al. [17] allow code to execute and

monitor system calls in order to identify behavioral traces of a binary. They collect traces

for both benign and malicious applications and determine what traces characterize mali-

cious binaries in order to identify unknown malware that performs similar functionality.

This work uses dependence graphs to construct minimal representations for the malicious

behavior, and then looks for these same behaviors in other binaries. Other work has used

the same general idea of behavioral analysis, but extended the technique of matching ma-

licious code using several machine learning techniques such as support vector machines

(SVM) [18] and clustering [19].

For dynamic detection of mobile malware, Shabtai et al. [20] present a behavioral-based

detection framework for Android that monitors certain observable events originating from

applications and classifies them via lightweight machine learning techniques. The focus

here is relatively efficient behavioral detection since it is performed directly on the device

where power may be limited. Portokalidis [21] propose a security solution where security

checks are applied on remote security servers that host replicas of the phones in virtual

environments. In their work, the servers are not subject to the constraints faced by smart-

phones and hence this allows multiple detection techniques to be used simultaneously. They

implemented a prototype and show the low data transfer requirements of their application.

CrowDroid [22] provides a framework to dynamically analyze applications behavior to

detect malware on the Android platform. They collect the system traces from many real

users and send them to a central server for analysis to detect behavioral differences between

applications that should generally have the same behavior. Their goal is primarily to detect

malware that has been repackaged and distributed on third party application stores.

While dynamic approaches can offer the most information regarding application be-

havior, it is difficult to explore all possible behaviors of an application ahead of time, and

it can be resource intensive to collect directly on a device. Additionally it is difficult to

13

capture fine grained behavior profiles in Android without rooting a device and installing a

system designed to collect this information. On the other hand, since the application store

is centralized, an approach which can more directly utilize data from all applications is

preferred. Due to the complexity of permission and system level functions, it seems likely

that performing static analysis of the API calls can provide a robust feature space, which is

the approach we take in this work.

Android Permissions Analysis: PScout [23] performs static code analysis on the Android

source to extract function to permission mappings. They find that the Android permission

system has little redundancy and it remains relatively stable as the Android OS evolves.

They also show how many functions require specific permissions, demonstrating the com-

plexity of the system and that a permission may have many reasons for being requested.

In [24] Felt et al. conduct a more general survey of applications (free and paid) from the

Android Market. One key observation was that 93% of free applications and 82% of paid

applications request permissions that they deem as “dangerous”. This demonstrates that

users are accustomed to installing applications with potentially intrusive or dangerous per-

missions requests. This also highlights a need to identify possibly malicious applications

and communicate that risk to users. Felt et al. [4] also use static analysis to check if an

Android application requests permissions which it is never actually used. They evaluate

940 applications and find that about one-third are over-privileged, showing that it is not

always the case that the permissions requested reflect the true underlying functionality of

an application. This difference between permission requests and permission use is another

reason that we believe source code analysis will benefit the detection task.

Evaluation Metrics: In [25], the relationship between ROC and Precision Recall Curve

(PRC) is analyzed, connections and differences between the two curves are illustrated. Fur-

thermore, [9] systematically studied the learning process in imbalanced data, and pointed

out AUC of ROC is too optimistic with imbalanced data, and PRC can better reflect the

performance under the situation of imbalanced data. Therefore F1 score that computed on

a proper point of PRC may be a better evaluation metric and is adopted in this paper.

14

2.3 Algorithm

Our goal is to develop effective techniques that can classify whether an application is

likely to be malicious, given its .apk file, which includes both the code of the application

and the list of permissions that the application requests.

In this section, we first describe how to extract features from the .apk files, and then

describe our proposed Probabilistic Discriminative Model.

2.3.1 Source Code Feature Extraction

Android applications are packed as .apk files. To extract features from them, we first

decompile the .apk files into Java source code files, and then extract features from the

source code.

Decompile

We first unpack .apk files to get .dex files, and then use the dex2jar1 tool to convert the

.dex file to .jar file. We then use the jad2 tool to decompile the .class files in a .jar file to

Java source files. For each application, it takes approximately 2-3 minutes to decompile

it into Java files. The decompiled Java files misses some information about the names

of classes and variables (e.g., in “private static class a”, the name “a” is not meaningful).

However, this does not affect our feature extraction because the calls to the Android API are

maintained and these are the functions that we care about as they reveal the actual behavior

of an application.

Feature Granularities

In the Android platform, most critical operations are carried out by making API calls;

thus it is natural to extract API usage information from the source code as features. One
1https://code.google.com/p/dex2jar/
2http://www.varaneckas.com/jad/

15

can view the source code as documents, and apply document classification techniques to

the problem. In document classification, term frequency (TF) is typically used as features.

There are three natural levels of granularity: package, class, and functions in Android for

API feature representation. For each level of granularity, we obtain from the source code

the TF. For the package-level and class-level features, we scan the import statements to

count how many times a package/class is imported. For the function-level, we need to

scan all the Java source files to obtain the number of occurrences of each function in one

application.

We obtain the lists of package, class and function names from Google Android API

document Version 4.2. See Table 2.1 to see the number of features at different granularities.

The rules we use to extract the features are:

1. For the package-level feature, since in the import statements, the substring before the

last dot is the name of a package, e.g., “import java.io.File”, “java.io” is a package.

We count these substrings to obtain the package-level features.

2. For the class-level feature, we count the whole string after “import” to obtain the

class-level features. Notice that, the number of class here is the sum of the number of

packages and the number of classes in Google Android API document. The reason is

that some applications use the import statements with “*”, e.g., “import java.util.*;”.

When we extract the class-level features, in order to deal with this case, we discard

the “*” and just consider it as “import java.util”. Because “java.util” is a package, we

add the packages into the class-level features. In fact, the class-level features used in

this paper contain both the packages and classes.

3. For the function-level feature, we scan the whole Java files to obtain the count of

each function. However, some function names are shared by multiple classes, e.g.,

“toString()”, the method which is used to extract the function-level feature can only

get an estimated count of the occurrence of each function, not an accurate count. Be-

cause Java is an Object Oriented Programming (OOP) language, functions may be

overloaded or inherited by subclasses, the class that one function actually belongs to

16

can only be determined during the run time. In other words, we can obtain the accu-

rate count of the occurrence of each function only by dynamic analysis or advanced

software engineering techniques. Therefore, we just use the estimated count in this

paper. We discard all constructors listed in Google Android API document.

In general, higher-dimension and finer-grained features provide more information and thus

may result in higher accuracy. On the other hand, higher-dimension representation may

lead to more sparsity and potentially causes overfitting, and thus requires techniques such

as feature selection and/or regularization to avoid overfitting.

Table 2.1.: Feature dimension of three granularities

Dimension
package-level 179

class-level 3497
function-level 22136

Source Code Feature Representation

Besides the granularity of the source code features, how the feature values are calcu-

lated is also an important issue. We extract the Term Frequency (TF) of the features, indi-

cating how many time a feature term (package, class or function) appears in the decompiled

source files of an .apk file. Some other choices are listed below:

• Binary: Truncate the TF to either 0 or 1. That is, if TF� 1, set it to 1. This feature

simply indicates whether a term appears or not. While this is uncommon in document

classification, the nature of programming makes this an interesting representation.

This is due to the fact that as long as an API function is included once inside one

wrapper function, it can be used elsewhere without directly referring to the function

name, but instead merely by calling the wrapper.

• log(TF+1): Transform the TF to log scale. It is a common usage for TF in document

classification to remove the influence of a large TF value.

17

• Inverse Document Frequency (IDF):

IDF =

#Documents
#Documents have the term+1

. The intuition is that a term more unique for a document

is more indicative for the document than other more common terms. The +1 is used

to avoid division by zero. We apply log(IDF) to the TF, Binary and log(TF + 1).

Feature Selection Methods

Feature selection technique is widely used for data preprocessing. The purpose is to

find out the most valuable features. The benefit of feature selection is two fold. First,

it may improve efficiency. Reduced feature dimensionality results in fewer parameters

in the model and less training and testing time. Second, it may improve accuracy. The

abandoned features may actually be noisy for the task and may cause over-fitting, hence

the performance may be improved after feature selection.

We use Information Gain (IG) and Chi-square test (CHI) for feature selection [26],

which can be calculated very efficiently (i.e. , in one pass of source code files). IG mea-

sures the mutual dependence of the label and features, while CHI measures the lack of

independence between them, hence both are reasonable choices for feature selection. Both

feature selection methods assign scores to all the features, and the features with high scores

will be selected. Let {c
i

}

m

i=1

be the labels for m categories (m = 2 for binary classification)

and t be the feature dimension to be evaluated, the score function for IG is:

G(t) = �

mX

i=1

Pr(c
i

)log(Pr(c
i

))

+ Pr(t)

mX

i=1

Pr(c
i

|t)log(Pr(c
i

|t))

+ Pr(¯t)

mX

i=1

Pr(c
i

|

¯t)log(Pr(c
i

|

¯t))

18

And for CHI it is:

�2

(t, c) =

N ⇥ (AD � CB)

2

(A+ C)⇥ (B +D)⇥ (A+B)⇥ (C +D)

�2

avg

(t) =

mX

i=1

Pr(c
i

)�2

(t, c
i

)

where N is the size of samples, A is the number of times that t and c co-occur, B is the

number of times t occurs without c, C is the times c occurs without t, D is the times neither

t nor c occurs. Then �2

avg

(t) is the score function.

2.3.2 Probabilistic Discriminative Model for Classification

As describe previously, the malware detection task is treated as a feature-based clas-

sification problem. The malware applications are the “positive” samples, and the benign

are the “negative” samples. The purpose of a classifier is to learn a “model” from the

training samples to most effectively predict labels for the training data. Then the learned

“model” can be applied to a new sample, to predict whether the new sample gets a positive

or negative label.

In a classification problem, we use X to denote the input, i.e. , the features from a

sample, and Y to denote the output, i.e. the class label. A probabilistic (statistical) model

builds probabilistic relationship between the input features and the class label. In partic-

ular, one computes the posterior probability of the output variable Y given the input X ,

i.e. , Pr(Y |X). If one constructs models for how the sample (features) is generated by the

class as Pr(X|Y), and then apply the Bayes rule to compute Pr(Y |X), it is called a prob-

abilistic generative model; if one models the Pr(Y |X) directly, it is called a probabilistic

discriminative model.

This section proposes a generative model, the 2-class Naive Bayes with Prior (2-PNB)

and a discriminative model, the Regularized Logistic Regression (RLR) to work with

source code features for the Android malware detection task. As baselines for compari-

19

son, we also include some discussions for two other generative models, PNB and HMNB,

proposed in [1].

2 Class Naive Bayes with Prior

Naive Bayes (NB) is frequently used as a base line for classification since it performs

well and is straight forward to implement and use. NB assumes the independence of the

individual features, i.e.

Pr(X|Y) =

nY

i

Pr(x
i

|Y) =

nY

i

✓xi
i,Y

(1� ✓
i,Y

)

(1�xi) (2.1)

where X = [x
1

, x
2

, · · · , x
n

] is the feature vector, and a Bernoulli distribution with pa-

rameter ✓
i,Y

is associated with a binary feature value as the ith feature in class Y . To learn

this model, given class Y 2 {0, 1}, negative training sample X0

= {X0

1

, X0

2

, · · · , X0

N0
}

and positive training sample X1

= {X1

1

, X1

2

, · · · , X1

N1
}, the Maximum Likelihood Esti-

mation (MLE) of the parameters ✓
i,Y

would be:

ˆ✓
i,Y

=

P
X2XY x

i

N
Y

With proper prior ✓
i,Y

⇠ Beta(↵
i,Y

, �
i,Y

), the Maximum A Priori (MAP) becomes:

ˆ✓
i,Y

=

P
X2XY x

i

+ ↵
i,Y

N
Y

+ ↵
i,Y

+ �
i,Y

The prior can be informative, like PNB in [1], giving different features different impor-

tance based on some expert knowledge. Or, it can be uninformative, i.e. using uniform

distribution for the prior. For our work with source code features, the uninformative prior

is adopted to avoid zero probability in computation.

20

To predict the label of a new sample X 0, the following probability is computed:

Pr(Y = 1|X 0
)

/ Pr(X 0
|Y = 1)Pr(Y = 1)

=

Pr(X 0
|Y = 1)Pr(Y = 1)

Pr(X 0
|Y = 1)Pr(Y = 1) + Pr(X 0

|Y = 0)Pr(Y = 0)

where Pr(X 0
|Y) is computed as in equation (2.1), and Pr(Y) =

NY
N0+N1

. Then a

threshold may be found in training set for Pr(Y = 1|X 0
) to make the prediction.

This is a common way to use NB as a binary classifier, and will be called 2 class

Naive Bayes with Prior (2-PNB) in this paper, to distinguish it from the Naive Bayes with

informative Prior (PNB) from [1]. The PNB model only utilizes negative samples to train

the model, and predicts a label based on the likelihood of a new sample given the model.

The 2-PNB model on the other hand utilizes both negative and positive samples to train the

model and predict based on posterior probability of the label given test sample, hence it is

expected to have better performance in classification. 2-PNB also works as an intermediate

model between PNB and LR, which will be discussed in the next section.

Logistic Regression

Logistic Regression (LR) is a popular classifier as a probabilistic discriminative model.

Given a feature vector X and the class label Y 2 {1,�1}, the posterior probability is used

to predict the label Y of X:

Pr(Y |X) = �(wTX + b)

where �(a) = (1 + exp(�a))�1 is the sigmoid function. w and b are the model parameters

that need to be estimated in learning process. Note that the posterior probability Pr(Y |X)

is directly modeled by the sigmoid function, indicating that LR is a probabilistic discrimi-

native model.

21

Gradient descent can be used in the learning phase of LR to find the MLE of w and

b. The objective function would be the likelihood of the training samples. Given training

samples {(X
1

, y
1

), (X
2

, y
2

), · · · , (X
N

, y
N

)}, the Negative Log Likelihood (NLL) function

would be:

NLL(X,w, b) =

NX

i=1

ln(1 + exp�yi(w
T
Xi+b)

)

The L-BFGS quasi-Newton method [27] is applied in this work to find the best w and b

that minimizes the NLL. The required gradient of NLL is computed as follows:

@NLL

@w
= �

NX

i=1

�(�y
i

(wTX
i

+ b))X
i

y
i

@NLL

@b
= �

NX

i=1

�(�y
i

(wTX
i

+ b))y
i

One aspect of LR is that the learned w parameter provides a hint about how important

individual features are in the classifier. A high magnitude positive value in w implies

that the corresponding feature is favored by the positive samples, and negative value in

w has the same meaning for negative samples. This is a good property for inspecting the

importance of each feature. For example, if the function level feature is applied, the learned

LR model will show which function increase (decrease) the probability of an app being

malicious, and to what extend. Therefore even all feature dimensions are treated equally

in feature representation, their different importances are learned automatically during the

model learning process.

It can be seen that LR directly models the posterior probability for classification as a

discriminative model, while the NB related methods focus on input generation probability

(i.e. Pr(X|Y)) and use Bayes rule to model posterior probability as generative models.

Therefore LR models may have an advantage when modeling posterior probability and

achieving better classification performance. In Section 2.4, it will be thoroughly studied

and compared to other models mentioned in this section.

22

Model Regularization

Regularization is usually applied with LR to avoid the overfitting problem. Without it,

LR and many other models may “overfit” the training data and perform very well in training

but much worse on the test set. Regularization is achieved by adding a penalty term into the

objective function to make the trade-off between the optimization of the original objective

function (i.e., related with accuracy or loss) and the complexity of the learned model. The

objective function of Regularized LR (RLR) looks like this:

min
w,b

(NLL(w, b) + � · penalty(w, b))

where � is a parameter to tune the trade-off of the loss function (NLL) and the penalty term.

These parameters are tuned in the training set by cross validation. In our experiments, 5-

fold cross validation is adapted. The training set is evenly divided into 5 pieces and each

piece of data is rotationally selected as a pseudo testing set with the rest 4 pieces as pseudo

training set. With these 5 pairs of sets, a possible range of the parameters are evaluated and

the best in average will be used in testing.

Some popular forms of the term include Ridge (|w|2
2

, i.e. l
2

norm), Lasso (|w|2
1

, i.e.

l
1

norm), and Similarity based norm (wTLw) [28]. Ridge norm represents the “natural”

distance metric in Euclidean space and the norm and its derivative are easy to compute.

When using Lasso, the penalty term will try to force the optimization process to produce a

more sparse result of model parameters, which means the resulting w tends to have more

zero values than using Ridge. This is particularly useful when the feature dimension is high

and the feature representation is sparse. The similarity based norm utilizes the Laplacian

Matrix to embed the similarity between the features into the optimization process. It tries to

force the resulting w to assign similar values to those features that are considered similar or

related. When applied to source code features, the co-occurrence matrix is used to compute

the Laplacian matrix L, as

A = {a
ij

}, a
ij

=

1 +

P
X

x
i

&x
j

1 +

P
X

x
i

|x
j

23

where & and | are binary “and” and “or” operator, x
i

are assumed binary and the +1 is used

to avoid division by zero. Then L = D � A, D is a diagonal matrix with its diagonal ele-

ments D
ii

=

P
j

A
i,j

. All the three regularization strategies have their advantage, and it is

hard to say beforehand which one maybe better on this task. The performance comparison

of these strategies will be shown in Section 2.4.6.

2.4 Experiment

In this section, a series of experiments will be conducted to explore the desired feature

representation and modeling strategies for Android malware detection. Many aspects of the

classification process will be investigated in different stages. Each stage of the experiments

is actually used to answer one of the following questions:

1. What granularity should be used to extract the features from applications? (Sec-

tion 2.4.3)

2. How to calculate feature values for better Android malware detection? (Section 2.4.4)

3. Can feature selection help? If it does, in which way? Performance or dimension

reduction? (Section 2.4.5)

4. Does the model require regularization? If it does, what kind of regularization should

we choose? (Section 2.4.6)

5. How is the performance of proposed model compared to other learning methods?

(Section 2.4.7 and Section 2.4.8)

6. Can the source code features be combined with the permission features to further

improve the detection performance? (Section 2.4.9)

The default setting for experiments are as following:

model: Regularized Logistic Regression (RLR) with lasso (L1) norm is chosen as the

default classifier.

24

feature: The binary features (no IDF) in granularity of Java Function level are used as

features.

Many experiments are conducted to explore one component of the default setting (e.g.,

granularity in Section 2.4.3) by fixing other components.

2.4.1 Dataset Settings

The datasets we use are described in Table 2.4. They are collected from different

sources. C11, C12, and CM are used in [1]. C11 contains 71331 applications collected

from Google Play in February 2011 and C12 contains 98510 applications collected from

Google Play in February 2012. C11 and C12 only contain permission and category in-

formation. Applications in them are presumably benign. CM contains 378 malicious

applications, shared from the authors of [29]. We use these datasets to compare directly

with results in [1].

O consists of 12,801 presumably benign .apk files from Google Play, which were ob-

tained from authors of [16]. OM consists of 1260 malicious applications, shared by the

authors of [29]. Since OM is collected later than CM , CM is a subset of OM . We can

extract source code features for O and OM .

To ensure reliable evaluation, we remove the duplicate applications within each set

and the overlap applications between related sets. The reason for this cleaning is to make

sure that no developer or application can overly influence the model, which could have

implications in testing. Duplicates are removed from the C11 and C12 sets by looking

at developer information and permission vectors, removing all exact matches. Duplicate

applications within O and OM and CM are cleaned by looking at package names which

are obtained from the corresponding manifest.xml files and permission vectors. The original

size and size after cleaning are shown in Table 2.4.

In order to make a thorough comparison, we create 5 training/testing settings by com-

bining the datasets, as shown in Table 2.4. S5 is the only setting where .apk files are

available, and is the main experimental setting in which we evaluate methods using source

25

code features. S1 to S4 are used to evaluate methods using only permission features. S1

is the setting used in [1], so that we can directly compare with the results there. S2, S3

and S4 vary the combinations to provide different situations for comparing three generative

models and our discriminative model using permission features.

Table 2.4 also gives the malicious sample ratio (i.e., the ratio of malicious applica-

tions to all applications) in all 5 pairs of training/testing settings. Note that, in some train-

ing/testing settings (e.g., S4), the malicious sample ratios of training are different from the

ratios in the testing set, which reflect the fact that training data and testing data may not

always be consistent in realistic setting for malware detection.

It’s worth noting that the ground truth for those benign apps are assumed benign only

because they are from Google Play. The evaluation is set out to test the proposed method

for detecting known malicious apps from those in Google Play, instead of finding a new

strain of malware. How to apply the proposed method to find malware in Google Play

would be an interesting future work.

2.4.2 Evaluation Metric

We consider two evaluation metrics, the F1 score and AUC of ROC score. Given the

ground truth information and the prediction/classification results, there are four possible

outcomes: true positive (TP), true negative (TN), false positive (FP), and false negative

(FN). These are shown in the Table 2.2, which also gives an example of the number of each

outcomes. For example, TP means an application is malicious with respect to ground truth

and it is classified as malicious, and similarly for other terms.

Table 2.2.: Terms related in evaluation metrics and an example

Actual class
True False

Predicted Positive TP (95) FP (190)
class Negative FN (5) TN (3610)

26

From these we can compute Precision =

TP
TP+FP ⇡ 0.33, and Recall = TP

TP+FN = 0.95.

Recall is also known as the detection rate or the True Positive Rate (TPR), and gives the

percentage of malicious applications detected. Precision is the Bayesian detection rate,

and gives the percentage of detected applications actually being malicious. F1 score is the

harmonic mean of precision and recall.

F1 =

2⇥ Precision ⇥ Recall
Precision + Recall

=

2⇥ TP
2⇥ TP + FN + FP

⇡ 0.49

When a method has a threshold parameter for classifying whether an application is mali-

cious or not, we apply the trained model to the training set, and the selected threshold is

the one that maximizes the F1 value in training set.

The AUC score is the area under the ROC (Receiver Operating Characteristic) curve.

ROC curve considers two variables: TPR (i.e., the Recall) and False Positive Rate (FPR).

TPR stands for the probability that a classifier classifies true samples correctly. The def-

inition of FPR is FPR =

FP
FP+TN. FPR stands for the probability that a classifier classifies

false samples incorrectly. For binary-class classification problem, a threshold is needed to

classify the results into two classes: positive or negative. Therefore, for different threshold

choices, different FPR-TPR combinations (as well as Precision-Recall combinations) can

be calculated. Each combination is a point in the ROC space, linking all the points pro-

duces the ROC curve. The larger the AUC score, the better the classifier performs. AUC of

ROC is computed w.r.t. a ranked list of the results.

We do not plot the ROC curves in this paper as an evaluation metric. The reason is that

many of the ROC curves in our experiments are mixed together to the top-left corner (when

the AUC of ROC is over 90%), requiring a zooming in to tell the difference. This is due

to the disadvantage of ROC curve in classification task comparing to F1: the ROC curve is

too optimistic for imbalanced data.

The physical meaning of AUC of ROC is the probability that a randomly selected posi-

tive sample has high score than a randomly selected negative sample [30]. This probability

may not be so meaningful under the situation of imbalanced data, due to the Base Rate

27

Table 2.3.: Performance of different granularity of source code features in S5

Granularity F1
Package 0.7984

Class 0.9174
Function 0.9513

Fallacy [31]. When the number of malicious applications is small relative to the total num-

ber of applications, it is possible to have high TPR and low FPR (and thus high AUC of

ROC), yet low precision (namely, Bayersian detection rate), and thus low F1. The example

in Table 2.2 has TPR= 0.95 and FPR= 0.05, but a F1 score of less than 0.5.

Accuracy is another metric used by some work [16], it is computed as Accuracy =

TP+TN

TP+TN+FP+FN

= 0.95 for the example in Table 2.2. It is also clearly very optimistic for

imbalanced data. Actually, a trivial classifier that always predicts Negative would give an

accuracy of 0.97 already.

2.4.3 Experiments for Granularity of Source Code Features

The experiments in the next subsections are conducted with S5, where the source code

features are available. In this stage of experiments, the granularity of the source code fea-

tures are explored. The candidates are Java package level, class level and function level.

The numbers dimensions are 179, 3497, and 22136 for package, class and function respec-

tively. Table 2.3 shows the performance of the three granularity levels using binary feature

expression. The function level representation outperforms the others. The result indicates

that finer level of the source code feature provides better performance, which is consistent

with our expectation since a package or class may have various functionality that is not all

informative.

28

2.4.4 Experiments for Source Code Feature Representation

Various types of feature representations introduced in Section 2.3.1 are tested in this

stage of experiments with function level granularity. In particular, we investigate the usage

of term frequency, log term frequency and binary representation. We will also investigate

how inverse document frequency affects classification performance.

As shown in the Figure 2.1, the best choice for feature representation is Binary. One

reason for this is that the TF representation is not an accurate reflection of how often a func-

tion is used in an application. A function can appear in source code multiple times but not

be used, or it can be present only once but be invoked many times. The actual function use

can only be determined at runtime or through advanced code analysis techniques due to the

dynamic nature of Object Oriented language like Java. Hence using only binary features,

i.e. whether a function is present or not, provides less noise and is more reliable. The same

results have also been observed for feature representation with class level granularity. The

reason why using IDF gives similar or mixed results may be related to the RLR model that

we use. The training process of the RLR model finds a weight vector which indicates the

importance of each individual feature, and thus provides similar functionality to IDF.

!" #$%
&'()#$%1

%
5
)*

 +
,-
+.

/
8

Ssa8

Ssu

Ssr

Ssr8

%,0+12, 3,-42,-,*+0+)'*

5% &'()5%n51 6)*027

Figure 2.1.: Performance of source code feature representation in S5

29

!"
#$!
%&%'

rC
()
C*
+,
*-

.
oC
/0
*+
1C
'
+/
*2
1+
C.
+3
+4
*(
5)

f5.

f57

f58

f58o

%/*(5C50C.+3+4*+6C'+/*21+,

rf7l f5fr f5r r

Figure 2.2.: Performance of binary function level feature representation for s5 using RLR
for classification

2.4.5 Experiments for Feature Selection on Source Code Feature

Three feature selection methods are used in this stage to find out whether the feature

dimension can be reduced or the performance can be improved. We focus on function

level representation, where the original dimension of the feature space is 22, 136. IG and

CHI, as introduced in Section 2.3.1, are used as two feature selection methods. Moreover,

as discussed in 2.3.2, the parameters of RLR model can indicate the importance of the

individual features, and thus it is also enlisted to provide feature selection result.

Figure 2.2 shows the performance of the RLR method using 0.1% to 100% of the to-

tal features selected by the three methods mentioned above. As shown in the figure, the

performance of using 10% of features degrades very little compared to using all features

especially for the IG and CHI selection methods. Therefore, if efficiency is an issue in real

world applications, a good trade-off between effectiveness and efficiency can be achieved

by the feature selection methods.

We list the top 20 functions which are selected by IG in Figure 2.3. For each func-

tion in the figure, we calculate the percentage of benign and malicious applications which

use this function. This information is also shown in Figure 2.3. As shown in the fig-

ure, some critical functions, e.g. “getSubscriberId()” and “getInstalledPackages()”, are

30

Figure 2.3.: Percentage of benign/malicious applications using the top 20 functions selected
by IG.

more likely to be used by malicious applications. However, some normal functions like

“android.graphics.Color.blue” are also in the list. This could be an coincident due to the

dataset property, since the number of malwares is much lesser than the benign ones. Also,

normal functions, if their popularities are statistically different in malware from benign

ones, are still useful for detecting malware. Moreover, it is worth clarifying that the func-

tions shown in Figure 2.3 are far from what are used in detection. In fact, as shown in

Figure 2.2, we need at least about 50% (over 11, 000 functions) of the features to maintain

a similar performance to the best that uses all features. Therefore, in order to fully evaluate

the performance of the proposed method, the full sized feature (22, 136 functions) are used

in the rest of the experiments.

2.4.6 Experiments for Model Regularization

Different regularization methods for the proposed RLR method are explored in this

stage of experiments with binary feature presentation in the function level. In particular,

we compare the no regularization approach, ridge regularization, lasso regularization and

similarity based regularization as introduced in Section 2.3.2. Table 2.5 shows the results

with the 4 different regularization settings. First, the method without using regulariza-

31

tion is outperformed by all the other methods since this method suffers from over-fitting

in the high dimensional space of functions. The lasso regularization gives the best per-

formance, while the ridge regularization gives the second best performance. One possible

reason why lasso works well is the feature dimensionality is high and the feature vectors

are quite sparse, hence the lasso regularization, which constrains the objective function to

find a sparse solution better fits in the situation. The similarity matrix used in similarity

regularization is computed using the function co-occurrence matrix. Yet two function calls

co-occur in the source code of an application may actually belong to two different func-

tional modules of the application, it is hard to say if the two functions are closely related or

not. Hence the co-occurrence probability may not be as reliable as expected.

2.4.7 Model Comparison with Permission Feature

The above experiments are all conducted with RLR and features from source code. Two

generative models called Naive Bayes with Informative Priors(PNB) and Hierarchical Mix-

ture of Naive Bayes(HMNB) proposed in [1] use permission features to detect malicious

application in the Android platform. It would be interesting to compare RLR, which is a

discriminative model, to PNB and HNMB, with permission features.

The experiments in [1] use the evaluation metric AUC of ROC. A comparison experi-

ment is first done on the S1, which is built by following the instruction of [1], to compare

AUC of ROC to F1 and verify our implementation of those two methods. Table 2.6 shows

the performance of our implemented PNB and HMNB with both AUC and F1 for evalua-

tion. As shown in the table, the AUC of PNB and HMNB are 0.937 and 0.948 respectively,

which matches the result posted in [1]. It is worth noting that although the AUC of ROC

scores look very good, the corresponding F1 scores are not very high. Moreover, since the

two generative methods use only negative samples for training, there is not a good way of

finding a threshold for classification solely based on their training data. Since the training

dataset does not contain samples of malicious applications, we cannot use cross validation

to choose the threshold. The F1 scores shown in Table 2.6 are actually computed by choos-

32

ing the threshold to maximize the F1 scores against the testing data; thus they are the best

F1 scores that can be found in the testing set by using the trained generative models and the

information of ground truth of the testing set. Therefore the F1 scores of the two generative

models are somehow overestimated. We show that even these overestimated F1 scores of

the generative models are still low compared with our approach.

Table 2.7 shows the performance for comparing three generative models (i.e., PNB,

HMNB and 2-PNB) and our discriminative model using permission features over three

training/testing settings. The prior used for PNB and 2-PNB are from [1]. The results

show that, RLR outperforms the others in all cases for F1 score, and is still the best in

most of the cases for AUC score of the ROC metric. Considering the variety of three

different training/testing settings with different sources of the samples and different ratios

of positive samples, the results suggest that RLR is better in classification performance

using permission features than the generative models. 2-PNB method, as a generative

method but utilizing both positive and negative samples in training, performs better than

PNB and HMNB in three settings (i.e., S2, S3 and S5). This indicates the value of using

both positive and negative samples in training. The results of HMNB is similar to PNB,

with a slight advantage in S4. This is consistent to the conclusion in [1]. In summary, the

discriminative model RLR is recommended against the generative models when permission

features are used.

The two settings S4 and S5 share the sample testing set, but S4 is a superset of S5 with

more negative samples. The results indicate that with the smaller training set, the results

are actually better. This is expectable for 2-PNB and RLR, because the larger training

set only includes more negative (benign) samples, the imbalance of positive and negative

samples is more serious, hence hurting the training of models. This is especially the case

for 2-PNB, which applies the positive (negative) sample prior to the testing set. If the

positive sample ratio is quite different in training and testing sets, it hurts the classification

performance of 2-PNB. It is interesting that the performance of both PNB and HMNB

drops with more training data too. There may be two possible reasons. On one hand,

as discussed in Section 2.4.1, the benign samples are only assumed benign since they are

33

from the Google Play store. There may be some malicious applications in the benign

sample set, and mixing all the “benign” samples together actually increases the chance of

having malicious samples in training. And both PNB and HMNB use only benign samples

for training, there is no way they can avoid this effect without information from malicious

samples. On the other hand, when the sample size increases, the generative models built by

PNB and HMNB will become more general for fitting a variety of applications in the big

training set, hence the probability of malicious samples may increase as well and this may

cause the drop of performance.

2.4.8 Model Comparison with Source Code Feature

Performance of several methods using functional level source code features are com-

pared in this section. Table 2.8 shows the results in S5. Uninformative prior are applied to

PNB and 2-PNB. The results show that the discriminative model RLR is also better against

the generative models with source code features. The results for PNB and HMNB with

source code features are much worse than 2-PNB and RLR. It is mainly because some of

the assumptions for these two one-class generative models to work with permission fea-

tures are no longer valid for source code feature. For example, malicious applications tend

to request more permissions but may not use more functions.

The results for K Nearest Neighbor (KNN), Decision Tree (DT) and Support Vector

Machine (SVM) are also included here for comparison. The KNN (K = 1 selected from

K 2 {1, 3, 5, 7, 9}) is trained on S5 with the negative sample downsized, otherwise it

cannot get any comparable results. Down-sampling is also utilized for DT to generate

better result. SVM uses a radial basis function kernel and explores the parameter space

using the training set to find optimal training parameters. KNN performs similar to 2-PNB,

DT performs much better than KNN and SVM performs similar to RLR, but RLR has the

advantage of directly generating probabilistic outputs.

34

2.4.9 Combination of Source Code and Permission Feature

It is natural to think whether source code features (i.e., function level) and permission

features can be combined to further improve the performance of Android malware detec-

tion, since both types of features have been proven to be useful for the task. Table 2.9 shows

the results of combining both features. The early fusion method combines the two types of

features by concatenating them into one feature vector before applying the RLR. And the

late fusion method trains RLR on both types of features separately and combine the two

learned models afterwards with a meta logistic regression classifier. It can be seen from

the table, using source code feature is better than using permission feature; the combined

features work better than each individual type of features; and the late fusion gives the best

result. The results suggest that although source code feature and permission features are

related, they are still somehow complementary. For example, malicious applications may

request permissions that may not be reflected by the functions. It is better to consider both

types of features in detecting malicious applications in the Android platform.

In addition, Table 2.10 shows the confusion table of the best result (Combined (Late

Fusion)) in S5. As we can see, this is a imbalanced dataset with 389 malicious apps from

5190 apps in total. The algorithm successfully found 374 out of 389 malicious apps (hence

Recall=96.14%), and for the 392 reported suspicious apps, only 18 of them are false alarms

(hence Precision=95.41%). Therefore the F1 value, as the harmonic mean of Recall and

Precision, yields 95.77%. Meanwhile, the false positive rate is 18

18+4783

= 0.37%, looks

very optimistic due to the imbalance of the dataset.

2.5 Limitations

Despite the high performance provided by the proposed method, it is worth noting that

the arm race between malicious application and malicious application detection technique

is still on and the high performance observed in our data sets may not be applied directly

to future situations. Therefore it would be very helpful to discuss about the limitations of

the proposed method, together with the causes and effects.

35

As a static technique, this method shares the weaknesses of all static techniques on An-

droid application. An application may utilize Reflection and Native Code [4, 32] to make

its real program logic undetectable by static analysis. Other techniques like Bytecode En-

cryption etc. can also be used to hinder static analysis. We note however, that some tools

use the features of using Bytecode encryption and usage of native code as indicators of po-

tentially malicious intention. These are orthogonal to our method. Moreover, Obfuscation

and dead code could cause trouble to our method, leading to unreliable feature extraction

and representation. It would be an interesting future work to find out how to defend against

them (e.g. dead code detection.).

Another limitation is introduced by the nature of supervised learning. The proposed

method utilizes training data to build probabilistic model, under the assumption that the

testing data, which the model will be applied to, is drawn from the same population as the

training data. This assumption is generally not true in reality since malicious application

may evolve. Hence the model need to be updated with new training data including new be-

nign applications and new malicious applications. This disadvantage may limit the model’s

power in detecting zero-day malicious applications.

2.6 Conclusion

Android malware detection is an important research task as the Android platform is a

leader in the fast growing market of mobile devices. This paper proposes to use proba-

bilistic discriminative learning model with decompiled source code as well as permission

features for this problem, and presents thorough evaluations and discussions for Android

malware detection with decompiled source code and beyond. We propose a probabilis-

tic discriminative learning model based on regularized logistic regression, which achieves

highly accurate detection results (i.e., F1 value of about 0.95). Thorough studies have

been conducted to explore desired representation of source code and appropriate model-

ing strategies, suggesting a combination of binary feature over function level of source

code with lasso regularization for RLR. Furthermore, the discriminative learning model

36

has been shown to achieve even better results for Android malware detection by combining

both source code and application permissions. Moreover, a discussion over the evaluation

metric suggests that F1 may be a better evaluation metric rather than ROC curve due to the

nature of unbalanced data between benign and malicious Android application.

37

Ta
bl

e
2.

4.
:D

es
cr

ip
tio

ns
of

da
ta

se
ts

an
d

ex
pe

rim
en

ta
ls

et
tin

gs
.T

he
⇤
/2

no
ta

tio
n

m
ea

ns
us

in
g

pa
rt

of
*

at
tra

in
in

g
se

t,
an

d
th

e
ot

he
r

pa
rt

at
te

st
in

g
se

t.

D
es

cr
ip

tio
n

of
da

ta
se

ts
N

am
e

Si
ze

A
fte

rc
le

an
in

g
C

on
te

nt
D

es
cr

ip
tio

n
C
1
1

7
1
,3
3
1

6
9
,1
7
9

pe
rm

is
si

on
on

ly
C

ol
le

ct
ed

fr
om

G
oo

gl
e

Pl
ay

in
Fe

br
ua

ry
20

11
,u

se
d

in
[1

]
C
1
2

9
8
,5
1
0

9
5
,0
3
5

pe
rm

is
si

on
on

ly
C

ol
le

ct
ed

fr
om

G
oo

gl
e

Pl
ay

in
Fe

br
ua

ry
20

12
,u

se
d

in
[1

]
C
M

3
7
8

3
7
8

pe
rm

is
si

on
on

ly
m

al
ic

io
us

ap
ps

ob
ta

in
ed

fr
om

au
th

or
s

of
[2

9]
in

20
12

O
1
2
,8
0
1

9
,5
7
1

pe
rm

is
si

on
&

.a
pk

C
ol

le
ct

ed
fr

om
G

oo
gl

e
Pl

ay
in

20
12

fr
om

au
th

or
s

of
[1

6]
O
M

1
,2
6
0

8
0
8

pe
rm

is
si

on
&

.a
pk

m
al

ic
io

us
ap

ps
ob

ta
in

ed
fr

om
au

th
or

s
of

[2
9]

in
20

12

D
es

cr
ip

tio
n

of
E

xp
er

im
en

ta
lS

et
tin

gs
Se

tti
ng

Tr
ai

n
Te

st
Fe

at
ur

e
na

m
e

D
at

as
et

s
Si

ze
M

al
ic

io
us

D
at

as
et

s
Si

ze
M

al
ic

io
us

ty
pe

S1
C
1
1
/2

62
,2

61
0.

0%
C
1
1
/2

+
C
M

7,
29

6
5.

18
%

Pe
rm

S2
C
1
1
+
C
1
2
+
C
M

16
4,

59
2

0.
23

%
O
+
O
M

10
,0

52
4.

79
%

Pe
rm

S3
O
+
O
M

10
,0

52
4.

79
%

C
1
1
+
C
1
2
+
C
M

16
4,

59
2

0.
23

%
Pe

rm
S4

C
1
1
+
C
1
2
+
(
O
+
O
M

)
/2

16
9,

40
3

0.
25

%
(
O
+
O
M

)
/2

5,
19

0
7.

5
%

Pe
rm

S5
(
O
+
O
M

)
/2

5,
18

9
8.

07
%

(
O
+
O
M

)
/2

5,
19

0
7.

5%
Pe

rm
&

C
od

e

38

Table 2.5.: Performance of different regularization in S5

Reg. F1
No Reg. 0.9268
Ridge 0.9460
Lasso 0.9513
Sim. 0.9319

Table 2.6.: Verifying the implementation of the models in [1]

F1 AUC
PNB 0.5533 0.9380

HMNB 0.6042 0.9483

Table 2.7.: Performance comparison using permission features.

PNB HMNB 2-PNB RLR

S2
F1 0.4106 0.4640 0.5039 0.5911

AUC 0.8747 0.8666 0.9141 0.9454

S3
F1 0.1112 0.1082 0.1342 0.2454

AUC 0.9223 0.9323 0.9428 0.9341

S4
F1 0.4241 0.4412 0.4192 0.7196

AUC 0.8577 0.8620 0.9000 0.9458

S5
F1 0.4442 0.4720 0.6448 0.8373

AUC 0.8717 0.8782 0.9285 0.9661

Table 2.8.: Performance comparison using source code features (function level) in S5.
ACC is for accuracy.

F1 AUC ACC
PNB 0.1511 0.3711 -

HMNB 0.1396 0.3947 -
2-PNB 0.6579 0.9381 -
RLR 0.9513 0.9961 0.9973
KNN 0.6990 - 0.9549
DT 0.8448 - 0.9765

SVM 0.9385 - 0.9911

39

Table 2.9.: Performance of combined source code (function level) and permission features
in S5

Feature F1
Permission Only 0.8427

Source Code Only 0.9513
Combined (Early Fusion) 0.9558
Combined (Late Fusion) 0.9577

Table 2.10.: Confusion table for late fusion method in S5

Actual class
True False

Predicted Positive 374 18
class Negative 15 4783

40

3 USER COMMENT ANALYSIS FOR ANDROID APPS AND CSPI DETECTION

WITH COMMENT EXPANSION

3.1 Motivation

In this chapter, we introduce our work on how to extract security related topics from

user comments. User comment is an indirect source of information that reflects the expe-

rience of users in using the app. Before we can apply security analysis from it, we need

to first filter out the irrelevant comments which are the majority of all the comments and

detect the different security related issues discussed in user comments.

3.2 Introduction and Related Work

3.2.1 Introduction

New challenges come with the exponentially growing markets of mobile apps. On one

side, comparing to traditional software markets, markets like Google Play and Apple Store

have lower entering threshold for developers and faster financial payback, hence greatly

encourage more and more developers to invest in this thriving business. One result out of

this is the huge amount of mobile apps with great diversity. Therefore, to control the quality

of apps, especially the security risk of them across the whole markets becomes a important

issue to all that involved. On the other side, public concerns about privacy issues with on-

line activity and mobile phones are also elevating, demanding a mobile environment with

more respect to users’ privacy.

The infection rate of real malicious mobile apps over a market can only be estimated. It

is reported to be about 0.28% in [33]. The rest of them are assumed benign apps but are not

free of security issues. Many misbehaviors of a mobile app may lead to real security/privacy

issues. For example, adding too much or inappropriate advertisement may lead to phishing

41

and scareware; unresolved In-App-Purchase (IAP) may lead to fraud; unnecessary running

in background may be connected with unauthorized access to personal data.

User comments are valuable feedback for both new users and developers. Many secu-

rity/privacy issues can be revealed by user comments, including those which may not be

so easy to be discovered from other sources (i.g. unresolved IAP issue). However, most of

the negative comments are not necessarily Comments with Security/Privacy Issues (CSPI).

Some of them are non-informative comments [34], including vague statement and pure

emotional expressions. Others may be complaining about attractiveness, quality or even

cost of the app [35], which normally have nothing to do with security/privacy. In order

to make use of the comments to reveal the issues that are really related to security/privacy

of an app, CSPI need to be detected first to avoid all those irrelevant comments. This

paper provides a novel method to deal with this problem. A set of comments are first

collected and investigated. Based on observations from the comments, a two dimensional

label system is designed to describe CSPI from two different perspectives. With this label

system, a CSPI Detection with Comment Expansion (CDCE) method is proposed to first

use keyword-based filtering method to narrow down the scale of comments in concern, then

applies a supervised multi-label learning method to identify different types of CSPI.

The contribution of this paper are listed as following:

• Instead of using a list of label for different issues, this paper presents a two-dimensional

label system, picturing the “What” and “When” of the occurrence of a reported CSPI,

providing an additional dimension to better understand the relationship between dif-

ferent issues.

• A supervised learning method is proposed to solve this multi-label problem. Com-

ment expansion is adopted to utilize the relationship between comments and a post-

process for the relationship between labels. Both relationships are proven to be useful

in improving the CSPI detection performance based on the collected dataset.

The rest of the paper proceeds as follows. Section 3.2.2 describes related works. Sec-

tion 3.3 discuss the collection of data and the design of the label system. Section 3.4

42

presents the method for CSPI detection. Section 3.5 demonstrates the evaluation process

of the proposed method. Section 3.6 lists the limitation of this paper with future work and

Section 3.7 concludes the paper.

3.2.2 Related Works

Many efforts have been done to reveal the security risk of mobile apps using information

other than user comments. Some works [1,4] utilize the permission required by the app for

this purpose, other use code analysis[], static and dynamic analysis are both investigated.

Although these works share the general purpose with this paper, they are not closely related

to this work. User comment are utilized by some works [34–36] to evaluate mobile apps.

Some researchers [36] aim at the task to extract new/changed requirement for new version

of the app. It proposes Aspect and Sentiment Unification Model (ASUM) to extract the

topics of comments. ASUM is an extension of Latent Dirichlet Allocation (LDA) [37] by

incorporating both topic modeling and sentiment analysis. Another work [35] uses LDA

model to identify different topics from those negative comments, in order to provide insight

about why an app is getting low ratings. Our work focus on a finer level to investigate only

CSPI, which is part of the negative comments. Also, some researchers [34] propose a

novel method for extracting informative review topics from user comments. A filtering

process is applied first to filter out non-informative comments, then LDA is adopted for

generating topics from the informative ones. Our work also requires a filtering process,

but not from the perspective of the quality of information, but whether the comment is

related to security/privacy. All these works mentioned above make use of topic models

(LDA), which is an unsupervised method. For our work, the task is not to generate general

summarization of the topics of comments of an app, but to identify a specific part (CSPI) of

all the comments and further distinguish different types of it. Hence unsupervised method

like LDA may not be able to generate the expected and specified types of topics. Therefore,

supervised method is adopted in our work, and a label system is manually designed to

provide precise task for the learning process.

43

3.3 Data Collection and Annotation

The data used in this work is collected by crawling the Google Play website. Infor-

mation about 6, 938 free apps in Google play are downloaded during September through

December in 2013. For user comments, the total number of comments collected for these

6, 938 apps is 5, 108, 538. The average number of comments for an app in this dataset is

736 and the maximum number is 4500. Figure 3.1(a) shows the distribution of number of

comments among the apps.

�
�
�
�
��
��
	�

�
�
�

�

�

�

�

��������	���������

 � � � � �

(a) Histogram for the number
of apps against the number of
its comments in the collected
dataset.

�
�
�
�
��
��
	�

�
�
�
��
�

�

����
�

��
�

������
�

����
�

������
�

����
�

������

� � � � �

(b) Histogram for the number of
comments with different ratings
in the collected dataset.

Figure 3.1.: A simple view of the collected dataset.

The rating from user comments are highly skewed as shown in Figure 3.1(b) (this is

previously also reported in [35]), indicating that most of the comments are not complaining

about an issue. In addition, many of the comments with poor ratings (< 4.0) are not

really about security/privacy issues. As observed from the dataset, complains about the

functionality and quality (or attractiveness for Game app) take the majority. Therefore it

would be necessary to narrow down the huge set of comment to a more feasible size for

further analysis and annotation. In order to do that, a coarse filtering is applied first to create

a set of suspect comments. This filtering is keyword-based, as any comment that contains

at least one of the predefined keywords will be put into the suspect set. These keywords are

manually picked in an iterative way. The initial set of keywords is just {security, privacy}.

44

New keywords are picked from those that have high co-occurrence probability with current

keywords. Comments with the co-occurrence are investigated manually to see how often

they are related to security/privacy issues. The final keywords set includes security, privacy,

permission, money, spam, steal, phish, etc.. To avoid mismatch, different forms of the

keywords are also considered, i.g. unsecure and insecure for security, stole and stolen

for steal etc. A rating filtering is also applied to only include those comments with poor

ratings(< 4.0). The resulting suspect set contains 36, 464 comments from 3, 174 apps.

3.3.1 CSPI Annotation

It is worth noting that the suspect set still contains not only CSPI. Many of them are

not CSPI, due to the simplicity of the keyword-based coarse filtering. Hence the suspect

set only serves as a base candidate set of comments which are suspect for CSPI. Further

effort need to be done to actually detect CSPI. And different types of CSPI need to be

distinguished and treated accordingly.

Various different issues are found from the comments in the suspect set. It would be ex-

hausting to distinguish each of them without abstract concepts by considering the relation-

ship between them. Also, it would be too vague to just distinguish CSPI from non-CSPI

comments without further insight of the actual issues. To make a trade-off between the

complexity and functionality of the annotation system for describing CSPI, a label Gen-

eral is firstly defined for comments that is in general CSPI. In addition, a two dimensional

(Nature, Scenario) label set is defined as shown in Table 3.1 to provide finer level identi-

fication for different CSPI topics. Among these labels, label Execution is a super label for

Foreground and Background. And all are sub-label of label General.

The two dimensions of label set serve as “What” (Nature) and “When” (Scenario) of

the underlining issues. The dimension Nature is used to identify the nature of the secu-

rity/privacy related misbehavior of the app complained by the comments. These behaviors

are normally described explicitly in the comments. On the other hand, the dimension Sce-

nario is used to identify the scenario when the issues occur. This is sometimes expressed

45

implicitly in the comments. System, Privacy and Finance are clearly necessary as the direct

issues. The label Spam is assigned to the widely used advertising behavior among apps.

As a popular and common behavior, however, spamming is closely related some security

issues like phishing, scareware etc., hence is also included as one type of issue mentioned

in CSPI. The label Others is used for other issues not included in System, Privacy, Spam

or Finance. For example the topic about some apps that can not be normally uninstalled, it

is usually an app pre-installed by the vendor without any real issues, but it clearly violates

the users’ control over the phone and is complained about by many users. Another exam-

ple for Others labeled comments would be those claims that the app is reported by other

security apps for some reason. Since these are not direct opinions from the users but only

a suspects, they are put with Others, instead of with the other four ones according to the

reasons said to be reported by other security apps, which may not be true or even explic-

itly expressed in the comment. The label Before is mostly assigned together with Privacy

to indicating the complains about the permission required by the app, which is available

to the user before the installation. And the label After is mostly for the email/SMS spam

after uninstall. The label Execution stands for the most common scenario, and it is further

divided into two sub-labels: Foreground for the issues occur when the app is running in

foreground (occupying the screen) and Background for running in background. If the issue

in the comment is not specific about foreground or background, only the label Execution is

applied, otherwise both Foreground (Background) and Execution will be applied.

The suspect set is then annotated manually with these labels. Each label is validated by

the agreement of two people. Some statistics of the suspect set with respect to the labels

are shown in Table 3.2.

About 30% of the comment in the suspect set are labeled as CSPI. This also means

many of the comments, while mentioning some keywords, are not really talking about

security/privacy issues. The sample comment for Whole Set is one of them. It mentions

stolen not to claim a financial issue but a issue about stolen idea, which is not about security

or privacy. Some comments talk about “money”, but only to express that the app is not

worth it (Although all the apps we collected are free apps, people can still talk about In-

46

App-Purchase and the paid version of the app.). Another example would be the comments

for the apps about security (Anti-virus apps, password manager, etc.). A lot of keywords are

mentioned in these comments since the apps are exactly about the issues, but the comments

are not necessarily reporting an issue of the apps. Similar things happen with Bank apps.

Label Others has a very low percentage, indicating the coverage of the four main natures

of issues is good.

It is worth noting that misspelling may hinder the performance of detection. The

“baught” in the sample for Finance serves as an example. Also of important is the fact

that a CSPI usually has two or more labels besides General. For example, the sample com-

ment for Spam is also annotated with Background, since it mentions that the spam appears

in the notification bar. And the one for Before is also annotated with Privacy.

3.4 Algorithm

The purpose of CSPI detection is to detect certain types of CSPI in the suspect set. This

is naturally a multi-label classification problem. Independent Logistic Regression (ILR) is

used as a baseline. The proposed CDCE method adds two improvements upon it: Comment

Expansion to embed similarity between comments and Post-Process with label correlation

to utilize label correlation.

3.4.1 Feature Extraction

To represent comments for detection, Bag Of Word (BOW) feature is extracted from

comment text. Proper pre-processes are applied to the text before feature extraction, in-

cluding removing stop words and stemming. The dimension of the BOW feature is tuned

by removing the rarest and most popular words. With the BOW feature and the annotation

with the 11 labels, the suspect set can be represented as X and Y . X = {X
1

, X
2

, · · · , X
N

}

is the set of the BOW feature vectors for each comments with N the number of com-

ments. And Y = {Y
1

, Y
2

, · · · , Y
N

} is the set of label vectors for each comments with

47

Y
i

= {Y 1

i

, · · · , Y 11

i

} and Y j

i

2 {�1, 1} with Y j

i

= 1 indicating the presence of the jth

label for comment i.

3.4.2 Independent Logistic Regression (ILR)

There are many works that have been done on multi-label learning from different per-

spective. G. Madjarov [38] made an extensive empirical comparison of different multi-label

learning methods. In the comparison, Binary Relevance (BR) [39] performs similar to clas-

sifier chaining (CC) method [40]. Although not the best method among all the competitors,

BR shows robust performance and has the advantage of simplicity. For the task of CSPI

detection, this paper does not seek to investigate and improve the multi-label learning al-

gorithm in general. Therefore, ILR is chosen as the baseline, which is just BR framework

with LR [41] as the base classifier. LR is a widely adopted linear classifier due to its ro-

bustness and simplicity. To apply LR to the multi-label problem considering independence

between labels, one LR classifier is trained for each of the labels. The objective function

of ILR with 2-norm is as following:

min

wj ,bj

NLL(X,w
j

, b
j

) + �(|w
j

|

2

2

+ |b
j

|

2

2

)

with

NLL(X,w
j

, b
j

) =

NX

i=1

ln(1 + exp�y

j
i (w

T
j Xi+bj)

), j = 1, · · · , 11

where the NLL(X,w
j

, b
j

) is the negative log-likelihood function. � is the regularization

parameter which can be obtained by cross validation in training set. This optimization

problem can be solved using gradient descent.

3.4.3 Comment Expansion

User comments has some properties distinguishing them from properly compiled doc-

uments. They are normally short, with wrongly spelled words (as mentioned in Sec-

48

tion 3.3.1) and made-up words (i.g. “spamspamspamspam”). Also, different words or

phrases may be used for the same opinion. These properties of user comments may harm

the performance of CSPI detection since the features may not fully represent the opinion

of the comments. This is in a similar situation with the user query in Information Retrieval

(IR) problem, where a query submitted to search engine could also be short, misspelled

and vary in the choice of words. Due to this motivation, a traditional IR technique called

query expansion with pseudo relevant feedback [42] is borrowed here to make comment

expansion. Originally, this technique uses the top documents in the retrieval result rank

list with respect to the original query as “relevant” documents, and use these document to

expand the original query, generating a new query resembling the “relevant” documents.

This query expansion is reported to almost always have a positive effect on the retrieval

performance [42]. A similar process can be adopted for comment expansion as following.

The comment expansion would have two steps:

1. Find “relevant” comments via retrieval.

2. Expand original comment with “relevant” comments.

The relevance between comments is hereby evaluated using the retrieval model. An in-

teresting question would be the scope of the retrieval. Should the candidate “relevant”

comments picked from all other comments? or just from the comments from the same app

or same category of apps? Besides, the “relevant” comments should only be those posted

before the underlining comment. To avoid making complicated query to the retrieval en-

gine, the query contains only the underlining comment with no constrain. A sufficiently

long rank list from the retrieval engine will be returned and the scopes and restrictions will

be applied to this list to pick “relevant” comments afterwards.

With a set of “relevant” comments, the comment expansion can be conducted by mak-

ing a convex sum of the original comment and the mean of the set of “relevant” comments

on feature level as following:

f
new

= (1� ↵)f
old

+ ↵ ·

1

|R|

X

f2R

f

49

where f
old

is the BOW feature vector of the original comment, f
new

the feature vector of the

expanded comment, and R the set of “relevant” comments with respect to the underlining

comment. ↵ serves as a tunable parameter for the degree of effect of the expansion, and

will be tuned in experiment for the best performance, so is the size of R.

Comment expansion is an efficient way to utilize the relationship between comments.

Other choices like kernel method may require the similarity computation between each

pair of comments, the amount of computation grows exponentially with the number of

comments. Comment expansion, on the other hand, relies on retrieval engine, and the cost

of retrieval for one comment is normally constant, hence the total cost of time is linear to

comment number.

3.4.4 Post-Process with Label Correlation

Label correlation is used in various ways in multi-label learning [38]. As mentioned

in Section 3.3.1, labels hardly appear alone. Hence the correlation between labels could

be a valuable source of information. For the CSPI detection task, a simple post-process

is applied to embed this information. The post-process uses a second round of ILR with

different feature for the comments. The probability output ˆY of the first round ILR clas-

sifiers are used as feature in this second round of ILR to predict Y . And the correlation

matrix of the labels are utilized into a Laplacian norm [28] in these LR problems. Let
ˆY = {

ˆY
i

, · · · , ˆY
N

} the estimated label vector set from the ILR. The objective function of

the second round LR is as following:

min

ŵj ,
ˆ

bj

NLL(ˆY , ŵ
j

, ˆb
j

) +

ˆ�(ŵ
j

TLŵ
j

+ |

ˆb
j

|

2

2

)

with

NLL(ˆY , ŵ
j

, ˆb
j

) =

NX

i=1

ln(1 + exp�y

j
i (ŵj

T
ˆ

Yi+
ˆ

bj)
), j = 1, · · · , 11

50

where L = A�D is the Laplacian matrix with A the correlation matrix of the labels Y in

training set, and D a diagonal matrix with its diagonal elements the sum of each row of A.

These optimization problems can be solved similarly using gradient descent.

3.5 Experiments

3.5.1 Experiment Setting

The evaluation of the proposed CSPI detection method is conducted under the suspect

set of comments. As a supervised method, a training set is required for training the model.

The suspect set is split in a 50/50 manner into a training set and a testing set. This splitting

is based on app level, so the comments for the same app can only be in training or testing

set altogether. The BOW feature vector is of length 13, 135 by removing those words with

less than 100 or more than 1, 000, 000 appearance (in number of comments) in training

set. Considering the hierarchy in label set, a comment labeled with a sub-label will be

considered a positive sample for a super-label as well. And a sample labeled with a super-

label will not be considered either a positive or negative sample for a sub-label. For the

baseline ILR, 5-fold cross validation is adopted for finding �s in training set and L-BFGS

quasi-Newton method [27] is applied for solving the optimization problems. For comment

expansion, TF-IDF feature with cosine similarity is adopted for the retrieval model and

Lemur1 as the actual tool for the retrieval. Time constrain is enforced to prevent comment

expansion with “future relevant” comments. Set constrain is applied to only allow expan-

sion within training/testing set respectively, and the indexes of retrieval model are built for

the two sets separately so that the model parameter like document number and IDF values

won’t interfere between sets. Three types of scope: All, App, Category are tested with

each label and a 5-fold cross validation is used to pick the best of the three in training set

for each label. Also, the mixture ratio ↵ and the size of “relevant” document set |R| for

the expansion are also fixed by the 5-fold cross validation in training set for each label

along with the scope. The size of |R| is selected from {1, 3, 5, 10}. For post-process with
1http://www.lemurproject.org/

51

label correlation, the problem solving method is similar to the baseline ILR. The metric for

evaluation is micro F1 value. F1 value is the harmonic mean of Precision and Recall. And

micro F1 is computed across all sample and all label at once.

3.5.2 Results and Analysis

The comparison between the proposed CDCE method and the baseline in F1 value is

shown in Table 3.3.

The CDCE� method indicates the method using only comment expansion without the

post-process. The CDCE+ method indicates the method using comment expansion and

post-process on all labels. And the CDCE⇤ method indicates the method that pick the

models between CDCE� and CDCE+ by cross-validation for each labels. This evaluation

is based on 10 different training/testing sets splitting, and the reported micro F1 values are

the means over these ten settings.

By comparing CDCE� and ILR, the general improvement from using comment expan-

sion is obvious. The expansion makes comments “smoother” among similar comments

in feature level, and improves the performance of the classifiers against short comments

and those with misspelled words. For example, “ads” may sometimes be misspelled to be

“add”, the expansion adds similar comments’ feature into the underlining feature and the

feature dimension with respect to “ads” may not be zero anymore, hence the classifier can

capture this feature and tend to put the label “Spam” on the comment. On the other side,

the effect of expansion is not always positive for all samples. For example, for comments

about a Game app, many ones may be talking about “money” because they paid for some

item in the game but never got it. These comments should be labeled “Finance”. But one

comments for the same app may be just talking about how expensive that item is, hence not

worth the “money”. This one however, is not a CSPI. After expansion, this comment will

look much like the others hence be labeled “Finance” as well. Therefore a negative effect

of comment expansion is that it may silence some different voice that are making different

52

points while using similar words like others. Nevertheless, the general effect of comment

expansion is obviously positive.

The difference between CDCE� and CDCE+ shows that the post-process does not guar-

antee an improvement for all labels. Hence CDCE⇤ method is propose to pick a better

model between CDCD� and CDCE+ for each label from training set. CDCD⇤ provides the

best performance among others.

A label level comparison between CDCE⇤ and ILR can be found in Table 3.4, where

CDCE⇤ appears to outperform ILR for all labels except After. The model behavior for label

After is different from others mostly due to lack of sample. There are only 36 samples to

be split into training and testing set, which practically makes the training of model insuffi-

cient and the comment expansion mostly uses comments with different labels as “relevant”

comments. Besides After, three labels:Before, System and Others do not pass the statistical

significant test at ↵ level 0.05, with p-value 8.2%, 5.5% and 8.1% respectively. Other than

these, the highest p-value is 0.9% from Finance.

The results of picking better model between CDCE� and CDCE+ are also shown in

the P.P. column of Table 3.4. It appears that all Nature labels are not suitable for the

post-process, but the Scenario ones get a boost based on the results in Table 3.3. The post-

process makes use of the ILR result as feature to predict a label. This prediction may be

improved by getting correlation information from other labels, but also suffer from poorly

predicted results from ILR. Important words (features) for the Nature labels are not so

diverse as those in Scenario. For example, for label Spam, no matter what Scenario la-

bel come with it, the comment would probably still use the words like “spam” or “ads”.

Similarly for Privacy there are “privacy”, “invade”, or “permission”. To distinguish Sce-

nario labels, however, different words are of importance under the condition of different

Nature label. If given Spam, Foreground is related to over-sized on screen ads, and Back-

ground most likely to notification bar spamming. On the other hand, if given Privacy,

Foreground may be related to phishing and Background to personal information stealing or

abuse. Hence the correlation information may be much more helpful for Scenario labels

than Nature ones.

53

The scopes of retrieval in comment expansion for each label are listed in the Type col-

umn of Table 3.4. None of classifiers choose to use All comments as candidates for “rele-

vant” comments, and the scope of using the comments of the same App or same Category

(Cat.) of apps are both popular. The scope of All comments makes the “relevant” com-

ments too diverse and noisy and the expansion normally lead to some unexpected result.

One the other side, App and Cat. scope serves well, providing much high probability of

getting “relevant” comments with both similar text content but also similar topic of issues.

3.6 Limitation & Future Work

As a comment level analysis, one limitation of this work is that it does not provide a risk

assessment on the app level. How to evaluate the app’s security/privacy risk base on the

identification of CSPI would be an interesting work in the future. Another limitation comes

from the coarse filtering, where CSPI that do not contain any keywords could be left out by

the method. This may due to the variety of language itself or simply misspelling or using

made-up words instead of the keywords. Hence further research may lie on how to expand

the suspect set as a trade-off between computation overload and detection performance.

3.7 Conclusion

In this paper, a supervised learning method is proposed to detect CSPI for Android

apps. This task is formalized as a multi-label learning problem with a two dimensional label

system with respect to “What” and “When” of issues reported in CSPI. A coarse filtering

is first applied to narrow down the set of comments as suspect. Then comment expansion

is adopted to improve the representativity of the feature by making convex combination of

the original feature with those of “relevant” comments. Finally, a post-process is used upon

some of the labels to make use of the label correlation for further improvement. Experiment

results on the collected dataset shows statistical significant improvement in general against

ILR as a baseline method.

54

Ta
bl

e
3.

1.
:T

w
o

di
m

en
si

on
al

la
be

ls
et

La
be

l
D

efi
ni

tio
n

Is
su

es

Nature

Sy
st

em
Is

su
es

ca
us

in
g

ne
ga

tiv
e

ef
fe

ct
to

th
e

sy
st

em
Fr

ee
zi

ng
th

e
ph

on
e,

un
au

th
or

iz
ed

do
w

nl
oa

di
ng

Pr
iv

ac
y

Is
su

es
ab

ou
tg

et
tin

g
un

au
th

or
iz

ed
ac

ce
ss

to
us

er
in

fo
.

St
ea

lin
g

ph
on

e
nu

m
be

r,
ac

co
un

ts
,e

m
ai

ls
Sp

am
Is

su
es

ab
ou

tu
np

le
as

an
ta

ds
an

d
re

la
te

d.
A

nn
oy

in
g

ad
s,

sp
am

sh
or

tc
ut

on
ho

m
e

sc
re

en
.

Fi
na

nc
e

Is
su

es
ab

ou
ts

us
pe

ct
m

on
ey

st
ea

lin
g.

un
re

so
lv

ed
pu

rc
ha

se
.

O
th

er
s

Se
cu

rit
y

/p
riv

ac
y

is
su

es
no

ti
nc

lu
de

d
ab

ov
e.

un
in

st
al

li
ss

ue
s

Scenario

Be
fo

re
Is

su
es

oc
cu

rb
ef

or
e

in
st

al
la

tio
n

of
th

e
ap

p.
R

eq
ui

rin
g

to
o

m
uc

h
pe

rm
is

si
on

s.
Ex

ec
ut

io
n

Is
su

es
oc

cu
rw

he
n

th
e

ap
p

is
ex

ec
ut

in
g

on
th

e
ph

on
e.

G
en

er
al

co
m

pl
ai

ns
ab

ou
ts

pa
m

Fo
re

gr
ou

nd
Is

su
es

oc
cu

rw
he

n
th

e
ap

p
ta

ke
s

th
e

fo
re

gr
ou

nd
sc

re
en

.
A

ds
oc

cu
pi

es
to

o
m

uc
h

sc
re

en
,p

hi
sh

in
g

Ba
ck

gr
ou

nd
Is

su
es

oc
cu

rw
he

n
th

e
ap

p
is

ru
nn

in
g

ba
ck

gr
ou

nd
.

N
ot

ifi
ca

tio
n

ba
rs

pa
m

Af
te

r
Is

su
es

oc
cu

ra
fte

ru
ni

ns
ta

ll
of

th
e

ap
p.

em
ai

l/S
M

S
sp

am
af

te
ru

ni
ns

ta
ll

55

Ta
bl

e
3.

2.
:S

ta
tis

tic
s

an
d

sa
m

pl
e

co
m

m
en

tp
ie

ce
s

on
su

sp
ec

ts
et

#
%

Sa
m

pl
e

C
om

m
en

t
W

ho
le

Se
t

3
6
,4
6
4

1
0
0
%

“I
de

a
st

ol
en

fr
om

**
*,

an
d

it
fe

el
s

un
fin

is
he

d,
or

un
pr

of
es

si
on

al
”

G
en

er
al

1
0
,6
3
6

2
9
.1
7
%

al
lo

ft
he

be
lo

w
.

Sy
st

em
1
,3
0
4

3
.5
8
%

“I
tk

ee
ps

cr
as

hi
ng

th
e

ph
on

e.
It

be
co

m
es

a
de

vi
ce

ad
m

in
is

tra
to

r.”
Pr

iv
ac

y
2
,5
1
3

6
.8
9
%

“L
ea

ki
ng

G
PS

lo
ca

tio
n

to
dv

er
tis

er
s=

To
p

2
fa

st
es

tw
ay

s
to

ge
tm

e
to

ha
te

yo
ur

ap
p/

gu
ts

.”
Sp

am
6
,1
6
4

1
6
.9
0
%

“S
in

ce
in

st
al

lin
g

th
is

ap
p

Ig
et

sp
am

in
m

y
no

tifi
ca

tio
ns

co
ns

ta
nt

ly
.”

Fi
na

nc
e

1
,1
9
1

3
.2
7
%

“I
ba

ug
ht

$2
.0

0
in

**
*

an
d

In
ev

er
go

tt
he

m
.I

n
re

al
ly

m
ad

ab
ou

ti
t.”

O
th

er
s

1
9
1

0
.5
2
%

“I
bu

y
m

y
ow

n
ph

on
e

w
ith

m
y

ow
n

m
on

ey
an

d
Ic

an
td

el
et

e
th

is
ap

p
fr

om
m

y
ph

on
e?

”
Be

fo
re

1
,6
1
1

4
.4
0
%

“N
ew

ve
rs

io
ns

pe
rm

is
si

on
s

ca
n

st
ea

la
ll

m
y

da
ta

an
d

co
nt

ac
ts

!!
!”

Ex
ec

ut
io

n
8
,4
5
6

2
3
.1
9
%

“N
o

ne
ed

fo
rt

he
m

to
in

va
de

m
y

pr
iv

ac
y.”

Fo
re

gr
ou

nd
2
,0
1
1

5
.5
2
%

“g
am

e
w

on
te

ve
n

lo
ad

du
e

to
th

e
po

p
up

s
be

fo
re

ga
m

e
st

ar
ts

..s
pl

as
h

sc
ee

n
po

p
up

s
su

ck
”

Ba
ck

gr
ou

nd
4
,1
7
1

1
1
.4
4
%

“s
pa

m
em

ai
ls

th
at

Id
id

no
ts

en
d

w
er

e
go

in
g

ou
tf

ro
m

m
y

em
ai

la
dd

re
ss

.”
Af

te
r

3
6

0
.1
0
%

“s
ix

m
on

th
s

af
te

ru
ni

ns
ta

ll,
**

*
Sp

am
ju

st
ke

ep
s

on
co

m
in

g”

56

Table 3.3.: Experiment results on suspect set. † shows the statistical significance based
on ILR. It is computed over ten different random splits of the training/testing sets, using
one-tailed pair-wise t test with ↵ = 0.05.

method micro F1
General Scenario Nature All

ILR 0.7962 0.6713 0.7032 0.7153
CDCE�

0.8037† 0.6740† 0.7159† 0.7223†
CDCE+

0.8004† 0.6814† 0.7096† 0.7225†
CDCE⇤

0.8037† 0.6836† 0.7159† 0.7263†

Table 3.4.: Detailed comparison in label level. The † is computed at ↵ = 0.05 with one-
tailed t test among 10 different training/testing set splits.

Label F1 P.P. TypeILR CDCE⇤

General 0.7962 0.8037† No App
Before 0.6965 0.7012 Yes Cat.

Execution 0.7277 0.7358† Yes App
Foreground 0.4347 0.4689† Yes Cat.
Background 0.6674 0.6750† No App

After 0.1327 0.0882 No App
System 0.3991 0.4012 No App
Privacy 0.7264 0.7350† No Cat.
Spam 0.8181 0.8304† No Cat.

Finance 0.5238 0.5320† No Cat.
Others 0.0235 0.0384 No App

57

4 MOBILE APP SECURITY RISK ASSESSMENT: A CROWDSOURCING

RANKING APPROACH FROM USER COMMENTS

4.1 Motivation

With extracted security related topics from user comments, this chapter demonstrate

how we can utilize crowdsourcing algorithm and learning to rank to estimate security risk

of mobile apps. Two major problem answers here are how the aggregate security topics

from user comment level to app level, and how to estimate the security risk from that.

Figure 4.1.: Flowchart of security risk assessment from user comments. Given any app
(e.g., Facebook), the user comments are collected from Google Play Store. In
order to infer the security risk of apps, (1) crowdsourcing is used to accumulate user com-
ments into app-level features (shown as “feature extraction”,“auto annotation” and “crowd-
sourcing”); (2) learning to rank model is used to predict risk scores by utilizing these latent
features, where pairwise constraints are enforced between pairwise apps (shown as the rel-
ative risk levels of Youtube and Facebook).

58

4.2 Introduction and Related Work

4.2.1 Introduction

New challenges come with the exponentially growing markets of mobile apps. On one

hand, comparing with traditional software markets, markets like Google Play and Apple

Store have lower entry threshold for developers and faster financial payback, hence greatly

encouraging more and more developers to invest in this thriving business. One result out

of this is the huge amount of mobile apps with great diversity. Therefore controlling the

quality of apps, especially the security risk of them across the whole markets, becomes

an important issue to all that involved. On the other hand, public concerns about privacy

issues with on-line activity and mobile phones are also elevating, demanding a mobile

environment with more respect to users’ privacy.

User comments are valuable information source for evaluating mobile apps’ security

and privacy aspects from users’ perspective. They are indirect source comparing with the

apps’ permission requests and binary code, yet they reflect users’ experience of and expec-

tation for the apps. After all, whether an app is risky for the users’ privacy depends on how

the users think about it.

However, user comments are noisy and diverse. And the distribution of user rating

shows that user tend to give positive feedback [35]. Therefore how to aggregate comments

from multiple users to assess the app would be an interesting problem. Two questions (Q1,

Q2) need to be answered for solving this problem:

Q1: In order to assess the app from its comments, a set of features of the app repre-

senting the security/privacy aspects need to be extracted from the comments. But since the

comments are noisy and usually not about security issues and sometimes even not about

any issues at all, the challenge is how we can trust the extracted features to truly represent

the app for its security risk.

Q2: Security/privacy risk is not an objective term. The risk score of an app will not

mean much to a user unless it is compared to other apps. Therefore a question raises: how

can we compute the risk score considering the relationship between apps?

59

For the first question, we suggest building comment level features, then aggregate from

comment level to app level. We do not place full confident on the comment level features,

but on the app levels which could be learned from the crowds by evaluating the quality of

the comments, i.e., the expertise of the users. For the second question, we suggest adopting

learning to rank model, which can rank apps with respect to their risk scores based on the

annotated risk labels.

In summary, this paper presents a crowdsourcing ranking approach to solve the app

risk assessment problem from users’ comments. The main contributions are highlighted as

follows.

• To the best of our knowledge, this paper is the first one that treats the inference of

security risk problem as a task of crowdsourcing problem from aggregation of user

comments.

• A novel 2-stage model is proposed, which can jointly learn the latent security labels

from user comments and automatically rank the risks of app based on these learned

labels as features. An effective alternative optimization algorithm is proposed to

solve the corresponding optimization problem.

• Extensive experiments on two real-world datasets show the substantial improvement

of our method, i.e., 6%–7% performance improvements when compared with other

state-of-the-art methods.

• Last but not least importantly, our approach can be easily extended for understanding

the websites’ popularity through users’ comments, such as inference of goodness or

badness of a restaurant from users’ comments on Yelp, or the quality of a product

on Amazon or ebay. Since the label system is arbitrary, one may use the same user

comments data with different label system design to evaluate different aspects of the

product.

60

4.2.2 Related Works

There has not been much work on risk assessment on mobile apps. Liu et al. [43]

presented a framework for estimating privacy score for users based on their participations

in social network, instead of mobile apps. Peng [1] utilized the permissions required by

the apps to classify benign apps from the malicious ones. WHYPER [44] predicted the

risk assessment of mobile apps based on analysis of the descriptions of apps from natu-

ral language processing perspective using first-order logic. Kong et al. [45] predicted the

permission required by mobile apps from descriptions. Frank et al. [46] analyze the permis-

sion request using unsupervised learning (i.e., boolean matrix factorization) to discover the

inherent cluster patterns of permission request. In addition, users’ privacy preference can

also be utilized in personalized mobile app recommendation [47]. However, none of the

above works evaluate the risk score of mobile apps from the perspective of user comments.

Our work provides a new angle for estimating the app security risks.

The discussion of crowdsourcing problem could be traced back 35 years ago [48]. The

main idea is to infer true label of a given item from the annotations of multiple annota-

tors/workers. These annotations are assumed to be of low quality and may contradict with

each other. Two-coin model [49] is proposed to model worker expertise, by considering

the probability that a worker labels an item correctly which follows two Bernoulli distri-

butions, one for the true positive label, and the other for negative. Minimax entropy is

adopted in [50,51] to model both users and items. The maximum entropy principle is used

to naturally infer both item confusability and worker expertise. Guided crowdsourcing [52]

is another direction of research, which uses artificial intelligence methods to coordinate

workers in crowdsourcing tasks, in order to ensure collective performance goals such as

effectiveness, cost or efficiency. Our task is not a traditional crowdsourcing problem, we

model the mapping from user comments to app-level latent true labels as a crowdsourcing

problem, treating user comments as labels from workers.

Learning to rank is a well studied problem. There are three paths for solving learn-

ing to rank problem. Point-wise approach (e.g., [53, 54]), computes the model loss from

61

point-wise perspective, hence can be closely related to regression. In pair-wise approach

(e.g., [55–57]), the loss is defined on pair of samples instead of individual sample points.

For example, work [55] formalizes the pair-wise learning to rank problem as a maximum

margin problem, and can be solved by Support Vector Machine (SVM) [41]. List-wise

approach (e.g., [58, 59]), formalizes the loss function directly on rank list. Our work fol-

lows the pair-wise approach to rank apps based on their security risks, and evaluates the

performance of the proposed method using ranking evaluation metrics.

4.3 Algorithm Overview

4.3.1 Problem Formalization

Given a training set of n
l

apps: (a

1

, a
2

, · · · , a
nl
), with their corresponding user com-

ments X
nl

= (x

1

,x
2

, · · · ,x
nl
), and their corresponding risk scores S = (s

1

, s
2

, · · · , s
nl
).

The task is to estimate the risk scores (s
nl+1

, s
nl+2

, · · · , s
nl+nu), for n

u

new mobile apps:

(a

nl+1

, a
nl+2

, · · · , a
nl+nu) with their corresponding user comments

X

nu = (x

nl+1

,x
nl+2

, · · · ,x
nl+nu).

At the first glance of the problem, this can be solved using a standard supervised learn-

ing method. However, the challenge of this problem is how to represent the comments

from different users, and leverage the different users’ opinion into the security assessment

model. It is not straightforward how to amalgamate the comments from different users into

a reliable feature representation of apps. Moreover, note that security risk of a mobile app

is more of a relative concept than an absolute metric. It is more reasonable to talk about

security risk by comparing two apps, rather than assigning an absolute numerical value to

an apps. Therefore, ranking model is motivated to be introduced to measure the security

risks among different apps.

4.3.2 Approch Overview

Basically, our approach solves the mobile app risk assessment problem in two steps.

62

� The first step is to generate features for each app from its user comments, which is

modeled as a crowdsourcing problem, where user comments are viewed as “annotations”

to the apps and the crowdsourcing results are viewed as features of each app. The goal of

this step is to compute the app-security level features Y via the crowdsourcing model.

� The second step is to generate the risk score by utilizing these features Y generated

in the first step, which is modeled as a learning to rank problem, where the relative risk

score is computed.

� The above two steps can be done jointly to optimize the mobile app risk ranking

results.

Figure 4.1 illustrates the framework of app risk assessment process, the detail of which

is discussed below. Note actually the two key steps in our method (§4.2, §4.3) can be solved

individually, without any communication. The major drawback of separate treating is that,

the risk score is computed in one-shot using the obtained features from crowdsourcing,

and thus we cannot consistently improve the models with the learned better features and

adjusted risk ranking scores, and thus its performance may not work very well in practice.

Step 1: Feature Learning via Crowdsourcing

In order to capture the security risks of different apps, a set of security related labels

L = {L
1

, · · · , L
r

} is defined to describe different security problems mentioned in user

comments X = X

nl

S
X

nu . Then for each user u’s comment from each app i: X
u,i

(1

u m, 1 i n), it is associated with several labels, where m is the number of users

and n = n
l

+ n
u

. Comment examples for an app are given below:

—————————————————————

comment:Seemed ok, but the morning after signing in my account

spammed everyone on my contact list with junk mail from me...

could be a coincidence...

labels: background, spam, privacy

User: John Smith

63

—————————————————————

comment: Why does this need to send sms messages and make

calls? Updates not that timely. Uninstalling.

labels: before install, privacy

User: Jane Doe

—————————————————————

Motivated by our previous work [60], a set of classifiers is then trained for each label.

These classifiers serve as auto annotation tools that map the raw text of user comment of

each app to a list of security related labels in L. It is worth noting that, the auto annotation

process is applied to both training and testing set as pre-processing. For the rest of this

paper, D = D

nl

S
D

nu is denoted as the annotation results after pre-processing, i.e., labels

of the comments, instead of the raw comments X . Moreover, the annotated labels are

treated as annotated by different users in the context of crowdsourcing scenario.

More formally, for each user u w.r.t app i, its annotated comments d

u,i

2 {0, 1}r is

denoted as a r-dimensional set, D = [d

ui

], i.e., d
u,i

= {d1
u,i

, · · · , dr
u,i

}, where r is the size

of label set, and d`
u,i

the binary auto annotation result of the `-th label for the comment

given by user u for app i, i.e.,

d`
u,i

=

8
<

:
1; if user u label app i as label `

0; otherwise
(4.1)

Given all the above labels D generated from raw comments of different users for each

app, we need to learn a mapping which automatically projects the comment-level labels

d

u,i

= {d1
u,i

, · · · , dr
u,i

}, 1 u m to app-level security labels y
i

= [y1
i

, y2
i

, · · · , yr
i

], i.e.,

{d
u,i

} ! y

i

, (4.2)

for each app i w.r.t different user u. Written in a matrix-format, all app-level latent security

labels denoted as Y 2 <

n⇥r, where n is the number of apps, and r is the number of security

labels, and thus Y = [y

1

;y

2

; · · · ;y

n

].

64

In practice, user comments could come from various users with different preferences

and backgrounds. Sometimes, user comments could even be random and noisy. Thus,

it is not realistic to assume that all {d`
u,i

} values are accurate enough with high quality.

However, this is naturally a suitable situation for applying crowdsourcing algorithm, which

assumes the quality of user annotations are not high, and the latent true label (y`
i

) could be

learned from crowds ({d`
u,i

}).

Step 2: Learning to rank to estimate the risks

By considering linear ranking model with projection w 2 <

r, the security risk score is

computed by projecting the security annotated features y
i

using projection w, i.e., hy
i

,wi,

which is viewed as the final ranking score for app i. By choosing a learning to rank loss

function, the task of step 2 is to find a suitable linear ranking model as:

min

w
f(w;Y,S) + ⌦(w) (4.3)

where f(w;Y,S) is the loss function involved with projection w, annotated labels Y and

risk score S, ⌦(w) is the regularization term to avoid over-fitting. Actually, f(w;Y,S) has

many choices, and it could be point-wise, pair-wise or list-wise ranking function; it could

use hinge loss, logistic loss, etc. Note that the latent security labels y
i

are used as features

in this step.

Note Ranking-Support Vector Machine (R-SVM) [55] is one of the state-of-the-art

learning to rank methods. We apply R-SVM model to solve the mobile app risk rank-

ing problem. In R-SVM, it optimizes:

min

w2<r

1

2

kwk

2

2

+

C

2

k(e�BY

`

w)

+

k

2

2

, (4.4)

where Y

`

= {y

1

, · · · ,y
n`
} is the app labels obtained from training set in the first step, w

is a linear transformation which projects the features y
i

w.r.t app i to its corresponding risk

score s
i

, i.e., s
i

= y

T

i

w, i 2 {1, · · · , n
`

}, e 2 <

p is a vector with all ones, B 2 <

p⇥n` is a

65

sparse matrix which encodes the pairwise constraints, i.e., each row of B contains exactly

one +1 and one �1 with the rest entries 0. (x)
+

= max(x,0), and replaces any element of

x that is less than 0 with 0, thus term k(e�BY

`

w)

+

k

2

2

is the hinge loss function. C is the

trade-off parameter which balances the loss function part and the model complexity part.

4.4 Mathematical formulation

4.4.1 Preliminary

We introduce the baseline methods that can be used to solve crowdsourcing problem in

step 1. For clarity purpose, we use the same notations as in our model.

a. Crowdsourcing with Majority Vote (CMV)

Majority Vote [49] treats every user equally by averaging over the label of each user:

y`
i

=

1

m

P
m

j=1

d`
j,i

. By thresholding y`
i

, CMV provides binary crowdsourcing result. How-

ever, for our problem, Y is used as features, hence the original y`
i

is preserved without

thresholding. One major problem with CMV is that it treats each user equally hence the

contribution of experts would be overwhelmed by crowds’ less valuable opinions.

b. Crowdsourcing via Two-coin for User (CTU)

The two-coin model [49] is used to model user behavior, and pays more credit on more

trust-worthy users. It assumes two coins for each user. A user would give positive label

to an item under the condition that the true label is positive in probability ↵ (sensitivity),

and he/she would give negative label to an item under the condition that the true label is

negative in probability � (specificity), i.e.,

↵`

u

= Pr(d`
u,i

= 1|y`
i

= 1), 8i 2 {1, · · · , n} (4.5)

�`

u

= Pr(d`
u,i

= 0|y`
i

= 0), 8` 2 {1, · · · , r} (4.6)

Parameter ↵ = [↵`

u

], � = [�`

u

] can be learned from training data using EM algorithm ac-

cording to Maximum Likelihood Estimation (MLE) and y`
i

is then computed via Bayesian

rules.

66

4.4.2 Proposed PCMC Model

The basic idea of the proposed PCMC is to amalgamate CTU and R-SVM together, by

taking advantages of both approaches. A straight forward objective function would be a

combination of the two as

J(✓,Y
`

,w) = min

✓,Y`,w

h
� ln Pr(D

nl |✓,Yl

)� ln Pr(✓) (4.7)

+

�

2

kwk

2

2

+

C

2

k(e�BY
`

w)

+

k

2

2

i
. (4.8)

It consists two parts, negative log-likelihood of observations (Eq.(4.7)) using two-coin

crowsourcing model, and ranking function (Eq.(4.8)) using standard rank-SVM model.

In Eq.(4.7)1, ✓ = {↵, �} is the parameters as in Eqs.(4.5, 4.6), where ↵ denotes the

probability that a user will give positive label to an item under the condition that the label

is positive, and � denotes the probability that a user will give negative label to an item under

the condition that the label is negative. ln Pr(D
nl
|✓,Y

`

) is the log-likelihood of observation

D

nl
= [d

u,i

] (Eq.(4.2)) from different users given the model parameter ↵, � and annotated

app-security level Y
`

, where

Pr(D

nl
|✓,Y

`

)

=

nỲ

i=1

rY

l=1

h
Pr(y`

i

= 1|✓)
mY

u=1

Pr(d`
u,i

|y`
i

= 1; ✓)

+ Pr(y`
i

= 0|✓)

mY

u=1

Pr(d`
u,i

|y`
i

= 0; ✓)
i
; (4.9)

Pr(d`
u,i

|y`
i

= 1; ✓) = (↵`

u

)

d

`
u,i
(1� ↵`

u

)

1�d

`
u,i (4.10)

Pr(d`
u,i

|y`
i

= 0; ✓) = (�`

u

)

1�d

`
u,i
(1� �`

u

)

d

`
u,i , (4.11)

Let

p`
i

:= Pr(y`
i

= 1|✓), P := [p`
i

] (4.12)
1Y`, P` refer to the labeled apps, i.e., i = {1, 2, · · · , nl}.

67

then p`
i

is the probability of label ` on app i, which we call “better features” as compared

to y`
i

, and can be optimized in our method. Clearly,

Pr(y`
i

= 0|✓) = 1� p`
i

. (4.13)

Pr(✓) is the prior probability for parameters ↵ and �, since ↵, � represent the probability

of a binary event, thus a natural choice is the Beta distribution. i.e.,

Pr(↵|a
1

, a
2

) = Beta(↵|a
1

, a
2

); (4.14)

Pr(�|b
1

, b
2

) = Beta(�|b
1

, b
2

); (4.15)

where a
1

, a
2

, b
1

, b
2

are the parameters for Beta distribution.

In Eq.(4.8), Y
`

is the estimated annotated app labels in training set from raw comments

as in Eq.(4.2), w is the projection for ranking, B is the pair-wise constraint, e is a vector

with all ones, which are defined as in Eq.(4.4) in standard R-SVM model, and � a trade-off

parameter.

4.4.3 Alternating Optimization

The optimization of two-coin crowdsourcing model is a Maximum-A-Posteriori (MAP)

problem, whereas R-SVM model is a Quadratic Programing (QP) problem. The optimiza-

tion goals for MAP and QP are divergent. Moreover, Y
l

is output of the MAP but input as

feature of the QP, making both feature and model unknown for QP. Therefore we propose

an alternating optimization approach to approximate the optimum solution instead.

Alternating optimization [61] is an iterative procedure for minimizing each variable in-

dividually while fixing the other variables. Alternating optimization has been well studied,

and used in a wide variety of areas. Generally its convergence can be guaranteed. The

alternating optimization process for PCMC takes four sub-procedure in each iteration as

follows:

(1) Y
`

! ✓, estimate model parameter ↵, � based on current estimation of app labels.

68

(2) Y
`

! w, estimate app ranking w, based on current app labels (as features).

(3) (w,Y
`

) ! P

`

, approximate better features P
`

based on current ranking model w

and app labels Y
`

.

(4) (✓,P
`

) ! Y

l

, update app label estimations based on user model and P

`

as a prior.

The above four sub-procedures are iterated until the algorithm converges. Now we

investigate each of these sub-procedures respectively.

(1) Y
`

! ✓: Given Y

`

, model parameter ✓ can be computed as those in standard two-

coin crowdsourcing model according to MAP estimation, where

↵`

u

=

P
n`
i=1

y`
i

d`
u,i

+ a
1

� 1

P
n`
i=1

y`
i

+ a
1

+ a
2

� 2

(4.16)

�`

u

=

P
n`
i=1

(1� y`
i

)(1� d`
u,i

) + b
1

� 1

P
n`
i=1

(1� y`
i

) + b
1

+ b
2

� 2

, (4.17)

where prior ↵ and � follow Beta distributions, as defined in Eqs.(4.5, 4.6) and Eqs.(4.14,

4.15) with parameters a
1

, a
2

and b
1

, b
2

, respectively.

(2) Y
`

! w: This is the same as solving the R-SVM problem. The update on w with

Eq.(4.4) in the standard form of ranking SVM, hence can be solved as in [55]. The `
2

norm

of w in Eq.(4.4) can be viewed as a prior to w in the form of a standard normal distribution.

(3) (w,Y
`

) ! P

`

: In order to update Y based on the newly updated ✓ and w, an

approximation of a better feature representation of apps are generated based on current

ranking model w and app labels Y. The objective function for this approximation is

min

P
J(P) = min

P

C 0

2

k(e�BPw)

+

k

2

2

+

1

2

||P�Y

`

||

2

F

(4.18)

s.t. P = [p`
i

], 0 p`
i

 1 (4.19)

The first term in Eq.(4.18) indicates that P should fit the ranking model w with constraints

B well, while the second term regularizes it to be an approximation of Y
`

. Where C 0 works

69

as a trade-off parameter. This is a non-convex optimization problem with box constraints,

with the first derivative matrix given by:

@J(P)

@P
= �C 0

B

T

((e�BPw)

+

)w

T

+P�Y

`

(4.20)

Due to the non-convexity of J(P), only the local optimal is available for Eq.(4.18). But

since P is only used to get a better feature representation based on the ranking model

around true Y

`

, a local optimal around Y

`

is sufficient. Hence P is obtained as the local

optimal of Eq.(4.18) with Y

`

as the initial point. Any gradient based optimization methods

which accept box-constraints, e.g., interior-point method, can be adopted here for the actual

computation.

(4) (✓,P) ! Y

`

: Firstly, we need to compute two likelihoods:

a`
i

=

mY

u=1

(↵`

u

)

d

`
u,i
(1� ↵`

u

)

1�d

`
u,i (4.21)

b`
i

=

mY

u=1

(�`

u

)

1�d

`
u,i
(1� �`

u

)

d

`
u,i (4.22)

where a`
i

is the likelihood of app i getting label `, b`
i

is the likelihood of app i not getting

label `. Then by Bayesian rule with prior p`
i

from P, y`
i

is computed as

y`
i

=

a`
i

p`
i

a`
i

p`
i

+ b`
i

(1� p`
i

)

. (4.23)

4.4.4 Discussions

Initial value The alternating optimization for PCMC requires initial values of Y

`

,

which can be obtained from either CMV or CTU.

Feature Augmentation A possible extension to PCMC is to use feature augmentation

on the security feature space (the label space). There are two reasons for this suggestion.

For one reason, the primal form of SVM is adopted in Eq.(4.4), hence the kernel method

is not directly applicable here. Therefore by utilizing feature augmentation, the model

70

may gain nonlinear modeling ability over the original feature space. The other reason

comes from the multi-label setting. By using feature augmentation on the label space, the

linear ranking model can now capture correlations between labels. For example, if order-

2 polynomial feature augmentation is applied, co-occurrence of label pairs is captured in

the new feature space, and can be utilized by the ranking model to make use of the label

correlation.

Parameter Tuning Two parameters need to be tuned for the PCMC model. Both are

trade-off parameters. They are C 0 from Eq.(4.18) and C from Eq.(4.4). Grid search can be

used in cross validation 2 in training set for finding the best C and C 0. To avoid tuning both

parameter together, one may apply CTU and R-SVM separately, and run cross validation

to find C in the R-SVM model. Then we can apply this C directly in PCMC and tune

only C 0. It is worth noting that, in the original object function Eq.(4.8), there is a trade-off

parameter � which no longer exists when applying the iterative optimization, since its role

has been taken place by C 0.

4.4.5 Applying the Model to Testing Data

Given ✓,w as the trained model, and the test data D
nu . First apply Eq.(4.23) to get Y

u

,

where the prior p`
i

(i > n
`

) can be computed as

p`
i

=

1

n
`

nlX

j=1

p`
j

.

Then apply s
i

= hy

i

,wi(i > n
l

) to get the risk score for each app in testing data set.
2http://en.wikipedia.org/wiki/Cross-validation (statistics)

71

4.5 Experiments

4.5.1 Datasets

We evaluate the proposed PCMC method on two datasets. The D1 dataset is collected

from Google Play during May 2014, which contains 6, 526 apps. The D2 dataset is

collected also from Google Play during December 2013, which contains 6, 257 apps.

There are no overlaps for the above two datasets, since many new apps have been updated

on Google play. The details of number of comments and users are shown in Table 4.1.

Table 4.1.: Datasets details. The Mean, Max and Min are statistics for the number of
comments per app.

Data #app #comment #user mean max min
D1 6,526 6,021,244 2,614,186 923 4,020 1
D2 6,257 5,108,539 1,496,554 816 4,500 2

4.5.2 Label System

Motivated by our previous research [60], we use the same label system and labeled

dataset to train the classifiers as auto annotation tools. This label system contains 11 labels

with about 4k labeled user comments. These 11 labels consist of a general label for secu-

rity/privacy related issues and 10 finer labels divided into two groups. One group is about

the nature of the issues (system, privacy, spam, finance and others) and the other group is

about the scenario of the issues (before install, executing, foreground, background and after

uninstall). Logistic Regression (LR) [41] is used as the classifier and basic Bag-Of-Word

(BOW)3 feature is used as comment feature. Feature augmentation is adopted to leverage

the correlation between labels and the final label set consists of the original labels and each

pair of them (C2

11

= 55), making a r = (11 + 55) = 66 dimensional label set.
3
http://en.wikipedia.org/wiki/Bag-of-words model

72

4.5.3 Methods in Comparison

In order to evaluate the performance of the proposed PCMC method, we enlist four

other methods into comparison. These four methods come from combinations of two

crowdsourcing methods and two learning to rank methods in a separated two-step man-

ner.

The two crowdsourcing methods are CMV and CTU, while the two learning to rank

methods are Support Vector Regression (SVR) [62] and R-SVM [55] which are state-of-

the-art ranking methods. The CTU method here uses a fix prior p`
i

for each label while

the PCMC uses P. We also added a method that ranks the app by its user ratings only to

provide a baseline. Therefore the six methods in comparison are:

(1-4) CMV+R-SVM, CTU+R-SVM, CMV+SVR, CTU+SVR: These four methods train

crowdsourcing model (CMV or CTU) and learning to rank model (R-SVM or SVR) sepa-

rately. (5) Our method: Use PCMC to train CTU model and R-SVM model jointly.

(6) Ranking by Ratings.

Note methods mentioned in [44], [1] are not used for app risk ranking, thus we cannot

compare against them in our experiment settings. For ranking SVM, we apply the code

from Olivier Chapelle4, and LIBSVM [63] for SVR.

4.5.4 Evaluation Metrics

Since the task is defined as a ranking problem, we adopt Discounted Cumulative Gain

(DCG) and Normalized DCG (nDCG)5 as the evaluation metrics. Both DCG and nDCG

are computed with respect to a given position K at the rank list. They also require relevant

score of each app as ground truth. DCG is computed as DCG@K =

P
K

i=1

reli
log2(i+1)

.

Where rel
i

is the risk score of the app at rank i. And nDCG is computed by normalizing

DCG with the DCG score of an ideal rank list at position K: nDCG@K =

DCG@K

IDCG@K

,

4
http://olivier.chapelle.cc/primal/

5
http://en.wikipedia.org/wiki/Discounted cumulative gain

73

where IDCG@K is the DCG score of the ideal rank list at position K. And larger values

of DCG@K and nDCG@K indicate better performance.

In the following experiments, the rel
i

is provided by Android Guard6, an open source

software which can evaluate the privacy risk of an app by its permission and code analysis.

And higher rel
i

means higher risk. These rel
i

scores are used in nDCG for evaluation in

testing data, and also used for generating the pair-wise constraint matrix B for R-SVM and

PCMC in training. Also, they are used as target values in regression for SVR. It is worth

noting that, although the results from Android Guard are used in the experiment as ground

truth, the purpose of this work is not to achieve the functionality of Android Guard or other

tools. First of all, Andorid Guard uses the application binaries as input which is a marjor

difference from this work. Secondly, the choice of Android Guard is due to the novelty

of the proposed problem and lack of real risk evaluation from the user perspective. The

proposed methed may be adapted for new label system and risk scores as well.

We pick four position 5, 10, 15 and 30 to make point-wise comparison and also show

the trend of the metrics in the range of 5 to 30. These points are picked for the following

reasons: First of all, although the nDCG value will converge to 1 for any ranking function,

it has consistent distinguish ability for different ranking functions [64]. Therefore we only

need to evaluate the top rank list for comparison. Secondly, when nDCG is used in pure

ranking task (e.g., retrieval), it is popular to use nDCG@3,@5,@10. However, the risk

assessment is not a pure ranking task, we do hope to evaluation longer in the rank list,

hence K is extended to 30 and the trend of metrics on the range of K will also be shown.

4.5.5 Results & Discussion

Table 4.2 show DCG and nDCG values at position 5, 10, 15 and 30 of the 5 methods

in the two datasets. We make several important observations from the above experiment

results.
6
https://code.google.com/p/androguard/

74

(a) Performance evaluation in D1 dataset with
DCG.

(b) Performance evaluation in D1 dataset with
nDCG.

(c) Performance evaluation in D2 dataset with
DCG.

(d) Performance evaluation in D2 dataset with
nDCG.

Figure 4.2.: Methods comparison based on DCG and nDCG.

On D1 datasets, PCMC outperformed the other rivals 7.02% (9.46% based on the sec-

ond best) in terms nDCG, and 17.06% (7.71% based on the second best) in terms of DCG

by making an average of all cases.

75

�
�
��
��
��
�	

�
�
��
�
�

��������

��������

�������

��������

��������

���������

� �� �� �� ��

(a) log(C) = �10, log(C 0
) = 9, D1 dataset

�
�
��
��
��
�	

�
�
��
�
�

���������

��������

�������

��������

���������

���������

� �� �� �� ��

(b) log(C) = �11, log(C 0
) = 9, D1 dataset

�
�
��
��
��
�	

�
�
��
�
�

�������

�������

�������

�������

���������

� �� �� �� ��

(c) log(C) = �14, log(C 0
) = 20, D2

dataset

�
�
��
��
��
�	

�
�
��
�
�

�������

�������

�������

�������

�������

�������

�������

�������

���������

� �� �� �� ��

(d) log(C) = �13, log(C 0
) = 20, D2

dataset

Figure 4.3.: Convergence curve in D1 and D2 dataset.

On D2 datasets, PCMC outperformed the other rivals 6.83% (10.03% based on the

second best) in terms nDCG, and 19.07% (9.39% based on the second best) in terms of

DCG by making an average of all cases.

CTU+R-SVM performs the second best. The major improvement of of the proposed-

with their corresponding user comments PCMC over CTU+R-SVM comes from jointly

training of CTU and R-SVM together. When CTU and R-SVM are trained separately,

there is no guidance for CTU to distinguish different labels (latent features), and the latent

76

features are generated independently. On the other side, by jointly training the two mod-

els, the ranking model makes feedback through Eq.(4.18) to P, and P to the CTU model

through Eq.(4.23). Notice that, Eq.(4.18) involves all latent feature dimensions jointly with

respect to w, which is the weight of each dimension in ranking model. Therefore, by

utilizing P as prior, the CTU model is not estimating the user expertise (↵, �) for each

label independently any more, hence the training of CTU model is guided indirectly by the

pair-wise constraint of B in Eq.(4.4), and is able to provide a better ranking model.

For a finer comparison of the five methods in the two datasets, Figure 4.2(a), 4.2(b),

4.2(c) and 4.2(d) illustrate how DCG and nDCG change with the evaluation position K.

PCMC is observed to maintain an obvious advantage over its rivals in the selected range of

K. This advantage will decrease to 0 as K increases and the value of nDCG converges to

1.

Convergence of PCMC The convergence of PCMC is basically guaranteed by the

alternating optimization algorithm. Figure 4.3(a), 4.3(b) and 4.3(c),4.3(d) show the con-

vergence curve on both datasets with different parameter settings. Notice that, the big

different between the suitable value of C and C 0 comes from the difference of the regular-

ization terms in Eq.(4.4) and Eq.(4.18). kwk

2

2

is the sum of squares of r = 66 elements,

while the kP �Y

`

k

2

F

is the sum of squares of nr elements. Hence the proper C 0 is much

larger in order to balance between the hinge loss function and kP�Y

`

k

2

F

term.

4.6 Limitations

As a method that targets security issues, it would not be appropriated not to mentions

the limitations. This will provide a clearer view of the potential of the proposed method

and provide interesting future directions.

Security topic extraction There is still room for improvement for extracting security

topic from user comments. We are using bag of word model which ignores sentence

structure and certain natural language precessing technique would be helpful to get

more accurate extraction.

77

Security risk score Although we can evaluate and compare the methods based on security

risk score, it is not an objective measurement which can be agreed on from different

perspectives. Some novel metric may be needed for the measurement of mobile app

security risk.

Comment spamming The proposed method estimates user credibility based on the as-

sumption that the overall opinion from all user comments should provide relative

reliable opinions to an app. However, in the situation of comment spamming, be-

sides the credibility of users’ comments, the integrity of the users themselves are

questionable, the proposed method will not be able to estimate use credibility as de-

signed, since it is possible that a large portion of the comments for an app are bias.

One possible direction for solving this would be taking the meta data of the com-

ments and the users into consideration in order to find out the patterns of spamming.

For example, whether large number of comments with similar contents are posted on

exactly the same time, or by users with similar user names, or by users register (or

downloaded the app) at the same time, etc. This will require support from the market

since much of the meta data is not publicly available. Previous works for email anti-

spam and Tweet anti-spam would provide good examples for further exploration in

this direction.

4.7 Conclusion

In this paper, we propose to utilize user comments to assess security risk of mobile

apps. This risk assessment problem is formalized as a two-step task with crowdsourcing

to learn the latent true security labels of apps, and learning to rank to provide risk scores

based on the true security labels. This is to the best of our knowledge the first work to make

mobile app security risk assessment in crowdsourcing and ranking perspective. By jointly

training both crowdsourcing and ranking model, the crowdsourcing model is guided by the

pair-wise constraint of ranking model and is able to estimate user expertise with the aware-

ness of importance and correlation of multi-label, therefore providing better performance.

78

Experiment on two real-world datasets both with over 6k apps show substantial advantage

of the propose PCMC method over state-of-the-art methods. Moreover, by treating user

comments as crowd labels, this framework can be easily extended to other assessment task

that involves user comments or feedbacks.

79

Ta
bl

e
4.

2.
:D

C
G

&
nD

C
G

co
m

pa
ris

on
s

on
D

1
&

D
2

da
ta

se
ts

.

D
at

as
et

M
ea

su
re

m
en

t
R

at
in

gs
C

M
V

+
R

-S
V

M
C

TU
+

R
-S

V
M

C
M

V
+

SV
R

C
TU

+
SV

R
PC

M
C

(o
ur

m
et

ho
d)

D
1

D
C

G
@

5
1
1
3
.4
6

1
1
4
.0
4

1
1
5
.7
2

1
0
8
.2
9

1
1
5
.8
0

1
3
4
.1
9

D
C

G
@

10
1
5
9
.9
9

1
6
4
.9
1

1
8
0
.0
1

1
7
2
.8
1

1
5
9
.6
0

2
0
0
.3
8

D
C

G
@

15
2
0
8
.2
5

2
1
2
.5
2

2
3
6
.7
0

2
1
4
.7
2

2
0
2
.8
8

2
5
2
.5
2

D
C

G
@

30
3
4
0
.8
9

3
1
8
.2
6

3
5
2
.0
5

3
3
2
.4
2

3
0
8
.2
5

3
6
5
.6
2

nD
C

G
@

5
0
.7
2
3
8
8

0
.7
2
7
6

0
.7
3
8
3

0
.6
9
0
9

0
.7
3
8
8

0
.8
5
6
1

nD
C

G
@

10
0
.6
6
2
4
7

0
.6
8
2
9

0
.7
4
5
4

0
.7
1
5
6

0
.6
6
0
9

0
.8
2
9
8

nD
C

G
@

15
0
.6
6
8
8
9

0
.6
8
2
6

0
.7
6
0
3

0
.6
8
9
7

0
.6
5
1
7

0
.8
1
1
1

nD
C

G
@

30
0
.7
0
2
3

0
.6
5
5
7

0
.7
2
5
3

0
.6
8
4
9

0
.6
3
5
1

0
.7
5
3
3

D
2

D
C

G
@

5
6
1
.7
1
6

7
6
.3
0

1
1
4
.0
3

9
2
.8
4

1
0
5
.0
5

1
2
0
.6
5

D
C

G
@

10
9
6
.7
4

1
2
0
.4
3

1
6
3
.6
2

1
5
3
.1
5

1
5
1
.8
9

1
8
1
.8
3

D
C

G
@

15
1
4
5
.3
3

1
5
9
.8
0

2
0
3
.8
3

2
0
2
.8
4

1
8
1
.5
4

2
3
2
.6
6

D
C

G
@

30
2
4
4
.2

2
5
1
.9
3

3
3
1
.1
0

3
0
8
.3
4

3
0
5
.2
9

3
5
3
.7
1

nD
C

G
@

5
0
.3
0
9
6

0
.4
8
6
2

0
.7
2
6
7

0
.5
9
1
6

0
.6
6
9
5

0
.7
6
8
9

nD
C

G
@

10
0
.4
0
1
1
4

0
.4
9
9
4

0
.6
7
8
5

0
.6
3
5
1

0
.6
2
9
8

0
.7
5
4
0

nD
C

G
@

15
0
.4
6
8
0
3

0
.5
1
4
6

0
.6
5
6
4

0
.6
5
3
2

0
.5
8
4
6

0
.7
4
9
3

nD
C

G
@

30
0
.5
0
4
4
5

0
.5
2
4
4

0
.6
6
2
4

0
.6
4
0
3

0
.6
0
2
6

0
.7
2
5
0

80

5 AUTORBF: AUTOMATICALLY UNDERSTANDING THE

REVIEW-TO-BEHAVIOR FIDELITY FOR ANDROID APPS

5.1 Motivation

In previous chapters, we discussed how we can extract security related topics from

user comments (Chapter 3) and how to use the topic labels to evaluate app security risks

(Chapter 4). In this chapter, we focus on four common security issues and evaluate how our

proposed method performs and more importantly, compare the results with code analysis

methods to find out the gap between them. We will revisit both the CDCE method and

PCMC method as we describe them as one integrated system as AutoRBF.

5.2 Introduction and Related Works

5.2.1 Introduction

Nowadays, people spent more time on using mobile apps on smart phones and tablets

because of the convenience they bring to people’s daily life. One of the reasons is that users

are able to enhance the mobile devices’ functionality via rich-featured third-party mobile

apps, which can be easily obtained from Google Play store and App Store. The number of

available mobile apps has increased dramatically in the past years. For example, in June

2014, App store had 1.2 million apps and a total number of 75 billion downloads [65].

Personalized service (such as targeted advertising) is possible on mobile devices when

users’ personal information such as contacts and user locations, is accessible by mobile

apps. However, disclosing personal information to mobile apps could lead to serious pri-

vacy concerns. Unfortunately most users are innocent to the sensitive information (e.g.,

device hardware information, user data, etc) that permission requests ask to access.

81

Mobile app have exposed severe security risks, and they require the users’ private and

personal information. The mobile app can perform security-sensitive operations on the

mobile devices. The available metadata such as user reviews are helpful for analysis of

security related behaviors. From user perspective, it reflects the users’ perceptions and

expectations to mobile apps.

On Google Play, user reviews are public to all users (e.g., Fig.5.1). The user reviews

describe how the users think about the app, and give an idea of the security related is-

sues/behaviors during the running of apps, which we call “review-to-behavior fidelity”. In

this paper, the “behavior” we consider only refers to the security/privacy related behaviors,

which may cause severe security and privacy concerns for end users. In more detail, we

focus on four categories of security-related behaviors shown in Table. 5.1, which accounts

for more than 90% of all users’ complains. The reason why we view the user reviewers

as an important source to understand mobile apps’ behaviors is that whether an app has

exposed severe security risk or not actually depends on how the users think about it.

With the belief that the user reviews and behaviors should be consistent, we present

AUTORBF, a system that automatically identifies the reviews that reflect the security-

related behaviors both at review-level and app-level. AUTORBF can be applied in the

following scenarios.

• Users can automatically infer whether the app has security-related behaviors from

other users’ experiences and expectations.

• Mobile app developers are alert of users’ complain by taking the feedback from users,

and are aware of the security-related behaviors that the mobile app has displayed.

• The security-related behavior analysis can be helpful for risk assessment for mobile

apps, which can be used to improve the credibility of app rating scores in app mar-

kets.

However, in practice, in order to build a system which can automatically solve the

review-to-behavior fidelity problem, we need to solve the following challenges (C1-C3):

82

C1: Review semantics We note in user reviews, most of user reviews are short, prop-

erly with wrongly spelled words and even made-up words. Moreover, different words and

expressions can be used for the same purpose. Therefore, it requires to gather enough

semantics from users’ review to understand the security-related behaviors.

C2: Security Concern Not all reviews reflect the security/privacy related concerns

(Fig. 3.1). Recent study from the distribution of user ratings [35] shows that users tend to

give positive feedback. Some reviews include vague and pure emotional comments, and

some reviews may complain about the quality, the price of app, which has few relations

with security and privacy concerns. Therefore, how to infer the security-related behaviors

from the crowded user reviews is still very challenging.

C3: Credibility of users The user reviews can be noisy and diverse. User reviewers

are coming from different users. Some users may not be responsible for their reviewers.

Some reviewers are not likely to report the security problem. Although users’ account are

associated with Google account in Goolge Play, still lots of reviews are non-informative.

How to distinguish different types of users, and make the app-level review results more

reliable?

To the best of our knowledge, none of the previous works have systematically solve

the above problems in the context of review-to-behavior fidelity. In this work, we design

and implement a system called AUTORBF, which automatically infers the security related

behaviors by considering the semantics of user reviews and aggregating the security related

behaviors from comment-level to app-level via crowdsourcing. In our system, the state-of-

the-art machine learning techniques are used to predict the security-related behaviors, and

bridge the gap between the user reviews and behaviors.

The contribution of this paper is summarized as follows.

• To address the challenge of Review semantics (C1), at user review level, we extract

the semantics from user reviews, and make a feature augmentation approach by ex-

pansion of features via exploring the “relevant feedback”, in which the correlations

and co-occurrence among different reviews are taken into account. In this way, the

83

Table 5.1.: Security/privacy-related behaviors

index Category Behavior Descriptions
1. Spamming Ads in notification bar,

ads via email, ads via
SMS, Pop-up ads, Fish-
ing, etc

2. Financial Paid for In-App-
Purchase (IAP), but do
not get the item, free to
premium, etc

3. Over-claimed Permission Request too much per-
missions than users’ ex-
pectations

4. Data leakage Access privacy data
without user acknowl-
edgement, e.g., user
account, contact,
location, etc

App
Behaviors

Spamming, Ads
Financial issue

over-claimed permission

Data leakage

 ...
 .

AUTO
RBF

User reviews
AUTORBF

ReviewͲlevel��Security�
Behavior��Inference

AppͲlevel�Security�
Behavior�Inference

Figure 5.1.: Infer the security-related behaviors from users’ reviews. Overview of the framework
of AUTORBF : (a) Engine 1: Review-level security behavior inference engine; (b) Engine 2: app-
level security behavior inference engine.

security-related behaviors are captured even if they are described in different phrases

and expressions.

• To address the challenge of Security concerns (C2), we build a classifier which can

automatically learn the four categories of security-related behaviors (Table 5.1) based

84

on the state-of-the-art sparse machine learning technique. As long as enough train-

ing user reviewers with labeled security-related behaviors are given, our system can

automatically infer the behavior of mobile apps related to security concerns with

accuracy as high as 94.05% at user-review level.

• To address the challenge of user credibility (C3), based on the extracted review-

level semantic features, we aggregate the security behavior annotation result from

review-level to app-level based on the expertise of different users. We do not put full

confidence on all the users, and the wisdom of crowds are automatically learned via

state-of-the-art crowdsourcing techniques.

We believe that AUTORBF system provides a generic and universal framework for

analysis of user reviewers with enhanced semantic understanding of security-related be-

haviors. Also, this framework could be easily extended to analyze the security/privacy

issues on the reviews appeared in other webistes, such as Yelp, Amazon, and ebay.

Since the label system we use to infer the security-related behaviors is arbitrary, one may

use the same user review data with different label system to evaluate the security/privay

aspect of the other product.

We further have the following interesting discoveries:

• Measurement Our evaluation on 19, 413 reviews, 3, 174 apps demonstrates that AU-

TORBF can accurately predict the review-level security related behaviors with ac-

curacy as high as 94.04%. As compared to the other approaches, our work excels a

large margin with 51.36% in accuracy, as opposed to a baseline using key-word based

approach, which further validates the effectiveness of system design and algorithm

deployment.

• Evaluation We also make a case study to analyze the difference between behaviors

inferred from AUTORBF and those from code analysis. Our findings include: on

67.5% apps, code analysis detected same spamming behavior result as that of AU-

TORBF; on 58.5% apps, code analysis discovered over-claimed permission and AU-

TORBF also found the over-claimed permissions than users’ expectation; on 73.5%

85

apps, code analysis detected the “data leakage” issue while AUTORBF agreed.

However, for “financial-related” issue, almost no code analysis can find the same se-

curity issue as AUTORBF. This suggests that user reviewer analysis from meta-data

complements the works about the security-related behaviors analysis from code anal-

ysis, which provides an alternative way to look at the mobile app security concerns

from user perspective. We believe that the combination of them in an appropriate

way will definitely help to understand the app security issues better. Our empirical

result about users’ credibility suggest users have different preference in reporting the

security issues.

The remainder of paper is organized as follows. Section 5.3 presents the problem state-

ment. We introduce the detailed design of AUTORBF system in Section 5.4, followed by

the design of review-level security behavior inference engine in Section 5.5. Section 5.6

presents the design of app-level security behavior inference engine. Section 5.7 presents the

experimental evaluation of our system, followed by discussions of difference against code

analysis in Section 5.8. Section 5.2.2 discusses the related work and finally Section 5.9

concludes the paper.

5.2.2 Related Works

Since the initial intrusion detection work done by Lee et al. [66], machine learning/data

mining has been widely in a number of efforts to solve security problems, such as net-

work failure analysis [67], worm signature generation [68], malware classification [11],

software plagiarism detection [69], etc. Recently, machine learning has been used to un-

derstand the mobile app permissions and behaviors through analysis on the meta-data like

description [44] [70], permission usage patterns of mobile apps [46], and contextual API

dependency graphs [71], etc. In contrast to these works, our study focuses on analysis

of mobile app behaviors from the users’ reviews, a new angle of meta-data crawled from

google play store, which aims to automatically infer the behaviors of mobile app at both

review-level and app-level. Even if we treat the user review understanding problem as a

86

machine learning problem, the approach in this work is unique: we consider semantics of

users’ reviews when automatically infer the security behavior of mobile apps; moreover,

rather than simply aggregating all the review-level security issues to the app-level, we use

crowsourcing as means to capture different users’ expectations for security resources from

review-level to app-level. Experiment result tells us that not only we achieve high accuracy

at review-level security behavior inference, but also we get clues for credibility of different

users.

Most (if not all) existing works on analysis of mobile app risks from meta data focus on

descriptions of mobile apps [44] [70], which are provided by developers. For example, in

order to analyze the app’s business aspects, Harman et al. [72] use a light-weight text ana-

lytic technique to mine the description, pricing of apps, etc. WHYPER [44] predicts the risk

assessment of mobile apps based on analysis of the descriptions of apps from natural lan-

guage processing perspective using first-order logic. AUTOCog [70] uses natural language

technique and machine learning based approach to access the description-to-permission fi-

delity of mobile apps. Compared to description of mobile apps provided by developers, the

user reviews studied in AUTORBF provide the real needs and expectations of users.

Recently, Lin et al. [73] introduce a new model for privacy by capturing users’ expec-

tations via crowdsoucing, where the users’ expectations of mobile apps are captured from

user study rather than the user reviews published at Google play store by millions of users

across the world as in AUTORBF. We believe the user reviews automatically analyzed by

AUTORBF can be used as good evidence for quantitative analysis of users’ security be-

haviors. AR-Miner [34] is one of the few works that analyzes the user views from Andriod

market, the goal of which, however, is to discover the most “informativee” user reviews

rather than understanding the security behavior as in AUTORBF. WisCom [35] analyzes

the inconsistency in user reviews but not for solving security issues as in AUTORBF. The

other work about the user review analysis [60] can be viewed as an intermediate step in

our comprehensive framework of AUTORBF, the capability of which has been greatly

enhanced.

87

Notice that in the field of mobile app analysis, there exist many works on permission

analysis [4] [15] [1] [74], code analysis [14] [7] [75] [76] and run-time behavior analy-

sis [77] [78] [79] [80] with the purpose of detecting the app behaviors especially for mobile

app malware analysis. For example, Enck et al [79] use dynamic taint analysis to analyze

how users’ private information is misused. While permission analysis, static analysis and

dynamic analysis enable the detection of misused permissions, unauthorized actions, po-

tential data leak, etc, these approaches, however, analyze the objective behavior of apps

without giving enough consideration for the users’ real expectations for different mobile

apps. They did not bridge the gap between what the code really does and what the users’

really need. In contrast, AUTORBF automatically analyzes the users’ review and under-

stand what the users’ concerns for security issues, which can be used as a complementary

tool for the other code-based approaches for improved user experiences and interaction

with mobile apps.

5.3 Problem Statement

Android is the most popular smartphone operation system, and the availability of apps

in Google play store surpassed 1 million apps in July 20131. User reviewers are provided by

different users after they use or install the apps, which offers the valuable feedbacks for new

users and developers. From the security point of view, user reviewers indicate the users’

expectations and concerns for different behaviors. User are known to be very concerned

about the security-related behaviors on mobile apps [81]. As is sharply observed in Felt et

al. [82], automatically understanding the security behaviors from meta data is not an easy

job for most of the users.

Our goal in this paper is to predict the mobile app security-related behaviors from dif-

ferent users’ reviews, which we call “review-to-behavior” fidelity. Fig.5.1 illustrates the

overview framework to evaluate the security-related behaviors from user reviews.
1
http://en.wikipedia.org/wiki/Google Play

88

User reviews provide users’ perception for mobile app behaviors, which we aim to use

and identify the most pertinent information that correlates the security concerns. Different

from the mobile app permission or behavior analysis through static or dynamic analysis

([79], [80], [83], etc), infer the security behaviors from the users’ expectations is still

lacking. The AUTORBF tool developed by us can be deployed as an individual app or

deployed at Google play markets, which can automatically summarize and alert the users

about the security-related behaviors based on users’ experiences and expectations. The

tool is also expected to help to improve the trustiness of the overall Android app market

and make the Android echo-system better.

Several examples of user reviewers on Google play store are shown below.

• Review 1: “Good App but keeps granting itself super user permissions randomly when its

suppose to always have it.”

User: A Google user

• Review 2: “Seemed ok, but the morning after signing in my account spammed everyone on

my contact list with junk mail from me...could be a coincidence...”

User: J.S 1

• Review 3: “Why does this need to send sms messages and make calls? Updates not that

timely. Uninstalling.”

User: J.D

After carefully examining the user reviews, we found that most of the user reviews

are not complaining about the security-issue, not to mention security-related behaviors.

The scope of this paper is to infer the “security-related” behaviors from the user reviews.

More specifically, we focus on the four categories of security-related behaviors listed in

Table. 5.1. The listed four categories of behaviors cover more than 90% of security issues

appeared in mobile app markets, and viewed as critical security issues. For example, the

security behaviors inferred from the above three reviews are shown below.

• Review 1: Over-claimed permission

1Due to privacy reason, we list user name using the first letters of family name and first name.

89

• Review 2: Data leakage, background spamming

• Review 3: Data leakage

Note the defined four categories of security-behaviors reflect the users’ understanding

and perception on different mobile apps, in a very coarse-grained manner. Considering that

most of the users are not professional developers, the user reviewers generally indicate the

high-level understanding of privacy concerns from very vague, emotional reviews instead

of very professional communication approach as in fine-grained permission control. Thus

in the security-related behavior definition, we use a very coarse-grained behavior to cover

each category of security issue, which corresponds to a group of fine-grained security-

sensitive behaviors illustrated in Table 5.1.

As illustrated in Section 5.2.1, we need to address the three challenges in the design of

our approach, which includes review semantics, security concern, and user credibility. We

design and implement the system AUTORBF , which addresses the above challenges. The

design goal of AUTORBF is to answer the following question: given user reviews from

different users on apps, can AUTORBF automatically infer the security-related behaviors

of apps? And how accurate is it? AUTORBF can help users to be aware of security

related issues, and discover the correlations between user reviews and security issues. With

the help of state-of-the-art sparse machine learning techniques, AUTORBF can achieve

the accurate prediction of app behavior both at review level and app level. Besides, the

training process works directly on user reviews, and the whole process can be automatically

done without human intervention given enough training user reviews and security-related

behaviors.

5.4 Overview of System Design

Fig. 5.1 illustrates the overview of system AUTORBF design, which includes two key

engines: (a) review-level security behavior inference engine (RLI), and (b) app-level secu-

90

user
reviews
user

reviews
user

reviews

user
reviews
user

reviews
Bag of
words

Security feature
extraction & selection

Semantic expansion

Predictive model
via Sparse

machine learning

new user
reviews

Security
behavior
labeling

Offline
training

Online
prediction

Manual
labeling

Manual
labeling

Manual
labeling

Figure 5.2.: The framework of review-level security behavior inference engine (solid lines are used
for the training process, and dashed line for the process of annotating new user reviews).

rity behavior inference engine (ALI). Fig. 5.2 and Fig. 5.3 give the detailed introduction of

each engine, respectively.

Given the users’ reviews, by taking the advantage of the state-of-the-art machine learn-

ing techniques, the output of the review-level behavior inference engine, is review-level

security behavior labeling results (i.e., four categories of security behavior labeling shown

in Table 5.1) corresponding to each review.

Then the review-level security behavior labeling are fed into the app-level behavior in-

ference engine, with the help of the state-of-the-art crowdsoucing techniques, the output of

the app-level security behavior inference engine is the app-level security behavior labeling

results in consideration of users’ credibility. Although it appears similar to the review-level

security behavior labeling and also denoted as four categories of security issues shown in

Table 5.1, it actually labels the behaviors of an app by aggregating all different reviewers’

opinions via utilizing the wisdom of crowds. We will illustrate the detailed design of each

engine in Section 5.5 and 5.6, respectively.

91

5.5 Review-level Security Behavior Inference Engine (RLI)

The goal of the review-level security behavior inference engine is to infer the review-

level security behavior labels from the descriptions of reviews. Given enough training user

reviews, the review-level inference engine (RLI) can automatically label the user review to

a specific security behavior category.

The overview of RLI engine is depicted in Fig. 5.2, which consists of two key phases:

training phases (denoted in solid line in Fig. 5.2) and testing phases (denoted in dash line

in Fig.5.2). In training phase, state-of-the-art machine learning techniques are used to

learn a model/classifier which can annotate the user reviews automatically, while in testing

phase, new user reviews are fed into the classifier, and the security related behaviors are

automatically labeled.

5.5.1 Training Phase vs. Testing Phase

The training phase includes the following three key steps.

Step 1: Security-related feature extraction and selection. To infer the security re-

lated behaviors, we first extract the features (including words and phrases) that have close

relations with four categories of security concerns. This is to address the challenge C2,

because it has been observed from the user review dataset that the complains about the

functionality, quality and the attractiveness for mobile apps account for the majority of

user review concerns. We use a key-word based approach to select the security related

words and phrases appeared in user reviews. After Step 1, only security related features are

preserved and selected, and will be used to build a classifier for labeling user reviews.

Step 2: Semantic Expansion. To address the challenge C1, this step concerns how

to understand the user reviews described in different words and phrases but for the similar

or the same meaning. By taking advantage of “relevance feedback” technique [42] in in-

formation retrieval, we find the relevant words/phrases related to security-related features,

and expand the original review features by adding new “relevant” words and phrases. This

process is iterated until all the “relevant” features are added to the review feature sets. This

92

process is also known as “feature augmentation”. We aim to capture the semantics of user

reviews as much as possible by utilizing the relations among different user reviews. Af-

ter this step, each user review is abstracted into a feature vector denoted as a bag of word

(BOW).

Step 3: Training classifier using sparse machine learning. To address the challenge

C1, once we have obtained the BOW features after semantic expansion, we train the clas-

sifier for prediction of each category of security-related behavior. Our framework is open

to any classifier that, in order to classify a new user review, requires the BOW feature as

the training samples. Such classifiers include the kNN classifier, SVM classifier, etc. In

our approach, we use the state-of-the-art machine learning classifier (i.e., sparse SVM)

by exploring the structural sparsity of feature space, which has shown the state-of-the-art

performance.

Testing phases The output of the training phase is an automated user review classifier.

Given new user reviews, we first extract and select the word/phrase features related to se-

curity concerns, and then generate BOW features. Next, we feed the features to the trained

sparse machine learning classifier and automatically determine the security behavior cate-

gory.

Our framework does not require any human intervention. In a dynamic environment

where we have new user reviews, we repeat the process by retraining the sparse machine

learning classifier. In the next few sections, we shall elaborate on the technical details of

each of the above steps.

5.5.2 Security-related Feature Extraction and Selection

In this section, we focus on the extraction of the security-related features. Proper per-

processing are applied to user reviews before feature extraction, including removing stop

words and stemming. Since many user reviews are not related to security concerns of

mobile apps, a necessary step we need to take is to narrow down the huge number of user

reviews to a more feasible set for further analysis and annotation. To achieve this purpose,

93

a coarse-grained filtering is firstly applied to create a subset of suspect user reviews. We

adopt a key-word based approach to preserve a set of the suspect user reviews, i.e., any user

review that contains at least one of the predefined key words will be put into the suspect

set.

The key words are manually picked in an iterative way. The initial set of the key words

are set to {security, privacy}. Then the new key words are selected from those that have

high co-occurrence with the current key words. The co-occurrence of key words in user

reviews are computed based on the user review corpus L (see Section 5.7.1) we collect on

Google Play. If the co-occurrence of the word-pairs exceeds a large threshold and one of

the word-pair in the suspect set, we add the other word into the suspect set. The rational

behind this approach is that these key words reflect users’ concerns for the security and

privacy issues. This process is iterated until no more new key words are added into the

suspect set.

To avoid mismatch, not only the synonyms are considered, other forms of the key-

words (e.g., antonyms, mismatch words, etc) are also taken into account. For example,

insure and unsure are added for key-word “security”, stole and stolen are added for key-

word “steal”, etc. We call these words as “security-related” features which captures the

semantics of the security behaviors for mobile apps. Note in this step, instead of using

the traditional black-box feature selection methods such as F-statistics [84] mutual infor-

mation [85], etc, that rely too much on the statistical property of the data, our method can

be viewed as a semantics-aware feature selection approach, which identifies the security-

related key words by considering the semantic meaning and correlations among different

key-words in a white-box way.

5.5.3 Semantic Expansion

User reviews have some properties which have significant difference from the properly

edited documents. User reviews are normally short, probably have wrongly spelled words

(as mentioned in Section 5.5.2), or even made-up words (such as “privasy, nonsecure”).

94

Moreover, different words or expressions may be used for the same meaning. These prop-

erties may harm the performance of classifier if the extracted key-words from Section 5.5.2

are directly used for features.

It seems very challenging to solve this problem. We get our idea from information re-

trieval domain. In information retrieval, the query submitted to the search engine could be

short, misspelled and vary in the choice of the words, which is very similar to our situation.

For the same motivation, a traditional technique called query expansion with pseudo rele-

vant feedback [42] in information retrieval is borrowed to make review expansion. Origi-

nally, this technique uses the top document in the retrieval ranking list with respect to the

original query as “relevant” documents, and these documents are further used to expand the

original query, generating a new query resembling the “relevant” documents. This query

expansion is reported to always have a positive effect on the retrieval performance [42].

A similar process is adopted for review semantics expansion as follows. The process

consists of two steps: (1) find the “relevant” reviews; (2) augment the “original” reviews

with “relevant” reviews. The relevance between the user reviews is evaluated using the

similarity in the standard information retrieval model, i.e., cosine similarity between the

tf-idf features of the reviews.

An interesting question would be the scope of the retrieval. Should the candidate “rele-

vant” reviews picked from all other reviews? Or just the reviews from the same app or the

same category of apps? Besides, the “relevant” reviews should only be those posted before

the reviews for expansion, so we are not using the “future” reviews to extend the current

reviews. A sufficiently long ranking list from the retrieval engine will be returned and the

scopes and restrictions will be applied to this list to pick the “relevant” reviews afterwards.

With a set of “relevant” reviews, the review expansion can be conducted by making a

sum of the original reviews and the mean of the set of “relevant” reviews on feature level as

follows: fnew = (1� ↵)fold + ↵ 1

|R|
P

fexpand2R fexpand, where fold is the Bag of Words (BOW)

feature of the original reviews, fnew is the feature vector after the expansion of user reviews,

fexpand is feature vector for the expanded user reviews, and R is the set of the “relevant”

reviews with respect to the reviews for expansion. ↵ serves as a tunable parameter for the

95

degree of effect of the expansion, and can be tuned for the best performance, and so is the

size of R.

In summary, review expansion is an efficient way to explore the relationship among

reviews, and incorporate more semantics into the review understanding process. The re-

view expansion also relies on the retrieval engine, the cost the which is normally constant.

Hence, the total cost of review semantic expansion is linear to the number of user reviews,

which makes it more applicable in solving practical problems.

5.5.4 Sparse Machine Learning Classifier

After obtaining the BOW feature from the above steps, now we are ready to present the

classifier which is designed to label the user review as certain security-related behavior de-

fined in Table. 5.1. More formally, given the BOW feature and the annotated four categories

of labels, the suspect user review datasets can be represented as X = [x

1

,x
2

, · · · ,x
n

],

where x

i

2 <

p denotes the BOW feature vector for each user review, n is the number of

user reviews. Let Y = [Y

ik

](1 i n, 1 k K) be the label vectors for user reviews

and Y
ik

2 {0, 1} with Y
ik

= 1 indicating the presence of the j-th label for user comment

i. In our problem setting, K = 4 denotes the number of security-related behavior labels

defined in Table. 5.1.

In our problem setting, more than one security behavior categories can be simultane-

ously assigned to one user review (as shown in Section 5.3). This is known as multi-label

learning in machine learning community. To solve this problem, we use state-of-the-art

machine learning methods to solve this problem. Meanwhile, we hope our approach can

work well on large-scale user review dataset. To satisfy this goal, we use the linear clas-

sifier, where the output classification decision is simply a weight vector that separates the

data points in the high-dimensional space.

Since support vector machine (SVM) has shown the state-of-the-art performance in

solving many real-world text mining classification problem, we use SVM with linear ker-

nel as the base classifier for solving the multi-label learning problem. More specially, we

96

use the multi-class SVM with linear kernel to solve the behavior categorization problem.

We use linear SVM also due to its simplicity, scalability and interpretability. For the ex-

act same reason, SVM classifier has been widely used in large-scale malicious web-site

detection [86] and drive-by-download attack detection [87], etc.

As in traditional SVM classifier, we use hing loss as the loss function, and enforce the

structural sparsity on feature space with LASSO regularization [88]. Meanwhile we con-

sider the label correlations among different behavior categories (e.g., data leakage category,

over-claimed permissions, etc). Given a set of n labeled data points {x
i

,y
i

}

n

i=1

, the goal of

training spare SVM is to find the projection matrix W 2 <

p⇥K , that minimizes

min

W

nX

i=1

(1�w

T

yi
x

i

+max

m 6=yi

w

T

m

x

i

)

+

+ ↵⌦
1

(W) + ↵⌦
2

(W), (5.1)

and ⌦

1

(W) =

P
k

m=1

kw

m

k

1

, ⌦
2

(W) =

P
ij

(w

i

)

T

(D � S)

ij

w

j

= Tr(WT

LW), where

the first term is the standard hinge loss function, the second term ⌦

1

(W) is the struc-

tural sparsity term which enforces the structural sparsity, and for i = 1, 2, · · · , n, m =

1, 2, · · · , k, W = [w

1

,w
2

,w
k

], where (x)
+

= max{x, 0}, and the third term ⌦

2

(W) is

added to eliminate the label correlations for different categories.

The first term measures how data is fit into the model given the separating surface

W, which is directly minimizing the training error. The second term regularization is

a penalty for projection W using `
1,1

-norm especially when W is large. Similar to `
1

regularization term, `
1,1

regularization tends to yield sparse weight for projection matrix

W, i.e., a relatively few feature weights are set to zeros. Parameter ↵ controls the trade-

off between the loss function term and regularization terms (i.e., second and third terms):

a large ↵ value will give the second and third term of Eq.(5.1) more weight relative to

the first term of Eq.(5.1), and hence yield a more sparse solution of W. The third term

⌦

2

(W) is to eliminate the label correlations for different categories. One key observation is

that some categories of security-related behaviors co-occurred frequently, thus the ⌦

2

(W)

regularization term is used to capture the relatedness between different labels. More details

are given in Appendix.

97

user
reviews

Label
(e.g.1, 2)

App-level
behavior
labeling ?

user
reviews

user
reviews

user
reviews

Review
Level

labeling

Label
(e.g. 2,3)

Label
(e.g.1)

Label
(e.g.1)

Crowd-
sourcing

Figure 5.3.: The framework of app-level security behavior inference engine: infer the app-level
labeling via crowdsourcing.

As solving the standard lasso problem, the iterative shrinkage method and L-BFGS

quasi-Newton method [27] are applied for solving the optimization problem of Eq.(5.1).

The convergence of the algorithm can be rigorously proved as that in [27].

5.6 App-Level Security Behavior Inference Engine (ALI)

The review-level security behavior inference model has annotated each review as 4

categories of security behaviors shown in Table. 5.1, which map the raw user review of

each app to a list of security labels. For example, take the mobile app “Pandora” as an

example,

user R. L.1 : ads. ; user N. O.: ads. ; user B. B: data leakage ...

Different users have labeled the same apps in different labels. A natural question that

follows is: what the final label at app-level in consideration of all users? We suggest using

the crowdsourcing techniques to aggregate the security-label from the user review level to

app-level. Crowdsourcing [49] is a technique to infer the true labels of a given item from

the annotations of multiple annotations/works, where the annotations are assumed to be

low quality and may contradict with each other. Although there may be substantial dis-

agreement among different annotators, we aim to learn from “crowds” to annotate the app

by considering different opinions. Note our task is not a traditional crowdsourcing prob-
1For privacy reason, we use the first letters of the first name and family name of the author.

98

lem, in which we model the mapping from user-reviews to app-level latent true labels as a

crowdsourcing problem, treating each user review labels as labels from works/annotators.

More formally, solving the app-level annotation problem by different users can be de-

scribed as follows in the context of crowdsourcing scenario. For each user u with re-

spect to app i, its reviews d

u,i

2 {0, 1}r is denoted as a r-dimensional set (r=4 in our

case) corresponding to 4 categories of security-related behaviors shown in Table. 5.1, i.e.,

d

u,i

= {d1
u,i

, · · · , dr
u,i

}, where r is the size of label set, and d`
u,i

is the binary auto annotation

result of the `th classifier for the review given by user u to app i, i.e.,

d`
u,i

=

8
<

:
1; if user u labels app i as label `

0; otherwise
(5.2)

Given all the above labels d
u,i

generated from different reviewers for each app i, we

need to learn a mapping which automatically projects the review-level labels

d

u,i

= {d1
u,i

, · · · , dr
u,i

}, (1 u m) to app-level security labels y
i

= [y1
i

, y2
i

, · · · , yr
i

], i.e.,

{d
u,i

} ! y

i

, where each y`
i

corresponds to one security behavior ` described in Table. 5.1

for app i.

5.6.1 Why Not Majority Voting?

One naive way is to treat all the users equally, i.e., simply trust all the users and combine

all the reviews’ comments no matter they are trustful or not. For example, if most of the

users say this app has “data-leakage” issue, then we say this app has “data-leakage” issue.

This is known as majority voting [49] in crowdsourcing.

To treat every user equally by averaging over the label of each user, the final label for

each app i will be: y`
i

=

1

m

P
m

j=1

d`
j,i

computed from users {1, 2, · · · , j, · · · ,m}.

By thresholding y`
i

, this method provides binary crowdsourcing result. One major prob-

lem with this method is that it treats each user equally hence the contribution of experts

would be overwhelmed by crowds’ less valuable opinions. In practice, some users are more

99

trustworthy while others may not be very responsible for their reviews, or even fraudulent

or deceptive.

5.6.2 Crowdsourcing by Giving More Credit to Trustworthy Users

In this paper, we use a two-coin [49] model to annotate the apps from user-review

level to app-level, which pays more credit on trustworthy users. More specifically, the

probability that a worker labels an app correctly is assumed to follow Bernoulli distribution,

one for the true positive label, and the other for negative. The major advantage of this

approach is that we can give a more accurate prediction of the security behavior for each

app by taking into account the credibility of difference users.

There are two cases. For a specific app i, we use ↵`

u

to denote sensitivity, i.e., a user u

would label this security behavior ` in an app under the condition that the security-behavior

` really exists; and we use �`

u

to denote specificity, i.e., a user u would give negative label

with respect to security behavior ` in an app under the condition that the security-behavior

does not exist. Using mathematical formulation,

↵`

u

= Pr(d`
u,i

= 1|y`
i

= 1), (5.3)

�`

u

= Pr(d`
u,i

= 0|y`
i

= 0), (5.4)

where i(1 i n) refers to each app, u(1 u m) refers to each user, and `(1

` r) refers to each label. Parameter ↵ = [↵`

u

], � = [�`

u

] can be learned from training data

using EM algorithm according to Maximum Likelihood Estimation (MLE) and y`
i

is then

computed via Bayesian rules.

According to the maximum likelihood principle, this approach maximizes the following

objective function: J(✓,y) = max

✓,y

h
ln Pr([d

u,i

]|✓,y) + lnPr(✓)
i
, where ✓ = {↵, �} is

the parameters as in Eqs.(5.3, 5.4), where ↵ denotes the probability that a user will assign

security label to a user review under the condition that the label is positive, and � denotes

the probability that a user will not assign security label to a user review under the condition

that the label is negative.

100

After a few steps of derivation via EM algorithm (see details in Appendix), finally,

app-level behavior y`
i

is expressed as:

yl
i

=

a`
i

Pr(y`
i

= 1|✓)

a`
i

Pr(y`
i

= 1|✓) + b`
i

Pr(y`
i

= 0|✓)
, (5.5)

where a`
i

is the likelihood of app i getting label `, b`
i

is the likelihood of app i not getting

label `, i.e.,

a`
i

=

mY

u=1

(↵`

u

)

d

`
u,i
(1� ↵`

u

)

1�d

`
u,i (5.6)

b`
i

=

mY

u=1

(�`

u

)

1�d

`
u,i
(1� �`

u

)

d

`
u,i , (5.7)

and Pr(y`
i

= 1|✓) is the prior probability for app i with label `, and Pr(y`
i

= 1|✓) =

1� Pr(y`
i

= 0|✓).

5.6.3 Determination App-level Behavior via y`
i

However, the probability value y`
i

is not directly useful for determination of app-level

behavior. Notice that, although we utilize crowdsourcing algorithm to aggregate review-

level labels to app-level labels, the review level labels are not really user annotation, but

from auto annotation with a trained classifier (in Section 5.2). The review given by users

are not originally annotations for our security issues. Therefore, the prior probability of

finding a user review mentioning one of the four security issues (in Table 5.1) is quite low,

even given the fact that the security issues exist for the app. This is easy to understand since

the user may not actually encounter the security issue when using the app, and may not give

a review after encountering the issue, or the review level classifier failed to recognize the

semantic meaning in the review. As a result, the probability value of y`
i

may not be taken

as the probability of the app having the security issues, but more as a security-risk ranking

score for comparing the security risk of the app having the issues against others.

101

In order to get a clear output for whether the app has the security behavior or not, a

threshold need to be tuned for each label to provide the binary prediction. This threshold

can be determined through active manual annotation, which is discussed in Section 5.7.

5.7 Experiment

In this section, we present the experiment result computed using AUTORBF. AU-

TORBF aims to bridge the gap between users’ understanding of apps and what the apps’

behavior really is. To evaluate the effectiveness of AUTORBF, we compare the behavior

inferred at both review-level and app-level against the app behavior labeled by human be-

ing. we make a quantitative study on the performance of the system. More specifically, we

design our experiment and answer the following two questions:

• RQ1: What is prediction performance using review-level security behavior inference

model?

• RQ2: Can we get the app-level security behavior annotation result via crowdsourc-

ing? What is the credibility of different users? Will users report the security prob-

lems?

Towards this goal, we first crawled the user-review dataset from Google Play via re-

verse engineering the service protocol. Then, using the crawled dataset, we evaluate the

performance of our approach on review-level and app-level1.

5.7.1 Data Collection

We collected our dataset from Google Play. On Google Play, a user’s reviews about

apps that he/she used are publicly available. Once we obtain the Google ID of a user, we

can locate all apps the user has reviewed. Therefore, we can obtain a list of Google user IDs

and write a crawler to retrieve all rated apps of these users. Moreover, for each retrieved

app, we crawled its reviews from Google Play. The crawler was written in python.
1To encourage this line of research, we plan to make our dataset publicly available soon.

102

We evaluate the performance of review-level app behavior inference problem on one

dataset collected during November 2013, containing 19, 413 user reviews from 3, 174 apps

from Google play. This dataset is annotated manually by two graduate professionals in two

months. Each user review is given a label by two annotators. If the two annotators reach

a consensus, the user review is labeled as a specific label. Otherwise, the two annotators

will discuss and reach a consensus on the controversial user reviews. Each user review was

labeled with either one (or several) of the four labels described in Table. 5.1, or none of the

above four labels. The annotation was conducted with expectation to respect the meaning

of the reviews themselves rather than the actual app behaviors. We refer this dataset as L

since it is manually labeled by human being. The statistics of dataset L is listed in Table. 5.2

Table 5.2.: L Dataset details to validate the review-level security behaviors. The Mean, Max and
Min are statistics for the number of reviews for per app. The mean number of review per app is
small because we already filtered out those review with over 3 ratings, which are the majority of
them.

Dataset #app #Review Mean Max Min
L 3,174 19,143 6 4,500 1

Moreover, we collect another data to validate the effectiveness of our approach on app-

level security behavior inference problem. This dataset is collected through December 2013

to May 2014, containing 12, 783 apps with 13, 129, 783 reviews from 2, 614, 186 users.

However, this dataset shares no intersection with the apps in dataset L. We refer to this

dataset as dataset D. However, for this dataset, we did not hire enough labor to manually

label this dataset, and get the ground truth of security behaviors with respect to each app.

The good thing is that we can directly use this dataset to compare the differences between

the results of code analysis and review analysis. Table 5.3 summarizes the basic statistics

of this dataset. In addition, Fig. 3.1(a) shows the distribution of number of apps over the

number of reviews we get and the distribution of apps over the 5 rating values from the

reviews. Note that, the peak at 4000 is artificial, due to the fact that our crawler is set to

only crawl the first 4, 000 reviews for each app. It is clear that most users tend to give high

103

ratings to the apps once they decide to give the reviews. This, however, also means that

most of the reviews are not valuable for our purpose of detecting security issues.

Table 5.3.: D Dataset details to validate the app-level security behaviors. The Mean, Max and Min
are statistics for the number of reviews for per app. The max number of reviews (4, 000) is artificial,
because our web crawler is set to crawl only the first 4000 reviews for each app.

Dataset #app #Comment #User Mean Max Min
D 12,783 13,129,783 2,614,186 1,027 4,000 1

We next describe our evaluation results to demonstrate the effectiveness of AUTORBF

in identifying review-level and app-level security behaviors.

5.7.2 RQ1: Review-level Security-behavior Inference

To answer RQ1, we quantify the effectiveness of AUTORBF on review-level security

behavior inference.

Experiment setting

The evaluation of the proposed review-level classification is conducted on annotated

dataset L. As a supervised method, a training set is required for training the model. The

whole dataset set is randomly split in a 50%/50% manner into a training set with 10, 893

reviews and a testing set with 8, 520 reviews. This splitting is based on app-level, so the

reviews for the same app can only be in training or testing set altogether and the number of

reviews in the two sets are not even.

In solving the optimization problem for security behavior inference, a five-fold cross

validation method is adopted for finding the best ↵s in training set. For semantic expansion,

TF-IDF features with cosine similarity is adopted for the retrieval model and Lemur2 is

used as the actual tool for the word retrieval. Time constraint is enforced to prevent review

expansion with “future relevant” reviews. The indexes of retrieval model are built for the

two sets separately so that the model parameter like document number and IDF values will

not interfere between sets. The mixture ratio ↵ and the size of “relevant” document set R
2
http://www.lemurproject.org/

104

for the expansion are fixed by using five-fold cross validation in training set for each label

along with the scope. The size of R is selected from {1, 3, 5, 10}.

Evaluation Measurement The metric used for evaluation is precision, recall and F1 value.

Let the number of true positives, false positives, true negatives, and false negatives be TP ,

FP , TN and FN , respectively w.r.t. a classifier. TP indicates that AUTORBF correctly

labels the review as a security issue if the review is. FP indicates that AUTORBF incor-

rectly labels a review as a security issue if the review is not. TN indicates that AUTORBF

correctly labels a review as a non-security issue if the review is not. FN indicates that

AUTORBF incorrectly labels a review as a non-security issue if the review is.

The precision metric is defined as Precision =

TP

TP+FP

, and the recall metric is Recall =
TP

TP+FN

. The F
1

measure is the harmonic mean of precision and recall, i.e., F
1

=

2TP

2TP+FP+FN

,

and accuracy is, Accuracy =

TP+TN

TP+FP+TN+FN

. Larger values of these metrics suggest bet-

ter classification results. Thus the values of these metrics indicate how well the security

behavior inference result matches with the human annotated result.

Experiment result analysis

Table. 5.4 shows the performance of our method in identifying different categories of

security issues. The results indicate that, out of 8,520 reviews, AUTORBF effectively

labels the security-related behaviors with the average precision, recall, F1 score, accu-

racy of 80.10%, 82.46%, 81.26%, 94.05%. After carefully looking at different categories

of security-related behaviors, we find that AUTORBF can identify “spamming”, “over-

claimed permission” and “data leakage” issues at the average precision of 83.84%, 78.25%,

77.97%, respectively, and at the average accuracy of 91.96%, 95.99%, 93.46%, respec-

tively. This confirms the effectiveness of using semantic expansion approach and advanced

machine learning classifier in AUTORBF.

An exceptional case is the detection of security issues related to “finance”, the precision

of which is not as high as the above three categories. When we check the users’ reviews,

we find that the false positives and false negatives are higher than those computed from

other security categories. We find that many users actually do not complain the “financial

issue”, but their reviews are labeled as “financial issues”. Also, some users complain the

105

“financial issues” without using any words related to “buy, purchase, pay, paid, etc”, which

misleads AUTORBF in making a wrong decision.

Comparisons against the key-words based approach

For comparison purpose, we also apply key-words based approach as a baseline to show

the necessity of using the proposed semantic expansion techniques and advanced machine

learning method used in AUTORBF. A number of key-words are manually selected for

each security label as sampled in Table 5.6, and this approach predicts all reviews that

contain at least one of the key-words to be positive for the underlining label. Note that,

these keywords are stemmed 3 in pre-processing, so that the words from same origin may

be matched to each other. Follow the same evaluation measurement used in AUTORBF,

we compute TP, FP, FN, TN, Precision, Recall, F1, Accuracy, and summarize the results in

Table 5.5.

We then compute the performance improvement in using AUTORBF against the key-

word based approach. Let OPrecision,Orecall,OF1,OACC be performance difference be-

tween our approach and key-word based approach. Table 5.7 shows the comparisons of dif-

ference in identifying security issues between AUTORBF and key-word based approach.

For all four categories and overall performance, AUTORBF gains significant performance

improvement in terms of precision, F1 and Accuracy. We observed that the recall of our ap-

proach is generally lower than key-word based approach because our approach has higher

false negatives. However, the key-word approach has extremely high false positives since

many user reviews that include sensitive words do not necessarily cause security-related is-

sues. Considering the tradeoff between the precision and recall, our approach outperforms

key-word based approach significantly, i.e., an average of 46.48% performance improve-

ment in terms of F1, and an average of 51.36% performance gain in terms of accuracy.
3
http://en.wikipedia.org/wiki/Stemming

106

5.7.3 RQ2: app-level Security Behavior Inference

Now we are ready to present our analysis result in terms of different security issues on

app-level.

Experiment setting

Based on the trained classifier from the review level experiment, e.g., the classifiers

evaluated in Table 5.4, all reviews in dataset D are automatically annotated with the four

labels. We apply the crowdsourcing algorithm introduced in Sec 5.6 to generate app level

result Y for each app in D, while evaluating the user credibility of the users in D.

Experiment Results

In order to determine the thresholds for the four label, we labeled about 50 apps for each

label and tuned the thresholds to best classify those labeled apps. These apps are randomly

selected from those apps that have (y`
i

) at the range of [mean(y`
i

) � std(y`
i

),mean(y`
i

) +

std(y`
i

)], where mean(y`
i

) is the average values of y`
i

, and std(y`
i

) is the standard deviation

of y`
i

.

In this way, we get all the security labels for each app at app-level. For example,

CallToPark is a web app that aims to make personal payment and account management

faster. y`
i

values computed from crowsourcing approach (Sec 5.6) is:

[0; 0.997; 0.002; 0.003],

corresponding to four categories of security issues of spamming, financial, over-claimed

permission and data leakage. The results indicate it has 3 security issues (i.e., financial,

over-claimed permission and data leakage) out of four. The serious degrees of security

issues are reflected by these numbers. The greater numbers indicate the more serious secu-

rity issues from user perspective, such as more complains and dissatisfaction. Due to space

limit, we did not show more quantitative results with respect to each app.

Analysis of user credibility

107

A by-product of crowdsourcing in AUTORBF is the learned parameters for each user,

indicating how reliable the user’s reviews are in our system. Figs. 5.4, 5.5 show the distri-

bution of the number of users based on the trained parameters.

The distribution of number of users over the learned ↵ values shows three peaks (Fig. 5.4).

The middle peak is around 0.5 which is the manually set prior value. In fact, this peak

is the expectation of the distribution, indicating the behavior of majority users.

The lower peak shows the users that are less likely to report the issues in reviews, hence

are given less credibility, therefore contribute less in the crowdsourcing process. These

users may be more focusing on the functionality and attractiveness over the security issues

of the app, or they simply do not want to pay the effort of reporting the issues.

The higher peak shows the users that are much more likely to report a security issue.

They are considered as experts and their reviews are considered with high weights in the

crowdsourcing process. These users are sensitive to those four security issues and are more

willing to report them once they found them.

The distribution of user over the learned � values (Fig. 5.5) shows not much informa-

tion, compared to the one for ↵. Although ↵ and � looks symmetric in Eqs.(5.3, 5.4),

they are in fact quite different in data. Users are not obligated to report security issues in

reviews, and their default behavior is to report nothing. Therefore, �, as the value of the

probability of report nothing when the app do not have the issues, has a very high expecta-

tion with lower variance. As a result, the distribution for � has a clear tendency towards 1,

and the three peaks are less obvious than ↵ (note that the number of users is in log scale,

the peak near 1 is actually much more significant).

It is worth noting that, the parameters are learned based mainly on how well the users’

opinions match the majority. It does not reveal the exact reason why the credibility is low

for some user. So we are not considering those users with low credibility as fraud users, it

is just that their opinions carry less value for these four underlining security problems and

it is perfectly fine for users not reporting any of the issues in reviews.

108

Figure 5.4.: Distribution of learned ↵ parameters for number of users in log scale.

Figure 5.5.: Distribution of learned � parameters for number of users in log scale.

This also shows the reason why we use the so-called two-coin crowdsoucing model

instead of the simple majority voting in crowdsourcing precess. With the distinguishing of

different types of users, the app level result would be much more reliable.

5.8 Behavior Gap between AUTORBF and Code Analysis

The analysis results from user reviews reflect users’ understanding and perception of

security issues. Different users have exhibited different security concerns depending on

personal preference. In the app-level crowdsoucing results, we can get the crowdsourcing

results for each app. For each app, based on the statistics from different users, one can see

how many users have complained one security concern, and how many users never mind or

109

simply do not notice the security concern. And it is hard to say which user is right or which

user is wrong. We can only say different users have different preference to report different

security concerns.

The results from both static analysis (e.g., [14] [7] [75] [76]) and dynamic analysis

(e.g., [77] [78] [79] [80]) can reflect the code inherent structures and behaviors objec-

tively, although sometimes incomplete, due to the inherent limitations of static analysis

and dynamic analysis (e.g., undecidability of static analysis, non- coverage characteristic

of dynamic analysis, etc). However, it is not enough to reflect how users’ real security con-

cerns during using the app. Generally, users have different psychological expectations for

different apps, and do not necessarily worry about the same security issue [73]. Our study

provides the quantitative study result to understand the security concerns of different users,

and also the credibility of users. The security issue inferred at app-level via crowdsourcing

reflects the psychological needs of users, and is really something that users are worried

about.

Thus, in our evaluation, we first make a comparative analysis of the “subjective” re-

sults from user behavior inference via crowdsourcing, against the objective results from

code analysis. After that we analyze why these differences exist using case study. In the

following, we will analyze four categories of security behaviors one by one.

5.8.1 Spamming

Spamming here refers to both foreground and background ads and spamming behaviors,

including Ads in notification bar, ads via email, ads via SMS, Pop-up ads, Fishing, etc. Ads

libraries in Android ecosystem offer developers solutions for monetizing the apps by dis-

playing ads to users. Over half of the apps in Google play include an ad or ads library [14].

The ads libraries communicate with the ads network to get and show proper ads, based on

the app context and personalized user information (such as location, context, etc). Many

ads libraries collect users’ personal information, by which they do target ads, which results

in serious security concerns.

110

Most (if not all) of the users dislike advertising practices, although some users may not

realize that ads cause security risks. In AUTORBF, we infer the ads spamming behavior

from the users’ reviews.

From code analysis view, different mobile apps embed different ads libraries. We use

the methods proposed in [89] as a guideline to implement our own analysis tool to extract

the ads-library used in a mobile app. We first manually investigate the usages of the most

popular 100 ads libraries [89] to identify the usage signatures of each ads library in a

mobile app, and then we automatically extract the list of ads libraries used by a mobile app

by searching the decompiled code of the app using signature matching. Through this, we

can get a list of ads library used by each app.

We compare the results of “spamming analysis” from running ads library analysis tool

and AUTORBF on apps in dataset D, while on 67.5% apps, ads analysis indicates that the

app uses ads and AUTORBF agrees, on 32.5% apps, ads analysis indicates that the app

uses ads but AUTORBF disagrees. This implies that the set of the app that has “spamming

” security issues AUTORBF detected is only a subset of that of ads library analysis.

Further, we make a case study on two specific apps.

� Example 1: Pandora internet radio

Pandora is a free, personalized radio that allows users to play music that he/she loves,

and helps users to discover new music and enjoy old favorite songs, artist, composer, etc.

In this example, ads analysis indicates the app Pandora uses ads, and the AUTORBF

agree. Many reviews have claimed there are too many ads! From the review-level and

app-level analysis results, we can easily verify it. For example, one reviewer’s review1

“Too many annoying ads I may not have noticed the ads as much if they didn’t play the same 3

irritating ads every 3-5 songs. Switching to iHeartRadio’s much much better ad-to-song ratio.”

� Example 2: Yelp

The free Yelpmobile app is one of the most popular apps that search for business (e.g.,

restaurant, bars, coffee, teas, etc) around you. When we do ads analysis, the result indicates

that Yelp uses the ads library com.google.ads. However, AUTORBF disagrees.
1Due to privacy reason, we omit the name of the review.

111

Most of the users give very high-recommendation for this app, and it has an overall score

of 4.3. An example of review is shown below.

“Yelp is the best Before going ANYwhere, I first check it out on yelp. Nail salons, restaurants,

coffee shops, liquor stores, anything! I trust my fellow yelpers to give me the honest truth, and that’s

why yelp is the best. Plus the app makes it incredibly easy to get directions, write a review, and find

out what’s good in your area all from your phone!”

Very interestingly, almost none users complain the “spamming” issue especially ads for

Yelp. Yelp itself can be viewed as a “spmming ads”, which always helps you to discover

great local businesses, and search for nearby restaurants, shops, services, etc. It is natural

that no users will take it as an ad.

F Lessons Learned Given the ads library used by apps, why user complains about

some apps but not others? The ads detection task defined in ads analysis from code analysis

perspective may not comply with what users really feel about the ads.

5.8.2 Financial Issue

There are external issues that bother users’ experience and cause security concerns that

are beyond the running app in users’ device. These issues mainly involve the web services

used by the running apps to facilitate their functionalities. In this paper, we focus on one

type of external issues that may cause financial problems to users. We define the financial

issues as those complains about In-App-Purchase (IAP), free app to premium update and

others that cause the users actual money lost in external context other than the running apps.

For example, user may pay for IAP or upgrade but get nothing as described, a bank app

may transfer money for user but only deduction happened without deposit. There issues

may caused by program bugs but also by intentional fraud. Therefore it would be quite

important that we can find a way to detect them.

From code analysis perceptive, there is almost no way to clearly detect the financial

issue even if your account information is sent out of the phone. We are aware that flow

112

and dynamic analysis (e.g., taintdroid [79], flowdroid [83], droidbox1, etc) can potentially

detect the users’ banking account information going out of the phone through taint analysis

and running the app in a virtual controlled environment. However, even if users’ account

information is leaked, we cannot say that financial issue really happens. In contrast, based

on user review analysis, we can get evidence/clues of how financial problems occurred.

Examples related to IAP and free to premium are shown below.

� Example 1: Cases for IAP

“I baught $2.00 in papaya’s and I never got them. In really mad about it. I’ve spent a lot of

money on this game. If I get what I paid for I will retract my statement but until then no”

“I paid for the year subscription and a week later I was getting notifications that my subscription

was almost up. And a few days the app stopped working. So I emailed the developer to fix this and

he never got back to me. So now I wasted my money on this app I can’t even use. This is staying a

one star until it’s fixed.”

“My weapons that I purchased have dissapeared. I payed real money! ”

“I use to love this game ...having been playing it for years but recently I started purchasing coins

with my credit card and never received them but I call and check my balance and the money has

been deducted from my account....thieves ”

� Example 2: Cases for free to premium

“So angry!! Paid for this app and it hardly worked for the 1st day then the second day it stopped

working completely!! The developer wont reply to my emails so basically my money has been

stolen by this developer!! Btw the free version of this works fine as soon as you buy it boom it stops

working!!! Think the developer is trying to take the Mick of people who buy this!!”

“Paid for the premium one but was unable to download videos. Very upset as money wasted.”

F Lessons Learned Running app is only part of the user experience, which may be

partially or fully investigated by code analysis (including static flow analysis and dynamic

analysis). However, there exits environmental or external factors that matters too. For

those factors, user review serves as a better and more complete source for analysis. For the

security behavior related to app environment, it cannot be inferred from code analysis. We
1
https://code.google.com/p/droidbox/

113

believe there are also other external issues that are only detectable from user reviews but

not code analysis. Due to space limit, we did not show more examples here.

5.8.3 Over-claimed Permission

In Android system, there are more than 170 permission which are request by users

to access the phone hardware, settings, user data like location, contact, photos, account,

etc. More permission than expectation here refers to the app request more permission than

users’ expectation. It has subtle difference from the “over-claimed permission”. When

we say “over-claimed” permission, it indicates that the app requests more permission as

compared to the permissions that are actually used during the running of the apps, which

is from app developers’ perspective. What we mean, however, is from users’ expectation

perspective. As long as users do not think that the app requests more permissions than

his/her expectation, we believe that this app does not request too much permission.

From code analysis view, we can get the truly called permissions by an app through

static analysis. Specifically, we firstly decompile the apk files of a mobile app and obtain

the function call graph (FCG) of the app. Then we traverse the function call graph (FCG)

to trace any functional call that invokes permission check. By doing so, we are able to

obtain the real permission that is used in an app. More details about how to identify used

permission in a mobile app can be found in [4].

We compare the results of “more permission than users’ expectation” from running

AUTORBF on apps in dataset D, against the “over-claimed” permission by running static

analysis tools on mobile apps, while on 58.5% apps, code analysis indicates the app has

over-claimed permission and AUTORBF agrees the app requests “more permissions than

users’ expectation”; and on 41.5% apps, code analysis indicates the app has over-claimed

permission but AUTORBF disagrees that the app request “more permission than users’

expectation”. The numerical value further implies that the two goals are not aligned.

� Example 1: Angry Birds

114

The free Angry Birds mobile app is a video game franchise created by Finnish

computer game developer Rovio Entertainment, and is called “one of the most mainstream

games out right now”1. When we do code analysis, the result indicates that the permission

location is not necessarily needed in function calls. However, in AUTORBF result, al-

most no users complain that it requests too more permission than expectation. An example

of review is shown below.

“Excellent Game I enjoy playing this awesome game as it’s cool with good graphics and back-

ground sound but ads videos anoying me. Also sometimes I feel boring whenever I have to replay

again and again to cross the levels. Overall, it is exciting game......”

� Example 2: dictionary

The free dictionary.com mobile app is the top 1 fee English dictionary app since

2010 with over 2,000,000 definitions and synonyms. When we do code analysis, the re-

sult indicates that the permission location is really accessed in FCG. However, from

user’s perspective, there is no need to access location for an online/offline dictionary. In

AUTORBF result, some users complain it requests users’ location and media file

resources. An example of review is shown below.

“Too much information Why do you need my location and media files? Access to the internet

I understand but this is ridiculous! My pictures and my mic are an invasion of privacy, especially

since this is a DICTIONARY!!”

F Lessons Learned Whether the permission is over-claimed depends highly on what

the expectation the users have on the app. Code analysis (including static analysis and

dynamic analysis) may not be able to grab the expectation, from the users’ mental needs.

5.8.4 Data leakage

“Data leakage” refers to access sensitive information without user acknowledgement.

For example, an app may access users’ account, location, contact, media file, phone number
1
http://www.digitaltrends.com/gaming/

israeli-angry-birds-satire-goes-viral/

115

without asking for users’ consent, such that users’ personal information are already sent out

of the phone.

From code analysis view, we can get the truly accessed resources by each app from

static analysis on the flow of app (e.g., flowdroid [83]) or dynamic analysis (e.g., taint-

droid [79], etc) to capture the running time behaviors. Specifically, we run the dynamic

analysis tool to analyze the dynamic behaviors of mobile apps, which emulates the actions

of user interaction, incoming calls, SMS messages, I/O file read/write, network operations,

telephone records (such as IMEI,IMSI, MSISDN, etc). By doing so, we are able to obtain

the resources that the app accessed during running.

We compare the results of “data leakage” from running AUTORBF on apps in dataset

D, against “access sensitive personal data via network traffic. file writes, and SMS texts”

by running the dynamic analysis tool; while on 73.5% apps, code analysis indicates the app

has accessed sensitive personal data and AUTORBF agrees that the app requests “access

sensitive data” and on 26.5% apps, code analysis indicates the app accesses sensitive data

but AUTORBF do not.

� Example 1: Accuweather

The free Accuweather mobile app is one of the leading minute-by-minute weather

forecast, and the weather report can be localized to your exact street address. When we do

code analysis, the result indicates that it accesses photos/media/file, and has the potential

of file read/write activity on devices, resulting in “data leakage” behaviors. However, in

AUTORBF result, most (if not all) of the users have very high recommendation for this

app, and does not classify it as “data leakage”. From users’ perspective, most of the users

trust it. An example of review is shown below.

“Reliable 100% and accurate 85%, Why? (read comment below) Therefore I rate this app

100% to anyone, one tiny problem it cannot find my location with is ST FRANFIS BAY Eastern

Cape South Africa! It can find cape st Francis but that about 10/15min away! ”

� Example 2: Aroundme

The free Aroundmemobile app is an app which consistently shows you a complete list

of all the businesses such as nearest bank, bar, gas station, hospital, hotel, movie theatre,

116

restaurant, etc. When we do code analysis, the result indicates that it accesses many per-

sonal data, such as location, photos/media/files, and these information are probably sent out

of the phone. In AUTORBF result, it labels aroundme as “data leakage”, because from

user’s perspective, it consistently requests some resources such as location. An example of

review is shown below.

“ Always search for current location ... Though GPS on this app prompts for setting. I hate

this nonsense bull sheet app. 2ndly When change the units still it shows yards ... Works crazy with

Android... ”

F Lessons Learned We can find whether the app accessed the users’ personal data,

e.g., location, account, contact, etc through code analysis. However, we do not know

whether the users feel comfortable if their personal information are accessed, and even sent

to the third-party. From users’ perspective, AUTORBF can capture users’ expectation and

psychological needs.

5.8.5 Summary & Insight

Although deep analysis from code perspective can be applied before the apps are put

into the app store, user reviews are more like an update of the previous security analysis

on the app. It is an important complementary analysis to previous analysis of app such as

static and dynamic analysis due to the fact that:

• The user reviews reveal how the users feel about the experience, but not what really

happened. Users’ expectation plays a big role on how much the users can tolerate the

apps’ behavior, as show in the case of different apps likes aroundme, angrybird,

dictionary, yelp, etc. Similar app behaviors may receive different responses

from users.

• External factors of the app-using behavior are much easier revealed by user reviews.

• Privacy issues are relative and personal. The borderlines between privacy-intruding

and tolerable misbehavior are fuzzy and depend highly on users’ subjective expecta-

117

tions. Hence user review may provide an important complementary source for deter-

mining the threshold based on the objective app behavior revealed by code analysis.

5.9 Conclusion

In this paper, we propose the system AUTORBF that understands the review-to-behavior

fidelity in Android apps, i.e., it can infer the mobile app security related behaviors from the

apps’ reviews from different users via crowdsourcing. Our novel learning-based algorithm

and advanced crowdsourcing techniques are able to mine the relationships between user

reviews and app security behaviors. To our knowledge, AUTORBF is the first work that

has the capability to accurately detect the apps’ security behaviors from user reviews. In in-

ferring four categories of security related behaviors from user reviews, our system achieves

the average accuracy as high as 94.05%. We also get credibility for different users at app-

level behavior prediction. Our study provides valuable insights and quantitative analysis in

understanding the app behaviors from the users’ view.

118

Ta
bl

e
5.

4.
:

Ev
al

ua
tio

n
on

di
ff

er
en

tm
et

ric
s

in
A

U
T

O
R

B
F.

#
si

ze
de

no
te

s
th

e
nu

m
be

ro
fp

os
iti

ve
sa

m
pl

es
w

ith
re

sp
ec

tt
o

th
e

la
be

l,
an

d
A

C
C

de
no

te
s

ac
cu

ra
cy

.

La
be

l
#

si
ze

TP
FP

FN
TN

Pr
ec

is
io

n
R

ec
al

l
F1

A
C

C
sp

am
m

in
g

2
,7
8
8

2
,5
7
4

4
9
6

2
1
4

5
,2
3
6

8
3
.8
4
%

9
2
.3
2
%

8
7
.8
8
%

9
1
.6
6
%

Fi
na

nc
ia

l
5
7
8

3
3
7

1
7
9

2
4
1

7
,7
6
3

6
5
.3
1
%

5
8
.3
0
%

6
1
.6
1
%

9
5
.0
7
%

O
ve

r-
cl

ai
m

ed
Pe

rm
is

si
on

7
1
1

5
1
1

1
4
2

2
0
0

7
,6
6
7

7
8
.2
5
%

7
1
.8
7
%

7
4
.9
3
%

9
5
.9
9
%

D
at

a
le

ak
ag

e
1
,2
5
8

9
7
7

2
7
6

2
8
1

6
,9
8
6

7
7
.9
7
%

7
7
.6
3
%

7
7
.8
2
%

9
3
.4
6
%

Su
m

5
,3
3
5

4
,3
9
9

1
,0
9
3

9
3
6

2
7
,6
5
2

N
/A

N
/A

N
/A

N
/A

A
ve

ra
ge

N
/A

N
/A

N
/A

N
/A

N
/A

8
0
.1
0
%

8
2
.4
6
%

8
1
.2
6
%

9
4
.0
5
%

119

Ta
bl

e
5.

5.
:

Ev
al

ua
tio

n
on

di
ff

er
en

tm
et

ric
s

us
in

g
ke

y-
w

or
d

ba
se

d
ap

pr
oa

ch
.

#
si

ze
de

no
te

s
th

e
nu

m
be

ro
fp

os
iti

ve
sa

m
pl

es
w

ith
re

sp
ec

tt
o

th
e

la
be

l,
an

d
A

C
C

de
no

te
s

ac
cu

ra
cy

.

La
be

l
#

si
ze

TP
FP

FN
TN

Pr
ec

is
io

n
R

ec
al

l
F1

A
C

C
sp

am
m

in
g

2
,7
8
8

2
,7
8
0

5
,6
1
9

8
1
1
3

3
3
.1
0
%

9
9
.7
1
%

4
9
.7
0
%

3
3
.9
6
%

Fi
na

nc
ia

l
5
7
8

5
4
9

3
,2
8
2

2
9

4
,6
6
0

1
4
.3
3
%

9
4
.9
8
%

2
4
.9
0
%

6
1
.1
4
%

O
ve

r-
cl

ai
m

ed
Pe

rm
is

si
on

7
1
1

7
0
6

6
,0
1
2

5
1
,7
9
7

1
0
.5
1
%

9
9
.3
0
%

1
9
.0
0
%

2
9
.3
8
%

D
at

a
le

ak
ag

e
1
,2
5
8

1
,1
7
2

4
,4
9
0

8
6

2
,7
7
2

2
0
.7
0
%

9
3
.1
6
%

3
3
.8
7
%

4
6
.2
9
%

Su
m

5
,3
3
5

4
,3
9
9

1
,0
9
3

9
3
6

2
7
,6
5
2

N
/A

N
/A

N
/A

N
/A

A
ve

ra
ge

N
/A

N
/A

N
/A

N
/A

N
/A

2
1
.1
6
%

9
7
.6
0
%

3
4
.7
8
%

4
2
.6
9
%

120

Table 5.6.: Sampled key-words used in “Key-word based approach”.

Label key-words
spamming ad, spam, notif, advertis, ad-

vert, spammi, add, money, se-
cur, push, etc

Financial text, deduct, sm, bought,
paid, took, privat, txt, taken,
charg, purchas, etc

Over-claimed Permission permiss, access, money, read,
info, privaci, regist, camera,
need, want, contact, requir,
ask, locat, data, internet, re-
quest, credit, email, call, nec-
essari, etc

Data leakage permiss, privaci, info, hack,
access, contact, money,
fool, lie, id, ground, inform,
lockscreen, steal, wit, wall,
camera, data, requir, phish,
internet, licenc, locat, etc

Table 5.7.: Performance difference between our approach and key-word based approach. O indi-
cates the performance difference in terms of different metrics.

Label OPrecision O Recall OF1 OACC
spamming 50.74% �7.39% 38.18% 57.70%
Financial 50.98% �36.68% 36.71% 33.93%
Over-claimed
Permission

67.74% �27.43% 55.93% 66.61%

Data leakage 57.27% �15.53% 43.95% 47.17%
Average 68.94% �15.14% 46.48% 51.36%

121

6 SUMMARY

The works of this dissertation is motivated to explore new ways in managing the security

and privacy issues in the thriving Android platform. With machine learning as our weapon,

we conducted a series of data-driven researches on different Android app related security

issues. These researches approach from two directions: direct analysis of the Android app

and indirect analysis from user comments.

6.1 Direct Analysis

Our direct analysis approach focus on malicious app detection and propose to use prob-

abilistic discriminative model to improve the performance and decompiled source code of

the app as information source. This results in a over 95% F1 score and is a huge improve-

ment from previous work.

The limitation of this work comes from several aspect.

• Data-driven means the performance relies on the training data. Although this ap-

proach use function name occurrence as feature and would be more robust on mali-

cious code variants than exact code piece signature based methods, it will not guar-

antee to response to new threat until retraining.

• This is a static analysis, so it will not defend against runtime change of code logic by

the Reflection feature in Java and the alike. This technique is best used for screening

of apps before more complicated code analysis including expensive dynamic analy-

sis.

122

6.2 Indirect Analysis

Our indirect analysis approach makes use of the user comments to extract relevant top-

ics, then evaluate the app based on that. This is a new line of work that has not been

explored yet. We collected user comment dataset and did annotation with a designed label

set with consideration of both the scenario and the nature of the security issues. A topic

extraction method is provided to extract security topics regarding the labels from use com-

ments. Then the topics of each comments are used in evaluating the apps’ security risk.

By treating these extracted topics as user annotation to the app, we applied crowdsourc-

ing technique to accumulate topics from user comment level to app level while estimate

user credibility in commenting apps with respect to different security topics. Finally, we

evaluate the apps’ security risk by a learning to rank process, leveraging app level security

topics and features. Moreover, in order to improve the performance, we developed a joint

optimization method to jointly train both the crowdsourcing and learning to rank model

and get about 7% improvement in terms nDCG metric.

Further effort are done to compare the user comment based indirect analysis to tradi-

tional code analysis based direct analysis on multiple security issues of Android apps. We

confirmed that the new user comment based indirect analysis would be a necessary compli-

mentary means in solving Android app security issues due to the following observations:

• User comment based method may cover some issues that direct code analysis may

not or are hard to deal with. For example the IAP issue that is heavily related to

server side behavior other than apps on the smart phone.

• User expectation plays a important role in mobile app privacy issues. Whether an app

is using Ads abusively or whether a permission should be granted, these questions

are not just technical issues but also very much depend on user expectations of the

underlining app. And user comment based analysis may shed some light on what

user expect from the apps.

• Objectives misalignment between code analysis and user comment based analysis.

For example, in the case of over-claimed permission issue, it is natural for code

123

analysis to set task to find mismatch between the permissions claimed and the per-

missions in use. But from the users’ perspective, one may argue that claim an unnec-

essary permission is bad, actually using it is worse. The “over-claimed” may mean

the mismatch between the claimed permission and the user expectation of the app.

As a new direction of work, limitations are inevitable but also point out future direc-

tions.

• Comment spamming remains a problem for user comment based analysis. Unreliable

user comments render all analysis built upon them untrustworthy. Therefore it would

be necessary to explore user credibility from user intention perspective (anti-spam)

instead of user ability. Making use of meta-data of the comment posting activity may

be greatly helpful in identifying spam user and separate their comments from the

evaluation of the app. Based on experience from other anti-spam works (email spam,

Twitter spam, etc.), this seems to be a start.

• Our current auto labelling method has not been using the most state-of-the-art Natural

Language Processing (NLP) technique for identifying user opinion. By incorporating

some well studied NLP method, the performance of user comment labelling could be

improved, hence improving the evaluation of the apps’ security.

124

Related Publications

The material in this dissertation is mainly based on the papers listed below, which have

already been published to conference or workshop proceedings.

• Deguang Kong, Lei, Cen, Hongxia Jin. AUTOREB: Automatically understanding

the review-to-behavior fidelity in Android applications. CCS, 2015

• Lei, Cen, Deguang Kong, Hongxia Jin, Luo Si. Mobile app Security Risk Assess-

ment: A Crowdsourcing Ranking approach from User Comments. SDM, 2015.

• Lei Cen Luo Si, Ninghui Li, and Hongxia Jin. User comment analysis for An-

droid apps and CSPI detection with comment expansion. In SIGIR 2014 workshop:

Privacy-preserving Information Retrieval, 2014.

• Lei Cen, Chris Gates, Luo Si, Ninghui Li. A Probabilistic Discriminative Model for

Android Malware Detection with Decompiled Source Code. In TDSC, 2014.

REFERENCES

125

REFERENCES

[1] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul Potharaju,
Cristina Nita-Rotaru, and Ian Molloy. Using probabilistic generative models for rank-
ing risks of Android apps. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, pages 241–252, New York, NY, USA, 2012.
ACM.

[2] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mobile
phone application certification. In Proceedings of the 16th ACM Conference on Com-
puter and Communications Security, CCS ’09, pages 235–245, New York, NY, USA,
2009. ACM.

[3] Bhaskar Pratim Sarma, Ninghui Li, Chris Gates, Rahul Potharaju, Cristina Nita-
Rotaru, and Ian Molloy. Android permissions: A perspective combining risks and
benefits. In Proceedings of the 17th ACM Symposium on Access Control Models and
Technologies, SACMAT ’12, pages 13–22, New York, NY, USA, 2012. ACM.

[4] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner. An-
droid permissions demystified. In Proceedings of the 18th ACM Conference on Com-
puter and Communications Security, pages 627–638. ACM, 2011.

[5] Alexander Genkin, David D. Lewis, and David Madigan. Large-scale Bayesian lo-
gistic regression for text categorization. Technometrics, 49(3):291–304, 2007.

[6] Qifan Wang, Luo Si, and Dan Zhang. A discriminative data-dependent mixture-model
approach for multiple instance learning in image classification. In Proceedings of the
12th European Conference on Computer Vision, ECCV ’12, pages 660–673. Springer,
2012.

[7] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang.
Riskranker: Scalable and accurate zero-day Android malware detection. In Pro-
ceedings of the 10th International Conference on Mobile Systems, Applications, and
Services, MobiSys ’12, pages 281–294, New York, NY, USA, 2012. ACM.

[8] A.-D. Schmidt, J.H. Clausen, A. Camtepe, and S. Albayrak. Detecting Symbian OS
malware through static function call analysis. In Proceedings of the 4th International
Conference on Malicious and Unwanted Software, MALWARE ’09, pages 15–22,
Piscataway, NJ, USA, 2009. IEEE Press.

[9] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Transac-
tions on Knowledge and Data Engineering, 21(9):1263–1284, September 2009.

[10] J. Zico Kolter and Marcus A. Maloof. Learning to detect and classify malicious exe-
cutables in the wild. Journal of Machine Learning Research, 7:2721–2744, December
2006.

126

[11] Jiyong Jang, David Brumley, and Shobha Venkataraman. Bitshred: Feature hashing
malware for scalable triage and semantic analysis. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS ’11, pages 309–320,
New York, NY, USA, 2011. ACM.

[12] Anthony Desnos. Android: Static analysis using similarity distance. In Proceedings
of the 45th Hawaii International Conference on System Sciences, HICSS ’12, pages
5394–5403, Washington, DC, USA, 2012. IEEE Computer Society.

[13] Aubrey-Derrick Schmidt, Rainer Bye, Hans-Gunther Schmidt, Jan Clausen, Osman
Kiraz, Kamer A. Yüksel, Seyit A. Camtepe, and Sahin Albayrak. Static analysis
of executables for collaborative malware detection on Android. In Proceedings of
the 2009 IEEE International Conference on Communications, ICC ’09, pages 1–5,
Piscataway, NJ, USA, 2009. IEEE Press.

[14] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A study
of Android application security. In Proceedings of the 20th USENIX Conference on
Security, SEC ’11, pages 21–21, Berkeley, CA, USA, 2011. USENIX Association.

[15] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, you, get off of my market:
Detecting malicious apps in official and alternative Android markets. In Proceed-
ings of the 19th Annual Network & Distributed System Security Symposium, February
2012.

[16] Yousra Aafer, Wenliang Du, and Heng Yin. DroidAPIMiner: Mining API-level fea-
tures for robust malware detection in Android. In Security and Privacy in Communi-
cation Networks, pages 86–103. Springer, 2013.

[17] Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. Mining specifications
of malicious behavior. In Proceedings of the 6th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ESEC-FSE ’07, pages 5–14, New York, NY, USA, 2007.
ACM.

[18] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel Laskov.
Learning and classification of malware behavior. In Proceedings of the 5th Interna-
tional Conference on Detection of Intrusions and Malware, and Vulnerability Assess-
ment, DIMVA ’08, pages 108–125, Berlin, Heidelberg, 2008. Springer-Verlag.

[19] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao, Farnam Jahanian,
and Jose Nazario. Automated classification and analysis of internet malware. In
Proceedings of the 10th International Conference on Recent Advances in Intrusion
Detection, RAID ’07, pages 178–197, Berlin, Heidelberg, 2007. Springer-Verlag.

[20] Asaf Shabtai and Yuval Elovici. Applying behavioral detection on Android-based
devices. In Mobile Wireless Middleware, Operating Systems, and Applications, pages
235–249. Springer, 2010.

[21] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos. Para-
noid Android: Versatile protection for smartphones. In Proceedings of the 26th An-
nual Computer Security Applications Conference, ACSAC ’10, pages 347–356, New
York, NY, USA, 2010. ACM.

127

[22] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: Behavior-
based malware detection system for Android. In Proceedings of the 1st ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices, SPSM ’11, pages
15–26, New York, NY, USA, 2011. ACM.

[23] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. PScout: Analyzing
the Android permission specification. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12, pages 217–228, New York,
NY, USA, 2012. ACM.

[24] Adrienne Porter Felt, Kate Greenwood, and David Wagner. The effectiveness of ap-
plication permissions. In Proceedings of the 2nd USENIX Conference on Web Appli-
cation Development, WebApps ’11, pages 7–7, Berkeley, CA, USA, 2011. USENIX
Association.

[25] Jesse Davis and Mark Goadrich. The relationship between Precision-Recall and ROC
curves. In Proceedings of the 23rd International Conference on Machine Learning,
ICML ’06, pages 233–240, New York, NY, USA, 2006. ACM.

[26] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection in
text categorization. In Proceedings of the 14th International Conference on Machine
Learning, ICML ’97, pages 412–420, San Francisco, CA, USA, 1997. Morgan Kauf-
mann Publishers Inc.

[27] Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[28] Brian Quanz and Jun Huan. Aligned graph classification with regularized logistic
regression. In Proceedings of SIAM International Conference on Data Mining, SDM
’09, pages 353–364. SIAM, 2009.

[29] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characterization and
Evolution. In Proceedings of the 2012 IEEE Symposium on Security and Privacy, SP
’12, pages 95–109, Piscataway, NJ, USA, 2012. IEEE Press.

[30] Tom Fawcett. An introduction to ROC analysis. Pattern Recognition Letter,
27(8):861–874, June 2006.

[31] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detection. ACM
Transactions on Information and System Security, 3(3):186–205, 2000.

[32] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. DroidChameleon: Evaluating Android
anti-malware against transformation attacks. In Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security, pages 329–334.
ACM, 2013.

[33] Hien Thi Thu Truong, Eemil Lagerspetz, Petteri Nurmi, Adam J. Oliner, Sasu
Tarkoma, N. Asokan, and Sourav Bhattacharya. The company you keep: Mobile
malware infection rates and inexpensive risk indicators. In Proceedings of the 23rd
International Conference on World Wide Web, WWW ’14, pages 39–50, 2014.

[34] Ning Chen, Jialiu Lin, Steven CH Hoi, Xiaokui Xiao, and Boshen Zhang. AR-Miner:
Mining informative reviews for developers from mobile app marketplace. Interna-
tional Conference on Software Engineering, 2014.

128

[35] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason Hong, and Norman Sadeh. Why
people hate your app: Making sense of user feedback in a mobile app store. In
Proceedings of the 19th ACM International Conference on Knowledge Discovery and
Data Mining, KDD ’13, pages 1276–1284. ACM, 2013.

[36] Laura V. Galvis Carreño and Kristina Winbladh. Analysis of user comments: An ap-
proach for software requirements evolution. In Proceedings of the 2013 International
Conference on Software Engineering, pages 582–591. IEEE Press, 2013.

[37] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation. The
Journal of Machine Learning Research, 3:993–1022, 2003.

[38] Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and Sašo Džeroski. An extensive
experimental comparison of methods for multi-label learning. Pattern Recognition,
45(9):3084–3104, 2012.

[39] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An overview.
International Journal of Data Warehousing and Mining, 3(3):1–13, 2007.

[40] Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains
for multi-label classification. Machine Learning, 85(3):333–359, 2011.

[41] Christopher M. Bishop. Pattern Recognition and Machine Learning, volume 1.
Springer, Secaucus, NJ, USA, 2006.

[42] Jinxi Xu and W. Bruce Croft. Query expansion using local and global document
analysis. In Proceedings of the 19th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’96, pages 4–11, New
York, NY, USA, 1996.

[43] Kun Liu and Evimaria Terzi. A framework for computing the privacy scores of users
in online social networks. ACM TKDD, 5(1):6, 2010.

[44] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie. WHYPER: Towards automating
risk assessment of mobile applications. In Proceedings of the 22th USENIX Security
Symposium, pages 527–542, 2013.

[45] D. Kong and H. Jin. Towards permission request prediction on mobile apps via struc-
ture feature learning. In Proceedings of SIAM International Conference on Data
Mining, SDM ’15.

[46] M. Frank, B. Dong, A. P. Felt, and D. Song. Mining permission request patterns from
Android and Facebook applications. In 12th IEEE International Conference on Data
Mining, Brussels, Belgium, pages 870–875, 2012.

[47] B. Liu, D. Kong, L. Cen, N. Gong, H. Jin, and H. Xiong. Personalized mobile app
recommendation: Reconciling app functionality and user privacy preference. In Pro-
ceedings of the 8th ACM International Conference on Web Search and Data Mining,
WSDM ’15, 2015.

[48] Alexander Philip Dawid and Allan M. Skene. Maximum likelihood estimation of
observer error-rates using the EM algorithm. Applied Statistics, pages 20–28, 1979.

[49] Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo Valadez, Charles
Florin, Luca Bogoni, and Linda Moy. Learning from crowds. The Journal of Machine
Learning Research, 11:1297–1322, August 2010.

129

[50] Dengyong Zhou, Sumit Basu, Yi Mao, and John C. Platt. Learning from the wis-
dom of crowds by minimax entropy. In Advances in Neural Information Processing
Systems, pages 2195–2203, 2012.

[51] Dengyong Zhou, Qiang Liu, John C. Platt, and Christopher Meek. Aggregating ordi-
nal labels from crowds by minimax conditional entropy. In Proceedings of the 31st
International Conference on Machine Learning, June 2014.

[52] Ioanna Lykourentzou, Dimitrios J. Vergados, Katerina Papadaki, and Yannick Naudet.
Guided crowdsourcing for collective work coordination in corporate environments. In
Computational Collective Intelligence, Technologies and Applications, pages 90–99.
Springer, 2013.

[53] Ping Li, Qiang Wu, and Christopher J.C. Burges. McRank: Learning to rank using
multiple classification and gradient boosting. In Advances in Neural Information
Processing Systems, volume 20, pages 897–904, 2007.

[54] Koby Crammer and Yoram Singer. Pranking with ranking. In Advances in Neural
Information Processing Systems, volume 14, pages 641–647, 2001.

[55] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceed-
ings of the 8th ACM SIGKDD, pages 133–142. ACM, 2002.

[56] Christopher J.C. Burges. From RankNet to LambdaRank to LambdaMART: An
overview. Microsoft Research Technical Report MSR-TR-2010-82, 11:23–581, 2010.

[57] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boosting
algorithm for combining preferences. The Journal of Machine Learning Research,
4:933–969, 2003.

[58] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. SoftRank: Opti-
mizing non-smooth rank metrics. In Proceedings of the 2008 International Confer-
ence on Web Search and Data Mining, pages 77–86. ACM, 2008.

[59] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank:
From pairwise approach to listwise approach. In Proceedings of the 24th International
Conference on Machine Learning, ICML ’07.

[60] Lei Cen, Luo Si, Ninghui Li, and Hongxia Jin. User comment analysis for an-
droid apps and CSPI detection with comment expansion. In SIGIR 2014 Workshop:
Privacy-preserving Information Retrieval, 2014.

[61] James C. Bezdek and Richard J. Hathaway. Convergence of alternating optimization.
Neural, Parallel and Scientific Computations, 11(4):351–368, December 2003.

[62] Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression.
Statistics and Computing, 14(3):199–222, 2004.

[63] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27,
May 2011.

[64] Yining Wang, Wang Liwei, Yuanzhi Li, Di He, Wei Chen, and Tie-Yan Liu. A theo-
retical analysis of NDCG ranking measures. In 26th Annual Conference on Learning
Theory, 2013.

130

[65] App Store Statistics. http://en.wikipedia.org/wiki/App Store (iOS).

[66] W. Lee and S. J. Stolfo. Data mining approaches for intrusion detection. In Proceed-
ings of the 7th Conference on USENIX Security Symposium – Volume 7, SSYM ’98,
pages 6–6, 1998.

[67] R. Potharaju, N. Jain, and C. Nita-Rotaru. Juggling the jigsaw: Towards automated
problem inference from network trouble tickets. In 10th USENIX Symposium on
Networked Systems Design and Implementation, NSDI ’13, pages 127–141, Lombard,
IL, 2013. USENIX.

[68] J. Newsome, B. Karp, and D. Song. Polygraph: Automatic signature generation for
polymorphic worms. In IEEE Symposium on Security and Privacy, May 2005.

[69] C. Liu, C. Chen, J. Han, and P. S. Yu. GPLAG: Detection of software plagiarism
by program dependence graph analysis. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’06, pages
872–881, 2006.

[70] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen. AutoCog: Measuring the
description-to-permission fidelity in Android applications. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, pages 1354–1365, 2014.

[71] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-Aware Android Malware Classi-
fication Using Weighted Contextual API Dependency Graphs. In Proceedings of the
21th ACM Conference on Computer and Communications Security, CCS ’14, Scotts-
dale, AZ, November 2014.

[72] M. Harman, Y. Jia, and Y. Zhang. App store mining and analysis: MSR for app stores.
In Proceedings of the 9th Working Conference on Mining Software Repositories, MSR
’12, Zurich, Switzerland, 2-3 June 2012.

[73] J. Lin, Shahriyar Amini, J. I. Hong, N. Sadeh, J. Lindqvist, and J. Zhang. Expecta-
tion and purpose: Understanding users’ mental models of mobile app privacy through
crowdsourcing. In Proceedings of the 2012 ACM Conference on Ubiquitous Comput-
ing, UbiComp ’12, pages 501–510, 2012.

[74] A. P. Felt, S. Hanna, E. Chin, H. J. Wang, and E. Moshchuk. Permission re-delegation:
Attacks and defenses. In the 20th Usenix Security Symposium, 2011.

[75] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. MAST: Triage for market-scale
mobile malware analysis. In Proceedings of the 6th ACM Conference on Security and
Privacy in Wireless and Mobile Networks, WiSec ’13, pages 13–24, 2013.

[76] C. Gibler, J. Crussell, J. Erickson, and H. Chen. AndroidLeaks: Automatically detect-
ing potential privacy leaks in Android applications on a large scale. In Proceedings of
the 5th International Conference on Trust and Trustworthy Computing, TRUST ’12,
pages 291–307, 2012.

[77] M. Neugschwandtner, P. M. Comparetti, G. Jacob, and C. Kruegel. Forecast: Skim-
ming off the malware cream. In Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC ’11, pages 11–20, 2011.

131

[78] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wether-
all. These aren’t the droids you’re looking for: Retrofitting Android to protect data
from imperious applications. In Proceedings of the 18th ACM Conference on Com-
puter and Communications Security, CCS ’11, pages 639–652, New York, NY, USA,
2011. ACM.

[79] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A.N. Sheth.
TaintDroid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation, OSDI ’10, pages 1–6, 2010.

[80] L. K. Yan and H. Yin. DroidScope: Seamlessly reconstructing the OS and Dalvik
semantic views for dynamic Android malware analysis. In Proceedings of the 21st
USENIX Conference on Security Symposium, Security ’12, pages 29–29, 2012.

[81] A. P. Felt, S. Egelman, and D. Wagner. I’ve got 99 problems, but vibration ain’t one:
A survey of smartphone users’ concerns. In Proceedings of the 2nd ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, SPSM ’12, pages 33–44,
2012.

[82] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android per-
missions: User attention, comprehension, and behavior. In Proceedings of the 8th
Symposium on Usable Privacy and Security, SOUPS ’12, 2012.

[83] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,
and P. McDaniel. FlowDroid: Precise context, flow, field, object-sensitive and
lifecycle-aware taint analysis for Android apps. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, 2014.

[84] Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis. John
Wiley, New York, 1973.

[85] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information: Crite-
ria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on
Pattern Analysis Machine Intelligence, 27:1226–1238, 2005.

[86] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond blacklists: Learning to
detect malicious web sites from suspicious urls. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’09, pages 1245–1254, 2009.

[87] K. Rieck, T. Krueger, and A. Dewald. Cujo: Efficient detection and prevention of
drive-by-download attacks. In Proceedings of the 26th Annual Computer Security
Applications Conference, ACSAC ’10, pages 31–39, 2010.

[88] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288, 1994.

[89] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe exposure analysis of
mobile in-app advertisements. In Proceedings of the 5th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pages 101–112, 2012.

VITA

132

VITA

Lei Cen was born in Beihai, a coast city in Guangxi province in China. After high

school, he went to Fundan University in Shanghai and studied computer science from 2004

to 2008. After recieving his B.S. degree in computer science, he started as a M.S. student

in Fudan University and got his M.S. degree in computer science in 2011. He then came to

Purdue University and received his Ph.D. degree in computer science in August 2016.

	Purdue University
	Purdue e-Pubs
	8-2016

	A study of security issues of mobile apps in the android platform using machine learning approaches
	Lei Cen
	Recommended Citation

	Blank Page

