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ABSTRACT

Yim, Arnold H. PhD, Purdue University, May 2016. Homological Properties of De-
terminantal Arrangements. Major Professor: Hans U. Walther.

We study a certain family of hypersurface arrangements known as determinantal

arrangements. Determinantal arrangements are a union of varieties defined by minors

of a matrix of indeterminates. In particular, we investigate determinantal arrange-

ments using the 2-minors of a 2×n generic matrix (which can be thought of as natural

extensions of braid arrangements), and prove certain statements about their freeness.

We also study the topology of these objects. We construct a fibration for the com-

plement of free determinantal arrangements, and use this fibration to prove statements

about their homotopy groups. Furthermore, we show that the Poincaré polynomial

of the complement factors nicely.
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1. Introduction

An important aspect of a divisor D in a complex manifold X is its singular locus.

While near a typical smooth point of a divisor, an appropriate coordinate system

makes the pair (X,D) look like the pair (Cn,Var(x1 = 0)); the singular locus of D

is the set of points where this is not so. This thesis explores a family of divisors

known as determinantal arrangements (which are unions of determinantal varieties)

and furthers our understanding of their singular locus.

The singularities of D are the points where the tangent space to D is the same as

the tangent space to X, in which case there is no well-defined normal direction to D

in X. Concretely, if a di+ 36visor D is defined by the equation f = 0 for a reduced

holomorphic f , then the singular locus is exactly the set of points where the gradient

of f is zero. This allows one to study the singular locus of D using algebraic methods

by looking at the behavior of the gradient of f .

Our goal is to determine whether or not the singular locus of a divisor is “well-

behaved,” and in particular, whether or not the singular loci of determinantal ar-

rangements are “well-behaved.” While there are different ways to characterize the

behavior of the singular locus, we take an algebraic approach. Using this approach

we say that a divisor is “well-behaved” or free if its singular locus has the shortest

possible free resolution. That is, the linear dependencies of the entries of the gradient

have no relations between themselves and hence form a free module. Normal crossing

divisors are examples of free divisors.

Example 1.0.1 Consider a normal crossing divisor D in C3. Locally, D behaves

like Var(xyz) = {(x, y, z) ∈ C3|xyz = 0}. The gradient of xyz is (yz, xz, xy), which

has linear dependencies generated by v1 = (x, 0,−z), v2 = (0, y,−z). Note also that

(x,−y, 0) is also a relation between the entries of the gradient, but this relation is
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can be realized as v1− v2, so we will not include it in the generating set. Now, v1 and

v2 have no relations between themselves, hence D is a free divisor.

One can study divisors using flows (or vector fields) on X. A logarithmic flow

along D on X is a vector field that is tangent to D. Near a smooth point of D, any

point of D can flow to any other point of D in a logarithmic flow, but this may not

be the case near singularities. Algebraically, a logarithmic flow is a vector field that

is perpendicular at each point of D to the gradient, and thus gives us a formula in

terms of derivations. The module of logarithmic derivations DerX(− logD) := {θ ∈

DerX |θ(OX(−D)) ⊆ OX(−D)}. If DerX(− logD) is locally free, then D is called a

free divisor. Note that this notion of free divisors coincide with the description given

earlier.

Free divisors were first introduced by Saito [1], and were motivated by his study

of the discriminants of versal deformations of isolated hypersurface singularities. The

study of free divisors arising from discriminants of versal deformations has since been

the source of many advances in the theory of singularities (see [2–6]).

Aside from versal deformations, free divisors show up naturally in many different

settings. The theory of free divisors has been looked at extensively in the setting of

hyperplane arrangements. In fact, many of the well-known hyperplane arrangements

(such as braid arrangements and all Coxeter arrangements) are free (see [7]).

Interestingly, freeness can also give us topological information. In particular,

Terao proves in [8] that for a free hyperplane arrangement, the Poincaré polynomial

of its complement is determined by the degrees of the vector fields in the basis of the

module of logarithmic derivations.

It seemed natural to wonder how freeness is connected to the topology of more

complicated divisors. This motivated the study of free divisors in arrangements of

more general hypersurfaces. For example, Schenck and Tohǎneanu [9] give conditions

for when an arrangement of lines and conics on P2 is free.

The focus of this thesis is on determinantal arrangements, which are unions of

hypersurfaces defined by the minors of generic matrices. These hypersurfaces are par-
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ticularly interesting to us because they have nice combinatorial structures. Buchweitz

and Mond [10] showed that the arrangement defined by the product of the maximal

minors of a n× (n + 1) matrix of indeterminates is free. More recently, Damon and

Pike [11] showed that certain determinantal arrangements coming from symmetric,

skew-symmetric and square generic matrices are free and have complements that are

K(π, 1). In both of these cases, the arrangements turn out to be linear free divisors

(i.e. the basis for DerX(− logD) is generated by linear vector fields). The vector

fields arising in these situations correspond to matrix group actions on the generic

matrix which stabilize the divisor D. Many interesting determinantal arrangements,

however, are not linear free divisors as our next example shows.

Example 1.0.2 Let M be the 2× 4 matrix of indeterminates

M =

 x1 x2 x3 x4

y1 y2 y3 y4

 ,

and for i < j, let ∆ij be the 2-minor of M using the i-th and j-th columns, ∆ij =

xiyj − xjyi. Let f be the product f =
∏
i<j

∆ij. Then DerX(− log f) is free with

basis consisting of 7 linear derivations (coming from SL(2,C)-action, column and row

scaling actions on M), and one derivation of degree 5: θ = ∆24∆34

(
x1

∂
∂x4

+ y1
∂
∂y4

)
.

In this thesis, we study the determinantal arrangement analog of the braid ar-

rangement. These arrangements are defined by the maximal minors of 2× n generic

matrices. In Chapter 3, we examine the freeness of certain families of determinantal

arrangements. In particular, we prove in Theorem 3.1.4, that our analog of the braid

arrangement is indeed free. In Chapter 4, study the topology of free determinantal

arrangements, and show that the Poincaré polynomials of their complements factors

over Q.
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2. Background

In this chapter, we introduce some basic notations and definitions for the objects we

will be studying, and for the tools we will be using. We also look at some basic results

and examples which motivated our study of determinantal arrangements.

2.1 Logarithmic Derivations

Let D be a divisor in a complex manifold X. Our goal is to understand the

behavior of the singular locus of D, so we look locally at the singularities. Therefore,

we will assume that X = Cn and D = Var(f) for some f ∈ S := C[x1, . . . , xn]. In

most cases that we are interested in, f will be a homogeneous polynomial.

Recall that a derivation θ on S over C is a C-linear map θ : S → S satisfying

Leibniz’s rule: θ(fg) = θ(f)g+fθ(g). Let DerC(S) denote the collection of all deriva-

tions on S over C. Note that DerC(S) is a free S-module with a basis
{

∂
∂x1
, . . . , ∂

∂xn

}
,

and can be thought of as the collection of holomorphic vector fields on X.

We are interested in vector fields on X tangent along the divisor D.

Definition 2.1.1 The module of logarithmic derivations along D = Var(f) is the

S-module

DerX(− log f) := {θ ∈ DerC(S)|θ(f) ⊆ (f)}.

We may also write this module as DerX(− logD).

Note that DerX(− log f) is a submodule of DerC(S).

Since D is often a union of hypersurfaces, the following proposition will allows us

to consider logarithmic derivations on the different components.
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Proposition 2.1.1 (i) If D is a union of two hypersurfaces Var(f) and Var(g)

where f, g ∈ S are relatively prime, then

θ ∈ DerX(− logD)⇔ θ ∈ DerX(− log f) ∩DerX(− log g).

(ii) Suppose D = Var(f 2), then θ ∈ DerX(− logD)⇔ θ ∈ DerX(− log f).

(iii) Suppose D = Var(f i11 · · · f
ik
k ), where fj ∈ S are pairwise relatively prime and

ij ∈ N>0 for j = 1, . . . k, then θ ∈ DerX(− logD)⇔ θ ∈
k⋂
j=1

DerX(− log fj).

Proof (i) If θ ∈ DerX(− log f) ∩ DerX(− log g), then by Leibniz’s rule, θ(fg) =

θ(f)g + fθ(g). Since both summands on the right are divisible by fg, θ ∈

DerX(− log fg).

On the other hand, if θ ∈ DerX(− log fg), then

θ(fg) = αfg for some α ∈ S

θ(f)g + fθ(g) = αfg

If we divide both sides by f , we can write the above as θ(f)
f
g = αg − θ(g).

Since f and g are relatively prime, f must divide θ(f) so θ(f) ∈ DerX(− log f).

Similarly, θ(g) ∈ DerX(− log g).

(ii) For any θ ∈ DerC(S), we have θ(f 2) = 2fθ(f). Thus f divides θ(f) if and only

if f 2 divides θ(f 2).

(iii) This is a consequence of (i) and (ii).

2.2 Freeness

We say that the divisor D = Var(f) in X is free if its singular locus is well-behaved

in an algebraic sense. Let J =
(
∂f
∂x1
, . . . , ∂f

∂xn

)
be the Jacobian ideal of f . We say
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that the singular locus of D is well-behaved if its coordinate ring S/(J + (f)) has the

shortest possible free resolution:

0← S/(J + (f))← S ← Sn+1 ← Syz(J + (f))← 0.

Note that for any θ =
n∑
i=1

αi
∂

∂xi
∈ DerX(− log f) where αi ∈ S, we have θ(f) = βf

for some β ∈ S. Therefore
n∑
i=1

αi
∂f

∂xi
= βf , which gives us a syzygy on J + (f).

Similarly, each syzygy on J + (f) gives us an element in DerX(− log f) so these

modules are in 1-to-1 correspondence. Thus we use the following definition for free

divisor:

Definition 2.2.1 A divisor D = Var(f) in X is free if DerX(− log f) is a free S-

module.

To determine whether or not a divisor is free, one can try to find a basis for

DerX(− log f). Given elements in DerX(− log f), one can check whether or not they

form a basis using Saito’s criterion [1]:

Theorem 2.2.1 (Saito) A divisor D = Var(f) is free if and only if there exists n

elements

θj =
n∑
i=1

αij
∂

∂xi
∈ DerX(− log f)

such that det((αij)) = c · f for some non-zero c ∈ C.

2.3 Examples from Hyperplane Arrangements

The theory of logarithmic derivations and free divisors has been studied exten-

sively for hyperplane arrangements (see [7]). While not all hyperplane arrangements

are free divisors, many of the classically arising arrangements are indeed free. Since

the determinantal arrangements we will be studying are natural extensions of the

braid arrangements, we use braid arrangements as a motivating example.
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Example 2.3.1 The braid arrangement in Cn, defined by f =
∏

1≤a<b≤n

(xa − xb),

is free. To show this, we simply find n elements in DerX(− log f) and use Saito’s

criterion (Theorem 2.2.1) to show that they form a basis.

Consider the derivations

θj =
n∑
i=1

xji
∂

∂xi
for j = 0, . . . , n− 1.

For 1 ≤ a < b ≤ n, we have that θj(xa− xb) = xja− x
j
b is divisible by (xa− xb), so by

Proposition 2.1.1, we know that θj ∈ DerX(− log f).

To check that these logarithmic derivations form a basis, we calculate the deter-

minant of 
1 x1 · · · xn−11

1 x2 · · · xn−12

...
...

. . .
...

1 xn · · · xn−1n


which is precisely f . By Theorem 2.2.1, the braid arrangement is a free divisor in Cn.

Freeness is often tied to the topology and combinatorics of the object. A landmark

result of Terao relates the freeness of a central hyperplane arrangement (i.e. an

arrangement such that each hyperplane passes through the origin) to the Poincaré

polynomial of the complement of that arrangement [8]:

Theorem 2.3.2 (Terao) Let A ⊂ Cn be a free central hyperplane arrangement and

suppose that DerCn(− logA) ∼=
n⊕
i=1

S(−bi), then

Poin(Cn \ A, t) =
n∏
i=1

(1 + bit).

Example 2.3.3 Using Theorem 2.3.2, we can compute the Poincaré polynomial for

the complement of the braid arrangement that was described in Example 2.3.1. Since

DerX(− log f) is generated in degrees 0, . . . , n− 1,

Poin(Cn \ Var(f)) = (1 + t)(1 + 2t) · · · (1 + (n− 1)t).
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A famous open problem in the study of hyperplane arrangements is Terao’s con-

jecture relating the freeness of a hyperplane arrangement to its combinatorics:

Conjecture 2.3.4 (Terao) The freeness of a hyperplane arrangement A depends

only on its lattice of interesection LA.

Graphic arrangements are examples where Terao’s conjecture is true. These ar-

rangements are a union of a subcollection of the hyperplanes in the braid arrangement.

As their name suggests, one can associate a graph to each graphic arrangement.

Let A ⊂ Cn be a graphic arrangement, then the graph associated to A has n

vertices labeled x1, . . . , xn. For each hyperplane Var(xa − xb) ⊆ A, we have an edge

between vertices xa and xb.

Definition 2.3.1 Let G be a graph with vertex set V and edge set E, and let W be

a subset of V . The induced subgraph on W is the subgraph of G consisting of every

edge in E whose endpoints lie in W .

We say that a graph is chordal if every cycle of length 4 or greater has chord

(i.e. an edge between two nonconsecutive vertices). While this description is easy to

visualize, it will be more helpful to use the following characterization of chordal due

to Fulkerson and Gross [12]:

Definition 2.3.2 A graph G is chordal if and only if there exists an ordering of

vertices, such that for each vertex v, the induced subgraph on v and its neighbors

that occur before it in the sequence is a complete graph. This ordering of vertices is

called the reverse perfect elimination ordering.

For each graphic arrangement A, its lattice of intersections LA is exactly the

lattice of contractions of the graph associated to A. Since chordal graphs have a

supersolvable lattice of contractions [13] and since hyperplane arrangements with

supersolvable lattice of intersections is free [7], we know that a graphic arrangements

associated to chordal graphs are free. In fact, one can prove the following [14]:
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Theorem 2.3.5 (Kung-Schenck) Let A ⊂ Cn be a graphic arrangement, then A

is free if and only if its associated graph is chordal. Moreover, if k is the length of

the longest chord-free induced cycle, then the projective dimension of DerCn(− logA)

is bounded below:

pdimS(DerCn(− logA)) ≥ k − 3.

Using Theorem 2.3.5 we can quickly determine whether or not a graphic arrange-

ment is free.

Example 2.3.6 Consider the graphic arrangement in C4 defined by f = (x1 −

x2)(x2 − x3)(x3 − x4)(x1 − x4). Since the graph associated to this arrangement is

the cyclic graph on four vertices, it is not free.

On the other hand, the graphic arrangement in C4 defined by g = (x1 − x2)(x2 −

x3)(x3 − x4)(x1 − x4)(x1 − x3) is free, because the associated graph is chordal.

2.4 Determinantal Arrangements

While hyperplane arrangements have been studied extensively, not much is known

for arrangements of more general hypersurfaces. The focus of this thesis is on deter-

minantal arrangements.

Definition 2.4.1 Let M be an m × n matrix of indeterminates. A determinantal

arrangement on M is a union of hypersurfaces defined by the minors of M .

This thesis examines determinantal arrangements on a 2× n generic matrix:

M =

 x1 x2 · · · xn

y1 y2 · · · yn

 .

These arrangements are natural extensions of braid arrangements and graphic ar-

rangements. When looking at the arrangement using every minor of M , i.e. the

arrangement defined by

f =
∏

1≤i<j≤n

(xiyj − xjyi),
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one can consider points on this arrangement as a selection of n vectors in C2 such

that two of these vectors are linearly dependent. Whereas the braid arrangement can

be thought of as a selection of n points in C such that two of these points are the

same.

As with graphic arrangements, we can associate these determinantal arrangements

to graphs:

Definition 2.4.2 Let G be a graph on n vertices {v1, . . . , vn}. The determinantal

arrangement AG associated to G is a union of hypersurfaces Var(xiyj −xjyi) for each

edge in G between vertices vi and vj.
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3. Freeness of Determinantal Arrangements

In this chapter, we prove statements about the freeness of determinantal arrangements

on a 2 × n generic matrix. In Theorem 3.1.4, we show that our analog of the braid

arrangement is a free divisor in C2n for n ≥ 3. We provide elements of the module

of logarithmic derivations and show that these elements form a basis using Saito’s

criterion. In Theorem 3.2.1, we prove that free determinantal arrangements must

come from chordal graphs and we give bounds on the projective dimension of the

module of logarithmic derivations for non-chordal arrangements.

Note that when n = 2, the determinantal variety Var(x1y2 − x2y1) is not a free

divisor in C4. The singular locus consists of the origin which is codimension 4, so S/J

cannot possibly have projective dimension 2. For n ≥ 3, we are able to take union of

hypersurfaces which gives us singular loci of codimension 2, in which case we might

have a free divisor.

3.1 Determinantal Braid Arrangement

In this section we prove that the determinantal arrangement on

M =

 x1 x2 · · · xn

y1 y2 · · · yn

 .

using every 2-minor is free. Let ∆ij denote the minor of M using the i-th and j-th

column with i < j. With this notation, we can write our determinantal arrangement

as the vanishing of

f =
∏

1≤i<j≤n

(xiyj − xjyi) =
∏

1≤i<j≤n

∆ij.

Since this is a natural extension of the braid arrangement, we refer to this divisor in

C2n as the determinantal braid arrangement.
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To prove that the determinantal braid arrangement is free, we will use the following

two lemmas.

Lemma 3.1.1 Let A be a block matrix A =

 A1 A2

A3 A4

 with blocks of size n × n

with entries in C(z1, . . . , zn). If A1 and A3 are diagonal matrices with nonzero entries,

then det(A) = det(A1A4 − A3A2).

Proof Consider the block matrix B =

 A−11 0

0 A−13

, then

BA =

 In A−11 A2

In A−13 A4

 .

Using elementary row operations, we find

det(BA) = det

 In A−11 A2

0 A−13 A4 − A−11 A2

 .

Now, let C be the block matrix C =

 In 0

0 A1A3

, then

det(CBA) = det

 In A−11 A2

0 A1A4 − A3A2

 = det(A1A4 − A3A2).

Since det(CBA) = det(A), we have det(A) = det(A1A4 − A3A2).

Lemma 3.1.2 For each n ∈ Z>0, let si,j,k ∈ C[z1, . . . , zn] be a degree k symmetric

polynomial on the variables zi, . . . , zn that is degree one in each variable omitting the

variable zj, given by

si,j,k =
∑

αm 6= j

i ≤ α1 < · · · < αk ≤ n

zα1zα2 · · · zαk
,

and let si,j,0 = 1.
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Let Ai denote the (n + 1 − i) × (n + 1 − i) matrix (si,j,k), where the row index j

ranges from i to n, and the column index k ranges from 0 to n− i. Then

det(Ai) =

( ∏
i<s≤n

(zi − zs)

)
det(Ai+1).

Proof We start by explicitly writing Ai:

Ai =


1 (zi+1 + zi+2 + · · ·+ zn) · · · (zi+1zi+2 · · · zn)

1 (zi + zi+2 + · · ·+ zn) · · · (zizi+2 · · · zn)
...

...
. . .

...

1 (zi + zi+1 + · · ·+ zn−1) · · · (zizi+1 · · · zn−1)

 .

Subtracting the first row from all other rows gives us the following matrix:

We factor the lower right (n− i)× (n− i) submatrix as

=


(zi − zi+1)

(zi − zi+2)
. . .

(zi − zn)

Ai+1.

Since our elementary row operations do not change the determinant, we have that

det(Ai) =

( ∏
i<s≤n

(zi − zs)

)
det(Ai+1).

Remark 3.1.3 We can compute the determinant of A1 in Lemma 3.1.2 inductively

to find

det(A1) =
∏

1≤i<j≤n

(zi − zj).
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We now prove the main result of this section:

Theorem 3.1.4 Let G be the complete graph on n vertices for n ≥ 3. The determi-

nantal arrangement AG is a free divisor in X = C2n.

Proof AG is the determinantal braid arrangement defined by the vanishing of

f =
∏

1≤i<j≤n

∆ij.

We explicitly list elements of DerX(− log f), and use Saito’s criterion to show that

this list forms a basis for DerX(− log f).

We first consider the following linear derivations:

α =
n∑
k=1

xk
∂

∂yk

β =
n∑
k=1

yk
∂

∂xk

γ =
n∑
k=1

yk
∂

∂yk
.

To show that these derivations are actually elements of DerX(− log f), by Proposition

2.1.1, it is enough to show that these derivation sends each ∆ij to the ideal (∆ij):

α(∆ij) =

(
n∑
k=1

xk
∂

∂yk

)
(xiyj − xjyi)

=
(
xi

∂
∂yi

+ xj
∂
∂yj

)
(xiyj − xjyi)

= −xixj + xjxi

= 0.

Since α stabilizes each (∆ij), α ∈ DerX(− log f).

Similarly,

β(∆ij) =

(
n∑
k=1

yk
∂

∂xk

)
(xiyj − xjyi)

=
(
yi

∂
∂xi

+ yj
∂
∂xj

)
(xiyj − xjyi)

= yiyj − yjyi
= 0,
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and

γ(∆ij) =

(
n∑
k=1

yk
∂

∂yk

)
(xiyj − xjyi)

=
(
yi

∂
∂yi

+ yj
∂
∂yj

)
(xiyj − xjyi)

= −yixj + yjxi

= ∆ij,

thus β, γ ∈ DerX(− log f).

We also have n linear derivations of the form

θk = xk
∂

∂xk
+ yk

∂

∂yk

for k = 1, 2 . . . , n. When we apply θk to ∆kj, we get

θk(∆kj) =
(
xk

∂
∂xk

+ yk
∂
∂yk

)
(xkyj − xjyk)

= xkyj − ykxj
= ∆kj,

.

Similarly, θk(∆ik) = ∆ik. When i, j 6= k, θk(∆ij) = 0, thus θk stabilizes each (∆ij).

This shows that θk ∈ DerX(− log f).

Finally, we have n − 3 elements of degree n + 1. For k = 4, 5, .., n, let τk be a

bijection of sets from {1, . . . , n − 4} to {4, . . . , k − 1, k + 1, . . . n}, and let Sn−4 be

the symmetric group acting on the numbers {1, . . . , n− 4}. For m = 0, 1, . . . , n− 4,

define

am,k =
1

m!(n− 4−m)!

∑
σ∈Sn−4

x(τk◦σ)(1) · · ·x(τk◦σ)(m)y(τk◦σ)(m+1) · · · y(τk◦σ)(n−4).

We now define the degree n+ 1 derivations:

ϕm =
n∑
k=4

am,k∆2k∆3k

(
x1

∂

∂xk
+ y1

∂

∂yk

)
.

To check that ϕm ∈ DerX(− log f), we must consider several cases of ϕm(∆ij). If

i, j < 4, then ϕm(∆ij) = 0. Now, suppose that i < 4 and j ≥ 4, then

ϕm(∆ij) =

(
n∑
k=4

am,k∆2k∆3k

(
x1

∂

∂xk
+ y1

∂

∂yk

))
(xiyj − xjyi)

= am,j∆2j∆3j

(
x1

∂
∂xj

+ y1
∂
∂yj

)
(xiyj − xjyi)

= am,j∆2j∆3j (−x1yi + y1xi) .
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When i = 2, 3, ϕm(∆ij) ∈ (∆ij), and when i = 1, ϕm(∆ij) = 0.

Finally, if i, j ≥ 4,

ϕm(∆ij) =

(
n∑
k=4

am,k∆2k∆3k

(
x1

∂

∂xk
+ y1

∂

∂yk

))
(∆ij)

=
(
am,i∆2i∆3i

(
x1

∂
∂xi

+ y1
∂
∂yi

)
+ am,j∆2j∆3j

(
x1

∂
∂xj

+ y1
∂
∂yj

))
(∆ij)

= am,i∆2i∆3i (x1yj − y1xj) + am,j∆2j∆3j (−x1yi + y1xi)

= am,i∆2i∆3i∆1j − am,j∆2j∆3j∆1i.

Note that the terms of am,i and am,j are nearly identical except the factors of xj

are replaced with factors of xi, and the factors of yj are replaced with factors of yi.

Thus if we match up the terms in am,i and am,j and remove the common factors, we

only need to show that xj∆2i∆3i∆1j − xi∆2j∆3j∆1i and yj∆2i∆3i∆1j − yi∆2j∆3j∆1i

are divisible by ∆ij. Using Plücker relations, we can write:

xj∆2i∆3i∆1j − xi∆2j∆3j∆1i = xj∆3i(∆1j∆2i)− xi∆2j∆3j∆1i

= xj∆3i(∆1i∆2j −∆12∆ij)− xi∆2j∆3j∆1i

= ∆1i∆2j(xj∆3i − xi∆3j)− xj∆3i∆12∆ij

= ∆1i∆2j(xjx3yi − xjxiy3 − xix3yj + xixjy3)

−xj∆3i∆12∆ij

= ∆1i∆2j(xjx3yi − xix3yj)− xj∆3i∆12∆ij

= ∆1i∆2j(−x3∆ij)− xj∆3i∆12∆ij ∈ (∆ij),

and similarly,

yj∆2i∆3i∆1j − yi∆2j∆3j∆1i = yj∆3i(∆1j∆2i)− yi∆2j∆3j∆1i

= yj∆3i(∆1i∆2j −∆12∆ij)− yi∆2j∆3j∆1i

= ∆1i∆2j(yj∆3i − yi∆3j)− yj∆3i∆12∆ij

= ∆1i∆2j(yjx3yi − yjxiy3 − yix3yj + yixjy3)

−yj∆3i∆12∆ij

= ∆1i∆2j(−yjxiy3 + yixjy3)− yj∆3i∆12∆ij

= ∆1i∆2j(−y3∆ij)− yj∆3i∆12∆ij ∈ (∆ij).

Since ϕm stabilizes each (∆ij), ϕm ∈ DerX(− log f).
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It remains to show that the collection {α, β, γ, θ1, . . . , θn, ϕ0, . . . , ϕn−4} form a

basis. By Theorem 2.2.1, these derivations form a basis if and only if the determinant

of the coefficient matrix is a nonzero constant multiple of f . With our elements, we

have the coefficient matrix:

y1 x1

y2 x2

y3 x3

y4 x4 a0,4∆24∆34x1 · · · an−4,4∆24∆34x1
...

. . .
...

. . .
...

yn xn a0,n∆2n∆3nx1 · · · an−4,n∆2n∆3nx1

x1 y1 y1

x2 y2 y2

x3 y3 y3

x4 y4 y4 a0,4∆24∆34y1 · · · an−4,4∆24∆34y1
...

...
. . .

...
. . .

...

xn yn yn a0,n∆2n∆3ny1 · · · an−4,n∆2n∆3ny1



.

By swapping rows of this matrix, we can write our matrix as a triangular block matrix

(note that while swapping rows might change the sign of the determinant, that will

not matter in checking Saito’s criterion):
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

y1 x1

y2 x2

y3 x3

x1 y1 y1

x2 y2 y2

x3 y3 y3

y4 x4 a0,4∆24∆34x1 · · · an−4,4∆24∆34x1
...

. . .
...

. . .
...

yn xn a0,n∆2n∆3nx1 · · · an−4,n∆2n∆3nx1

x4 y4 y4 a0,4∆24∆34y1 · · · an−4,4∆24∆34y1
...

...
. . .

...
. . .

...

xn yn yn a0,n∆2n∆3ny1 · · · an−4,n∆2n∆3ny1



.

Denote the previous matrix by N , with blocks N =

 A 0

C D

. Since N is a

triangular block matrix, det(N) = det(A) det(D). One can compute

det(A) = ∆12∆13∆23. (3.1)

To find the determinant of D, we organize the matrix into more blocks:

D =

 D1 D2

D3 D4

 =



x4 a0,4∆24∆34x1 · · · an−4,4∆24∆34x1
. . .

...
. . .

...

xn a0,n∆2n∆3nx1 · · · an−4,n∆2n∆3nx1

y4 a0,4∆24∆34y1 · · · an−4,4∆24∆34y1
. . .

...
. . .

...

yn a0,n∆2n∆3ny1 · · · an−4,n∆2n∆3ny1


.
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Using Lemma 3.1.1, we know that det(D) and det(D1D4 −D3D2) agree over the

field of fractions C(x1, . . . , xn, y1, . . . , yn) but since these determinants are polynomials

we must have det(D) = det(D1D4 −D3D2). Now,

Observe that

det(D5) =
3∏
i=1

n∏
j=4

∆ij, (3.2)

therefore it remains to show that det(D6) is a nonzero constant multiple of the product

of all minors using the last n− 3 columns of M .

We show that each ∆ij for i, j ≥ 4 divides det(D6) by showing that det(D6)

vanishes on Var(∆ij). Now, ∆ij vanishes when columns i and j of M are scalar

multiples of each other. Write xj = cxi and yj = cyi. In rows i and j of D6, we have

am,j = cam,i. Since these rows are scalar multiples of each other, det(D6) vanishes

here which implies that each ∆ij divides det(D6). The degree of the product of the

minors, 2

 n− 3

2

 = (n − 3)(n − 4), is the same as the degree of det(D6), hence

det(D6) is a constant multiple of the product of the minors. To check that det(D6)

is not identically zero, we substitute yk = 1 for k = 4, . . . , n into D6 to get the

matrix in Lemma 3.1.2 on the variables x4, . . . , xn. Using Remark 3.1.3, we see that

if x4 6= x5 6= · · · 6= xn, then det(D6) 6= 0.

With equations (3.1) and (3.2), we find det(N) = (−1)n−3 det(A) det(D5) det(D6)

is a constant multiple of the product of all of the minors of M . By Saito’s criterion,
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{α, β, γ, θ1, . . . , θn, ϕ0, . . . , ϕn−4} form a basis for DerX(− log f), hence our determi-

nantal arrangement is free.

We believe that our work with determinantal arrangements on 2×n generic matri-

ces only scratches the surface of a broader class of free divisors. For example, suppose

that M is an m×n matrix of indeterminates. In the case where m = 3 and n = 4, one

knows that the arrangement is a linear free divisor (see [10], [15]). However, in the

next case, m = 3 and n = 5, we already do not know whether or not the arrangement

is free. More generally, one can ask:

Question 3.1.5 Let M be the m×n matrix of indeterminates with n > m > 2, and

let f be the product of all maximal minors of M . Is the arrangement defined by f

free?

3.2 Free Determinantal Arrangements and Chordal Graphs

One can also consider determinantal arrangements defined by subgraphs of the

complete graph. Much like hyperplane arrangements, we find that the freeness of the

determinantal arrangement is related to whether or not the graph is chordal.

Theorem 3.2.1 If a determinantal arrangement AG is free, then G is chordal. More-

over, if G has a chord-free induced cycle of length k, then

pdim(DerX(− logAG)) ≥ k − 3.

Proof Suppose that G is not chordal, then G has an chord-free induced cycle of

length k where 4 ≤ k ≤ n. We can reorganize the columns of M so that this chord-

free induced cycle occurs on the first k vertices of AG. To show that A is not free,

we localize to a neighborhood of the point p =

 1 · · · 1 1 1 · · · 1

0 · · · 0 1 2 · · · n− k

.

We will consider our divisor in the local ring C[x1, . . . , xn, y1, . . . , yn]mp where mp is

the maximal ideal associated to the point p. In this local ring, ∆ij is a unit if i or j
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is greater than k. Thus, around p, AG looks like Var(∆12∆23 · · ·∆(k−1)k∆1k) whose

associated graph is the cyclic graph on k vertices.

We show that p is in the non-free locus of Var(∆12∆23 · · ·∆(k−1)k∆1k). In our local

ring, xi is a unit for all i, thus

Var(∆12∆23 · · ·∆(k−1)k∆1k) = Var

(
xk−21 xk−2k

x22x
2
3 · · ·x2k−1

∆12∆23 · · ·∆(k−1)k∆1k

)
.

But,

xk−2
1 xk−2

k

x22x
2
3···x2k−1

∆12∆23 · · ·∆(k−1)k∆1k

=
xk−2
1 xk−2

k

x22x
2
3···x2k−1

(x1y2 − x2y1)(x2y3 − x3y2) · · · (xk−1yk − xkyk−1)(x1yk − xky1)

=
(
x1xk
x2
y2 − xky1

)(
x1xk
x3
y3 − x1xk

x2
y2

)
· · ·
(
x1yk − x1xk

xk−1
yk−1

)
(x1yk − xky1).

Now, making a change of coordinates

z1 ↔ xky1

z2 ↔ x1xk
x2
y2

...
...

...

zk−1 ↔ x1xk
xk−1

yk−1

zk ↔ x1yk

,

we have that Var(∆12∆23 · · ·∆(k−1)k∆1k) = Var((z2− z1)(z3− z2) · · · (zk − zk−1)(zk −

z1)). Since our point p corresponds to zi = 0 for the cyclic graphic arrangement

Var((z2− z1)(z3− z2) · · · (zk− zk−1)(zk− z1)), we know that p is in the non-free locus

of Var(∆12∆23 · · ·∆(k−1)k∆1k), and thus AG is not free. Moreover, this is a generic

hyperplane arrangement so by Rose and Terao [16],

pdim(DerX(− log(∆12∆23 · · ·∆(k−1)k∆1k))) = k − 3.

Since localization is an exact functor, pdim(DerX(− log (A)G)) ≥ k − 3.

Remark 3.2.2 The converse of Theorem 3.2.1 is not true. For example, for any

chordal graph with a vertex v of degree 2, if the induced subgraph v with its neighbors

is not a cycle then the corresponding determinantal arrangement is not free. In this
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case, the arrangement locally behaves like f = ∆12∆13, and one can check that this

arrangement is not free. However, evidence suggests that many of the arrangements

with chordal graphs are indeed free. For example, direct computations of small cases

suggest that arrangements corresponding to doubly-connected (graphs that remain

connected after removing any single vertex) chordal graphs are free.
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4. Topology of Determinantal Arrangements

In this chapter, we investigate the topology of the complements of free determinantal

arrangements. We exploit the combinatorial structure of free determinantal arrange-

ments to construct a fibration for the complement. In Theorem 4.1.2, we use this

fibration to show that the higher homotopy groups of the complement behave like the

homotopy groups of S3. In Theorems 4.2.2 and 4.2.3, we show that the Poincaré poly-

nomial factors over Q and give the explicit Poincaré polynomial for the complement

of the determinantal braid arrangement.

4.1 Fibration of the Complement

Let An = Var

( ∏
1≤i<j≤n

∆ij

)
denote the determinantal braid arrangement on a

2 × n generic matrix. Now, consider the arrangement in the ambient space of 2 ×

n matrices with coefficients in C. Let Un = C2n \ A be the complement of the

arrangement. To study the topology of Un, consider the fibration p : Un → Un−1,

where p is the projection onto the first (n − 1) columns. This map is well defined

because the columns of Un are pairwise linearly independent, and so the first (n− 1)

columns is also pairwise linearly independent. The fiber of this map is a selection of

a last column that is linearly independent from the first (n − 1) columns. Thus the

fibers are homotopy equivalent to C2 minus (n− 1) lines through the origin.

This fibration can also be generalized to any free determinantal arrangement on

a 2× n generic matrix M . From Theorem 3.2.1, we know that the graph associated

to the arrangement is chordal. From Definition 2.3.2, we can order the vertices such

that for each vertex v, the induced subgraph on v and its neighbors that occur before

it in the sequence is a complete graph. Without loss of generality, assume that our

free determinantal arrangement is associated to a graph G with vertices {v1, . . . , vn}
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labeled according to the reverse perfect elimination ordering. Let Gk denote the

induced subgraph on {v1, . . . , vk}, then for k = 2, . . . , n, let Uk = C2k \AGk
. Now, for

each k = 3, . . . , n, we have a fibration pk : Uk → Uk−1 where pk is the projection onto

the first (k−1) columns. This map is well defined because for each Var(∆ij) ⊂ AGk−1
,

we must have Var(∆ij) ⊂ AGk
from the way the arrangements are defined. Suppose

that induced subgraph on vk and its neighbors in Gk is the complete graph on m

vertices, then the fibers, Fk, of pk are homotopy equivalent to C2 minus (m− 1) lines

through the origin. We also have a fibration p2 : U2 → C2 \ {0} with fibers homotopy

equivalent to C2 \ C.

Note that pk is only a fibration when the graph associated to the arrangement is

chordal. If the graph is not chordal, the fibers are not homotopy equivalent.

Example 4.1.1 Consider the cyclic arrangement on 4 vertices: f = ∆12∆23∆34∆14,

we can follow our procedure of projecting the complement onto the first three columns,

however, some fibers look like C2 minus 2 lines (when the first and third column are

linearly independent) and other fibers look like C2 minus 1 line (when the first and

third column are linearly dependent).

When the graph is a chordal, this is no longer an issue since all of the relevant

columns are guaranteed to be linearly independent. We now use this fibration to

prove statements about the topology of Un.

Theorem 4.1.2 Let G be a chordal graph on n vertices labeled according to the re-

verse perfect elimination ordering. Let Gk denote the induced subgraph of G on the

first k vertices, let Uk = C2k \ AGk
, and let pk be the fibration described above with

fibers Fk. Then for k = 2, . . . , n the following sequence is exact:

0→ π1(Fk)→ π1(Uk)→ π1(Uk−1)→ 0.

Furthermore, πi(Uk) ∼= πi(S
3) for i ≥ 2.
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Proof Denote U1 = C2 \ 0, then for each fibration pk : Uk → Uk−1 for k = 2, . . . n,

consider the homotopy long exact sequence (note that our spaces are path-connected,

so the reduced homotopy π0 is zero):

· · · → π2(Fk)→ π2(Uk)→ π2(Uk−1)→ π1(Fk)→ π1(Uk)→ π1(Uk−1)→ 0. (4.1)

By Proposition 5.6 in [7], every central line arrangement is K(π, 1), so since each

Fk is a central line arrangement πi(Fk) = 0 for i ≥ 2 for each k. From (4.1), πi(Uk) ∼=

πi(Uk−1) for i ≥ 3. Since U1 = C2 \ {0} ∼= S3, for each k, πi(Uk) ∼= πi(S
3) for i ≥ 3.

Furthermore, consider the segment

0 ∼= π2(Fk)→ π2(Uk)→ π2(Uk−1). (4.2)

When k = 2, the group on the right in (4.2) is π2(S
3) = 0, which implies that

π2(U2) = 0. By induction on k, π2(Uk) = 0 for all k.

Plugging in π2(Uk−1) = 0 into (4.1) we get the short exact sequence

0→ π1(Fk)→ π1(Uk)→ π1(Uk−1)→ 0.

4.2 Poincaré Polynomial of the Complement

Inspired by Theorem 2.3.2 we attempted to find a connection between the gen-

erators of the module of logarithmic derivations and the Poincaré polynomial of the

complement of a free determinantal arrangement. Unfortunately, there is not a nice

relation like the one given by Terao, but we are still able to calculate the Poincaré

polynomial nonetheless.

To calculate the Poincaré polynomial, we will be using the cohomology Serre

spectral sequence for the fibration described in this chapter. Since the terms on the

E2 page are calculated using with local coefficients, we show that the fundamental

group on the base space induces the trivial monodromy action on the cohomology of
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the fiber. This allows us to use constant coefficients to describe the terms on the E2

page of the spectral sequence.

As a first step, we will try to understand the fundamental group of our determi-

nantal arrangement complements.

Lemma 4.2.1 Let G be the complete graph on n vertices and let Un = C2n \ AG,

then π1(Un) is generated by loops γ : [0, 2π]→ Un given by

γ(t) =

 eit 0 1 1 · · · 1

0 1 1
2

+ e−it 1
3

+ e−it · · · 1
n−1 + e−it

 ,

δ : [0, 2π]→ Un given by

δ(t) =

 eit 1 1 · · · 1

eit 2 3 · · · n

 ,

and loops constructed by permuting the columns of γ and δ.

Proof We will proceed by induction on n. For the base case n = 2, we know that

U2 is GL(2,C), and we know that π1(GL(2,C)) = Z and is generated by γ(t) = eit 0

0 1

 (which can also be continuously deformed into δ(t)).

Assume that the lemma is true for π1(Un). To find the generators for π1(Un+1),

we use Theorem 4.1.2. The short exact sequence

0→ π1(Fn+1)→ π1(Un+1)→ π1(Un)→ 0

tells us that π1(Un+1) is generated by lifts of generators in π1(Un) and the images of

generators from π1(Fn+1).

To lift the generators from π1(Un), we simply add a last column to γ, δ, and their

permutations. For γ and its permutations, we add on the column

 1

1
n

+ e−it

. For

δ and its permutations, we add on the column

 1

n+ 1

 .
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It remains to look at the images of generators from π1(Fn+1). Recall that Fn+1

is the complement of a central line arrangement. Pick a coordinate system so that

one of the lines is Var(x1). Consider the Hopf bundle h : C2 → CP1 with fiber C∗.

Note that the h restricted to the C2 \ Var(x1) has image isomorphic to C, therefore

h : C2 \ Var(x1) → C is a trivial bundle. Now, if we restrict h further to Fn+1, we

see that its image is isomorphic to C with n − 1 points removed. So we have that

Fn+1 is homotopy equivalent to (C \ (n − 1) points) × C∗ which has homotopy type(∨
n−1

S1

)
×S1. Therefore π1(Fn+1) is generated by the meridians around n− 1 lines,

and a loop around the origin.

The image of the meridian around the line generated by the first column is homo-

topic to the loop:  0 1 1 · · · 1 eit

1 1
2

+ e−it 1
3

+ e−it · · · 1
n

+ e−it 0


for t ∈ [0, 2π]. The (1, n + 1)-minor of this loop is eit, thus it is a meridian to the

subvariety x1yn+1 − xn+1y1 = 0. For 2 ≤ j ≤ n, the (j, n + 1)-minor is 1
j
eit − 1, and

all other minors are constant, thus this loop contracts to a point in the complements

of the subvarieties xjyk − xkyj = 0 for j, k 6= 1, (n+ 1).

The images of the meridians around other lines are simply the loop above with

its columns permuted, so these loops are permutations of γ in C2(n+1)

The image of a loop around the origin is homotopic to the loop: 1 1 · · · 1 eit

2 3 · · · n+ 1 eit


for t ∈ [0, 2π], so this loop is a permutation of δ in C2(n+1).

Theorem 4.2.2 Let G be the complete graph on n vertices. Let Un = C2n \AG, then

Poin(Un, t) = (1 + t3)(1 + t)n−1
n−2∏
k=1

(1 + kt).
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Proof We proceed by induction on n. For the base case n = 2, the complement U2

is GL(2,C). The fibration p2 : U2 → C2 \ {0}, where p2 is the projection onto the

first column of a matrix in GL(2,C), with fibers homotopy equivalent to C2 minus a

line. The base space C2 \{0} is homotopy equivalent to S3, and the fiber is homotopy

equivalent to S1. Considering the cohomology Serre spectral sequence,

Ep,q
2
∼= Hp(S3, Hq(S1)),

we do not have to worry about local coefficients, because S3 is simply connected.

Since the target for dr : Ep,q
r → Ep+r,q−r+1

r is always zero for r ≥ 2, the spectral

sequence collapses at the E2-page. Thus,

Poin(U2, t) = Poin(S3, t) · Poin(S1, t) = (1 + t3)(1 + t).

Similarly, the fibration pn : Un+1 → Un, where pn is the projection onto the first

n columns, with fiber Fn homotopy equivalent to C2 minus n lines. The cohomology

Serre spectral sequence gives us

Ep,q
2
∼= Hp(Un,Hq(Fn))⇒ Hp+q(Un+1). (4.3)

To show that we can use constant coefficients again, we show that the action

of the fundamental group of the base on the homology of the fiber is the identity.

Consider the loops γ and δ as defined in Lemma 4.2.1. We can permute the columns

of γ and δ to get all of the generators of π1(Un), thus it is enough to understand how

these two loops act on the cohomology of the fiber. Since our fiber is the complement

of a central arrangement of lines, elements of H1(F ) generate H2(F ) via the cup

product [17]. Hence it is enough to understand how γ acts on H1(F ).

Now, denote the columns of γ by vj for j = 1, . . . , n. Our fiber is C2 \
n⋃
j=1

span(vj).

We can consider the loops in the fiber given by α1 = v1 + ε

 0

eiθ

 and αj =

vj + ε

 eiθ

0

 for j ≥ 2 and 0 ≤ θ ≤ 2π. For ε sufficiently small, the loops αj are
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meridians to the lines Cvj. These meridians can be contracted in the complements

C2 \ Cvk for k 6= j, therefore they generate H1.

Since γ and δ are globally defined on Un and since αj at the start and end points

of the loops are the same, the action of γ on H1(F ) is the identity. Thus, in equation

(4.3), Ep,q
2
∼= Hp(Un, H

q(F )).

Since Var(f) has

 n+ 1

2

 components, dim(H1(Un+1)) =

 n+ 1

2

 = n(n+1)
2

.

Now,

dim(E1,0
∞ ) + dim(E0,1

∞ ) = dimH1(Un+1) =
n(n+ 1)

2
.

Note that, E1,0
r is not the target of dr for any r, therefore E1,0

2
∼= E1,0

3
∼= · · · ∼= E1,0

∞ .

Using the induction hypothesis, we can calculate dim(E1,0
∞ ) to be the coefficient of t

in Poin(Un, t), thus

dim(E1,0
∞ ) = (n− 1) +

n−2∑
k=1

k =
(n− 1)n

2
.

To compute the Poincaré polynomial for F , we use Theorem 2.3.2. Note that the

module of logarithmic derivations for a central line arrangement is free with a basis

consisting of the Euler vector field (which has degree 1), and another of vector field

of degree n− 1 (by Saito’s criterion). Thus Poin(F, t) = (1 + t)(1 + (n− 1)t), which

implies that dim(E0,1
2 ) = n.

Now,

thus we must have dim(E0,1
∞ ) = dim(E0,1

2 ), and hence dr(E
0,1
r ) = 0, for all r ≥ 2.

Since elements of H1(F ) generate H2(F ) and differentials on cup products are

derivations, dr(E
0,2
r ) = 0 for all r ≥ 2. Any element of Ep,q

2 can be written as a linear
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combination of products of α ∈ Ep,0
2 and β ∈ E0,q

2 , hence d2(αβ) = βd2(α)+αd2(β) =

0. Inductively, dr = 0 for r ≥ 2, thus Ep,q
2
∼= Ep,q

∞ . Furthermore,

Poin(Un+1, t) = Poin(Un, t) · Poin(F, t)

=

(
(1 + t3)(1 + t)n−1

n−2∏
k=1

(1 + kt)

)
((1 + t)(1 + (n− 1)t))

= (1 + t3)(1 + t)n
n−1∏
k=1

(1 + kt).

Following the same proof as in Theorem 4.2.2 and using the fibration described

earlier in this chapter we have the following result:

Theorem 4.2.3 Let G be a chordal graph, then Poincaré polynomial of U = C2n\AG
factors over Q into a product of a cubic with 2|AG| − 3 linear terms.
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Bourbaki, 24ème année (1971/1972), Exp. No. 401, pages 21–44. Lecture Notes
in Math., Vol. 317. Springer, Berlin, 1973.



VITA



35

VITA

Arnold Yim was born in Singapore on September 7, 1988. He moved to the United

States of America in 1994 and has lived in the US ever since. After graduating from

Aragon High School in 2006, he studied mathematics at Rose-Hulman Institute of

Technology. In 2010, he received his Bachelor of Science from Rose-Hulman and

began his PhD work in mathematics at Purdue University.


	Purdue University
	Purdue e-Pubs
	5-2016

	Homological properties of determinantal arrangements
	Arnold H. Yim
	Recommended Citation


	Blank Page

