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ABSTRACT

Wood, Mitchell A. PhD, Purdue University, May 2016. Energy Transfer and Local-
ization in Molecular Crystals. Major Professor: Alejandro Strachan.

With the aim of developing new technologies for the detection and defeat of

energetic materials, this collection of work was focused on using simulations to char-

acterize materials at extremes of temperature, pressure and radiation. Each branch

of the work here is collected by which material response is potentially used as the

detectable signal.

Where the chemical response is of interest, this work will explore the possibility

of non-statistical chemical reactions in condensed-phase energetic materials via re-

active molecular dynamics (MD) simulations. We characterize the response of three

unique high energy density molecular crystals to different means of energy input:

electric fields of various frequencies (100− 4000cm−1) and strengths, and direct heat-

ing at various rates. It was found that non-equilibrium states can be created for

short timescales when the energy input targets specific vibrations through the elec-

tric fields, and that equilibration eventually occurs even when the insults remain

present. Interestingly, for strong fields these relaxation timescales are comparable to

those of the initial chemical decomposition of the molecules. On similar timescales,

we have studied the relaxation process of shock compressed molecules. Details of how

energy localization, either from these vibrational or mechanical insults, affects the

preferred uni- or multi-molecular reactions are discussed. These results provide in-

sight into non-equilibrium or coherent initiation of chemistry in the condensed phase

that would be of interest in fields ranging from catalysis to explosives.

Without initiating reactions, the thermal response of a material subject to a

mechanical stimulus can be used to inform on the chemical characteristics. Here MD



xiii

simulations are performed to study how energy from an acoustic wave is localized

in a composite material of a polymer and molecular crystal. Insight is provided on

how the interface between these to materials will affect which component absorbs

and localizes this insult energy. Furthermore these results provide an explanation to

anomalous experimental results that subject similar composites to acoustic insults.

In parallel efforts for the detection and defeat of explosives, we study the scat-

tering of electromagnetic waves in anisotropic energetic materials. Nonlinear light-

matter interactions in molecular crystals result in frequency-conversion and polariza-

tion changes. Applied electromagnetic fields of moderate intensity can induce these

nonlinear effects without triggering chemical decomposition, offering a mechanism for

non-ionizing identification of explosives. We use molecular dynamics simulations to

compute such two-dimensional THz spectra for planar slabs made of PETN and am-

monium nitrate. We discuss third-harmonic generation and polarization-conversion

processes in such materials. These observed far-field spectral features of the reflected

or transmitted light may serve as an alternative tool for stand-off explosive detection.



xiv
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CHAPTER 1. INTRODUCTION

This initial introduction will serve as a backdrop, or perspective, on the work

collected here, the technical merit will be supplied in the introduction and discussions

in each of the research chapters in the body of this text. It seems necessary to provide

the themes of this research up front because this collection of work will span seemingly

disparate applications with only the material system as the common feature. Rather

than telling the story strictly chronologically, an attempt is made to reorder and

present the work in a way that best fits the theme of the title. Parallel with these

scientific themes, this work is enabled by significant advances in high performance

computing in recent years and it is worth discussing the results show here in this

context as well.

In general, this thesis is concerned with the process of energy absorption by

chemically reactive materials, and the governing relaxation processes that bring the

system back to equilibrium. This is then a study of the transient excited states that

a material exhibits as it interacts with its external environment; the aim here is to

assess the changes in material properties as a function of which excited states are

realized. [1, 2] This topic has an enormous number of known and potential areas of

application as scientists and engineers push the boundaries of what sort of environ-

ments a material can withstand. Those who study any sort of high rate phenomena,

such as shock physics, photonics, electronics, etc., need to be concerned with the

excited state properties of the given material. For example, in the same way that a

martensite phase behaves much differently than the equilibrium phase of the metal,

these transient excited states of a material offer a unique perspective to study materi-

als. A fundamental understanding of the topic of energy transfer is applicable in all of

physics and chemistry, and to date significant progress has been made experimentally,
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theoretically and computationally. [3, 4] One of the common themes throughout the

work collected here has to do with the critical timescales for the absorption of energy

from the environment and subsequent relaxation processes, and how it will affect

the response of the material. Interestingly, the decay times of these non-equilibrium

states are both material specific and sensitive to the absorbing degrees of freedom. [5]

This provides an even larger test bed to study these non-equilibrium states. Many of

the unique observations that will be shown are enabled by the ability of simulation

tools to compress or dilate relevant timescales which would prove to be experimentally

challenging (or impossible) given current technologies. [6, 7]

By using computer simulations, a greater degree of control over the external

stimuli can be achieved(not to mention superb reproducibility), which simplifies the

analysis of the true nature of the physics at play. This external stimulus can be

thermal, mechanical, or electromagnetic just to name a few energy input types. De-

pending on the means of energy input to the material, usually only a small number

of degrees of freedom are capable of coupling to the external stimulus. While the

stimulus is present, the coupled modes will carry more than the equipartition of en-

ergy that is observed in equilibrium; these are denoted as non-equilibrium states of

the system. To predict how a given material would respond to an external stimulus,

the first, and most logical, way to proceed is to consider a perturbation that modifies

the normal equilibrium behavior. Statistical mechanics provides the mathematical

framework for such a prediction, but is restricted to measurements made in equilib-

rium for an ensemble of particles. This measurement, made assuming the system is

close to equilibrium, is a good assumption for state processes that only care about

the final (or difference between initial and final) states of the system. [8] However,

if the measured quantity is determined by the path which the system follows from

initial and final state, the prediction becomes increasingly complex.

For the topic outlined above, the choice of material to study is equally as im-

portant as the computational methods that enable this work. Ideally, the material of

interest has a rich variety of mechanical, thermal and chemical behavior that can be
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elucidated by multiple energy input types. In addition, the transient non-equilibrium

states need to survive long enough that they can be studied relative to the material

response that is of interest. Again, the theme of relative timescales emerges here

in material selection as well. [1] The emphasis on a variety of chemical responses

narrows the search significantly toward organic materials that are multi-element in

nature. Molecular solvents, however, are largely uninteresting when it comes to their

thermal and mechanical properties. Therefore, molecular crystals are then an ideal

choice that exhibits each of the aforementioned material responses. Further detail on

this material selection will be highlighted as it applies to the energy input and re-

sponse pair in the latter chapters of this work. Energetic materials are a special class

of molecular crystals that have had their thermo-mechanical properties well charac-

terized over the past few decades. [9] These well characterized energetic materials will

be the primary focus of this work, but now are being looked at in a new perspec-

tive, which aims to contrast the well known equilibrium behavior with that of the

non-equilibrium or excited state dynamics.

The work collected here is organized into chapters by subset of the overall ma-

terial response of interest, with the goal of determining its’ sensitivity to the means

of energy input to the system. In each of these chapters, how a material selectively

absorbs energy from the external stimuli, and the rapid processes by which that en-

ergy is redistributed throughout the system, is discussed. How the observed response

differs from the equilibrium dynamics will accompany each of the presented data sets

for each external stimuli. The remainder of this work is organized as follows. Chapter

2 is devoted to the computational methods that underpin all of the work displayed

here; the focus will be on the advantages as well as the assumptions made with the

simulation methods used here. Accompanying the discussion of simulation methods

is a background for the common analysis techniques used to extract meaningful ob-

servations from the wealth of available simulation data. Subsequently, Chapter 3 will

collect a pair of research topics that study the chemical response of energetic ma-

terials subject to either an electromagnetic or mechanical energy input. Additional
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background and literature review on the topics of reaction kinetics, vibrational en-

ergy relaxation and the shock to detonation transition are given in Chapter 3. The

research collected in Chapter 4 focuses on the localization of mechanical energy as

thermal hot spots in a composite material and includes a review of the relevant liter-

ature. Next, Chapter 5 covers the electromagnetic response of an energetic material

subject to intense light pulses in the THz range. The discussion and literature re-

view in this chapter will be focused on the potential applications of this work to the

standoff detection of explosives. Finally, concluding remarks about this work and its

potential future applications is discussed in Chapter 6.
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CHAPTER 2. COMPUTATIONAL METHODS

It is interesting to think about the characteristics of a scientist through time.

A few hundred years ago, it was common to be proficient in both experimental and

theoretical techniques of discovery. Onward, an ever increasing need for specialization

has made scientists experts of either experimental or theoretical technique, that is

until recently. The advent of computers and fast parallel algorithms has brought on a

new mode of research that has a flavor of both the experimental and theoretical efforts.

Consider now the vast number of possible experiments that can be preformed where

no other piece of equipment is accurate enough or where equations can be solved

faster and more precisely than any human can offer. What could you design and

test for this virtual lab? Given the enormous possibilities, scientists are more often

making use of virtual experiments to bolster existing experimental and theoretical

efforts. Even more interesting is the number of new fields of scientific study that have

spawned from this technology, not to mention the simultaneous economic impact.

This chapter will, of course, not be able to cover all of these aspects of computational

work. Rather, the focus will be on the usage and impact in material science, which

has been a pillar of computational experiments for many decades.

2.1 Introduction

One of the key insights into the field of computational material science has to

be the acknowledgment of the wide variety of modeling and simulation tools available

to this one particular field of study. One way to argue how useful computation

has become in the engineering world is to display the vast number of available and

supported software for virtual experiments across nearly all length and time scales.

Highlights of this toolkit include new material discovery using ab initio electronic
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structure codes [10] as well as product design and validation for well established

engineering problems [11–13].

One of the long standing problems, however, is an efficient and intuitive way

to link multiple computational tools together. This is what is known as multi-scale

modeling and it has become commonplace in the engineering research landscape.

There are practical limitations on the uses of multi-scale modeling, largely due to

the lack of transferability of the method between specific applications. For example,

a finite element model(FEM), which normally computes material properties at the

micro- to millimeter scales, could benefit from detailed atomistic simulations at areas

of large deformation in the structure. [14] But, when these fine scale simulations

are launched and how the information is communicated to modify the FEM is a

significant challenge. This and other multi-scale modeling efforts often boil down

to a problem of work balancing between each of the tools used. Making proper

use of true multi-scale modeling has been a focus of this nation’s government in

order to ensure competitiveness at the global scale when it comes to innovation.

[15, 16] This is because integrating modeling and simulation into the engineering

design loop has the promise to shorten the times between concept and commercial

impact. Furthermore, the resources expended per experiment is far lower with these

computational tools, which cuts out plenty of wasted trial-and-error loops. Modeling

and simulation tools are finding impact beyond what has direct economic impact as

well. In publishing of research, there has been a push by high impact journals to

field and print multi-disciplinary work, which now means two or more experiment,

theory and computational contributions are sought after. [17] This, of course, is not

too surprising: if there is already an external validation on the work, it decreases the

workload of the peer reviewers. Although it is not common practice currently, there is

hope that published computational research will be supplemented with a level of detail

that the exact same results can be produced by the readers. The obvious advantage

is the transparency of reporting results, thereby accelerating further research efforts.

[18–20] This transferability of results is unlike any other mode of research.
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To augment this style of reporting, some institutions are actually providing the

necessary computational resources for free as part of a cloud computing effort. [21,22]

The availability (and justified use of taxpayer dollars) of such a cloud computing

service begs the obvious question of why can’t this work be carried out using com-

mercially available computers? This, however, is a question regarding the scale of

research computing versus what is common to a personal laptop machine. The ever

evolving buzzword that has been alluded to thus far is High Performance Computing

(HPC). A breakdown of the essential components of HPC would yield three major

themes; theory/methods, algorithms and hardware. This triplet is highly interdepen-

dent, and which problems are available for researchers to explore will be controlled by

the hardware and algorithms of that era. As a prime example, Section 3.4 will cover

a problem that was revisited after ten years of hardware and algorithm development,

with the availability to reveal new physics of energetic materials and detonation. Ef-

forts into improving hardware have been advancing at a much faster pace than the

other two and, as such, have dictated what research is performed at the extreme

scales of computing. Although not an exhaustive list, these improvements include:

higher transistor densities, multi-threaded central processing units (CPUs), and the

fast processing but communication limited graphics processing units (GPUs). For

the emerging needs of computationalists, and bragging rights of owning the most

powerful computer,universities and national labs across the world have been building

massive computing centers that incorporate these hardware developments. [23] Model

and simulation forms that take advantage of parallel computation are commonplace

on these supercomputers; molecular dynamics(MD) is one such example. In order

to forcibly focus the remainder of this section, a sole discussion MD and its’ im-

pact in materials science will be undertaken. The reader is directed to the following

references if they are looking for more information on electronic structure [24–27]

meso-scale modeling [14, 28–30] or device level modeling [13, 31]. All of these tools

have their foothold in materials science but address vastly different length and time

scales that will be discussed further.
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2.2 Atomistic Simulation Tools

Many of the macroscopic properties of materials that are familiar to all can be

understood as extrapolations of interatomic interactions at the nanoscale. Given the

symmetry and types of bonds in a crystal, much of the mechanical, electrical and

thermal information of a material can be inferred. Therefore, it should not come as a

surprise that significant effort has been made to develop simulation tools that concern

themselves with the dynamics of atoms. When the collection of atoms are treated

using classical mechanics, meaning they strictly obey Newton’s equations of motion,

these simulations are known as molecular dynamics (MD). To study the motion of

atoms, these codes will solve F = ma for all atoms in the system. Each force can be

calculated as the gradient of some potential energy, i.e. −∇U = mẍ(t), and the model

forms of this potential energy surface, also known as the interatomic potential(IAP),

are the leading approximations in MD. To obtain the positions and velocities of

atoms at a later time, this equation is integrated in time by taking small time steps to

alternate when the positions or velocities are updated. There are several approaches to

integrate the equations of motion [32,33] but the most common is the Verlet algorithm,

which is used here. In order for these simulations to accurately integrate the equations

of motion (think of a Riemann sum), very small time steps must be taken which

are on the order of femtoseconds. This inevitably limits the amount of time that

the atomistic dynamics can be studied: nanosecond length simulations are common,

but in rare cases micro- and mili- second MD runs are possible [34]. However, the

extremely high spatial (Angstrom) and temporal (femtosecond) resolution make MD

ideal for the study of materials in extreme conditions. Furthermore, MD has benefited

greatly from the HPC push due to its impressive parallel computing efficiency. This

efficiency is because each force calculation can be spatially decomposed based on

which atoms form a short ranged neighborhood, allowing for each processor to manage

a different location in the MD simulation. To the end user of a MD code, this means
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as the computer scales so can the size of the simulation domain. This is rarely the

case with other computational tools without special programming tricks. [35]

There are a number of impressive uses of MD to date, and these have not been

restricted to just materials science. For any system that can be treated classically,

it is the ideal tool to gain mechanistic insight at the atomic scale. Examples of high

impact MD work outside of materials science include detailed information about the

conformation dynamics [36] and enzymatic activity of proteins in solution [37], the

structure of nucleic acids [38] and self-assembly of molecules on surfaces [39]. In

many of these cases, MD work is used to motivate future experimental work which

exemplifies the usefulness of such a computational tool. Other aspects of MD research

are the background developments to allow for more accurate simulations. In large

part, these advancements have used one key approximation, that the interatomic

potential made more realistic, thus can capture more detailed physics. For example,

consider an interatomic potential that describes a simple molecule like benzene. As

an initial guess, one can assume each bond that forms the molecule has a harmonic

potential with the stiffness and equilibrium distance tuned individually. There are a

number of widely used IAP that use this formalism [40–42] and some software that

can automatically generate these harmonic potentials for arbitrary molecules [43].

Calculation of these harmonic bonds are relatively inexpensive; Chapter 4.2 covers

one such potential used for a polymer/molecular crystal composite material. These

IAP have a glaring weakness, which is that the bonds that are defined as the initial

state of the simulation can never break, because the harmonic energy term diverges

at large separation distances. Therefore, any IAP of this type is severely limited in

what chemical properties can be studied. A majority of the work collected here will

be concerned with the effects arising from anharmonic potential energy surfaces as

well as chemical reactions in the condensed phase. As such, a detailed discussion

of these ‘chemistry enabled’ IAP and a perspective on their development and future

directions will be the focus of the next section.
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2.2.1 Reactive Molecular Dynamics

Rather than predetermining the bonded atoms, these reactive IAP (commonly

called force fields) need to be able to dynamically recognize atoms that should be

bonded to one another. This could be achieved simply by setting a cut off distance

beyond which atoms cannot bond, but another requirement of the potential energy

function is that the energy is a smooth function, meaning its derivative (force) is

not discontinuous. A discontinuous force curve would cause unphysical dynamics of

atoms and would ruin the credibility of the simulation. Therefore, using an IAP that

captures both the details of the reactants, products and the transition states between

is key for the stability of the simulation. Although reactive MD is typically thought

of for organic chemistry, the same effect in metals is achieved by formulating the po-

tential energy in such a way that includes environment or density dependent terms.

Examples of these metallic IAP include the Embedded Atom Method [44, 45], elec-

tron Force Field [46] and Gaussian Approximation Potentials [47–49]. Some of these

metallic IAP actually include angle dependent potential energies which makes them

more akin to the molecular reactive potentials than the simple pair-wise potentials

like Lenard-Jones or Morse potentials. Returning to organic systems, much of the

early work using reactive IAP surrounded chemical reactions that occurred at MD

timescale, namely propellants and explosives. Advancements in accelerated MD has

allowed for the study of ‘slow’ chemical reactions, but none of these techniques are

employed in this work. The reader is directed to the works of Voter, Chen, Germann

and others for these methods of accelerated MD. [50] Physically, the hybridization

of molecular orbitals and increased overlap of electrons from bonded atoms results

in stronger bonds. [51,52] For computational convenience, it is easier to calculate an

order parameter of the bond rather than the details of the electronic states. These are

known, unsurprisingly, as bond orders (BO), and differs for each atom pair. There-

fore, energies and forces in MD can be dependent on these BO, which permits adding

more physical rules on when a bond order should increase or decrease. For exam-
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ple, rules about covalency and which atom pairs form double or triple bonds can be

built into the calculation of the BO. [53, 54] The set of rules for how bond orders

are calculated and the training geometries from ab initio calculations for a set of ele-

ment types is what is called a parameterization. Somewhat of an art form, creating

a parameterization is a difficult balance between how many training structures are

supplied, how to weight the relative importance of each structure and of course the

challenges that arise from a many-dimensional optimization problem. Early parame-

terizations contained few elements, in order to restrict the number of reaction paths

need to train against. Several attempts have been made to automate this process

but the most reliable parameterizations were generated by a handful of expert users.

The use of partial bond orders to construct IAP capable of describing chemical re-

actions was pioneered by Tersoff [55]. Thereafter, more and more researchers have

been attracted to BO potentials due to the predictive power that a flexible chemical

environment affords. Now, since bonds do not need to be predetermined, the user

only needs to supply the initial positions of the atoms to begin a simulation. Some of

the early applications of these potentials were on detonation in model systems with

simple and, importantly, fast chemistry [56–59]. Tersoff style potentials have been

developed for a number of semiconducting materials and remain widely in use today

by researchers. [60, 61] Following the enormous push of research into graphene and

other carbon nanostructures, some reactive IAP have focused their parameterizations

to accurately predict mechanical and thermal properties of these systems [41,62].

Fitting back into the aforementioned interplay between hardware and simulation

capability, the use of reactive IAP necessitates a much larger allocation of memory

per atom than a normal MD simulation and, as such, these potentials were scarcely

used until hardware limitations were lifted. [63–66] These memory restrictions stem

from the need to calculate and store bond orders for every atom pair that depend on

local configurations of nearby atoms. A new and very recent chapter in this coupled

growth of simulation capability is anchored by the ability to employ GPUs running

in tandem to CPUs. [67,68] Certain aspects unique to reactive IAP can be ported to
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the faster computing GPUs, which in turn opens up new physics that can be explored

at longer timescales.

The most versatile reactive IAP, in terms of the usage and available parameteri-

zations, has been ReaxFF, which was proposed by Goddard and van Duin in 2001. [53]

With the exception of the work in Chapter 4.2 (which is not interested in chemical

reactions), the entirety of the work collected here uses the ReaxFF IAP. In addition

to being a flexible bond order potential, ReaxFF builds off work done by Rappe and

Goddard that allows for charges on atoms to move with respect to the chemical en-

vironment. [69, 70] Although the charge is localized on the atoms’ nucleus, which is

an obvious approximation, the ReaxFF force field is polarizable given the inclusion

of this charge equilibration scheme. Researchers have been employing ReaxFF in

applications ranging from hydrocarbon combustion [71] , catalysis [72,73], biological

processes [74], batteries [75], zeolites [76], energetic materials [77, 78] and nanoelec-

tronics [79,80] to name a few. While the number of ReaxFF parameterizations grows,

each is not completely transferable. This means that the same element basis cannot

accurately describe all the materials (or molecules) that can be formed. For example,

a force field containing carbon, hydrogen, nitrogen and oxygen that best suits pro-

pellants and explosives may be terrible at describing the structure of proteins with

the same constituents. For that reason, ReaxFF force fields are divided into branches

based of their intended purpose. A listing of these is available via the web. Lastly,

ReaxFF has shown to be amenable to the extreme scales of computation with a very

high parallel efficiency withing the LAMMPS molecular dynamics package. [35, 81]

Although ReaxFF is a more cumbersome IAP than other many body potentials, its

efficient parallel computation allows for simulation sizes of many millions of atoms

for nanosecond time periods.

Despite the tremendous progress in the last 20 years and the science that has

been enabled, reactive IAP are not without limitations. For example, electronic pro-

cesses such as metallization or dielectric breakdown cannot be captured directly. In

addition, as mentioned before, the force fields can provide inaccurate results for con-
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ditions away from those used during training. Identifying the bounds on this are up

to the researcher, not the parameterization developer. Spurious predictions can arise

from excessively high temperature and pressure states of the material which can in-

duce drastic changes in bonding characteristics. Electronic properties can completely

change at high pressures; therefore, it is reasonable to assume that a force field that

is parameterized for ground state electronic behavior will not capture, for example,

the insulator to metallic transition in silica [82, 83]. Some researchers have tried to

include electronic excitations in MD by having multiple force fields(for each excited

state) calculated per timestep and their forces are recombined given some occupancy

probability. [84–88] These approaches are not widely used due to their recent inven-

tion and the excessive training needed for each of the excited state potential energy

surfaces. While not always critical under detonating conditions in typical molecular

energetics, electronic transitions and excited states are critical in many planetary or

geological applications, where electronic structure calculations are the only simula-

tion option [82, 83, 89, 90]. Therefore, a careful balance must be struck between the

types of simulations that fit the size and time restrictions to MD and the extreme

conditions that may cause spurious results for the given parameterization.

2.2.2 General Analysis Techniques

While MD simulations provide an unprecedented length and time resolution for

materials characterization, this wealth of data is overwhelming (and useless) without

analysis tools to reduce the data into meaningful quantitative measurements. It is

most common to reduce the raw output of positions, velocities and forces of each

atom into thermodynamic quantities of interest such as the enthalpy, temperature

and pressure, respectively. [91] For large simulations of dynamic phenomena, it is

possible that the local response of the material will vary throughout the sample. An

easy example to picture is a polycrystalline metal: the grain boundaries are chemi-

cally similar to the rest of the material, but their thermal and mechanical response

will be much different than the bulk crystalline regions. These property impulses are
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localized in space and time, but there are plenty of material responses that are delo-

calized in space and are periodic in time. Details of how to extract relevant local and

spectroscopic properties from MD will be given using an example simulation of shock

compression, which will be discussed in Section 3.4. Outlines for best practices and

potential pitfalls will be given here and pseudo-codes for each method are attached

as appendices.

When a MD simulation runs, it is much more computationally efficient to only

calculate interatomic distances and forces for atoms that are known to be nearby

versus checking every atoms’ relative position. In the same sense, to processes a large

amount of spatially decomposed data the first step is to define grid volumes and assign

atoms into them. Care must be taken to define grid volumes that are small enough to

resolve small changes in local properties but include enough atoms that the property

being calculated is well-converged. Usually, a few hundred atoms per grid volume

is sufficient when calculating local densities, pressures or temperatures. Figure 2.1

shows a typical simulation cell used for a shock compression study; overlaid in the

top left is an example grid that would be present throughout the cell.

To launch a shock wave, all of the atoms are given an additional velocity toward

an infinitely massive piston (fixed in space), which is modeled here as a momentum

mirror. From the conservation of momentum, atoms that come in contact with the

wall will have the sign of their momentum reversed and thus the sample will begin

to compress. As the material compresses, the sample has an inhomogeneous veloc-

ity distribution belonging to the center of mass translation of the cell as a whole.

This velocity should not be considered in the temperature calculation and should be

subtracted from each grid volume. For each grid volume this is simply defined as

the mass weighted atomic velocities (vi) of all atoms in the bin (Ng); this is given in

Equation 2.1. Subtracting these translational motions from each grid volume makes

the simulation cell at rest with respect to the traveling shock front.

vcmg =
1∑Ng
j mj

Ng∑
i

mivi (2.1)
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Figure 2.1. Example local property calculation on a shock compressed
sample of RDX. The entire sample moves toward a fixed piston. This
velocity must be subtracted from each grid volume (shown in blue)
before a temperature can be calculated.

Following classical statistical mechanics, the temperature for the atoms inside

any grid volume is given by equation 2.2. Each atomic velocity, vi, is corrected by the

grid velocity in which is resides, vcmg , and the summation runs again over all atoms

in the grid cell. The prefactor in equation 2.2 comes from the equality of classical

kinetic energy and equipartition of energy among 3Ng degrees of freedom.

Tg =
2

3Ngkb

Ng∑
i

mi|vi − vcmg |
2 (2.2)

The resulting grid temperatures are shown in Figure 2.2 where now the un-

compressed region shows no increase in temperature above the intended 300K even

though it is moving at 2km
s

to the left.

In molecules it is common to distinguish where kinetic energy is localized be-

tween the translational and vibrational degrees of freedom. In other words, one

would like to distinguish between the temperature associated with collisions between

molecules and the temperature which would give rise to a unimolecular reaction. The
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Figure 2.2. Example local temperature calculation on a shock com-
pressed sample of RDX after grid velocities have been subtracted.
Local temperatures show hot spots around the collapsed pore.

main challenge is identifying which atoms form a molecule in a way that is computa-

tionally efficient and robust with respect to the random fluctuations inherent to MD.

Surprisingly, there are a large number of ways to uniquely define a molecule, and in

large part has to do with the minimum interaction between atoms that constitutes a

bond. One could argue, though rarely the case employed, that van der Walls interac-

tions constitute a weak bond, thereby forming very large molecules. Several methods

have been used in the literature that range from solely distance-based criterion [78],

distances plus kinetic energy differences [92], bond orders [93] and molecular orbital

overlap [94]. Regardless of the method used to identify bonds, a molecule can be

quickly identified by its composition once all atoms in the bond network have been

separated into unique clusters. This clustering method can be done by using a min-

imum spanning tree algorithm [95] that will search for unique atom atoms that are

identified as bonded to any other atom in the growing cluster. A cluster is identified
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as a molecule when no more unique atoms can be added to it. The drawback to this

method is that no information on the molecule’s conformation is retained. Because

of this limitation, isomers of the same molecule would be recognized as the same,

which, depending on the simulation needs, could prove problematic. Returning to

the example simulation cell shown in Figure 2.1, the center of mass velocity of each

identified molecule has to first be corrected by the motion of the grid volume it exists

in.

vcmK =
1

MK

∑
kεK

mk(vk − vcmg ) (2.3)

This is given in Equation 2.3, where MK =
∑

kεKmk is the mass of molecule K

made up of atoms k. Therefore, the center of mass temperature of each molecule is

given by:

Tcm =
2Mk

3kb
|vcmK |

2 (2.4)

There is a complication in this analysis that arises when two adjacent grid vol-

umes are moving at vastly different velocities. One can imagine that some molecules

at the boundaries of these cells do not lie completely in one cell; then, the question

arises which vcmg is used? For the shock work in Chapter 3.4, a weighted average of

nearby cells of vcmg is used to correct for these artifacts, but in general the number of

molecules affected by this is very small relative to the entire simulation. This center

of mass temperature only encompasses three of the 3Nmol degrees of freedom available

in the molecule, the remaining belonging to the intramolecular vibrations. To isolate

the vibrational temperature, each atomic velocity is transformed into the reference

frame of the molecule it belongs to by subtracting the corresponding center of mass

velocity vcmK of the molecule.

Tvib =
2

3kb(Nmol − 1)

∑
kεK

mk|vk − vcmK |
2 (2.5)
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Equation 2.5 describes the vibrational temperature of each molecule K which is

an indicator of the likelihood of a unimolecular reaction. In later sections, details of

how chemical reactions evolve differently when Tcm 6= Tvib will be discussed. It will be

shown how these non-equilibrium reactions play a key role during shock compression.

For small molecules (Nmol < 5), the number of vibrational degrees of freedom does not

significantly outweigh the center of mass modes and, thus, the overall temperature is

closer to an equal average of Tcm and Tvib. Conversely, the parent molecules shown in

Figure 2.1 have sixty of the available sixty-three modes wrapped up in the vibrational

components. Therefore, in some applications it is advantageous to further subdivide

the Tvib into the kinetic energy per vibration, but this requires a change in analysis

technique. Rather than using a single time snapshot one could look at the time series

of velocities to understand what characteristic frequencies dominate the seemingly

random noise. This can be achieved using a discrete Fourier Transform [96] of the

individual atomic velocity trajectories; the resultant Fourier coefficients are propor-

tional to the kinetic energy density. Collecting each of the Fourier coefficients, and

normalizing by the overall kinetic energy, the result is known as the vibrational den-

sity of states, P (ω), as is given in Equation 2.6. Performing a Fourier transform on a

discrete set of data versus a continuous function does involve certain approximations,

which limit the frequency range and resolution. The inverse of the sampling rate,

∆t, determines the uppermost frequency that can be identified and the number of

discrete points n will limit the ∆ω between points in P (ω).

P (ω) =
τ

NkbT

3N∑
j=1

mj

(N−1∑
n=0

vj(n∆t)e−i2πωn∆t
)2

(2.6)

In order to capture all of the intramolecular vibrations, ∆t should be larger

than three femtoseconds and the length of the trajectory should be greater than

twenty picoseconds for a well resolved density of states. These trajectory files do

become exceedingly large quickly with this small of a sampling interval, so caution

is needed when performing this sort of analysis. The outer sum in Equation 2.6 runs

over all atoms in the system (after which the Fourier coefficients are averaged) which
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Figure 2.3. Example spectral analysis on a sample HMX crystal at
300K and 1atm pressure using the ReaxFF force field. Vertical offset
of the power spectrum of each element is done only for clarity.

affords the possibility for the user to look the vibrational density of states (VDOS)

for each element at a time. What this buys is the ability to assign peaks in P (ω)

to experimentally known vibrations (Raman or IR) of the material based on which

element types are contributing. In Figure 2.3, Equation 2.6 is applied to a HMX

crystal, which is an energetic material similar to what is shown in Figure 2.1. Here,

the overall power spectrum (un-normalized VDOS) is broken down by element type,

which is more informative for interpreting what vibrational properties the force field

predicts.

In the example shown in Figure 2.3, a simulation of many tens of picoseconds

was needed, but studying dynamical changes in the VDOS that occur in smaller

timescales would not be possible. To do so, one can imagine that a long velocity

trajectory could be assembled by collecting an ensemble of smaller length trajectories.
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Now, the advantage is that the time window that the spectrum represents is smaller,

but there has not been a sacrifice on the frequency resolution. This method has been

coined internally as ‘stitching’ a trajectory together, and the advantages are enormous

when analyzing the effects of frequency localized insults as in Section 3.3. Certain

artifacts arise in the resultant VDOS, since the trajectory has been stitched. These

are exemplified by Figure 2.4. In this Figure, a simple sine wave with frequency set to

2000cm−1 is Fourier transformed (in blue) while the series in red has a random phase

applied every 1ps. This random phase is the same effect as merging independent

trajectories from multiple MD simulations. In effect, the peak positions are the same

between these two trajectories, but the stitched trajectory has a noticeable width to it,

while the unperturbed sine wave Fourier transforms into a delta function. As will be

shown in later chapters, this artificial width to the vibrational peaks is inconsequential

when a small integration window is used to analyze the temperature of each mode.

However, this trick preserves the frequency resolution of a long continuous run while

enabling users to dynamically study changes that result from chemical reactions.

An interesting result of calculating the power spectrum at small time intervals

is the capability to assign a temperature to a specific group of vibrations. Consider

a material in equilibrium at a temperature of T0: this implies that each vibration,

or any subset of vibrations from ω1 to ω2, is also at the same temperature. Now

consider that there is a dynamic condition that makes the temperature of each of

those vibrations different, but still the overall temperature is T0. One can assign the

temperature to each group of vibrations by comparing the dynamic spectra to that of

the equilibrium conditions on discrete frequency windows ω1 to ω2, given in Equation

2.7.

Tmode(ω1, ω2) = T0

∫ ω2

ω1
PDynamic(ω)dω∫ ω2

ω1
PEquilibrium(ω)dω

(2.7)

If the frequency ranges are chosen carefully, the inherent broadening from stitch-

ing trajectories (e.g. Figure 2.4) will not affect the calculated mode temperature.

In Chapter 3.3, where energy is selectively input into intramolecular modes, this
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Figure 2.4. Resultant vibrational density of states for a continuous
sine wave versus one that has been stitched from multiple smaller
segments.

rapid calculation of the power spectrum will provide important information about

the strength of the energy localization as well as the rates of dissipation into other

vibrations.

Experimentally, the vibrational density of states is not directly accessible; rather,

vibrations that are either Raman or IR active can be detected. It is important to

know which vibrations are IR active because these will strongly absorb and emit

light. From MD, one can calculate the IR response of a material by tracking the

dipole moments of each atom. The obvious approximation here is that there is no

charge distribution that is polarized to form a dipole moment when point charges are

used. However, the coupled motion of these point charges gives rise to an IR moment

that is easily calculated. More specifically, the autocorrelation function of each dipole

derivative gives the time series of the IR signal. and the Fourier transform yields the
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frequency space IR signal. [97] Equation 2.8 shows the details of this calculation. The

inner sum is the autocorrelation function, and the outer is discrete Fourier transform,

which uses the same nomenclature as Equation 2.6 where Ṁ =
∑N

j=1 qj(i)vj(i) with

qj(i) and vj(i) representing the charge and velocity of atom j at sampling frame i.

I(ω) =
2πω

3h̄cn
(1− e

h̄ω
kbT )

N−1∑
n=0

e−i2πωn∆t
[ i−n∑
i=1

Ṁ(i)Ṁ(i+ n)

i− n

]
(2.8)

Most of the computation time for this IR calculation is spent on the autocorrelation

function rather than the Fourier transform (only performed once); thus, is much faster

than Equation 2.6. The same considerations for the sampling rate from the VDOS

calculation should be considered here and, to obtain the best resolution, the limits of

the autocorrelation should be set to n = i
2
. In doing so, the auto-correlation function

is calculated up to the first half of the trajectory, looking at correlations into the later

half. Additional details of how these calculations are performed and how to optimize

the run times will be supplied as an appendix to this document.



23

CHAPTER 3. CHEMICAL RESPONSE TO ENERGY INPUT

After a single introductory chemistry course it is easy to understand how the

thermodynamic conditions (i.e. temperature, pressure, chemical potential) will affect

the rate of a known chemical reaction. The underlying assumption that makes these

predictions intuitive is one that is common to any statistical rate theory, namely

that the reactants and products are always in thermodynamic equilibrium. Now this

is a very good approximation for many scenarios because the timescales associated

with a reaction are far longer than those that bring the system to equilibrium. In this

chapter, a great deal of time will be spent exploring the outliers to this approximation,

where thermal equilibrium is no longer guaranteed. First, an overview of statistical

and non-statistical reaction rate theories will be put forth followed by two example

cases where this idea of non-equilibrium chemistry has a strong foothold. By the end

of this chapter, the hope is that the reader understands how common non-equilibrium

chemistry is and its potential applications for external control of reactivity.

3.1 Introduction

Despite decades of progress, there is still a significant knowledge gap between

chemical reaction rates that are derived from classical statistical mechanics and those

from quantum mechanical treatments. These manifestations are often given the name

non-statistical reactions and stem from the observation that energy in different forms

has different efficacies in promoting a reaction. [98] Understanding and predicting

which molecule geometries or which types of reactions will deviate from statistical

reaction rates is considered as the ultimate goal here. Beyond the pure academic

achievement of such a theory, progress in this area of research would provide a set

of rules of how to externally control when reactions occur. More importantly, under-
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standing how to best prepare a molecule for reaction could mean a lower energy cost

for the same resultant reaction. This, in turn, has the potential for revolutionizing the

way catalysts are designed, how energy or memory is stored, and for the work here,

how threats from energetic materials can be safely detected. This effect goes by many

names in the literature, such as state-selective or bond-selective chemistry [99–103],

or non-equilibrium and non-statistical reactions [78,104–107].

Clear examples of non-statistical chemistry range from chemisorbed methane

[102] or water [108] on transition metal surfaces to many vibration-specific excitations

of deuterated small molecules [101] that result in unsuspected decomposition rate

changes. Recently, Viada et al. identified atmospheric photo-dissociation as another

example where non-statistical reactions are the norm rather than the exception to

the rule [109]. Additionally, low activation energy isomerization reactions have been

repeatedly shown to behave non-statistically; these were heavily studied theoretically

by Bunker and Hase [110–112] and computationally by Patra. [113]

In this chapter, the discussion will be tilted toward the language used in classi-

cal descriptions of molecules and reactions. Therefore, one can identify at any given

time a single state (conformation, position, momenta etc.) of the molecule rather

than a superposition of any number of allowed states. This gives way to a descrip-

tion of a phase space that has a recognizable division between reactant and products,

with a select few points reserved for the transition states between them. A classical

description also negates any tunneling to a reactant state, which would yield a reac-

tion rate orders of magnitude faster than a classical trajectory. In addition, it also

allows for a more straightforward approach to vibrational energy relaxation(VER),

in which excitations are extinguished by energy exchange via molecular collisions or

anharmonic scattering (vibrational overlap). Many of the examples of non-statistical

reactions come from competing VER and reactions timescales, primarily where the

former lags the latter. These competing timescales for VER and reaction are laid out

in Figure 3.1 in an adaptation of results by Zewail and coworkers. [1] Below the arrow

of time in this figure are the timescales of typical material responses for reference;



25

Figure 3.1. Adapted schematic from Zewail J. Phys. Chem. A 2000,
104, 5660-5694 highlighting the relevant timescales for chemical dy-
namics. The reaction timescale is placed such that a statistical reac-
tion is expected, but these reaction times are variable based on the
temperature, pressure and material of interest.

note that individual vibrations occur much faster than the VER process that couples

intramolecular modes together. In this figure, the reaction timescale is placed far to

the right in the milisecond regime, but this of course is variable based on the material

and thermodynamic conditions studied.

By comparison, the VER timescale is many orders of magnitude less than the

reaction, therefore making the details of the relaxation process irrelevant to the re-

action rate because the system has enough time to equilibrate and can be considered

statistically. However, if the VER times are dilated (gas phase approximation) or

the reactions occur much faster, now the possibility of a non-statistical reaction is

increased. All the work collected in this thesis involves physical processes that fall

close to the vibrational relaxation times shown in Figure 3.1

In the next section, a more detailed historical overview of the developing reaction

rate theories is presented. This will provide the model descriptions for the subsequent
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sections. The rate theories that are outlined here are mathematically built up and

tested on systems with few degrees of freedom, which is no surprise. Unfortunately,

the goal is to understand the deviations in the statistical rate laws for comparatively

large systems, which makes this work unique to previous efforts. It is the opinion of

the author that the simulation methods used here have great potential to shed new

light on this very old problem.

3.2 Advances in Reaction Rate Theory

In a statistical reaction, like one that is depicted in Figure 3.1, to calculate the

rate, one is only concerned with the number of states of the reactant that yield a

product molecule. If you consider that all available states of the molecule at a fixed

energy are equally probable(ergodic trajectory in phase space) then the population

should decrease exponentially with time, as in Equation 3.1, when the energy is

greater than the transition state energy. [114, 115] Where D(E) is the number of

number of states leading to a reaction and ρ(E) is the density of states at energy E

and α(t) is the population of the reactant.

α(t) = α(0)e
−D(E)

2πh̄ρ(E) (3.1)

This equation was borne out of the celebrated RRK and RRKM statistical theories

which added a few key assumptions to transition state theory that explain the behav-

ior of gas phase unimolecular reactions. [116–118] The basic principles of the RRKM

(statistical) rate law are that collisions between molecules can produce an activated

complex that is a saddle point between two energy minima, which correspond to the

products and reactants. Furthermore, it is assumed that a single internal degree of

freedom (vibration) is responsible for the reaction. While these statistical rate theories

have provided a baseline prediction for experimental results, there have been several

cases where non-RRKM behavior is the rule rather than the exception. For example,

the work of Bunker and Hase [110,111], in a tour de force, outlined several classes of

reactions that would deviate from an accurate statistical reaction. In general, Bunker
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Figure 3.2. Adapted schematics from Bunker and Hase J. Chem.
Phys. 1973, 59 (9), 4621-4632 showing possible phase space trajec-
tories (at constant energy) for different A) statistical or B)-D) non-
statistical interpretations.

and Hase showed that different means of reaching an activated complex would affect

the reaction. These are schematically collected in Figure 3.2 as paths through phase

space at the activation energy. In these schematics, the ray traces of various colors

represent a molecule traversing different states (grid volumes) at the same energy,

but only the states in red are the transition states lead to a prompt reaction. If the

system evolves for a long period of time before a reaction occurs the RRKM model

(shown in Figure 3.2 A) is a good representation. If the system is promoted to this

transition state energy through a strong, orientation specific collision (panel D) or

where another atom attacks a portion of the molecule (panel B), the lifetime distribu-

tion (first time derivative of Equation 3.1) will be non-exponential. Lastly, Figure 3.2

(C) represents a type of reaction that has a bottleneck in the phase space. A common
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example of this scenario is a necessary conformation change prior to a reaction; these

cases are denoted as intrinsically non-RRKM behaving. Several realistic examples of

these schematics have be studied. A short list includes ozone [119], dipeptides [120],

methyl isonitrile [110,111], stilbene [121] and water [108].

If ergodicity is not guaranteed, which is true for small molecules that display a

mixed chaotic and regular phase space exploration, the lifetime distribution will also

violate statistical treatment. These mixed trajectories are a focus of many scientists

studying nonlinear resonances, periodic orbits, KAM tori and ‘sticky’ Hamiltoni-

ans. [122–124] Many of these mixed trajectories have direct corollaries in quantum

mechanics (i.e. entanglement and coherent states) and are thought to hold the key

to a classical-quantum reaction rate bridge. [122] Although these subjects are worth

mentioning here, no attempt has been made in this work to analyze the results through

these lenses. Returning to the purely classical treatment of phase space, the mixed

regular and chaotic trajectories tie in the subject of VER which, approximately, is

the timescale that determines when one of these trajectories can be considered as

chaotic rather than regular. The restricted flow of energy among vibrations means

only some of the available phase volume is accessed. The challenge is identifying,

a priori, which bonds or vibrations are key players in the overall reaction. Polanyi

suggested a few pair of limiting cases where atom-diatom reactions could be accel-

erated based on where energy is localized. First, if a reaction has a reactant-like or

relatively early barrier, energy localized on translational degrees of freedom is more

effective in overcoming the barrier than vibrational energy. Second, an intramolecular

vibrational excitation becomes more effective than translational energy if the reaction

has a product-like or late barrier. [125] A more elegant approach, the Sudden Vector

Projection (SVP) considers all degrees of freedom in both the forward and reverse

reaction and weights which most strongly contribute to the reaction coordinate. [98]

Guo et al. used the SVP approach to confirm the rules of thumb that Polanyi sug-

gested, but also showed that even very simple gas phase reactions have multiple

degrees of freedom(DoF) that contribute strongly. This method is akin to a normal
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mode analysis [126] coupled to a minimum energy pathway identification, like nudged

elastic band [127] or nebterpolation [128]. For example, the Cl+CH4 → HCl+CH3

reaction in the forward direction shows no single dominant vibration driving the re-

action but the two-body, high frequency C-H modes contributing most strongly. The

reverse reaction however, shows near complete dependence on the excitation of the

H-Cl stretch vibration. In the absence of any VER, the SVP predicts the optimal

modes to be targeted for external control of the reaction, albeit the method has only

been applied in relatively low DoF systems. For reactions occurring in solids, this

method has obvious shortcomings due to the number of DoF, but is still useful in

logically guiding which vibrations should be considered as important to the reaction.

As outlined in Chapter 2.2, this work will take a more general approach to

identifying which vibrations are key to the overall reaction. Somewhere between

Polanyi’s rules and the SVP method, the techniques here are sensitive enough to

highlight when any DoF has more (or less) than its share of energy with respect

to equipartition. Coupling these observations of where energy is localized to the

overall reaction behavior, one can determine which DoF are important to the reaction,

even without predetermining the transition state or minimum energy path in phase

space. Depending on how energy is inputted into the system, this may mean looking

at translational DoF versus all vibrations or looking at the differences in energy

distributed among individual vibrations. While it is understood that there are a

number of different causes to non-statistical reactions, most of these predictions are

made for systems in the microcanonical ensemble, which is rarely ever achievable in a

laboratory experiment. An outstanding question to many of these reference texts used

above is this: can the overall kinetics of a reaction be affected by these non-statistical

constructions? This involves sampling an ensemble of reaction events rather than

identifying the lifetimes of isolated molecules. Most importantly, the work collected

here will attempt to simultaneously predict the overall changes in reaction behavior

with respect to statistical or non-statistical means of excitation to temperatures (now

working in the canonical ensemble) that initiate decomposition. The first example
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will be a set of simulations that use a vibration specific insult in order to induce

reactions in a molecular solid. The results here go beyond showing that non-statistical

reactions can be realized in solids where extremely strong VER tend to negate these

effects. Second, large shock compression studies of a molecular solid are undertaken

which prepare the material for decomposition with an unequal distribution of energy

between translational and vibrational DoF. Here it will be shown that the ignition

and growth behaviors of explosives depends on the chemistry under non-equilibrium

conditions. The simulations, for both cases of means of energy input, better align

with the experimental capability to observe the same effects and show great potential

to expand upon the current understanding of the role of non-RRKM reactions.

3.3 Non-equilibrium Chemistry Through Vibrational Coupling

This study is enabled by the development of reactive interatomic potentials that

provide a realistic description of complex chemical reactions in a computationally ef-

ficient way, enabling large-scale reactive simulations in condensed matter. [53,71,129]

In order to best highlight the possible effects of a non-statistical reaction, a trio

of molecular crystals was chosen; nitromethane (NM), octahydro-1,3,5,7-tetranitro-

1,3,5,7-tetrazocine (HMX), and pentaerythritol tetranitrate (PETN), under a range

of mode-specific energy insults, quantify the non-statistical degree of their decom-

position. To a first approximation, the solvation shell or crystal environment sur-

rounding a reacting molecule in a condensed phase system can be taken as an inert

medium, resulting in only small modifications on the observed kinetics from the gas

phase. However, in the molecular crystals studied here, the local environment is not

inert, and local reaction kinetics will certainly be affected by nearby endothermic

or exothermic processes. Therefore, one must expect a nontrivial interplay between

chemical activation from a thermal bath versus the local environment that leads to

reactions in the condensed phase. Furthermore, short VER time scales and strong

intermolecular interactions in molecular crystals tend to negate non-statistical chem-

istry. [5, 7, 130] Thus, the main goal of this paper is to establish whether nonequilib-
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rium states (unequal energy distribution among vibrations) can be constructed via

frequency-localized insults for long enough time scales to affect chemistry. Following

the discussion in Section 2.2, reactive molecular dynamics are employed, and a con-

stant excitation to a subset of intramolecular modes is applied using external electric

fields with frequency matched to a specific vibration. Reactions resulting from such

insults are compared to those that maintain equilibrium conditions through constant

coupling to a thermal bath. These results, supported by experimental work, [131,132]

show that nonequilibrium states can be created with these mode specific insults; for

strong electric fields, these time scales are comparable to those of the initial chemical

decomposition of the molecules. [100,104] In all cases, the appropriate choice of target

vibration and insult strength can result in initial reactions under conditions where the

temperature of the target modes exceeds that of the bulk, sometimes up to hundreds

of degrees Kelvin. Differences drawn between the three materials, which are consider

as model materials given the contrasting VER and reaction time scales, aid in the

understanding of (non)statistical reaction behavior, in particular for condensed-phase

systems, and in the capability of externally controlled reactions.

3.3.1 Simulation Details

In order to study the decomposition and reaction of various energetic materials,

the reactive force field ReaxFF is used, which has also been successfully used to

study the shock [78,133–135] and thermal [136–139] decomposition of such materials.

[54] The force field used here merges the training set from the combustion branch

[140] with the nitramines force field [134] and has been parametrized against uni-

molecular as well as multi-molecular reactions that occur in the condensed phase. [53]

All simulations in this chapter were performed using the LAMMPS code. [35] Self-

consistent partial atomic charges are updated at every time step (0.1 fs) using a

conjugate gradient method with a tolerance of 1 × 10−6, which has been shown to

properly describe chemical reactions at extreme conditions. [129]
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To more effectively study the differences in reaction behavior as a function of

insult type, three molecular high-energy density (HE) materials with different char-

acteristics were chosen for this study. The simplest of the three is NM (CH3NO2),

which has been widely studied for its combustion, detonation, and vibrational prop-

erties using both experimental and computational approaches. The initial structure

is a perfect crystal with 3D periodic boundary conditions obtained by replicating the

orthorhombic crystal structure four times along a, four along b, and four along c,

resulting in 256 molecules. The secondary explosive HMX (cyclic (CH2-NNO2)4)

is a nitramine that exhibits an alternating carbon-nitrogen ring. Starting from the

α-crystal structure, the unit cell is replicated 2×1×4 to obtain a simulation cell with

64 molecules. Lastly, PETN (C-(CH2-ONO2)4) was also studied, which has differ-

ent molecular geometry and chemistry than both NM and HMX but a similar initial

reaction mechanism as HMX. Both the nitroester (PETN) and nitramine (HMX) ini-

tially decompose through the unimolecular NO2 loss through N -O or N -N scission,

respectively. PETN has a tetragonal crystal structure that is replicated 4 × 4 × 4

times, resulting in 128 molecules in the simulation cell.
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Differences in the molecular structures of the three materials lead to different

vibrational properties and inter- and intramolecular energy relaxation characteristics.

This can be seen in the top panels of Figure 3.3, where the vibrational power spectrum

of the three systems is computed. [97] The infrared (IR) intensities [96] are shown in

the bottom panels, and these will be used to discuss the coupling of the vibrations to

the electric field insults.

In order to characterize the decomposition of the materials of interest under

various conditions, a constant insult is applied throughout the simulation as either

a sinusoidal electric field at various frequencies or a constant heating rate with a

Nose-Hoover thermostat. This continuous input of energy is in contrast to previous

work which used a pulsed insult [129], and enables the study of the reacting sys-

tems in the presence of the insult. Also, since these systems are heated at known

rates, traditional kinetics analysis techniques can be applied to the reacting system

to extract activation energies and attempt frequencies; [141, 142] this will be further

discussed in Section 3.3. Electric field strengths in the range 0.01−1 V/nm were used,

which result in heating rates of the order 0.1 − 100 K/ps, sufficient to decompose

the material on MD time scales. Several field frequencies were applied as described

below to localize energy into various modes. For each insult type and strength, ten

statistically independent simulations were performed after a thermalization at 300 K

for 20 ps. Each simulation had velocities initially assigned from a randomly seeded

Maxwell-Boltzmann distribution, which decouples the trajectories from one another

by the time the insult is applied. Since the Nose-Hoover thermostat scales all atomic

velocities by the same number, the initial equipartition of energy per mode is held

even when the system is constantly heated with this thermostat. A set of frequen-

cies were selected for the electric field insults for each material based on vibrational

properties; these are indicated by arrows in the lower panels of Figure 3.3. For each

driving frequency chosen, ten different field strengths were applied(and ten repetitions

of each) in order to properly address the effect of insult strength on the relaxation

times and resultant chemistry.
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Identification of vibrational modes can be performed using the per element

power spectra, shown in Figure 3.3, in conjunction with experimentally reported

spectra. From these results and Appalakondaiah et al. [143] the NM target modes

were assigned as follows: 3330cm−1 (CH stretch), 1913cm−1 (CH2 angle bend +

CH3 deform), 1772cm−1 (NO stretch), 1266cm−1 (NCH deform + CN stretch),

651cm−1 (CN stretch + NO2 angle bend), and 433cm−1 (NO2 rock). Similarly, fol-

lowing Pravica et al. [144] for HMX: 3254cm−1 (CH stretch), 1765cm−1 (NO stretch),

1030cm−1 (NN stretch + CH2 rock), and 814cm−1 (Ring twist + NO2 angle bend).

Lastly for PETN, following Gupta et al.: [145] 3258cm−1 (CH stretch), 1903cm−1

(NO stretch), 1728cm−1 (CH2 angle bend), 1266cm−1 (CH2 wag + CO stretch +

C5 deform), 799cm−1 (O-NO2 umbrella), 348cm−1 (O-NO2 rock + C5 deform). Note

that, while ReaxFF is not parametrized to reproduce the entire vibrational spectra

of energetic materials, it provides a reasonable description as compared with the ab

initio predictions (see refs [143–145]); this is because ReaxFF is parametrized to de-

scribe bond breaking, angle, and torsion bending curves. The largest discrepancies in

vibrational frequencies are associated with high-frequency bond stretch modes such

as the N -O and C-H modes that are common to all three materials. As was discussed

in Section 2.2, the exact peak positions do not affect the main results shown here.

A simulation of such complexity necessarily involves approximations: the most

significant ones are those associated with the description of atomic interactions using

the ReaxFF force field, and the second is the use of classical mechanics (as opposed

to quantum) to describe ionic dynamics. The implications of these approximations

in the results shown here are addressed in Section 3.3.

One of the main goals here is to understand whether nonequilibrium states, i.e.,

when the energy is not equally distributed among the various inter- and intramolecular

modes as dictated by equilibrium statistical mechanics, can exist for long enough to

affect chemical reactions in the condensed phase. Using the methods outlined in

Section 2.2 for Equation 2.6, a trajectory window of 1 ps and velocity sampling rate

of 4.7 fs give a resolvable frequency window of 33-3500cm−1, within which all three
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Figure 3.4. Typical simulation of HMX decomposition due to a con-
stant heating of the system via a Nose-Hoover thermostat at a rate
of 50 K/ps. Chemical species information in (A) and dynamic vi-
brational density of states in (B) share a common axis which is the
temperature of the system.
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test materials have their full vibrational spectrum. Figure 3.4 illustrates a typical

simulation of thermal decomposition of HMX for a heating rate of 50 K/ps. Figure

3.4 (A) shows the population of HMX, key intermediate, and final product molecules

as a function of temperature, and panel (B) shows the evolution of the vibrational DoS

with temperature. ReaxFF bond orders were used to identify chemical bonds, and this

connectivity information is subsequently analyzed with a cluster expansion algorithm

to identify molecules. Figures 3.4 (A) and (B) show that significant red-shifts and

broadening of the HMX peaks occur before decomposition begins. At temperatures

over 1500 K, peaks in the density of states begin disappearing, indicating chemical

reactions. The originalNO stretch peaks (near 1765cm−1) in HMX persist longer than

other high-frequency modes; this is due to the large number of NO and NO2 moieties

at early stages of the decomposition. The large number of small and very mobile

molecules explains the strong signal at low frequencies coming from intermolecular

collisions. Altogether, the increased time resolution on the vibrational spectra and

molecule recognition allows for greater insight into the decomposition and, as will be

shown, how these processes can be altered by the means of energy input.

3.3.2 Results and Discussion

Where a thermostat is used to control the temperature of the material, the

heating rate is well defined and constant throughout the simulation. This, however,

is not as simple when an electric field is used to couple to intramolecular vibrations.

This is best exemplified by Figure 3.5. In this figure, the temperature evolution is

shown for each vibrational insult frequency studied in NM, all of which have an overall

heating rate (neglecting the exothermic reaction spike above 2250K) close to 50K/ps.

What is clear for all of the vibrational insults is that the heating rate is variable with

time; this is due to a strong resonance coupling at low temperatures and a loss of this

efficient absorption as modes broaden and shift at higher temperatures.

To study a range of heating rates across all materials, the electric field amplitude

was adjusted, resulting in a different range of power densities. The power density is
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computed as ρ = εε0
2V
E2ω, where E is the amplitude of the field, ω is the frequency,

V is the volume of the simulation cell and ε is the dielectric constant of the material.

For HMX and PETN, this range of insult strengths were 0.1604 to 16.04µW/nm3,

while NM coupled less readily to the electric field and required insult strengths in the

range of 1.604 to 40.1µW/nm3 to give the similar heating rates.

Figure 3.5. Example temperature versus time curves for all insults
tested in NM. Each has a heating rate recorded near 50K/ps at the
time of one-third decomposed

Using the method outlined in Section 2.2, the power spectrum can be broken

down into unique segments for the purpose of identifying where energy is localized

when one of these electromagnetic insults is present. To illustrate this, Figure 3.6

shows the kinetic energy content of each set of modes relative to that of an equipar-

tition of energy, which on these plots is a value of unity on the vertical axis. In all

panels of this figure, the CH symmetric stretch vibration is targeted with the external

stimulus, which is why the highest frequency range shows a large spike above unity
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before VER returns it to equilibrium. Even though the insult is present throughout

the time shown in these plots, each material returns to an equipartition of energy

in due time. Interestingly, there are some subsets of modes that are starved of their

share of an equipartition of energy. This effect is schematically represented in Figure

3.2 B).
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To simplify the analysis, only the frequency range containing the target mode

will be plotted; its temperature is assigned simply by comparison to the thermal vibra-

tional spectra, which is used to normalize the non-equilibrium spectra (per Equation

2.7). Figure 3.7 shows the temperature associated with modes within frequency re-

gions, including the target mode versus bulk temperature (obtained from the overall

kinetic energy in the simulation cell) of each material for a few target frequencies

tested. The solid diagonal solid lines with slope one indicate equilibrium, i.e., the

selected modes exhibiting the same temperate as the overall system; in other words,

the solid lines indicate equipartition of energy. It is observed that, in all cases, the

frequency range containing the excited mode exhibits more than its share of the ki-

netic energy; i.e., those modes are hotter than the rest. As expected, higher energy

input rates lead to increased nonequilibrium. Interestingly, even though the insult is

maintained throughout the simulations, the systems eventually achieve equilibrium.

Each point on these plots is 1 ps apart, which gives a measure of the relaxation process

in both time and temperature. This relaxation occurs because anharmonicities in the

potential energy surface (PES) are sampled more predominantly as temperature in-

creases (see peak broadening in Figure 3.4), leading to faster energy transfer between

modes and weaker coupling with the external electric field. The arrows matching the

plot lines in color in Figure 3.7 mark the average times at which the first molecule is

observed to decompose, while the solid black arrows indicate the first decomposition

in the directly heated samples for comparable heating rates.

Interestingly, often the time scales for equilibration are comparable to those

associated with the initial chemistry; for some target modes in HMX and PETN,

decomposition occurs when the target modes are several hundreds of degrees Kelvin

higher than the bulk temperature at which the material begins to decompose. The

vibrationally tuned insults are labeled by the energy density of the electric field. More

details about this calculation and additional two temperature plots can be found in

the Supporting Information of Wood et al. [105]. The results in Figure 3.7 point to

several possible scenarios regarding the possibility of nonstatistical decomposition. In
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Figure 3.7. Two temperature plots of target mode temperature versus
bulk temperature during an electric field insult as calculated in Equa-
tion 2.7. Each data point is 1 ps apart. Panels (A)(C) are the CH
stretch modes in each material, respectively, (D)(F) the NO stretch
mode, and (G)(I) are low-frequency intramolecular modes that are
unique to each molecules geometry. Color matched arrows indicate
the first chemical reaction for each insult, and the equilibrium re-
actions are indicated in black. The nonequilibrium distribution of
energy among vibrations is clearly seen as data points lying above the
solid black equipartition line (Tmode = Tbulk).
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the case of NM, while a significant degree of nonequilibrium is achieved in samples

excited with the electric fields, the chemical reactions occur after equilibration has

occurred. Actually it appears that the targeted insults may delay the reactions as

compared to thermal excitation (color arrows indicate higher temperatures than the

black ones). PETN also exhibits a significant degree of nonequilibrium, and, contrary

to NM, reactions occur at these elevated mode temperatures. Quite significantly, re-

actions in PETN under targeted insults occur at lower bulk temperatures than those

in thermally excited samples. HMX exhibits the least degree of nonequilibrium, and

except in the case of fields targeting CH vibrations, the reactions occur under essen-

tially equilibrium conditions. Even in the high frequency excitation case, reactions

occur at temperatures comparable to the thermal cases indicating that the localized

energy input does not significantly affect chemistry. The next set of results and cor-

responding discussion quantifies the effect of insult type and strength on chemistry.

To quantify the kinetics associated with the insult-dependent reactions dis-

cussed previously, the decomposition rate as a function of temperature for all insult

types and strengths was studied. A first-order, thermally activated process would

lead, within the harmonic approximation, to an exponential decomposition rate of

the form

ṅ(t) =
α̇(t)

α(t)
= νe−∆G/kT (3.2)

where the dot denotes time derivative; α(t) is the population of the parent molecules

remaining at time t; ∆G is the activation energy for decomposition; T is temperature;

and k is Boltzmanns constant. The prefactor ν can be thought of as an attempt

frequency; more accurately, within transition state theory, it is the ratio of the 3N

vibrational frequencies of the reagents divided by the 3N − 1 positive vibrational

frequencies at the transition state. [114,146,147] The reactive MD simulations provide

direct access to the quantities α and α̇ in Equation 3.2 (see left panels in Figure 3.8

and, thus, enable a direct comparison of the effect of insult type and chemistry on

kinetics.
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Figure 3.8. Observed reaction rates under equilibrium conditions for
(A) NM, (C) HMX, and (E) PETN. Each data series is heated at a
constant rate using a Nose-Hoover thermostat. Using the procedure
outlined here, activation energies obtained from fitting Equation 3.2
are plotted against the reaction progress for (B) NM, (D) HMX, and
(F) PETN, respectively.
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To isolate the role of insult type and strength on the activation barrier, and

to minimize correlations with the frequency prefactor a two-step process is adopted

to fit Equation 3.2 to the MD data. First, a fit is made of Equation 3.2 to the

collection of all thermal insult strengths for each material, NM, PETN, and HMX.

The resulting frequency prefactor is taken as a constant for all other fitting procedures

within the same material. For this global fitting procedure of the thermally induced

decomposition, the reaction rate is fitted up to a value of α̇(t)/α(t = 0) = 0.5, i.e., the

initial decomposition of one-half of the starting material. This is an important choice

for condensed-phase reactions, where the evolving molecular environment can affect

chemical reactions. After this global two-parameter fit, which forces ν into a constant,

the activation energy is, thus, the only free fit parameter, and it is used to compare the

kinetics across insult types and strengths. In addition, the fitting of the reaction rate

is carried out up to different amounts of reaction progress (i.e.,α̇(t)/α(t = 0)), which

provides information regarding changes in Equation 3.2 as the evolving environment

of intermediate and final products can affect the decomposition of the remaining

parent molecules.

Left panels in Figure 3.8 show decomposition rates as a function of temperature

for thermal excitation for various heating rates (high to low in red to blue), and the

right panels show the extracted activation energies for the various heating rates as a

function of the maximum reaction progress used in the exponential fits. In all these

cases involving energy input with a thermostat, the effect of heating rate and reaction

progress on activation energy is relatively weak. This is an important validation of the

approach to extract kinetics parameters from reactive MD simulations. Still, within

these weak dependencies some interesting trends can be observed. Both for HMX and

NM a slight increase in activation energy is observed with increasing heating rate;

this can be expected, as faster heating might lead to overshooting of the transition

state, this is a consequence of using the canonical versus micro-canonical ensemble

for calculating rate constants. Interestingly, PETN exhibits the reverse trend: the

activation energy decreases slightly for faster heating rates. In addition, HMX and
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PETN show little to no effect of heating rate (about 1 kcal/mol in activation energy)

on reaction progress, which is consistent with a unimolecular reaction. [148–151]

Figure 3.9 shows the observed reaction rates versus temperature, and resulting

activation energies as a function of extent of reaction, for various insult strengths

for two selected electric field frequencies coupled to vibrations in NM. The resulting

activation energies and their dependence on insult strength and extent of reaction are

similar to those for the thermal decomposition in Figure 3.8. This is consistent with

the observation from Figure 3.7 that chemistry in NM occurs after equilibration be-

tween the various degrees of freedom is achieved. Decomposition rates and activation

barriers for HMX are omitted here, because the data show no new trends relative

to the NM and PETN data. As with NM, no significant differences in the activa-

tion energies between frequency-targeted insults and thermal excitation was found.

This is also consistent with the results, shown in Figure 3.8, that show HMX to have

the weakest degree of nonequilibrium kinetic energy distributions between vibrational

modes out of the three materials.

Turning now to the reaction kinetics for PETN, Figure 3.10 shows decomposi-

tion rates and the resulting activation energies for two field frequencies and a range of

insult strengths. The results show striking differences from the prior cases. For both

frequencies, stronger insults (faster heating rates) result in reduced effective activa-

tion energies; this can be confirmed from the left panels, which clearly show faster

decomposition for stronger insults (red). For both target modes shown in Figure 3.10,

the energy input rate not only leads to the opposite trend in activation energy with

respect to NM and HMX, but also its effect is more dramatic. This is consistent with

the results shown in Figure 3.8, where reactions are seen earlier in the frequency-

targeted insults in PETN and suppressed in NM. Furthermore, the data shown in

Figure 3.9(A) and (C) show that the observed reaction rate is particularly low for

early decomposition due to the strongest fields. Both frequencies show low activation

energy for the early decomposition at high insult strengths that relax back to a value

close to the thermal insults for higher decomposition degrees.
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Figure 3.9. Nitromethane reaction rates obtained from simulations
of electric field induced decomposition for the intramolecular modes
at (A) 651cm−1 and (C) 1913cm−1; see the body of the text in this
section for mode assignments. The fits to Equation 3.2 yield the
activation energies plotted in panels (B) for the mode at 651cm−1

and (D) for the mode at 1913cm−1.
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Figure 3.10. PETN reaction rates obtained from simulations of elec-
tric field induced decomposition for the intramolecular modes at (A)
1266cm−1 and (C) 799cm−1. The fits to Equation 3.2 yield the ac-
tivation energies plotted in panels (B) for the mode at 1266cm−1

and (D) the mode at 799cm−1. Both target modes show clear in-
sult strength dependence as seen by lower activation energies at high
insult strengths and early reaction progress.
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To provide a complementary picture of whether inputting energy of specific fre-

quencies accelerates or hinders the initial chemistry, the temperature at which one-

third of the original molecules have decomposed is studied. This is clearly a heating

rate dependent quantity; thus, Figure 3.11 shows the temperature corresponding to

one-third of the original molecules having decomposed as a function of heating rate

for the various insult types. The simulations of electric field induced decomposition

result in time-dependent heating rates due to modulations of coupling strength be-

tween the fields and the starting material (see Figure 3.5). The reported heating

rate in Figure 3.11 is simply the linear approximation up to one-third decomposed:

(T 1
3
− T0)/∆t. The simulations exhibit very interesting trends of initial chemistry on

molecular structure and insult. PETN was shown to exhibit nonstatistical decom-

position for some electric field frequencies, and it was found that for many of those

cases 1/3 decomposition is achieved at lower temperatures than when heating with

a thermostat (orange line). This is consistent with the reduced activation barrier

shown in Figure 3.10.

Regarding the data in Figure 3.11, for NM, several vibrationally tuned energy

inputs result in an apparent delay of initial reactions as compared to thermally excited

cases and, consequently, require higher temperatures (and energy input) to reach one-

third decomposition. HMX lies somewhere between these two cases; except for the

814cm−1 field excitation that slows down reactions, the temperatures corresponding

to one-third decomposition are rather insensitive to insult type. In NM and HMX,

the temperatures at one-third decomposed are close to the onset of exothermic chem-

istry, which means any delay in the initial reactions will lead to a large temperature

difference in Figure 3.11. This is exemplified in Figure 3.5, where insults applied to

NM with heating rates close to 50 K/ps result in one-third decomposition temper-

atures of 2200-2300K, which neighbors a significant increase in heating rate. This

late increase in heating rate has contributions from exothermic chemistry as well as

additional coupling of the electric field with product molecules.
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Figure 3.11. Observed bulk temperature at a fixed one-third decom-
position for (A) NM, (B) HMX, and (C) PETN, where each point is
averaged over ten independent simulations at the same insult strength.
Equilibrium decomposition is denoted by the direct heating data se-
ries in orange diamonds in all panels.
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3.3.3 Conclusions

Understanding energy localization, transfer, and relaxation in condensed-phase

materials and their effect on chemical reactions is a key step toward coherent control

of chemistry, with the potential to impact fields like catalysis, atmospheric chemistry,

and energetic materials. For the energetic materials studied here, the interplay of

vibrational energy relaxation and chemistry plays a significant role in the formation

of a self-sustained deflagration wave. [78] More generally, coherent initiation of high-

energy density materials could lead to safer formulations and remote detection or

neutralization of explosives.

Our simulations demonstrate that frequency-localized insults can affect the de-

composition of certain HE materials with respect to thermal equilibrium reactions.

More importantly, these effects can be explained based on the vibrational spectra

and decomposition mechanism of the material. The sample sizes, however, prohibit a

detailed phase trajectory mapping (a la Figure 3.2) that might provide direct infor-

mation about these nonequilibrium states (nonergodic trajectories) and explain the

origin of the change in activation barrier. Future work along these lines could provide

a more quantitative understanding of how insult character and strength affect the ex-

ploration of phase space and match them with the various categories for non-RRKM

behavior proposed by Bunker and Hase. [110,111]

It is worth discussing at this point the two fundamental approximations made

in these simulations and their impact on the results. First, the use of ReaxFF (or

of any other method, including electronic structure ones) leads to an approximate

description of the interactions between atoms. This affects the time scales for re-

laxation and equilibration processes and also kinetics and energetics associated with

chemical reactions. ReaxFF has been extensively used to model energetic materi-

als, [77, 134, 152, 153] and it is known to capture key aspects of the decomposition

mechanisms of these materials and the overall reaction time scales. Its activation

energies are in reasonable agreement with available experiments [148, 150, 154, 155]
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and electronic structure-based calculations. [146, 149, 151] The use of a model or ap-

proximate PES underlies all trajectory mapping or direct studies of of non-RRKM

chemical reactions; [115, 156, 157] the simulation method here is no different. More

importantly, the main results in the current paper are drawn from differences in the

response of the same model to various insults; in a way, these results could be thought

of as representing model materials as opposed to actual NM, PETN, and HMX. These

model materials provide varying characteristics of preferred reaction path (uni- and

multimolecular) as well as VER and reaction time scales. A second fundamental ap-

proximation in this work is the use of classical (rather than quantum) mechanics to

describe ions. Classical mechanics lacks energy quantification that affects how high-

frequency modes (those where the quantum of energy h̄ω is comparable to or larger

than kT ) exchange energy with an electromagnetic field and their relative distribu-

tion of energy. Rather, the classical description allows for a continuous absorption of

energy from the electric field, and at low temperatures every mode shares kT/2 of

the total energy. Similarly, the classical description allows for anharmonic exchange

of energy between modes continuously rather than in a quantized fashion. Despite

these differences, both in quantum and classical mechanics, a field couples to modes

with an associated electric dipole matching in frequency and equilibration occurs via

anharmonicities in the PES. Thus, the classical description is able to describe energy

localization and its equilibration as well as the general trends of relaxation time scales

with temperature, which are key to the present study.

In this work, molecular dynamics was used to study the effect of frequency

localized energy input on the excitation and decomposition of three energetic ma-

terials. NM, PETN, and HMX were chosen since they exhibit different vibrational

spectra and decomposition mechanisms. Interestingly, these materials chemically re-

act in time scales comparable with the intramolecular relaxation times. Despite the

similarity of overlapping critical time scales the effect of energy input on chemistry

showed disparate results. HMX exhibited the smallest degree of thermal nonequilib-

rium which was attributed to the higher density of intermediate frequency modes that
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help energy equilibration. Consequently, the insult type and strength had a negligible

effect on chemistry. For nitromethane, whose decomposition is governed by multi-

molecular reactions, the frequency-localized insults do not affect its decomposition

kinetics even though a significant thermal nonequilibrium is achieved. PETN, on the

other hand, decomposes unimolecularly via the formation of NO2, and frequency-

localized insults lead to nonstatistical decomposition with an observed reduction in

activation energy. This work provides new insight into the possibility of coherent

control of chemical reactions in energetic materials and in other fields.

3.4 Role of Non-equilibrium Chemistry for Shock Initiation

The coupled chemical and structural response of materials subjected to dynam-

ical mechanical loads has long been an area of intense activity, and resulted in impor-

tant contributions to materials science, [158] chemistry, [159] and astrophysics. [160]

This shock wave travels at enormous speed in a solid, at the length scale of a sin-

gle molecule, the temperature and pressure will increase by hundreds of Kelvin and

tens of GPa in just a few picoseconds. Although this transition between thermo-

dynamic states occurs rapidly, there are outstanding questions as to the role of the

non-equilibrium states that a material experiences during shock compression. The

passage of the shockwave triggers a material response that aims at minimizing the

free energy of the system, either by relaxing the uniaxial stress via plastic deforma-

tion or through a change in thermodynamic state (phase transformations). In these

cases, the material response weakens the shock as the relaxation reduces the compres-

sive stress along the shock direction. However, some materials respond in strikingly

different fashion. Explosives use the energy in the shockwave to disrupt chemical

bonds and trigger a series of reactions that lead to low-energy gaseous products. The

exothermic and volume-expanding reaction enhances the shockwave and can turn it

into a detonation. Under such conditions, the shock front propagation speed reaches

a steady state value known as the detonation velocity, which depends on the kinetics
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(reaction rate) and thermodynamics (volume expansion and exothermicity) of the

chemical wave and is, therefore, material specific.

Several fundamental mechanisms could contribute to the conversion of the initial

mechanical energy into chemical reaction, ranging from direct mechanical disruption

of bonds to thermal activation following the transfer of energy from lattice phonons

to molecular vibrations (up-pumping). [77, 94, 161] In addition, within some of the

pressure and temperature ranges of interest, the formation of plasma and metallized

states is plausible, further complicating the definition of chemical mechanisms. [162]

Given the extremely short time scales (pico to nanoseconds), spatial scales down to

the submicron regime, and extreme conditions of temperature and pressure associated

with these processes, it has proven to be experimentally challenging to unravel the

different contributions to the overall process of initiation. [3, 163,164]

Modeling a full detonation in realistic materials remains beyond the scales of

MD simulations, but the development of reactive interatomic potentials over the last

two decades enabled the study of the initial chemical reactions [77, 78] and even the

transition from shock to a deflagration wave, an important first step in the description

of detonation. [133] On the other hand, coarse grain models with the capability of

describing chemical reactions are capable of capturing detonation in relatively sim-

ple explosives and providing insight into the coupling between chemistry and shock

propagation. [165, 166] Different aspects of this shock to detonation transition have

been studied in great detail using MD, with most efforts focused on either resolving

the physics at the shock front or well within the chemical front of molecular energet-

ics. This section focuses on the shock response of energetic molecular crystals and

the phenomena related to the formation of a sustained chemical wave. And, in hand

with the increase in compute power, the complexity of the atomistic models increased

and current reactive force fields are capable of describing non-trivial aspects of the

chemistry of HE materials.

The stark difference in shock strength required for detonation for single crystal

high explosives versus powder formulations [9] shows the importance of defects and
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microstructure in the initiation of the chemical wave that leads to detonation. The

formation of hot spots (spatial localization of energy) and the interplay between the

leading shock and chemical front has been intensely studied by both experimental

and computational techniques due to the rich physics of thermal and mechanical pro-

cesses, which are not well understood in the condensed phase. Homogeneous reaction

waves have been observed to nucleate immediately following the elastic shock for

strongly driven simple chemistry (so called AB) systems [167] and the these models

have also been used to study the role of defects on initiation. A defect helps localize

the mechanical energy in the shock into high-temperature hot spots that speed up

reactions that would otherwise occur much further behind the shock front [168]. Com-

plex microstructures, including voids and multiple-phase systems, have been studied

by adding in some amount of desensitizing agent (i.e. inert material) [169,170] Holian

and collaborators [171] studied pore collapse in a Lennard-Jones solid to understand

the mechanisms of energy localization. The authors found that, for shock strengths

above a critical value, the hot spot temperature resulting from pore collapse increases

with defect size, but this trend saturates for larger pores due to the mechanical work

needed to close these large pores; this slows down the ejected molecules responsible

for the initial temperature rise. The density of hot spots in addition to their individ-

ual strength, is believed to be important in the transition to detonation. More recent

work using the AB chemistry model has incorporated multiple voids into a sample

in order to study the detonation wave that forms cooperatively across multiple hot

spots [66].

The development of the reactive force field ReaxFF in the early 2000s [53] en-

abled the first MD simulation of shock loading of a realistic HE material [77]. ReaxFF

was shown to have the ability to describe the complex chemistry of explosives, in-

cluding uni-molecular and multi-molecular pathways for various HE materials. These

early simulations, while very small by todays standards, revealed surprisingly fast

initial chemical reactions, right after the passage of the shock. These results and

subsequent ones are, at least partially, in conflict with the up-pumping model, which
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requires the energy deposited by the shock into long-wavelength, low-frequency vi-

brational modes to be transferred to high-frequency bond vibrations, which can then

trigger chemical reactions. Assessing the accuracy of reactive force fields to describe

fast chemical reactions under extreme conditions remains challenging due to the lack

of experimental data with the required resolution. The first MD shock simulations of

the decomposition of an HE material [77] were performed soon after the development

of ReaxFF for hydrocarbons. [71]

Since then, a suite of work has been focused on the condensed phase reactions of

these energetic materials. A nice collection of condensed phase reactivity was collected

by Zhang et. al. for the pair of materials HMX and RDX [172]. As has been the

approach of many other researchers, the shock compressed state was not assessed

directly, but rather reactions at a number of compression ratios and temperatures

that comply with the Hugoniot relations [168] were taken as the initial state of the

simulation.

Reactive MD simulations were also used to extract kinetics parameters (those

needed for the overall rate equation) for the condensed phase chemistry of TNT [136],

RDX [172], HMX [173] and NM [137]. These reaction rate predictions are surpris-

ingly accurate, given only a subset of possible reactions are parameterized against,

when compared with ab initio or experimental decomposition. A key contribution

of these simulations is their ability to isolate the contributions of competing reaction

paths. Long et al. [173] showed a very detailed kinetics analysis of over nine thousand

different reaction paths for HMX at various densities, which allowed for an accurate

prediction of the entire reaction zone in detonating HMX.

Very recently, it has become possible to simulate realistic HE materials with

scales sufficient to study the interaction of shocks with defects and their effect on

chemical initiation. Shi and Brenner used a nitro-cubane (NC) specific reactive po-

tential that accurately captured the shock response of a heterogeneous material of NC

and a polymeric binder [57]. They showed how the reflected shock wave at the inter-

face between the two materials localizes mechanical work that initiates chemistry in a
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small area. Follow-ups to this work use a similar interface geometry but with various

energetic materials (RDX, PETN and Si-PETN), each with a hydroxyl-terminated

polybutadiene polymer [174, 175]. These publications studied areas of localized re-

activity at interfaces where the shock wave is reflected back onto the compressed

material and shear-induced hot spots at angled interface.

Here, the focus is on hot spots originating from the shock-induced collapse of

voids within the secondary energetic material RDX. Such defects are presumed to be

the dominant initiation sites in this class of materials, and most initiation models

include some ad hoc representation of their physical response. [176–178] Continuum

models have been used to analyze the hot spot initiation process, but these necessar-

ily make assumptions regarding reaction kinetics, local equilibration and materials

properties that are not well-known under the conditions of interest [161, 179–186]

Additionally, continuum simulations are limited in their resolution by the underlying

computational mesh (with cell dimensions typically ranging from a micro to 10 nm)

and, in the case of nanoscale hot spots, by the validity of continuum descriptions

when properties change significantly over few nanometers. MD simulations provide,

naturally, atomic resolution. The pertinent question is, then, whether they can access

a sufficiently large spatial and temporal regime for analysis. As shown below, the MD

simulations here capture, for the first time, the transition to deflagration following

the formation of a hot spot in a realistic material with subdetonation conditions,

and with no other approximation than those inherent in the interatomic potential

used. It was found that multistep chemical reactions, including the formation of

exothermic products, occur in time scales shorter than previously thought and con-

tribute to the development of a deflagration wave characterized by an extremely thin

chemical reaction front. Similar to the methods of the vibrational hot spots in the

previous section, the reaction details from hot spots that are dynamically formed are

compared to those that best resemble equilibrium conditions. It was found that the

non-equilibrium reactions resulting from shock compression result in a completely

different ignition behavior than ‘statistical’ hot spots.
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3.4.1 Simulation Details

In order to characterize the role of pores on the initiation of energetic materi-

als, simulations of supported shock loading of a series of RDX samples with pores of

various sizes ranging from 10 to 40 nm in diameter were explored. The initial struc-

tures for the simulations consist of a perfect crystal of α-RDX with the exception of

a single cylindrical pore of variable size. Figure 2.1 shows the initial structure of the

largest system studied, with a pore 40 nm in diameter and obtained by replicating

an α-RDX unit cell (8 molecules) 84 times along the x[100] direction, 3 along the

y (the axial direction of the pore), and 204 times along the z (the shock direction,

[001] crystal direction). The total length of the largest simulation along the shock

direction is 243.1 nm and its width is 120.6 nm, where the cylindrical pore of 40 nm

in diameter is centered 60 nm from the impact surface. The structure was relaxed via

energy minimization and equilibrated at 300 K under isobaric, isothermal conditions

for 5 ps followed by isochoric, isothermal conditions for 10 ps. Similarly, samples

are built with 20 and 10 nm pore diameters with linear dimensions along x and z

scaled by the pore diameter. That is, the sample with the 20 nm pore was created by

replicating the unit cell 42× 3× 102 times, while the 10 nm pore was created by unit

cell replications of 21× 3× 51 times. In these smaller samples, the pores are centered

at 30 and 15 nm from the sample edge, respectively.

All simulations were performed using the LAMMPS package [35] with atomic

interactions described by the ReaxFF force field. [53] The parametrization used [129]

has been trained to describe numerous unimolecular and multimolecular reactions.

Specifically, the force field used here merges the nitramines force field from ref [134]

with the combustion branch of ReaxFF [71] using training data that captures numer-

ous unimolecular and multimolecular reactions for RDX. Self-consistent partial atomic

charges are updated [69] at every time step (0.1 fs) using a conjugate gradient method

with a tolerance of 1×10−6, which has been shown to properly describe chemical reac-

tions at extreme conditions. [129] ReaxFFs accuracy to describe mechano-chemistry
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in nitramines, including combustion of RDX, has been established in several prior

publications [77, 134, 187, 188], as well as shock induced chemistry in the energetic

nitroester, PETN. [133,189,190] While baseline tests indicate the appropriateness of

ReaxFF for the problem at hand, uncertainties in the description of atomic interac-

tions are inescapable for such complex systems. As discussed below, comparison of

the evolution of the dynamically formed hot spot with an artificial one show that the

main conclusions of the paper are robust with respect to such uncertainties.

To establish a supported shock wave, all atoms are assigned at time zero an

additional velocity over their thermal ones toward an infinitely massive piston, mod-

eled here as a momentum mirror. The shock is then modeled using constant energy

MD (NVE ensemble). A particle velocity of 2 km/s (leading to a pressure of approxi-

mately 11 GPa) was chosen because it leads to insignificant chemistry in a defect-free

sample (at least on the sub µs time scales of accessible to MD), and the effects of

pore collapse can be isolated. For the chosen particle velocity, the shock front is sharp

(about 4 nm thickness) and the material is plastically overdriven, [191] i.e. plastic

deformation occurs immediately following the shock front.

The local averaging of relevant quantities such as temperature, composition and

density are carried out using the proceedure from Section 2.2. In order to save on com-

putational cost, a simplified approach was undertaken to identify molecular species

that are in contrast to the vibrational insults from the previous section. Here, several

millions of atoms are tracked simultaneously, which is very memory consumptive;

storing ReaxFF calculated bond orders for each atom adds to this problem. Since

local properties are already necessary for the planned analysis, bonds were identified

using distances between atoms rather than bond orders (which would have been more

accurate). To ensure that this was not a poor approximation, three test simulations

were carried out at different densities of RDX. Each allowed for the material to de-

compose at a fixed 1500K, and the resultant molecular species were calculated with

either a distance or bond order criterion. The results are shown in Figure 3.12 and

the associated distance cutoffs shown in Table 3.1. The discrepancy is not too severe,
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though the distance-based criterion does come with significantly more noise in the

populations it reports.

Figure 3.12. Populations of RDX over time at different densities cal-
culated using the ReaxFF bond orders a) and b) RDX populations
calculated using atomic distances. Each system is heated to 1500K in
the NVE ensemble.

Table 3.1.
Distance cutoffs used to identify bonds for molecule recognition,
length in Angstroms

Elements — H — N — O — C

H — 1.51 — 1.65 — 1.65 — 1.65 — 1.25

N — 1.65 — 1.70 — 1.70 — 1.40 — 1.74

O —1.65 —1.40— 1.37— 1.60 — 1.65

C —1.25— 1.74— 1.74—1.65 — 1.75

Much like the vibrational insults shown previously, the resulting reactions need

to be compared to an equilibrium, which in this case is a controlled introduction of

a hot spot into an otherwise static simulation. To simulate purely thermal hot spots

equivalent to those formed under pore collapse, several hot spots were created that

match the dynamical one in thermodynamic conditions, and with similar shapes and
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sizes using a thermostat only in select regions of the sample. These hot spots are

created within a simulation cell that is preheated to 500 K and precompressed to 11

GPa. These conditions are chosen to match the bulk conditions of the shocked, unre-

acted, and defect free regions of the crystal. Temperatures in the hot spot are ramped

from 500 to 2000K in 2.0ps (same as the shock rise time), and then subsequently held

at 2000 K for 2.0 ps, while keeping the rest of the sample at 500K. Afterward, the

thermostats are removed, and the evolution of chemistry is followed under NVE con-

ditions. Several different geometries and sizes of these artificially formed thermal hot

spots were studied, as discussed in the next section.

3.4.2 Results and Discussion

The interaction of the shockwave with the cylindrical pores of different sizes

results in similar processes and leads to the formation of hot spots in all cases. Local

temperature maps of TCoM and TV ib at various times (Figure 3.13) provide insight

into the void collapse process and subsequent chemistry. Time will be measured from

the point when the ejecta impact the downstream surface of the void (t0 in the second

row of Figure 3.13). As the shock hits the upstream section of the void, a rarefaction

wave is created, while the ejecta expands freely into the vacuum and undergoes slight

cooling. The material entering the pore near the periphery heats up due to friction;

see temperature maps at t = t0 − 1ps. The impact of ejected material against the

far wall of the pore leads to a significant spike in the local temperatures, giving rise

to a crescent-shaped hot spot; see temperature maps at t0 in Figure 3.13. Note that

the initial hot spot is far away from local equilibrium, with molecular center of mass

DoF (which couple strongly with the translational energy in the shock) exhibiting

a significantly higher temperature than the intramolecular DoF. This impact gener-

ates a forward directed shock that starts out stronger than the initial, planar shock

though its strength diminishes with time because of its divergent flow. The collision

also generates a backward-directed shock wave that recompresses and heats the ma-

terial that has flowed into the void; see times 5 and 12 ps in Figure 3.13. The hot
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spots for all pore sizes are characterized by significantly higher temperatures than the

homogeneously shocked material, and give rise to accelerated chemical reactions.

Locally, the initial temperature is somewhat independent of pore size (around

1500K), but the volume of high temperature material increases with void size. Fig-

ure 3.14 shows the time evolution of the spatial extent of the dynamically formed

hot spots for different pore sizes by tracking the amount of material in the simu-

lation cell above 1700 K. This choice of cutoff temperature is, of course, arbitrary,

but motived by the timescales relevant to MD, and this temperature effectively cap-

tures the area of reacting material. In all cases studied, there is an initial sudden

rise in the hot spot area due to the collision of the ejected material with the down-

stream wall of the pore. The overall behavior described thus far is fairly consistent

with current understanding of hot spot formation from continuum modeling and ex-

periments. [133, 180, 182–186, 192] An important distinction is the initial tempera-

ture spike and local nonequilibrium state at short times, which continuum models

suppress through limited resolution, artificial viscosity and equilibrated equations of

state. Following pore collapse, thermal conduction away from the hot spot and the

initial endothermic reactions quench the hot spots for the smaller pores with 10 and

20 nm diameters, as shown in Figure 3.14. The remarkable result of the simulations is

that the 40 nm pore results in a rapid, self-sustained deflagration wave. This critical

size is somewhat smaller than previous estimates for RDX and for the closely related

HMX. [161, 178, 181, 185] Next, the discussion will revolve around the transition to

deflagration and the key molecular processes that enable it.

A detailed analysis of the 40 nm void simulations provides a description of the

transition to deflagration with unprecedented detail that reveals three distinct stages.

To illustrate this process, Figure 3.15 also shows maps of the molecular fractions of

key species: RDX, main intermediates (NO2, NO,OH,HONO,COOH) and product

molecules (N2, O2, CO2 and H2O). Figure 3.15 shows profiles of the same quantities

as a function of position along the shock direction, averaged spatially over 3 nm along

the center of the hot spot and across 0.3 ps.
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Figure 3.13. Maps of TCoM and TV ib, as well as molecular populations
for RDX, intermediates and products at key stages in the shock to
deflagration transition. t0 corresponds to t = 17.3ps after impact
with the piston.
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The first of the three stages lasts approximately 10 ps. During this period, the

hot spot evolves from a very narrow crescent, generated by the molecular collisions

during the pore collapse with a nonequilibrium temperature distribution (TCoM =

4000K, TV ib = 1500 K), to a broader crescent (5 nm at the broadest point) and

more equilibrated temperature (TCoM = TV ib = 2000K) at 5 ps. This early evolution

is captured in Figure 3.16 from panel A) to C), which highlights which molecular

species are present during these early reactions. Surprisingly, this stage involves

significant chemical reactions that traverse the entire multistep reaction path of RDX:

its decomposition, a significant formation of intermediates, and the initial formation

of products. The initial decomposition steps in secondary explosives such as RDX are

endothermic and they tend to quench the hot spot. These reactions suppressed the

growth of the 10 and 20nm pores enough to quench the overall reaction. Rarefaction

waves and thermal conduction have the same effect, as they lower and disperse the

temperature. However, the exothermic formation of products has the opposite effect,

and their unexpectedly fast appearance helps maintain the hot spot temperature. As

will be shown below, the reactions that follow the void collapse occur much faster

than under thermal decomposition conditions. Thus, it can be concluded that this

fast formation of product species is due to a combination of nonequilibrium (more on

quantifying this in the subsequent discussion) and mechanochemical processes caused

by the dynamical loading, [193,194] and this plays a nontrivial role in the development

of the deflagration wave.

During the second stage of the reaction process (between approximately 10

and 25 ps after pore collapse), the material is in local thermal equilibrium and the

formation of product species accelerates significantly. Two distinct reaction fronts

form, one that propagates forward and sideways into the crystalline RDX surrounding

the original pore structure, and one that travels more rapidly backward into the

amorphous material pushed into the pore. The formation of final product species is

accompanied by a rapid rise in temperature from approximately 2000 to 4000 K. At

the end of the second stage, the core of the hot spot is close to fully reacted, and it has
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Figure 3.14. Area percent of material above a preset ignition temper-
ature of 1700K for all pore sizes studied. Note the quenching of voids
smaller than 40 nm. Raw simulation time is used here rather than
the shifted reference as used in Figure 3.13

achieved a steady-state temperature close to 4000 K. This corresponds to times t0+12

and t0 +22ps in Figures 3.13 and Figure 3.15 B). The deflagration fronts show a well-

defined structure of RDX/intermediates/products with a reaction zone width of about

5 nm, which is significantly smaller than those considered previously. [162, 180, 181]

Also note that there are further, slower reactions continuing subsequent to this initial

process, but a substantial amount of energy is released in this remarkably thin front.

The third stage involves the continued propagation of these narrow deflagration

fronts at speeds of 250 m/s. The hot spot evolves from a crescent into a circular

shape through slightly faster growth backward into the reshocked material occupying

the formerly vacant pore space (see Figure 3.16 D). The faster rate can be attributed

to the material being at a somewhat higher temperature, its structure being non-
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Figure 3.15. Profiles of TCoM and TV ib (left axis), and molecular
populations of RDX, intermediates and products (right axes) at key
stages in the shock to deflagration transition. Time is measured from
void collapse (17.3 ps after impact)
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Figure 3.16. Example time snapshots of the intermediate and product
molecules formed after the collapse of a 40nm void in RDX. The
narrow reaction front that forms includes molecules from the entire
reaction path of RDX decomposition.

crystalline, and may also be partially sensitized from partial decomposition of the

RDX (see Figure3.15 C), D)). The deflagration fronts propagate at near steady-state

conditions in the simulated time here. These deflagration velocities are comparable

to those measured for HMX under similar conditions (140 m/s) and are much faster

than rates predicted from continuum models (7 m/s). [181,195]

To obtain additional insight regarding the conditions that make a hot spot crit-

ical, the details of the chemical reactions after the collapse of the 40 and 20 nm voids

are studied. Internal and molecular temperatures of the RDX molecules right before

they decompose are analyzed (averaged over 0.1 ps before they are last identified

as a molecule), as are those of the intermediates and products during the first 0.1

ps of their existence. Figure 3.17 shows the time evolution of these temperatures
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following the collapse of the 20 nm void (a) and the 40 nm one (b). In both cases,

one can observe the initial RDX decomposition (t < 10ps) occurring away from local

equilibrium, and for later times the internal temperatures are just below 1,500 K for

the 20 nm case and just above 1,500 K for the 40 nm case. What is clearly different

though, is that during the first few picoseconds after pore collapse, the intermedi-

ates for the 20 nm case are produced at a lower temperature (≈ 1250K), which is

consistent with an endothermic reaction process. The products are produced at a

somewhat higher temperature (≈ 1500K), consistent with an exothermic process.

Importantly, these temperatures remain constant in time. In contrast, for the 40 nm

pore, the intermediates form at higher temperatures (1750 K), and the products at

a markedly increased temperature (2000 K). This indicates that there are sufficiently

prompt exothermic reactions to elevate the local temperature, which then rapidly

increases as the deflagration wave develops (10-30 ps). The temperature distribution

between reactants, intermediates and products at late times (greater than 50 ps),

coupled with the spatial distribution noted above, is analogous to flame structure

profiles, [187,196–198] but happening over significantly smaller scales due to the high

pressure/density. It is important to note that maintaining a critical temperature over

a region of the material, against thermal conduction away from the hot spot and

endothermic reactions, for a sufficiently long time is consistent with the standard hot

spot models. [161,181,182] Lastly, these simulations indicate that the fast generation

of exothermic products contributes to the criticality of nanoscale hot spots and, as

will be shown next, so does its dynamical origin. The next key question is whether

hot spot size and thermodynamic conditions alone are sufficient to determine its crit-

icality. Thus, the temporal evolution of the hot spot formed by the collapse of the

40 nm pore with a family of artificial, thermally activated hot spots at equivalent

thermodynamic conditions and sizes are compared. The artificial hot spots are cre-

ated within a single crystal of α-RDX, measuring 40 nm by 3.6 nm by 40 nm, which

has been precompressed and heated to shock conditions (11 GPa and 500 K). In all

of the artificially seeded hot spots, a core temperature of 2000 K was assigned by
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Figure 3.17. TCoM and TV ib of RDX molecules at the time of their
decomposition, and those of intermediates and products at the time
of their formation: (a) 20 nm void; (b) 40 nm void.

heating the region to that value in 2 ps, to match the heating rate experienced by the

dynamically compressed material. These regions are then held for an additional 2.0

ps at T = 2000K before completely removing the thermostat to ensure the hot spot

evolves from the intended temperature. Parts B)-D) of Figure 3.18 show temperature

maps of the initial configurations of all the artificial hot spots; for comparison, the

hot spot formed after the collapse of the 40 nm pore at time t = t0 + 5ps is shown in

Figure 3.18 A). The crescent shaped hot spot, Figure 3.18 B), matches the dynamical

one in area. A broader crescent is used only for computational convenience; the area

of RDX above 1900 K is equivalent at 30nm2 between it and the shocked loaded

sample. The circular hot spots are larger in area than the dynamic one. The hot

spot in Figure 3.18 C) has a circular cross-section 10 nm in diameter, and the one in

Figure 3.18 D) includes a 10 nm diameter region at 2000 K, surrounded by a region

at 1000K with outer diameter of 20 nm. Figure 3.18 also shows temperature maps

for each hot spot at a later time (t0 + 50ps).

Parts A)-D) of Figure 3.19 compare the molecular population evolution for all

cases (insets display the initial 10ps of chemistry, respectively). Quite surprisingly,

the crescent-shaped artificial hot spot that matches the dynamic hot spot in size,

Figure 3.18 B), does not become critical; while some reactions are observed, Figure
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Figure 3.18. Initial and final states of the (a) dynamic hot spot formed
following pore collapse, (b) crescent shaped thermal hot spot initially
at 2000 K, (c) cylindrically shaped hot spot heated to 2000 K, and
(d) cylindrical hot spot with an inner disc heated to 2000 K and the
outer ring heated to 1000K.
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Figure 3.19. Chemistry evolution following shock and thermal ini-
tiation. Insets show an expanded view of events within the first 10
ps.

3.19 B, they are significantly slower than for the dynamical case, and the artificial hot

spot quenches in 80 ps. The circular hot spots, larger in area than the dynamic one,

do become critical, but at much later times. The temporal evolution of intermediate

and final product species for the dynamic and thermally induced hot spots shown in

Figure 3.19 provide insight into the differences. A dramatic production of interme-

diates (NO2, NO,OH) is observed during the first 10 ps of the dynamical hot spot

(Figure 3.19 A), while these species remain relatively low in population over the same

interval in the thermally activated cases (Figure 3.19B-D). Interestingly, in spite of

being considerably larger than the dynamical one, their production of final exother-

mic products (N2, H2O,CO2) is considerably slower. In addition, the population of
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the product species grows linearly in time, while the mechanically induced hotspot

shows quadratic growth. These comparisons demonstrate that size and equilibrium

thermodynamic state alone are not enough to characterize nanoscale hot spots that

originate during dynamical loading. [182] The shock-induced pore collapse gives rise

to very rapid reactions, accelerated by the mechanical concentration of energy, which

play a key role in the criticality of nanoscale hot spots, and which should be accounted

for in mesoscale models.

3.4.3 Conclusions

As with any theoretical predictions, it is important to establish model confidence

for the problem at hand; this is particularly true for reactive MD simulations such

as those presented here, where chaotic dynamics could easily amplify the effects of

minor inaccuracies in the potential that are universally present. A comparison of

these MD predictions against experiments and experimentally tuned models lends

credence to this approach. Tarver et al. [161] developed models for the critical hot

spot conditions in HMX and TATB based on the analysis of cookoff experiments.

These pioneering kinetic models are still considered to be appropriate. [180] For a

100 nm diameter hot spot in HMX (the smallest size shown in their figures), they

determined a critical temperature of 1200K that would cause that hot spot to develop

into a runaway reaction within approximately 5 ns. From a simple extrapolation of

those results down to a 10 nm diameter hot spot, an estimate of a critical temperature

of 1600 K would develop into a runaway reaction in 50 ps. The MD predictions on

display here show a 10 nm diameter hot spot in RDX at the higher temperature of

2000K does not show signs of a runaway reaction at 50 ps; thus, one can infer that

the kinetics in the ReaxFF simulations are somewhat slower than those in Tarvers

model. This is consistent with expectations, as RDX is known to have very similar,

though slightly slower, kinetics than HMX. [196–198] It is important to stress that

the key result of this work is a more mechanistic understanding of hot spot formation,
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characterization of the transition to deflagration, and the importance of dynamical

loading in their criticality.

Note that for larger voids, the compression of trapped gases provides addi-

tional temperature spikes. [180,181,185,186] These simulations do not include trapped

molecules; it is believed that, for the small pore sizes used here, the largest 40 nm void

in a 3 nm thick (periodic) sample would contain only about 100 molecules at standard

conditions, which would not affect the major conclusions of these simulations. Rather

than remaining as a separate phase, one can expect those gas molecules to intermix

with the rarefying RDX and absorb a minor amount of heat from the collision process.

Finally, it is worth recognizing similar simulations to these have recently been

performed with PETN, [133,189] though a full analysis of the reaction processes has

not yet appeared. PETN is a more mechanically sensitive material than RDX, and

is on the borderline between what are considered primary and secondary explosives.

That is, the mechanical breaking of bonds in PETN [133] is a more significant ini-

tiation process compared to the thermal disruption associated the hot spot model.

Detailed comparisons between these current results, and additional planned studies on

the much less sensitive TATB, would be highly significant for the further development

of models for explosive initiation.

In conclusion, the first atomistic description of the transition to deflagration

following the shock loading of an energetic material provides significant insight into

the role of mechanochemical processes occurring at length and time scales that have

hitherto been inaccessible either computationally or experimentally. While one must

acknowledge that the results should not be considered to be quantitative because of

the limited high pressure reaction data available for calibration, there are no glaring

inconsistencies with available information. Consequently, it is concluded that the

physical processes discovered in this study should be highly relevant. Most signifi-

cantly, it was found that ultrafast chemical reactions occurring within the first 5 ps

of the pore collapse provide a significant impetus to accelerate the reactions beyond

what would be expected for a simple thermally activated cook-off process. The exact
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role of the non-equilibrum reactions (TCoM 6= TV ib) is still in question because the

dynamically formed hot spot involves the amorphization of RDX, as well as gradients

in pressure and temperature due to the re-shock. All of these other dynamic condi-

tions are hard to reproduce in the artificially formed hot spots, though progress is

being made to seed hot spots in purely amorphous RDX. Initial data in these new

experiments show that the amorphous material can transition to deflagration at lower

hot spot temperatures than the crystalline equivalent. Additionally, it was found that

a local deflagration wave with a surprisingly small width (5 nm) rapidly develops in

about 30 ps. Consequently, the small hot spots studied here are not immediately

quenched by divergence factors or endothermic reactions. These results show that

nanoscale hot spots should play a larger role in the initiation of energetic materials

than previously thought. Lastly, note that the effect of loading conditions on ac-

celerated chemistry may be less critical in larger hot spots, where quenching due to

thermal diffusivity is not as significant, or for more gradual compression processes

resulting from more diffuse loading fronts.
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CHAPTER 4. THERMAL RESPONSE TO ACOUSTIC ENERGY INPUT

In reference to the title of this thesis, the following chapter will be concerned

with the localization of energy provided by an acoustic wave. While the previous

chapter dealt with more academic problems concerning the detailed chemistry of

an energetic material, the work in this chapter will aim to best mimic a realistic

energetic material. To that end, the material studied here will not be completely

homogeneous and will include the polymeric binder that is common to all explosives

for safety concerns. This work will address the capability of sound waves to detect

subsurface features in a realistic energetic material and the capability for its use in the

detection of explosives. By carefully preparing unique microstructures and controlling

the details of the external stimuli, an understanding of the heating mechanisms within

the composite material has been developed. Because the main experimental design

space has to do with the strength, frequency and polarization of the incoming sound

waves, the simulations shown here will follow suit.

4.1 Introduction

Detection of controlled or home made explosives at a distance remains an un-

solved problem due to low vapor pressures of the energetic material and dynamic

environment conditions. [199] However, a small increase in temperature would yield

orders of magnitude increase in vapor pressure, which enables many chemically spe-

cific detection methods. [200–204] The use of a weak mechanical insult such as an

acoustic wave has been proposed recently due to several advantages relevant to stand-

off detection. First, the attenuation of sound waves in solids occurs over a very long

length scale, meaning subsurface features contribute strongly to the materials’ re-

sponse. Therefore, energetic material hidden behind shielding layers is still able
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to couple to the penetrating sound wave, providing the observer with, hopefully, a

detectable signal. This acoustic inspection of materials has already been proposed

as a non-destructive means to detect flaws, such as pores or cracks in engineered

parts. [205] Here, a local temperature rise is detected once the heat dissipates to

the surface, and the subsequent radiation is collected with an IR camera. Ideally, the

thermal signature can be detected closer to the source of the heat generation, because

it would provide more information about the material. In the present application,

the increased temperature could provide a stronger electromagnetic signal character-

istic of the material being probed. Or, alternatively, if the heating is localized in

the energetic material itself, the acoustic insult could initiate decomposition. This

later case would only be sought after if the user can provide the acoustic stimuli at

a safe operating distance, but the limitations of this aspect of detection are beyond

the scope of this work. Some of the potential mechanisms of heat generation from an

acoustic insult were collected and described by Renshaw [205]; these include contact

friction, plastic deformation and, additionally, viscoelastic losses. Also, Suslick et al.

and Reifsnider emphasized that interface delamination could be a potent means of

heat generation in solids; the former authors showed this effect with energetic crystals

with various surface coatings. [206,207] Loginov has shown that the acoustic heating

of energetic material is strongly frequency dependent, with some driving frequencies

capable of initiating a reaction in RDX or lead azide. [208] Studying similar polymeric

bonded explosives(PBX) containing energetic compounds HMX or TATB, Sutherland

and Kennedy [209] showed that, in the frequency range of 0.5 to 4MHz, the compli-

ant binder would decompose more readily than the crystalline explosive. This study

suggests that the acoustic heating of composite materials is heterogeneous, and that

which component is coupled to the stimulus can be controlled. More recently, in a

series of publications Mares et al. explored a large driving frequency window in order

to determine which heating mechanisms were active for isolated energetic crystals

embedded in a polymer medium [210,211]. They found that below 1MHz viscoelastic

losses dominated, but above an approximate of 10MHz particle size effects increased
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the viscoelastic losses due to particle-particle friction. These particle size effects can

be estimated by using the characteristic size of each crystal and the effective sound

speed of the composite medium; the ratio of these quantities defines an approximate

structural resonance frequency. This, of course, assumes that the crystalline grains

are mono-dispersed in size, but also that the interfaces between each component do

not disrupt the transmission of the elastic wave. The details of the interfaces be-

tween each material in the PBX is important for the localization and conversion of

the mechanical energy into thermal energy, and thus ultimately the detection of the

explosive. In order to extend the work from Mares et al., molecular dynamics simu-

lations are used to predict which component of the composite will localize the energy

from the mechanical insult as a function of the interface characteristics between either

material in the PBX [210,211].

4.2 Acoustic Coupling To Heterogeneous Media

The simulations shown in this chapter are unique with respect to all the other

work on display in this document because they do not use a reactive force field. Pri-

marily, this is driven by the need to run much longer simulations than is reasonably

achieved using ReaxFF. Chemical reactions are not expected here, because this chap-

ter is concerned with the thermal response of a material, but where the temperature

rise is not severe enough to cause bonds to beak. Therefor,e an expensive bond order

potential is not needed. There is a significant computational reduction in having

predetermined bonds and static atomic charges; in fact, the cost per timestep for two

systems of the same size may be an order of magnitude less for the nonreactive IAP.

Furthermore, larger timesteps (1fs versus 0.1fs) can be afforded, since the dynamics

of the charges on each atom are now fixed.

Here, a pair of nonreactive IAP are used to describe each component of a com-

posite material, respectively. This composite material is composed of a crystalline

energetic material and an amorphous polymer arranged in a laminate structure with

triply periodic cell dimensions. The energetic material is described by the Smith and
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Bharawaj potential, while the polymer is described with DREIDING [40], and each

system has Coulomb and van der Walls energies calculated between them. [212, 213]

Special care has to be taken to integrate these two subsystems together, specifically

because the details of the interface between them is the focus of the work here. When

designing these simulation cells one must consider the relevant length scales for sound

propagation, as well as thermal conduction in the sample. While the sample is coupled

to the external stimulus, these two effects work against one another to localize energy.

The structural resonance frequency, which should couple strongly to the sound wave,

is determined by the sound speed and length (or equivalently the elastic moduli and

density) of the material in the propagation direction. But, keep in mind that this is a

MD simulation, and the goal is to study these vibrations over time, but a resonance

period of microseconds is not feasible with the current supercomputers (again with

the hardware/software determining the science). Luckily, the physics around acoustic

heating should be preserved even if small structures and large frequencies are studied,

because these two parameters scale linearly with one another. If one choses, based

on resource availability, a limit of a few nanoseconds of simulation time and the con-

dition that at least one-hundred periods of the acoustic insult is sufficient, then this

forces acoustic frequencies into the GHz range (a 100GHz wave has period of 10ps).

Experimentally, the sound speed of the composite material is known to be around

2.5 km/s, which forces the simulation cell dimension along the axis of propagation

to be at least a few tens of nanometers. [214] In order to simplify the problem a

bit, the interface between the two materials will be made perpendicular to the wave

direction, which allows for the other two dimensions to be shortened without loss to

the accessible acoustic frequencies.

To study the mechanisms for acoustic heating and the role of interface charac-

teristics of a generic PBX, a composite made of octahydro-1,3,5,7-tetranitro-1,3,5,7-

tetrazocine (HMX) and polytetraflouro-ethylene (PTFE or Teflon) was chosen. The

HMX portion was generated by replicating a relaxed (300K, 1atm) unit cell 6 by 4 by

16 times, leaving the (001) surface exposed toward the Teflon slab. In order to create
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the polymeric portion of the simulation cell, a specialized polymer structure builder

was employed. This tool, from Haley et al., is known as Polymer Modeler and is

published free to use on nanoHUB.org [215]. A structure of 20 chains of length 1000

monomers each was built at low density initially, then taken to a density of 1.8 g
cm3 at

600K using constantly contracting boundary conditions in the directions orthogonal

to the free surface over 200ps. Thus far, each subsystem of this composite material

has been prepared independently, while leaving an open boundary in the intended

wave propagation direction.

To explore the differences in observed heating rates from Mares et al., two

different interface types of HMX were prepared [210,211]. Rather than embedding two

different materials that posses varying interface characteristics, this simulation effort

can precisely control the microstructure of a single material. Here, the two interface

types are either planar or diffuse. The former would result from cleaving a crystal

and the latter would be the result of crystals that have been aged or damaged. The

main benefit of a simulation approach here is that the role of interface characteristics

can be isolated and studied for its role in acoustic heating of heterogeneous media.

After each subsystem has been properly relaxed, the two materials are heated to

a temperature above the glass transition temperature of Teflon (600K used here).

They are then merged, leaving a gap such that the interfaces form naturally. The

planar interface case was pressed together to a density of 1.8 g
cm3 over a time of 100ps

without any further modification. In contrast, for the diffuse interface, the HMX

molecules at a depth less than 2 nm from the interface were heated to a temperature

of 900K, causing them to melt and expand into the free space between the crystalline

and polymeric materials. A few example still images of this diffuse structure build

process are shown in Figure 4.1, it is important to emphasize that none of the starting

HMX molecules decompose during this process, since the force field is non-reactive.

After either interface has formed, the entire structure is allowed to relax in the

NPT ensemble at one atmosphere of pressure, which results in a slight expansion

in the interface normal direction of the Teflon layer. The external acoustic insult
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Figure 4.1. Example snapshots of the simulation cell as the PBX is
formed. A) Initial structures with HMX to the left and Teflon to the
right. B) While the surface HMX is heated to 900K it vaporizes and
forms an amorphous layer as the two systems are pressed together.
C) Final structure with the Teflon layer removed and D) with all
components shown, scale bar is 1nm.
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is provided to the simulation cell by periodically contracting and expanding the cell

dimension, either as a longitudinal (compressive) or transverse (shear) wave. Both

wave polarizations use the same amplitude of deformation (0.25nm or 0.012 strain)

while the set of frequencies was slightly different; this is further discussed in the next

section. Each simulation of an acoustic wave coupling to these microstructures is

run in the microcanonical ensemble (NVE), so that any increase in the temperature

or total energy is due to the presence of the external stimulus. Using the method

outlined in Section 2.2, local properties will be calculated to identify which regions

of the microstructure are absorbing and localizing energy from the acoustic insult.

4.2.1 Results and Discussion

After each of the structures have been relaxed, a simple tensile test was per-

formed in order to determine the role of the interface characteristics on the overall

mechanical behavior. To do so, a the direction perpendicular to the interface is

elongated at a constant strain rate of 5 × 108s−1 while maintaining constant lattice

dimensions in the perpendicular directions. This control over the lateral dimensions

means that only the stress component in the tensile direction should be used, since

the material is not allowed to contract proportional to its’ individual Poisson ratio.

The resulting stress-strain relationship for either interface type is shown in Figure

4.2, panels A) and B), along with representative images of the failure at a strain

value of 0.4 in panels C) and D). For either interface, it was observed that the poly-

mer layer would fail through cavitation prior to any interface delamination. This is

likely the result of using short chains (low degree of polymerization), which would

allow for individual chains to slide relative to one another in the absence of significant

entanglement. Being a linear polymer with no side groups, much like polyethylene,

Teflon is expected to exhibit little change in its mechanical behavior due to these

entanglement effects. It is worth mentioning that atomistic simulations of polymers

will always have problems with representing a true polymer with a high degree of

polymerization (Dp) due to the excessive atom count needed to look at multiple inde-
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Figure 4.2. Stress-strain curves of tensile loading for the PBX with
an A) Roughened or B) Planar Interface, arrows indicate when the
snapshots shown in C) and D) are taken, respectively. Qualitatively,
the interface properties did not affect the overall mechanical failure.

pendent chains of high Dp. This (qualitative) equality between either structure can be

understood by comparing the total interaction energy density between the Teflon and

HMX layers. Using the OVITO visualization software package [216], the surface area

of the interface was calculated using a 0.35nm diameter probe (approx 1/2 the size of

a single HMX molecule) resulting in areas of 198.1nm2 and 240.3nm2 for the planar

and roughened interfaces, respectively. This resulted in total interaction energy den-

sities of 16.3kcal/mol ∗ nm−2 for the planar interface and 18.4kcal/mol ∗ nm−2 for

the roughened case. This slight change (≈ 11%) in total interaction is likely washed

away by the large stain rates that MD necessitates.

Turning now to the results of acoustic excitation of these PBX systems, the

goal here is to resolve which heating modes are active, and how the details of the mi-

crostructure affect the absorption efficiency of this energy input. As was mentioned

in the previous section, the frequency ranges of interest are those close to the struc-

tural resonances of either pure component, which of course is a sample size dependent
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property. To that end, an attempt was made to distribute the test acoustic frequen-

cies around the expected resonances. Classically, one would expect that the elastic

structural resonance (breathing mode of the entire sample) is proportional to the bulk

modulus and density (ω2
res = B/ρ) or equivalently the sound speed and length along

the propagation direction (ωres = vsound/L). Since the two subsystems cannot move

completely independently of one another with periodic boundary conditions applied,

the simulation cell will have a pair of resonance frequencies expected, the symmetric

and asymmetric combination of either pure resonance (ωtotalres = 1√
2
[ωTeflonres ±ωHMX

res ]).

A transverse wave resonance will use the shear wave speed or the shear modulus in

the calculation of these resonances, in contrast to the compressive waves that use

the Bulk modulus and typical sound speed. The ratio of the bulk to shear moduli is

expected to be approximately one-third, which means the transverse wave resonances

are expected to be approx 57% lower than the longitudinal ones.

The set of observed heating rates for the longitudinal wave acoustic insults are

shown in Figure 4.3, with the panels A) and B) displaying the rates for the planar

and rough interfaces, respectively. Also, the low frequency resonances are shown in

panels C) and D). In this range, the Teflon is absorbing most of the energy from the

acoustic insult. In all of these plots, the series in red with boxed points represents the

total heating rate of the simulation cell, which indicates which driving frequencies

couple strongly to the insult. Since each driving frequency uses the same strain

amplitude, the power of these insults is no longer constant. To correct for this, the

heating rate is reported here are the temperature increase per period of oscillation.

Interestingly, as a function of the insult frequency, different areas of the PBX are

observed to localize the insult energy. At low frequencies, as shown in Figure 4.3 C)

and D), the Teflon is observed to heat up quickly relative to the other components.

Between the two observed resonances, the interface between either material localizes

the insult energy, and subsequently is observed to heat up quickly. Beyond the high

frequency resonances, the crystalline HMX is the predominate absorbing component.

Comparing the two interface types, it was observed that the roughened interface
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Figure 4.3. Observed heating rates of PBX structures subjected to
a longitudinal polarized acoustic wave; the rate is normalized by the
period of the oscillation to bias against increased energy deposition
rates at high frequencies. The pair of plots shown in A) and C)
correspond to the planar interface case while panels B) and D) are
the observed heating rates, broken down by region in the sample, for
the roughened interface. The the low frequency regime is shown in
C) and D).

(Figure 4.3 B)) resulted in a weaker, but broader, high frequency resonance than

the planar interface case. Conversely, the low frequency resonance for the roughened

interface had an overall higher heating rate than the planar interface.

To better visualize the localization of energy from the acoustic insult, Figure 4.4

compares the local temperatures of each region (at an overall temperature of 400K)

for either interface at a driving frequency of 375GHz. At this frequency, the peak

temperatures at the planar interface are observed to be much higher than those of the
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Figure 4.4. At a fixed overall temperature of 400K and driving fre-
quency of 375GHz, the local temperatures vary based on which com-
ponent is coupled to the acoustic insult. The diffuse (roughened) and
sharp (planar) interfaces result in different widths of the localized en-
ergy, this is largely due to differences in thermal conductivity through
these interfaces.

roughened interface. This temperature localization moves from one region to another

as the frequency is changed, as indicated in Figure 4.3 A) and B).

In order to complement the longitudinal wave results above, acoustic waves

of purely transverse polarization were also studied with the same PBX structures.

When these elastic waves scatter inside the composite material, the angle of inci-

dence between the propagation vector and interface normal will cause the wave to

change polarizations. Therefore, understanding the interplay of elastic wave char-

acter and interface types is needed to predict the overall material response. These

shear wave simulations are performed the same way as the compression waves, but

now the simulation cell is deformed perpendicular to the interface normal; the strain
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amplitude is still 0.25nm. Figure 4.5 collects the heating rates (per period) for each

component of the PBX when a purely shear wave is simulated. Similar to the lon-

gitudinal waves, HMX is observed to couple strongly at high frequencies, while the

polymer binder absorbs more efficiently at the lowest frequencies tested. However,

only one clear resonance was observed per structure type, unlike the compressive

waves that displayed a pair of resonant frequencies. The planar interface, in Figure

4.5 A) and C), shows a very narrow resonance coupling near 275GHz, as compared to

the roughened interface PBX, which shows a broadband resonant absorption between

200 and 400GHz. For both structure types, there is little evidence of a low frequency

resonant absorbing mode, but, consistent with the compressive waves, this regime is

characterized by predominant Teflon absorption. In general, the purely shear waves

localize less energy in the PBX than the compressive waves,. At peak coupling,

the heating rates are approximately one-third of those observed in the longitudinal

polarization. This is expected, because the small amplitude deformation yields little

interface friction, which results when either component moves relative to one another,

and is dominant for larger deformation insults. The results shown in Figure 4.5 and

Figure 4.3 do well at capturing the global response of the PBX to the acoustic insult,

but they lack the necessary detail to inform on how the material is coupling to the

external stimuli. To aid in understanding this, one must look at the time evolution

of the thermo-mechanical properties of the PBX. Earlier, it was discussed that the

frequencies of interest are selected because they are close to the structural resonances

of either pure component. To prove this is the case, the stress-strain histories for

a few shear wave insults are plotted out in Figure 4.6 (planar interface) and Figure

4.7(roughened interface). Focusing on Figure 4.6, in panels A) ,C) and E) the density

of points at each stress and strain value is shown with the color axis. Additionally,

the temperature evolution(shown with the color axis) is included in panels B), D)

and F) for the frequencies 145, 210 and 669GHz, respectively. The three frequencies

shown represent cases where the driving frequency is one of the following: A),B) well

below the observed resonance, C),D) close to the resonance mode or E),F) where the
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Figure 4.5. Observed heating rates of PBX structures subjected to
a transverse polarized acoustic wave, this rate is normalized by the
period of the oscillation to bias against increased energy deposition
rates at high frequencies. The pair of plots shown in A) and C)
correspond to the planar interface case while panels B) and D) are
the observed heating rates, broken down by region in the sample, for
the roughened interface. A close of up of the low frequency regime is
shown in C) and D).

driving frequency is much greater than resonance coupling. Not only does the shape

of the fatigue loop change as the material is cycled, a loop of greater area indicates

more energy being dissipated by the PBX, but the line connecting the peak strain

points changes sign as the driving frequency moves past the structural resonance. In

other words, at driving frequencies lower than the structural resonance, the material

response will be in phase with the direction of the applied strain (strain increasing,

stress increasing), while above the resonance the material response is out of phase and

can’t ‘keep up’ with the applied strain (strain increasing, stress decreasing). From
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panels B),D) and F) of Figure 4.6, it can be observed that the material response

conforms quickly to the insult period and repeats the same path in stress and strain

space within very few cycles (see initial points in purple). Interestingly, Figure 4.6

F) shows a slight shift in the fatigue loop at later times; this is attributed to the

increased temperatures at these times.

Lastly, the thermo-mechanical histories for a collection of insult frequencies are

shown in Figure 4.7 for a roughened interface and shear loading. Similar to the

planar interfaces shown in Figure 4.6, the driving frequencies shown correspond to

relative frequencies of far below (panels A) and B)), close proximity (panels C) and

D)) and far above the structural resonance peak(panels E) and F)). Comparing the

size of the fatigue loops shown here, it is clear to see that the shear waves imping-

ing on an amorphous interface dissipate more of the acoustic insult energy relative

to a pristine interface; this matches the results from Figure 4.3. What is unique to

this interface type is that the observed phase switch between the acoustic wave and

material response occurs at a frequency lower than the observed maxima in heating

rate. Here, the last driving frequency with a positively correlated response (increasing

strain, increasing stress) is 190GHz, shown in Figure 4.7 C). Between 190GHz and

the structural resonance peak at 350GHz, the stress-strain maps show a mixed char-

acter of positive and negative correlation with the insult; often, the low temperature

behavior has an opposite response as the high temperature one. Overall, this mixed

mode coupling of the roughened interface leads to higher observed heating rates over

a larger range of frequencies, although only in one direction relative to the absorption

maxima, than in the PBX structures with planar interfaces.

4.2.2 Conclusions

Acoustic excitation of composite materials, or pure materials with defects, re-

sults in a localization of the mechanical energy into regions of elevated temperature.

Depending on the frequency of the exciting mode, the mechanism of this local heat-

ing may be from visoelastic, viscoplastic, interface friction, or interface delamination.
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Figure 4.6. Stress-strain histories for PBX structures with a planar
interface under shear polarized waves of various frequencies. The A),
C) and E) panels show the density of points at each stress and strain
value throughout the entire simulated time. The color axis in the right
panels represents the overall temperature of the simulation cell.The
frequencies shown here correspond to insults that are A),B) below the
structural resonance, C),D) in close proximity to resonance and E),F)
at frequencies much higher than resonance.
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Figure 4.7. Stress-strain histories for PBX structures with a rough-
ened interface under shear polarized wave of various frequencies. The
A), C) and E) panels show the density of points at each stress and
strain value throughout the entire simulated time. The color axis in
the right panels represents the overall temperature of the simulation
cell.The frequencies shown here correspond to insults that are A),B)
below the structural resonance, C),D) in close proximity to resonance
and E),F) at frequencies much higher than resonance.
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In order to better understand the results from Mares et. al. [210, 211], a pair of

PBX microstructures were constructed with contrasting interface characteristics: one

with a pristine crystal interface pressed against the polymeric layer, the other with

an amorphous boundary layer between either component. The former of these two

structures can be thought of as an un-aged PBX, the latter being the result of signif-

icant thermal cycling that is common to aged PBX’s. Understanding the mechanical

response of aged explosives is critical for their safe and efficient use, and, in practice,

the acoustic insults used here mimic their field use. By studying acoustic insults of

either purely compressive or shear character, a basis for comparing the the thermal

response for either interface type was built. The simulations revealed that the aged

PBXs are able to couple to acoustic insults with a range of frequencies around the

predicted structural resonances, while the pristine samples only couple strongly to

those that are narrowly tuned to the structural resonance mode. While two resonant

modes are expected per wave polarization (symmetric or asymmetric combination of

pure component resonances), only three total were observed, with the low frequency

shear mode being under-resolved in this work. It is important to note that the abso-

lute value of these resonant frequencies are system size dependent. The small sample

sizes that MD necessitates resulted in these modes ranging from ≈ 100 − 650GHz.

A true PBX, will have a larger bandwidth of strongly absorbing modes due to the

range of grain sizes of the molecular crystal, but these ranges will also depend on the

age of the PBX as shown by the results in Figure 4.3 here. In order to use acoustic

excitation as a means of detection and defeat of explosives, this insult frequency must

be carefully chosen such that it will not strongly overheat the molecular crystal (for

detection) or will purposely localize its energy into this material(for defeat).
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CHAPTER 5. ELECTROMAGNETIC RESPONSE TO ENERGY INPUT

The most common means to characterize a materials’ chemistry is through

its interaction with light, more specifically what emitted light is characteristic to the

material. However, not all wavelengths of light are useful for detecting and identifying

molecular materials. Chemical specificity boils down to a limited subset of frequencies,

ranging from phonons to electronic transitions; all others lack the ability to discern

two materials of similar density. In the detection of energetic materials, there is a

delicate balance between chemical specificity and the ability to penetrate shielding

layers. In this chapter, a new mode of detection is explored by employing strong

Tera-hertz waves to push a material far from equilibrium and use the characteristic

frequency conversions of a material as the output signal.

5.1 Introduction

Despite the pressing need for remote sensing of energetic material worldwide,

there still exists a gap in the current capability to the expected needs. Current

airport personal threat detection technologies are capable of density contrast at a

distance of under a meter; additional tests are required to determine chemical makeup.

Experimental techniques such as Raman, FTIR, and NMR are all sensitive enough to

probe compositional details, and subsequently have built up a significant library of

observed spectra. [4,5,144,198,217,218] Unfortunately, these chemically specific tests

cannot be done at a range of a few meters, which would be ideal for personal safety.

Translating these technologies to the battlefield is even more challenging, where the

environment is less controlled than either the lab or airport. As a last restriction on

the detection capability, the source of excitation should not trigger any accidental

chemical reactions due to the obvious danger that these energetic materials posses.
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Minimally, the input energy that will yield the detectable signal should not ionize

the material, and, for light pulses, this is not a well defined quantity due to local

field enhancement effects. [203, 204] Local field enhancements are expressed at acute

edges of a crystal, where charge is localized in a conductor, but these effects are still

present in the molecular crystals of interest here. [7, 219] Terahertz spectroscopy has

promise to surmount these challenges because it can penetrate dry materials, has

standoff capability and is low power, which averts ionizing effects. [220, 221] More

importantly, new sources of controlled THz pulses have become available in recent

years. [222] The THz range of frequencies are those that lie just above phonon modes

and below the frequencies due to covalent bonds. They are usually attributed to

large amplitude deformations of whole molecules. [220, 223] Therefore, each unique

molecular structure should be reflected in the THz range, and many reported spectra

confirm this notion. However, the THz transition frequencies are smaller than typical

operation temperature (kbT ≈ h̄ω), and the spectral lines in this frequency range are

often broad and congested, blurring a true fingerprint of the material. Alternatively,

non-linear signals in the THz range could offer a solution to this problem because only

a subset of vibrations will be able to emit these non-linear frequencies. Therefore,

the pair of native and non-linear spectra of a material should be able to provide a

fingerprint that would alleviate temperature blurring.

5.2 Non-Linear Light-Matter Interactions

Non-linear light-matter interactions resulting from strong electromagnetic fields

are well known [224], and can be generalized by expanding the electric polarizability

P = ε0χ
(1) · E + ε0χ

(2) · EE + ε0χ
(3) · EEE + . . . . (5.1)

here χ(1) is the linear susceptibility tensor, χ(i>1) are the non-linear susceptibility

tensors, and ε0 is the permittivity of vacuum. Example non-linear signals include

frequency mixing, Pockels and Kerr effects, and Raman scattering [8,225]. In addition,

local field enhancements give rise to temperature hot spots in heterogeneous energetic
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materials, which modify the optical properties by forcing atoms into anharmonic

regions of the potential energy surface. This results in more non-linear effects. Trying

to preferentially force a material into anharmonic regions of the PES will be the focus

in this chapter, and capturing these effects in MD will be detailed below. Recently,

Katz et al. [153] used reactive MD to explore Raman-like frequency conversion in the

THz range, and focused on the time resolved emission of light in the same range. They

found signals emitted at frequencies unique to the input wave, and, in addition, found

them in cross-polarized directions. However, their study was limited in scope because

a more realistic scenario for remote sensing would involve an EM wave impinging onto

an air-explosive interface with the output signal gathered in the far field. In the work

presented here, MD simulations are used to address the simplest interface in order to

compute frequency-conversion tensors, absorption spectra and far field response for

a pair of contrasting molecular crystals. Depending on the magnitude of the applied

EM pulse, it can simply force the molecular system to make nonlinear excursions

without inducing chemistry, or trigger decomposition of the energetic material leading

to deflagration or even detonation [226]. Building off the results in Chapter 3.3, EM

pulse strengths were chosen such that they would not induce chemical reactions,

but would polarize the sample to result in non-negligible nonlinearities in the optical

response. Here, a Gaussian pulse is used much like Katz et al. [153], shown in Equation

5.2, but the peak amplitude and width were adjusted given what was learned from

prior work.

Ein(x, t) = einEine
ikin·xe−(t−t0)2/2σ2

cos(ωint), (5.2)

where Ein is the amplitude of the wave, centered at t0, has a width σ, carrier frequency

ωin, kin is the input wave-vector (kin = |kin| = ωin/c), and ein is the input polarization

unit vector (ein · kin = 0). An EM pulse such as this one will drive the atomic

charges in the material according to the Lorentz force F = eE + (v/c) × B. For

the strong amplitudes used here, these charges explore the nonlinear regions of the

energy landscape. For a single accelerated charge with a trajectory r(t′), the far-field

radiated electric field is given by Erad(x, t) = (e/c)[n × n × β̇/R]ret, where n is a
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unit vector in the direction of R(t′) = x − r(t′), β̇(t′) = r̈(t′)/c (a dot denotes the

time derivative), and “ret” means that the quantity in the square brackets is to be

evaluated at the retarded time given by t′ + R(t′)/c = t. A good approximation can

be made that, since the observation point is assumed to be very far away, the unit

vector n is almost constant in time. The corresponding Fourier spectrum of these

accelerated charges is given by:

Erad(x, ω)=
e/c√

2π

∫ ∞
−∞
dt′[n×n×r̈(t′)]e

iωin[t′−n·r(t′)/c]

R(t′)
. (5.3)

and for a discrete set of N accelerated charges like those contained in the simulation

cell, one makes the replacement:

e[n×n×r̈(t′)]R−1(t′)e−i(ω/c)n·r(t′) →
N∑
j=1

ej[nj×nj×r̈j(t′)]R−1
j (t′)e−i(ω/c)nj ·rj(t

′) (5.4)

Again invoking a distant observation point, one can approximate Rj(t
′) ≈ R0 and

nj ≈ n, where R0 is the distance between the observation point x and an origin

of coordinates within the scattering volume, with the unit vector n is along that

direction. What is important for this study is that the acceleration of each charge

r̈j within the molecular crystal depends on the input electromagnetic field frequency

ωin. Indeed, most of the far-field radiation is emitted along the Rayleigh line, (ω =

ωin), but a small portion can be emitted at unique frequencies (ω 6= ωin) due to

non-linear light-matter interactions within the material. When the wavelength of

light is much larger than the scatterer, a further simplification can be made. In

this case of (ω/c)nj · rj � 1, one can take the leading order of the exponentials,

i.e. e−i(ω/c)nj ·rj(t
′) ≈ 1. This second approximation is justified, given that the THz

radiation used here is impinging on a grain of an energetic material that is on the

order of tens of nanometers.

From the input EM pulse, the material will polarize under this intense light

generating dipole moments pα(t′) at some atomic position rα. In Equation 5.4, these

dipole moments correspond to a pair (j, j′)α of summation terms over j, such that

pα(t′) = |ejα|[rjα(t′)− rj′α(t′)]. Therefore, the Fourier spectra (frequency rather than

time representation) of these associated new dipole moments in the material becomes:
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Erad(x, ω)=
1√
2π

1

cR0

n×n×
∫ ∞
−∞
dt′e−iωt

′∑
α

p̈α(t′). (5.5)

In the far-field, one can replace the individual dipole summations by the net

dipole of the cell, P =
∑

α pα, and the frequency spectra of its’ second time derivative

(charge acceleration moments) will be equivalent to the radiated EM field. There is

one last approximation that goes with using classical MD, which is the back action

of the radiated field on the sample is not captured. Although MD computes the

dynamics of these dipole moments using a force field (see below), which includes

long range electrostatics, the (assumed) weak interaction with these radiated field is

neglected.

5.2.1 Simulation Details

With the classical description of absorption and frequency conversion provided

in the previous section, Molecular Dynamics has been chosen as the simulation

method. The hypothesis here is that anharmonicities in the PES give rise to fre-

quency conversion that is characteristic of the material being probed. Therefore, a

MD force field that is able to capture these delicate frequency conversion events is

sought after. Commonly, harmonic bond terms are used to construct an IAP, but

these harmonic chains of atoms cannot exchange energy (neglecting long range inter-

actions) amongst themselves. These two conditions together make ReaxFF an ideal

candidate for the IAP used, and several examples exist of its use to study molec-

ular crystals under strong electric fields [78, 227, 228]. A reactive potential has to

smoothly capture the transition from the reactant well to products; thus, is intrinsi-

cally anharmonic in nature(i.e. existence of a saddle point). It is important to note

that this study is not concerned with inducing chemistry, as in Chapter 3, rather,

the light pulse is intended to force short excursions into anharmonic regions of the

PES. To ensure proper interaction between the external light source and the sam-

ple, a polarizable force field should be used. Dynamic polarization is captured in
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ReaxFF through the charge equilibration scheme of Rappe and Goddard, with the

atomic charges updated at each timestep (∆t = 0.1fs). [69] Both the ReaxFF IAP

and charge updating scheme are deployed in LAMMPS, which is the simulation driver

for all the work shown here. [35]

A pair of molecular crystals, pentaerythritol tetranitrate (PETN) and Ammo-

nium Nitrate (AN) polymorph IV, are studied here to exemplify a benchmark test

for threat detection capability using THz signals [5, 229]. PETN is a molecule with

both oxidizer and fuel contained on a single chemical unit, while AN is an energetic

cocrystal that forms a charge neutral lattice from a basis of charged molecular species,

much like a ceramic material. Representative orthoscopic views of the two molecu-

lar crystals are displayed in 5.1 (a)-(d) [216]. Each simulation cell is generated by

replicating a smaller cell that has been pre-relaxed to 50K and 1 atm of pressure in

the isobaric-isothermal thermodynamic ensemble (NPT). For PETN, a total of 1008

molecules measuring 7.5 × 7.8 × 6.3nm3, and similarly for AN 729 molecule pairs

measuring 4.7 × 6.3 × 4.8nm3, were used. As mentioned previously, the geometry

of the simulation cell is set up to mimic a realistic configuration for far field detec-

tion. This is shown in Figure 5.1 (e). In this cell geometry, the Cartesian directions

are chosen to align with the 100 directions, where the [100] (X-direction) and [010]

(Y-direction) are periodic simulation cell directions. The last orthogonal direction is

taken as the Poynting vector of the incoming light, [001], and has a free surface in

order to mimic the experimental condition. Also, in this free surface direction, the

crystal is finite in size on the order of ten nanometers which justifies the approxima-

tions in Equation 5.3 and 5.5. These crystallographic directions bear no particular

importance for detection; another triplet of orthogonal directions equally could have

been used.

As Figure 5.1 (a)-(d) shows, the molecular arrangements in either direction are

unique, which gives an added variable of interest, which is the input light polarization.

Now the emitted light is a function of both the carrier frequency (inside cosine term in

Equation 5.2) and input polarization. To induce a strong polarization in the material
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Figure 5.1. A), C) Representative orthoscopic views of the [100] crys-
tallographic direction for PETN and ammonium nitrate. Panels B),
D) show the [010] direction in either material, which exemplifies the
unique molecule arrangement in either direction. E) Perspective view
of the simulation domain showing how the free surface is created in
MD, perpendicular to this free surface is the propagation direction
of both applied and emitted fields. This simulation setup enables
realistic absorption and emission polarizations within MD. Atom col-
ors correspond to carbon (grey), hydrogen (white), oxygen (red) and
nitrogen (blue).
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Figure 5.2. A) Two example Gaussian electric field pulses with dif-
ferent carrier frequencies applied in PETN. Absorption is measured
as the difference between the total energy after and before the pulse
is applied. B) Absorbance (normalized by the peak value for each
polarization), as a function of the input carrier frequency and in-
put polarization, for PETN (red) and AN IV (blue). The unique
molecule geometry in each direction leads to polarization-dependent
absorbance.

without decomposing the sample, a Gaussian shaped electric field pulse is used, as

in Equation 5.2. It was determined that a pulse width of 20ps and peak intensity of

1V/nm to be sufficient to induce the necessary nonlinear effects for either material.

Each simulation using this Gaussian pulse was run in the microcanonial ensemble

such that any change in the total energy is due to this external stimuli. During

this pulse, the dipole accelerations p̈α(t′) are recorded at 4fs intervals, which are

used to calculate the net dipole moment in each Cartesian direction at each output

time. This time series of net polarizations is used in Equation 5.5 to calculated the

emission signals for each carrier frequency and polarization pairing. After the 20ps

pulse, the external field is removed and the simulation remains in the microcanonical

ensemble. This allows for accurate determination of the energy input. A pair of

example simulations are shown in Figure 5.2 (a), where the initial structure (t = 0ps)

is the relaxed PETN cell.

A volume normalized total energy is used here because the field is applied ho-

mogeneously (long wavelength approximation), therefore making the total energy
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Figure 5.3. ReaxFF calculated power spectrum for A) PETN and B)
AN at 50 K and 1 atm of pressure. These spectra aid in analyzing the
radiated electric field signals shown in the Results section. The sum
of all element contributions normalized by total kinetic energy yields
the vibrational density of states.

absorbed dependent on the simulation cell size. The energy absorbed across all car-

rier frequencies, polarizations and materials tested is shown in Figure 5.2 (b) with the

normalization coming from the strongest absorbing mode in either material, respec-

tively. For reference, the strongest absorbing mode resulted in temperature changes

of 165K and 360K for PETN and AN, respectively; neither final temperature is ex-

pected to initiate a chemical reaction. Each carrier frequency is approximately 5cm−1

apart over a range of 0-170cm−1, which was determined to be large enough frequency

range to discern between these two materials. Interestingly, the unique molecule ar-

rangements along crystallographic directions gives rise to a modified absorption of

the incident light. To understand which modes are absorbing in this range, the vibra-

tional density of states (Equation 2.6) is calculated, and is plotted for either material

in Figure 5.3.

Most of these low frequency modes are dominated by oxygen motions. Specific

examples of these include the nitro-wag mode in PETN (≈ 40cm−1) and the ammo-

nium umbrella mode in AN (≈ 280cm−1). Conversely, while most of the AN modes

contain some hydrogen character, the PETN modes in the same range show very lit-

tle hydrogen contribution. These spectra, shown in Figure 5.3, provide a baseline for
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what the frequency-conversion tensor may entail. While not all of these modes carry

a dipole moment, it is possible that the strong electric field will polarize the sample

and make for uniquely radiated signals. However, it is unexpected that new modes of

vibration appear due to the lack of conformation or chemical change; rather, changes

in emission intensity are expected.

5.2.2 Results and Discussion

In order to surmount the challenges of using THz spectroscopy for detection of

explosives, it is the goal of this work to identify unique Erad traces for a subset of

carrier frequencies. This section will present two-dimensional spectral maps of the

emitted light intensity as a function of the input and emitted light frequencies. In

order to correct for strongly absorbing modes, each emission spectrum will be normal-

ized by the energy absorbed at that carrier frequency and polarization. Therefore,

the color axis of Figures 5.4-5.6 represent the percent emission at the given input

and emitted frequency pair. Since these materials are anisotropic, one should ex-

pect the emission to be sensitive to the polarization of the incident light. To study

this anisotropy, the spectra will be displayed as a function of polarization direction,

in order to confirm that frequency conversion of the incident light has taken place.

Figure 5.4 displays the frequency conversion maps for all carrier frequencies and po-

larizations studied in PETN, where panels A) and B) have the emission polarization

direction parallel to that of the input, and C) and D) are the converse. In the parallel

directions, the strongest emission signal is the Rayleigh line where ωin = ωout, but

there are other frequency converted signals that appear at higher frequencies than

the input.

Most notably, there is a strong third harmonic that appears when the carrier

frequency is one third that of a pre-existing mode in PETN, seen in Figure 5.3.

The second harmonic emission is forbidden, since PETN (AN as well) possess an

inversion symmetry. [219, 224] In addition, there are two modes at ≈ 170cm−1 and
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Figure 5.4. Emission signals from PETN along the [100] (x direction)
for electric field pulses applied in the A) [100] and B) [010] directions.
Complementary emission signals, with pulses along the [010] (y direc-
tion) for the C) [100] and D) [010] applied field directions in PETN.
Where the emission signals are aligned with the pulse polarization,
Rayleigh scattering dominates the observed emission. Perpendicular
directions do show emission at unique frequencies different from the
applied pulse, confirming the frequency conversion due to internal
scattering.

≈ 290cm−1 that light up for almost all carrier frequencies. These are phonon modes

of the system [5], and can also be used to fingerprint these materials.

Orthogonal to the the applied field polarization, the emission signals are not as

well defined, though certain islands of strong emission still exist. In fact, the existence

of any emission signal in an orthogonal polarization confirms that the MD simulation

is able to capture internal scattering of the material needed for frequency conversion.

From Figure 5.4 B) and C),the Rayleigh emission is only observed for carrier frequen-

cies greater than 125cm−1, and the previously mentioned phonon modes have varying
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intensity. These results are using a single pulse of light to calculate the emission, and

thus contain significant noise. In a typical experimental setup, repeat pulses are used

and should clear these results.

Figure 5.5. Emission signals from AN along the [100] (x direction)
for electric field pulses applied in the A) [100] and B) [010] directions.
Complementary emission signals with pulses along the [010] (y di-
rection) for the C) [100] and D) [010] applied field directions in AN.
Third harmonic emission is clearly seen for parallel emission directions
to the applied field and is much weaker in orthogonal directions.

Turning now to the spectra of the energetic cocrystal AN, as shown in Figure

5.5, the conversion maps are distinct from those of PETN. Again, Rayleigh emission

dominates the emission spectra in parallel emission directions, shown in panels A) and

D). Meanwhile, the third harmonic emission is only weakly seen for a polarization

in the X-direction, while incident light polarized in the Y-direction clearly yields

a frequency conversion into the third harmonic frequencies below ≈ 125cm−1. In

orthogonal polarizations, Figure 5.5 B) and C), a common Rayleigh emission at carrier
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frequencies greater than 140cm−1 is observed, but these two output polarizations

differ significantly in the features of the off-diagonal elements. Notably, in panel

C) of Figure 5.5, there is only a nonlinear emission signal for carrier frequencies in

the range of 60 − 110cm−1. Gathering each of these individual 2D spectra, one can

predict the far field observed emission spectra. Showing each polarization separately

confirms that the simulation method is capable of predicting frequency conversion

within either material.

For the usual experimental case, where the input field is polarized but the

detection is not polarization sensitive, it makes sense to perform an average over

the X- and Y-polarizations for a given linearly polarized input field. These average

emission spectra are displayed in Figure 5.6 A) and B) for PETN and 5.6 D) and E)

for AN for the X- or Y-polarizations. Going one step further, if the incident light

is unpolarized and the far field detector is not polarization sensitive, the averaging

should be done over all 2D spectra shown previously. This total emission signal is

shown in Figure 5.6 C) for PETN and Figure 5.6 F) for AN. Focusing just on the

total emission results, these energetic materials need to be distinguished by their

off-diagonal components, because each displays a strong Rayleigh emission.
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For PETN, a handful of third-harmonic frequencies show up clearly, all of which

are above 100cm−1. Reiterating the observation earlier, these unique nonlinear signals

are the result of the third harmonic of the input wave coinciding, or in close proximity,

with a peak in the vibrational spectra shown in Figure 5.3. On the other hand, a

weak third-harmonic generation below 100cm−1 and unique nonlinear features occur-

ring in the low-frequency region below 25cm−1 for input frequencies between 40 and

120cm−1 were seen for AN. These low-frequency nonlinear signals are inferred to be

molecular rotations or multimolecular modes of AN that are activated due to strong

absorption in the [010] polarized light; see Figure 5.1 D). Differences between the

unpolarized frequency-conversion maps could provide signatures that an uninformed

observer could use to distinguish between these two materials.

5.2.3 Conclusions

By leveraging molecular dynamics simulations and extensions of classical elec-

trodynamics, predictions of nonlinear THz emission due to vibrational scattering in

a pair of molecular crystals has been achieved. Extensions to prior work were made

by constraining the simulation geometries and polarizations of the external electric

field. These predictions are easily extended to the experimentally relevant far-field

measurement. In addition, by using reactive MD simulations, approximations due to

harmonic absorption or emission, as well as normal mode descriptions of the molec-

ular vibrations, have been avoided. The use of ReaxFF versus, say, a non-reactive

potential fit for use on the same materials [212,213], provides a more realistic descrip-

tion of absorption. As was seen from Section 3.3, the initial localization of energy

on the target mode causes a local (frequency space) temperature spike. Now, high

temperature anharmonicities that belong to the target mode act to distribute en-

ergy to other vibrations in the system. It is this chain of events that is suspected

to cause the frequency conversion, but this is altogether absent when a non-reactive

IAP is used. There are no temperature dependent portions of the non-reactive IAP

that modify the harmonic nature of the bonds (again neglecting the weak long-range
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portions of the potential); in a sense, all cross talk between vibrations is severely sup-

pressed. While the use of any force field is an approximation of the actual physics of

the problem, it does, however, allow for tractable simulations that provide useful and

rapid 2D-spectra predictions. Two dimensional spectra of PETN and ammonium ni-

trate polymorph IV were displayed here that differ significantly in the THz frequency

range due to changes in the location and intensity of third-harmonic emission of the

input light, as well as other nonlinear frequency emissions. The emitted light is dra-

matically different in both polarization and frequency from the incident light pulse,

which provides a potential for a THz detection technique with chemical specificity.

Experimental challenges still exist to generate the electric field strengths that were

used here, but realistically a weaker pulse could be used if it is set up for a repeated

measurement. A pulse duration of 20ps is easily achievable with current technolo-

gies, with repeat rates of tens of thousands per second possible as well. [230, 231] In

effect, if high quality crystals of PETN or AN are obtained, these predictions could

be experimentally validated in a short amount of time. Another key feature of these

predictions is their extension into other modeling and simulation tools. As was men-

tioned before, this simulation cell is an idealized case of light-matter interactions, and

local field enhancements due to crystal geometry are neglected. These microstruc-

tural effects can be captured in finite element tools [13]. By expanding the electric

permeability to include a tensor input of these frequency conversion maps, a greater

insight into the far field emission signals can be achieved.

There are several avenues for improvement on this proof of concept work, with

the primary concern being the clarity of the resultant signal that will be used to detect

a material. The first of these is just to include more polarizations along different

crystallographic directions. Adding these new conversion tensors to the averaged

spectra, shown in Figure 5.6 C) and F), would make for a better prediction of the

far field emission seen by an experiment. One set of information that would not

require significant change in simulation setup is to measure the conversion efficiency

of some of these third harmonic modes. Here, the emitted signal of interest would
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be quantified relative to the Rayleigh emission as a function of the strength of the

incident pulse. This result would narrow the number of emission signals that need

to be tracked by experimentalists, and provides a more accurate fingerprint for each

material. Also, with increasing pulse intensities, one can imagine using the resultant

chemistry from the THz pulse as an additional means for standoff detection. However,

there would be a necessary trade off of the specificity of the predicted nonlinear

signals for chemical species detection due to the high-temperature broadening of these

low-frequency modes of interest. The pulse intensity dependence, as well as further

study of the orientation dependence of nonlinear signals in these anisotropic energetic

materials, will be a subject of further study.

Deciding which of these nonlinear signals should be tracked in order to distin-

guish between materials would be made easier if a library of these 2D spectra are

already available. Even with a limited subset of polarization directions, this study

shows that preferential input of energy into THz modes can provide information to

distinguish between the chemistries of AN and PETN. The true advantage of this

method is that these predictions can be made simply by knowing the initial crystal

structure of the energetic material and having a force field that provides a reasonable

description of the vibrations. Therefore, a library of 2D THz spectra can be assem-

bled with limited input by the users, provided all of the materials can be described

by the same reactive force field. Although a standing library of predicted spectra

would be ideal for this detection scheme, a stronger insight into the mechanisms of

frequency conversion would constitute a significant advancement. The strongest sig-

nals observed here were due to well-known frequency mixing and higher harmonics

that obey the symmetry of the crystal. Of future interest are the small islands of

frequency conversion that appear in these maps; these are the anhamonicities of the

target vibration. Understanding the types of vibrations that give rise to strong an-

harmonic emission of light would help dissect the conversion maps highlighted here.

The challenge is individually representing a vibration without losing the necessary

overlap between modes to give rise to frequency conversion. One possible method
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was developed by Strachan [126]; it is based on the pairwise autocorrelatons between

atoms. In this paper, though, the solution to the eigenvalue equation necessitates

that each mode (row in the covariance matrix) is orthogonal. It may be possible to

compare the covariance matrix itself (prior to diagonalization) calculated at ambient

conditions to one that was collected during the light pulses used here. The difference

between these two situations may provide information to the overlap between anhar-

monic modes. However, this method has not been tested and is more of a conjecture

than a planned route to solve the problem of predicting intermolecular vibrational

energy transfer.
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CHAPTER 6. SUMMARY

Although each chapter prior had a section dedicated to the results and discussion

respectively, it is important to think of each chapter of this thesis as a subset of a

larger topic as defined by the document title. Therefore, the conclusions in a thematic

sense are discussed here and in effect offer an answer to the candid question of ‘so

what?’ In this last chapter, albeit a short one, a handful of future directions of the

research are also laid out. Because, although the author has spent significant time

and effort on the work here, it is my belief that a detailed research discussion should

never close the topic, rather open avenues of further study. It would be a strange case

to write this document and not feel as though it is an incomplete collection of work.

The backdrop to all the work here was the enabling technology of high perfor-

mance computing, without which the insight gained here would not have been possi-

ble. Although the experiments performed here were stuck in the virtual lab, each set

of simulations was designed such that it best mimicked an experiment that could be

done in a physical lab. While each of the calculated responses (chemical, thermal or

electromagnetic) can also be accessed in the laboratory, the detail provided from the

simulation work here aids in understanding and predicting the mechanisms respon-

sible for these processes. Importantly, some of the methods and procedures used in

this work are new to the field, and can (should) be used to expand our understanding

of these problems at the atomic scale.

Starting with the work on non-statistical chemistry, I would argue that the mi-

nor approximations inherent to the the simulation method and choice of forcefield

are outweighed by the number of new material systems that can be studied. The

method outlined previously identifies anomalies in reaction behavior by comparing

reactivity between equilibrium and non-equilibrium states of the material; there were
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no caveats for which types of molecules would work within this scheme. Although the

rates are approximate, the VER and chemical reactions are taken care of without ad

hoc rules added to the simulation, leaving the door open to study any other molecules

within this (or any other) ReaxFF force field. The observed change in reactivity to

an intra-molecular localization of energy between the unimolecularly reacting PETN

versus a bimolecular NM reaction should guide and narrow the future work in this

avenue. The focus should remain on condensed phase systems, because there is little

experimental eveidence of non-statistical reactions in solids, and the computational

approach could steer future work there. Even though multimolecular reactions are

more common in solids (which where shown to have no change to the nonequilibrium

reactions here), a continued effort should be made to identify cases where vibrational

insults alter the kinetics relative to thermal insults. Rather than continuing with the

same materials, a new set of molecules that exhibit a low activation energy (10-15

kcal/mol) should be sought after. This low barrier reaction would increase the possi-

bility for reaction while Tmode > Tbulk, and enable the identification of key vibrations

for the reaction progress. Ideally, a simple material system can be found that has

competing reaction paths, and the use of a nonequilibrium state will favor one over

the other.

It was mentioned in earlier chapters that the sizes of the molecules used here

prohibited the use of phase trajectory mapping, but if few degrees of freedom are

active (unimolecular case) this technique may be possible. The De Leon and Berne

model of an isomerization reaction is a well studied example of efficient trajectory

mapping that shows rich physics of both regular and chaotic behavior. What would be

interesting is using the work of Reeve et al. [232] to identify the functional forms that

yield chaotic (statistical reactions) or regular (non-RRKM) trajectories. Due to the

low computational cost of this model form, a liquid or solid of these small molecules

can be studied. By making small modifications to the interatomic potential, one

can study what molecule geometries give rise to statistical or nonstatistical reactions.

Also, the vibrational insults like those used in Chapter 3.3 can be employed to study
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the changes in phase space trajectories on this small molecule; hopefully, they would

shed light on the validity of the schematics laid out by Bunker and Hase. All to-

gether, these continued efforts would aid in understand how to externally control the

dynamics of molecules, which as mentioned earlier has a wide range of applications.

Extensions of the shock to detonation transition work have the best possibility

to enable fruitful multi-scale modeling efforts. Rather than running expensive shock

induced pore collapse to study the initiation of solid explosives, it makes more sense

to focus efforts on the artificial hot spot work. The data (initiation thresholds, burn

rates, density changes, etc.) collected from these simulations can be translated into

hydrodynamic codes (CHEETAH is one example code) that solve for material prop-

erties at the macroscopic scale. The method for testing these hot spots is robust

with respect to what material is tested, and in the future this should include other

HEs that are of interest to the national labs here in the U.S.; TATB and Hexanitros-

tilbene are prime candidates. At a more fundamental level, more work needs to be

done to identify the role of non-equilibrium chemistry during shock loading. Where

this work left off, there are hanging questions regarding the role of crystallinity and

pressure gradients with respect to the non-equilibrium chemistry. These effects need

to be studied using artificial hot spots before one can intentionally create a non-

equilibrium hot spot to study its effect. To do so, a special type of thermostat

needs to be programmed into LAMMPS that will only control the CoM velocities

of molecules and will subtract energy from intramolecular vibrations, sort of like a

Mueller-Plathe method for a single molecule. One should expect that the ignition

threshold would change for systems that have TCoM 6= TV ib, especially for materials

that have preferred multimolecular reactions.

There is plenty of work left to do in the thermal response of composite materials,

primarily because it is the most recent endeavor of any of the chapters here. While

the role of the surface characteristics has been studied in detail, there is still the

approximation of using a quasi two dimensional system to study what is, in reality, a

full microstructural effect. This would mean looking into shape factors on the spatial
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localization of acoustic insults, which necessitates a change in how the simulation cells

are built. Mares and coworkers [211] suspected this was the cause of differences in

heating rate between otherwise equivalent embedded Ammonium Perchlorate crystals.

Fully embedded HMX crystals in a Teflon matrix have been built either as a spherical

nanoparticle or as a faceted octahedron (all (110) faces) in order to study this effect.

These resultant structures are much larger than their 2D cousins, and would require

more computational resources to evaluate this shape effect. However, due to time

restraints, there were no simulations of acoustic excitation done with these geometries.

What is also interesting in this system is the idea of phonon localization in the

crystalline phase (Kapitiza resistance), which would give rise to a material-specific

heating mechanism. A detailed study of this was not undertaken here due to the

unique simulation geometries that would be required. Here, the length of either phase

should be many wavelengths of the phonons that are to be scattered at the interface

in order to ‘watch’ a phonon be selectively transmitted or reflected. This has been

studied in parallel systems within MD [233], but not with the aim of detection and

defeat of explosives, which is an interesting angle on this known phenomena. A

normal mode approach would be useful in order to initialize a traveling phonon in the

crystal, and a simple measure of how much the temperature of the polymer increases

would suffice to measure the transmission efficiency.

The THz frequency range offers a unique opportunity for spectroscopists to de-

tect energetic materials, but is plagued by weak signals that oftentimes are intermixed

with those of water. However, the non-linear emission that results from a strong in-

put polarization was shown here to be a possible route to create a chemically specific

signal that can be detected. While insightful, the scope of the work here was limited

to just two input polarizations per material, which does not fully reproduce experi-

mental conditions. The frequency conversion maps were still granulated, even when

averaging over all input polarizations. A simple solution to this is to generate more

unique signals by aligning the input light to more crystallographic directions. Clari-

fying which non-linear signals should be expected would make the experimental task
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of differentiating between material chemistries much simpler, and finalizing a proce-

dure, or threshold intensity, would enable high throughput screening of materials in

order to generate a library of non-linear THz spectra. In order to best predict the

experimental spectra, additional simulations are needed to measure the conversion

efficiency of the non-linear signals. Here, the new frequency signals are compared to

the the Rayleigh intensity as a function of the intensity of the input light. These re-

sults will help experimental efforts dial in the intensity of the THz pulses that should

be used. In short, the most fruitful extensions of this particular work, in the authors

opinion, will be to simplify the experimental task of THz detection.

Over the last few decades, simulation methods have solidified themselves as a

viable technique in material science. Their applications have proved to be extremely

diverse as well. This work stretched the uses of a single simulation method in MD

in order to address how a single class of materials respond at extremely small length

and time scales. What these MD simulations afforded was the ability to correlate the

thermal, chemical and electromagnetic response to the means of energy input into the

system. Most importantly, the work collected here showed, in multiple examples, that

the material response will change from what is predicted thermodynamically while the

system relaxes from its initial non-equilibrium state. The chemical response examples,

in particular, show very promising results, where this non-equilibrium state can be

controlled and indeed change the reactivity of the sample. Altogether, the predictions

made here support or enable new experiments aimed at developing new detection and

defeat technologies for hazardous energetic materials.
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Appendix A: Code Description

There are a number of analysis tools that have been written to perform or
accelerate different parts of the work shown in this document, a description of how
they work and how to operate them will be discussed here. Most of the code that was
produced was written in FORTRAN, primarily because it has a very fast runtime and
therefore is ideal for processing large data files. However, some Python codes also
exist because they can be adapted and re-run on the fly without waiting to recompile,
which is ideal if the analysis technique is collecting results over multiple simulations.
The BASH scripts that are used for convenience wont be covered here, these are
usually specific to their use and are hard to translate onto the next user. These are
extremely useful in practice because the slowest portion of computational work is the
human element, so anything that will make your job easier is worth learning how to
do.

Local Properties:
Regardless of how fast a particular code is per calculation, the easiest way to

reach the end result faster is to cut out unnecessary computation. For large simu-
lations, this means making your code ‘short-sighted’ and neglect atom interactions
beyond some distance. As an example, one could tell an MD code to calculate the van
Der Walles force on every atom pair, regardless of distance. This would result in many
terms being exactly zero, which we could have done without calculating because they
do not affect the end result. The same idea is true when looking for covalent bonds
in a molecular material, there are no realistic bonds beyond some cutoff distance.

The first code of interest is named Local Bonds.py which is a python code that
will find nearby bonds for each atom solely from the distance between them. The
heavy lifting of this code is done when a large simulation cell is partitioned into
smaller cells, but the size of the cell is critical because if it is too small there is
significant noise in the local measurement. Here a bin size is chosen such that the
average number of atoms in each smaller cell is around 50, but this can be smaller
when only recognizing bonds. However, this atom count is critical when calculating
local temperatures of pressures, some time should be spent to determine a balance
between run times and accuracy of the result when this code is employed.

There are a few hard-coded portions of this code which need to be highlighted.
This code expects separate LAMMPS dump file that are distinguished by a frame
number (i.e. GoodData.###.dump), this frame number is used during the execution
of the code and the file path is set in line 54. The frame number is also used in the
execution of the code, by typing ‘python Local Bonds.py 100‘ where the last number
is the frame that will be processed. From here it is easy to see that a BASH script
to incrementally change the frame number in the execute line will take care of repeat
submission. Inside this code there are other hard coded objects that need to change if
it is to properly find bonds. First, on line 48, the number of atoms (n=###) needs
to be set depending on the system of interest. Next, the table of bond distances needs
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to adjusted through the variable rdict on line 57. Here each index corresponds to a
pair of atom types in the MD simulation, entry ‘23’ : ‘1.8’ means that atom type 2
bonds to 3 with a distance less than 1.8 Angstroms. Beyond these small changes, the
code will partition the whole simulation cell into parts and only look for bonds with
atoms in its own bin, or those immediately around it.

The output of this code will be a table of length of the number of atoms in
the system called mols.###.dump where the frame number matches that from the
code execution line. This table read as follows; AtomID AtomType NumberOfBonds
BondedAtom 1 BondedAtom 2 etc., which is the same as the fix reax/bonds command
in LAMMPS. A list of bonded atoms can be useful when attempting to detect changes
in chemical makeup, but is dependent on the problem at hand. In the next section,
a code was developed that will use this bond information to reduce a simulation cell
into molecule populations, among other things.

A similar code as Local Bonds.py will calculate a handful of local thermody-
namic quantities based on per atom quantites in the LAMMPS data files, this code is
called Local Thermo.py. Currently, the expected input is a LAMMPS dump file with
positions and velocities and it will output the local temperature (after the center of
mass velocity of the grid volume is subtracted) and the density. If per atom forces
are included in the dump file, then local stress components can be calculated just use
the Local ThermoStr.py. Output from either one of these local average scripts will be
stored in three different files, #.#ps noavg, #.#ps avg, and correctedv.##.dump.
The first contains all of the local averages in the plane of interest (default is X-Z), the
second has the first dimension averaged out so it is just the average local property
along Z, the last is a corrected dump file which has the velocities modified such that
there is no center of mass motion of the cell. Again, setting up a BASH script to
process a large number of dump files is ideal, depending on the number of atoms this
script will complete within a minute for a system of one-hundred thousand atoms. It
is also good practice when running a large number of these analysis scripts to keep
them off the front end nodes by using a job submission file.

Molecule Recognition
Primarily in use throughout Chapter 3, the ability to analyze a simulation in

terms of molecular species rather than just atoms reveals a new set of data that
provides new insight. The local properties section describes a method to cheaply
recognize which atoms are bonded to one another, the obvious next step is to group
these atoms into clusters to get molecular level properties. A FORTRAN code has
been developed to recognize which molecular species are present, report their center
of mass positions (trivial), their TCoM and TV ib The necessary inputs are then a
table of which atoms are bonded to one another, and the positions and velocities
of all the atoms. Currently, in MoleculeRec wTemps.f these files are hard coded as
‘MolRec.dat’ and ‘Positions.dat’ respectively, these were kept as dummy file names
to avoid re-compiling the code when a new file was to be read in. Since FORTRAN is
the equivalent to Latin in spoken language, it has to be compiled into an executable



135

before it can be used, to do so load your favorite Intel compiler and type ‘ifort -O3
MoleculeRec wTemps.f -o Compiled.fort’. The name of the executable or its extension
type doesn’t matter, it is good practice to attach a date to the compiled version for
bookkeeping. To run the code in a UNIX environment, just type ./Compiled.fort, the
best way to do this is make a symbolic link to the code via the ln command.

Initially, this code will store a single frames worth of connectivity, positions and
velocities into sorted arrays based on the atom identification number. In order to save
compute cost, a minimum spanning tree algorithm is used in order to only recognize
a bonded pair of atoms once. The algorithm works as follows;
1) Find an atom that has not been recognized in any other cluster (a boolean array
stores each atoms status here) and add it and its’ bonded atoms to a list, lets call
this the first branch of atoms.
2) Take the bonded atoms if the first branch and add any unique atom IDs to the
aforementioned list.
3) Keeping track of the number of unique atom IDs that are added to the list for this
particular molecule, repeat until no more unique atoms are found.
4) Store the number of atoms in the cluster that was just completed, this will be
stored in a separate array that will aid in looking up clusters in the future.
Up to this point, the execution times are very quick, even on large atom counts.
What takes a significant amount of compute time is counting the population of unique
molecules types, this is a type step process that involves reducing each molecule by
unique composition (topology doesn’t matter now, which would be viable addition to
this code). After molecules are tagged by composition, a loop over the total number
of molecules is launched which compares if the current molecule has been recognized
already. If true, add one to the population, if false, create a new instance into the
list of unique molecules and set its population to one. The current state of the code
skips much of this hard work by just looking for a set of molecules that have been
deemed interesting for combustion of energetic materials. Also inside of this loop over
molecules is the calculations of per molecule quantities such as position, velocity and
temperature. This is easy to do once the atom IDs are known for each cluster, it
becomes a lookup tag from the data stored when reading ‘Positions.dat’. Equations
2.4 and 2.5 are used to get temperatures per molecule, along with positions and
velocities of molecules, a new, more compact, dump file is created in the .xyz format
style. This new dump file is called COM Molecules.xyz, and will be overwritten every
frame unless there is a modification made to the code. Since these dump files can be
quite large, having the default version of the code spit out thousands of these files
seemed dangerous and was set up to overwrite itself. However, this new dump file
can be rendered in any visualization program and make nice images of the simulation
cell where the ‘atoms’ that are plotted now are whole molecules, see Figure ??.

There are three main outputs for this code, Output MST.dat, Common Mols.dat
and FormatUncommon Mols.dat. Output MST.dat is a raw output of what molecules
were recognized by the minimum spanning tree algorithm, this is useful as a first pass
to determine what molecules are common to the chemical conversion that is hap-
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pening in your simulation. The next two files are tabulated molecule populations of
common and uncommon, which is to say they occur frequently but not in high num-
ber, with each row being a new frame that was analyzed. Feel free to change up the
default species that are added to the latter two molecule population files, just go into
the massive IF block at the bottom of the code and adjust the composition that it is
looking for. Alternatively, while the clusters are being formed, add if statements that
will count the number of bonds between interesting species, i.e counting the number
of bonded carbon-nitrogen with time.

Spectroscopic Characterization
This last section of code will discuss how to generate spectroscopic data from

and MD trajectory, Figure 4.3 is an example of what the output will look like. Unlike
Raman or FTIR as it is performed in the lab, MD does not need to scatter a probe light
source to sample the vibrations within a material. Simply, all of the vibrations that a
material posses are wrapped up in the velocity history of all the atoms and a Fourier
transform will reveal what the frequency of each of these characteristic vibrations
are. Most importantly, this calculation is applicable to any material, even if the
MD is being done on coarse grained systems with reduced forces. Also, unlike DFT,
this measurement can be made at any temperature and does not use a normal mode
approximation to determine vibrational frequencies. For systems that are evolving
close to transition states, where some vibrations are highly anharmonic, this method
will capture the shifting and broadening of modes as the material begins to decompose,
this is not possible from a normal mode approach. So then, how does the code work?
The computational method used in this code, called ‘VibDoS Calc.f’, becomes very
costly for large atoms counts greater than 10,000, but it gives very clean results
otherwise. To compile, load up Intel compilers again and type ‘ifort -O3 -L -llapack
-lblas -mcmodel medium -shared-intel VibDoS Calc.f -o Compiled.fort’, the extra bits
here allow for a greater allocation of static memory and attach LAPACK libraries.
Now to run: ./Compiled.fort < in.lammps
This code works by reading through your LAMMPS input file (in.lammps) to identify
where the starting data is stored (finds read data and dump commands) and gathers
the units, masses, dump file name, dump frequency, and which column the velocity
data is stored. Personally, I just use a dummy LAMMPS input file so that I know this
code is reading the correct data just in case there are multiple read data or dump
commands. Unlike the local analysis scripts, this code expects a single LAMMPS
dump file for the entire trajectory. The main loop of this code will step through
each atom in the system and read the corresponding time series of velocities, which
are then Fourier transformed, see Equation 2.6. Herein lies why the code becomes
time consuming when a large number of atoms are supplied, this code will perform
a Fourier transform for every atom in the system. The benefits are twofold, the
shapes of the vibrational peaks are better resolved since a lager number of spectra
are calculated and then averaged. Secondly, this costly method means that vibrational
properties can be broken down by which elements are contributing to each vibration,
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see Figure 4.3. The total vibrational spectra is just an average over each atom’s
individual spectra, but we can selectively chose which atoms we average this total
spectra over, the obvious choice is to divide the spectra by element types. Therefore,
the output from this code will be a set of files called ‘ Vib FFT NM atomtype#.out’
with the number representing the atom type. The total vibrational spectrum will be
outputted simply as ‘ Vib FFT NM.out’ and will contain three columns which are
Frequency(ps−1), Frequency(cm−1), Kinetic Energy Density. The integral of the last
column (if done correctly) will be equal to the total kinetic energy of the system. If
you are interested in calculating this quantity for a large number of atoms, it is best
to pre-calculate the autocorrelation function of the velocities and then take just one
Fourier transform of this. For more information of why this is true, I would suggest
looking into the WienerKhinchin theorem.

The second code for this section will take advantage of this equivalence stated
in the WienerKhinchin theorem, but will now look at which vibrations are infrared
active. This code is ‘IR andNormalModes.f’ and is compiled and run in the same fash-
ion of the previous code. Here, the code is evaluating what is described in Equation
2.8 by reading through a continuous LAMMPS trajectory and collecting the charges
an velocities of each atom. The output, ‘IR FFT Modes.out’ looks very similar to
the full vibrational spectra with the last column now being the infrared intensity at
that particular frequency. This intensity measure does not carry units, and can be
normalized for plotting convenience. Currently, the second half of this code is turned
off by the ‘STOP’ command on line 390. The second portion of this code is intended
to calculate the normal modes of vibration using the method outlined by Strachan in
his 2004 paper entitled ‘Normal modes and frequencies from covariances in molecular
dynamics or Monte Carlo simulations’. Unfortunately, this method is very compu-
tationally costly since it has to diagonalize large matrices in order to generate the
normal modes of oscillation. It does create some nice trajectories that just have one
vibrational mode expressed on the system, so thats nice. Use this portion of the code
at your own risk, I did not spend much time debugging and making it full proof for
any input material.
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Appendix B: Published Work

At the time this thesis has been completed, here are all of the journal versions
of the published work that have resulted from my graduate work. Some of this work
is not discussed in this thesis, and is included here for completeness.

Reprinted (adapted) with permission from “Coupled Thermal and Electromag-
netic Induced Decomposition in the Molecular Explosive HMX; A Reactive Molecular
Dynamics Study” M. A. Wood, A. C. van Duin and A. Strachan, Journal of Physical
Chemistry A, 2014, 118 (5). DOI: 10.1021/jp406248m. Copyright 2014 American
Chemical Society.

Reprinted (adapted) with permission fromComputation of the Density Matrix
in Electronic Structure Theory in Parallel on Multiple Graphics Processing Units M.
J. Cawkwell, M. A. Wood, A. M. N. Niklasson and S. M. Mniszewski, Journal of
Chemical Theory and Computation, 2014, 10 (12). DOI: 10.1021/ct500822. Copy-
right 2014 American Chemical Society.

Reprinted (adapted) with permission fromUltra-fast Chemistry under Non-
equilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale
M. A. Wood, M. J. Cherukara, E. M. Kober and A. Strachan, Journal of Physical
Chemistry C, 2015 DOI: 10.1021/acs.jpcc.5b05362. Copyright 2015 American Chem-
ical Society.

Reprinted (adapted) with permission from Nonlinear Electromagnetic Interac-
tions in Energetic Materials M. A. Wood, D. A. R. Dalvit and D. S. Moore, Physical
Review Applied, 2016 DOI: 10.1103/PhysRevApplied.5.014004. Copyright 2015 with
License Number 3838280604060. American Physical Society.

Reprinted (adapted) with permission fromUltra-fast Chemistry under Non-
equilibrium Conditions and the Shock to Deflagration Transition at the Nanoscale
M. A. Wood, M. J. Cherukara, E. M. Kober and A. Strachan, Journal of Physical
Chemistry C, 2015 DOI: 10.1021/acs.jpcc.5b05362. Copyright 2016 American Chem-
ical Society.



139



140



141



142



143



144



145



146



147



148



149



150



151



152



153



154



155



156



157



158



159



160



161



162



163



164



165



166



167



168



169



170



171



172



173



174



175



176



177



178



179



180



181



VITA



182

VITA

Mitchell Wood graduated with a Ph.D. from the Materials Engineering depart-
ment at Purdue University in 2016 and was previously at Michigan State University
where he obtained a B.S in Physics in 2011. At Purdue, his work was focused on using
atomistic simulations to study materials at extremes of temperature, pressure and ra-
diation and his research interests here are to understand the non-equilibrium physics
that stem from these abnormal environments. In addition, he has developed sev-
eral user-friendly, web-enabled simulation tools that have been deployed on the NSF
supported cloud computing website, nanoHUB,org. Other efforts of his have been
in collaboration with Los Alamos National Lab to develop efficient quantum molec-
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