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ABSTRACT

Wallace, Carlington W. Ph.D., Purdue University, May 2016. Simulation of Conservation
Practice Effects on Water Quality under Current and Future Climate Scenarios. Major
Professors: Bernard A. Engel and Dennis C. Flanagan

Analysis of the effects of implementing different conservation practices, as well as
increased levels of conservation practices under existing and projected future climate,
will determine if current conservation practice recommendations will be sufficient to
maintain soil and water resources. The Soil and Water Assessment Tool (SWAT) was used
to study four watersheds of different sizes (CCW = 680 km?, F34 = 183 km*, AXL = 42
km? and ALG = 20 km?) located in Northeastern Indiana. The overarching goal of this
study was to evaluate the effect of various agricultural practices on runoff and
agricultural chemical losses under current and future climate conditions, using an

appropriately calibrated SWAT model.

The results indicated calibrating SWAT at one watershed size and applying the optimized
parameters to watersheds of different sizes with similar physiographic features produced
satisfactory predictions of streamflow, nitrogen and phosphorus losses. Between the
baseline period (1961-90) and the end of this century (2099), average annual precipitation
for the watershed is expected to increase by approximately 8.5%, average daily solar

radiation will increase by approximately 2.4% and average annual maximum and



Xiv

minimum temperatures will increase by approximately 3.9 and 4.0° C, respectively. Based
on SWAT simulations, changes in future climate resulted in decreased surface runoff (9%
to 22%) and increased tile flow (20% to 25%) because more precipitation occurred in
smaller events, allowing more infiltration to occur. There was an increase in sediment
loss for all four watersheds (ranging from 6% to 30%), while average annual soluble P
loss decreased for the CCW (10%) and F34 (25%) watersheds between the baseline
period and the end of this century. Changes in atrazine, soluble N, total N and total P

losses were not significant at o = 0.05

Given the changes in projected future climate, the long-term impacts of both individual
and combined conservation practices were assessed in the AXL watershed. The estimated
average annual reductions for each decade of future climate due to conservation practices
implementation ranged from 15% to 25% for surface runoft, 32% to 68% for sediment,
37% to 60% for atrazine, 5% to 13% for soluble N, 12% to 35% for total N, 9% to 41%
for soluble P, and 33% to 60% for total P. Results of the study indicated that individual
conservation practices were effective in reducing a targeted pollutant load, but combined
practices were more effective in reducing multiple pollutant loadings simultaneously. No-
till was the most effective individual conservation practice, while a combination of five
conservation practices was most effective in reducing runoff, sediment, atrazine, and

nitrogen and phosphorus losses.

Keywords: Climate change, MarkSim, nutrients, surface flow, SWAT, tile flow



CHAPTER 1. GENERAL INTRODUCTION

One of the biggest water quality problems in agricultural watersheds stems from surface
runoff that transports a variety of pollutants from various sources into rivers, streams and
lakes (USEPA, 1994). These pollutants vary from sediment, pesticides, and nutrients to
oil and pathogens (USEPA, 1994). Pollutant source areas may include agricultural lands,

mining and construction sites, residential streets, lawns and parking lots (USEPA, 1994).

The Great Lakes, which consist of Lake Superior, Lake Michigan, Lake Huron, Lake Erie
and Lake Ontario, are the largest system of fresh surface water on earth, by area, yet
despite their large size, the Great Lakes are sensitive to the effects of a wide range of
environmental pollutants from agricultural and urban runoff (USEPA, 2014). Lake Erie,
the smallest of the five lakes (by volume) is the most significantly stressed from
agriculture (USEPA, 2014). It receives agricultural runoff from southwest Ontario and

portions of Indiana, Michigan, and Ohio.

The St. Joseph River Watershed Initiative (SJRWI) assessed water quality in the St.
Joseph River, Indiana, USA, and identified pesticide and nutrient runoff from agricultural
lands as primary stressors of surface water quality in the region (SJRWI, 2005). The St.

Joseph River transports agricultural runoff from northeastern Indiana to the Maumee



River that eventually drains into Lake Erie (SJRWI, 2005), resulting in significant algal
growth and poor water quality conditions. The overabundance of algae, which was
primarily due to excess loading of nutrients, such as , into the lake, resulted in anoxic
conditions that subsequently led to large fish kills during the 1970’s (Rawls et al., 1980)
and harmful toxic algal blooms that resulted in a ban on regional drinking water supply to

the City of Toledo, Ohio as recently as August 2014 (Fitzsimmons, 2014).

The St. Joseph River also supplies drinking water to approximately 250,000 people in the
City of Fort Wayne, Indiana. In 1995, high concentrations of atrazine (a pesticide used in
corn production) above the EPA recommendations resulted in an extensive and costly
treatment of source water in order to meet the required safe drinking water standards for

atrazine (Cohen et al., 1995).

In an effort to mitigate these problems, the Environmental Protection Agency’s (EPA)
national water program is focused on conservation practices that are based on water
quality controls implemented at the watershed scale (the Healthy Watershed Initiative)
(USEPA, 2011). The healthy watershed strategy involves the development of Total
Maximum Daily Loads (TMDLs) for polluted water bodies, which are followed by an

implementation plan to address the load allocations established by TMDLs.

In an implementation plan, the required reductions needed to achieve water quality
standards are usually accomplished through a combination of conservation practices.
Conservation practices are sets of land management practices implemented to control soil

losses, nutrients and other chemical losses that often lead to degradation of water quality



in rivers, streams and lakes. Conservation practices also help to improve agricultural
lands, protect natural resources, forests and wildlife habitats. In 2002, Congress passed
the Farm Security and Rural Investment Act (2002 Farm Bill Act), which resulted in a
significant increase in funding for conservation programs throughout the country above
the level set under the 1996 Farm Bill (Mausbach and Dedrick, 2004). Subsequently, the
2014 Farm Bill Act consolidated 23 overlapping conservation programs into 13, tightened
eligibility rules for funding of these programs, and streamlined means tests to make farm

programs more accountable.

Despite protecting millions of hectares, the environmental benefits of conservation
practices have not been quantified to the extent that they can be reported at the national
scale (Mausbach and Dedrick, 2004). As a result, the Conservation Effects Assessment
Project (CEAP) was launched in an effort to provide accountability on how the millions

of dollars being spent on conservation programs are benefiting the environment.

This study will address portions of the USDA ARS CEAP Watershed Assessment Study
(WAS) Project Plan objectives, specifically, objectives two and three. Objective two of
the plan seeks to quantify the effects of conservation practices on water quality and other
environmental parameters, while objective three seeks to validate water quality models
such as the Soil and Water Assessment Tool (SWAT) and determine their uncertainty at

predictions of water quality parameters in 14 benchmark watersheds (Heathman et al.,

2009).



Based on a review of available literature, several studies conducted using SWAT
concluded that future climate changes tend to have significant influence on watershed
processes (Ficklin et al., 2009; Gosain et al., 2006; Narsimlu et al., 2013). However, the
extent to which watershed size affects future climate-change assessments is not clearly
understood. Therefore, a quantitative analysis of the uncertainty in SWAT calibration
parameters, and the effect of different agricultural practices on streamflow and chemical
losses will be evaluated at four watersheds under current and future climate conditions

using SWAT.

1.1.  Research Goal

The overall goal of this study was to evaluate the effect of various agricultural practices
on runoff and chemical losses under current and future climate conditions using the Soil
and Water Assessment Tool (SWAT). First, SWAT was calibrated for streamflow,
NO;+NO, (soluble N), total nitrogen (total N), soluble phosphorus (soluble P) and total
phosphorus (total P) losses at four watersheds (varying in size) under current
management practices and climate conditions. Second, the MarkSim weather generator
downscaling program developed by the International Centre for Tropical Agriculture
(Jones and Thornton, 1999, 2000) was used to project future climate conditions, thus
producing new climate inputs to SWAT, which were used to quantify the effect of future

climate conditions on runoff and agricultural chemical losses.

Third, the effects of different types and levels of conservation practice implementation on

predicted runoff and chemical losses were evaluated under current and future climate



conditions. Each objective and their related hypothesis are further defined in the

following sections.

1.1.1. Quantifying the Effects of Watershed Size on SWAT Calibration

SWAT has been calibrated in many watersheds of various sizes and physiographic
features. However, the relationship between model parameters optimization and the size
at which SWAT was calibrated is not clearly understood. Understanding the influence of
watershed size on SWAT model calibration will allow users to determine the validity of
using such an assessment tool at various watershed sizes. Results of this objective were
interpreted and used to select an appropriate watershed-calibration size to evaluate the
effect of different types and levels of conservation practices, and future climate

conditions on streamflow and chemical losses.

The specific objective was to evaluate the effect of watershed size on SWAT model
calibration for streamflow, soluble N, total N, soluble P, and total P losses under current
management practices and climate conditions. The size at which the model best
represents watershed processes limits the successful application of watershed scale

models in environmental studies and land and water resources management.

Hypothesis

Optimizing SWAT calibration parameters at one watershed size and then applying said
optimized parameters at a different watershed size with similar physiographic features
and management practices will not result in satisfactory predictions of streamflow,

soluble N, total N, soluble P, and total P losses at the different watershed sizes.



1.1.2  Quantifying the Effects of Future Climate Conditions on Runoff, Sediment

and Chemical Losses

Future climate conditions may greatly influence national and regional hydrologic
conditions and subsequently affect runoff volume and chemical losses. The implications
on future water resources and water quality may be severe; therefore, a more in-depth

assessment is required especially in agricultural watersheds.

The specific objective of this portion of the study was to evaluate the effects of future
climate conditions on runoff, sediment, atrazine, soluble N, total N, soluble P, and total P
losses under current management practices using SWAT. The MarkSim weather generator
was used to project future climate conditions and create new weather input files for
SWAT. MarkSim has been used to project future climate conditions and generate new
climate files for crop modeling and risk assessment in Africa, South America and the US

(Jones and Thornton, 1999, 2000).

Hypothesis
Future climatic conditions in northeastern Indiana will have a significant influence on
runoff, sediment, atrazine, soluble nitrogen, total nitrogen, soluble phosphorus and total

phosphorus losses under current management practices.

1.1.3  Quantifying the Effects of Conservation Practice Implementation on

Predicted Runoff and Chemical Losses



Quantifying the impact of long-term conservation practice implementation given current

and future climate conditions can provide insight into the long-term effectiveness of best

management practices (BMPs). The specific tasks required to complete this objective

were:

1)

2)

Modify SWAT model parameters and algorithms in order to represent blind inlets
as conservation practices in SWAT. A blind inlet is a filtration system installed in
closed depressions (potholes) that traps sediment and other contaminants, thus

reducing pollutants entering subsurface tiles.

Evaluate the impact of no-tillage, vegetative buffer strips, grassed waterways,
blind inlets and nutrient management on runoff, sediment, pesticide, and nutrient
reduction under current and future climate conditions. The methods for
representing these conservation practices were based on published literature
pertaining to BMP simulation in hydrologic models, and considering the

hydrologic and water quality processes simulated in SWAT.

Hypothesis

Given future climate conditions for northeastern Indiana, the implementation of best

management practices will result in significant reductions of pesticide, sediment and

nutrient losses at the watershed scale there.



CHAPTER 2. QUANTIFYING THE EFFECTS OF WATERSHED SIZE ON SWAT
CALIBRATION

2.1 Synopsis

The Soil and Water Assessment Tool (SWAT) has been calibrated in many watersheds of
various sizes and physiographic features. However, the relationship between model
calibration parameters and the watershed size at which SWAT was calibrated is not
clearly understood. Understanding the influence of watershed size on SWAT model
calibration parameters will allow users to determine the validity of using such an
assessment tool at various sized watersheds. Additionally, this will allow users with
limited data to determine whether it is appropriate to calibrate SWAT in one watershed
and implement the optimized parameters in a different watershed with similar
physiographic features. In this study, SWAT was used to investigate the influence of
watershed size on SWAT model calibration on four watersheds (CCW = 680 km?, F34 =
183 km?, AXL = 42 km* and ALG = 20 km?) located in Northeastern Indiana. The results
show that calibrating SWAT at one size and applying the optimized parameters at
different watershed sizes of similar physiographic features will produce satisfactory
simulation results. The size at which the model was calibrated had little effect on
streamflow simulations. The predictions of soluble nitrogen loss were improved when

calibration was performed at the larger CCW watershed, while calibrating SWAT at the



smaller AXL and ALG watersheds produced improved NSE, R? and PBIAS values for
soluble P and total P when applied to the larger CCW and F34 watersheds. Due to the
physical characteristics of the F34 watershed, SWAT parameters optimized at the F34
level did not always result in satisfactory results when applied to the CCW, AXL and

ALG watershed configurations.

2.2 Introduction

Growing concerns over water quality in agricultural watersheds continue to be the topic
of many discussions. Agricultural runoff is considered a primary cause of nonpoint
source pollution in the United States (Yu et al., 2004) because it often transports
pesticides, nutrients and sediment from agricultural fields and other areas to rivers and
streams. This may have serious implications for the chemical, physical and biological
integrity of the nation’s water bodies (USEPA, 1994). The Farm Security and Rural
Investment Act provide significant financial assistance for farmers to construct and
improve watershed management structures, and to implement conservation practices that
will control soil erosion and improve water quality. The primary pollutants affecting
water quality in northeastern Indiana and much of the Midwest Corn Belt Region are
nitrogen and phosphorus, particularly soluble phosphorus (Lake Erie LAMPs, 2011) that

are transported in agricultural runoff.

An effective watershed management program is one that minimizes the loss of
agricultural chemicals and maintains water quality standards. However, developing an

effective watershed management program requires comprehensive understanding of the
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hydrologic and chemical processes within the watershed (Larose et al., 2007). These
processes are usually examined at the watershed scale using computer simulation models
such as the Soil and Watershed Assessment Tool (SWAT) (Arnold et al., 1998). SWAT is
also used to assess the effect of various management practices, and for developing and

improving watershed management programs (Spruill et al., 2000).

SWAT is useful for providing long-term analysis of watershed processes and does not
model individual storm events effectively. It was developed for use in large ungauged
watersheds and can be used without calibration (Neitsch, 2002). However, SWAT model
parameters vary in sensitivity during different flow regimes and for different simulation
periods, therefore requiring dynamic updating of parameters during the simulation. As a
result, several researchers recommend that SWAT be calibrated in cases where measured
data are available, because calibration will improve the model’s performance thus

resulting in more accurate simulations (Kirsch et al., 2002; Santhi et al., 2001).

In recent years, several procedures have been developed to perform calibration and
uncertainty analysis of hydrologic models such as SWAT. The SWAT Calibration and
Uncertainty Program (SWAT-CUP) (Abbaspour et al., 2007), as described below, links
several of these processes to SWAT in order to provide an automated calibration and

uncertainty analysis tool that may be tailored to a specific project.

Several studies (Bingner et al., 1997; FitzHugh and Mackay, 2000; Kumar and Merwade,
2009; Muleta and Nicklow, 2005) have evaluated the effects of spatial scale on SWAT

streamflow simulations and have concluded that streamflow predictions are not very
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sensitive to spatial scale. An earlier study (Jha et al., 2004) also suggested that spatial
scale had very little effect on streamflow simulations, but will definitely impact the
simulation of nitrogen and loss simulations. Heathman et al. (2007) attempted to explore
the influence of scale on SWAT model calibration when they compared observed versus
simulated streamflow for SWAT model calibration at the 2810 km” St. Joseph River
Basin (SJRW) in Indiana (one of the 14 Conservation Effects Assessment Project
benchmark watersheds) and at the 679.2 km” Cedar Creek watershed (largest tributary in
SJRW). They concluded that the scale at which the model was calibrated had little impact
on SWAT simulated streamflow for the watersheds. This conclusion was supported by
(Thampi et al., 2010) based on a study in the Chaliyar River Basin (Kerala, India).
Srinivasan et al. (1998) also calibrated SWAT in the 5,157 km?” Richland and Chambers
Creek watershed in Upper Trinity Basin, Texas, and validated it at the smaller Mill Creek
watershed (282 km?), and concluded that the model explained at least 84 percent of the

variability in the observed streamflow data.

Despite being calibrated in many watersheds of various sizes and physiographic features,
the relationship between SWAT calibration parameters and the size at which SWAT was
calibrated is still not clearly understood, especially for nitrogen and phosphorus
simulations. Understanding the influence of watershed size on SWAT model calibration
parameters will provide insight into the validity of using such an assessment tool at

various watershed sizes. This will also help to determine whether it is acceptable to
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calibrate the model in one watershed and apply the optimized parameters in a watershed

with a different size, assuming both watersheds have similar physiographic properties.
2.2.1 SWAT Model Description

SWAT is a lumped, semi-distributed hydrologic model developed by USDA ARS to study
the effects of management decisions on water quality “with reasonable accuracy” on
large ungauged watersheds (Arnold et al., 1998). SWAT is capable of operating on a daily
time step or annual time steps for long-term simulations (Arnold et al., 1998). SWAT uses
a two-level “disaggregation” scheme to represent large complex watersheds. First, it
divides the watershed into sub basins based on topographic features, and then further
discretizes those sub basins into Hydrologic Response Units (HRUs) based on unique
combinations of land use, soil type and slope classes. Computations are then performed at
the HRU level, which are assumed homogeneous in hydrologic response to land use/land
cover change. The major components of the model include hydrology, land management,

nutrients, pathogens and bacteria, pesticides, plant growth, soil properties and weather

(Arnold et al., 2012).
222 Uses and Limitations

SWAT is a public domain model that is often used for predicting and interpreting the
effects of agricultural management practices and climate variability on water quality, and
in assessing the environmental efficiency of conservation practices in very complex
watersheds (Arnold and Fohrer, 2005; Arnold et al., 1998; Van Liew et al., 2003). It is

widely used by government agencies, research institutions, universities, and private
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corporations worldwide to assess the influence of climate change, land management, and
other processes on a wide range of water resources or “exploratory assessments of model
capabilities for potential future applications” (Gassman et al., 2007). Since its conception
in the early 1990s, SWAT has gained worldwide acceptance with applications in places
such as the United States, European Union, Africa, South America, Asia, Middle East and

the Caribbean.

The integration of SWAT with ArcGIS (ArcSWAT) provides a user-friendly interface that
simplifies model inputs and parameterization. Advanced users can easily modify SWAT
to simulate additional processes and conditions, as well as incorporate other simulation
models such as the Agricultural Policy Environmental EXtender (APEX) model. SWAT
and APEX are currently being used to support CEAP and for landscape and watershed
environmental analysis. Other strengths of the model include its ability to analyze both

point and nonpoint sources of pollution.

While SWAT was developed for use on ungauged watersheds, extensive calibration is
often required to improve model performance. Overall, SWAT offers the most
comprehensive representation of environmental processes that can be used to assess land
use and management alternatives that may affect water quality, and support decision

making at national and regional levels.
2.2.3 Hydrologic Processes

In order to simulate hydrologic processes, SWAT requires climate inputs such as daily

precipitation, maximum/minimum air temperatures and solar radiation. These climate
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data drive the hydrologic cycle and provide moisture and energy inputs that control the
water balance. The water balance is the primary driver of the hydrologic processes, fate
and transport of nutrients and pesticides, plant growth, and sediment processes in the
watershed (Arnold et al., 2012). SWAT separates watershed hydrology into two main
phases; the land phase controls the amount of water, nutrients, pesticides, and sediments
being transported from the land surface to the main channel in each subbasin; and the
routing phase controls the transport of water, nutrients, pesticides, and sediments through
the channel network of the watershed to the outlet (Arnold et al., 2012). Hydrologic
processes simulated by SWAT include evapotranspiration (ET), infiltration, lateral
shallow aquifer and deep aquifer flow, percolation losses, redistribution of water within
the soil profile, surface runoff, tile drainage, return flow, and recharge by seepage from
surface water bodies, ponds, and tributary channels (Arnold et al., 2012). SWAT provides
multiple options for estimating potential evapotranspiration (Penman-Monteith method,
Priestley-Taylor or Hargreaves method) and runoff (Soil Conservation Service runoff
curve number (CN) or the Green-Ampt infiltration model (Green and Ampt, 1911). The
Penman-Monteith method (Monteith, 1995) as described in Equation (2.1), captures the
effects of wind and relative humidity, thus accounting for vegetation shading, wind
resistance, and transpiration through leaves, which makes it suitable for application in
highly vegetated watersheds. Therefore, given the vegetated nature of the study
watersheds, the Penman-Monteith method was selected over the Priestley-Taylor and

Hargreaves methods for estimating evapotranspiration.
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where AE is the latent heat flux density (MJ/m?/d), A is the slope of the saturation vapor
pressure temperature curve (kPa/°C). H,,,; is the net radiation (MJ/m%/d), G is the heat
flux density to the ground (MJ/m%/d), pgi is the air density (kg/m°), Cp is the specific
heat at constant pressure (MJ/kg/°C), e? is the saturation vapor pressure of air at height z
(kPa), e, is the water vapor pressure of air at height z (kPa), y is the psychrometric
constant (kPa/°C), r. is the plant canopy resistance (s/m), and 7, is the diffusive

resistance of the air layer (s/m).

The CN method (USDA-SCS, 1986) as described in Equation (2.2) was selected instead
of the Green and Ampt equation in this study for its simplicity, predictability and stability.
It does not require rainfall intensity and duration data, rather only total daily rainfall
depth is required when estimating surface runoff. Despite the fact that the CN method
fails to account for the spatial and temporal variability of infiltration and other abstractive
losses, it is believed to simulate the saturation overland flow mode of runoff generation
sufficiently, especially on agricultural lands for which it was originally intended (Ponce
and Hawkins, 1996). King et al. (1999) compared the Green-Ampt method versus the
SCS CN method using SWAT and concluded that no significant advantage was gained by
using Green-Ampt to estimate surface runoff in a large pasture dominated watershed.

SCS CN is an empirical model developed by the USDA Natural Resources Conservation
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Service (formerly the Soil Conservation Service) to provide consistent estimates of runoff

from various land use and soil types. The equation is as follows:

_ (Paay-025)"

B (Pday+0'85) (22)

eru f

where Qs is the accumulated runoff depth (mm), Py, is the precipitation depth (plus
snowmelt) for the day (mm), and S is the potential maximum retention (mm) that may be

defined using Equation (2.3):

1000
s =25.4 (22 - 10) (2.3)
where CN is the curve number for the day.

The channel water routing needed to predict the changes in the magnitude of the peak and
the corresponding stage of flow as a flood wave moves downstream was based on the
variable storage coefficient method (Arnold et al., 2012). The change in volume of
storage during the time step is the difference between the inflow volume and the outflow

volume in this simple continuous model.
2.2.4 Nitrogen Processes

Nitrogen (N) processes are simulated in SWAT using a typical nitrogen cycle to track the
transport and fate of various forms of N throughout the watershed (Arnold et al., 1998).
The portion of N used by plants is estimated using the supply and demand approach.
Nitrates and organic N are also removed from the soil through mass flow of water. Nitrate

loading is estimated as the product of average nitrate concentration and the volume of
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water present in a particular layer (Arnold et al., 1998). The amount of N loss through
surface runoff is calculated using Equations (2.4) and (2.5):

“Wmobile
NO3lyr*(1—exp[(1_96)*SAler]>

Wmobile

NO3;one =

(2.4)

N03surf = Bnoz * NO3¢onc * qurf (2.5)

where NO3 .y is the concentration of nitrate in the water (kg N/mm), NO3,,, is the
amount of nitrate in the layer, and w,,,pie 1S the amount of mobile water in the layer
(mm). 6, is the fraction of porosity excluding anions, SAT},, is the saturated water
content of the soil layer (mm), NO3,, is the nitrate removed in surface runoff (kg
N/ha), Byos is the nitrate percolation coefficient, and Qgyr is the surface runoff

generated on a given day (mm). Nitrate loss through lateral flow and percolation are also
calculated using similar equations. The amount of organic N transported with sediment
to the stream is calculated using the Williams and Hann (1978) loading function,

Equation (2.6):
0rgNgyrp = 0.001 * orgNeon, * f# * ENsday (2.6)
hru

where orgNg,, ¢ is the amount of organic N transported to the main channel in surface
runoff (kg N/ha), orgN_,,. is the concentration of organic N in the top 10 mm (g N/ton),
Sday 18 the sediment yield on a given day (tons), €ysq4y is the N enrichment ratio, and

Apyy is the area of the specific HRU (km?).
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2.2.5 Processes

(P) processes are simulated in SWAT using a typical cycle to track the transport and fate
of various forms of P throughout the watershed (Arnold et al., 1998). The portion of P
used by plants is estimated using the supply and demand approach. Soluble P and organic
P are also removed from the soil through mass flow of water. Soluble P loading is
estimated using the solution P concentration in the top 10 mm of the soil, runoff volume

and a partitioning factor (Arnold et al., 1998), Equation (2.7):

Psurf — Psolution,surf*qurf (27)
pprdepthsyrf*Kd surf

where Pg,;,¢ is the amount of soluble P loss in surface runoff (kg P/ha), and P,y tion surf
is the amount of dissolved P in the top 10 mm of the soil (kg P/ha). Qg ¢ is the amount
of surface runoff on a given day (mm), p, is the bulk density of the top soil layer
(Mg/m?), depthg, s is the depth of the surface layer (10 mm), and kg r ( soil
partitioning coefficient) is the ratio of soluble P concentration in the first 10 mm of soil to
the concentration of soluble P in surface runoff (m*’/Mg). The amount of organic P
transported with sediment to the stream is calculated using the Williams and Hann (1978)

loading function, similar to organic nitrogen transport.
2.2.6 Closed Depressions and Tile Drainage Processes

Isolated closed depressions with no natural outlet are often filled with water, especially
after heavy storm events or snowmelt. The potholes can have a significant effect on the

hydrologic balance, and can reduce crop yields when they fill with water (Smith and
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Livingston, 2013). Therefore, in order to maximize crop production, closed depressions
are often drained using surface tile inlets. These surface tile inlets are usually plastic
pipes extending approximately one meter above the soil surface with one to two
centimeter diameter-holes, or a metal cage that extends 0.25 to 0.4 m above the ground,
placed at the lowest point of the depression to drain the ponded surface water (Feyereisen
et al., 2015). The tile inlets are attached to subsurface drain tiles that transfer water from
the field directly to the stream network.

The water balance for a pothole is represented in Equation (2.8) (Du et al., 2005) as:

V =Voep + Vitowin + Vstorea = Vevap — Vseen — Vrtowour (2.8)
where V is the volume of water in the impoundment at the end of the day (m®), and Voep
is the volume of precipitation falling in the pothole during the day (m®). For surface area
and precipitation volume calculations, the potholes are assumed to be cone-shaped (Du et
al., 2005). Vfiowin is surface runoff and lateral subsurface water flow from upland HRUs
in the subbasin during the day (m3 ), and Vgioreq 1S the volume of water stored in the
pothole at the beginning of the day (m’). Vevap 1s the volume of water removed from the
pothole by evaporation during the day (m?), Vseep 1s the volume of water lost from the
pothole by seepage (m’), and Vetowour 18 the volume of water flowing out of the pothole

during the day (m’). In previous versions of SWAT, all HRU flow was assumed to
contribute directly to the channel system without interacting with other HRUs. However,

with recent modifications (Du et al., 2005), the user is able to specify the fraction of flow
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from upland HRUs that contributes to the pothole HRU (pot fr), with the remainder

flowing directly into the channel system.

When surface tile inlets are installed in a pothole, the pothole will contribute water to

channels through tile flow. The pothole outflow originating from surface inlets is as

follows:
itV > pot_tile * 86400, Viiowour = pot_tile x 86400 (2.9)
itV < pot_tile * 86400, Vriowour =V (2.10)

and if overflow and surface tile inlet-led flow in a pothole occur at the same time,

Velowour = pot_tile » 86400 + V — pot_volx (2.11)

where Vrio0u¢ 18 the volume of water flowing out of the water body during the day (m?),
pot_tile is the average daily tile flow rate (m’ s '), V is the volume of water entering the

pothole (m*), and pot_volx is the maximum amount of water that can be stored in the

pothole (m®) (Du et al., 2005).

Tile flow is predicted on days when the simulated height of the water table over the
impervious layer is greater than the height of the tile above the impervious layer. In other
words, tile flow occurs when the water table height exceeds the height of the tile drains.
Simulation of tile drainage in an HRU is indicated by the presence of a DDRAIN
parameter greater than zero, and a design drawdown time (TDRAIN) is used to determine
the “rate” of flow. Du et al. (2005) introduced a new drainage coefficient (tiletime),
which determines the portion of the flow from the tile drains into the streams on a daily

basis, essentially smoothing the drain flow hydrograph (Equation 2.12):
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tiletime = 1 — e(_ﬁ) (2.12)
where GDRAIN is the drain tile lag time (h). The depth from the soil surface to the
impervious layer is represented by DEP_IMP (mm), which can be varied between drained
and undrained HRUs. The DEP_IMP parameter defines the depth to the impervious layer
in the soil profile and is required if perched water tables, closed depressions (potholes) or

tile drainage are being modeled in an HRU.
2.3 Objective

This study examines the influence of watershed size on SWAT calibrations for
streamflow, nitrogen and phosphorus losses from four watersheds within the St. Joseph
River Watershed (SJRW) in northeastern Indiana. Watershed characteristics such as land
use, soil type, climate and other physiographic features are approximately the same at the
different watershed sizes considered here, which therefore conforms to the concept of
downscaling rather than regionalization. However, more area-specific land management
data required by SWAT for parameterization are available for the smaller watersheds
where farm management records are available. Usually in larger watersheds, management
information for SWAT is generalized based on countywide averages (Heathman et al.,

2007; Larose et al., 2007).



22

2.4 Methodology
2.4.1 Study Area Description

The St. Joseph River Watershed is a 2,810-km” catchment that intersects the states of
Indiana, Michigan and Ohio (Figure 2.1). The headwaters of the St. Joseph River
originate in Michigan, and the river flows through Ohio and Indiana before joining the St.
Mary’s River near Ft. Wayne, Indiana to form the Maumee River. The Maumee River
flows into the Maumee Bay of Lake Erie in Toledo, Ohio. The Cedar Creek watershed
(CCW = 679 km?) located in northeastern Indiana (85°19'28.101" to 84°54'12.364"W and
41°11'47.494" to 41°32'8.776"N) is the largest tributary to the St. Joseph River,
intersecting the counties of Allen, DeKalb and Noble. Cedar Creek is predominantly an

agricultural watershed (68%) with approximately 15% forest (Table 2.1).

The majority of soils in the watersheds are comprised of the Eel-Martinsville-Genesee
and Morley-Blount associations. The Eel-Martinsville-Genesee association consists of
deep, moderately well drained, nearly level, and medium to moderately fine-textured
soils on low lands and stream terraces (Larose et al., 2007; SJRWI, 2004). The Morley-
Blount association occurs mostly in the upland and consists of deep, moderately to poorly
drained soils with nearly level to deep medium-textured soils (USDA, 2014). Tile
drainage systems are used to drain water from many of these soils into managed drainage
ditches, which resulted in alteration of the watershed hydrology and the transport of
pesticide and nutrients across the landscape (Pappas and Smith, 2007; Smith et al., 2008).

CCW is the largest of the four calibration watersheds analyzed in this study. The three
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remaining watersheds (F34 = 182.5 km? AXL = 41.5 km* and ALG =19.7 km?) are
nested within the upper Cedar Creek (Figure 2.1) and share similar physiographic

features to that of Cedar Creek (Table 2.1).
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Figure 2.1. Location map of the study areas (CCW, F34, AXL and ALG).

Table 2.1. Description of watershed characteristics (land use distribution, topography and
average annual climate conditions).

Land use (NASS, 2011) CCW F34 AXL ALG
Corn (%) 21.0 272 239 188
Soybean (%) 237 256 379 441
Winter Wheat (%) 32 3.1 53 7.7
Pasture (%) 194 162 128 12.0
Forest-Mixed (%) 148 11.5 10.1 8.8
Residential (%) 10.5 7.5 5.8 4.7
Other (%) 7.5 8.9 4.3 4.0
Watershed area (km?) 679.2 1825 41.5 19.7
% of watershed area contributing to farmed-closed depressions (%) 5.1 8.2 10.0 8.7
Average depth of farmed closed depression (m) 094 082 091 0.90
Average slope (%) 1.5 1.9 1.0 1.2
Average annual rainfall (2001 to 2013) (mm) 960 948 948 948

Average temperature during crop growth season (°C) 10 to 23
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2.4.2 Model Input and Setup

The ArcSWAT version 2012.10.5a interface was used to expedite SWAT model input and
output display. To obtain suitable flow paths, the stream delineation from the National
Hydrograph Dataset (NHD) was used to burn in the location of the streams in a 10-m
Digital Elevation Model (DEM) obtained from USGS at a map scale of 1:24,000. The
USGS National Water Quality Assessment Program (NAWQA) water quality/streamflow
gauge station located near Cedarville, Allen County, Indiana was used as the watershed
outlet for CCW. The USDA Agricultural Research Service (ARS) National Soil Erosion
Research Laboratory (NSERL) water quality/streamflow gauge stations were used to
specify the location of the F34, AXL and ALG outlets. The Soil Survey Geographic
Database (SSURGO) spatial data at a scale of 1:12,000 and the USDA National
Agricultural Statistics Service (USDA-NASS, 2011) Indiana Cropland Layer were used
to determine hydrologic response units (HRUs) for SWAT.

HRUs (also referred to as modeling units) are unique combinations of land use, soils, and
slope classes within each sub-basin, whereby, the model establishes management
practices. In order to establish modeling units, SWAT must first divide the watershed into
smaller subbasins based on a specified critical source area (CSA) threshold for stream
generation. CSA is specified as a percentage of the total watershed area that determines
the minimum upstream drainage area required to form a channel. The second division
occurs when each subwatershed is further divided into HRUs using a specified threshold

area for land use, soil types and slope classes in each subwatershed.
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Table 2.2. Model input data, sources and descriptions.

Data Type Source Description
. . . 10-m Resolution, Digital Elevation Model
DEM viewer.nationalmap.gov/viewer/ (USGS 2011)
. . Soil Survey Geographic Database (SSURGO)
Soils soildatamart.nrcs.usda.gov/ (USDA-NRCS, 2011)
. National Agricultural Statistics Service (USDA-
Land use http://www.nass.usda.gov/ NASS. 2011)
Hydrographic  nhd.usgs.gov/data.html National Hydrograph Dataset (NHD) (USGS, 2011)
ARS-CEAP Water Quality Dally prempﬁg‘uon, solar ra‘d1.at10n, w1‘nd, relative
Weather Assessment Proaram humidity, maximum and minimum daily temperature
£ (2001 to 2012)
Weather National Climate Data Center Daily precipitation, maximum and minimum daily
ncdc.noaa.gov/data-access/ temperature (2001 to 2012) (Diamond et al., 2013)
Cro ARS CEAP watershed survey, Tillage operations, fertilizer and herbicide
MarI:a ement DeKalb and Allen County applications, crop rotation, time of planting and time
& SWCDs of harvesting
Water Qualit St. Joseph River Watershed Streamflow, bi-weekly pesticide and nutrient
Y Initiative concentration (TP, TN, NO,+NO3)
Water Quality ARS CEAP Water Quality Streamflow, daily pesticide and nutrient

Assessment Program

concentration (TP, PO4, TN, NO2+NO3)

Table 2.3. Minimum stream threshold values and the resulting subwatersheds and HRUs
for each study watershed.

Watershed Stream Threshold (ha)

Sub watersheds

HRUs

CCWwW
F34
AXL
ALG

3000 (5% of watershed area)
900 (5% of watershed area)
200 (5% of watershed area)
100 (5% of watershed area)

17
11
11
14

5474
1954
806
659

For this research, a critical source area of 5% was specified for each watershed, which

resulted in stream threshold area of 30 kmz, 9 kmz, 2 km? and 1 km? for CCW, F34, AXL

and ALG, respectively (Table 2.3). The threshold for HRU definition was set to 0% land:

0% soil: 0% slope, which means that all possible land use/soil/slope combinations were

assessed. This was necessary to facilitate the spatial representation of closed depressions
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within the watersheds. The minimum stream threshold value and the resulting sub

watersheds and HRUs for each of the study watersheds are shown in Table 2.3.

Climate data such as precipitation, maximum and minimum air temperatures, solar
radiation, relative humidity, and wind speed were obtained from 10 CEAP weather
stations located in the upper Cedar Creek region for the period 2003 to 2013. Daily
precipitation and maximum and minimum air temperatures were also obtained from the
National Climate Data Center (Diamond et al., 2013) for the Auburn, Angola, Butler,
Garrett, and Waterloo stations located within or around the watershed, with records from
1980 to 2013. Missing data for a given station were estimated by averaging values for the
nearest weather stations, typically within a 5 km radius. Because less than five percent of
each dataset were missing, the replacement method was expected to have negligible

effects on simulation results.

Area-specific land management data (Tables 2.4 and 2.5) were collected by the ARS-
NSERL through the CEAP program, as well as from the DeKalb and Allen Counties Soil
and Water Conservation Districts (SWCDs), and were used to represent the current
management practices occurring in the Cedar Creek watershed. Conservation tillage has
been widely adopted in the watershed. In DeKalb County, 34% of all corn and 77% of all
soybeans planted in 2012 were under a no-till system or mulch-till system (DeKalb
SWCD, 2012). Therefore, no-till and conventional tillage were used as input in the SWAT
management file. The management files were constructed to simulate corn/soybeans (the

predominant crops in the watershed), rotated on all lands classified as corn or soybeans.
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All lands classified as wheat were simulated in a three-year rotation with corn and
soybeans (corn/soybeans/wheat). The management scheme includes yearly tillage

operations, nutrient and pesticide application rates, planting and harvesting dates (Tables

2.4 and 2.5).

Tile drainage was assumed for all corn, soybean and winter wheat areas. The tile drainage
area was considered to have an average depth of 1.0 meter, 48 hours of drainage after a
rain to reach field capacity, with a drain tile lag time of 24 hours (Du et al., 2005; Larose
et al., 2007). The typical spacing between tiles (estimated based on soil type and

drainage) is 20 meters (Wright and Sands, 2001).

Table 2.4. Management operations for land in corn/soybeans rotation.

Crop Date Management Operation Rate
22-Apr  Nitrogen Application (as Anhydrous Ammonia) 176.0 kg/ha
22-Apr  (P,0s) Application (as DAP/MAP) 54.0 kg/ha

Corn 22-Apr  Pesticide Application (as Atrazine) 2.2 kg/ha

6-May  Tillage - Offset disk (60% mixing)
6-May  Planting - Row planter, double disk openers
10-Oct  Harvest

10-May  (P,Os) Application (as DAP/MAP) 40.0 kg/ha
24-May No-tillage planting - Drills

7-Oct  Harvest

20-Oct  Tillage, Chisel (30% mixing)

Soybeans

Table 2.5. Management operations for land in winter wheat production (following
corn/soybeans rotation in Table 2.4).

Crop Date Management Operation Rate

23-Oct  (P20s) Application (as DAP) 45.0 kg/ha
25-Oct Tillage, Tandem disk (60% mixing)

Wheat  25-Oct  Planting — Drills, double disk openers
1-Mar  Nitrogen Application (as Urea) 75.0 kg/ha
1-Jul Harvest
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Closed depressions (potholes) and tile inlets were also addressed in the SWAT
configurations. In order to represent potholes in SWAT, ArcGIS version 10.1 was used to
process a 1-meter DEM of the entire study area. The processing involves: 1) identifying
sink features in the elevation dataset; 2) classifying sink features as potholes based on
certain criteria; 3) create pothole look-up tables that will link pothole features with SWAT
HRUs, and 4) update SWAT HRU files using a simple python script. Detailed
descriptions of these steps are presented in Table 2.6, which may be adjusted to suite
modeling needs. The percentages of watershed area contributing flow to farmed closed
depressions were estimated at 5.1%, 8.2%, 10.0% and 8.7% for CCW, F34, AXL and
ALG, respectively. Average depths of potholes were 0.94 meter, 0.82 meter, 0.91 meter

and 0.90 meter for CCW, F34, AXL and ALG, respectively.

SWAT was set up to run on a daily time step for the period 2001 to 2013 with a warm-up
period of five years (01/2001 to 12/2005). The warm-up period is recommended for the
model to initialize and approach reasonable starting values for model variables (Tolson

and Shoemaker, 2007) before beginning the calibration process.
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Table 2.6. Detailed methods for representing potholes in SWAT.

Phase 1: Identifying sinks using ArcGIS

1) Fill sinks in a 1-meter DEM for the entire Cedar Creek watershed.

2) Subtract the original DEM from the filled DEM to obtain a raster with only the sink features.

3) Convert sink raster to feature class.

4) Use the interpolate function in the 3D Analyst tool to interpolates z-values for the feature class based on
the 1-meter DEM.

5) Add a new field to the attribute table of the new feature to calculate the average depth of the sink
(subtract minimum z-value from maximum z-value).

6) Add another field to the attribute table of the feature class, and then use Calculate Geometry to calculate
the area in hectares for each feature.

Phase 2: Classifying closed depressions as sink features in cultivated lands using ArcGIS

7) Use the select by Attribute tool to select small polygons (e.g. features <0.2ha and features with depth <
0.5m), then delete the selected features.

8) Add the stream network layer to the map, and then use the Select by Location tool to select features that
intersect or fall within 100 meters of the stream network. Delete the selected features.

9) Use a base map (aerial photo) to locate sink features that represent actual ponds and wetlands, and then
manually delete them from the feature class.

10) Add the land use layer to the ArcGIS display, and then use the Make Feature tool to select all sink
features that are within cultivated lands. The resulting feature class will consist of only closed depressions
(potholes) that are likely to be tile-drained for cultivation.

Phase 3: Creating pothole lookup table

11) Use the Drainage Area Characterization tool from the Terrain Morphology menu in ArcHydro to
calculate the volume of the potholes

12) Add the HRU shapefile from the initial SWAT configuration to the ArcGIS display and use the spatial
join tool to associate the potholes with the HRUs, and then export the new attribute table to excel.

13) Open the excel file and use a pivot table to summarize the data into three columns (column one
contains the HRU ID, column two contains the aggregated pothole area for each HRU, and column three
contains the aggregate pothole volume for each HRU). The summarized data is then saved as the pothole
lookup table.

Phase 4: Updating SWAT HRU files using python

14) A simple python script was created to add the pothole information to the respective HRU files. The
script reads the lookup table and HRU files (located in the TextInOut folder), converts volume in m® to mm
and updates the pot_volx parameter.

15) Other pothole related parameters pot tile, pot fr, pot solp, pot no3L, and pot NSED were also
updated using the python script.

2.4.3 Model Calibration and Validation

Calibration is the process used to optimize parameters in a model using observed
conditions in an effort to reduce the prediction uncertainty associated with the model.

Parameters in SWAT were calibrated at the monthly time scale in a distributed fashion
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using the SWAT-CUP autocalibration tool. Calibration was performed at the F34, AXL
and ALG outlets for streamflow, NO3;+NO; nitrogen (soluble N), total nitrogen (total N),
orthophosphate (soluble P) and total phosphorus (total P) over a 4-yr period (01/2006 to
12/2009). Due to limited data availability, SWAT was calibrated at the CCW outlet near
Cedarville for streamflow (01/2006 to 12/2009), soluble N (04/2006 to 12/2009), and

total P (4/2006 to 2009).

Historical measured data for streamflow, soluble N and total P concentrations were
obtained from the St. Joseph River Watershed Initiative for the CCW outlet near
Cedarville, while soluble N, total N, soluble P and total P concentrations were obtained
from the ARS-NSERL-CEAP database for the F34, AXL and ALG outlets. Measured data
for total nitrogen and total phosphorus were also obtained from the ARS-NSERL-CEAP
database for the F34, AXL and ALG outlets. Concentration values for nutrients obtained
from ARS were multiplied by flow on a daily time step to obtain total daily loads. Since
the end goal of SWAT simulations was to evaluate long-term average annual loads, the
daily loads were further aggregated into total monthly loads, which were used to perform
monthly calibration and validation of the F34, AXL and ALG SWAT configurations. The
nutrient data obtained from the SJRWI were biweekly grab samples (not sufficient to
perform monthly calibration). Therefore, the Load Estimator (LOADEST) was used to
estimate monthly constituent loads for CCW. LOADEST (Runkel et al., 2004) requires a
time series of streamflow and the available constituent data, which it uses to develop a

regression model for the estimation of constituent load. A summary of the average
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measured streamflow and nutrient loads from each watershed during the years 2006

through 2013 is presented in Table 2.7.

The measured streamflow data obtained from the USGS and the ARS-NSERL-CEAP
project are comprised of baseflow and surface runoff. Base flow is the groundwater
contribution to streamflow, which needs to be separated so that measured surface flow
can be compared to simulated values (Larose et al., 2007). The Web-based Hydrograph
Analysis Tool (WHAT) developed by Purdue University (Lim et al., 2005) based on the
(Arnold and Allen, 1999) base flow filter program was used to separate storm flow from
base flow. Optimization of the SWAT configurations ensured that simulated baseflow

approximated the fraction of water yield contributed by the baseflow from the measured

flow estimated by WHAT.

After calibration, the next step was to validate the model performance, therefore ensuring
it is able to perform simulations correctly and is suitable for use in decision-making.
Validation was performed for F34, AXL and ALG configurations over a 4-year period
(01/2010 to 12/2013). The CCW configuration was validated for streamflow over a 4-yr
period (01/2010 to 12/2013), and soluble N and total P over a 3-yr period (01/2010 to

12/2012) due to limited data availability.
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Table 2.7. Annual streamflow rate and nutrient loads measured from each watershed for
the period 2006 through 2013.

Flow (m’/s) NO;+NO, (kg) Total N (kg) Soluble P (kg) Total P (kg)
2006
CCW 8.41 478203 - - 42788
F34 2.06 298063 304651 1910 12369
AXL 0.54 99056 100432 825 2634
ALG 0.37 48817 60293 305 1285
2007
CCW 7.82 572740 - - 48011
F34 1.71 176556 193882 1151 12768
AXL 0.43 37172 55819 363 2999
ALG 0.23 13511 19260 151 1062
2008
CCW 8.94 605748 - - 54515
F34 2.05 103213 139521 2405 11574
AXL 0.47 59888 77011 691 4404
ALG 0.33 17295 35422 495 2602
2009
CcCw 9.58 967120 - - 57766
F34 2.59 119270 205300 6532 25840
AXL 0.68 102327 145464 661 7358
ALG 0.44 39021 57820 423 2681
2010
CCW 6.6 812899 - - 37294
F34 1.76 82465 106442 3233 18501
AXL 0.44 65783 86502 1485 7105
ALG 0.26 70639 39962 410 5786
2011
CCW 11.08 1485662 - - 73223
F34 2.22 162319 170544 2627 28267
AXL 0.63 66877 110091 1077 12701
ALG 0.39 33506 67763 471 4719
2012
CCW 4.01 342734 - - 15674
F34 0.99 48180 61144 919 2874
AXL 0.2 27077 32056 153 874
ALG 0.09 10501 14593 106 702
2013
CcCw 5.95 - - - 30147
F34 1.54 175503 329090 2764 10361
AXL 0.47 75711 107625 534 3349
ALG 0.28 30702 32711 383 2523
Average annual
CCW 7.80 752158 - - 44927
F34 1.87 145696 188822 2693 15319
AXL 0.48 66736 89375 724 5178
ALG 0.30 32999 40978 343 2691

Note: CCW pollutant values were estimated using LOADEST
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In order to evaluate the effects of watershed size on SWAT model calibration, the
optimized parameters for each SWAT configuration (CCW, F34, AXL and ALG) were
applied to subsequent configurations. For example, parameters optimized at the CCW
level during the calibration process were later implemented at the F34, AXL and ALG

levels, and their effect on streamflow, nitrogen and phosphorus loss evaluated.
2.4.4 SWAT-CUP Calibration with SUFI-2

The calibration and uncertainty programs for SWAT (SWAT-CUP) developed by
(Abbaspour et al., 2007) were used to aid in the calibration process. SWAT-CUP allows
users to perform calibration, validation, sensitivity analysis (one-at-a-time, and global)
and uncertainty analysis for a SWAT model simulation using either the PSO, SUFI-2,
MCMC, ParaSol or GLUE algorithm. The SUFI-2 algorithm was selected in SWAT-CUP
to optimize nine parameters for monthly streamflow volume, and 10 parameters directly
related to sediment, nitrogen and phosphorus losses (Table 2.8). The selection of
optimization parameters and the parameters’ ranges were based on an extensive literature
review (Arnold et al., 2012; Cibin et al., 2010; Kumar and Merwade, 2009; Larose et al.,
2007; Neitsch, 2002; Parker et al., 2007; White and Chaubey, 2005) and an earlier

sensitivity analysis performed for CCW (Heathman et al., 2009).

SUFI-2 was preferred because it required less iteration to achieve optimization, and it
accounted for model uncertainty as well as uncertainty associated with model parameters
and measured variables (e.g., discharge). It uses a P-factor and an R-factor as the means

to quantify the strength of a calibration/uncertainty analysis. The P-factor, which ranges
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from zero to one, is the percentage of measured data bracketed by the 95% prediction
uncertainty (95PPU), calculated at the 2.5% and 97.5% levels of the cumulative
distribution of output variables obtained through Latin hypercube sampling. The R-factor,
which ranges from zero to infinity, is the average thickness of the 95PPU band divided by
the standard deviation of the measured data. SUFI-2 seeks to bracket most of the
measured data with the smallest possible uncertainty band (Abbaspour, 2012). Therefore,
the P-factor would be equal to one and the R-factor equal to zero if the simulation
matches the observed data exactly. The Kling—-Gupta efficiency (KGE) was used as the
objective function for optimizing SWAT input parameters because it optimizes from a
"multi-objective" perspective (Kling and Gupta, 2009). It balances three major
components of the hydrograph (mean, standard deviation, and timing/shape) with a single

value (Equation 2.13).

KGE=1—/(r—1)2+ (x —1)2 + (8 — 1)2 (2.13)

where r is the linear correlation coefficient between corresponding simulated and
observed values, X is a measure of relative variability in the simulated and observed
values, and f is the bias between the mean simulated and mean observed data. Steps

involved in setting up and executing SWAT-CUP are outlined in (Abbaspour, 2012).



Table 2.8. List of SWAT parameters used for calibration of CCW, F34, AXL and ALG configurations.

Final Value

Parameters Description Initial Value Lower Bound Upper Bound oW 34 AXL G
Parameters governing surface water response
r CN2.mgt SCS runoff curve number (%) -- -20% +20% -13(2) -9(3) -13(3) -14 (3)
v_ESCO.hru Soil evaporation compensation factor 0.95 0.60 0.95 0.61 (5) 0.88 (1) 0.76 (4)  0.66 (4)
r_ SOL_AWC.sol Soil layer available water capacity (%) - -50% +50% -30 (6) +40 (7) -41 (6) -40 (5)
Parameters governing subsurface water response
v.GWQMN.gw Depth of water for return flow to occur 1000 0 1000 805 (10) 295 (2) 667 (10) 608 (7)
v_GW_DLAY.gw Groundwater delay (days) 31.0 10.0 40.0 122 4) 32.0 (8) 183(5) 252(6)
v_GW_REVAP.gw Groundwater "revap" coefficient 0.02 0.02 0.20 0.03 (9) 0.19 (10) 0.09(7) 0.07(9)
v_REVAPMN.gw Depth of water for "revap" to occur 1.0 0.0 300.0 99.0 (7) 144 (4) 99.7 (9) 215 (8)
Parameters governing basin response
v_CH K2.rte Effective hydraulic conductivity (mm/h) 0.0 6.0 150.0 18.5 (1) 86.8 (9) 11.7 (1) 17.3 (1)
v_CH_N2.rte Manning's "n" value for the main channel .014 0.016 0.140 .027 (3) .064 (6) .02 (2) .037(2)
Parameters governing potholes and tile response
*DDRAIN Depth to subsurface drain (mm) 0 50 1450 1000 1000 1000 1000
*GDRAIN Drain tile lag time (h) 0 0 94 48 48 48 48
*TDRAIN Time to drain soil to field capacity (h) 0 0 72 24 24 24 24
Parameters governing sediment response
v_SPCON.bsn Sediment retention in channel .0001 .0001 .0100 .0067 (1) .0057(2) .0035(2) .003(2)
v_SPEXP.bsn Sediment re-entrained in channel routing 1.00 1.00 1.50 1.37 (2) 1.44 (1) 1.28 (1) 1.22 (1)
Parameters governing nitrogen response
v_NPERCO.bsn Nitrogen percolation coefficient 0.2 0.0 1.0 0.7 (1) 0.5(3) 0.6 (4) 0.8 (4)
v_N_UPDIS.bsn Nitrogen uptake distribution parameter 20.0 0.0 100.0 35.6 (4) 46.4 (1) 3343) 3620)
v_CDN.bsn Denitrification exponential rate coefficient 1.4 0.0 3.0 2.8(2) 2.0(2) 2.6 (1) 3.0 (1)
v_CMN.bsn Humus mineralization of active OM .000 .001 .003 .001 (3) .002 (4) .001(2) .001(2)
Parameters governing response
v_PPERCO.bsn percolation coefficient 10.0 10.0 17.5 10.8 (3) 10.7 (4) 10.2 (3) 10.4 (3)
v_PHOSKD.bsn soil partitioning coefficient 175.0 100.0 200.0 144 (2) 199 (1) 153 (2) 169 (2)
v_PSP.bsn sorption coefficient 0.4 0.0 0.7 0.2 (4) 0.5(3) 0.2 (4) 0.54)
v_P UPDIS.bsn uptake distribution parameter 20.0 0.0 100.0 67.2 (1) 48.4 (2) 669 (1) 699 ()

Note: Table includes calibration parameters, their file extensions, units; default values, lower and upper bounds selected during calibration and the final calibration values (sensitivity ranking) for

each watershed.

Parameters were edited in the management files (.mgt); hru files .hru); soil input files (.sol); basin files (.bsn); groundwater files (.gw) and channel input files (.rte).
Parameters were changed by a value within the specified range during (v), as a percentage of their default (r), or manually adjusted (*)

93
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2.4.5 Evaluating Model Performance

In addition to visual inspection of observed and simulated time series values at the
watershed outlets, model performance was also evaluated using KGE, Nash-Sutcliffe
efficiency (NSE; Nash and Sutcliffe, 1970) (Equation 2.15), coefficient of determination
(R*) (Equation 2.14) and percent bias (Pg;4s) (Equation 2.16). The R* value is an
indicator of the strength of the linear relationship between the observed and simulated
values. The NSE simulation coefficient indicates how well the plot of observed versus
simulated values fits the 1:1 line, and can range from - to +1, with +1 being perfect
agreement between the model and observed data (Santhi et al., 2001). The limitation with
R? and NSE is that they are both sensitive to high flows, and therefore P, 45 was used to
measure the average tendency of the simulated data to be larger or smaller than the
measured data. The optimum Ppg;,5 value is zero, where low magnitude values indicate
better simulations. Positive values indicate model underestimation and negative values

indicate model over estimation. The equations are as follows:

5y [BiQmy—0m)(Qs,~0

= — — 2.14
510~ Tm) 2i(05,-Q)° @19)
. —_— .2
NSE = 1 — 2i@m=0i (2.15)
Zi(Qm,j“Qm)
Ppras = 100 * w (2.16)

i=1¥m,j



37

where Q,, is the average measured values during the simulation period, Q.is the average
of the simulated value during the simulation period, Q,, is the measured data on day i, Q;

is the simulated output on day i, and j represents the rank.

Based on model evaluation performance-ratings adopted from Moriasi et al. (2007) and
(Larose et al., 2007; Van Liew and Garbrecht, 2003), streamflow simulations were
considered reasonable if NSE > 0.50, R* > 0.50, and Pg;45 was within +25 percent, while
nitrogen and simulations were considered reasonable if NSE > 0.36, R* > 0.50

and Pg;4s Was within 70 percent.

2.5 Results

SWAT was successfully calibrated for monthly streamflow at the outlets of four
watersheds located in northeastern Indiana (Figures 2.2a through 2.2d). All four
watersheds were calibrated for the period January 2006 to December 2009 and validated
for the period January 2010 to December 2013. SWAT calibration and validation results
of monthly streamflow, soluble N, total N, soluble P and total P are presented in Tables
2.10 through 2.14 for all four-watershed configurations. The initial SWAT simulation
results before calibration are also included in the respective tables for comparison

purposes.
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Figure 2.2. Monthly time series of simulated and observed streamflow for CCW, F34,
AXL and ALG.

2.5.1 Streamflow Calibration and Validation

For the calibration period, WHAT estimated 58%, 61%, 56% and 59% of measured
streamflows at the outlets of CCW, F34, AXL and ALG, respectively, were baseflows. In
comparison, SWAT-simulated streamflow estimated 52%, 53%, 51% and 51% as
baseflows at the respective watershed outlets (Table 2.9). The long-term water balance

simulated by the model was similar to that simulated for the Cedar Creek Watershed in
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prior studies (Kumar and Merwade, 2009; Larose et al., 2007). Thus, the long-term water
balances simulated by the SWAT configurations were considered to generate acceptable
predictions representative of the study areas (Table 2.9).

Table 2.9. Baseflow index (BFI) and average annual water balance components during
the calibration/validation period (2006 to 2013).

Calibration Scales
Water Balance CCW  F34 AXL ALG

Measured BFI (using WHAT)  0.58 0.61 0.56  0.59

Simulated BFI (SWAT) 0.52 053 050 0.1
Precipitation (mm) 946.8 9449 9575 952.1
Surface runoff (mm) 128.0 96.1 1384 1324
Lateral flow (mm) 326 229 28.0 325
Tile flow (mm) 131.8 191.7 1774 179.0
Return flow (mm) 105.7 73.0 66.1 744
Deep aquifer recharge (mm) 5.5 7.1 3.9 4.7
Water yield (mm) 403.5 393.7 406.4 409.2
Evapotranspiration (mm) 5249 489.9 518.8 500.6

Measured monthly streamflow data for the Cedar Creek watershed (USGS Gauge
#04180000) and the ARS CEAP study watersheds (F34, AXL and ALG outlets) were
compared with monthly SWAT simulated streamflow for the calibration period. Plots of
simulated versus observed monthly streamflow at the different calibration scales are
presented in Figures 2.3a through 2.3d. As depicted in Figure 2.3, SWAT was able to
predict monthly streamflow well at all four watershed sizes, with a majority of the data
points falling along the 1:1 line. Regression lines drawn through the data points indicated
that streamflow was best predicted at the CCW, F34 and AXL outlets but slightly

underestimated at the ALG outlet (the smallest of the watersheds). In general, modeled
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streamflow at the respective watershed outlets produced similar results despite the size of

the watershed at which the model was calibrated (Figure 2.3).

A summary of the statistical analyses of monthly streamflow for calibration, validation,
and non-calibrated modes are presented in Table 2.10. Before calibration, there were
acceptable KGE, NSE, R2, and PBIAS values for SWAT simulations at all four
watersheds; however, calibration improved the performance metrics at all four-watershed
outlets, especially in terms of KGE and PBIAS. When SWAT was calibrated at the CCW
scale (KGE = 0.90, NSE = 0.95, R*= 0.96 and PBIAS = -2.6%), NSE, R” and PBIAS
values were within the acceptable ranges (NSE > 0.50, R* > 0.50 and Pg; 45 £25%) when
its optimized parameter values were implemented at the F34, AXL and ALG watershed

scales. During the validation period, all four watersheds also produced acceptable results.

When SWAT was calibrated at the F34 scale (KGE = 0.87, NSE = 0.84, R’= 0.87, and
PBIAS = 11.0%) and its optimized parameters implemented at the CCW, AXL and ALG
watershed scales, NSE, R? and PBIAS values were all within acceptable ranges. During

the validation period, all four-watershed simulations also produced acceptable KGE,

NSE, R? and PBIAS values.

When SWAT was calibrated at the AXL scale (KGE = 0.88, NSE = 0.95, R?=0.96 and
PBIAS = 3.0%) and its optimized parameters implemented in CCW, F34 and ALG

watershed simulations, the NSE, R? and PBIAS values were all within acceptable ranges.
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During the validation period, all four SWAT watershed simulations also produced

acceptable KGE, NSE, R? and PBIAS values.

When calibration was performed at ALG (NSE = 0.65, R*= 0.68 and PBIAS = 16.20%)
and the optimized parameters implemented in CCW, F34 and AXL watershed
simulations, the NSE, R? and PBIAS values for all cases were acceptable (NSE > 0.50,
R?> > 0.50 and Pgj,s is +25%). During the validation period, all four-watershed

simulations produced acceptable KGE, NSE, R? and PBIAS values.
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Figure 2.3. One to one plots of SWAT simulated vs. observed monthly streamflow
(1/2006 to 12/2009) at the CCW, F34, AXL and ALG watershed outlets.



Table 2.10. Streamflow calibration and validation statistical metrics for SWAT performance at CCW, F34, AXL and ALG
watersheds.

CCW Outlet F34 Outlet AXL Outlet ALG Outlet
KGE NSE R®> PBIAS KGE NSE R’> PBIAS KGE NSE R> PBIAS KGE NSE R’> PBIAS

Non-Calibrated Mode (01/2006 to 12/2013)

0.68 0.77 0.90 27.8 0.83 0.83 0.85 -13.2 0.81 090 0.95 15.9 082 0.76 0.77 4.5
Calibration WS Streamflow Calibration (01/2006 to 12/2009)
CcCw 090 0.95 0.96 -2.6 085 0.84 0.86 11.3 094 094 0.94 0.3 086 0.73 0.74 0.5
F34 0.63 0.70 0.90 36.3 0.87 0.84 0.87 11.0 0.81 0.84 0.89 16.8 081 0.74 0.75 5.8
AXL 086 092 0.95 11.6 0.84 0.86 0.87 -8.0 0.88 0.95 0.96 3.0 0.78 0.78 0.79 -3.4
ALG 0.84 091 0.94 14.1 0.87 0.85 0.85 -5.4 0.85 0.92 0.94 7.4 0.75 0.77 0.78 -3.4
Streamflow Validation (01/2010 to 12/2013)
CCwW 0.69 0.82 0.88 -16.6 0.77 0.83 0.85 -15.5 090 091 0091 0.6 0.78 0.72 0.80 14.9
F34 0.68 0.74 0.83 30.3 0.88 0.81 0.82 7.0 0.82 0.86 0.88 15.2 0.76 0.71 0.76 20.1
AXL 0.73 0.80 0.83 -6.1 0.79 0.85 087 -13.0 0.87 091 092 3.1 0.86 0.79 0.80 9.7
ALG 0.78 0.85 0.88 24 0.82 0.78 0.78 -6.9 0.85 0.89 0.90 5.4 0.84 0.78 0.79 8.0

(4%



43

2.5.2 Nitrogen Loss Calibration and Validation

Measured monthly nitrogen loads in the form of nitrate+nitrite (referred to as soluble N)
and total nitrogen (referred to as total N) for the Cedar Creek watershed (USGS Gauge
#04180000) and the ARS CEAP study watersheds (F34, AXL and ALG outlets) were
compared with SWAT simulated monthly soluble N and total N loads. Results showed
that SWAT was successfully calibrated at all four watershed scales for monthly soluble N
load and at F34, AXL and ALG for monthly total N load. No data were available for total
N at the CCW scale, and soluble N data at CCW were only available from 2008 to 2013.
Performance evaluation metrics for calibration, validation and non-calibrated model
results are presented in Tables 2.11 and 2.12 for soluble N and total N, respectively. Plots
of simulated versus observed monthly soluble N loads at the different watershed sizes are
presented in Figures 2.4a through 2.4d, with total N presented in Figures 2.5a through
2.5¢. Here, SWAT was able to predict monthly soluble N and total N loads well at the
different watershed sizes, with a majority of the data points occurring close to the 1:1

line.
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Figure 2.4. One to one plot of SWAT simulated vs. observed monthly NO;+NO; (soluble
N) (1/2006 to 12/2009) at the CCW, F34, AXL and ALG watershed outlets.
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Figure 2.5. One to one plots of SWAT simulated vs. observed monthly total nitrogen
(1/2006 to 12/2009) at the F34, AXL and ALG watershed outlets.

For soluble N, when SWAT was calibrated at the CCW scale (KGE = 0.86, NSE = (.75,

R?= 0.78 and PBIAS = -7.7%), NSE, R? and PBIAS values were all within acceptable

ranges when its optimized parameter values were used in F34, AXL and ALG watershed

simulations. During the validation period, all four watersheds also produced acceptable

KGE, NSE, R%and PBIAS values. Despite R? values above 0.50 and PBIAS lower than

70%, when SWAT was calibrated at the F34 scale (KGE = 0.76, NSE = 0.87, R*= 0.90,

and PBIAS = -21.3%) and its optimized parameters implemented at the CCW, AXL and
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ALG watershed scales, both the KGE and NSE values were below the acceptable limits
in the CCW (KGE = 0.38, NSE = 0.30), AXL (KGE = 0.34, NSE = 0.34), and ALG
(KGE = 0.47, NSE = 0.31) simulations. During the validation period, only F34 and ALG
produced acceptable results. When SWAT was calibrated at the AXL watershed outlet
(KGE = 0.91, NSE = 0.83, R*= 0.85 and PBIAS = -0.1%) and its optimized parameters
implemented at the CCW, F34 and ALG watersheds sizes, NSE, R? and PBIAS values
were all within acceptable ranges. During the validation period, all four-watershed
simulations also produced acceptable KGE, NSE, R* and PBIAS values. When
calibration was performed at the ALG watershed outlet (KGE = 0.80, NSE = 0.65, R*=
0.69 and PBIAS = 9.8%) and the optimized parameters implemented at the CCW, F34
and AXL watershed sizes, NSE, R? and PBIAS values were also all within the acceptable
ranges. During the validation period, all four-watershed simulations also produced

acceptable KGE, NSE, R? and PBIAS values.

For total N, despite reasonable R? values and a PBIAS of 59.4 at the ALG outlet, when
SWAT was calibrated at the F34 watershed outlet (KGE = 0.87, NSE = 0.84, R?=0.87
and PBIAS = 3.9%) and its optimized parameters used in AXL and ALG watershed
simulations, the resulting model performance was unacceptable. KGE and NSE values
were below the acceptable limits for the AXL (KGE = 0.27, NSE = 0.30), and ALG
(KGE = 0.29, NSE = 0.32) simulations. During the validation period, both F34 and ALG
produced acceptable results, whereas AXL produces unacceptable results with KGE =

0.06, NSE = -0.15 and Pg;45 = 72.6%. When SWAT was calibrated at the AXL watershed
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outlet (KGE = 0.83, NSE = 0.77, R* = 0.81 and PBIAS = 12.7%) and its optimized
parameters used in the CCW, F34 and ALG watershed simulations, the NSE, R? and
PBIAS values were all within the acceptable range. During the validation period, all four-
watershed simulations had acceptable KGE, NSE, R? and PBIAS values. When
calibration was performed at the ALG watershed outlet (KGE = 0.83, NSE = 0.70, R*=
0.72 and PBIAS = 8.9%) and the optimized parameters applied in CCW, F34 and AXL
watershed simulations, NSE, R? and PBIAS values were all within the acceptable ranges.
During the validation period, all four-watershed simulations also produced acceptable

KGE, NSE, R? and PBIAS values.



Table 2.11. Soluble N calibration and validation statistical metrics for SWAT model performance at CCW, F34, AXL and ALG
watersheds.

CCW F34 AXL ALG

2 2

KGE NSE R- PBIAS KGE NSE R? PBIAS KGE NSE R? PBIAS KGE NSE R-° PBIAS

Non-Calibrated Mode (01/2006 to 12/2013)

0.61 0.58 0.61 -23.1 -0.92 -3.74 047 1049 043 0.28 0.73 24.0 041 0.29 0.70 39.3
Calibration WS Soluble N Calibration (01/2006 to 12/2009)
CcCw 086 0.75 0.78 -1.7 086 0.89 092 -10.9 090 0.82 0.83 1.4 0.58 0.68 0.81 37.8
F34 0.38 0.30 0.51 50.8 0.76 087 090 -21.3 034 034 0.81 46.6 047 031 0.62 41.0
AXL 0.52 043 0.73 27.9 0.80 0.87 0.93 0.0 091 0.83 0.85 -0.1 0.72 0.62 0.65 20.1
ALG 037 026 0.74 37.4 0.78 0.81 0.89 -2.0 085 0.75 0.79 -3.4 0.80 0.65 0.69 9.8

Soluble N Validation (01/2010 to 12/2013)

CCw 0.68 059 0.78 -24.1 084 092 092 -125 0.65 0.64 0.83 2430 0.81 0.88 0.81 17.0
F34 0.24 -0.68 0.51 21.0 091 0.89 0.90 -3.8 0.04 -0.10 0.81  70.00 0.60 0.87 0.62 26.2
AXL 0.59 0.68 0.73 8.6 0.77 0.86 0.93 4.8 0.60 083 0.85 35.80 0.73 093 0.65 23.0
ALG 0.56 0.52 0.74 13.6 0.89 090 0.89 -5.4 062 056 0.79 2290 091 097 0.69 5.9

ki



Table 2.12. Total N calibration and validation statistical metrics for SWAT model performance at CCW, F34, AXL and ALG
watersheds.

F34 AXL ALG

2

KGE NSE R” PBIAS KGE NSE R? PBIAS KGE NSE R? PBIAS

Non-Calibrated Mode (01/2006 to 12/2013)

-3.79 -24.66 0.15  268.6 -0.97 -392 0.53 109.2 0.56 046 0.71 30.9
Calibration WS Total N Calibration (01/2006 to 12/2009)
F34 0.87 0.84 0.87 3.9 0.27 030 0.82 79.0 0.29 0.30 0.66 59.4
AXL 0.76 0.73 0.82 13.9 0.83 0.77 0.81 12.7 0.75 0.63 0.68 18.2
ALG 0.82 0.82 0.87 7.3 0.77 0.64 0.73 10.9 0.83 0.70 0.72 8.9
Total N Validation (01/2010 to 12/2013)
F34 0.76 0.60 0.87 15.1 0.06 -0.15 0.82 72.6 0.76 0.71 0.76 20.1
AXL 0.80 0.66 0.82 10.8 0.51 049 0.81 30.4 0.86 0.79 0.80 9.7
ALG 0.78 0.68 0.87 -2.1 0.74 0.76 0.73 16.4 0.84 0.78 0.79 8.0

6v
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2.5.3 Phosphorus Loss Calibration and Validation
Measured monthly phosphorus loads in the form of orthophosphate (referred to as soluble
P) and total phosphorus (referred to as total P) for the Cedar Creek watershed (USGS
Gauge #04180000) and the ARS CEAP study watersheds (F34, AXL and ALG outlets)
were compared with SWAT simulated monthly soluble P and total P loads. Results
indicate that SWAT was successfully calibrated at F34, AXL and ALG for monthly
soluble P loads and at all four watersheds for monthly total P loads from January 2006 to
December 2009, and validated for the period January 2010 to December 2013. No data
were available for soluble P for CCW. A summary of the performance evaluation metrics
for calibration, validation and non-calibrated model results are presented in Tables 2.13
and 2.14 for monthly soluble P and total P losses, respectively. Here SWAT predicted
monthly soluble P and total P loads well, with a majority of the data points occurring

close to the 1:1 line (Figures 2.6 and 2.7).
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Figure 2.6. One to one plot of SWAT simulated vs. observed monthly soluble P (1/2006
to 12/2009) at the F34, AXL and ALG watershed outlets.
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Figure 2.7. One to -one plot of SWAT simulated vs. observed monthly total P (1/2006 to
12/2009) at the CCW, F34, AXL and ALG watershed outlets.

Modeled soluble P load at the F34 watershed outlet (Figure 2.6a), AXL watershed outlet

(Figure 2.6b), and ALG watershed outlet (Figure 2.6¢) produced similar results despite

the watershed size at which the model was calibrated, with a few exceptions. When

calibration was performed at the F34 watershed outlet (KGE = 0.85, NSE = 0.81, R*=

0.82, PBIAS = 11.2%) and its optimized parameters applied to the AXL watershed, the

KGE, NSE and PBIAS values were outside the acceptable ranges (KGE = -1.55, NSE = -

5.66, PBIAS = 171.4%). However, when the F34-optimized parameters were applied in
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the ALG watershed simulations, they produced acceptable results (KGE = 0.76, NSE =
0.74, R*= 0.79 and PBIAS = 21.1%). During the validation period, only F34 and ALG

produced acceptable results.

When calibration was performed at the AXL watershed outlet (KGE = 0.94, NSE = 0.95,
R? = 0.95, PBIAS = -5.5%), NSE, R? and PBIAS values for predictions of monthly
soluble P losses were all acceptable at F34 and ALG. Model results were also within

acceptable range during the validation period for all three-watershed simulations.

When calibration was performed at the ALG watershed (KGE = 0.94, NSE = 0.93, R*=
0.93, PBIAS = -3.0%) and the optimized parameters applied in the F34 and AXL
watershed simulations, the performance metrics were unacceptable at F34 where KGE =
0.35 and NSE = 0.31. However, during the validation period, all three-watershed

simulations produced acceptable KGE, NSE, R? and PBIAS values.

For total P, SWAT was able to predict monthly loads well at all four watershed scales,
with a majority of the data points occurring close to the 1:1 line (Figure 2.7). Modeled
total P load at the CCW (Figure 2.7a), F34 (Figure 2.7b), AXL (Figure 2.7¢), and ALG
(Figure 2.7d) watershed outlets produced similar results despite the scale at which the

model was calibrated, with only a few exceptions.

When SWAT was calibrated at the CCW outlet (KGE = 0.86, NSE = 0.84, R’= 0.87,
PBIAS = 9.6%), the NSE, R? and PBIAS values were all within the acceptable ranges
when its optimized parameter values were applied to the four watershed simulations.

During the validation period, the NSE, R” and PBIAS values were also all acceptable.
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When SWAT was calibrated at the F34 watershed outlet (KGE = 0.80, NSE = 0.98, R?=
0.99, PBIAS = -19.4%) and its optimized parameters applied in the CCW, AXL and ALG
watershed simulations, the resulting model performance was acceptable, except at AXL
where KGE = 0.35. During the validation period, all four watersheds produced results
within the acceptable range. When calibration was performed at the AXL watershed
outlet (KGE = 0.91, NSE = 0.97, R?= 0.97, PBIAS = -6.9%), and at the ALG watershed
outlet (KGE = 0.97, NSE = 0.96, R? = 0.96, PBIAS = -2.0%), the KGE, NSE, R* and
PBIAS values were all within the acceptable range for CCW, F34, AXL and ALG
watershed simulations. During the validation period, all four watershed scales also
produced acceptable KGE, NSE, R? and PBIAS values. During the validation period, all

model evaluation statistics were also acceptable.



Table 2.13. Soluble P loss calibration and validation statistical metrics for SWAT performance at CCW, F34, AXL and ALG
watersheds.

F34 AXL ALG

2 2

KGE NSE R” PBIAS KGE NSE R’ PBIAS KGE NSE R-° PBIAS

Non-Calibrated Mode (01/2006 to 12/2013)

-12.66 -128.14 0.22 94.8 -2.80 -15.01 0.68 91.2 023 041 0.86  -53.5
Calibration WS Soluble P Calibration (01/2006 to 12/2009)
F34 0.85 0.81 0.82 11.2 -1.55 566 090 1714 0.76 0.74 0.79 21.1
AXL 0.65 0.69 0.77 31.1 0.94 0.95 0.95 -5.5 0.69 0.78 0.85 -30.2
ALG 0.65 0.61 0.61 55.6 0.69 0.83 0.91 -27.0 094 093 0.93 -3.0
Soluble P Validation (01/2010 to 12/2013)
F34 0.85 092 0.82 -133 0.19 0.39 0.90 71.5 0.76 0.81 0.79 21.9
AXL 0.90 093 0.77 -7.4 0.87 0.96 0.95 -12.9 0.87 085 0.85 -10.4
ALG 0.74 0.84 0.61 13.2 0.75 0.90 0.91 -24.0 0.86 0.87 0.93 10.6

9



Table 2.14. Total phosphorus (total P) loss calibration and validation statistical metrics for SWAT performance at CCW, F34, AXL
and ALG watersheds.

CCW F34 AXL ALG
PBIA KG PBIA KG NS PBI
KGE NSE R? PBIAS KGE NSE R? S E NSE R? S E E R? AS

Non-Calibrated Mode (01/2006 to 12/2013)

29.10 1750 0.45 76.5 1.80 759 036 879 0.69 3.12 046 64.7 087 093 094 -85

Calibration

WS Total P Calibration (01/2006 to 12/2009)

CCwW 086 0.84 0.87 9.6 0.78 091 095 158 0.60 0.69 0.87 56.1 085 094 096 11.6

F34 0.85 0.84 0.88 8.7 0.80 098 099 -194 035 066 086 621 092 096 0.96 7.3

AXL 0.68 0.57 0.74 20.5 0.69 086 0.89 303 091 097 0.97 -6.9 095 095 095 -2.6

ALG 0.65 0.61 0.78 23.0 088 095 095 115 091 093 0.94 -6.8 097 096 096 -2.0
Total P Validation (01/2010 to 12/2013)

CCwW 094 096 0.87 4.1 092 089 095 -1.8 041 055 087 418 086 092 096 10.8

F34 0.88 092 0.88 7.4 089 094 099 -104 041 056 0.86 44.6 0.88 098 096 112

AXL 0.91 092 0.74 8.3 092 091 0.89 1.3 091 093 0.97 -3.9 097 096 095 -22

ALG 0.88 091 0.78 11.7 091 093 095 -8.3 093 091 0.94 5.7 098 099 096 -1.1

9¢
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2.6 Discussion

Calibration processes play an important role in model performance. The use of
autocalibration may generate parameter sets that will result in model outputs displaying
good agreement with observed data but may misrepresent other important processes. As a
result, applying these parameter sets to other areas may yield unsatisfactory results.
Therefore, when considering autocalibration, special care must be taken to select
parameter ranges that are representative of the study areas. Choosing the appropriate
objective function is also another important step to consider during autocalibration. The
use of multi-objective functions that improve multiple aspects of the hydrograph
simultaneously is often recommended when considering autocalibration (White and
Chaubey, 2005; Zhang et al., 2008, 2009). However, most existing autocalibration tools
associated with SWAT do not facilitate the use of multi-objective functions
(simultaneously) and as such, the use of manual calibration to adjust the results of

autocalibration may be useful in obtaining results that are more realistic.

Previous studies (White and Chaubey, 2005; Zhang et al., 2008) have shown that
simultaneous multi-site calibrations of SWAT produced better parameter estimates than
those obtained by optimization at a single monitoring site. However, in most instances
where monitoring data are limited, model calibrations are confined to a single monitoring
site. Moreover, it has been suggested by White and Chaubey (2005) that non-nested or

mutually independent watersheds provide a better format for multi-site calibration than
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nested data sites, such as those used in this study (due to data availability and the study

objective).

The effects of watershed size on SWAT model calibration for streamflow, nitrogen and
phosphorus were evaluated at four watersheds of varying size. The four watersheds
included the Cedar Creek watershed (CCW) located in northeastern Indiana, F34
(approximately 27% of CCW), AXL (approximately 6% of CCW), and ALG
(approximately 3% of CCW). Based on the results presented here, SWAT satisfactorily
simulated streamflow, soluble N, total N, soluble P and total P at the four watershed
scales with slight differences between the scales at which the calibrations were

performed.

Model efficiency evaluations show that streamflow calibration at the smaller AXL and
ALG watershed sizes produced similar KGE, NSE, R? and PBIAS values when compared
to calibrations performed at the larger watershed sizes. While there are very few studies
examining the effects of calibration scale on SWAT model performance, the results
presented agree with Heathman et al. (2007) and Thampi et al. (2010) findings that
SWAT performed adequately despite the size at which calibration was performed. The
notable similarities in both of these studies are that the study watersheds are nested within
each other and have similar physiographic features (such as slope, land use distribution,
soil type) that may result in similar parameterization of the model. Because the CN

method, which was used to estimate surface runoff, is not very sensitive to the size of the
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watershed, the impact of surface runoff contributions to streamflow will not be influenced

significantly by watershed size (Jha et al., 2004).

In terms of nitrogen and phosphorus simulations, results show that calibration does have
a large impact on SWAT model predictions. Despite much improved results at all
watershed sizes due to calibration, when SWAT was calibrated at the larger CCW
watershed, its optimized parameters produced improved soluble N and total P simulations
when applied at the smaller watershed sizes. Optimizing SWAT parameters at the AXL
watershed resulted in much improved predictions of soluble N and total N losses when
applied at the smaller ALG watershed. This was due to the closeness in their average
slope, land use distribution, management practices and other physiographic properties
that resulted in similar values for the calibration parameters. Similarly, calibrating SWAT
at the smaller ALG and AXL watersheds produced improved NSE, R” and PBIAS values
for soluble P and total P when applied to the larger watersheds. The calibrated parameters
for CCW, AXL and ALG were similar in terms of final values (or percent change) and
level of sensitivity (Table 2.8), which is the underlying reason for the different watershed

configurations producing satisfactory results regardless of the optimization scale.

In general, SWAT predictions at the respective watershed outlets produced similar results
despite the scale at which the model was calibrated, with one notable exception. Although
calibration at the F34 outlet was satisfactory for each constituent, when the SWAT
parameters optimized for F34 were applied to the other watershed configurations, the

results were not always satisfactory. This is most likely due to inconsistencies in the F34
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observed dataset used for SWAT calibrations. There were a larger proportion of high flow
events for F34 in comparison to the other three watersheds, and because nitrogen and
phosphorus loads were calculated as a function of streamflow, they too are affected by
any adjustments made during the calibration process. During autocalibration, SWAT
parameters were adjusted to accommodate the higher events (as demonstrated by the
large difference in final calibration values, Table 2.8), which would then overestimate the
various processes when applied to the different watershed configurations. These results
indicate there is greater uncertainty in SWAT calibrations at F34, which may be due to the
characteristics of farmed closed depressions (potholes) within F34, compared to the other
watersheds. The average depth of farmed closed depressions in F34 was much smaller
than that of CCW, AXL and ALG, which would affect the maximum volume of ponded
water in the watershed. These potholes hydrologically modify the landscape and
undermine the assumption of similar physiographic features. The inclusion of potholes
adds to the complexities of SWAT and the model calibration process. Consequently,
optimizing SWAT model parameters at the F34 scale often resulted in over-prediction of
streamflow, nitrogen and phosphorus loss when applied to the CCW, AXL and ALG

watersheds.

The nitrogen and phosphorus loads calculated for the F34 outlet were affected by the
observed flow data, which indirectly influenced the calibration parameters. This was
evident in the parameter sensitivity rankings (Table 2.8) where the most sensitive

nitrogen and phosphorus parameters for F34 were the nitrogen uptake distribution factor
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(N_UPDIS) and the phosphorus soil-partition coefficient (PHOSKD), respectively. While
the most sensitive parameters for CCW were the nitrogen percolation coefficient
(NPERCO) and phosphorus uptake distribution (P_UPDIS), at both the AXL and ALG
watersheds the most sensitive nitrogen and phosphorus parameters were the
Denitrification exponential rate constant (CDN) and P _UPDIS. These differences in
sensitivity between F34 and the other watersheds mean that small changes in a non-
sensitive parameter at F34 may result in big differences when applied at the other scales.
For example, the least sensitive parameter in the simulation of nitrogen at F34 was humus
mineralization of active organic nitrogen (CMN), which was the second most sensitive at
AXL and ALG. The final calibrated CMN value at F34 was twice that of AXL and ALG,
which means that, applying the F34 CMN at AXL and ALG will result in more nitrogen

mineralization and over prediction of soluble N (NO;+NO»).

Additionally, it is worthy to note that a major disadvantage with the NSE and R*
evaluation is that differences between the observed and simulated values are calculated as
squared values, which makes them biased towards high flows. As a result, larger values
in the calibration time series strongly influenced the calibration outcome whereas lower
values were neglected (Legates and McCabe, 1999). As seen in Figures 2.3 through 2.7,
there were more occurrences of higher monthly values in the F34 dataset above the 1:1
line, which could explain the poor statistics for nitrogen calibration at the F34 scale,

despite satisfactory results over the calibration period.
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2.7 Summary and Conclusions

There are several issues to consider in the application of watershed scale hydrologic
modeling, one of which is the influence of watershed size on model calibration
parameters. This is especially true when using the model as an environmental assessment
tool or as a decision-support system for soil and water resource management. The
objective of this study was to investigate the influence that watershed size has on SWAT

calibration for streamflow, nitrogen and phosphorus estimates in agricultural watersheds.

Based on the results presented here, calibrating the model at one watershed size and
applying the optimized parameters at different sizes may produce satisfactory results.
These results are possible in SWAT model simulations because the study watersheds are
nested within each other and have similar physiographic features that resulted in similar
parameterization of SWAT. However, as shown in the optimization performed at F34,
when SWAT parameters vary in sensitivity between watersheds, they are likely to

produce lower KGE and NSE values when applied at different watershed sizes.

Based on the results of this study and the constraint of similar physiographic properties,
the size of the watershed for which SWAT is calibrated tends to have a greater impact on
nitrogen and phosphorus simulations than on streamflow predictions. Calibrating SWAT
at the smaller watershed sizes was successful in reducing the bias between measured data
and SWAT model simulations while maintaining model efficiency. In some instances, the

goodness-of-fit measures used to evaluate model efficiency were improved when the
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model was calibrated at the smaller ALG (20 km?) watershed then applied at the larger

CCW (679 km?) watershed.

The inclusion of pothole simulation in SWAT has added more complexity to the
calibration process. More study is needed that will help to streamline the pothole
representation in SWAT and to identify the proportion of tile flow that is directly
attributed to tile inlets versus contributions from the water table, and direct interception
of infiltrate. This study has demonstrated that with proper calibration of SWAT, it is
possible to transfer optimized parameters from one watershed size to another, however,
more research is need to determine under what condition (or sets of conditions) this will

be applicable.
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CHAPTER 3. QUANTIFYING THE EFFECTS OF FUTURE CLIMATE
CONDITIONS ON RUNOFF, SEDIMENT AND CHEMICAL LOSSES AT
DIFFERENT WATERSHED SIZES

3.1 Synopsis

Assessing the sensitivity of agricultural watersheds to possible changes in future climate
is imperative when developing appropriate management practices. Agricultural
management practices are often assessed at the watershed scale and therefore,
understanding the influence of climate change at different watershed sizes will provide
insight into the effectiveness of watershed management strategies under future climate
conditions, especially in highly agricultural watersheds with modified hydrologic
landscapes. In this study, the Soil and Water Assessment Tool (SWAT) and downscaled
weather data generated using the MarkSim weather file generator were used to evaluate
the potential impact of climate change on surface flow, tile flow, sediment and chemical
losses in the hydrologically modified Cedar Creek, F34, AXL and ALG watersheds

located in northeastern Indiana.

There was no clear evidence to suggest watershed size will have an impact on the
simulation of climate change effects. Results of this study indicate that surface flow will
decrease significantly towards the end of this century (ranging from 9% in CCW to 22%

in ALG), while subsurface tile flow will increase significantly (ranging from 20% in
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CCW to 26% in AXL). The percentage increases in predicted sediment loss at the CCW,
AXL and ALG watersheds were significant at a = 0.05, though the magnitudes of overall
sediment loss were low, especially in the CEAP monitored watersheds (F34, AXL and
ALG) in which several best management practices are implemented. Differences in
predicted atrazine, soluble N, total N, and total P losses between the baseline period and
the end of the century were not significant for any of the watersheds, while increased

soluble P losses were only significant for the larger CCW and F34 watersheds.
3.2 Introduction

Changes in future climate conditions are expected to have important effects on national
and regional hydrologic conditions and subsequently affect runoff volume and chemical
losses at the watershed scale (Jeppesen et al., 2009; Pfister et al., 2004; Sun et al., 2000).
Increasing greenhouse gas concentrations in the atmosphere are expected to influence the
pattern and amounts of precipitation, increase Earth’s average temperature and reduce ice
and snow cover (USEPA, 2014). The rate at which greenhouse gas concentrations
continue to increase, as well as the degree to which climate features (e.g., precipitation,
temperature) respond to these increases will determine the rate and magnitude of future

climate change impacts.

The Intergovernmental Panel on Climate Change (IPCC) assesses future climate change
and publishes a series of comprehensive ‘Assessment Reports’ based on different
emission scenarios that describe possible future population growth and socio-economic

developments and are backed by relevant scientific and technical information (IPCC,
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2014). These emission scenarios are considerably different in terms of projected changes

in precipitation and temperature for different regions (Jones and Thornton, 2013).

In the 2014 IPCC assessment report (Fifth Assessment Report), possible future
socioeconomic pathways, climate change and its risks, and the SRES scenarios were
assessed and a special report published on four possible representative concentration
pathways (RCPs). These scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) represent the
radiative forcing values of 2.6 - 8.5 W/m? for the period extending to the year 2100
(Moss et al. 2010; Taylor et al. 2012). RCP2.6 refers to a peak in radiative forcing at 2.6
W/m? before 2100 followed by a gradual decline. RCP4.5 represents stabilization without
an overshoot pathway to 4.5 W/m? with stabilization occurring after 2100. RCP6.0
represents a stabilization (without overshoot) pathway to 6.0 W/m? after 2100, while
RCP8.5 represents a rising radiative forcing pathway leading to 8.5 W/m? in 2100 (IPCC,

2014).

Several stochastic weather file generating tools (e.g. MarkSim and LARS-WG) have
been developed and used to produce downscaled climate information from general
circulation models (GCM) results for use in climate change studies. These climate
projections are usually based on one or more representative concentration pathways.
Climate files generated by MarkSim have been applied successfully in several climate
change studies on agricultural watersheds, globally (Bharati et al., 2014; Lobell and

Burke, 2010; Rao et al., 2015; Thornton et al., 2010).
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Researchers have simulated the impacts of climate change scenarios on streamflow in
parts of the United States and India, using the Soil and Watershed Assessment Tool
(SWAT) (Ficklin et al., 2009; Gosain et al., 2006; Narsimlu et al., 2013), and concluded
that there will be significant changes in annual average streamflow for both wet and dry
seasons. Changes in precipitation and temperature may also have significant effects on
water yield, evapotranspiration, irrigation water use, as well as plant growth patterns
(Ficklin et al., 2009). While climate change may have some positive effects in the
Midwest United States such as increased water supply in certain areas and longer
growing season (Southworth et al., 2002); the negative impacts of future climate change
are expected to outweigh the positive impacts (USEPA, 2014). The implications on future
water quality may be severe; therefore, a more in-depth assessment is required, especially

in specific agricultural watersheds of interest, such as those in the Lake Erie Basin.

Lake Erie is smallest of the five Great Lakes (by volume) located in North America, and
is the most heavily polluted from agricultural activities. Significant algae growth during
the early 1970s led to poor water quality conditions in Lake Erie. The overabundance of
algae, which was primarily due to excess loading of nutrients, such as phosphorus, into
the lake, resulted in anoxic conditions that subsequently lead to large fish kills. The Great
Lakes Water Quality Agreement (GLWQA) of 1972 established guidelines for pollutants
using the best available technology and knowledge, which provides the impetus for
reducing phosphorus levels in Lake Erie. Limits were set to reduce the amount of

phosphorus entering the lake gradually (P concentration limit of 1.0 mg L™). To achieve
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these limits, the Great Lakes states passed a ban against detergents that use phosphorus,
while program guidelines were developed to improve the treatment of human sewage. As
point sources of phosphorus entering the lake reduced from more than 15 000 Mg P yr™*
in 1972 to less than 3000 Mg P yr in 1982 (Dolan, 1993), water quality improved.
However, nonpoint sources of (and other nutrients) from fertilizer application continue to
enter the lake and dominate total loading to Lake Erie (approximately 2000 Mg yr™
above the GLWQA limit) by the early 1980s (Baker and Richards, 2002). A non-point
source reduction (mainly through agriculture loading) of 1700 Mg P yr' was assigned to
the United States (USEPA, 2014), of which 1390 Mg P yr'' was subsequently assigned to

Ohio.

Conservation practices such as conservation tillage and integrated crop management
operations have been shown to reduce phosphorus loading to the lake during the 1980s.
Approximately 75 to 80% of total loading was particulate P associated with total
suspended sediment (TSS) transport therefore, plans for reducing nonpoint sources of P
focused exclusively on reductions associated with various erosion control programs
(Baker and Richards, 2002). However, P fertilizer application was also reduced
substantially during the 1980°s (Richards et al., 2002). Results of the annual monitoring
program carried out by the USEPA's Great Lakes National Program Office found that an
upward trend in total P began in the 1990s continued to the present day. The ongoing
effects of excessive nutrient loading include seasonal depleted oxygen conditions

intensifying in the central basin; Blue-green algal blooms are occurring regularly in the
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western basin. Fouling of nearshore areas of the eastern basin; and loading of soluble
reactive phosphorus is increasing in the Sandusky and Maumee rivers and may be

increasing in other Lake Erie tributaries as well (Lake Erie LAMPs. 2011).

This study seeks to examine the effects of future climate conditions on runoff, sediment,
pesticide, and nutrient losses from four watersheds within the Lake Erie Basin to
determine whether climate change will cause the problems occurring in Lake Erie to
become better or worse. SWAT was the tool of choice for undertaking such an extensive
evaluation because it is a comprehensive model that provides the capability to simulate
watershed hydrology, plant growth, surface and subsurface water quality as well as
climate change impacts (Arnold et al., 1998). Future climate data used to parameterize
SWAT were projected using the MarkSim DSSAT weather file generator (the web

application version) (Jones and Thornton, 2000, 2013).

3.2.1 SWAT Model Description

The Agricultural Research Service (ARS) developed SWAT (Armold et al., 1998) as an
operational model that incorporates processes simulated by several different computer
programs into one comprehensive system to assist water resource managers in assessing
water supplies and nonpoint source pollution in large river basins (Arnold and Fohrer,
2005). The impact of land management on water, sediment, nutrients, and pesticides
leaving the edge of a field is simulated using algorithms from the Chemicals, Runoff and

Erosion from Agricultural Management Systems (CREAMS) model (Knisel, 1980). The
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CREAMS model was modified to include pesticide groundwater loadings (GLEAMS)
(Leonard et al., 1987), and to simulate the impact of erosion on crop production (EPIC)
(Williams et al., 1983). The development of several other hydrologic models in the mid to
late 1980s influenced the capabilities of SWAT to simulate hydrology and water quality
of complex watersheds with varying soils, land use and management (Arnold and Fohrer,
2005). One of the primary considerations in SWAT development was its ability to
simulate climate and land management impacts on water quality. It is computationally
efficient; allows considerable spatial detail; requires readily available inputs; operates on
a continuous time step; is capable of simulating land-management scenarios; and can

capture management effects on large river basins through long-term simulations (Arnold

and Fohrer, 2005).

The climatic conditions of a watershed (rainfall, maximum and minimum temperature,
relative humidity, solar radiation and wind speed) provide information needed to control
the water balance that drives the different components of the hydrologic cycle, which is
the driving force behind all other processes simulated by SWAT. SWAT is equipped with
a weather generator capable of generating climate data for each, however, climate data
may also be input from records of measured or predicted values. SWAT is capable of
simulating hydrologic and subsequent processes for the entire period of input daily
climate, which provides the capability to perform simulations for both historic and future

climate conditions.
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For this study, SWAT model configurations were developed and calibrated specifically to
simulate surface flow, tile flow, sediment, atrazine, soluble N, total N, soluble P and total
P losses in the CCW, F34, AXL and ALG watersheds under a baseline and multiple future

climate conditions.

3.2.2 MarkSim Weather File Generator Description

Due to the uncertainty of future climatic conditions, the choice of general circulation
models (GCM) and RCP scenarios can influence the projected weather data. In addition
to differences between emissions scenarios used to drive the climate models, the GCMs
themselves vary greatly in consistency for regional climate projections (IPCC, 2007).
Therefore, the MarkSim Decision Support System for Agrotechnology Transfer
(DSSAT), a web-based version of the MarkSim application (Jones and Thornton, 2000),
operating on a Google Earth platform was designed to downscale results from multiple
climate models to generate global averages of surface warming (relative to 1980-1999)
for the four RCP scenarios. MarkSim DSSAT allows selection of one of the four RCP
scenarios, and one of 17 climate models, or their average for climate downscaling (Jones,

2014).

During data processing, results from the GCMs were obtained for five time slices (i.e.
1991-2010, 2021-2040, 2041-2060, 2061-2080 and 2081-2100) for average daily
precipitation, daily maximum and minimum air temperatures and solar radiation that

were projected from their original resolution to 0.5° latitude-longitude. The absolute
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changes (anomalies) in daily rainfall, mean daily maximum and minimum temperature
were calculated for each time slice relative to the model calibration period (1961-1990).
These anomalies were then downscaled to a higher resolution and used to generate daily
weather data that are characteristic of future climatology, using a stochastic weather

generator (Jones and Thornton, 1993).

Though MarkSim does not explicitly account for uncertainties in projected climate data,
it was calibrated using data from 10,000 stations worldwide (WorldClim), with most
stations having 15-20 years of historical daily data and some having up to 100 years of
historical data. During calibration, 200 century climate outputs from the GCMs were
used to fit WorldClim data through Markov Chain regression (Jones and Thornton, 2013).
The regression equations developed were then applied to 21% century output from GCMs
to create downscaled future climate data. Evaluations of the MarkSim weather file
generator by a few researchers have produced mixed results. MarkSim outputs are said to
have high inter-annual variability and long chains of wet days (Hartkamp et al., 2003;
Mavromatis and Hansen, 2001), however, due to its reduced data requirement and certain
theoretical assumptions, the MarkSim weather file generator is suitable for application in
developing countries (Hartkamp et al., 2003). The noted advantages of MarkSim include
its global applicability, its minimal input requirements and its applicability in locations
that often have no available observed climate data (Jones and Thornton, 2000; Thornton

et al., 2010; Trotochaud et al., 2016).
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33 Objective

This study seeks to examine the effects of future climate conditions on runoff, sediment,
pesticide, and nutrient losses from four watersheds within the St. Joseph River Watershed
(SJRW). SWAT was selected for undertaking such an extensive evaluation because it is a
comprehensive model that provides the capability to simulate watershed hydrology, plant
growth, surface and subsurface water quality as well as climate change impacts (Arnold
et al., 1998). Future climate data used to parameterize SWAT were projected using the

MarkSim DSSAT weather file generator (the web application version).

3.4  Methodology

3.4.1 Study Area Description

Lake Erie is having critical problems with algal blooms resulting from nitrogen and
phosphorus loadings to the lake. For this reason, the Cedar Creek Watershed (CCW),
F34, AXL and ALG watersheds, which are part of the Lake Erie Basin, were chosen to
evaluate whether climate change will have a significant impact on future nitrogen and
phosphorus loadings to Lake Erie. CCW is a 679 km? catchment that intersects Allen,
DeKalb and Noble Counties in northeastern Indiana (85°19'28.101" to 84°54'12.364"W
and 41°11'47.494" to 41°32'8.776"N) (Figure 3.1). Cedar Creek is the largest tributary to
the St. Joseph River, which joins the St. Mary’s River near Ft. Wayne, Indiana to form the
Maumee River. The Maumee River flows into the Maumee Bay of Lake Erie in Toledo,

Ohio. CCW is predominantly an agricultural watershed (68%) with approximately 15%



74

forest and 10% urban (Figure 3.1). The majority of soils in the watershed are comprised
of the Eel-Martinsville-Genesee (deep, moderately well drained and medium to
moderately fine-textured soils) and Morley-Blount associations (moderately to poorly
drained soils with nearly level to deep medium-textured soils). Tile drainage systems are
used to drain water from many of these soils into managed drainage ditches, which
resulted in alteration of the watershed hydrology and the transport of pesticide and

nutrients across the landscape (Pappas and Smith, 2007; Smith et al., 2008).

CCW is the largest of four watersheds analyzed in this study. The three remaining
watersheds (F34 = 182.5 km?, AXL = 41.5 km” and ALG =19.7 km?) are nested within
the upper Cedar Creek and share similar physiographic features to that of Cedar Creek.
Average annual precipitation in the watersheds is approximately 950 mm. The average
annual minimum and maximum temperatures in the watersheds are approximately 4°C

and 16°C respectively.
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Figure 3.1. Location map of the study areas (CCW, F34, AXL and ALG).

3.4.2 Projecting Future Climate Conditions using MarkSim

For this study, the MarkSim DSSAT weather file generator was used to create and
download downscaled climate projections from the IPCC Fifth Assessment Report

(rainfall, maximum and minimum temperature, and solar radiation) at the Garrett weather
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station (within the Cedar Creek watershed) for the period 2020 to 2099. These climate
projections represent an ensemble mean of the 17 General Circulation Models (GCM)
from the Coupled Model Intercomparison Project Phase 5 (CMIPS5) simulated under the
RCP 6.0 scenario (intermediate when compared to RCP 2.6, RCP 4.5 and RCP 8.5

pathways).

Ninety-nine (99) replicates of climate data were generated for each decade centered at the
fifth year in each decade (i.e. 99 possibilities for 2020-2030, centered at 2025), and for
the WorldClim baseline period (1961-1990) centered at 1975. The raw output from
MarkSim, in the form of daily data, was strung together, end to end, to create a 99-year
dataset representing each decade, using a Microsoft Excel macro (Trotochaud et al.,
2016). The macro was used to reformat MarkSim outputs into a format compatible for
ArcSWAT (version 2012 10.5a). Baseline data used in the projections are from 1961—
1990, while simulation of future climate is from the 2020s through the 2090s, the time

horizons for which water management decisions have to be made.

3.4.3 SWAT model setup
The ArcSWAT version 2012.10.5a interface was used to develop independent SWAT
model configurations for each of the four watersheds (CCW, F34, AXL and ALG) and to
expedite SWAT model input and output display. Descriptions of the data used during the
model setup, calibration and validation periods are presented in Table 3.1. To obtain
suitable flowpaths, stream delineation from the National Hydrograph Dataset (NHD) was

used to burn in the location of the streams in a 10-m Digital Elevation Model (DEM)
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obtained from USGS at a map scale of 1:24,000. In the watershed delineation process, a
catchment outlet and a critical source area (CSA) were specified. The outlet point is used
to determine the extent of the watershed area. The CSA (a percentage of the total
watershed area) is used to specify the minimum upstream drainage area for a channel to

occur, hence, determining the total number of subbasins that will be generated.

Table 3.1. Model input data information.

Data Type Source Description
DEM 10-m Resolution, Digital Elevation Model
viewer.nationalmap.gov/viewer (USGS 2011)
Soils Soil Survey Geographic Database (SSURGO)
soildatamart.nrcs.usda.gov/ (USDA-NRCS 2011)
Land use National Agricultural Statistics Service (USDA-
nassgeodata.gmu.edu/CropScape =~ NASS 2011)
. National Hydrograph Dataset (NHD) (USGS
Hydrographic nhd.usgs.gov/data.html 2011) YR
ARS CEAP Water Quality Daily precipitation, mgx.and min daily .
Weather temperature, solar radiation, wind, relative
Assessment Program .
humidity
NOAA-NCDC: Daily precipitation, max and min daily
Weather
ncdc.noaa.gov/data-access/ temperature
Crop ARS CEAP watershed survey, Tillage (.)perati.ons, fertiliz;r and he.rbicide
Management DeKalb and Allen County applications, time of planting and time of
SWCDs harvesting
Water Quality St. Joseph River Watershed Streamflow, bi-weekly pesticide and nutrient
Initiative concentration (TP, TN, NO2+NO3)
Water Quality ARS CEAP Water Quality Streamflow, daily pesticide and nutrient

Assessment Program

concentration (TP, PO4, TN, NO2+NO3)

The Soil Survey Geographic Database (SSURGO) spatial data at a map scale of 1:12,000
and the USDA National Agricultural Statistics Service (USDA-NASS, 2009) Indiana
Cropland Layer were used to create SWAT hydrologic response units (HRUs). HRUs are
the smallest modeling units of SWAT, and are created for each overlapping unique

combination of land use and soil type for each subbasin fixed threshold value. For this
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study, a CSA of 5% was used to delineate subbasins for all four watersheds. A threshold
area of 0% was used to capture every possible land use and soil type combination. The
disadvantage of using a 0% threshold area is that it increases simulation time
significantly, but it was necessary in order to facilitate the inclusion of closed depressions
scattered through the watersheds. Closed depressions (potholes) occur throughout much
of the Midwest because of glaciation and can range from a few square meters to several
square kilometers. These potholes are often drained through surface tile inlets to increase
productivity in croplands, therefore modifying the watershed hydrology. Subsurface tiles
were assumed for 100 percent of cropped area with 20-meter spacing at a depth of one

meter.

SWAT management files were created for F34, AXL and ALG based on area-specific land
management data collected by the ARS-NSERL through the CEAP program.
Management files for CCW and portions of F34 were created using land management
data from the DeKalb and Allen County Soil and Water Conservation Districts (SWCDs),
and represented countywide averages of current management practices occurring in the
watersheds. Conservation tillage has been widely adopted in all of AXL and ALG, and
much of CCW and F34 watersheds. In DeKalb County, 34% of all corn and 77% of all
soybeans planted in 2012 were under a no-till system or mulch-till system (DeKalb
SWCD, 2014); therefore, both no-till and conventional tillage were used as input in the
SWAT management file. In cropland classified as corn or soybeans, a two-year rotation

system was setup in the management file (corn/soybean or soybean/corn), but in areas
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where wheat is grown, the management files were constructed with a three-year crop
rotation (corn/soybeans/wheat). The management scheme includes yearly tillage and

nutrient application rate, pesticide application rate, and planting and harvesting dates

(Tables 3.2 and 3.3).

Downscaled climate data used in this study (precipitation, temperature and solar
radiation) were generated using the web-based MarkSim DSSAT weather file generator
as described above. Water quality and streamflow data for Cedar Creek were obtained
from the USGS National Water Quality Assessment Program (NAWQA) water
quality/streamflow gauge station located near Cedarville, Allen County. Water quality and
streamflow data at the F34, AXL and ALG outlets were obtained from the Agricultural
Research Service (ARS) National Soil Erosion Research Laboratory (NSERL), which has

been monitoring the various sites from as early as 2002.

Table 3.2. Management operations for land in corn/soybeans rotation.

Crop Date Management Operation Rate
22-Apr  Nitrogen Application (as Anhydrous Ammonia) 176.0 kg/ha
22-Apr  (P,Os) Application (as DAP/MAP) 54.0 kg/ha

Corn 22-Apr  Pesticide Application (as Atrazine) 2.2 kg/ha

6-May  Tillage, Offset disk (60% mixing)
6-May  Planting - row planter, double disk openers
10-Oct  Harvest

10-May  (P,0Os) Application (as DAP/MAP) 40.0 kg/ha
24-May No-Tillage planting- Drill
Soybeans
7-Oct  Harvest
20-Oct  Tillage, chisel (30% mixing)
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Table 3.3. Management operations for land in winter wheat production (following
corn/soybeans rotation in Table 3.2).

Crop Date Management Operation Rate

23-Oct  (P20s5) Application (as DAP) 45.0 kg/ha
25-Oct Tillage, disk (60% mixing)

Wheat  25-Oct  Planting — Drill, double disk openers
1-Mar  Nitrogen Application (as Urea) 75.0 kg/ha
1-Jul Harvest

3.4.4 SWAT model calibration and validation

Each of the four SWAT model configurations was calibrated and validated independently
on a monthly time step for streamflow, NO3+NQO, (referred to as soluble N from here on),
total nitrogen (total N), orthophosphate (soluble P), and total (total P) losses. The model
calibration period was from January 2006 to December 2009, and validation from
January 2010 to December 2013. Calibration was necessary to develop better parameters
sets for the model based on physically observed conditions in the watersheds, hence

minimizing prediction uncertainty.

Climate data such as daily precipitation, maximum and minimum air temperatures, solar
radiation, relative humidity, and wind speed that were used for the SWAT calibration and
validation period were obtained from eight CEAP weather stations located in the upper
Cedar Creek region for the period 2001 to 2013. Daily precipitation and maximum and
minimum air temperatures were also obtained from the National Climate Data Center
(Diamond et al., 2013) for the Garrett and Waterloo stations located within CCW, with

records from 1989 to 2013.
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Model parameters for all four-watershed configurations were calibrated using the SWAT-
CUP autocalibration tool. Manual calibration was also used to improve the results of
autocalibration based on best professional judgment (Arnold et al., 2012). During manual
calibration, adjustments were made only to the most sensitive parameters while ensuring
that the parameter values remained within an acceptable range. Examples of monthly
observed and simulated time series for streamflow, soluble N, total N, soluble P and total
P are presented in Figure 3.2. In addition to visual inspection, when comparing observed
and simulated values at the watershed outlets, the Kling-Gupta efficiency (KGE), Nash-
Sutcliffe efficiency (NSE), coefficient of determination (Rz) and percent bias (PBIAS)
were also used to evaluate model performance. The values calculated for the calibration
and validation periods were all within the acceptable range (KGE > 0.5, NSE > 0.50, R’
> 0.50, PBIAS £25%) (Larose et al., 2007; Moriasi et al., 2007; Van Liew and Garbrecht,

2003).
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Figure 3.2. Observed and simulated monthly flow, soluble N, total N, soluble P and total
P at AXL including the R%, NSE, KGE and PBIAS values for the calibration/validation
period.

Following satisfactory model calibration and validation, SWAT was run with climate data
from the MarkSim weather generator for 1961-1990 (baseline), 2020-2029, 2030-2039,
3040-2049, 2050-2059, 2060-2069, 2070-2079, 2089-2089, and 2090-2099. The impact

of climate change on runoff, sediment, atrazine, nitrogen, and phosphorus losses was

assessed at four watershed sizes by comparing the baseline with the projected outputs.
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3.5 Results

3.5.1 Characteristics of the baseline and future climate

Average monthly mean precipitation, maximum and minimum temperature for the
baseline climate (1961-90) and future climate projections were compared to measured
data obtained from a nearby weather station (GHCND:USC00120334) in Auburn,
Indiana for the period 1961-90 to determine whether MarkSim was predicting climate
representative of the region. Except for the months of June and July, the monthly mean
precipitation for the MarkSim baseline and the observed precipitation were not
significantly different, with p-value = 0.6043 at a =0.05. The average observed
precipitation for June is approximately 10 mm larger than the baseline precipitation while
the average observed precipitation for July is approximately 10 mm less than the

MarkSim baseline precipitation.

The average monthly maximum and minimum temperatures for the MarkSim baseline
were also not significantly different from the observed monthly average maximum and
minimum temperatures (p-value = 0.1288 and 0.1729, respectively). Figure 3.3 shows the
monthly variations in precipitation, maximum and minimum temperature for observed,
baseline and projected future climate. Most precipitation occurs in the watershed from
April to June, and the dry season extends from November to February. Bias correction is
often encouraged when working with projected future climate due to the uncertainties in
General Circulation Models (GCM). However, because this study focused on average

annual outputs from SWAT and there was no significant difference between the MarkSim
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simulated baseline climate and the observed climate data (for the 10 months excluding

June and July), a bias correction was not performed.

Precipitation (mm)

0

MinimumTemperature ("C) Maximum Temperature (°C)

120

| —l— Observed — @ -1961-1990- -A - 2020s — - 2050s —-@--2090s

100 —
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Figure 3.3. Meteorological data measured at the Auburn weather station, Indiana (1961-
90) compared to meteorological data projected using the MarkSim weather file generator
(1961-90, 1920s, 1950s and 1990s); mean monthly (a) precipitation, (b) maximum
temperature and ¢) minimum temperature.
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The simulated average daily solar radiation was projected to increase by approximately
2.4%, with respect to baseline climate. The simulated average annual minimum and
maximum daily temperature for the baseline period were 3.6 °C and 15.0 °C, respectively,
which are approximately 0.5 and 0.2 °C less than the average annual lows and highs,
respectively, measured at the Auburn weather station. Based on the SWAT simulation
design, model simulations under baseline climate were expected to predict reasonable
hydrological results representative of the period 1961-90. Average annual maximum and
minimum daily temperature were projected to increase 3.9 and 4.0 °C, respectively, to the
end of the century. Other studies (Wuebbles and Hayhoe, 2004; USGCRP, 2009; Winkler
et al., 2012; Pryor et al., 2014) of future climate change in the Midwest suggest that
temperature during winter will increase 3 to 7 °C while summer temperatures will

increase 4 to 11 °C over the Great Lakes area by the end of this century.

Average annual precipitation generated by MarkSim during the baseline 30-year period
(relative to the location of the Auburn weather station) was 937 mm, approximately 13
mm less than the observed precipitation measured at the Auburn weather station. With
respect to future climate, average annual precipitation was projected to increase gradually
from 937 mm in the baseline period to approximately 1016 mm (8.5%) by the end of this
century. Similar to other climate change studies in the Midwest (Pryor et al., 2014),
spring and summer precipitation are expected to increase by approximately 9% and 8%,
respectively. Based on previous studies (USGCRP, 2009; Winkler et al., 2012; Pryor et

al., 2014), projected precipitation in the Midwest is likely to fall more frequently in heavy
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downpours with longer dry periods between each heavy rainfall event. Climate
projections obtained using the MarkSim weather file generator suggest, however, that the
majority of precipitation will occur in smaller storm events, which could potentially
lessen the impact of changes in precipitation to soil erosion and surface runoff. Figure 3.4
shows the distribution for precipitation as projected by MarkSim for three individual
GCMs (MIROCS, IPSL_ CMSA_MR and HadGEM2 EM) and the ensemble mean of 17
GCMs from the CMIPS model outputs. As presented in Figure 3.4, most precipitation
occurs in the range 5.0 to 10.0 mm. The IPSL_ CM5A MR, HadGEM2 EM and the
ensemble mean show precipitation in the range 0.01 to 30.0 mm is increasing while
precipitation in the range 40.0 to 200.0 mm is decreasing from the 2020s to the end of the
century. The MIROCS, however, showed greater increase during the mid-century period
for the 0.01 to 30.0 mm range. MIROCS also shows that precipitation in the range 40.0 to
200.0 mm will increase between the mid-century period and the end of the century.
Figure 3.4 shows that the choice of GCM will have implications on projected
precipitation and consequently surface runoff, erosion and sediment loss. Therefore,

caution is required when comparing results from climate change studies.



I 2020s
I 2040s
I 2060s
[ 2090s

1600 MIROC 5

1400

—~ 1200

o
o
t=]

Rainfall total (mm
[+2] o] >
8 8

N
o
S

N
o
<]

Rainfall event (mm)

/I 2020s
HadGEM2_EM i ssecs

I 2090s

1400

<
N
o
o

Rainfall total (mm
©
8

600

OIS SIS I I S S I SIS SIS I
TSRS EPPESLSSSES
STSTSTSTITTSTSTSTSTSSsTI S
TS ESECEEENTS S
NN

Rainfall event (mm)

87

I 2020s
B 2040s
Il 2060s
B 2090s

0 IPSL CM5A MR

mm

= 1000

Rainfall tota

Rainfall event (mm)

\- 2020s |
"l 2040s |

Ensemble mean Il 2060s|
I 2090s |

600

Rainfall total (mm)

400

200

Rainfall event (mm)

Figure 3.4. Distribution of rainfall based on MarkSim climate projections (2020s, 2040s,

2060s and 2090s).

Another factor affecting the outcome of climate change studies is the downscaling

approach. Climate projections obtained from GCMs are often at coarse resolutions and

require downscaling to a finer resolution in order to capture the changes at the regional

scale (Wuebbles and Hayhoe, 2004). A common downscaling approach used in climate
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change studies in the Midwest uses an empirical statistical technique that maps the
probability density functions for modeled monthly and daily precipitation and
temperature for the climatological period (1961— 1990) onto those of gridded historical
observed data, so the mean and variability of both monthly and daily observations are
reproduced by the climate model outputs. In a study of climate change in the Midwest
(Wuebbles and Hayhoe, 2004), monthly GCM temperature and precipitation fields (at 2.0
to 2.5 degrees) were statistically downscaled to daily values across the entire Midwest
region with a resolution of 1/8 degrees. The resulting projections of future precipitation
indicate that heavy downpours are likely to occur, primarily in winter and spring months,

which may lead to increased runoff and erosion (USEPA, 2014).

Instead of statistical downscaling, MarkSim wuses a combination of stochastic
downscaling and weather typing on top of a simple interpolation method (Jones and
Thornton, 2013). MarkSim first interpolates the results of each GCM spatially using
bicubic interpolation of the 16 points closest on a 1-degree grid. It then performs
stochastic downscaling by fitting a third order Markov model to the GCM output and
uses it to generate weather data for the site indicated. The coefficients for the third order
Markov rainfall generator is calculated from predetermined clusters (720 classes) of
weather, worldwide (weather typing). Each weather class defines a set of regression
equations that MarkSim uses to determine the coefficients for the modelling process.
When a climate changes, such that it no longer applies to the original class, the whole

regression structure changes so that changing climate will be modelled by the one most
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like it in the real world (Jones and Thornton, 2013). This downscaling approach coupled
with the RCP 6.0 scenario, as used in this study, produced climate projections suggesting

that more precipitation will likely occur in smaller storm events.

The effect of changes in atmospheric carbon dioxide (CO;) concentrations on SWAT
model simulations should be small (Wang et al., 2016) and therefore, was not accounted
for in this study. Hence, all changes in watershed responses were due to changes in
precipitation, temperature and solar radiation. Changes in average annual climate to the
end of this century affect watershed hydrology and consequently affect runoff, sediment
and nutrient losses in the four highly agricultural watersheds evaluated in this study. The
average annual metrics (rainfall, surface flow, tile flow, sediment, atrazine, soluble N,
total N, and soluble P and total P losses) for the CCW, F34, AXL and ALG simulations

are summarized in Table 3.4 and depicted in Figure 3.5 and Figure 3.6.
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Table 3.4. Average annual metrics (rainfall, surface flow, tile flow, sediment, atrazine,
soluble N, total N, and soluble P and total P losses) under baseline and future climate.

Base 2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s p-value

Precipitation (mm
yrh 937 955 963 980 978 998 1013 1006 1016 0.002

CCW  80.7 78.6 78.7 79.8 78.5 77.8 772 75.0 73.5 0.037
Surface flow (mm F34 78.1 75.8 73.0 74.0 72.3 72.6 69.7 66.4 64.2 0.000
yr'h) AXL 68.0 64.1 64.0 64.5 63.5 63.2 63.2 60.3 58.8 0.005
ALG 410 354 353 35.6 35.0 34.8 343 322 31.8 0.005

CCW 677 69.9 71.0  74.0 72.7 77.2 80.1 78.6 81.3 0.004
Tile flow  (mm F34 99.0 108.0 1069 110.6 1102 1203 1209 121.1 1246 0.003
yr!) AXL 818 86.4 88.1 91.3 90.9 96.6 100.1 994 102.7 0.002
ALG 952 99.9 101.5 104.7 1046 1108 115.6 1154 1184 0.005

CCW 539 5.54 5.56 6.08 6.17 6.41 6.38 6.27 6.12 0.000
Sediment loss ('t F34 5.24 5.14 5.19 5.70 5.75 5.89 5.99 5.83 554  0.441*
ha'yr) AXL 0.71 0.71 0.72 0.83 0.92 1.10 1.42 1.48 1.44 0.000
ALG 041 0.33 0.35 0.45 0.54 0.75 0.98 0.97 0.98 0.000

CCW 245 2.73 2.76 3.00 2.95 2.79 2.99 2.94 265 0.575%
Atrazine loss (gha' F34 227 2.55 2.57 3.04 2.94 2.80 3.00 3.07 255 0.559*%
yr'h) AXL 155 1.76 1.80 2.17 2.09 1.96 2.13 2.28 1.96  0.590*
ALG  0.95 1.01 1.01 1.29 1.23 1.08 1.19 1.11 0.94 0.143*

CCW 92 9.3 94 9.8 9.6 9.6 99 105 103 0.169*
Soluble N loss (kg F34 149 151  15.1 155 155 158 158 154 154 0.346*
ha'! yr'") AXL  10.1 105 106 110 109 112 114 118 11.5 0427+

ALG 119 115 116 119 117 120 123 125 125 0.405*

CCW  10.0 9.8 10.0 10.4 10.1 10.1 10.4 11.0 10.7  0.345%
Total N loss (kgha™ F34 15.5 15.5 15.5 159 159 16.2 16.2 16.7 163 0.673*
Pyrh AXL 128 13.0 13.2 13.8 13.8 14.5 15.0 15.4 15.0  0.008%*
ALG 130 12.3 12.4 12.9 12.9 13.4 13.9 14.0 14.0 0.223%

CCW  0.21 0.20 020 0.21 0.21 0.22 0.21 0.19 0.19 0.031
Soluble P loss (kg F34 0.11 0.10 0.10  0.10 0.10 0.10 0.10 0.09 0.09 0.001
ha! yr'" AXL  0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.164*
ALG  0.05 0.04 0.04 0.05 0.05 0.05 0.06 0.05 0.05  0.450*

CCW 139 1.32 1.32 1.39 1.44 1.45 1.45 1.37 1.36  0.989*
Total P loss (kgha' F34 1.29 1.19 1.18 1.22 1.21 1.19 1.20 1.14 1.12 0.051*
yr'h) AXL  0.60 0.55 0.55 0.59 0.61 0.66 0.72 0.70 0.68 0.161%*
ALG  0.26 0.19 0.19 0.22 0.24 0.28 0.32 0.28 0.29  0.426*

Note: * indicates that the percentage change in pollutant losses were not significant at a = 0.05
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Figure 3.5. Average annual surface flow, tile flow, sediment, and atrazine losses under
baseline and future climate conditions.
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Figure 3.6. Average annual soluble N, total N, soluble P, and total P losses under baseline
and future climate conditions.
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3.5.2 Climate change impact on surface flow and tile flow

As shown in Table 3.4, all four watersheds had a gradual decrease in surface flow and a
gradual increase in tile flow toward the end of the century despite a steady increase in
rainfall volume (Figure 3.5a-b). In CCW, surface flow decreased from 80.7 mm/yr in the
baseline period to 73.5 mm/yr by 2099 (approximately 9%). Tile flow increased gradually
from 67.7 mm/yr to 81.3 mm/yr (approximately 20%). In F34 surface flow decreased
from 78.1 mm/yr in the baseline period to 64.2 mm/yr by 2099 (18%). Tile flow in F34
increased gradually from 99.0 mm/yr to 124 mm/yr (25%). In AXL surface flow
decreased from 68.0 mm/yr in the baseline period to 58.8 mm/yr by 2099 (13.5%), while
tile flow increased gradually from 81.8 mm/yr to 102.7 mm/yr (25.5%). In ALG surface
flow decreased from 41.0 mm/yr in baseline period to 31.8 mm/yr by 2099 (22%), while

tile flow increased gradually from 95.2 mm/yr to 118.4 mm/yr (24%).

Changes in surface flow between the baseline period and end of the century were
significant at a = 0.05 with p = 0.0372, 0.0000, 0.0046 and 0.0048 for CCW, F34, AXL, and
ALG watersheds, respectively. Similarly, changes in tile flow were also significant at o =
0.05 with p = 0.0044, 0.0030, 0.0017 and 0.0049 for the CCW, F34, AXL, and ALG

watersheds, respectively.

The shift observed between surface flow and tile flow was most likely due to a
combination of rising water table (from increased precipitation) and increasing
temperatures during the winter months that resulted in less storage of water until the

spring melt. The U.S. Global Change Research Program (USGCRP, 2009) predicts that
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precipitation in the Midwest is likely to fall more frequently in heavy downpours. This
seem counter-intuitive to the MarkSim generated precipitation that showed a noticeable
shift in precipitation to smaller events, which would subsequently result in more
infiltration and higher water tables. Higher water table increases the amount of water
available for tile flow (Du et al., 2005). The dynamic water table routine used in SWAT to
estimate tile drainage, forces more water to enter the subsurface tiles whenever the water

table rises to a certain height (above subsurface tiles) (Du et al., 2005; Du et al., 2006).

Soil temperature affects the movement of water through the soil profile (Running and
Reid, 1980; Yang et al., 1996). In SWAT, soil layer temperature is a function of average
annual air temperature and soil surface temperature (Neitsch, 2002), and if soil
temperature is 0°C or below, no redistribution of water is allowed. As winter temperature
increases towards the end of the century, greater soil-water movement will occur, which
will increase the rate at which downward flow, percolation or tile flow occurs. As
depicted in Figure 3.7, significant increases in tile flow volume occurred during the
winter season (December/January/February) between the baseline period and the end of
the century. During winter, tile flow increased approximately 129% in CCW, 160% in
F34, 179% in AXL and 183% in ALG, while surface flow decreased by approximately
15%, 21%, 29% and 30% in CCW, F34, AXL, and ALG, respectively, between the

baseline period and the end of this century.
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Additionally, because the CN method was used to estimate the amount of water available
for surface flow in SWAT, the influence of initial abstraction (/,) on surface flow becomes

greater (as demonstrated in Equation. 3.1) if the factors driving /, increased.

_ (Raay=la)® (3.1)

qurf - (Rday—la‘l's)

where Qg is the amount of water available for overland flow (mm), R4, is the amount

of rainfall for a given day (mm) and S is the surface detention (mm) parameter. /, is the
amount of water before surface flow can occur such as evaporation, infiltration and
interception. Evapotranspiration (ET) is a major component of the water balance
accounting for approximately 55% of precipitation; therefore, increasing ET will likely
reduce the amount of water available for runoff to occur (Mishra et al., 2005; Mishra et
al., 2004). Figure 3.8 and Figure 3.9 show the change in average monthly ET in all four
watersheds. Except for the months of August, September, and October, ET increased
significantly with greater percentage changes occurring in the winter months. Increasing
ET resulted from increasing precipitation and temperatures. However, despite increasing
temperatures, decreasing precipitation in the summer months (June through August)

resulted in decreased ET for the months of August through October.
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Figure 3.9. Percent change in monthly ET with respect to the baseline climate for F34 and
CCW watersheds.

3.5.3 Climate change impact on sediment loss

At the larger CCW and F34 watersheds, there were slight increases in sediment loss from
the baseline period to the end of the century (Figure 3.5¢). There was little change in
sediment loss for the smaller AXL and ALG watersheds until after the 2050s when the
number of days with rainfall above 20 mm increased from 14 to 16 and the number of

days with rainfall greater than 30 mm increased from seven to eight.
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The results presented in Table 3.5 indicate that in CCW, sediment loss increased
significantly by approximately 0.75 t ha™yr (13.5%) between the baseline period and the
end of the century, with p =0 at a = 0.05. There was no significant increase in sediment loss
in F34, with p = 0.373 at a = 0.05. In AXL sediment loss increased from 0.71 t ha™'yr in
the baseline period to 0.92 t ha™yr" (29.5%) in the 2050s and then to 1.44 t ha'yr’ by
2099 (103.6%). In ALG, sediment loss increased from 0.41 t ha'yr' in the baseline

period to 0.50 t ha'yr!' (31.7%) in the 2050s, then to 0.98 t ha™yr” by 2099 (139%).

Though the statistical analysis implies significant percentage increase in sediment loss at
a = 0.05 with p = zero, the large percentage increase in AXL and ALG should not be too
alarming considering the magnitude of sediment loss is small. There has been extensive
BMPs implementation in the ALG, AXL and large sections of F34 primarily to reduce
soil loss. Approximately 77% of soybeans and 20% of corn areas have been cultivated
under a no-tillage system, which was represented in SWAT during the model set-up and

calibration process.

The proportion of sediment loss in CCW and F34 was much greater than that of AXL and
ALG mainly due to the effects of the calibration process. There was no sediment data
available for calibration of sediment in any of the four watersheds; however, each
watershed was calibrated separately for nitrogen and phosphorus, which included
optimization of the sediment transport coefficient (SPCON) and an exponent (SPEXP)
used in the sediment transport equation (Table 3.5). These parameters are necessary to

estimate the proportion of nitrogen and phosphorus being transported with sediment. A
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large SPEXP value means a greater maximum concentration of sediment that can be
transported by water, and a large SPCON value suggests a larger sediment transport
capacity. While there were little differences in SPEXP values for the four watersheds, the
SPCON value for CCW and F34 was approximate twice that of AXL and ALG, which
resulted in the sediment transport capacity of CCW and F34 being much greater than that
of AXL and ALG. This was not surprising considering sediment delivery is very sensitive
to changes in SPCON and SPEXP parameters especially when using the simplified
Bagnold equation (Almendinger and Ulrich, 2010).

Table 3.5. The final SPCON and SPEXP values for CCW, F34, AXL and ALG
watersheds after calibration.

CCW F34 AXL ALG
SPCON 0.0067 0.0057 0.0035 .0030
SPEXP 1.37 1.44 1.28 1.22

Additionally, the subsurface tile drains with open-surface tile inlets provide a direct
pathway for sediment transfer to drainage ditches. Landscape in the study area was
formed on young glacial till plains and contains many closed depressions (potholes) that
are often drained using surface tile inlets (tile risers). These closed depressions were
implemented in SWAT setup for all four watersheds (see Figure 3.10 for an example of
closed depressions identified in ALG). SWAT assumes sediment entering a pothole is
instantaneously distributed throughout the pothole water volume (Neitsch, 2002).
Therefore, if a tile inlet is installed in that pothole sediment is allowed to enter the

subsurface drainage system directly and are like to be deposited into the nearest stream
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segment, which suggests that the more potholes, and consequently the more tile inlets

there are, the greater the potential for sediment to be transported directly to streams.

ALG watershed

Google eart
C

Figure 3.10. Google Earth imagery of ALG with the closed depressions identified.

3.5.4 Climate change impact on atrazine loss

As summarized in Table 3.4 and Figure 3.5d, there were no significant change in average
annual atrazine loss at o = 0.05 with p = 0.5746, 0.5595, 0.5901, 0.1432 for CCW, F34,
AXL and ALG, respectively. These results indicate that projected future climate change to
the end of this century will have little impact on average annual atrazine loss. A primary
pathway for atrazine to streams is through surface runoff, and as demonstrated earlier,
surface runoff had a decreasing trend toward the end of the century. The inclusion of
surface inlets to drain depressional areas, as well as increased lateral flow, however, may

accelerate atrazine loss. Atrazine loss through lateral flow had the largest percentage
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increase among the contributing sources, with 21% increase in CCW, 8% in F34, 23% in
AXL, and 4% in ALG, respectively. Further assessments are required to understand how
atrazine half-life used in the pesticide degradation equation in SWAT is affected over an

extended period with increasing temperatures and changes in rainfall seasonality.

3.5.5 Climate change impact on soluble N and total N losses

As shown in Figures 3.6a-b, all four watersheds showed signs of increasing soluble N
loss and total N loss toward the end of the century, with most of the nitrogen loss moving
with tile flow. In the results summarized in Table 3.4, soluble N loss in CCW went from
9.2 kg ha''yr" in the baseline period to 10.3 kg ha™'yr" by 2099 (11.3%). Total N loss

went from 10.0 kg ha'yr! to 10.7 kg hayr™ (7.3%).

In F34, soluble N loss went from 14.9 kg ha™yr™ in the baseline period to 15.4 kg ha™'yr’
by 2099 (2.8%). Total N loss in F34 went from 15.5 kg ha™'yr to 16.3 kg ha'yr! (5.5%).
In AXL, soluble N loss went from 10.1 kg ha™yr in the baseline period to 11.5 kg ha™'yr
by 2099 (17.5%), while total N loss increased gradually from 12.8 kg ha™yr to 15.0 kg
ha'yr! (19.8%). In ALG, soluble N loss went from 11.9 kg ha’'yr"! in the baseline period
to 12.5 kg ha'yr'! by 2099 (5.4%), while total N loss went from 13.0 kg ha'yr to 14.0

kg ha'yr'! (7.5%).

In general, changes in soluble N loss between the baseline period and end of the century
were not significant at o = 0.05 with p = 0.1694, 0.3460, 0.4270 and 0.4050 for the CCW,

F34, AXL, and ALG watersheds, respectively. Similarly, changes in total N were also not
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significant at a = 0.05, except for AXL (p = 0.0081), with p-values of 0.3453, 0.3727, and

0.2228 for CCW, F34 and ALG, respectively.

In agricultural watersheds, nitrate in drainage water is the primary source of nitrogen loss
from the soil, especially under high flow conditions (Hoang et al., 2014). The results
presented here indicate that the nitrogen processes in the soil and shallow aquifer were
strongly influenced by the high amount of water infiltrating into the soil profile and
shallow aquifer. The increasing tile flow volume from rising water table depth supports

this.

3.5.6 Climate change impact on soluble P and total P losses

As shown in Figure 3.6¢, all four watersheds experienced a slight decrease in soluble P
loss toward the end of the century. For CCW and F34, soluble P loss decreased by
approximately 10.3% and 25.5%, respectively. These reductions were found to be
significant at a = 0.05 with p = 0.0308 and 0.0007 for CCW and F34, respectively. Changes

in soluble P loss at AXL and ALG were not significant, with p = 0.1640 and 0.4499,

respectively.

As depicted in Figure 3.6d, total P loss showed a slight decreasing trend in CCW and F34
and a slight decreasing trend in AXL and ALG. However, the percentage change in average
annual total P loss were not significant at o = 0.05, with p-values of 0.9892, 0.0511, 0.1610,

and 0.4261 for CCW, F34 AXL and ALG, respectively.
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Despite the slight changes in total P between the baseline period and end of the century, a
close look at Figures 3.5¢ and 3.6d shows that the trend in total P through to the end of
the century closely matched that of sediment loss. attached to soil particles (organic-P
and mineral-P) are typically transported to the stream channel by surface runoft.
Therefore, changes in sediment loss are likely to affect these forms of (Neitsch, 2002).
Higher temperatures also increase mineralization and release of phosphorus. In recent
studies, the simulation of future climate change effects on phosphorus losses at the
watershed scale produced similar results to those in this study. Jeppesen et al. (2009)
predicted that by the end of this century, climate change would result in a 3.3 to 16.5%
increase in total P loss to the lowland streams of Denmark. Bouraoui et al. (2004)
predicted an average increase in total P loss of approximately 2% in the Vantaanjoki

watershed (Finland) due to climate change.

3.6 Summary and Conclusions

This study examined the effect of climate change on surface flow, tile flow, sediment,
atrazine, and nutrient losses in four agricultural watersheds of different sizes. Climate
information (baseline and future projections) were obtained using the MarkSim weather
file generator. Projections of future climate were based on an ensemble mean of 17
GCMs simulated under the RCP 6.0 scenario. With respect to the baseline climate,
average annual maximum and minimum temperatures will increase by approximately 4°C
by the end of this century. Average annual rainfall volume will increase by approximately

8.5% between the baseline period (1961-90) and the end of this century with most of the
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precipitation occurring in smaller storm events. The climate change scenarios and their
effects on surface flow, tile flow, sediment, atrazine, and nutrient losses were simulated
for the CCW, F34, AXL and ALG watersheds located in Northeastern Indiana using

SWAT.

The results indicate that higher rainfall volume does not always lead to increased surface
flow. In fact, despite increasing rainfall volume, surface flow decreased while tile flow
increased between the baseline periods (1961-90) to the end of the century for all four
watersheds. These changes were found to be significant at the 95% confidence level.
There were significant increases in sediment loss for all four watersheds. However,
changes in atrazine, soluble N, total N and total P losses were not significant at the 95%
confidence level. Changes in average annual soluble P loss were significant at the larger

CCW and F34 watersheds, but insignificant at AXL and ALG.

As it relates to watershed size, there was no clear evidence to suggest changes in
watershed size will have an impact on the simulation of climate change effects. The
changes observed were mainly due to watershed characteristics and SWAT model
configuration. SWAT was configured, calibrated and validated independently for all four
watersheds, and therefore, as expected, the magnitude of changes differed despite similar

trends in climate change effects.

The representation of potholes in SWAT could also be improved. Currently, pothole
parameters have to be determined by the user and added to an HRU for SWAT to

recognize that HRU as being a pothole, which makes simulations susceptible to user



106

input error. A more automated method is need, preferably during the watershed

delineation process.

Using the MarkSim weather file generator to obtain climate files seems to produce
outputs comparable to observed climate. However, there may be concerns regarding the
MarkSim downscaling method that tends to project future precipitation dissimilar to other
climate change studies in the Midwest. MarkSim tends to smooth outputs obtained from
the various GCMs and thus result in more precipitation being in small events. To explore
whether the MarkSim downscaling method resulted in a larger proportion of rainfall
occurring in small events for future climate compared to baseline climate, future studies
could compare projected future climate obtained by MarkSim with climate projections
obtained using different downscaling techniques. Additionally, individual climate model

results should be compared with the ensemble mean of multiple climate model results.



107

CHAPTER 4. QUANTIFYING THE EFFECT OF CONSERVATION PRACTICE
IMPLEMENTATION ON PREDICTED RUNOFF AND CHEMICAL LOSSES

4.1 Synopsis

A major water quality concern in agricultural watersheds stems from surface runoff and
tile flow that transports sediment, pesticides, and nutrients to surface water bodies.
Conservation practices are often implemented to mitigate water quality concerns. These
conservation practices are available through conservation programs (such as cost sharing,
tax breaks, and storm water utility charges) that provide incentives for the
implementation of Best Management Practices (BMPs) in areas of the watershed
contributing to pollutant loading. As part of the Conservation Effects Assessment Project
(CEAP), evaluation of these conservation practices is required to provide insight on how

their implementation is benefiting the environment.

In this study, the Soil and Water Assessment Tool (SWAT) with downscaled weather
data generated using the MarkSim weather file generator was used to evaluate the impact
of long-term conservation practice implementation on runoff, sediment, atrazine, soluble
N, total N, soluble P, and total P losses in the Matson Ditch (AXL) Watershed located in
Northeastern Indiana. The results indicate that individual conservation practices were

effective in reducing a particular pollutant load, but combined practices were more
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effective in reducing multiple pollutant loadings simultaneously. Of the individual BMPs
assessed, no-till was the most effective in reducing multiple pollutant loads (reduced
surface runoff by an average of 25%, sediment by 46%, atrazine by 46%, total N by 9%,
soluble P by 16%, and total P by 29%). When individual BMPs were combined, pollutant
load reductions were increased significantly (at a = 0.05) for all pollutants, both under
baseline and future climate scenarios. The percent change for each decade of future
climate ranged from 15% to 25% for surface runoft, 32% to 68% for sediment loss, 37%
to 60% for atrazine loss, 5% to 13% for soluble N loss, 12% to 35% for total N loss, 9%

to 41% for soluble P loss, and 33% to 60% for total P loss.

4.2 Introduction

Nonpoint sources of pollution such as agricultural runoff and atmospheric deposition are
often considered when developing water quality protection plans. Pollutants from
agricultural runoff, such as sediment, pesticides and nutrients, may detrimentally affect
off-site water bodies. The St. Joseph River Watershed Initiative (SJRWI) assessed the
water quality in the St. Joseph River, Indiana, USA, and identified pesticide and nutrient
runoff from agricultural lands as primary stressors of surface and subsurface water

quality (STRWI, 2005).

The St. Joseph River transports agricultural runoff from northeastern Indiana to the
Maumee River that eventually drains into Lake Erie (SJRWI, 2005). The presence of

pesticides and nutrients in open waters above the EPA’s allowable limits threatens aquatic
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life by killing small species of animals, disrupting plant growth, and eventually causing

aquatic life use impairments (USEPA, 2002).

An overabundance of algae, which was primarily due to excess loading of nutrients such
as phosphorus into Lake Erie, resulted in anoxic conditions that subsequently led to large
fish kills during the 1970s (Baker and Richards, 2002; Rawls et al., 1980; Rawls and
Richardson, 1983). Despite large-scale efforts to mitigate nutrient loadings to Lake Erie,
the ongoing effects of excessive nutrient loading are still causes for concern. Seasonal
depleted oxygen conditions continue to intensify in the central basin, blue-green algal
blooms are occurring regularly in the western basin, as well as fouling of near-shore areas
of the eastern basin (Lake Erie LAMPs, 2011). As recent as August 2014, high levels of
microcystin above the standard for consumption, most likely from algae in Lake Erie,
resulted in a ban on regional water supply to over 500, 000 residents of the City of

Toledo, Ohio (Fitzsimmons, 2014).

Agricultural conservation practices, also referred to as Best Management Practices
(BMP), are often implemented in watersheds to reduce nonpoint source pollution caused
by agricultural runoff and improve surface water quality. Monitoring the effectiveness of
alternative BMPs is time consuming, expensive and uncertain. The use of computer
models such as the Soil and Watershed Assessment Tool (SWAT) provide a timely and
cost-effective means of evaluating the impact of alternative conservation practices on

reducing pollutant loading and improving water quality.
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Several studies conducted using computer models show that agricultural BMPs can
reduce pollutant loading and improve water quality ( Bracmort et al., 2004; Lee et al.,
2010; Dechmi and Skhiri, 2013). Despite protecting millions of hectares, the
environmental benefits of BMPs have not been quantified to the extent that they can be

reported at the national scale (Mausbach and Dedrick, 2004).

In 2003, USDA’s Natural Resources Conservation Service (NRCS) and the ARS initiated
a nationwide Conservation Effects Assessment Project (CEAP) to quantify the
environmental benefits of BMPs and to provide a measure of accountability for how the
money being spent is meeting the goals of the 2002 Farm Bill (Mausbach and Dedrick,
2004). According to the 2002 Farm Security and Rural Investment Act (Farm Bill Act,
2002), there has been an 80 percent increase in funding for conservation programs
throughout the United States, above the level set under the 1996 Farm Bill (Mausbach
and Dedrick, 2004). Subsequently, the Farm Bill Act of 2014 consolidated 23 overlapping
conservation programs into 13, tightened eligibility rules for funding of these programs,

and streamlined means tests to make farm programs more accountable.

CEAP has two main areas of focus: one is a national and regional assessment for which it
provides modeled estimates of conservation benefits for annual reporting, and the other is
an assessment component which establishes scientific understanding of the effects and
environmental benefits of specific BMPs at the watershed scale (Mausbach and Dedrick,
2004). CEAP uses a mix of research, data collection, model development, and model

application in estimating the effects and benefits of BMPs. The program also provides



111

research and assessment on how to best use BMPs in managing agricultural landscapes to

protect and enhance environmental quality.

The impact of climate change on agricultural runoff and nutrient loading to surface water
bodies has been assessed in numerous studies using different watershed models coupled
with climate models (Gosain et al., 2006; Zhang et al., 2007; Raneesh and Santosh, 2011;
Khoi and Suetsugi, 2012; Haddad et al., 2013; Kim et al., 2013; Park et al., 2013;
Zahabiyoun et al., 2013). However, few studies have examined the combined effects of
future climate change and BMP implementation on agricultural runoff, sediment and

chemical losses.

Understanding the influence of climate change on BMP performance is important for
water resources management, and the development of future best management scenarios
to mitigate nonpoint source pollution. Woznicki and Nejadhashemi (2014) quantified the
performance of seven individual BMPs under future climate change scenarios in the
Tuttle Creek Lake watershed, located in eastern Kansas and Nebraska, and emphasized
the fact that uncertainties associated with conservation practices performance are
compounded by changes in future climate. However, since conservation programs often
recommend the use of combined BMP implementation in mitigating water quality
concerns, additional assessments are needed to ascertain the significance of climate
change impact on both individual and combined BMP implementation. In a recent study,

Chiang et al. (2012) evaluated 171 management practice combinations with future
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climate conditions in a pasture-dominated watershed and emphasized the importance of

different BMP combinations in reducing nonpoint pollution.

This study assesses the impact of long-term BMP implementation using the Soil
Watershed Assessment Tool (SWAT) coupled with future climate data downscaled with
the MarkSim weather file generator. SWAT is a physically based model used to simulate
watershed scale hydrology, water quality and plant growth (Arnold et. al., 1998). It is
computationally efficient, allows considerable spatial detail, requires readily available
inputs, operates on a continuous time step, is capable of simulating land-management
scenarios, and captures management effects at the watershed scale. SWAT has been used
to simulate the effects of conservation practices in order to determine which set of

practices are needed to achieve desired reductions in pollutant loads (Vache et al., 2002).

4.2.1 Conservation Practices Implemented to Reduce Sediment, Pesticide and

Nutrient Runoff in Agricultural Watersheds

In an effort to protect the nation’s waters and restore water quality standards for impaired
water bodies, the United States Department of Agriculture (USDA) through the Farm
Services Agency (FSA) provides significant financial incentives for the implementation
of conservation practices in agricultural watersheds such as AXL. The NRCS's natural
resources conservation programs helps stakeholders reduce soil erosion, enhance water
supplies, improve water quality, increase wildlife habitat, and reduce damages caused by

floods and other natural disasters (USDA NRCS, 2014).



113

The Source Water Protection Initiative Project (SWPI), which was a collaborative effort
between America’s Clean Water Foundation (ACWF), the Agricultural Research Service
(ARS) and its National Soil Erosion Research Laboratory (NSERL) in West Lafayette,
Indiana, focused on identifying BMPs for reducing the effects of agriculture on drinking
water supplies. The SWPI project designed and implemented BMPs, and measured their
ability to remove or reduce sediment, pesticides and nutrients from field runoff at the
watershed scale. Implementation of environmentally safe and economically viable
conservation practices at the watershed scale is critical not only to agricultural lands, but
also to the consumers that use the water resources for drinking and recreation. The
conservation practices discussed here include BMPs commonly implemented by the ARS
SWPI project and CEAP in the AXL watershed (i.e. no-tillage, vegetative filter strips,

grassed waterways, blind inlets and nutrient management).

4.2.1.1 No-Tillage

No-Tillage (NRCS practice #329) is a form of conservation tillage practice where seeds
are planted directly into the soil with no other tillage operations, thereby minimizing soil
disturbance, and sediment and nutrient transport to surface waters. This practice further
seeks to reduce sheet, rill and wind erosion, maintain or increase soil quality and organic
matter content, reduce energy use in crop production, increase water use and precipitation

storage efficiency and provide food and escape cover for wildlife (USDA NRCS, 2014).

Over the last two decades, significant emphasis has been placed on trying to encourage

farmers to utilize no-tillage when planting crops (Smith et al., 2008). In Northeastern
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Indiana, the primary conservation practice on agricultural lands is to use the no-tillage
approach for planting soybeans following corn. In 2012, 34% of corn and 77% of
soybeans were planted using no-tillage in DeKalb County, Indiana (DeKalb SWCD,
2014), where the AXL watershed is located. No-till was selected for this study because it
is a common practice in the study area and easily implementable in SWAT. Additionally,
no-till conservation agriculture avoids tillage; therefore, it is less time-consuming and can be

more cost-effective than conventional farming methods.

4.2.1.2 Vegetative Barriers

Vegetative Barrier (NRCS practice #601), also known as vegetative filter strips (VFS),
are regions of dense vegetation established along the general contour of slopes or across
concentrated flow areas (USDA NRCS, 2014). Vegetative filter strips (VFS) act as
natural barriers during fertilizer and pesticide applications (Smith et al., 2008) and are
intended to remove nonpoint source pollutants such as sediment and associated
contaminants from overland flow (USDA NRCS, 2014). Commonly located along open
waterways, VFS seek to intercept runoff before reaching ditches and streams. VFS have
been implemented along more than 60% of the agricultural drainage ditches in

Northeastern Indiana (Smith et al., 2008).

4.2.1.3 Grassed Waterways

Grassed waterways (NRCS practice #412) are vegetated channels created to carry

concentrated surface runoff at low (non-erosive) velocities to a stable outlet with the
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purpose of preventing erosion and associated nonpoint source pollution (USDA NRCS,
2014). Additionally, grassed waterways reduce gully erosion and protect water quality. In
an assessment of BMPs used to reduce nonpoint source pollution, grassed waterways
were found to have minimal impact on TP and TN loads, but were able to significantly
reduce sediment loads (Zhang et al., 2013). However, combining grassed waterways with
other conservation practices (e.g. conservation tillage, vegetative filter strips, and a
simple nutrient reduction strategy) could result in sediment reduction in the range of six
to 65 percent, nitrate reduction in the range of six to 20 percent and total reduction in the

range of 28 to 59 percent (Secchi et al., 2007).

4.2.1.4 Blind Inlets

Blind inlets are a novel approach that is being studied as a possible replacement for the
surface tile inlets in watersheds where subsurface tiles are used to drain closed
depressions. Closed depressions are usually found in landscapes formed from glaciation.
These closed depressions, also known as prairie potholes, form natural detention ponds
for surface runoff, and restrict cultivation in agricultural lands. As a result, closed
depressions pose significant challenges in large parts of the Midwestern United States
where most of the productive soils are formed on glacial till landscapes. Surface tile
inlets are often used to alleviate the problem caused by closed depressions/potholes in the
Midwestern United States. These surface tile inlets are pipes (generally with 2—6 cm inlet
holes) that connect to the subsurface tile drainage network, and are used to convey

surface runoff water that collects in the lowest point of the closed depressions directly to
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the subsurface tile drainage network, which drains into the off-site stream network. Tile
inlets in closed depressions are potential contributors to water quality problems in the
AXL watershed because there is little filtration or processing of the surface runoff water
before it reaches the stream network (Smith and Livingston, 2013). Pollutants (such as
sediment and agricultural chemicals) suspended in the ponded-water enter the subsurface

tiles and are transported directly to the stream network.

Discharge from surface tile inlets was identified as a major contributor to water quality
degradation, transporting sediment and nutrients (nitrogen and phosphorus) from the field
directly to rivers or streams (Ginting et al., 2000; Smith et al., 2008; Tomer et al., 2010).
Therefore, in order to provide an alternative that will improve the quality of water
drained from closed depressions, ARS-NSERL developed blind inlets, which are
implemented by removing surface tile inlets and constructing a filter bed at the lowest
point of a closed depression (Smith and Livingston, 2013). The filter bed consists of
coarse limestone gravel, geotextile fabric and coarse-textured soil material to facilitate
infiltration. Smith and Livingston (2013) found that blind inlets reduced sediment loss
from potholes by 48% to 85%; soluble P loss by 34% to 94%; total P loss by 26% to
88%; soluble N loss by 1% to 78%; and total N loss by approximately 20% to 81%, when
compared to the surface tile inlets. Additional field-scale studies by Feyereisen et al.
(2015), in which paired comparisons between surface tile inlets and blind inlets were

performed on a storm event basis in Indiana and Minnesota, found that blind inlets
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reduced total suspended sediment loads by approximately 64 percent and soluble and

total by approximately 55 percent.

4.2.1.5 Nutrient Management

Nutrient Management (NRCS practice #590) is the practice of managing plant nutrient
application rates, source, application method and timing wisely for optimum economic
benefit, while minimizing impact on the environment (USDA NRCS, 2014). Plants
nutrients (especially nitrogen, phosphorus, and potassium) are used to achieve optimum
crop yields, and when applied correctly, are essential for crop production. Improper

application of nutrients may cause water quality problems both locally and downstream.

Soluble phosphorus in particular has been identified as a major problem for Lake Erie
over the years, with massive algal blooms and deteriorating water quality (Lake Erie
LaMP, 2011). The drainage area to Lake Erie (containing the AXL watershed) is largely
agricultural, with a significant amount of phosphorus loading attributed to runoff from
agricultural land, particularly from row cropping operations (Baker and Richards, 2002).
Therefore, a nutrient management approach should be adopted to limit the amount of
available for transport. The Natural Resources Conservation Services (USDA NRCS,
2014) established nutrient management standards that should be used on all lands where
plant nutrients and soil amendments are applied. Before each crop is planted and fertilizer
applied, the soil should be tested to determine its nutrient content, and applications made
based on recommendations from experts such as Tri-State Fertilizer Recommendations

(Vitosh et al., 1995) and the Agronomic Handbook (Jones Jr., 2002) that have studied
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nutrient requirements and uptake by various crops, and thereby eliminating excessive

application.

4.3 Objective

This study seeks to quantify the impact of long-term implementation of individual and
combined BMPs on runoff and chemical losses from an agricultural watershed dominated
by row crop cultivation, using the Soil and Watershed Assessment Tool (SWAT) coupled
with future climate data downscaled with the MarkSim weather file generator. Results of
this study will provide insight into the long-term effectiveness of agricultural

conservation practices and their response to climate change.

44  Methodology

4.4.1 Study Area Description

The AXL watershed located in DeKalb County, Northeastern Indiana (85°1'39.102"W to
84°54'5.48"W and 41°24'32.205"N to 41°30'21.884"N) is a small 42 km? catchment
(HUC_12 = 041000030603) in the St. Joseph River basin (Figure 4.1). AXL is
predominantly an agricultural watershed having approximately 71.3% row crops (mainly
corn and soybean), 12.8% pasture/hay, 10.1% forest, and 5.8% urban (based on NASS

2010-2013 data).

The majority of soils in the watershed are comprised of Blount silt loam (very deep,
somewhat poorly drained soils), Pewamo silty clay (very deep, very poorly drained soils),

Glynwood loam (very deep, moderately well drained soils), Rawson sandy loam (very
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deep, moderately well drained soils), Rensselaer loam (very deep, poorly drained or very
poorly drained soils), and Sebewa sandy loam (very deep, poorly drained or very poorly
drained soils) (USDA, 2014). Many of these soils are drained into managed drainage
ditches using subsurface tile drainage systems, which results in alteration of the
watershed hydrology and the transport of pesticide and nutrients across the landscape

(Pappas and Smith, 2007; Smith et al., 2008).
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Figure 4.1. Location map of the AXL watershed within northeastern Indiana.

4.4.2 Watershed Monitoring and Data Availability

AXL is one of the watersheds benchmarked by the USDA Agricultural Research Service
(USDA-ARS) as part of its Conservation Effects Assessment Project (CEAP). CEAP

conducts research, data collection, and model application in order to quantify the effects
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of conservation practices on water quality and other environmental parameters. The
USDA-ARS has monitored climate, streamflow and water quality at multiple locations
through the AXL watershed since 2002 (Smith et al., 2008). However, complete datasets
are only available from April 2004 through November 2013 via the USDA-ARS National
Soil Erosion Research Laboratory (NSERL) CEAP website. Flow velocity sensors were
replaced in 2006 (Smith et al., 2008) and therefore, only data from 2006 forward were
used in model calibration and validation. A description of the data obtained for AXL is
presented in Table 4.1. Climate data such as daily precipitation, maximum and minimum
air temperatures, solar radiation and wind speed were obtained for the CEAP weather
stations located near the AXL outlet and for two upstream locations (ALG and AME
indicated in Figure 4.1). These were used to create SWAT weather input files during

model warm-up/calibration/validation.

Continuous water quality measurements at the AXL outlet are available each year from
mid-March to mid-November with grab samples collected during the winter months. For
this study, streamflow and concentrations of atrazine and nutrients measured at the AXL
outlet were obtained from the ARS-NSERL for the period April 2004 to November 2013.
Nutrient data obtained included Kjeldahl nitrogen, ammonium (NH4-N), NO3;+NO,, total
phosphorus, and orthophosphate concentrations. Using the streamflow data, all
concentration values for water quality were converted to average daily loads by applying
simple arithmetic. Average daily loads were further amalgamated into average monthly

loads for calibration/validation of SWAT.
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Table 4.1. Input data used in SWAT setup and simulations.

Data Type Date Source Description
USGS:
viewer.nationalmap.gov
DEM 2011 /viewer/ 10-m Resolution, Digital Elevation Model
USDA-NRCS:
soildatamart.nrcs.usda.g  Soil Survey Geographic Database
Soils 2011 ov/ (SSURGO)
USDA-NASS:
nassgeodata.gmu.edu/C  National Agricultural Statistics Service data
Land use 2010-2013  ropScape/ layer
USGS:
Hydrographic 2011 nhd.usgs.gov/data.html  National Hydrograph Dataset (NHD)
ARS CEAP aer Db PRBTaton. mximum i
Weather 2004- 2013 I())uahty Assessment speed, relative humidity at AXL, ALG &
rogram AME
Crop ARS CEAP watershed Tillage gperations, ferti'lizer ‘and herbici(?e
Management 2009- 2012  survey, DeKalb County apph'catlons, crop rgtatlon, time of planting
SWCDs and time of harvesting
Streamflow 2004- 2013 ARS CEAP Daily flow measured at AXL outlet
Daily pesticide and nutrient concentration
Water Quality 2004- 2013 ARS CEAP (TP, PO4, TN, NO2+NO3) at the AXL outlet

4.4.3 SWAT Model Set-up

The ArcSWAT version 2012.10 1.15 interface was used to expedite SWAT model input
and output display. Data used in SWAT model set-up/calibration/validation are presented
in Table 4.1. To obtain suitable flowpaths, the stream delineation from the National
Hydrograph Dataset (NHD) was used to burn in the location of the streams in a 10-m
resolution Digital Elevation Model (DEM) obtained from USGS National Elevation
Dataset (NED, USDA, 2011b). Using a minimum stream threshold value of 200 ha (5%
of watershed area), 11 sub-basins were delineated in the AXL watershed (42 km?). The
USDA-ARS NSERL water quality/streamflow gauge station (latitude 41.413 and

longitude -85.005) was used to specify the location of the AXL outlet (Figure 4.1).
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In SWAT, hydrologic response units (HRUs) are determined by the unique combination
of land use and soils within each sub-basin, whereby, the model establishes management
practices. The Soil Survey Geographic Database (SSURGO, USDA, 2014) spatial data at
a map scale of 1:12,000 and the USDA National Agricultural Statistics Service (NASS,
USDA, 2011) Indiana Cropland Layer were used to determine HRUs with the following
thresholds: 0% land, 0% soil, and 0% slope. Selecting threshold values of zero allows
SWAT to model all possible unique combination of land cover/soil types; totaling 806

HRUs (average size of 5.37 ha).

Management input files were set-up to simulate corn/soybeans and soybeans/corn
rotations on all lands classified as corn and soybeans respectively in the land use layer
file (Table 4.2). When land use was classified as wheat, a wheat/corn/soybean rotation
was used (Tables 4.2 and 4.3). Management inputs include yearly planting and harvesting

dates, tillage operations, and pesticide and nutrient application.

Table 4.2. Management operations for land in corn/soybeans rotation.

Crop Date Management Operation Rate
22-Apr  Nitrogen application (as Anhydrous Ammonia) 176.0 kg/ha
22-Apr (P,Os) Application (as DAP/MAP) 54.0 kg/ha
22-Apr Pesticide Application (as Atrazine) 2.2 kg/ha

Corn 6-May Tillage, Offset disk on 70% of corn area (60% mixing)
6-May No-Tillage on 30% of corn area
6-May Planting
10-Oct Harvest

10-May (P,0s) application (as DAP/MAP) 40.0 kg/ha

24-May  No-Tillage on 77% of soybeans area
Soybeans 24-May  Tillage, disk chisel on 23% of soybeans area
24-May  Planting
7-Oct Harvest
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Table 4.3. Management operations for land in winter wheat production (following
corn/soybeans rotation in Table 4.2).

Crop Date Management Operation Rate

23-Oct  (P,0s) application (as DAP) 45.0 kg/ha
25-Oct Tillage, Tandem disk (60% mixing)

Wheat 25-Oct Planting
1-Mar Nitrogen application (as Urea) 75.0 kg/ha
1-Jul Harvest

SWAT was initially set up to run on a daily time step for the period 2001 to 2013 with a
warm-up period of five years (01/2001 to 12/2005) for the model to initialize and
approach reasonable starting values for model variables (Tolson and Shoemaker, 2007).
SWAT was then calibrated for streamflow, soluble N, total N, soluble P and total P using
observed data at the AXL outlet for 01/2006 to 12/2009, and validated for the period

01/2010 to 12/2013.

Climate data obtained from the CEAP weather stations located in AXL, ALG and AME
(upstream of the AXL outlet) were used to create SWAT weather input files during model
warm-up/calibration/validation. Baseline (1961 to 1990) and future (2020 to 2099)
climate files were obtained using the MarkSim weather file generator at a location central
to the AXL watershed in order to assess the effect of future climate change on sediment,
atrazine, nitrogen, and losses. Twentieth century outputs from MarkSim (1961 to 1990)

represented the current baseline climate, and future climate was assessed for 2020 to

2099.
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4.4.4 SWAT Model Calibration and Validation

SWAT was calibrated on a monthly time step for streamflow, nitrate + nitrite (referred to
as soluble N from here on), total nitrogen (total N), mineral phosphorus (soluble P), and
total phosphorus (total P) using the streamflow records from the CEAP monitoring
station at the AXL watershed outlet. The model calibration period was from January 2006
to December 2009, and validation from January 2010 to December 2013. During
calibration, baseflow contribution to streamflow was analyzed using the Web-based
Hydrograph Analysis Tool (WHAT) developed by Purdue University (Lim et al., 2005)
based on the (Arnold and Allen, 1999) base flow filter program. Model calibration was
performed using the SWAT-CUP autocalibration tool. Manual calibration was also used
to improve the results of autocalibration based on best professional judgment (Arnold et
al., 2012). In addition to visual inspection of observed and simulated time series values at
the watershed outlet, model performance was also evaluated using the Kling-Gupta
efficiency (KGE), Nash-Sutcliffe efficiency (NSE), coefficient of determination (R?) and
percent bias (PBIAS). Based on Moriasi et al. (2007) and Van Liew and Garbrecht
(2003), SWAT calibration and validation results were acceptable for KGE > 0.5, NSE >

0.50, R?> 0.50, PBIAS +25% (Figure 4.2).
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Figure 4.2. Observed and simulated monthly streamflow, soluble N, total N, soluble P
and total P at the AXL watershed.

4.4.5 Representing Conservation Practices in SWAT

Simulation of BMPs such as grassed waterways, vegetative filter strips, no-tillage, and
nutrient management in SWAT involves the adjustment of recommended model
parameters. Other BMPs including the blind inlet can be represented by modifying the
necessary algorithms found in the SWAT subroutine files. The SWAT parameters
(including file extensions or subroutines) and the conservation practices they affect are

presented in Table 4.4.



Table 4.4. Representation of conservation practices in SWAT.

Conservatio
n practices Value before Value after
(BMPs) Variable (input file) Description BMPs BMPs
ITNUM (till.dat) Tillage implement code (4 = zero till, 60 = chisel plow, 80 = disk chisel) 60, 85 4
) EFFMIX (till.dat) Mixing efficiency of tillage operation (%) 30, 60 5
No-Till DEPTIL (till.dat) Depth to mixing caused by the tillage operation (mm) 150, 100 25
Adjusted
CNOP (.mgt) SCS runoff curve number for moisture condition 11 0! CN2
Fraction of total runoff from HRU entering most concentrated 10% of
Vegetative VFSCON(.ops) VES - 0.75
filter strips ~ VFSRATIO(.ops) Field area to VFS ratio - 40
(VES) Fraction of flow through most concentrated 10% of fully channelized
VFSCH(.ops) VES - 0
varies by
Grassed CH N2 (.rte) Manning’s roughness (adjusted based on cover in waterway) reach 0.3
waterways CH_COV2 (.rte) Channel cover factor ol 0.001
CH _COV1 (.rte) Channel erodibility factor 0 0.001
varies by
Blind Inlet TILEO (pothole.f subroutine) ~ Flow from surface inlet tile (m*® H,0) HRU -45%
DRCLA (pothole.f varies by
subroutine) Delivery ratio for pothole sediment HRU -38%
Nutrient FERT ID (.mgt) P,05 as MAP/DAP (kg/ha) for corn and soybeans varies ol
management  pgRT ID (.mgt) P,05 as DAP (kg/ha) 45 22!

@ Indicates that when the variable is set to zero, the default value is used for SWAT simulations.
I Tndicates that when the variable value is set to zero, the CN2 value is used for the initial SWAT simulations.
[} Indicates that P,Os application rate for corn and soybean is set to zero when soil tests showed P> 40 mg kg

9Cl1
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No-Till: Representing no-till in SWAT requires the modification of till.dat and management
files. In the till.dat file, the numeric code (ITNUM) is used to identify the tillage practice that
will be modeled (#4 for no-till), and EFFMIX (mixing efficiency) specifies the fraction of
residue on the soil surface that are mixed uniformly through the soil depth specified by
DEPTIL. The mixing efficiency for no-till is typically five percent, while the mixing depth is
approximately 25 mm (Srinivasan, unpublished). The management file specifies the month
and date that the no-till operation takes place, as well the SCS curve number for soil moisture
condition II (CN2). Based on available literature, curve numbers should be reduced to reflect
the impacts of conservation tillage or no-till (Chung et al., 1999; Feyereisen et al., 2008;
Rawls et al., 1980; Rawls and Richardson, 1983).

No-till operations increase the amount of residue on the surface after crop harvest and
before planting the next crop. Using CN change/residue relationships developed by Rawls
et al. (1980) as a guide, changes in CN2 values were estimated based on the amount of
residue on the ground or a certain percentage of the surface covered with-residue. A study on
crop rotation and residue cover shows that average percent residue cover at planting (no-till)
is 69, 58 and 31 percent following corn, wheat and soybeans, respectively (Roth, 1996).
Therefore, by applying Rawls et al. (1980) method, the CN2 values were adjusted (CNOP)
for corn, soybeans and wheat cultivation (Table 4.5).

Table 4.5. Percentage change in CN2 values based on estimated residue cover after no-till
planting.

Previous Crop  Residue cover (%) Change in CN2 (%)

Corn 69 -10.5
Soybeans 31 -6.0
Wheat 58 -9.0
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Vegetative filter strips: The SWAT conservation practice-modeling guide provides a
specific method for representing vegetative filter strips (VFS) in SWAT. This method
includes adjusting the fraction of total runoff from a field entering the most concentrated
10% of a VFS (VFSCON); field area to VFS ratio (VFSRATIO); and the fraction of flow
through the most concentrated 10% of fully channelized VEFS (VFSCH). As
recommended in the SWAT conservation practice-modeling guide, a VFSCON of 0.5,
VFSRATIO of 40, and a VFSCH of zero were used to represent vegetative filter strips at

optimal conditions.

Grassed waterways: Representing grassed waterways in SWAT include adjusting the
channel Manning’s roughness (CH N2), channel cover factor (CH COV2) and the
channel erodibility factor (CH COVI). As recommended by Fiener and Auerswald
(2006), the Manning’s roughness coefficient was adjusted to 0.3 to represent grassed
waterways at optimal conditions, a channel cover factor of 0.001 was used to represent
fully protected channels, and a channel erodibility factor of 0.001 was used to represent
channels with zero erodibility (Bracmort et al., 2004, 2006). Other parameters associated
with grassed waterways include channel width (CH W2) and channel depth (CH D),

typically specified in the channel design phase.

Blind Inlets: Blind inlets are a new technology currently being developed by researchers
attached to the ARS-NSERL-CEAP project (Smith and Livingston, 2013; Smith et al.,
2008), and are not currently represented in SWAT. Being able to represent this technology

in SWAT should enhance conservation efforts to protect surface water quality. At present,
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SWAT assumes that once sediment, nutrients or pesticides enter a water body (e.g.
potholes) they are instantaneously mixed throughout the volume (a well-mixed system)
(Neitsch, 2002). Blind inlets were represented in SWAT by modifying the pothole.f
subroutine. First, the flow from surface inlet tile to the main channel (tileo) was adjusted
to reflect flow from the blind inlet, with blind inlets reducing flow from potholes by
approximately 45%. Secondly, based on the results of field experiments (Smith et al.,
2008; Feyereisen et al., 2015), reduction in suspended sediment leaving the potholes was
accounted for by decreasing the delivery ratio for sediment fines (drcla) by 64%,
Equation (4.1). Complete settling was assumed for all other particle sizes (e.g. dr = zero
for sand, gravel etc.). Based on SWAT nutrient loss equations, particulate nitrogen and
phosphorus are attached to sediment fines. Therefore, adjusting drcla decreased
particulate forms of nitrogen and phosphorus by approximately 50%. Additionally, since
the ranges for blind inlet’s effectiveness on soluble N and P losses were wide (1% to 78%
and 34% to 94%, respectively), the time it takes for a certain amount of soluble N and
soluble P to be reduced by half were adjusted until total N and total P losses reached the

55% reduction reported by Feyereisen et al. (2015).

1_0-5*Vfall

drcla = ( ) * 0.36 (4.1)

DOtdepth
where Vgy; is the particle size fall velocity (mm/d), and potgepsn is the pothole depth
(m). The effectiveness of blind inlets in reducing pesticide losses is uncertain and

therefore, was not accounted for in this study.
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Blind inlets were simulated on all potholes identified as farmed-closed depressions in the
watershed, which had a contributing area of approximately 4.2 km?* (10.0% of watershed
area) (Figure 4.3). Using ArcGIS, farmed closed depressions were defined as sink
features identified in a 1-meter resolution DEM that met a certain criteria (i.e. features
with area >0.2ha, depth > 0.5m, features > 100m from drainage network and occurs in

croplands only).

Legend

* Farmed closed depressions

Stream

:] Sub-watersheds
[] axL watershed
- Contributing Area

0 07515 3 45 6
KM

Figure 4.3. Map of AXL watershed showing the farmed closed depressions and their
contributing areas.
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Nutrient management: Based on the NRCS guidelines, nutrient management
recommendations should be based on optimal crop agronomic requirements that would
not reduce crop yields. For this study, nutrient management was considered concerning
phosphorus (P) fertilizer reduction. Soil test data for northeastern Indiana (2001 to 2013)
showed average phosphorus content ranging from 46 mg kg ' to 53 mg kg '. Therefore,
based on the Tri-State fertilizer recommendations for soil P > 40 mg kg ' (Vitosh et al.,
1995), no additional fertilizer was required for corn and soybeans, while a reduced

application rate for wheat was recommended.

For the simulation of long-term nutrient management effects, modifying the application
rate of P over time is desired to account for possible changes to soil P levels. For this
study, however, changes in P application rate were based solely on current Tri-State
fertilizer recommendations for soil P> 40 mg kg ' in order to assess the effect of climate
change on P losses if reduced application rates are held constant over a long period of
time. A future research opportunity would be to explore changes in P application rate for
long-term simulations since in reality soil P would drop over time if P application rate

were held at zero.

4.4.6 BMP Simulation Scenarios

Fourteen BMP scenarios related to surface flow, tile flow, tillage operations and nutrient
management were assessed in this study. Five of the scenarios correspond to individual
BMPs with existing management practices; five additional scenarios correspond to

individual BMPs without existing management practices (as a control), while the other
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four scenarios consist of combinations of the five individual BMPs with existing-
management practices. A summary of the BMP simulation scenarios is presented in Table

4.6.



Table 4.6. Description of BMP simulation scenarios.

Simulation scenario

Scenario description

Baseline

Existing condition

Simulations performed using existing cropping and management practices.

1

Simulations performed using existing cropping and management practices within the watershed, but with all cropping done by
no-tillage (for corn, soybeans, and wheat).
Simulations performed using the existing cropping and management practices within the watershed, but with vegetative filter

2 strips (VFS) added at the edge of all fields.
Individual BMPs 3 Simulations performed using the existing cropping and management practices within the watershed, but with grassed waterways
scenarios added to all secondary channels.
4 Simulations performed using the existing cropping and management practices within the watershed, but with blind inlets added
on all potholes in corn, soybeans and wheat cultivation.
5 Simulations performed using the existing cropping and management practices within the watershed, except there was no
application of fertilizer
Control Worst case Simu.lations perforr.ned- with no conservation practices implemented (no VFS, no grassed waterways, conventional tillage
practices, and no blind inlets)
6 Simulations performed with no conservation practices implemented, except cropping done with no-till
7 Simulations performed with no conservation practices implemented, except VFS were added at the edge of all fields.
Individual BMPs 8 Simulations performed with no conservation practices implemented, except grassed waterways added to all secondary channels
scenarios 9 Simulations performed yvith no conservation practices implemented, except blind inlets were added on all potholes in corn,
soybeans and wheat cultivation.
10 Simulations performed with no conservation practices implemented, except fertilizer application to fields was reduced or
eliminated
1 BMP implementation consisted of VFS along the sides of 100% of the main channels, grassed waterways in 100% of secondary
channels, no-till for 100% of corn, soybean crops and wheat, blind inlets on all potholes.
12 Using scenario 11, fertilizer application to fields was eliminated
Combi'ned BMPs BMP implementation consisted of VFS placed randomly along the sides of 50% of the main channels. Grassed waterways
scenarios 13 placed on 50% of randomly selected secondary channels; no-till for 80% of the soybeans and 50% of the corn and wheat crops
(randomly selected); conservation tillage (mulch-till) for 20% of the soybeans and 50% of the corn and wheat crops; blind inlets
on 50% of the potholes (randomly selected).
14 Using scenario 13, fertilizer application to fields was eliminated

€el
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4.4.7 Evaluation of BMP Scenarios

The effects of BMP implementation on water quality are presented as percent change in
average annual surface runoff, sediment loss, atrazine loss, soluble N loss, total N loss,
soluble P loss and total P loss for each decade relative to the baseline period. Reductions
include cumulative load reductions for the watershed, considering overland transport and
routing through the stream network (Tuppad et al., 2010). The calibrated model with
existing management practices was used to establish baseline conditions against which to
evaluate individual and combined BMP effects. Additionally, a SWAT model set-up
without existing management practices (non-calibrated) was used to establish a control
against which the individual BMPs effectiveness was contrasted. Both individual and
combined BMP scenarios were simulated independently for the baseline period (1961-90)
and for each decade of future climate (i.e. 2020s, 2030s....2090s). The percent change
was calculated as:

Loadpost—Loadpre

Percent change = ( ) * 100 (4.2)

Loadyre
where Load,,, is the load before BMP implementation, and Load,,; is the load after
BMP implementation (negative values indicate decrease). A paired t-test (a = 0.05) was
used to assess the significance in percent change for streamflow, sediment loss, atrazine
loss, soluble N loss, total N loss, soluble P loss and total P loss before and after BMP

implementation.
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4.5 Results and Discussion

This study evaluated the performance of alternative conservation practices and
determined their effectiveness for use in future watershed implementation plans. Average
annual surface runoff, sediment loss, atrazine loss, soluble N loss, total N loss, soluble P
loss and total P loss simulated under existing baseline conditions (1961-90, calibrated)
were 100 mm, 0.71 tha™, 1.55 g ha™, 10.1 kg ha', 12.8 kg ha™’, 0.05 kg ha™, and 0.6 kg
ha!, respectively (Table 4.7). The baseline scenario, which involves simulations,
performed using existing cropping and management practices, provided the basis for
evaluating the individual and combined BMP scenarios under future climate conditions.
Table 4.7 also shows the average annual metrics for uncalibrated SWAT simulation
performed for 1961-90 (control). The large differences in average annual metrics between
baseline and control simulations were because the control simulation was performed
without existing management practices and were uncalibrated. Management practices
such as no-tillage and VFS that were widely implemented in the AXL watershed reduced
surface runoff, sediment and agricultural chemical losses.

Table 4.7. Average annual surface runoff, sediment, and chemical losses for existing

baseline conditions (pre BMP, calibrated) and the control (pre BMP, uncalibrated), under
baseline climate (1961-1990).

Baseline Control

Surface runoff (mm) 100 182
Sediment loss (t ha™ yr') 0.71 1.62
Atrazine loss (g ha™' yr'") 1.55 2.41
Soluble N loss (kg ha™ yr'") 10.1 26.5
Total N loss (kg ha™ yr") 12.8 33.3
Soluble P loss (kg ha™ yr") 0.05 0.11

Total P loss (kg ha yr') 0.60 1.65
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4.5.1 Individual BMP scenarios
The effect of individual BMPs (no-till, VFS, grassed waterways, blind inlets, and nutrient
management) in mitigating surface runoff, sediment loss, atrazine loss, soluble N loss,
total N loss, soluble P loss, and total P loss, under baseline and future climate conditions
are summarized in Figures 4.4 and 4.5 on a decadal basis. Summary of the long-term
average annual percent reduction at the watershed outlet, and the statistical analysis is
presented in Table 4.8. Summaries of magnitude change in surface runoff, sediment and
chemical losses relative to the baseline scenario (existing management and cropping

practices simulated under MarkSim baseline climate) are presented in Appendix C.
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Figure 4.4. The effect of Individual BMP scenarios on a.) surface runoff, b.) sediment
loss and c.) atrazine loss for the baseline climate (1961 to 1990) and each decade of
future climate conditions (2020 to 2099).
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Figure 4.5. The effect of Individual BMP scenarios on a.) soluble N loss, b.) total N loss,
c.) soluble P loss and d.) total P loss for the baseline climate (1961 to 1990) and each
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Table 4.8. Long-term annual average percent change in surface runoff, sediment, atrazine, soluble N, total N, soluble P, and total P
loadings at the watershed outlet, with respect to baseline simulations.

Surface runoff Sediment Atrazine Soluble N Total N Soluble P Total P
% % p- % p- % p- % p- % p- % p-
BMPs Implementation change p-value change  value changed value change value change value change value change value
0.835
No-Till -24.8 0.000 -43.3  0.006 -46.7  0.000 0.7 * -8.3  0.029 -16.3  0.000 -29.4  0.000
0.304

VES 0.0 1.000 -28.0  0.050 -22.0  0.001 -2.9 * -6.9  0.053 -12.1  0.000 -13.0  0.000
0.984 0.515

Grassed Waterways 0.0 1.000+ -1.0 * -3.8 * -7.3 0.015 -8.2  0.027 83 0.007 -133  0.011
0.999 1.000 0.991 0.982 0.912 0.960

Blind Inlets -0.2 1.000 -0.2 * 0.0 * 0.0 * -0.1 * -0.3 * -0.2 *
0.972 0.967 0.194

Nutrient management 0.0 1.000 0.5 * 0.3 * -3.8 * 2.9 0.42% -21.5  0.000 -23.0 0.016

Combined BMPs

(scenario#11) -24.8 0.000 -57.0  0.001 -56.5  0.000 -9.5  0.002 -20.3  0.000 -28.0  0.000 -52.6  0.000

Combined BMPs

(scenario#12) -24.8 0.000 -56.8  0.001 -56.4  0.000 -13.0  0.002 -23.0  0.000 -35.6  0.000 -57.4  0.000

Combined BMPs 0.064

(scenario#13) -15.2 0.000 -37.7  0.014 -38.2  0.000 -5.4 * -12.8  0.001 -12.1  0.000 -34.7  0.000

Combined BMPs

(scenario#14) -15.2 0.000 -37.4  0.015 -38.0  0.000 -6.6  0.029 -13.7  0.001 -16.5  0.000 -39.0  0.000

Note:

The p-values are used to identify whether the reductions realized by the BMPs implementation are significant at a. = 0.05 level.

* indicates insignificant difference at o = 0.05

Combined BMPs implementation consisted of:

# 11 VES along 100% of the main channels, grassed waterways in 100% of secondary channels, no-till for 100% of corn, soybean and wheat, blind inlets on all farmed potholes

# 12 VFS along 100% of the main channels, grassed waterways in 100% of secondary channels, no-till for 100% of corn, soybean and wheat, blind inlets on all farmed potholes,
nutrient mgt.

# 13 VES along 50% of the main channels, grassed waterways in 50% of secondary channels, no-till for 50% of corn, 80% of soybean and 50% of wheat, blind inlets on 50% of farmed
potholes

# 14 VFS along 50% of the main channels, grassed waterways in 50% of secondary channels, no-till for 50% of corn, 80% of soybean and 50% of wheat, blind inlets on 50% of farmed
potholes, nutrient mgt.

6¢€l
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4.5.1.1 No-Tillage (Scenarios 1 and 6 in Table 4.6)

Results from this study, which is based on each decade of future climate (2020-2099),
show that applying no-tillage to all crops in the watershed reduced average annual
surface runoff in the range of 22% to 25% (approximately 20 mm). The reduction in
surface runoff resulted in increasing average annual tile flow (5 mm), and seepage into
the soil profile (10 mm). An additional 5 mm of rainfall is accounted for by increasing
lateral flow, ET, percolation out of the soil, and aquifer recharge. Statistical analysis
showed that the long-term annual average reduction in runoff due to no-till

implementation was significant with p =0.000 at o = 0.05 (Table 4.8).

No-tillage also reduced average annual sediment (34.9% to 55.2%), atrazine (44.5% to
50.8%), total N (7.5% to 8.9%), soluble P (14.2% to 20.2%) and total P (26.7% to 32.9%)
losses, with respect to existing baseline conditions (Figures 4.4 and 4.5). However, there
was a slight increase in soluble N loss (0.5% to 1%). The control simulations also
confirm that no-tillage will reduce surface runoff (23.2% to 25.0%), sediment (44.6% to
46.3%), atrazine (39.3% to 44.3%), and total N (2.9% to 4.4%), soluble P (1.0% to 8.7%)

and total P (14.7% to 23.3%), but increase soluble N loss (2% to 4%) for the same period.

The long-term annual average reduction in sediment, atrazine, total N, soluble P and total
P losses due to no-till implementation were significant at a = 0.05 (Table 4.8). Several
studies conducted using SWAT have shown similar results in terms of percent reduction
in surface runoff, sediment and chemical losses due to the application of no-tillage or

some other form of conservation tillage implementation at the watershed scale (Dalzell et
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al., 2004; Tuppad et al., 2010; Dechmi and Skhiri, 2013). Shipitalo (2013) evaluated the
effect of no-till on surface runoff, sediment and nutrient losses in seven sub-watersheds in
the North Appalachian Watershed near Coshocton, Ohio under a corn/soybean rotation
and concluded that no-till was more effective in minimizing surface runoff, sediment

(25%), nitrogen (33%), and phosphorus (6%) losses when compared to chisel.

The soluble N loss from surface runoff decreased by approximately 0.13 kg/ha/yr while
soluble N loss through tile flow increased by 0.24 kg/ha/yr, which resulted in a slight
increase in overall soluble N loading. The slight increase in long-term annual average
soluble N loss due to no-till implementation was not significant at a = 0.05 (Table 4.8).
Other studies (Sharpley and Smith, 1994; Dechmi and Skhiri, 2013) also reported similar
increases in soluble N loss, which is attributed to the increasing surface crop residue
resulting from no-tillage operations (Wang et al., 2008). The application of a no-tillage
system increased soil surface residue in the range of 9.4% to 22.1% with respect to
existing baseline conditions. With increased residue cover, surface runoff is often reduced
while infiltration is increased. Therefore, because more water is allowed to enter the soil
profile, there is potential for increased nitrate transport through subsurface tile drainage.
Because nitrate is water-soluble and is negatively charged, it is easily leached and not
held by the negatively charged soil particles. The AXL watershed is heavily drained using
subsurface tiles that collect much of the leachate and deposit it directly to the stream

reach; therefore, as the soil surface residue and infiltration increased, nitrate loss through
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subsurface tiles also increased while the nitrate loss through surface runoff decreased

(Figure 4.6).

25 Soil residue
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1 Surface flow nitratg
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Figure 4.6. The effect of no-till (percent changes) on soil residue cover, nitrate lost
through tile flow, and nitrate lost through surface flow for baseline climate and each
decade of future climate simulations.

4.5.1.2 Vegetative filter strips (VFS) (scenarios 2 and 7 in Table 4.6)

Vegetative filter strips were simulated at the edge-of-fields for all cropland under corn,
soybeans and wheat cultivation, amounting to 67% of the watershed area. VFS are used
to intercept and slow surface runoff thereby allowing more sediment and sediment-bound
nutrients to settle out before flow enters stream channels. Results from this study show
that VFS were effective at reducing sediment loss by approximately 28% (p = 0.050)

(Table 4.8).
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Atrazine sorbed to sediment is trapped in VFS thus resulting in atrazine loss being
reduced by approximately 21% (p = 0.001), with respect to the existing baseline
conditions (Figures 4.4 and 4.5). VFS reduced soluble N loss and total N loss by
approximately three percent (p = 0.304) and seven percent (p = 0.053), respectively. Based
on the control simulations, VFS will have negligible effects on the total surface runoff
volume in the AXL watershed, but will be effective at reducing sediment by
approximately 28%, atrazine by 23%, soluble P by 12% and total P by 13% given future
clime conditions. Tuppad et al. (2010) predicted that VFS applied at the edge of all fields
reduced sediment 25% to 63%, and total N and total P by 62% and 64%, respectively, at
the HRU level in the Bosque River Watershed, Texas. At the sub-watershed and
watershed levels, Parajuli et al. (2008) predicted that application of VFS in the 950 km?

Upper Wakarusa Watershed, Kansas reduced sediment by 46% and 12%, respectively.

4.5.1.3 Grassed waterways (scenarios 3 and 8 in Table 4.6)

Grassed waterways were simulated on the secondary channels within the watershed and
are used to protect the soil from concentrated flows and to reduce gully erosion, thus
reducing sediment loading to the main channels. Results from this study show that the
effectiveness of grassed waterways in reducing surface runoff volume, sediment and
atrazine losses was not significant, with p = 1.000, 0.984 and 0.515, respectively, at o =
0.05. The control simulations also suggest grassed waterways will have negligible effects
on surface runoff volume, but will reduce sediment and atrazine losses by approximately

2% and 4%, respectively.
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The implementation of grassed waterways, however, were effective in reducing soluble N
loss by approximately 7% (p = 0.015), total N loss by approximately 8% (p = 0.027), and
total P loss by approximately 13% (p = 0.011) (Figures 4.4 and 4.5). But despite a
significant reduction in total P loss due to grassed waterway implementation, soluble P
loss increased by approximately 8% (p = 0.007). This phenomenon indicates that the way
grassed waterways are represented in SWAT did not quite capture the physical processes
the way they would be in reality. Here, the grassed waterways seem to be capturing
sediment that it should not be, and by capturing sediment, it acts as sink for total P and a
source for soluble P during runoft events. Grassed waterways were represented in SWAT
by increasing the Manning’s roughness coefficient for the channels, and by modifying the
channel cover factor and the channel erodibility factor to reflect a fully covered non-
erosive channel (Bracmort et al., 2004, 2006). There is a built-in function for representing
grassed waterways in SWAT, however, this built-in function did not work with the
version of SWAT used in this study and therefore, the procedure suggested by Bracmort

et al. (2004, 2006) was used.

While other studies using SWAT have determined that grassed waterways were effective
in reducing sediment, total nitrogen and total losses (Bracmort et al., 2006; Kaini et al.,
2012), very few examined its effect on soluble forms of nutrient (soluble N and soluble
P) losses. Based on the unexpected results obtained for soluble P in this study, further
research is required to determine whether the representation of grassed waterways in

SWAT needs to be improved or whether grassed waterways have unintended
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consequences and implications for sustainable management as suggested by Dodd and

Sharpley (2015).

4.5.1.4 Blind inlet (scenario 4 and scenario 9 in Table 4.6)

At the HRU level, blind inlets were effective in reducing sediment loss in the range of
42% to 69% and total N loss in the range of 35% to 55%. However, at the watershed
level, the percentage change in surface runoff, sediment and atrazine losses for the
baseline climate and each decade of future climate were not significant, with p-values of
1.000, 0.999 and 1.000, respectively. The effectiveness of blind inlets in reducing soluble
N, total N, soluble P and total P at the watershed level were also not significant, with p-

values of 0.991, 0.982, 0.912, and 0.960, respectively.

The negligible effect of blind inlets at the watershed level is most likely due to the
relatively small watershed area contributing to the closed depression as shown in Figure
4.3. The contributing area simulated in SWAT was limited to the number of selected
farmed-closed depressions that were based on a set of criteria using best professional
judgment. This method of identifying and representing closed depressions in SWAT adds
a level of uncertainty to the simulation process that may be alleviated once precise
representation procedures are developed for closed depressions in agricultural

watersheds.
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4.5.1.5 Nutrient management (scenario 5 and scenario 10 in Table 4.6)

The implementation of a nutrient management scenario (Table 4.4) was aimed at reducing
excess phosphorus in the soil, and consequently reducing the phosphorus transport
induced by surface runoff. Results from this study show that the nutrient management
scenario had no impact on surface runoft, while its impact on sediment loss, atrazine loss,
soluble N loss and total N loss was insignificant with p-values of 0.972, 0.972, 0.194 and

0.420, respectively.

The effectiveness of a nutrient management scenario was evident in its reduction of
soluble P and total P losses by approximately 22% (p = 0.000) and 23% (p = 0.016),
respectively. The control simulations also confirm the reduction in soluble P and total P
losses by approximately 23.0%. These results were similar to those in other studies
evaluating the impact of reduced-P nutrient management on soluble P and total P loss
(Santhi et al., 2001; Santhi et al., 2006; Dechmi and Skhiri, 2013b; Dodd and Sharpley,
2015; Francesconi et al., 2015). In a study that evaluated the impacts of BMP in an
agricultural watershed using SWAT, Dechmi and Skhiri (2013) predicted that a reduced
nutrient management implementation was effective in reducing soluble P and total P
losses by 5.8 and 5.1%, respectively. Santhi et al. (2006) evaluated the impacts of BMP
(including nutrient management) on sediment and nutrient loadings in the West Fork
Watershed of Trinity River Basin in Texas and reported reductions of 10% to 12% from

sediment, 3% to 18% for total N, and 5% to 29% for total P.
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In this study, reduced P nutrient management was simulated for the entire simulation
period (2020s to 2090s). Since P application rate is based on the current Tri-State
Fertilizer Recommendations for Corn, Soybeans and Wheat (Vitosh et al., 1995), it is
recommended that for future studies, the P application rate is adjusted over time, should

the soil P levels fall below the suggested agronomic levels.

4.5.2 Combined BMP scenarios (scenarios 11-14 in Table 4.6)

The effect (percent change) of combined BMP scenarios (scenarios 11 through 14) in
mitigating surface runoff, sediment, atrazine, soluble N, total N, soluble P, and total P
losses, under baseline climate and each decade of future climate conditions are
summarized in Figures 4.7 and 4.8. Summaries of the magnitude change in atrazine,
soluble N, total N, soluble P, and total P losses relative to the baseline scenario (existing
management and cropping practices simulated under MarkSim baseline climate) are

presented in Appendix C.

The combined BMPs scenarios were significantly more effective in reducing surface
runoff, sediment, atrazine, soluble N, total N, soluble P, and total P losses when compared
to the individual BMPs, except for scenario 1 (no-till) that resulted in surface runoff
reductions similar to scenarios 11 and 12 but greater than scenarios 13 and 14. This was
because the no-till BMP was simulated for 100% of corn, soybeans, and wheat in
scenarios 1, 11 and 12, but only 50% of corn, 80% of soybeans, and 50% of wheat in

scenarios 13 and 14. The largest percent reductions were achieved by scenarios 11 and
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12, which represented the application of 100% of the individual BMPs (except nutrient
management was only included in scenario 12). Sediment and total P were the pollutants
that were reduced the most in all four combined BMPs scenarios because more of the
individual BMPs affect sediment loss and sediment-bound phosphorus than other

pollutants.

The percent reductions achieved by scenario 12 were similar to those of scenario 11, but
with an average of 3% more reduction in soluble N and total N losses, and 5% more
reduction in soluble P and total P losses because of the inclusion of a nutrient
management scheme. More specifically, the implementation of scenario 11 resulted in
percent reductions ranging from 24% to 26% for surface runoff, 50% to 68% for
sediment, 55% to 60% for atrazine, 9% to 10% for soluble N, 20% to 21% for soluble P
and 51% to 55% for total P losses. The implementation of scenario 12 resulted in
identical changes on surface runoff, sediment, atrazine loss, but predicted reductions
ranging from 13% to 14% for soluble N, 23% to 24% for total N, 31% to 41% for soluble

P, and 55% to 60% for total P.

Scenarios 13 and 14 represented a more realistic and balanced case of BMP
implementation, because they do not require 100% implementation of the individual
BMPs in order to be effective in reducing surface runoff, sediment and agricultural
chemical losses. They may also be more cost effective and attractive for farmers to
implement. Both scenarios resulted in similar reductions for surface runoff, sediment and

atrazine loss, ranging from 15% to 16%, 32% to 45%, and 37% to 41%, respectively. The
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implementation of scenario 13 resulted in reductions ranging from 5% to 6% for soluble
N, 12% to 13% for total N, 9% to 16% for soluble P and 33% to 36% for total P losses.
Scenario 14 produced similar results, but with an average of 1% to 4% more reduction in
soluble N and total N losses, and 4% to 5% more reduction in soluble P and total P losses

because of the inclusion of nutrient management.
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Figure 4.7. The effect of combined BMPs scenarios on a.) surface runoff, b.) sediment

loss and c.) atrazine loss for the baseline climate (1961 to 1990) and each decade of
future climate conditions (2020 to 2099).



150

[ Scenario 11 [0 Scenario 12 il Scenario 13] | Scenario 14 |

a.

0 —

Soluble-N loss (% change)

=

-16 I I I I I I I
1961-90 2020s  2030s  2040s  2050s  2060s  2070s  2080s  2090s

e

-30 I I I
1961-90 2020s  2030s  2040s  2050s  2060s  2070s  2080s  2090s

e o o i

-50 T T T
1961-90 2020s  2030s  2040s  2050s  2060s  2070s  2080s  2090s

-60 -
1961-90  2020s 2030s 2040s 2050s 2060s 2070s 2080s 2090s
Time (decade)

Total-N loss (% change)

Soluble-P loss (% change)
¥
o
|

Total-P loss (% change)

=
=
-
=

Figure 4.8. The effect of combined BMPs scenarios on a.) soluble N loss, b.) total N loss,
c.) soluble P loss and d.) total P loss for the baseline climate (1961 to 1990) and each
decade of future climate conditions (2020 to 2099).
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4.6 Summary and Conclusions

SWAT with future climate data downscaled using the MarkSim weather file generator
was used to quantify the long—term effects of different conservation practice
implementation on surface runoff, sediment and agricultural chemical losses in the
Matson Ditch (AXL) Watershed, Northeastern Indiana. Average annual surface runoff,
sediment and atrazine losses showed reductions ranging from 0% to 25%, 0% to 68%,
and 0% to 60% respectively, with no-till or combined BMPs (including 100% no-till)
being the most effective. Implementing grassed waterways, VFS, blind inlets and nutrient
management individually had insignificant effects on surface runoff at the watershed
outlet. Predicted changes in average annual soluble N and total N losses ranged from -5%
to 14%, and 0.1% to 24%, respectively, with grassed waterways or combined BMPs
(including grassed waterways on 100% of secondary channels) being the most effective
in reducing soluble N loss, while no-till or combined BMPs (including 100% no-till)
being the most effective in reducing total N loss. Changes in average annual soluble P
and total P losses ranged from -10% to 41%, and 0.2% to 60%, respectively, with nutrient
management or combined BMPs (including 100% no-till and VFS along the sides of
100% of the main channels) being the most effective in reducing soluble P loss. No-till or
combined BMPs (including 100% no-till and VFS along the sides of 100% of the main

channels) were the most effective in reducing total P loss.

Based on these results, the implementation of individual conservation practices may be

effective in addressing a specific sediment or nutrient concern in agricultural watersheds,
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but may not be as effective in mitigating the loads of unintended pollutants that could
impair water quality. The combined BMPs, however, were the most effective in reducing
surface runoff, sediment, atrazine, and nutrient loadings simultaneously under current and
future climate scenarios. This study therefore, helps to highlight the importance of
combined implementation of different conservation practices in addressing the
environmental concerns surrounding agricultural watersheds. Given the availability of
several other conservation practices and the costs associated with implementing them at
the watershed scale, a detailed assessment would be useful in determining the most cost
effective combination of BMPs that will achieve optimum results based on current and

future climate scenarios, and the design life of each BMP.
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CHAPTER 5. OVERALL CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary and Conclusions

The Soil and Watershed Assessment Tool (SWAT) was used to study four watersheds in
northeastern Indiana. SWAT is a hydrologic model developed by the USDA-ARS to
predict the impact of land management practices on water, sediment and agricultural
chemical losses in large watersheds. The major objective of the research was to evaluate
the effect of different agricultural practices on runoff, sediment and chemical losses under

current baseline and future climate conditions.

SWAT was first used to evaluate the influence of watershed sizes on model calibration
parameters in four watersheds (CCW = 680 km” F34 = 183 km?, AXL = 42 km?® and
ALG = 20 km?) located in Northeastern Indiana. SWAT model parameters were
optimized in each of the four watersheds independently and then applied to the other
watersheds of different sizes to determine whether calibrating the model at one size
watershed would yield satisfactory results when applied to different watersheds. The
results showed that calibrating SWAT at one size and applying the optimized parameters
at different watersheds of varying sizes with similar physiographic features yielded
satisfactory results. The size at which the model was calibrated had little effect on

streamflow simulations. The prediction of soluble nitrogen loss was improved when
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calibration was performed at the larger CCW watershed. Calibrating SWAT at the smaller
AXL and ALG watersheds produced improved NSE, R” and PBIAS values for soluble
and total P when applied to the larger watersheds. SWAT coupled with downscaled
climate projections obtained using the MarkSim weather file generator was used to
evaluate the impact of climate change on runoff, sediment, atrazine, soluble N, total N,
soluble P and total P at the four calibrated watersheds. Based on the results obtained,
there will be a significant decrease in surface flow, while tile flow will increase
significantly by the end of this century. Average annual sediment loss is expected to
increase, though the overall magnitude will be small for the watershed considered here.
There will be no significant changes in atrazine, soluble N, total N, and total P losses
between the baseline period and the end of the century, while soluble P losses might be

larger at the CCW and F34 watersheds.

Finally, the AXL watershed was selected and used to evaluate the long-term impact of
BMPs on surface runoff, sediment, atrazine, nitrogen and phosphorus losses. The
performance of individual and combined BMPs was simulated under current and baseline
climate conditions. Based on the results obtained, individual conservation practices were
effective in reducing only a targeted pollutant load, but combined practices were more
effective in reducing multiple pollutant loadings simultaneously. Of the individual BMPs
assessed, no-till was the most effective in reducing multiple pollutant loads. When
individual BMPs were combined, pollutant loads were reduced significantly (at a = 0.05)

for all pollutants, both under baseline and future climate scenarios. The percent change
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for each decade of future climate ranged from 15% to 25% for surface runoft, 32% to
68% for sediment, 37% to 60% for atrazine, 5% to 13% for soluble N, 12% to 35% for

total N, 9% to 41% for soluble P, and 33% to 60% for total P.

The overall results of the study will contribute to the Conservation Effects Assessment
Project’s (CEAP) efforts to quantify the effects of conservation practices on water quality
and other environmental parameters as part of its mission to provide oversight as to how

the millions of dollars being spent on conservation projects is benefiting the environment.

5.2 Recommendations for future work

An assessment of the MarkSim weather file generator to determine whether the ensemble
of climate models resulted in a larger proportion of rainfall occurring in small events for
future climate compared to baseline climate, future studies could compare individual
climate model results with the ensemble mean of multiple climate model results. In

addition, other climate change models and downscaling approaches could be considered.

The pothole representation in SWAT needs to be enhanced. The method of identifying
and representing closed depressions in SWAT adds a level of uncertainty to the
simulation process that may be alleviated once precise representation procedures are

developed for closed depressions in agricultural watersheds.

Potholes are numerous within some landscapes and therefore should be properly
represented in SWAT setup especially in regions where they are drained with tile risers to

increase the cultivation acreage. Therefore, an automated procedure is needed to input
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pothole information in SWAT. This would save time and minimize the modeling

uncertainty errors.

The reduced P nutrient management scenario used in this study was solely based on the
Tri-State fertilizer recommendation for corn, soybeans and wheat without taking into
account possible changes in soil P levels over time. Therefore, it is recommended that in
future studies, the P application rate be adjusted over time, should the soil P levels be

determined to fall below the suggested agronomic levels.

In order to control the number of variables involved in this study and to make the study
more manageable, the impact of possible changes in future CO; levels that are important
to crop growth and water usage was not considered. SWAT provides an option to
represent the effects of increased CO2 explicitly therefore, with future CO2
concentrations projected to increase (between 550ppm and 950ppm) it is recommended

that future climate change studies consider these effects.
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Appendix A: Simulated and observed monthly time series for calibration and validation.
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Figure A 1. Monthly time series of simulated and observed nitrate+nitrite for CCW, F34,

AXL and ALG. Calibration period was from January 2006 to December 2009 and

validation.
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Figure A 2. Monthly time series of simulated and observed total nitrogen for CCW, F34,
AXL and ALG. Calibration period was from January 2006 to December 2009 and
validation period from January 2010 to December 2013.
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Figure A 3. Monthly time series of simulated and observed Orthophosphate (soluble P)
for F34, AXL and ALG. Calibration period was from January 2006 to December 2009
and validation period from January 2010 to December 2013.
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Figure A 4. Monthly time series of simulated and observed Orthophosphate (soluble P)
for CCW, F34, AXL and ALG. Calibration period was from January 2006 to December

2009 and validation period from January 2010 to December 2013.
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Appendix B: Nutrients load calculated using LOADEST.

| Site Name | _CEDAR CREEK NEAR CEDARVILLE, IN |
Parameter Name : Phosphorus
Watershed Area : 167833.97 ac
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Figure B. 1. Observed total P concentration at Cedar Creek Watershed outlet.
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Total Per acre
Estimated Annual Load : 46,238 Kg/yr 0.3 Kg/ac/yr
Maximum Annual Load to Meet Target : 19,074 Kg/yr, 0.1 Kg/ac/yr
Load Reduction Needed to Meet Target : 27,164 Kg/yr 0.2 Kg/ac/yr
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Figure B. 2. Web-based Total phosphorus Load Calculation using LOADEST.
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Site Name || _CEDAR_CREEK NEAR_CEDARVILLE, IN |
Parameter Name : Nitrate_ Nitrite
Watershed Area : 167833.97 ac
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Figure B. 3. Observed total P concentration at Cedar Creek Watershed outlet.
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Total Per acre
Estimated Annual Load : 1,132,230 Kg/yr 6.7 Kg/ac/yr
Maximum Annual Load to Meet Target : 381,481 Kg/yr| 2.3 Kg/ac/yr
Load Reduction Needed to Meet Target : 750,748 Kg/yr 4.5 Kg/ac/yr
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Figure B. 4. Web-based Nitrate+Nitrite Load Calculation using LOADEST.
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Appendix C: Changes in surface runoff and constituent loadings.

Figures in this section contain summaries of the changes in surface runoff, sediment and
chemical losses relative to the baseline scenario (existing management and cropping
practices simulated under MarkSim baseline climate). The simulated BMPs include
scenario 1 (no-till), scenario 2 (VFS), scenario 3 (grassed waterways), scenario 4 (blind
inlets), scenario 5 (nutrient management), scenario 11 (combined BMPS — w/o nutrient
management), scenario 12 (combined BMPS — w/ nutrient management)), scenario 13

(scenario 11 applied at 50%) and scenario 14 (scenario applied at 50%).
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Figure C. 1. Change in average annual surface runoff (with respect to baseline
simulation) resulting from individual BMP implementation and climate change.
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Figure C. 2. Change in average annual sediment loss (with respect to baseline
simulation) resulting from individual BMP implementation and climate change.
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Figure C. 3. Change in average annual atrazine loss (with respect to baseline
simulation) resulting from individual BMP implementation and climate change.
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Figure C. 4. Change in average annual soluble N loss (with respect to baseline
simulation) resulting from individual BMP implementation and climate change.
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Figure C. 5. Change in average annual total N loss (with respect to baseline
simulation) resulting from individual BMP implementation and climate change.
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Figure C. 6. Change in average annual soluble P loss (with respect to baseline
simulation) resulting from individual BMP implementation and climate change.
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Figure C. 7. Change in average annual total P loss (with respect to baseline
simulation) resulting from individual BMP implementation and climate change.
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Figure C. 8. Change in average annual surface runoff (with respect to baseline
simulation) resulting from combined BMPs implementation and climate change.
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Figure C. 9. Change in average annual sediment loss (with respect to baseline
simulation) resulting from combined BMPs implementation and climate change.
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Figure C. 10. Change in average annual atrazine loss (with respect to baseline
simulation) resulting from combined BMPs implementation and climate change.
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Figure C. 11. Change in average annual soluble N loss (with respect to baseline
simulation) resulting from combined BMPs implementation and climate change.
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Figure C. 12. Change in average annual total N loss (with respect to baseline
simulation) resulting from combined BMPs implementation and climate change.
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Figure C. 13. Change in average annual soluble P loss (with respect to baseline
simulation) resulting from combined BMPs implementation and climate change.
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Figure C. 14. Change in average annual total P loss (with respect to baseline
simulation) resulting from combined BMPs implementation and climate change.
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