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ABSTRACT 

Tan, Jing. Ph.D., Purdue University, May 2016. Estimating the Water Quality Condition 
of River and Lake Water in the Midwestern United States from Its Spectral 
Characteristics. Major Professor: Keith Cherkauer. 
 
 

Water quality impairment due to excessive concentrations of nutrients and 

sediments has been a concern in the Midwestern United States. Alternatives to traditional 

in situ water quality sampling methods, which are limited in frequency or to a small 

number of locations, are needed for regional monitoring and assessment. Remote sensing 

has the potential to provide a synoptic view of water quality condition at multiple 

temporal scales. This study focuses on developing/calibrating remote sensing algorithms 

for water quality retrieval in Midwestern rivers and lakes. In the first part of this study, 

the spectral measurements collected using a hand-held spectrometer as well as water 

quality observations for the Wabash River and its tributary the Tippecanoe River in 

Indiana were used to develop empirical models for the retrieval of chlorophyll (chl) and 

total suspended solids (TSS). A method for removing sky and sun glint from field spectra 

for turbid inland waters was developed and tested. Empirical models were then developed 

using a subset of the field measurements with the rest for model validation. Spectral 

characteristics indicative of waters dominated by different inherent optical properties 

(IOPs) were identified and used as the basis of selecting bands for empirical model 

development. The second part of this study focuses on the calibration of an existing bio-
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geo-optical model for studying the spatial variability of chl, non-algal particles (NAP), 

and colored dissolved organic matter (CDOM) in episodic St. Joseph River plumes in 

southern Lake Michigan. One set of EO-1 Hyperion imagery and one set of boat-based 

spectrometer measurements were successfully acquired to capture episodic plume events. 

Coincident water quality measurements were also collected during these plume events. A 

database of inherent optical properties (IOPs) measurements and spectral signatures was 

generated and used to calibrate a bio-geo-optical model. Finally, a comprehensive 

spectral-biogeochemical database was developed for the Wabash River and its tributaries 

in Indiana by conducting field sampling of the rivers using a boat platform over different 

hydrologic conditions during summer 2014. In addition to the various spectral 

measurements taken by a handheld field spectrometer, this database includes 

corresponding in situ measurements of water quality parameters (chl, NAP, and CDOM), 

nutrients (TN, TP, dissolved organic carbon (DOC)), water-column IOPs, water depths, 

substrate types and bottom reflectance spectra. The temporal variability of water quality 

parameters and nutrients in the rivers was analyzed and studied. A look-up table (LUT) 

based spectrum matching methodology was applied to the collected observations in the 

database to simplify the retrieval of water quality parameters and make the data 

accessible to a wider range of end users.  

It was found that the ratio of the reflectance peak at the red edge (704 nm) with the local 

minimum caused by chlorophyll absorption at 677 nm was a strong predictor of chl 

concentrations (coefficient of determination (R2) = 0.95). The reflectance peak at 704 nm was 

also a good predictor for TSS estimation (R2 = 0.75). In addition, we also found that reflectance 

within the NIR wavelengths (700 - 890 nm) all showed strong correlation (0.85-0.91) with TSS 
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concentrations and generated robust models. Results suggest that hyperspectral information 

provided by field spectrometer can be used to distinguish and quantify water quality 

parameters under complex IOP conditions.  

Field measured concentrations of NAP and CDOM at 67% of the sampled sites in 

the St Joseph River plume fall within one standard deviation of the retrieved means using 

the spectrometer measurements and the calibrated bio-geo-optical model. The percentage 

of sites within one standard deviation (88%) is higher for the estimation of chl 

concentrations. Despite the dynamic nature of the observed plume and the time lag during 

field sampling, 77% of the sampled sites were found to have field measured chl and NAP 

concentrations falling within one standard deviation of the Hyperion derived values. The 

spatial maps of water quality parameters generated from the Hyperion image provided a 

synoptic view of water quality conditions. Analysis highlights that concentrations of NAP, 

chl, and CDOM were more than three times higher in conjunction with river outflow and 

inside the river plumes than in ambient water. It is concluded that the storm-initiated 

plume is a significant source of sediments, carbon and chl to Lake Michigan. 

The temporal variability of water quality parameters and nutrients in the Wabash 

River was closely associated with hydrologic conditions, while no significant correlations 

existed between these parameters and streamflow for the Tippecanoe River, probably due 

to the two upstream reservoirs. The poor relationship between CDOM and DOC indicates 

that most DOC in the rivers was from human sources such as wastewater. It was also 

found that the source of water (surface runoff or combined sewer overflows (CSO)) to a 

river, water temperature, and nutrients are important factors controlling instream 

concentrations of phytoplankton. The LUT retrieved chl and NAP concentrations were in 
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good agreement with field measurements with slopes close to 1.0. The average estimation 

errors for NAP and chl were within 4.1% and 37.7%, respectively, of independently 

obtained lab measurements. The CDOM levels were not well estimated and the LUT 

retrievals for CDOM showed large variability, probably due to the small data range 

collected in this study and the insensitivity of remote sensing reflectance, rsR , to CDOM 

change. 

This study demonstrates the ability of remote sensing in monitoring water quality 

retrieval in inland rivers and lakes. In addition, the datasets collected in this study provide 

useful ground truth data for remote sensing of water quality in inland waters and valuable 

sources for further investigation of the relationship between optical and biogeochemical 

properties. 



1 

CHAPTER 1. INTRODUCTION 

1.1 Background 

Inland waters provide water resources for a variety of human uses including 

transportation, recreation, commerce, water supply, and human health. In addition to that, 

they support important and diverse habitats that are essential for aquatic plant and animal 

communities (Bronmark and Hansson, 2002; Duker and Bore, 2001). Other ecosystem 

services provided by inland waters and that are vital to human development include 

climate regulation (Thiery et al., 2015; Notaro et al., 2013), flood mitigation (Fu et al., 

2013; Potter, 1994), and carbon and nutrient recycling (Bastviken et al., 2011). However, 

like many other ecosystems, inland waters are under pressure from human activities as 

well as climate change (Allan et al., 2013). The United Stated Environmental Protection 

Agency (USEPA) has been monitoring and investigating long-term water quality across 

the nation since the passage of Clean Water Act in 1972. Nonpoint source pollution has 

been identified as the dominant source of water quality impairment in the rivers and lakes 

of the United States (United States Environmental Protection Agency, 2011a; Brown and 

Froemke, 2012). This is especially true in the Midwest where agricultural activities are 

intense (Alexander et al., 2008). Moreover, the Midwestern rivers, including those in 

Indiana, are also major contributors to downstream problems in water quality, especially 
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the hypoxic zone in the Gulf of Mexico, of which the year 2008 measurement has been 

reported as one of the two largest since 1985 (Louisiana Universities Marine Consortium, 

http://www.gulfhypoxia.net/Overview/). With an increasing desire for biomass for 

biofuel production (Cibin et al., 2011) and more frequent and intense precipitation events 

projected in the future (Kling et al., 2003), the delivery of nutrients and sediments to 

Midwestern rivers and lakes have the potential to be enhanced, which will exacerbate the 

water quality problems in this area. Therefore, the assessment and monitoring of water 

quality and developing an improved understanding of how environmental pressures affect 

the ecological and biogeochemical properties of these water bodies are very important.  

Traditional water quality monitoring relies on in situ measurements and collection 

of water samples for laboratory analyses. While such measurements are accurate for a 

point in time and space, they are not done frequently or at sufficiently large numbers of 

locations to capture temporal or spatial variability in water quality conditions. This 

handicap is the driving force behind the development other methods which can increase 

the coverage and frequency of water quality monitoring. Remote sensing has long been 

recognized as having the potential to provide an instantaneous synoptic overview of 

water quality (Olmanson et al., 2013; Shuchman et al., 2013a; O’Reilly et al., 1998; 

Ritchie et al., 1994). Previous studies have demonstrated that optically active water 

quality parameters such as clarity and chlorophyll (chl) concentrations can be retrieved 

by analyzing the spectral signals backscattered from water and received by remote 

spectral imagers (Horion et al., 2010; Shafique et al., 2003). Remote sensing, when 

coupled with in situ measurements, provides a cost-effective way for water quality 

monitoring.  

http://www.gulfhypoxia.net/Overview/


3 

The spectral signal of interest in this study is remote sensing reflectance, Rrs, 

which is defined as the ratio of water leaving radiance, Lw, over downwelling solar 

irradiance, Ed. Most of the remote sensing sensors measure total upwelling radiance Lu, 

which contains both Lw and surface reflected radiance Lr if measured in field, or contains 

Lw, Lr, and atmospheric path radiance La if measured by satellite (Figure 1.1). The 

atmospheric path radiance La is caused by the absorption and backscattering of particles 

in the atmosphere. Therefore, in order to obtain Rrs, La and Lr need to be removed from Lu. 

The process of removing La is atmospheric correction and the process of removing Lr is 

glint removal.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Diagrams showing the contributions to the total upwelling radiance above the 
water surface, Lu. Yellow is the downwelling solar irradiance Ed, red is the surface 

reflected radiance, Lr, purple is the atmospheric path radiance, La, and green is the water 
leaving radiance, Lw. 
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While remote sensing of oceanic systems has been undertaken and made progress 

for decades (Blondeau-Patissier et al., 2014), the use of remotely sensed data on an 

operational basis for monitoring water quality in lakes and rivers has faced many 

challenges. First of all, remote sensing of inland waters has been limited by either the 

spatial or temporal resolution of current satellite products. For example, the spatial 

resolution of the Sea-viewing Wide Field-of-View Sensor (SeaWiFS), Advanced Very-

High Resolution Radiometer (AVHRR), and MODerate resolution Imaging 

Spectroradiometer (MODIS), which are at least 1 km, is too coarse for rivers and most 

lakes. Satellite sensors with higher spatial resolution such as the various Landsat 

Thematic Mapper missions (TM, ETM, ETM+) and the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) are capable of resolving finer scale 

features, but their temporal resolutions are approximately 16 days, which limits the 

access of cloud-free images. It should also be noted that both systems are designed 

primarily for observing terrestrial systems and therefore are not optimal for rivers and 

lakes (Handcock et al., 2006). The second problem is that inland waters are often 

optically complex and considered as Case II waters (Morel and Prieur, 1977). Since the 

optical properties of rivers and lakes are not solely influenced by phytoplankton (Case I 

waters), current satellite algorithms for oceanic systems do not apply (O’Reilly et al., 

1998). Moreover, bottom reflectance from optically shallow riverine and lake systems 

can contribute to the total backscattered signals from water (Lee et al., 1998; Lee et al., 

1994), which makes algorithm development more difficult. Although band ratio type 

algorithms and more sophisticated neural network method have been developed by many 

authors for estimating various inland water characteristics ranging from chl, colored 
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dissolved organic matter (CDOM) and water turbidity/clarity (Chebud et al., 2012; 

Matthews, 2011; Shafique et al., 2003), these algorithms rely heavily on the in situ data 

and sampling location and therefore are often not repeatable. To develop reliable and 

transferrable models for retrieving water quality information in inland waters, it is 

important to understand the underlying absorption and backscattering properties of water 

column and in-water optically active constituents (OACs) and how these properties affect 

the apparent optical properties (AOPs) measured by remote sensing instruments. This 

brings the third challenge for remote sensing of inland water bodies: while much 

attention has been paid to collecting coincident measurements of inherent optical 

properties (IOPs) and AOPs for oceanic systems (e.g., NASA SeaWiFS Bio-optical 

Archive and Storage System, http://seabass.gsfc.nasa.gov/), inland waters, especially 

river systems, have been poorly observed, even though what happens in ocean and 

coastal waters is highly dependent on these systems. The IOPs are the properties of the 

medium itself and are not affected by the ambient light field. The AOPs are radiometric 

quantities that display enough stability and can be used for approximately describing the 

optical properties of the water body, e.g., the remote sensing reflectance, Rrs, in this study. 

Many efforts have been made to mitigate the challenges mentioned above and to 

improve remote sensing of inland waters. In order to collect images of sufficiently high 

spatial resolution from which rivers and lakes can be appropriately resolved, airborne 

systems are often used and the application of such systems has proven to be capable of 

measuring water quality conditions in optically complex water bodies (Olmanson et al., 

2013). The major drawback of airborne platforms is that they cannot be used on a regular 

basis due to the high organization and realization cost. The use of handheld spectrometers 

http://seabass.gsfc.nasa.gov/
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provides a way to collect spectral signals in a realistic and cost-effective fashion. 

Although limited in spatial coverage, field spectrometers are designed to have high 

spectral resolution and can be used to capture measurements at a temporal frequency 

better than daily. The high spectral resolution enables the identification of key spectral 

regions for water quality retrieval, while such regions may not be effectively captured by 

current satellite sensors. Indeed, field spectroscopy can be used as a potential 

investigative technique for inland water quality retrieval, to complement satellite and 

airborne remote sensing (Hadjimitsis and Clayton, 2011).  

There is growing consensus that physical models, which focus on the water 

column and bottom properties and quantify the relationship between IOPs and AOPs, are 

preferred for water quality assessment (IOCCG, 2000). It has been demonstrated that 

physical models produce good estimates that agree quite favorably with field 

measurements, and improve the retrieval accuracy of chl concentration in the Great Lakes 

as compared to the empirical band ratio approach (Shuchman et al., 2006, 2013a). There 

are two approaches to develop physical models: the analytical modeling and the radiative 

transfer modeling approach. Whatever approach is used, the success of physical models 

depends much on the accuracy of measured IOPs and AOPs. Therefore, in situ 

observations of biogeochemical properties, IOPs, and radiometric parameters are always 

collected using standard protocol, not only for algorithm development but also for 

satellite validation. Open community databases with all in situ observations and relevant 

data are also recommended for future inland water remote sensing (Mouw et al., 2015). 
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1.2 Research Questions 

This research focuses on the development/calibration of remote sensing 

algorithms to retrieve water quality parameters in Midwestern rivers and lakes. Two 

study areas are selected: (1) the Wabash River and its tributary, the Tippecanoe River, 

both in Indiana and (2) St Joseph River plumes in southern Lake Michigan. This research 

makes use of the extensive datasets developed for the study areas, including in situ water 

quality, IOPs, bottom properties, and radiometric measurements collected for the Wabash 

River under various hydrologic conditions, as well as satellite and ground based data 

collected for the episodic river plumes in southern Lake Michigan. Using those datasets, 

this research addresses the following science hypotheses: 

1. Field spectroscopy provides a potential way to capture spectral characteristics that 

are indicative of the absorption and backscattering properties of each OAC. 

Therefore, key spectral regions can be identified to improve the development of 

empirical models for inland waters, as well as to provide useful suggestions for 

future satellite remote sensing missions. 

2. In situ observations of water quality parameters are spatially limited, but this 

spatial limitation can be addressed in part through the use of remote sensing 

imagery. Physical models which are based on the water column and bottom 

properties are reliable and transferrable in quantifying water quality parameters 

from the spectral signatures. 

3. Concentrations of water quality parameters including chl, non-algal particles 

(NAP) and CDOM are indicative of the health of riverine and lake aquatic 

systems and the spatial and temporal variability of these parameters are closely 
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related to concurrent hydrologic conditions and land use patterns. 

In order to address these hypotheses, I (1) collected in situ measurements of water 

quality, bottom properties, and radiometric measurements of the Wabash River and its 

tributaries over different hydrologic conditions; (2) developed empirical models by 

identifying key spectral regions indicative of IOPs of each OAC for retrieving water 

quality parameters in the Wabash River and its tributaries; (3) calibrated a transferrable 

remote sensing algorithm for the river plumes study in Southern Lake Michigan and 

evaluated the spatial variability of water quality parameters in episodic river plume 

events using remote sensing imagery; and (4) developed a comprehensive spectral-

biogeochemical database with in situ measurements and spectral look-up tables for 

retrieving water quality parameters in the Wabash River. 

1.3 Organization 

These hypotheses are addressed in the next three chapters. In the second chapter, 

the in situ water quality and radiometric measurements collected in summer 2013 are 

used to develop semi-empirical models for retrieve water quality parameters in the 

Wabash River. Instead of selecting bands that show best-fit correction with measured 

remote sensing data, these semi-empirical models are developed by identifying the key 

spectral characteristics indicative of waters dominated by different IOPs. In the third 

Chapter, a transferrable bio-optical model is calibrated using field measurements for the 

river plumes in southern Lake Michigan. This bio-optical model is then applied to 

Hyperion imagery collected on August 10, 2012 to evaluate the spatial variability of 

water quality conditions. In Chapter 4, in situ measurements of water quality, IOPs, and 

bottom properties, as well as radiometric measurements of the Wabash River are 
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conducted in summer 2014 under various hydrologic conditions. The temporal variability 

of water quality observations is analyzed and possible factors affecting the temporal 

variability are identified. A look-up table (LUT) based spectrum matching methodology 

is applied to the collected dataset to retrieve water quality parameters. The final chapter 

provides overall conclusions to this research. 

Chapter 2 has been published in the International Journal of Remote Sensing, 

while Chapter 3 has been revised and resubmitted to the Journal of Great Lakes Research. 
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CHAPTER 2. USING HYPERSPECTRAL DATA TO QUANTIFY WATER 
QUALITY PARAMETERS IN THE WABASH RIVER AND ITS TRIBUTARIES 

2.1 Abstract 

A hand-held spectrometer was used to collect above water spectral measurements 

for measuring optically active water quality characteristics of the Wabash River and its 

tributaries in Indiana. Water sampling was undertaken concurrent with spectral 

measurements to estimate concentrations of chlorophyll (chl) and total suspended solids 

(TSS). A method for removing sky and sun glint from field spectra for turbid inland 

waters was developed and tested. Empirical models were then developed using the 

corrected field spectra and in situ chl and TSS data. A subset of the field measurements 

was used for model development and the rest for model validation. Spectral 

characteristics indicative of waters dominated by different inherent optical properties 

(IOPs) were identified and used as the basis of selecting bands for empirical model 

development. It was found that the ratio of the reflectance peak at the red edge (704 nm) 

with the local minimum caused by chl absorption at 677 nm was a strong predictor of chl 

concentrations (coefficient of determination (R2) = 0.95). The reflectance peak at 704 nm 

was also a good predictor for TSS estimation (R2 = 0.75). In addition, we also found that 

reflectance within the NIR wavelengths (700 - 890 nm) all showed strong correlation 

(0.85-0.91) with TSS concentrations and generated robust models. Results suggest that
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hyperspectral information provided by field spectrometer can be used to distinguish and 

quantify water quality parameters under complex IOP conditions. 

Tan, J., K. A. Cherkauer, and I. Chaubey, 2015. Using hyperspectral data to 

quantify water quality parameters in the Wabash River and its tributaries, Indiana. 

International Journal of Remote Sensing 36(21), 5466-5484. 

2.2 Introduction 

Excessive concentrations of sediment and nutrients originating from agricultural 

activities are two primary sources of water quality impairment in the rivers of the 

Midwestern United States (Committee on the Mississippi River, the Clean Water Act, 

and National Research Council, 2008; Brown and Froemke, 2012). Midwestern rivers, 

especially in Indiana, are major contributors to downstream problems in water quality, 

especially the hypoxic zone in the Gulf of Mexico (Burkart and James, 1999). The 

Wabash River system is one of the biggest river systems in Indiana and water quality has 

been reported as impaired due to excessive nutrients, according to the Indiana and Illinois 

2010, 2012, and 2014 Clean Water Act (CWA) Section 303(d) listings. Also, the Wabash 

River has been identified as one of the largest contributors of nutrient loadings to the 

Mississippi River and the Gulf of Mexico via the Ohio River Basin (Ohio River Valley 

Water Sanitation Commission, http://www.orsanco.org/wabash-river-project). According 

to analysis of simulations using the United States Geological Survey (USGS) SPAtially 

Referenced Regressions On Watershed attributes (SPARROW) model, the Wabash River 

watershed contributes approximately 10.0×106 kg of total phosphorus and 139.3×106 

kg of total nitrogen to the Gulf of Mexico each year (United States Environmental 

Protection Agency, 2011b). 
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The optical properties, or spectral signature backscattered from water, can be 

captured by remote sensing instruments and used to quantify the water quality parameters 

by empirical or analytical modelling. Multiple remote sensing platforms and sensors 

exist, and theoretically remote sensing can provide ways to quickly capture a synoptic 

view of water quality conditions spatially. While multi-spectral sensors such as 

MODerate resolution Imaging Spectroradiometer (MODIS) and Medium Resolution 

Imaging Spectrometer (MERIS) provide spectral bands that have been successfully used 

to measure chlorophyll (chl) level in inland and coastal waters (Gilerson et al., 2010; 

Olmanson et al., 2013; Shuchman et al., 2013a), most rivers and streams are not able to 

be appropriately resolved due to the coarse resolution of these satellite products 

(Handcock et al., 2006). Landsat imagery, which has a finer spatial resolution of 30 m, 

may still be too coarse for small rivers. Although aircraft platforms provide a way to 

collect images of high spatial resolutions from which river systems can be appropriately 

resolved, they are limited to the number of events they can capture due to their higher 

organization and realization cost. Although limited in spatial coverage, in situ sampling 

using a handheld spectrometer provides a realistic, convenient, and accurate approach for 

measuring spectral signatures of rivers and streams. 

The ability of remote sensing for rivers and streams monitoring has also been 

hampered by more fundamental problems. First, rivers and streams are often optically 

complex and the optical properties are not solely influenced by phytoplankton (Morel and 

Prieur, 1977). Secondly, some rivers and streams are so shallow that river bottoms can 

contribute to the total backscattered signals from water. Therefore, existing algorithms 

for estimating water quality parameters of oceanic systems (O’Reilly et al., 1998) do not 
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apply to river systems. In theory, to adequately retrieve water quality parameters in rivers 

and streams, it is important to understand the underlying absorbing and backscattering 

properties of the water column and optically active constituents and how these properties 

affect the spectral signature measured by remote sensing instruments. This brings the 

third challenge for remote sensing of rivers and streams: few optical characterization 

studies of rivers and streams have been conducted and presented. In addition, rivers and 

streams are closely associated with terrestrial surroundings and therefore usually display 

regional optical conditions. The success of analytical models depends largely on the 

accurate measurements of inherent optical properties. Unless the analytical models are 

validated and widely available for rivers and streams, we believe that the empirical 

approach will provide the primary practical means of estimating water quality parameters 

in rivers and streams. Through identifying key spectral characteristics that are indicative 

of waters dominated by different inherent optical properties (IOPs), water quality 

parameters including chl and total suspended solids (TSS) can be successfully quantified 

using empirical models (Olmanson et al., 2013). 

One of the problems in interpreting the data collected above the water surfaces is 

removing sun and sky glint. One common approach to removing the effects of sun and 

sky glint is to use the optimal measuring angles suggested by Mobley (1999) and then 

correct the reflectance spectra using the sky radiance measurements. This method 

suggests a viewing direction of 40° from the nadir and 135° from the Sun, requires 

simultaneous measurements of water radiance, sky radiance, and downwelling irradiance, 

and assumes wind speed less than 5 m s-1 for the use of sea-surface reflectance ρ≈0.028. 

However, natural water surfaces are almost never flat and the air-sea interface reflection 
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coefficient  ρ is expected to vary strongly with wind speed (Ruddick et al., 2006). There 

are other types of glint removal procedures such as those utilizing the brightness in a 

near-infrared band (Hedley et al., 2005) or the oxygen absorption feature near 760 nm 

(Kutser et al. 2009), or applying a bio-optical model and a spectral optimization approach 

(Lee et al., 2010a), to estimate the amount of glint in measured reflectance spectra. The 

methods described above either depend on certain viewing geometry or are image-based, 

or require extra information such as wind speed, water depth, and optical properties of 

bottom. Kutser et al. (2013) suggested a simple method that does not need any auxiliary 

parameters and fits power functions using reflectance values at the ultraviolet (350-380 

nm) and near-infrared (890-900 nm) wavelengths to represent glint. But this method 

assumes the water-leaving reflectance at 890-900 nm to be zero, which is usually not true 

for turbid rivers and streams. 

In this study, a hand-held spectrometer was used to collect above water spectral 

measurements for measuring optically active water quality characteristics of the Wabash 

River and the Tippecanoe River in the summer (May to August) 2013. Water sampling 

was undertaken concurrent with spectral measurements to estimate concentrations of chl 

and TSS. A method of removing sky and sun glint from field spectra for turbid inland 

water was developed and tested. Spectral characteristics indicative of waters dominated 

by different IOPs were then identified and used to develop empirical models for 

estimating chl and TSS. The accuracy and usefulness of the empirical models was also 

evaluated. 
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2.3 Study Area 

The primary study site includes the Wabash River and one of its tributaries, the 

Tippecanoe River.  The Tippecanoe River flows through two reservoirs and the Norway 

Dam and the Oakdale Dam before joining the Wabash River. The two dams are located 

48 km and 29 km, respectively upstream above the confluence (Figure 2.1). There are 

several tributaries along this reach, however, the Tippecanoe River is the most 

significant, most accessible and exhibits the largest variance in water quality relative to 

the main river. Within the study area the Wabash River flows about 90 km from French 

Post Park (about halfway between Delphi, Indiana, and Logansport, Indiana) to Attica, 

Indiana, and ranges in width from 100 m to over 150 m. The Wabash River originates 

from west-central Ohio and runs through Indiana State draining an area of over 85,000 

km2. Water depth of the Wabash River in the summer typically ranges from 0.6 m to 4.5 

m while the Tippecanoe River is shallower with the typical depth of 0.6 m to 2.7 m. 

The land use in the Wabash River basin is dominated by agricultural 

management, primarily corn and soybean rotations (Bukaveckas et al., 2005). The water 

flows a distance of over 650 km from the Indiana/Ohio State boundary before entering 

the Ohio River and eventually reaching the Mississippi River. Due to agricultural 

activities such as intensive farming and significant fertilizer use, as well as runoff events 

during the planting season in the upland areas, nitrogen and phosphorus loads in the 

Wabash River are highest in the Spring months when flows are typically greatest. Despite 

the heavy agricultural use also occurring in the Tippecanoe River watershed, water in the 

river carries significantly lower sediment loads than the Wabash River, likely due to the 

presence of the two upstream reservoirs. 
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Figure 2.1 Main study area includes two reaches of the Wabash River, including the 
confluence with the Tippecanoe River. Field spectrometer measurements and water 

samples (marked as black star) were collected through the summer of 2013. 

2.4 Data Sources 

2.4.1 Field Spectrometer Measurements and Sampling 

In the summer of 2013 (May to August), in situ water quality and spectral 

measurements were taken over the Wabash River (from French Post to Attica) and the 
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Tippecanoe River using a boat platform (Figure 2.1). Field samples were collected every 

2-3 kilometers along the river through the summer to capture various water quality 

conditions. Above-water spectral measurements were collected using a GER 1500 

spectrometer (Spectral Vista Corporation) and a Spectralon panel. At each site, upwelling 

water surface radiance, uL , and downwelling solar irradiance, dE , were measured. The 

spectrometer was pointed off nadir at the water target and the Spectralon panel 

respectively within a very short time period with the intent of avoiding significant 

changes in illumination conditions. For 15 August 2013, nine spectral measurements 

were completed using the recommended viewing direction of 135° from the sun and 40° 

from the nadir for the measurements of sky radiance, sL , and uL  (Mobley, 1999). The 

GPS locations of each sampled site were recorded. In addition, water depths of each site 

were measured using an ultrasonic device and sky conditions were also recorded. Water 

samples of each site were collected and stored in brown polyethylene bottles until 

returned to the laboratory for further analysis. 

2.4.2 Laboratory Analyses 

All water samples were stored in the dark and on ice until returned to the 

laboratory for water quality analysis. Water quality indicators that were quantified were 

chl and TSS. Standard methods of analysis were applied (Eaton et al., 1998). For chl 

estimation, a sub-sample was filtered onto Whatman GF/F 25 mm filters, then macerated 

in 10 ml 90% acetone solution and analyzed spectrophotometrically. TSS concentration 

was determined by filtering a sub-sample using Whatman GF/F 47 mm filters and then 

oven drying the pre-weighted filter at 105°C for at least one hour to calculate the weight 

difference. 
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2.5 Methods 

2.5.1 Glint Removal for Field Measurements 

For water targets, it should be noted that the upwelling signal measured by remote 

sensing sensors, uL , includes both water leaving signal, wL , and surface reflected signal,

rL . The data of interest is the remote sensing reflectance rsR , which is defined as the ratio 

of water leaving radiance to downwelling irradiance ( dE ), i.e., w dL E . The surface 

reflectance component rL  must be removed from uL  in order to calculate the rsR  of 

water targets. As rL  is directly related to the sky radiance, sL , most spectrometers for 

field measurements are composed of one sensor measuring uL , one measuring dE  and 

the third measuring sL . Then, wL can be calculated as 

w u sL L Lρ= −                (2.1) 

where ρ  is the water surface reflection coefficient. For the field spectrometer 

measurements on 15 August 2013, wL  was calculated using 0.028ρ ≈  (Mobley, 1999). 

Glint in other spectrometer measurements collected in the summer of 2013, however, 

cannot be removed using this method since neither the recommended viewing geometry 

was followed nor appropriate sL  data collected.  

In the work of Kutser et al. (2013), the field measured uL  data at 350-380 nm and 

890-900 nm were fitted to power functions to represent the glint spectra, which can then 

be removed from the uL  spectra. This method, which is referred as Kutser’s correction in 

this paper, does not require sL  measurements and is appropriate for spectral 

measurements collected with the radiance sensor looking into nadir. The major 

assumption of Kutser’s correction is that the water-leaving reflectance is close to zero at 
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the ultraviolet (UV) range as well as at 890-900 nm; therefore, the non-zero values at 

these wavelengths are simply the results of sun and sky glint. But this is often not the 

case for optically shallow or turbid inland waters, of which water reflectance at these 

wavelengths is usually not zero due to bottom signals or high concentration of suspended 

solids (Moore et al., 1999). As we analyzed our measurements (based on the inherent 

optical properties and bottom albedo measurements collected in 2014), no significant 

effect from the bottom (within 5% percent of the total signal) was found when water 

depths in the Wabash River and the Tippecanoe River exceeded 1 m. Only site 

measurements where water depths were more than 1 m are used, therefore bottom 

contribution is not an issue in this study.  

In the near infrared (NIR) wavelengths, due to the increased absorption of pure 

water and the fact that absorption by phytoplankton and colored dissolved organic matter 

(CDOM) are negligible, water reflectance in this spectral region is closely associated 

with the backscattering coefficients and the spectral properties can be used in glint 

correction (Gould et al., 2001). As Ruddick et al. (2006) found in their study of seaborne 

measurements, the shape of remote sensing reflectance spectra in the NIR range (700-

900 nm) is largely determined by pure water absorption and almost invariant for turbid 

waters. They normalized the NIR reflectance spectra using the reflectance at 780 nm and 

defined it as the “similarity spectrum”. In this study, we developed a new correction 

method, which combines Kutser’s correction, Gould’s glint removal algorithm, and 

Ruddick’s similarity spectrum, to remove the sun and sky glint effects for the Wabash 

River and the Tippecanoe River. This method is referred as Tan’s correction in this paper 

and the detailed procedure is shown below. 
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Based on Kutser’s correction, an estimate of the amount of glint in the measured 

reflectance spectra can be expressed as 

( ) nG mλ λ= ×             (2.2) 

where ( )G λ  is the estimated amount of glint and λ  is the wavelength. The values of m  

and n  need to be determined and the detailed procedure is described below.  

The amount of glint can also be quantified using measured above-water 

reflectance at two NIR wavelengths. 

u 1 u 2
w 1 w 2

d 1 d 2
1

w 1 w 2

( ) ( )( ) ( )( ) ( )( )
( ) ( )
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a a

λ λλ λλ λλ
λ λ

−
=

−
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where u 1( )L λ  and u 2( )L λ  are the total upwelling radiance at wavelength 1λ  and 2λ  , 

d 1( )E λ  and d 2( )E λ  are the downwelling solar irradiance at wavelength 1λ  and 2λ , and 

w 1( )a λ and w 2( )a λ are the absorption coefficients of pure water at these two wavelengths. 

See Gould et al. (2001) for the derivation of Equation (2.3). The assumptions here are 

that the amount of glint and values of backscattering coefficients are nearly constant 

within 5 nm in NIR wavelength ranges. A total of 4 wavelength pairs (745 nm, 750 nm), 

(805 nm, 810 nm), (845 nm, 850 nm), and (895 nm, 900 nm) spanning the NIR 

wavelength range were selected. Combining Equation (2.2) and Equation (2.3), 
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Absorption coefficients of pure water at these wavelengths are: w(745)a =2.4590 m-1, 

w(750)a =2.4700 m-1, w(805)a =2.0494 m-1, w(810)a =2.0916 m-1, w(845)a =3.9835 m-1, 

w(850)a =4.3758 m-1, w(895)a =6.4708 m-1, and w(900)a =6.8198 m-1, which can be 

found from the work of Smith and Baker (1981) and Segelstein (1981).  

The water-leaving reflectance rs( )R λ is calculated as 

u
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d
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= −       (2.8) 

According to the Ruddick similarity spectrum, in the NIR wavelengths, 
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where rs_nR represents the normalized remote sensing reflectance and γ  is the spectral 

exponent of particle scattering. The absorption coefficients of pure water are w(780)a

=2.3600 m-1 and w(870)a =5.3659 m-1, respectively (Segelstein, 1981; Smith and Baker, 

1981). For highly scattering waters dominated by non-algal particles, the value of γ  

mostly lies in the range of 0-1 (Gould et al. 1999; Babin et al., 2003). In this study, γ  

was set to be 1 and the wavelength pair (780 nm, 870 nm) suggested by Ruddick et al. 

(2005) was used. Therefore, combining Equations (2.8) and (2.9),  
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Based on Equations (2.4)-(2.7) and Equation (2.10), model fits were applied by using the 

least-squares approach. The values of m and n were then retrieved, and the sky and sun 

glint was quantified. Initial values of m and n were both set to 0. The range of m and n 

were (0, +∞) and (-∞, 0), respectively. 

2.5.2 Empirical Model Calibration and Validation 

The corrected in situ spectrometer data, combined with in situ TSS and chl 

concentrations ([TSS] and [chl], respectively), were used to develop empirical 

relationships. Only subsets of the sampled sites were randomly selected for model 

development. The basis for selection of the bands is described in the Results and 

Discussion section. Single linear regressions were performed using the in situ TSS and 

chl values as the dependent variables and the selected single band, band ratios, and band 

differences as the independent variables. Log transforms of the dependent variables were 

also considered. Two independent variables that contributed most to the single regression 

fit were analyzed further using multiple linear regression techniques. In situ 

measurements of the sampled sites that were not selected for model development were 

used to evaluate the performance of models. Statistics including coefficient of 

determination (R2), percentage root mean square error (RMSE), and number of data 

points (n) were listed.  
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2.6 Results and Discussion 

2.6.1 Glint Removal of Field Spectrometer Data 

Although no actual wL  measurements were collected in the field, we applied the 

method of Mobley (1999) as it is commonly used and accepted for sky and sun glint 

removal.  Here we assume that the sL  correction results from using a constant water 

surface reflection coefficient ρ  are close to the actual wL  values collected in the field. 

For the water-leaving reflectance spectra of the field measurements after sL  correction 

(Figure 2.2), the reflectance values at 350-380 nm and 890-900 nm are not zero. In 

particular, one reflectance spectrum of the Tippecanoe River is overcorrected and shows 

negative values. This could be due to the fact that sL  and uL  were not measured 

simultaneously, though the measurements were made within as short a time as possible.  
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Figure 2.2 (a) Above-water reflectance spectra and (b) corrected water-leaving 
reflectance spectra for nine sample sites on the Wabash River (seven sites, red solid line) 

and the Tippecanoe River (two sites, blue dashed line) using the method of Mobley 
(1999). 
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The field spectral measurements were also analyzed using Kutser’s correction and 

Tan’s correction and the corrected reflectance spectra using these two methods were then 

compared to the results using Mobley’s sL  correction (Figure 2.3). We only show the 

corrected spectra for a single site here since results at other sites are similar. As seen from 

the figure, Kutser’s correction forces wL  to be zero in UV and NIR wavelengths, and 

therefore is not appropriate for our case; however, the reflectance spectra using Tan’s 

correction are fairly close to the corrected results of using Mobley’s correction. 

To validate the robustness of Tan’s method, we also ran the Hydrolight 5.2 

radiative transfer model (Mobley and Sundman, 2013) to simulate total surface 

reflectance u dL E and the remote sensing reflectance w dL E  in representative inland 

waters. The simulated u dL E was processed using Kutser‘s correction as well as Tan’s 

correction and the results were compared with the simulated w dL E . A total of 500 

simulations were run using the Case 2 IOP model from 350 nm to 900 nm with a 5 nm 

interval and assumed cloud free condition. The IOP characteristics were set to the typical 

values of inland waters and included a variety of absorption and backscattering spectra. 

Details can be found in the work of Gilerson et al. (2007). Optically deep water was 

assumed so that the bottom contribution was zero. Fluorescence of chl and CDOM were 

included. The solar zenith angle was 30o and the wind speed was 5 m s-1. The difference 

between corrected and Hydrolight-simulated reflectance spectra is measured using the 

index E , 
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where rs j( )R λ  and rs j( )R λ are the corrected and Hydrolight-measured remote sensing 

reflectance at wavelength jλ , respectively, and J  is the total number of bands. As 

calculated, the value of E  for the 500 random simulations ranges from 0.03% to 0.88%. 

Since results are similar, Figure 2.4 only shows two examples for inland waters with 

different IOPs. As seen from the figure, the corrected spectrum using Tan’s correction is 

almost identical to the remote sensing reflectance, which greatly improves on the results 

from the original Kutser’s correction for application in turbid inland waters. We also 

tested simulations under different zenith angles (60° and 90°) and cloud cover conditions 

(30%, 60%, and 90%). Results are similar and E  are within 1%. Therefore, the improved 

glint removal procedure was then used for all additional glint removal for the Wabash 

River and Tippecanoe River in this study. 
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Figure 2.3 Comparisons of glint removal methods for a single site on the Wabash River. 
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Figure 2.4 Results of Hydrolight simulations carried out for representative turbid inland 
waters with different IOPs. Definitions of uL , wL , and dE are given in the main text. 
u d/L E  is the simulated above-water reflectance and w d/L E the simulated water-leaving 
reflectance. Calculated values of the index E  (Equation 2.11) are 0.33% and 0.88%, 

respectively. 
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2.6.2 Spectral Characteristics of the Wabash River 

The hyperspectral information provided by field spectrometer enable the 

reconstruction of spectral characteristics of water bodies in the visible and near infrared 

wavelengths which can be used to distinguish waters dominated by different optical 

features. The Wabash River typically experiences two different types of IOPs during 

summer: (1) phytoplankton dominated and (2) sediment dominated. The IOP features of 

the Wabash River are closely associated with summer storm events. High concentrations 

of TSS were typically observed in the Wabash River following storm events, which 

deliver large amounts of sediment from terrestrial lands.  The sediments also carry 

significant nutrients to the river, which results in phytoplankton development and turns 

the river water visibly green. Low concentrations of chl and TSS were found in the 

Wabash River after periods of time when few precipitation events occurred. Although no 

quantitative information was available on CDOM, the river water was never visibly 

stained brown during the summer, which indicates that the river water was not CDOM 

dominated. Despite the heavy agricultural use in the Tippecanoe River watershed, 

concentrations of both chl and TSS are lower in the Tippecanoe River (Table 2.1), likely 

due to the presence of two reservoirs upstream.  
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Table 2.1 Statistics (mean and standard deviation (SD)) showing that the Wabash River 
typically has higher chl and TSS concentrations than the Tippecanoe River based on the 

data collected in the summer of 2013. 

 [TSS] (g m-3) [chl] (mg m-3) 
mean SD mean SD 

Tippecanoe River 9.6 4.2 15.7 6.2 
Wabash River 65.8 55.3 29.9 20.0 

 

To identify and differentiate IOPs that are indicative of different water quality 

variables, locations representing phytoplankton dominated and sediment-dominated 

waters were selected and analyzed (Figure 2.5(a)). For better description, “D” was used 

to represent the Wabash River stretch from Delphi to Americus, “A” to represent the 

stretch from Lafayette to Attica, and “L” to represent the stretch from Americus to 

Lafayette. Spectra from three dates represent phytoplankton dominated water: (1) D (24 

May) ([chl]=70 mg m-3, [TSS]=25 g m-3), (2) D (24 June) ([chl]=43 mg m-3, [TSS]=22 g 

m-3), and (3) L (25 June) ([chl]=39 mg m-3, [TSS]=16 g m-3). The absorption by 

chlorophyll and other pigments results in low reflectance in blue (400-500 nm) and red 

(600-700 nm) wavelengths. In particular, the local minimum at 677 nm and peak at 

704 nm are caused by the decreasing absorption of chlorophyll and increasing absorption 

of water as well as the fluorescence of chlorophyll. High TSS concentrations (48 g m-3, 

62 g m-3, and 27 g m-3) were found in dates (1) L (19 June), (2) D (20 June), and (3) A 

(21 June) following storm events. While the chl levels (13 mg m-3, 11 mg m-3, and 9 mg 

m-3) were low, these waters represent sediment-dominated waters. This is also supported 

by the fact that the reflectance values of these waters are relatively high in the green and 
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red wavelengths, especially from 560 to 700 nm, so they lack the reflectance trough and 

peak in the red region caused by the absorption characteristics of chl. 

The corrected water leaving reflectance spectra of all sampling sites with depth of 

more than 1 m are shown in Figure 2.5(b). Generally the reflectance values of the 

Wabash River are higher than those of the Tippecanoe River. The differences between 

rsR  (677) and rsR  (704) for the Tippecanoe River are not as obvious as those of the 

Wabash River. This is indicative of the lower chl concentrations in the Tippecanoe River. 

Another noticeable characteristic of the reflectance spectra is the relatively high 

reflectance values of the Wabash River at near infrared region (750-900 nm). As Gould et 

al. (2001) and Ruddick et al. (2006) suggest, in the NIR wavelengths the backscattering 

coefficient ( bb ) can be viewed as negligible in comparison with the total absorption 

coefficient ( a ) and a  can be further simplified as equal to the absorption coefficient of 

pure water ( wa ) due to strong water absorption. Therefore, remote sensing reflectance 

can be expressed as 

rs b w/R b a∝       when bb  << a , wa a≈     (2.12) 

Since wa  can be treated as a constant for the Wabash River and Tippecanoe River where 

differences caused by variability in salinity and temperature are negligible, rsR  in the 

NIR wavelength range is determined by bb . Therefore, it is quite likely that the relatively 

high reflectance values of the Wabash River from 750 to 900 nm are caused by high TSS 

concentrations in the Wabash River. 
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Figure 2.5 (a) Characteristic reflectance spectra from 2013 field measurements. See 
Section 2.5.2 for a description of areas D, L, and A. (b) Corrected water-leaving 

reflectance of all field data in the summer of 2013 using Tan’s method. Red solid lines 
represent the Wabash River and the blue dashed lines represent the Tippecanoe River. 
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Empirical models are often based on developing best-fit correlational models 

between measured spectral characteristics and concentrations of OACs – often 

individually. To develop successful empirical models for inland waters, which are viewed 

as optically complex due to the suspended solids and CDOM delivered from terrestrial 

sources, it is important to use wavelengths that reflect the physical characteristics of 

water quality variables and are free of interference from competing optical features. For 

example, instead of using the blue and green wavelengths for [chl] estimation, which are 

common for Case I waters (Morel and Prieur, 1977; O’Reilly et al., 1998), most models 

for inland waters are focused on the red wavelengths, of which the reflectance trough 

around 670 nm and peak around 700 nm are closely related to the absorption and 

fluorescence of chl and the influence from CDOM and suspended solids is minimal 

(Moses et al., 2012; Olmanson et al., 2013). Models that use the reflectance ratio for 

wavelengths of ~670 nm in place of that for ~700 nm have been reported effective for 

estimating chl concentrations in inland waters (Moses et al., 2009; Gitelson et al., 2010; 

Matthews, 2011). Similarly, successful models for [TSS] in inland waters would avoid 

the blue and red wavelengths where the absorption by CDOM and chl are not negligible. 

Therefore, most algorithms utilize the scattering peak at the red edge, i.e., ~700 nm 

(Kallio et al., 2001; Olmanson et al., 2013) or the NIR wavelengths, such as the 

reflectance difference rsR (710) - rsR (740) (Shafique et al., 2003). 

2.6.3 Water Quality Models 

A strong relationship was found between the ratio of rsR (704) / rsR (677) and 

measured chl concentration, with R2 values up to 0.95 (Figure 2.6(a)). Similar 

relationships have also been found in several previous studies (Moses et al., 2009; 
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Gitelson et al., 2010; Matthews, 2011; Olmanson et al., 2013). As discussed earlier, the 

local minimum at 677 nm and peak at 704 nm are caused by the decreasing absorption of 

chl and increasing absorption of water as well as the fluorescence of chl. Theoretically, 

the increase of chl concentration should be closely associated with the decrease of 

reflectance at 677 nm and the increase of reflectance at 704 nm. Therefore it is not 

surprising to find the high R2 values for modeled [chl]. Scatter plots are generated using 

the modelled [chl] and measured [chl] of the remaining 20 samples (Figure 2.6 (b)). The 

resulting points fall close to the 1:1 line, which means that the model estimates provide a 

strong match to the field measurements. Furthermore, modelled and measured values 

show significant linear relationships with slopes close to 1.0. The RMSE value indicates 

that [chl] can be estimated with an accuracy of 18%. The uncertainty in [chl] estimation 

is likely to be related to the uncertainties in the [chl] analyses and/or field spectral 

measurements. 
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Figure 2.6 (a) Empirical model for estimating [chl] using the band ratio Rrs(704)/Rrs(677) 
for the field data collected in the summer of 2013 and (b) comparison between measured 

[chl] and modeled [chl] for the Wabash River and the Tippecanoe River. Dashed line 
represents the 1:1 line. 
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TSS is composed of both chl and non-algal particles and therefore its IOP feature 

is complex and dependent on the specific water quality condition. For our dataset, a 

robust model was found between [TSS] and rsR (704) with R2 equal to 0.75 (Figure 2.7). 

This model avoids the absorption characteristics of chl and CDOM but uses the 

reflectance peak at 704 nm, which has been found to work well for TSS estimation in 

previous literature (Kallio et al., 2001; Olmanson et al., 2013). As discussed earlier, the 

reflectance values at NIR wavelengths are closely associated with TSS concentrations. 

Therefore, we also tested all bands from 700 nm to 900 nm and found that they showed 

strong correlation with [TSS] (Figure 2.8). As seen from Figure 2.8, correlation increases 

as wavelengths increase from 700 nm to 750 nm. The highest correlation (0.91) occurs at 

752 nm and then correlation drops at ~765 nm, which is most possibly associated with 

the small peak of remote sensing reflectance at ~765 nm for some site measurements 

(Figure 2.5). The relatively low correlation around 890 - 900 nm is caused by the 

instrument noises and therefore the wavelengths from 890 nm to 900 nm were not 

included in the analysis. The reflectance at 752 nm generated a better model for [TSS] 

estimation with R2 value up to 0.83 (Figure 2.9). Measured and modelled [TSS] show 

significant linear relationship with the regression slope close to 1.0 and The RMSE of 

TSS model is 29%. The estimates of [TSS] are in good agreement with measured values 

when [TSS] are less than 25 g m-3, but show higher variance (up to 16 g m-3) as [TSS] 

increases, which is expected since the predictive equation is ln([TSS]). Hence we 

conclude that the reflectance values at the red edge (704 nm) as well at the NIR 

wavelengths are valid in estimating the concentrations of TSS for the Wabash River. 
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Figure 2.7 Empirical model for estimating [TSS] using Rrs(704) for the field data in the 
summer of 2013. 

 

 

Figure 2.8 Correlation between reflectance at the near-infrared wavelengths and TSS 
concentrations. 
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Figure 2.9 (a) Empirical model for estimating [TSS] musing Rrs(752) for the field data 

collected in the summer of 2013 and (b) comparison between measured [TSS] and 
modeled [TSS] for the Wabash River and the Tippecanoe River. Dashed line represents 

the 1:1 line. 
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2.7 Conclusions 

In this study, a method of removing sky and sun glint from above water reflectance 

spectra for turbid inland waters was developed. Since the assumption that water-leaving 

reflectance at UV and NIR wavelength region can be viewed as zero does not hold for 

turbid inland waters, Kutser’s correction by fitting a power function using reflectance at 

350-380 nm and 890-900 nm to represent the amount of glint does not apply. The method 

in this study combines Kutser’s correction, Gould’s glint removal algorithm, and 

Ruddick’s similarity spectrum and is shown to successfully estimate the surface reflected 

component in water reflectance spectra with collected field data and radiative transfer 

modelling. In addition, this method does not require auxiliary measurements such as sky 

radiance, Ls, and wind speed.  

Empirical models were developed to estimate [chl] and [TSS] for the Wabash 

River and the Tippecanoe River. Most empirical models are based on developing best-fit 

correlational models between measured reflectance/radiance and concentrations of OACs, 

and are not necessarily based on any physical insight to why the correlation exists and are 

highly dependent on the data and often not repeatable. The empirical models in this study 

are developed by identifying the key spectral characteristics indicative of waters 

dominated by various IOPs, while wavelengths that experience interference through 

competing optical features are avoided. For example, the concentration of chl is closely 

associated with the light absorption in the red wavelengths where the influences from 

CDOM and suspended solids are minimal. The ratio of the reflectance peak at 704 nm to 

the reflectance trough at 677 nm is a strong predictor of [chl]. Similarly, for estimation of 

TSS concentration, a robust model avoids the absorption characteristics of chl and 
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CDOM and utilized the reflectance peak at 704 nm. As analyzed, reflectance values at the 

NIR wavelengths are closely related to the amount of TSS and are also good predictors of 

TSS concentrations. The empirical models for [chl] and [TSS] estimation are validated by 

our field measurements. It has to be noted that the spectral reflectance and reflectance 

ratios that used for model development in this study also worked well for other 

researchers under different water quality regimes (Kallio et al., 2001; Kallio et al., 2003; 

Koponen et al., 2007; Olmanson et al., 2013). Therefore we conclude that these 

wavelengths and reflectance ratios are generally robust for the retrieval of water quality 

parameters.  

While remote sensing has the advantage of quickly capturing a synoptic view of 

water quality condition, satellite remote sensing for monitoring water quality of rivers 

and streams are limited by resolutions that are too coarse to appropriately resolve the 

headwater rivers and streams contributing most significantly to the overall water quality. 

Meanwhile airborne platforms can collect highly resolved imagery for river systems, but 

they are not likely to be operated for regular monitoring due to the high operational cost 

and requirement of clear atmospheric conditions. Therefore, until the technical problems 

in satellites or unmanned aerial systems are solved, hand-held spectrometers provide a 

realistic and convenient way to collect spectral signatures of river waters.  

Field spectrometer measurements have been widely used to obtain radiance, irradiance 

and reflectance of water targets. Spectral data collected by field spectrometers are 

considered to be accurate and are hence mostly used for the validation of atmospheric 

correction algorithms used to process remote sensing imagery. However, it is often 

overlooked that field spectrometers are designed to have high spectral resolutions and 
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provide continuous spectral signatures that can be used to identify the optimal or key 

spectral regions for water quality retrieval. These spectral regions, however, may not be 

effectively captured by some current multi-spectral sensors. Our results for the Wabash 

River show the key spectral bands needed for the estimation of water quality parameters 

and therefore provide useful suggestions for future satellite remote sensing. It is 

recommended that field spectroscopy should be used as a potential investigative 

technique of water quality, especially for rivers and streams, to complement 

satellite/airborne remote sensing which is limited by spatial resolution or high operating 

cost. 
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CHAPTER 3. WATER QUALITY ESTIMATION OF RIVER PLUMES IN 
SOUTHERN LAKE MICHIGAN USING HYPERION 

3.1 Abstract 

This study focuses on the calibration of an existing bio-geo-optical model for 

studying the spatial variability of water quality parameters including chlorophyll (chl), 

non-algal particles (NAP), and colored dissolved organic matter (CDOM) in episodic 

river plumes. The geographic focus is the St. Joseph River plume in southern Lake 

Michigan. One set of EO-1 Hyperion imagery and one set of boat-based spectrometer 

measurements were successfully acquired to capture episodic plume events. Coincident 

water quality measurements were also collected during these plume events. In this study, 

a database of inherent optical properties (IOPs) measurements and spectral signatures 

was generated and used to calibrate the bio-geo-optical model. Field measured 

concentrations of NAP and CDOM at 67% of the sampled sites fall within one standard 

deviation of the retrieved means using the spectrometer measurements. The percentage of 

sites is higher for the estimation of chl concentrations, which is 88%. Despite the 

dynamic nature of the observed plume and the time lag during field sampling, 77% of the 

sampled sites show field measured chl and NAP concentrations falling within one 

standard deviation of the Hyperion derived values. The spatial maps of water quality 

parameters generated from the Hyperion image provided a synoptic view of water quality 

conditions. Results show that concentrations of NAP, chl, and CDOM were more than
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three times higher in conjunction with river outflow and inside the river plumes than in 

ambient water. It is concluded that the storm-initiated plume is a significant source of 

sediments, carbon and chl to Lake Michigan. 

3.2 Introduction 

As the second largest of the five Laurentian Great Lakes, Lake Michigan is an 

important resource of the Earth’s surface fresh water, supports a variety of fish species 

and supplies drinking water for much of the population around the basin. In recent years, 

Lake Michigan has suffered water quality and ecological problems such as the decrease 

of primary productivity and fish populations (Fahnenstiel et al., 2010a, b).  The Episodic 

Events Great Lake Experiment (EEGLE, 1998-2000) showed that river plumes in 

southern Lake Michigan have a significant and complex effect on water quality and the 

lake ecosystem (Lohrenz et al., 2004). These river plumes enhance the amount of 

nutrients and sediments delivered from terrestrial resources, diminish light that can 

penetrate through water, and in turn can regulate nutrient cycling and affect the rate and 

amount of primary production in the lake. As the observed river plumes are closely 

associated with episodic storm events, it is important to monitor and understand the water 

quality condition of Lake Michigan during these storm events for better protection and 

management of the lake, especially since such precipitation events are projected to be 

more intense and frequent in the future (Kling et al., 2003).  

Conventional water sampling programs are often not adequate to report changes in 

nutrient levels, phytoplankton biomass and sediment loadings given that river plumes can 

vary rapidly in time and/or space. The remote sensing of river plumes is attractive due to 

its improved spatial coverage within a short time interval and has been increasingly 
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useful over the last two decades for water quality monitoring in Lake Michigan. Multiple 

satellite sensors such as SeaWiFS, AVHRR and MODIS (Lesht et al., 2002; Shuchman et 

al., 2006; Lohrenz et al., 2004, 2008; Shuchman et al., 2013a) have been used to estimate 

chlorophyll (chl) concentration and primary production in Lake Michigan. However, 

there are few studies focusing on the quantitative mapping of river plumes caused by 

episodic storm events. The ability of satellite imagery in “seeing” river plumes depends 

particularly on its spatial resolution (Mouw et al., 2015). While instruments such as 

AVHRR are capable of detecting large suspended plumes in Lake Michigan (Lohrenz et 

al., 2004), their coarse resolution makes it challenging and inappropriate for the study of 

small river plumes which extend only several kilometers. In contrast, the spatial 

resolution of the Hyperion satellite, which is 30 m, is suitable for identifying riverine 

plumes, as Zhu et al. (2013) have demonstrated. Hyperion also has sufficient spectral 

resolution to enable mapping of lake water quality from space (Giardino et al., 2007). 

Therefore, it is likely that Hyperion and future sensors with similar operational 

characteristics can be used for regular monitoring and the study of the spatial variability 

of river plumes in Lake Michigan. 

One of the main challenges for retrieving water quality parameters in the river 

plumes of Lake Michigan is that the lake water is assumed to be optically complex Case 

II water, for which the optical properties are not solely influenced by phytoplankton 

(Morel and Pieur, 1997). This is particularly true in the near shore areas and river mouths 

of the Great Lakes since the concentrations of suspended sediments and dissolved organic 

matter are high enough to optically compete with the phytoplankton (Shuchman et al., 

2013b). Current existing band ratio algorithms such as the NASA standard ocean based 
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algorithms OC3 and OC4 (O’Reilly et al., 1998) assume the water is phytoplankton 

dominated and are not applicable to the Case II water scenario. In addition, these 

empirical algorithms are often based on developing best-fit correlational models between 

chl concentrations and measured remote sensing reflectance, Rrs, and therefore are often 

not transferrable.  In order to be used for the Great Lakes, the OC3 and OC4 algorithms 

were modified and the coefficients were recalculated in the work of Lesht et al. (2013). It 

is also important to understand that the tuned algorithms for the Great Lakes work well 

only in certain portions of the Great Lakes and may not be optimal for all types of Great 

Lakes water (Shuchman et al., 2013b).  

The development and application of a truly transferrable and reliable bio-geo-

optical model for river plume monitoring is a necessary and important step to enable the 

use of remote sensing for river plumes study. Bio-geo-optical models focus on the 

physical properties of each major optically active constituent (OAC) and quantify the 

relationship between IOPs and apparent optical properties (AOPs), which in this study is 

the remote sensing reflectance, Rrs. Concentrations of each OAC can then be estimated 

simultaneously from measured Rrs by inverting the bio-geo-optical model. The bio-geo-

optical algorithm was initially developed by Garver and Siegel (1997) and Maritorena et 

al. (2002) for oceanic applications and then was reformulated for coastal and lake water 

observations (Brando and Dekker, 2003; Giardion et al., 2007). The Color Producing 

Agent Algorithm (CPA-A) was developed specifically for the retrieval of water quality in 

the Great Lakes using satellite remote sensing (Pozdnyakov et al., 2005). It has been 

demonstrated that this algorithm can be implemented for all types of Great Lake water, 

while producing estimates that agree favorably with field measurements and improving 
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the retrieval accuracy of chl concentration as compared to the band ratio approach 

(Shuchman et al., 2006, 2013a, 2013b). Unlike other Case II water algorithms, the CPA-

A provides estimates of dissolved organic carbon (DOC) but not of colored dissolved 

organic matter (CDOM) or gelbstoff. CDOM is the portion of DOC in natural waters that 

absorbs visible light and is directly related to the measured signals leaving out of water 

surfaces. One underlying assumption of the CPA-A is that good correlations exist 

between DOC and CDOM. However, this is not always true and the relationship can be 

complicated by environmental factors and human related activities (Brezonik et al., 2015).  

There are multiple techniques that can be used for the inversion of bio-geo-optical 

models, such as the matrix inversion method (Brando and Dekker, 2003) and the 

optimization method (Korosov et al., 2009). These methods either require the input of 

inherent optical properties (IOPs), such as the specific absorption and backscattering 

coefficients of each OAC at each satellite spectral band or appropriate initial values of 

unknown parameters including OAC concentrations to be successful. In contrast, another 

inversion method, the look-up table approach, is very appealing as it requires no prior 

assumptions for parameterization and is able to simultaneously retrieve multiple 

parameters (Louchard et al., 2003; Mobley et al., 2005). In the look-up table approach, a 

database of reflectance spectra is simulated and corresponds to a variety of environmental 

conditions. By searching the closest match of the field measured spectrum in the database, 

parameters such as water column properties can then be retrieved.  

Characterization of the optical properties of river plumes is important not only as 

inputs to bio-geo-optical models but also as indicators of the biogeochemical processes. 

Although multiple investigations on the optical characterization of the Great Lakes have 
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been conducted (Bukata et al. 1985; Lorenz et al., 2004; Binding et al., 2008; Effler et al., 

2010; O’Donnell et al., 2010; Peng, et al., 2010), these measurements are not readily 

available, and few of these measurements are focused on river plumes. In addition, the 

heterogeneity of backscattering properties of Great Lake waters can be exacerbated by 

episodic events (O’Donnell et al., 2010; Effler et al., 2013).  

The overall goal of this study is to calibrate a remote sensing inversion algorithm 

for assessing the spatial variability of water quality parameters including chl, non-algal 

particles (NAP), and CDOM in river plumes of Lake Michigan that can be used to 

complement conventional ground-based methods. Our specific objectives are to: (1) 

collect and disseminate field data including in-situ concentrations of OACs, 

measurements of IOPs, and spectral signatures of lake water when river plumes occur; (2) 

calibrate the remote sensing algorithm based on an existing bio-geo-optical model and the 

look-up table method for adequately retrieving water quality parameters; and (3) evaluate 

the ability and usefulness of Hyperion imagery for the study of the spatial structure of 

river plumes in Lake Michigan. 

3.3 Study Area 

This study was conducted near the mouth of the St Joseph River and its near shore 

region within Lake Michigan (Figure 3.1). The St Joseph River watershed (Hydrologic 

Unit Code 04050001) is located in southern Michigan and northern Indiana and drains 

approximately 12,134 km2. Land use in the watershed is approximately 60% agriculture, 

20% forests, and <10% urban lands. Bank erosion and sedimentation have been found to 

be associated with agricultural practices in the watershed, while cities located along the 

mainstem of the St Joseph River also contribute significantly to the degradation of water 
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quality (Great Lakes Tributary Monitoring Program, 

http://projects.glc.org/tributary/models/stjoseph.html). Between late spring and late fall, 

stream discharge associated with storm events usually forms buoyant plumes in the 

nearshore region of Lake Michigan and contain sediments, nutrient, and pollutants that 

have significant impacts on the water quality in the receiving lake (Nekouee et al., 2013). 

The study site was selected after a review of the archive of satellite images confirmed 

that episodic St Joseph River plumes can be resolved by 30-m Landsat images, which 

suggested that the Hyperion satellite - which has the same spatial resolution as Landsat - 

should also be able to detect the St Joseph River plumes. 

http://projects.glc.org/tributary/models/stjoseph.html
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Figure 3.1 Major study area focuses on the St Joseph River tributary in southern Lake 
Michigan. River plumes occurred at the river mouth and the near shore region. The 

Hyperion image was collected on August 7, 2012. 
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3.4 Data Sources and Methods 

3.4.1 Satellite Imagery 

Field campaigns were coordinated to capture episodic St Joseph River plumes 

based on the flyover dates of the EO-1 satellite. After multiple field campaigns, we 

successfully collected one set of usable EO-1 imagery that coincided with plume field 

sampling on August 7, 2012 that was associated with a storm event on August 4, 2012. 

Both EO-1 Advanced Land Imager (ALI) and Hyperion images were acquired and 

downloaded from the U.S. Geological Survey (USGS) web page (http://eo1.usgs.gov). 

The ALI and Hyperion footprints are overlapping with a single Hyperion image covering 

about 1/4 of the ALI footprint. The ALI imagery was used for the georegistration of 

Hyperion, as described in the following “Image Processing” section. 

The Hyperion instrument is on board the EO-1 satellite (http://eo1.gsfc.nasa.org), 

which was launched by NASA in November 2000 and operates at an altitude of 705 km. 

Hyperion is a pushbroom-type imaging spectrometer and has a total of 242 spectral bands 

ranging from 400 nm to 2500 nm. It has a spatial resolution of 30 m and each spectral 

band is 10 nm wide. This means it can provide more continuous spectral data than the 

discrete broad bands of more widely used current satellite sensors such as Landsat ETM+, 

MODIS and SeaWiFS.  The swath width and typical swath length of a Hyperion scene is 

7.7 km and 42 km, respectively. Hyperion offers a 12-bit dynamic range and the signal-

to-noise ratio (SNR) of Hyperion is typically in the range of 50-150. Although the low 

sensitivity may render Hyperion unsuitable for open ocean water observations, it has 

been clearly demonstrated that Hyperion imagery can be very useful in mapping water 

properties of coastal and lake areas (Brando and Dekker, 2003; Giardino et al., 2007).  

http://eo1.usgs.gov/
http://eo1.gsfc.nasa.org/
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This has been attributed to the increased water turbidity in these waters, resulting in 

stronger signals emanating from the water surface.  

3.4.2 Field Sampling 

In addition to the August 7, 2012 plume event described above, one set of boat-

based spectral data was also successfully collected during an EO-1 satellite flyover using 

a GER1500 spectrometer (http://www.spectravista.com/), which captured another storm-

initiated river plume on April 21, 2014. Spectrometer measurements of lake water were 

taken using the recommended measuring geometry of standing ~135° away from the 

solar plane and pointing the spectrometer ~40° and ~140° from the zenith angle for the 

measurements of sky radiance Ls and total upwelling radiance Lu (Mobley, 1999). Foams 

and floating material as well as boat shadow were avoided during spectrometer 

measurements (Muller et al., 2003). For both of the two field campaigns on August 7, 

2012 and April 21, 2014, boat-based in-situ water sampling was carried out within a 4-

hour time window immediately after the EO-1 overpass and image collection. A total of 

28 sampling locations (2 at the river mouth and 26 in the near-shore) were measured on 

August 7, 2012 and 21 locations (all in near-shore region) were sampled on April 21, 

2014. All water samples were taken approximately 0.5 m below water surface with a van 

Dorn sampler.  

3.4.3 Lab Analyses 

Water samples collected for both plume events were stored in a dark and cold 

cooler with ice until returned to lab for water quality analysis. Water quality variables 

quantified were chl, NAP, and CDOM.  Standard methods of analysis were applied to 

estimate the concentrations of chl and total suspended solids (TSS) (Eaton et al., 1998). A 

http://www.spectravista.com/
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100 ml sub-sample was filtered onto Whatman GF/F glass fiber filters, macerated in 10 

ml 90% acetone solutions and analyzed spectrometrically to estimate chl concentration. 

TSS concentration was determined by filtering a 200 ml sub-sample using Whatman 

GF/F glass fiber filters and then oven drying the pre-weighted filter at 105 ± 1°C for at 

least one hour to calculate the weight difference. Since TSS can be divided into 

phytoplankton and NAP (also referred as tripton), NAP concentration is usually indirectly 

estimated from concentrations of TSS and chl using the equation [NAP]=[TSS]-β∙[chl] 

([TSS] - concentration of TSS in g m-3, [NAP] - concentration of NAP in g m-3, and [chl] 

- concentration of chl in mg m-3), with β ranging from 0.02 to 0.1 (Giardino et al., 2007). 

However, because the chl concentrations in this study are relatively low (< 25 mg m-3), 

we regard the [TSS] measurements as approximating the NAP concentrations. 

All 21 samples collected on April 21, 2014 were also used to measure the 

absorption spectra of each OAC. These analyses were carried out immediately after the 

samples arrived in the lab using a Beckman Coulter DU 730 spectrophotometer. CDOM 

absorption spectra were acquired by comparing the absorbance difference between 

filtered water samples and a pure water “blank”. The total particulate absorption spectra 

were acquired by scanning pigments and particles retained in filter pads and comparing 

with the reference filter “blank”. The detailed lab procedure followed is described in the 

NASA’s standard operating protocol of satellite ocean color remote sensing (Muller et al., 

2003).  

3.4.4 Field and Lab Data Processing 

Field spectrometer measurements collected on April 21, 2014 were processed to 

obtain the remote sensing reflectance, Rrs, of water targets, which requires unwanted 
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signals caused by sun and sky glint to be removed. The measured sky radiance, Ls, is 

used to describe the glinting effect by adopting a correction coefficient, ρ, which 

represents the Fresnel reflection of the sea surface. In this study, ρ takes a value of about 

0.028 (Mobley, 1999). Rrs is then calculated using the following equation: 

                                       Rrs = (Lu - ρ ∙Ls)/Ed                              (3.1) 

with Lu being the total upwelling water radiance, and Ed representing the measured 

downwelling solar irradiance.  

Since absorption coefficients are additive, the total particulate absorption ap(λ) 

can be expressed using 

                                    ap(λ) = achl(λ) + anap(λ)                (3.2) 

where achl(λ) represents the absorption contributed by phytoplankton and anap(λ) is the 

absorption associated with non-algal particles. The value of anap(λ) can be separated from 

achl(λ) by extracting the pigments on a filter pad with methanol in lab. However, no 

separate lab measurements of NAP absorption were performed. Instead, a numerical 

model was used to partition the total particulate absorption into the absorption of 

phytoplankton and non-algal particles (Zhang et al., 2009). In the model, the absorption 

ratios of phytoplankton reported in previous literature were adopted and anap(λ) was 

described using an exponential model with a background constant.  

3.4.5 Image Processing 

USGS provides both the Hyperion Level 1 Radiometric product and ALI Level 1 

G product. Only the Hyperion image was used for the reflectance model development, as 

Lee and Carder (2002) suggest that a total of around 15 spectral bands covering 400-800 

nm are necessary for most remote sensing of water quality. The ALI image that was 
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geometrically corrected was used as the base map for the Hyperion image georegistration. 

The Hyperion image has a total of 242 bands but only 198 bands are radiometricly 

calibrated due to the detectors’ low responsivity. Two noisy bands centered at 427 and 

437 nm were discarded as recommended by Jupp et al. (2002). The Hyperion image was 

then recalibrated, fixed for out-of-range data and outliers, and desmiled according to the 

procedure described in Datt and Jupp (2004). Along-track stripes are common in push-

broom systems and are referred to as “streaks”. This “streaking” effect also exists in 

Hyperion data and needs to be minimized by “destreaking” (Jupp et al., 2002). However, 

destreaking of the Hyperion image was not done in this study as we found that our 

specific study area in the images is free from the streaking effect in the visible and near-

infrared (VNIR) bands, and destreaking itself can alter the statistics of the images and 

introduce extra noise (Jupp et al., 2002). Therefore, only the VNIR wavelengths from 478 

to 750 nm (27 spectral bands) were selected. 

Atmospheric correction of satellite imagery is very important since a considerable 

part of the signal received at aircraft and satellite sensor platforms is from atmosphere 

scattering instead of from the ground target, in this case the water (IOCCG, 2010). 

Atmospheric correction of the Hyperion image was completed using the FLAASH (Fast 

Line-of-sight Atmospheric Analysis of Spectral Hypercubes) module in ENVI (by 

Research Systems, Inc).  FLAASH supports atmospheric correction for hyperspectral 

sensors. It incorporates the MODTRAN 4 radiative transfer model with full 

parameterization of the atmosphere and aerosol types and also corrects for adjacency 

effects. The output of FLAASH is irradiance reflectance, which is then used to calculate 

radiance reflectance using a scaling factor of π by assuming the water surface functions 
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as a Lambertian surface. For this study, we assumed a mid-latitude summer atmospheric 

model and an urban aerosol model. No water or aerosol retrieval was used. Instead, based 

on the weather condition on August 7, 2012, initial visibility was set to 40 km in 

FLAASH to correct the Hyperion image. 

3.4.6 Algorithm Description 

3.4.6.1 Bio-geo-optical Model 

Since lake water in the near-shore region is considered to be optically complex 

Case II waters, a bio-geo-optical model was used for retrieving water quality variables in 

this study.  The model is based on the radiative transfer properties of water, which 

quantifies the relationship between the IOPs and apparent optical properties (i.e., remote 

sensing reflectance measured by spectrometer and satellite in this study) of the water 

column and in-water constituents, but is simplified for specific assumptions. To validate 

the robustness of the bio-geo-optical model, we also carried out simulations with 

Hydrolight 5.2.2 radiative transfer software (Mobley, 1994; Mobley and Sundman, 2013) 

to see whether the model fits with radiative transfer theory.  

A bio-geo-optical model was proposed by Gordon et al. (1988) to fit the radiance 

reflectance just beneath the water surface, rrs, with a polynomial function of absorption 

and backscattering coefficients. Austin (1980) suggested using a factor of 0.544 to correct 

the air-water surface effect and to convert the subsurface radiance to the above-water 

radiance. Combining these two models together, the above-water radiance reflectance, 

Rrs(λ),  can be described as: 

                            Rrs(λ)= 0.544∙{g0∙u(λ)+g1∙[u(λ)]2}                              (3.3) 
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with  

                                      u(λ)=bb(λ)/(a(λ)+bb(λ))                   (3.4) 

Here g0 and g1 are constants, a(λ) is the total absorption coefficient, bb(λ) is the total 

backscattering coefficient, and λ is the wavelength. The values of g0 and g1 were set to 

0.0949 and 0.0794, respectively, according to Gordon et al. (1988). 

  The total absorption and backscattering coefficients are additive and can be 

expressed as the sum of absorption and backscattering coefficients of both optically 

sensitive constituents in the water column and water molecules. Therefore, the total 

absorption coefficients can be expressed mathematically by introducing absorption terms 

for water, aw, and the three optically active components: chl, achl, CDOM, acdom, and NAP, 

anap: 

                          a(λ)=aw(λ)+achl(λ)+acdom(λ)+anap(λ)                       (3.5) 

In this study, we combined the backscattering coefficients of chl and NAP together by 

using one single term, bb,p(λ), which represents the backscattering coefficients of 

suspended particles including both chl and NAP. Since CDOM contribution to 

backscattering is negligible, the total backscattering coefficients can be expressed as: 

                                  bb(λ)=bb,w(λ)+bb,p(λ)                              (3.6) 

In Equations (3.5) and (3.6), the values of aw(λ) were taken from Pope and Fry 

(1997) and the backscattering coefficients of pure water, bb,w(λ), were taken from Morel 

(1974). The absorption spectra of CDOM, chl, and NAP can be further expressed as 

                     acdom(λ)= acdom(440)∙exp[-Scdom∙(λ-440)]                            (3.7) 

                                 achl(λ)=[chl]∙ a*chl(λ)                                                (3.8) 
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                                 anap(λ)=[NAP]∙ a*nap(λ)                                               (3.9)    

where acdom(440) is the absorption coefficient of CDOM at 440 nm and is used to 

describe the amount of CDOM; Scdom is the exponential slope for CDOM and was 

measured in lab with collected water samples; and the specific absorption coefficients 

(i.e., absorption coefficients per unit of mass)  of chl and NAP are denoted as a*chl(λ) and 

a*nap(λ). 

No backscattering coefficients of suspended particles were measured. In this 

study, bb,p(λ) is described using the following equation:  

                                bb,p(λ)= [p]∙ b*b,p(550)∙(550/λ)ɤ                                  (3.10) 

where [p] is the concentration of suspended particles, which equals to the lab measured 

TSS values and is approximated by Cnap; ɤ is the spectral power for particle 

backscattering coefficient, and b*b,p(550) is the particle specific backscattering 

coefficient (i.e., backscattering coefficients per unit of mass) at 550 nm.  

3.4.6.2 Look-up Table Method 

With the above considerations, there are only five unknowns in this model: 

b*b,p(550), ɤ, [chl], acdom(440), and [NAP]. Here in this study, a look-up table method was 

adopted to retrieve the five unknowns (Mobley et al., 2005). A database of Rrs spectra 

was assembled using the bio-geo-optical model described above and using various values 

of these five unknowns. Values of each unknown were placed at different increments 

within a pre-defined range. Theoretically, this database should at least contain Rrs spectra 

generated for environmental conditions close to those occurring in nature at the time and 
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location where the spectral data was acquired. This database also may contain spectra 

corresponding to environmental conditions much different from our study area. 

The ability of the look-up table method to accurately retrieve the concentrations of OACs 

depends upon the correct selection of the sampling intervals for the five unknowns. 

Sensitivity analysis of the bio-geo-optical model was carried out to evaluate how 

sensitive the modeled Rrs spectrum responds to the change of these five unknowns. First, 

initial values of the five unknowns were randomly set; then the change of the Rrs 

spectrum was studied with only one parameter changing at one time. The change of the 

Rrs spectrum is described using mean squared error (MSE). The higher the MSE per 

change, the more sensitive the model is to the specific parameter. 

Values of these five unknowns were retrieved by comparing measured Rrs 

spectrum to each spectrum in the database and finding the closest match. The closest 

match is defined as minimizing the root mean squared deviation (RMSD) between 

modeled and measured Rrs spectrums, which can be described as  

                              2

1
RMSD [ ( ) ( )] /

J

rs j rs j
j

R R Jλ λ
=

= −∑


                 (3.11) 

with J representing the number of all the bands used in the model. ( )rs jR λ


 is the modeled 

Rrs spectrum at band j and ( )rs jR λ  is the measured Rrs spectrum at band j. Considering 

the possible uncertainty existing in satellite and field spectral measurements, error 

analysis was also conducted by statistically analyzing the distribution of estimates for 

multiple matching spectra, which are defined as matching the satellite/spectrometer 

measured spectra by showing RMSD within certain level. This is also useful for 

evaluating the uncertainty of the estimates. 
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3.5 Results and Discussion 

3.5.1 Lab Measurements of IOPs 

After normalization using the absorption coefficient at 440 nm acdom(440), the 

specific absorption spectra of CDOM were acquired (Figure 3.2). The derived spectral 

slope, Scdom, ranged from 0.0133 nm-1 to 0.0200 nm-1, which is in good agreement with 

those reported for inland and coastal waters (Binding et al., 2008; Babin et al., 2003; 

Roesler et al., 1989). The ensemble mean of the specific absorption spectra was used to 

represent the specific absorption spectra of CDOM in this study and the corresponding 

Scdom equaled to 0.0176 nm-1 (Figure 3.2). 

The lab-measured total particulate absorption is shown in Figure 3.3a.  It is 

noticed that the absorption of particles at 750 nm was not zero, which is reasonable for 

case II waters. The absorption spectra of NAP (anap) were separated using the numerical 

modeling method described earlier (Zhang et al., 2009) and the derived spectral slope of 

NAP, Snap, ranged from 0.004 nm-1 to 0.013 nm-1. These values are similar to the reported 

values for inland and coastal waters in previous literature (Brando and Dekker, 2003; 

Roesler et al., 1989). After anap was determined, the absorption spectra of chl were 

calculated by deducting anap from the measured total particulate absorption ap. The 

specific absorption spectra of chl and NAP, i.e, a*chl(λ) and a*nap(λ), were determined by 

using the similar method described above for CDOM and are shown in Figure 3.3b. 
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Figure 3.2 Specific absorption coefficients of CDOM – a*cdom (grey) are measured using 

23 water samples collected at the near shore region of St Joseph when the plume occurred 
on April 21, 2014. The ensemble mean (black) is used to represent the a*cdom of our study 

area. The fitted exponential line (red) has a spectral slope Scdom =0.0176 nm-1. 
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Figure 3.3 (a) Lab measured total particulate absorption; and (b) specific absorption 
coefficients of chl (solid line) and NAP (dashed line). 
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3.5.2 Bio-geo-optical Model vs Hydrolight Physical Radiative Transfer Model 

Figure 3.4 illustrates the model and Hydrolight results for a representative case of 

lake water conditions when plumes occurred. The Hydrolight simulation was carried out 

with [chl] set to 20 mg m-3, [NAP] 5 g m-3, and CDOM absorption at 400 nm equal to 1.5 

m-1. The solar zenith angle was set based on the longitude/latitude and the date and time 

of our sampling event. Wind speed was set to 5 m s-1. The same concentrations and IOPs 

were used as inputs of the bio-geo-optical model. As shown by Figure 3.4, the Rrs 

spectrum modeled using the bio-opitcal model can be viewed as almost identical to the 

Hydrolight simulation at the wavelength range 400-650 nm and 700-750 nm. While the 

reflectance peak around 685 nm was simulated with Hydrolight, it was not captured by 

the bio-geo-optical model because the bio-geo-optical model does not consider the 

fluorescence of chl and CDOM. Therefore, only the wavelength range from 400 nm to 

650 nm was used for the following analysis to avoid fluorescence (Roesler and Perry, 

1995).  
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Figure 3.4 Simulated remote sensing reflectance Rrs using the bio-optical model used in 
this study (dashed line) and Hydrolight (solid line). 

3.5.3 Sensitivity Analysis 

Initial values of the five unknowns were set: [chl]=20 mg m-3, acdom(440)=1.2 m-1, 

[NAP]=6 g m-3, b*b,p(550)=0.02 m2 g-1, and ɤ=1. Figure 3.5a shows the MSE of Rrs 

spectrum corresponding to the percent change of each parameter. As seen from the figure, 

the model is most sensitive to bb,p(550), followed by [NAP] and insensitive to [chl], 

acdom(440),  and ɤ. Figure 3.5b also illustrates how the full Rrs spectrum changes with the 

change of each parameter. An increase of 1 g m-3 in NAP concentration can result in up to 

0.001 sr-1 increase of Rrs at 575 nm, while this only happens when the increase of [chl] is 
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spectrum; but if b*b,p (550) increases by 0.001 m2 g-1, the spectrum changes more 

significantly than when acdom(440) increases 0.2 m-1. It is then determined that the 

sampling intervals of b*b,p (550) and [NAP] should be small enough to capture the change 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

400 450 500 550 600 650 700 750

R
rs

 (s
r-1

) 

Wavelength (nm) 



64 

in Rrs spectrum. The fact that the model is most sensitive to the change of b*b,p (550) 

indicates the retrieval will be less reliable if using an empirical value for b*b,p (550) based 

on previous literature.  

In the work of Effler et al. (2013), bb,p(532) ranges from 0.0 to 0.1 m-1 and ɤ has a 

distribution from -1.0 to 1.5 for the Great Lakes waters. Therefore, the values of b*b,p(550) 

were set to range from 0.0 to 0.1 m2 g-1 with an interval of 0.0005 m2 g-1, while ɤ ranged 

from -1.0 to 1.5 with an interval of 0.1 in this study.  The concentrations of NAP, [NAP], 

were set to be within 0.0 to 15.0 g m-3 with an interval of 0.1 g m-3, chl concentration, 

[chl], ranged from 0.0 to 30.0 mg m-3 with an interval of 1 mg m-3, and acdom(440) was 

distributed from 0.0 to 2.0 m-1 with an interval of 0.1 m-1. These values contain the 

typical observations for plume events in southern Lake Michigan so that the generated Rrs 

spectra database is able to capture all possible spectral signatures for retrieval of water 

quality parameters. 
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Figure 3.5 (a) MSE of Rrs with percent change of one parameter at one time; and (b) Rrs 
change with change of a parameter at one time ([NAP] – increase 1 g m-3, acdom(440)  – 

increase 0.2 m-1, [chl] – increase 5 mg m-3, ɤ – increase 0.1, b*b,p(550) – increase 0.01 m2 
g-1). The initial Rrs is simulated using the bio-optical model with inputs: [NAP] =6 g m-3, 

acdom(440) =1.2 m-1, [chl] = 20 mg m-3, ɤ =1, and b*b,p(550) =0.02 m2 g-1. 
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3.5.4 Model Results 

Using the iteration intervals described above, about 4.5×108 spectra were 

generated. The algorithm was implemented using C++ and was run on a cluster 

supercomputer. Field spectrometer measurements were first used to test the robustness of 

the look-up table method, then the ability of Hyperion image to quantitatively monitor 

water quality conditions was evaluated and maps showing spatial heterogeneity of water 

quality parameters were presented and discussed. 

3.5.4.1 Spectrometer Measurements 

            Concentrations of chl, CDOM, and NAP were retrieved using the closest match as 

well as using the multiple matching spectra with RMSD < 0.00035 sr-1. The retrieved 

results of b*b,p(550) and ɤ are not discussed in this study as no field validation is feasible. 

Since results for all sampled sites are similar, we only show an example of the retrieved 

multiple matching spectra as compared to the field measured spectrum (Figure 3.6). 

Figure 3.7 shows a comparison of [chl], acdom(440), and [NAP] obtained from field 

measurements and from model estimates at each sampling site. Points are used to 

represent the retrieved mean and field measured values, while bars extending up and 

down from the points represent the mean plus/minus one standard deviation for all three 

water constituents. It should be noted that the retrieved [chl] at sites 5, 7, and 13 are much 

lower than the field measurements, and coincide with the lower estimates of NAP as 

shown by Figure 3.7. Our field records and in-situ measurements of conductivity using a 

YSI sonde (YSI 6600V2) suggest that these three sites were all located at the plume edge, 

with measurements of 428 μs cm-1, 412 μs cm-1and 471 μs cm-1, respectively, as 



67 

compared to about 540 μs cm-1 for sites inside the plume. The river plume is highly 

dynamic, responding to variability in river discharge, lake currents and surface winds, 

and is expected to have changed shape during the course of boat sampling.  This could 

explain both the low NAP and chl concentrations retrieved from these measured field 

spectra. Therefore, these three sites are excluded from the following analysis.  

 

 

Figure 3.6 Comparison between field measured Rrs spectrum (dash line) and 20 randomly 
selected matching spectra (solid red line) when RMSD <= 0.00035 sr-1 for a single 

sampled site. 
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a. 

 

b. 

 
c. 

 
Figure 3.7 Comparison of the (a) NAP, (b) chl, and (c) CDOM concentrations obtained 
from field measurements and from model retrieval using field spectrometer data for the 
St Joseph River plume observed on April 21, 2014. Circles and diamonds represent the 
model retrieved mean and field measured values, respectively, and lines extending from 

the mean indicate one standard deviation. 
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As seen from Table 3.1, the closest match does not give the most accurate 

estimation, which is not surprising considering the possible uncertainty in field and lab 

measurements. Generally, the mean values from the multiple matching spectra give the 

best estimates of chl, NAP, and CDOM. An overall underestimation of CDOM is 

observed. The estimates of chl have the highest variance (up to 8 mg m-3), which is 

reasonable since the bio-geo-optical model is less sensitive to the concentrations of chl, 

as determined by the previous sensitivity analysis. A few substantial differences between 

the in situ and modeled results are believed to be caused by the fact that the specific 

absorption coefficients of NAP and chl were modeled using the method of Zhang et al. 

(2009) instead of being directly measured in the laboratory. 67% sampling sites show lab 

measured concentrations of NAP and CDOM within one standard deviation of the 

modeled mean. The retrieval of chl concentration is better with lab measurements of 88% 

sampling sites falling inside one standard deviation of the modeled mean. Therefore, the 

results should be considered satisfactory. With this in mind, results illustrating the 

retrieval of spatial distribution of water quality parameters using Hyperion imagery are 

given and discussed below. 
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Table 3.1 Retrieved concentrations of NAP, CDOM and chl through finding the closest match of field measured Rrs spectra and 
finding the spectra with RMSD <=0.00035 sr-1. Mean, median and std (standard deviation) of the retrieved values are listed. 

Site 
# 

[NAP] (g m-3) acdom(440) (m-1) [chl] (mg m-3) 
Closest 

match 
median mean std Lab 

results 
Closest 

match 
median mean std Lab 

results 
Closest 

match 
median mean std Lab 

results 
1 8 7.9 8.1 2.7 10.3 0.2 1.1 1.0 0.5 1.4 13.0 19.0 17.6 8.6 25.0 
2 7.4 6.5 6.6 2.2 3.5 0.5 0.8 0.8 0.4 1.2 11.0 19.0 17.6 8.6 19.1 
3 5.3 4.4 4.4 1.7 4.0 0.1 0.6 0.6 0.3 0.9 8.0 18.0 17.5 8.4 17.8 
4 3.9 2.2 2.5 1.3 2.8 0.4 0.7 0.7 0.3 0.7 8.0 17.0 16.7 7.8 18.1 
6 2.4 1.8 2.0 1.0 1.5 0.3 0.6 0.6 0.3 0.7 12.0 15.0 15.0 6.7 18.8 
8 2.0 1.6 1.8 0.9 2.0 0.3 0.6 0.6 0.2 0.7 12.0 14.0 13.2 6.1 17.0 
9 0.6 1.1 1.3 0.6 2.0 0.5 0.6 0.6 0.2 0.7 14.0 10.0 9.8 4.5 14.5 

10 6.6 4.0 4.1 2.0 9.3 0.6 1.3 1.3 0.5 1.4 0.0 17.0 16.5 8.7 14.5 
11 5.7 4.9 5.0 1.8 5.1 0.3 0.9 0.9 0.4 1.2 13.0 19.0 18.1 8.4 23.3 
12 4.3 3.2 3.4 1.7 3.5 0.2 0.8 0.8 0.4 1.4 10.0 20.0 18.4 8.2 19.2 
14 3.8 2.8 3.1 1.5 3.5 0.2 0.8 0.8 0.3 1.2 11.0 19.0 18.1 8.1 17.9 
15 2.6 1.8 2.1 1.2 3.5 0.3 0.8 0.8 0.3 1.2 11.0 16.0 15.8 7.8 17.9 
16 3.1 2.1 2.3 1.2 3.5 0.2 0.6 0.6 0.3 0.9 11.0 18.0 16.8 7.4 16.1 
17 3.4 2.6 2.8 1.2 3.3 0.1 0.5 0.5 0.2 0.9 10.0 18.0 17.2 7.3 14.6 
18 1.0 1.1 1.2 0.5 3.0 0.3 0.4 0.4 0.2 0.7 9.0 8.0 7.9 3.3 10.9 
19 0.9 1.0 1.1 0.5 0.5 0.3 0.4 0.4 0.1 0.5 8.0 7.0 6.7 2.7 9.7 
20 6.7 5.7 6.0 3.0 7.5 1.1 1.2 1.2 0.5 1.4 13.0 19.0 18.0 8.6 26.5 
21 3.4 2.2 2.4 1.1 1.5 0.2 0.7 0.7 0.3 1.2 8.0 15.0 14.3 7.0 21.3 
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3.5.4.2 Hyperion Imagery 

Accurate atmospheric correction of satellite images for Case II waters has always 

been a challenge. In this study, atmospheric correction of the Hyperion image that was 

collected on August 7, 2012 was implemented by using the FLAASH module in ENVI 

software (Exelis Visual Information Solutions). Only 18 Hyperion bands ranging from 

478 nm to 650 nm were used for the retrieval process. It must be noted that FLAASH is 

designed for land surfaces. For water targets, the atmospherically corrected upwelling 

water reflectance still includes surface reflected signals that are not needed. Here we 

assumed the sun and sky glint was uniform for our study area during the Hyperion 

flyover. Glint was not directly measured but instead estimated using the semi-empirical 

sky model in Hydrolight. It was found that sun and sky glint contributed about 23%-10% 

of the total above-water reflectance as the wavelength increases from 478 nm to 650 nm. 

Considering the noise level (SNR ranging from about 60 to 190 at 478 nm-650 nm) in 

Hyperion data (Liao et al., 2013) it is assumed that the sun and sky glint was not a 

significant source of our measured signals, so we did not apply glint correction but used 

the reflectance spectra obtained from the Hyperion image directly.   

A similar look-up table method was used for the retrieval using Hyperion data. 

Instead of defining the matching spectra as showing RMSD < 0.00035 sr-1 with the field 

measured Rrs, the matching spectra of Hyperion data were defined as those with RMSD < 

0.0009 sr-1.  Figure 3.8 compares in situ measurements to satellite retrieved mean values 

for all sampled sites. These sites were sampled in the sequence of site number. Unlike the 

field spectrometer results, some of the Hyperion estimated concentrations match those in 
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situ measurements, while most, obviously do not (for example, site 6 with modeled chl of 

4.5 mg m-3vs measured chl of 18.0 mg m-3). As we mapped the spatial distribution of the 

retrieved mean concentrations with the Hyperion image in Figure 3.9, it was found that 

those sites such as site 6, 10, and 23 that experience large discrepancies with field 

measurements could be visually identified as located outside of the plume or at the plume 

edge from the image. This is quite possibly due to the fact that the field measurements 

did not occur simultaneously with Hyperion image acquisition, but instead occurred a 

few hours after the acquisition. This asynchrony may also explain why the image derived 

concentrations of chl and NAP at the beginning of the field sampling, which were 

collected immediately after the satellite flyover, show consistency with field 

measurements while sites sampled in the later hours such as sites 20-23, clearly outside 

the plume as seen from the image, show characteristics that are mostly exhibited by 

plume waters. Therefore, it is likely that the plume migrated toward the shore line as our 

field sampling continued. This is supported by our observations of southwesterly wind 

during the field campaign, as well as the historical wind direction data recorded by the 

NOAA Great Lakes Environmental Research Laboratory (GLERL) weather station at 

South Haven, MI. Despite all of that, the Hyperion retrieved mean [NAP] range from 0.9 

g m-3 to 7.0 g m-3and mean [chl] vary from 4.3 mg m-3 to 19.4 mg m-3; those data ranges 

are similar to the lab measured results with [NAP] ranging from 0.0 g m-3 to 6.6 g m-3 and 

[chl] from 0.4 mg m-3 to 25.2 mg m-3). The spatial heterogeneity of chl and NAP 

concentrations at all sampled sites (Figure 3.9) does reflect the water quality variability 

during the plume event, which we regard as the true condition observed by the EO-1 

satellite.  
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a. 

 

b. 

 

Figure 3.8 Comparison of the (a) NAP and (b) chl concentrations obtained from field 
measurements and from model retrieval using Hyperion imagery for the St Joseph River 
plume observed on August 7, 2012. Circles and diamonds represent the model retrieved 
mean and field measured values, respectively, and lines extending from the mean show 

standard deviation.  
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Figure 3.9 Hyperion retrieved concentrations of (a) chl and (b) NAP of all sampled sites 
on August 7, 2012. Site numbers are placed at the bottom center of each site. 
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Table 3.2 lists the retrieved NAP and chl concentrations using the Hyperion 

image for sites that are identified as least likely to be affected by the plume migration. 

The standard deviations of all retrieved values provide an estimate of overall uncertainty. 

There is consistency between in situ measurements and satellite retrieval mean values for 

these sites, with field measured NAP and chl concentrations at 77% of the sampled sites 

falling within one standard deviation of the mean Hyperion retrieved values. Again, the 

closest matching spectrum does not provide estimates as accurate as those obtained by 

inverting multiple matching spectra and adopting the mean values; this implies that the 

possible variability and inaccuracy of the model inputs needs to be considered. For 

example, the optical properties of plume water during the Hyperion flyover in August 

2012 might be different from that in April 2014. The FLAASH is designed for land 

surfaces and therefore the atmospherically corrected Hyperion imagery may still contain 

a certain amount of water surface reflected signals. It also has to be noted that the 

comparisons shown in Figure 3.8 represent a single in situ sample of the river plume 

versus the remote sensing data over a 30 m by 30 m lake surface area, and variability can 

occur on spatial scales smaller than this. Given the results and all these discussed 

reservations, we conclude that Hyperion imagery, though not specifically designed for 

water, can still be useful for evaluating the variability of water quality conditions during 

plume events.
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Table 3.2 Hyperion derived concentrations of NAP and chl as compared to field measurements. Both the closest match spectrum 
and spectra showing RMSD <=0.0009 sr-1 are used for retrieval. Median, mean and std (standard deviation) of the retrieved values 

are listed. Sampled sites are determined as in or out of plume based on the image. 

Site # [NAP] (g m-3) [chl] (mg m-3) 
Closest 
match 

median mean std Lab 
results 

Closest 
match 

median mean std Lab 
results 

1-in plume 6.9 6.6 7.0 3.0 6.6 30.0 20.0 18.7 8.4 25.2 
2-in plume 2.1 2.7 3.0 1.7 5.0 30.0 19.0 17.8 8.0 18.5 
11-in plume 2.7 3.1 3.3 1.6 4.5 27.0 20.0 18.4 8.1 16.2 
12-in plume 1.4 2.5 2.8 1.4 2.0 30.0 20.0 19.4 7.4 7.5 

14-out of plume 1.9 1.3 1.4 0.7 1.9 5.0 7.0 7.2 4.5 3.9 
15-in plume 3.4 3.1 3.4 1.7 2.6 20.0 18.0 17.5 8.2 11.4 
16-in plume 4.9 4.4 4.5 1.6 6.1 18.0 19.0 18.1 8.4 15.8 
17-in plume 1.8 1.7 1.9 1.0 2.0 11.0 13.0 13.8 7.6 15.8 
18-in plume 1.2 1.9 2.2 1.2 3.1 30.0 17.0 17.1 7.2 11.9 
19-in plume 3.6 1.8 2.1 1.2 1.0 6.0 12.0 12.7 7.3 5.0 
24-in plume 1.0 1.7 1.9 0.8 4.1 23.0 17.0 16.4 7.3 13.7 

25-out of plume 2.7 2.3 2.3 0.6 0.0 4.0 6.0 5.7 3.5 2.0 
26-out of plume 3.2 2.2 2.4 1.2 2.5 11.0 13.0 12.5 7.1 2.1 
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The grayscale image (Figure 3.10a) shows an observable river plume in the near-

shore region the west and north of the St Joseph River mouth. Figures 3.10 b-d show the 

spatial maps of retrieved concentrations of NAP and chl and acdom(440) by inverting the 

Hyperion imagery. The concentrations were retrieved through computing the mean of 

multiple spectra found with RMSD < 0.0009 sr-1 as described previously. Since no 

destreaking of the Hyperion image was conducted in this study (some “streaks” can be 

seen from Figure 3.10a), pixels with high noise levels often do not meet the criteria of 

RMSD < 0.0009 sr-1. No successful retrievals exist for those pixels, so they are displayed 

as black dots across Figure 3.10 b-d. In addition to the 26 sites sampled in the near-shore 

region, we also sampled two sites in the river mouth. These two sites have chl 

concentrations of more than 50 mg m-3 and NAP concentrations of about 10 mg m-3; both 

were much higher than those in the near-shore region. This is consistent with the high 

concentrations of NAP and chl in the river mouth as shown by Figure 3.10b and 3.10c. 

All three maps (b-d) depict high concentrations in conjunction with river outflow with 

concentrations decreasing as the plume moves further away from the shore and starts to 

dissipate. The concentrations of all three parameters were generally higher within the 

visible plume than outside of it. It is hence concluded that the plume was a significant 

source of sediments, carbon and chl after storm events, which had more than three times 

higher concentrations than the ambient water. The noticeably high concentrations of 

CDOM and chl along the shore line are consistent with what Lohrenz et al. (2004) found 

in their study, that the stimulation of phytoplankton activity and the enhancement of chl 

concentrations are associated with river outflow. The spatial variations of these water 
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quality variables also suggest that traditional water sampling strategies may be 

challenged to fully characterize the spatial structure and variability of these river plumes. 

 

Figure 3.10 Maps show (a) the Hyperion image and the spatial distribution of the 
modeled mean (b) [NAP] (g m-3), (c) [chl] (mg m-3), and (d) acdom(440) (m-1) 

concentrations on August 7, 2012.  
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3.6 Conclusions 

In this study, two field sampling campaigns took place near the mouth of the St 

Joseph River in southern Lake Michigan based on the timing of EO-1 satellite overpasses 

and precipitation events.  The strategy was designed to capture storm-initiated river 

plumes in the nearshore region of the St Joseph River. Boat-based field measurements 

and Hyperion images were collected for two plume events which occurred on August 7, 

2012 and April 21, 2014, respectively. The datasets collected during the episodic events 

allow an initial analysis of water quality parameters as well as the optical properties of 

river plumes in Southern Lake Michigan. 

A remote sensing inversion algorithm based on an existing bio-geo-optical model 

and the look-up table method was calibrated with the collected datasets for the study of 

spatial variability of St Joseph River plumes. The bio-geo-optical model is based on the 

optical properties of the constituents and water molecules and accounts for the complex 

radiative transfer process within water column; therefore this algorithm is transferrable 

with accurate and appropriate measurements of IOPs for specific study. However, spatial 

and temporal variations in IOPs can affect the accuracy for the retrieval of water quality 

parameters. Therefore, it is important to gain knowledge of the spatial and temporal 

variability of the IOPs for the future remote sensing of river plumes of the Great Lakes. 

The measurements of IOPs are not only important as inputs to transferrable optical 

models that improve the retrieval of OACs (Shuchman et al., 2013 a, b), but also provide 

a fundamental linkage between the optical properties and the biogeochemical state of 

water systems (Brown et al., 2001). 
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Our results demonstrate that the retrieved means from the set of matching spectra 

within a defined level of uncertainty give the best estimate of the water quality 

parameters. Modeled concentrations of chl, CDOM and NAP through utilizing the field 

spectrometer data show correspondence with the field measurements. 67% sampling sites 

show lab measured concentrations of NAP and CDOM within one standard deviation of 

the modeled mean and the retrieval of chl concentration at 88% sampling sites falling 

inside one standard deviation of the modeled mean. Hyperion imagery, which has high 

resolution both spectrally and spatially, can be used to study the variability of water 

quality parameters for river plumes although it is not originally designed for water 

observations. This is consistent with the findings of Brando and Dekker (2003). Hyperion 

retrieved concentrations for sites located in plumes also show consistency with the field 

measurements with field measured NAP and chl concentrations at 77% of the sampled 

sites falling within one standard deviation of the mean Hyperion retrieved values. Finally, 

maps of the retrieved chl, NAP and CDOM concentrations were generated through 

inverting the Hyperion imagery and the spatial heterogeneity of all three water quality 

parameters indicate that it would be difficult to use the traditional sampling strategy for 

fully characterizing the spatial variability and structure of river plumes. Hyperion 

imagery also provides much greater detail of the distribution of water quality parameters 

within the plume area as compared to application of oceanic satellites such as MODIS; 

therefore it is a valid tool in understanding lake water quality dynamics. 

Our study also highlighted some of the limitations of satellite remote sensing for 

use in the characterization of small river plumes. According to our experience, it is 

difficult to coordinate coincident field sampling with satellite acquisitions, clear-sky 
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conditions, and brief storm events. In addition, given the time period required for plume 

sampling and the dynamic nature of plumes, it is challenging to ensure that the field 

measurements reflect the instantaneous spatial distribution of water quality corresponding 

to the satellite imagery. To that end, field spectrometer measurements provide important 

optical information studying river plumes that aid in the calibration of transferrable bio-

geo-optical models. Many of these challenges may be alleviated using airborne systems 

or unmanned aircraft systems (UAS), which afford high spatial resolution and can be 

flown on a user-specified schedule. To better understand the water quality dynamics of 

river plumes in Lake Michigan, investigations of the seasonal and spatial variability of 

optical properties and spectral signatures of the OACs are recommended in the future. 
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CHAPTER 4. DEVELOPING A COMPREHENSIVE SPECTRAL-
BIOGEOCHEMICAL DATABASE OF MIDWESTERN RIVERS FOR WATER 
QUALITY RETRIEVAL USING REMOTE SENSING DATA: A CASE STUDY 

OF THE WABASH RIVER AND ITS TRIBUTARY, INDIANA 

4.1 Abstract 

A comprehensive spectral-biogeochemical database is developed for the Wabash 

River and the Tippecanoe River in Indiana, United States. Field sampling of river water 

was conducted over different hydrologic conditions during the summer of 2014. In 

addition to the various spectral measurements taken by a handheld field spectrometer, 

this database includes corresponding in situ measurements of water quality parameters 

(chlorophyll (chl), non-algal particles (NAP), and colored dissolved organic matter 

(CDOM)), nutrients (total nitrogen (TN), total phosphorus (TP), dissolved organic carbon 

(DOC)), water-column inherent optical properties (IOPs), water depths, substrate types 

and bottom reflectance spectra. First, the temporal variability of water quality parameters 

and nutrients in the rivers is analyzed and studied. Second, a look-up table (LUT) based 

spectrum matching methodology is applied to the observations to retrieve water quality 

parameters. A database of remote sensing reflectance ( rsR ) spectra is then constructed 

using the Hydrolight radiative transfer numerical model. Water quality parameters are 

estimated by finding the closest match of the field measured rsR  in the database. Results 

of this analysis find that the temporal variability of water quality parameters and nutrients 

in the Wabash River is closely associated with hydrologic conditions.  Meanwhile, there 
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are no significant correlations found between these parameters and streamflow for the 

Tippecanoe River, probably due to the two upstream reservoirs. The poor relationship 

between CDOM and DOC indicates that most DOC in the rivers is from human sources 

such as wastewater. It is also found that the source of water (surface runoff or combined 

sewer overflow (CSO)) to a river, water temperature, and nutrients are important factors 

controlling instream concentrations of phytoplankton. The LUT retrieved chl and NAP 

concentrations are in good agreement with field measurements with slopes close to 1.0. 

The average estimation errors for NAP and chl concentrations are within 4.1% and 37.7%, 

respectively, of independently obtained lab measurements. The CDOM levels are not 

well estimated and the LUT retrievals for CDOM experience large variability, probably 

due to the small data range collected in this study and the insensitivity of rsR  to CDOM 

change.  

4.2 Introduction 

Remote sensing provides a practical means for synoptic and multi-temporal 

monitoring of water quality. The water leaving signals that are captured by remote 

sensing instruments contain essential information on the constituents in the water column, 

and if applicable, water column depths and bottom properties. The potential of remote 

sensing to retrieve water quality parameters, bathymetry, and substrate type/composition 

has been studied for over two decades and there are four main approaches used: empirical, 

semi-empirical, analytical and radiative transfer methods. Significant attention has been 

paid to the empirical approach which focuses on developing best-fit correlational models 

between remote sensing data (digital numbers, radiance, or reflectance) and measured 

water quality parameters. A summary of empirical models for water quality assessment 
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can be found in Ritchie et al. (2003). Instead of screening all wavelengths and finding the 

band combinations showing the highest correlation, the semi-empirical approach 

incorporates the spectral characteristics of the interested parameters into the statistical 

relationship development. For example, many previous studies have shown that the 

reflectance trough at ~670 nm and the scattering peak at ~700 nm can be used to develop 

successful models for chlorophyll (chl) estimation and that the scattering peak at 

~700 nm is strongly correlated with concentrations of total suspended sediments (TSS) 

(Olmanson et al., 2013; Tan et al., 2015a). The analytical approach is based on the 

physical relationship between the inherent optical properties (IOPs) of the water column 

and measured apparent optical properties (AOPs). The IOPs are the properties of the 

medium itself and are not affected by the ambient light field. The AOPs are radiometric 

quantities that display enough stability and can be used for approximately describing the 

optical properties of the water body, e.g., the remote sensing reflectance. Remote sensing 

data can be inverted by using the analytical modeling approach to retrieve water column 

properties and bottom depths (Lee et al., 1999, 2001). In the radiative transfer modeling 

approach, the software package HydroLight (Mobely and Sundman, 2013) is often 

required due to the heavy computation required for simulating the complexities of 

underwater light transfer processes through solving the full set of radiative transfer 

equations. While analytical models are typically developed by simplifying the full 

radiative transfer equations based on a set of given assumptions, e.g., level water surface 

or no internal light sources, the radiative transfer models do not have such constraints. 

The radiative transfer models can be inverted to extract water column and bottom 

properties from remote sensing data by using a look-up table based spectrum matching 
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(LUT) methodology (Louchard et al., 2003; Mobley et al., 2005). Such models have been 

successfully applied to coral reef mapping in the work of Lesser and Mobely (2007). 

The empirical and semi-empirical models developed for water quality assessment 

are often highly dependent on the data and limited to the locations where data is collected. 

In contrast, the analytical and radiative transfer models provide physical insight into how 

environmental conditions (such as water column properties, bottom properties, and sky 

and water surface conditions) quantitatively affect the water leaving signals. Therefore 

these physics-based models have several advantages: (1) they are repeatable given 

appropriate inputs from the sites studied; (2) they are easily transferrable between data 

collected by a variety of sensors; and (3) sensitivity and uncertainty of the models can be 

objectively determined (Lee et al., 2010b). The existence of optically complex waters 

(IOCCG, 2000) and those that are so shallow that water-leaving reflectance includes 

interference from bottom conditions (Maritorena et al., 1994; Lee et al., 1998) also 

necessitates these methods. In Chapter 3 we investigated the capabilities of Hyperion 

imagery for mapping the water quality conditions in river plumes at Lake Michigan. By 

studying the physical relationship between IOPs and AOPs, the spatial heterogeneity of 

water quality was adequately captured, which would be challenging for traditional in-situ 

sampling or empirical modeling given the limited sample size and complex optical 

features.  

Despite all the advantages described above, the success of these physics-based 

approaches depends on two requirements: (1) remote sensing reflectance spectra must be 

accurately measured and (2) model inputs including the depth, bottom reflectance, and 

water IOPs must be accurate for the sites of interest (Mobley et al., 2005). While much 



86 

attention has been paid to collecting coincident measurements of IOPs and AOPs for 

oceanic systems (e.g., NASA SeaWiFS Bio-optical Archive and Storage System, 

http://seabass.gsfc.nasa.gov/), inland waters, especially river systems, have been poorly 

observed, even though what happens in ocean and coastal waters is highly dependent on 

these systems (Palmer et al., 2014). It is therefore important and necessary to develop a 

similar database / archive for bio-optical data of inland waters and make it accessible to 

the whole scientific community (Mouw et al., 2015). Such a database will provide 

valuable data for improving satellite algorithm development and product validation. In 

addition, the observations of IOPs in the database will also provide a fundamental linkage 

between the optical properties and the biogeochemical state of inland waters. For 

example, the change in beam attenuation is closely associated with particle size variations 

and can be used to study particle composition (Boss et al., 2007). Especially for rivers 

that experience nutrient and sediment loads from terrestrial sources, the measurements of 

IOPs, when combined with climate and hydrologic flow regime, enable a better 

understanding of the biogeochemical state of river systems.  

Recent years have seen growing interest in the development of hyperspectral 

imagers and in the application of hyperspectral data for water quality retrieval. 

Hyperspectral sensors typically collect data in narrow, contiguous spectral bands and are 

expected to yield advantages in estimation accuracy due to their ability to finely parse the 

visible spectrum. Lee and Carder (2002) investigated how the number of spectral bands 

affected the retrieval of water column and bottom properties from remote sensing data 

and found that hyperspectral data performed much better for optically shallow waters. 

Although not designed for water targets, the satellite borne Hyperion imager is valid for 

http://seabass.gsfc.nasa.gov/
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adequately estimating water quality in coastal and estuary waters as well as the Great 

Lakes (Brando and Dekker, 2003; Tan et al., 2015b). The Hyperspectral Imager for the 

Coastal Ocean (HICO) is the first hyperspectral sensor designed specifically for the 

coastal ocean and estuarial, riverine, or other shallow-water areas with optimized Signal-

to-Noise Ratio (SNR) (Lucke et al., 2011). It has been successfully applied for the study 

of phytoplankton, colored dissolved organic matter (CDOM), turbidity, and bathymetry 

in coastal waters (Gitelson et al., 2011; Ryan et al., 2014; Garcia et al., 2014; Keith et al., 

2014). Other hyperspectral sensors such as the Hyperspectral Infrared Imager (HyspIRI) 

(Devred et al., 2013) show great potential for observing water quality of coastal and 

inland waters. However, the application of such satellite products for inland river 

monitoring has been hampered since most rivers are not able to be appropriately resolved 

due to the coarse resolution of current satellite products, of which the finest spatial 

resolution is 30 m. According to the work of Handcock et al. (2006), the width of the 

river channel must be at least three pixels for reliable water measurements from remote 

sensing imagery. Hyperspectral sensors mounted on airborne platforms provide a way to 

collect data of sufficiently high spatial resolution that rivers can be appropriately resolved 

and water quality parameters can be retrieved (Shafique et al., 2003; Olmanson et al., 

2013). But given the high cost in organization and realization, these airborne platforms 

are not affordable for agencies with small budgets and therefore regular monitoring of 

water quality using theses platforms is not realistic. Alternatively, in situ sampling using 

a handheld spectrometer provides a cost-effective, convenient, and accurate approach for 

measuring spectral signatures of rivers and streams. Although limited in spatial coverage, 

it does help fill the gap of missing remote sensing data for rivers and streams. And the 
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more samples taken, the more useful it will prove in making recommendations for future 

work on remote sensing of water quality. 

The overall goal of this study is to develop a comprehensive spectral-

biogeochemical database for the Wabash River and its tributaries and evaluate the ability 

of the radiative transfer modeling approach by using the database for the retrievals of 

water quality parameters including concentrations of chl, non-algal particles (NAP), and 

CDOM. To fulfill the goal, our specific objectives are to: (1) collect extensive field data 

including in-situ concentrations of water quality parameters and nutrients, measurements 

of IOPs, water depths, bottom albedos, and spectral signatures of river water; (2) analyze 

the temporal variability of water quality parameters, nutrients, and IOPs, as well as 

possible factors in affecting the temporal variability, and (3) apply the LUT method to the 

collected dataset and evaluate its capability for retrieving water quality parameters. 

4.3 Background 

The Wabash River, which has an average annual flow of approximately 1,000 m3 

s-1, originates from west-central Ohio and is the largest drainage in Indiana.  It drains an 

area of over 85,000 km2 that covers two-thirds of Indiana’s 92 counties. In the basin, land 

cover is dominated by agricultural row crops (62%) with approximately 20% forest and 

dispersed urbanization (United States Army Corps of Engineers, 2011). The Wabash 

River flows a distance of over 650 km from its headwaters to its confluence with the 

Ohio River and is the second largest tributary of the Ohio River. It is also the longest 

segment of free flowing river east of the Mississippi River.  The Tippecanoe River 

(average flow of 145 m3 s-1) is one of over 14 major tributaries contributing flow to the 

main Wabash River. Lakes and swamps are the major source of the Tippecanoe River 
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and reduce the amount of sediments carried in the river.  The river enters the Wabash 

River 19 km northeast of Lafayette, Indiana and is one of the nation’s most biologically 

diverse rivers. The drainage basin of the Tippecanoe River is in the north central part of 

Indiana and drains approximately 4,920 km2. The land use in the basin is predominately 

agriculture, which represents approximately 87 percent of the land area. The Wabash 

River and its tributaries are a vital source for water supply and recreation in Indiana. 

Water quality impairment occurs on various segments of the Wabash River and 

the Tippecanoe River.  Issues includes those related to E. Coli, nutrients, pH, dissolved 

oxygen, and impaired biotic communities, according to the Indiana and Illinois 2010, 

2012, and 2014 Clean Water Act (CWA) Section 303(d) listings. Major pollution sources 

in the watershed include nonpoint sources from agricultural and urban run-off, and point 

sources from treated and untreated (from combined sewer overflows) municipal 

wastewater.  Both rivers play important roles in transporting pollutants downstream.  

According to the Ohio River Valley Water Sanitation Commission (ORSANCO, 

http://www.orsanco.org/wabash-river-project), the Wabash River is one of the largest 

contributors of nutrient loadings to the Mississippi River and the Gulf of Mexico. 

Approximately 10.0 gigagrams of total phosphorus and 139.3 gigagrams of total nitrogen 

are estimated to be contributed by the Wabash River watershed to the Gulf of Mexico 

each year (United States Environmental Protection Agency, 2011b). 

4.4 Materials and Methods 

4.4.1 Study Area 

The primary study area includes the reach of the Wabash River between French 

Post Park (about halfway between Delphi, Indiana, and Logansport, Indiana) and Attica, 

http://www.orsanco.org/wabash-river-project
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Indiana, and the reach of the Tippecanoe River between Indiana State Road 18 and it’s 

confluence with the Wabash River (Figure 4.1).  Within the study area the Wabash River 

has a length of about 90 km and ranges in width from 100 m to over 150 m. The 

Tippecanoe River reach flows approximately 10 km before entering the Wabash River. 

Two reservoirs, Lake Freeman and Lake Shafer, are located upstream from the 

confluence 48 km and 29 km, respectively. Throughout the year water depth of the 

Wabash River (USGS 03335500) ranges from 0.6 m to 6.0 m while the Tippecanoe River 

(USGS 03333050) is shallower with typical depths of 0.6 m to 2.5 m. The river bed of the 

Tippecanoe River is often visible through the water during summer when flows are 

extremely low. 

Water quality conditions in these two rivers are quite different. Based on our 

previous sampling experience, water in the Tippecanoe River carries significantly lower 

sediment loads than the Wabash River, likely due to the presence of the two upstream 

reservoirs. The water quality of the Wabash River is complex and dominated by both 

phytoplankton, usually measured in terms of chl concentrations, and NAP otherwise 

known as inorganic sediments. The water quality of the Wabash River is closely 

associated with flow and seasonal dynamics. For example, during spring nitrogen and 

phosphorus loads in the Wabash River are highest as a consequence of intense 

agricultural activities and high agricultural runoff. Significant amounts of sediments and 

nutrients are often found in the river after summer storm events. These nutrients delivered 

from terrestrial environment, in return, cause algal blooms in the river and turn the water 

to be visibly green. 
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Figure 4.1 Main study area includes two reaches of the Wabash River, including the 
confluence with the Tippecanoe River. Field spectrometer measurements and water 

samples (marked as red stars) were collected through the summer of 2014. 
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4.4.2 Field Work Activities 

Regular sampling was conducted using a boat platform on a total of 28 dates 

during May, June, and July 2014, resulting in a total of 213 samples from the Wabash 

River and the Tippecanoe River. Surface water samples of each site were collected and 

stored in brown polyethylene bottles until returned to the laboratory for further analysis. 

Above-water measurements were taken with a GER 1500 field spectrometer (Spectral 

Vista Corporation, http://www.spectravista.com/) and a Spectralon panel at each station 

by following NASA’s standard operating protocols of satellite ocean color remote 

sensing (Mueller et al., 2003). Spectral range of the spectrometer is 350-1050 nm with 

1.5 nm sampling interval. To avoid significant changes in illumination conditions, 

measurements between water target, sky, and the Spectralon panel were done within a 

very short time period. Sky conditions were also recorded for each station when spectral 

measurements occurred. For each site, water depths were measured using an ultrasonic 

device and recorded. A YSI sonde (YSI, https://www.ysi.com) was used to take 

instantaneous measurements of water temperature, conductivity, salinity, and dissolved 

oxygen. Water measurements were accompanied also by underwater video which was 

used to determine the substrate type. During low flow conditions when the streambed 

emerged, the albedo of various river bottom types were collected and related back to the 

classification of streambed materials from the video. Locations of all sampled sites were 

recorded using a handheld GPS device. 

4.4.3 Laboratory Analyses 

All water samples were stored in the dark and on ice until returned to the 

laboratory for the determination of the concentrations of water quality parameters and 
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nutrients (total nitrogen - TN, total phosphorous - TP, and dissolved organic carbon - 

DOC), as well as spectral absorption properties of chl, NAP and CDOM.  

According to the standard methods of the American Public Health Association 

(APHA) (Eaton et al., 1998), a sub-sample was filtered onto Whatman GF/F filters, then 

extracted in 90% acetone solution and analyzed spectrophotometrically to determine the 

concentration of chl (denoted as [chl], where “[X]” indicates a concentration of X). The 

concentration of TSS ([TSS]) were measured gravimetrically on pre-weighted Whatman 

GF/F filters after rinsing with pure water. It should be noted that TSS includes both 

organic and inorganic sediments, i.e., chl and NAP. The organic part of TSS can be 

converted from [chl] using a ratio of 0.02 which is typical for mesotrophic and eutrophic 

systems (Likens, 2010). Because the organic sediments took up only a small part of the 

total mass (<10%), the concentrations of NAP ([NAP]) were assumed to approximate 

[TSS] in this study. The concentration of DOC ([DOC]) was estimated by chemical 

analysis of a filtered 250 ml sample using the EPA 415.1 method. The concentrations of 

TP and TN ([TP] and [TN], respectively) were analyzed using an autoanalyzer after 

subjecting unfiltered and filtered water samples to alkaline persulfate digestion. 

CDOM absorption ( cdom( )a λ ) was measured using a laboratory spectrophotometer 

after filtration through 0.45 μm membrane filters. Total absorption of particulate matter 

( p( )a λ ) was acquired using the quantitative filter technique by measuring the particles 

retained on to Whatman GF/F filters spectrophotometrically. The filters were then 

bleached with hot methanol so that pigments were extracted. The absorption spectra of 

NAP ( nap( )a λ ) were determined through measurements of particles remaining on these 
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bleached filters. The difference between p( )a λ  and nap( )a λ gave an estimate of the 

absorption of phytoplankton ph( )a λ . All spectral absorption measurements were made at 1 

nm increments between 350 nm and 900 nm. The detailed lab procedure can be found in 

NASA protocols (Mueller et al., 2003). 

4.4.4 Data Preprocessing and Analysis 

All field spectrometer measurements were processed to remove sky and sun glint 

by using a constant water surface reflection coefficient (Mobley, 1999). Therefore, 

remote sensing reflectance, rsR , was calculated using the following equation: 

                                            u s
rs

d

L LR
E
ρ− ⋅

=                       (4.1) 

where uL  is the total upwelling radiance, sL  is the sky radiance, ρ is the water surface 

reflection coefficient which is 0.028, and dE  is the measured downwelling solar 

irradiance.  

Null point corrections were performed to the lab measured absorption to remove 

residual offsets due to filter manufacturing and scattering artifacts caused by particle 

loading. For cdom( )a λ  and p( )a λ  correction, the average from 750-760 nm was forced to 

be null. The absorption of non-algal particles nap( )a λ was corrected using the average 

absorption measured between 890 nm and 900 nm and a pathlength amplification factor 

of 2 (Roesler, 1998). Specific absorption coefficients (absorption per unit of mass 

concentration) of CDOM, chl and NAP were then estimated after corrections. The 

averaged values of the specific absorption coefficients were further fitted to exponential 

functions and used to represent the specific inherent optical properties (SIOPs) of the 
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study area. The fitting details are presented in the following Results and Discussion 

section. 

 The temporal variability of water quality parameters, nutrients, and IOPs in the 

Wabash River and the Tippecanoe River were analyzed. Pearson’s correlation (r) 

analyses and significance tests were performed to determine possible factors influencing 

the temporal variability of these parameters. In particular, the daily distribution of [chl] 

sampled within the Wabash River was also evaluated using box-plots and the Mann-

Whitney-Wilcoxon test was performed to determine if significant changes occurred.  

4.4.5 Water Quality Retrieval 

In this study, the LUT methodology was used for the retrieval of water quality 

parameters (Mobley et al., 2005). The remote sensing reflectance, rsR , can be computed 

exactly by solving the radiative transfer equation, as long as the environmental inputs 

including the water-column IOPs (the water absorption and scattering properties), the sky 

and water surface conditions, and water depths and bottom boundary conditions are 

known (Mobley, 1994). Therefore, the LUT methodology includes two major steps: (1) 

assemble a database of rsR  corresponding to different environmental inputs, and (2) 

compare the field measured rsR  to the spectrum in the database and find the closest 

match. The environmental inputs corresponding to the closest match are then considered 

to be the real conditions that generate the field measured rsR . 

No direct measurements of the backscattering coefficients of particles were 

available as part of this study. A subset of the samples collected in summer 2014 was 

selected to calibrate the backscattering properties and the remaining samples were used 

for model validation. Backscattering coefficients of suspend particles (including both chl 
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and NAP) were lumped into one variable, b p, ( )b λ , which can be expressed using a power 

function, 

                                 *
b p b,p

550, ( ) [TSS] (550) ( )b b γλ
λ

= ⋅ ⋅           (4.2) 

where *
b p, (550)b is the specific backscattering coefficient at 550 nm, λ is the wavelength, 

andγ  is the spectral shape parameter. The two unknowns *
b p, (550)b  and γ  of the 

selected sites were determined by using the LUT methodology.  The specific 

backscattering spectra were then estimated by normalizing the backscattering to the 

measured [TSS] and the average was used to represent the specific backscattering 

properties of the Wabash River and the Tippecanoe River. 

Together with the lab measured absorption and bottom albedo collected in the 

field, the retrieved backscattering coefficients were used to construct the rsR  database 

using the HydroLight-EcoLight 5.2.2. radiative transfer model (Mobley and Sundman, 

2013). Since the Wabash River and the Tippecanoe River could be optically shallow 

during low flow conditions, water depth was also considered as a parameter. Therefore, 

to simulate rsR  spectrum, four main parameters are needed: [chl], [TSS], the absorption 

of CDOM at 440 nm, cdom(440)a , and water depth. For the initial LUT, [chl] ranged from 

2 mg m-3 to 180 mg m-3 at increments of 2 mg m-3, [TSS] ranged from 2 g m-3 to 180 g m-

3 at increments of 2 g m-3, and cdom(440)a  ranged from 0 to 5 m-1 with increments of 0.25 

m-1. Water depths were set to start from 0.25 m with increments of 0.25 m according to 

Mobley et al. (2005). During the iteration of water depths, no further simulations were 

executed if the rsR  spectrum showed no change, which means all light has been absorbed 
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and/or scattered at this depth. This depth is referred as the maximum depth, maxD , and 

was recorded. If the retrieved depth is less than the maximum depth, it indicates optically 

shallow water; otherwise, it suggests that the water depth of the specific site is equal to or 

greater than maxD .  All simulations were run using the Case 2 IOP model from 400 nm to 

750 nm with 5 nm interval and assumed clear sky condition. Fluorescence of chl and 

CDOM were included. Only one solar zenith angle was used: sθ =30o. And the wind 

speed was set to be 5 m s-1.  

The closest matching spectrum is defined as the one in the database showing 

minimum difference with field measured rsR  spectrum. A term, err ,  is used to describe 

the difference 

                                
2

rs j rs j
j 1

[ ( ) ( )]Jerr R Rλ λ
=

= −∑       (4.3) 

where J  represents the total number of wavelengths, rs j( )R λ the database spectrum at 

band j , and rs j( )R λ is the field measured spectrum at band j . Error analysis was also 

conducted to evaluate the retrieval accuracy.  

4.5 Results and Discussion 

4.5.1 Water Quality Observations 

Daily discharge data from the Wabash River and the Tippecanoe River were 

obtained from USGS stations USGS 03335500 and USGS 03333050, respectively. The 

Mann-Whitney-Wilcoxon test shows that the Wabash River and the Tippecanoe River 

experience different hydrologic regimes (p<0.05). Since the Wabash River and the 

Tippecanoe River also experience different optical properties, as shown in section 4.4, 

they were analyzed separately. A summary of water quality observations from the 
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Wabash River and the Tippecanoe River during the summer of 2014 is presented in Table 

4.1. For the Wabash River, [chl] experienced large variability ranging from 8.9 mg m-3 to 

175.3 mg m-3, which spans three orders of magnitude. Concentrations of TSS also 

experienced large variability ranging from 11.0 g m-3 to 102.0 g m-3. In contrast, [chl] and 

[TSS] in the Tippecanoe River were both lower and less variable, which is most likely 

due to the two upstream reservoirs serving as a settling basin. The CDOM level 

( (440)cdoma ) in both rivers was similar and ranged from low to moderate (0.8 m-1-3.1 m-1, 

and 1.1 m-1- 2.7 m-1, respectively). This is consistent with [DOC] in the two rivers (Table 

4.1). Values of [TN] were similar between the Wabash River and the Tippecanoe River, 

but [TP] in the Wabash River was much higher with the highest value exceeding the 

Indiana nutrient benchmark of 0.3 g m-3. Both [TSS] and [CDOM] varied independently 

of phytoplankton (Figure 4.2). Therefore the Wabash River and the Tippecanoe River are 

optically complex with non-algal particles and organics competing with phytoplankton 

and belong to the category of Case 2 waters (IOCCG, 2000). The measured water depths 

for the two rivers indicate that bottom reflectance might be contributing to the water-

leaving signals and needs to be considered in the following analysis. 

 

Table 4.1 Summary of water quality observations of the Wabash River and the 
Tippecanoe Rive in summer 2014 

 [chl] 
mg m-3 

[TSS] 
g m-3 

(440)cdoma
m-1 

[TP] 
g m-3 

[TN] 
g m-3 

[DOC] 
g m-3 

Depth 
m 

 
Wabash 

Mean 56.0 42.2 1.7 0.10 5.9 27.1 2.0 
Min  8.9 11.0 0.8 0.02 1.3 8.9 0.4 
Max 175.3 102.0 3.1 0.47 10.0 41.5 4.4 

 Mean 34.2 13.5 1.6 0.05 6.3 25.8 1.3 
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Tippecanoe Min 8.3 8.5 1.1 0.01 2.0 8.2 0.3 
Max 53.1 20.4 2.7 0.12 10.6 35.5 2.8 

 

(a) 

 

(b) 

 

Figure 4.2 Scatterplots of measured (a) [TSS] and (b) cdom(440)a versus [chl] for samples 
in the Wabash River (circles) and the Tippecanoe River (triangles) in summer 2014. 
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Figure 4.3 shows time series of the measured water quality parameters and 

nutrients for summer 2014. It was found that the overall pattern of daily averaged TSS 

concentrations in the Wabash River followed that of streamflow (Figure 4.3(a)). High 

concentrations of TSS were typically found in the river when streamflow increased. The 

bloom of phytoplankton in the Wabash River usually occurred after streamflow peaked 

(Figure 4.3(c)). In addition, the changes in the level of TN, TP, and carbon in the Wabash 

River were also associated with those of streamflow. However, such observations were 

not obviously displayed for the Tippecanoe River. Pearson’s correlation coefficients (r) 

were further calculated between each parameter and streamflow (Table 4.2). Results 

show that the concentrations of TSS, chl, CDOM, and TN in the Wabash River were 

significantly correlated with streamflow. The Wabash River watershed is dominated by 

agricultural land use, which means large amounts of sediments and nutrients were 

delivered from terrestrial sources to the river during storm events. The increase of [TP] in 

late July (Julian Day 209, 210, and 212) when streamflow was low coincided with the 

combined sewer overflow (CSO) events which delivered significant amount of TP into 

the river (Lafayette Water Pollution Control Department, personal communication). In 

addition, the relatively low [TP] on May 20 and 22 (Julian Day 140 and 142) was caused 

by the relatively low amount of TP delivered into the river and the high streamflow up to 

680 m3 s-1 on May 16 (Julian Day 136). When these points were removed from the 

analysis, the correlation between [TP] and streamflow became significant (p=0.025) and 

increased to 0.50. None of the observed water quality parameters and nutrients showed 

significant correlation with streamflow for the Tippecanoe River, except for the level of 
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CDOM (Table 4.2). Such results indicate stream-based instead of runoff-based sources of 

sediments and nutrients, even though the major land use type in the Tippecanoe River 

watershed is also agriculture. This is mostly attributed to the two reservoirs located 

upstream of the Tippecanoe River study reach, which increase the residence time of water 

increasing the settling of sediment and uptake of nutrients.  

There are two major sources of CDOM: (1) allochthonous – derived from the 

decomposition of woody plants in terrestrial environments, and (2) autochthonous – 

derived from the decomposition of algae and aquatic vegetation within the rivers. Since 

CDOM concentrations were significantly correlated with streamflow in both rivers (Table 

4.2), it is highly likely that autochthonous is the dominant source in these rivers. It has to 

be noted that CDOM is only a portion of DOC that absorbs light. Therefore it is not 

surprising that DOC showed no significant correlation with streamflow in both rivers, 

which means that most of DOC in the rivers is uncolored and from human sources such 

as wastewater discharge or from CSO that are prevalent in our study area. For many 

remote sensing of water quality studies (e.g., Kutser et al., 2005), it is assumed that 

remote estimates of CDOM can be used to predict [DOC]. However, a weak relationship 

was observed between CDOM and [DOC] based on our field measurements (Figure 4.4). 

This is common for water bodies affected by human activities (Brezonik et al., 2015). 

Therefore, the use of CDOM for estimating [DOC] in inland water bodies should be 

cautioned and field validation is needed unless more is known about the CDOM-DOC 

relationship.  

As we closely examine the measured [chl] in the Wabash River (Figure 4.5), it is 

found that variability of [chl] increased between sampled sites when [chl] increased. 
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Significant increases of [chl] were found around early June (Day 149-160), middle June 

(Day 169-170), middle July (Day 190-195), and late July (Day 209-210). Specifically, the 

phytoplankton blooms on Day 149-160, 169-170, and 190-195 followed increases of [TN] 

and [TP]. Following the algae blooms there were decreases of [TN] and [TP] due to 

biological uptake and transformations. The increase of [chl] on Day 209-210 is believed 

to be a result of increased [TP] due to CSO input (Figure 4.3(k)). The magnitude of the 

[chl] increase was relatively lower in early June as compared to the other bloom events, 

which might be caused by the relatively lower amount of TP delivered into the river as 

well as the relatively lower water temperature (ranged approximately 21˚C - 23˚C). The 

decrease of [chl] on Day 196-197 when [TP] and streamflow were relatively stable is 

believed to be a result of decreased water temperature, which dropped from 26˚C to 23˚C 

as shown by our field data. Therefore it is concluded that the source of water (surface 

runoff or CSO) to a river, water temperature, and nutrients are important factors 

controlling instream concentrations of phytoplankton.  

 

Table 4.2 Pearson’s correlations between concentrations and streamflow of the Wabash 
River and the Tippecanoe River. The values in bold text represent those correlations that 

were significant (p<0.05). 

 [TSS] [chl] acdom(440) [DOC] [TP] [TN] 
Wabash 0.82 -0.68 0.68 0.31 0.11 0.74 
Tippecanoe 0.36 0.02 0.72 0.33 0.04 0.66 
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Figure 4.3 Time series of measured concentrations of water quality parameters and nutrients (circles) versus streamflow (solid line) 

of the Wabash River (left panel) and the Tippecanoe River (right panel). (a) and (b) - [TSS], (c) and (d) - [chl], (e) and (f) - 
acdom(440), (g) and (h) - [DOC], (i) and (j) - [TN], and (k) and (l) - [TP]. 
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Figure 4.4 Scatterplot showing measured [DOC] versus cdom(440)a for samples collected 

for the Wabash River (circles) and the Tippecanoe River (triangles) in summer 2014.
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Figure 4.5 Boxplots of measured [chl] for samples collected in the Wabash River during the summer of 2014. Boxes filled with 
yellow indicate that there is a statistically significant difference (p<0.05) between observations on the highlighted day and the 

previous day. 
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4.5.2 Inherent Optical Properties 

Absorption by phytoplankton at 676 nm ( ph(676)a ) as estimated from the 

collected water samples closely paralleled changes in extracted [chl] in the Wabash River 

with r equal to 0.90 (Figure 4.6 (a)). The temporal variability in chl absorption was 

dominated by algal blooms, which were caused by increased nutrients delivered from 

terrestrial sources during runoff events. Significant increases in chl absorption were 

found on days when [chl] increased. Significant correlation between ph(676)a and [chl] 

were also found in the Tippecanoe River (r=0.93, p<0.05), although absorption by chl 

was lower and less variable (Figure 4.6(b)). 

The observed changes in absorption by NAP at 440 nm ( nap(440)a ) corresponded 

strongly to the variation in [TSS] in the Wabash River (Figure 4.6(c)). The absorption 

coefficient of NAP at 440 nm, nap(440)a  increased from about 1 m-1 to > 3 m-1 during 

summer runoff events. In July (after Julian Day 180) when no rainfall was observed, 

nap(440)a was low and much less variable since the residence time of water in the river 

channel was longer and most of the sediment had settled to the bottom of the channel.  

The Tippecanoe River experiences much lower absorption caused by non-algal particles, 

ranging from 0.9 m-1 to 1.6 m-1 (Figure 4.6(d)), primarily because the amount of sediment 

in the Tippecanoe River is much lower than that in the Wabash River. No significant 

correlation existed between nap(440)a and [TSS] in the Tippecanoe River and r only 

equaled to 0.35, which indicates that non-algal particles only constituted a part of TSS. 
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Figure 4.6 Scatterplots of measured IOPs (circles) versus water quality parameters (filled squares) of the Wabash River (left panel) 

and the Tippecanoe River (right panel). (a) and (b) – aph(676) vs [chl], (c) and (d) – anap(440) vs [TSS].
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The spectral absorption of CDOM, cdom( )a λ , can be described using an 

exponential function, 

cdom ( 440)
cdom cdom( ) (440) Sa a e λλ − ⋅ −= ⋅           (4.4) 

with the exponential slope cdomS estimated by non-linear regression. The derived values of 

cdomS  had a narrow range (0.0157-0.0207 nm-1), which is in good agreement with those 

reported for inland and coastal waters (Rosler et al., 1989; Babin et al., 2003; Binding et 

al., 2008). The specific absorption of CDOM, *
cdom( )a λ , was acquired by fitting the 

ensemble mean of lab estimated specific absorption using Eq. (4.4), with the 

corresponding cdomS  equal to 0.018 nm-1 (Figure 4.7(a)).  

Similarly, an exponential function was fit to the spectral absorption of non-algal 

particulate matter, nap( )a λ ,  

* nap ( 440)
nap nap( ) [TSS] (440) Sa a e λλ − ⋅ −= ⋅ ⋅                  (4.5) 

where *
nap( )a λ is the specific absorption coefficient at 440 nm for NAP and [TSS] equals 

[NAP]. The exponential slopes of NAP, napS , were estimated by non-linear regression 

and ranged from 0.0076 nm-1 to 0.01 nm-1. These values are also similar to those reported 

for inland and coastal waters (Rosler et al., 1989; Babin et al., 2003). The *
nap( )a λ  was 

retrieved following the same method as for the *
cdom( )a λ  and the corresponding napS  was 

0.089 nm-1 (Figure 4.7(a)).  

There were no systematic differences between the two rivers in the mean spectral 

shape of phytoplankton absorption, ph( )a λ  (data not shown). Coefficients of variations of 

ph( )a λ  ranged from 14% to 51% for all wavelengths over the spectral range from 400 nm 
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to 700 nm, with high variations observed at around 400-420 nm and 600-650 nm. The 

high variations could be ascribed to the different compositions of chlorophyll b, 

chlorophyll c, and other accessory pigments in the Wabash River and the Tippecanoe 

River. The spectral values of ph( )a λ  are given in Table 4.3. The small bump around 480 

nm and 645 nm is likely to be caused by the comparatively high concentrations of 

chlorophyll b and chlorophyll c for some sampled sites (Figure 4.7(a)). 

The retrieved average backscattering coefficients are shown in Figure 4.7(b), with 

*
b,p(550)b equal to 0.0.012 m2 g-1 and γ  equal to 1.3. There were no significant 

differences between the two rivers’ backscattering properties. The retrieved *
b,p(550)b  

values lied between 0.006-0.02 m2 g-1 and the power exponent γ  ranged from 0.5 to 2.0, 

typical for Case 2 waters as reported by previous literature (IOCCG, 2006). The temporal 

variability of particulate backscattering at 550 nm ( b,p(550)b ) was closely associated with 

[TSS] and showed weak correlation with [chl] (Figure 4.8), implying the dominance of 

the backscattering by non-algal particles.  
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Table 4.3 Spectral values for phytoplankton absorption in summer 2014. 

 λ  ( )pha λ  

400 0.0095 
405 0.0102 
410 0.0105 
415 0.0110 
420 0.0117 
425 0.0128 
430 0.0141 
435 0.0153 
440 0.0158 
445 0.0157 
450 0.0151 
455 0.0143 
460 0.0135 
465 0.0128 
470 0.0121 
475 0.0116 
480 0.0114 
485 0.0113 
490 0.0113 
495 0.0110 
500 0.0105 
505 0.0097 
510 0.0088 
515 0.0078 
520 0.0070 
525 0.0063 
530 0.0057 
535 0.0053 
540 0.0049 
545 0.0047 
550 0.0045 
555 0.0043 
560 0.0041 
565 0.0040 
570 0.0040 
575 0.0041 
580 0.0042 
585 0.0043 
590 0.0044 

       595            0.0045 
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Table 4.3 Continued 

 λ  ( )pha λ  

600 0.0046 
605 0.0048 
610 0.0050 
615 0.0053 
620 0.0056 
625 0.0059 
630 0.0061 
635 0.0062 
640 0.0062 
645 0.0060 
650 0.0061 
655 0.0065 
660 0.0075 
665 0.0088 
670 0.0101 
675 0.0110 
680 0.0109 
685 0.0096 
690 0.0075 
695 0.0051 
700 0.0032 
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(a) 

 
(b) 

 
Figure 4.7 Specific inherent optical properties for the Wabash River and the Tippecanoe 

River: (a) absorptions, and (b) backscattering. 
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Figure 4.8 Variability of the retrieved b,p(550)b (circles) with measured (a) [TSS] (filled 
squares) and (b) [chl] (filled squares) in the Wabash River and the Tippecanoe River. 

4.5.3 Bottom Properties 

The measured bottom depths of sampled sites ranged from 0.3 m to 4.4 m, 

including both optically deep and shallow water (Table 4.1). Substrate type was 

categorized into six types based on the sediment size: boulder (>256 mm), cobble (255 

mm-64 mm), gravel (63 mm - 2 mm), sand (1 mm -0.25 mm), fines (<0.24 mm), and 

hardpan (mixture of fines and clay), based on definitions from Wentworth (1992). As 

observed, major substrate types for our study area consisted of fines, sand, gravel, and 

cobble with sand predominating (Figure 4.9). Cobbles and gravels were mostly found in 

the upstream portions of the Wabash River reach from French Post to Delphi and in the 

Tippecanoe River. The bottom of the Wabash River from Delphi to Attica was dominated 

by sand with fines occasionally found near the bank. 

Figure 4.10 shows the measured albedo for different substrate types. The spectral 

shapes of the albedos are similar and it is hard to exactly discern each type since the 
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ranges of measured albedos overlap with each other. Therefore, in this study averaged 

albedo was used as the bottom reflectance spectrum. 

 

(a) 

 
 

(b) 

 

(c) 

 
 

(d) 

 

Figure 4.9 Bottom types identified for the Wabash River and the Tippecanoe River. (a) 
fines, (b) sand, (c) gravel, and (d) cobble.
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Figure 4.10 Albedo measured for different bottom types of the Wabash River and the 

Tippecanoe River.
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4.5.4 Spectral Characteristics 

Figure 4.11(a) shows all the rsR  spectra collected for the Wabash River and the 

Tippecanoe River in the summer of 2014. Based on the spectral characteristics, these 

spectra can be categorized into two types: (1) phytoplankton dominated and (2) sediment 

dominated, as shown by Figure 4.11(b). Spectra from phytoplankton dominated water 

experienced low reflectance in blue (400-500 nm) and red (600-700 nm) wavelengths due 

to the absorption by chl and other pigments. In particular, the local minimum at 677 nm 

and peak at 704 nm were caused by the decreasing absorption of chlorophyll and 

increasing absorption of water as well as the fluorescence of chl (Vasilkov and 

Kopelevich, 1982). For the sediment dominated spectra, the reflectance values of these 

waters are relatively high in the green and red wavelengths, especially from 560 to 700 

nm, and they lack the reflectance trough and peak in the red region caused by the 

absorption characteristics of chl.  

4.5.5 Water Quality Retrieval 

A total of 550,054 spectra were generated using HydroLight. A random selection 

of the rsR  spectra are presented in Figure 4.12 to demonstrate the range of spectra in the 

database. Before we applied the entire database of rsR  spectra to the analysis of the field 

collected spectrometer data for the Wabash River and the Tippecanoe River as shown in 

Figure 4.1, we first resampled the field measured rsR  spectra with a cubic spline fit to 

correspond to the LUT wavelengths. 

Values for [NAP], [chl], and cdom(440)a  were retrieved by finding the closest 

matching LUT spectra to the field measurements (Figure 4.13). It is clear in Figure 4.13 

(a) and 4.13(b) that the resulting points fall close to the 1:1 line for [NAP] and [chl], 
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which suggests that the LUT estimates are in close agreement with coincident in situ 

measurements. No statistically significant relationship was found between modeled and 

measured (440)cdoma  (Figure 4.13(c)). Although the points for CDOM comparison visibly 

cluster near the 1:1 line, the high variability restricts us from making any conclusion. 

Based on our observations the change in cdom(440)a  was within 3 m-1 (Table 4.1), while 

the cdom(440)a value can be as high as 40 m-1 for inland water (Brezonik et al., 2015). In 

Chapter 3 we also found that rsR  is not sensitive to the observed changes in cdom(440)a , 

therefore it is highly likely that the small observed changes cannot be adequately 

captured by the LUT methodology. It is also possible that the LUT retrievals for 

cdom(440)a  display large uncertainties at low CDOM levels (Brezonik et al., 2015), but 

produce an overall good 1:1 fit with a wider data range than the CDOM levels in the 

Wabash River and the Tippecanoe River sampled in summer 2014. This needs further 

investigation with more data collected for the rivers during other seasons of the year, for 

example, in spring when agricultural activities are intense and streamflow is high.  

 

 

 

 

 

 

 

 



119 

 

 
Figure 4.11 (a) All rsR  spectra collected in summer 2014 and (b) examples showing 
phytoplankton dominated (solid lines) and sediment dominated (dotted line) spectra. 
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To better quantitatively describe the retrieval results for NAP and chl, three 

metrics were adopted: (1) relative error, (2) percent difference, and (3) concentration 

difference. Relative error is defined as 

Relative error = (LUT; ) (field; )
(field; )

C i C i
C i

−                                   (4.6) 

The average percent difference in the LUT retrieved and field measured concentrations is 

computed as, 

Percent difference = 
1

100 (LUT; ) (field; )
(field; )

N

i

C i C i
N C i=

−
⋅∑                          (4.7) 

And the average concentration difference is computed as, 

Concentration difference = 
1

1 (LUT; ) (field; )
N

i
C i C i

N =

⋅ −∑                  (4.8) 

In Eq. (4.6), (4.7) and (4.8), (LUT; )C i  is the LUT retrieved concentration for site i , 

(field; )C i  is the field measured concentration at site i , and N  is the total number of 

sampled sites. In each case, a positive (negative) error indicates that the LUT retrieved 

concentration is too high (low). When the LUT retrieved [NAP] is compared with field 

measured [NAP], the average percent difference is 4.1% and the concentration difference 

is -1.0 g m-3. The average error is larger, 37.7% or 18.0 mg m-3, for the estimation of [chl]. 

This is reasonable since the [chl] has a smaller influence on the rsR  spectra, as 

demonstrated in Chapter 3. It also is possible that the specific absorption spectrum of 

phytoplankton is perhaps not well represented in the LUT database given the variability 

introduced by other pigments.  The relative error for each site was also examined and the 

overall estimation of [chl] and [NAP] is not biased.  
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Figure 4.12 Randomly chosen selection of the 550,054 spectra in the LUT database. 
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(a) 

 

(b) 

 

 
(c) 

 

 

Figure 4.13 Comparison between measured (a) [chl], (b) [TSS], and (c) cdom(440)a  , and 
the LUT estimates for the Wabash River and the Tippecanoe River. 
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(a) 

 

(b) 

 
Figure 4.14 Relative error versus (a) [chl] and (b) [NAP] for the Wabash River and the 

Tippecanoe River.
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4.6 Conclusions 

In this study, extensive field measurements of the spectral, hydrologic and water 

quality properties of the Wabash River and the Tippecanoe River, Indiana, were 

conducted under a range of hydrologic conditions in the summer of 2014. Data collected 

mainly include remote sensing reflectance spectra of river water taken using a hand-held 

spectrometer, IOPs, concentrations of water quality parameters (chl, NAP, and CDOM) 

and nutrients (TP, TN, DOC), water depths, substrate types, and bottom reflectance 

spectra. These measurements provide valuable data of the optical properties and water 

quality information for the Wabash River and the Tippecanoe River, which not only 

enable the development of transferrable physical models for retrieving water quality 

parameters, but also provide a fundamental linkage between the optical properties and the 

biogeochemical state of inland river systems.  

Our results show that the temporal variability of water quality parameters and 

nutrients of the Wabash River in the summer of 2014 were closely associated with 

hydrologic regime. The concentrations of TSS, chl, CDOM, and TN in the Wabash River 

were significantly correlated with streamflow (p<0.05), which indicates that summer 

runoff events played an important role in delivering nutrients and sediments to the 

Wabash River. The initial correlation significance test of [TP] with streamflow was not 

significant and the correlation coefficient r was only 0.11. However, after removing 

samples during the low flow period in late July when groundwater input of TP became 

dominant and those around late May when the increase of TP in the river was not able to 

offset the dilution caused by increased streamflow, the correlation between [TP] and 

streamflow became significant and r increased to 0.50. None of these parameters showed 
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significant correlation with streamflow for the Tippecanoe River except for CDOM, most 

likely due to the two upstream reservoirs which increase the residence time of water. 

Therefore most of the sediment settled out and nutrient uptaken was more effective 

resulting in cleaner water in the Tippecanoe River below the reservoirs.  While the 

variation of CDOM was significantly correlated with streamflow in both rivers, [DOC] 

experienced no such significant correlation. It is highly likely that most of DOC in the 

rivers is uncolored and from human sources such as wastewater discharged or from 

combined sewer overflows that are prevalent in our study area. Phytoplankton blooms 

were typically found in the Wabash River following the increase of nutrient inputs, either 

due to surface runoff events or groundwater inputs.  In addition, water temperature and 

the intensity of major runoff events are also important factors controlling instream 

concentrations of phytoplankton.  

The LUT methodology was applied to the dataset collected in summer 2014 and 

was tested successfully with the dataset for the retrieval of water quality parameters. The 

Hydrolight package fully simulates the complex radiative transfer process within water 

column and at bottom boundary conditions. It was used to generate a database of rsR  

spectra, in which the closest match of the specific field measurement was found and the 

corresponding inputs were thus considered as the real environmental conditions when the 

field measurement was collected. This method requires no ancillary environmental 

information and is able to simultaneously retrieve [chl], [NAP], and cdom(440)a . The 

accuracy of this method depends on the accurate and appropriate measurements of IOPs 

and rsR . Therefore, it is important to have well-characterized field measurements, as was 

done here, for the specific study area.  
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Our study demonstrates that the LUT retrieved values from the closest matching 

spectra give good estimates of the water quality parameters with points cluster near the 

1:1 line. The overall estimations of [NAP] and [chl] are not biased based on the analysis 

of relative errors. Significant linear relationships exist between the LUT retrieved and 

field measured values of [NAP] with a slope close to 1.0. For [NAP] estimates, the 

average percent difference is 4.1% and the concentration difference is -1.0 g m-3. The 

LUT retrieved [chl] values are also in good agreement with the field measurements (slope 

equal to 1.26). The average error is larger for the estimation of [chl] (37.7% or 18.0 mg 

m-3). Large variability was found at the LUT retrieved CDOM values, which might be 

due to the fact of small data ranges and the insensitivity of rsR to the change in CDOM.  

All the data collected in this study, including in situ water quality, nutrient level, 

IOPs, and spectral measurements, as well as all additional associated data (e.g., 

underwater photos, bottom albedos, water depth, date, time of day) and the LUT, has 

been integrated into a database using Microsoft Access and will be distributed online 

through the Purdue University Research Repository (PURR – http://purr.purdue.edu/). 

Metadata documentation is also included in the database. This dataset will be assigned a 

Document Object Identifier (DOI) from the Purdue Library and published. Purdue 

University will maintain the dataset for at least 10 years after the completion of this 

project. This database, once published, will provide useful ground truth data for remote 

sensing of water quality in inland waters and valuable sources for further investigation of 

the relationship between optical and biogeochemical properties. 

http://purr.purdue.edu/
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CHAPTER 5. SUMMARY AND CONCLUSIONS 

Water quality impairment due to excessive concentrations of sediments and 

nutrients has been a concern in the Midwestern United States. Remote sensing has the 

potential to provide synoptic water quality information at a short time scale. In this thesis, 

I applied both in situ spectrometer data and satellite imagery to retrieve water quality 

parameters in Midwestern rivers and lakes. Different algorithms including empirical and 

physical models were used to invert remote sensing data. Here I summarize the most 

significant findings as they relate to the hypotheses presented in Chapter 1. 

 First I developed a method for removing sun and sky glint from total above-water 

reflectance for turbid inland waters. Surface reflected glint is a curse for water quality 

remote sensing from above-water platforms. The glint contribution in the total above-

water reflectance is dependent on viewing geometry, sun elevation and azimuth, 

illumination conditions, and wind speed and direction. All these parameters need to be 

recorded and taken into account for glint removal. Multiple glint removal procedures 

have been developed in previous studies. In particular, Kutser et al. (2013) developed a 

method to represent the surface reflected glint by fitting a power function to the 

reflectance at 350-380 nm and 890-900 nm. The advantage of this method is that it does 

not require auxiliary measurements such as wind speed. However, this method does not 

work well for turbid waters. In this thesis I combined Kutser’s correction, Gould’s glint
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removal algorithm, and Ruddick’s similarity spectrum together and tested this new 

method using the spectrometer measurements collected for the Wabash River and its 

tributaries in Indiana on August 15, 2013. I found that the reflectance spectra corrected 

using this new method are fairly close to the corrected results of using Mobley’s 

correction, which is commonly used and accepted for sun and sky glint removal. I also 

ran 500 Hydrolight simulations using the Case 2 inherent optical property (IOP) model to 

validate the robustness of this method. Simulated above-water reflectance were corrected 

and compared to the simulated remote sensing reflectance. The result of this analysis is 

that I determined that this new method can be used to estimate the surface reflected 

component in water reflectance spectra for turbid inland waters. 

My first hypothesis is that field spectroscopy provides a potential way to capture 

spectral characteristics that are indicative of the absorption and backscattering 

properties of each optically active constituent (OAC). Therefore, key spectral regions can 

be identified to improve the development of empirical models for inland waters, as well 

as to provide useful suggestions for future satellite remote sensing missions. I conducted 

water sampling concurrent with spectral measurements of the Wabash River and its 

tributaries in Indiana to estimate concentrations of chlorophyll (chl) and total suspended 

solids (TSS). In an analysis of the absorbing and backscattering properties of chl, 

suspended solids, and colored dissolved organic matter (CDOM), wavelengths that 

experience interference through competing optical features were avoided. Since the 

concentration of chl is closely associated with the light absorption in the red wavelengths 

where the influences from CDOM and suspended solids are minimal, the ratio of the 

reflectance peak at 704 nm to the reflectance trough at 677 nm was used to set up a 
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statistical relationship with chl concentrations. Result shows that this ratio is a strong 

predictor of chl concentrations with coefficient of determination (R2) equal to 0.95. 

Similarly, the wavelengths that experience interference by the absorption from chl and 

CDOM were avoided when developing a model for the estimation of TSS concentrations. 

The reflectance peak at 704 nm generated a robust model with R2 equal to 0.75. 

Reflectance values at the near infrared (NIR) wavelengths are closely related to the 

amount of TSS and also were found to be strongly correlated (0.85-0.91) with TSS 

concentrations. The success of these empirical models suggests that the hyperspectral 

information provided by field spectrometer can be used to identify the optimal or key 

spectral regions for water quality retrieval under complex IOP conditions. The key 

spectral bands needed for the estimation of water quality parameters may not be 

effectively captured by some current multi-spectral sensors and should be considered for 

future satellite remote sensing. 

My second hypothesis is that in situ observations of water quality parameters are 

spatially limited, but that this spatial limitation can be addressed in part through the use 

of remote sensing imagery. Physical models which are based on the water column and 

bottom properties are reliable and transferrable in quantifying water quality parameters 

from the spectral signatures. This hypothesis is addressed by both Chapter 3 and Chapter 

4. In Chapter 3, field campaigns were conducted near the mouth of the St Joseph River in 

southern Lake Michigan to capture storm-initiated river plumes. A database of IOP 

measurements and spectral signatures was generated and used to calibrate a bio-geo-

optical model for the estimation of water quality parameters. This bio-geo-optical model 

is a simplification of full radiative transfer equations and is transferrable with accurate 
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and appropriate measurements of IOPs for specific study. Results show that modeled 

concentrations of chl, CDOM and non-algal particles (NAP) through utilizing the field 

spectrometer data show good correspondence with the field measurements: field 

measured concentrations of NAP and CDOM at 67% of the sampled sites fall within one 

standard deviation of the model retrieved value using the spectrometer measurements; the 

percentage of sites is higher for the estimation of chl concentration, which is 88%. It is 

also demonstrated that Hyperion imagery, which has high resolution both spectrally and 

spatially, can be used to study the variability of water quality parameters for river plumes 

although it is not originally designed for water observations. 77% of the sampled sites 

show field measured chl and NAP concentrations falling within one standard deviation of 

the corresponding Hyperion derived values, despite the dynamic nature of the observed 

plume and the time lag during field sampling. The spatial maps of water quality 

parameters generated from the Hyperion image provided a synoptic view of water quality 

conditions. The spatial heterogeneity and great detail of water quality shown by the 

image indicates that it would be difficult to use the traditional sampling strategy for fully 

characterizing the spatial variability and structure of river plumes.  

Extensive observations of the Wabash River and its tributaries were conducted in 

Chapter 4, which include measurements of spectral signals, bottom properties, IOPs, and 

water quality. With this dataset, the full radiative transfer process was simulated and a 

database of remote sensing reflectance corresponding to various concentrations of water 

quality parameters was assembled using the radiative transfer software Hydrolight. Water 

quality parameters were then estimated using the spectrum matching based look-up-table 

(LUT) method. Results show that the LUT retrieved concentrations of chl and NAP are in 
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very good agreement with the field measurements with the slope close to 1.0. For the 

estimation of NAP concentrations, the average percent difference versus field 

observaions is 4.1% and the concentration difference is -1.0 g m-3. The average error is 

larger for the estimation of chl concentrations (37.7% or 18.0 mg m-3). However, larger 

variability was found for the LUT retrieved CDOM values, and I concluded that it might 

be due to the small data ranges and the insensitivity of Rrs to CDOM change that is 

demonstrated in Chapter 3.  

My third hypothesis is that concentrations of water quality parameters including 

chl, NAP, and CDOM are indicative of the health of riverine and lake aquatic systems 

and the spatial and temporal variability of these parameters are closely related to 

hydrologic conditions and land use patterns. My findings in Chapter 3 show that 

concentrations of chl, NAP, and CDOM were more than three times higher in 

conjunction with river outflow and inside the river plume than in ambient water.  I 

conclude from this that the storm-initiated plume is a significant source of sediments, 

carbon and chlorophyll to Lake Michigan. The noticeably high concentrations of CDOM 

and chl along the shore line indicate that the stimulation of phytoplankton activity and the 

enhancement of chl concentrations are associated with river outflow. These river plumes 

enhance the amount of nutrients and sediments delivered from terrestrial resources, 

diminish light that can penetrate through water, and in turn can regulate nutrient cycling 

and affect the rate and amount of primary production in the lake. The spatial distribution 

of water quality parameters inside the river plume also changed as the plume migrated 

inshore and was dependent on wind and wave during the field campaign. The analyses I 

conducted in Chapter 4 suggest that the temporal variability of water quality parameters 
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and nutrients in the Wabash River was closely associated with hydrologic conditions, 

while no significant correlations existed between these parameters and streamflow for the 

Tippecanoe River probably due to the two upstream reservoirs. The poor relationship 

between CDOM and DOC indicates that most DOC in the rivers was from human sources 

such as wastewater. It is also found that the source of water (surface runoff or combined 

sewer overflow (CSO)) to a river, water temperature, and nutrients are important factors 

controlling instream concentrations of phytoplankton.  

During this project, I also highlighted some of the limitations of satellite/airborne 

remote sensing for use in the monitoring inland water quality. First, satellite remote 

sensing for monitoring water quality of rivers and streams are limited by spatial 

resolutions that are too coarse to appropriately resolve the river headwater streams that 

contribute most significantly to the overall water quality. Second, according to our 

experience in remote sensing of small river plumes, it is difficult to coordinate coincident 

field sampling with satellite acquisitions, clear-sky conditions, and irregular storm events. 

In addition, given the time period required for plume sampling and the dynamic nature of 

plumes, it is challenging to ensure that the field measurements reflect the instantaneous 

spatial distribution of water quality corresponding to the satellite imagery. Airborne 

platforms can collect highly resolved imagery for river systems and small river plumes, 

but they are not likely to be operated for regular monitoring due to the high operational 

cost and requirement of clear atmospheric conditions. To that end, field spectrometer 

measurements provide important spectral/optical information studying rivers and river 

plumes. Therefore, field spectroscopy should be used as a potential investigative 

technique of inland water quality to complement satellite/airborne remote sensing. 
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The field datasets collected for the St Joseph River plume and the Wabash River 

and its tributaries were finally distributed online through the Purdue University Research 

Repository (PURR – http://purr.purdue.edu/). In addition to the retrieval of water quality, 

these datasets will provide useful ground truth data for remote sensing of water quality in 

inland waters and valuable sources for further investigation of the relationship between 

optical and biogeochemical properties. The results of this study suggest future work 

should: (1) continue to collect coincident water quality and IOP data with spectral 

measurements in other seasons of the year, especially in spring when stream flow is high 

and agricultural activities are intense, (2) study the seasonal and interannual variability of 

water quality parameters and IOPs, and set up empirical/physical relationship between 

water quality and environmental factors such as hydrologic conditions and land use 

patterns, (3) collect finely resolved remote sensing imagery that is appropriate for rivers 

such as Landsat and unmanned aerial vehicle (UAV) imagery for water quality 

observation and evaluate the application of the LUT developed in this study for water 

quality retrieval when using these remote sensing images, and (4) continue to develop the 

data archive of IOPs and AOPs for public sharing and for the calibration/validation of 

future remote sensing work.

http://purr.purdue.edu/
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