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ABSTRACT 

 

 

 

Sun, Shanxia  PhD, Purdue University, May 2016. Behavioral Responses and Policy 

Evaluation: Revisiting Water and Fuel Policies. Major Professors: Juan P. Sesmero and 

Michael S. Delgado. 

 

 

 

In my dissertation, I examine how policies regulating agricultural production and 

clean technology impact the environment. I focus on policies affecting water depletion, 

water pollution, and fuel consumption. I assess their cost-effectiveness by modeling and 

quantifying the behavioral responses of farmers and households. 

My first essay focuses on decreasing groundwater depletion through increasing 

irrigation efficiency in Mexico. I quantify the impacts of different sources of inefficiency 

on groundwater extraction, and I evaluate the effectiveness of alternative policies that 

aim to reduce the over-extraction of groundwater. I find that mechanisms of electricity 

cost-sharing implemented in many wells have a sizable impact on the inefficiency of 

irrigation applications; thus, policies eliminating electricity cost-sharing mechanisms 

have a substantial effect on decreasing groundwater depletion. In contrast, price-based 

policies are less effective, and policies targeting well-sharing do not have significant 

effect on reducing irrigation application and groundwater depletion.  

In my second essay, I assess policies which attempt to reduce water pollution by 

reducing fertilizer application. Input- and output-based economic policies designed to 

reduce water pollution from fertilizer runoff by adjusting management practices are 

theoretically justified and well-understood. Yet, in practice, adjustment in fertilizer 

application or land allocation may be sluggish. I incorporate time cost as a new 

dimension in the assessment of these policies and simultaneously quantify the magnitude
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of the policy effectiveness and the speed at which the policies take effect. I find that 

while both input- and output-based policies are able to induce a significant reduction in 

fertilizer application, input-based policies are more cost-effective than their output-based 

counterparts. Further, input- and output-based policies yield adjustment in fertilizer 

application at the same speed, and most of the adjustment takes place in the short-term. 

Due to the rapid adjustment in land allocation between corn and soybeans, the long-term 

effects of the policies can also be rapidly achieved. Though the time cost does not 

constitute a major concern in my research area, the time dimension may be important in 

research areas in which there are different crops that may not be easily substituted 

between. 

In my third essay, I explore household adoption of gasoline-electric hybrid vehicles 

and the impact of hybrid ownership on annual miles traveled in order to understand how 

hybrid ownership impacts fuel savings. I focus on issues of identification in light of 

several behavioral factors that are believed to influence both hybrid adoption and miles 

traveled. I measure two types of rebound effects associated with hybrid adoption. The 

first one is a traditional rebound effect in which a hybrid owner drives more due to the 

lower travel cost from higher fuel efficiency; the second one is a social status driven 

rebound effect in which a hybrid owner drives more to signal his environmental 

friendliness through driving a hybrid. I find a statistically significant traditional rebound 

effect on miles traveled. However, this rebound effect is only 3% of the average annual 

miles traveled and only slightly offsets the fuel savings from the higher fuel efficiency of 

the hybrid. I do not find evidence of a status-driven rebound effect. I estimate that hybrid 

adoption induces substantial fuel savings that amount to about half of the average fuel

consumption of regular vehicles. 
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CHAPTER 1 INTRODUCTION 

 

 

 

Water, fuel, and air are critical in many ways for human and natural systems. Water 

and fuel are important inputs in numerous production and service systems (e.g., 

agriculture, industry, transportation). Water and air are essential elements that sustain life, 

balance ecological systems, and create a pleasant environment.  

Like all natural resources, water and fuel are not unlimited. According to the report 

of Gleick and Ajami (2014), there are 3.3 billion people in the world living in the areas 

with physical water scarcity, approaching physical scarcity, or economic water scarcity. 

The supply of fuel is limited by the total natural reserves of oil and the ability of current 

technology to exploit those reserves. The demand for energy increases with increases in 

the population and with economic development; the increased demand and limited supply 

can lead to sharp increases in prices (e.g., 2000s Energy Crisis). The scarcity of water and 

fuel points to the importance of increasing efficiency in the use of water and fuel.  

As part of the environment, water and air face continuous degradation caused by 

pollution from economic production and human life. Water pollution is a serious problem 

in both developed and developing countries. According to a report from the United 

Nations, “Water quality is becoming a global concern of increasing significance, as risks 

of degradation translate directly into social economic impacts” (UN 2012). The severity 

of air pollution is already widely acknowledged. A recent report from the World Health 

Organisation (WHO) states that air pollution exposure caused the death of around 7 

million people in 2012 (WHO 2014). The severity of these issues points toward the 

importance of controlling the pollution of water and air from economic production and 

human life. 
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1.1 Water and Agriculture 

Water is an essential factor in many production systems. The major use of water is 

agriculture, which makes up 70 percent of total freshwater use (Gleick and Ajami 2014). 

In particular, I focus on the interface between water and agriculture in terms of both 

water use and water quality. 

 

 

 

1.1.1 Efficiency in Water Use 

My first essay focuses on quantitative evaluation of factors influencing irrigation 

efficiency in Mexico. Such evaluation allows me to identify policies which most 

effectively increase irrigation efficiency and alleviate groundwater depletion from over-

extraction of groundwater. As an arid and semi-arid country, Mexico’s groundwater 

resources are being depleted; in some areas, the depletion is severe. The Mexican federal 

government subsidizes the electricity used in pumping groundwater, which creates an 

incentive to extract. Other potential drivers of over-pumping in Mexico are that wells are 

commonly shared by several farmers and moreover, in some shared wells the total cost of 

electricity is distributed among all irrigators. Sharing wells may aggravate externalities 

associated with exploitation of a common access resource and increase pumping beyond 

the efficient level. Sharing electricity costs reduces the marginal cost of water pumping 

since all farmers sharing the bill jointly pay for the cost of additional pumping from one 

farmer. Subsidies and institutions that decrease the marginal cost of groundwater 

consumption may exacerbate the over-exploitation of groundwater and aggravate 

groundwater depletion. Quantification of the main causes of over-extraction of 

groundwater by farmers has important policy implications. 

The objective of my first essay is threefold. First, I estimate water demand, including 

the potential for allocative inefficiency. Allowing for inefficiency in the estimation of 

irrigation water demand results in a more reliable elasticity estimate (Kumbhakar 2001). 

Second, I estimate the inefficiency in agricultural irrigation in Mexico. Finally, I quantify 

the role of different sources of externalities (i.e., cost-sharing rules and the extent to 

which groundwater resources are non-excludable) behind systematic inefficiency.  
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1.1.2 Reducing Water Pollution from Agriculture 

My second essay focuses on the assessment of policies that aim to decrease water 

pollution from agriculture. Water pollution can threaten human health and the stability of 

ecosystems. Also, some polluted water may become unsuitable for consumption 

aggravating water scarcity. Hence mitigating water pollution may be a vehicle to address 

water quantity as well as water quality issues. Fertilizer use in agriculture is a significant 

source of nonpoint source pollution to water (Rabotyagov et al. 2010; Yuan et al. 2013; 

Rebolledo et al. 2016). As a country with a highly developed agricultural system the 

United States faces severe water pollution from agriculture. Finding the most cost-

effective policies to alleviate this problem is a concern of policymakers who are 

interested in both the overall effect of the policy and the speed of effectiveness. 

Assessing the cost-effectiveness of policies mitigating agricultural water pollution 

through decreasing fertilizer use in agricultural production is my main objective.  

 Many policies attempt to reduce water pollution by reducing fertilizer application in 

agriculture, which could be realized by decreasing the fertilizer application rate on a 

certain area or switching land allocation from fertilizer-intensive crops to fertilizer-saving 

crops. While the adjustment of the fertilizer application rate in a certain area can be rapid, 

adjustments to land allocation across crops may be restricted by crop rotational effects 

and quasi-fixed capital constraints (Orazem and Miranowski 1994; Arnberg and Hansen 

2012) and require a long time to be fully realized. For policymakers, not only the 

magnitude of policy effectiveness but also the speed at which policies take effect are key 

concerns when they select the most suitable policy.  I quantify both dimensions in the 

policy assessments in my second essay. 

 

 

 

1.2 Fuel Consumption from Household Transportation 

The world transportation sector accounts for almost half the world oil consumption, 

and was responsible for 23 percent of world energy-related GHG emissions in 2004. 

Three quarters of the emissions come from road vehicles (Kahn Ribeiro et al. 2007). In 

the United States, the transportation sector is also one of the largest contributors to U.S. 
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GHG emissions, being responsible for 28 percent of total U.S. GHG emissions in 2012 

(US EPA 2015).  

Given the pressures faced by the transportation sector, the United States government 

has designed the Corporate Average Fuel Economy (CAFE) standards to improve the 

average fuel economy of cars and light trucks sold in the United States. In part to meet 

the CAFE criterion the federal government (and some state and local government) has 

provided many incentives to encourage the adoption of fuel-efficient vehicles. The 

gasoline-electric hybrid has been the focus of many policies, as conventional wisdom 

suggests that a driver of a hybrid will consume less gasoline than had he/she driven a 

conventional engine vehicle.  

However, a rebound effect is often associated with the adoption of more efficient 

technology, given the reality that higher efficiency means lower cost of use. In the case of 

hybrid adoption, it means that the higher fuel-efficiency of a hybrid vehicle reduces the 

cost of travel, which consequently may increase the driving miles of a household. It is 

important to understand the extent to which the rebound effects offset the impact from 

higher fuel efficiency, in order to understand the true potential for hybrid adoption to 

reduce gasoline consumption. In another words, it is crucial to examine the existence and 

magnitude of any rebound effects of hybrid adoption. The objective of my third essay is 

to understand whether there are rebound effects associated with the adoption of hybrid 

vehicles, and what the magnitudes of the rebound effects are if they exist. 

My analysis focuses on two types of rebound effects. The first one is a traditional 

rebound effect in which a hybrid owner drives more due to the lower travel cost from 

higher fuel efficiency of the hybrid. The second one, that has yet to be discussed in the 

literature, is a social status driven rebound effect. Sexton and Sexton (2014) and Delgado 

et al. (2015) find that social status incentives are a significant factor underlying consumer 

demand for the Toyota Prius. I hypothesize that this same social status incentive leads 

hybrid owners to increase miles traveled. This hypothesis rests on two facts: first, the 

most popular hybrid over the 2000’s decade was the Prius, easily identified by its unique 

body trim; and second, a consumer interested in signaling his/her environmental 
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preferences via vehicle ownership is better able to do so through increased driving 

exposure.  
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CHAPTER 2 THE ROLE OF COMMON POOL PROBLEMS IN IRRIGATION 

INEFFICIENCY: A CASE STUDY IN GROUNDWATER PUMPING IN MEXICO 

 

 

 

2.1 Introduction 

It is well known that the economically efficient use of finite natural resources 

requires those resources to be priced at the marginal social cost which includes 

externalities associated with extraction. When prices do not reflect the full social cost it is 

expected that resource use exceeds a socially optimal level. One such resource is 

groundwater; groundwater aquifers can be either renewable or non-renewable but are 

always finite. Policies to reduce over-extraction such as a per-unit tax on groundwater 

extraction (Shah et al. 1993; Howe 2002) or creating property rights (Provencher and 

Burt 1994) may be difficult to implement. Consequently it is important to examine 

alternative policy instruments that can successfully tackle the depletion problem.  

Groundwater use accounts for approximately 26 percent of all water use worldwide 

and is a source of almost half of all irrigation water (van der Gun 2012). Price-distorting 

policies such as subsidized electricity rates may lead to excessive extraction and 

exacerbate groundwater depletion (Schoengold and Zilberman 2007). Subsidized 

electricity or diesel rates for irrigators are pervasive in many countries including India, 

Mexico, Jordan, and Syria (Scott and Shah 2004; Shah et al. 2007).  

In addition to subsidized pumping costs it is also common in developing countries 

for multiple irrigators to share a single well (see Huang et al. 2013 for a discussion of this 

issue in China; the current study evaluates Mexico’s shared wells). This situation may 

exacerbate over-extraction due to strategic behavior by farmers (Provencher and Burt 

1993). Moreover, in some communal wells, the cost of energy associated with pumping is 

shared by irrigators using the well due to inadequate metering systems. Rules for cost-

sharing may be based on parameters that are indirect measures of water use such as land 
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holdings, or may be based on an arbitrary rule such as equal cost-sharing. These rules 

introduce further distortions between what the farmer pays and the actual cost of 

pumping and cause inefficiency in irrigation.                                                                         

The objective of this study is threefold. First, we will estimate water demand, 

including the potential for allocative inefficiency. Allowing for inefficiency in the 

estimation of irrigation water demand results in a more reliable elasticity estimate 

(Kumbhakar 2001). Second, we will gauge the inefficiency (if any exist) with which 

irrigation is applied by farmers in Mexico. Finally we will quantify the role of different 

sources of externalities (i.e., cost-sharing rules and the extent to which groundwater 

resources are non-excludable) behind systematic inefficiency. Quantification of the main 

causes of over-extraction of groundwater by farmers has important policy implications. If 

institutional arrangements creating common pool problems are the main cause, as 

opposed to subsidies in electricity price, institutional reforms will constitute a viable 

mechanism for water conservation. If pumping is sensitive to the cost of electricity, 

removal of subsidies can have a sizable impact on groundwater extraction. 

The paper is organized as follows. First, we review the existing literature. Second, 

we model key features of electricity subsidies, well-sharing, and cost-sharing, and 

identify their distortions to the marginal cost of pumping. Third, we describe the 

empirical model and data used to estimate water demand and farmers’ irrigation 

efficiency. The final sections report estimation results, and discuss policy implications 

and conclusions. 

 

 

 

2.2 Review of Literature 

It has been established theoretically that non-excludability of groundwater resources 

may result in over-application of irrigation. This is because non-excludability causes a 

cost externality (Gisser and Sanchez 1980; Negri 1989) and a strategic externality (Negri 

1989; Provencher and Burt 1993; Rubio and Casino 2001, 2003), both of which tend to 

reduce private marginal cost of pumping relative to the social marginal cost and increase 
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irrigation application. Subsequent empirical analyses uncovered evidence supporting 

these theoretical predictions (Pfeiffer and Lin 2012; Huang et al. 2013).  

Substantial research has focused on the estimation of irrigation water demand (Ogg 

and Gollehon 1989; Schoengold et al. 2006; Huang et al. 2010; Hendricks and Peterson 

2012) but this research assumes that farmers use water efficiently. The assumption of 

efficiency may constitute a source of bias in estimation of demand elasticity (Kumbhakar 

2001). Moreover this assumption implies attributing over-extraction to random factors 

precluding quantification of systematic sources behind it. 

Despite sound theoretical reasons to suspect inefficiencies in irrigation application, 

very few studies have quantified this inefficiency and explored their reasons. McGuckin, 

et al. (1992) was the first study to estimate the sources of inefficiency in irrigation water 

use among corn producers in Nebraska, United States, based on a stochastic production 

frontier function. Karagiannis et al. (2003) estimate efficiency in irrigation practices for 

out-of-season vegetable cultivation in Greece. Finally, Dhehibi et al. (2007) gauge both 

technical and irrigation water efficiency in Tunisia. Unfortunately, these studies have not 

estimated a demand for irrigation water precluding comparison between price-based 

policies and other types of policies.  

This study uses a stochastic frontier for estimation of irrigation efficiency and its 

sources but in contrast to previous studies we use a method first developed by 

Kumbhakar (1989) that allows measurement of input-specific allocative efficiency based 

on a cost frontier. Using a dual measure of efficiency allows estimation of derived 

demands. This is critical in this context as we are also interested in estimation of price 

elasticity of irrigation water demand so that price-based and institutions-based policies 

can be compared. 

 

 

  

2.3 Groundwater Depletion in Mexico: Background 

Mexico is classified as an arid and semi-arid country. Therefore irrigation constitutes 

a critical input to agricultural production in many regions of the country. According to 

information from the Food and Agricultural Organization (FAO), about a quarter of total 
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land area in Mexico is equipped for irrigated agriculture and about half of the total value 

of agricultural production is produced under irrigation. Moreover, about a third of 

irrigated land in Mexico uses groundwater and the rest is irrigated with surface water.  

 

 

 

Source: Comisión Nacional del Agua (National Water Commission), Mexico 

 

Figure 2.1: Aquifer Depletion in Mexico 

 

In 2006, preliminary evaluations of the situation in Mexico were conducted with the 

purpose of informing the Mexican government’s national hydrological program. The 

resulting report (Programa Nacional Hidrico 2007-2012) asserted that, among other 

causes, inefficiencies in the use of water had caused overexploitation of groundwater 

reserves (Figure 2.1). It was further noted that electricity subsidies provided by the 

federal government could also be contributing to overexploitation of groundwater. One 

implication of this observation is that elimination of the electricity subsidy could help 

mitigate the depletion problem. But in addition to subsidies, well-sharing and electricity 

cost-sharing may also be partly responsible for inefficiency in water use. Therefore 

policymakers may also tackle over-extraction by reforming the institutions under which 

irrigators operate. Though mentioned in Programa Nacional Hidrico 2007-2012, an 
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empirical quantification of distortionary forces behind over-extraction and the resulting 

potential of alternative policies, has not yet been conducted. This study attempts to fill 

that informational gap. 

 

 

 

2.4 Distortions to Marginal Cost of Pumping 

Mexican farmers do not pay for groundwater, only for the electricity used in 

pumping groundwater. Therefore the cost paid by the farmer per unit of water consumed 

depends on the amount of electricity used per unit of water pumped and the price of 

electricity. The amount of electricity used per unit of extracted groundwater (measured as 

kilowatts hour per cubic meter) is assumed to be a linear function of the depth to water 

table denoted by 𝐻;  i. e. ,
𝑘𝑤ℎ

𝑚3 = 𝛼 + 𝛽𝐻.  Parameter 𝛽  is positive as greater depth is 

associated with greater electricity consumption. Parameter 𝛼 is also positive as the pump 

needs to be run even if distance to groundwater is zero (𝐻 = 0). We assume that total 

water extracted in a given period positively affects depth to the water table 𝐻 = 𝜇 +

∑ 휀𝑖𝑤𝑖𝑖 ; where parameter 𝜇  captures depth to water table in the previous period plus 

recharge rate, 𝑤𝑖  represents the 𝑖𝑡ℎ  farmer’s pumping rate, and 휀𝑖  is the effect of the 

farmer 𝑖’s pumping on water level. 

We begin by considering a case where water resources are perfectly excludable 

which serves as a benchmark for this analysis. Thus, since 휀𝑗 = 0 for all 𝑗 ≠ 𝑖, the unit 

cost of water for farmer 𝑖 is: 

𝑃𝑖
𝑤 = 𝑝𝑘𝑤ℎ(𝑎 + 𝑏𝑤𝑖)                                           (2.1) 

where 𝑃𝑖
𝑤 denotes unit cost of water, 𝑝𝑘𝑤ℎ is the price of electricity per kilowatt hour, 

𝑘𝑤ℎ

𝑚3
 has been replaced by (𝑎 + 𝑏𝑤𝑖) (after plugging 𝐻 into this expression) with 𝑎 = 𝛼 +

𝛽𝜇, 𝑏 = 𝛽휀𝑖 , and the rest is as defined before. The total cost of pumping can be denoted 

by: 

𝑇𝐶𝑖
𝑤 = 𝑝𝑘𝑤ℎ(𝑎 + 𝑏𝑤𝑖)𝑤𝑖.                              (2.2) 

Based on total cost (2.2), marginal cost (partial derivative of total cost with respect to 

pumping rate) is depicted by: 
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𝑀𝐶𝑖
𝑤 = 𝑝𝑘𝑤ℎ(𝑎 + 2𝑏𝑤𝑖) .                                                                                      (2.3) 

This expression for marginal cost will be used as a benchmark against which marginal 

cost of pumping with policy or institutional distortions can be compared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.1 Electricity Subsidies 

The federal government in Mexico subsidizes electricity used in pumping 

groundwater. Guevara-Sanginés (2006) estimates that the total subsidy to Mexican 

groundwater irrigators is approximately $700 million dollars per year.1 An electricity 

subsidy operates as a reduction in the price per kilowatt hour of electricity paid by 

                                                           
1 Estimates are in 2004 US dollars. 
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  Figure 2.2: Sources of Distortions in Marginal Cost of Pumping 
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farmers. Therefore, under an electricity subsidy, the marginal cost of pumping 

groundwater is denoted by:  

𝑀𝐶𝑖
𝑤,𝑠 = [𝑝𝑘𝑤ℎ − 𝑣𝑘𝑤ℎ]                                                                                          (2.4) 

where 𝑣𝑘𝑤ℎ  represents the subsidy paid by the government per kilowatt hour of 

electricity consumed by the farmer, and the superscript 𝑠 indicates electricity subsidy. 

The reduction in marginal cost of pumping caused by the subsidy on electricity is 

illustrated in Figure 1 by a clockwise rotation of the marginal cost curve from 𝑀𝐶𝑖
𝑤 to 

𝑀𝐶𝑖
𝑤,𝑠

. Figure 1 also depicts a decreasing marginal revenue curve due to decreasing 

marginal productivity of irrigation. The combination of a clockwise rotation of marginal 

cost and a downward sloping marginal revenue curve causes an increase in pumping. The 

overall effect of the electricity subsidy on pumping will be determined by the magnitude 

of the subsidy and the marginal productivity of irrigation beyond 𝑄𝑖
𝑤. 

 

 

 

2.4.2 Sharing of Wells among Farmers 

The description of marginal cost of pumping in the previous section assumed a well 

is operated by a single farmer. However, different wells in Mexico function under 

different institutional arrangements. Some wells are individually owned while others are 

shared by multiple farmers. Table 2.1 describes the percentage of wells that are either 

owned by a single producer or jointly shared by multiple producers. As expected, we 

observe a large number of wells that are shared by multiple irrigators. 

Models formalizing cost and strategic externalities (Provencher and Burt 1993) show 

that sharing of water resources by multiple irrigators may decrease marginal cost and 

aggravate over-extraction. Moreover these analyses have demonstrated that an increased 

number of irrigators sharing the resource is associated with greater pumping. As revealed 

by Table 2.1 the majority of wells (61 percent) are shared by multiple irrigators. Table 

2.1 also shows the distribution of the number of users per well in our sample. The mean 

number of users is about 12. While the median size of the group is 6, about a quarter of 

wells are shared by more than 16 farmers. These figures suggest that inefficiencies or 

over-extraction due well sharing may be quantitatively relevant for Mexico’s aquifers.  
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Table 2.1: Distribution of Number of Users for Multi-producer Wells 

Number of Users Frequency Percentage 

1 77 39.1% 

2 – 5 21 10.7% 

6 – 10 35 17.8% 

11 - 15 14 7.1% 

16 - 20 13 6.6% 

21 - 30 13 6.6% 

31 - 40 13 6.6% 

41 - 50 4 2.0% 

51 - 75 5 2.5% 

76 - 100 2 1.0% 

Total 197 100% 

 

When multiple farmers share a well, the depth of the water table is influenced by the 

sum of individual pumping rates. Moreover each farmer’s pumping has the same effect 

on the depth to the water table such that  𝐻 = 𝜇 + ∑ 휀𝑤𝑖𝑖 ; where 𝑤𝑖  represents the 

𝑖𝑡ℎfarmer’s pumping rate, 휀 is the increase in depth per unit of water pumped, and the rest 

is as before. Thus, the unit cost of water for farmer 𝑖 who shares a well with other farmers 

is: 

𝑃𝑖
𝑤,𝑠+𝑤𝑠 = [𝑝𝑘𝑤ℎ − 𝑣𝑘𝑤ℎ](𝑎 + 𝑏(𝑤𝑖 + ∑ 𝑤𝑗𝑗≠𝑖 ))                               (2.5) 

where 𝑃𝑖
𝑤,𝑠+𝑤𝑠

 denotes unit cost of water under an electricity subsidy and well-sharing, 

with 𝑤𝑠 in the superscript indicating well sharing, and the rest is as defined before.  

Based on (2.5), marginal cost can be expressed as:  

𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠 = [𝑝𝑘𝑤ℎ − 𝑣𝑘𝑤ℎ]((𝑎 + 𝑏𝑊) + 𝑏𝑤𝑖(1 + 𝜌))                             (2.6) 

where 𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠

 denotes marginal pumping cost of water under an electricity subsidy 

and well-sharing; 𝑊 = ∑ 𝑤𝑖
𝑁
𝑖=1 = 𝑤𝑖 + ∑ 𝑤𝑗𝑗≠𝑖 ; 𝜌 is a parameter representing farmer 𝑖’s 

conjecture about others’ reactions to her pumping decisions; 𝜌 = ∑
𝜕𝑤𝑗

𝜕𝑤𝑖
𝑗≠𝑖 . This 

parameter typically captures the degree to which pumping rates by different farmers are 

strategic substitutes 𝜌 < 0 or strategic complements 𝜌 > 0. The parameter 𝜌 is typically 

considered to range between 1 and −1.  
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The effect of both distortions (electricity subsidy and well-sharing) combined is 

captured in Figure 1 by a clockwise rotation of marginal cost of pumping from 𝑀𝐶𝑖
𝑤 to 

𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠

. The specific distortionary effect of well-sharing is depicted as the wedge 

between 𝑀𝐶𝑖
𝑤,𝑠

 and  𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠

. The magnitude of the increase in pumping caused by 

well-sharing depends on the size of this wedge and the slope of the marginal revenue 

curve. 

The magnitude of the rotation in marginal cost caused by well-sharing represents the 

strength of the cost and strategic externalities previously discussed. A key parameter to 

both externalities is the drawdown faced by one farmer when another extracts water. 

When multiple farmers draw from the same well, drawdown caused by one farmer’s 

extraction affects everyone sharing the well equally so the effect of the cost and strategic 

externalities is potentially large. In other words, the magnitude of the clockwise rotation 

of the marginal cost curve in Figure 1 may be considerable. 

 

 

 

2.4.3 Electricity Cost-Sharing 

With multiple producers, it can be difficult to calculate individual water use without 

the appropriate technology. In our sample, about 38 percent of the wells base the cost on 

the number of hours an individual irrigates (this means that farmers do not share the cost 

of electricity but rather pay for their own consumption), while 38 percent divide the cost 

based on land area and another 25 percent split cost in equal shares. The remaining 77 

wells are owned by a single producer. The distribution of cost share rules across our 

sample gives us enough variability to quantify the effect of these cost share rules on 

irrigation efficiency. 

Distributing the cost of electricity based on pre-specified payment rules may 

introduce further distortions in marginal cost of pumping. To model the distortions of 

cost share rules, we consider the case of a farmer that pays a pre-specified share 𝑠𝑖 of the 

total electricity bill. The unit cost of water in this case is: 

𝑃𝑖
𝑤,𝑠+𝑤𝑠+𝑐𝑠 = [𝑝𝑘𝑤ℎ − 𝑣𝑘𝑤ℎ] (𝑎 + 𝑏(𝑤𝑖 + ∑ 𝑤𝑗𝑗≠𝑖 ))

𝑊𝑠𝑖

𝑤𝑖
                              (2.7) 
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where 𝑃𝑖
𝑤,𝑠+𝑤𝑠+𝑐𝑠

 denotes unit cost of water under cost share with 𝑐𝑠 in the superscript 

indicating cost-sharing, 𝑠𝑖 is the share of total electricity bill paid by the  𝑖𝑡ℎ farmer and 

the rest is as before. If electricity cost is split based on land area, 𝑠𝑖 =
𝐿𝑖

𝐿
, where 𝐿𝑖 is the 

land endowment of the 𝑖𝑡ℎ farmer and 𝐿 is total land area irrigated with water from the 

well. On the other hand, if the electricity cost is split evenly among farmers, 𝑠𝑖 =
1

𝑁
, 

where 𝑁 is the total number of farmers drawing water from the same well.  

The marginal cost of pumping can then be denoted by: 

𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠+𝑐𝑠 = [𝑝𝑘𝑤ℎ − 𝑣𝑘𝑤ℎ](1 + 𝜌)(𝑎 + 2𝑏𝑊)𝑠𝑖                                          (2.8) 

where 𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠+𝑐𝑠

 denotes marginal cost of water under subsidy, well share, and cost 

share and the rest was defined before.   

We are interested in identifying conditions under which electricity cost-sharing may 

reduce the marginal cost of pumping and exacerbate over-extraction. Such a situation 

occurs whenever 𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠+𝑐𝑠 < 𝑀𝐶𝑖

𝑤,𝑠+𝑤𝑠
, which is found to be satisfied if (1 +

𝜌)𝑠𝑖 < 1 (derivation of this condition and further discussion can be found in Appendix 

A). Given the share of the electricity bill assigned to a given farmer, one farmer’s 

pumping increases other farmers’ cost even in the absence of drawdown (i.e., even in the 

absence of cost and strategic externality). This is due to an increase in others’ unit cost of 

water as revealed by Equation (2.7). Equation (2.7) shows that sharing the cost of 

electricity creates another source of non-excludability resulting from the fact that 

individual farmers cannot exclude others from their own electricity expenditure. We call 

this externality “cost share externality”.  

The effect of the cost share externality with subsidized electricity rates is illustrated 

in Figure 1 by a clockwise rotation of the marginal cost of pumping from 𝑀𝐶𝑖
𝑤  to 

𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠+𝑐𝑠

. The specific distortionary effect of cost-sharing is depicted as the wedge 

between 𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠

 and 𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠+𝑐𝑠

. The magnitude of the increase in water pumped 

caused by cost-sharing will depend upon the size of this wedge and the slope of the 

marginal revenue curve. In turn, the size of the wedge depends upon the farmer’s share of 

electricity bill and their conjectures about others’ reactions to their pumping decisions 

(parameters 𝑠𝑖 and 𝜌). 
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Formalization and graphical illustration of the effect of multiple distortions prevalent 

in Mexico on the marginal cost of pumping allows us to generate testable hypotheses. We 

now proceed to discuss our hypotheses regarding the drivers of inefficient over-extraction 

and our strategy for empirical assessment of those hypotheses. 

 

 

 

2.5 Hypotheses of this Study 

From our discussion of distortions to the marginal cost of pumping, it follows that 

the number of farmers sharing a well and electricity cost-sharing are both expected to 

increase groundwater use. But in line with findings in previous studies in other countries 

and institutional contexts (e.g., Hendricks and Peterson 2012), we expect water demand 

to be inelastic to its unitary price.  

Testing the hypothesis of inelastic water demand requires estimating irrigation 

demand and its own price elasticity. Due to potential inefficiencies associated with 

institutional distortions, the dual frontier (e.g., cost or profit functions) is not a neutral 

transformation of the frontier augmented to incorporate inefficiency and estimates of 

water demand elasticity from the former may be biased (Kumbhakar 2001). Therefore we 

estimate a frontier irrigation demand function and allow for inefficiency in the 

application of irrigation water. We exploit the estimated frontier to measure the effect of 

the number of farmers sharing a well and the electricity cost share rules on irrigation 

efficiency. 

Radial measures of inefficiency (either input-based or output-based) preclude 

decomposition of inefficiency scores with respect to a single production input masking 

differences in efficiency that might be attributed to particular factor inputs (Kopp 1981). 

This is a limitation worth avoiding, especially when there are reasons to suspect that 

certain production factors may be used particularly inefficiently. This may be the case 

with irrigation given the institutional arrangements distorting its marginal cost. Failure to 

identify inefficiency attributable to a specific input factor hinders input-specific policy 

design (Sauer and Frohberg 2007). To gauge efficiency in irrigation application, we use 

an input-specific measure of efficiency developed by Kumbhakar (1989).  
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2.6 Model 

Kumbahkar’s model of input-specific efficiency was created for estimation with 

panel data. Sauer and Frohberg (2007) adapt it to cross-sectional data and divide firms 

into different groups to measure the input-specific efficiency of each group. In this paper, 

we follow Sauer and Frohberg (2007) and use cross-sectional data to measure the impact 

of institutional arrangements (i.e., multiple irrigators pumping from the same well and 

electricity cost-sharing) on the efficiency with which irrigation is applied. Other physical, 

hydrological, and socio-demographic variables are also incorporated.  

It has been argued  (Sauer and Frohberg 2007) that the Symmetric Generalized 

McFadden (SGM) form is a desirable cost function specification because it is flexible 

(i.e., it satisfies the second-order flexibility conditions) and at the same time it adheres to 

theoretical conditions of a cost function as shown by Diewert and Wales (1987). In 

addition, the SGM specification allows imposition of global concavity conditions and 

estimation of average input demand functions avoids the “Greene problem”2 (Sauer and 

Frohberg 2007). This set of desirable properties make this functional form an appropriate 

choice for this study. 

The SGM cost function is denoted as: 

𝐶∗(. ) = 𝑔(𝑝)𝑦 + ∑ 𝑏𝑖𝑝𝑖  + ∑ 𝑏𝑖𝑖𝑝𝑖𝑦

𝑖𝑖

 + ∑  
𝑖

∑ 𝑑𝑖𝑘𝑝𝑖𝑞𝑘𝑦
𝑘

 + ∑ 𝑎𝑘 (∑ 𝛼𝑖𝑘𝑝𝑖
𝑖

) 𝑞𝑘
𝑘

 

+ 𝑏𝑦𝑦 (∑ 𝛽𝑖𝑝𝑖
𝑖

) 𝑦2 + ∑  
𝑘

∑ 𝛿𝑘𝑙 (∑ 𝛾𝑖𝑙𝑘𝑝𝑖
𝑖

) 𝑞𝑘𝑞𝑙
𝑙

𝑦                                  

                       𝑖 = 1, 2, … 𝑛,        𝑘, 𝑙 = 1, 2, … 𝑚          (2.9) 

where 𝑔(. ) is a function defined as: 

 𝑔(𝑝) =
𝑝′𝑆𝑝

2𝜃′𝑝
                                       (2.10) 

where 𝑝𝑖 is the price of variable input 𝑖; 𝑝 is the vector of such prices; 𝑦 is output; 𝑞𝑘 and 

𝑞𝑙 represent quantities of fixed inputs; 𝑆 is an 𝑛 × 𝑛  symmetric matrix;  𝜃 = (𝜃1, … , 𝜃𝑛)′ 

                                                           
2 When Greene (1980) estimates technical and allocative inefficiency using translog cost function, he finds 

that the relationship between allocative inefficiency and the total costs of inefficiency is unclear and hard to 

define in the model. As a result, he assumes that the allocative inefficiency and the total costs of 

inefficiency are independent to each other, which, as Greene points out, is not a very reasonable 

assumption. The problem is referred as “Greene problem” by later literature (Bauer 1990; Kumbhakar 

1997). 
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is a vector of nonnegative constants with at least one non-zero element; 𝑏𝑖, 𝑏𝑖𝑖, 𝑑𝑖𝑘, 𝑎𝑘, 

𝛼𝑖𝑘, 𝑏𝑦𝑦, 𝛽𝑖, 𝛿𝑘𝑙, and 𝛾𝑖𝑙𝑘 represent parameters. 

Differentiating (2.9) with respect to input price and applying Shephard’s lemma, the 

conditional demand function of input 𝑖, 𝑥𝑖
∗, is obtained: 

𝑑𝐶(. )

𝑑𝑝𝑖
= 𝑥𝑖

∗  = (
∑ 𝑠𝑖𝑗𝑗 𝑝𝑗

∑ 𝜃𝑟𝑟 𝑝𝑟
−  

𝜃𝑖

2
[
∑  𝑖 ∑ 𝑠𝑖𝑗𝑗 𝑝𝑖𝑝𝑗

(∑ 𝜃𝑟𝑟 𝑝𝑟)2
])  𝑦 + 𝑏𝑖 + 𝑏𝑖𝑖𝑦 +  ∑ 𝑑𝑖𝑘𝑞𝑘𝑦

𝑘

+ ∑ 𝛼𝑖𝑘𝑞𝑘

𝑘

 + 𝛽𝑖𝑦
2 + ∑  

𝑙

∑ 𝛾𝑖𝑙𝑘𝑞𝑘𝑞𝑙

𝑘

𝑦 

        𝑖, 𝑗, 𝑟 = 1, 2, … , 𝑛        𝑘, 𝑙 = 1, 2, … , 𝑚.                                                           (2.11) 

Concavity holds for 𝑝𝑖 > 0 with 𝑖 = 1, … , 𝑛, 𝑦 > 0 and 𝑞𝑘 > 0 with 𝑘 = 1, … , 𝑚, if 

and only if, the Hessian matrix 𝑆 = [𝑠𝑖𝑗] is negative semi definite (nsd). Following the 

procedure outlined in Diewert and Wales (1987) concavity restrictions on 𝑆 are imposed 

by re-parameterizing it as 𝑆 = −𝐴𝐴′, where 𝐴 is a lower triangular matrix of order 𝑛, and 

since 𝑝∗ is chosen to be a vector of ones,  ∑ 𝑠𝑖𝑗 𝑖 = 0 for all 𝑖. For estimation purpose, 𝑏𝑦𝑦, 

𝑎𝑘 , 𝛿𝑘𝑙  are normalized to unity, and 𝜃𝑖  is replaced by the mean values of 𝑥𝑖  over the 

whole sample. This re-parameterization makes 𝐶(. ) linear homogeneous, monotone and 

concave in 𝑝 as well as symmetric (see also Lau 1978, 1986), making the properties of 

the cost function consistent with economic theory. 

Adding systematic inefficiency components and an error term, the conditional 

demand functions given in (2.11) can be written as follows:  

   𝑥𝑖 = 𝑥𝑖
∗ + 휁𝑖1𝑍𝑖1 + 휁𝑖2𝑍𝑖2 + ⋯ + 휁𝑖𝐻𝑍𝑖𝐻 + 𝑣𝑖                   (2.12) 

where each 𝑍𝑖ℎ  (ℎ = 1, … , 𝐻 ) is a vector of variables (𝑍𝑖ℎ1, … , 𝑍𝑖ℎ𝐺)  and 𝑍𝑖ℎ𝑔  ( 𝑔 =

1, … , 𝐺) indicates that the observation belongs to group 𝑔 with respect to characteristic ℎ 

which may influence the efficiency of input 𝑖. For instance, the cost share mechanism is 

one characteristic in our application. Three groups are observed in our sample with 

respect to this characteristic: irrigators that split the electricity cost evenly, those that 

divide the cost based on land area, and those that do not share the cost of electricity. 

휁𝑖ℎ =  (휁𝑖ℎ1, 휁𝑖ℎ2, … 휁𝑖ℎ𝑔) are vectors of parameters to be estimated. A greater value of 
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휁𝑖ℎ𝑔 indicates that farmers within group 𝑔 of characteristic ℎ tend to use more of input 𝑖, 

all else constant.  

Inefficiency 𝜏𝑖𝑔ℎ of the group 𝑔 with respect to characteristic ℎ in the use of input 𝑖 

can be calculated through: 

𝜏𝑖ℎ𝑔 = 휁𝑖ℎ𝑔 − 𝑚𝑖𝑛ℎ휁𝑖ℎ𝑔.            (2.13) 

An intuitive interpretation of Equation (2.13) suggests that 𝜏𝑖ℎ𝑔  represents the 

reduction in the quantity of input 𝑖 achievable by switching to the most efficient group 

with characteristic ℎ holding the application of all other inputs unchanged. The input-

specific allocative efficiency of group 𝑔 with respect to characteristic ℎ  in the use of 

input 𝑖 is:  

    𝐴𝐸𝑖ℎ𝑔 = 1 − 𝜏𝑖ℎ𝑔/𝑥𝑖ℎ𝑔 .              (2.14)    

The percentage cost increase faced by observations belonging to group 𝑔  within 

characteristic ℎ due to inefficiency in input 𝑖 can be calculated by: 

𝐶𝐴𝐸𝑖ℎ𝑔 = 𝑝𝑖ℎ𝑔𝜏𝑖ℎ𝑔/𝐶𝑖ℎ𝑔           (2.15)     

where 𝐶𝑖ℎ𝑔  is observed total production cost of farmers in group 𝑔  with respect to 

characteristic ℎ. 

The measure 𝐶𝐴𝐸𝑖ℎ𝑔 allows identification of the inputs with the greatest potential for 

cost savings because it weighs input quantity reductions by their respective prices. As 

explained by Kumbhakar (1989), one of the advantages of this procedure is that no 

special distributional assumptions are needed on 𝜏𝑖ℎ𝑔, as independence between 𝜏𝑖ℎ𝑔 and 

other regressors in the demand system is not required.    

 

 

 

2.7 Data 

A survey of agricultural groundwater irrigators was conducted in Mexico by the 

Instituto Nacional de Ecología y Cambio Climático (National Institute of Ecology and 

Climate Change). Data collection on irrigation wells occurred during the 2003-2004 

winter. A detailed description of the data collection process can be found in Appendix B. 
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Cross sectional data was obtained from farmers in a sample of 197 wells. Irrigation 

wells are uniformly scattered across the country so they are geographically representative 

of agricultural groundwater irrigators in Mexico. Detailed data on quantity and prices of 

inputs and outputs were obtained from farmers along with data on irrigation application 

and cost of electricity used in pumping groundwater. Data includes quantities and prices 

of three variable inputs (fertilizer, irrigation, and a composite of other inputs including 

expenditures in land rent and preparation, labor, pesticide, and marketing), and one fixed 

input (land). A vector of outputs including field crops, fruits, and vegetables were 

aggregated into one single output applying Jorgenson’s procedure for “exact” aggregation 

(Jorgenson et al. 1987).  

Potential sources of inefficiency (i.e., elements of vector 𝑍𝑖ℎ  in Equation (2.12)) 

considered in this study are: mechanism for sharing electricity costs (no cost-sharing, 

evenly split, or based on area), and the number of farmers in each well (i.e., which can 

presumably capture pressures from strategic pumping). Control variables include socio-

demographic, biophysical, and hydrological variables. Variability in irrigation technology 

is not observed as the overwhelming majority of farmers (96 percent in our sample) use 

gravity irrigation systems.  

Table 2.2 reports the mean and standard deviation of variables by type of cost share. 

Some variables have similar distributions in all four groups. For example, the farmer’s 

age and soil type are similar for all four groups. However, we do find systematic 

differences across groups. Irrigation units that have no cost share (individually-owned 

wells and the wells that everyone pays for his/her own water use) have a substantially 

higher average land area (mean of 34.9 and 30.7 hectares) than farmers operating under 

equal share (7.2 hectares) and share based on land area (8.5 hectares). The education 

level of farmers with no cost share is higher compared to those with a cost share. These 

correlations underscore the importance of controlling for education and land area when 

quantifying the marginal effect of cost share on irrigation efficiency. 
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Table 2.2:  Summary Statistics of Data by Cost share Type 

  Shared Wells 

Individually 

Owned Wells 
 

With Cost Share 
No Cost 

Share 
 

Equal for All 

Users 

Based on Land 

Area  

Consumed water 

quantity (m3) 

46,743 37,988 95,168 93,685 

(36,163) (45,363) (140,352) (169,933) 

Pumping cost of water 

(pesos/m3) 

1.2 1.0 1.7 1.3 

(3.3) (2.2) (4.2) (2.5) 

 Consumed fertilizer 

quantity (kg) 

6,433 6,327 15,838 17,871 

(12,121) (10,936) (18,277) (25,292) 

Fertilizer price 

(pesos/kg) 

2.4 2.0 3.4 2.5 

(1.2) (0.7) (5.0) (1.9) 

Land area (hectares) 
7.2 8.5 30.7 34.9 

(6.0) (8.4) (38.1) (38.3) 

Number of farmers 

sharing one well 

13.1 17.5 23.9 1.0 

(9.6) (16.2) (19.1) (0.0) 

Soil type (1-5) 
3.6 3.2 2.9 3.2 

(1.1) (1.2) (0.9) (1.0) 

Semi-arid or arid 

climate (climate type 

dummy =1 ) 

0.7 0.5 0.5 0.6 

(0.5) (0.5) (0.5) (0.5) 

Well depth (meters) 
128.9 129.7 147.3 121.7 

(46.4) (44.7) (57.6) (119.8) 

Farmers' age (years) 
52.9 53.7 51.2 54.6 

(9.4) (7.8) (11.3) (11.8) 

Education (1-5) 
1.6 1.8 2.7 3.0 

(0.6) (0.9) (1.6) (1.6) 

Share of fruit and 

vegetable 

0.8 0.4 0.3 0.6 

(0.4) (0.5) (0.4) (0.5) 

Number of 

observations 
30 45 45 77 

Mean values are reported and standard deviations are in parentheses. 
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2.8 Estimation 

Following Provencher and Burt (1993), the number of farmers sharing a well is 

included as an explanatory variable in our estimation. Binary indicators for each 

electricity cost-sharing mechanism (evenly-based and area-based) are also included. The 

effect of these variables on irrigation may be confounded with the effect of other drivers 

such as soil type, climate regime, depth to groundwater, age and education of farmers, 

and crop types. Obtaining reliable estimates of the link between well sharing, cost share 

rules and pumping requires controlling for these factors.  

The system of equations is specified as:  

𝑥𝑖 = 𝑥𝑖
∗ + 𝑎𝑛𝑖 ∗ 𝑁 + 𝑎𝑐𝑠1𝑖 ∗ 𝐶𝑆1 + 𝑎𝑐𝑠2𝑖 ∗ 𝐶𝑆2 + 𝑎𝑠𝑖𝑖 ∗ 𝑆𝐼 + 𝑎𝑐𝑙𝑖 ∗ 𝐶𝐿  

+𝑎𝑑𝑒𝑝𝑡ℎ𝑖 ∗ 𝐷𝐸𝑃𝑇𝐻 + 𝑎𝑎𝑔𝑒𝑖 ∗ 𝐴𝐺𝐸 + 𝑎𝑒𝑑𝑢𝑖 ∗ 𝐸𝐷𝑈𝐶𝐴𝑇𝐼𝑂𝑁 + 𝑎𝑦𝑓𝑣𝑖 ∗ 𝑌𝐹𝑉 + 𝑣𝑖  

𝑖 = 𝑤𝑎𝑡𝑒𝑟, 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟, 𝑜𝑡ℎ𝑒𝑟 𝑖𝑛𝑝𝑢𝑡𝑠       (2.16) 

where 𝑥𝑖
∗ is defined by Equation (2.11) which captures the impact of prices of inputs, 

outputs, and fixed inputs, 𝑁 is the number of farmers sharing a well, and 𝐶𝑆1 and 𝐶𝑆2 are 

the cost share dummies.  

Equation system (2.16) also includes controls for soil type (𝑆𝐼 = 1, … ,5, where 𝑆𝐼 =

1 for finest soil and 𝑆𝐼 = 5 for coarsest), depth of well (𝐷𝐸𝑃𝑇𝐻) measured in meters to 

water table, age of the farmer (AGE), education of the farmer (EDUCATION) (i.e., (1) 

did not finish elementary school, (2) finished elementary school, (3) finished middle-

school, (4) finished high-school, (5) more than high-school),3 climate zone (CL), and 

crop types (YFV) which is captured by the share of fruit and vegetable in total output as 

these crops tend to be more water intensive than field crops.  

The climate zones are based on the widely used Köppen-Geiger classification system, 

which are used internationally for consistency between nations and regions. Mellinger, 

Sachs and Gallup (1999) provide an excellent description of the classification system. 

Since the climate zones are not ordered based on expected precipitation or irrigation 

                                                           
3  Education may be more appropriately captured by a dummy variable for each level of schooling. 

However, this would create 4 more variables in each equation which would result in a significant increase 

in the number of parameters to be estimated. Measuring education by a categorical variable increases the 

parsimony of our model and eases the burden on degrees of freedom with only 197 observations. 
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requirements, we create two categorical variables for the empirical analysis.4 The default 

(omitted) category refers to regions with a temperate climate and a dry winter, while the 

alternative category refers to regions with a semi-arid or arid climate. We expect that 

irrigation requirements will be lower in the default category than the alternative category.     

With shared wells we do not have sufficient information to attribute input usage and 

output production to specific farmers so we use the average age and education of 

surveyed farmers as the socio-demographic variables for the unit. Output includes field 

crops, fruits, and vegetables. Fruits and vegetables are typically more water intensive 

than field crops so we include the combined share of fruits and vegetables in total output. 

The system (2.16) is estimated using a nonlinear iterative seemingly unrelated 

regression estimator with Eicker-Huber-White heteroskedastic-consistent standard 

errors.5 With three inputs, the matrix 𝑆𝑖𝑗  is a 3 by 3 matrix, which is recovered from 

estimation of matrix A. 

 

 

 

2.9 Results 

Demand equations for water, fertilizer and the composite of other inputs are 

estimated simultaneously and their R-squared values are 0.74, 0.59, and 0.86 respectively. 

The coefficients for correlation of error terms across equations are -0.13, 0.10 and -0.02 

for water and fertilizer equations, water and the composite input, and fertilizer and the 

composite input equations respectively.6 Table 2.3 reports estimation results of the water 

equation. Results for the other two inputs are reported in Table C.1 in Appendix C. The 

number of farmers sharing a well does not have a statistically significant impact on   

                                                           
4  The limited number of degrees of freedom makes it impossible to estimate coefficients for seven 

categorical variables based on each unique climate zone. 
5 To impose concavity on the cost function, we have to estimate Aij instead of Sij. While Sij are linear in our 

model, Aij are not. As a result, a nonlinear SUR regression is used instead of linear regression. 
6 The null hypothesis of no correlation across error terms in the system is strongly rejected at the 1% level 

of significance with a likelihood ratio of 3690.5 (critical value of 11.34). 
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Table 2.3: Coefficient Estimates for Water Demand 

 Water equation Estimates            

Constant -39896.6  

 (33315.0) 

Output quantity 547.6**  

 (247.6) 

Interaction of land area and output quantity -97.5***  

 (35.4) 

Land area 3208.5***  

 (394.9) 

Quadratic term of output quantity 2.1**  

 (0.9) 

Interaction of quadratic land area and output quantity 1.0**  

 (0.5) 

Dividing electricity bill by share of land area 16456.9**  

 (8114.8) 

Dividing electricity bill evenly 25801.5***  

 (8515.8) 

Number of farmers sharing a well 279.0  

 (316.5) 

Soil type 6566.6  

 (5629.1) 

Climate type 12315.7  

 (14850.1) 

Depth of well 42.8  

 (54.8) 

Age -227.6  

 (419.2) 

Education 4078.8  

 (4436.3) 

Share of fruit and vegetable 3834.3  

 
(11379.4) 

  

Own price elasticity of water demand -0.06**  

 (0.02) 

  

𝑅2 0.741 

Observations 197 

Robust standard errors are in parentheses. Asterisk (*), double asterisk (**) and three asterisk (***) denote 

that variables are significant at 10%, 5%, and 1% respectively.  
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irrigation application. This result suggests that strategic pumping caused by well-sharing 

is weak, at best.7  

Sharing the cost of electricity evenly has a positive and statistically significant 

impact on irrigation application. Sharing the cost of electricity based on land area also 

has a positive but smaller impact. Results of cost share variables are consistent with the 

hypothesis that cost-sharing reduces irrigation use efficiency.  

To ensure that the effect of cost-sharing is not being confounded with the effect of 

well-sharing, we have also estimated the model with the sub-sample of shared wells only. 

The effect of electricity cost-sharing is robust to this change, though the reduction in 

sample size reduces the precision of the coefficients.   

 

Table 2.4: Input-specific Allocative Efficiency and Cost Increase due to Inefficiency 

Farmers 
Allocative 

Efficiency 
Cost Increase 

Farmers paying their own actual electricity consumption 1.00 0% 

Farmers dividing electricity bill based on their land share 0.73 5% 

Farmers dividing electricity bill evenly 0.58 7% 

 

Parameter estimates are used to calculate efficiency as described by Equations (2.13) 

and (2.14) and results are reported in Table 2.4. Implementing an evenly split cost share 

mechanism decreases farmers’ irrigation efficiency to 0.58 while implementing a land-

based cost share mechanism decreases farmers’ irrigation efficiency to 0.73. These 

results show that a cost share rule which splits the electricity cost evenly among farmers 

has a stronger effect than a rule establishing cost share based on land area.  

Our results show that the cost distortion introduced by electricity cost-sharing is 

substantial. Cost-sharing creates a situation where a farmer pays only a fraction of the 

electricity cost of his/her extra pumping. Under an evenly split cost share rule this is 

                                                           
7 The model was also estimated with a quadratic term for 𝑁 and interaction terms between 𝐶𝑆1, 𝐶𝑆2 and 𝑁 

to consider different channels through which well sharing might affect irrigation. We have also estimated a 

model where 𝑁 was replaced by a well share dummy. Well sharing had an insignificant effect across all 

models.  
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perhaps a small fraction of total electricity cost (e.g., only 20% in a well shared by 5 

farmers). Under a land-share rule, larger farmers may not benefit as much as their smaller 

counterparts. Consequently the effect of an evenly-split cost share rule is found to be 

larger in magnitude and statistically more robust, than a cost share rule based on land area. 

Our results suggest that distortions caused by the cost and strategic externalities (i.e., 

the magnitude of the clockwise rotation from 𝑀𝐶𝑖
𝑤,𝑠  to 𝑀𝐶𝑖

𝑤,𝑠+𝑤𝑠  in Figure 1) are not 

strong. This may be explained by a small impact of individual pumping on the water level, 

absence of strategic pumping from farmers sharing the well, or by unobservable self-

governance institutions facilitating cooperative behavior. But, if such institutions were 

effective enough to eliminate the marginal cost-reducing effects of well-sharing, they 

would also eliminate the effect of electricity cost-sharing mechanisms (rotation from 

𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠 to 𝑀𝐶𝑖

𝑤,𝑠+𝑤𝑠+𝑐𝑠 in Figure 1), which does not seem to be the case. Therefore, 

while the influence of hydrological and institutional features cannot be distinguished in 

our analysis, results suggest that the insignificant effect of well sharing on pumping is 

explained by a small impact of an individual's pumping on water level or absence of 

strategic pumping, rather than the existence of cooperative institutions. 

Allocative inefficiency in irrigation application results in production cost that is 

higher than the minimum cost. The increase in cost for farmers operating under each cost 

share mechanism can be calculated based on Equation (2.15). The percentage increase in 

cost due to allocative inefficiency with cost-sharing is reported in Table 2.4. We find that 

allocative inefficiency associated with area-based (evenly-based) cost share increases 

total production cost by 5 (7) percent. Therefore in addition to having a significant impact 

on the overall amount of water pumped, irrigation inefficiency also has a sizable effect on 

overall production costs. This suggests that removal of inefficiency sources will not only 

alleviate groundwater depletion but also improve farmers’ welfare. 

The own price elasticity of demand for irrigation water is reported in Table 2.3 and it 

is -0.06 (with a bootstrapped standard deviation of 0.02 so the elasticity estimate is 

significant at 5% level), which means that a doubling of the unitary cost of pumping 

would reduce irrigation by 6 percent.  Thus, only a very substantial increase in pumping 

cost can have a sizable impact on irrigation.  
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Some limitations of this analysis are worth noting. The cross sectional nature of our 

data does not allow us to control for unobservable fixed effects that may be correlated 

with our explanatory variables. We are able to control for some important time-invariant 

factors such as soil, climate, and socio-demographic variables, but analysis with cross-

sectional data always risks omitted variable bias due to correlation between 

unobservables and explanatory variables.  

This analysis, like the rest of the literature, neglects issues of optimal timing of 

irrigation. Inefficiencies can emerge not only in terms of the total amount of water 

applied during the growing season but also in terms of the timing of application. Farmers 

that share the same well may play a dynamic game in which they deviate from the 

optimal irrigation schedule if they believe they avoid the drawdown caused by another 

farmer at the otherwise optimal irrigation time. Finally, a profit maximizing framework 

may be more appropriate for farmers in this context. However, theoretically consistent 

and econometrically implementable input specific efficiency measures in the context of a 

profit dual function are not yet available. Expanding input specific efficiency 

measurement in this direction seems to be a relevant and promising research avenue. 

 

 

 

2.10 Policy Implications 

In combination our results show that common pool problems created by the sharing 

of electricity cost can have a sizable impact on pumping. As summarized by Ostrom in 

several studies (e.g., Ostrom 1996), conventional solutions to the common pool problem 

typically include creation of property rights (granting the property of the well to one 

individual or institution) and government ownership and control. The former can have 

significant implementation problems and resistance in the field. For the latter to 

effectively reduce over-extraction regulators would have to: 1) pursue maximization of 

social welfare as their objective; 2) have knowledge of the workings of ecological and 

hydrological systems; and 3) have knowledge of institutional changes that would induce 

socially optimal behavior.  
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An alternative solution that has spontaneously emerged in the field and later 

formalized by Ostrom et al. (1999) is that of self-governance. Our results seem to indicate 

that self-governance institutions inducing cooperative behavior may not have been in 

place in Mexico during the time of the survey or that they were not sufficient to prevent 

considerable inefficiency from the common pool problem created by electricity cost-

sharing rules. Self-governance cannot be successfully implemented everywhere. 

Conditions like feasible improvement of the resource, trust among users, and users’ 

discount rate influence the chances of successful self-governance of a natural resource. 

Therefore the success of these institutional reforms will be determined by the 

idiosyncrasies of wells and regions in Mexico. An ex-ante evaluation of alternative 

institutional arrangements to solve the common pool problem of groundwater in Mexico 

constitutes an undoubtedly important research avenue in the future. 

A much simpler, yet promising solution to the cost share problem is facilitating 

implementation of metering systems and allocation rules that allow charging each farmer 

for his own consumption. This is especially true for those wells that divide electricity 

costs evenly among farmers. In some cases, there may be financial barriers to adoption of 

these technologies and, in others, social ones. Public policies should be aimed at 

removing the barriers preventing adoption of more modern metering systems.  

The magnitude of the own price elasticity of demand suggests that elimination of the 

electricity subsidy by itself is not an effective policy for a significant reduction of 

groundwater pumping. This result, along with the impact of cost share variables on 

irrigation demand, suggest that elimination of cost share mechanisms seems a much more 

promising conservation policy than price-based instruments. In addition, intuition 

suggests that the latter will have a negative effect on farmers’ welfare while the former, 

by eliminating cost inefficiencies shown in Table 2.4, may result in higher welfare for 

farmers. 
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2.11 Conclusions 

The objective of this study was to quantify the role of different sources of non-

excludability on irrigation water demand in Mexico. We model three potential distortions 

of the marginal pumping cost of groundwater, and empirically gauge their impacts on 

irrigation demand. Based on insights from the theoretical model of marginal cost of 

pumping, we hypothesize that electricity subsidies, well sharing and electricity cost-

sharing will increase groundwater pumping and aggravate groundwater depletion.  

Our results are consistent with the hypothesis that electricity cost-sharing decreases 

farmers’ irrigation efficiency. In fact, results suggest that cost-sharing is at the heart of 

water over-extraction observed in many areas in Mexico. Both cost share rules have a 

statistically and quantitatively significant effect on pumping. Moreover, our results are 

consistent with the hypothesis that water demand is inelastic and, thus, eliminating the 

electricity subsidy is unlikely to result in a substantial reduction in irrigation. We estimate 

that the price elasticity of irrigation is only -0.06, which means that a doubling of the 

unitary cost of pumping would only reduce irrigation by 6 percent. In contrast, the 

hypothesis that well sharing will decrease irrigation efficiency is rejected. Our results 

indicate that the number of farmers sharing a well does not have a statistically significant 

effect on individual pumping, which suggests either a limited effect of individual 

pumping on water level or absence of strategic pumping by farmers sharing the wells. 

Concerning the effect of these policies on farmers’ welfare, one needs to consider 

that policy instruments reducing inefficiency need not cause a reduction in farmers’ 

surplus. This is because increases in individual marginal cost due to institutional reforms 

may be offset by 1) reductions in pumping cost associated with a decrease in the total 

volume pumped, and 2) an increase in water’s marginal value product due to enhanced 

production efficiency. In other words the alleviation of externalities increases overall 

welfare and this tends to offset the raise in individual pumping costs introduced by policy. 

We suggest that policymakers consider all of these effects when making decisions about 

changes to existing electricity and water policies. 
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CHAPTER 3 DYNAMIC ADJUSTMENT IN AGRICULTURAL PRACTICES TO 

ECONOMIC INCENTIVES AIMING TO DECREASE FERTILIZER APPLICATION 

 

 

 

3.1 Introduction 

It is widely acknowledged that fertilizer (e.g., nitrogen and phosphorus) use in 

agricultural production and the associated runoff leads to high levels of water pollution in 

the surrounding watershed area, as well as downstream (Goolsby et al. 2001; Rabotyagov 

et al. 2010; Yuan et al. 2013; Rebolledo et al. 2016). The application rate of fertilizer on a 

certain area of land is one of the key factors influencing water pollution: all else equal, a 

higher fertilizer application rate leads to a larger amount of nutrient migrating from the 

soil into the water system (Angle et al. 1993; Jaynes et al. 2001). When fertilizer is 

overused the surplus of nutrition in the soil is more likely to cause water pollution (Angle 

et al. 1993; Andraski et al. 2000). Past research finds that farmers often overuse fertilizer 

to avoid potential loss in yield associated with uncertainty in weather and soil nutrition 

levels (Sheriff 2005; Stuart et al. 2014). As a result, a major policy focus is on 

minimizing the impact of fertilizer application on environmental systems. We contribute 

to this policy discussion by shedding light on the dynamics and relative cost-effectiveness 

of input- and output-based policies that use financial incentives to influence farmer 

behavior.  

Input- and output-based policies refer to policies that target the prices of inputs or 

outputs in production; for example, a policy that affects the prices of fertilizer used in 

production is an input-based policy and a policy that affects the price of crops grown on a 

parcel of land is an output-based policy. This definition is different from another 

definition in which an input refers to a variable in the polluter’s choice set of variables 

that influence pollution runoff. In this latter case, an input-based policy is one that targets 
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these choice variables, instead of directly targeting emissions or their proxies (see Shortle 

and Horan 2013 for further discussion). 

Different crops have different requirements for fertilizer application. Corn is a 

particularly fertilizer-intensive crop. According to data published by the Economic 

Research Service at the United States Department of Agriculture (USDA ERS), the 

average application rate of nitrogen for corn production in the United States in 2002 was 

154 kg/hectare. The average rate of phosphate application was 67 kg/hectare. Conversely, 

soybeans is a fertilizer-saving crop with an average application rate of nitrogen and 

phosphate being only 24 and 55 kg/hectare. Not surprisingly the production of corn 

usually leads to higher levels of water pollution than soybeans. Research finds that 

continuous corn cultivation causes a higher level of nitrogen runoff than a corn-soybean 

rotation (Weed and Kanwar 1996; Kanwar et al. 1997) because of its repeated high rate 

of fertilizer application year after year (Andraski et al. 2000). For these reasons, crop 

choice is another important factor influencing water pollution, and consequently, another 

channel through which policy can exact reductions. 

Though a variety of policy options are available for targeting improvements in water 

quality via a reduction in fertilizer runoff, economists have long favored financial 

incentives. Financial incentives induce a change in farmer behavior in a manner 

consistent with environmental conservation without dictating the means of conservation. 

This allows each farmer to select his/her best option for reducing runoff, which renders 

financial incentives more efficient than command-and-control policies (Hahn 2000; 

Whittaker et al. 2003). In the context of fertilizer application, financial incentives may 

increase the cost of fertilizer (input-based policies) or reduce the profitability of a 

fertilizer intensive crop, such as corn (output-based policies).   

Input-based policies may operate as a tax on fertilizer use or a subsidy on fertilizer 

reduction, and have been implemented internationally. In the United States, Wisconsin, 

Iowa and Nebraska have levied taxes on fertilizer application (Larson et al. 1996; US 

EPA 2001). In Europe, Austria, Denmark, Finland, Italy, Norway and Sweden have also 

implemented a fertilizer tax to reduce fertilizer application (Rougoor et al. 2001; 

Söderholm and Christiernsson 2008; Vojtech 2010).  
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Output-based policies encourage farmers to substitute to less fertilizer-intensive 

crops by either taxing fertilizer-intensive crops or subsidizing fertilizer-saving crops. 

Florida has levied a tax on fertilizer-intensive crop acreage to reduce phosphorus loadings 

from cropland (Ribaudo 2001). Another policy that has been suggested is to couple an 

environmental standard with federal commodity program payments to reduce fertilizer 

use (USDA ERS 2007, 2011). Such a policy might affect the profitability of different 

crops, and lead to the reduction in fertilizer use. In the Corn Belt, corn and soybeans are 

the main crops that receive government payments. For example, in Iowa, corn and 

soybeans account for 69 and 30 percent respectively in the total base acres of covered 

commodities by the payment programs (Plastina et al. 2016). Given the differences in the 

production practices of corn and soybeans, imposing an environmental standard as a 

condition for commodity program payments would increase the compliance costs of corn 

production relative to soybean production, which in turn would decrease the relative 

profitability of corn.  

Several studies evaluate the relative efficiency of both input- and output-based 

policies. The findings from these studies are mixed. In terms of a reduction in net farm 

income, Huang and Lantin (1993) find that the cost per pound of reducing excess 

nitrogen fertilizer application is lower for input-based policies relative to output-based 

policies. Wu and Tanaka (2005) find that a fertilizer-use tax is more cost-effective than 

incentive payments. Using a general equilibrium model of the United States economy, 

Taheripour et al. (2008) find that output-based policies are more efficient for achieving 

goals with lower nitrogen reduction, but input-based policies become more efficient when 

higher levels of nitrogen reduction are targeted. In contrast, Bourgeois et al. (2014) find 

that mixed policies that combine both input- and output-based policies are more cost-

effective than any single policy.  

The literature that evaluates the relative merits of economic policies targeting water 

quality and fertilizer runoff typically do so on the grounds of relative cost-effectiveness 

(Hahn 2000; Shortle and Horan 2001, 2013). Comparing policies from a Pareto-

efficiency point of view that considers all social costs and benefits of the policy is often 

impractical because of the informational requirements associated with the Pareto criterion. 
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The cost-effectiveness criterion does not attempt to identify policies capable of attaining 

the optimal level of pollution that maximizes social welfare as does the Pareto-efficiency 

criterion. Instead, it identifies the policy instrument that attains an exogenously given 

environmental target (optimal or not) at minimum cost. The cost-effectiveness criterion 

has been applied to evaluate command-and-control policies as well as financial incentives. 

The former include policies encouraging best management practices or land retirement 

(Khanna et al. 2003; Wu and Tanaka 2005; Rabotyagov et al. 2010). The latter include 

tax/subsidy policies based on agricultural input usage or ambient pollution concentration 

levels (Kampas and White 2002; Wu and Tanaka 2005; Bourgeois et al. 2014). Following 

this literature, we use the cost-effectiveness criterion. 

One limitation in the scope of existing research that we address in this paper is that 

previous research focuses on the overall long-term effectiveness of the policy – i.e., how 

much water pollution reduction is achieved once the effect of the policy is fully realized. 

Past research provides valuable insight; yet, an important, practical aspect of this policy 

discussion is the speed at which each type of policy takes effect, or how long each policy 

takes to achieve these (previously estimated) goals. Understanding the dynamics of full 

adjustment is a crucial factor in assessing the relative cost-effectiveness of input- and 

output-based policies. If a particular type of policy is known to be more effective, yet 

takes a substantially longer time to yield these effects, then that policy may in fact be less 

desirable from an environmental vantage.  

Decreasing the application rate of fertilizer on a certain area of land or switching 

land allocation from a fertilizer-intensive crop to a fertilizer-saving crop are both able to 

reduce fertilizer use. While the adjustment of the application rate of fertilizer can be rapid, 

the adjustment of land allocation across different crops may be sluggish and require a 

long time to be fully realized. Because of crop rotational effects and quasi-fixed capital 

constraints (Orazem and Miranowski 1994; Arnberg and Hansen 2012), farmers respond 

slowly to policies targeting adjustments in land allocation. Vasavada and Chambers 

(1986) find that it takes two years for total agricultural land to adjust to its optimal level 

when land is treated as one single input. When land is divided across different crops, 

Lansink and Stefanou (1997) find that it takes more than twelve years to adjust land 
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allocation between root crops and other crops. This sluggishness in the adjustment of land 

allocation affects the speed at which economic policies affect fertilizer application.  

To simultaneously assess both the magnitude of input- and output-based policy 

effects and the speed at which the policies take effect, we deploy an empirical dynamic 

adjustment model of corn production that takes fertilizer as one of several inputs into 

production. We estimate the dynamic response of fertilizer use to changes in the price of 

both fertilizer (input-based policy) and corn (output-based policy). By estimating the 

response of fertilizer use to changes in the prices of fertilizer and corn, we are able to 

measure the effect of each type of policy on fertilizer use. By estimating the adjustment 

rate of the quasi-fixed inputs (capital and land allocated to corn), we can measure the 

total time required for the policy to take full effect.  

We use county-level data because it is more policy-relevant than farmer level data, 

as policymakers are interested in affecting change over a relatively large area. This focus 

is advantageous when we consider the possibility that, while individual farmers may 

respond to policy-induced incentives slowly, the aggregate response in a county may be 

less sluggish if the total adjustment can be achieved through adjustments made by the 

farmers with relatively low adjustment costs and higher adjustment rates. 

 

 

 

3.2 Theoretical Foundation and Empirical Specification 

 

 

3.2.1 Theoretical Foundation 

We start by following previous literature (e.g., Hennessy 2006; Du and Hennessy 

2012) and assume that farmers make production decisions (including the amount of 

fertilizer applied) to maximize profits. To the extent that fertilizer application may also 

affect skewness and kurtosis of the yield distribution (Du et al. 2012), farmers’ degree of 

risk aversion and perception of fertilizer impacts may also influence their use. 

Unfortunately, no information is available that allows construction of a reliable measure 

of risk aversion. Nor is there information available to quantify farmers’ perception of the 

effects of fertilizer on the probability distribution of yields. Therefore with the caveat that 
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there may be other motivations shaping the decision on fertilizer application, we move 

forward with our conventional assumption of profit maximization.  

Our model is a version of the dynamic duality model that has been widely used to 

study the adjustment of quasi-fixed inputs in an agricultural context (e.g., Vasavada and 

Chambers 1986; Luh and Stefanou 1991; Lansink and Stefanou 1997, 2001). The 

foundation of the model is the maximization of the discounted flow of profit for a 

producer of multiple outputs using variable inputs and quasi-fixed inputs (Epstein 1981; 

Epstein and Denny 1983; Lansink and Stefanou 1997):  

𝐽(𝑣, 𝑤, 𝐾, 𝑍, 𝑡) = 𝑚𝑎𝑥
𝐼

∫ 𝑒−𝑟𝑠[𝜋(𝑣, 𝐾(𝑠), 𝑍(𝑠), 𝑠) − 𝑤′𝐾 − 𝐶(𝐼(𝑠))]𝑑𝑠
∞

𝑡
. (3.1) 

In Equation (3.1), 𝐽(⋅) is the value function; 𝐾 is a vector of quasi-fixed inputs; 𝜋 is 

defined as 𝑣𝑄 ; 𝑄  is a vector of netput (output and variable input) quantities that is 

positive for outputs and negative for inputs; 𝑣  and 𝑤  are vectors of market prices of 

netputs and quasi-fixed inputs, respectively; 𝑍 is a vector of fixed inputs; 𝑟 is the discount 

rate; 𝑠 and 𝑡 reflect technological progress as a time trend; 𝐼 is the corresponding quasi-

fixed input adjustment; and 𝐶(𝐼) is the adjustment cost function.  

The Hamilton-Jacobi equation of the optimization problem in Equation (3.1) is 

𝑟𝐽(𝑣, 𝑤, 𝐾, 𝑍, 𝑡) = 𝑚𝑎𝑥
𝐼

{𝜋(𝑣, 𝐾, 𝑍, 𝑡) − 𝑤′𝐾 − 𝐶(𝐼) + (𝐼 − 𝛿𝐾)′𝐽𝑘} + 𝐽𝑡, (3.2) 

where δ is the depreciation rate of quasi-fixed inputs, and the subscript notation defines a 

partial derivative (e.g., 𝐽𝑡 =  𝜕𝐽(⋅)/𝜕𝑡). Differentiating (3.2) with respect to 𝑣, results in 

the following netput equations: 

𝑄 = 𝑟𝐽𝑣 − 𝐽𝑘𝑣�̇� − 𝐽𝑡𝑣, (3.3) 

where �̇� (�̇� = 𝐼 − 𝛿𝐾) is the adjustment of 𝐾. Differentiating (3.2) with respect to 𝑤, 

results in the following adjustment equations: 

�̇� = 𝐽𝑘𝑤
−1(𝑟𝐽𝑤 + 𝐾 − 𝐽𝑡𝑤). (3.4) 

A common assumption is that producers make optimal decisions based on 

information in the current period and their expectations of prices, which are assumed to 

be static (Epstein 1981; Epstein and Denny 1983; Lansink and Stefanou, 1997). This 

assumption excludes uncertainty in future prices faced by farmers. Alternative 

assumptions, such as quasi-rational expectations, typically require a relatively long time 
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series of price data to generate expected prices. Given other data requirements (see 

Section 3.3), the temporal dimension of our data is restricted to the years 2001 to 2008, 

which is not long enough to facilitate estimation under alternative assumptions.  

 

 

 

3.2.2 Empirical Specification 

We use a normalized quadratic specification to parameterize the optimal value 

function. To operationalize the normalized quadratic setup, we use soybeans as the 

numeraire which allows us to focus on the production of corn. Even though the results in 

the normalized quadratic design are not invariant to the choice of the numeraire, it is 

widely used because it is flexible, yet empirically straightforward to implement (Lansink 

and Stefanou 2001). These are important properties in our case, as limited degrees of 

freedom render estimation of a complex model and imposition of constraints difficult.   

Specifically, the normalized quadratic value function is given by 

𝐽(𝑣, 𝑤, 𝑧, 𝐾, 𝑡) = (𝑎1𝑎2) (
𝑣

𝑤
) +

1

2
(𝑣𝑤) [

𝐴 𝐶
𝐶′ 𝐵

] (
𝑣

𝑤
)

+
1

2
(𝑧′𝐾′𝑡′) [

𝐷 𝐺 𝐻
𝐺′ 𝐸 𝐿
𝐻′ 𝐿′ 𝐹

] [
𝑧
𝐾
𝑡

]

+ (𝑣′𝑤′) [
𝑂 𝑃 𝑅
𝑆 𝑀−1 𝑈

] [
𝑧
𝐾
𝑡

]. 

(3.5) 

In Equation (3.5), 𝑣, the vector of netput prices includes the price of corn, fertilizer, 

and labor; 𝑤, the vector of quasi-fixed input prices, includes the rental price of corn land 

and the shadow price of capital; z, the fixed input, is total cropland; the vector of quasi-

fixed inputs, K, includes corn land and capital; and t is a time trend. All prices are relative 

to the price of soybeans, and all other notation defines matrices of parameters to be 

estimated.  

Following Equation (3.3), the netput equation (in our empirical model, the supply of 

corn, and the demand for fertilizer and labor) is 

𝑄∗ = 𝑟(𝑎1 + 𝐴′𝑣 + 𝐶′𝑤 + 𝑂′𝑧 + 𝑃′𝐾 + 𝑅′𝑡) − 𝑃′�̇� − 𝑅, (3.6) 
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and following Equation (3.4), the adjustment equation for quasi-fixed inputs (corn land 

and capital) is 

�̇� = (𝑟 + 𝑀)𝐾 + 𝑟𝑀(𝑎2 + 𝐵′𝑤 + 𝐶′𝑣 + 𝑆𝑧 + 𝑈𝑡) − 𝑀𝑈. (3.7) 

Equation (3.7) defines a linear relationship between multiple factors and quasi-fixed 

input adjustment, and is sometimes referred to as a multivariate linear accelerator 

𝐾∗̇ = (𝑟 + 𝑀)(𝐾 − 𝐾∗) (3.8) 

where 𝐾∗ is the optimal level of quasi-fixed input 𝐾 written as 

𝐾∗ = 𝑟𝑁(𝑎2 + 𝐵′𝑤 + 𝐶′𝑣 + 𝑆𝑧 + 𝑈𝑡) − 𝑁𝑈, (3.9) 

𝑁 = −(𝑟 + 𝑀)−1𝑀. (3.10) 

In Equation (3.8), (𝑟 + 𝑀) is the adjustment rate matrix of quasi-fixed inputs 𝐾 to 

their optimal level 𝐾∗. This multivariate accelerator allows the adjustment of one quasi-

fixed input to influence the adjustment of the other quasi-fixed input. In our empirical 

model, we allow adjustments in corn land and capital to affect each other; we then test for 

significance of these mutual effects. 

 

 

 

3.2.3 Measuring Short-Term and Long-Term Effects 

This model allows us to measure both the short-term and long-term response of input 

use to a change in price; hence, we can assess the short-term and long-term effect of a 

policy that influences the price of corn or fertilizer on fertilizer application. The 

difference between the short-term and long-term effects comes from sluggish adjustments 

in the quasi-fixed inputs. In the short-term, the quasi-fixed inputs are assumed to be fixed 

at their current level, while in the long-term they are assumed to adjust to their new 

optimal levels given a new set of equilibrium conditions created by the policy. To make 

these assessments, we use our model to compute short-term and long-term elasticities – 

short-term elasticities keep the quasi-fixed inputs constant, and long-term elasticities 

allow for complete adjustment of quasi-fixed inputs to their long-term optimal level.  

Following standard definitions of short-term and long-term elasticities (Morrison and 

Berndt 1981; Luh and Stefanou 1993; Richards 1999), the short-term price elasticity of 

each netput to a netput price change is 
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휀𝑄𝑖𝑉𝑗

𝑠 = (
𝜕𝑄𝑖

𝜕𝑉𝑗
| 𝑘1=�̅�1,𝑘2=�̅�2

) (
𝑉𝑗

𝑄𝑖
) (3.11) 

where 𝑖 and 𝑗 index the netputs and netput prices. Hence, the short-term elasticity given 

in Equation (3.11) allows us to assess the sensitivity of the quantities of corn, fertilizer 

and labor to prices, including both own and cross-price effects. 

The short-term price elasticities of netputs to changes in quasi-fixed input prices is 

휀𝑄𝑖𝑊𝑗

𝑠 = (
𝜕𝑄𝑖

𝜕𝑊𝑗
| 𝑘1=�̅�1,𝑘2=�̅�2

) (
𝑊𝑗

𝑄𝑖
) (3.12) 

which allows us to understand how the netput quantities respond to changes in the price 

of corn land and capital. 

Since, in the short term, quasi-fixed inputs are held constant and do not adjust, 

changes in the price of corn or fertilizer only affect fertilizer application under the current 

land allocation and capital level. That is, these short-term elasticities do not account for 

indirect effects of price changes through adjustments in capital or land allocation.  

The long-term price elasticity of netputs to a change in the netput price is  

휀𝑄𝑖𝑉𝑗

𝑙 = (
𝜕𝑄𝑖

𝜕𝑉𝑗
|   𝑘1=�̅�1,𝑘2=�̅�2

) (
𝑉𝑗

𝑄𝑖
) +  ( ∑

𝜕𝑄𝑖

𝜕𝐾𝑚
∗

𝜕𝐾𝑚
∗

𝜕𝑉𝑗

2

𝑚=1

) (
𝑉𝑗

𝑄𝑖
) (3.13) 

and the long-term price elasticity of netputs to a change in quasi-fixed input prices is  

휀𝑄𝑖𝑊𝑗

𝑙 = (
𝜕𝑄𝑖

𝜕𝑉𝑗
|   𝑘1=�̅�1,𝑘2=�̅�2

) (
𝑉𝑗

𝑄𝑖
)  + ( ∑

𝜕𝑄𝑖

𝜕𝐾𝑚
∗

𝜕𝐾𝑚
∗

𝜕𝑉𝑗

2

𝑚=1

) (
𝑉𝑗

𝑄𝑖
). (3.14) 

Notice that Equations (3.13) and (3.14) have additional terms that do not appear in 

Equations (3.11) and (3.12). These terms – the summations over 𝑚 – refer to the indirect 

effects that the changes in input and quasi-fixed input price have on the netput quantities 

via adjustment in the quasi-fixed inputs. That is, the long-term elasticity is calculated by 

adding to the short-term elasticities (the first terms in Equations (3.13) and (3.14)) the 

effects associated with adjustment in the quasi-fixed factors. This is an important part of 

the total effect since a change in the price of corn or fertilizer induced via policy not only 

causes a change in fertilizer application directly, but also causes a change in both land 

allocated to corn and capital which in turn causes a change in fertilizer application. 
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The long-term price elasticity of quasi-fixed inputs with respect to netput price, 

captured in the second term of Equation (3.13), is  

휀𝐾𝑚𝑉𝑗

𝑙 = ( 
𝜕𝐾𝑚

∗

𝜕𝑉𝑗
) (

𝑉𝑗

𝐾𝑚
) (3.15) 

and the long term price elasticity of quasi-fixed inputs to a change in quasi-fixed input 

prices is  

휀𝐾𝑚𝑊𝑗

𝑙 = ( 
𝜕𝐾𝑚

∗

𝜕𝑊𝑗
) (

𝑊𝑗

𝐾𝑚
). (3.16) 

These elasticities allow us to measure how a change in the prices of corn land and 

capital affect the quantity of each of these quasi-fixed inputs. 

 

 

 

3.3 Description of the Data 

Our analysis focuses on the Wabash River Watershed, which covers 65 counties in 

Indiana, 23 counties in Illinois, and a small part of Ohio. In this watershed, corn and 

soybeans are the main crops produced. In 2014, the planting area of corn and soybeans in 

Indiana constitutes 47.5 and 44.3 percent of the total planting area of field crops; in 

Illinois, these percentages are 51.7 and 42.6 percent for corn and soybeans, respectively 

(USDA NASS). We focus on the county level of aggregation to understand how 

incentives to change agricultural management practices influence water quality over a 

larger geographic area. Because certain data are missing for some counties, our analysis 

covers 44 counties in Indiana and 16 counties in Illinois, for a total of 60 counties. Figure 

3.1 provides a map of the Wabash River Watershed and the counties included in our 

analysis. The counties in our analysis are distributed somewhat uniformly across space; 

hence, we maintain representative coverage over the watershed area despite missing data.  

Our dataset is an unbalanced panel that spans the years 2001 to 2008, providing a 

total of 384 county-year observations. We exclude the 2009 to 2012 years because a 

preliminary analysis indicated that the data spanning these years is too heavily impacted 

by the Great Recession. The empirical model requires quantity and price data for all 

outputs, variable inputs, and quasi-fixed inputs, as well as quantity data for fixed inputs. 
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We focus on two outputs, corn and soybeans since the production of corn and soybeans 

constitutes more than 90 percent of all crop production in the Wabash River Watershed 

area; further, corn and soybeans are typical fertilizer-intensive and fertilizer-saving crops, 

respectively. We include two variable inputs, fertilizer and labor; two quasi-fixed inputs, 

capital and land allocated to corn; and one fixed input, total cropland. Since we only 

focus on corn and soybean production, total cropland is the sum of land allocated to corn 

and land allocated to soybeans.  

 

Figure 3.1: The Wabash River Watershed 

The bold (black) line in this figure shows the geographical position of the Wabash River Watershed as it 

spans most of Indiana and part of Illinois. The counties included in our analysis are indicated and shaded in 

blue. 

 

Data on the production quantity of corn and soybeans, the land area allocated to corn 

and soybeans, the price of land, the price and quantity of capital, and the price of 

fertilizer are obtained from the United States Department of Agricultural National 

Agricultural Statistics Service (USDA NASS). Both the quantity and price of labor come 

from the United States Bureau of Labor Statistics. We use county level data on the 

number of employees in the crop production industry and their wages. The land price 
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data are census data, and only have one observation every five years. We use a cubic 

polynomial interpolation to construct annual land price data; we explored, county by 

county, several different interpolation techniques (both linear and nonlinear), and we 

found that the cubic polynomial provided the best fit to most of the counties in our 

analysis. To further increase the reliability of the interpolation, we use 5-year census data 

from 1982 to 2012, so that the interpolation is based on a longer time span. Further, we 

calculate the rental price of land as 4 percent of its value, which is consistent with the 

proportion of cash rent of farmland in its value in Indiana reported by Dobbins and Cook 

(2001-2008) at the time span of our data. 

Machinery and equipment data are used to measure capital. The price of capital is a 

price index of machinery and equipment. To measure the machinery cost paid by farmers 

each year, we construct the shadow price of machinery via 𝑆𝑃 =  𝑂𝑃(𝑟 + δ) (Morrison 

and Berndt 1981), where 𝑆𝑃 indicates the shadow price, which is equal to the original 

price,  𝑂𝑃 , multiplied by the sum of the discount and depreciation rates, 𝑟  and 𝛿 , 

respectively. We assume (𝑟 + δ) is 0.15. The quantity of machinery is recovered by 

dividing the market value of machinery and equipment by the price index. As a result, not 

only the quantity, but also the quality of machinery, is reflected in the quantity of 

machinery variable. Since the market value of machinery comes from the 5-year census, 

we use the same polynomial interpolation based on data from 1982 to 2012 to construct 

the annual data series. 

County level fertilizer quantity data come from the Offices of the State Chemist in 

both Indiana and Illinois. These offices record all reported sales of fertilizer by fertilizer 

companies and sales agents in each county. An ideal measurement of fertilizer quantity is 

the quantity of fertilizer applied to the field in each county; however, this data is largely 

unobservable. In the absence of observable fertilizer application data, the quantity sold is 

a reasonable measure. Given transportation and storage costs, most farmers do not 

purchase fertilizer from outside the county, or store purchased fertilizer for future use. 

Therefore, the fertilizer sales data is a reliable proxy for fertilizer used in each county. 

Since fertilizer application occurs after the sale, and the fall application of fertilizer is 

usually for production in the following year, we measure fertilizer application each year 
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as the sum of fall sales from the previous year and spring sales from the current year. The 

fertilizer price data is the weighted average price of different types of fertilizers 

(specifically, 09-23-30, 10-10-10, 10-20-20,10-34-00, 11-52-00, 13-13-13, 16-20-00, 17-

17-17, 18-46-00, 19-19-19, Anhydrous Ammonia, Muriate of Potash 60% K20, Nitrogen 

solution 32%, Superphosphate 44-46%, and Urea 45%). Our calculation of the fertilizer 

price index follows the same criterion used by USDA NASS. 

The price of corn and soybeans is the cash price data for each crop, obtained from 

GeoGrain. The GeoGrain data is available at the grain elevator level, measured on 

monthly intervals. To construct county-level data, we obtain averaged cash prices across 

all elevators in each county; the data are averaged temporally to obtain annual prices. 

Since crop prices are unknown when farmers make production decisions during the 

planting season, we use crop prices from the previous year to measure the expected price 

in the current year.  

Theoretically the adjustment of quasi-fixed inputs is a continuous measurement. In 

empirical research it is common to deploy a discrete approximation: �̇�𝑡 = 𝐾𝑡 − 𝐾𝑡−1 (see, 

for example, Epstein and Denny 1983; Hsu and Chang 1990; Luh and Stefanou 1991, 

1993; Fernandez-Cornejo et al. 1992; Boetel et al. 2007).  

Table 3.1 provides a statistical description of the data. The table reveals that about 

72,000 hectares were planted in corn and soybeans on average, but that there is 

substantial variation in total area planted that ranges from 4,600 to 220,000 hectares. On 

average, about half of the total planted area is allocated to corn and the other half to 

soybeans. Corn price is, on average, 40 percent of the soybean price per metric ton, while 

corn production measured in metric tons is 3.2 times higher than soybean production. 

More importantly about 31,000 metric tons of fertilizer is applied, on average. 

Preliminary statistical analysis indicates a high correlation between corn production and 

fertilizer application. 

 



 
 

 

4
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Table 3.1: Descriptive Statistics 

 

Mean 
Standard 

Deviation 
Maximum Minimum 

Corn production in a county (metric tons) 354,075.5 214,078.4 1,509,022.6 9,497.4 

Soybean production in a county (metric tons) 109,590.4 55,750.4 368,297.8 5,045.8 

Corn price ($/metric ton) 92.0 21.0 145.9 67.4 

Soybean price ($/metric ton) 222.7 44.6 309.2 160.7 

Fertilizer quantity applied in a county (metric tons) 30,764.7 19,308.0 185,635.1 1,232.0 

Fertilizer price ($/metric ton) 391.9 161.2 740.4 228.0 

Hired labor (persons) 78.7 78.4 472.0 5.0 

Wage ($/week) 481.8 146.6 977.0 113.0 

Planting area of corn (hectares) 36,625.8 19,161.2 129,099.3 1,821.2 

Planting area of soybean (hectares) 35,107.3 16,215.5 106,840.8 2,306.8 

Land price ($/hectare) 7,694.5 1,830.7 16,143.1 3,628.0 

Total planting area of corn and soybean (hectares) 71,733.1 34,480.7 220,156.8 4,613.6 

Composite machinery quantity 442,184.7 176,923.3 1,325,330.6 49,602.2 

Composite machinery price 171.6 21.5 209.0 144.0 

The total number of counties included in our analysis is 60. 
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3.4 Results 

We estimate the parameters in the system defined by Equations (3.6) and (3.7) via a 

fixed effect seemingly unrelated regression (SUR) procedure. In total, after imposing the 

theoretically relevant cross-equation restrictions, there are 35 parameters. Given these 

parameter estimates, we can compute the short-term and long-term price elasticities and 

conduct our policy analysis. We report the parameter estimates and standard errors in 

Table E.1 in the appendix for reference. Our profit function specification provides 

significant flexibility (i.e., is able to capture a wide range of behavioral responses). The 

downside is that this specification results in estimation of a large number of parameters 

which, in combination with cross-equation restrictions, results in violation of the 

theoretical property of convexity of the profit function in a number of data points. This is 

relatively common in estimation of dual profit or cost functions (e.g., Lansink and 

Stefanou 1997).  

 

 

 

3.4.1 Short-Term Adjustments 

Table 3.2 reports the short-term price elasticities for output (corn) and the variable 

inputs (fertilizer and labor), with respect to prices of the netputs and quasi-fixed inputs. 

The table is organized so that the rows represent each of the netput quantities, and the 

columns represent the netput and quasi-fixed input prices from which each of the 

elasticities are computed.  

Most partial effects are of the expected sign. Given our objective, we focus on the 

intensive and extensive margin changes for fertilizer application. The own price elasticity 

of corn is 0.30, indicating that a 1 percent increase in the price of corn relative to soybean 

induces a 0.30 percent increase in corn supply. The own price elasticity of fertilizer is -

0.96, which indicates that when the fertilizer price increases by 1 percent, the application 

of fertilizer decreases by 0.96 percent. This elasticity is statistically significant, and 

indicates that any policy that increases the price of fertilizer, such as taxing fertilizer use 

or subsidizing a reduction in fertilizer application, is an effective means of reducing 

fertilizer application in the short-term.  
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Table 3.2: Estimates of the Short-Term Price Elasticity 

    Price 

 

  Corn Fertilizer Labor Land Machinery 
Q

u
an

ti
ty

 Corn 
0.30*** -0.34*** -0.01 -0.14*** 0.00 

(0.09) (0.09) (0.01) (0.02) (0.06) 

Fertilizer 
0.96*** -0.96*** -0.01 -0.40*** 0.55*** 

(0.24) (0.28) (0.04) (0.07) (0.19) 

Labor 
0.12 -0.07 -0.33*** -0.11 0.47** 

  

(0.21) (0.23) (0.08) (0.10) (0.20) 

All estimated elasticities are constructed using parameter estimates shown in Table D.1 from the fixed 

effects seemingly unrelated regression. Standard errors are calculated using the delta method, and ***, **, 

* indicates significance at 1, 5, and 10 percent levels. 

 

 The elasticity value reported here reveals a negative link between fertilizer usage 

and its own price. Behind this negative effect is the physical relationship between 

nitrogen and corn yields. Evidence from the agronomic literature suggests that increased 

nitrogen application raises corn yields at a decreasing rate. Therefore producers would 

respond to changes in the price of fertilizer. Our elasticity is larger (in absolute value) 

than the elasticity that can be inferred from agronomic studies. In fact, in the study area, 

the elasticity suggested by agronomic studies based on field data is around -0.3 (Iowa 

State University, 2016). Differences are perhaps due to the level of aggregation. The 

economically optimal nitrogen rate (EONR) suggested by Iowa State extension services 

are based on field level information. The spatial unit of observation in this study is a 

county. Effects over an entire county incorporate a large heterogeneity in response. 

Typical agronomic units (as the ones considered to calculate the EONR) are included, but 

marginal units which tend to be more sensitive to changes in price are also included in 

our study.  

We also find that the short-term cross-price elasticities between corn and fertilizer 

are statistically significant. The short-term cross-price elasticity between the quantity of 

fertilizer and the price of corn is also close to 1; specifically, a 1 percent decrease in the 

relative price of corn leads to a 0.96 percent decrease in the application rate of fertilizer. 

This result indicates that policies that discourage planting corn by reducing its relative 
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price can also lead to a significant reduction in fertilizer application through adjustment 

in the application rate. The downside of reducing fertilizer application via land use 

adjustment is a reduction in corn production. In fact, a 1 percent increase in the price of 

fertilizer leads to a 0.34 percent reduction in the quantity of corn produced. 

In percentage terms the response in fertilizer application to either a decrease in the 

price of corn or an increase in the price of fertilizer is (statistically) the same. These 

results imply that policies directed towards decreasing the price of corn and policies 

directed towards increasing the price of fertilizer are equally effective in reducing 

fertilizer application, at least in the short-term. Estimated elasticities are consistent with 

prior expectations based on economic theory and agronomic relationships, lending 

credence to our empirical framework. Additionally, elasticity estimates imply that 

policies that increase the price of land or decrease the price of machinery can also 

influence fertilizer application. 

 

 

 

3.4.2 Long-Term Adjustments 

In the long-term, both corn land area and machinery adjust to their optimal levels; 

these adjustments lead to further change in fertilizer application. The long-term elasticity 

estimates are reported in Table 3.3, and are not generally different from the short-term 

elasticity estimates in Table 3.2. From the short-term to the long-term the magnitude of 

the own-price elasticity of fertilizer increases only from -0.96 to -0.98, which means that 

most of the adjustment occurs within the short-term (i.e., one year) and at the intensive 

margin. In particular the additional effects from the adjustment in the two quasi-fixed 

inputs (i.e., the second terms in Equations (3.13) and (3.14)) are not substantial. This can 

be explained by a small elasticity of fertilizer with respect to corn acreage and machinery, 

a small elasticity of corn acreage with respect to netput prices and machinery prices, or 

by a mutual offsetting effect between these impacts. We explore these details in a 

subsequent section. 

Looking at elasticity estimates over different time horizons, it is clear that input-

based policies that affect the relative price of fertilizer are effective both in the short-term 
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and long-term. Our results are consistent with the findings from several studies that 

estimate the effects of input-based policies (Wu and Tanaka 2005; Taheripour et al. 2008; 

Bourgeois et al. 2014). However, other studies draw mixed conclusions. For example, 

while the fertilizer tax policies implemented in Austria and Sweden have been found to 

significantly reduce fertilizer application, the fertilizer taxes implemented in Denmark, 

Finland and Norway did not decrease fertilizer use significantly (Rougoor et al. 2001; 

Söderholm and Christiernsson 2008; Ahodo and Svatonova 2014). Explanations for the 

insignificance of the policy in these countries include a low tax rate, the recycling of tax 

revenue back to farmers, and the interaction of the policy effect with other policies, this 

insignificance nevertheless raises concern on the general effectiveness of input-based 

policies. Our results provide further evidence that input-based policies might significantly 

reduce fertilizer application. 

 

Table 3.3:  Estimates of the Long-Term Price Elasticity 

    Price 

    Corn Fertilizer Labor Land Machinery 

Q
u
an

ti
ty

 

Corn 
0.29*** -0.34*** -0.01  -0.14*** 0.02 

(0.09) (0.09) (0.01) (0.02) (0.06) 

Fertilizer 
0.96*** -0.98*** -0.02 -0.40*** 0.60*** 

(0.25) (0.28) (0.04) (0.07) (0.19) 

Labor 
0.12 -0.08 -0.33*** -0.11 0.48** 

(0.21) (0.23) (0.08) (0.10) (0.20) 

Corn Land 
0.40*** -0.43*** -0.02 -0.02 0.25*** 

(0.07) (0.07) (0.02) (0.05) (0.07) 

Machinery 
0.12 0.25** 0.05** 0.13** -1.27*** 

(0.13) (0.13) (0.02) (0.06) (0.22) 

All estimated elasticities are constructed using parameter estimates shown in Table D.1 from the fixed 

effects seemingly unrelated regression. Standard errors are calculated using the delta method, and ***, **, 

* indicates significance at 1, 5, and 10 percent levels. 

 

We find similar insights with respect to policies that work by changing the relative 

price of corn (output-based policies); these policies also affect fertilizer application 

beyond the short-term through the adjustment of quasi-fixed inputs and, especially, land 

allocation. However the elasticity of fertilizer demand with respect to the price of corn 

does not increase significantly (as shown later, there is only a small increase in the 
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elasticities) from the short-term to the long-term. Like input-based policies, output-based 

policies act primarily through the short-term at the intensive margin – i.e., a reduction in 

the fertilizer application rate.  

Our results also confirm that output-based policies that affect the relative prices of 

corn lead to adjustments in fertilizer application in the short-term and long-term, and are 

consistent with findings that a high corn price is one of the main drivers of high fertilizer 

application (Stuart et al. 2014) and high nitrogen loss to the water system (Hendricks et al. 

2014). Our findings provide support for the feasibility of the suggested policy of targeting 

a reduction in fertilizer use through the integration of environmental standards into 

government commodity program payments. All else equal, a higher compliance cost of 

corn production means a lower real price received by farmers, and consequently the 

change in the relative price of corn and soybeans will lead to a reduction of fertilizer use.  

Even in the long term, we continue to find that fertilizer application responds 

similarly to a decrease in the corn price or an increase in the fertilizer price. Hence, in 

both the short-term and the long-term, output-based (i.e., corn price) policies and input-

based (i.e., fertilizer price) policies are equally effective in reducing the application of 

fertilizer.  

 

 

 

3.4.3 Cost-Effectiveness of Policies 

Even though the elasticity of fertilizer with respect to fertilizer price and crop price 

are similar, the cost of input- and output-based policies per unit of abatement differ. Our 

estimates indicate that input- and output-based policies take effect at the same speed; 

hence, our analysis on the relative cost-effectiveness of these policies focuses on the 

magnitude of the cost of the policies and the total effect. The average annual fertilizer 

application in our sample is 1,828,672 metric tons, the average fertilizer price is 

$392/metric ton, the average annual production of corn is 21,083,636 metric tons, and the 

average corn price is $92/metric ton. A 10 percent reduction in fertilizer application with 

an input-based policy (e.g., a tax on fertilizer) requires a 10.2 percent tax on each unit of 

fertilizer (i.e., the target reduction divided by the own-price elasticity of fertilizer, 
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10/0.98). This translates into a total cost of $73,146,880 (calculated as 1,828,672*392*(-

10/-0.98)/100). The same 10 percent reduction in fertilizer application via an output-

based policy (e.g., a tax on corn production) costs $202,051,512, which is almost three 

times larger than that of the input-based policy.   

These calculations indicate that, given our estimated elasticities, the cost to 

agricultural producers of achieving a reduction in fertilizer application is smaller with an 

input-based policy than with an output-based policy. Conversely, if the reduction in 

fertilizer application is encouraged through a subsidy instead of a tax, the cost to the 

policymaker of achieving a 10 percent reduction in fertilizer application is smaller if 

achieved through the input-based policy. These calculations reinforce the idea that input-

based policies are generally preferred. As we have discussed, the findings in previous 

studies that compare input- and output-based policies are mixed. Our results demonstrate 

that, at least for our study area, input-based policies are superior from a cost-effectiveness 

point of view. The advantage of the input-based policy may come from the fact that the 

input-based policy directly targets fertilizer; conversely, an output-based policy targets 

corn or soybean production, which is ultimately translated into a change in fertilizer 

application indirectly. It is likely that some of the adjustment induced by the output-based 

policy is translated into the adjustment of other inputs.   

 

 

 

3.4.4 Decomposing Long-Term Adjustments 

Two components contribute to the difference between the short- and long-term 

elasticities: the adjustment of land allocation and the adjustment of capital. We are 

especially interested in the adjustment of land allocation since it represents the vehicle 

through which price policies affect fertilizer application at the extensive margin. While 

the (small) magnitude of these effects can be explained by a small effect of each of these 

components, it could also be the result of an offsetting effect. We analyze each 

component to ascertain whether there are any differential effects on fertilizer application 

via either of these channels. Tables 4 and 5 report the estimates of the components of the 

long-term elasticity separately. 
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Table 3.3 shows that less land is used for planting corn when the corn price is lower 

or when the fertilizer price is higher. Policies directed towards the prices of corn and 

fertilizer influence land allocation adjustments from corn to soybeans, which further 

decreases fertilizer application. Table 3.4 shows that a 1 percent decrease in the corn 

price and a 1 percent increase in the fertilizer price cause a 0.006 percent and 0.007 

percent decrease in fertilizer application respectively by decreasing the land allocated to 

corn. Hence, the magnitude of this extensive margin effect is trivial compared to the 

intensive margin effects, and the effects of output- and input-based policies are similar in 

magnitude (at least in terms of the point estimate). 

 

Table 3.4:  Estimates of the Long-Term Price Elasticity from Adjustment in Land 

Allocation 

    Price 

 

  Corn Fertilizer Labor Land Machinery 

Q
u
an

ti
ty

 

Corn 
-0.008*** 0.008*** 0.000 0.000 -0.005*** 

(0.001) (0.002) (0.000) (0.001) (0.002) 

Fertilizer 
0.006** -0.007** -0.000 -0.000 0.004** 

(0.003) (0.003) (0.000) (0.001) (0.002) 

Labor 
0.000 -0.000 -0.000 -0.000 0.000 

(0.002) (0.002) (0.000) (0.000) (0.001) 

All estimated elasticities are constructed using parameter estimates shown in Table D.1 from the fixed 

effects seemingly unrelated regression. Standard errors are calculated using the delta method, and ***, **, 

* indicates significance at 1, 5, and 10 percent levels. 

 

A change in either the price of corn or the price of fertilizer also stimulates 

adjustment of capital, which in turn affects fertilizer use. Table 3.5 shows that the cross-

price elasticity of fertilizer application with respect to the corn price related to an 

adjustment in capital is not significant. The own-price elasticity of fertilizer related to an 

adjustment in capital is significant, but its magnitude is still small, only -0.009, which 

indicates that its impact on the reduction of fertilizer application is weak.  
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3.4.5 Temporal Adjustment Rates of Quasi-Fixed Inputs 

Another important dimension to analyze is the time it takes for adjustments to fully 

take place. Table 3.6 contains estimates of the adjustment rates of the quasi-fixed inputs. 

As Equation (3.8) indicates, the adjustment rate is the proportion of the total desired 

adjustment (i.e., adjustment to the optimal level of quasi-fixed inputs) that unravels 

within a year. Results indicate that the adjustment rate of corn land is -1.17, which means 

that the entire adjustment in land allocation to the optimal level can be completed in one 

year; further, this estimate indicates slight over-adjustment as the (absolute) value is 

greater than 1.  

 

Table 3.5:  Estimates of the Long-Term Price Elasticity from Adjustment in Capital 

    Price 

 

  Corn Fertilizer Labor Land Machinery 

Q
u
an

ti
ty

 

Corn 
-0.002 -0.004* -0.001* -0.002* 0.021*** 

(0.002) (0.002) (0.000) (0.001) (0.008) 

Fertilizer 
-0.004 -0.009* -0.002* -0.004 0.044*** 

(0.005) (0.005) (0.001) (0.003) (0.016) 

Labor 
-0.001 -0.002 -0.000 -0.001 0.011 

(0.002) (0.003) (0.000) (0.001) (0.012) 

All estimated elasticities are constructed using parameter estimates shown in Table D.1 from the fixed 

effects seemingly unrelated regression. Standard errors are calculated using the delta method, and ***, **, 

* indicates significance at 1, 5, and 10 percent levels. 

 

This rate of adjustment in land allocation may appear to be rapid compared to the 

findings of other studies, which usually indicate multiple years of dynamic adjustment 

(Vasavada and Chambers 1986; Lansink and Stefanou 1997). Yet, in the Wabash River 

Watershed the two main crops – corn and soybeans – are traditionally grown in rotation, 

making it easy for farmers to switch production between corn and soybeans. This case is 

different from that considered in other studies; for example, rootcrops and other outputs 

in Lansink and Stefanou (1997). Furthermore, since our data are county level data, while 

the adjustment of land allocation could be sluggish for a certain farmer due to reasons 

such as rotational requirements or contractual restrictions, county-wide adjustments are 

more flexible because the adjustment only requires some farmers to re-allocate land. 

When the price of corn or fertilizer changes, the county may achieve the new optimal 
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level quickly once the most responsive farmers adjust their production. The rapid rate of 

adjustment in land allocation indicates that the extensive margin effects of price policies 

take place quickly, and so the time required for desirable behavioral changes at a policy-

relevant level of aggregation is not a concern. 

 

Table 3.6: Estimated Rates of Adjustment for Quasi-Fixed Factors 

  Corn land Capital 

Corn land 
-1.17*** 0.07 

(0.06) (0.11) 

Capital 
0.02 0.13*** 

(0.01) (0.03) 
All estimated elasticities are constructed using parameter estimates shown in Table D.1 from the fixed 

effects seemingly unrelated regression. Standard errors are calculated using the delta method, and ***, **, 

* indicates significance at 1, 5, and 10 percent levels. 

 

Table 3.6 shows that in contrast to land allocation the adjustment in capital stock is 

slow. Only about 13 percent of the total desired adjustment is completed in a year, so it 

requires about 8 years for capital to adjust to its optimal level after a policy-driven shock. 

This estimate is similar to those found by Chang and Stefanou (1988) and Lansink and 

Stefanou (1997). However, given that the capital adjustment component in the long-term 

elasticity of fertilizer is small (i.e., the evolution of capital does not significantly 

influence the evolution of fertilizer application as revealed by our results), this slow rate 

of capital adjustment does not substantially impact the time-frame for the realization of 

the policy goals. 

It is important to point out that the rapid adjustment of land allocation and the small 

difference between the short-term and long-term elasticities indicates that, in our study 

area, the landscape displays a high speed of adjustment to input- and output-based 

policies. Therefore input- and output-based instruments are on equal footing, with no 

instrument prevailing over the other in terms of the time elapsed between implementation 

and effect. We bear in mind that our study is conducted at a county-level in an area in 

which corn and soybeans are grown on rotation; both factors explain, in part, this rapid 

adjustment, and also imply that our findings do not necessarily translate into other 

environments characterized by different crops or different units of analysis. Hence, our 
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results should not be taken as general indication that speed of adjustment is not relevant 

for policy assessments. 

 

 

 

3.5 Conclusions 

Economists often advocate input-based and output-based economic policies to 

reduce water pollution from fertilizer use. Input-based economic incentives consist of 

taxing the use of fertilizer or subsidizing a reduction in fertilizer application. Output-

based incentives consist of taxing fertilizer-intensive crops (e.g., corn) or subsidizing 

fertilizer-saving crops (e.g., soybeans). Both types of policies affect fertilizer use by 

influencing the fertilizer application rate directly in the short-term and/or indirectly 

through the adjustment of quasi-fixed inputs (i.e., land re-allocation) in the long-term. 

Though the direct effect occurs in a single year, the indirect effect may require more time 

if quasi-fixed factors adjust slowly. For policymakers, both the monetary cost and speed 

of effectiveness are important policy considerations. Hence, a complete assessment of the 

relative cost-effectiveness of these two types of policies considers both the monetary cost 

and the speed of adjustment. 

Consistent with theory and past research, we find that both input- and output-based 

policies lead to a significant reduction in fertilizer application, but input-based policies 

are more cost-effective than output-based policies. In terms of the speed at which they 

take effect, the two types of policies are similar to each other; in particular, both types of 

policies take effect rapidly – i.e., from one year to the next. Hence, adjustment in land 

allocation is not time costly, implying that policies that operate through this channel are 

not time costly either. One explanation for our result is that, since we focus on the Corn 

Belt where corn and soybean are only two main crops, land allocation adjustments 

between corn and soybeans are relatively easy for farmers who typically grow these crops 

on rotation. We also find that much of the total effect of these policies occurs through 

changes at the intensive margin (i.e., the reduction in the application rate of fertilizer), 

while the effect through the extensive margin (i.e., the effects from adjustments of land 

allocation from corn to soybeans) is small. 
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Three limits of this study should be mentioned. First, county-level fertilizer 

application data is not available; instead, we use county level fertilizer sales data. We 

maintain that, at least in our study area, fertilizer sales data is a good proxy for 

application data; yet, there is likely some error in measurement. Second, because the 

temporal dimension in our data is limited because of fertilizer data availability, our 

analysis assumes static expectation of prices which amounts to a restriction that farmers 

do not fully consider price uncertainty. Future analysis may relax this assumption. Third, 

this study ignores the possibility that some farmers may respond to adverse 

environmental-climate conditions by increasing fertilizer application. Incorporating risk-

aversion as a factor underlying fertilizer application may be worthwhile.  
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CHAPTER 4 HYBRIDS AND HOUSEHOLD BEHAVIOR: IMPLICATIONS FOR 

MILES TRAVELED AND GASOLINE CONSUMPTION 

 

 

 

4.1 Introduction 

The United States government has spent millions of dollars since 2006 encouraging 

household consumers to purchase fuel efficient vehicles, largely in response to oil price 

shocks and rising GHG emissions from fossil fuel dependent transportation since 1990 

(EPA 2015). The Energy Policy Act of 2005 provided a substantial income tax credit for 

gasoline-electric hybrids, and over the 2000's decade, gasoline-electric hybrids became 

nearly synonymous with high fuel efficiency – e.g., the Toyota Prius or Honda Civic 

hybrid. Calculations by Sallee (2011), for instance, indicate that the 2007 third quarter 

cost of these incentives was nearly 800 million dollars. More recently, the Energy 

Improvement and Extension Act of 2008 provides similar tax credit incentives for plug-in 

electric vehicles, clearly indicating a continued policy focus on increasing the 

proliferation of alternative-fuel vehicles.8 

 The purpose of these policies is twofold. At a household level, the goal is to reduce 

gasoline consumption by encouraging households to drive hybrids. At a market level, the 

proponents of these policies hope to stimulate widespread adoption of hybrids that may 

otherwise take a relatively long period of time to gain traction in the market; the spread of 

hybrids could lead to a higher level of fuel saving in the future. It is important to 

understand whether these policies can be successful in both aspects – in reducing 

gasoline consumption for households that choose to buy hybrids, and in jump-starting the 

hybrid car market. Yet, as described by Allcott and Mullainathan (2010), a critical, 

though sometimes overlooked, aspect of this policy discussion regards the interaction 

                                                           
8  More information on the Plug-In Electric Drive Vehicle Credit can be found at 

http://www.irs.gov/Businesses/Plug-In-Electric-Vehicle-Credit-IRC-30-and-IRC-30D (accessed June 11, 

2015). 
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between behavioral drivers of demand – e.g., biocentrism, egoism, guilt, and social status 

– and these two policy outcomes. Reliable policy assessment requires the counterfactual; 

these non-trivial, and largely unobservable, behavioral factors make the counterfactual 

elusive. Our interest in this paper is to disentangle several behavioral drivers of hybrid 

vehicle demand, in order to assess the extent to which certain behavioral motives explain 

hybrid ownership and driving habits, and to generate insight into the efficacy of these 

incentive-type policies.  

We bear in mind the following points in our assessment of the impact of hybrid 

ownership on fuel savings. First, for the proliferation of hybrid ownership to lead to 

(large) reductions in fuel consumption, it should be the case that a household that owns a 

hybrid will not increase its driving miles to the extent that the fuel savings from driving 

the hybrid are substantially offset; i.e., there is no (substantial) rebound effect. Otherwise, 

the proliferation of hybrid vehicles would not lead to the expected reduction in fuel 

consumption. Second, we focus on both individual and social incentives (pressure) that 

correlate with hybrid ownership and driving habits. If hybrid ownership was random 

throughout the population, and it could be observed that the average hybrid driver 

consumes less gasoline relative to the average non-hybrid driver, a policy designed to 

encourage hybrid ownership across a larger segment of the population would likely 

generate a significant reduction in gasoline consumption. Yet, hybrid ownership is not 

random, and the counterfactual in terms of driving habits for hybrid owners is not known. 

For example, if a household that purchases a hybrid has biocentric preferences, fuel 

savings may stem primarily from these preferences and not hybrid ownership per se. This 

situation would imply that continued proliferation of hybrid vehicles may quickly lead 

only to marginal fuel savings at best, as the preferences of marginal consumers became 

less biocentric.9 Given the complexity of these demand drivers, our starting point is the 

recent theoretical and empirical work linking behavioral and environmental economics 

(Kotchen and Moore 2007, Allcott and Mullainathan 2010, Allcott 2011, Jacobsen et al. 

2012, Sexton and Sexton 2014, Delgado and Khanna 2015, Delgado et al. 2015), which 

                                                           
9 Assume, for the sake of argument, that consumer preferences are uniformly distributed over a continuous 

range of biocentrism, such that the endpoints represent zero and complete biocentrism. Biocentrism 

indicates the extent that households care about the environment. 
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motivates our perspective that, not only is the choice to buy a hybrid not random, it 

depends on factors that also affect the driving behavior of households. A major 

contribution of this paper is developing estimates that allow us to disentangle some of 

these complex behavioral demand issues, and gain insight into the relationship between 

hybrid vehicles and fuel consumption. 

The socially-oriented behavioral motives also bear important implications for the 

broader goal of trying to stimulate widespread proliferation of hybrid vehicles in the 

consumer market. This may generally boil down to social status effects – the desire to 

maintain one's relative standing among peers, or to adhere to (local) biocentric social 

norms. Recent research (Narayanan and Nair 2013, Sexton and Sexton 2014, Delgado et 

al. 2015) has identified these social effects to be an important and statistically significant 

factor underlying part of the proliferation of the highly visible Toyota Prius. Unlike non-

social behavioral factors, the social factors bear important implications for the efficacy of 

a policy that tries to jump-start the consumer market. On the one hand, the social 

incentives can increase the speed at which such policies stimulate markets – the policy 

provides a first incentive, but social incentives quickly kick in to augment the policy. The 

result may be a rapid proliferation of hybrid vehicles. Yet, on the other hand, the same 

social incentive creates a potential rebound effect – in order to capitalize on the social 

value of buying the hybrid, a household has an incentive to drive the hybrid more. The 

result is the potential to undo, to an unknown extent, the benefits of hybrid vehicle 

proliferation. We follow previous research and focus exclusively on the popular Toyota 

Prius to assess the extent to which this socially-driven rebound effect exists, as this focus 

provides the most plausible means of identifying this social-status driven rebound effect. 

We use a matching approach to identify and estimate the average treatment effect of 

hybrid ownership on treated (i.e., hybrid owning) households. The fact that some factors 

affect both the household decision to adopt a hybrid and its driving behavior leads to 

selection bias. This selection may stem from some factors that are easily observed. For 

instance, since hybrid vehicles are more expensive than conventional-engine counterparts, 

we expect that individuals with higher income are more likely to drive a hybrid. Standard 

matching methods constitute a robust means of eliminating bias stemming from these 
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observable effects. Yet, the behavioral demand discussion implies that there are largely 

unobservable factors, which include personal factors (biocentrism, egoism, guilt, or cost-

saving) as well as social factors (social status or social environmental 

awareness/pressure). These factors are important because they influence both hybrid 

ownership as well as driving habits; these individuals would likely consume less gasoline 

in the counterfactual scenario in which they did not own a hybrid. To deal with the 

selection coming from these factors that are difficult to observe, we develop indicators to 

measure them indirectly. We require that our matching procedure match exactly on 

geographic location to ensure that the hybrid and non-hybrid matched pairs face the same 

social incentives for hybrid adoption. In addition, we include the average MPG rating of 

all other vehicles in the household in our nearest-neighbor covariate matching set, so as 

to ensure that matched households have similar underlying preferences for cost saving 

and environmental preservation. We describe these details more fully in Section 4.4. 

We find that, on average, a hybrid household drives more miles per year than the 

average non-hybrid household. However, this rebound effect is only about 3 percent of 

the total annual miles traveled, and is insufficient to offset the fuel savings due to the 

higher fuel efficiency of the gasoline-electric hybrid engine. Therefore, there is a 

substantial fuel saving generated by hybrid adoption. We do not find evidence that the 

miles traveled for Prius households are significantly different from non-Prius hybrid 

households, which indicates that there is not a statistically identifiable social-status driven 

rebound effect associated with the adoption of the Prius. 

 

 

 

4.2 Summary of Related Research 

 

 

4.2.1 Factors that Influence Hybrid Vehicle Adoption 

Recent work has emphasized the importance of behavioral, social, and financial 

incentives underlying hybrid vehicle adoption. While there certainly may be other factors 

that correlate with hybrid vehicle adoption, such as income, education, or age (Ozaki and 

Sevastyanova 2011, Heutel and Muehlegger 2014), such correlates are readily observed 
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and straightforward to control for econometrically. Hence, our discussion focuses on 

more complex incentives. 

Fuel Efficiency  Hybrid vehicles are designed to be more fuel efficient than 

comparable conventional engine vehicles, leading to a reduction in fuel costs. Research 

(Heffner 2005, Klein 2007) has found that improved gas mileage is a significant factor 

underlying hybrid adoption, and may be especially important for a household that 

depends greatly on personal vehicle travel; for instance, a relatively long commute, 

and/or no easy access to public transportation. 

Personal Preference for Environmental Quality  There is a growing consensus 

that a substantial number of consumers value environmental quality, for reasons not 

limited to altruism, egoism, guilt, or off-setting; see, for example, Kotchen (2005, 2006, 

2009), Kotchen and Moore (2007), and Jacobsen et al. (2012). Delgado and Khanna 

(2015) describe these motives from a general theoretical framework. The relevant insight 

from these papers is a recognition that consumer preferences for environmentally friendly 

products – which includes hybrid vehicles – are significant drivers of such consumer 

demand (Kahn 2007), and that these preferences are largely unobservable and difficult to 

disentangle (Delgado et al. 2015). Nevertheless, these preferences render hybrid 

ownership non-random in a population of consumers, and without careful consideration, 

these differences might lead to substantial bias in treatment parameter estimates. 

Openness to New Technology  Turrentine and Kurani (2007) and Ozaki and 

Sevastyanova (2011) find evidence that consumers who adopt hybrid vehicles are those 

who enjoy pioneering new technology. This characteristic is less frequently discussed as 

a factor underlying hybrid vehicle adoption; yet, the gasoline-electric hybrid is not a 

trivial evolution in personal automobiles and is a symbol of new technology and bears 

substantial uncertainty in terms of reliability and performance. 

Rising Gasoline Prices  Gasoline prices largely rose over the 2000s decade, and the 

impact of rising gasoline prices on hybrid adoption has been repeatedly confirmed. 

Rising gasoline prices have led to an increase in the hybrid vehicle market share in both 

the United States (Diamond 2009, Beresteanu and Li 2011) and the United Kingdom 

(Ozaki and Sevastyanova 2011).   
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Hybrid Vehicle Diffusion  Another motive underlying hybrid vehicle adoption that 

is closely linked to social and behavioral incentives, as well as government program 

incentives, is hybrid vehicle diffusion into the consumer automobile market. As hybrid 

vehicles become more commonplace, consumers feel more confident that hybrid 

technology is reliable and grow more comfortable with the idea of driving a hybrid 

vehicle. Narayanan and Nair (2013) find a positive and significant effect of past hybrid 

vehicle adoption on current hybrid vehicle adoption for the Toyota Prius. Heutel and 

Muehlegger (2014) study the impact of a cumulative hybrid vehicle penetration rate for 

the Toyota Prius and Honda Insight on hybrid vehicle sales, and find a positive impact for 

the Prius and a negative impact for the Insight; hybrid vehicle diffusion depends on the 

perceived quality of the new technology. Mau et al. (2008) and Axsen et al. (2009) report 

similar findings.   

Social Norms  There is a growing consensus that social factors may be a significant 

motive behind hybrid vehicle adoption. Hybrid owners may earn positive social status in 

an environment in which there are social norms that include valuation of environmental 

amenities. Others may feel social pressure to conform to these social norms. Ozaki and 

Sevastyanova (2011) find that social orientation, the willingness to comply with social 

norms, and peer effects are important factors motivating purchase of a Toyota Prius in the 

United Kingdom. Kahn (2007) finds that people living in a more environmental friendly 

community are more likely to adopt a hybrid. Research has generated compelling 

evidence that consumers use hybrid vehicles (particularly the Toyota Prius) as a tool to 

signal their social awareness, responsibility, and concern for others (Heffner et al. 2005, 

Heffner et al. 2007, Axsen et al. 2009, Sexton and Sexton 2014, Delgado et al. 2015).    

Government Sponsored Financial Incentives  As mentioned in the introduction, 

the federal government (and some state governments) have spent large sums of money 

encouraging household consumers to invest in hybrid vehicles.10 The general belief is 

that these incentives are largely effective, though empirical results are not unanimous. 

Chandra et al. (2010), Ozaki and Sevastyanova (2011), Beresteanu and Li (2011), and 

Gallagher and Muehlegger (2011) find evidence that government incentives (such as tax 
                                                           
10 Borenstein and Davis (2015) review a variety of federal government incentives designed to encourage 

environmentally friendly behavior in a variety of ways, one of which is hybrid vehicle adoption. 
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incentives or traffic policies) significantly impact hybrid adoption, though the impact 

may be smaller than that of a modest increase in gasoline prices (Beresteanu and Li 2011) 

or may vary by type and size of the incentive (Gallagher and Muehlegger 2011). 

Identification of the effect of these incentives is difficult given that these incentives are 

collinear with time trends, are aggregate across a dataset of household individuals, and 

because the effects may be confounded by consumer self-selection into the hybrid market 

leading to free-riding on these policies (Chandra et al. 2010). Diamond (2009) does not 

find that financial policy incentives impact hybrid adoption. 

 

 

 

4.2.2 Factors that Influence Household Driving Habits 

Personal Preferences and Social Norms  The same individual/household and social 

behavioral factors that influence the decision to adopt a hybrid vehicle may also influence 

the annual miles traveled by each household. Households that have a stronger motivation 

to drive a hybrid may have a stronger motivation to drive more or less. For example, 

while a household that purchases a hybrid because of a long commute tends to drive more 

than others, a household that purchases a hybrid to reduce travel costs or minimize its 

environmental footprint may drive less. Particularly, a household motivated to drive a 

hybrid for social status concerns may have an incentive to drive more in order to 

capitalize on the social value of the hybrid. Indeed, an interesting aspect that we explore 

in this paper, is whether social factors also create an incentive to increase driving miles. 

We describe this in more detail later. 

 

 

 

4.2.3 The Rebound Effect 

The adoption of energy efficient technology raises concern of a rebound effect, 

which means that consumers respond to the increased efficiency, in part, by increasing 

usage (Chan and Gillingham 2015). The proliferation of hybrid vehicles that achieve 

significantly higher miles per gallon raises concern that hybrid owners may drive more in 

response to the increased fuel efficiency, relative to the counterfactual situation in which 
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the same household does not own a hybrid. This concern is not without merit, and 

researchers have been trying to address this issue theoretically and empirically.  

Much of the literature addressing the rebound effect focuses on general 

improvements in fuel efficiency, and not hybrid adoption specifically. Further, much of 

this research was conducted prior to 2005. Some of these earlier studies use aggregated 

macro data and estimate rebound effects ranging from 5 percent to 31 percent (Greene 

1992; Jones 1993; Haughton and Sarkar 1996). Others use micro data and find 

substantially varying rebound effects. Goldberg (1998) and Greene et al. (1999) estimate 

the rebound effect to be 20 percent and 23 percent, respectively; the lowest rebound 

effect is found by Pickrell and Schimek (1999) to be 4 percent; the highest is found by 

West (2004) to be 87 percent. 

More recently, Small and Van Dender (2007) measure the rebound effect of travel 

distance from an increase in fuel efficiency at the state level in the United States from 

1966-2001 and 1997-2001. They estimate short term rebound effects of 4.5 percent 

(1966-2001) and 2.2 percent (1997-2001), and long term rebound effects of 22.2 percent 

(1966-2001) and 10.7 percent (1997-2001). Hymel et al. (2010) extend the research 

period to 1966-2004 and find the rebound effects are 4.7 percent and 24.1 percent in the 

short term and long term, respectively. Using Canadian data, Barla et al. (2009) estimate 

a short term rebound effect of 8 percent and a long term rebound effect of 20 percent. 

Wang et al. (2012) estimate the rebound effect to be as high as 96 percent in urban China. 

However, one caveat of these studies is that they measure the response of travel 

distance to the improvement of fuel efficiency by measuring the response of travel 

distance to a decrease in fuel cost. Specifically, they estimate the rebound effect of travel 

distance with regard to fuel efficiency by calculating the elasticity of travel distance to a 

change in fuel cost (per mile). The assumption behind this method is that consumers 

respond to an improvement in fuel efficiency and to a decrease in fuel price in exactly 

same way. However, this assumption may not be valid because consumers usually 

respond less to an increase in fuel efficiency than a decrease in fuel price (Gillingham 

2011). With U.S. national time series data, Greene (2012) rejects the null hypothesis that 

the elasticities of vehicle travel with respect to fuel prices and fuel efficiency are equal 
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and opposite in sign, and while consumers’ response to fuel price is significant, their 

response in travel distance to fuel economy is not. Therefore, a rebound effect measured 

by the elasticity of travel distance with regard to fuel cost may be overestimated. 

Greene (2012) confirms the difference in the rebound effect of travel distance to fuel 

economy and fuel cost and separates them to estimate the pure rebound effect of fuel 

economy. However, he still calculates the elasticity of travel distance to a change in fuel 

economy, and measures the rebound effect at a macro level. Hence, there are two main 

differences between our study and Greene (2012). First, we pursue a new method, 

covariate matching, to directly compare the driving distances of households that are same 

to each other at all characteristics except the fuel efficiency of the vehicle they drive. 

Through matching households facing the same fuel price, we separate the effect of fuel 

efficiency from the effect of fuel price.  Second, our study is conducted at the household 

level, which provides a micro level rebound effect (it is not clear the extent to which 

aggregation to a macro level affects estimates of the rebound effect.) 

Another difference between our work and previous studies is that we focus on the 

rebound effect of an improvement in fuel efficiency from a special type of vehicles, 

hybrid vehicles, instead of a general improvement in fuel efficiency. Some hybrid 

vehicles are different from general higher fuel efficiency vehicles because their 

distinctive look endows them with a special value, a social signaling value, which signals 

social norms and affects the social status of drivers. The special social signaling value 

may induce an additional rebound effect, which may differentiate the rebound effect of 

hybrid adoption from the rebound effect of a general improvement in fuel efficiency.  

As far as we know, there are only a few studies that focus on hybrid adoption 

specifically to measure the rebound effect. de Haan et al. (2006) and de Haan et al. (2007) 

use a sample of Toyota Prius buyers in Switzerland to investigate whether households 

switch to the hybrid from a smaller vehicle, and whether vehicle ownership might 

increase. They do not find evidence to suggest that either of these two rebound effects are 

significant. Given limitations in their data, they do not investigate whether Prius buyers 

drive more than non-hybrid owners; this latter effect, however, is more likely according 

to the literature.  
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4.2.4 Social Status Driven Rebound Effect 

One characteristic of hybrid vehicles is higher fuel efficiency, which may induce a 

rebound effect of hybrid ownership similar to the rebound effect from a general 

improvement of fuel efficiency.  Some hybrid vehicles, however, have another 

characteristic: they are instantly recognizable as being fuel-efficient hybrids. This leads to 

a new kind of rebound effect, which is distinct from a general improvement in fuel 

efficiency. Because (some) hybrid vehicles are recognizable, the driver is able to signal 

his/her social awareness, responsibility, and concern for others (Heffner et al. 2005, 

Heffner et al. 2007, Axsen et al. 2009, Sexton and Sexton 2014, Delgado et al. 2015). 

This social signal value may motivate the drivers of these hybrids to drive more in order 

to send signals; this leads to a special rebound effect, a social status driven rebound effect. 

Identifying the existence of this status signaling rebound effect is important for 

understanding whether hybrid adoption leads to same degree of fuel saving as a general 

improvement of fuel efficiency.  

However, isolating the social status driven rebound effect is not simple since any 

change in travel distance coming from hybrid adoption could be the combination of the 

two rebound effects. Our strategy is to explore the existence of the social status driven 

rebound effect through comparison of household annual miles traveled for those that 

drive the Toyota Prius with those that drive other hybrid vehicles. This strategy arises 

from the fact that the physical look of most hybrid vehicles is not distinct from non-

hybrid counterpart vehicles. The Toyota Prius, on the other hand, does not have a non-

hybrid counterpart, and further was designed to be visually distinct from all other 

vehicles available during the 2000s decade. That is, while most hybrid vehicles can only 

be identified from their non-hybrid counterparts by the hybrid label on the rear of the car, 

the Prius is instantly recognizable. As is clear from the literature, households are willing 

to pay for the symbolic benefit of the Toyota Prius in order to signal their environmental 

status. Several studies quantify the value of this status signal: Sexton and Sexton (2014) 

calculate this status value as being between $420 and $4,200, and Delgado et al. (2015) 

estimate it to be around $587.  
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Given the unique signaling value of the Toyota Prius, if there exists a social status 

rebound effect driven by this signaling value, we expect to find it when we compare the 

adoption of the Prius to the adoption of other hybrid vehicles. Conversely, if we cannot 

find a significant social status driven rebound effect from Prius adoption compared to 

regular hybrid adoption, we are able to conclude that there is no significant social status 

rebound effect associated with hybrid adoption that is driven by the signaling value.  

 

 

 

4.3 Reduced Form Evidence 

Before developing our empirical model, we begin with a brief reduced form analysis 

to describe the patterns in our data. Understanding these patterns is important for later 

assessment of the ability of our preferred matching approach to eliminating any covariate 

imbalance between hybrid and non-hybrid households. 

Factors That Correlate With Hybrid Ownership  We first explore factors that 

correlate with hybrid ownership via probit regression of a hybrid ownership indicator on 

household demographics, the availability of government (federal and state) incentives, 

local (city-level) gasoline prices, geographic controls, and year fixed effects. The data is 

described in detail in Section 4.5; we report these results in Table 4.1. 

We find that many common stereotypes hold in our data: hybrid owners tend to have 

relatively high income, have a graduate education, are frequent internet users, and have 

fewer family members. We find that households that have higher MPG ratings on other 

vehicles in the household are also more likely to own a hybrid, which suggests 

consistency in fuel efficiency and environmental preferences within the household. 

 

  



76 
 

 
 

Table 4.1: Probit Estimates of the Propensity Score of Hybrid/Prius Ownership 

  Hybrid Adoption Prius Adoption 

Constant −4.935*** (0.444) −1.372 (1.094) 

Middle Income 0.069 (0.043) −0.047 (0.133) 

High Income 0.297*** (0.045) −0.232* (0.136) 

High School Degree −0.230 (0.209) 0.347 (0.796) 

Associate’s Degree 0.007 (0.204) 0.564 (0.775) 

Bachelor’s Degree 0.118 (0.204) 0.656 (0.773) 

Graduate Degree 0.365* (0.204) 0.872 (0.772) 

No. of Vehicles 0.004 (0.022) 0.107* (0.060) 

Household Size −0.067*** (0.016) 0.015 (0.046) 

Average Age 0.020*** (0.008) −0.020 (0.022) 

Average Age Squared −0.0002** (0.0001) 0.0003 (0.0002) 

Share of Female Drivers −0.079 (0.062) 0.134 (0.174) 

Internet Usage 0.243*** (0.053) 0.322* (0.169) 

Average Vehicle MPG 0.030*** (0.003) 0.027*** (0.006) 

Commute Distance 0.0001 (0.001) −0.0001 (0.002) 

Federal Incentive 0.091** (0.046) −0.077 (0.126) 

State Incentive −0.009 (0.033) 0.076 (0.078) 

HOV Lane Access −0.059* (0.031) 0.030 (0.086) 

Gas Price 0.136*** (0.042) 0.217* (0.112) 

Urban 0.012 (0.032) −0.139 (0.092) 

Mid-Size MSA −0.159*** (0.037) −0.153 (0.098) 

Small MSA −0.187*** (0.039) −0.143 (0.106) 

Not in MSA −0.234*** (0.049) 0.051 (0.138) 

2002 Indicator 0.914*** (0.324) 
 

2003 Indicator 0.985*** (0.320) −0.575* (0.341) 

2004 Indicator 1.168*** (0.317) −0.029 (0.312) 

2005 Indicator 1.288*** (0.316) −0.301 (0.308) 

2006 Indicator 1.162*** (0.335) −0.571 (0.434) 

2007 Indicator 1.394*** (0.320) −0.645* (0.333) 

2008 Indicator 1.391*** (0.322) −0.737** (0.349) 

2009 Indicator 1.144*** (0.374) −6.058 (87.334) 

Observations 36,780 1,285 

Log Likelihood -5,017.169 -826.755 

Akaike Inf. Crit. 10,096.338 1,713.511 

Range of support [0.000,0.458] [0.000,0.953] 

Middle income is defined as income between $50,000 and $100,000 per year, and high income is defined 

as annual household income above $100,000. The range of support at the bottom of the table indicates the 

range of support of the estimated propensity score for each model. Statistical significance at the 10, 5, and 1 

percent level is denoted with ∗, ∗∗, and ∗∗∗, respectively. In the Prius adoption model, both 2001 and 2002 

year indicators are used as the base category because there are too few households in the data that

purchased a Prius in 2001.
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Table 4.2: OLS Estimates of Annual Miles Traveled for Hybrid/Prius Adoption 

  Hybrid Prius 

Constant 1,013.50 (6,218.80) 3,425.52 (35,493.17) 

Hybrid/Prius Adoption 914.28*** (341.55) −800.94 (665.76) 

Middle Income 1,284.93*** (168.94) 544.83 (1,167.21) 

High Income 2,897.99*** (196.02) 2,591.68** (1,194.54) 

High School Degree −98.15 (630.64) 6,225.19 (5,910.51) 

Associate’s Degree 932.56 (626.03) 9,140.24 (5,717.48) 

Bachelor’s Degree 720.07 (630.34) 8,751.38 (5,704.42) 

Graduate Degree 796.81 (633.46) 9,200.45 (5,700.19) 

No. of Vehicles 7,305.19*** (101.13) 8,288.42*** (524.99) 

Household Size 1,304.51*** (70.25) 822.43** (409.35) 

Average Age 185.28*** (33.32) 180.98 (193.36) 

Average Age Squared −3.12*** (0.31) −2.92 (1.78) 

Share of Female Drivers 42.50 (273.07) −310.17 (1,527.74) 

Internet Usage 954.46*** (188.98) −1,109.45 (1,479.80) 

Average Vehicle MPG −30.79** (14.02) −0.46 (44.96) 

Commute Distance 164.16*** (3.94) 190.82*** (19.02) 

Gas Price −1,054.90 (1,588.37) −7,839.47 (9,023.96) 

Urban −1,826.30*** (148.24) −1,567.92* (817.35) 

Mid-Size MSA 608.97*** (224.62) 787.50 (996.85) 

Small MSA 1,155.14*** (224.77) 435.04 (1,078.01) 

Not in MSA 2,742.35*** (251.10) 3,227.70** (1,308.28) 

Observations 36,780 1,285 

State Fixed Effect Yes Yes 

R2 0.33 0.43 

Adjusted R2 0.34 0.40 

Residual Std. Error 11,846.46 11,184.06 

F Statistic 265.99*** 14.48*** 

Middle income is defined as income between $50,000 and $100,000 per year, and high income is defined 

as annual household income above $100,000. Statistical significance at the 10, 5, and 1 percent level is 

denoted with ∗, ∗∗, and ∗∗∗, respectively. 
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Table 4.1 shows that federal tax incentives (see Appendix F for details) are 

positively correlated with hybrid ownership (Sallee 2011). We do not find that state level 

incentives are significant, and we find that HOV lane privileges are negatively related to 

hybrid ownership.11  We also find that gasoline prices are positively correlated with 

hybrid adoption, as is MSA city size. Finally, our time dummies reveal an increasing 

trend in hybrid adoption over time. 

In the last column in Table 4.1 we restrict the sample to hybrid owning households, 

and look for differences between Prius owning households and non-Prius hybrid 

households. The table reveals that there are few significant differences between Prius 

households and non-Prius hybrid households. We see that Prius households are less likely 

to be in the highest income category, have more vehicles, are frequent internet users, and 

average a higher MPG rating on other vehicles in the household. We suspect that the 

income effect comes from the presence of luxury hybrids in the dataset: the highest 

income hybrid consumers are more likely to buy a Toyota Camry hybrid than a Prius. 

Factors That Correlate with Annual Miles Traveled  In Table 4.2 we report 

reduced form least squares estimates from the regression of annual miles traveled on the 

hybrid ownership indicator and control variables. We find that the hybrid indicator is 

positive and statistically significant, which indicates that hybrid ownership correlates 

positively with annual miles traveled. The point estimate implies that hybrid owning 

households, all else constant, drive nearly 915 miles more per year compared to non-

hybrid households. The last column in Table 4.2 reveals that there is not a significant 

difference in annual miles traveled between Prius households and non-Prius hybrid 

households. 

Many other control variables in the hybrid adoption model are significant, and take 

the expected sign. We see that an increase in income correlates with an increase in annual 

miles traveled, and that annual miles traveled is increasing with age, though at a 

decreasing rate. Other point estimates indicate that households in the largest MSAs (the 

                                                           
11 It is likely that certain state level policies are endogenous to hybrid ownership, which leads to a negative 

correlation between HOV lane access and hybrid ownership. For example, a state with lower adoption rate 

of hybrid vehicles may have stronger motivation to provide HOV lane access to hybrids, in order to 

proliferate hybrid adoption in the state.  
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base group) average fewer driving miles per year, and households with higher MPG 

ratings on other vehicles drive fewer miles per year. 

As in the probit adoption models, we do not find much significant difference 

between Prius households and non-Prius hybrid households in terms of annual miles 

traveled. In this model, we find that annual miles traveled is increasing in income, the 

number of vehicles, household size, and the length of commute. 

The reduced form least squares estimates provide basic information on variables 

related to hybrid/Prius adoption and annual miles traveled of households. However, our 

analysis does not entirely rely on these since the reduced forms are limited by the 

assumed functional form and are not able to incorporate all critical influencing factors 

(e.g., local social pressure, certain characteristics of vehicles) into the model.  

 

 

 

4.4 Model, Identification, and Estimation 

 

 

4.4.1 Hybrid Rebound Effects 

We are interested in understanding the relationship between household ownership of 

a gasoline-electric hybrid vehicle and annual vehicle miles traveled.  

Proposition 1    Ownership of a gasoline-electric hybrid vehicle leads to an increase 

in the number of household vehicle miles traveled in a year. 

In line with theoretical insight (Chan and Gillingham 2015), we expect that owners 

of gasoline-electric hybrid vehicles respond to the increase in fuel efficiency, in part, by 

increasing annual vehicle miles traveled. Yet, despite this intuition, it is not known to 

what extent hybrid owning households might increase annual miles traveled, especially 

when we consider that the adoption of a hybrid may induce a different rebound effect 

compared to general improvement of fuel efficiency. From understanding the potential 

for a rebound effect, we can understand the extent to which potential fuel savings from 

hybrid vehicle adoption may be eroded via behavioral response.  
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Proposition 2    There exists a social-status driven rebound effect associated with 

the Toyota Prius. 

We postulate that a household that owns a Toyota Prius has an incentive to increase 

its driving in order to fully capture the social-status benefits afforded by the Prius. 

Research has shown that the Toyota Prius signals environmental social status (Sexton and 

Sexton 2014, Delgado et al. 2015), and we conjecture that the signaling ability of the 

Prius is fully realized by maximum driving exposure. This social-status rebound effect 

has not yet been given direct attention (e.g., status effects are excluded by Chan and 

Gillingham 2015, p. 141). We believe in the context of hybrid cars this effect may be 

important. Further, we can understand the degree to which social status effects that serve 

to increase the proliferation of hybrid ownership may also constitute a hindrance to the 

efficacy of the incentive policies. 

 

 

 

4.4.2 Empirical Framework 

We are interested in two potential outcomes: 

𝑌1𝑖 =  𝜇1(𝑋𝑖) +  𝑈1𝑖  

𝑌0𝑖 =  𝜇0(𝑋𝑖) +  𝑈0𝑖 (4.1) 

in which 𝑌𝑗𝑖   is the total annual vehicle miles traveled by household 𝑖 = 1, 2, … , 𝑛  in 

vehicle state 𝑗 = 0, 1 for which 𝑗 = 1 denotes hybrid ownership (treatment), 𝑋𝑖  is a 𝑘-

dimensioned vector of observable household-specific factors that influence gasoline 

consumption, 𝜇𝑗(𝑋𝑖): ℝ𝑘 → ℝ is the conditional mean of 𝑌𝑗𝑖 given 𝑋𝑖 and 𝑈𝑗𝑖 is an error 

term that captures unobservable factors that influence miles traveled. We focus on miles 

traveled as the outcome, because given fuel efficiency ratings it is straightforward to 

calculate whether hybrid households consume less gasoline compared to non-hybrid 

households. This model describes two possible states from which the household chooses 

– hybrid or non-hybrid – and allows the household to select into a state based on 𝑋𝑖. 

Given (4.1), define 𝛥𝑖 =  𝑌1𝑖 −  𝑌0𝑖  to be the effect on miles traveled from driving a 

hybrid – the treatment effect for household 𝑖 . From this design, different treatment 
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parameters can be defined; typically, researchers are interested in mean effects. Our 

interest here is on the mean effect of treatment on treated households:  

𝐸[∆𝑖|𝑋𝑖, 𝐻𝑖 = 1] = 𝐸[𝑌1𝑖|𝑋𝑖, 𝐻𝑖 = 1] −  𝐸[𝑌0𝑖|𝑋𝑖, 𝐻𝑖 = 1] (4.2) 

where 𝐻𝑖 is a binary indicator for whether or not the household owns a hybrid. That is, 

we are interested in the average effect of driving a hybrid vehicle on miles traveled for 

households that own a hybrid. We choose this parameter for the following reason. It is 

known that identification of the average effect of treatment on any randomly selected 

household; 𝐸[∆𝑖|𝑋𝑖]  requires a full support condition of the propensity score (e.g., 

Heckman et al. 1998). In our data, this condition fails; we discuss this condition in more 

detail below, and provide a clear explanation. Rather, our data supports identification of 

the average effect of treatment on the treated population. Given substantial differences in 

the populations of hybrid owning (1285 households) and non-hybrid owning households 

(35,495 households), it is more practical to focus on the average effect of treatment on 

the treated population. 

We can directly estimate 𝐸[𝑌1𝑖|𝑋𝑖, 𝐻𝑖 = 1]  using observational data, but not the 

counterfactual 𝐸[𝑌0𝑖|𝑋𝑖, 𝐻𝑖 = 1] . Under the assumption that 𝐸[𝑌1𝑖|𝑋𝑖, 𝐻𝑖 = 1] ≈

𝐸[𝑌0𝑖|𝑋𝑖, 𝐻𝑖 = 1], then a control group of non-hybrid owning households can be used to 

estimate the counterfactual. The selection bias is given by 

𝐵(𝑋𝑖) =  𝐸[𝑌1𝑖|𝑋𝑖, 𝐻𝑖 = 1] −  𝐸[𝑌0𝑖|𝑋𝑖, 𝐻𝑖 = 1] (4.3) 

and 𝐵(𝑋𝑖) = 0 in the event that conditional on 𝑋𝑖 there are no differences between the 

hybrid and non-hybrid households except for hybrid ownership status. Under the 

structure in (4.1), 

𝐵(𝑋𝑖) =  𝐸[𝑈1𝑖|𝑋𝑖, 𝐻𝑖 = 1] −  𝐸[𝑈0𝑖|𝑋𝑖, 𝐻𝑖 = 1]. (4.4) 

In other words, the bias will be non-zero if we fail to control all potential unobservables 

that are correlated with both miles traveled and hybrid adoption. 
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4.4.3 Identification and Estimation 

 

 

4.4.3.1 Identification   

There are a variety of tools available to deal with observables; Equation (4.4) 

indicates that our primary concern is in regards to the unobservable factors that may 

correlate with both hybrid adoption and annual miles traveled. Heckman and Vytlacil 

(2001a, 2005), Heckman et al. (2006), and related papers describe instrumental variables 

strategies for identifying and estimating different treatment parameters based on versions 

of the design in (4.1). Too often in practice, and is the case here, instrumental variables 

are difficult to obtain. 

As we describe in Section 4.5, our data includes numerous (observable) control 

variables that cover a wide range of factors that correlate with both hybrid adoption and 

vehicle miles traveled. Despite the richness of data, we remain concerned that there are 

two unobservable factors that likely influence both hybrid adoption and vehicle miles 

traveled. The first is household preferences for fuel efficiency and environmental quality, 

and the second is local social norms. As we describe in Section 4.2, both factors are 

correlated with both adoption and miles traveled. If we exclude them in the control 

variables, it is unlikely that the conditional means of these unobservables are either equal 

across hybrid and non-hybrid states, or both zero, and the bias in (4.4) will not be zero. 

In reality, it is very difficult to directly observe households’ preferences for fuel 

efficiency, environmental quality, and the local social norms they face. However, some 

indicators, combined with the covariate matching method, can be used to capture them 

indirectly. We precede our analysis by making the following assumptions: 

(i) Unobservable household preferences for fuel efficiency and environmental quality 

is monotonically related to the average miles per gallon of vehicles owned by the 

household. 

The assumption implies that household preferences for fuel efficiency and 

environmental quality can be captured by the MPG ratings of other vehicles owned by the 

household. As we will discuss in detail in Section 4.5, the treatment status of a household 
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is defined by one certain vehicle in the household (the criteria used to choose the vehicle 

is described in that section). We use the average fuel efficiency rating on other vehicles 

owned by the household in order to ensure that this measure does not depend on the fuel 

efficiency rating of the vehicle that defines the treatment status of the household. That is, 

this measure of other MPG ratings is related to the treatment status of the household only 

through the household’s preference for environmental quality. Since only the MPG of 

other vehicles can be used to measure the household’s preference level for fuel efficiency 

and environmental quality, our analysis is restricted to households that own multiple 

vehicles.   

We contend that this assumption is plausible and not overly restrictive. This 

assumption requires that for any two households with different degrees of fuel efficiency 

or environmental preference, the household with a greater preference will have a higher 

average fuel efficiency rating across vehicles in the household. This allows us to use 

nearest neighbor matching to control for unobservable preferences for fuel efficiency or 

environmental quality that influence both hybrid adoption and vehicle miles traveled. In 

addition, this assumption rules out cases such as a two-vehicle household that owns a 

Toyota Prius and a Hummer and is characterized by both strong positive and negative 

environmental preferences. 

(ii) Local social norms are constant within a metropolitan area. 

This assumption is based on the findings from previous research that households that 

live in the same area have similar social norms (Kahn 2007, Sexton and Sexton 2014). 

Through matching households who live in the same metropolitan area to each other, we 

are able to eliminate the effect of local social norms. We realize that this assumption rules 

out complex network effects, such as differences in social incentives related to the 

environment at the place of work, and daily recreation. While these complexities may, in 

some cases, exist, they are impossible to observe; hence, this assumption places certain 

restriction on these interactions to make identification tractable, while not completely 

ruling out social incentives. In our analysis, we consider models that replace (ii) with the 

more flexible assumption: 
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(iia) Local social norms are constant within a zip code area. 

Under (iia), we can allow for variation in social norms across zip codes, but require 

that social incentives are not heterogeneous within. The zip code area is smaller than the 

CBSA area, and so matching on zip code relaxes the assumption of homogeneity within 

the CBSA area though still requiring homogeneity of social norms within the same zip 

code to maintain tractability.   

 

 

 

4.4.3.2 A Matching Estimation Strategy   

The fundamental problem of causal inference is that a single household cannot be 

observed in both hybrid (treated) and non-hybrid (untreated) states at the same point in 

time (Holland 1986). To address this issue, untreated (control) households can be used to 

proxy for the counterfactual, and a variety of methods are available to facilitate this 

comparison. As discussed in Imbens and Rubin (2015), common parametric regression 

methods depend critically on the functional form restrictions for extrapolation of the 

counterfactual. A flexible, and more robust alternative is to use the method of matching.  

Given our interest on 𝜏𝑎𝑡𝑡 =  𝐸[∆𝑖|𝑋𝑖, 𝐻𝑖 = 1], the method of matching imputes the 

counterfactual outcome for hybrid drivers nonparametrically via �̂�0𝑖 =
1

𝑀
 ∑ 𝑌𝑗

𝑀
𝑗=1   for the 

𝑀 closest matches, in terms of observable characteristics, to household 𝑖. We use nearest-

neighbor matching, using the Mahalanobis distance metric 𝐴 = (𝑋𝑖 − 𝑋𝑗)
′
𝑆−1(𝑋𝑖 − 𝑋𝑗) 

for 𝑆 being the sample covariance between 𝑋𝑖 and 𝑋𝑗, to control for observable factors. In 

practice, 𝑀 is selected by the econometrician and we use 𝑀 = 1; Imbens (2004) indicates 

that one-to-one matching (i.e., setting 𝑀 = 1 so that each treated unit is matched to a 

single control unit) is the approach with the least bias.  

It is well-known, at least anecdotally, that hybrid owners are more likely to have 

higher income and higher education. Additionally, we might expect that hybrid 

households are not particularly large (in terms of household members) given that hybrid 

vehicles are relatively smaller passenger cars. We might also suspect that households that 

have a longer commute distance to work are more likely to purchase a hybrid as a means 
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of reducing the cost of the commute. Each of these covariates are observable, and 

including them in our set of matching covariates allows us to eliminate any bias 

otherwise induced in 𝜏𝑎𝑡𝑡 by differences in these covariates across hybrid and non-hybrid 

households. 

An advantage of the matching estimator, coupled with assumptions (i) and either (ii) 

or (iia), is that we can eliminate bias induced by unobservable household green 

preferences and local social norms by including certain variables into our set of matching 

covariates. It is possible to explicitly impose an exact match in terms of a specific 

attribute; asymptotically, discrete and key covariates are exactly matched, though in 

practice a large sample of control units is required to reliably impose an exact match 

along a certain dimension (the greater the exact match requirements, the more data that is 

needed). Given the large size of our set of non-hybrid (control) households, we can 

reliably restrict our matched households in several key dimensions, and eliminate 

potential bias from these unobservable factors.  

The first dimension on which we require an exact match is the year in which the 

hybrid was purchased. As discussed in our review of the literature, the hybrid market 

penetration rate is an important factor impacting hybrid adoption and underlying the 

proliferation of hybrid vehicles throughout the 2000s decade. Gasoline price and 

government policy incentives, which vary temporally, are also important factors affecting 

hybrid adoption. By requiring the hybrid households to match to non-hybrid households 

that purchased a vehicle in the same year, we can eliminate the effect of the market 

penetration rate, the effects of temporal changes of gasoline prices and policy incentives 

on hybrid adoption, as well as other unobservable year factors. 

The second dimension on which we restrict our match is the geographical area of 

residence, defined as either the CBSA or zip code. Restricting the matched households to 

reside within the same geographic area eliminates any differences in social values that 

might otherwise confound our estimates of 𝜏𝑎𝑡𝑡 . For instance, certain areas (e.g., San 

Francisco) are typically regarded as espousing a higher degree of social concern for the 

environment. By requiring hybrid owners in San Francisco to be matched to non-hybrid 

owners also in San Francisco, we can eliminate any general effects that are unique to, but 
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common throughout, San Francisco. Exact matching on geographical area also eliminates 

the effects of spatial variation of gasoline prices and policy incentives. Combined with 

the exact matching on purchase year, matched households are guaranteed to face the 

same gasoline price and same policy incentives when they make the vehicle purchase 

decision. 

In our analysis, we consider restrictions at the CBSA level, as well as the zip code 

level. The former is able to eliminate effects from factors associated with the residential 

location of the household, and also provides a greater number of matching options in the 

same matching area which increases the quality of the match for other variables. The 

latter especially strengthens the location matching, which eliminates the effects of 

geographical dissimilarities because zip codes are plausibly more homogeneous than 

CBSAs.12 

The third dimension over which we require an exact match is the vehicle type or 

counterpart of each hybrid. Requiring an exact match on vehicle type ensures that our 

hybrid households are matched to non-hybrid households that purchased a similar sized 

vehicle (i.e., a vehicle in the same class). To strengthen this matching dimension, we also 

exactly match hybrid households to those households who did not purchase a hybrid, but 

purchased a counterpart model of a hybrid. For example, matching a household that 

purchased a Honda Civic hybrid to a household that purchased a non-hybrid Honda Civic. 

Following the literature, we match the Toyota Prius, which does not have a counterpart 

non-hybrid model, with the Toyota Corolla (Sexton and Sexton 2014). Through exact 

matching on hybrid counterparts, we ensure that matched households are highly similar 

to each other in vehicle tastes and preferences, with the only difference being whether the 

vehicle is a hybrid or not. 

Other dimensions over which we conduct exact matching include frequency of 

internet use and household education. We match on frequency of internet use to capture 

unobservable preferences for new technology. It is important to bear in mind that the 

NHTS survey was conducted in 2008-2009, and records hybrid purchases over the 2000s 

                                                           
12 Not all households belong to a CBSA. We consider models in which we classify all households that are 

not in a CBSA to a common group and match them on state level green plan capacity index, and another 

model that removes these households from the analysis. 
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decade. During this time period, daily internet use was not generally commonplace across 

all socio-economic groups. Low frequency of internet use indicates that the household is 

not open to new technology. Finally, our initial attempt was to include education in our 

nearest neighbor match, but we find via post-match balancing statistics that we obtain a 

better post-match balance when imposing the exact match on education as well. 

In addition to requiring an exact match along these dimensions, we use nearest 

neighbor matching on a number of household characteristics that could affect driving 

distance or hybrid adoption of the households, including income, household size, number 

of vehicles, average age of drivers in the household, share of female drivers in the 

household, commute distance, local green preference capacity index, and average MPG 

of all other vehicles owned by the household. 

 

 

 

4.4.3.3 Identification and Estimation of the Social Status Rebound Effect   

To estimate whether there is a social status rebound effect, we restrict the sample to 

only hybrid vehicles, and to define all non-Prius hybrids to be the control group. 

Treatment, in this setup, is Prius ownership. We continue to deploy the nearest neighbor 

and exact matching strategy as described before to deal with both observable and 

unobservable factors, except that we conduct nearest neighbor matching on education 

instead of exact matching since exact matching over education no longer improves 

matching quality. Then, the significance of our matching estimate �̂�𝑎𝑡𝑡  indicates the 

existence of a significant social status rebound effect; see, also, Delgado et al. (2015). 

 

 

 

4.4.3.4 Failure of the Support Condition Necessary for Identifying the ATE   

To further motivate our choice to focus on the 𝐴𝑇𝑇, we discuss the potential for 

identification of causal effects when hybrid ownership is considered as treatment. This 

discussion is useful for understanding which types of policy assessments can be made in 

this context. An important result that is described in detail in Heckman et al. (1997) and 

Heckman and Vytlacil (2005) is that identification of the average treatment effect 
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requires full support of the estimated propensity score of treatment.13 The average effect 

of treatment on the treated, on the other hand, only requires the propensity score take 

values over some interval (0, 𝑝′) for some 𝑝′ < 1. In essence, identification of the 𝐴𝑇𝑇 

does not require as much from the data; in practice, it is more likely that the 𝐴𝑇𝑇 is 

identified even in cases in which the 𝐴𝑇𝐸 is not. See also Carneiro et al. (2010, 2011).  

This point is important because it provides critical insight into the types of causal 

effects that can be identified with respect to hybrid vehicles and hybrid drivers. Our own 

probit estimates of the propensity score in Table 4.1 show the range of support being 

(0.000, 0.458) and (0.000, 0.953). Across many probit models we estimated – that both 

include and exclude the federal incentive variable as a potential instrumental variable (see 

the following subsection) – we do not obtain estimates of the propensity score for the 

hybrid model that have a maximum support that exceeds about 0.55. Given the 

theoretical econometric conditions, these estimates indicate that identification of an 𝐴𝑇𝐸  

parameter is not feasible (at least given our NHTS sample). In all models we estimate, we 

do find estimates of the propensity score arbitrarily close to zero, which indicates that the 

𝐴𝑇𝑇  may be identified. 

These results, while somewhat disappointing, are both intuitive and informative. If 

one imagines a stereotypical hybrid household to be relatively high income and high 

education (this stereotype is also apparent in our NHTS sample), it is certainly possible to 

find plenty of non-hybrid drivers who match the same demographic characteristics. To 

use the cliché green/brown terminology, there are plenty of brown consumers who match 

the demographics of green consumers. This means that comparison of individuals on the 

basis of observable demographics, for instance through probit regression of the 

propensity score, does not have sufficient power to satisfy the full support condition. 

Hence, from these insights, we choose to focus on the 𝐴𝑇𝑇; this parameter is more likely 

to be identified by observational data, and also allows for informed policy assessment via 

a means of understanding whether existing hybrid owners drive differently from the 

counterfactual. 

                                                           
13 Of course, depending on the chosen estimator, other conditions must be satisfied. To make the current 

point, we focus only on the support requirement. 



89 
 

 
 

4.4.3.5 Why Not an IV Approach?   

A related point is the viability of an instrumental variables approach to identification 

via the tools developed by Heckman and Vytlacil (1999, 2001, 2005). Obviously, any 

factor that influences hybrid adoption that is correlated with individual, household, or 

community environmental preferences is not a valid instrumental variable, as the same 

variable will be correlated with annual miles traveled. Additionally, given that our 

measurements are at the household level, the more aggregated the measurement of the 

potential instrumental variable, the more likely the variable is to be a weak instrument 

(see also Diamond 2009). Given these restrictions, discovery of an instrumental variable 

is difficult. 

Our first instinct was to use the federal tax deductions and credits as an instrumental 

variable, as these variables have been shown to be correlated with hybrid adoption at an 

aggregated level and are plausibly exogenous to household vehicle choice. Though these 

variables are valid, preliminary regressions strongly indicate that these variables are weak 

and unreliable. The weakness of these instruments comes from the fact that they are 

aggregated in availability across consumers, and essentially become collinear with 

gasoline prices, hybrid vehicle penetration rates in the automobile market, and a time 

trend.14 It is possible to estimate probit regressions in which the federal incentive measure 

is positive and significantly correlated with hybrid adoption; see Table 4.1. However, (i) 

the statistical significance is not stable across samples and model specifications; (ii) is not 

robust to nonlinear specifications; and (iii) has an average marginal effect of less than 5 

percent on the probability of hybrid adoption. Furthermore, direct deployment of the 

federal incentive as an instrumental variable in an IV-regression of annual miles traveled 

on hybrid ownership (and controls) generates infeasible coefficient estimates and 

standard errors, and does not pass standard tests of weak instruments.15  

 

                                                           
14 State and local incentives also exist, but these variables are less credibly valid as state and local policy 

incentives are likely correlated with general trends of environmental preferences within the state or local 

communities. Still, we experimented with these variables, which turned out to be even less reliable than the 

federal incentive measures. Complete details regarding these variables and regression results can be 

furnished upon request from the authors. 
15 For instance, the IV point estimate implies that hybrid households drive about 50,000 miles less per year 

compared to non-hybrid households. 
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Moreover, economists understand that hybrid ownership is driven to a substantial 

degree by unobservable individual/household specific preferences, as well as 

community/social influence. Many households might be classified as never-takers of 

hybrid treatment; it is likely that there are no instrumental variables that can yield 

exogenous incentives for these consumers to purchase a hybrid. To be more concrete, in 

certain communities, hybrid vehicles might bear a negative social stigma, under which 

many consumers are not willing to purchase a hybrid (for instance, under a government 

rebate policy). These consumers certainly exist, and it is important to recognize that it is 

unlikely that their hybrid treatment effect can be identified through typical observational 

data. Similarly, certain green consumers are always-takers; it is equally difficult to find 

any type of exogenous incentive that encourages these consumers to purchase a hybrid, 

since they are naturally pre-disposed to hybrid ownership. Research (e.g., Sallee 2011) 

has shown that the government incentives do significantly correlate with the household 

decision to buy a hybrid; it is not clear, however, whether green households simply time 

their purchases to coincide with a maximum incentive value, or whether the incentive 

independently induces hybrid purchase in a group of compliers. It is likely that the 

incentive both stimulates compliers to purchase a hybrid – likely consumers with light-

green preferences – as well as being taken simply by green consumers who would have 

purchased the hybrid regardless (Ozaki and Sevastyanova 2011). It is difficult to know 

how big is the complier group, and hence whether an instrumental variables approach is a 

promising empirical strategy. 

Instead, our approach is to use a flexible, nonparametric matching approach to 

eliminate bias from both observable and unobservable factors that influence both hybrid 

adoption and driving behavior. Given knowledge of the unobservable factors that likely 

have the largest influence on both the hybrid choice and driving habits (see assumptions 

(i) and (ii)), we are able to design a matching setup that eliminates the bias. 
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4.5 Data Construction and Summary Statistics 

 

 

4.5.1 Data Construction 

The majority of our data comes from the 2009 National Highway Travel Survey 

(NHTS), conducted nationally by the U.S. Department of Transportation from March 

2008 through May 2009. The original data contains 150,147 households, 309,163 

vehicles, and 351,275 individual persons. Since our analysis is at the household level, the 

original data at the person and vehicle levels are aggregated to the household level. 

 

 

 

4.5.1.1 The Definition of Treatment 

Since we conduct our analysis at the household level, treatment is defined as whether 

or not the household owns a gasoline-electric hybrid. That is, any household that has 

purchased at least one brand new hybrid vehicle is considered treated, and any household 

that has purchased a brand new non-hybrid vehicle is part of the control group. Hence, 

our analysis is restricted only to households that have purchased at least one new vehicle 

during the 2000s decade.  

We define hybrid status in the following way. For hybrid households, if the 

households bought only one hybrid, the purchased hybrid is chosen. If a household 

purchased more than one hybrid, then the hybrid first purchased is chosen because the 

first hybrid purchase defines the first instant in which the household was hybrid treated. 

For households that do not own a hybrid, we choose the vehicle that was purchased most 

recently. The most recent purchase is chosen for three reasons. First, the most recent 

purchase is the most recent instance in which the household had an opportunity to decide 

whether to receive treatment or not. Second, given that the NHTS survey was conducted 

during 2008 and 2009, the most recent purchase corresponds to the purchase time when a 

household's characteristics are the most similar to its characteristics at the survey time. 

Third, for matching hybrid households to non-hybrid households who are similar, it is not 

necessary to match based on all purchases. With a large control group, we have the 

advantage of choosing the most representative purchase of each household. 
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4.5.1.2 NHTS Data Sample 

Overview  Since our focus is on measuring the difference in miles traveled between 

households who own a hybrid vehicle and households that do not, we include variables 

measuring hybrid ownership and miles traveled of households, household characteristics, 

characteristics of all vehicles owned by households, and characteristics of regions in 

which the households live. All households with incomplete information on these 

variables are dropped. Since hybrid vehicles are only available in the sample after 2000, 

to avoid any potential estimation bias from the systematic differences that might exist 

between households that purchased a hybrid and households that purchased a new car 

prior to 2000, we limit our study to households who bought at least one new vehicle after 

2000. To determine whether a purchased vehicle is brand new or used, we follow the 

same criterion used by NHTS: when the difference between the purchase year and the 

model year of a vehicle is less than two years, the vehicle is assumed to have been 

purchased brand new; otherwise, the vehicle is assumed to have been purchased used.  

The NHTS data provides information on whether a specific vehicle is a hybrid 

vehicle or not; however, in the NHTS survey, gasoline-electric hybrid vehicles are not 

coded differently from vehicles using some kind of alternative fuel. Since we only focus 

on electric-gasoline hybrid vehicles, to eliminate vehicles that use alternative fuel but are 

not gasoline-electric hybrids, we compare NHTS information on the make/model/year of 

each vehicle with a list of all possible make/model/year combinations of gasoline-electric 

hybrid vehicles. The sources for comparison include the Vehicle Make and Model book 

associated with the NHTS documentation, Edmunds.com, Hybridcars.com, Wikipedia, 

and previous economic research. Any alternative fuel vehicles that are not found to be 

gasoline-electrics are dropped. 

In addition, we are only interested in vehicles that are used for personal travel and 

consume gasoline. We include any vehicles classified as automobile/car/station wagon, 

van (minivan, cargo van, or passenger van), sport utility vehicle, and pickup truck, and 

drop motorcycle, other trucks, golf carts, and other vehicles. The NHTS survey also 

includes an indicator for whether or not the vehicle has a commercial license plate; we  
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remove all households who own any such vehicle. We also remove all households who 

own vehicles using diesel, natural gas or electricity, other than motor gasoline. 

Several further removals of observations are conducted due to the specific 

requirements of certain variables. We provide the detailed definitions of some variables 

included in this study below; the information of the further data removals based on 

certain variables are also provided in the description of the variable.  

Annual Miles Traveled  The measure of annual miles traveled by each household 

comes from the variable BESTMILE in the NHTS survey. Due to the imprecision of 

perception and memory of respondents, it is difficult to collect precise and reliable 

information on miles traveled for a whole household in the past whole year. To obtain a 

reliable measurement of annual miles traveled, NHTS estimates the annual miles traveled 

for each household via (i) information on each vehicle owned by a household, including 

self-reported miles traveled, the odometer reading, model year, purchase year, and 

vehicle type; (ii) information on the primary driver of each vehicle, including the 

education, age, gender, and working status of the primary driver; (iii) information on the 

characteristics of each household, including number of persons, number of vehicles, 

household life cycle classification, and the MSA region in which the household lives; and 

(iv) miles traveled in the assigned travel day of each household. The most critical sources 

of information are self-reported annual miles traveled, the odometer reading of each 

vehicle, and information on the primary driver. When all three sources are available, all 

are used jointly to construct the estimate of annual miles traveled (72.4 percent of the 

vehicles in the NHTS survey fall into this category). When some information is missing, 

only the existing information is used. After estimation, the annual miles estimate is 

validated via comparison to the odometer reading and self-reported annual miles traveled. 

If the difference surpasses certain criteria, the annual miles estimate is identified as an 

outlier. We drop all households for which the BESTMILE estimate is classified as an 

outlier. 

Household Income  Household income is a categorical variable, and measures the 

total income of each household. This variable has 18 different categories, representing 

intervals of $5,000. For instance, Category 1 indicates annual household income of less 
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than $5,000, and Category 2 indicates annual household income between $5,000 and 

$9,999. The highest category, Category 18, indicates annual household income greater 

than $100,000.  

Highest Education  The NHTS survey records the education level of each person as 

a categorical variable, taking 5 distinct values. These values from 1 to 5 represent less 

than high school; high school or GED; some college, vocational, or an Associate's degree; 

a Bachelor's degree; and graduate or professional degree. We use the highest level of 

education in the household as our measure of household education. 

Life Cycle  The NHTS survey includes a life cycle variable, that indicates whether 

the household has one or two heads, children, and whether or not the head(s) are retired.16 

We believe these life-cycle indicators are important correlates of both the hybrid adoption 

decision and miles traveled. 

Internet Usage  We include in our analysis an indicator for whether at least one 

member in the household uses the Internet almost every day. This variable is used to 

measure both the attitude of the household to new technology, general socioeconomic 

status, and degree of connectedness. The adoption of a hybrid is affected by the attitude 

of households towards new technology. If a household is open to new technology, we 

expect members in that household to use the internet frequently. Since this variable is 

measured at the person level in the survey, we use the frequency of the person with the 

most frequent Internet use among all household members, in order to capture the 

maximum preference to new technology for each household.  

Commute Distance to Work  Commute distance to work measures the sum of 

commute distance across all workers in each household. Work commute constitutes 

mandatory travel, and affects both hybrid adoption and miles driven. We dropped any 

households with a single family member reporting a commute distance of more than 75 

miles.  

 

                                                           
16 Specifically, the categories with values 1 to 10 are one adult, no children; 2+ adults, no children; one 

adult, youngest child 0-5; 2+ adults, youngest child 0-5; one adult, youngest child 6-15; 2+ adults, youngest 

child 6-15; one adult, youngest child 16-21; 2+ adults, youngest child 16-21; one adult, retired, no children; 

2+ adults, retired, no children respectively. 



95 
 

 
 

MPG of Other Vehicles  To measure the general degree of environmentalism and 

preference for fuel saving at the household level, we include the average MPG rating of 

other vehicles. As we have described, it is difficult to measure households’ preference for 

fuel efficiency and the environment; yet, households with stronger environmental 

preferences and those that care more about fuel costs are more likely to purchase 

relatively fuel efficient vehicles for all vehicles in the household (see also Table 4.1). 

Hence, incorporating this variable into our matching analysis allows us to match hybrid 

households to non-hybrid households that have similar preferences on both fuel 

efficiency and the environment. 

Household Geographic Location  The geographic location of households is also 

correlated with both the hybrid adoption decision and driving habits. For example, 

households living in a more environmental friendly area would be more likely to buy a 

hybrid; households living a large metropolitan area may have an advantage of better 

public transportation and drive less. Additionally, certain states or cities (e.g., California 

or Seattle; Sexton and Sexton 2014) are known to have a reputation of being more 

environmentally friendly, which correlates with both hybrid adoption and driving habits. 

As we have described, matching geographically allows us to control for general spatial 

influences that may correlate with both hybrid adoption and driving habits. 

To control for these correlates, we include several variables to control for these 

effects. The NHTS survey has several variables that we consider: MSA category, MSA 

population, and Rail. MSA category measures the metropolitan statistical area of each 

household, MSA population size measures the size of the MSA in which the household 

lives, and Rail is a binary variable that measures whether or not the MSA area has rail 

transportation services available.17 In addition, we consider a more simple Urban/Rural 

indicator variable to differentiate households in urban from rural areas. 

 

                                                           
17 Specifically, MSA category takes values 1 if the MSA in which the household lives has a population of 1 

million or more, and has a rail system; 2 if the MSA has a population of 1 million or more, but does not 

have a rail system; 3 if the MSA has a population of less than 1 million; 4 if the household is mot in an 

MSA. The MSA population variable takes a value of 1 if the household lives in an MSA with fewer than 

250,000; 2 for an MSA with a population between 250,000-499,999; 3 for an MSA with 500,000-999,999; 

4 for an MSA of 1,000,000-2,999,999; 5 for an MSA of 3 million more; and 6 if the household is not in an 

MSA. 



96 
 

 
 

Basic Household Demographics  We also include the number of vehicles in each 

household, household size, the number of drivers, the average age of drivers, and the 

number of workers, in order to control for the impact of these household demographics 

on both hybrid adoption and annual miles traveled. We record the Hispanic status of the 

household as a binary indicator that equals one if the household self-reports as being 

Hispanic, and zero otherwise. The race of each household is categorical. 18  We also 

include the average age of all drivers and the share of female drivers in each household.  

Gasoline Price  We obtained data on the price of regular grade gasoline from 2000 

to 2009 from the Council for Community and Economy Research. The data measures the 

quarterly gasoline price at the CBSA level, which provides variation across and within 

years and CBSA regions. We match households via geographic location to gasoline 

prices. We first match at the city level; any household that cannot be matched to a 

gasoline price at the city level is matched at the CBSA level; any remaining household is 

matched into a state average for the gasoline price. For different parts of our analysis, we 

are interested in both the gasoline price at the time in which the hybrid was purchased, as 

well as the gasoline price at the time the NHTS survey was taken and annual miles 

traveled was computed. 

Green Plan Capacity Index  We also use the Green Plan Capacity (GPC) index 

from Resource Renewal Institute (Siy et al. 2001) to measure the strength of 

environmentalism across different regions in which households live as an important 

control for unobservable factors that may correlated with hybrid vehicle adoption. The 

GPC index is defined on a 100-point scale, covering 65-indicators, and is calculated for 

each state in the U.S. It is comprised of four sub-indices: comprehensiveness of the 

environmental management framework; level of environmental policy innovation; fiscal 

and program commitment; and the quality of governance. The index is time invariant, 

varying only over states. 

Policy Incentives  Incentives from the federal government and state government are 

also important factors influencing households' hybrid adoptions (Sallee 2011). We obtain 

                                                           
18 The categories with values from 1 to 8 indicate whether the household members are white, African 

American, Asian, American Indian or Alaskan Native, Native Hawaiian or Other Pacific, Multiracial, 

Hispanic/Mexican, and other respectively. 
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detailed data on these policy incentives from the Internal Revenue Service (IRS), the 

Alternative Fuels Data Center (AFDC) of the United States Department of Energy, 

official state statute documentation, and previous economic research (Diamond 2009, 

Gallagher and Muehlegger 2011, Sallee 2011).  

Before 2006, the federal government provided a $2,000 federal tax deduction for all 

hybrid purchases. The exact benefit for each household depends on the real income tax 

rate for the household, which we cannot observe. We assume the same tax rate, 25 

percent, for all households. 19  Since January 1, 2006, the tax deduction policy was 

replaced by a tax credit policy. The specific amount of credit that a certain hybrid model 

receives is based on its fuel efficiency level compared to equivalent gasoline vehicles. 

The amount of full credit across models varies between $450 and $3,150, and phased out 

gradually after the manufacturer of the model sold a total of 60,000 hybrids. Federal tax 

credit incentives for all hybrids from Toyota phased out in 2007, and federal tax credit 

incentives for hybrid models from Honda phased out at the end of 2008. To obtain a 

uniform measure of the tax credit across households, we use the weighted mean of tax 

credits of all hybrids in our dataset at each point in time. The weights of different hybrid 

models are decided by their proportion across all hybrids models in our dataset, which is 

used as a proxy of the market share for each hybrid.  

State hybrid incentives include income tax credits, sales tax exemptions, tax rebates, 

and HOV lane access. Detailed information on federal and state incentives, including the 

specific implementation period, amount, and data sources, are provided in Appendix F.  

 

 

 

4.5.2 Descriptive Statistics 

Table 4.3 provides descriptive statistics for the full sample, as well as the hybrid and 

Prius samples individually. Our final dataset includes 36,780 households. Of these, 

35,495 households do not own a hybrid vehicle, while 1,285 households own a hybrid 

vehicle. Of these hybrid owning households, 696 own a Prius. The distribution of all 

makes and models of the hybrid vehicles in the sample are provided in Appendix E,  
                                                           
19 25 percent is very close to the mean of real incentives benefit Beresteanu and Li (2011) calculated using 

TAXSIM tax software. 
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Table 4.3: Descriptive Statistics 

Statistic 

All Households Hybrid Households Prius Households 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Hybrid/Prius 

Indicator 
0.03 0.18 0.54 0.50 

  

Annual Miles 

Traveled 
26,636 14,495 27,914 14,461 27,259 13,391 

Household Income 13.92 4.50 15.86 3.47 15.81 3.50 

Highest Education 3.77 1.06 4.34 0.86 4.43 0.81 

No. of Vehicles 2.35 0.64 2.35 0.65 2.37 0.65 

Household Size 2.69 1.12 2.62 0.98 2.57 0.96 

No. of Adults 2.10 0.50 2.08 0.47 2.08 0.48 

No. of Drivers 2.12 0.54 2.12 0.53 2.14 0.55 

No. of Workers 1.21 0.88 1.30 0.87 1.29 0.90 

Hispanic 0.05 0.22 0.05 0.22 0.04 0.21 

Race 1.29 1.11 1.30 1.14 1.25 1.01 

Average Age of 

Drivers 
53.31 14.06 53.31 12.85 54.47 13.06 

Share of Female 

Drivers 
0.51 0.23 0.50 0.21 0.50 0.20 

Life Cycle 5.98 3.34 5.77 3.32 5.90 3.37 

Internet Usage 0.83 0.38 0.94 0.24 0.95 0.22 

Commute Distance 14.61 17.73 16.48 18.98 16.20 18.72 

Penetration Rate 0.01 0.01 0.02 0.01 0.02 0.01 

Gas Price (Purchase) 2.32 0.66 2.61 0.58 2.58 0.59 

Gas Price (Survey) 3.51 0.17 3.58 0.20 3.60 0.21 

Year Purchased 2,005.49 1.97 2,006.32 1.48 2,006.16 1.54 

Vehicle Type 2.05 1.14 1.36 0.77 1.02 0.21 

MPG of Other 

Vehicles 
21.21 4.55 23.20 7.34 24.27 8.56 

MSA Category 2.49 0.98 2.20 0.98 2.20 1.01 

Rail in MSA 0.17 0.38 0.29 0.45 0.31 0.46 

Urban 0.70 0.46 0.76 0.43 0.75 0.43 

GPC Index 37.71 7.33 38.69 6.99 38.88 7.35 

Federal Incentive 881.71 773.85 996.28 805.48 954.74 786.95 

State Incentive 96.60 475.38 74.51 488.25 92.99 572.00 

Observations 36,780 1,285 696 
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Table E.1. In that table, we see that the Toyota Prius is the most popular hybrid model, 

contributing to over 50 percent of the hybrids in our dataset, while the next most popular 

hybrids are the Honda Civic, Toyota Camry, Toyota Highlander, and Ford Escape. 

From Table 4.3, we see that the average household drives about 26,636 miles per 

year; hybrid households drive more miles per year (27,914). Prius households average 

more miles than the full sample, but fewer miles than the hybrid sample (27,259). Further, 

in the full sample of households, about 3 percent own a hybrid vehicle.  Not surprisingly, 

hybrid households average a higher income and education, are more frequent Internet 

users, average longer commutes, purchased the hybrid in a year/location with higher 

gasoline prices, and under higher Federal incentives. Further, we see that hybrid 

households average higher MPG ratings on other vehicles in the household, which 

provides some indication that hybrid households have uniformly stronger preferences for 

environmental preservation. We do not find much significant difference between hybrid 

and non-hybrid households in terms of the other household demographics. In general, 

these averages conform to the intuition suggested by our review of the literature. 

 

 

 

4.6 Covariate Matching Results 

 

 

4.6.1 Metrics to Assess Balance and Overlap 

Prior to implementing our matching and differencing estimation strategy, it is 

informative to assess overall balance and overlap in the NHTS sample for hybrid and 

non-hybrid households, and Prius hybrid households and non-Prius hybrid households. 

The procedures here follow Imbens and Rubin (2015). 

The Normalized Difference   The first metric we consider for assessing balance is 

the normalized difference for each covariate, given by 

∆𝑐𝑡=
𝜇𝑡 − 𝜇𝑐

√(𝜎𝑡
2 + 𝜎𝑐

2)
2

⁄

 
(4.5) 
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in which μ denotes the mean, 𝜎2 denotes the variance, and the subscripts 𝑡 and 𝑐 indicate 

the treated and control samples, respectively. This normalized differences provides a 

measure of dispersion of the means of the two samples that is unit free. Further, in 

contrast to the standard t-test for equality of means, the normalized difference is invariant 

to changes in the sample size. Further, as stated by Imbens and Rubin (2015), the purpose 

of balance tests is not to directly test the null hypothesis that the two subsamples have the 

same central tendencies, but rather assess the feasibility of using adjustment methods 

(e.g., matching or regression) to eliminate biases associated with observable covariates 

that arise in treatment effect estimation. To estimate ∆𝑐𝑡, one can use sample averages 

and sample variances. 

The normalized difference is in standard deviations. The larger the normalized 

difference for each covariate, the more difficult it will be to deploy adjustment techniques 

to adjust for biases. To provide some perspective, normalized difference measures of 

approximately 0.1 are in line with “what one might expect in a completely randomized 

experiment” (Imbens and Rubin 2015, p. 352). 

The Log Ratio of Standard Deviations  While the normalized difference measures 

differences in the central tendencies of the covariate distributions across treated/control 

samples, the log ratio of standard deviations measures the difference in dispersions of the 

two distributions. This measure is given by 

𝛤𝑐𝑡 = log(𝜎𝑡) −  log(𝜎𝑐) (4.6) 

where 𝜎  denotes the standard deviation and the rest of notations is as before. This 

measure can also be calculated from sample standard deviations, and the larger the value 

of 𝛤𝑐𝑡 for any particular covariate the larger the difference in distributional dispersion. 

For large values of 𝛤𝑐𝑡, the more difficult it will be to adjust for biases. 

The Fraction of Observations in the Tails of the Opposing Distribution  One of 

the important requirements for different bias adjustment methods (e.g., matching) is 

sufficient overlap in the distributions of covariates. One way to assess overlap is to 

determine the fraction of observations in the treated group that lie in the tails of the 

distribution for the control group. The larger the fraction of observations that lie in the 
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tails of the opposing treatment groups distribution, the more difficult it will be to find a 

corresponding observation in the opposing group to match to the treated units. 

Formally, we calculate this percentage via 

𝜋𝑡
𝛼 = [1 −  𝐹𝑡(𝐹𝑐

−1(1 −  𝛼 2⁄ ))] +  𝐹𝑡(𝐹𝑐
−1(𝛼 2⁄ )) (4.7) 

for significance level 𝛼  and distribution functions 𝐹(⋅) . If we choose 𝛼 = 0.05 , we 

calculate �̂�𝑡
0.05 as 

𝜋𝑡
0.05 = [1 −  𝐹𝑡(𝐹𝑐

−1(0.975))] +  𝐹𝑡(𝐹𝑐
−1(0.025)). (4.8) 

 

 

 

4.6.2 Pre-Match Assessment of Balance and Overlap 

We report the results for our pre-match balance and overlap assessments in Table 

G.1. For all covariates, we use the full sample of 36,780 observations, of which 1,285 are 

hybrids and 35,495 are non-hybrids.  

It is clear from the table that there are substantial differences between hybrid and 

non-hybrid households along several important dimensions. We see that the normalized 

difference for household income, education, Internet usage, hybrid market penetration 

rate, gasoline price, year purchased, the MPG of other household vehicles, vehicle type, 

and MSA characteristics are all substantially higher than 0.10. These measures suggest 

that estimates that do not adjust for these differences are likely to be biased. 

The other metrics included in the table indicate that it will likely be feasible to 

restore balance via matching. The log difference in standard deviations and percent of 

observations in the tails of the opposing treatment group are all relatively low, which 

indicates substantial overlap in the distributions of these covariates between hybrid and 

non-hybrid samples. This is, in part, because of the large number of non-hybrid (control) 

households afforded to us by the NHTS survey. Through such a large set of non-hybrid 

households, we are able to carefully identify a close match for each hybrid household. 

We report pre-match balance and overlap statistics for the Prius treatment model 

(hybrid only sample) in Table G.2. For that sample there is fewer significant differences 

between Prius and non-Prius hybrid samples, pre-match. The largest differences are in 

terms of education, year purchased, MPG of other vehicles, and vehicle type. With the 
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exception of vehicle type, the other metrics indicate there is likely sufficient overlap to 

restore adequate balance via matching. We rely on an exact match for vehicle type to 

restore balance. 

 

 

 

4.6.3 The Effect of Hybrid Ownership on Annual Miles Traveled 

Our matching estimates of the effect of hybrid ownership on annual miles traveled 

are reported in Table 4.4. In the top two panels, we require an exact match at the CBSA 

level as given by assumption (ii); the top panel further requires an exact match on vehicle 

type, and the middle panel further restricts the match to the exact vehicle counterpart. The 

bottom panel invokes assumption (iia) and restricts the match to the zip code level. The 

rest of the matching is as described previously. Finally, Model 1 includes households that 

are not located in a CBSA, requiring an exact CBSA match to another household also not 

in a CBSA but located within states with the closest GPC index, while Model 2 

eliminates these households.  

Each model specification has its own matching advantages. Matching on zip code 

and/or excluding households not in a CBSA are able to strengthen matching on 

geographical area; matching on the counterparts of each hybrid is able to improve the 

similarity on all factors influencing households’ choice related to brand, style, etc.; 

matching on CBSA and/or including households not in a CBSA increase the matching 

options and matching quality of other variables. The combination of all models covers 

different dimensions that are important in households’ driving behavior and hybrid 

adoption.  
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Table 4.4:  Matching Estimates of the Effect of Hybrid Ownership on Annual Miles 

Traveled 

  Model 1 Model 2 

CBSA Level (Vehicle Type) 
  

Estimate 786.978* 772.432* 

Standard Error 436.140 436.267 

   
No. of Matched Hybrids 1072 1036 

   
CBSA Level (Counterpart) 

  
Estimate 749.873** 398.077 

Standard Error 339.485 340.082 

   No. of Matched Hybrids 451 434 

   
Zip Code Level 

  
Estimate 521.638** 

 
Standard Error 249.826 

 
   

No. of Matched Hybrids  299   

The reported estimates and standard errors are Abadie and Imbens (2011) bias-corrected variants. An exact 

match is required for household education, year of purchase, frequency of Internet usage, vehicle type or 

counterpart, and CBSA or zip code. Matching on other covariates uses nearest neighbor matching using the 

Mahalanobis distance metric, allowing for one matched control unit for each treated unit. CBSA Model 1 

includes observations that are not in a CBSA, and Model 2 excludes observations that are not located in a 

CBSA. 

 

We find that, in most of the models we estimate, hybrid owning households drive 

more miles per year than households that do not own a hybrid. Our estimates range from 

just under 400 miles per year to just over 785. To provide more precise interpretation, the 

top panel estimate for Model 2 implies that a household that owns a hybrid, on average, 

drives 772 miles more per year than a non-hybrid owning household that purchased a 

new vehicle in the same year, resides in the exact same CBSA (and hence faces the same 

gasoline prices and social incentives), and has the same household demographics (e.g., 

income, education, commute distance, etc.).  The only insignificant rebound effect comes 

from the model matching on CBSA, non-hybrid counterparts, and excluding households 

not in CBSA. Generally, our results are similar across different model specifications, 

which increases the credence of our estimates. 
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4.6.4 Is There A Social Status Rebound Effect? 

We report our matching estimates of the 𝐴𝑇𝑇  for the Prius social status driven 

rebound effect in Table 4.5 for the two CBSA models that match on vehicle type. Due to 

relatively small sample size of only hybrid households, we are not able to conduct 

matching at the zip code level. We find that in both models, the treatment effect estimates 

are not significant, which indicates that Prius and non-Prius hybrid households do not 

drive a significantly different number of miles per year. Hence, despite the anecdotal 

evidence that the social status signaling ability of the Toyota Prius might create an 

incentive for Prius drivers to increase driving miles to capitalize on the status signal, we 

do not find statistical evidence of this behavioral response. Further, we do not find a 

significant social status rebound effect associated with Prius adoption. 

 

 

 

4.6.5 Post-Match Balance and Overlap Assessment 

Though our matching estimates are intuitive, the credibility of those estimates as 

causal effects depends critically on whether the matching procedure was able to restore 

balance to the covariate distributions. We report post-match balancing statistics for the 

estimates from Table 4.4 in Tables D.1, D.2, and D.3, and in Table D.4 for the estimates 

from Table 4.5. The normalized difference between the treated and control units is nearly 

zero (below 0.10) for most of the covariates across each of the specifications, indicating 

little chance that these covariates induce bias into our estimates.  

The most difficult covariate to get into balance is the average MPG of other vehicles. 

It is clear from these post-match balancing tables that the normalized difference for this 

covariate is greatly reduced via the matching procedure, and in each case is always below 

0.20 (recall that 0.10 is the benchmark for being as good as random). Hence, while there 

remains a slight distance in terms of this covariate, the match is still very good and it is 

not likely that this covariate leads to any significant bias in our estimates of the treatment 

parameter. From these measures, we conclude that there is virtually no cause for concern 

that our treatment effect estimates are measured with bias. 
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Table 4.5:  Matching Estimates of the Effect of the Prius Premium on Annual Miles 

Traveled 

  Model 1 Model 2 

CBSA Level 
  

Estimate −669.727 −334.350 

Standard Error 581.303 582.087 

   
No. of Matched Hybrids 330 322 

The reported estimates and standard errors are Abadie and Imbens (2011) bias-corrected variants. An exact 

match is required for year of purchase, vehicle type, frequency of Internet use, and CBSA. Matching on 

other covariates uses nearest neighbor matching using the Mahalanobis distance metric, allowing for 1 

matched control unit for each treated unit. Model 1 includes observations that are not in a CBSA, and 

Model 2 excludes observations that are not located in a CBSA. See text for further details. 

 

 

 

4.7 Policy Implications: Hybrid Ownership and Gasoline Consumption 

The causal estimates of the impact of hybrid ownership on annual miles traveled has 

direct implications for policies that seek to reduce gasoline consumption via hybrid 

vehicle adoption. In this section, we provide some rough calculations as to the average 

fuel savings accrued on account of hybrid adoption, taking into account the (small) 

rebound effect we have estimated.  

From Table 4.4, the largest hybrid vehicle rebound effect is about 787 miles per year. 

Given that the average hybrid household in the sample drives 27,914 (Table 4.3), this 

rebound effect amounts to about 3 percent of annual miles traveled. Table 4.6 shows the 

average fuel efficiency increase for hybrid vehicles over either non-hybrid vehicles in the 

same class or to exact non-hybrid counterpart vehicles. In the first case, the average 

increase in fuel efficiency is 118.5 percent, and in the second case, is 93.4 percent. That 

is, the average fuel efficiency for hybrids is about double the average fuel efficiency for 

non-hybrids (either by type or counterpart).  

The average annual fuel consumption of a household is calculated by dividing the 

total annual miles traveled by MPG (fuel consumption = total annual miles 

traveled/MPG). It is then straightforward to compute a rough estimate of the change in 

fuel consumption from adoption of a hybrid vehicle.  

In the first case, comparing hybrids with all other non-hybrids, we estimate that the 

highest rebound effect of hybrid adoption is about 787 miles, on average a 2.8 percent 
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increase from original miles traveled, and the corresponding increase of fuel efficiency is 

118.5 percent. With the estimates, we calculate the associated fuel savings. Specifically,  

 

𝑁𝑒𝑤 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =
𝑁𝑒𝑤 𝑉𝑀𝑇

𝑁𝑒𝑤 𝑀𝑃𝐺
=  

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑉𝑀𝑇 × 103 𝑝𝑒𝑟𝑐𝑒𝑛𝑡

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑀𝑃𝐺 × 218.5 𝑝𝑒𝑟𝑐𝑒𝑛𝑡

= 𝑂𝑟𝑔𝑖𝑛𝑎𝑙 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 × 47.0 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 (4.9) 

 

which means that the average household that adopts a hybrid decreases its fuel 

consumption approximately 53.0 percent. 

In the second case, we only compare hybrids with their counterpart non-hybrid 

vehicles. The highest rebound effect of hybrid adoption is about 750 miles, averagely 2.7 

percent increase from original miles traveled; the corresponding increase of fuel 

efficiency is 93.4 percent. The associated fuel savings can be calculated to be 46.9 

percent with the same way in Equation (4.9). While this calculation is approximate, the 

potential fuel savings are substantial. One immediate implication of these calculations is 

that policies that encourage hybrid vehicle adoption are able to significantly reduce the 

consumption of gasoline. 

 

Table 4.6: The Increase in Fuel Efficiency from Hybrid Adoption 

  All Other Non-hybrids Non-hybrid Counterparts 

Non-hybrid 21.6 24.4 

Hybrid 47.2 47.2 

Increase in Fuel Efficiency 118.5% 93.4% 

Each number reports the average MPG for the vehicles in each category. All other non-hybrid vehicles 

include all non-hybrid vehicles in our sample; the Toyota Corolla is used as the counterpart for the Toyota 

Prius. 

 

As discussed earlier, our method is different from the method used in previous 

studies. First, we separate the response of driving distance to an improvement of fuel 

efficiency from the response coming from a change in the fuel price. Second, we use a 

matching method to compare the travel distance of households driving vehicles with 

different fuel efficiency directly instead of calculating the elasticity of driving distance 

with respect to fuel economy. To compare our results with findings from previous studies, 

we transfer our results to be comparable with elasticities. In our case, the fuel efficiency 
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of a hybrid increases 118.5 percent compared all other vehicles and 93.4 compared to the 

hybrid counterparts. It means that the hybrid fuel costs decrease 54.2 and 48.3 percent, 

respectively (if we use the same assumption in the previous literature that fuel costs have 

the equal and opposite effect on travel distance as fuel economy). Correspondingly, with 

a 100 percent decrease in fuel cost, the travel distance in our cases increase by 5 and 6 

percent, respectively. Consistent with the definition of a rebound effect in the literature, 

the rebound effects in our case are 5 and 6 percent.  

Small and Van Dender (2007) find that the rebound effect of driving distance with 

regard to fuel cost per mile is 2.2 percent in the short term and 10.7 percent in the long 

term. Hymel et al. (2010) find that the rebound effect is 4.7 percent in the short term and 

24.1 percent in the long term. They both measure the response of vehicle travel to the fuel 

cost per mile, not fuel economy. Greene (2012) measures the response of vehicle travel to 

fuel economy and does not find a significant rebound effect. Gillingham et al. (2013) find 

evidence that rebound effects for energy efficient technology do not generally exist, and 

that any rebound effect that may exist is not enough to offset the environmental gains 

stemming from the improved efficiency. Our results are generally in line with findings 

from previous studies, and particularly consistent with the findings of Greene (2012) and 

Gillingham et al. (2013). With different model specifications, the estimated rebound 

effect is either not significant or very small.  

 

 

 

4.8 Conclusion 

We explore households’ adoption of gasoline-electric hybrid vehicles and the impact 

of hybrid ownership on annual miles traveled in order to understand how hybrid 

ownership impacts fuel consumption. Specifically, we examine two rebound effects: (1) 

whether households drive more due to the higher fuel-efficiency of hybrids; and (2) if 

there is a social status driven rebound effect associated with the social signaling value of 

a hybrid. Our research has important implications for environmental policy related to 

vehicle miles traveled and gasoline consumption: post assessment of policies encouraging 

the adoption of hybrids during the 2000’s decade; potential impact that policies have on 
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vehicle miles traveled by fully-electric vehicles; and the effects of tightening the 

Corporate Average Fuel Economy (CAFE) standards which foster proliferation of 

gasoline-electric hybrids to raise fleet fuel economy. Our analysis critically focuses on 

issues of identification in light of several behavioral factors that are known to influence 

both hybrid adoption and miles traveled.  

We construct multiple model specifications with different advantages to estimate 

rebound effects of hybrid adoption. With most model specifications, we find a 

statistically significant rebound effect due to the higher fuel-efficiency of hybrids: a 

household that owns a hybrid vehicle drives more miles per year, on average, than an 

identical household that does not own a hybrid. However, this rebound effect is only 

about 3 percent of the total annual miles traveled, and is insufficient to offset the fuel 

savings due to the higher fuel efficiency of the gasoline-electric hybrid engine. 

Additionally, we do not find any evidence of a statistically significant social status 

rebound effect associated with ownership of the Toyota Prius. Generally, we conclude 

that the rebound effect associated with hybrid adoption is small and hybrid adoption is 

able to save almost half of current gasoline consumption. 

Our ability to interpret these estimates as causal effects rests on whether or not there 

remain any significant post-estimation differences between hybrid and non-hybrid 

households. All post-matching balance assessments indicate that there are no remaining 

differences between the hybrid and non-hybrid samples; hence, our interpretation is 

causal. 

Our results provide an important insight into the effect of government policies that 

incentivize the adoption of alternative fuel-efficient vehicles and jump-start the 

alternative fuel car market. In particular, policies that encourage hybrid adoption do lead 

to fuel savings, despite the non-randomness of households who adopt them and the 

rebound effect of increased fuel efficiency on vehicle miles traveled. In addition, while 

certain hybrids are a mechanism to signal social status, we do not find evidence that this 

same mechanism leads to an alternative form of rebound. Our results also provide a 

valuable analogue for the effects of policies incentivizing the adoption of fully-electric 

vehicles or tightening of the CAFE standards. 
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While the methodology applied in this study appropriately captures the differences 

between annual miles traveled across households, we have to ignore any intra-household 

substitution of driving between different vehicles, since miles traveled for each vehicle 

are aggregated to the household level from the vehicle level. It is likely that hybrid 

vehicles would be driven more than non-hybrid vehicles inside a hybrid household since 

the former is more fuel efficient than the latter. However, the possibility of intra-

household substitution does not undermine our findings. The substitution of driving from 

non-hybrid vehicles to hybrid vehicles would only increase the average fuel efficiency of 

annual driving miles inside the household and induce greater fuel savings.  
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CHAPTER 5  CONCLUSIONS 

 

 

 

5.1 Summary of Key Findings 

The interface between water and agriculture bears important scientific implications. 

First, water is an important input for agriculture. Irrigation in agriculture is a crucial 

factor to increase agricultural productivity, and access to water has a substantial impact 

on local agricultural economic development. Second, agriculture has a substantial impact 

on water. Irrigation in agriculture constitutes the largest withdrawal of water, which could 

aggravate water depletion when over-exploitation of water is already severe; agricultural 

production, especially fertilizer use, is one of the main sources of water pollution in many 

countries. Studying the specific mechanisms behind the interface of water and agriculture, 

and identifying the ones that maximize the positive benefit that agriculture can obtain 

from water and minimize the negative impacts of agriculture on water quantity and 

quality, are important for achieving agricultural development and sustaining a healthy 

environment. 

My first essay measures irrigation efficiency and explores the most effective policies 

to reduce groundwater depletion in Mexico. I find that the mechanisms of electricity cost-

sharing implemented in many wells have a sizable impact on inefficiency of irrigation 

application and groundwater depletion. Hence, I conclude that the elimination of cost 

share mechanisms seems like a more promising policy instrument for groundwater 

conservation in Mexico. Moreover, irrigation is inelastic to its own per unit cost, and 

electricity price-based policies may not be able to generate substantial effect in reducing 

irrigation application. Results also show that well-sharing does not significantly affect 

groundwater pumping, suggesting either a limited effect of individual pumping on water 

levels or absence of strategic pumping by farmers sharing the wells. 
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My second essay compares input- and output-based policies and identifies the most 

cost-effective policies to reduce fertilizer use and water pollution from agriculture. 

Results show that both input- and output-based policies lead to a significant reduction in 

fertilizer application, but input-based policies are more cost-effective than output-based 

policies. In terms of the speed at which they take effect, the two types of policies are 

similar to each other; in particular, both types of policies take effect rapidly – i.e., from 

one year to the next. Hence, adjustment in land allocation is not time costly, implying that 

policies that operate through this channel are not time costly either.  

In my third essay, I find that, on average, a hybrid household drives more miles per 

year than the average non-hybrid household. However, this rebound effect is only about 3 

percent of the total annual miles traveled, and is not large enough to offset the fuel 

savings from the higher fuel efficiency of the gasoline-electric hybrid engine. Hence, 

driving a hybrid leads to substantial fuel savings. I do not find evidence that the miles 

traveled of Toyota Prius households is significantly different from non-Prius hybrid 

households, which indicates that there is not a statistically identifiable social-status driven 

rebound effect associated with the adoption of a hybrid. 

 

 

 

5.2 Main Contributions 

My first essay has four main contributions. First, I theoretically model the existence 

of cost-sharing externalities, and identify the conditions under which the externality 

causes higher groundwater extraction. Second, I empirically examine the existence of the 

cost-sharing externality and quantify its impact on the over-extraction of groundwater. 

My findings bear important policy implications because cost-sharing is a common issue 

not only in developing countries but also in developed countries. The (substantial) effect 

of the cost-sharing externality on the inefficiency of water use indicates the importance 

for policy to tackle this issue. Third, I compare three policy options faced by the Mexican 

government and identify the most effective one, which is the elimination of electricity 

cost-sharing mechanisms in groundwater pumping. Fourth, I address the well-sharing 
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problem, another common issue of groundwater pumping in developing countries, and 

quantify its impact on over-extraction of groundwater. 

My second essay has three main contributions. First, I propose a new dimension of 

policy assessment, time cost, in assessing economic policies that are directed toward 

decreasing fertilizer use and water pollution in agriculture. This dimension is important 

for both policymakers and society, but it has received relatively little attention in previous 

research. Second, I compare the cost-effectiveness of input and output-based policies to 

reduce fertilizer use in agricultural production. My findings indicate that while both of 

them are effective for reducing fertilizer use, input-based policies are more cost-effective. 

My third essay has three main contributions. First, I examine the existence of a new 

rebound effect, a social status driven rebound effect, which is associated with the 

distinctive outlook and social signal value of the Toyota Prius. Second, I empirically 

measure the rebound effect induced by the higher fuel efficiency of hybrid, focusing 

extensively on causal identification and management of omitted variables bias. My 

method relaxes the assumption used in previous research that consumers’ respond to the 

increase of fuel efficiency and the decrease of gasoline price in the exactly same way. 

Third, I develop appropriate measurements of subtle characteristics of households, such 

as a preference on lower travel cost, preference on environmental protection, and social 

pressure. These characteristics are unobservable and have been obstacles in studying 

behavioral demand patterns with respect to an increase in fuel efficiency or hybrid 

adoption.  

 

 

 

5.3 Directions for Future Research 

My first essay finds that two cost-sharing rules lead to different levels of over-

pumping of groundwater, which is interesting and meaningful for policy design. However, 

the mechanisms behind the differences on the impacts of the two cost-sharing rules, and 

their potential social welfare implications for different types of farmers are still unknown. 

If policymakers are informed of these differences, policies could be designed more 

precisely and their potential impacts on different farmers could be better predicted. 
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Future research that builds a theoretical model that can provide insight into the 

mechanism and potential welfare impacts on farmers would be valuable. 

My second essay quantifies the cost-effectiveness of policies to adjust agricultural 

practices, which is essential for policy assessment, but it is only the first step in 

developing policy that ultimately seeks an improvement in water quality. Beyond 

measuring cost-effectiveness, another essential portion is measuring the impact of these 

agricultural adjustments on water pollution. The magnitude of this impact is the key 

information desired by policymakers. The impact may take a long time to fully appear 

since nutrient runoff from agricultural production may stay in the water system for 

several years. That is, the dynamic changes of the impact of the adjustments in 

agricultural practices on water pollution are important as well. My future research will 

quantify these dynamic impacts to provide full information for policy design and policy 

assessment.  

My third essay measures the rebound effects of hybrid adoption on miles traveled 

and finds a significant rebound effect induced by higher fuel efficiency of the hybrid 

vehicle. According to the literature, the rebound effect may be different in the long-term 

and in the short-term. Future work measuring dynamic changes in the rebound effects 

would be interesting. 
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Appendix A: Conditions under which electricity cost-sharing distorts marginal cost 

of pumping 

We are interested in identifying conditions under which electricity cost-sharing may 

reduce the marginal cost of pumping and exacerbate over-extraction. Such a situation 

occurs whenever 𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠+𝑐𝑠 < 𝑀𝐶𝑖

𝑤,𝑠+𝑤𝑠
. Both marginal cost expressions depend 

upon variables assumed exogenous to the farmer in this study. In particular, the price of 

electricity (𝑝𝑘𝑤ℎ), the conjectural variation parameter (𝜌), the share of the electricity bill 

paid by farmer 𝑖 (𝑠𝑖), and the total amount of water pumped by other farmers in the well 

(∑ 𝑤𝑗𝑗≠𝑖 ) are exogenous to the individual farmer. 

The conjectural variation parameter captures a farmer’s beliefs about other farmers’ 

reaction to his pumping. These beliefs typically emerge from previous experience and are 

pre-determined (exogenous) relative to the farmer’s pumping decision. We consider a 

range of values of 𝜌 to illustrate the robustness of the distortive effect of cost-sharing on 

marginal cost. Similarly, cost-sharing rules are established before the beginning of the 

growing season. Moreover the number of farmers sharing a well and the size of farms 

were also determined previous to farmers’ pumping decisions. 20  Therefore 𝑠𝑖  is also 

exogenously determined in our analysis. 

Letting 𝑣𝑘𝑤ℎ denote the subsidy per kWh, the difference in marginal cost between 

farmers without cost share rule and with cost share rule is: 

𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠 − 𝑀𝐶𝑖

𝑤,𝑠+𝑤𝑠+𝑐𝑠
 

= [𝑝𝑘𝑤ℎ − 𝑣𝑘𝑤ℎ][𝑎 + 𝑏𝑊 + (1 + 𝜌)(𝑏𝑤𝑖 − 𝑠𝑖(𝑎 + 2𝑏𝑊))] > 0. 

 

(A.1) 

With no over-subsidy on electricity cost (𝑝𝑘𝑤ℎ − 𝑣𝑘𝑤ℎ > 0) and assuming symmetry 

(𝑤𝑖 = 𝑠𝑖𝑊) we can re-write the above condition as: 

𝑎 + 𝑏𝑊 + (1 + 𝜌)(𝑏𝑠𝑖𝑊 − 𝑠𝑖𝑎 − 2𝑏𝑠𝑖𝑊) > 0 (A.2) 

which after some algebraic manipulation can be re-written as: 

                                                           
20 Among the groups that indicated a year of formation in the original survey, less than 10 percent were 

formed within five years preceding the survey. 
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(𝑎 + 𝑏𝑊) − (1 + 𝜌)𝑠𝑖(𝑎 + 𝑏𝑊) > 0.          (A.3) 

Since 𝑎 + 𝑏𝑊 > 0 as defined before, Equation (A.3) implies that 

𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠 − 𝑀𝐶𝑖

𝑤,𝑠+𝑤𝑠+𝑐𝑠 > 0  

if and only if 

(1 + 𝜌)𝑠𝑖 < 1. 

In general the higher 𝜌, the less likely it is that implementing a cost share rule will 

reduce marginal cost of pumping. This is to be expected intuitively. When a farmer 

anticipates that others will significantly increase their pumping in response to an increase 

in her own pumping, the benefits of cost-sharing vanish. 

Table A.1 describes the conditions for increased extraction under cost share. 

Conditions are depicted for three conjectural variation scenarios: (1) 𝜌 = 1 , where 

pumping rates are strategic complements, also known as Loschian conjecture after the 

model of Loschian competition, (2) 𝜌 = 0  where pumping rates are strategically 

independent, also known as Cournot-Nash conjecture after the model of Cournot 

competition, and (3) 𝜌 = −1, where pumping rates are strategic substitutes, also known 

as Bertrand conjecture after the model of Bertrand’s competition.  
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Table A. 1:  Marginal Cost Change under Cost Share Rules 

  𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠

− 𝑀𝐶𝑖
𝑤,𝑠+𝑤𝑠+𝑐𝑠

> 0  

𝜌 = −1 [𝑝𝑘𝑤ℎ − 𝑣𝑘𝑤ℎ](𝑎 + 𝑏𝑊) > 0 , which is always true. 

𝜌 = 0 

[𝑝𝑘𝑤ℎ − 𝑣𝑘𝑤ℎ](𝑎 + 𝑏𝑊)(1 − 𝑠𝑖) > 0 , which holds whenever 𝑠𝑖 < 1. 

Regardless of the cost share rule, the condition 𝑠𝑖 < 1 holds for all wells shared by 

more than one producer. 

𝜌 = 1 

[𝑝𝑘𝑤ℎ − 𝑣𝑘𝑤ℎ](𝑎 + 𝑏𝑊)(1 − 2𝑠𝑖) > 0 , which holds whenever 𝑠𝑖 < 0.5. 

When costs are evenly split, 𝑠𝑖 < 0.5 holds whenever N>2. When costs are divided 

based on land area, 𝑠𝑖 < 0.5 holds for all irrigators that operate less than half of the 

land irrigated by the well; i.e., 𝐿𝑖 < 0.5𝐿. 
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Appendix B: Data collection process 

 

The data collection process required two steps. First the enumerators collected the 

data on the irrigation unit, (e.g., number of farmers sharing the well, crops grown by 

producers) from an individual familiar with the management of the well. In some cases 

the respondent is a single individual with well management responsibility while in other 

cases it is any one of the users or a group of users. The enumerators then asked the 

respondent(s) to identify a representative individual who produced each of the main crops 

for the unit. Those identified individuals were interviewed for the crop-specific survey, 

which was completed for each of the primary crops grown by producers who share the 

well. Thus, there is one crop-specific survey for each crop-well combination. The crop-

specific survey includes questions about inputs, outputs, and prices for each crop. 

Cross sectional data was obtained from farmers in a sample of 256 wells. A total of 

197 observations contained complete information for our estimation purposes so this is 

the size of our sample. Irrigation wells are uniformly scattered across the country so they 

are geographically representative of agricultural groundwater irrigators in Mexico. 

Regarding the well selection mechanism, a sample was initially drawn based on a 

national survey of irrigation wells, and the enumerators tried to find those wells from the 

sample. However, in many cases the irrigation wells that were chosen did not exist. In 

those cases the enumerators tried to replace the sample well with another well from the 

same area. 
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Appendix C 

 

Table C. 1:  Coefficient Estimates for Input Demands (water, fertilizer and other 

inputs) 

  Estimates            

Water equation 
 

Constant -39896.6 (33315.0) 

Output quantity 547.6** (247.6) 

Interaction of land area and output quantity -97.5*** (35.4) 

Land area 3208.5*** (394.9) 

Quadratic term of output quantity 2.1** (0.9) 

Interaction of quadratic land area and output quantity 1.0** (0.5) 

Dividing electricity bill by share of land area 16456.9** (8114.8) 

Dividing electricity bill evenly 25801.5*** (8515.8) 

Number of farmers sharing a well 279.0 (316.5) 

Soil type 6566.6 (5629.1) 

Climate type 12315.7 (14850.1) 

Depth of well 42.8 (54.8) 

Age -227.6 (419.2) 

Education 4078.8 (4436.3) 

Share of fruit and vegetable 3834.3 (11379.4) 

  
Own price elasticity of water -0.06** (0.02) 

  
Fertilizer equation 

 
Constant 2059.1 (8825.2) 

Output quantity -167.5** (66.2) 

Interaction of land area and output quantity 8.3* (4.9) 

Land area 417.3*** (96.9) 

Quadratic term of output quantity 0.2 (0.2) 

Interaction of quadratic land area and output quantity -0.04 (0.07) 

Dividing electricity bill by share of land area -73.9 (1862.8) 

Dividing electricity bill evenly -154.4 (2643.8) 

Number of farmers sharing a well 62.7 (96.0) 

Soil type 358.1 (855.8) 

Climate type -7899.0 (5075.5) 

Depth of well 2.0 (7.1) 

Age 62.9 (71.9) 

Education -530.0 (1352.6) 

Share of fruit and vegetable 3007.5 (3707.5) 
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Table C.1. Continued 

  Estimates            
 

Other inputs equation 
 

 

Constant -15245.0 (13229.9)  

Output quantity 66.5 (60.3)  

Interaction of land area and output quantity 7.1 (4.5)  

Land area 1517.7*** (116.2)  

Quadratic term of output quantity -0.9*** (0.3)  

Interaction of quadratic land area and output quantity -0.2*** (0.1)  

Dividing electricity bill by share of land area -796.3 (2009.3)  

Dividing electricity bill evenly -6010.8** (2759.0)  

Number of farmers sharing a well -62.7 (74.6)  

Soil type -581.0 (2091.5)  

Climate type 7362.3 (6421.6)  

Depth of well 35.4* (21.1)  

Age 170.3 (165.9)  

Education 307.1 (1778.8)  

Share of fruit and vegetable 2305.2 (4497.1)  

   

𝑅2 (Water equation) 0.741  

𝑅2 (Fertilizer equation) 0.592  

𝑅2 (Other inputs equation) 0.862  

Observations 197  

Robust standard errors are in parentheses. Asterisk (*), double asterisk (**) and three asterisk (***) denote 

that variables are significant at 10%, 5%, and 1% respectively.  
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Appendix D 

Table D. 1:  Seemingly Unrelated Regression Parameter Estimates 

 

Coefficient Standard Error 

A11 2722.86*** 784.21 

A12 -2095.62*** 531.96 

A13 -314.06 560.50 

A22 1446.34*** 418.06 

A23 132.51 424.32 

A33 4210.31*** 974.66 

B11 136.19 481.69 

B12 -994.10* 515.60 

B22 4930.27*** 1283.33 

C11 -2281.58*** 351.14 

C12 9.65 517.65 

C21 1600.72*** 278.40 

C22 -1087.95*** 372.86 

C31 535.11 477.22 

C32 -1120.01** 467.65 

O11 18.90*** 4.86 

O21 -3.54 2.56 

O31 4.86* 2.62 

P11 -0.76*** 0.09 

P12 -1.28*** 0.40 

P21 -0.15** 0.06 

P22 0.66*** 0.22 

P31 -0.01 0.06 

P32 0.20 0.22 

R11 2810.18*** 356.24 

R21 -1080.62*** 275.05 

R31 10.62 280.00 

S11 -15.00*** 1.64 

S21 7.06 7.16 

V11 -1326.01*** 193.97 

V21 846.18*** 307.03 

M11 -1.21*** 0.06 

M12 0.07 0.11 

M21 0.02 0.01 

M22 0.09*** 0.03 

The regression includes fixed effects. ***, **, * indicates significance at 1, 5, and 10 percent levels. The 

letter name for the parameters corresponds to the matrix names given in Equation (3.5), and the subscript 

notation refers to the element position (row, column) in that matrix. The order of netputs is corn, fertilizer, 

labor and the order of quasi-fixed inputs is corn land and capital. 
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Appendix E: Additional Descriptive Statistics 

Table E. 1: Summary of Makes and Models for Hybrid Vehicles 

Make Model Number Percent 

Cadillac Escalade 1 0.1 

Chevrolet Tahoe 19 1.5 

Chevrolet Silverado 2 0.2 

Chrysler Aspen 3 0.2 

Ford Escape 59 4.6 

GMC Yukon 10 0.8 

Honda Civic 176 13.7 

Honda Accord 41 3.2 

Lexus LS 600hl 3 0.2 

Lexus GS 450h 9 0.7 

Lexus RX 400h 25 1.9 

Mazda Tribute 1 0.1 

Mercury Mariner 13 1 

Nissan Altima 16 1.2 

Saturn Vue Green Line 8 0.6 

Toyota Camry 133 10.4 

Toyota Prius 680 52.9 

Toyota Highlander 86 6.7 

Total   1285 100 

The data in this table come from two sources: IRS http://www.irs.gov/uac/AlternativeMotor-Vehicle-

Credit-1 and http://www.cars.com/go/advice/Story.jsp?section=buy and subject=tax and story=taxCredit. 

Further, when there is difference in the credit amount across different model years for a certain hybrid 

model, we use the credit amount of the most recent model year before 2009. Also, when there is difference 

in the credit amount across different types of hybrid within a certain model, we use the mean of the credit 

amounts. 
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Appendix F: Federal and State Hybrid Adoption Incentives 

 

Table F. 1:  Summary of Ongoing Federal Tax Credits for Hybrid Vehicles (after 

1/1/2006) 

Make Model Credit Amount 

Cadillac Escalade $2,000  

   
Chevrolet Malibu $1,300  

Chevrolet Tahoe $2,200  

Chevrolet Silverado $450  

   
Chrysler Aspen $2,200  

   
Dodge Durango $2,200  

   
Ford Escape $2,475  

   
GMC Yukon $2,200  

GMC Sierra $450  

   
Mazda Tribute $2,475  

   
Mercury Mariner $2,475  

   
Nissan Altima $2,350  

   
Saturn Aura $1,300  

Saturn Vue Green Line $1,550  
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Table F. 2: Summary of Phased out Federal Tax Credits for Hybrid Vehicles (after 

1/1/2006) 

Model Purchase Date Credit Amount 

Toyota Prius 1/1/2006 - 9/30/2006 $3,150  

 
10/1/2006 - 3/31/2007 $1,575  

 
4/1/2007 - 9/30/2007 $787.50 

 
10/1/2007 - $0  

Toyota Camry 1/1/2006 - 9/30/2006 $2,600  

 
10/1/2006 - 3/31/2007 $1,300  

 
4/1/2007 - 9/30/2007 $650  

 
10/1/2007 - $0  

Toyota Highlander 1/1/2006 - 9/30/2006 $2,600  

 
10/1/2006 - 3/31/2007 $1,300  

 
4/1/2007 - 9/30/2007 $650  

 
10/1/2007 - $0  

Lexus GS 450h 1/1/2006 - 9/30/2006 $1,550  

 
10/1/2006 - 3/31/2007 $775  

 
4/1/2007 - 9/30/2007 $387.50  

 
10/1/2007 - $0  

Lexus RX 400h 1/1/2006 - 9/30/2006 $2,200  

 
10/1/2006 - 3/31/2007 $1,100  

 
4/1/2007 - 9/30/2007 $550  

 
10/1/2007 - $0  

Lexus LS 600h 1/1/2006 - 9/30/2006 $1,800  

 
10/1/2006 - 3/31/2007 $900  

 
4/1/2007 - 9/30/2007 $450  

 
10/1/2007 - $0  

Honda Civic 1/1/2006 - 1/1/2008 $2,100  

 
1/1/2008 - 6/30/2008 $1,050  

 
7/1/2008 - 12/31/2008 $525  

 
1/1/2009 - $0  

Honda Accord 1/1/2006 - 1/1/2008 $1,300  

 
1/1/2008 - 6/30/2008 $650  

 
7/1/2008 - 12/31/2008 $325  

 
1/1/2009 - $0  

Honda Insight 1/1/2006 - 1/1/2008 $1,450  

 
1/1/2008 - 6/30/2008 $725  

 
7/1/2008 - 12/31/2008 $362.50  

  1/1/2009 - $0  
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Table F. 3:  Summary of State Level Incentives for Hybrid Vehicles 

State Amount Start Date End Date 

Income Tax Incentives 
   

Colorado $6542* 7/1/2000 12/31/2010 

Louisiana $500* 1/1/1991* 7/9/2009 

New York $2,000  1/1/2001* 12/31/2004 

Oregon $1,500  1/1/1998* 12/31/2009 

South Carolina $630* 6/1/2006 12/31/2009 

Utah $1720* 2001* 12/31/2005* 

West Virginia $3750* 7/1/1997 6/30/2006 

    
Sales Tax Incentives 

   
Connecticut $1500* 10/1/2004 10/1/2008 

Washington D.C. $3294* 4/15/2005* Not yet expired 

Maine $625* 1/1/1997 12/31/2005 

Maryland $1,000  7/1/2000 7/1/2004 

Maryland $1,500  7/1/2004 5/20/2010 

New Mexico $750* 7/1/2004 6/30/2009 

New York $240* 1/1/2000 5/28/2005 

Washington $2,015  1/1/2009 7/31/2009 

Washington $73  8/1/2009 12/31/2010 

    
HOV Lane Access 

   
California 

 
8/10/2005* 6/30/2007 

Colorado 
 

3/1/2008 Not yet expired 

Florida 
 

2003 9/30/2017 

New York 
 

3/1/2006 9/30/2017 

Utah 
 

9/1/2006* 12/31/2010 

Virginia 
 

6/30/2006* 7/1/2011 

    
Rebate Incentives 

   
Illinois $1,000  7/15/2007 10/1/2008 

Pennsylvania $500  11/29/2004 3/6/2010 

    
Testing Exemptions 

   
Idaho 

 
2008 Not yet expired 

Maryland 
 

2005 9/30/2012 

Nevada 
 

5/31/2007 Not yet expired 

    
Personal Property Tax Incentive 

   
Michigan $32  7/26/2002 12/31/2012 

The ∗ indicates that the value comes from previous studies. 
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Appendix G: Pre-Match Balancing and Overlap Assessments 

Table G. 1:  Pre-match Balancing and Overlap Assessment – Hybrid Treatment 

  
Hybrid Households 

Non-Hybrid 

Households Normalized 

Difference 

Log Diff. 

of Std. 

Dev. 

% 

Hybrid 

in Tails 

% Non-

Hybrid in 

Tails 
  

Mean 
Std. 

Dev. 
Mean Std. Dev. 

Household Income 15.865 3.469 13.853 4.515 0.500 -0.264 0.011 0.094 

Education 4.337 0.863 3.746 1.065 0.609 -0.210 0.037 0.147 

No. of Vehicles 2.353 0.646 2.353 0.642 0.001 0.006 0.734 0.732 

Household Size 2.617 0.985 2.696 1.128 -0.074 -0.136 0.048 0.066 

No. Adults 2.075 0.467 2.100 0.505 -0.051 -0.079 0.065 0.076 

No. Drivers 2.125 0.534 2.116 0.544 0.015 -0.018 0.055 0.090 

Hispanic 0.051 0.219 0.052 0.222 -0.007 -0.014 0.949 0.948 

Race 1.304 1.140 1.291 1.106 0.011 0.031 0.928 0.923 

Average Age 53.315 12.852 53.310 14.098 0.000 -0.093 0.026 0.087 

Share of Female 0.500 0.209 0.511 0.229 -0.052 -0.088 0.083 0.087 

Life Cycle 5.773 3.318 5.991 3.340 -0.066 -0.007 0.339 0.301 

No. Workers 1.296 0.869 1.210 0.877 0.098 -0.010 0.219 0.248 

Internet Usage 0.941 0.236 0.825 0.380 0.366 -0.476 0.059 0.175 

Commute Distance 16.475 18.975 14.543 17.681 0.105 0.071 0.305 0.323 

Penetration Rate 0.017 0.013 0.011 0.010 0.577 0.262 0.114 0.125 

Gas Price (Purchase) 2.606 0.577 2.315 0.659 0.471 -0.133 0.042 0.140 

Gas Price (Survey) 3.582 0.204 3.505 0.169 0.413 0.188 0.047 0.043 

Year Purchased 2006.315 1.485 2005.463 1.984 0.486 -0.290 0.005 0.190 

MPG of Other Vehicles 23.201 7.342 21.142 4.402 0.340 0.512 0.096 0.043 

Vehicle Type 1.358 0.770 2.079 1.148 -0.737 -0.400 0.822 0.623 

MSA Category 2.202 0.982 2.505 0.980 -0.309 0.002 0.286 0.169 

Rail in MSA 0.286 0.452 0.169 0.375 0.280 0.186 0.714 0.831 

Urban 0.758 0.428 0.696 0.460 0.140 -0.071 0.242 0.304 

GPC Index 38.693 6.987 37.679 7.336 0.142 -0.049 0.029 0.056 
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Table G. 2: Pre-match Balancing and Overlap Assessment – Prius Treatment 

  Prius Households Non-Prius Households Normalized 

Difference 

Log Diff. of 

Std. Dev. 

% Prius 

in Tails 

% Non-Prius 

in Tails 
  Mean Std. Dev. Mean Std. Dev. 

Household Income 15.809 3.496 15.930 3.438 -0.035 0.017 0.037 0.025 

Education 4.431 0.809 4.226 0.912 0.238 -0.120 0.024 0.211 

No. of Vehicles 2.368 0.655 2.336 0.635 0.049 0.030 0.724 0.745 

Household Size 2.575 0.957 2.667 1.016 -0.094 -0.060 0.045 0.053 

No. Adults 2.079 0.478 2.071 0.454 0.017 0.052 0.069 0.061 

No. Drivers 2.138 0.545 2.109 0.520 0.055 0.048 0.078 0.056 

Hispanic 0.045 0.206 0.058 0.233 -0.060 -0.123 0.955 0.942 

Race 1.249 1.006 1.368 1.278 -0.104 -0.239 0.922 0.944 

Average Age 54.474 13.063 51.945 12.469 0.198 0.047 0.086 0.041 

Share of Female 0.503 0.201 0.496 0.218 0.036 -0.080 0.073 0.095 

Life Cycle 5.898 3.372 5.625 3.250 0.082 0.037 0.341 0.338 

No. Workers 1.295 0.898 1.297 0.834 -0.003 0.074 0.237 0.197 

Internet Usage 0.951 0.216 0.929 0.258 0.095 -0.177 0.049 0.071 

Commute Distance 16.195 18.723 16.807 19.280 -0.032 -0.029 0.322 0.282 

Penetration Rate 0.017 0.013 0.017 0.013 0.022 0.016 0.046 0.041 

Gas Price (Purchase) 2.581 0.593 2.635 0.556 -0.094 0.064 0.059 0.049 

Gas Price (Survey) 3.598 0.206 3.564 0.202 0.168 0.019 0.053 0.053 

Year Purchased 2006.161 1.541 2006.497 1.396 -0.229 0.099 0.057 0.022 

MPG of Other Vehicles 24.273 8.558 21.933 5.309 0.329 0.477 0.089 0.051 

Vehicle Type 1.023 0.213 1.754 0.975 -1.035 -1.520 0.989 1.000 

MSA Category 2.195 1.010 2.209 0.949 -0.014 0.063 0.306 0.261 

Rail in MSA 0.306 0.461 0.261 0.440 0.099 0.047 0.694 0.739 

Urban 0.747 0.435 0.771 0.421 -0.055 0.033 0.253 0.229 

GPC Index 38.882 7.353 38.470 6.527 0.059 0.119 0.069 0.036 
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Appendix H: Post-Match Balance Assessments 

 

Table H. 1:  Post-match Balancing Assessment for CBSA and Vehicle Type 

Matching Model – Hybrid Treatment 

Covariate 

Model 1 Model 2 

Normalized 

Difference 

Log Diff. 

of Std. 

Dev. 

Normalized 

Difference 

Log Diff. 

of Std. 

Dev. 

Household Income -0.028 0.063 -0.036 0.067 

Education 0.000 0.000 0.000 0.000 

No. of Vehicles 0.082 0.152 0.078 0.149 

Household Size 0.049 0.072 0.051 0.080 

No. of Drivers -0.031 0.147 -0.028 0.150 

Hispanic 0.013 0.026 0.009 0.017 

Race 0.061 0.170 0.057 0.165 

Average Age -0.052 0.028 -0.049 0.028 

Share of Female 0.029 0.266 0.030 0.262 

Life Cycle 0.003 -0.029 0.012 -0.026 

No. of Workers -0.080 0.024 -0.083 0.026 

Internet Usage 0.000 0.000 0.000 0.000 

Commute Distance 0.080 0.206 0.074 0.191 

Penetration Rate -0.002 0.000 -0.005 -0.004 

Gas Price (Purchase) -0.011 -0.018 -0.015 -0.019 

Gas Price (Survey) 0.002 -0.001 0.002 -0.002 

Year Purchased 0.000 0.000 0.000 0.000 

MPG of Other 

Vehicles 
0.176 0.301 0.167 0.302 

MSA Category -0.006 -0.000 -0.005 -0.003 

MSA Size 0.015 -0.012 0.011 -0.010 

Rail in MSA 0.002 0.001 0.000 0.000 

Urban 0.011 -0.007 0.021 -0.015 

GPC Index -0.003 -0.012 -0.018 -0.053 

CBSA 0.000 0.000 0.000 0.000 

Vehicle Type 0.000 0.000 0.000 0.000 

Post-match normalized difference and log ratio of standard deviation statistics for the matched estimates 

reported in Table 4.4. An exact match is required for household education, frequency of Internet usage, 

year of hybrid purchase, vehicle type, and CBSA. One-to-one nearest neighbor matches using the 

Mahalanobis distance metric was required for household income, size, vehicle count, MPG of other 

vehicles, commute distance, age, share of female, and GPC index. See the notes to Table 4.4 and text for 

further details.  
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Table H. 2:  Post-match Balancing Assessment for CBSA and Counterpart Matching 

Model – Hybrid Treatment 

Covariate 

Model 1 Model 2 

Normalized 

Difference 

Log Diff. 

of Std. 

Dev. 

Normalized 

Difference 

Log Diff. 

of Std. 

Dev. 

Household Income 0.189 -0.079 0.145 -0.030 

Education 0.000 0.000 0.000 0.000 

No. of Vehicles 0.067 0.119 0.052 0.109 

Household Size -0.023 -0.004 -0.035 -0.006 

No. of Drivers -0.152 0.009 -0.161 -0.005 

Hispanic -0.099 -0.159 -0.102 -0.158 

Race -0.050 -0.019 -0.040 0.008 

Average Age 0.010 0.006 0.017 -0.004 

Share Female -0.047 0.034 -0.048 0.051 

Life Cycle -0.138 -0.003 -0.129 0.003 

No. of Workers -0.042 -0.075 -0.055 -0.079 

Internet Usage 0.000 0.000 0.000 0.000 

Commute Distance -0.084 -0.075 -0.097 -0.087 

Penetration Rate -0.010 -0.001 -0.009 -0.011 

Gas Price (Purchase) -0.012 -0.116 -0.016 -0.115 

Gas Price (Survey) 0.003 -0.001 -0.003 -0.001 

Year Purchased 0.000 0.000 0.000 0.000 

MPG of Other 

Vehicles 
0.067 0.200 0.051 0.211 

MSA Category -0.010 -0.022 0.000 -0.015 

MSA Size -0.039 0.022 -0.028 0.014 

Rail in MSA -0.005 -0.001 -0.009 -0.002 

Urban -0.133 0.113 -0.126 0.119 

GPC Index -0.025 0.030 0.014 0.039 

CBSA 0.000 0.000 0.000 0.000 

Counterparts 0.000 0.000 0.000 0.000 
Post-match normalized difference and log ratio of standard deviation statistics for the matched estimates 

reported in Table 4.4. An exact match is required for household education, frequency of Internet usage, 

year of hybrid purchase, counterparts of hybrid, and CBSA. One-to-one nearest neighbor matches using the 

Mahalanobis distance metric was required for household income, size, vehicle count, MPG of other 

vehicles, commute distance, age, share of female, and GPC index. See the notes to Table 4.4 and text for 

further details. 
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Table H. 3: Post-match Balancing Assessment for Zip Code and Vehicle Type 

Matching Model – Hybrid Treatment 

Covariate 
Normalized  Log Diff. of       

Difference Std. Dev. 

Household Income -0.016 -0.037 

Education 0.000 0.000 

No. of Vehicles 0.040 0.157 

Household Size 0.032 0.035 

No. of Drivers -0.074 -0.005 

Hispanic -0.059 -0.119 

Race -0.010 0.084 

Average Age 0.081 -0.019 

Share Female -0.001 -0.035 

Life Cycle 0.181 -0.010 

No. of Workers -0.147 0.049 

Internet Usage 0.000 0.000 

Commute Distance -0.086 -0.011 

Penetration Rate -0.024 -0.010 

Gas Price (Purchase) -0.031 0.002 

Gas Price (Survey) 0.000 0.000 

Year Purchased 0.000 0.000 

MPG of Other Vehicles 0.198 0.129 

MSA Category 0.000 0.000 

MSA Size 0.000 0.000 

Rail in MSA 0.000 0.000 

Urban -0.115 0.084 

GPC Index 0.000 0.000 

Zip Code 0.000 0.000 

Vehicle Type 0.000 0.000 

Post-match normalized difference and log ratio of standard deviation statistics for the matched estimates 

reported in Table 4.4. An exact match is required for household education, frequency of Internet usage, 

year of hybrid purchase, vehicle type, and zip code. One-to-one nearest neighbor matches using the 

Mahalanobis distance metric was required for household income, size, vehicle count, MPG of other 

vehicles, commute distance, age, share of female, and GPC index. See the notes to Table 4.4 and text for 

further details.  
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Table H. 4:  Post-match Balancing and Overlap Assessment for CBSA Level 

Matching Model – Prius Treatment 

Covariate 

Model 1 Model 2 

Normalized Log Diff. Normalized Log Diff. 

Difference 
of Std. 

Dev. 
Difference 

of Std. 

Dev. 

Household Income -0.205 0.146 -0.246 0.207 

Education 0.041 0.101 0.004 0.135 

No. of Vehicles 0.132 0.119 0.136 0.124 

Household Size -0.180 -0.065 -0.180 -0.072 

No. of Drivers 0.013 0.189 0.007 0.174 

Hispanic 0.187 0.426 0.189 0.426 

Race -0.041 0.023 -0.041 0.023 

Average Age 0.184 0.171 0.173 0.163 

Share Female 0.001 0.225 0.010 0.211 

Life Cycle -0.005 0.065 -0.021 0.060 

No. of Workers -0.190 0.165 -0.169 0.153 

Internet Usage 0.000 0.000 0.000 0.000 

Commute Distance -0.069 0.076 -0.068 0.068 

Penetration Rate 0.046 0.046 0.047 0.037 

Gas Price (Purchase) 0.084 0.052 0.068 0.032 

Gas Price (Survey) -0.019 0.004 -0.003 -0.003 

Year Purchased 0.000 0.000 0.000 0.000 

MPG of Other 

Vehicles 
0.127 0.111 0.101 0.124 

MSA Category -0.004 0.005 0.008 0.017 

MSA Size -0.006 0.018 -0.003 0.023 

Rail in MSA 0.012 0.001 0.006 0.001 

Urban -0.095 0.080 -0.128 0.122 

GPC Index -0.022 0.107 -0.035 -0.096 

CBSA 0.000 0.000 0.000 0.000 

Vehicle Type 0.000 0.000 0.000 0.000 

Post-match normalized difference and log ratio of standard deviation statistics for the matched estimates 

reported in Table 4.5. An exact match is required for year of hybrid purchase, vehicle type, frequency of 

internet use and CBSA. One-to-one nearest neighbor matches using the Mahalanobis distance metric was 

required for household income, size, vehicle count, MPG of other vehicles, highest education, commute 

distance, age, share of female, and GPC index. Model 1 allows for households outside of CBSA to be 

matched, and Model 2 focuses only on households within a CBSA. See text for further details.
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