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Summary 

MLH1 and MSH2 are important genes for DNA mismatch repair and crossing over during 

meiosis and are implicated in male infertility. Therefore, the methylation patterns of the 

DNA mismatch repair genes MLH1 and MSH2 in oligozoospermic males were investigated. 

Ten oligozoospermic patients and 29 normozoospermic donors were analysed. Methylation 

profiles of the MLH1 and MSH2 promotors were analysed. In addition, sperm motility and 

seminal reactive oxygen species (ROS) were recorded. Receiver operating characteristic 

(ROC) analysis was conducted to determine the accuracy of the DNA methylation status of 

MLH1 and MSH2 to distinguish between oligozoospermic and normozoospermic men. In 

oligozoospermic men, MLH1 was significantly (p = .0013) more methylated compared to 

normozoospermic men. Additionally, there was a significant positive association (r = .384; p 

= .0159) between seminal ROS levels and MLH1 methylation. Contrary, no association 

between MSH2 methylation and oligozoospermia was found. ROC curve analysis for 

methylation status of MLH1 was significant (p = .0275) with an area under the curve of 

61.1%, a sensitivity of 22.2% and a specificity of 100.0%. This pilot study indicates 

oligozoospermic patients have more methylation of MLH1 than normozoospermic patients. 

Whether hypermethylation of the MLH1 promoter plays a role in repairing relevant 

mismatches of sperm DNA strands in idiopathic oligozoospermia warrants further 

investigation. 

 

1  |  INTRODUCTION  

Despite considerable efforts to determine the causes of male infertility, approximately 30% of 

these infertility cases are deemed idiopathic or unexplained (Groen et al., 2016). Recent 

studies have shown an association between idiopathic male infertility and epigenetic 

modifications, including  promoter  methylation  in  imprinted,  reproduction-related and 

developmental genes in spermatozoa and might explain cases of idiopathic male infertility 

(Gunes, Arslan, Hekim, & Asci, 2016; Jenkins et al., 2016; Urdinguio et al., 2015). 

 

The DNA mismatch repair (DMMR) mechanism is essential for maintaining cell genomic 

stability. DMMR proteins remove base substitution mismatches and insertion–deletion loops 

during replication and recombination. Mismatches occur during the DNA 
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replicationprocess by escaping the proofreading function of DNA polymerase III. These 

mismatches result in mispairing, including G-T or A-C. Mismatch repair (MMR) is also 

implicated in cell cycle arrest and apoptosis after DNA damage (Gunes, Al-Sadaan, & Agarwal, 

2015). Therefore, defects in DMMR during spermatogenesis may disturb the integrity of 

the sperm DNA. Abnormally high amounts of reactive  oxygen  species  (ROS) are detected 

in approximately 50% of the infertile patients (Homa, Vessey, Perez-Miranda, Riyait, & 

Agarwal, 2015). It is also known that high levels of ROS production lead to DNA damage 

and silencing of DMMR genes in spermatozoa (Homa et al., 2015; Vessey, Perez-Miranda, 

Macfarquhar, Agarwal, & Homa, 2014). Infertile men with high ROS levels in their ejaculate 

also present with a higher percentage of DNA-damaged spermatozoa than fertile males 

(Wang et al., 2003). 

 

In an attempt to understand the relationship between the methylation status, seminal ROS and 

oligozoospermia, we hypothesised that transcriptional inactivation or silencing of DMMR 

genes during spermatogenesis may disturb this process, thus resulting in oligozoospermia. In 

addition, it has been hypothesised that high concentrations of ROS may cause 

hypermethylation of promoter DMMR genes and may result in downregulation of enzymes 

through transcriptional silencing (Min, Lim, & Jung, 2010). To investigate this hypothesis, we 

have compared promoter methylation patterns of MutL homolog 1 (MLH1) and MutS 

homolog 2 (MSH2) in spermatozoa from oligozoospermic men. Therefore, this study aimed 

at comparing the promoter methylation patterns of MLH1 and MSH2 genes in spermatozoa 

between oligozoospermic and normozoospermic men and to evaluate the role of seminal 

ROS levels on this possible association. 

 

2  |  MATERIALS AND METHODS  

2.1 | Study group 

The study protocol was approved by the Institutional Review Board of the Cleveland Clinic. 

Ten males with idiopathic oligozoospermia (sperm concentration < 10 × 106/ml) attending 

the Andrology Clinic of Cleveland Clinic and 29 normozoospermic (sperm concentration 

>15 × 106/ml) controls (donors) were enrolled in this study. Informed consent was obtained 

from all participants. Semen samples were collected in sterile containers after a period of 

ejaculatory abstinence of 2–4 days. The exclusion criteria included a history of 

maldescended testes, testicular trauma or surgery, absence of secondary sexual 

characteristics, presence of varicocele, genito-urinary infection, leukocytospermia, use of 

gonadotoxic medication, endocrine disorders and any other identifiable causes of male 

infertility. 

 

After complete liquefaction of the ejaculate for 20–30 min at 37°C, all specimens were first 

assessed for volume, sperm concentration, total sperm count, sperm motility and round cell 

concentration according to World Health Organization (WHO) guidelines (World Health 

Organization, 2010). Sperm motility and concentration were assessed using a MicroCell 

counting chamber (Vitrolife, San Diego, CA). Samples were tested for leukocytospermia (>1 × 

106 WBC/ml) when the round cell concentration was >1 × 106/ml (Groen et al., 2016). 
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Subsequently, specimens were assessed seminal ROS production and sperm methylation 

profiles of MLH1 and MSH2 promoters, as below. 

 

2.2 | ROS measurement 

Reactive oxygen species levels were measured within one hour of collection with a 

chemiluminescence assay using luminol [(5-amino-2, 3-dihydro-1,4-phthalazinedione 

(Sigma—St. Louis, MO, USA)], which reacts with various intra- and extracellular ROS. 

Liquefied semen aliquots of 400 μl were used for ROS measurement. Chemiluminescence 

measurement was performed by an Automat 953 Plus Luminometer (AutoLumat Plus LB 

953, Oakridge, TN). The findings were reported as Relative Light Units/s/106 sperm 

(Agarwal, Ahmad, & Sharma, 2015). 

 

2.3 | Somatic cell lyses 

The aim of this procedure was to separate the germ cells from somatic cells such as 

leucocytes, lymphocytes and epithelial cells. This is essential as the DNA material from other 

cell types may interfere with the results of sperm DNA methylation. For somatic cell lysis, an 

aliquot of liquefied semen containing less than 10 × 106/ml sperm was pipetted into test 

tubes and centrifuged at 1500 × g for 8 min to remove the seminal plasma. After washing 

this pellet with 1 ml of 1X PBS, each sample was treated with 12 ml of somatic cell lysis 

buffer (0.1% sodium dodecyl sulphate [SDS], 0.5% Triton X-100 in 200 ml of distilled 

water) on ice for 30 min, Ostermeier, Dix, Miller, Khatri, & Krawetz, 2002). Afterwards, the 

supernatant was removed by centrifugation at 300 × g for 15 min. Samples were 

microscopically examined for ensuring complete somatic cell lysis. If necessary, the 

procedure was repeated. 

 

2.4 | DNA isolation 

After elimination of somatic cells, the DNA of sperm samples was isolated with Zymo 

Research Quick-gDNA™ MiniPrep (Irvine, CA, USA) according to the manufacturer’s 

instructions (Yegin, Gunes, & Buyukalpelli, 2013). In brief, specimens were first incubated in 

400 μl genomic lysis buffer for 5–10 min at room temperature, followed by centrifugation 

and two washing steps. Finally, sperm DNA was eluted with elution buffer and both the 

DNA concentration and its purity were measured using a NanoDrop spectrophotometer 

[Thermo Scientific 2000c (Waltham, MA, USA)]. DNA samples were stored at −80°C until 

bisulphite modification. 

 

2.5 | Bisulphite modification and methylation-specific polymerase chain reaction (MSP) 

Bisulphite modification of extracted DNA samples was carried out using the EZ DNA 

Methylation-Gold™ Kit (Zymo Research, Irvine, CA, USA). Approximately 500 ng 

DNA/20 μl were used for bisulphite modification (Yegin et al., 2013). MSP was run for the 

promoter regions of both MLH1 and MSH2 genes using methylated and un-methylated 

primer pairs. The primer sequences used in the analysis of MLH1 and MSH2 genes are listed in 

Table 1. 
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Methylation-specific polymerase was performed with ZymoTaq™ DNA Polymerase 

(Zymo Research, Irvine, CA, USA). The reaction was carried out in a final volume of 50 μl 

containing 2 μl of bisulphite-treated DNA, 0.25 mm of each dNTP (Zymo Research), 0.5 

μm of each of the primers and 2 units of Taq polymerase (Zymo Research). 

 

After initial denaturation at 95°C for 10 min, the subsequent steps of denaturation at 95°C for 

30 s, annealing at 60°C [MLH1 and MSH2, both for methylated (M) and unmethylated (U)] 

for 45 s and extension at 72°C for 60 s were repeated for 40 cycles (Yegin et al., 2013). Final 

extension was performed at 72°C for 7 min. Half of the PCR products were electrophoresed on 

a 2.5% agarose gel. Methylated and unmethylated products of MLH1 were identified by 115 bp 

and 124 bp, respectively, while MSH2 methylated and unmethylated products were 121 bp 

and 143 bp respectively. Universal methylated and nonmethylated human DNA standards 

(IVD) (Zymo Research) were used as a positive control for methylation and unmethylation, 

water was used as a negative control for PCR. 100-bp DNA Ladder (New England BioLabs, 

Ipswich, Massachusetts, USA) was used as a marker. The gel images of methylation status of 

the MLH1 and MSH2 promoters in sperm samples are shown in Figure 1. 

 

The gene methylation status was indicated as methylated when amplification products were 

detected in the reactions with the primers M or both M and U. Unmethylation status was 

indicated when amplification products were detected in reaction with the primers U only. 

 

2.6 | Statistical analysis 

For statistical analysis, MedCalc Statistical Software, Version 17.2 (MedCalc Software 

bvba, Ostend, Belgium), was used. After testing for normal data distribution using the 

Kolmogorov–Smirnov test, the nonparametric Spearman Rank correlation and Mann–

Whitney U test were applied as needed. In addition, receiver operating characteristic (ROC) 

curve analysis was performed to demonstrate sensitivity (true positive rate) and specificity 

(false positive rate). A p -value <.05 was considered significant. 

 

3 |  RESULTS 

Sperm concentration, sperm motility, ejaculate volume and seminal ROS levels for the 10 

oligozoospermic men and 29 normozoospermic donors are depicted in Table 2. 

 

http://repository.uwc.ac.za



5 
 

Sperm concentration, motility and ROS levels were significantly different between the 

groups of oligozoospermic patients and normozoospermic donors (Table 2). The percentage 

of MLH1 promoter methylation in patients with oligozoospermia was significantly higher 

than in normozoospermic men (p = .0013) (Table 3). Overall, 40% (4/10) of 

oligozoospermic infertile men had hypermethylation in their sperm DNA while none of the 

normozoospermic controls had methylation in MLH1 promoter (Table 3) (Figure 1a). 

Additionally, there was a significant positive association between ROS levels and MLH1 gene 

methylation (r = .384; p = .0159). 

 

The percentage of MSH2 promoter methylation was higher in oligozoospermic men (40%; 

4/10) than normozoospermic controls (17.2%; 5/29), (Figure 1b) but the differences were 

not statistically significant (p = .1102). There was no correlation between ROS levels and 

MSH2 promoter methylation (r = .279; p = .0859). 

 

Receiver operating characteristic curve analyses were performed in order to investigate the 

predictive power of the sperm MLH1 and MSH2 promoter methylation to distinguish 

between oligozoospermic and normozoospermic men. While the calculation for MLH1 was 

significant (p = .0275) with an area under the curve (AUC) of 61.1%, a sensitivity of 22.2%, 

specificity of 100.0%, a positive predictive value of 100.0% and a negative predictive value of 

60.0% (Figure 1a-b), for MSH2, the test was not significant (p = .1372) with an AUC of 60.3%. 

 

While significant negative associations between MLH1 (r = −.417; p = .0083) and MSH2 (r 

= −.400; p = .0116) promoter methylation could be found for sperm concentration, no 

correlations between MLH1 (r = −.275; p = .0899) and MSH2 (r = −.148; p = .3681) 

promotor methylation and sperm motility were observed. 

 

4 |   DISCUSSION  

Spermatogenesis is a complex and sensitive process of proliferation and differentiation of 

male germ cells involving replication, mitosis, meiosis and spermatogenesis (Chocu, Calvel, 

Rolland, & Pineau, 2012; Nussbaum, McInnes, Willard, & Hamosh, 2007). ROS, exogenous 

agents and abnormal sperm chromatin packaging result in poor sperm development and 

sperm nuclear DNA damage. Although the integrity of the sperm genome and stability of the 

male germ cell are generally protected by DNA repair mechanisms, recent studies have shown 

an association between idiopathic male infertility and aberrant DNA methylation of the 

whole genome or some genes in human spermatozoa (Gunes et al., 2016). 
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In this study, we have analysed the methylation patterns of the MLH1 and MSH2 genes in 

sperm samples of oligozoospermic and normozoospermic men. Our results suggest a 

significant promoter methylation in the MLH1 gene in oligozoospermic patients 

compared to normozoospermic controls. We also observed a significant positive 

association between elevated ROS levels and MLH1 gene methylation, but not with MSH2 

promoter methylation. To the best of our knowledge, this is the first study indicating an 

association among promoter methylation of MLH, elevated levels ROS and oligozoospermia. 

MLH1 is a DMMR protein involved in recombination between homologue chromosomes (Sun 

et al., 2007). Deficiency or absence of MLH1 gene was reported to be associated with 

gametogenesis failure in humans due to meiotic arrest at pachytene level, thus resulting in 

reduced chiasma formation (Ferguson, Leung, Jiang, & Ma, 2009). 

 

Infertile men with altered MLH1 distribution were also shown to have unsynapsed autosomal 

meiotic chromosomes and increased sperm aneuploidy rates (Ferguson et al., 2009). 

Similarly, tagged polymorphisms in MLH1 were shown to be associated with male infertility 

and sperm DNA damage (Ji et al., 2012). Recombination-induced double-strand breaks 

(DSB) and crossing over and then ligation of strands once again. Failure in ligation of these 

DNA strands may be deleterious during spermatogenesis and result in infertility (Cohen & 

Pollard, 2001; Marcon & Moens, 2005) . 

 

Immunohistochemistry studies reveal genomic instability and defects in MLH1 and MSH2 in 

nonobstructive azoospermic men. The proteins are mislocalised or absent in both germ cells 

and somatic cells (Maduro et al., 2003). Infertile patients with high seminal ROS levels 

usually present with low sperm counts compared with fertile males (Agarwal, Mulgund, 

Sharma, & Sabanegh, 2014). 

 

In addition to human studies, deletion of MLH1 results in disrupted spermatogenesis, 

meiotic arrest and infertility in mice (Baker et al., 1996; Edelmann et al., 1999). In the mice, 

MLH1 is located at meiotic crossing over sites and is involved in meiosis (Svetlanov & 

Cohen, 2004). Mukherjee and colleagues have reported that deletions of the MLH1 gene 

result in microsatellite instability and infertility (Mukherjee, Ridgeway, & Lamb, 2010). 

MLH1-deficient and MSH2-knockout mice exhibit microsatellite instability and infertility 
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due to meiotic arrest at pachytene and disruption of normal chromosomal synapses (Baker 

et al., 1995; Mukherjee et al., 2010). MSH2 is highly expressed in the mouse in 

spermatogonia and spermatocytes (Paul et al., 2007). In one study, an association between 

DMMR deficiency of MSH2 gene in somatic cells and loss of some germ cells was 

reported (Ji et al., 2012). MSH2-knockout mouse models demonstrated elevated 

predisposition to ultraviolet (UV) radiation-induced skin cancer or tumorigenesis without 

abnormalities in spermatogenesis (Paul et al., 2007). Similarly, our results have 

demonstrated no association among oligozoospermia and MSH2 promoter methylation 

in oligozoospermic men compared to normal controls. 

 

Finally, it is important to note that the present study is limited by the small sample size as 

well as the nonquantitative nature of the detection of the methylation status. These results 

are preliminary and part of a broader ongoing project to assess the role of MLH1 and MSH2 

genes in idiopathic male infertility and must be verified in larger cohort using other 

techniques. 

 

Epigenetic alterations in spermatozoa can be associated with idiopathic oligozoospermia, 

abnormal sperm morphology and decreased progressive motility. The epigenetic profile of 

spermatozoa may also affect the health of offspring as epigenetic aberrations are heritable. 

Although the exact cause and effect relationship between epigenetics and male infertility 

have not been elucidated, further investigation of this area holds a significant potential and 

great promise for understanding the molecular mechanisms of infertility. An epigenetic 

approach during the male infertility investigation can be useful because unlike the genetic 

changes including mutations, DNA methylation and histone modifications are epigenetic 

changes, which are reversible (Enokida & Nakagawa, 2008). This reversibility makes 

epigenetic changes attractive candidates for infertility treatment. 

 

In conclusion, our preliminary data indicate that the methylation pattern of MLH1 gene 

may have a role in oligozoospermia. Large cohorts and well-defined phenotypes are 

required to reveal the possible role of the methylation pattern of MSH2. However, further 

studies are warranted to understand the molecular mechanisms involved in the 

development of oligozoospermia as male infertility factor. 
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