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Abstract  

In this paper, we consider the Heston’s volatility model (Heston in Rev. Financ. Stud. 6: 

327–343, 1993]. We simulate this model using a combination of the spectral collocation 

method and the Laplace transforms method. To approximate the two dimensional PDE, we 

construct a grid which is the tensor product of the two grids, each of which is based on the 

Chebyshev points in the two spacial directions. The resulting semi-discrete problem is then 

solved by applying the Laplace transform method based on Talbot’s idea of deformation of the 

contour integral (Talbot in IMA J. Appl. Math. 23(1): 97–120, 1979). 

 

1 Introduction 

The Heston’s model is one of the most popular stochastic volatility models for derivative 

pricing. The model leads to a more realistic option price evaluation than the celebrated 

Black–Scholes model and constitutes its extension to the two-dimensional form [1, 2]. In 

[3], Heston derived a semi-closed formula for the model; however, its implementation is not 

a straightforward exercise because of the oscillatory behaviour of the complex integrand 

which comes into play through the Fourier-type inversion formula. Therefore, we turn to 

numerical methods to approximate these option pricing problems. 

 

Most of numerical methods for evaluating the Heston’s model are based on the method-of-

line approach which consists of two steps. Firstly, the PDE is discretized in space, thus 

generating a system of ordinary differential equations. Secondly, the subsequent semi-

discrete problem is solved in time by applying a suitable time integration method. This is the 

approach followed in some of the numerical methods we review below. 

 

In’t Hout and Foulon [4] used the method-of-line approach to solve the Heston’s model. 

They first discretized the PDE using a non-uniform grid to capture the important region 

around the strike price. Then they integrated the resulting semi-discrete problem by using 

four different alternating direction implicit (ADI) methods in time. As ADI methods, they 

considered the Douglas [5, 6], Craig–Sneyd [7], the modified Craig–Sneyd [7, 8] and the 

Hundsdorfer–Verwer [9, 10] schemes. Their approach was latter extended to the more 

complex Heston–Hull–White PDE in [11]. 
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In [12], Ikonen and Toivanen studied the accuracy of the operator splitting methods for 

pricing American options with stochastic volatility. In their numerical experiments, they 

compared the accuracy of their approach with conventional implicit projective successive over 

relaxation (PSOR) time discretization method [13, 14]. Their results demonstrated that the 

additional error, due to the splitting, does not increase the time discretization error. 

 

Zhu and Chen [15] applied a singular perturbation method to price a European put option 

with a stochastic volatility model, and derived a simple analytical formula as an 

approximation for the valuation of European put options. In’t Hout and Weideman [16] 

used finite differences to semi-discretize the Heston model in space and subsequently used 

the contour integral method for time integration. They compared the efficiency of the 

contour integral approach with the ADI splitting schemes for solving this problem. The 

numerical experiments showed that the contour integral method was superior for the 

range of medium to high accuracy requirements. 

 

Some other interesting works dealing with volatility models and their applications can be 

found in [17–25] and some of the references therein. 

 

In this paper, we apply the spectral method based on Chebyshev points to discretize the 

PDE in each spatial direction. Then we use a tensor product of one-dimensional 

polynomials to represent the two-dimensional basis functions. For the time discretization, 

we consider the contour integral methods. The rest of this paper is organized as follows. In 

Sect. 2, we discuss the Heston’s model. In Sect. 3, we discuss the application of spectral 

methods to solve the model problem. Section 4 deals with the contour integral method for 

time discretization. Numerical results of our experiments are presented in Sect. 5. Finally, 

some concluding remarks and scope for future research are given in Sect. 6. 

 

2 Description of Model Problem 

Let V ≡ V (s, ϕ, τ) denote the price of a European option described by the Hes- ton’s 

stochastic volatility model at time τ = T − t . Then, V satisfies the following ton’s PDE 

 

 
 

where 0 ≤ τ ≤ T , s > 0 and ϕ > 0. The parameter κ > 0 is the mean-reversion rate, ς > 0 is 

the long-term mean, σ > 0 is the volatility-of-variance, ρ ∈ [−1, 1] is the correlation between 

the two underlying Brownian motion, r denotes the risk-free interest rate.  

 

For a European put option, the payoff yields the initial condition 
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where K > 0 is the strike price of the option. In numerical practice, a bounded spatial domain  

[0,smax] x [0,ϕmax] is chosen with fixed values smax, ϕmax taken sufficiently large. The 

boundary conditions are 

 

 
 

We use the spectral approach for the discretization of (1)–(3) in the next section. 

 

3 Discretization Using Spectral Methods 

We discretize the two dimensional problem (1) by using the spectral method. To this end, 

as a basis, we recall the discretization of a one-dimensional function and then we extend the 

discretization to the two-dimensional problem by using the tensor product. 

 

To begin with, let us note that the rational approximation of a function u, defined on [−1, 1], 

at the Chebyshev points ξk , k = 0, 1,...,N  

 

 
 

where wk , k = 0, 1,...,N are the barycentric weights defined by w0 := 1/2, wN := (−1)N /2, 

and wk := (−1)k ; k = 1 ,...,N − 1. For the rational spectral method, the mth order 

differentiation matrix associated with the rational interpolant (4) is given by 
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Where are the entries of the differentiation matrix of order m. The formulas to 

Construct were given by Schneider and Werner in [26] for m = 1 and m = 2 and were 

latter generalized for any order by Tee in [27]. The first and second order differentiation 

matrices are given by the following formulas 

 

 
 

The above expressions will be useful in the discretization of the two-dimensional problem 

(1), as we discuss below. Similarly to the one-dimensional approximation, the rational 

approximation for a two-dimensional function defined on [−1, 1] × [−1, 1] is given by 

 

where wj , j = 0, 1, . . . ,N and wk , j = 0, 1, . . . , Ñ  are the barycentric weights defined by w0 

:= 1/2, wN  := (−1)N /2, and wj  := (−1)j ; j = 1,...,N − 1, and wÑ  := (−1)Ñ  /2, and wk 

:= (−1)k ; k = 1, . . . , Ñ  − 1. 

 

In this paper, we proceed differently to discretize the two-dimensional problem (1). We set 

up a grid based on Chebyshev points independently in each direction s and ϕ, called the 

tensor grid [28–30]. 

 

Definition 3.1 Let P ∈ R.t×k  and Q ∈ Rm×n. The tensor product, also called the 

Kronecker product, of P and Q is the matrix defined by 
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On the tensor grid, the discretization of other derivatives reads 

 
where ⊗ denotes the Kronecker product, Is and Iϕ are the identity matrices in the s and ϕ 

direction, respectively; are the first and second order differentiation matrices in 

the corresponding variable. 

 

To discretize (1), we map each domain to the reference interval [−1, 1] by the l i n e ar 

transformations 

 

 
 

On the tensor grid, (1) becomes 

 

 
 

Where 
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Now (13) can be written in the form of a global matrix as 

 
 

Where 

 

 
 

We solve (14) by the Laplace transform method discussed below. 

 

4 Application of Laplace Transform to Solve the Semi-discrete Problem 

In this section, we consider the Laplace transform for integrating the parabolic problem (14) 

with an initial condition V0  and where A is a parabolic operator with its eigenvalues 

located in the region Σδ = {z ∈ C : | arg(z)  < δ, z /= 0}, for some δ ∈ (0,π/2). Furthermore, 

the resolvent (zI − A)−1 of A  satisfies 

 

 
 

for some constant C > 0 independent of z. Note that this implies that the function V admits 

a holomorphic and bounded extension to a region containing t ≥ 0, a familiar situation 

arising, for example, in the context of parabolic problems. 

 

A direct application of the Laplace transform to (14) leads to 

 

 
 

where I is the identity matrix and and the Laplace transform of V (·, t) defined by 
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The inverse is evaluated on a contour Γ , known as the Bromwich contour, as 

 

 
 

The contour Γ is chosen such that it encloses all the singularities of  (·, z). 

 

Our numerical method for inverting the Laplace transform is based on the method developed 

by Talbot [31] and uses the deformation of the Bromwich contour. The integral is then 

evaluated using the trapezoidal rule. Talbot’s idea was to deform the Bromwich line into a 

contour which starts and ends in the left half-plane. Such a deformation of the contour is 

possible by the Cauchy’s integral theorem [32]. Cauchy’s theorem is applicable, provided 

that all singularities of the transformed function (·, z) are contained in the interior of 

the new contour and that |  (·, z)| → 0 as |z|→∞ in the half-plane [33]. Such contours 

are used in [31, 33, 34], all of which are of the form 

 

 
 

with the property that Re z → −∞ as .e → ±∞. 

 

The efficiency of the Talbot approach depends on the choice of the contour, as well as the 

number of function evaluations in the trapezoidal rule. Simpler contours, such as hyperbolas 

and parabolas, are proposed in [33, 34]. These contours display a better convergence rate 

than the original cotangent contour used by Talbot. In this paper, we consider the hyperbola 

as the integration contour defined by 

 

 
 

where the real parameters >0 and 0 < α < π/2 determine the geometry of the contour. The 

positive parameter  controls the width of the contour, while α determines its geometric 

shape, i.e., the asymptotic angle. On the contour (19) the inversion formula (18) can be 

rewritten as 
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Where 

 
 

For h > 0 such that lk = kh, where k is an integer, the trapezoidal rule can then be expressed 

by 

 

 
 

In practice, the infinite sum has to be truncated at a finite integer M , in which case one 

commits a truncation error as discussed below. Note that, because of the symmetry of the 

contour (19), (21) can be rewritten as 

 

 
 

where ‘o’ indicates that the first term is divided by 2. The benefit of using (22) is that it 

reduces by half the summation (21) and subsequently the number of linear systems to be 

evaluated in (16). 

 

In the following subsections, we analyze the overall error that occurs during the 

approximation of the solution using our method for integration in time. 

 

4.1 Analysis of the Error 

In this section, we analyze the error associated with the use of the Laplace transform for 

integration in the time direction. To this end, first we note that the application of the 

trapezoidal rule (21) to the unbounded integral (20) introduces discretization error. Second, 

a truncation of the infinite series (21) at a finite integer M (for practical implementation) 

produces a truncation error as one would expect. Furthermore, since the evaluation of (21) is 

done in a floating point environment, a roundoff error is also introduced at each evaluation 

there. This roundoff error may increase dramatically and affects the accuracy of numerical 

solution due to the exponential factor involved in (21), as we will discuss below. The error due 

to the use of the Laplace transform is therefore the sum of the discretization, truncation and 

conditioning errors. 

http://repository.uwc.ac.za



 

9 
 

 

4.1.1 Discretization Error 

The discretization error is the difference between the continuous formula (20) and the 

corresponding trapezoidal formula (21), i.e., 

 

 
To estimate the discrete error (23), the idea is to use the contour integral to represent Ed . 

This approach based on the Cauchy’s Residue theorem in complex analysis was originally 

developed by Martensen for an analytic function f (t ) defined on (−∞, ∞) [35]. In that paper, 

the author showed that for an analytic function, the trapezoidal rule (21) converges 

exponentially, as illustrated in the following theorem. 

 

Theorem 4.1 Let f : R → R be an analytic function. Then there exists a strip R × (−d, d) 

in the complex plane with d > 0 such that f can be extended to a complex analytic 

function f : R × (−d, d) → C. Furthermore, the error for the trapezoidal rule indicated in 

(23) is given by 

 
From the above theorem, clearly,  
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For further discussion on the convergence properties of the trapezoidal rule, we refer the 

readers to [35]. 

 

4.1.2 Truncation Error 

The truncation error is the error made by ignoring the remaining terms in (21) after 

truncating the series at a finite number M , and is given by 

 

 

Because of the exponential factor ez(lk)t , the terms in the sum decrease exponentially as k → 

∞, and therefore in this case one commits only an exponentially small error whose 

contribution therefore can be neglected. 

 

4.1.3 Conditioning Error 

To study the conditioning error in the application of the Laplace transform, re- call that 

in (21), the approximation f̃ (t ) requires the evaluation of the transformed F (zk ) = F (z(lk )), 

for k = −M, −M + 1,...,M − 1,M . In reality, these evaluations are affected by round-off errors 

which means that the actual approximation that takes place is 
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The function L is such that L(x) → 1 as x → ∞, and L(x) ∼ | ln x| as x → 0+. This function L 

has the property stated in the following lemma. 

 

Lemma 4.1 The function L defined above satisfies the following inequality 

 
Which completes the proof. 
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To see how the conditioning error affects the numerical results, we need to estimate . 

To this end, note that 

 

 
The following two inequalities are proved in [34], thus here we only state them in our 

context. One of them is 

 

 
whereas the other one is 

 
 

From (27) and (28), we deduce that 

 

 

We note that (30) is independent of (·, z) and propagates moderately with respect to  . 
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In summary, (24), the argument mentioned just after (26) and (30) imply that the total error 

is fully controllable as long as we choose the optimal values of the associated parameters. The 

derivation of these parameters is described below. 

 

4.2 Derivation of the Optimal Contour Parameters 

In this subsection, we derive optimal parameters of the contour (19) on which the integral 

is to be evaluated. To this end, we note that the computational effort in the evaluation of VM 

(·,t) in (21) comes from the evaluation of the Laplace transform (·, z) in (16) for each 

z(lk). Furthermore, we note that this evaluation of (·, t ) is independent of time t and thus 

can be carried out once, and subsequently use the same evaluation to approximate VM (·,t) at 

a different time level over an interval [t0, Λt0] for an integer Λ. Note also that various 

methods for finding an optimal contour were developed in [33, 34]. In [33], the following 

convergence estimate for the family of hyperbolic contours were derived 

 

 
  

Therefore, the total discretization error on the strip (−d, d), denoted by Er, is given by 

 

 
 

Moreover, the truncation error that we found satisfies 

 

 
 

To obtain an optimal contour parameter, we argue as follows: first note that only the second 

equation in (31) and (32) are time dependent. On the one hand, the erro r Et decreases when 

t increases and thus is maximum at t0. To see this, we consider α  (π/4,π/2), which implies 

that the inequality 1  < sin α < 1 holds. For M → ∞, multiplication of both sides of the 

inequality by cosh(hM) yields 
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On the other hand, the discretization error E−d increases with t , and so is maximum at t = 

Λt0. 

 

To estimate the optimal parameters of the contour on [t0, Λt0], an asymptotic balance of the 

three errors at their maximum, i.e., Et , Ed , E−d is required. To this end, we set 

 

 
 

The contour parameters (37) and (36) are fixed and time independent. As a result, the 

corresponding contour (19) is also fixed over the interval [t0, Λt0]. From the parameters 

derived above, the error is 
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The optimal error is obtained when B(α) attains its maximum for each value of Λ. In our 

computation, we choose an Λ = 50 and obtained optimal parameters as listed in Table 1. 

 

Below we discuss the numerical results. 

 

5 Numerical Results 

In this section, we compute the European put option prices for the Heston’s model (14) with 

boundary conditions (3) using the spectral method in space and the contour integral method 

in the time directions. The number of mesh discretization points in the space (asset) and the 

volatility space directions are 25 and 15, respectively. The other parameter values used in the 

simulation are K = 10; σ = 0.9; r = 0.1; ρ = 0.1; ς = 0.16; T = 0.25, smax = 20, ϕmax = 1. The 

prices are presented in Tables 2 and 3 for asset values s = 8; 9; 10; 11; 12 and for the variance 

values ϕ = 0.0625 and ϕ = 0.25. In the first column, we have the values of the asset, the second 

column contains the exact values obtained in [12], the third column contains the values 

obtained from our inverse Laplace transform (ILT) approach, and the last column 

represents the estimated error. 

 

From Tables 2 and 3, we observe that the direct application of the spectral method combined 

with the ILT method produces results which are second order accurate. 
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6 Concluding Remarks and Scope for Future Research 

We proposed the spectral method combined with the Laplace transform method for pricing 

European options using Heston’s stochastic volatility model. In this approach, a direct 

spectral method is applied for discretization in space. To approximate the derivatives in 

both s and v directions, we set up a grid based on Chebyshev points independently in both 

directions and then considered a new grid, which is the tensor product of these two grids. Our 

computational results show that the proposed method is second order accurate. 

 

Currently, we are investigating the possibility of using the multi-domain decomposition 

method in space to further improve the accuracy. This may further be augmented with the 

use of a higher order time integration technique. 
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