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We study the dynamical state of the one-dimensional noisy generalized Kuramoto-Sivashinsky
(gKS) equation by making use of time-series techniques based on symbolic dynamics and complex
networks. We focus on analyzing temporal signals of global measure in the spatiotemporal patterns
as the dispersion parameter of the gKS equation and the strength of the noise are varied, observing
that a rich variety of different regimes, from high-dimensional chaos to pure stochastic behaviour,
emerge. Permutation entropy, permutation spectrum and network entropy allow us to fully classify
the dynamical state exposed to additive noise.

I. INTRODUCTION

External or internal random fluctuations are well-known to have significant impact on the formation of complex
spatiotemporal patterns in a wide spectrum of biological, engineering and physical environments, with several examples
in the context of fluid dynamics, e.g. Rayleigh-Bénard convection [1, 2], contact line dynamics [3, 4], or waves on
free-surface thin-film flows [5, 6]. Many of these systems can be modeled by noisy spatially extended systems (SES)
described through stochastic partial differential equations (SPDEs) in large or unbounded domains. SES are typically
characterized by the presence of a wide range of length and time scales which non-trivially interact with each other
and which often leads to complex spatiotemporal behavior, such as for example noise-induced phenomena including
spatial patterns and phase transitions [7–11].

A well-known prototype is the Kuramoto-Sivashinsky (KS) equation, a paradigmatic example of SES exhibiting
sptatiotemporal chaos, which has been shown to be applicable in a wide spectrum of physical settings, including
hydrodynamic (e.g. thin-film) instabilities [12, 13] and optics such as bright spots formed by self-forcing of the beam
profile [14]. For thin film flows in particular, such as falling films, the KS equation is obtained via a weakly nonlinear
expansion of the 1D Navier-Stokes equations subject to wall and free-surface boundary conditions and assuming
strong surface tension effects–long waves [15]. With the addition of noise, the stochastic version of this equation, the
noisy KS equation, has been used as a prototype for a wide spectrum of nonlinear systems, e.g. wave evolution of
thin films through sputtering processes, and ion beam-erosion induced nanostructures on solid surfaces [16–23]. A
key point in these studies was the understanding of emergence of underlying scaling growth laws as a consequence of
kinetic roughening processes. Moreover, it has recently been shown that the noisy KS solution close to the instability
onset may undergo several non-trivial critical transitions between different dynamical states corresponding to dynamic
phase transitions, including intermittency, as the noise intensity is increased [24, 25]. A rigorous justification of the
presence of noise and stochastic effects as a result of stochastic mode reduction (using elements from evolutionary
renormalisation group theory together with the principle of maximum information entropy) has been recently given
in Refs. [26, 27].

Likewise, a more general version of the deterministic KS equation which includes dispersive effects, and is often
referred to as the generalized KS (gKS) equation, has been used in a wide variety of contexts, such as reactive and
falling films [28–30], films falling down a uniformly heated wall [31] and a vertical fiber [32], two-phase flows with
surfactants [33], plasma waves with dispersion [34], and step dynamics [35–37], amongst others. An extended version
that includes the Hilbert transform operator has also been derived for modeling a conducting liquid film dynamics
exposed to an external electric field [38], while different methodologies to control the solution of the gKS equation
have been proposed recently [39, 40].

The key feature of the gKS equation is that for sufficiently small dispersion effects its dynamical behaviour resembles
the high-dimensional spatiotemporal chaos of the deterministic KS solution, while sufficient large dispersion effects
tends to regularise and arrest the usual KS spatiotemporal chaos in favor of spatially periodic travelling waves,
which are very common in falling liquid films [41]. This effect has been intensively studied via coherent-structure
theories [42–49]. In addition, we have ourselves recently investigated the transition process from high-dimensional
to low-dimensional chaos in the gKS equation owing to the appearance of dispersion effects [52]. However, there
are no detailed studies on how the presence of additive noise may affect the overall behaviour of the gKS solution,
particularly understanding the interplay between dispersion and additive noise effects. This is relevant for many
different applications such as, e.g., in the context of thin-film hydrodynamics, where noise may enter the system via
perturbations on the solid substrate boundary [25], or through thermal fluctuations for which one needs to consider the
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FIG. 1: Spatiotemporal patterns of the noisy gKS solution for different values of σ and δ.

stochastic Navier-Stokes equations to obtain a simplified thin-film partial differential equation that includes stochastic
effects [53, 54].

Our overarching objective here is precisely the understanding of this interplay but also to reveal how additive noise
alters the dynamical states of the noisy gKS equation. To this end, we adopt two time-series analyses in terms of
symbolic dynamics, namely the permutation entropy and the permutation spectrum proposed by Kulp and Zunino
[56] as a means to distinguish between chaotic and stochastic dynamics. In relation to the Shannon entropy, another
useful measure in terms of complex networks, referred to as the network entropy, has been proposed by Luque et
al. [57]. This considers the probability distribution of the degree in the horizontal visibility graph, and can capture
the significant transition to chaos via period-doubling bifurcation process. We also attempt to distinguish between
chaotic and stochastic dynamics from the viewpoint of complex network.

Using these methodologies, we show that the noisy gKS solution exhibits a very rich dynamics as the two relevant
parameters, namely the parameter controlling dispersive effects and the noise intensity, are varied, observing that the
dynamics can be classified into three distinct regimes: deterministic chaotic regime, co-existence regime of chaos and
noise, and purely stochastic regime. We also show that these methodologies based on symbolic dynamics and complex
networks are more powerful to distinguish between chaos and stochasticity than other more standard techniques such
as power spectral density and nonlinear forecasting methods.
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II. SPATIOTEMPORAL DYNAMICS OF THE NOISY GKS EQUATION

We consider the noisy gKS equation:

∂u

∂t
+ u

∂u

∂x
+
∂2u

∂x2
+ δ

∂3u

∂x3
+ ν

∂4u

∂x4
+ σζ(x, t) = 0, (1)

in a periodic domain [−L,L], i.e. of size 2L, where ζ(x, t) is a Gaussian stochastic process with properties 〈ζ(x)〉 = 0
and 〈ζ(x, t)ζ(x′, t′)〉 = 2δ(x − x′)δ(t − t′); and σ represents the strength of the noise. The parameters ν and δ
characterize viscosity damping and relative importance of dispersion, respectively. It is noteworthy that a detailed
derivation of the noisy KS equation in the context of thin-film hydrodynamics, i.e. externally forced falling liquid
films, is given in Ref. [25]. This can be appropriately modified to obtain the noisy gKS equation; after all, the KS
equation is the relevant prototype for falling films close to criticality, while really close to criticality the KS equation is
replaced by the gKS one. In this context the parameter δ is related to the Reynolds number, Re, and Weber number,
We, as δ =

√
15/2(Re−Rec)We, where Rec represents the critical Reynolds number [41]. The control of the noisy

gKS equation was considered in the recent study in Ref. [63].
Some previous studies on the KS equation [58, 59] have reported that for sufficiently large L, many Fourier modes are

active and the transition to spatiotemporal chaos becomes independent of L. On this basis, an extended computational
domain with L = 500 is discretized into NL = 5000 points. Equation (1) is then numerically solved by adopting a
pseudo-spectral method for the spatial derivatives that uses the Fast Fourier Transform (FFT) to transform the u(x, t)
solution to Fourier space with wavenumber k ∈ [−π/∆x, π/∆x] so that aliasing is avoided [60] and where ∆x = L/NL.
The nonlinear term is evaluated in real space and transformed back to Fourier space by using the inverse FFT. The
solution is then propagated in time by making use of a modified fourth-order exponential time-differencing-time-
stepping Runge-Kutta (ETDRK4) scheme [61, 62] with a time step ∆t = 0.1, and a sampling time interval of dt = 1.
The additive noise is numerically introduced by considering its Fourier representation: ζ(x, t) =

∑
kWk(t) exp (ikx),

where Wk(t) is a Gaussian white noise with W−k = W ∗k , with the star denoting its complex conjugate. We impose
a random initial condition as u(x, 0) = ξ(x) with 〈ξ(x)〉 = 0 and 〈ξ(x)ξ(x′)〉 = 2δ(x − x′). We choose ν = 1 and
vary the dispersion parameter δ from 0 to 2 so that the underlying deterministic dynamics undergoes a transition
from high-dimensional chaos to periodic solutions [52]. Note that we ensure that the probability density function of
the random initial conditions converges to a normal distribution of mean zero and variance one so that starting the
computations with different random initial conditions has little influence on the gKS solutions.

Figure 1 depicts the spatiotemporal patterns of the noisy gKS equation for different values of δ and σ. For δ = 0
(which corresponds to the KS solution), we observe that for small values of the additive noise strength deterministic
high-dimensional chaos is observed but this tends to disappear as σ is increased, observing a noisy pattern, as expected.
For δ = 0.2 and δ = 0.4, the emergence of localized coherent structures starts to be important which in turn gives rise
to a regime of low-dimensional chaos [52], also known as “interfacial turbulence in the Manneville sense” [41, 64]. We
can see that this regime is still retained for sufficiently small values of the noise strength but it appears to be more
sensitive to variations in σ than the high-dimensional chaos regime observed at δ = 0.

Our main goal is to quantify the dynamics of the noisy gKS solution by understanding how the different regimes
of chaos and stochasticity appear and disappear in the parameter space defined by (σ, δ). To this end we shall make
use of time-series analyses to study the time fluctuations of the global measure corresponding to the second moment
of the noisy gKS solution which is defined as follows:

uG(t) ≡ 1

2L

∫ L

−L
[u(x, t)− u(t)]2dx, (2)

where the overbar denotes spatial average.Figure 2 shows typical evolutions of the signal uG(t) for δ = 0 and different
values of σ. It is important to remark that one of the reasons of choosing such a global quantity is because global
quantities are often easier to obtain experimentally than e.g. local measures. We also note that as it has recently been
shown in Ref. [52], global and local quantities give qualitative similar descriptions of the deterministic gKS system.

III. TIME-SERIES ANALYSES METHODOLOGIES

We briefly review here some of the methodologies adopted in this study to quantify the dynamics of the temporal
global measure uG(t) and which have been recently proposed in the literature.
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Fig. 1 Spatiotemporal patterns of the noisy-gKS 
solution for different values of  and  

Fig. 2 Time variation in uG of noisy-KS solution 
( = 0) for different values of  

RESPONSE TO COMMENTS BY REFEREE #1 
 
#1 The study is a strictly numerical experiment. A rather long system, L = 500, is considered and 
well-resolved simulations are performed using a pseudo-spectral scheme adapted to periodic boundary 
conditions. It is however not said how aliasing is dealt with, but NL = 5000 is likely 3/2 the number of 
Fourier modes. 
 

Some previous studies (K. R. Elder et al., Phys. Rev. E 56, 1631 (1997); R. W. Wittenberg 
and P. Holmes, Chaos 9, 452 (1999)) on the KS equation have reported that for sufficiently 
large L, many Fourier modes are active and the transition to spatiotemporal chaos becomes 
independent of L. On this basis, we choose L = 500 and NL = 5000. We ensure that the 
probability density function of the random initial conditions converges to a normal 
distribution of mean zero and variance one so that starting the computations with different 
random initial conditions has little influence on the gKS solutions. The averaging over ten 
different realizations of the initial conditions are considered in this study to improve the 
precision of numerical results. 
We have clarified these points in Sec. II of the new version of the manuscript. 

 
#2 How noise is introduced in the numerical scheme is also not alluded to, which is not completely 
trivial for the value of the noise intensity to make sense, comparisons to be made, and the results to be 
reproduced independently. The effective noise intensity indeed has to be appropriately normalized since 
it is not the same to add the same level of noise more or less frequently according the value of the time 
step. 
 

Do we need to normalize the noise intensity?? 
 
#3 Since no instantaneous profile of u(x, t) nor, at least, the order of magnitude of uG(t) - the spatial 
mean of the second moment of the point-wise fluctuations of the solution - are given, it is difficult to 
appreciate the order of magnitude of the noise, i.e. whether ‘sigma = 1’ is large, thus making the pure 
stochastic regime highly expectable. Color bars in Fig.1 and typical time series of uG for different 
values of the noise amplitude would help one figure it out. 
 

Following the Referee's suggestion, we included the color bars in Fig. 1 and time series of uG 
for different noise strengths as Fig. 2 in the new version of the manuscript. 
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FIG. 2: Time variation of the signal uG for δ = 0 and different values of σ.

A. Permutation entropy and permutation spectrum

Permutation entropy [55] is used to estimate the degree of randomness from a sequence of ranks in the values
of a time series, and it has been shown to capture the complexity of the dynamics observed in a broad range of
systems from physical sciences to engineering [65]. A modified version of it has also been recently proposed to
quantify the complexity of heartbeat dynamics [66]. In this study, we use the permutation entropy to capture
the changes in the dynamical state of the noisy gKS solution. For the estimation of the permutation entropy, we
first set the order of the permutation, De, which is defined as the number of points in time series consisting of
uG(ti) = (uG(ti), uG(ti + 1), ..., uG(ti +De − 1)), where i = 0, 1, . . . , n with n being the number of values in the data
set. We index all possible permutation patterns (De! permutations) which we denote as π. We then calculate the
probability, p(π), of the existing patterns for all uG(ti). We note that each permutation represents a coarse-grained
pattern in the temporal evolution of uG(ti). Following the definition of Shannon entropy, the permutation entropy hp
is obtained as:

hp =

−
∑
π
pe(π)log2pe(π)

log2De!
. (3)

We note that we include the normalization constant (log2De!) so that the permutation entropy varies between
0 ≤ hp ≤ 1, where hp = 0 corresponds to a monotonically increasing or decreasing process, while hp = 1 corresponds
to a completely random process.

On the other hand, we also consider the permutation spectrum which was proposed by Kulp and Zunino [56] and
enables us to test for the existence of determinism underlying complex dynamics. In this method, the realization
frequency for each sequence occurring in disjointed windows is calculated by iterating over the time series. The
permutation spectrum consists of the frequency distribution of permutation patterns for each disjointed window and
their standard deviation between the windows. The appearance of zero standard deviation with some forbidden pat-
terns (original patterns that are absent in the frequency distribution) [56] indicates the presence of chaotic dynamics,
while the dynamic behavior of uG exhibits stochasticity if observing a non zero standard deviation and no forbidden
patterns.

It should be noted that Bandt and Pompe [55] considered the permutation entropy considering the frequency of
the rank order patterns with embedding dimension 3 ≤ De ≤ 7 for the consecutive points of time series (time delay of
phase space τ = 1). In contrast, Kulp and Zunino [56] considered De = 4 and 5. In a preliminary test (not shown),
we found that the forbidden patterns in the permutation spectrum appear even in stochastic dynamics, such as
e.g. Brownian motion, under De ≥ 7. This suggests that the embedding dimension with De ≤ 6 should be considered
for the computation of the permutation entropy. On the basis of this preliminary test and the work by Kulp and
Zunino [56], we consider De = 5 as a suitable embedding dimension. Note that an advantage of the permutation
entropy is that it is not necessary to consider the construction of high-dimensional phase space that is required for
computation of the largest Lyapunov exponent and correlation dimension.
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B. Network entropy

Luque et al. [57] have shown that the network structure in the horizontal visibility graph captures the sensitivity
to initial condition in nonlinear dynamics due to orbital instability. On this basis, we estimate the network entropy in
the visibility graph. We connect two nodes in the graph if uG(ti) and uG(tj) in the time series satisfy the geometrical
criterion

uG(ti), uG(tj) > uG(tn), ∀n ∈ (i, j). (4)

Following the definition of the Shannon entropy, the network entropy hn is obtained using the degree distribution in
the graph.

hn = −
∑
k

p(k) ln p(k), (5)

where k is the degree and p(k) is the degree distribution of the visibility graph. It should be noted that the permutation
entropy considers local randomness between nearby discrete data points of time series, while the horizontal visibly
graph consists of the connections between the discrete data points in unlimited width of window, or in other words,
the network entropy incorporating the degree distribution represents the global randomness of time series. Hence, an
important advantage of using the horizontal visibility graph is that it is not necessary to consider the window size of
time series, i.e. it is not necessary to consider the embedding dimension corresponding to pattern-length. Recently, the
permutation entropy and network entropy have been adopted for hydrodynamic transition to wave turbulence [67],
which shows that the use of these entropies becomes important for classification of different dynamical behaviors in
noisy deterministic data.

C. Nonlinear forecasting

Here we adopt our nonlinear forecasting methodology introduced in Ref. [52] to extract the predictability properties
of the noisy gKS solution. Our methodology has also been applied successfully in a wide spectrum of different
applications, from combustion instability in a thermoacoustic system [68] and radiative heat-loss-induced flame front
instability [69]. In our methodology, we first divide a given temporal signal of uG(t) for t ∈ [0, Tf ] into two intervals,
namely t ∈ [0, tL] and t ∈ (tL, Tf ], corresponding to a library and test set, respectively. Note that Tf is the final time
of the given temporal signal of uG(t). The library data is used to predict the temporal signal of uG(t). The test set is
used to compare with the predicted temporal signal of uG(t) for t > tL. We adopt Taken’s embedding theorem [70] to
construct the vectors in a D-dimensional phase space consisting of uG(ti) = (uG(ti), uG(ti− τ), ..., uG(ti− (D− 1)τ))
where τ is a lag time which is estimated by the mutual information, in a similar way as done in Refs. [52, 68, 71].
In addition, we set D = 5 to nonlinear forecasting the signal uG(t). We define uGf ≡ uG(tf ) as the last point of
a trajectory in the phase space constructed from the reference data. Neighboring vectors, denoted by uGk, to the
vector uGf are searched from all data points in the phase space. We denote the predicted value corresponding to
uGk after T as uG(tk + T ), and then predict ǔG(tf + T ) by Eq. (6):

ǔG(tf + T ) =

∑K
k=1 uG(tk + T )e−dk∑K

k=1 e−dk
, (6)

which consists of a nonlinearly weighted sum of the library data uG(tk+T ), where dk is the Euclidian distance between
uGf and uGk. We then compare the predicted ǔG(tf + T ) and the test set uG(tf + T ) by estimating the correlation
factor defined as:

C =
E[uG(t)ǔG(t)]

σuG
σǔG

, (7)

where E[u(t)ǔG(t)] denotes the covariance between both signals, and σuG
and σǔG

are the standard deviation of uG
and ǔG, respectively. The relation between correlation coefficient C and predicted time tP allows us to extract the
short-term predictability and long-term unpredictability characteristics of the dynamics, as proposed in our recent
study on the deterministic gKS equation [52].
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FIG. 3: Power spectrum density Su(f) for different values of σ and for δ = 0 (a), δ = 0.2 (b), and δ = 0.4 (c). The red dashed
line corresponds to a power law with exponent −1.56 ± 0.08.

IV. NUMERICAL RESULTS OF THE NOISY GKS EQUATION

We present here the analysis of the time series uG(t), computed from the gKS solution. Since we are comparing
chaotic to stochastic regimes, all the methodologies which we use to analyse the noisy gKS solution will also be
applied to a reference pure stochastic signal which we choose it to be a solution of a simple and well-known SPDE.
In particular, we consider the Edward-Wilkinson (EW) equation [72], which was derived to physically understand
stochastic particle sedimentation, and is the simplest linear stochastic equation for describing the growing interface
roughness which is governed by the interplay between surface tension and noise:

∂u

∂t
=
∂2u

∂x2
+ σζ(x, t), (8)

where ζ(x, t) is a Gaussian white noise with same properties as in Eq. (1). We compute the corresponding global signal
uG for the EW equation and we analyse it by making use of time series analysis. This will be used for comparison
with the noisy gKS solutions.

A. Power spectrum

We start by making use of some standard tools for time signals analysis. In particular, we analyze the power spectral
density (PSD) of uG which is defined as Su(f) = |〈ûG(f)|2〉. Here, ûG(f) represents the Fourier transform of uG(t) in
the frequency domain, and the symbols 〈. . . 〉 denote average over different time intervals - we note we are assuming
statistically stationary solutions. Figure 3 shows the PSD for different values of σ and δ covering the high-dimensional
chaos regime (which is obtained for δ = 0) to low-dimensional chaos (δ = 0.4). We observe that the PSD changes
from being exponentially decaying at small values of the noise intensity, an important feature of chaotic signals, to
exhibiting a power-law decay with exponent −1.56 ± 0.08 at sufficiently large values of the noise intensity, a feature
typically connected with stochastic processes. In this sense, the noisy gKS equation includes a regime where both
stochastic effects and low-dimensional chaos are competing at different scales (we note that coherent structures are
constantly interacting with each other while noise is acting as a constant destabilising mechanism), which is typical
of turbulent-like systems.

B. Permutation entropy, permutation spectrum and network entropy

Figure 4 depicts the permutation entropy hp as function of δ and σ. Note that we use the value of hp for the EW
solution as a reference of a pure stochastic process, which gives a numerical value of hp ∼ 0.9 and remains constant
regardless of σ (see solid line in Fig. 4(a)). We observe that hp for δ = 0 remains constant at around hp ≤ 0.7
with increasing the noise intensity up to a critical value σ ∼ 0.07, indicating that for these values the signal remains
chaotic. As σ keeps increasing, the permutation entropy starts to gradually increase until it reaches a similar value as
for the EW solution, indicating that at this point the signal is fully stochastic. A similar trend is observed for values



7

h
(a) (b)

FIG. 4: (a) Permutation entropy hp as function of σ for δ = 0, 0.2, and 0.4. The solid line corresponds to the permutation
entropy obtained from the EW equation. (b) Surface plot of hp as function of δ and σ.

of δ up to 0.2 (see Fig. 4(a)), albeit the critical value decreases as δ is increased. For values of δ > 0.2 we observe
that the permutation entropy keeps increasing until it becomes nearly constant around the value of the EW equation,
indicating that for relatively large values of δ the signal becomes purely stochastic independently of σ. Figure 4(b)
shows a phase diagram of these different dynamical states where we can see a clear continuous transition between a
chaotic state (which we can define it to be for hp < 0.7) and a stochastic regime (hp > 0.8).

Similar behaviours are detected by looking at the permutation spectrum and the network entropy. Figure 5 depicts
the permutation spectrum (both frequency distribution of permutation pattern for each sequence in disjointed windows
and their standard deviation) for the noisy gKS with δ = 0.2 and EW solutions. For low noise intensities, say σ = 0.05,
we observe two dominant peaks corresponding to a monotonically increasing (permutation pattern π1 = 12345) and
decreasing process (π120 = 54321), and some distinct peaks (e.g. π25 = 21345, π49 = 31245, π72 = 35421, π96 = 45321)
with relatively high frequency. As remarked in [56], the appearance of this type of peaks and forbidden patterns in
the standard deviation between windows shows the strong persistence of deterministic dynamics. When σ is increased
to 0.5, the frequency of these dominant peaks significantly decreases, and other permutation patterns appear due to
a loss of determinism. The forbidden patterns vanish at high noise intensity σ = 1.0, showing that the dynamical
behavior is dominated by stochastic process. For the EW solution, some distinct peaks are formed in the frequency
distribution, but their degree is nearly the same level as the noisy-gKS solution at δ = 0.2 and σ = 1.0. The number
of forbidden patterns is zero regardless of σ (as it should be for purely stochastic dynamics). Variations in the number
of forbidden patterns Nf normalized by the maximum number of possible forbidden patterns (= De!) are shown in
Fig. 6(a) as functions of δ and σ. On the other hand, we observe that the network entropy, as defined in Eq. (5),
exhibits a similar pattern in terms of δ and σ to that of both the permutation entropy and the number of forbidden
patterns (see Fig. 7).

These numerical results allow us to conclude that the noisy gKS equation exhibits a rich dynamics which can be clas-
sified into three regimes: deterministic chaotic regime, co-existence regime of chaos and noise, and stochastic regime.
We note that with the statistical tools used above we can quantify the transition from the mixed chaotic/stochastic
regime to the full stochastic regime as σ is increased by measuring the critical value of the noise strength, say σc, at
which the noisy gKS equation resembles the EW equation. For example, Fig. 6(b) shows the critical noise strength,
σc defined as the value at which the number of forbidden patterns is zero (note that a similar analysis could be done
from the permutation or network entropies). We observe that as δ is varied, the numerical data can be fit to a function
of the form:

σc =

 σ1 e
−δ/δp if δ < δc,

σ2 if δ > δc,
(9)

with σ1 ' 0.56, σ2 ' 0.026, δp ' 0.15 and δc ' 0.5. We hence conclude that for values of δ < δc, the behaviour of
the noisy gKS solution strongly depends on the strength of the noise, and chaotic dynamics can be observed even
for relatively large noise intensities (up to σ ' 0.56). Such dependence, however, is exponentially suppressed as the
dispersion parameter goes beyond the typical value δp ' 0.15. It is interesting to note that this value of δ is very close
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FIG. 5: Frequency distribution of permutation patterns of both the noisy gKS solution with δ = 0.2 and EW solutions and
their standard deviation at different σ. Forbidden patterns are shown as red dots.
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FIG. 6: (a) Number of forbidden patterns Nf of the noisy gKS solution as functions of δ and σ. (b) Critical value σc as function
of δ above which the noisy gKS becomes fully stochastic. Solid lines correspond to a data fit to the function given by Eq. (9).

to the value reported in [49] where the stability of the deterministic gKS solution was studied and it was observed
that above δ = 0.146 pulse solutions become absolutely stable, demarcating the transition from high-dimensional to
low-dimensional chaos. Therefore, the exponential decay of σc(δ) in the noisy gKS equation given by Eq. (9) can
be understood in terms of the underlying transition occuring in the deterministic gKS as δ crosses δp. On the other
hand, for δ > 0.5 a minimum level of noise is sufficient to make the signal fully stochastic independently of δ.
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(a) (b)

FIG. 7: (a) Network entropy hn as function of σ for δ = 0, 0.2, and 0.4. The solid line corresponds to the network entropy
obtained from the EW equation. (b) Surface plot of hn as function of δ and σ.

(a)

(b)

(c)

FIG. 8: Correlation coefficient C against the predicted time tP for increment ∆uG with different values of σ for (a) noisy-gKS
solution (δ = 0.2) and (b) EW solution. Panel (c) shows the correlation coefficient C(tP = 1) as functions of σ and δ for ∆uG

of the noisy gKS solution.

C. Nonlinear forecasting

Our previous study [52] using nonlinear forecasting demonstrated that for the deterministic chaos of the gKS
equation, the dynamical behavior of the increment process ∆uG(= (uG(ti+1)−uG(ti)) has strong correlation (> 0.8)
between the predicted and original values at the prediction time tP = 1, and the correlation coefficient C significantly
decreases with tP , showing the short-term predictability and long-term unpredictability dynamics. In the following,
we apply the nonlinear forecasting methodology for both the increment process ∆uG of the noisy gKS and EW
solutions to discuss its applicability under additive noise. Figure 8(a) depicts the variations of C in terms of tP
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for different σ. C(tP = 1) for uG of the KS solution at σ = 0.05 is larger than 0.7, indicating that one-step-ahead
prediction of the dynamical state is achieved with relatively high accuracy. C exponentially decays with tP due to
the long-term unpredictability characteristics of chaos. The important point to note here is that C(tP = 1) decreases
with increasing σ owing to the effect of additive noise. In contrast, C for the EW solution is nearly zero regardless
of tP , as expected for purely stochastic process. This shows that the nonlinear forecasting for the increment process
allows us to distinguish between a chaotic and a stochastic process. Variations of C(tP = 1) for ∆uG of the noisy
gKS solution are shown in Fig. 8(b) as functions of σ and δ. We observe that for δ = 0, C nearly remains unchanged
up to σ = 0.07 with a value larger than the criteria of highly correlation (∼ 0.7) between predicted and original
values, indicating the persistence of the deterministic chaotic dynamics, until noise starts to dominate giving rise to
a significant decrease in C. For δ = 0.2, C is larger than the case for δ = 0 for small additive noise but decays as the
noise intensity is decreased, something that is more pronounced for δ = 0.4. These results show a similar trend as in
Figs. 4 and 7, albeit it is harder to clearly classify the three different regimes described above.

As a final remark, we note that the nonlinear forecasting methodology can also be used as a tool to investigate the
existence of noise-induced low-dimensional chaos in other types of dynamical systems. An example of this is the noisy
Lorenz equation for which Gao et al. [73] reported that the additive noise is able to induce a low-dimensional chaotic
dynamics in an otherwise periodic oscillatory regime of the system. Following this study, we investigated here (not
shown) the correlation coefficient of the X(t) signal obtained from the the noisy Lorenz equation (see [73] for details of
the equation) observing that it gives similar results to the correlation coefficient obtained from the increment process
∆X(t) suggesting indeed the possible existence of noise-induced low-dimensional chaos in that system, something
that, on the other hand, we have not observed in the noisy gKS equation.

V. CONCLUSIONS

We have presented a systematic study of the dynamical state of the noisy gKS equation by making use of time-series
analyses tools, namely permutation entropy and permutation spectrum based on symbolic dynamics, and network
entropy based on complex networks. The temporal magnitude of the signal uG defined by the second moment of
the solution u(x, t) is used as a global measure to accessing the dynamical properties of the system. We have also
contrasted the results from the noisy gKS solution to the stochastic dynamics obtained by the EW equation in order
to distinguish between stochastic and deterministic chaotic dynamics. The high-dimensional chaos observed for the
noisy gKS equation for small values of δ retains the deterministic nature for sufficiently small additive noise. As the
additive noise increases the gKS dynamics starts to coexist with stochastic effects, until it reaches a critical point σc
at which the signal becomes purely stochastic: the randomness of the stochastically dominated dynamics in the noisy
gKS solution is equivalent to that of the EW equation. We quantified this transition as function of the dispersion
parameter δ, observing that σc decays exponentially with δ as it goes beyond the value δp = 0.15 which we related
to the transition from high- to low-dimensional chaos of the deterministic gKS equation. For larger values of δ, we
found that a minimum level of noise is sufficient to make the signal fully stochastic independently of δ. These effects
have been clearly demonstrated by using the concepts of permutation entropy, permutation spectrum and network
entropy.
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interfacial hydrodynamics: Experiments and theory, Physica D 239, 2000 (2010).

[48] C. Duprat, D. Tseluiko, S. Saprykin, S. Kalliadasis, and F. Giorgiutti-Dauphiné, Wave interactions on a viscous film
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