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On Trefftz and weak Trefftz discontinuous Galerkin approaches for
medium-frequency acoustics

Pierre Ladevèze∗, Hervé Riou

LMT-Cachan (ENS Cachan/CNRS/Paris 6 University, PRES UniverSud Paris), 61 avenue du Pr´esident Wilson, F-94230 Cachan, France 

Abstract

In this paper, the wave approach called the Variational Theory of Complex Rays (VTCR), which was developed for medium-
frequency acoustics and vibrations, is revisited as a discontinuous Galerkin method. Extensions leading to a weak Trefftz constraint 
are introduced. This weak Trefftz discontinuous Galerkin approach enables hybrid FEM/VTCR strategies to be developed easily, 
and paves the way for new computational techniques for the resolution of engineering problems. This paper presents some of the 
fundamental properties of the approach, which is illustrated by several numerical examples.

Keywords: Hybrid methods; Trefftz methods; Discontinuous Galerkin methods; VTCR; Acoustics

1. Introduction

In recent years, the use of numerical simulation techniques in the design, analysis and optimization of systems
has become an indispensable part of the industrial design process. The standard Galerkin Finite Element Method
(FEM) [1] is a well-established computer-aided engineering tool commonly used for the analysis of time-harmonic
dynamic problems. However, using continuous, piecewise polynomial shape functions leads to very large numerical
models and, in practice, restricts applications of this prediction technique to the low-frequency range.

Trefftz methods [2] have been proposed as a means to overcome this limitation. They differ from the FEM in
the shape functions they use for the expansion of the field variables, which are exact solutions of the governing
differential equations. Compared to finite element methods, these functions often lead to a considerable reduction
in model size and computational effort. Some examples of such methods are: a special version of the partition of
unity method [3], the ultra weak variational method [4,5], the plane wave discontinuous Galerkin method [6,7], the
least-squares method [8,9], the discontinuous enrichment method [10,11], the element-free Galerkin method [12], the
wave boundary element method [13,14] and the wave-based method [15,16]. Some mathematical results regarding
the convergence of these methods can be found in [6,7]. The Variational Theory of Complex Rays (VTCR), first
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Nomenclature

Ω Acoustic domain
∂Ω Boundary of Ω
u or v Acoustic pressure
k Acoustic wave number
η Damping coefficient
h Constant related to the acoustic impedance
rd Acoustic source prescribed over Ω
gd Acoustic source prescribed over ∂2Ω
ud Acoustic pressure prescribed over ∂1Ω
qu Pressure flux proportional to grad u
ΩE Subdomain of Ω
ΓE E ′ Interface between subdomains ΩE and Ω ′

E

introduced in [17] for steady-state vibration problems and in [18] for transient problems, also belongs to that category.
The main differences in these methods lie essentially in the treatment of the transmission conditions at the boundaries
of the elements or substructures.

The main characteristic of the VTCR, the method discussed in this paper, is the use of a specific weak formulation
of the problem which enables the approximations within the substructures to be a priori independent of one another.
Thus, any type of shape function can be used within a given substructure provided it satisfies the governing equation,
thus giving the approach great flexibility.

As explained in [17,19,20], the VTCR was originally developed as an extension to acoustics and vibrations of
the formulation introduced in [21]. However, since the shape functions are discontinuous, there is a link between the
VTCR and the discontinuous Galerkin methods studied in this paper. Discontinuous Galerkin methods represent a vast
domain (see [22] or [23] for an overview, unified analysis and comparisons). Our discontinuous Galerkin formulation,
which is nonsymmetrical, can be viewed as the Trefftz version of Baumann–Oden’s discontinuous Galerkin formula-
tion [24,25]. The main engineering applications addressed are car acoustics [26] and pyrotechnic shock propagation
in space launchers [18].

In addition, this paper introduces extensions of the classical VTCR formulation in which the Trefftz constraint
is weakened. This leads to a new numerical method which can be called the weak Trefftz discontinuous Galerkin
method. These extensions allow for an easy coupling of different types of numerical models, including classical finite
element models. As a consequence, they lead to new approaches to the resolution of engineering problems. Another
application concerns structures which are not piecewise homogeneous. In this paper, some fundamental properties
of this new method will be presented and illustrated by numerical examples. Our standard problem is the 2D or 3D
acoustic problem.

First, in Section 2, the VTCR approach is reviewed. Then, in Section 3, the weak Trefftz discontinuous Galerkin
formulation is introduced as a discontinuous Galerkin method and two examples of finite element approaches
are examined in detail. In Section 4, hybrid FEM/VTCR approaches are introduced as special cases of the weak
Trefftz discontinuous Galerkin formulation. Section 5 presents several applications which illustrate the proposed
computational technique for medium-frequency vibration problems.

2. The Variational Theory of Complex Rays: a Trefftz discontinuous Galerkin formulation

2.1. The reference problem

Our reference problem is a standard acoustic problem defined over domain Ω with boundaries ∂Ω = ∂1Ω ∪ ∂2Ω
(see Fig. 1 on the left): find u ∈ H1(Ω) such that(1 + iη)1u + k2u + rd = 0 over Ω

u = ud over ∂1Ω
(1 + iη)∂nu + hiku = gd over ∂2Ω

(1)
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Fig. 1. Left: definition of the computational domain Ω . Middle: definition of the subdomains of Ω . Right: coupling of the FEM and the VTCR
descriptions (see Section 4).

where ∂nu = grad u · n, n being the outward normal; u is the acoustic pressure; k is the wave number, which is
proportional to the frequency of the problem; h is a constant related to the acoustic impedance; rd and gd are prescribed
acoustic sources over Ω and ∂2Ω , and ud is the prescribed acoustic pressure over ∂1Ω . The damping coefficient η is
positive or equal to zero. k and h are real, positive and constant values. The prescribed data are rd , ud and gd , which
are assumed to be regular enough for a unique solution to exist in H1(Ω) if η > 0 (or if η = 0, but the area in 3D or
the length in 2D of ∂2Ω is nonzero). The first equation of (1) corresponds to the classical Helmholtz acoustic problem.
The two boundary conditions correspond to a pressure or to an impedance prescribed over ∂Ω .

2.2. The variational formulation of the reference problem associated with the VTCR

Let us first introduce an equivalent formulation of Problem (1) if its solution belongs to U ⊂ H1(Ω). Domain Ω is
divided into subdomains ΩE , with E ∈ E (see the middle of Fig. 1). The interface between two subdomains E and E ′

is denoted ΓE E ′ . The interface between ΩE and boundary ∂Ω (when it exists) is denoted ΓE E . The VTCR is a Trefftz
approach which uses the affine space:

U =

u | u|ΩE ∈ U E


(2)

with

U E =


uE | uE ∈ V E ⊂ H1(ΩE ); (1 + iη)1uE + k2uE + rd = 0 on ΩE


. (3)

The vector spaces (with rd = 0) associated with U and U E are denoted U0 and U E,0.
Now, in order to develop the discontinuous Galerkin approach, let us denote classically:

{u}E E ′ = (uE + uE ′)|ΓE E ′

[u]E E ′ = (uE − uE ′)|ΓE E ′
.

(4)

Denoting qu = (1 + iη)grad u, the VTCR formulation can be written: find u ∈ U such that

Re


−ik

 
E,E ′∈E


ΓE E ′


1
2

{qu · n}E E ′ {ṽ}E E ′ −
1
2


q̃v · n


E E ′ [u]E E ′


d S

−


E∈E


ΓE E ∩∂1Ω

q̃v · n (u − ud) d S

+


E∈E


ΓE E ∩∂2Ω

1
2


−q̃v · n (u + (qu · n − gd) /(hik)) + ṽ (qu · n + hiku − gd)


d S


= 0 ∀v ∈ U0 (5)

where �̃ and Re(�) represent respectively the complex conjugate part and the real part of a quantity �. The quantity
involved in (5) is a dissipation. It is clear that (5) is satisfied by the exact solution of (1). All that has to be done to get
an approximation is to replace U E by the finite-dimension subspace U h

E . The associated spaces are U h and U h
0 . It can

also be noted that it is possible to suppress the real part in (5) because the resulting problem is equivalent to (5). This
will be done in the next sections to generate analytical results.
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2.3. Properties of the VTCR formulation

First, let us note that Formulation (5) can be written: find u ∈ U such that

b(u, v) = l(v) ∀v ∈ U0 (6)

where b is u-linear in U and v-(anti)linear in U0, and l is v-(anti)linear in U0. In addition, b is such that b(u, u) is real.
Let us introduce

∥u∥
2
U =


E∈E


ΩE

grad u · grad ũdΩ . (7)

Property 1. ∥u∥U is a norm over U0.

Proof. The only condition which is not straightforward is ∥u∥U = 0 for u ∈ U0 ⇒ u = 0 over Ω . Assuming that
u ∈ U0 such that ∥u∥U = 0, it follows that qu = 0 over Ω . Hence, from div qu + k2u = 0 over ΩE with E ∈ E, we
have u = 0 over ΩE and, consequently, over Ω .

Property 2. For u ∈ U0, b(u, u) ≥ kη∥u∥
2
U , which means that if η is positive the formulation is coercive.

Proof. For u ∈ U0, we have

b(u, u) = Re


−ik


E∈E


∂ΩE

qu · nũd S +


E∈E

1
2


∂ΩE ∩∂2Ω


−(qu · n)(q̃u · n)/(hik) + hikuũ


d S


. (8)

Consequently,

b(u, u) = Re


−ik


E∈E


ΩE


−k2uũ + (1 + iη)grad u · grad ũ


dΩ



+


E∈E

1
2


∂ΩE ∩∂2Ω


(qu · n)(q̃u · n)/h + hk2uũ


d S. (9)

Finally,

b(u, u) = kη

E∈E


ΩE

grad u · grad ũdΩ +


E∈E

1
2


∂ΩE ∩∂2Ω


(qu · n)(q̃u · n)/h + hk2uũ


d S. (10)

Then, b(u, u) ≥ kη∥u∥
2
U .

Property 1 implies that if η is positive the solution of (5) is unique. Since the exact solution of Problem (1) verifies
(5), Formulation (5) is equivalent to the reference problem (1). Besides, it can be observed that for a perturbation
1l ∈ U ′

0 of the excitation the perturbation 1w of the solution verifies

∥1w∥U ≤
1

kη
|1l|U ′

0
. (11)

Moreover, all the properties demonstrated above remain valid if one replaces U0 by U h
0 . Thus, seeking a numerical

approximation makes sense. An illustration of the use of (5) can be found in [27–29].

3. The weak Trefftz discontinuous Galerkin formulation

In the VTCR, the governing equation is satisfied within each subdomain ΩE , E ∈ E (see Section 2). The objective
of this section is to weaken this condition in order to enable, for example, the use of the FEM solutions. Let U h and
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U h
0 denote respectively the working space and the associated vector space, examples of which will be given later. The

weak Trefftz discontinuous Galerkin formulation consists in finding u ∈ U h such that

Re


−ik

 
E,E ′∈E


ΓE E ′


1
2

{qu · n}E E ′ {ṽ}E E ′ −
1
2


q̃v · n


E E ′ [u]E E ′


d S

−


E∈E


ΓE E ∩∂1Ω

q̃v · n (u − ud) d S

+


E∈E


ΓE E ∩∂2Ω

1
2


−q̃v · n (u + (qu · n − gd) /(hik)) + ṽ (qu · n + ihku − gd)) d S

−


E∈E

1
2


ΩE


div qu + k2u + rd


ṽ −


div q̃v + k2ṽ


u


dΩ


= 0 ∀v ∈ U h

0 . (12)

Again, the real part in (12) can be omitted if desired. This will be done in the next sections to generate analytical
results. Let us note that another similar formulation exists if the last integral in (12) is replaced by −


E∈E

ΩE


div qu + k2u + rd


ṽdΩ .

3.1. Properties of the weak Trefftz discontinuous Galerkin formulation

Let us note that (12) can be written as: find u ∈ U h such that

b(u, v) = l(v) ∀v ∈ U h
0 (13)

where b and l, which are u-linear in U , are also v-(anti)linear in U0. In addition, b is such that b(u, u) is real. If U h

and U h
0 are the spaces used in the VTCR, then the local interior equation is satisfied and we arrive back at Formulation

(5) or Formulation (6).

Property 3. For u ∈ U0, we have

b(u, u) =


E∈E

kη


ΩE

grad ũ · grad udΩ +


E∈E


ΓE E ∩∂2Ω

1
2


(qu · n)(q̃u · n)/h + hk2uũ


d S ≥ 0. (14)

Proof.

b(u, u) = Re


−ik


E∈E


∂ΩE

(qu · n)ũd S −


E∈E


ΩE

div quũdΩ

×


E∈E


ΓE E ∩∂2Ω

1
2


(qu · n)(q̃u · n)/h + hk2uũ


d S


. (15)

Consequently,

b(u, u) = kη

E∈E


ΩE

grad u · grad ũdΩ

+


E∈E


ΓE E ∩∂2Ω

1
2


(qu · n)(q̃u · n)/h + hk2uũ


d S. (16)

It can be observed that if b(u, u) = 0, then u is piecewise constant within subdomains ΩE , E ∈ E and is not equal
to zero. Consequently, the shape functions belonging to U h

0 should satisfy the following condition (P):

Condition (P) Let aE ∈ U h
E be a piecewise constant function within subdomains E ∈ E. aE satisfies condition (P) if

∀v ∈ U h
0 , ∀E ∈ E, Re


−ik

 
E,E ′∈E


∂ΩE

(qv · n)ãE ′d S


= 0


⇒ aE = ±a (17)
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where E ′ is a subdomain sharing a common boundary with E , with the convention aE ′ = −aE over ∂ΩE ∩ ∂Ω . It
will be shown below that this condition is not restrictive and that it enables the following uniqueness property of the
approximate problem to be proved.

Property 4. If U h
0 satisfies condition (P) and if η is positive, the weak Trefftz discontinuous Galerkin formula-

tion (12) has a unique solution.

Proof. Let us consider two solutions u1 and u2 of (12). v = u1
− u2

∈ U h
0 and

b(v, v) =


E∈E

kη


ΩE

grad v · grad ṽdΩ +


E∈E


ΓE E ∩∂2Ω

1
2


(qv · n)(q̃v · n)/h + hk2vṽ


d S = 0. (18)

It follows that vE = aE with E ∈ E, where aE is piecewise constant within the subdomains and aE = 0
in the subdomains sharing a common boundary with ∂2Ω . Back-substituting this results into (12), one also finds
b(v, v∗) = 0 ∀v∗

∈ U h
0 , which leads to

∀v∗
∈ U h

0 , Re


−ik

 
E,E ′∈E


∂ΩE

(q∗
v · n)ãE ′d S


= 0 (19)

where E ′ denotes the subdomains sharing a common boundary with E , with the convention aE ′ = −aE over
∂ΩE ∩ ∂Ω . (19) can be identified with condition (P). Consequently, aE = ±a ∀E ∈ E. Moreover, given that aE = 0
over ∂2Ω , then a = 0.

3.2. First example of the use of the weak Trefftz discontinuous Galerkin formulation

Here, we consider that the FE method is used for each subdomain E ∈ E. If desired, the meshes and element types
can be completely different across subdomains. For a subdomain E , we introduce the finite element subspace V h

E , and
for uh

∈ V h
E we prescribe

ΩE


k2uh

+ div qh
u + rd


ũ∗dΩ = 0 ∀u∗

∈ V h
E,0 =


u | u ∈ V h

E , u|∂ΩE = 0


. (20)

The corresponding subspace is U h
E .

Property 5. If U h
E satisfies (20), if the number of internal modes is nonzero and if η is positive, then

• condition (P) holds
• ∥�∥ = (b(�,�))1/2 is a norm over U h

0
• the weak Trefftz discontinuous Galerkin formulation has a unique solution.

Proof. If uh
∈ U h

E,0, then

ΩE


k2uh

+ div quh


ũ∗dΩ = 0 ∀u∗
∈ V h

E,0. Then, for uh constant over ΩE , we find that

uh

ΩE

k2ũ∗dΩ = 0 ∀u∗
∈ V h

E,0 ∀E ∈ E. Thus, if the number of internal finite element nodes is nonzero for each

subdomain E ∈ E, then uh
= 0 throughout Ω . The last two points of Property 5 are direct consequences of the proofs

above.

3.3. Second example of the use of the weak Trefftz discontinuous Galerkin formulation

Now, we consider that each subdomain consists of a single element. These elements can be completely different.
The weak Trefftz discontinuous Galerkin formulation (12) remains unchanged. Some constraints can be added in
order to satisfy the interior equation in an average sense, but these conditions are unnecessary in our case. However,
condition (P) must be satisfied.

Property 6. Condition (P) is always satisfied for any finite element of order n (hereafter denoted Pn-element).
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Proof. Let us rewrite condition (P). aE ∈ U h
E , E ∈ E is a piecewise constant field. We should find Re


−ik


E,E ′∈E

∂ΩE
(qv · n)ãE ′d S


= 0 ⇒ aE = ±a ∀E ∈ E with aE = −aE on ∂ΩE ∩ ∂Ω . Let us focus on P1-elements.

If condition (P) is satisfied for P1-elements, obviously it is also satisfied for Pn-elements. For P1-elements, one has
∂ΩE

aE ′nd S; then, ∀E ∈ E aE ′ = αE (αE constant over ΩE ) for any subdomain E ′ sharing a common boundary
with E .

Let us introduce zE = αE + aE . zE is continuous because zE |ΓE E ′
= aE ′ + aE = zE ′|ΓE E ′

. It follows that z is
constant over Ω . Since z is zero over ∂Ω , z = 0 over Ω and αE = −aE . Consequently, aE can take only the values
+a or −a, a being a constant over Ω .

Property 7. In the case where each subdomain is associated with an independent Pn-element approximation, the
weak Trefftz discontinuous Galerkin formulation (12) has a unique solution.

Proof. The result is a consequence of Properties 4 and 6.

To conclude this discussion, it is important to introduce a norm over U h
0 . Let us observe that, here, (b(�, �))1/2

is not a norm (see the previous properties); therefore, it is necessary to build a new norm. In order to do that, let us
introduce the space

U h
E,0 =


u | u ∈ V h

E , u = CE · XE


(21)

where CE is constant over ΩE and XE is the position vector relative to the center of inertia of element E . U h
E,0 is

a subspace of the space related to the P1-element. The associated space defined over Ω is denoted U h
0 . Now, let us

introduce, for u ∈ U h
0 , the quantity:

γ (u) = sup
v∈U h

0
b(u, v)/∥Cv∥L2(Ω) (22)

where Cv corresponds to the vector CE of v according to (21).

Property 8. ∥�∥U h
0

defined by ∥u∥
2
U h

0
= b(u, u) + γ 2(u) is a norm over U h

0 .

Proof. The only difficulty is to show that ∥u∥
2
U h

0
= 0 leads to u = 0 over Ω . However, from

0 = b(u, u) =


E∈E


ΩE

ηk grad u · grad ũdΩ +


∂2Ω


(qu · n)(q̃u · n)/h + hk2uũ


d S (23)

it is clear that u|ΩE = aE is constant over ΩE and that u = 0 over ∂2Ω .

It follows that γ (u) is equal to

γ (u) = sup
v∈U h

0

1
∥Cv∥L2(Ω)

Re


−ik

 
E,E ′∈E


ΓE E ′

qv · naE ′d S +


E∈E


ΓE E∩∂Ω

qv · naE ′d S


= 0. (24)

Since condition (P) is satisfied in U h
0, uE = ±a, a being a constant over Ω . From u = 0 on ∂2Ω , one gets u = 0

over Ω .

Property 9. The solution u ∈ U h
0 of b(u, v) = l(v) ∀v ∈ U h

0 is such that

∥u∥U h
0

≤


|l|2U h,

0
+ 2∥l∥2

U h,
0

1/2

. (25)

Proof. Since b(u, v) = l(v) ∀v ∈ U h
0 , b(u, u) ≤ |l|U h,

0
. ∥u∥U h

0
, where U h,

0 is the dual space of U h
0 . ∥l∥U h,

0
is an-

other norm defined by ∥l∥U h,
0

= sup
v∈U h

0
l(v)/∥Cv∥L2(Ω) and γ (u) = sup

v∈U h
0
b(u, v)/∥Cv∥L2(Ω) = sup

v∈U h
0
l(v)/

∥Cv∥L2(Ω) = ∥l∥U h,

0
. Finally, one has b(u, u)+γ 2(u) ≤

1
2 |l|2

U h,
0

+
1
2


b(u, u) + γ 2(u)


+∥l∥2

U h,

0

. Therefore, Property 9

holds.
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4. Coupling of the FEM and the VTCR

The weak Trefftz discontinuous Galerkin formulation (12) can be used to couple the FEM and the VTCR. Let us
divide Ω into two parts Ω1 and Ω2 and use the VTCR in Ω1 and the FEM in Ω2 (see the rightmost part of Fig. 1). The
corresponding sets of subdomains are E1 and E2. In the working space U h

= U h
1 ⊗ U h

2 , for E ∈ E1,

U h
E =


uh

| uh
∈ V h

E ; (1 + iη)1uh
+ k2uh

+ rd = 0 on ΩE


(26)

and for E ∈ E2,

U h
E =


uh

| uh
∈ V

′h
E ;


ΩE


(1 + iη)1uh

+ k2uh
+ rd


ṽhdΩ = 0 ∀vh

∈ V
′h
E,0


. (27)

Property 10. The coupled FEM/VTCR problem defined by the weak Trefftz discontinuous Galerkin formula-
tion (12) has a unique solution if the number of internal modes of Ω2 is nonzero. Besides, ∥�∥U h

0
= (b(�,�))1/2 is

a norm over U h
0 .

Proof. This property is a consequence of Properties 4 and 5.

Of course, the coupling between the FEM and the VTCR can still be used with Formulation (12) if the wave
number k is not the same in the two subdomains. The previous properties are still valid. k has only to be replaced by
its corresponding value in Ω1 and in Ω2. This will be illustrated by the example of the next section.

5. Numerical illustrations

In this section, the weak Trefftz discontinuous Galerkin formulation described in Section 3 is tested using two
benchmark problems:

• The first problem is defined over a square domain divided into two subdomains with different wave numbers so
that an incident wave gives rise to a reflected wave and a transmitted wave. This problem has an analytical solution,
which is used to define the prescribed boundary conditions and to assess the quality of the approximate solution.

• The second problem is defined over a curved L-shaped domain with prescribed boundary conditions and different
characteristics in the subdomains. In both cases, the weak Trefftz discontinuous Galerkin solution is compared to
a FEM solution.

5.1. The incident wave problem

5.1.1. Problem description
The domain being considered (see Fig. 2) is a square Ω = [−0.5 m; 0.5 m] × [−0.5 m; 0.5 m] divided

into two subdomains: Ωa = [−0.5 m; 0.5 m] × [−0.5 m; 0 m] with ka = 6.536 m−1 and ηa = 0.001, and
Ωb = [−0.5 m; 0.5 m] × [0 m; 0.5 m] with kb = 29.412 m−1 and ηb = 0.001. We focused on the problem with
a homogeneous governing equation, so rd equals zero. The Robin boundary condition (the last equation of (1)) was
applied along all the boundaries of Ωa and Ωb with h = 1 and gd such that the exact solution is uex

b = uinc + ur in Ωb
and uex

a = ut in Ωa , defining the solution in terms of a classical incident wave and giving rise to a reflected wave and
a transmitted wave according to Descartes’ laws. Such a solution with an incident wave of unit amplitude propagating
at a 9◦ angle from the vertical can be seen on the right-hand side of Fig. 2. This incident angle was chosen to be less
than the critical angle so that the transmitted wave would propagate through Ωa .

kb was chosen to be greater than ka , which can be seen in the solution shown in Fig. 2 in which the wavelength
in Ωb is clearly smaller than the wavelength in Ωa . Consequently, in order to test the coupling between the VTCR
and the FEM, the solution in Ωb (with the smaller wavelength) was described using the VTCR and the solution in Ωa
(with the larger wavelength) using the FEM.

The FEM model was defined using Q1 discretization over the whole domain Ωa . The mesh was made of square
elements regularly spaced along the x and y axes. Different mesh sizes (10 × 5 elements, 20 × 10 elements and
40 × 20 elements) were tested in order to compare the meshes of increasing refinement in the FEM discretization.
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Fig. 2. Left: definition of the computational domain Ω for the example considered in Section 5.1. Right: the exact solution (plot of the real part)
for the selected values of the physical data in Ωa and Ωb .

Fig. 3. Examples of meshes used to calculate the solution of the problem of Section 5.1. On the left, Ωb contains only one ΩE subdomain and
Ωa is viewed as a single ΩE subdomain discretized using 10 × 5 elements. In the middle, Ωb contains 3 × 2 ΩE subdomains and Ωa is viewed
as a single ΩE subdomain discretized using 20 × 10 elements. On the right, Ωb contains 8 × 4 ΩE subdomains and Ωa is viewed as a single ΩE
subdomain discretized with 40 × 20 elements.

These meshes, shown in Fig. 3, correspond respectively to about 10, 20 and 40 elements per wavelength. For the
VTCR, in order to compare the results obtained with increasing numbers of VTCR subdomains, we discretized Ωb
into 1, 3 × 2 and 8 × 4 subdomains ΩE as shown in Fig. 3. It should be noticed that the FEM and the VTCR meshes
did not always match along the common boundary of Ωa and Ωb.

As explained in Section 2.2, the VTCR approximation uses solutions uh
∈ U h which are exact solutions of the

Helmholtz equation. Many different choices can be made concerning these exact solutions (see [29] for a global
overview). Here, because of the ease with which this could be implemented, we described U h using regularly spaced
rays propagating in all directions in [0; 2π [. Therefore, in each subdomain ΩE of Ωb, the approximate solution uh was
generated as a sum of NE propagative waves eikE,j·(x−xE), where kE,j is the wave vector of amplitude kb/

√
1 + iηb

along direction θ j = 2π j/NE for j = 0 . . . NE − 1, and xE is the geometrical center of ΩE . NE corresponds to the
number of waves used in each VTCR subdomain ΩE . With today’s level of development of the VTCR, the number
of regularly oriented waves which must be used in the VTCR subdomain ΩE to achieve a good numerical solution
is known a priori and is equal to NE = [2.k.diam(ΩE )], where [�] denotes the integer part, k is the wave number
and diam(ΩE ) is the diameter of ΩE (see [28] for more details). Here, we selected NE = 10, 20, 30, 40 and 60, even
though these do not satisfy this criterion, because we wanted to find out how the weak Trefftz discontinuous Galerkin
solution behaves as a function of the VTCR refinement.

5.1.2. Study of the weak Trefftz discontinuous Galerkin solution as a function of the FEM refinement
Fig. 4 shows a comparison of the results obtained using the weak Trefftz discontinuous Galerkin approach in which

Ωa was discretized into one ΩE subdomain with 10 × 5, 20 × 10 and 40 × 20 elements, and Ωb was discretized using
3 × 2 ΩE subdomains with NE = 30 rays. This comparison was chosen because this VTCR discretization is refined
enough to ensure a good enough solution in Ωb and only the quality of the solution in Ωa needs to be considered.
(See the heuristic geometric criterion in [28] which leads to an appropriate number of rays to be used in a VTCR
subdomain.) It can be observed that the solution converges toward the exact solution of Fig. 2 when the number of
FEM elements becomes sufficiently large. For the 10×5 FEM mesh, the solution in Ωa was unsatisfactory and seemed
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Fig. 4. The solution obtained using the weak Trefftz discontinuous Galerkin method for the example of Section 5.1. Ωb was discretized using 3×2
ΩE subdomains with NE = 30 rays. Ωa was discretized into a single ΩE subdomain using 10 × 5 (left), 20 × 10 (middle) and 40 × 20 (right)
elements respectively.
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Fig. 5. The solution obtained using the weak Trefftz discontinuous Galerkin method for the example of Section 5.1. Ωb was discretized using a
single ΩE subdomain with NE = 10 (left), 30 (middle) and 60 (right) rays. Ωa was discretized into a single ΩE subdomain with 40×20 elements.

to perturb the solution in Ωb. As soon as the FEM became more refined, the solution corresponded increasingly to the
exact solution.

5.1.3. Study of the weak Trefftz discontinuous Galerkin solution as a function of the VTCR refinement

Fig. 5 shows a comparison of the results obtained using the weak Trefftz discontinuous Galerkin approach in
which Ωa was discretized into a single ΩE subdomain with 40 × 20 elements and Ωb was discretized into a single ΩE
subdomain with NE = 10, 30 and 60 rays. Contrary to NE = 60, NE = 10 and NE = 30 were insufficiently large
numbers of rays to ensure a good enough quality of the result in the VTCR domain according to the heuristic criterion
in [28]. Consequently, as can be seen in Fig. 5, even though the discretization of the FEM domain was refined enough
(as shown by the results in Fig. 4), the global solutions were unsatisfactory. However, when a sufficiently large number
of rays was used in the VTCR domain (60 in this case), the solution matched the exact solution.

A similar conclusion can be reached for the comparison in Fig. 6, where Ωa was discretized into a single ΩE
subdomain with 40 × 20 elements and Ωb was discretized using 3 × 2 ΩE subdomains with NE = 20, 30 and 40 rays
each. The FEM discretization was sufficiently refined (based on the results of Fig. 4), and the number of VTCR rays
was sufficient for NE = 30 and NE = 40 to lead to good results, but that was not the case for NE = 20. Consequently,
the solution with NE = 20 was unsatisfactory, whereas the solutions with NE = 30 and NE = 40 were good.

Finally, Fig. 7 shows a comparison of several calculations in which Ωa was discretized into a single ΩE subdomain
with 40 × 20 elements and Ωb was discretized using 8 × 4 ΩE subdomains with NE = 10, 20 and 60 rays each. As
mentioned before, the FEM discretization was refined enough. NE = 20 was a large enough number of VTCR rays for
a good VTCR discretization, which was not the case of NE = 10. Consequently, the solution with NE = 20 is reliable,
but the solution with NE = 10 is not. Regarding the solution obtained with NE = 60, some small discontinuities can
be observed at the boundaries of the VTCR subdomains. This was the result of using too many rays in the VTCR
discretization, making the conditioning number of the matrix of the weak Trefftz discontinuous Galerkin formulation
very large, thus degrading the quality of the solution. Preconditioners or adapted iterative solvers could be used to

10



-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5 0 0.5 -0.5 0 0.5 -0.5 0 0.5

4

2

0

-2

-4

-6

-8 -0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Fig. 6. The solution obtained using the weak Trefftz discontinuous Galerkin method for the example of Section 5.1. Ωb was discretized using 3×2
ΩE subdomains with NE = 20 (left), 30 (middle) and 40 rays (right). Ωa was discretized into a single ΩE subdomain with 40 × 20 elements.
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Fig. 7. The solution obtained using the weak Trefftz discontinuous Galerkin method for the example of Section 5.1. Ωb was discretized using 8×4
ΩE subdomains with NE = 10 (left), 20 (middle) and 60 rays (right). Ωa was discretized into a single ΩE subdomain with 40 × 20 elements.

alleviate this problem. This was not done in this paper in order to achieve a fair conclusion concerning the new
formulation (12).

5.1.4. Study of the numerical properties
Now, let us examine how the weak Trefftz discontinuous Galerkin solution of the problem is affected by the

coupling between the FEM and the VTCR. In order to do that, let us compare the solutions given by the FEM
description applied to both Ωa and Ωb using a regular mesh, the VTCR description applied to both Ωa and Ωb,
and a hybrid description in which Ωa is discretized using a regular FEM mesh and Ωb is discretized using the VTCR
with a single subdomain ΩE following the numerical strategy presented in this paper. To measure the quality of each

solution, we use the relative L2 error ∥uex
− uh

∥/∥uex
∥ =


Ω ∥uex − uh∥2dΩ/


Ω ∥uex∥2dΩ . The convergence

curves are shown in Fig. 8.
A comparison of the curve corresponding to the FEM solution (which decreases with the usual convergence rate)

and the curve corresponding to the VTCR solution shows how advantageous it is to use a wave description to model
a vibration problem. This has already been observed in the previous papers on the VTCR (see for example [27]). A
comparison of these two curves to the ‘VTCR(60)/FEM’ curves (corresponding to 60 rays being used in the VTCR
subdomain Ωb, which, according to the evidence given above, is sufficient to ensure that the VTCR has converged)
shows that coupling the VTCR and the FEM can be worthwhile. Indeed, the use of this hybrid description led to an
error which was smaller by more than an order of magnitude than that of a pure FEM calculation. However, in this
example, the hybrid description was less efficient than a pure VTCR description. However, it should be recalled that
our primary objective with the weak Trefftz discontinuous Galerkin description (which enables one to couple two
different descriptions) is flexibility rather than the most efficient calculation in all cases. In Fig. 8, we also plotted
the ‘VTCR(20)/FEM’ curve, which corresponds to only 20 rays being used in the VTCR domain. According to the
evidence given above, this number of rays in the VTCR description is too small to ensure the convergence of the
solution in subdomain Ωb. It is clear that the error remained high and, thus, the approximate solution remained poor,
even when the number of degrees of freedom in the FEM domain was increased. This is to be expected not unusual
because such a VTCR solution is not refined enough to converge in all cases.

11



Fig. 8. The convergence curves for the example of Section 5.1 using various types of descriptions. The ‘FEM’ curve corresponds to the solution
obtained with a pure FEM description of both Ωa and Ωb using a regular mesh. The ‘VTCR’ curve corresponds to the solution obtained with a pure
VTCR description of both Ωa and Ωb using the same number of degrees of freedom in both subdomains. The ‘VTCR(X)/FEM’ curves correspond
to the solution obtained with a FEM description of Ωa using a regular mesh and a VTCR description of Ωb using ‘X’ rays.

Table 1
The condition number of the global system matrix of the example of Section 5.1.4. h denotes the size of the FEM mesh used in Ωa and ‘VTCR
DOFs’ corresponds to the number of rays used in Ωb .

VTCR DOFs 1/h = 20 1/h = 40 1/h = 60 1/h = 80 1/h = 100

20 1.3 × 104 1.3 × 104 3.3 × 104 5.2 × 104 8.2 × 104

40 1.0 × 104 1.9 × 104 4.2 × 104 8.1 × 104 1.1 × 104

50 1.9 × 108 9.0 × 109 8.0 × 108 1.1 × 109 1.1 × 109

60 4.8 × 1015 3.8 × 1015 4.7 × 1014 7.7 × 1014 3.7 × 1014

Furthermore, it is well-known that the Trefftz methods such as the VTCR lead to ill-conditioned global system
matrices. Table 1 shows a comparison of the conditioning numbers of the global system resulting from the weak
Trefftz discontinuous Galerkin formulation with various model refinements, using the FEM in Ωa and the VTCR with
a single subdomain in Ωb. It can be observed that the conditioning number is greatly affected by the number of rays
used in the VTCR, whereas the refinement of the FEM mesh has little influence.

5.2. The L-shape problem

5.2.1. Problem description
Turning now to focus on the homogeneous problem of a curved L-shape domain whose dimensions and boundary

conditions are defined in Fig. 9, we consider two cases. In Case 1, the whole domain is filled with a single fluid with
a wave number ka = 6.5 m−1 and a damping coefficient ηa = 0.001. In Case 2, the domain contains two fluids with
different wave numbers ka = 6.536 m−1 and kb = 29.412 m−1 and the same damping coefficient ηa = ηb = 0.001.
In Case 2, as shown in Fig. 9, the fluid with the smaller wave number lies in the 0.4 m × 2 m rectangular bottom
right part of the domain. The boundary conditions are Robin conditions (the last equation of (1)) with h = 0.001 and
gd = 0 or 1 m−1 (see Fig. 9).

Since there is no known exact solution for this example, a reference solution was calculated using finite element
analysis. In order to do that, Q1 discretization with a sufficiently refined regular mesh was used to ensure at least
30 elements per wavelength, even in the worst case where Ω is filled with two fluids, which alleviates the pollution
effects almost entirely. This solution was considered to be refined enough to be reliable.
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Fig. 9. Left: definition of the computational domain Ω and boundary conditions for the example considered in Section 5.2. Middle: characteristics
of the fluid for Case 1. Right: characteristics of the fluid for Case 2. ka = 6.536 m−1, ηa = 0.001, kb = 29.412 m−1, ηb = 0.001.
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Fig. 10. Left: the selected subdomains and meshes for Case 1 of Fig. 9. Middle: the FEM reference solution. Right: the numerical results obtained
with the weak Trefftz discontinuous Galerkin formulation.

5.2.2. FEM-to-FEM coupling
Let us consider Case 1 in which Ω is filled with only one fluid (the middle case of Fig. 9). Ω was discretized with 3

subdomains as shown in Fig. 10: Ω1 (the 0.4 m × 2 m rectangular bottom right part), Ω2 (the curved upper right part)
and Ω3 (the 1 m × 0.4 m rectangular upper left part). In Ω1, we used a regular mesh with 10 elements along the x axis
and 40 elements along the y axis, (451 DOFs). In Ω2, we used a regular mesh with 9 elements along the radial axis
and 16 elements along the circumferential axis (170 DOFs). In Ω3, we used a regular mesh with 20 elements along the
x axis and 8 elements along the y axis (189 DOFs). These meshes were chosen in order to have at least 20 elements
per wavelength and, thus, avoid pollution effects. In addition, due to the number of elements chosen, the meshes in
Ω1,Ω2 and Ω3 were nonconforming. The numerical result is shown on the right of Fig. 10. By comparing this solution
with the reference solution in the center of Fig. 10, it can be observed that the proposed approach works perfectly.
Indeed, the method was capable of recovering the reference solution even though the unknown uh was discontinuous
across the model. This example illustrates the benefit of such an approach which can provide an accurate FEM result
even with models whose meshes are nonconforming.

5.2.3. VTCR-to-FEM coupling
Now let us consider Case 2 in which Ω is filled with two fluids (on the right of Fig. 9). We used the mesh shown

on the left of Fig. 11, combining the FEM and the VTCR strategies. Ω1, where the wave number is smaller, was
modeled using the FEM with 10 elements along the x axis and 40 elements along the y axis (451 DOFs). The VTCR
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Fig. 11. Left: the selected subdomains and meshes for Case 2 of Fig. 9. Middle: the FEM reference solution. Right: the numerical result obtained
with the weak Trefftz discontinuous Galerkin formulation.

approximation was used in subdomains ΩE , E ∈ {2 . . . 13}. In all these subdomains, the number NE of regularly
oriented rays satisfied NE = [2.k.diam(ΩE )], where [�] denotes the integer part, k the wave number and diam(ΩE )

the diameter of ΩE . This choice ensured that the VTCR subdomains had enough DOFs to achieve a reliable solution
(see the heuristic criterion in [28]). The result is shown in Fig. 11. One can see that, overall, the solution is similar
to the FEM reference solution. Indeed, almost all the vibration peaks are located in the right place and have the
right amplitude. Thus, this example validates the proposed approach and shows that the weak Trefftz discontinuous
Galerkin formulation (12) is capable of solving this relatively complex numerical example which mixes different types
of approximations with different physics. However, in the result of Fig. 11 some small discontinuities between the
VTCR and the FEM domains can be detected at the common boundary. These discontinuities are due to the FEM
mesh selected, which is not refined enough near the common boundary. Indeed, near that boundary, local vibration
phenomena appear in Ω1 with wavelengths which are very close to that of fluid b. However, since these effects
correspond to evanescent waves, they are localized at the boundary. Therefore, in order to get a better solution with
almost no visible discontinuity, the FEM mesh should be refined near this boundary alone.

6. Conclusion

In the VTCR proposed in [17] for the calculation of medium-frequency phenomena, the solution of a vibrational
problem is sought in an approximation space which is spanned by the exact solutions of the governing equation in the
form of propagative and evanescent waves. These shape functions are discontinuous. The transmission conditions at
the boundaries of the substructures are satisfied, thanks to a dedicated variational formulation which can be viewed as
the Trefftz version of a discontinuous Galerkin formulation.

Section 2 of this paper identified strong links between the VTCR and the discontinuous Galerkin methods and
provided some basic mathematical results in the case of the Helmholtz problem, showing, in particular, that the
discrete problem makes sense. An extension to vibro-acoustic problems should present no difficulty.

We also introduced a new formulation for the resolution of vibration problems, called the weak Trefftz discontin-
uous Galerkin formulation, in which the Trefftz constraint (the need to satisfy the governing equation) is weakened.
Section 3 provided some basic mathematical background for this formulation which, again, shows that the discrete
problem makes sense. Moreover, it was shown that different numerical models (namely the VTCR and the FEM) can
be easily coupled and some numerical illustrations were presented.

This weak Trefftz discontinuous Galerkin formulation seems to be a promising computational method which can
foster new approaches to the resolution of engineering problems. It can be easily extended to other problems, such as
quasi-static problems. Its main interest is its ability to couple different types of numerical models. Another great
advantage is that it does not require the use of homogeneous substructures. Furthermore, in the case where the
substructures are elements, its flexibility enables elements to be removed or added easily. Finally, the application
of the weak Trefftz discontinuous Galerkin formulation to 3D problems can be based on the 3D VTCR extension
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of [26], which considers a 3D acoustic car cavity in the medium-frequency range. An extension to vibro-acoustic
problems would present no particular difficulty and will be addressed in future works.
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[29] L. Kovalevsky, P. Ladevèze, H. Riou, The Fourier version of the variational theory of complex rays for medium-frequency acoustics, Comput.

Methods Appl. Mech. Engrg. 225 (2012) 142–153.

15


	On Trefftz and weak Trefftz discontinuous Galerkin approaches for medium-frequency acoustics
	Introduction
	The Variational Theory of Complex Rays: a Trefftz discontinuous Galerkin formulation
	The reference problem
	The variational formulation of the reference problem associated with the VTCR
	Properties of the VTCR formulation

	The weak Trefftz discontinuous Galerkin formulation
	Properties of the weak Trefftz discontinuous Galerkin formulation
	First example of the use of the weak Trefftz discontinuous Galerkin formulation
	Second example of the use of the weak Trefftz discontinuous Galerkin formulation

	Coupling of the FEM and the VTCR
	Numerical illustrations
	The incident wave problem
	Problem description
	Study of the weak Trefftz discontinuous Galerkin solution as a function of the FEM refinement
	Study of the weak Trefftz discontinuous Galerkin solution as a function of the VTCR refinement
	Study of the numerical properties

	The  L -shape problem
	Problem description
	FEM-to-FEM coupling
	VTCR-to-FEM coupling


	Conclusion
	References




