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A new numerical strategy for the resolution of high-Péclet advection–diffusion
problems

H. Riou ⇑, P. Ladevèze
LMT-Cachan (ENS Cachan/CNRS/Paris 6 University, PRES UniverSud Paris), 61 avenue du Président Wilson, F-94230 Cachan, France
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1. Introduction

The standard Galerkin finite element method (FEM) is the most
popular numerical technique for the resolution of partial differen-
tial equations. However, since it approximates the solution using
continuous, piecewise polynomial functions, it cannot handle prob-
lems involving sharp gradients unless the mesh is significantly
refined. This is the case of advection–diffusion problems with high
Péclet numbers, which are used to describe many transport phe-
nomena and are involved in the linearization of the Navier–Stokes
equations. Indeed, for such problems, it is well-known that the
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solution presents rapid local variations in the boundary layer region
(see Section 2.2 of [2]).

Numerical methods based on a modified FEM formulation have
been proposed to solve this problem and stabilize the calculated
solution. Some of these methods are the streamline upwind
Petrov–Galerkin method [3,4], the Galerkin least-squares method
[5,6] and the unusual stabilized finite element method [7,8]. In
these methods, the basis functions still remain polynomial.

Conversely, another approach consists in seeking a solution by
adding new functions to the approximation space. Examples of
such methods include the residual free bubbles method [9,10],
the partition of unity method [11] and the discontinuous enrich-
ment method [12,13]. These methods have been applied efficiently
to challenging examples. The method proposed in this paper be-
longs to this latter class of methods and distinguishes itself by



1 One can see that ui verifies
R
XE
ð$vE � avEÞ � $uidXE ¼ 0 8vE 2 H1ðXEÞ. Then,

a c c o r d i n g t o t h e S t o k e s f o r m u l a , ui a l s o v e r i fi e sR
@XE

vE � $ui � nEd@XE �
R
XE

vE :DuidXE �
R
XE
ðavEÞ � $uidXE ¼ 0 8vE 2 H1ðXEÞ. Conse-

quently, one has Dui þ a � $ui ¼ 0 within XE and $ui � nE ¼ 0 over @XE . This shows
the special shape functions it uses and by the treatment of the con-
tinuity equations at the interelement boundaries.

The formulation of the method is a direct extension of the var-
iational theory of complex rays (VTCR) [1], which was developed
for medium-frequency problems whose solutions have highly
oscillating behavior. It is based on a dedicated variational formula-
tion of the problem that allows the solutions inside the elements to
be a priori independent of one another, thus giving the strategy
great flexibility in the choice of shape functions. Then, one can
use exact solutions of the governing equations as shape functions
in each element. (In the case of medium-frequency acoustics and
structural dynamics problems, these exact solutions are propaga-
tive and evanescent waves (see [1])). Such a choice drastically im-
proves the efficiency of the method. The continuity of solutions at
the interface between two elements is taken into account automat-
ically through a dedicated variational formulation. In this paper,
we present a numerical technique for advection–diffusion prob-
lems which preserves these characteristics.

The proven efficiency of the VTCR for structural vibration prob-
lems [14] and acoustic problems [15] was the main motivation be-
hind this extension of the VTCR to advection–diffusion problems.
The structure of the paper is the following: Section 2 presents
the reference problem. Section 3 describes the variational formula-
tion associated with the new approach. Section 4 is dedicated to
the derivation of the shape functions. Section 5 illustrates the per-
formance of the method through several numerical examples. Fi-
nally, the conclusions are presented in Section 6.

2. The reference problem

Let X � R2 be a bounded open domain with boundary @X, di-
vided into NE non-overlapping elements XE and their intersections
CEE0 ¼ XE \XE0 . We consider the following advection–diffusion
problem:

find uE 2 H1ðXEÞ such that :

�DuE þ a � $uE ¼ 0
uE ¼ ud over @XE \ @X
uE ¼ uE0 over CEE0

$uE � nE þruE0 � nE0 ¼ 0 over CEE0

8>>>>>><
>>>>>>:

ð1Þ

where ud is a prescribed boundary condition. a corresponds to the
advection vector (e.g. the flow velocity vector in the context of fluid
mechanics), which we assume to be constant and nonzero. In (1),
the diffusivity parameter before Du was set to 1, which does not af-
fect the generality of this type of equation.

The Péclet number is a dimensionless parameter which relates
the rate of advection of a flow to its rate of diffusion. Here, this
parameterisequalto lX � kak,wherelX isthecharacteristiclengthofX.

3. Variational formulation of the problem

Let SE;ad denote the functional space of the functions uE which
verify �DuE þ a � $uE ¼ 0. Problem (1) is equivalent to the follow-
ing 2-D variational formulation:

find uE 2SE;ad such that :X
E

R
@XE\@X

uE�udð Þ$vE �nEd@XE�
X

E

R
@XE\@X

a�nE
2 uE�udð ÞvEd@XE

þ1
2

X
E

X
E0>E

R
CEE0

uE�uE0ð Þ: $vE �nE�$vE0 �nE0ð ÞdCEE0

þ1
2

X
E

X
E0>E

R
CEE0

$uE �nEþ$uE0 �nE0ð Þ: vEþvE0ð ÞdCEE0

�
X

E

X
E0>E

R
CEE0

a�nE
2 uEþa�nE0

2 uE0
� �

: vEþvE0ð ÞdCEE0 ¼0 8vE 2SE;ad

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð2Þ
2

or, in shorter form:

find u 2 Sad such that :

aðu;vÞ ¼ lðvÞ 8v 2 Sad

�
ð3Þ

where að�; �Þ and lð�Þ are the bilinear form and the linear form of (2)
respectively.

In order to prove the equivalence of (1) and (2), one needs only
to prove the uniqueness of (2), which the exact solution of (1) ver-
ifies trivially. Then, let us consider two different solutions of (2)
and let du be their difference. By choosing v ¼ du in (3), one gets:X

E

Z
@XE

duE � $duE � nEd@XE �
X

E

Z
@XE

a � nE

2
duE � duEd@XE ¼ 0 ð4Þ

Applying the Stokes formula, (4) leads toX
E

Z
XE

$duE:$duE þ duEDuEdXE �
X

E

Z
XE

a � $duE:duEdXE ¼ 0 ð5Þ

Reverting to the definition of SE;ad, one gets:X
E

Z
XE

$duE � $duEdXE ¼ 0 ð6Þ

Then, $duE ¼ 0 for every XE and consequently duE is constant.
Now let us consider an element XE such that @XE \ @X ¼ ; (or

choose for XE an interior element of X), and take test functions v
to be equal to zero everywhere in X, except in XE. Since, according
to (6), duE and duE0 are constant, (2) becomesZ
@XE

$vE � nE � vEa � nEð Þ:ðduE � duE0 Þd@XE ¼ 0 8vE 2 SE;ad ð7Þ

This problem can be written as
R
@XE

z:ðduE � duE0 Þd@XE ¼ 0 8z such
that z ¼ $vE � nE � vEa � nE with vE 2 SE;ad. z must satisfy some
conditions.

More precisely, the problem defined by vE 2 SE;ad and z ¼ $vE

�nE � vEa � nE over @XE can be written in the following weak form:
hvE;wi ¼

R
XE
ðrvE � avEÞ � $wdXE ¼

R
@XE

zwd@XE 8w 2 H1ðXEÞ. The
mathematical kernel of this problem may be spanned by a set of
functions ui; i ¼ 1 . . . m which verify hvE;uii ¼ 0 8vE 2 H1ðXEÞ.1
Consequently, a necessary condition which z must satisfy isR
@XE

zuid@XE ¼ 0; i ¼ 1 . . . m.
Finally, going back to Problem (7), one can write

R
@XE

z�
ðduE � duE0 Þd@XE ¼ 0 8z such that

R
@XE

zuid@XE ¼ 0; i ¼ 1 . . . m.
Introducing the constant Lagrange multipliers ki, this equality un-
der constraints becomes

R
@XE

z �ðduE � duE0 Þd@XE þ ki
R
@XE

zuid

@XE ¼ 0 8z 2 L2ð@XEÞ. It follows that duE � duE0 þ
P

i¼1...mkiui ¼ 0.
Since ui are continuous functions, the elements XE0 surrounding
XE have the same duE0 .

Using a similar proof, one can show that if @XE \ @X – ; then
duE þ

P
i¼1...mkiui ¼ 0 over @XE \ @X and

P
i¼1...mkiui ¼ 0 over the

complementary part of @XE. Therefore, duE ¼ 0.
This proves that (2) is unique and equivalent to (1).
Several remarks can be made:

� Formulation (2) is a direct extension of the VTCR formulation
introduced in [15] for Helmholtz problems, but adapted to
advection–diffusion problems.
� (2) is not obtained by multiplying the governing equation of (1)

by a test function and integrating the result by parts. Therefore,
this formulation is not a classical Galerkin method.
that ui are continuous functions.



� No Lagrange multiplier is required to ensure the continuity of
the solution across the interface CEE0 . This property is granted
automatically by the variational formulation (2). This marks
the difference between our approach and that of [16].
� The equivalence of (1) and (2) remains true even if the advec-

tion vector a is not constant as long as it is divergence-free,
which is often the case in engineering applications (see Section
2.1 of [2]). Future developments of the technique presented
here will address this case.

4. Determination of the space of the shape functions

In order to find an approximate solution of (1) the basic idea
consists in seeking a solution of (3) in a space Sq

E;ad � SE;ad of finite
dimension:

find uq 2 Sq
adsuch that :

aðuq; vqÞ ¼ lðvqÞ 8vq 2 Sq
ad

(
ð8Þ

Then, in order to find some functions of Sq
E;ad, one must solve the

equation �DuE þ a � $uE ¼ 0. Since throughout this paper a is as-
sumed to be constant and nonzero, the solution of (1) is known to
have sharp exponential gradients. Therefore, we seek solutions in
the form of ek�x functions. The easiest way to obtain the vector k
is to write it as k ¼ a

2þ k0, as was proposed in [16]. Indeed, when
this expression is injected into the equation �DuE þ a � $uE ¼ 0,
one gets �kk2k þ a � k ¼ 0, which leads to
Fig. 1. The shape functions ekðhÞ�ðx�x0 Þ , with kðhÞ defined by (10) for different values of h :

right), for w ¼ 0.

3

kk0k2 ¼ kak
2

4
ð9Þ

Then, the test functions ek�x in Sq
E;ad are taken such that

kðhÞ ¼ a
2
þ kak

2
cosðwþ hÞxþ sinðwþ hÞyð Þ ð10Þ

where w and h are respectively the direction of a and the polar
direction in the ðx; yÞ 2-D plane. These test functions are shown in
Fig. 1. One can observe that the governing equation has a solution
which is a constant function and that (10) allows the existence of
such a function by choosing h ¼ p.

However, the functions ek�x grow exponentially in some direc-
tion. In order to avoid numerical problems with the conditioning
number of the matrix system due to the possible very high values
taken by these functions, it is preferable to normalize each shape
function. Thus, one can use a specific origin x0 in the exponential
function: ek�ðx�x0Þ. Such an origin can be located at the boundary
of XE and chosen such that k � ðx� x0Þ 6 0 8x 2 XE. Consequently,
all the shape functions have almost identical maximum values.
This property was used in Fig. 1.

As was explained well in [17], there are several ways to span
Sq

E;ad. The first option is to use

Sq
E;ad ¼ span ekðhnÞ�ðx�x0Þ; hn ¼

2pn
q

; n ¼ 0 . . . q� 1
� �

ð11Þ
h ¼ 0 (upper left), h ¼ p=3 (upper right), h ¼ 5p=3 (lower left) and h ¼ �p=6 (lower
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Fig. 2. h-convergence curves of the relative error in L2-norm for the example of
Section 5.2 for kak ¼ 102.
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This is an interesting choice when the elements have simple geom-
etries: exponentials are easy to integrate and, therefore, the inte-
grals in (2) can be calculated analytically without any numerical

quadrature error. A second option can be Sq
E;ad ¼ span

R 2pðnþ1Þ
q

2pn
q

�
ekðhÞ�ðx�x0Þdh; n ¼ 0 . . . q� 1g. This choice can be interesting if the
solution being sought has a continuous distribution of exponential
functions in the h direction in the 2-D plane. However, some inte-
grations in (2) must still be performed numerically. A third possible

option, proposed by Kovalevsky et al. [17], is Sq
E;ad ¼ span

R 2p
0

n
einhekðhÞ�ðx�x0Þdh; n ¼ �q . . . qg. This choice corresponds to a Fourier
series expansion of the amplitudes of the exponential functions
and has been shown to be very interesting in the context of med-
ium-frequency problems (see [17]) but again can lead to the evalu-
ation of hard integrals. In the scope of this paper which is a first
development of this approach for advection–diffusion problems,
we retained the first option (11) as we did not want any round-
off errors due to numerical integrations. With such a choice, the
analytical integrations offered with (11) gives the insurance that
the errors are only due to the choice of shape functions, and not
to numerical implementation. The performances of the other op-
tions will be assessed in future works.

The uniqueness of (8) is established provided that the proper-
ties required for the uniqueness of (2) hold. Because of the proper-
ties of (2) proven in Section 3, this is the case if the number of
equations is sufficient. This influences the choice of Sq

E;ad and de-
pends on the type of problem being studied.

5. Numerical results

In this section, the performance of the numerical strategy pre-
sented in Sections 3 and 4 is assessed for three advection–diffusion
problems. All three problems are defined on a unit square
X ¼ ½0; 1� � ½0; 1� discretized uniformly using a 1

h� 1
h mesh with a

total of NE ¼ 1
h2 elements.

5.1. The boundary layer problem with a flow aligned with the
advection direction

Let us consider an advection–diffusion problem in which the
Dirichlet boundary conditions along @X are such that the exact
solution is uex ¼ ea�ðx�x0 Þ�1

e�a�x0�1 , with x0 ¼ ð1;1Þ and w ¼ ðx0; aÞ 2 0;p=6;f
Table 1
The relative error in L2-norm for the problem defined in Section 5.1 and for different
advection directions w and different numbers of shape functions q per element (see
(11)).

kak w Q1 q ¼ 4 q ¼ 8 q ¼ 16

102 0 8:97� 10�2 1:60� 10�15 1:58� 10�15 6:68� 10�14

p=6 1:31� 10�2 3:36� 10�15 3:52� 10�15 4:78� 10�14

p=5 1:31� 10�2 2:33� 10�15 3:45� 10�15 3:65� 10�14

p=4 1:31� 10�2 8; 95� 10�17 2:09� 10�15 5:35� 10�14

p=3 1:31� 10�2 6:27� 10�15 6:18� 10�15 3:51� 10�14

103 0 57:7� 10�2 3:23� 10�15 4:85� 10�15 6:57� 10�14

p=6 2:53� 10�2 8:03� 10�15 1:35� 10�14 2:11� 10�14

p=5 2:57� 10�2 3:94� 10�14 3:26� 10�11 3:27� 10�14

p=4 2:62� 10�2 2:58� 10�14 2:64� 10�14 4:70� 10�14

p=3 2:53� 10�2 5:38� 10�14 5:46� 10�14 5:57� 10�14

106 0 8:44� 102 3:56� 10�12 5:08� 10�12 1:54� 10�11

p=6 9.75 8:04� 10�12 8:26� 10�9 6:25� 10�9

p=5 9.97 6:60� 10�14 1:73� 10�12 1:74� 10�12

p=4 9.97 2:60� 10�11 2:75� 10�11 3:00� 10�11

p=3 9.75 1:42� 10�10 9:75� 10�7 4:07� 10�7

Fig. 3. h-convergence curves of the relative error in L2-norm for the example of
Section 5.2 for kak ¼ 103.

4

p=5;p=4;p=3g. This example was previously used in [18] for stabi-
lized finite element methods and in [16] for the discontinuous
enrichment method. Three different values of kak (102;103 and
106) were tested.

Since (10) and (11) take into account the exponential term and
the constant shape function, our approach was expected to lead to
the exact solution within machine precision.

Table 1 shows the results, expressed as relative errors in terms
of L2-norm between uq and uex, compared to those of the classical
Q1 finite element.2 As expected, the numerical solution is identical
to the exact solution within machine precision. As already observed
in [16], the shape functions described in (11) give a closer represen-
2 Alternative techniques cited in the introduction would give better results that the
Q1 FEM. Here the FEM results must only be considered as order of magnitudes of the
errors obtained with a classic method, without paying attention to numerical
improvements for that class of problems. Furthermore, using finite elements with
higher-degree polynomials would obviously lead to better results than the Q1
element, as shown in [20].



4 6 8 10 12 14 16 18
10−9

10−8

10−7

10−6

10−5

10−4

1/h

R
el

at
iv

e 
er

ro
r i

n 
L2  n

or
m

 

q = 6
q = 10
q = 14

Fig. 4. h-convergence curves of the relative error in L2-norm for the example of
Section 5.2 for kak ¼ 106.
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Fig. 5. q-convergence curves of the relative error in L2-norm for the example of
Section 5.2 for kak ¼ 102.
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Fig. 6. q-convergence curves of the relative error in L2-norm for the example of
Section 5.2 for kak ¼ 103.
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Fig. 7. q-convergence curves of the relative error in L2-norm for the example of
Section 5.2 for kak ¼ 106.

Fig. 8. Definition of the problem considered in Section 5.3. The advection vector is
a ¼ ða; 0Þ. Two cases are considered: kak ¼ 102 and kak ¼ 103.
tation of the exact solution than the usual polynomial functional ba-
sis. Let us recall that the main difference between the approach pro-
posed here and that of [16] is that no Lagrange multiplier is needed
to enforce the continuity of the solution between elements. This con-
tinuity is automatically achieved in the variational formulation (2).
Therefore, in our case, with a mesh of NE elements and q shape func-
tions per element, the total number of degrees of freedom is simply
NE � q.

One can observe that for kak ¼ 106 our approach still outper-
forms the Galerkin Q1 element, but sometimes fails to achieve ma-
chine precision. This is due to numerical difficulties: for such a
value of kak, the matrix associated with (3) can be poorly condi-
tioned. Nevertheless, the accuracy of the final result remains quite
acceptable.

5.2. The boundary layer problem with a flow not aligned with the
advection direction

Now let us consider the advection–diffusion problem where the
Dirichlet boundary conditions over @X are such that the exact
5

solution is uex ¼ ekak=2ðcos wþcos ~wÞðx�1Þþkak=2ðsin wþsin ~wÞðy�1Þ�1
e�kak=2ðcos wþcos ~wÞ�kak=2ðsin wþsin ~wÞ�1

. The advection direc-

tion implied by the advection vector a is w, and ~w denotes some
flow direction. Such a function is an exact solution of the governing
equation (first equation of (1)). In comparison with the example



Fig. 9. The FE reference solution (left) and the solution using the new approach with ð1=hÞ2 ¼ 100 uniformly distributed elements and q ¼ 12 shape functions in each element
(right) for the problem of Section 5.3 and kak ¼ 102.
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Fig. 10. Values of approximated solutions of the problem considered in Section 5.3 for kak ¼ 102, along the line y ¼ 0:5. (left) 1=h ¼ 6; (middle) 1=h ¼ 10; and (right)
1=h ¼ 14.
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Fig. 11. Values of approximated solutions of the problem considered in Section 5.3 for kak ¼ 103, along the line y ¼ 0:5. (left) 1=h ¼ 6; (middle) 1=h ¼ 10; and (right)
1=h ¼ 14.
considered in Section 5.1, the ‘‘flow’’ of the solution is not oriented
on the direction of a. This example, too, was used in [16] to com-
pare different methods, and it is interesting here because uex is
no longer in the span of Sq

E;ad (see (11)), except for certain values

of q. Three different values of kak were tested: 102;103 and 106.
Without loss of generality, w ¼ 0 and ~w ¼ p=8 were chosen. The
h-convergence curves were described as functions of 1

h (which
corresponds to the number of elements along an edge of X). The
q-convergence curves were described as functions of q (which
represents the number of shape functions of an element XE). Each
6

curve was plotted using the relative L2-norm between the approx-
imate solution and uex. Here q was not chosen to be equal to 16,
which would have made the exact solution be in the span of Sq

E;ad.
Figs. 2–4 show the h-convergence curves for kak ¼ 102; kak ¼

103 and kak ¼ 106 for different values of q. Figs. 5–7 show the q-
convergence curves for kak ¼ 102; kak ¼ 103 and kak ¼ 106 for dif-
ferent values of 1

h.
Figs. 2–4 show that with increasing values of 1

h, our approach
converges toward the exact solution, but the convergence rate is
very slow. Indeed, the slope of the curves is always very small
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Fig. 12. Values of approximated solutions of the problem considered in Section 5.3 for kak ¼ 106, along the line y ¼ 0:5. (left) 1=h ¼ 6; (middle) 1=h ¼ 10; and (right)
1=h ¼ 14.
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Fig. 13. h-convergence curves of the relative error indicator (12) for the example of
Section 5.3 with kak ¼ 102.
and, in certain cases, almost equal to zero (see Fig. 3). However, the
good performance of the method becomes apparent when 1

h is fixed
and q increases. Indeed, by choosing q ¼ 6; q ¼ 10 and q ¼ 14 suc-
cessively, the relative errors decrease each time by an order of
magnitude (and sometimes two).

That remark can be made about the q-convergence curves of
Figs. 5–7. Indeed, in these figures, an excellent convergence rate
of the curves can be observed systematically, which makes the pro-
posed method very advantageous for solving this type of problem.
For kak ¼ 103 and kak ¼ 106 the curves are almost identical, which
confirms the lack of interest of the h-approach observed in the pre-
vious section. The same behavior (the q-convergence is signifi-
cantly better than the h-convergence) had already been reported
with medium-frequency numerical strategies using plane waves
to solve Helmholtz equations (see [15,12,19]). Of course, this con-
clusion is valid only for an example such as this one whose exact
solution is exponential.

Finally, in Fig. 7, one can observe an interruption in the conver-
gence at kak ¼ 106. As pointed out previously in Section 5.1, this is
due to numerical difficulties related to some values of q and that
particular value of kak, leading to poor conditioning of the matrix
associated with the problem. Nevertheless, the accuracy remains
acceptable.

5.3. The boundary layer problem with constant Dirichlet boundary
conditions

Finally, in order to show the efficiency of the proposed numer-
ical strategy, let us consider the problem with constant Dirichlet
boundary conditions described in Fig. 8. As far as the authors know,
no exact solution for this problem is available. However, as it pre-
sents strong outflow boundary layers and discontinuous Dirichlet
data, it represents a draconian benchmark.

In order to assess the performance of our approach and as no
exact solution is available, we used the following indicator associ-
ated with the quantity:

Ierrð�Þ ¼
Z
@X
kak2j�j2d@X

þ 1
2

X
CEE0

Z
CEE0

kak2j�E ��E0 j2 þ j$�E � nE þ $�E0 � nE0 j2dC

0
@

1
A

ð12Þ

and we used the relative error indicator Ierrðu�uexÞ
IerrðuexÞ . One can see that

this error indicator quantifies the verification of the boundary con-
ditions and the continuity across the interfaces between elements,
which is interesting in this case because the governing equation is
satisfied exactly in the numerical solution and only the boundary
conditions and the continuity at the interfaces are approximated.
Obviously, this indicator is equal to zero for uex. Therefore, the
7

proposed error indicator should decrease toward zero when the
numerical approximation is refined.

Fig. 9 shows the responses for kak ¼ 102 obtained with the clas-
sical Q 1 finite elements (computed on a uniform mesh with 10,000
elements, then free from any spurious oscillation) and the
proposed method with ð1=hÞ2 ¼ 100 uniformly distributed
elements and q ¼ 12 shape functions in each element. One can ob-
serve that the two solutions are almost the same, either in shape or
in amplitude. This simple comparison shows the capacity of the
proposed method to converge toward a good solution for that
problem where no exact analytical solution exists.

Furthermore, Figs. 10–12 show the cross-sections of the values
of the proposed numerical solutions for y ¼ 0:5, for kak ¼ 102;103

and 106;1=h ¼ 6;10;14 and q ¼ 8;12 and 16. This cross-section is
located in the middle of the considered domain, and aligned with
the direction of vector a, consequently showing the draconian
boundary layer near x ¼ 1. Then, it is a relevant indication for
assessing the stability of the proposed method. As one can see,
no oscillation appear in the computed solution, even for very high
Peclet numbers, which shows a relatively good stability of the
method for that class of problems.

Figs. 13 and 14 show the h-convergence curves of the proposed
approach for kak ¼ 102 and kak ¼ 103. The relative error indicator
(12) was used to assess the quality of the solutions. One can see
that the error indicator decreases when the number of DOFs in-
creases, which seems logical and shows the relevance of the error
indicator (12) for assessing the quality of the solution. Further-
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Fig. 14. h-convergence curves of the relative error indicator (12) for the example of
Section 5.3 with kak ¼ 103.
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Fig. 16. q-convergence curves of the relative error indicator (12) for the example of
Section 5.3 with kak ¼ 103.

Table 2
The relative error indicator (12) for the problem of Section 5.3 using different
discretizations (1=h being the number of elements along each edge and q the number
of shape functions per element) leading, in each case, to about 800 DOFs.

kak 1=h ¼ 6; q ¼ 22 1=h ¼ 10; q ¼ 8 1=h ¼ 14; q ¼ 4

102 0.004 0.018 0.106

103 0.115 0.277 0.364
more, the greater the number of shape functions used in each ele-
ment, the better the convergence. Indeed, with q fixed, the three
convergence curves decrease thanks to 1

h (see Figs. 13 and 14).
Figs. 15 and 16 show the q-convergence curves of the proposed

approach for kak ¼ 102 and kak ¼ 103. As expected with the error
indicator (12) and pointed-out above, the convergence curves de-
crease according to the number of DOFs. The fact that the conver-
gence curves decrease rapidly shows the interest of the proposed
approach for finding approximate solutions of advection–diffusion
problems.

For this example, the interest of choosing an h-refinement vs. a
q-refinement is illustrated in Table 2. This table shows the value of
the error indicator (12) for kak ¼ 102 and kak ¼ 103 with different
choices of 1

h and q, keeping the total number of DOFs approximately
equal to 800 each time. One can see that regardless of kaka discret-
ization with only a few elements, but many shape functions, is the
most efficient. In fact, in all cases, 1=h ¼ 6 and q ¼ 22 lead to the
smallest error indicator. Thus, as observed in Section 5.2, the q-
refinement is preferable, at least for the example considered.
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Fig. 15. q-convergence curves of the relative error indicator (12) for the example of
Section 5.3 with kak ¼ 102.
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6. Conclusion

The VTCR was introduced in [1] to solve medium-frequency
problems. It is based on a new variational formulation of the prob-
lem which allows the shape functions to be discontinuous across
interelement boundaries. This was very interesting because plane
waves could then be used as shape functions. The choice of such
functions which verify the governing equation gave the strategy
an excellent convergence rate.

In this paper, this idea was extended to 2-D advection–diffusion
problems with constant flow velocity vectors. A dedicated varia-
tional formulation was derived and some exact solutions of the
governing equation, consisting of exponential terms with sharp
gradients, were used as shape functions. Three numerical examples
were presented. The convergence rates were found to be excellent
compared to the classical Galerkin approach. These examples
showed that it is easy to implement a systematic procedure for
designing elements and shape functions. They also showed that
q-convergence works better than h-convergence, at least for the
examples considered. All things considered, the performance of
this new approach for the calculation of transport problems at high
Péclet numbers appears promising.

Our future works will focus on the study of more complex prob-
lems with variable flow velocity vectors.
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