
HAL Id: hal-01649517
https://hal.archives-ouvertes.fr/hal-01649517

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Markov-chain modelling and experimental investigation
of powder-mixing kinetics in static revolving mixers

Dennis Ponomarev, Vadim Mizonov, Cendrine Gatumel, Henri Berthiaux,
Elena Barantseva

To cite this version:
Dennis Ponomarev, Vadim Mizonov, Cendrine Gatumel, Henri Berthiaux, Elena Barantseva. Markov-
chain modelling and experimental investigation of powder-mixing kinetics in static revolving mixers.
Chemical Engineering and Processing: Process Intensification, Elsevier, 2009, 48 (3), pp.828-836.
�10.1016/j.cep.2008.10.008�. �hal-01649517�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/145173143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01649517
https://hal.archives-ouvertes.fr


Markov-chain modelling and experimental investigation of powder-mixing
kinetics in static revolving mixers

Dennis Ponomareva, Vadim Mizonova, Cendrine Gatumelb, Henri Berthiaux b,∗, Elena Barantsevaa

a Department of Applied Mathematics, ISPEU, Rabfakovakaya 34, 153003 Ivanovo, Russia
b RAPSODEE, Ecole des Mines d’Albi-Carmaux, UMR CNRS 2392, Campus Jarlard, route de Teillet, 81 000 Albi, France

Keywords:
Static mixer
Mixing
Markov chains
Model
Mixture quality

a b s t r a c t

This study aims to develop a general model that is able to describe powder flow and mixing in static
mixers, regardless of the type of mixer or the mixing configurations. The process model is based on
a homogeneous Markov chain describing the flow of each component through the mixing zone by a
series of interconnected cells. It accounts for the number of mixing elements and their disposition in the
mixer, as well as particle segregation via different transition probabilities. Some simulations are given to
emphasize this particular aspect. Other outcomes of the model include the number of passages to reach a
required mixture quality, as well as the asymptotic distribution of components. A laboratory static mixer
of revolving type was designed specially for this study. It comprises up to 10 mixing sections, and its
high internal voidage favours free flow of the powder. Segregating and non-segregating mixtures have
been used to test the model and adjust unknown parameters. The model gives very satisfying results. In
particular, it is able to account for the oscillating character of mixing kinetics due to particle segregation.
It is also suggested that these parameters could be linked separately to powder flowability and mixing
element characterization.

1. Introduction

Powder mixing is an important operation for many different
industries as it adds significant value to the product. The term mix-
ing is applied to operations which tend to reduce non-uniformities
or gradients in the composition, properties or temperature of mate-
rial in bulk. Such mixing is accomplished by the movement of
material between various parts of the whole mass [1] under classi-
cal convection–dispersion transport mechanisms.

The technical process of mixing is performed by many differ-
ent types of equipment available on the market. In tumbler mixers,
the achievement of a mixture is obtained by the rotation of a drum
containing the products to be mixed. This type of machine is typ-
ically used in batch mode, with a wide variety of drum designs,
including storage containers and sometimes “home-made” designs.
Because this relatively free particle motion can cause segregation,
tumbler mixers are usually preferred for cohesive products. Con-
vective powder mixers are closer in design to fluid or paste blenders.
A convective powder mixer consists of an impeller rotating in a
drum that contains the particles, which causes the displacement of
these particles to regions in which they would never have gone by
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free motion. For this reason, such mixers are recommended for free-
flowing powders. Impeller types are extremely diverse: ribbons,
paddles, blades mounted on a frame, orbiting screws, etc. Convec-
tive mixers can be operated either in batch and continuous mode.
Horizontal or vertical impeller configuration, as well as different
rotational speeds, can cause frictional flow or fluidised flow, can
help alleviate particle cohesion, or cause particle de-agglomeration
and sometimes grinding.

In static mixers, the mixing effect is provoked by the particulate
flow through a mixing zone, which can be considered as a porous
media, in a tube-shaped vessel. Although there are a wide variety
of static mixers, we shall focus on those with multiple passages of
material through the mixing zone. In these mixers, process opti-
misation involves searching for the minimum number of material
passages through the mixing zone required to give the desired mix-
ture quality. The absence of moving parts means that such mixers
have extremely low energy consumption, and also makes them very
versatile. Such static mixers are positioned between continuous
mixers and batch mixers in a closed volume so that they combine
the advantages of both operating principles. In addition, although
batch loading reduces the throughput, it significantly improves the
feeding precision, which is very important in many industries, such
as the pharmaceutical or agro-food industries.

Mixture quality can be analysed using different approaches, for
example those described in [2–4], through the help of standard



deviation or variance with reference to the average concentration
of a component in the whole volume. Most of the time, it is neces-
sary to sample the mixture and therefore obtain an estimate of this
statistical data. The size of the samples may be that of an end-used
property (for example the mass of a pharmaceutical tablet) or that
required to meet an industrial standard (three times the mass of
a tablet, as needed by the FDA). In the present study, this problem
will not be considered, as the whole volume of a binary mixture
will be directly divided into samples and the mass concentration of
the key component determined in each sample to find the variance
of the mixture.

Modelling of particulate flow has received a lot of attention over
the past 15 years, basically through the generalisation of distinct
element models (DEM). These are able to model collective particle
motion via a mechanistic representation of particle–particle and
particle–wall contacts and interactions [5–7]. The main difficulty
lies in considering the overall complexity of the process, includ-
ing particle shape, size, surface, distribution of properties, particle
number, etc., whilst avoiding a significant increase in computation
time. This, together with the problem of dealing with the amount of
data generated, has strongly moderated the interest of such models
for process simulation and control. Therefore, the tendency is much
more to find a way of linking such microscopic models with models
that are more efficient at higher process scales. Markov-chain mod-
els belong to this category of mathematical tool. We have recently
described and reviewed their applicability to particulate processes
[8,9].

This Eulerian approach observes and describes variation of
global process properties while particles are crossing a fixed vol-
ume during the flow. The advantage of the Markov chains is that
they can work with finite volumes and discrete time intervals,
making it possible to describe what happens at the input of the
finite volume and at its output without necessarily determining
the internal processes. Moreover, it does not require limitations,
which we usually set to find analytical solutions to a problem. In
the present work, we shall develop a general Markov-chain frame-
work for modelling particulate flow in static mixers of different
types and operational principles. This will be applied to the case of
an experimental mixer with several particulate materials, with the
aim of predicting mixer parameters that provide reasonable mixing
regimes and reduce segregation influence. In addition, our interest
also lies in finding out what sort of experimental work needs to be
done in order to identify the model parameters.

2. Materials and methods

2.1. Static mixer considerations

As indicated above, a laboratory static mixer was specially
designed for the present research. Its mixing zone is a rectan-
gular tube, in which screws are inserted as mixer elements (see
Figs. 1 and 2). These are placed as mixing sections consisting of a set
of five screws, the whole mixing zone involving 10 mixing sections
over its length. The feeder and the collector are completely identi-
cal boxes with hand-pulled insertions, making it possible to form
the initial configuration and take samples at the bottom. The boxes
can be exchanged so that turning them upside down imitates mixer
revolution, placing the present mixer in the category of alternately
revolving static mixers. A complete description of mixing mecha-
nisms and mixing regimes in such mixers can be seen in [10,11].
Basically, we can consider that two flow regimes are about to occur
in a static mixer: free flow and dense flow. Free-flow regime corre-
sponds to dilute flow and implies that particle–particle interactions
are negligible as compared to particle–wall and particle–mixing
element interactions. These act as deflectors of the flow and induce

Fig. 1. The laboratory static mixer showing the insertions for sample definition.

various possible trajectories for the particles so that the general par-
ticle motion can be considered as stochastic. In concentrated flow,
particle–particle interactions are superimposed because higher
mass flow rates or higher compacity of the packing reduces the
volume available for flow, but the basic stochastic behavior remains
the same. In all cases, mixing occurs by convection due to the force

Fig. 2. Side views of the laboratory static mixer showing the mixing sections (set of
five screws).



Fig. 3. Internal voidage of the static mixer used as a function of the number of mixing
section (set of five screws). Comparison with a commercial static mixer.

of gravity and dispersion due to particle–particle, particle–wall and
particle–mixing element interactions.

As an initial approach, a static mixer can be considered as a
porous medium through which particles will flow downwards. The
consideration of medium void fraction is therefore a good way
of comparing mixers. Fig. 3 shows how the voidage of the mixer
depends on the number of static mixer elements installed in the
mixing zone, as well as on the type (shape, size, etc.) of these ele-
ments. As a comparison, data concerning a commercial apparatus
(Sulzer Chemtech SMF DN 25) has been superimposed. This may
help for the interpretation of the mixing results because it will
also reflect what flow regime a mixer operates in. When compar-
ing these two mixers, it is clear that the Sulzer mixer has a higher
void fraction range than the laboratory mixer, which is more likely
to work at free-flow. When adding or removing mixing elements
(up to 6 for a total mixer length of 180 mm), the Sulzer mixer is
expected to change the operational regime from free flow to dense
(frictional) flow because the available flow volume can change sig-
nificantly. On the other hand, the laboratory static mixer should
work within one single flow regime, as long as excessive mass flows
are not considered.

2.2. Methods of experimentation and materials

In order to investigate different flow behaviors, several materials
were considered. Some characteristics of the materials are given in
Table 1. The difference in diameter of the components, measured by
sieving, is fairly evident. Using different pairs of materials can help
investigate how static mixers operate with components differing
in density or particle size distribution. In the present study, we will
investigate mixtures consisting of couscous and sugar, as well as of
millet and semolina. Because it has a particle size ratio close to 6,
this last mixture is potentially a segregating mixture.

Before conducting any mixing experiments, the components
are placed in the feeding section so as to occupy each of the five
initial states (“macrostates”). These states can be defined by plac-
ing the hand-pulled insertions through the cross-section of the
feeder, which allows the initial mixing quality to be described.
After the insertions are removed, the flow starts, induced by grav-
ity. The mixing elements deviate the downward plug flow so that

Table 1
Some physical characteristics of the particulate solids used in this study.

Material d10 (!m) d90 (!m) d50 (!m) Particle density

Millet 1700 2400 1900 1.410
Sugar 530 780 680 1.559
Couscous 1020 1550 1180 1.440
Semolina 200 480 330 1.470

Fig. 4. Scheme of operation of the laboratory static mixer (a, at the beginning of the
process; b, after revolution).

the components mix in that region before arriving in the collector.
Insertions are again placed in the collector to remove the con-
tent of each section. Components are then separated by an 800 !m
sieve for couscous/sugar or semolina/millet mixtures. This allows
calculation of the mass fraction of one component in each sec-
tion, and then calculation of the variance of the mixture at this
scale of scrutiny. The apparatus is then revolved and the second
particle passage occurs in the mixing section, following a “first
in–first out/last in–last out” procedure (see Fig. 4). Therefore, we
can complete the measurement procedure according to the num-
ber of mixer rotations we are interested in. Experiments were done
for the following conditions:

- Number of revolutions of the mixer: 1, 2, 3, 4, 5, 6, 9, 12, 15, 19,
20.

- Number of mixing sections: 0, 1, 2, 4, 10.
- Each test was repeated three times, the mean values being

retained.

As a consequence, 330 pieces of experimental data were
obtained and used to model the mixing process for both pair of
products.

3. Markov-chain modelling

3.1. General concepts and tools

Markov-chain modelling consists in representing the evolution
of a system that can occupy several states, with the help of con-
ditional probabilities. For example, a particle (system) can belong
to different size intervals (states), and can experience grinding in
a mill. The size-reduction process can be viewed as a stochastic
process, the rule of passage from one size interval to another in a
certain time interval being described as a Markov chain [12]. The
same basic ideas can be used to describe chemical reaction kinet-
ics or residence time distribution, as discussed by Tamir [13]. In
powder technology, Markov chains have been specifically applied
to model mixing and particulate flow [14–18].

The theory of Markov chains operates with two key tools: the
state vector S(n) after n transitions of the system, and the matrix
of transition probabilities M, in which probabilities determine pos-
sible transitions between the states. The evolution of the process,
as well as the distribution of the system between the states can be
described by

S(n + 1) = S(n)M (1)

Therefore, if the initial state or the system is known, the above
relation allows calculation of any possible future state, even if M



depends on n or on S(n). For example in grinding, the particle size
distribution (PSD) in a batch operation can be calculated at time t
knowing the PSD at time t − !t and the matrix of transition, even
if this matrix is time-dependent or PSD dependent. This makes the
Markov-chain approach to grinding more general than the classical
breakage and selection functions approach.

Static powder mixers were modelled by Markov chains dur-
ing the seventies. Fan and co-workers [19], and then Wang and
Fan [20] represented the state of the particulate system as several
macrostates defined for the feeder and the collector by insertions
that were removed to let the powder flow. A key component was
chosen and the matrix of transition probabilities of this compo-
nent connected these states after one passage of particles through
the mixing zone. After restoring the matrix, it was possible to
calculate the distribution of components at the bottom for any
number of passages, assuming the linearity of the process. This
first black-box model was valid only for the mixing zone and the
components the experimental data were obtained for. The same
authors [21] also undertook more detailed decomposition of the
process by presenting the total transition matrix as a product of
matrices related to smaller time steps, when these matrices allowed
transitions of a tracer only to the neighbouring cells (states). How-
ever, this approach led to the same matrix as in the previous
paper.

While this approach constituted a valuable pioneering work, its
lack of generality in the model formulation has limited its audience
and applicability. In addition, it did not take into account parti-
cle segregation which is likely to occur because of gravity particle
flow. Very interesting experimental data was recently published by
Dalloz-Dubrujeaud et al. [22] on the mixing of two components in
a rotating vertical tube. A specially designed electrical capacitance
sensor allowed on-line measuring of the concentration distribution
inside the mixer, i.e., describing the transient process and its asymp-
totic state. Unfortunately, no attempt to propose a mathematical
model of the process was undertaken or published.

3.2. Model development

In the chain models described above, one transition of the sys-
tem was equal to one passage in the mixing zone, whatever the
flow in this zone. This seriously limits predictability. Our main idea
is that a static mixer of this kind may be represented as a con-
tinuous mixer with a feed acting within a limited time interval.
The present model will therefore be a model of the flow of each
type of particle through the mixing zone, and will be dependent
on the nature of this zone (number of mixing elements, type of
elements, etc.). It can be considered as an evolution of the models
presented so far for static powder mixers, from “black” to “grey”
box model.

Let us consider a vertical mixer of tube type with two com-
ponents A and B at the top of it (Fig. 5). The central part of the
tube is a mixing zone that may contain mixing elements, what-
ever their type, number or combination. At the very initial state, A
and B are completely separated and occupy the feeding zone. Let
us divide its total volume into 10 sections (samples), for example:
5 for A and 5 for B. In the present case, the scale of scrutiny is the
“size” of one of these sections (or “macrostates”). Both materials
flow through the mixing zone and are collected at the bottom of
the tube, occupying approximately the same volume as at the top.
Each sample in the collector can contain both components A and B,
mixed up to a certain scale of segregation that may be inferior to
the scale of scrutiny of the macrostate sample. The present model
will try to represent the filling process of the collector, which is due
to particle residence time distribution or flow through the mixing
zone.

Fig. 5. General scheme of the Markov chain flow model.

The mixing zone can be presented as a series of cells connected
by particulate flow, for example four cells as in Fig. 5. These cells
can correspond to mixing elements inserted into the mixing zone,
or can be chosen arbitrarily to define the zone as several spatial
sections. The time step !t chosen should be small enough to ensure
that particles can transit no further than to a neighbouring cell, so
that flow appears as a series of perfectly mixed cells with internal
exchange. Consider an observation of this system during !t. The
mass fraction of a particle staying in the first cell can be viewed as
a probability ps1 of staying in cell 1 during !t. The mass fraction of
a particle transiting from cell 1 to cell 2 during this time interval
corresponds to the probability pd1 of downward transition between
these cells. Similarly, the probability of upward transition from cell
2 to cell 1 will be denoted as pu2. All these probabilities can be
recorded in the following matrix of transition probabilities:

M =

⎡

⎢⎢⎣

ps1 pu2 0 0 0
pd1 ps2 pu3 0 0
0 pd2 ps3 pu4 0
0 0 pd3 ps4 0
0 0 0 pd4 1

⎤

⎥⎥⎦ (2)

The last cell corresponds to the collector, or absorbing state, for
which the probability of staying is equal to 1. Of course, every col-
umn of the matrix should meet the condition of normalisation:

pui + psi + pdi = 1, i = 1, . . . , 5 (3)

Because of gravity and high voidage of the mixing medium
which limits the phenomenon of wall rebound, particle flow is basi-
cally taking place downwards. For instance, and as a first approach,
upward transitions can be neglected in the present problem. There-
fore, pdi = 1 − psi = pi, i = 1, . . ., 5. In addition, probability pi can be
seen as the following product of probabilities:

pi = ˛ip (4)

where p corresponds to the transition probability without mixing
elements, and ˛i is a coefficient of “delay” caused by the presence
of mixing elements in the cell i. This allows the effect of different
types of mixing elements to be taken into account, as well as any
possible combination of these, and of course zones of “flow relax-
ation”, without mixing elements. In this latter case, ˛i is equal to 1,
but p is still dependent on the time step !t. The general formulation



Fig. 6. Evolution of the state vector during the first passage in the mixer.

of the transition matrix is therefore:

M =

⎡

⎢⎢⎣

1 − ˛1p 0 0 0 0
˛1p 1 − ˛2p 0 0 0

0 ˛2p 1 − ˛3p 0 0
0 0 ˛3p 1 − ˛4p 0
0 0 0 ˛4p 1

⎤

⎥⎥⎦ (5)

For example, if all mixing elements are of the same type, and
are only placed in the first and last cell, the resulting matrix will
contain two possibly unknown parameters:

M =

⎡

⎢⎢⎣

1 − ˛p 0 0 0 0
˛p 1 − p 0 0 0
0 p 1 − p 0 0
0 0 p 1 − ˛p 0
0 0 0 ˛p 1

⎤

⎥⎥⎦ (6)

It may also be thought that p mainly depends on particle flowa-
bility, or settling velocity in the particle mixture, and that ˛i
depends only on the mixing element type, at least from the point
of view of its packing characteristics. Therefore, if two transition
matrices MA and MB are to be used to describe the mixing process
of two components of type A and B, they may be built with the same
values of ˛i. However, we will not consider this as an assumption
in the present work.

3.3. Process dynamics and simple simulations

The state of the process can be characterized by the state vector,
which is the column vector with five elements. It represents the
distribution of the amount of a given component over all the states
at a fixed moment in time:

S =

⎧
⎪⎪⎨

⎪⎪⎩

S1
S2
S3
S4
S5

⎫
⎪⎪⎬

⎪⎪⎭
(7)

This vector should also be written for both components A and
B. The evolution of the state vector, related to the distribution of

particles over cells, including the collector, can be described by the
matrix equation:

Sk+1 = M(Sk + Sk
f ) (8)

where Sk
f is a vector describing the arrival of components in the

mixing zone at every transition. This would allow any type of inflow
to the process to be simulated, including staged feeding, sinusoidal
feeding, perturbations, etc. But insofar as the feed is introduced into
the first cell of the mixing zone, all elements of Sk

f are equal to zero
except the first, which is

Sk
fA1 = u(k) − u(k − 6), (9)

Sk
fB1 = u(k − 6) − u(k − 11) (10)

where u is the unit step function. Eqs. (9) and (10) show that com-
ponent A enters the mixing zone during the first five transitions,
and component B enters during five transitions beginning with the
6th.

The components approach the outlet of the mixer according to
their own residence time distribution (RTD). The state Sk

5 describes
the cumulative collection of a component in the absorber, i.e.,
at the bottom of the tube, and the differences Sk

5 − Sk− 1
5 describe

the outflow of the component at every time step, i.e., the RTD
histogram. The graph of the outflows from the mixing zone for
identical transition matrices for A and B, with p = 0.7 and ˛ = 1, is
shown in Fig. 6. In this figure, the vertical axis represents the vol-
ume content of particles of both components in a section of the
collector.

This allows the simulation of the filling process of the collec-
tor with A during the first 9 transitions, then with a mixture of A
and B during the following transitions, according to the values of
p and ˛. Then the collector must be subdivided into the 10 orig-
inal macrostates to serve as the feeder for the next passage. This
procedure needs to account for the outflow transitions that are con-
cerned with different macrostates in the collector. The cumulative
curve for the mixture is to be divided into the intervals (samples)
according to the scale of scrutiny, and then the content of A and B is
to be calculated in every sample. The state vector that is obtained
(a) characterizes the mixture state in terms of macrostates, which



Fig. 7. Concentration distribution in the collector after several revolutions for non-segregating mixture (pA = pB = 0.7).

Fig. 8. Concentration distribution in the collector after several revolutions for a segregating mixture (pA = 0.6, pA = 0.8).

can be measured, and (b) becomes the feed vector for modelling
the next passage being turned upside down.

Using the Markov chain model for the mixing zone, we can
obtain the dynamics of the filling process of the 10 sections of the
collector, and calculate the evolution of the overall variance of the
mixture with the number of passages. This can be seen in Fig. 7
for pA = pB = 0.7 and ˛A = ˛B = 1, for different numbers of passages.
Obviously, for identical matrices for A and B, the asymptotic dis-
tribution is homogeneous and the final variance of the mixture is
equal to zero (see also Fig. 9).

The evolution of the state vector for different matrices MA
and MB with pA = 0.6, pB = 0.8 and ˛A = ˛B = 1 is shown in Fig. 8.
The asymptotic distribution is already not homogeneous here,
i.e., a perfectly homogeneous state can never be reached for the
mixture. Fig. 9 shows the evolution of the mixture homogeneity
presented by the variance of the component A in the macro states
in the collector. The behaviour of the evolutions differs strongly for
identical and different transition matrices. The variance decreases
monotonously for identical matrices, and is asymptotically equal to
zero. In the case of different matrices, the asymptotic distribution is

Fig. 9. Kinetics of mixing for segregating and non-segregating mixtures (cases of
Figs. 7 and 8).



Fig. 10. Kinetics of mixing of sugar in couscous as measured experimentally and as calculated by the model, for different mixing configurations (circle, couscous at top;
diamond, couscous at bottom). psugar = 0.91, pcouscous = 0.91, ˛ = 0.89.

approached through oscillations, so that after a certain number of
passages, the mixture can be more homogeneous than the asymp-
totic state. This curve qualitatively corresponds to the experimental
data published in [22], or previously by Poole et al. [23] or Gyenis
[24].

4. Experimental results and modelling

4.1. Non-segregating particle mixture case

Fig. 10 refers to the influence of the number of mixing sections
(sets of screws) and to the initial state on the variance evolution
based on one of the components in the collector, as obtained exper-
imentally for sugar and couscous. The upper left graph shows the
kinetics of the process, the mixing zone being empty (without
screws). When adding mixing sections in the tube, the kinetics of
mixing improves, i.e., the variance decays quicker. However, the
final state is largely independent of the number of mixing sections.
This is not a surprise since mixer voidage does not change signifi-
cantly in the range 0–10 mixing sections. In addition, it can be seen
that the initial configuration has almost no influence on the pro-
cess kinetics, i.e., the matrix is state independent, and the process is
linear. The fact that the asymptotic distribution is close to the homo-
geneous one, but also that no oscillations were observed, indicates
that the transition probabilities may be close for both components.
The corresponding matrix of transition probabilities is presented
as an 11 × 11 matrix: 10 columns for the possible mixing sections
and 1 for the absorbing state.

In order to identify the model parameters, we used the least
square method for the error between the experimental and calcu-
lated distributions of concentration of the key component in the
collector. For this, we first considered the data obtained with an
empty mixing zone (i.e., without static mixing elements) to find
the values of the transition probabilities p. The coefficient of delay ˛
was then determined by using these values of p for the experiments
in which mixing sections were inserted. The reliability of the model
was therefore tested for the whole set of presented data, assuming

the same coefficient of delay ˛ for both the component and for all
mixing configurations (initial component loading and initial dispo-
sition of the mixing sections). The curves in Fig. 10 correspond to
the best model fit and was obtained with the following parameters:
psugar = pcouscous = 0.91 and ˛ = 0.89. Therefore, only two adjustable
parameters can be considered to capture all process configurations
and can be included in the matrix notation (Eq. (5) for each prod-
uct). As for the data obtained, no segregation was predicted by the
model. It can be argued that the difference in particle size is not
so important, and probably counterbalanced by the difference in
particle specific gravity which is favourable to sugar particles.

The influence of the number of mixing elements on the homo-
geneity of the mixtures can be observed from Fig. 11. As the
predicted final state corresponds to a variance equal to zero, the
standard value of 6% for the coefficient of variation was considered
as a point of comparison. The increase in the number of mixing
sections (or elements) leads to a quicker attainment of the target
homogeneity, almost in a linear way. This could in turn be explained
in terms of mixer internal void fraction, however experiments with
other types of mixing section should be performed to confirm this
hypothesis.

Fig. 11. Number of mixing elements and number of passages necessary for a target
CV value of 6%.



Fig. 12. Kinetics of mixing of millet in semolina as measured experimentally and as calculated by the model, for different mixing configurations (pmillet = 0.94, psemolina = 0.896,
˛ = 0.89).

4.2. Segregating particle mixture case

Fig. 12 shows the same type of results obtained with millet and
semolina. As previously, increasing the number of screws allows
quicker decay of the variance. On the other hand, it can be seen
that the initial loading order of the component has an influence
on mixture quality after a fixed number of passages through the
static mixer. But the most important aspect lies in the oscillations
that can be observed in the decay of the variance. This led us to
consider different probabilities for the components, in accordance
with the simulations presented above. The best fit was obtained
with the following values of the model parameters: pmillet = 0.94,
psemolina = 0.90, and ˛ = 0.89. The size ratio between the particles,
which is close to the percolation threshold, induces a high degree
of segregation that the mixer is not able to reduce significantly. In
particular the target value of 6% on the coefficient of variation could
not be reached in any case.

The value of ˛ was kept as an adjustable parameter in the pro-
cedure, but the fact that it remained the same as for the precedent
case confirms that the mechanism of delay can be considered as
independent of the materials investigated. In other words, it can be
seen as an intrinsic characteristic of the mixer and its type of mix-
ing elements. This suggests that once the link “probability p versus
material properties” has been elucidated, maybe through flowabil-
ity measurements, the whole process can be modelled, simulated,
and optimized through mixing element design and disposition.

As was mentioned above, the matrices MA and MB are different
in general cases but according to the accepted assumptions they
are: (1) constant with time (homogeneous chain); (2) state inde-
pendent, i.e., do not depend on concentration of A and B (linear
chain). This last point is the main actual limitation of the model.
If one component differs significantly from the other one in size
and/or density, it can have additional resistance to the motion
through the media, which depends on the concentration of one
component in the other. In other words, the transition probabilities
for A can be dependent on the concentration of A in the mixture,
as well as the nature of the other component. This phenomenon

is ignored at the moment but will be taken into account in future
work. Another limitation is that we suppose that there is no flow
and therefore no mixing during the transition phase of mixer rota-
tion, which is known to occur, at least if the revolution procedure
is slow.

5. Concluding remarks

In this work, we have proposed a model based on the theory of
Markov chains for simulation of the mixing process in static mix-
ers. As opposed to other models, the present one simulates bulk
particle flow and takes into account the nature of the mixing zone.
It has been applied for the case of a specially developed revolving
apparatus, and for materials differing in size and densities, so that
segregation was about to appear. A primary algorithm of model
parameter identification was suggested. The results of the experi-
ments proved the adequacy of the model developed and allowed to
identify its unknown parameters. These have been extracted from a
wide range of experimental data and are relatively few to describe
the whole kinetics of the process, which gives a certain confidence
in their values. In addition, it is suggested that they could probably
be linked to material property and mixing element characterization
(respectively through p and ˛ values).

The model has shown its ability to describe the main aspects
of the process, including segregation and oscillating mixing kinet-
ics. This particular effect has never been captured by a model up
to now. An important idea is also that the mixing process can be
described by linear models, even in the case of segregation, insofar
as the mixer constantly works within one flow regime. However,
it is probable that the actual model will need to be improved to
take into account particle interactions and frictional flow regime
that are likely to occur with a more concentrated flow. This will
require considering state-dependent transition probabilities, and
non-linear Markov chain modelling. Also, other aspects, such as
particle shape, multi-component mixtures, different mixing ele-
ment designs, mixer shape or revolution procedure are worthy of
investigation.



Appendix A. Nomenclature

d10, d50, d90 characteristic diameters of the particles (!m)
M, MA, MB transition matrices
p, ps, pd, pA, pB, pi transition probabilities
S(k), Sf state vectors
Si elements of state vector S
u unit step function
˛, ˛A, ˛B, ˛i coefficients of delay as defined by the model
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