ON THE THERMAL CONDUCTIVITIES OF CERTAIN
POOR CONDUCTORS. —1I.

By B. O. PrircE axp R. W. WiLLsoN.

Presented April 18, 1898,

We have been engaged for several years in an attempt to measure, by
the aid of the so called “ Wall Method,” the thermal conductivities of
certain relatively poor conductors,® and the variations of these conduc-
tivities with the temperature. We have at length succeeded in over-
coming some of the difficulties which we have encountered, aund are now
ready to describe our apparatus and to give the results of a number of
observations made with it.

When one end of a regular right prism of 2% sides made of homoge-
neous material is kept at a constant temperature, V;, and the other end at -
a constant temperature, V,, while its other faces are kept as nearly as
possible at some constant temperature between ¥V, and V), the tempera-
tures on the axis of the prism in its final state depend very largely on the
ratio of the length of the axis of the prism to that of a diagonal of a cross

# Despretz, Ann. de Chimie et de Physique, 1827. Peclet, Ann. de Chimie et
de Physique, 1841, Tyndall, Phil. Mag., 1853. Hopkins, Phil. Tra.gls., 1857,
Pfaff, Pogg. Ann., CXI1IL, 1861. J. D. Forbes, Proc. Edin. Soc., IV. Angstrom,
Pogg. Ann., CXIV, 1861, Ncumann, Ann. de Chimie et de Physique, 1862. G.
Forbes, Proc. Edin. Soc.,, VIIL, 1873, Herschell, Lebour, and Dunn, Rep. Brit.
Assoc., 1873. v. Beetz, Pogg. Ann. Jubelband, 1874. . Smith and Knott, Proc.
Edin. Soc., 1875. Lodge, Phil. Mag. 1878. Less, Journ. de Phys., VIL, 1878.
Ayrton and Perry, Phil. Mag., 1878. H. I. Weber, Vierteljahrschrift d. Ziricher
Naturf. Ges., 1879. Thoulet, Comptes Rendus, 1882. Lagarde, Comptes Rendus,
1882. v. Littrow, Wien. Ber., LXXI. Stefan, Carl’s Rep., XIII. Jannettaz,
Comptes Rendus, 1884. Tuchschmid, Beiblitter z. Wied. Ann., 1884. M. Ballo,
Dingler’s Journ., 1886. H. Meyer, Wied. Ann., 1888. K. Jamagawa, Beibliitter
z. Wied. Ann., 1889. G. Stadler, Inaug. Diss., Berne, 1889. Venske, Gottinger
Nachrichten, 1891. Grassi, Atti Ist. Napoli, 1892. TLees, Phil. Trans, 1882. R.
Weber, Bull. Soc. Science Nat. Neuch., 1805. Lord Kelvin and Mr. Murray, Proe.
Royal Soc., 1895, Peirce and Willson, American Journal of Science, 1895. Lees -
and Chorlton, Phil. Mag., 1806. Oddone, Rend. R. Ace. d. Lincei, 1897 W. Voigt,
Wied. Ann., 1898. TLees, Proc. Royal Society, 1898.
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section ; and, if this ratio be small enough, the temperature conditions to
which the sides are subjected are of slight importance. For instance,
the temperatures at poiuts on the axis of a relatively thin disk, one face
of which is kept at 0° C. and the other at 100° C., are not measur-
ably different, whether the curved surface is kept at 0° C.or 100 C,
from the temperatures at corresponding points on the axis of an infinite
disk of the same thickness, the faces of which are kept at 0° C. and
100° C. respectively.

On the other hand, if the temperature gradient on the side faces could
be made to follow the proper law, — or even if, for moderate values of
Vo—V,, it could be kept constant, — the temperatures on the axis of the
prism would be much the same, whether the prism were slender or stout.

In view of the extreme difficulty of controlling, or even of measuring
with accuracy, the temperatures on the side faces of a prism, it seemed
to us desirable to determine beforehand, as accurately as we could from
theoretical considerations, under each of a number of different assump-
tions with respect to the side temperatures, how short a prism of given
cross section must be in order that the temperatures on its axis, in the
case mentioned above, might be sensibly the same as if its cross section
were infinite in area.

We shall find it convenient to write down at the beginning of our dis-
cussion some of the common equations * of the theory of heat conduction
in the forms which we shall need to use later on. If 6 represents
the temperature at the time ¢ at any point, P, in an isotropic solid, the
rate of flow of heat at this time, at .2, in any direction, is usually assumed
to be the product of a scalar point function, «, and the negative of the
space derivative, taken at / in the given direction, of a certain function
of the temperature, f (6). If, therefore, u, v, and w are the components,
parallel to three mutually perpendicular co-ordinate axes, of the vector,
¢, which represents the flow within the solid,

, 9F(0 ;o 26
u:—x.—%:—« f(a)@—w’
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* Fourier, Théorie Analytique de la Chaleur. Poisson, Théorie Mathématique
de la Chaleur. Lamé, Le¢ons sur la Théorie Analytique de la Chaleur, Kelvin
Article “ Heat ” in the Bncyclopedia Britannica. Kelland, Brit. Assoc. Rep. 18411
Preston, Theory of Heat. Riemann, Partielle Differentialgleichungen. ’

PEIRCE AND WILLSON, — THERMAL CONDUCTIVITIES, 5

If &, 9, ¢ are analytic point functions which define a system of orthog-
onal curvilinear co-ordinates, and A% 4, % are the gradients of these
functions, and if ¢z, ¢y, ¢¢ are the components of the heat flux taken at
every point normal to the surfaces of constant &, », { which pass throngh
that point,
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For a given material which would be homogeneous if it were at the
same temperature throughout, under given pressure conditions, « is as-
sumed to be constant, so that «’ f” (6) is a function of the temperature
only. This product is called the specific conductivity of the substance
under the given circumstances, and is denoted by Z(6) or by . We
may write, therefore,
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If a closed analytic surface, S, be drawn within the solid and if (¢, »),
(9, ), (¢, n) represent the angles between the exterior normal to S at
any point on it and the directions at that point in which & «, and {
increase most rapidly, the flux of heat across S from within outward may
be written

S 05 &)+ 40005 o) + 0. cos @)} B)

The surface integral, taken over S, of U cos (& n), where U is any
function which, with its space derivatives of the first order, is continuous
within and upon S, is equal to the volume integral, extended through the

U
9 =2
space enclosed by S, of Ag.hy,. k. \he/ , so thaf the flux across

S may be expressed by the integral
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If y (6) is the specific heat per unit volume of the body under the
given pressure conditions, we may equate the expression just obtained to
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f f ¥ (). g—f .d7, and, since this result is independent of the form

of S and of the volume of the space enclosed by it, at every point within
the solid
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three diffevent forms of the equation of continuity.
In Cartesian co-ordinates, this equation becomes

gf q,l(o) {ax( gj;(e) t3 J(K,"' gj;_w) + 995(1—<, aa'f_z(‘e") }

Wﬂwr@ (10)

+ 5 (F’(O) —)} (11)

If the flow of heat within a solid is steady, g—f vanishes at every point,

Il

¢ 18 a.solenoidal vector, and the equation of continuity in terms of Cartesian
co-ordinates becomes

«.3f(6) d .9 f(0) (.9 F(
996 CE )+9./( ( T af()>=°- (12)
Or
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:V2 @) =o. (18)
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It is usually assumed that € is continuous at the surface of separation
of two isotropic solids of different conductivities. If #; and », are nor-
mals at a point of such a surface drawn into the first and second conduc-
tors respectively, and if the flow of heat is steady,

AF(6) , 97 (H) ’ 9.]"1(9) ; 94
dny + & n, =0, or « Ony T dn, =0,
946 6
or g 1+ 29n2 = 0. (14)

If the temperature differences within a body are comparatively slight,
we may ofien use Fourier’s assumption and represent f (§) approximately
by 6 itself. As we shall need to compare the solutions of certain simple
problems in the steady flow of heat obtained on this hypothesis with the
corresponding solutions obtained on the assumption that f (6) and 6 are
not identical, we may note certain facts in passing. It is easy to prove
by an elementary application of Green's Theorem that a function, 7,
which is harmonic within a given closed surface S, and which upon two
given portions, Sy and Sy, of S has the constant values C; and C, respect-
ively, while at every other part of S its normal derivative is zero, is
determined by these conditions. If this function has been found, it is
easy to write down the unique function

,_ 0=
V:O_02

2 0’2 01 - 02 CY,1 "
V4 o (15)

which is harmonic within S, has the constant value ¢y on S; and the
constant value ¢, on S;, and the normal derivative of which vanishes
at all points of .S which do not belong to S; or S,. The families of sur-
faces defined by the equations, 7" = constant, V' = constant, are identi-
cal. If, therefore, two given portions of the surface of a solid isotropic
conductor in which there is a steady flow of heat be kept at constant
temperatures (O; and ;) while there is no flow across the rest of its
surface, the function 7] which on Fourier’s hypothesis gives the tem-
peratures at all points within the solid, is connected with the function
V', which gives f (6) on the assumption that this is not identical with 6
itself, by means of the equation

r — L(0) — F(O) C.f(C)— 0. f(O')
Ve V+ 6 =0 : (16)

and the forms of the isothermal surfaces are independent of the form of
the function f.

-
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Two harmonic functions can only have the same level surfaces when
one is a linear function of the other. If upon n given portions, S;, Sy, S,
... 8, of a given closed surface, S, ¥ has the constant values C;, 0;, C,

. C,, respectively, and V"’ the values, J7(Cy), F(Cy), F(Cy), . .
I (C,), while upon the remainder of S, if there is any, the normal deriva-
tives of ¥V and V' are zero, and if 7 and V'’ are harmonic within S,
V' cannot in general be expressed as a linear function of ¥, aud, if n is
greater than 2, their level surfaces will not usually coincide. If » is 3,
the condition of coincidence is evidently

C, F(0) 1
C’z .l{T (02) 1 = 0. (17)
C;, F(0y) 1

If U has the constant values C), C,, (3; V the constant values
Ky, K;, Ky; and W the coustant values Ly, Ly, L; on Sy, S, S;, re-
spectively, if the normal derivatives of these functions are equal to zero
at every point of § not included in S, S,, or S, and if all these func-
tions are harmonic within .S, W can always be expressed uniquely in the

form AU+ BV + D, unless

g K, 1
02 1{2 1 = O. (1 8)
C K; 1

Before we were able to decide upon the forms and dimensions of our
apparatus and upon the manner in which it should be used, we found
it desirable to make some rather elaborate computations based on the
mathematical solutions of certain problems in heat conduction. In de-
seribing this work it will be convenient to state, first, some analytical
results to which we shall afterwards give various physical interpretations.
We have purposely put these preliminary statements in purely mathe-
matical language lest they should seem to be narrower in their applica-
tions than they really are.

(1) The square bases of a rectangular parallelopiped of height Zare 2a
long and 2@ broad. A function, ¥, harmonic within this parallelopiped,
has the constant value ¥ at the lower base and the constant value V;at
the upper bagse. At every point of the other faces of the prism ¥ satisfies
the equation - . ’ -

4 =
P + A (V—-V7)=0, (19)
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= 4 o .
where V'is a constant, and o represents the derivative of ¥V taken in

on

the direction of the exterior normal. If the origin of rectangular co-
ordinates be taken at the centre of the lower base while the axes of
x and y are parallel to the sides of this base, ¥ is given by the equation

p==o k=0
V=7V+ ¢, - €os (npy)Eck . cos (n, x) Q, (20)
p=1 k=1 ‘

where O represents the quantity

(V=) — (Vo — Pye o]0t [(Vy — D)o e (7 — V) ]2k
. El’\p,k_;“‘p,k .

Here ny, ng, n;, etc. are the successive roots of the equation
xn . tan (na) = h,

and Ay 1 stands for the radical VRt F b while ¢y, ¢;, ¢5, ete. are the
coeflicients of the successive terms in the development,

1 =¢;cos (n,0) + ¢y cos (n38) + cycos (nz6) +. . ...
go that e = 4 8in (nra) + (2 npa + sin (2 nra)).

It is to be noticed that equation (20) would give, on Fourier’s assump-
tions, the final temperatures within a homogeneous parallelopiped of spe-
cific internal conductivity «, and of esternal conductivity 4, if the lower
base were kept at the constant temperature V; and the upper base at the
constant temperature V3, while the sides were exposed to the atmosphere
at the temperature V. Inkthis resnlt the absolute dimensions of the
parallelopiped are inextricably involved with the value of 4 /«.

(2) The square bases of a rectangular parallelopiped of height ! are
2 a long and 2a broad. A function, ¥, barmonic within this parallelo-
piped, has the constant value ¥, at the lower square base, the constant
value 7; at the upper base, and the constant value 7 on the other faces
of the parallelopiped. If, then, the centre of the lower base be used as
origin of co-ordinates, with axes of z and y parallel to sides of the base,
V'is given by the equation

= qg=w g —2 2
r=7e S S () (5w
p=1 g=1 )
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where ® represents the quantity
(= Pysinh ( FVFTFG ) (o= Pysion (TE=OVPHS)
. {m
ginh (é—av-pz + 92)

and where p and ¢ are integers.

Vis eﬁden?ly the temperature on Fourier’s hypothesis within the
parallelopiped, if its bases and sides are kept at the temperatures ¥V, V,,
and F f-e'spectlvely, when the flow is steady. In this case the specific
conductivity of the material of which the homogeneous parallelopiped is
made does not affect the temperatures within the solid, and the relative,
not the abs?lute, dimensions of the parallelopiped are of importance. The
u.xterpretauon of the equation (21) when f(6) and 6 are assumed to be
different is obvious.

(8) A function 7, which involves the time and the distance from the
oV vV &V
region B, bounded by the planes 2 =0, 2=/ Within R, V satisfies

rV '
2

.oV
th Z = .
e equation 3¢ = “ g V vanishes when z=1/ and has the

’

co-ordinate plane z =0, is continuous, as are , in the

constant value ¥y when z = 0, whatever ¢ i = —
for all points within R, , s. If when t=0, V'=V,¢ ()

m=—cw
V=", [1 — fl + %Ee—z@;’r—ﬁ sin <m1rz> -
m=0 * ¢

1
ﬁ[\/f ™ + % — 1] sin ’_”Zﬂ d)\:l. (22)

If ¢ (2) has the constant value ¢

TN S
de Tsin—" 4

l
4t
¢ T ][ Tgin 278 % gin
¥ e d—[te Tsm~l-+;}e T51n-4—7lf—z-+...]}:|, (23)
where 7' = 12 / g2 2%,
. .
. ]ig;agzi (i?t)hyvou]clll give, on Fourier’s assumptions, the temperatures
n a homogeneous infinite nl i i
at o . plane lamina of thickness
initially at the uniform temperature ¢ ¥, if, from the time ¢ = 0, one :’ace
— Y

W g p
0 ‘ e th

— & 2 !
= V"I:l“ﬁ;{@c— 1) "sin 2

PEIRCE AND WILLSON, — THERMAL CONDUCTIVITIES. 11

(4) The radius of the base of a right cylinder of revolution of length
{is a. A function, V, harmonic within this cylinder, has the constant
value V¥, on one (the lower) base, the constant value V; on the upper
base, and the cohstant value V on the convex surface. If, then, the axis

. of the cylinder be used as axis of z with origin at the centre of . the lower

base, V is given by the equation

& '/7><:5”—r {( Vo— V) sinh (——xp(l_z) >+( V,— V) sinh (’”L") )
V=V+2 z Al a a)f
p=1 Xy » Ji (xp) . sinh (ﬂ;f)

(24)

where J; and J; represent Bessel’s Function of the zeroth and first
order, respectively, and x, is the pth root in order of magnitude of the
equation Jg () = 0. The first ten values of z for which the Bessels
Function of the zeroth order vanishes have been given by Meissel*
We have computed the next thirty values of the =,’s by the aid of
Stokes’s Formula,} and the values of the Bessel's Function of the first
order corresponding to these forty z,’s either from the series which usu-
ally defines /; () or from the semi-convergent series. This computation
was done by means of Vega's ten place table of logarithms,f except in
the few cases where a greater number of places was necessary, and for
these we had recourse to Thoman’s tables.§ All the values have been
checked by duplicate computation, and the first four values of J; (x) by
comparison with Meissel’s tables. The results of this work appear in
Table 1. Table II gives to seven places of decimals the values of the
a,’s from p = 41 to p = 65. The values of V on the axis of the cylin-
der depend upon the corresponding values of the function

#* Meissel, Math. Abhandlungen der k. Akad. der Wissenschaften zu Berlin,
1888.

t Stokes, Camb. Phil. Trans,, IX. Lommel, Studien {iber die Bessel’schen
Tunctionen, Leipzig, 1868. Rayleigh, The Theory of Sound, London, 1878,
Byerly, Treatise on Fourier’s Series, etc., Boston, 1893, Gray and Mathews, Bes-
sel Functions and their Applications to Physics.

t Vega, Thesaurus Logarithmorum Completus, Lipsie, 1794,

§ Thoman, Tables de Logarithmes & 27 Décimales pour les Caleuls de Précision,

Paris, 1867.
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TABLE IL

The pth Root tn Order of Magnitude of the Equation Jy (x) =0

is denoted by z,

P x, Log z, Log ';,:;7,
41 123.02087701 2.10728080 8.8482997
42 131.16244628 2.11780951 8.843055H3
43 134.30401664 2.12808900 R.8378956
44 187.44558802 2.13828080 8.8328247
45 140.58716035 2.14794566 8.8279G72
46 143.72873857 2.15754860 8.8231683
47 146.87030763 2.16693400 8.8184731
48 150.01188246 2.17617471 8.8138527
49 158.15345802 2.18512681 8.8093767
50 156.29503427 2.19894518 8.8049675
51 159.43601116 2.20258642 8.8006469
52 162.57818867 2.21106228 8.7964 089
53 165.71976675 2.21987431 8.7922529
54 168.86134537 2.22753025 8.7881749
55 172.00292450 2.23553583 8.7841721
56 175.14450412 2.24339651 8.7802418
57 178.28608520 225111745 8.7763813
58 181.42766471 2.25870851 8.7725883
59 184.56924564 2.26615934 8.7688604
60 187.71082696 2.27348939 8.7651954
61 190.85240865 2.28069765 8.7615912
62 193.99899070 2.28778828 8.7580459
63 197.13557808 2.29476500 8.7545576
64 200.27715580 2.80163142 87511244
65 208.41878881 2.30838096 8.7477496

and these latter we have computed for certain

values of z /! and a/l

by the help of Gudermann’s tables.* The results appear in Table IIL.
To avoid possible errors arising from combining so many quantities, we

generally used seven places, although the time required for the com-

putalzlon, which was done in duplicate, was thereby increased by some
weeks. '

5 *; Gude:mann‘, Theorie der- Potenzial oder Cyklisch-hyperbolischen Functionen,
: 8e{'1)~7m, 1833, Willson and Peirce, Bulletin of the American Mathematical Society,
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TABLE IIL
® sinh (fﬁf)
=2 o
= AR
. z, J; (z,) sinh (_:;_)
z=10 z=121 z=31 z2=21 z=1
a=11 0 0.0006 0.0065 0.0703 0.5
a=1%1 0 0.0196 0.0697 0.2116 0.5
a=21 0 0.0558 0.1427 0.2908 0.5
a=1 0 0.0857 0.1920 0.3320 0.5
a=3%l 0 0.1144 0.2349 0.3642 0.5
a=21 0 0.1224 0.2464 0.3724 0.5
a=381 0 0.1249 0.2498 0.3748 0.5
a=>51 0 0.1250 0.2500 0.8750 0.5

We shall wish to base an argument ﬁpon the values of S given in
the last line of Table IIL., and upon certain corresponding values of the

quantity
- @, . x, z)
Jy (—-——a ) . sinh (Tz

: (25)
' l
2. J1 () . sinh ('%—)

T=

We print, therefore, in' Tables V. and VI, the num_erical values ?f

the terms of the series which define these functions in the cases In
n on.

! ;imi(; evident that the three values of S are in reality less than 0.12?,
0.250, 0.875, respectively, though by quantities far too small to appear i
our results. Unavoidable errors introduced by adding together, in some
instances, hundreds of numbers determined by logarithms, make the last
figures given doubtful. Although our computations were made through-
out with the aid of seven place and ten place tables, we ha've. conten.ted
ourselves with four places in tabulating the values of 7. It is interesting
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to notice the seemingly anomalous sequence of values in the terms of
the series for 77 In fact, the relations between the successive terms
is, for some cases that we have studied, so complicated that the detee-
tion of accidental errors of computation becomes extremely difficult.

T'=0 when r = a, whatever z is, and equation (24) can be written in
the form

V=V(1—2T,—2T,_)+2V,T.+27, T_,.

TABLE IV,
aft | =ft| 28 |1-28,|i+s—5.|1—8—5.

1| o2 0012 8595 4303 4291
1| 1 0130 9870 5000 4870
1| 3 1405 9988 5695 4291
1|1 0395 5768 3080 2688
r |1 1393 8607 5000 3606
y |3 4232 9607 6920 2688
;3 |1 1117 4185 2651 1534
Pl 2854 7146 5000 2146
i | oz 5815 8883 7849 1534
1| 1 1714 3359 2536 .0823
1] 1 3839 6161 5000 1160
1 | 2 6641 8286 7463 0823
8 | I 2288 2716 2502 0214
P4 4698 5302 5000 0302
i | 3 7284 712 7498 0214
2 | g 2449 2552 2501 0052
ERE 4927 | 15073 5000 0062
2 | g 7448 7551 7499 0052
8|3 2497 | 9503 2500 0003
2 | 4996 5004 5000 0004
3 |3 7497 7508 7500 .0003
s | i 2500 2500 2500 | 0000
A 5000 5000 5000 10000
3 7500 7500 7500 10000
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TABLE V.

oy (%2
sinh (’57)

%, . J (2,) sinh (25‘-’ )

17

P =31 z=3%1 z=4§l
'.‘ :
1 +0.1981944 +0.389186 +0.590810 -
2 —0.1108619 —0.230224 —0.867936-
3 +0.0694976 +0.152211 +0.263868
4 —0.0434740 —0.102502 —0.198205
5 +0.0263426 +0.069853 +0.152345
6 ~0.0163951 —0.047111 —0.118978
7 +0.0099432 © +0.032159 +0.094069
8 —0.0060054 —0.022070 —0.075105
9 +0.0036196 +0.015227 +0.060435
10 —0.0021801 —0.010557 —0.048940
11 4+0.0018132 +0.007851 +0.039837
12 —0.0007914 —0.005189 —0.082567
13 +0.0004777 +0.003604 40.026720
14 —~0.0002886 —0.002536 —0.021990
15 +0.0001746 +0.001789 +0.018143 -
16 ~0.0001057 ~0.001264 —0.015007
17 +0.0000641 +0.000896 +0.012439
18 —0.0000389 —0.000635 —0.010325
19 +0.0000237 +0.000452 4-0.008588
20 —0.0000144 —0.000821 —0.007150
21 +0.0000088 40.000229 +0.005962
22 —0.0000053 —0.000163 . —0.004975
23 4+0.0000033 4+0.000117 +0.004159
24 —0.0000020 —0.000083 —0.008479
25 +0.0000012 +0.000060 ° 40.002912
26 —0.0000007 —0.000043 —0.002441
27 +0.0000005 +0.000031 10.002046
28 —0.0000002 —0.000022 —0.001717
29 -+0.0000001 +0.000015 +-0.001442
30 —0.0000001 —0.000011 —0.001211
31 ... -+0.000008 10.001018
32 .. —0.000006 —0.000856
338 . +0.000004 +0.000721
34 . —0.000003 —0.000607
35 +0.000002 +0.000511
36 —0.000002 —0.000430

VOL. XXXIV, —2
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TABLE V.— Continued. TABLE. VI
X, . X, 2
P =1l z=1l z=31 P= S JB(’;) sinh (_51)7)
P X,
37 o +0.000001 +0.000363 0 % /i () sinh (52)
gg Coe —0.000001 —0.000306 )
e e . e 4+0.000258
40 e . . e —0.000218 Y4 z::}l z:%l z:%l
| P SR C o +0.000184 '
iy 43 LRI . e —0.000M 55 1 +0.182182 ~+0.367002 +40.557188.
i . . .. e . +0.000130 2 —0.079568 —0.165286 —0.263573
f'? 15 . e ... ~—0.000110 3 +0.026424 +0.057870 -10.100321
1;(1 it e e +0.000094 4 —0.001060 —0.002499 —0.004832
il i c e e e —0.000079 5 —0.006854 —0.017708 —0.038898
18 . o +0.000067 6 +-0.006445 +0.018519 +0.046768
49 e . e —0.000057 7 —0.003686 —0.011920 - —0.034875
i 50 R L +0.000048 8 +0.001815 +0.004833 +0.016446
i 50 .. CoL ~0.000040 9 —0.000029 —0.000120 —0.000477
| 2 Coe .. +0.000034 10 —0.000401 —0.001943 —0.009010
53 e .. —0.000029 11 -4-0.000881 4-0.002181 +-0.011547
o - Co. . 40000025 12 —0.000222 —0.001441 —0.009181
e Ce ... —0.000021 18 +0.000080 +0.000609, +0.004513
A R Co. ~0.000015 15 —0.000026 ~0.000270 —0.002748
o Coe Coe +0.000013 16 -+0.000025 +0.000304 40.008602
s Co . 2 0.000011 17 —0.000015 —0.000210 —0.002918
f o Coe Co. £0.000009 18 -+0.000006 +0.000090 +0.001471
| o S o L0.000008 19 —0.000000 * —0.000001 —0.000020
1 e Co C, 10000007 20 ~0.000002 —~0.000042 —0.000939
, P - Co. L 0.000006 21 +0.000002 +0.000048 +0.001249
r‘; o4 . . ... 40.000005 22 —0.000001 —0.0000384 ——0.001024;
65 .. o —0.000004 28 +0.000000 4-0.000012 +0.000522
Py Coe . £0.000003 24 Coe . —0.000000 —0.000006
e Coa . T 0:000009 25 Co —0.000007 —0.000842
TN .o, ’ +0.000001 . 26 e +-0.000008 - 4-0.000456
* 27 . e —0.000006 —0.000382
0 . 358) e e +0.000003 --0.000194
,1250000 e © —0.000000 —0.000001
0.250002 0.875004 30 .o —0.000001 —0.000133
31 . e -+-0.000001 +0.000176
32 . . —0.000001 - —0.000146
33 . e ~ 4-0.000000 4-0.000075
34 . .. —0.000000 —0.000001
85 e e .« e . —0.000051
( 36 P v e . +-0.000069
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TABLE VI, — Continued.

P z=2%1 z=1l z=31
37 Co. Co —0.000057
38 C o C 40.000030
39 Co. Co —0.000000
40 o e e —0.000020
41 .o Coe +0.000028
49 C e Co ~0.000023
43 Co. Co. +0.000012
44 Ce . Co. —0.000000
45 Co Co —0.000008
ig .o ... +0.000011

e e —(.000009
48 .o Co. . +0.000005
49 Co C —0.000000
50 C C o —0.000003
51 Coe Co +0.000005
gg C Co —0.000004
&8 Co Co +0.000002
o4 Coe Coe —0.000000
8 C Co —0.000001
56 40.000002
5 —0.000002
8 .o .o +0.000001
9 Ce e Co —0.000000

Coe Co —0.000000

+0.1250— +0.2500— 40.3749+4

(5) The radius of the base of ari

ht ¢ lfnd  of i “height {
is 0. The centre of the Loyer basg_ ylinder of revolution of height

. e is used as the origin of a system of
columnar co-ordinates (r, 6, ), the axis of the cylinder being the axis of
z. A funetion ¥, which is continuous everywhere within t’the by]inder,
has the value zero on the curved surface and on the lower base;' and the
constan.t valu(? V2 on the upper base. The planes z =¥, » = l;’ divide
the cylinder into three portions (1), (2), and (8), in wl,lich V ﬂ; repre-
sented analytically by three functions, ¥V, 7, Vs respectively. If, when

-7 9N v, ‘ 3
2=, 7“1'5;=702723, and when z =", kz%*-ks%gﬁi,

=
dz

Vs are given by the equations

where
kyy kyy By ave given constants, V3, 1,
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P=0 o, z z
V= §A1.Jo(i-).sinh (———) . @6)
. a a
p=0
Ay x.r X, 2 X, 2
= (~’-’—~) [Az sinh (L> + B; cosh (—1—’—>], 7
a a a
p==0
v, = E Jo <_1’_> [As ginh (—p ) + B; cosh (L)]’ (28)
0 “ N ¢
=

where 4;, 4;, A3, B,, and JB; are subject to the conditions
/4 7 7
A, sinh (wLZ) = A, sinh <ﬂ> -+ B, cosh (xil-) , (29)
a a a
4 /4 4
&y 4, cosh (ﬁ,}_) =k, [.Ag cosh (ﬂ) + B, sinh (TLZ—)] ,
a a a
177 77 4 s
4gsinh (w,,l ) + B, cosh (ﬂ) = Ajzsinh (x,,l ) + B;cosh (M) ,
a a a a
177 {4
ky [Az cosh <£’i) + B, sinh (w”l )]
a a
7’ Ui
=k [Aa cosh (w”l ) + B; sinh (ﬂ)] ,
a a
. %, N _ 2V
Ag sinh (7) + B; cosh ( - ) AT

and where @, is the pth root in order of magnitude of the Bessel’s Equa-
tion Jy (w) = 0.
I, for brevity, we denote the quantities

ginh (?&l) , -cosh (m” - l) , sioh (xp. ! ) , cosh (w” : l) )
a @ a a

€, . l” X, . l” 2 I
. ' ' AL
Slnh ( ) P cosh ( ) ’ » r1 ( 2) b

by s, ¢, &, ¢, s”, ¢”, and Q, respectively, these equations of condition
may be written
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A18,=.A281+.B20,, k]_AIC/:/C2 (AQC,+BQS,)’
U4
Ays" + By = Ays”" + By, L Ag'+ koB,s" = Iy Ay c” + ky Bys”y
A;s 4+ Bie= Q.

The determinant of the coeflicients of the s’s and ¢’s may be reduced
to the form

1 ¢ s (ky —k,) 0 LI e
- - es” /! "’ o’
: , 0" o3 co (30)
kyee ky (s 8" —ce”) kpes”
and
Al ==
— kz ka cl) (31)

¢'s/(ky—~Te){ kges”(sc™—cs”)Hlgec™(cc 55 FUese 2legs ™) {es™Teg (55" —cc” ) hegee (s e~sc” ) }

If in the special case where % . )

we get re &y and £y are equal, we write & = p &y = ks,
Ay =

1 (32)

v}
(e —572) {us” (ss” — cc” )¢ (s c—5¢”)|

with corresponding values for the other coefficients.

/o’ /7, g 2 _#
¢’s"(p—1){s"(sc” —cs Y+ ue” (ce” — sV} F

We shall need at the outset onl icati
going theory. We may ask first wga?:n)u:: :;};r:l?e?j])hcanons Ccions of o
homogeneous regular right prism,
temperature 6, and the other en
its other faces are kept at some u

in or atur
o : value ¢ has, If, for instance, the
f:fi,ei}:]:n:ifb;f;v zf ; Gofand 91.18 1.0 0° C., what must l;e the ratiocs; zhe
the Nl 7 of bhzcux'x.l eref:ce nscribed in a right section of the prism to
the a.xi: may be tlﬁ:lsm’ N Of'de.r that the temperature of every point on
b orto 67 i same within less than 0°.01 C., whether @ is equal
A dol o toe Ws Izeed merely to find a lower limit for o -- A
of revolution, and thes aninve Tor the prism the inscribed right cylinder
We are to ﬁ,nd a fun:tiapp]g the solution of Problem 4 given above.
0 and ¢ and values of on; 7 and 7, harmonic for values of  between
value " (6,) when » = ° oetween O and 7, which (1) has the uniform
o n 2 _,0’ whatever » is; (2) has the uniform value I/ @)

ative dimensions of a
done end of which is kept at the uniform
at the uniform temperature 6, while

niform temperature 6, between 6, and 6y,
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when z = I, whatever 7 is; and (8) has the uniform value 7 (6) when
r = a, whatever z is. The value of this function F' () is evidently

F@.Q~—27T..—2T)+2F0). Ti,+2F@6).7I., (83)
or, for points on the axis,

FO{—28_,—28}+2F0).-S_,+2F@).5%; (389

that is,
F(6)—F(60) =2 S,LF(6) — F(6)1 + [F®)—F(00)] 1 —28-.—25).
(8%)
In the case of an infinite lamina, where - Z=0 s 4 =0,
a a
F(6)=F(6) + 3T (6) — F (@)). (36)

The difference between the values, at any point, of F (6) in the case of
the infinite lamina and in the case ¢ =251 is

[F (8) — F (60)] [2 S, — 'ﬂ +[F @)~ FO)I[1—28-.—28].

It is easy to prove that for given values of l and g, 1 — 2 S_,—28
has its greatest value when z =}/, and if « <~ [is as great as 5, it is clear

from Table V. that neither 1 — 2 §;_, — 2 §, nor (2 S, — ;) can for any

point of the axis be nearly so great as 0.00001, so that whatever 6 is, the
value of F () is surely equal, within less than one ten-thousandth part
of the greater of the quantities F(6,) — F(6,), F (6) — F (o), to the
value which it would have at the same point on the axis if the disk were
infinite. By exactly what amount the temperatures themselves would
differ in the two cases cannot be stated unless we know something of the
nature of the function A,

" . For certain substances, experiment seems to show that within wide

limits ' (6) can be expressed as a linear function of 0, as Fourier as-
sumed. In the case of any one of these substances we may say, for
example, that the final temperature at a point on the axis of a disk the
radius of which is at least five times its thickness, if one face is kept at
100° C. and the other at 0° C., cannot be changed by nearly so much as
0°.01 C. by altering the temperature of the edge of the disk from 0° C.
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to 100° C, The effect of radiation or conduction from the edge is
therefore of no consequence.

Most experimenters have been able to reproduce mathematically the
results of their work on thermal conductivities by assuming that in every
case the conductivity, «, is a linear function of 6, say « (1 4 2 b6), where
b is small (usually less than .003), so that 7 (6) = O + « 6 (1 + b6).

Qn this assumption the temperatures within an infinite disk would be
given by the equation,

, 'z
KO +06)=—{6,(1+50) — 6 (1+06.)} + « 6, (1 +b6), (37)
or b6 —6) + (0 — 60) =5 {6~ 60 + (07 — 0}

‘ Except in instances where near certain temperatures some great chem-
ical or physical changes take place in the materials concerned, experiment
appears to show that x always changes slowly with the temperature, and,
whetl}e{' or not we know the exact nature of the connection between the
two, it is easy fo get a superior limit for the effect on the final tempera-
tures at Ppoints on the axis of such a disk as has just been described, of
f-,hanges in the edge temperatures. Neither in our own experience nor
In any published reports that have come to our notice have we found any
substance in which the change of « with 6 is so rapid that in a disk,
where @ 2 51, made of it, with its faces kept at 0° C. and 100° C.
respectively, the final temperatures of points on the axis could be affected
bz nearly so much ag 0°.01 C. by changing the edge temperature from
0° C. 'to 100° C. 'We are here concerned merely with the magnitude of
a possible error, and in every case to which we need to apply :ur theory
we shall' be well within bounds if we assume that the error is not greater
1;hz;u:‘131 twice the error which would be found if ¢ and J(6) were idiuticeﬂ,
:::1 : o‘l'miw assumed them to be. We have, therefore, tabulated for a
imerical example the final temperatures computed on Fourier’s hypoth-
esis at several pOi}ltS on the axis of a disk of radius @ and length lyz'heﬂ
(fme face (= = 0) is kept at the uniform temperature 0° C, an?i thé other
ace (z = [) at the uniform temperature 100° C. on two or three different

assumptions with respect to the ed
¢ temperatures.
atures are 6, and 6, and : vo hos th

points of the edge,

. If the face temper-
if the temperature has the same value, 0, at all

the final axial temperatures are given by the equation

020(1*'283—281_,)+200&_,+26182,

PEIRCE AND WILLSON. — THERMAL CONDUCTIVITIES. 25

and from this expression, with the help of the numbers in the body of
Table IV., many special problems can be solved with very little labor.
The expression

AQ—2T.—9T,_)+2B7T,_+26.T.+ (6— B) (1—?1)

gives the final temperatures in a homogeneous disk of radius @ and
height 7, one face (z = 0) of which is kept at the uniform temperature
0,, the other face (z =1I) at the uniform temperature #,, and the rim at
. 2
constant temperatures given by the law 4 + (6y — 5) (1 _— 2) . From
this we may see, that, with a very rude approximation to 2 uniform
gradient in the temperatures of the edge of a disk of relatively large
thickness, the final temperatures on the axis are sensibly the same as for
an infinite disk of the same thickness.

.
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Figure 1.
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i Some of the results given in the first column of Table VII., with some 100°
f others, are represented graphically in Figures 1 and 2. In Figure 1 the
¥ ordinates are the final axial temperatures; the abscissas, the distances from =
fl the cold face of the slab. The straight line corresponds to an infinite ' )
| I slab; the other curves, in order, to disks where s =1, a = 31, @ = ], . 80°f
A"' ‘f‘ and a = }, respectively, In Figure 2, the ordinates of the three curves P
il are the final temperatures on the axis at the points z = g , = é, = %l, | //
respectively, and the abscissas are the values of a, each horizontal space 60°
corresponding to a change in @ of § L. /
Y '
TABLE VIL £0° ke yd
. ) {
Final fiwml Temperatures in a homogencous Disk of Radius a and . / /
Thickness 1, when one Face (z = 0) is kept at 100° C., the other Face ‘ ' N .
(#=10) at 0° C, and the Bdge at the uniform Temperature §. / / Jj
v 20° ks 2] .
afl | 2]l | B=0° 6 = 100° 6= 50° // / , _
i ;;; lzllgg 99.88 56.95 Z Z /
3 . 98.70 50.00 3
i g 0.12 85.95 43.03 0 ‘ 2 81 4
42.32 96.07 69.20
[ . . 0
3% 1'{ 1332 86.07 50.00 Ficure 2.
. 3 . 4 :
‘ § 1 58.15 ‘éggg ?gzg If one is to measure the quantity of heat that passes through a portion ,
4 ¥ 28.54 71:46 5b:00 of the disk, lying within a cylindrical surface of revolution of relatively
‘i % 3 11.17 41.8b 26.51 . small radius co-axial with the disk, it is desirable to make the ratio of @
1 i{ gg‘{l 82.86 74.63 to ! so large that possible changes in.the edge temperatures shall not
i 1 é 171 1 gégl 59-00 sensibly affect the temperatures at any point within the portion in ques-
I 8 3 79.84 77'13 gzgg tion. It will be sufficient for our purpose to consider the temperatures
i 3 1 46.98 58.09 50"00 at a distance / from the axis in a homogeneous disk for which a =514
; % ‘% 22.88 27.16 95.02 It is evident that the greatest effect of temperature changes on the edge
i 9 % Zg;s 75.51 74.99 of the disk will apppear at those points on the inside cylindrical portion
9 é o4 4;‘; 50.73 50.00 nearest the edge, that is, farthest from the axis.
| 3 3 7 4:97 ?2(5)3 328(1) ‘Taking the formula
3 ; 49.9 50. o 5
2l 1 | uw | 20,00 0=F(l—20,—27,) +26,. T, +26,. T,
& 5 % :5,288 ;223 75.00 and using the values of 7 given in Table VL, we see that, if §, = 100° C.
I 5 2 25.00 9500 gggg and 6, = 0° C., and, if the whole edgeis kept at the temperature 0°-C.
it ‘ .
i
i
it
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the temperature at no point within the cylinder of radius 1 co-axial with
the disk differs by more than 0°.02 from the temperature at the corre-
sponding point in an infinite disk of the same thickness and same face
temperatures. In practice there is always a gradual fall in edge temper-
atures as 2 increases from 0 to /, and in such a case we may consider a
gu.arfi ring of width 47 amply large enough to make the final temperatures
wtthm a right cylinder of radius [ and thickness  sensibly equal to those
within an infinite slab of the same thickuness and same face temperatures.

. In our experimental work we have sometimes found it desirable to
introduce between two slabs of low conductivity a thin sheet of tiufoil of
cOfnparatively very high conductivity. It is evident that under con-
ceilvable conditions such a layer of metal might seriously affect the final
tc?mpex'atures in the slabs near their common axis. To investigate the
disturbances that might arise from this cause, we may apply the t:’solution
of Problem 5 given above to the extreme case where the uniform edge
temperature is equal to one of the face temperatures, and where &, = k.
If we attempt to compute numerical values of the series

p=®
2141- Jo (.'%Z) . sinh (E’Lz)
»==0 @

:z:z:;g fﬂllebex;')ression for 4, given in equation (32), we shall find the

e of la o1 involved enormous; we will therefore change the form

dimen;:prei‘swn S0 as to make the nature of its dependence upon the

keeping ;'j (x)nifllclle t;’lyh?dershand upon their conductivities more evident,
g @ fact that the ratio of X, to , i

. 2 1 18 very large. If we

denote the denominator of the second member of (32) by D,band write

e = sinh~1y¢, @+ § = sinh~1y", and ¢, = sinh~1s
we have h ’
D — a0 / ‘
s {(ns"2— &%) (,uc’”—s2)-—.(1—;1,)26’8'0”8”} .
+ ¢ (1 —_ [.L){S” O/l (M‘ 012 — 812) — S’ C, (ﬂ' 0”2 — srm)}
=4 s{(1—p)%cosh 25 +- (#*~1) [cosh 2 (o4 8) — cosh 20] — (1 w)%
— — )28 !
te(1—p) sinh 2841 e (1 — p2) [sinh 2 (« 4 8) —sinh 201
=3} {(1 — p)%sinh (otg — 28) — (1 + w)?sinh «,
— (1 — p)[sinh (ay — 2 — 28) — sinh (w, — 2e)7},
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and 4, = s
ni

{1+ w)?sinh ap— (1 — u)*sinh (e — 95) + (1 —4%)[sinh (ap — 2a — 25) —sinh (ay — 2a) *

This expression, though still sufficiently complicated, shows that for

properly chosen cases, as good for our present purpose as any others, the

computation is comparatively simple.
1f, for instance, the thickness of the lower slab is half that of the disk

formed of the two slabs and the intermediate sheet of metal, ¢/ = 47 and
ag = 2 a, 80 that

= tnl (38)
1= 0+ p)?sinh ap — (1 — w)? sinh (¢ — 28) — (1 — p) sinh 28

4

& ,(89)

. (I—u)p? . 5, (p—1)sinh?d
smhao{l———~2-l—:- sinh 8+”4,u.sinh p” [1—cosh ag+ u (1 -+ coshag)1}

If we denote the denominator of this expression by sinh ag . (1 + A), and

note that, if we make g equal to unity, we shall have 4, = cor-

sinh &’
responding to the case of a homogeneous cylinder already treated in
Problem 4, we shall see that ¥; in the case of the heterogeneous cylin-
der can be found by multiplying each term of the series for 7, by the
quantity a+a 2+V;A) , and that in our problems the resulting series is usu-
ally more convergent than the original.

In order to exaggerate the magnitude of the disturbing effect of the
tinfoil, we have chosen for computation a value of u much smaller and
a value of § much greater than the proper values of these quantities for
most of our experiments, agsuming that o= 5= 107 = 500 @ =),
and that u = 0.002, so that A is nearly equal to

2 Xp )’ =%
b, tanh § og — 1000 ctnh oy — 1600 -where o, = 3
These values correspond in certain cases to large disturbances of temper-
ature on the axis of the slabs, as the results show. Consider, for instance,
the point z =17, »r =0, ina compound slab 2 cm. thick and 20 cm. in
diameter, built up of a slab of poorly conducting material 1 em. thick, a
sheet of metal 0.2 mm. thick, and a second slab of the same material as
the first. Let the lower face be kept at the temperature 0° C,, the other
face at the temperature 100° C., and let every point of the edge be kept

<

¢
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at 0° C. The terms of the series which give the final temperature may
be found without much difficulty by the aid of the numbers in the third
column of Table V. Their values are

1.  +61.3980
2. —19.6480
3. + 7.8876
4. — 87116
5. 4+ 1.8474
6. — 1.0224
7. 4+ 0.5938
8  — 0.8568
9. 4 0.2198
10. — 0.1382
11. 4 0.0882
12 — 0.0570
13, + 0.0872
14, — 0.0246
15. 4+ 0.0162
16. — 0.0110
17. + 0.0074
18. — 0.0050
19. 4 0.0084
20.  — 0.0022

etc., 8o that the temperature requiréd is 47°.12+ C.

The terms of the series which give the final temperature at points for
which z =1,7=2 can be found in a similar way by the help of the
numbers in the third column of Table VI, Thejr values are

+57.8982

—14.1020

+ 2.9988

— 0.0904

— 0.4716 .

+ 0.4020

— 0.2192

+ 0.0782

— 0.0018

~— 0.0254

+ 0.0256

»

-
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12. — 0.0160
13. + 0.0062
14. — 0.0000

15. — 0.0024

16. + 0.0026

17. — 0.0018

18. -+ 0.0008

19. — 0.0000

' 20. — 0.0002
®

. and the temperature is 46°.48.

If the radii of the slabs and the metal sheet had been infinite, the
temperature in these media would have been given by the expressions
Mz, M(pz+1—p), and M(z+ g5 (u — 1)), respectively, where
M=100/(1.98 + .02 ). In all practical cases the temperatures of
points on the rim of the disk increase gradually from the cold face to the
warm face, and it would be easy to show that those portions of the
isothermal surfaces which we have used in computing the results of our
observations are sensibly plane.

The characteristic differential equation which gives the relation between
the temperature, the space co-ordinates, and the time in a body in which
there is an unsteady flow of heat, involves the specific heat of the body,
which is itself a function of the temperature. Without attempting just
here to investigate the nearness of the approximation obtained in any
given case by assuming the specific heat to be constant, we will give for
future reference some numerical results obtained by using several differ-
ent values of z, ¢, and ¢ in the solution of Problem 3.

An infinite homogeneous lamina of thickness ! is originally at the
témpemture ¢V, throughout. From a given time, ¢ = 0, one face is
kept at the constant temperature ¥, and the other face at the tempera-
tare 0°. The ratio of the conductivity of the slab to its specific heat is to
be denoted by the constant a? the ratio of # to a®«® by 7, and the
distance of any point in the lamina from the face which is kept at the
temperature ¥, by 2.

The numbers in Table VIIT. show the rate of flow across the cold face
of the lamina in fractional parts of the final rate for different values of
¢ and ¢, while the numbers in Table IX. give the rate of flow across
different planes parallel to the lamina faces at different times, for the
special case ¢ = 3.
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TABLE VIIL 3K
t=3Pt=3Tt=4T|t=T t=2T|t=4T|t=6T A \
2K \
¢=—1[-5018 |—8.544 |—2.434 |—1.171 | 0.188 | 0.890 | 0.986 \\ \\ -
¢=—1} |~2.506 |-1.772 |~1.199 |-0.485 | 0.459 | 0.927 | 0.990 \ e
K - —
e=—} |—1.253 |—0.886 |—0.582 |—0.067 | 0.595 | 0.945 | 0.993 . ;Zg/
Ty
e= 0] 0.000| 0.000 | 0.086 | 0.301 | 0.730 | 0.963 | 0.995 /’///7 )
e= }| 1258 | 0.886 | 0.654 | 0.669 | 0.865 | 0.982 | 0.998 . 0 /// /
e= }| 2507 | 1773 | 1.271 | 1.087 | 1.001 | 1.000 | 1.000 / //
A
e= 1| 5018 | 8545 | 2.507 | 1.778 | 1.271 | 1.037 | 1.005 /
TABLE IX. / /
Iigure 3
z=0 | 8.760 | 2,659 | 1.889 | 1.405 | 1.186 | 1.018 | 1.002 LK
z=41) 2762 | 2279 | 1.756 | 1.866 | 1.125 | 1.017 | 1.002 |
z=1%10| 1.095 | 1.438 | 1.420 | 1.260 | 1.09¢ | 1.013 | 1.002 \
z=4%1 | 0.285 | 0.682 | 1.080 | 1.115 | 1.051 | 1.007 | 1.001 ‘ 2 K \
#z=1%1) 0086 | 0.30L | 0.780 | 0.963 | 0.999 | 1.000 | 1.000" \
-_—
z=4§1| 0.082 | 0.278 | 0.587 | 0.823 | 0.948 | 0.993 | 0.999 \\
2=311 0865 | 0.489 | 0.578 | 0.740 | 0.904 | 0.987 | 0.998 2K A
=1l X ]
z=%0 | 0.922 | 0.761 | 0.627 | 0.686 | 0.87¢ | 0,988 | 0.998 N
= 1| 1.253 | 0.886 | 0.654 | 0.669 | 0.865 | 0.982 | 0.998 X — =
K AN et I e s e
In Fi ure 8 th . . y/ __//
and the %rdina;-,e (:) :;ZSSclssags_ are the elapse(} times (one divigion = % 7)» _ // \ - :
at that instant somny e‘1:011 Ing to any abscissa is the rate of flow of heat // . At .
ery unit of surface of the cold face of the lamina 0 T 9 T 8T
VOL. XXXIV.— 3 Ficure 4.
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(one vertical division = % x ¥, = [). Every curve corresponds to a par-
ticular value of ¢, and the values represented are 1, 1, 1, 0, —}, =}, -1,
respectively. All the curves have, of course, the common asymptote,
y ==« Vy+1=K, where K is the final rate of flow.

If V, is to be 100° C., and the slab is to be originally at room temper-
atures, we may put ¢ =}. The ordinates of the curves in Figure 4
represent the flow of heas, when ¢ = 1, across the hot face, the cold face,
and the plane midway between them, at the times indicated by the

. 1
abscissas. The horizontal unit is 1 7} the vertical unit };75% .
4K
3K
2K

k

\\,_
0 31 1l 11 l
Freuznm 5.

) In Figure 5, the abscissas are values of 2, the ordinates are rates of

ow. Rach curve corresponds to g given epoch, and the epochs repre-
sented are {7, 17, L7, T, 2 7.

Without waiting to diseuss here certain theoretical questions which

:1“11 present themselves in the course of our work, we may briefly
~ describe some preliminary experiments.

R

We have used two different forms of appar

. atus in our work, the one
intended for measuring the absolute thermal ,

conductivities at tempera-

o
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tures between 0° C. and 100° C. of relatively poor conductors like plates
of stone or glass; the other designed werely for comparing the con-
ductivities of slabs which form a prism or * wall,” through which there
is a steady flow of heat.

Of this second form of apparatus, which is much simpler than the other,
we have three of different sizes for plates 65 cm., 85 cm., and 20 cm,
in diameter respectively. Rough diagrams which show the essential
parts of two of these, without their elaborate stands and jackets, are
given in Figures 6 and 7. In each, the prism to be tested is enclosed

By B
TEk =l
e

Figure 6.

between the horizontal planed plates of two castings, which are fastened
firmly together by bolts around their edges to insure close contact with
the body under experiment. Both castings are hollow; one forms a
jacketed chamber through which steam or mercury vapor may be passed
for an indefinite period. The upper casting, which is provided with a
system of stirrers or scrapers operated by an electric motor, may be
kept at a low temperature by filling it with ice or by sending through
it a steady stream of water from a very large tank within the tower of
the laboratory.

In Figure 6, 4 represents the hot chamber, weighing about two hun-
dred kilograms, which rests in a thick jacket on a heavy table or stand
made to hold it. 4 is connected directly with one (B) of two stout-
walled copper boilers, B and B, each of which holds about 40 litres of
water. A light cup-shaped weight, inverted and laid on a large tube
with squared end which projects above the top of the boiler, acts as a
sensitive safety valve and prevents any appreciable rise in temperature
within the boiler. B can be refilled when necessary with boiling water
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from B’ without stopping the constant flow of steam through ., by means
of the siphon f, which is provided with a valve. The steam, after pass-
ing through the hot chamber, is led to the outer air by a jacketed pipe
h, descending * from the bottom of A.

The connections of the thermal elements are led out of the sides of the
prism shut in by 4 and D, and are held between slabs of wood, which acb
as a sort of guard-ring jacket to the prism for about 40 centimeters before
they emerge. The platinoid or German silver leads of these thermal
junctions within the prism are soldered together, and to a copper wire
leading to the (copper) wire of a potentiometer, p. The copper ends of
the couples lead to a mercury switch by which any one of them, or any
pair pitted against each other, may be quickly connected with a second
copper wire leading to the potentiometer. Ou its way from the switch
to the cold junctions in C through the potentiometer wire, the current
encounters ounly copper. By means of a somewhat eluborate standard
potentiometer, not shown in the diagram, the resistance, 22, in the poten-
tiometer circuit can be so adjusted that every millimeter on the poten-
tiometer wire corresponds to any desired small potential difference, such
as one microvolt or one tenth of a microvolt. Rather than make this
adjustment many times a day to conform to the varying temperature of
t?e copper wire, however, we find it better to determine the slight correc-
tlons necessary to reduce the readings to ahsolute measure, by noting at
ﬁ-equer.\t intervals the indications of a standard thermal couple, the elec
t.;romotlve force of which is well known. The potentiometer wire, which
18 0.25 wm. in diameter, can be changed in a few seconds for new wire,
if the old should become dented or strotched.
thiIsnitcOe tzfnvgzseliel)t a.bout 100 kilogx:ams of cracked ice can be put, and

D8 Kept 1n constant motion over the smooth bottom by help

of the electric motor, M.
o :: ;ﬁ;‘i‘; Zn:llllotvljfclz: :lsli)l(ialsat‘zsb}lt smaller apparatus without its elabor:.tte
Jackets. D is a closed iron drum contain-

;ni la rotall‘y stirr:r and rubber seraper turned by a motor. Through D

'ge volume of water can be gent at a, stead mber
; : rate. ber
Is the iron box, B, planed on } y rate. The hot cha

ts upper surface and ¢ icating ot the

bott i . ! communicating &
ol o]:; Lv;tht abrfalt‘ort chamber, C, in which about 20 kilograms of mercury
b cmi) 31 mg.' The outlet at Sallows the vapor to escape to the
9, connecting with a large wrought iron chamber where it condenses

* In the diagram, % i
8 er . . )
the side of 4, ’ roneously represented as ascending, and as inserted iv

PEIRCE AND WILLSON. — THERMAL CONDUCTIVITIES. 37

and flows back into the retort through the trap 4. This apparatus takes
slabs 85 centimeters square. Although we found it possible to maintain
with this arrangement a temperature above 350° C., for many hours at a
time, it was difficult to avoid superheating by conduction through the
massive iron of the hot box, and we intend to discard mercury in future
and use some less troublesome source of heat. If a substance of greater
heat of vaporization than mercury is employed, the retort can be removed
to such a distance that all danger of superheating is removed. We have
not yet been able to test an electrical stove which we hope may prove
to be a convenient and a sufficiently constant source of heat for many
purposes.

=

- S p.

Ficore 7.

The apparatus just described has been furnished with trunnions so that
the axis of the prism can be made horizontal or vertical at pleasure.
This renders it possible to use a layer of mercury on each side of the
slab to be tested, when this is desirable.

Our third apparatus of this kind is made entirely of brass. Ttis in-
tended only for small thin plates about 20 cm. in diameter, but is in
essentials like the apparatus just described.

Figure 8 represents the apparatus which we have used to determine
the absolute conductivities at temperatures between 0° C. and 100° C. of
various materials. The boilers and the hot chamber are those of the
apparatus shown in Figure 6; the ice box, which is the outcome of

o
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several years of experimentation, is entirely different. An iron casting,
Z, seen in plan in Figure 11 and in elevation in Figure 9, accurately
planed below and turned true above, is the bottom of the box. Be-
tween this casting (which can be bolted to 4 as D is in Figure 6) and

N

&\\\\\\\\W

|

Fiaure 9.

4 is held the prism to be experimented on. While Z was in the lathe
a small hole, A, about 3 millimeters in diameter and 4 millimeters deep
was drilled exactly in the centre of its upper face. Subsequently a piece
of solid drawn brass tube 12.8 cm. in outside diameter and 13.5 cm. high,
with carefully squared ends, was held centrally in Z, by means of a
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wooden disk turned to it it, and a central pin inserted in M, and was
then soldered firmly to Z. This was accomplished, after many trials of
other materials, by the use of white piteh as a flux, and the result left
nothing to be desired. The walls of the pot thus formed were jacketed
on the outside, except for a height of about 2 millimeters at the bottom,
by an inch thick casting of hard rubber made for the purpose in the
form of a cylindrical shell. This casting, which was cut off square ab
the top of the pot, tapered to nothing near the bottom, but did not rest
upon the floor, (Figure 10.) Upon the top of this jacket was fastened
a hard rubber cover shaped somewhat like a cylindrical hat. This ITad
an opening at the top which could be closed by an accurately ﬁm.ng
rubber plug. In the box P, thus made, is placed a thin-walled 1ice
holder, Q, opén at top and bottom, of the same outside diameter below
as the inside of the brass pot, but somewhat smaller above, so as to leave
an air space between it and the walls of the pot.

In order that the holder may be easily rotated, a pin soldered to @
thin diametral web, 7, which runs across the bottoma of the holder, i
inserted in H, and a vertical brass rod soldered to a similar web, %, at
the top of the holder passes through a hole in the corner of the pot
which it fits closely. A hard rubber thimble fitting tightly on the rod
and turning with it permits the slow entrance of cold air into the pot
without allowing any water to leak in. The rod can be clamped at
pleasure to a brass yoke which is turned by the motor., In order to pre-
vent the introduction of heat into the pot by conduction down the rod,
the exposed portion is buried in cracked ice held in a thin metallic cup
carried by the yoke and resting on it. When the holder is filled with
ice and is turned by the motor, the web at the bottom compels the ice
to rub over the floor of the casting, since the holder itself has no bottom,
and as a result of this, the lower surface of the ice quickly acquires and
keeps a mirror-like sarface. The drip from the pot comes out of the
edge of the casting Z through a straight hole ahout 26 cm. long and
0.6 em. in diameter drilled in the plate and ending just inside the pot.
The whole apparatus is very slightly tilted so as to insure the steady
outflow of the drip.

A large cylinder, K, 85 cm. high, made of rolled brass 4 mm. thick
and open at the top and bottom, is mounted on brass ball bearings placed
on the outside of' the hard rubber jacket of the pot P, by means of six
Zanes, mif, of which, X, is shown in Figure 9. K weighs about 20 kilo-
E;ams when empty, and rests upon 144 brags balls each about 12 mm. in

ameter. 'When set in motion by a slight push, it continnes to rotate
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Fieorne 10,
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for about a minute before coming to rest. This, like most of our other
apparatus, was constructed by Mr. G. W. Thompson, the mechanician
of the Jefferson Laboratory, and we have been much indebted to his skill
and patience at every stage of our work. A is so truly hung that the
outside can be used as a pulley and the whole can be rotated by the use
of the belt shown in Figure 8. The vanes reach to about 2 millimeters

S

N\

S
>

<
2 N
@)

Fiourn 11,

of the floor of the box,
then rotated, the ice at
a very smooth surface,
and prevents any accum
were at first troubled 1y

and when the whole is filled with cracked ice and
the bottom which rubs on Z soon gets and holds
A 'hole in-the bottom of Z carries away the drip
yul.atxon lof water on the floor of the ice hox. We
frore at fir rregularities arising from honeycombing of the
” pa;{htzhlzz (1;0;:, aﬁdht: l:'lemedy t}'xis a suitably loaded brgss tripog is used
it levery[, g ovtrs delivered at intervals of 21 seconds, by the
- A train of four wheels is necessary to reduce the
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speed of K to one revolution in 20 seconds, though only two wheels are
shown in the drawings. The tripod slides in guides which revolve with
K, and a swivel at ‘the top prevents the cord from twisting.

The rotation of X and of the ingide ice holder, ¢, which is connected
with K by a thin yoke, are matters of much importance. The continual
rubbing of the ice over the flat surface of the casting seems to be neces-
sary if the latter is to be kept at a uniform constant temperature for
hours. The energy used in rotating @ is so little as to be quite negligible,
as we shall show further on. The ice in K is piled up so as to cover
P completely, and we have been unable to detect any difference be-
tween the temperatures within and without P by fine, properly protected
thermal junctions introduced for the purpose. If, while K revolves, @ is
kept still, the amount of ice melted in ¢ becomes irregular, though

" the whole amount of drip in two or three hours is not very different

from the amount of steady drip in an equal time when @ is rotating.
Only selected lumps of ice are put into €. The ice to be used is first
broken up into pieces weighing something like 15 grams each, by means
of an ice-cracking machine, and these pieces are then put into ice
water so that their sharp edges may become slightly rounded. They
are then drained and dropped into @. In this way a slight amount of
water attached to the ice is introduced into @, but the error due to this
cause appears to be of slight importance. In some of our experiments
the ice to be used was carefully dried in cold Dblotting paper, but this
precaution does mot seem to be necessary, though the use of small bits
of ice with sharp edges is to be avoided. @'s capacity is about 2,000
cubic centimeters. After @ has been freshly filled in the course of any
experiment while X is rotating, no record is kept for some time, perhaps
fifteen minutes, of the amount of drip. Before the expiration of this
interval the extra water introduced into @ with the ice has drained off,
and the indications have become steady. Adfter this the apparatus is
allowed to run for about two hours until 300 grams of ice or less has
been melted, and then @ is refilled. The drip tube always contains a
few drops of water, but this amount remains sensibly constant during the
progress of our experiment. The drip is collected in a graduated vessel,
and the approximate amount is noted from time to time to see whether
the flow is steady. The whole is then more accurately determined by
weighing, at longer intervals.

The regularity of drip is a far more sensitive test of the approximate
attainment of the fina] state of the body experimented on and its sur-
roundings than is a sensibly constant temperature gradient on the axis.
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In most of our experiments with the large apparatus just deseribed, a
suﬁi‘ciently steady state has been attained in about five hours from the
beginning of the heating. Sheets of blotting paper were generally in-
serted between the prism to be tested, and the hot aud cold boxes, to
serve as elastic pads, and to prevent the possible wetting of the edge of
the prism by moisture condensed on the ice box. The presence of this
paper prolonged the time of waiting for the final state to be attained,
but did not influence the results of the measurement of the conductivity
of the prism. When filled with ice, Z and & weigh about 300 kilograms,
and th'e adflitional pressure due to the bolts is considerable, so that, when
the prism iy wade up of brittle material like glass, the Llotting paper
or an eq.[ulvalent must be used to prevent the prism from injury. We
Pave tried several different materials, and of these the blotting paper
Is tihe most satisfactory. We may note in passing, however t?hat the
mt}waﬂons of thermal couples placed between sof? pads and’tbe hard
prisms are often very anomalous, two thermal junctions placed side by
side sometimes differing very widely. In all the experiments that we
regard as trustworthy the slab to be tested with its attendant thermopiles

W.
: :i: nll)laced between two other slabs of the same material, in forming the

Rii\l{f:il(:l soi %u’ mercury thermometers were made by Alvergniat, or by
0., but our final standard was Tonnelot No, 11,142, upon

which a very com
plete set of tests has Leen i
. ’ m '
Bureau of Weights and Measures, wle ot the Tntornation

For temperatures higher than 100°
mometers of the general form describe
lendar. These served an excellent
0.2 mm. in diameter, P
not to be very pure,

C. we had two platinum ther-
d by Messrs, Griffiths and Cal-
urpose, though the wire, about
.;‘f:] :gs_fzom th@f form of the calibration curve
18tance of one of .
a Care " e of them, as measured b,
ohms, a{)cg?lx::)eraB-Udge .Was abont 29.25, 36.78, 42'8,5, 45.31, or 55-4}?/;
Drossur, of o aie,-s it Y;r‘as Imwersed in melting ice or the vapor, at,, 760° c.c
momete; made of’ - naghthalin, or mereury. We have another ther-
Matthey, 0.005 incll)lu‘:: drflatmum wire furnished by Messrs. Johnson and
1ameter. This we intend to make our standard.

All our thermal elemen

of Gorman silvey ap ts were made either
\ 4nd copper; some i

6
ribbon carefully rolleq for our ug i re, and some f naow
German silver w "

Rach speci o
28 “ buttSointed : pecimen of platinoid or
Jointed,” generally by silver solder, to a piece

of platinoid and copper, or
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of the purest obtainable copper of equal cross section. Our finest wire
thermal elements, less than one tenth of a millimeter in diameter, were
so skilfully made by Mr. Sven Nelson, of Cambridge, that the joint was
hardly perceptible. Our German silver and copper ribbon thermal ele-
ments, about one eighth of a millimeter thick, were made by Mr. T. W,
Gleeson of Boston. These last were first soldered with the help of a
holder constructed for the purpose, and the joint was then rolled or
scraped until it was as nearly as might be of the same thickness as the
adjacent metal.

For wire thermal elements we had large quantities of three kinds of
platinoid, approximately 0.74, 0.80, and 0.097 mm. in diameter. The
first two specimens were obtained about ten years ago from Messrs.
Elliott Brothers, and have been thoroughly seasoned. Each is thermo-
electrically pretty definite, though the two are quite different in their
properties. The electromotive force, in microvolts, of platinoid and
electrolytically deposited copper elements made of these wires may be
tabulated as follows for low temperatures.

0° and 10° 189 152
0° and 20° 379 306
0° and 30° 572 465
0° and 40° 769 628
0° and 50° 971 799
0° and 60° 1179 973
0° and 70° 1391 1159
0° and 80° 1609 1356
) 0° and 90° 1834 1569
0° and 100° 2063 1787

hY
Besides platinoid we have used with copper for wire thermal elements
two kinds of German silver wire respectively about 0.1 mm. and about
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0..58 mm. in diameter. The smaller German silver wire was connected
with 'l;he corresponding copper wire by a thiu joint of slectrolytically
deposited copper. These joints were very satistactory, but extremel
tedious to make. ’ ’
In some of our experiments we used fine wire thermal junctions in-
serted in shallow grooves accurately cut in the faces of the slabs to be
tes:,te'd. These grooves were made in a Brown and Sharpe Universal
gﬁllmg Machine by extremely thin hard steel saws (No, 34 B. & S.
sai’usg;) Plizl;ie:te:;zzx]l' flat disks o.f somewhat smaller diameters than the
closdly m ek 121hg. The. wire t.hat we used fitted the grooves very
ot e deterp ¢ that the indications of the thermal couples would
when the roovedmlinebthe mean tempex:ature of the walls of the groove
howevan, tiat 1o :e::ultv:a?v C;:l;c;d z:g:'unst u flat one. We soon found,
o1 reoular.
spent some time in attempts to m:Iie :I::Zil?:fm? ndi) ?l'th(:iush i .
trustworthy, we have met with litt] y ?0 M.llle  ihis ey
bave boen souq, oy ! © success. Sometimes our results
Woq good, sometimes they have been considerably in error.
0 not yet know how to make them always good.

' It appears that
a thermal junction must be pressed firmly againstb o

ture of which it j :

i discusvs‘rhtllf%] 1t ll)s to take approximately. Although we are not ready
why wo havclas SE Ject exhaustively, we mention our experiences to show
) abandoned for the present this very obvious manner of

ri.sm built up out of slabs, in favor
atisfactory device. After some pre-

. i i thermal j i ;
slabs . ‘ Junctions laid bhetween the
» With and without sheets of tinfoil at the sides of the wire, we

determined in ri
Jete vamisniod 1::5; the thin ribbon thermal juuctions, elsewhere described,
£es, 80 that sheets of tinfoj] of the same thickness might

be laid at the sides of i
. the rib : :
troduced between the sla]:;_bon' and in this way a sheet of metal be

It has been necessary fo
a large number of ther

a surface, the tempera-

T us to calibrate in the course of our work
mal elements, Some of thege when properly
eters in elaborately jacketed air
» and some in vapor baths. We have

. ities of nearl :
bromide, } . vs Y pure chloroform, 1 1

> bromoform, anilin, Paratoluidin, naphthalin, ,Ch;]l:)zliorll, ftll:zpilj

R ;

) X p ’ . t] P .
d y e 0l lb pOlIl Of hlch d
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Some of our thermopiles have been calibrated for us at temperatures
between 0° C. and 100° C. by Mr. C. G. Persons of the staff of the Jef-
ferson Laboratory, and he has assisted us in much of our other work.

Tae TEERMAL CONDUCTIVITY OF MARBLE.

With the apparatus described in this paper we have made a large
number of experiments. As has been already intimated, we are not
entirely satisfied with the source of heat that we have used for tempera-
tures higher than 300° C. because of the difficulty of keeping these
temperatures constant for long intervals of time, while for tempera-
tures between 0° C.and 100° C,, it has been easy to get closely agree-
ing results many times over. We have, nevertheless, made a good
many determinations at the higher temperatures, and, while we are not
yet ready to state definitely the law of variation with the tempera-
ture of the thermal conductivities of materials in which we have found
such variations, we may say that, of the substances which we have ex-
amined, two, a special brand of glass of which we have a number of
large plates, and dry white marble,* show no appreciable change in
thermal conductivity within the limits of our measurements. We shall
therefore content ourselves in this preliminary paper with giving the
results of a number of determinations, made at different low tempera-
tures, of the conductivities of about twenty specimens of marble of
different kinds. Incidentally we shall need to describe very briefly
some experiments upon the glass plates just mentioned.

It will appear that the conductivity of a specimen of marble at
ordinary mean temperatures may depend to the amount of several per
cent, as Messrs. Herschell and Lebour have shown, upon the amount
of moisture which the specimen holds. For this reason we have aimed
at an accuracy of only 1% in the determinations herc recorded. A change
in conductivity much less than this was of course easily observable. The
difference of temperature between two thermopiles, one of which is only
a few degrees hotter than the other, can be measured with considerable
accuracy, but it will be sufficient here to state the results correct to tenths

of degrees.

% The conductivity of the specimen of marble upon which R. Weber has made
a set of extremely accurate measurements appears to change by only one two-
thousandth part of its own value between 0° C. and 100° C.
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While it takes a long day to make an accurate determination with
our large apparatus of the absolute conductivity of a slab, two determi-
Datl?"?_may easily be made in the same time of the relative con-
ductivities of the slabs which go to form o prism, since the gradient
on the axis of the slab does not sensibly change after four hours
of heatl'ng, and it is then only necessary to note the readings of the
thermopiles. With our smallest apparatus and thin slabs two Eours are
oft.uen sufficient for a measurement. Our experience seems to show that
thlzmethod of comparison is susceptible of great accurncy. We have
3‘2%;:3?; 11:;';53 fnumber of di‘rect.. determinationsqof the conductivities
the amount of mo(i)st:ton?’ but, in view of the fact entioned above that
ciably, even {f the lere tmd'tbe stone affects the conductivity very appre-
o a:te o shontd tsg' le'lous‘ méfthod of comparison were not equally
the absoaute s link 1t wise in future to determine with great care
and then com aru u‘n}t;y .Of a standard .substance unaffected by moisture,
enracy with ngc E gllt it the. conductivity of the stone slabs. The ac-
that of a single abs letco(rln parison can be made is greater of course than

The particular ki of aluns i

P v kind of glass which we have found useful as a compari-

80

P;tiuﬁiz: eov:ﬁ Selecteilms)ome years ago from the stock of the Boston
pany. e faces of each

but the planes are not in ayer plate are very nearly plane,

e . ¥ specimén quite parallel. Th duc-
tivities parallel. e con
each Plzfe iﬁf‘?’“” plates are somevwhat different, but the conductivity of
Gt fon 1 alms sensibly constant within large ranges of temperature.
number of sl’l'fiags()v:;l?gve & number of slabs 60 centimeters square, &
< l . .
meters in diameter. meters square and some disks about 20 centi-

We shall wi : .
temperatureyﬂl:: dli::}ss 1thes properties of this kind of glags at higher
purposes, it is Wortﬁ 11?; arly on another occasion. Tor our present
degrees only and the Z:f‘}: to measure the temperatures to tenths of
millimeter, and a lckness of a slab to the neavest twentieth of &
) 0 account of g few experiments to thig degree of ac-

curacy, chosen alm,

0st at random fr

: rom . N :

records, will suffice. om the large number of which we have

Slabs 4, B, 0, and D are ¢

. . ut fl‘ 3
piece of this glass, the condy om one particnlar large homogeneous

nations, is to that of b ctivity of which, according to our determi-

shall assumo the cotl late IIL mentioned below as 187 to 175. Wo

temperatures Wenh‘al,jmmes of these slabs to be 0. 00277 at all ordinary
. en

conductivities, ot been able to detect any differences in their
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Haperiment (o). A compound slab, made up of slabs B and 4 with
their thermal elements, was placed between two other glass plates to form
a prism. The thickness of B is 0.950 cm. and of 4 0.985 cm. In the
final state of the prism, the thermal elements on the warmer face of B,
between B and 4, and on the colder side of 4, indicated 88°.1, 63°.4,
and 88°.9 respectively. A fall of 14°.7 in 0.950 cm. is very nearly equal
to a fall of 14°.5 in 0.935 cm.

Experiment (). In the final state of a prism made up of slabs 4 and
B shut in between two other glass plates, the thermal elements on the
warmer face of 4, between 4 and B, and on the colder face of B,
indicated 85°.0, 62°.2, and 89°.1 respectively. A fall of 22°.8 in
0.985 cm. is very nearly equal to a fall of 28°.1 in 0.950 cm.

Haxperiment (¢). Three slabs 4, C, and B of the standard glass with
three other glass plates, which we may denote by P, @, and R, were
built up into a prism P4 @ C E R with thermal elements between Pand
4, 4and Q, Qand O, & and R. In the final state the temperatures
of the thermal elements were very nearly 88°.2, 74°.2, 58°.8 and 80°.0,
respectively, so that the gradient in the slab A of thickness 0.985 cm. is
almost exactly the same as in the double slab € K of thickness 1.93 cm,
There seemed to be, therefore, no appreciable contact resistance (Ueber-
gangswiderstand) between the two slabs.

Experiment (d). After experiment (c) had been finished, a narrow
ring of blotting paper, the inside diameter of which was only slightly less
than the diameter of the disks, was inserted between C and X so as to
have a dead air space between them 0.7 mm. thick, when the prism was
under pressure. In the final state the temperatures were now 89°.9,
78°.8, 66°.5, and 25°.9, so that in this particular case the dead air space
was nearly equivalent to a glass plate 4.8 mm. thick.

Bxperiment (¢). In this experiment Plate III., of 0.875 cm. thick-
ness, was a part of a prism heated in the larger apparatus intended for
the determination of absolute conductivities. The temperatures of the
thermal elements on the faces of the plates in the final state were 69°.7
and 58°.8 respectively. In 9060 seconds 464.5 grans of ice were melted.
Assuming the area of the bottom of the ice pot to be 126.7 square centi-
meters and the latent heat of melting of ice to be 79.25, this corresponds
to a conductivity of 0.00258. It is obvious, however, that the last
figure of this number is not quite @efinitely determined.

voL. xxx1v. —4
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Experiment (f). In the final state of a prism similur to the one used
in the last experiment, 311.9 grams of ice were melted in O340 seconds
when the temperatures of the thermal elements on the fuces of Plate 1L

were 66°.4 and 54°.1. This corresponds to a conductivity of 0.00260.
Here again the last figure is in doubt.

We had occasion to measure the absolute comduetivity of only one
other of the 60 cm. square plates bought at the same time as Plate 1L
This was Plate I. The results of two experiments made on it were
0.00262 and 0.00259. The crown glass used by (idone had a eon
ductivity of 0.00245, that of Lees# a conductivity of 0.002435.

We will next cite a single experiment to show how much the con-

duetivity of the particular kind of stutuary marble that we used conld be
changed by moistening the stone.

Euxperiment (g). A prism was made up of three plates of glass, 4, P,
and @, and three dry slabs of statuary marble, ¢, D, and E, arranged it
the order P4 Q Z.D C with thermal junctions between P and A, A and
Q E and D, D and 0. The temperatures indicated by the thermal
Jjunctions when the prism had sensibly reached its final state were 84°.6,
67°.7, 38°.6, and 27°.7. D was then well moistened with water, and
the experiment was then repeated. The temperatures were then 85°.3,

70°.5, 46°.0, and 88°.1, so that the conductivity of D had been increased
in the ratio of 1.21 to 1.

.E@eriment (%). In order to form an idea of the amount of change
with’the state of the weather of the conduetivity of a pieco of our Carrard
statuary marble, we made three comparisons on three different oceasions

of the relative conductivities of a slab of it (0) 1.08 centimeters thick,
fmd a plate (4) -of standard glass. Betweon the exporiments, ¢' was left
1n a room the windows of which wer.

e much of the time open. The results
were ag follows : —

Temperature of the warm side of

the o *0 o og
Teroperatur ® glass, 85°.5 84°.6 84

e of the cool side of the glass, 68°.1 @701 67°4
Temperature of the warm side of the marble, 48°.0 42°.1 40°3

Temperature of the cool side of th : ’
X e marble 32°.0 31°.1 20°4
Ratio of the conductivities of the marble an ’ o 1

o & dtheglass, 1.84 1.84 1.83
verage conductivity of the slab 0, 0.00509

Another specimen of Caryarg marble had o conductivity of 0.00501.

* We have not yet geen the paper iy 1608,

hy Mr. Lees mentioned in the March, 1808,

number of the Beiblatter zu den Annalen der Physik und Chemie

PEIRCE AND WILLSON, — THERMAL CONDUCTIVITIES. 51

Before we state the results of our own observations upon ot.her s?e;:ll- .
n'aens, we will give for purposes of comparison some determinations o the
thermal conductivities of marble made by other observers.
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Taking a certain piece of “ Pyrenees Marblo ™ us a staudurd, Dr. Less
found the conductivities of specimens of * Currara Marble ™ aud « Italiau
Marble ”” to be 0.769 and 0.763 respectively.

In .determining the thermal conductivities of the specimens of marble
mentioned below, the prism clamped between the hot and the cold box
of our apparatus was made up of six slabs in series, a plate of standard
glass 0.935 cm. thick between two thin plates of glass, aud the slab to be
tested. between two thin slabs of marble. A ribbon thermal element
and tl}lfoil wings were placed on each side of the standand gluss, and on
:Ziles;ﬁzrﬁaghg marble .to be experimented on, so that there were fmn*.ﬁf
el t;;ne:tstm all.  'When the 1.;rie-sm had sensibly reached its
o ratic ’of s cgnga utl_'ef*» ?f the thermal junctions were determined and
fo bo equel 1o the rel;? I'VItIeIS of the glu'ss and the marble was assumed
s, Byttt procal of the rativ of the gradients in the two
fnio tho yrism. the tg an extf'a plate or a sheet or two of blotting paper
hote i S:) e ;:o gradients cou!d be altered ut pleasure but not
these substances vsrhethe‘:ethcmﬂd o was immaterial I the S .
s placed mppormiost mat v:em:rblelrase of the prism or the glass base
the mean temperature ’of each sgeﬂfﬂ‘a y P.I aced the marble ou top, 80 t,?mt
the results of some of these dlltzlrme?n m.xght be about 3(.)0 C. Instating
tures of the four thermal junctionl;]l-n ations, we shall glve' tho tempw
ductivities of the marble to be testedlf] (:;‘dfl'» ot e radlo o *’h‘j ly
the absolute conductivity of the marbl s andm‘('l Blase, an¢ m{a“)'
glass is 0.00277.  'We shall give the 'elonltho oot o
to three significant figures btz;t it iy UL?ZO et e ol e Ilfﬂ"bl“
dotormined, All the epe c,imens N 'GVT em‘. ‘that th.e last of these 18 xxf)t
the hob air spate over thy Lo ere ar tlfl(:lull‘y dried for some time

oliers which furnish steam for heating the

Jefferson T4
aborator
ory, and were then allowed to stand for somo weeks

at ordinary room t
‘ speratures so i . .
The artificial heating dr that their conditions might be normal.

ove Oﬁ the excess of i H the
may! h s . XCe38 OF moist 4 N hU
ax ble w 116 belng cut \ln.dBI‘ water at the m]’{; e 'quun Ld by

Most of our ston.
e was obtained £ .
Boston, who kindly collecteq vom Messs.

materials ag are tive specimens of such
We have given :gtilimlly ueed for decorative and monflmenml purposes.
called them all “marbfe: ES t;he n]ames used by stone workers and have
called “lim » ? ough one or two mieht " Jv bo
thanks are des(;o:: sl"rofTJh © “Mexican Onyx » i rgallyn;,;):'(:ef‘):izgeﬂ%ur

- 3. B. Wolft for help in identifying our gpeciment:

Bowker and Torrey of
for us representa
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Fossiliferons Tennessee Marble.

(Red with numerous white fossils.)
Thickness in centimeters, 2.40
Temperatures of the faces of the glass plate, 82°.8 and 63°.2
Temperatures of the faces of the marble slab, 43°.3 and 24°.4
Ratio of the conductivities of the marble and the glass, 2.73
Absolute conductivity of the marble, 0.00756

* American White Marble.

{Cream white.)
Thickness in centimeters, 2.68
Temperatures of the faces of the glass plate, 83°.6 and 64°.6
Temperatures of the faces of the marble slab, 45°.4 and 20°.3
Ratio of the conductivities of the marble and the glass, 2.15

Absolute conductivity of the marble, 0.00596
Vermont Statuary Marble.
(Snow white with coarse but uniform grain.)
Thickness in centimeters, 2.40

Temperatures of the faces of the glass plate, 82°.9 and 64°.2
Temperatures of the faces of the marble slab, 44°.7 and 21°.7
Ratio of the conductivities of the marble and the glass, 2.09

Absolute conductivity of the marble, 0.00578
Lisbon Marble.
(Light terra-cotta with darker veins.)
Thickness in centimeters, 2.30

Temperatures of the faces of the glass plate, 80°.9 and 60°.8
Temperatures of the faces of the marble slab, 39°.6 and 19°.6
Ratio of the conductivities of the marble and the glass, 2.47
Absolute conductivity of the marble 0.00685

St. Baume Marble.
(Yellow, red, and yellowish white brecciated.)
Thickness in centimeters, 2.56
Temperatures of the faces of the glass plate, 80°.9 and 61°.2
Temperatures of the faces of the marble slab, 40°.8 and 22°.1
Ratio of the conductivities of the marble and the glass, 2.75
Absolute conductivity of the marble, 0.00761

63>
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Rose Ivory Marble.

(From Djebel-er-Roos, Algiers. White with very slight pinkish tinge. Very fino
in grain.)

Thickness in centimeters, ' 2.64

:l‘emperatures of the faces of the glass plate, 80".3 and 60°.2

Temperatures of the faces of the marble slab, 39°.8 and 19°.0

Ratio of the conductivities of the marble and the glass 2.73

Absolute conductivity of the marble, o 0.00756

Italian Egyptian Marble.

(Breccia.  Slate colored with ochre-yellow and white veins.)
Thickness in centimeters, 2.50
Temperatures of the faces of the glass plate, 83°.0 and 63°.3
Ten.lperatures of the faces of the marble slab, 43°.1 and 19°.2
Ratio of the conductivities of the marble and the slass 2.25
Absolute conductivity of the marble, s O-Ob623

Mexican Onyzx.

' (Alabaster white, translucent.)
Thickness in centimetres,

Temperatures of the faces of the glass plate, 82°.9 and 63°.8
Temperatures of the faces of the onyx slab, 43°.1 and 19°8

Ratio of the conductivities of
the onyx and the gl
Absolute conductivity of the oynx, ’ ° B 201

2.29

0.00556
Vermont Dove Colored Marble.
. . (Dove colored with light and dark stris. ) «
Thickness in centimeters, 2.19

rl‘emperatures of the faces of the glass plate

l‘enc.lperatures of the faces of the marble sla,b
Ratio of the conductivities of th ’
Absolute conductivity of the

80°.5 and 59°.3
89°.1 and 18°.9
e marble and the glass, 2.47

marble, 0.00684

Bardiglio Marble,
{(From the Seravazza quarries.

Thickness in centimeters,

Temperatures of the faceg of the glass plate
Tenr'xperatures of the faces of the marble plc ;
Ratio of the conductivities of the mar Pl
Absolute conductivity of the ma,rble:

Cloudy white, with network of distinct darl lines.)
2.44
81°.8 and 61°.3
41°.1 and 19°.3
ble and the glass, 2.45
0.00680
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Sienna Marble.

(Yellowish white with blue veins.)
Thickness in centimeters, 2.48
Temperatures of the faces of the glass plate, 81°.5 and 60°.9
Temperatures of the faces of the marble plate, 40°.9 and 18°.6
Ratio of the conductivities of the marble and the glass, 2.44
Absolute conductivity of the marble, 0.00676

St. Anne Marble,

(Brown black with white patches.)
Thickness in centimeters, 2.84
Temperatures of the faces of the glass plate, 80°.9 and 60°.1
Temperatures of the faces of the marble plate, 38°.8 and 19°.7
Ratio of the conductivities of the marble and the glass, 2.78
Absolute conductivity of the marble, 0.00755

American Black Marble,

(Dark slate.)
Thickness in centimeters, 248
Temperatures of the faces of the glass plate, 81°.0 and 61°.1
Temperatures of the faces of the marble slab, 40°.1 and 19°.2
Ratio of the conductivities of the marble and the glass, 2.47 .
Absolute conductivity of the marble, 0.00685

Vermont Cloudy Marble.

{Cloudy white with darker patches.)
Thickness in centimeters, 2.55
Temperatures of the faces of the glass plate, 82°.8 and 62°.1
Temperatures of the faces of the marble slab, 41°.8 and 19°.4
Ratio of the conductivities of the marble and the glass, 2.46
Absolute conductivity of the marble, 0.00681

Knoxville Marble

(Pink with occasional dark serrated veins.)
Thickness in centimeters, - 2.87
Temperatures of the faces of the glass plate, 81°.6 and 61°.0
Temperatures of the faces of the marble slab, 88°.9 and 20°.1
Ratio of the conductivities of the marble and the glass, 2.62
Absolute conductivity of the marble, 0.00757
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Variety of Marble.
“Carrara Statuary ”

14 (13
“Mexican Onyx ” .
“Vermont Statuary ” .
“ American White ”
“Egyptian” ,
“Sienna ”’ ,
“Bardiglio” . . , ., ,
“ Vermont Cloudy White »
“Vermont Dove Colored ”
“Lisbon” . . . . |
“ American Black ”
“Belgian” e
“ African Rose Ivory» .
“Tennessee Fossiliferous”
“XKnoxville Pink ** .
“ St. Baume »

L

JEFFERgON Prysioar, LABORATORY,

CamBRIDGE, MAgs,

Arranging the results in the order of the conductivities of the speci-
mens, we get the subjoined table. We call attention to the two groups

of fine-grained marbles, which have conductivities of about 0.0068 and
0.0076 respectively, at about 30° C.

Conduetivity.

0.00501
0.00509
0.00556
0.00578
0.00596
0.00623
0.00676
0.00680
0.00681
0.00684
0.00685
0.00685
0.00755
0.00756
0.00756
0.00757
0.00761

d paper the results of observations made upon

the American Academy of Arts and
23 made an appropriation from the Rumford Fund in
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